bind_c_array_params_2.f90: Add "-mno-explicit-relocs" for alpha*-*-* targets.
[gcc.git] / gcc / bitmap.h
1 /* Functions to support general ended bitmaps.
2 Copyright (C) 1997-2012 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_BITMAP_H
21 #define GCC_BITMAP_H
22
23 /* Implementation of sparse integer sets as a linked list.
24
25 This sparse set representation is suitable for sparse sets with an
26 unknown (a priori) universe. The set is represented as a double-linked
27 list of container nodes (struct bitmap_element_def). Each node consists
28 of an index for the first member that could be held in the container,
29 a small array of integers that represent the members in the container,
30 and pointers to the next and previous element in the linked list. The
31 elements in the list are sorted in ascending order, i.e. the head of
32 the list holds the element with the smallest member of the set.
33
34 For a given member I in the set:
35 - the element for I will have index is I / (bits per element)
36 - the position for I within element is I % (bits per element)
37
38 This representation is very space-efficient for large sparse sets, and
39 the size of the set can be changed dynamically without much overhead.
40 An important parameter is the number of bits per element. In this
41 implementation, there are 128 bits per element. This results in a
42 high storage overhead *per element*, but a small overall overhead if
43 the set is very sparse.
44
45 The downside is that many operations are relatively slow because the
46 linked list has to be traversed to test membership (i.e. member_p/
47 add_member/remove_member). To improve the performance of this set
48 representation, the last accessed element and its index are cached.
49 For membership tests on members close to recently accessed members,
50 the cached last element improves membership test to a constant-time
51 operation.
52
53 The following operations can always be performed in O(1) time:
54
55 * clear : bitmap_clear
56 * choose_one : (not implemented, but could be
57 implemented in constant time)
58
59 The following operations can be performed in O(E) time worst-case (with
60 E the number of elements in the linked list), but in O(1) time with a
61 suitable access patterns:
62
63 * member_p : bitmap_bit_p
64 * add_member : bitmap_set_bit
65 * remove_member : bitmap_clear_bit
66
67 The following operations can be performed in O(E) time:
68
69 * cardinality : bitmap_count_bits
70 * set_size : bitmap_last_set_bit (but this could
71 in constant time with a pointer to
72 the last element in the chain)
73
74 Additionally, the linked-list sparse set representation supports
75 enumeration of the members in O(E) time:
76
77 * forall : EXECUTE_IF_SET_IN_BITMAP
78 * set_copy : bitmap_copy
79 * set_intersection : bitmap_intersect_p /
80 bitmap_and / bitmap_and_into /
81 EXECUTE_IF_AND_IN_BITMAP
82 * set_union : bitmap_ior / bitmap_ior_into
83 * set_difference : bitmap_intersect_compl_p /
84 bitmap_and_comp / bitmap_and_comp_into /
85 EXECUTE_IF_AND_COMPL_IN_BITMAP
86 * set_disjuction : bitmap_xor_comp / bitmap_xor_comp_into
87 * set_compare : bitmap_equal_p
88
89 Some operations on 3 sets that occur frequently in in data flow problems
90 are also implemented:
91
92 * A | (B & C) : bitmap_ior_and_into
93 * A | (B & ~C) : bitmap_ior_and_compl /
94 bitmap_ior_and_compl_into
95
96 The storage requirements for linked-list sparse sets are O(E), with E->N
97 in the worst case (a sparse set with large distances between the values
98 of the set members).
99
100 The linked-list set representation works well for problems involving very
101 sparse sets. The canonical example in GCC is, of course, the "set of
102 sets" for some CFG-based data flow problems (liveness analysis, dominance
103 frontiers, etc.).
104
105 This representation also works well for data flow problems where the size
106 of the set may grow dynamically, but care must be taken that the member_p,
107 add_member, and remove_member operations occur with a suitable access
108 pattern.
109
110 For random-access sets with a known, relatively small universe size, the
111 SparseSet or simple bitmap representations may be more efficient than a
112 linked-list set. For random-access sets of unknown universe, a hash table
113 or a balanced binary tree representation is likely to be a more suitable
114 choice.
115
116 Traversing linked lists is usually cache-unfriendly, even with the last
117 accessed element cached.
118
119 Cache performance can be improved by keeping the elements in the set
120 grouped together in memory, using a dedicated obstack for a set (or group
121 of related sets). Elements allocated on obstacks are released to a
122 free-list and taken off the free list. If multiple sets are allocated on
123 the same obstack, elements freed from one set may be re-used for one of
124 the other sets. This usually helps avoid cache misses.
125
126 A single free-list is used for all sets allocated in GGC space. This is
127 bad for persistent sets, so persistent sets should be allocated on an
128 obstack whenever possible. */
129
130 #include "hashtab.h"
131 #include "statistics.h"
132 #include "obstack.h"
133
134 /* Fundamental storage type for bitmap. */
135
136 typedef unsigned long BITMAP_WORD;
137 /* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
138 it is used in preprocessor directives -- hence the 1u. */
139 #define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
140
141 /* Number of words to use for each element in the linked list. */
142
143 #ifndef BITMAP_ELEMENT_WORDS
144 #define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
145 #endif
146
147 /* Number of bits in each actual element of a bitmap. */
148
149 #define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
150
151 /* Obstack for allocating bitmaps and elements from. */
152 typedef struct GTY (()) bitmap_obstack {
153 struct bitmap_element_def *elements;
154 struct bitmap_head_def *heads;
155 struct obstack GTY ((skip)) obstack;
156 } bitmap_obstack;
157
158 /* Bitmap set element. We use a linked list to hold only the bits that
159 are set. This allows for use to grow the bitset dynamically without
160 having to realloc and copy a giant bit array.
161
162 The free list is implemented as a list of lists. There is one
163 outer list connected together by prev fields. Each element of that
164 outer is an inner list (that may consist only of the outer list
165 element) that are connected by the next fields. The prev pointer
166 is undefined for interior elements. This allows
167 bitmap_elt_clear_from to be implemented in unit time rather than
168 linear in the number of elements to be freed. */
169
170 typedef struct GTY(()) bitmap_element_def {
171 struct bitmap_element_def *next; /* Next element. */
172 struct bitmap_element_def *prev; /* Previous element. */
173 unsigned int indx; /* regno/BITMAP_ELEMENT_ALL_BITS. */
174 BITMAP_WORD bits[BITMAP_ELEMENT_WORDS]; /* Bits that are set. */
175 } bitmap_element;
176
177 struct bitmap_descriptor;
178 /* Head of bitmap linked list. gengtype ignores ifdefs, but for
179 statistics we need to add a bitmap descriptor pointer. As it is
180 not collected, we can just GTY((skip)) it. */
181
182 typedef struct GTY(()) bitmap_head_def {
183 bitmap_element *first; /* First element in linked list. */
184 bitmap_element *current; /* Last element looked at. */
185 unsigned int indx; /* Index of last element looked at. */
186 bitmap_obstack *obstack; /* Obstack to allocate elements from.
187 If NULL, then use GGC allocation. */
188 struct bitmap_descriptor GTY((skip)) *desc;
189 } bitmap_head;
190
191 /* Global data */
192 extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
193 extern bitmap_obstack bitmap_default_obstack; /* Default bitmap obstack */
194
195 /* Clear a bitmap by freeing up the linked list. */
196 extern void bitmap_clear (bitmap);
197
198 /* Copy a bitmap to another bitmap. */
199 extern void bitmap_copy (bitmap, const_bitmap);
200
201 /* True if two bitmaps are identical. */
202 extern bool bitmap_equal_p (const_bitmap, const_bitmap);
203
204 /* True if the bitmaps intersect (their AND is non-empty). */
205 extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
206
207 /* True if the complement of the second intersects the first (their
208 AND_COMPL is non-empty). */
209 extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
210
211 /* True if MAP is an empty bitmap. */
212 #define bitmap_empty_p(MAP) (!(MAP)->first)
213
214 /* True if the bitmap has only a single bit set. */
215 extern bool bitmap_single_bit_set_p (const_bitmap);
216
217 /* Count the number of bits set in the bitmap. */
218 extern unsigned long bitmap_count_bits (const_bitmap);
219
220 /* Boolean operations on bitmaps. The _into variants are two operand
221 versions that modify the first source operand. The other variants
222 are three operand versions that to not destroy the source bitmaps.
223 The operations supported are &, & ~, |, ^. */
224 extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
225 extern void bitmap_and_into (bitmap, const_bitmap);
226 extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
227 extern bool bitmap_and_compl_into (bitmap, const_bitmap);
228 #define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
229 extern void bitmap_compl_and_into (bitmap, const_bitmap);
230 extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
231 extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
232 extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
233 extern bool bitmap_ior_into (bitmap, const_bitmap);
234 extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
235 extern void bitmap_xor_into (bitmap, const_bitmap);
236
237 /* DST = A | (B & C). Return true if DST changes. */
238 extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
239 /* DST = A | (B & ~C). Return true if DST changes. */
240 extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
241 const_bitmap B, const_bitmap C);
242 /* A |= (B & ~C). Return true if A changes. */
243 extern bool bitmap_ior_and_compl_into (bitmap A,
244 const_bitmap B, const_bitmap C);
245
246 /* Clear a single bit in a bitmap. Return true if the bit changed. */
247 extern bool bitmap_clear_bit (bitmap, int);
248
249 /* Set a single bit in a bitmap. Return true if the bit changed. */
250 extern bool bitmap_set_bit (bitmap, int);
251
252 /* Return true if a register is set in a register set. */
253 extern int bitmap_bit_p (bitmap, int);
254
255 /* Debug functions to print a bitmap linked list. */
256 extern void debug_bitmap (const_bitmap);
257 extern void debug_bitmap_file (FILE *, const_bitmap);
258
259 /* Print a bitmap. */
260 extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
261
262 /* Initialize and release a bitmap obstack. */
263 extern void bitmap_obstack_initialize (bitmap_obstack *);
264 extern void bitmap_obstack_release (bitmap_obstack *);
265 extern void bitmap_register (bitmap MEM_STAT_DECL);
266 extern void dump_bitmap_statistics (void);
267
268 /* Initialize a bitmap header. OBSTACK indicates the bitmap obstack
269 to allocate from, NULL for GC'd bitmap. */
270
271 static inline void
272 bitmap_initialize_stat (bitmap head, bitmap_obstack *obstack MEM_STAT_DECL)
273 {
274 head->first = head->current = NULL;
275 head->obstack = obstack;
276 if (GATHER_STATISTICS)
277 bitmap_register (head PASS_MEM_STAT);
278 }
279 #define bitmap_initialize(h,o) bitmap_initialize_stat (h,o MEM_STAT_INFO)
280
281 /* Allocate and free bitmaps from obstack, malloc and gc'd memory. */
282 extern bitmap bitmap_obstack_alloc_stat (bitmap_obstack *obstack MEM_STAT_DECL);
283 #define bitmap_obstack_alloc(t) bitmap_obstack_alloc_stat (t MEM_STAT_INFO)
284 extern bitmap bitmap_gc_alloc_stat (ALONE_MEM_STAT_DECL);
285 #define bitmap_gc_alloc() bitmap_gc_alloc_stat (ALONE_MEM_STAT_INFO)
286 extern void bitmap_obstack_free (bitmap);
287
288 /* A few compatibility/functions macros for compatibility with sbitmaps */
289 #define dump_bitmap(file, bitmap) bitmap_print (file, bitmap, "", "\n")
290 #define bitmap_zero(a) bitmap_clear (a)
291 extern unsigned bitmap_first_set_bit (const_bitmap);
292 extern unsigned bitmap_last_set_bit (const_bitmap);
293
294 /* Compute bitmap hash (for purposes of hashing etc.) */
295 extern hashval_t bitmap_hash(const_bitmap);
296
297 /* Allocate a bitmap from a bit obstack. */
298 #define BITMAP_ALLOC(OBSTACK) bitmap_obstack_alloc (OBSTACK)
299
300 /* Allocate a gc'd bitmap. */
301 #define BITMAP_GGC_ALLOC() bitmap_gc_alloc ()
302
303 /* Do any cleanup needed on a bitmap when it is no longer used. */
304 #define BITMAP_FREE(BITMAP) \
305 ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
306
307 /* Iterator for bitmaps. */
308
309 typedef struct
310 {
311 /* Pointer to the current bitmap element. */
312 bitmap_element *elt1;
313
314 /* Pointer to 2nd bitmap element when two are involved. */
315 bitmap_element *elt2;
316
317 /* Word within the current element. */
318 unsigned word_no;
319
320 /* Contents of the actually processed word. When finding next bit
321 it is shifted right, so that the actual bit is always the least
322 significant bit of ACTUAL. */
323 BITMAP_WORD bits;
324 } bitmap_iterator;
325
326 /* Initialize a single bitmap iterator. START_BIT is the first bit to
327 iterate from. */
328
329 static inline void
330 bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
331 unsigned start_bit, unsigned *bit_no)
332 {
333 bi->elt1 = map->first;
334 bi->elt2 = NULL;
335
336 /* Advance elt1 until it is not before the block containing start_bit. */
337 while (1)
338 {
339 if (!bi->elt1)
340 {
341 bi->elt1 = &bitmap_zero_bits;
342 break;
343 }
344
345 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
346 break;
347 bi->elt1 = bi->elt1->next;
348 }
349
350 /* We might have gone past the start bit, so reinitialize it. */
351 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
352 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
353
354 /* Initialize for what is now start_bit. */
355 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
356 bi->bits = bi->elt1->bits[bi->word_no];
357 bi->bits >>= start_bit % BITMAP_WORD_BITS;
358
359 /* If this word is zero, we must make sure we're not pointing at the
360 first bit, otherwise our incrementing to the next word boundary
361 will fail. It won't matter if this increment moves us into the
362 next word. */
363 start_bit += !bi->bits;
364
365 *bit_no = start_bit;
366 }
367
368 /* Initialize an iterator to iterate over the intersection of two
369 bitmaps. START_BIT is the bit to commence from. */
370
371 static inline void
372 bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
373 unsigned start_bit, unsigned *bit_no)
374 {
375 bi->elt1 = map1->first;
376 bi->elt2 = map2->first;
377
378 /* Advance elt1 until it is not before the block containing
379 start_bit. */
380 while (1)
381 {
382 if (!bi->elt1)
383 {
384 bi->elt2 = NULL;
385 break;
386 }
387
388 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
389 break;
390 bi->elt1 = bi->elt1->next;
391 }
392
393 /* Advance elt2 until it is not before elt1. */
394 while (1)
395 {
396 if (!bi->elt2)
397 {
398 bi->elt1 = bi->elt2 = &bitmap_zero_bits;
399 break;
400 }
401
402 if (bi->elt2->indx >= bi->elt1->indx)
403 break;
404 bi->elt2 = bi->elt2->next;
405 }
406
407 /* If we're at the same index, then we have some intersecting bits. */
408 if (bi->elt1->indx == bi->elt2->indx)
409 {
410 /* We might have advanced beyond the start_bit, so reinitialize
411 for that. */
412 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
413 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
414
415 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
416 bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
417 bi->bits >>= start_bit % BITMAP_WORD_BITS;
418 }
419 else
420 {
421 /* Otherwise we must immediately advance elt1, so initialize for
422 that. */
423 bi->word_no = BITMAP_ELEMENT_WORDS - 1;
424 bi->bits = 0;
425 }
426
427 /* If this word is zero, we must make sure we're not pointing at the
428 first bit, otherwise our incrementing to the next word boundary
429 will fail. It won't matter if this increment moves us into the
430 next word. */
431 start_bit += !bi->bits;
432
433 *bit_no = start_bit;
434 }
435
436 /* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2.
437 */
438
439 static inline void
440 bmp_iter_and_compl_init (bitmap_iterator *bi,
441 const_bitmap map1, const_bitmap map2,
442 unsigned start_bit, unsigned *bit_no)
443 {
444 bi->elt1 = map1->first;
445 bi->elt2 = map2->first;
446
447 /* Advance elt1 until it is not before the block containing start_bit. */
448 while (1)
449 {
450 if (!bi->elt1)
451 {
452 bi->elt1 = &bitmap_zero_bits;
453 break;
454 }
455
456 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
457 break;
458 bi->elt1 = bi->elt1->next;
459 }
460
461 /* Advance elt2 until it is not before elt1. */
462 while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
463 bi->elt2 = bi->elt2->next;
464
465 /* We might have advanced beyond the start_bit, so reinitialize for
466 that. */
467 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
468 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
469
470 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
471 bi->bits = bi->elt1->bits[bi->word_no];
472 if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
473 bi->bits &= ~bi->elt2->bits[bi->word_no];
474 bi->bits >>= start_bit % BITMAP_WORD_BITS;
475
476 /* If this word is zero, we must make sure we're not pointing at the
477 first bit, otherwise our incrementing to the next word boundary
478 will fail. It won't matter if this increment moves us into the
479 next word. */
480 start_bit += !bi->bits;
481
482 *bit_no = start_bit;
483 }
484
485 /* Advance to the next bit in BI. We don't advance to the next
486 nonzero bit yet. */
487
488 static inline void
489 bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
490 {
491 bi->bits >>= 1;
492 *bit_no += 1;
493 }
494
495 /* Advance to first set bit in BI. */
496
497 static inline void
498 bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
499 {
500 #if (GCC_VERSION >= 3004)
501 {
502 unsigned int n = __builtin_ctzl (bi->bits);
503 gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
504 bi->bits >>= n;
505 *bit_no += n;
506 }
507 #else
508 while (!(bi->bits & 1))
509 {
510 bi->bits >>= 1;
511 *bit_no += 1;
512 }
513 #endif
514 }
515
516 /* Advance to the next nonzero bit of a single bitmap, we will have
517 already advanced past the just iterated bit. Return true if there
518 is a bit to iterate. */
519
520 static inline bool
521 bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
522 {
523 /* If our current word is nonzero, it contains the bit we want. */
524 if (bi->bits)
525 {
526 next_bit:
527 bmp_iter_next_bit (bi, bit_no);
528 return true;
529 }
530
531 /* Round up to the word boundary. We might have just iterated past
532 the end of the last word, hence the -1. It is not possible for
533 bit_no to point at the beginning of the now last word. */
534 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
535 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
536 bi->word_no++;
537
538 while (1)
539 {
540 /* Find the next nonzero word in this elt. */
541 while (bi->word_no != BITMAP_ELEMENT_WORDS)
542 {
543 bi->bits = bi->elt1->bits[bi->word_no];
544 if (bi->bits)
545 goto next_bit;
546 *bit_no += BITMAP_WORD_BITS;
547 bi->word_no++;
548 }
549
550 /* Advance to the next element. */
551 bi->elt1 = bi->elt1->next;
552 if (!bi->elt1)
553 return false;
554 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
555 bi->word_no = 0;
556 }
557 }
558
559 /* Advance to the next nonzero bit of an intersecting pair of
560 bitmaps. We will have already advanced past the just iterated bit.
561 Return true if there is a bit to iterate. */
562
563 static inline bool
564 bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
565 {
566 /* If our current word is nonzero, it contains the bit we want. */
567 if (bi->bits)
568 {
569 next_bit:
570 bmp_iter_next_bit (bi, bit_no);
571 return true;
572 }
573
574 /* Round up to the word boundary. We might have just iterated past
575 the end of the last word, hence the -1. It is not possible for
576 bit_no to point at the beginning of the now last word. */
577 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
578 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
579 bi->word_no++;
580
581 while (1)
582 {
583 /* Find the next nonzero word in this elt. */
584 while (bi->word_no != BITMAP_ELEMENT_WORDS)
585 {
586 bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
587 if (bi->bits)
588 goto next_bit;
589 *bit_no += BITMAP_WORD_BITS;
590 bi->word_no++;
591 }
592
593 /* Advance to the next identical element. */
594 do
595 {
596 /* Advance elt1 while it is less than elt2. We always want
597 to advance one elt. */
598 do
599 {
600 bi->elt1 = bi->elt1->next;
601 if (!bi->elt1)
602 return false;
603 }
604 while (bi->elt1->indx < bi->elt2->indx);
605
606 /* Advance elt2 to be no less than elt1. This might not
607 advance. */
608 while (bi->elt2->indx < bi->elt1->indx)
609 {
610 bi->elt2 = bi->elt2->next;
611 if (!bi->elt2)
612 return false;
613 }
614 }
615 while (bi->elt1->indx != bi->elt2->indx);
616
617 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
618 bi->word_no = 0;
619 }
620 }
621
622 /* Advance to the next nonzero bit in the intersection of
623 complemented bitmaps. We will have already advanced past the just
624 iterated bit. */
625
626 static inline bool
627 bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
628 {
629 /* If our current word is nonzero, it contains the bit we want. */
630 if (bi->bits)
631 {
632 next_bit:
633 bmp_iter_next_bit (bi, bit_no);
634 return true;
635 }
636
637 /* Round up to the word boundary. We might have just iterated past
638 the end of the last word, hence the -1. It is not possible for
639 bit_no to point at the beginning of the now last word. */
640 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
641 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
642 bi->word_no++;
643
644 while (1)
645 {
646 /* Find the next nonzero word in this elt. */
647 while (bi->word_no != BITMAP_ELEMENT_WORDS)
648 {
649 bi->bits = bi->elt1->bits[bi->word_no];
650 if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
651 bi->bits &= ~bi->elt2->bits[bi->word_no];
652 if (bi->bits)
653 goto next_bit;
654 *bit_no += BITMAP_WORD_BITS;
655 bi->word_no++;
656 }
657
658 /* Advance to the next element of elt1. */
659 bi->elt1 = bi->elt1->next;
660 if (!bi->elt1)
661 return false;
662
663 /* Advance elt2 until it is no less than elt1. */
664 while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
665 bi->elt2 = bi->elt2->next;
666
667 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
668 bi->word_no = 0;
669 }
670 }
671
672 /* Loop over all bits set in BITMAP, starting with MIN and setting
673 BITNUM to the bit number. ITER is a bitmap iterator. BITNUM
674 should be treated as a read-only variable as it contains loop
675 state. */
676
677 #define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER) \
678 for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM)); \
679 bmp_iter_set (&(ITER), &(BITNUM)); \
680 bmp_iter_next (&(ITER), &(BITNUM)))
681
682 /* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
683 and setting BITNUM to the bit number. ITER is a bitmap iterator.
684 BITNUM should be treated as a read-only variable as it contains
685 loop state. */
686
687 #define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
688 for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
689 &(BITNUM)); \
690 bmp_iter_and (&(ITER), &(BITNUM)); \
691 bmp_iter_next (&(ITER), &(BITNUM)))
692
693 /* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
694 and setting BITNUM to the bit number. ITER is a bitmap iterator.
695 BITNUM should be treated as a read-only variable as it contains
696 loop state. */
697
698 #define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
699 for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
700 &(BITNUM)); \
701 bmp_iter_and_compl (&(ITER), &(BITNUM)); \
702 bmp_iter_next (&(ITER), &(BITNUM)))
703
704 #endif /* GCC_BITMAP_H */