Update copyright years.
[gcc.git] / gcc / bitmap.h
1 /* Functions to support general ended bitmaps.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_BITMAP_H
21 #define GCC_BITMAP_H
22
23 /* Implementation of sparse integer sets as a linked list.
24
25 This sparse set representation is suitable for sparse sets with an
26 unknown (a priori) universe. The set is represented as a double-linked
27 list of container nodes (struct bitmap_element). Each node consists
28 of an index for the first member that could be held in the container,
29 a small array of integers that represent the members in the container,
30 and pointers to the next and previous element in the linked list. The
31 elements in the list are sorted in ascending order, i.e. the head of
32 the list holds the element with the smallest member of the set.
33
34 For a given member I in the set:
35 - the element for I will have index is I / (bits per element)
36 - the position for I within element is I % (bits per element)
37
38 This representation is very space-efficient for large sparse sets, and
39 the size of the set can be changed dynamically without much overhead.
40 An important parameter is the number of bits per element. In this
41 implementation, there are 128 bits per element. This results in a
42 high storage overhead *per element*, but a small overall overhead if
43 the set is very sparse.
44
45 The downside is that many operations are relatively slow because the
46 linked list has to be traversed to test membership (i.e. member_p/
47 add_member/remove_member). To improve the performance of this set
48 representation, the last accessed element and its index are cached.
49 For membership tests on members close to recently accessed members,
50 the cached last element improves membership test to a constant-time
51 operation.
52
53 The following operations can always be performed in O(1) time:
54
55 * clear : bitmap_clear
56 * choose_one : (not implemented, but could be
57 implemented in constant time)
58
59 The following operations can be performed in O(E) time worst-case (with
60 E the number of elements in the linked list), but in O(1) time with a
61 suitable access patterns:
62
63 * member_p : bitmap_bit_p
64 * add_member : bitmap_set_bit
65 * remove_member : bitmap_clear_bit
66
67 The following operations can be performed in O(E) time:
68
69 * cardinality : bitmap_count_bits
70 * set_size : bitmap_last_set_bit (but this could
71 in constant time with a pointer to
72 the last element in the chain)
73
74 Additionally, the linked-list sparse set representation supports
75 enumeration of the members in O(E) time:
76
77 * forall : EXECUTE_IF_SET_IN_BITMAP
78 * set_copy : bitmap_copy
79 * set_intersection : bitmap_intersect_p /
80 bitmap_and / bitmap_and_into /
81 EXECUTE_IF_AND_IN_BITMAP
82 * set_union : bitmap_ior / bitmap_ior_into
83 * set_difference : bitmap_intersect_compl_p /
84 bitmap_and_comp / bitmap_and_comp_into /
85 EXECUTE_IF_AND_COMPL_IN_BITMAP
86 * set_disjuction : bitmap_xor_comp / bitmap_xor_comp_into
87 * set_compare : bitmap_equal_p
88
89 Some operations on 3 sets that occur frequently in in data flow problems
90 are also implemented:
91
92 * A | (B & C) : bitmap_ior_and_into
93 * A | (B & ~C) : bitmap_ior_and_compl /
94 bitmap_ior_and_compl_into
95
96 The storage requirements for linked-list sparse sets are O(E), with E->N
97 in the worst case (a sparse set with large distances between the values
98 of the set members).
99
100 The linked-list set representation works well for problems involving very
101 sparse sets. The canonical example in GCC is, of course, the "set of
102 sets" for some CFG-based data flow problems (liveness analysis, dominance
103 frontiers, etc.).
104
105 This representation also works well for data flow problems where the size
106 of the set may grow dynamically, but care must be taken that the member_p,
107 add_member, and remove_member operations occur with a suitable access
108 pattern.
109
110 For random-access sets with a known, relatively small universe size, the
111 SparseSet or simple bitmap representations may be more efficient than a
112 linked-list set. For random-access sets of unknown universe, a hash table
113 or a balanced binary tree representation is likely to be a more suitable
114 choice.
115
116 Traversing linked lists is usually cache-unfriendly, even with the last
117 accessed element cached.
118
119 Cache performance can be improved by keeping the elements in the set
120 grouped together in memory, using a dedicated obstack for a set (or group
121 of related sets). Elements allocated on obstacks are released to a
122 free-list and taken off the free list. If multiple sets are allocated on
123 the same obstack, elements freed from one set may be re-used for one of
124 the other sets. This usually helps avoid cache misses.
125
126 A single free-list is used for all sets allocated in GGC space. This is
127 bad for persistent sets, so persistent sets should be allocated on an
128 obstack whenever possible. */
129
130 #include "hashtab.h"
131 #include "statistics.h"
132 #include "obstack.h"
133
134 /* Fundamental storage type for bitmap. */
135
136 typedef unsigned long BITMAP_WORD;
137 /* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
138 it is used in preprocessor directives -- hence the 1u. */
139 #define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
140
141 /* Number of words to use for each element in the linked list. */
142
143 #ifndef BITMAP_ELEMENT_WORDS
144 #define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
145 #endif
146
147 /* Number of bits in each actual element of a bitmap. */
148
149 #define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
150
151 /* Obstack for allocating bitmaps and elements from. */
152 struct GTY (()) bitmap_obstack {
153 struct bitmap_element *elements;
154 struct bitmap_head *heads;
155 struct obstack GTY ((skip)) obstack;
156 };
157
158 /* Bitmap set element. We use a linked list to hold only the bits that
159 are set. This allows for use to grow the bitset dynamically without
160 having to realloc and copy a giant bit array.
161
162 The free list is implemented as a list of lists. There is one
163 outer list connected together by prev fields. Each element of that
164 outer is an inner list (that may consist only of the outer list
165 element) that are connected by the next fields. The prev pointer
166 is undefined for interior elements. This allows
167 bitmap_elt_clear_from to be implemented in unit time rather than
168 linear in the number of elements to be freed. */
169
170 struct GTY((chain_next ("%h.next"), chain_prev ("%h.prev"))) bitmap_element {
171 struct bitmap_element *next; /* Next element. */
172 struct bitmap_element *prev; /* Previous element. */
173 unsigned int indx; /* regno/BITMAP_ELEMENT_ALL_BITS. */
174 BITMAP_WORD bits[BITMAP_ELEMENT_WORDS]; /* Bits that are set. */
175 };
176
177 /* Head of bitmap linked list. The 'current' member points to something
178 already pointed to by the chain started by first, so GTY((skip)) it. */
179
180 struct GTY(()) bitmap_head {
181 unsigned int indx; /* Index of last element looked at. */
182 unsigned int descriptor_id; /* Unique identifier for the allocation
183 site of this bitmap, for detailed
184 statistics gathering. */
185 bitmap_element *first; /* First element in linked list. */
186 bitmap_element * GTY((skip(""))) current; /* Last element looked at. */
187 bitmap_obstack *obstack; /* Obstack to allocate elements from.
188 If NULL, then use GGC allocation. */
189 };
190
191 /* Global data */
192 extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
193 extern bitmap_obstack bitmap_default_obstack; /* Default bitmap obstack */
194
195 /* Clear a bitmap by freeing up the linked list. */
196 extern void bitmap_clear (bitmap);
197
198 /* Copy a bitmap to another bitmap. */
199 extern void bitmap_copy (bitmap, const_bitmap);
200
201 /* True if two bitmaps are identical. */
202 extern bool bitmap_equal_p (const_bitmap, const_bitmap);
203
204 /* True if the bitmaps intersect (their AND is non-empty). */
205 extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
206
207 /* True if the complement of the second intersects the first (their
208 AND_COMPL is non-empty). */
209 extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
210
211 /* True if MAP is an empty bitmap. */
212 inline bool bitmap_empty_p (const_bitmap map)
213 {
214 return !map->first;
215 }
216
217 /* True if the bitmap has only a single bit set. */
218 extern bool bitmap_single_bit_set_p (const_bitmap);
219
220 /* Count the number of bits set in the bitmap. */
221 extern unsigned long bitmap_count_bits (const_bitmap);
222
223 /* Boolean operations on bitmaps. The _into variants are two operand
224 versions that modify the first source operand. The other variants
225 are three operand versions that to not destroy the source bitmaps.
226 The operations supported are &, & ~, |, ^. */
227 extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
228 extern bool bitmap_and_into (bitmap, const_bitmap);
229 extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
230 extern bool bitmap_and_compl_into (bitmap, const_bitmap);
231 #define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
232 extern void bitmap_compl_and_into (bitmap, const_bitmap);
233 extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
234 extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
235 extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
236 extern bool bitmap_ior_into (bitmap, const_bitmap);
237 extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
238 extern void bitmap_xor_into (bitmap, const_bitmap);
239
240 /* DST = A | (B & C). Return true if DST changes. */
241 extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
242 /* DST = A | (B & ~C). Return true if DST changes. */
243 extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
244 const_bitmap B, const_bitmap C);
245 /* A |= (B & ~C). Return true if A changes. */
246 extern bool bitmap_ior_and_compl_into (bitmap A,
247 const_bitmap B, const_bitmap C);
248
249 /* Clear a single bit in a bitmap. Return true if the bit changed. */
250 extern bool bitmap_clear_bit (bitmap, int);
251
252 /* Set a single bit in a bitmap. Return true if the bit changed. */
253 extern bool bitmap_set_bit (bitmap, int);
254
255 /* Return true if a register is set in a register set. */
256 extern int bitmap_bit_p (bitmap, int);
257
258 /* Debug functions to print a bitmap linked list. */
259 extern void debug_bitmap (const_bitmap);
260 extern void debug_bitmap_file (FILE *, const_bitmap);
261
262 /* Print a bitmap. */
263 extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
264
265 /* Initialize and release a bitmap obstack. */
266 extern void bitmap_obstack_initialize (bitmap_obstack *);
267 extern void bitmap_obstack_release (bitmap_obstack *);
268 extern void bitmap_register (bitmap MEM_STAT_DECL);
269 extern void dump_bitmap_statistics (void);
270
271 /* Initialize a bitmap header. OBSTACK indicates the bitmap obstack
272 to allocate from, NULL for GC'd bitmap. */
273
274 static inline void
275 bitmap_initialize_stat (bitmap head, bitmap_obstack *obstack MEM_STAT_DECL)
276 {
277 head->first = head->current = NULL;
278 head->obstack = obstack;
279 if (GATHER_STATISTICS)
280 bitmap_register (head PASS_MEM_STAT);
281 }
282 #define bitmap_initialize(h,o) bitmap_initialize_stat (h,o MEM_STAT_INFO)
283
284 /* Allocate and free bitmaps from obstack, malloc and gc'd memory. */
285 extern bitmap bitmap_obstack_alloc_stat (bitmap_obstack *obstack MEM_STAT_DECL);
286 #define bitmap_obstack_alloc(t) bitmap_obstack_alloc_stat (t MEM_STAT_INFO)
287 extern bitmap bitmap_gc_alloc_stat (ALONE_MEM_STAT_DECL);
288 #define bitmap_gc_alloc() bitmap_gc_alloc_stat (ALONE_MEM_STAT_INFO)
289 extern void bitmap_obstack_free (bitmap);
290
291 /* A few compatibility/functions macros for compatibility with sbitmaps */
292 inline void dump_bitmap (FILE *file, const_bitmap map)
293 {
294 bitmap_print (file, map, "", "\n");
295 }
296 extern void debug (const bitmap_head &ref);
297 extern void debug (const bitmap_head *ptr);
298
299 extern unsigned bitmap_first_set_bit (const_bitmap);
300 extern unsigned bitmap_last_set_bit (const_bitmap);
301
302 /* Compute bitmap hash (for purposes of hashing etc.) */
303 extern hashval_t bitmap_hash (const_bitmap);
304
305 /* Allocate a bitmap from a bit obstack. */
306 #define BITMAP_ALLOC(OBSTACK) bitmap_obstack_alloc (OBSTACK)
307
308 /* Allocate a gc'd bitmap. */
309 #define BITMAP_GGC_ALLOC() bitmap_gc_alloc ()
310
311 /* Do any cleanup needed on a bitmap when it is no longer used. */
312 #define BITMAP_FREE(BITMAP) \
313 ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
314
315 /* Iterator for bitmaps. */
316
317 struct bitmap_iterator
318 {
319 /* Pointer to the current bitmap element. */
320 bitmap_element *elt1;
321
322 /* Pointer to 2nd bitmap element when two are involved. */
323 bitmap_element *elt2;
324
325 /* Word within the current element. */
326 unsigned word_no;
327
328 /* Contents of the actually processed word. When finding next bit
329 it is shifted right, so that the actual bit is always the least
330 significant bit of ACTUAL. */
331 BITMAP_WORD bits;
332 };
333
334 /* Initialize a single bitmap iterator. START_BIT is the first bit to
335 iterate from. */
336
337 static inline void
338 bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
339 unsigned start_bit, unsigned *bit_no)
340 {
341 bi->elt1 = map->first;
342 bi->elt2 = NULL;
343
344 /* Advance elt1 until it is not before the block containing start_bit. */
345 while (1)
346 {
347 if (!bi->elt1)
348 {
349 bi->elt1 = &bitmap_zero_bits;
350 break;
351 }
352
353 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
354 break;
355 bi->elt1 = bi->elt1->next;
356 }
357
358 /* We might have gone past the start bit, so reinitialize it. */
359 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
360 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
361
362 /* Initialize for what is now start_bit. */
363 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
364 bi->bits = bi->elt1->bits[bi->word_no];
365 bi->bits >>= start_bit % BITMAP_WORD_BITS;
366
367 /* If this word is zero, we must make sure we're not pointing at the
368 first bit, otherwise our incrementing to the next word boundary
369 will fail. It won't matter if this increment moves us into the
370 next word. */
371 start_bit += !bi->bits;
372
373 *bit_no = start_bit;
374 }
375
376 /* Initialize an iterator to iterate over the intersection of two
377 bitmaps. START_BIT is the bit to commence from. */
378
379 static inline void
380 bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
381 unsigned start_bit, unsigned *bit_no)
382 {
383 bi->elt1 = map1->first;
384 bi->elt2 = map2->first;
385
386 /* Advance elt1 until it is not before the block containing
387 start_bit. */
388 while (1)
389 {
390 if (!bi->elt1)
391 {
392 bi->elt2 = NULL;
393 break;
394 }
395
396 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
397 break;
398 bi->elt1 = bi->elt1->next;
399 }
400
401 /* Advance elt2 until it is not before elt1. */
402 while (1)
403 {
404 if (!bi->elt2)
405 {
406 bi->elt1 = bi->elt2 = &bitmap_zero_bits;
407 break;
408 }
409
410 if (bi->elt2->indx >= bi->elt1->indx)
411 break;
412 bi->elt2 = bi->elt2->next;
413 }
414
415 /* If we're at the same index, then we have some intersecting bits. */
416 if (bi->elt1->indx == bi->elt2->indx)
417 {
418 /* We might have advanced beyond the start_bit, so reinitialize
419 for that. */
420 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
421 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
422
423 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
424 bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
425 bi->bits >>= start_bit % BITMAP_WORD_BITS;
426 }
427 else
428 {
429 /* Otherwise we must immediately advance elt1, so initialize for
430 that. */
431 bi->word_no = BITMAP_ELEMENT_WORDS - 1;
432 bi->bits = 0;
433 }
434
435 /* If this word is zero, we must make sure we're not pointing at the
436 first bit, otherwise our incrementing to the next word boundary
437 will fail. It won't matter if this increment moves us into the
438 next word. */
439 start_bit += !bi->bits;
440
441 *bit_no = start_bit;
442 }
443
444 /* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2.
445 */
446
447 static inline void
448 bmp_iter_and_compl_init (bitmap_iterator *bi,
449 const_bitmap map1, const_bitmap map2,
450 unsigned start_bit, unsigned *bit_no)
451 {
452 bi->elt1 = map1->first;
453 bi->elt2 = map2->first;
454
455 /* Advance elt1 until it is not before the block containing start_bit. */
456 while (1)
457 {
458 if (!bi->elt1)
459 {
460 bi->elt1 = &bitmap_zero_bits;
461 break;
462 }
463
464 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
465 break;
466 bi->elt1 = bi->elt1->next;
467 }
468
469 /* Advance elt2 until it is not before elt1. */
470 while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
471 bi->elt2 = bi->elt2->next;
472
473 /* We might have advanced beyond the start_bit, so reinitialize for
474 that. */
475 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
476 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
477
478 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
479 bi->bits = bi->elt1->bits[bi->word_no];
480 if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
481 bi->bits &= ~bi->elt2->bits[bi->word_no];
482 bi->bits >>= start_bit % BITMAP_WORD_BITS;
483
484 /* If this word is zero, we must make sure we're not pointing at the
485 first bit, otherwise our incrementing to the next word boundary
486 will fail. It won't matter if this increment moves us into the
487 next word. */
488 start_bit += !bi->bits;
489
490 *bit_no = start_bit;
491 }
492
493 /* Advance to the next bit in BI. We don't advance to the next
494 nonzero bit yet. */
495
496 static inline void
497 bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
498 {
499 bi->bits >>= 1;
500 *bit_no += 1;
501 }
502
503 /* Advance to first set bit in BI. */
504
505 static inline void
506 bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
507 {
508 #if (GCC_VERSION >= 3004)
509 {
510 unsigned int n = __builtin_ctzl (bi->bits);
511 gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
512 bi->bits >>= n;
513 *bit_no += n;
514 }
515 #else
516 while (!(bi->bits & 1))
517 {
518 bi->bits >>= 1;
519 *bit_no += 1;
520 }
521 #endif
522 }
523
524 /* Advance to the next nonzero bit of a single bitmap, we will have
525 already advanced past the just iterated bit. Return true if there
526 is a bit to iterate. */
527
528 static inline bool
529 bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
530 {
531 /* If our current word is nonzero, it contains the bit we want. */
532 if (bi->bits)
533 {
534 next_bit:
535 bmp_iter_next_bit (bi, bit_no);
536 return true;
537 }
538
539 /* Round up to the word boundary. We might have just iterated past
540 the end of the last word, hence the -1. It is not possible for
541 bit_no to point at the beginning of the now last word. */
542 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
543 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
544 bi->word_no++;
545
546 while (1)
547 {
548 /* Find the next nonzero word in this elt. */
549 while (bi->word_no != BITMAP_ELEMENT_WORDS)
550 {
551 bi->bits = bi->elt1->bits[bi->word_no];
552 if (bi->bits)
553 goto next_bit;
554 *bit_no += BITMAP_WORD_BITS;
555 bi->word_no++;
556 }
557
558 /* Advance to the next element. */
559 bi->elt1 = bi->elt1->next;
560 if (!bi->elt1)
561 return false;
562 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
563 bi->word_no = 0;
564 }
565 }
566
567 /* Advance to the next nonzero bit of an intersecting pair of
568 bitmaps. We will have already advanced past the just iterated bit.
569 Return true if there is a bit to iterate. */
570
571 static inline bool
572 bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
573 {
574 /* If our current word is nonzero, it contains the bit we want. */
575 if (bi->bits)
576 {
577 next_bit:
578 bmp_iter_next_bit (bi, bit_no);
579 return true;
580 }
581
582 /* Round up to the word boundary. We might have just iterated past
583 the end of the last word, hence the -1. It is not possible for
584 bit_no to point at the beginning of the now last word. */
585 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
586 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
587 bi->word_no++;
588
589 while (1)
590 {
591 /* Find the next nonzero word in this elt. */
592 while (bi->word_no != BITMAP_ELEMENT_WORDS)
593 {
594 bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
595 if (bi->bits)
596 goto next_bit;
597 *bit_no += BITMAP_WORD_BITS;
598 bi->word_no++;
599 }
600
601 /* Advance to the next identical element. */
602 do
603 {
604 /* Advance elt1 while it is less than elt2. We always want
605 to advance one elt. */
606 do
607 {
608 bi->elt1 = bi->elt1->next;
609 if (!bi->elt1)
610 return false;
611 }
612 while (bi->elt1->indx < bi->elt2->indx);
613
614 /* Advance elt2 to be no less than elt1. This might not
615 advance. */
616 while (bi->elt2->indx < bi->elt1->indx)
617 {
618 bi->elt2 = bi->elt2->next;
619 if (!bi->elt2)
620 return false;
621 }
622 }
623 while (bi->elt1->indx != bi->elt2->indx);
624
625 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
626 bi->word_no = 0;
627 }
628 }
629
630 /* Advance to the next nonzero bit in the intersection of
631 complemented bitmaps. We will have already advanced past the just
632 iterated bit. */
633
634 static inline bool
635 bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
636 {
637 /* If our current word is nonzero, it contains the bit we want. */
638 if (bi->bits)
639 {
640 next_bit:
641 bmp_iter_next_bit (bi, bit_no);
642 return true;
643 }
644
645 /* Round up to the word boundary. We might have just iterated past
646 the end of the last word, hence the -1. It is not possible for
647 bit_no to point at the beginning of the now last word. */
648 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
649 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
650 bi->word_no++;
651
652 while (1)
653 {
654 /* Find the next nonzero word in this elt. */
655 while (bi->word_no != BITMAP_ELEMENT_WORDS)
656 {
657 bi->bits = bi->elt1->bits[bi->word_no];
658 if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
659 bi->bits &= ~bi->elt2->bits[bi->word_no];
660 if (bi->bits)
661 goto next_bit;
662 *bit_no += BITMAP_WORD_BITS;
663 bi->word_no++;
664 }
665
666 /* Advance to the next element of elt1. */
667 bi->elt1 = bi->elt1->next;
668 if (!bi->elt1)
669 return false;
670
671 /* Advance elt2 until it is no less than elt1. */
672 while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
673 bi->elt2 = bi->elt2->next;
674
675 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
676 bi->word_no = 0;
677 }
678 }
679
680 /* Loop over all bits set in BITMAP, starting with MIN and setting
681 BITNUM to the bit number. ITER is a bitmap iterator. BITNUM
682 should be treated as a read-only variable as it contains loop
683 state. */
684
685 #ifndef EXECUTE_IF_SET_IN_BITMAP
686 /* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP. */
687 #define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER) \
688 for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM)); \
689 bmp_iter_set (&(ITER), &(BITNUM)); \
690 bmp_iter_next (&(ITER), &(BITNUM)))
691 #endif
692
693 /* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
694 and setting BITNUM to the bit number. ITER is a bitmap iterator.
695 BITNUM should be treated as a read-only variable as it contains
696 loop state. */
697
698 #define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
699 for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
700 &(BITNUM)); \
701 bmp_iter_and (&(ITER), &(BITNUM)); \
702 bmp_iter_next (&(ITER), &(BITNUM)))
703
704 /* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
705 and setting BITNUM to the bit number. ITER is a bitmap iterator.
706 BITNUM should be treated as a read-only variable as it contains
707 loop state. */
708
709 #define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
710 for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
711 &(BITNUM)); \
712 bmp_iter_and_compl (&(ITER), &(BITNUM)); \
713 bmp_iter_next (&(ITER), &(BITNUM)))
714
715 #endif /* GCC_BITMAP_H */