cp-tree.def (UNARY_PLUS_EXPR): New C++ unary tree code.
[gcc.git] / gcc / bt-load.c
1 /* Perform branch target register load optimizations.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "fibheap.h"
29 #include "output.h"
30 #include "target.h"
31 #include "expr.h"
32 #include "flags.h"
33 #include "insn-attr.h"
34 #include "function.h"
35 #include "except.h"
36 #include "tm_p.h"
37
38 /* Target register optimizations - these are performed after reload. */
39
40 typedef struct btr_def_group_s
41 {
42 struct btr_def_group_s *next;
43 rtx src;
44 struct btr_def_s *members;
45 } *btr_def_group;
46
47 typedef struct btr_user_s
48 {
49 struct btr_user_s *next;
50 basic_block bb;
51 int luid;
52 rtx insn;
53 /* If INSN has a single use of a single branch register, then
54 USE points to it within INSN. If there is more than
55 one branch register use, or the use is in some way ambiguous,
56 then USE is NULL. */
57 rtx use;
58 int n_reaching_defs;
59 int first_reaching_def;
60 char other_use_this_block;
61 } *btr_user;
62
63 /* btr_def structs appear on three lists:
64 1. A list of all btr_def structures (head is
65 ALL_BTR_DEFS, linked by the NEXT field).
66 2. A list of branch reg definitions per basic block (head is
67 BB_BTR_DEFS[i], linked by the NEXT_THIS_BB field).
68 3. A list of all branch reg definitions belonging to the same
69 group (head is in a BTR_DEF_GROUP struct, linked by
70 NEXT_THIS_GROUP field). */
71
72 typedef struct btr_def_s
73 {
74 struct btr_def_s *next_this_bb;
75 struct btr_def_s *next_this_group;
76 basic_block bb;
77 int luid;
78 rtx insn;
79 int btr;
80 int cost;
81 /* For a branch register setting insn that has a constant
82 source (i.e. a label), group links together all the
83 insns with the same source. For other branch register
84 setting insns, group is NULL. */
85 btr_def_group group;
86 btr_user uses;
87 /* If this def has a reaching use which is not a simple use
88 in a branch instruction, then has_ambiguous_use will be true,
89 and we will not attempt to migrate this definition. */
90 char has_ambiguous_use;
91 /* live_range is an approximation to the true live range for this
92 def/use web, because it records the set of blocks that contain
93 the live range. There could be other live ranges for the same
94 branch register in that set of blocks, either in the block
95 containing the def (before the def), or in a block containing
96 a use (after the use). If there are such other live ranges, then
97 other_btr_uses_before_def or other_btr_uses_after_use must be set true
98 as appropriate. */
99 char other_btr_uses_before_def;
100 char other_btr_uses_after_use;
101 /* We set own_end when we have moved a definition into a dominator.
102 Thus, when a later combination removes this definition again, we know
103 to clear out trs_live_at_end again. */
104 char own_end;
105 bitmap live_range;
106 } *btr_def;
107
108 static int issue_rate;
109
110 static int basic_block_freq (basic_block);
111 static int insn_sets_btr_p (rtx, int, int *);
112 static rtx *find_btr_use (rtx);
113 static int btr_referenced_p (rtx, rtx *);
114 static int find_btr_reference (rtx *, void *);
115 static void find_btr_def_group (btr_def_group *, btr_def);
116 static btr_def add_btr_def (fibheap_t, basic_block, int, rtx,
117 unsigned int, int, btr_def_group *);
118 static btr_user new_btr_user (basic_block, int, rtx);
119 static void dump_hard_reg_set (HARD_REG_SET);
120 static void dump_btrs_live (int);
121 static void note_other_use_this_block (unsigned int, btr_user);
122 static void compute_defs_uses_and_gen (fibheap_t, btr_def *,btr_user *,
123 sbitmap *, sbitmap *, HARD_REG_SET *);
124 static void compute_kill (sbitmap *, sbitmap *, HARD_REG_SET *);
125 static void compute_out (sbitmap *bb_out, sbitmap *, sbitmap *, int);
126 static void link_btr_uses (btr_def *, btr_user *, sbitmap *, sbitmap *, int);
127 static void build_btr_def_use_webs (fibheap_t);
128 static int block_at_edge_of_live_range_p (int, btr_def);
129 static void clear_btr_from_live_range (btr_def def);
130 static void add_btr_to_live_range (btr_def, int);
131 static void augment_live_range (bitmap, HARD_REG_SET *, basic_block,
132 basic_block, int);
133 static int choose_btr (HARD_REG_SET);
134 static void combine_btr_defs (btr_def, HARD_REG_SET *);
135 static void btr_def_live_range (btr_def, HARD_REG_SET *);
136 static void move_btr_def (basic_block, int, btr_def, bitmap, HARD_REG_SET *);
137 static int migrate_btr_def (btr_def, int);
138 static void migrate_btr_defs (enum reg_class, int);
139 static int can_move_up (basic_block, rtx, int);
140 static void note_btr_set (rtx, rtx, void *);
141 \f
142 /* The following code performs code motion of target load instructions
143 (instructions that set branch target registers), to move them
144 forward away from the branch instructions and out of loops (or,
145 more generally, from a more frequently executed place to a less
146 frequently executed place).
147 Moving target load instructions further in front of the branch
148 instruction that uses the target register value means that the hardware
149 has a better chance of preloading the instructions at the branch
150 target by the time the branch is reached. This avoids bubbles
151 when a taken branch needs to flush out the pipeline.
152 Moving target load instructions out of loops means they are executed
153 less frequently. */
154
155 /* An obstack to hold the def-use web data structures built up for
156 migrating branch target load instructions. */
157 static struct obstack migrate_btrl_obstack;
158
159 /* Array indexed by basic block number, giving the set of registers
160 live in that block. */
161 static HARD_REG_SET *btrs_live;
162
163 /* Array indexed by basic block number, giving the set of registers live at
164 the end of that block, including any uses by a final jump insn, if any. */
165 static HARD_REG_SET *btrs_live_at_end;
166
167 /* Set of all target registers that we are willing to allocate. */
168 static HARD_REG_SET all_btrs;
169
170 /* Provide lower and upper bounds for target register numbers, so that
171 we don't need to search through all the hard registers all the time. */
172 static int first_btr, last_btr;
173
174
175
176 /* Return an estimate of the frequency of execution of block bb. */
177 static int
178 basic_block_freq (basic_block bb)
179 {
180 return bb->frequency;
181 }
182
183 static rtx *btr_reference_found;
184
185 /* A subroutine of btr_referenced_p, called through for_each_rtx.
186 PREG is a pointer to an rtx that is to be excluded from the
187 traversal. If we find a reference to a target register anywhere
188 else, return 1, and put a pointer to it into btr_reference_found. */
189 static int
190 find_btr_reference (rtx *px, void *preg)
191 {
192 rtx x;
193 int regno, i;
194
195 if (px == preg)
196 return -1;
197 x = *px;
198 if (!REG_P (x))
199 return 0;
200 regno = REGNO (x);
201 for (i = hard_regno_nregs[regno][GET_MODE (x)] - 1; i >= 0; i--)
202 if (TEST_HARD_REG_BIT (all_btrs, regno+i))
203 {
204 btr_reference_found = px;
205 return 1;
206 }
207 return -1;
208 }
209
210 /* Return nonzero if X references (sets or reads) any branch target register.
211 If EXCLUDEP is set, disregard any references within the rtx pointed to
212 by it. If returning nonzero, also set btr_reference_found as above. */
213 static int
214 btr_referenced_p (rtx x, rtx *excludep)
215 {
216 return for_each_rtx (&x, find_btr_reference, excludep);
217 }
218
219 /* Return true if insn is an instruction that sets a target register.
220 if CHECK_CONST is true, only return true if the source is constant.
221 If such a set is found and REGNO is nonzero, assign the register number
222 of the destination register to *REGNO. */
223 static int
224 insn_sets_btr_p (rtx insn, int check_const, int *regno)
225 {
226 rtx set;
227
228 if (NONJUMP_INSN_P (insn)
229 && (set = single_set (insn)))
230 {
231 rtx dest = SET_DEST (set);
232 rtx src = SET_SRC (set);
233
234 if (GET_CODE (dest) == SUBREG)
235 dest = XEXP (dest, 0);
236
237 if (REG_P (dest)
238 && TEST_HARD_REG_BIT (all_btrs, REGNO (dest)))
239 {
240 gcc_assert (!btr_referenced_p (src, NULL));
241
242 if (!check_const || CONSTANT_P (src))
243 {
244 if (regno)
245 *regno = REGNO (dest);
246 return 1;
247 }
248 }
249 }
250 return 0;
251 }
252
253 /* Find and return a use of a target register within an instruction INSN. */
254 static rtx *
255 find_btr_use (rtx insn)
256 {
257 return btr_referenced_p (insn, NULL) ? btr_reference_found : NULL;
258 }
259
260 /* Find the group that the target register definition DEF belongs
261 to in the list starting with *ALL_BTR_DEF_GROUPS. If no such
262 group exists, create one. Add def to the group. */
263 static void
264 find_btr_def_group (btr_def_group *all_btr_def_groups, btr_def def)
265 {
266 if (insn_sets_btr_p (def->insn, 1, NULL))
267 {
268 btr_def_group this_group;
269 rtx def_src = SET_SRC (single_set (def->insn));
270
271 /* ?? This linear search is an efficiency concern, particularly
272 as the search will almost always fail to find a match. */
273 for (this_group = *all_btr_def_groups;
274 this_group != NULL;
275 this_group = this_group->next)
276 if (rtx_equal_p (def_src, this_group->src))
277 break;
278
279 if (!this_group)
280 {
281 this_group = obstack_alloc (&migrate_btrl_obstack,
282 sizeof (struct btr_def_group_s));
283 this_group->src = def_src;
284 this_group->members = NULL;
285 this_group->next = *all_btr_def_groups;
286 *all_btr_def_groups = this_group;
287 }
288 def->group = this_group;
289 def->next_this_group = this_group->members;
290 this_group->members = def;
291 }
292 else
293 def->group = NULL;
294 }
295
296 /* Create a new target register definition structure, for a definition in
297 block BB, instruction INSN, and insert it into ALL_BTR_DEFS. Return
298 the new definition. */
299 static btr_def
300 add_btr_def (fibheap_t all_btr_defs, basic_block bb, int insn_luid, rtx insn,
301 unsigned int dest_reg, int other_btr_uses_before_def,
302 btr_def_group *all_btr_def_groups)
303 {
304 btr_def this
305 = obstack_alloc (&migrate_btrl_obstack, sizeof (struct btr_def_s));
306 this->bb = bb;
307 this->luid = insn_luid;
308 this->insn = insn;
309 this->btr = dest_reg;
310 this->cost = basic_block_freq (bb);
311 this->has_ambiguous_use = 0;
312 this->other_btr_uses_before_def = other_btr_uses_before_def;
313 this->other_btr_uses_after_use = 0;
314 this->next_this_bb = NULL;
315 this->next_this_group = NULL;
316 this->uses = NULL;
317 this->live_range = NULL;
318 find_btr_def_group (all_btr_def_groups, this);
319
320 fibheap_insert (all_btr_defs, -this->cost, this);
321
322 if (dump_file)
323 fprintf (dump_file,
324 "Found target reg definition: sets %u { bb %d, insn %d }%s priority %d\n",
325 dest_reg, bb->index, INSN_UID (insn), (this->group ? "" : ":not const"),
326 this->cost);
327
328 return this;
329 }
330
331 /* Create a new target register user structure, for a use in block BB,
332 instruction INSN. Return the new user. */
333 static btr_user
334 new_btr_user (basic_block bb, int insn_luid, rtx insn)
335 {
336 /* This instruction reads target registers. We need
337 to decide whether we can replace all target register
338 uses easily.
339 */
340 rtx *usep = find_btr_use (PATTERN (insn));
341 rtx use;
342 btr_user user = NULL;
343
344 if (usep)
345 {
346 int unambiguous_single_use;
347
348 /* We want to ensure that USE is the only use of a target
349 register in INSN, so that we know that to rewrite INSN to use
350 a different target register, all we have to do is replace USE. */
351 unambiguous_single_use = !btr_referenced_p (PATTERN (insn), usep);
352 if (!unambiguous_single_use)
353 usep = NULL;
354 }
355 use = usep ? *usep : NULL_RTX;
356 user = obstack_alloc (&migrate_btrl_obstack, sizeof (struct btr_user_s));
357 user->bb = bb;
358 user->luid = insn_luid;
359 user->insn = insn;
360 user->use = use;
361 user->other_use_this_block = 0;
362 user->next = NULL;
363 user->n_reaching_defs = 0;
364 user->first_reaching_def = -1;
365
366 if (dump_file)
367 {
368 fprintf (dump_file, "Uses target reg: { bb %d, insn %d }",
369 bb->index, INSN_UID (insn));
370
371 if (user->use)
372 fprintf (dump_file, ": unambiguous use of reg %d\n",
373 REGNO (user->use));
374 }
375
376 return user;
377 }
378
379 /* Write the contents of S to the dump file. */
380 static void
381 dump_hard_reg_set (HARD_REG_SET s)
382 {
383 int reg;
384 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
385 if (TEST_HARD_REG_BIT (s, reg))
386 fprintf (dump_file, " %d", reg);
387 }
388
389 /* Write the set of target regs live in block BB to the dump file. */
390 static void
391 dump_btrs_live (int bb)
392 {
393 fprintf (dump_file, "BB%d live:", bb);
394 dump_hard_reg_set (btrs_live[bb]);
395 fprintf (dump_file, "\n");
396 }
397
398 /* REGNO is the number of a branch target register that is being used or
399 set. USERS_THIS_BB is a list of preceding branch target register users;
400 If any of them use the same register, set their other_use_this_block
401 flag. */
402 static void
403 note_other_use_this_block (unsigned int regno, btr_user users_this_bb)
404 {
405 btr_user user;
406
407 for (user = users_this_bb; user != NULL; user = user->next)
408 if (user->use && REGNO (user->use) == regno)
409 user->other_use_this_block = 1;
410 }
411
412 typedef struct {
413 btr_user users_this_bb;
414 HARD_REG_SET btrs_written_in_block;
415 HARD_REG_SET btrs_live_in_block;
416 sbitmap bb_gen;
417 sbitmap *btr_defset;
418 } defs_uses_info;
419
420 /* Called via note_stores or directly to register stores into /
421 clobbers of a branch target register DEST that are not recognized as
422 straightforward definitions. DATA points to information about the
423 current basic block that needs updating. */
424 static void
425 note_btr_set (rtx dest, rtx set ATTRIBUTE_UNUSED, void *data)
426 {
427 defs_uses_info *info = data;
428 int regno, end_regno;
429
430 if (!REG_P (dest))
431 return;
432 regno = REGNO (dest);
433 end_regno = regno + hard_regno_nregs[regno][GET_MODE (dest)];
434 for (; regno < end_regno; regno++)
435 if (TEST_HARD_REG_BIT (all_btrs, regno))
436 {
437 note_other_use_this_block (regno, info->users_this_bb);
438 SET_HARD_REG_BIT (info->btrs_written_in_block, regno);
439 SET_HARD_REG_BIT (info->btrs_live_in_block, regno);
440 sbitmap_difference (info->bb_gen, info->bb_gen,
441 info->btr_defset[regno - first_btr]);
442 }
443 }
444
445 static void
446 compute_defs_uses_and_gen (fibheap_t all_btr_defs, btr_def *def_array,
447 btr_user *use_array, sbitmap *btr_defset,
448 sbitmap *bb_gen, HARD_REG_SET *btrs_written)
449 {
450 /* Scan the code building up the set of all defs and all uses.
451 For each target register, build the set of defs of that register.
452 For each block, calculate the set of target registers
453 written in that block.
454 Also calculate the set of btrs ever live in that block.
455 */
456 int i;
457 int insn_luid = 0;
458 btr_def_group all_btr_def_groups = NULL;
459 defs_uses_info info;
460
461 sbitmap_vector_zero (bb_gen, n_basic_blocks);
462 for (i = 0; i < n_basic_blocks; i++)
463 {
464 basic_block bb = BASIC_BLOCK (i);
465 int reg;
466 btr_def defs_this_bb = NULL;
467 rtx insn;
468 rtx last;
469 int can_throw = 0;
470
471 info.users_this_bb = NULL;
472 info.bb_gen = bb_gen[i];
473 info.btr_defset = btr_defset;
474
475 CLEAR_HARD_REG_SET (info.btrs_live_in_block);
476 CLEAR_HARD_REG_SET (info.btrs_written_in_block);
477 for (reg = first_btr; reg <= last_btr; reg++)
478 if (TEST_HARD_REG_BIT (all_btrs, reg)
479 && REGNO_REG_SET_P (bb->global_live_at_start, reg))
480 SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
481
482 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
483 insn != last;
484 insn = NEXT_INSN (insn), insn_luid++)
485 {
486 if (INSN_P (insn))
487 {
488 int regno;
489 int insn_uid = INSN_UID (insn);
490
491 if (insn_sets_btr_p (insn, 0, &regno))
492 {
493 btr_def def = add_btr_def (
494 all_btr_defs, bb, insn_luid, insn, regno,
495 TEST_HARD_REG_BIT (info.btrs_live_in_block, regno),
496 &all_btr_def_groups);
497
498 def_array[insn_uid] = def;
499 SET_HARD_REG_BIT (info.btrs_written_in_block, regno);
500 SET_HARD_REG_BIT (info.btrs_live_in_block, regno);
501 sbitmap_difference (bb_gen[i], bb_gen[i],
502 btr_defset[regno - first_btr]);
503 SET_BIT (bb_gen[i], insn_uid);
504 def->next_this_bb = defs_this_bb;
505 defs_this_bb = def;
506 SET_BIT (btr_defset[regno - first_btr], insn_uid);
507 note_other_use_this_block (regno, info.users_this_bb);
508 }
509 /* Check for the blockage emitted by expand_nl_goto_receiver. */
510 else if (current_function_has_nonlocal_label
511 && GET_CODE (PATTERN (insn)) == ASM_INPUT)
512 {
513 btr_user user;
514
515 /* Do the equivalent of calling note_other_use_this_block
516 for every target register. */
517 for (user = info.users_this_bb; user != NULL;
518 user = user->next)
519 if (user->use)
520 user->other_use_this_block = 1;
521 IOR_HARD_REG_SET (info.btrs_written_in_block, all_btrs);
522 IOR_HARD_REG_SET (info.btrs_live_in_block, all_btrs);
523 sbitmap_zero (info.bb_gen);
524 }
525 else
526 {
527 if (btr_referenced_p (PATTERN (insn), NULL))
528 {
529 btr_user user = new_btr_user (bb, insn_luid, insn);
530
531 use_array[insn_uid] = user;
532 if (user->use)
533 SET_HARD_REG_BIT (info.btrs_live_in_block,
534 REGNO (user->use));
535 else
536 {
537 int reg;
538 for (reg = first_btr; reg <= last_btr; reg++)
539 if (TEST_HARD_REG_BIT (all_btrs, reg)
540 && refers_to_regno_p (reg, reg + 1, user->insn,
541 NULL))
542 {
543 note_other_use_this_block (reg,
544 info.users_this_bb);
545 SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
546 }
547 note_stores (PATTERN (insn), note_btr_set, &info);
548 }
549 user->next = info.users_this_bb;
550 info.users_this_bb = user;
551 }
552 if (CALL_P (insn))
553 {
554 HARD_REG_SET *clobbered = &call_used_reg_set;
555 HARD_REG_SET call_saved;
556 rtx pat = PATTERN (insn);
557 int i;
558
559 /* Check for sibcall. */
560 if (GET_CODE (pat) == PARALLEL)
561 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
562 if (GET_CODE (XVECEXP (pat, 0, i)) == RETURN)
563 {
564 COMPL_HARD_REG_SET (call_saved,
565 call_used_reg_set);
566 clobbered = &call_saved;
567 }
568
569 for (regno = first_btr; regno <= last_btr; regno++)
570 if (TEST_HARD_REG_BIT (*clobbered, regno))
571 note_btr_set (regno_reg_rtx[regno], NULL_RTX, &info);
572 }
573 }
574 }
575 }
576
577 COPY_HARD_REG_SET (btrs_live[i], info.btrs_live_in_block);
578 COPY_HARD_REG_SET (btrs_written[i], info.btrs_written_in_block);
579
580 REG_SET_TO_HARD_REG_SET (btrs_live_at_end[i], bb->global_live_at_end);
581 /* If this block ends in a jump insn, add any uses or even clobbers
582 of branch target registers that it might have. */
583 for (insn = BB_END (bb); insn != BB_HEAD (bb) && ! INSN_P (insn); )
584 insn = PREV_INSN (insn);
585 /* ??? for the fall-through edge, it would make sense to insert the
586 btr set on the edge, but that would require to split the block
587 early on so that we can distinguish between dominance from the fall
588 through edge - which can use the call-clobbered registers - from
589 dominance by the throw edge. */
590 if (can_throw_internal (insn))
591 {
592 HARD_REG_SET tmp;
593
594 COPY_HARD_REG_SET (tmp, call_used_reg_set);
595 AND_HARD_REG_SET (tmp, all_btrs);
596 IOR_HARD_REG_SET (btrs_live_at_end[i], tmp);
597 can_throw = 1;
598 }
599 if (can_throw || JUMP_P (insn))
600 {
601 int regno;
602
603 for (regno = first_btr; regno <= last_btr; regno++)
604 if (refers_to_regno_p (regno, regno+1, insn, NULL))
605 SET_HARD_REG_BIT (btrs_live_at_end[i], regno);
606 }
607
608 if (dump_file)
609 dump_btrs_live(i);
610 }
611 }
612
613 static void
614 compute_kill (sbitmap *bb_kill, sbitmap *btr_defset,
615 HARD_REG_SET *btrs_written)
616 {
617 int i;
618 int regno;
619
620 /* For each basic block, form the set BB_KILL - the set
621 of definitions that the block kills. */
622 sbitmap_vector_zero (bb_kill, n_basic_blocks);
623 for (i = 0; i < n_basic_blocks; i++)
624 {
625 for (regno = first_btr; regno <= last_btr; regno++)
626 if (TEST_HARD_REG_BIT (all_btrs, regno)
627 && TEST_HARD_REG_BIT (btrs_written[i], regno))
628 sbitmap_a_or_b (bb_kill[i], bb_kill[i],
629 btr_defset[regno - first_btr]);
630 }
631 }
632
633 static void
634 compute_out (sbitmap *bb_out, sbitmap *bb_gen, sbitmap *bb_kill, int max_uid)
635 {
636 /* Perform iterative dataflow:
637 Initially, for all blocks, BB_OUT = BB_GEN.
638 For each block,
639 BB_IN = union over predecessors of BB_OUT(pred)
640 BB_OUT = (BB_IN - BB_KILL) + BB_GEN
641 Iterate until the bb_out sets stop growing. */
642 int i;
643 int changed;
644 sbitmap bb_in = sbitmap_alloc (max_uid);
645
646 for (i = 0; i < n_basic_blocks; i++)
647 sbitmap_copy (bb_out[i], bb_gen[i]);
648
649 changed = 1;
650 while (changed)
651 {
652 changed = 0;
653 for (i = 0; i < n_basic_blocks; i++)
654 {
655 sbitmap_union_of_preds (bb_in, bb_out, i);
656 changed |= sbitmap_union_of_diff_cg (bb_out[i], bb_gen[i],
657 bb_in, bb_kill[i]);
658 }
659 }
660 sbitmap_free (bb_in);
661 }
662
663 static void
664 link_btr_uses (btr_def *def_array, btr_user *use_array, sbitmap *bb_out,
665 sbitmap *btr_defset, int max_uid)
666 {
667 int i;
668 sbitmap reaching_defs = sbitmap_alloc (max_uid);
669
670 /* Link uses to the uses lists of all of their reaching defs.
671 Count up the number of reaching defs of each use. */
672 for (i = 0; i < n_basic_blocks; i++)
673 {
674 basic_block bb = BASIC_BLOCK (i);
675 rtx insn;
676 rtx last;
677
678 sbitmap_union_of_preds (reaching_defs, bb_out, i);
679 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
680 insn != last;
681 insn = NEXT_INSN (insn))
682 {
683 if (INSN_P (insn))
684 {
685 int insn_uid = INSN_UID (insn);
686
687 btr_def def = def_array[insn_uid];
688 btr_user user = use_array[insn_uid];
689 if (def != NULL)
690 {
691 /* Remove all reaching defs of regno except
692 for this one. */
693 sbitmap_difference (reaching_defs, reaching_defs,
694 btr_defset[def->btr - first_btr]);
695 SET_BIT(reaching_defs, insn_uid);
696 }
697
698 if (user != NULL)
699 {
700 /* Find all the reaching defs for this use. */
701 sbitmap reaching_defs_of_reg = sbitmap_alloc(max_uid);
702 int uid;
703
704 if (user->use)
705 sbitmap_a_and_b (
706 reaching_defs_of_reg,
707 reaching_defs,
708 btr_defset[REGNO (user->use) - first_btr]);
709 else
710 {
711 int reg;
712
713 sbitmap_zero (reaching_defs_of_reg);
714 for (reg = first_btr; reg <= last_btr; reg++)
715 if (TEST_HARD_REG_BIT (all_btrs, reg)
716 && refers_to_regno_p (reg, reg + 1, user->insn,
717 NULL))
718 sbitmap_a_or_b_and_c (reaching_defs_of_reg,
719 reaching_defs_of_reg,
720 reaching_defs,
721 btr_defset[reg - first_btr]);
722 }
723 EXECUTE_IF_SET_IN_SBITMAP (reaching_defs_of_reg, 0, uid,
724 {
725 btr_def def = def_array[uid];
726
727 /* We now know that def reaches user. */
728
729 if (dump_file)
730 fprintf (dump_file,
731 "Def in insn %d reaches use in insn %d\n",
732 uid, insn_uid);
733
734 user->n_reaching_defs++;
735 if (!user->use)
736 def->has_ambiguous_use = 1;
737 if (user->first_reaching_def != -1)
738 { /* There is more than one reaching def. This is
739 a rare case, so just give up on this def/use
740 web when it occurs. */
741 def->has_ambiguous_use = 1;
742 def_array[user->first_reaching_def]
743 ->has_ambiguous_use = 1;
744 if (dump_file)
745 fprintf (dump_file,
746 "(use %d has multiple reaching defs)\n",
747 insn_uid);
748 }
749 else
750 user->first_reaching_def = uid;
751 if (user->other_use_this_block)
752 def->other_btr_uses_after_use = 1;
753 user->next = def->uses;
754 def->uses = user;
755 });
756 sbitmap_free (reaching_defs_of_reg);
757 }
758
759 if (CALL_P (insn))
760 {
761 int regno;
762
763 for (regno = first_btr; regno <= last_btr; regno++)
764 if (TEST_HARD_REG_BIT (all_btrs, regno)
765 && TEST_HARD_REG_BIT (call_used_reg_set, regno))
766 sbitmap_difference (reaching_defs, reaching_defs,
767 btr_defset[regno - first_btr]);
768 }
769 }
770 }
771 }
772 sbitmap_free (reaching_defs);
773 }
774
775 static void
776 build_btr_def_use_webs (fibheap_t all_btr_defs)
777 {
778 const int max_uid = get_max_uid ();
779 btr_def *def_array = xcalloc (max_uid, sizeof (btr_def));
780 btr_user *use_array = xcalloc (max_uid, sizeof (btr_user));
781 sbitmap *btr_defset = sbitmap_vector_alloc (
782 (last_btr - first_btr) + 1, max_uid);
783 sbitmap *bb_gen = sbitmap_vector_alloc (n_basic_blocks, max_uid);
784 HARD_REG_SET *btrs_written = xcalloc (n_basic_blocks, sizeof (HARD_REG_SET));
785 sbitmap *bb_kill;
786 sbitmap *bb_out;
787
788 sbitmap_vector_zero (btr_defset, (last_btr - first_btr) + 1);
789
790 compute_defs_uses_and_gen (all_btr_defs, def_array, use_array, btr_defset,
791 bb_gen, btrs_written);
792
793 bb_kill = sbitmap_vector_alloc (n_basic_blocks, max_uid);
794 compute_kill (bb_kill, btr_defset, btrs_written);
795 free (btrs_written);
796
797 bb_out = sbitmap_vector_alloc (n_basic_blocks, max_uid);
798 compute_out (bb_out, bb_gen, bb_kill, max_uid);
799
800 sbitmap_vector_free (bb_gen);
801 sbitmap_vector_free (bb_kill);
802
803 link_btr_uses (def_array, use_array, bb_out, btr_defset, max_uid);
804
805 sbitmap_vector_free (bb_out);
806 sbitmap_vector_free (btr_defset);
807 free (use_array);
808 free (def_array);
809 }
810
811 /* Return true if basic block BB contains the start or end of the
812 live range of the definition DEF, AND there are other live
813 ranges of the same target register that include BB. */
814 static int
815 block_at_edge_of_live_range_p (int bb, btr_def def)
816 {
817 if (def->other_btr_uses_before_def && BASIC_BLOCK (bb) == def->bb)
818 return 1;
819 else if (def->other_btr_uses_after_use)
820 {
821 btr_user user;
822 for (user = def->uses; user != NULL; user = user->next)
823 if (BASIC_BLOCK (bb) == user->bb)
824 return 1;
825 }
826 return 0;
827 }
828
829 /* We are removing the def/use web DEF. The target register
830 used in this web is therefore no longer live in the live range
831 of this web, so remove it from the live set of all basic blocks
832 in the live range of the web.
833 Blocks at the boundary of the live range may contain other live
834 ranges for the same target register, so we have to be careful
835 to remove the target register from the live set of these blocks
836 only if they do not contain other live ranges for the same register. */
837 static void
838 clear_btr_from_live_range (btr_def def)
839 {
840 unsigned bb;
841 bitmap_iterator bi;
842
843 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
844 {
845 if ((!def->other_btr_uses_before_def
846 && !def->other_btr_uses_after_use)
847 || !block_at_edge_of_live_range_p (bb, def))
848 {
849 CLEAR_HARD_REG_BIT (btrs_live[bb], def->btr);
850 CLEAR_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
851 if (dump_file)
852 dump_btrs_live (bb);
853 }
854 }
855 if (def->own_end)
856 CLEAR_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
857 }
858
859
860 /* We are adding the def/use web DEF. Add the target register used
861 in this web to the live set of all of the basic blocks that contain
862 the live range of the web.
863 If OWN_END is set, also show that the register is live from our
864 definitions at the end of the basic block where it is defined. */
865 static void
866 add_btr_to_live_range (btr_def def, int own_end)
867 {
868 unsigned bb;
869 bitmap_iterator bi;
870
871 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
872 {
873 SET_HARD_REG_BIT (btrs_live[bb], def->btr);
874 SET_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
875 if (dump_file)
876 dump_btrs_live (bb);
877 }
878 if (own_end)
879 {
880 SET_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
881 def->own_end = 1;
882 }
883 }
884
885 /* Update a live range to contain the basic block NEW_BLOCK, and all
886 blocks on paths between the existing live range and NEW_BLOCK.
887 HEAD is a block contained in the existing live range that dominates
888 all other blocks in the existing live range.
889 Also add to the set BTRS_LIVE_IN_RANGE all target registers that
890 are live in the blocks that we add to the live range.
891 If FULL_RANGE is set, include the full live range of NEW_BB;
892 otherwise, if NEW_BB dominates HEAD_BB, only add registers that
893 are life at the end of NEW_BB for NEW_BB itself.
894 It is a precondition that either NEW_BLOCK dominates HEAD,or
895 HEAD dom NEW_BLOCK. This is used to speed up the
896 implementation of this function. */
897 static void
898 augment_live_range (bitmap live_range, HARD_REG_SET *btrs_live_in_range,
899 basic_block head_bb, basic_block new_bb, int full_range)
900 {
901 basic_block *worklist, *tos;
902
903 tos = worklist = xmalloc (sizeof (basic_block) * (n_basic_blocks + 1));
904
905 if (dominated_by_p (CDI_DOMINATORS, new_bb, head_bb))
906 {
907 if (new_bb == head_bb)
908 {
909 if (full_range)
910 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_bb->index]);
911 return;
912 }
913 *tos++ = new_bb;
914 }
915 else
916 {
917 edge e;
918 edge_iterator ei;
919 int new_block = new_bb->index;
920
921 gcc_assert (dominated_by_p (CDI_DOMINATORS, head_bb, new_bb));
922
923 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[head_bb->index]);
924 bitmap_set_bit (live_range, new_block);
925 /* A previous btr migration could have caused a register to be
926 live just at the end of new_block which we need in full, so
927 use trs_live_at_end even if full_range is set. */
928 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live_at_end[new_block]);
929 if (full_range)
930 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_block]);
931 if (dump_file)
932 {
933 fprintf (dump_file,
934 "Adding end of block %d and rest of %d to live range\n",
935 new_block, head_bb->index);
936 fprintf (dump_file,"Now live btrs are ");
937 dump_hard_reg_set (*btrs_live_in_range);
938 fprintf (dump_file, "\n");
939 }
940 FOR_EACH_EDGE (e, ei, head_bb->preds)
941 *tos++ = e->src;
942 }
943
944 while (tos != worklist)
945 {
946 basic_block bb = *--tos;
947 if (!bitmap_bit_p (live_range, bb->index))
948 {
949 edge e;
950 edge_iterator ei;
951
952 bitmap_set_bit (live_range, bb->index);
953 IOR_HARD_REG_SET (*btrs_live_in_range,
954 btrs_live[bb->index]);
955 /* A previous btr migration could have caused a register to be
956 live just at the end of a block which we need in full. */
957 IOR_HARD_REG_SET (*btrs_live_in_range,
958 btrs_live_at_end[bb->index]);
959 if (dump_file)
960 {
961 fprintf (dump_file,
962 "Adding block %d to live range\n", bb->index);
963 fprintf (dump_file,"Now live btrs are ");
964 dump_hard_reg_set (*btrs_live_in_range);
965 fprintf (dump_file, "\n");
966 }
967
968 FOR_EACH_EDGE (e, ei, bb->preds)
969 {
970 basic_block pred = e->src;
971 if (!bitmap_bit_p (live_range, pred->index))
972 *tos++ = pred;
973 }
974 }
975 }
976
977 free (worklist);
978 }
979
980 /* Return the most desirable target register that is not in
981 the set USED_BTRS. */
982 static int
983 choose_btr (HARD_REG_SET used_btrs)
984 {
985 int i;
986 GO_IF_HARD_REG_SUBSET (all_btrs, used_btrs, give_up);
987
988 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
989 {
990 #ifdef REG_ALLOC_ORDER
991 int regno = reg_alloc_order[i];
992 #else
993 int regno = i;
994 #endif
995 if (TEST_HARD_REG_BIT (all_btrs, regno)
996 && !TEST_HARD_REG_BIT (used_btrs, regno))
997 return regno;
998 }
999 give_up:
1000 return -1;
1001 }
1002
1003 /* Calculate the set of basic blocks that contain the live range of
1004 the def/use web DEF.
1005 Also calculate the set of target registers that are live at time
1006 in this live range, but ignore the live range represented by DEF
1007 when calculating this set. */
1008 static void
1009 btr_def_live_range (btr_def def, HARD_REG_SET *btrs_live_in_range)
1010 {
1011 if (!def->live_range)
1012 {
1013 btr_user user;
1014
1015 def->live_range = BITMAP_ALLOC (NULL);
1016
1017 bitmap_set_bit (def->live_range, def->bb->index);
1018 COPY_HARD_REG_SET (*btrs_live_in_range,
1019 (flag_btr_bb_exclusive
1020 ? btrs_live : btrs_live_at_end)[def->bb->index]);
1021
1022 for (user = def->uses; user != NULL; user = user->next)
1023 augment_live_range (def->live_range, btrs_live_in_range,
1024 def->bb, user->bb,
1025 (flag_btr_bb_exclusive
1026 || user->insn != BB_END (def->bb)
1027 || !JUMP_P (user->insn)));
1028 }
1029 else
1030 {
1031 /* def->live_range is accurate, but we need to recompute
1032 the set of target registers live over it, because migration
1033 of other PT instructions may have affected it.
1034 */
1035 unsigned bb;
1036 unsigned def_bb = flag_btr_bb_exclusive ? -1 : def->bb->index;
1037 bitmap_iterator bi;
1038
1039 CLEAR_HARD_REG_SET (*btrs_live_in_range);
1040 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
1041 {
1042 IOR_HARD_REG_SET (*btrs_live_in_range,
1043 (def_bb == bb
1044 ? btrs_live_at_end : btrs_live) [bb]);
1045 }
1046 }
1047 if (!def->other_btr_uses_before_def &&
1048 !def->other_btr_uses_after_use)
1049 CLEAR_HARD_REG_BIT (*btrs_live_in_range, def->btr);
1050 }
1051
1052 /* Merge into the def/use web DEF any other def/use webs in the same
1053 group that are dominated by DEF, provided that there is a target
1054 register available to allocate to the merged web. */
1055 static void
1056 combine_btr_defs (btr_def def, HARD_REG_SET *btrs_live_in_range)
1057 {
1058 btr_def other_def;
1059
1060 for (other_def = def->group->members;
1061 other_def != NULL;
1062 other_def = other_def->next_this_group)
1063 {
1064 if (other_def != def
1065 && other_def->uses != NULL
1066 && ! other_def->has_ambiguous_use
1067 && dominated_by_p (CDI_DOMINATORS, other_def->bb, def->bb))
1068 {
1069 /* def->bb dominates the other def, so def and other_def could
1070 be combined. */
1071 /* Merge their live ranges, and get the set of
1072 target registers live over the merged range. */
1073 int btr;
1074 HARD_REG_SET combined_btrs_live;
1075 bitmap combined_live_range = BITMAP_ALLOC (NULL);
1076 btr_user user;
1077
1078 if (other_def->live_range == NULL)
1079 {
1080 HARD_REG_SET dummy_btrs_live_in_range;
1081 btr_def_live_range (other_def, &dummy_btrs_live_in_range);
1082 }
1083 COPY_HARD_REG_SET (combined_btrs_live, *btrs_live_in_range);
1084 bitmap_copy (combined_live_range, def->live_range);
1085
1086 for (user = other_def->uses; user != NULL; user = user->next)
1087 augment_live_range (combined_live_range, &combined_btrs_live,
1088 def->bb, user->bb,
1089 (flag_btr_bb_exclusive
1090 || user->insn != BB_END (def->bb)
1091 || !JUMP_P (user->insn)));
1092
1093 btr = choose_btr (combined_btrs_live);
1094 if (btr != -1)
1095 {
1096 /* We can combine them. */
1097 if (dump_file)
1098 fprintf (dump_file,
1099 "Combining def in insn %d with def in insn %d\n",
1100 INSN_UID (other_def->insn), INSN_UID (def->insn));
1101
1102 def->btr = btr;
1103 user = other_def->uses;
1104 while (user != NULL)
1105 {
1106 btr_user next = user->next;
1107
1108 user->next = def->uses;
1109 def->uses = user;
1110 user = next;
1111 }
1112 /* Combining def/use webs can make target registers live
1113 after uses where they previously were not. This means
1114 some REG_DEAD notes may no longer be correct. We could
1115 be more precise about this if we looked at the combined
1116 live range, but here I just delete any REG_DEAD notes
1117 in case they are no longer correct. */
1118 for (user = def->uses; user != NULL; user = user->next)
1119 remove_note (user->insn,
1120 find_regno_note (user->insn, REG_DEAD,
1121 REGNO (user->use)));
1122 clear_btr_from_live_range (other_def);
1123 other_def->uses = NULL;
1124 bitmap_copy (def->live_range, combined_live_range);
1125 if (other_def->btr == btr && other_def->other_btr_uses_after_use)
1126 def->other_btr_uses_after_use = 1;
1127 COPY_HARD_REG_SET (*btrs_live_in_range, combined_btrs_live);
1128
1129 /* Delete the old target register initialization. */
1130 delete_insn (other_def->insn);
1131
1132 }
1133 BITMAP_FREE (combined_live_range);
1134 }
1135 }
1136 }
1137
1138 /* Move the definition DEF from its current position to basic
1139 block NEW_DEF_BB, and modify it to use branch target register BTR.
1140 Delete the old defining insn, and insert a new one in NEW_DEF_BB.
1141 Update all reaching uses of DEF in the RTL to use BTR.
1142 If this new position means that other defs in the
1143 same group can be combined with DEF then combine them. */
1144 static void
1145 move_btr_def (basic_block new_def_bb, int btr, btr_def def, bitmap live_range,
1146 HARD_REG_SET *btrs_live_in_range)
1147 {
1148 /* We can move the instruction.
1149 Set a target register in block NEW_DEF_BB to the value
1150 needed for this target register definition.
1151 Replace all uses of the old target register definition by
1152 uses of the new definition. Delete the old definition. */
1153 basic_block b = new_def_bb;
1154 rtx insp = BB_HEAD (b);
1155 rtx old_insn = def->insn;
1156 rtx src;
1157 rtx btr_rtx;
1158 rtx new_insn;
1159 enum machine_mode btr_mode;
1160 btr_user user;
1161 rtx set;
1162
1163 if (dump_file)
1164 fprintf(dump_file, "migrating to basic block %d, using reg %d\n",
1165 new_def_bb->index, btr);
1166
1167 clear_btr_from_live_range (def);
1168 def->btr = btr;
1169 def->bb = new_def_bb;
1170 def->luid = 0;
1171 def->cost = basic_block_freq (new_def_bb);
1172 bitmap_copy (def->live_range, live_range);
1173 combine_btr_defs (def, btrs_live_in_range);
1174 btr = def->btr;
1175 def->other_btr_uses_before_def
1176 = TEST_HARD_REG_BIT (btrs_live[b->index], btr) ? 1 : 0;
1177 add_btr_to_live_range (def, 1);
1178 if (LABEL_P (insp))
1179 insp = NEXT_INSN (insp);
1180 /* N.B.: insp is expected to be NOTE_INSN_BASIC_BLOCK now. Some
1181 optimizations can result in insp being both first and last insn of
1182 its basic block. */
1183 /* ?? some assertions to check that insp is sensible? */
1184
1185 if (def->other_btr_uses_before_def)
1186 {
1187 insp = BB_END (b);
1188 for (insp = BB_END (b); ! INSN_P (insp); insp = PREV_INSN (insp))
1189 gcc_assert (insp != BB_HEAD (b));
1190
1191 if (JUMP_P (insp) || can_throw_internal (insp))
1192 insp = PREV_INSN (insp);
1193 }
1194
1195 set = single_set (old_insn);
1196 src = SET_SRC (set);
1197 btr_mode = GET_MODE (SET_DEST (set));
1198 btr_rtx = gen_rtx_REG (btr_mode, btr);
1199
1200 new_insn = gen_move_insn (btr_rtx, src);
1201
1202 /* Insert target register initialization at head of basic block. */
1203 def->insn = emit_insn_after (new_insn, insp);
1204
1205 regs_ever_live[btr] = 1;
1206
1207 if (dump_file)
1208 fprintf (dump_file, "New pt is insn %d, inserted after insn %d\n",
1209 INSN_UID (def->insn), INSN_UID (insp));
1210
1211 /* Delete the old target register initialization. */
1212 delete_insn (old_insn);
1213
1214 /* Replace each use of the old target register by a use of the new target
1215 register. */
1216 for (user = def->uses; user != NULL; user = user->next)
1217 {
1218 /* Some extra work here to ensure consistent modes, because
1219 it seems that a target register REG rtx can be given a different
1220 mode depending on the context (surely that should not be
1221 the case?). */
1222 rtx replacement_rtx;
1223 if (GET_MODE (user->use) == GET_MODE (btr_rtx)
1224 || GET_MODE (user->use) == VOIDmode)
1225 replacement_rtx = btr_rtx;
1226 else
1227 replacement_rtx = gen_rtx_REG (GET_MODE (user->use), btr);
1228 replace_rtx (user->insn, user->use, replacement_rtx);
1229 user->use = replacement_rtx;
1230 }
1231 }
1232
1233 /* We anticipate intra-block scheduling to be done. See if INSN could move
1234 up within BB by N_INSNS. */
1235 static int
1236 can_move_up (basic_block bb, rtx insn, int n_insns)
1237 {
1238 while (insn != BB_HEAD (bb) && n_insns > 0)
1239 {
1240 insn = PREV_INSN (insn);
1241 /* ??? What if we have an anti-dependency that actually prevents the
1242 scheduler from doing the move? We'd like to re-allocate the register,
1243 but not necessarily put the load into another basic block. */
1244 if (INSN_P (insn))
1245 n_insns--;
1246 }
1247 return n_insns <= 0;
1248 }
1249
1250 /* Attempt to migrate the target register definition DEF to an
1251 earlier point in the flowgraph.
1252
1253 It is a precondition of this function that DEF is migratable:
1254 i.e. it has a constant source, and all uses are unambiguous.
1255
1256 Only migrations that reduce the cost of DEF will be made.
1257 MIN_COST is the lower bound on the cost of the DEF after migration.
1258 If we migrate DEF so that its cost falls below MIN_COST,
1259 then we do not attempt to migrate further. The idea is that
1260 we migrate definitions in a priority order based on their cost,
1261 when the cost of this definition falls below MIN_COST, then
1262 there is another definition with cost == MIN_COST which now
1263 has a higher priority than this definition.
1264
1265 Return nonzero if there may be benefit from attempting to
1266 migrate this DEF further (i.e. we have reduced the cost below
1267 MIN_COST, but we may be able to reduce it further).
1268 Return zero if no further migration is possible. */
1269 static int
1270 migrate_btr_def (btr_def def, int min_cost)
1271 {
1272 bitmap live_range;
1273 HARD_REG_SET btrs_live_in_range;
1274 int btr_used_near_def = 0;
1275 int def_basic_block_freq;
1276 basic_block try;
1277 int give_up = 0;
1278 int def_moved = 0;
1279 btr_user user;
1280 int def_latency;
1281
1282 if (dump_file)
1283 fprintf (dump_file,
1284 "Attempting to migrate pt from insn %d (cost = %d, min_cost = %d) ... ",
1285 INSN_UID (def->insn), def->cost, min_cost);
1286
1287 if (!def->group || def->has_ambiguous_use)
1288 /* These defs are not migratable. */
1289 {
1290 if (dump_file)
1291 fprintf (dump_file, "it's not migratable\n");
1292 return 0;
1293 }
1294
1295 if (!def->uses)
1296 /* We have combined this def with another in the same group, so
1297 no need to consider it further.
1298 */
1299 {
1300 if (dump_file)
1301 fprintf (dump_file, "it's already combined with another pt\n");
1302 return 0;
1303 }
1304
1305 btr_def_live_range (def, &btrs_live_in_range);
1306 live_range = BITMAP_ALLOC (NULL);
1307 bitmap_copy (live_range, def->live_range);
1308
1309 #ifdef INSN_SCHEDULING
1310 def_latency = insn_default_latency (def->insn) * issue_rate;
1311 #else
1312 def_latency = issue_rate;
1313 #endif
1314
1315 for (user = def->uses; user != NULL; user = user->next)
1316 {
1317 if (user->bb == def->bb
1318 && user->luid > def->luid
1319 && (def->luid + def_latency) > user->luid
1320 && ! can_move_up (def->bb, def->insn,
1321 (def->luid + def_latency) - user->luid))
1322 {
1323 btr_used_near_def = 1;
1324 break;
1325 }
1326 }
1327
1328 def_basic_block_freq = basic_block_freq (def->bb);
1329
1330 for (try = get_immediate_dominator (CDI_DOMINATORS, def->bb);
1331 !give_up && try && try != ENTRY_BLOCK_PTR && def->cost >= min_cost;
1332 try = get_immediate_dominator (CDI_DOMINATORS, try))
1333 {
1334 /* Try to move the instruction that sets the target register into
1335 basic block TRY. */
1336 int try_freq = basic_block_freq (try);
1337
1338 if (dump_file)
1339 fprintf (dump_file, "trying block %d ...", try->index);
1340
1341 if (try_freq < def_basic_block_freq
1342 || (try_freq == def_basic_block_freq && btr_used_near_def))
1343 {
1344 int btr;
1345 augment_live_range (live_range, &btrs_live_in_range, def->bb, try,
1346 flag_btr_bb_exclusive);
1347 if (dump_file)
1348 {
1349 fprintf (dump_file, "Now btrs live in range are: ");
1350 dump_hard_reg_set (btrs_live_in_range);
1351 fprintf (dump_file, "\n");
1352 }
1353 btr = choose_btr (btrs_live_in_range);
1354 if (btr != -1)
1355 {
1356 move_btr_def (try, btr, def, live_range, &btrs_live_in_range);
1357 bitmap_copy(live_range, def->live_range);
1358 btr_used_near_def = 0;
1359 def_moved = 1;
1360 def_basic_block_freq = basic_block_freq (def->bb);
1361 }
1362 else
1363 {
1364 /* There are no free target registers available to move
1365 this far forward, so give up */
1366 give_up = 1;
1367 if (dump_file)
1368 fprintf (dump_file,
1369 "giving up because there are no free target registers\n");
1370 }
1371
1372 }
1373 }
1374 if (!def_moved)
1375 {
1376 give_up = 1;
1377 if (dump_file)
1378 fprintf (dump_file, "failed to move\n");
1379 }
1380 BITMAP_FREE (live_range);
1381 return !give_up;
1382 }
1383
1384 /* Attempt to move instructions that set target registers earlier
1385 in the flowgraph, away from their corresponding uses. */
1386 static void
1387 migrate_btr_defs (enum reg_class btr_class, int allow_callee_save)
1388 {
1389 fibheap_t all_btr_defs = fibheap_new ();
1390 int reg;
1391
1392 gcc_obstack_init (&migrate_btrl_obstack);
1393 if (dump_file)
1394 {
1395 int i;
1396
1397 for (i = 0; i < n_basic_blocks; i++)
1398 {
1399 basic_block bb = BASIC_BLOCK (i);
1400 fprintf(dump_file,
1401 "Basic block %d: count = " HOST_WIDEST_INT_PRINT_DEC
1402 " loop-depth = %d idom = %d\n",
1403 i, (HOST_WIDEST_INT) bb->count, bb->loop_depth,
1404 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
1405 }
1406 }
1407
1408 CLEAR_HARD_REG_SET (all_btrs);
1409 for (first_btr = -1, reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
1410 if (TEST_HARD_REG_BIT (reg_class_contents[(int) btr_class], reg)
1411 && (allow_callee_save || call_used_regs[reg] || regs_ever_live[reg]))
1412 {
1413 SET_HARD_REG_BIT (all_btrs, reg);
1414 last_btr = reg;
1415 if (first_btr < 0)
1416 first_btr = reg;
1417 }
1418
1419 btrs_live = xcalloc (n_basic_blocks, sizeof (HARD_REG_SET));
1420 btrs_live_at_end = xcalloc (n_basic_blocks, sizeof (HARD_REG_SET));
1421
1422 build_btr_def_use_webs (all_btr_defs);
1423
1424 while (!fibheap_empty (all_btr_defs))
1425 {
1426 btr_def def = fibheap_extract_min (all_btr_defs);
1427 int min_cost = -fibheap_min_key (all_btr_defs);
1428 if (migrate_btr_def (def, min_cost))
1429 {
1430 fibheap_insert (all_btr_defs, -def->cost, (void *) def);
1431 if (dump_file)
1432 {
1433 fprintf (dump_file,
1434 "Putting insn %d back on queue with priority %d\n",
1435 INSN_UID (def->insn), def->cost);
1436 }
1437 }
1438 else
1439 BITMAP_FREE (def->live_range);
1440 }
1441
1442 free (btrs_live);
1443 free (btrs_live_at_end);
1444 obstack_free (&migrate_btrl_obstack, NULL);
1445 fibheap_delete (all_btr_defs);
1446 }
1447
1448 void
1449 branch_target_load_optimize (bool after_prologue_epilogue_gen)
1450 {
1451 enum reg_class class = targetm.branch_target_register_class ();
1452 if (class != NO_REGS)
1453 {
1454 /* Initialize issue_rate. */
1455 if (targetm.sched.issue_rate)
1456 issue_rate = targetm.sched.issue_rate ();
1457 else
1458 issue_rate = 1;
1459
1460 /* Build the CFG for migrate_btr_defs. */
1461 #if 1
1462 /* This may or may not be needed, depending on where we
1463 run this phase. */
1464 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
1465 #endif
1466
1467 life_analysis (NULL, 0);
1468
1469 /* Dominator info is also needed for migrate_btr_def. */
1470 calculate_dominance_info (CDI_DOMINATORS);
1471 migrate_btr_defs (class,
1472 (targetm.branch_target_register_callee_saved
1473 (after_prologue_epilogue_gen)));
1474
1475 free_dominance_info (CDI_DOMINATORS);
1476
1477 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
1478 PROP_DEATH_NOTES | PROP_REG_INFO);
1479 }
1480 }