bt-load.c (move_btr_def): Fix the order of arguments to validate_replace_rtx.
[gcc.git] / gcc / bt-load.c
1 /* Perform branch target register load optimizations.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "fibheap.h"
30 #include "output.h"
31 #include "target.h"
32 #include "expr.h"
33 #include "flags.h"
34 #include "insn-attr.h"
35 #include "function.h"
36 #include "except.h"
37 #include "tm_p.h"
38 #include "toplev.h"
39 #include "tree-pass.h"
40 #include "recog.h"
41 #include "df.h"
42
43 /* Target register optimizations - these are performed after reload. */
44
45 typedef struct btr_def_group_s
46 {
47 struct btr_def_group_s *next;
48 rtx src;
49 struct btr_def_s *members;
50 } *btr_def_group;
51
52 typedef struct btr_user_s
53 {
54 struct btr_user_s *next;
55 basic_block bb;
56 int luid;
57 rtx insn;
58 /* If INSN has a single use of a single branch register, then
59 USE points to it within INSN. If there is more than
60 one branch register use, or the use is in some way ambiguous,
61 then USE is NULL. */
62 rtx use;
63 int n_reaching_defs;
64 int first_reaching_def;
65 char other_use_this_block;
66 } *btr_user;
67
68 /* btr_def structs appear on three lists:
69 1. A list of all btr_def structures (head is
70 ALL_BTR_DEFS, linked by the NEXT field).
71 2. A list of branch reg definitions per basic block (head is
72 BB_BTR_DEFS[i], linked by the NEXT_THIS_BB field).
73 3. A list of all branch reg definitions belonging to the same
74 group (head is in a BTR_DEF_GROUP struct, linked by
75 NEXT_THIS_GROUP field). */
76
77 typedef struct btr_def_s
78 {
79 struct btr_def_s *next_this_bb;
80 struct btr_def_s *next_this_group;
81 basic_block bb;
82 int luid;
83 rtx insn;
84 int btr;
85 int cost;
86 /* For a branch register setting insn that has a constant
87 source (i.e. a label), group links together all the
88 insns with the same source. For other branch register
89 setting insns, group is NULL. */
90 btr_def_group group;
91 btr_user uses;
92 /* If this def has a reaching use which is not a simple use
93 in a branch instruction, then has_ambiguous_use will be true,
94 and we will not attempt to migrate this definition. */
95 char has_ambiguous_use;
96 /* live_range is an approximation to the true live range for this
97 def/use web, because it records the set of blocks that contain
98 the live range. There could be other live ranges for the same
99 branch register in that set of blocks, either in the block
100 containing the def (before the def), or in a block containing
101 a use (after the use). If there are such other live ranges, then
102 other_btr_uses_before_def or other_btr_uses_after_use must be set true
103 as appropriate. */
104 char other_btr_uses_before_def;
105 char other_btr_uses_after_use;
106 /* We set own_end when we have moved a definition into a dominator.
107 Thus, when a later combination removes this definition again, we know
108 to clear out trs_live_at_end again. */
109 char own_end;
110 bitmap live_range;
111 } *btr_def;
112
113 static int issue_rate;
114
115 static int basic_block_freq (basic_block);
116 static int insn_sets_btr_p (rtx, int, int *);
117 static rtx *find_btr_use (rtx);
118 static int btr_referenced_p (rtx, rtx *);
119 static int find_btr_reference (rtx *, void *);
120 static void find_btr_def_group (btr_def_group *, btr_def);
121 static btr_def add_btr_def (fibheap_t, basic_block, int, rtx,
122 unsigned int, int, btr_def_group *);
123 static btr_user new_btr_user (basic_block, int, rtx);
124 static void dump_hard_reg_set (HARD_REG_SET);
125 static void dump_btrs_live (int);
126 static void note_other_use_this_block (unsigned int, btr_user);
127 static void compute_defs_uses_and_gen (fibheap_t, btr_def *,btr_user *,
128 sbitmap *, sbitmap *, HARD_REG_SET *);
129 static void compute_kill (sbitmap *, sbitmap *, HARD_REG_SET *);
130 static void compute_out (sbitmap *bb_out, sbitmap *, sbitmap *, int);
131 static void link_btr_uses (btr_def *, btr_user *, sbitmap *, sbitmap *, int);
132 static void build_btr_def_use_webs (fibheap_t);
133 static int block_at_edge_of_live_range_p (int, btr_def);
134 static void clear_btr_from_live_range (btr_def def);
135 static void add_btr_to_live_range (btr_def, int);
136 static void augment_live_range (bitmap, HARD_REG_SET *, basic_block,
137 basic_block, int);
138 static int choose_btr (HARD_REG_SET);
139 static void combine_btr_defs (btr_def, HARD_REG_SET *);
140 static void btr_def_live_range (btr_def, HARD_REG_SET *);
141 static void move_btr_def (basic_block, int, btr_def, bitmap, HARD_REG_SET *);
142 static int migrate_btr_def (btr_def, int);
143 static void migrate_btr_defs (enum reg_class, int);
144 static int can_move_up (basic_block, rtx, int);
145 static void note_btr_set (rtx, rtx, void *);
146 \f
147 /* The following code performs code motion of target load instructions
148 (instructions that set branch target registers), to move them
149 forward away from the branch instructions and out of loops (or,
150 more generally, from a more frequently executed place to a less
151 frequently executed place).
152 Moving target load instructions further in front of the branch
153 instruction that uses the target register value means that the hardware
154 has a better chance of preloading the instructions at the branch
155 target by the time the branch is reached. This avoids bubbles
156 when a taken branch needs to flush out the pipeline.
157 Moving target load instructions out of loops means they are executed
158 less frequently. */
159
160 /* An obstack to hold the def-use web data structures built up for
161 migrating branch target load instructions. */
162 static struct obstack migrate_btrl_obstack;
163
164 /* Array indexed by basic block number, giving the set of registers
165 live in that block. */
166 static HARD_REG_SET *btrs_live;
167
168 /* Array indexed by basic block number, giving the set of registers live at
169 the end of that block, including any uses by a final jump insn, if any. */
170 static HARD_REG_SET *btrs_live_at_end;
171
172 /* Set of all target registers that we are willing to allocate. */
173 static HARD_REG_SET all_btrs;
174
175 /* Provide lower and upper bounds for target register numbers, so that
176 we don't need to search through all the hard registers all the time. */
177 static int first_btr, last_btr;
178
179
180
181 /* Return an estimate of the frequency of execution of block bb. */
182 static int
183 basic_block_freq (basic_block bb)
184 {
185 return bb->frequency;
186 }
187
188 static rtx *btr_reference_found;
189
190 /* A subroutine of btr_referenced_p, called through for_each_rtx.
191 PREG is a pointer to an rtx that is to be excluded from the
192 traversal. If we find a reference to a target register anywhere
193 else, return 1, and put a pointer to it into btr_reference_found. */
194 static int
195 find_btr_reference (rtx *px, void *preg)
196 {
197 rtx x;
198
199 if (px == preg)
200 return -1;
201 x = *px;
202 if (!REG_P (x))
203 return 0;
204 if (overlaps_hard_reg_set_p (all_btrs, GET_MODE (x), REGNO (x)))
205 {
206 btr_reference_found = px;
207 return 1;
208 }
209 return -1;
210 }
211
212 /* Return nonzero if X references (sets or reads) any branch target register.
213 If EXCLUDEP is set, disregard any references within the rtx pointed to
214 by it. If returning nonzero, also set btr_reference_found as above. */
215 static int
216 btr_referenced_p (rtx x, rtx *excludep)
217 {
218 return for_each_rtx (&x, find_btr_reference, excludep);
219 }
220
221 /* Return true if insn is an instruction that sets a target register.
222 if CHECK_CONST is true, only return true if the source is constant.
223 If such a set is found and REGNO is nonzero, assign the register number
224 of the destination register to *REGNO. */
225 static int
226 insn_sets_btr_p (rtx insn, int check_const, int *regno)
227 {
228 rtx set;
229
230 if (NONJUMP_INSN_P (insn)
231 && (set = single_set (insn)))
232 {
233 rtx dest = SET_DEST (set);
234 rtx src = SET_SRC (set);
235
236 if (GET_CODE (dest) == SUBREG)
237 dest = XEXP (dest, 0);
238
239 if (REG_P (dest)
240 && TEST_HARD_REG_BIT (all_btrs, REGNO (dest)))
241 {
242 gcc_assert (!btr_referenced_p (src, NULL));
243
244 if (!check_const || CONSTANT_P (src))
245 {
246 if (regno)
247 *regno = REGNO (dest);
248 return 1;
249 }
250 }
251 }
252 return 0;
253 }
254
255 /* Find and return a use of a target register within an instruction INSN. */
256 static rtx *
257 find_btr_use (rtx insn)
258 {
259 return btr_referenced_p (insn, NULL) ? btr_reference_found : NULL;
260 }
261
262 /* Find the group that the target register definition DEF belongs
263 to in the list starting with *ALL_BTR_DEF_GROUPS. If no such
264 group exists, create one. Add def to the group. */
265 static void
266 find_btr_def_group (btr_def_group *all_btr_def_groups, btr_def def)
267 {
268 if (insn_sets_btr_p (def->insn, 1, NULL))
269 {
270 btr_def_group this_group;
271 rtx def_src = SET_SRC (single_set (def->insn));
272
273 /* ?? This linear search is an efficiency concern, particularly
274 as the search will almost always fail to find a match. */
275 for (this_group = *all_btr_def_groups;
276 this_group != NULL;
277 this_group = this_group->next)
278 if (rtx_equal_p (def_src, this_group->src))
279 break;
280
281 if (!this_group)
282 {
283 this_group = obstack_alloc (&migrate_btrl_obstack,
284 sizeof (struct btr_def_group_s));
285 this_group->src = def_src;
286 this_group->members = NULL;
287 this_group->next = *all_btr_def_groups;
288 *all_btr_def_groups = this_group;
289 }
290 def->group = this_group;
291 def->next_this_group = this_group->members;
292 this_group->members = def;
293 }
294 else
295 def->group = NULL;
296 }
297
298 /* Create a new target register definition structure, for a definition in
299 block BB, instruction INSN, and insert it into ALL_BTR_DEFS. Return
300 the new definition. */
301 static btr_def
302 add_btr_def (fibheap_t all_btr_defs, basic_block bb, int insn_luid, rtx insn,
303 unsigned int dest_reg, int other_btr_uses_before_def,
304 btr_def_group *all_btr_def_groups)
305 {
306 btr_def this
307 = obstack_alloc (&migrate_btrl_obstack, sizeof (struct btr_def_s));
308 this->bb = bb;
309 this->luid = insn_luid;
310 this->insn = insn;
311 this->btr = dest_reg;
312 this->cost = basic_block_freq (bb);
313 this->has_ambiguous_use = 0;
314 this->other_btr_uses_before_def = other_btr_uses_before_def;
315 this->other_btr_uses_after_use = 0;
316 this->next_this_bb = NULL;
317 this->next_this_group = NULL;
318 this->uses = NULL;
319 this->live_range = NULL;
320 find_btr_def_group (all_btr_def_groups, this);
321
322 fibheap_insert (all_btr_defs, -this->cost, this);
323
324 if (dump_file)
325 fprintf (dump_file,
326 "Found target reg definition: sets %u { bb %d, insn %d }%s priority %d\n",
327 dest_reg, bb->index, INSN_UID (insn), (this->group ? "" : ":not const"),
328 this->cost);
329
330 return this;
331 }
332
333 /* Create a new target register user structure, for a use in block BB,
334 instruction INSN. Return the new user. */
335 static btr_user
336 new_btr_user (basic_block bb, int insn_luid, rtx insn)
337 {
338 /* This instruction reads target registers. We need
339 to decide whether we can replace all target register
340 uses easily.
341 */
342 rtx *usep = find_btr_use (PATTERN (insn));
343 rtx use;
344 btr_user user = NULL;
345
346 if (usep)
347 {
348 int unambiguous_single_use;
349
350 /* We want to ensure that USE is the only use of a target
351 register in INSN, so that we know that to rewrite INSN to use
352 a different target register, all we have to do is replace USE. */
353 unambiguous_single_use = !btr_referenced_p (PATTERN (insn), usep);
354 if (!unambiguous_single_use)
355 usep = NULL;
356 }
357 use = usep ? *usep : NULL_RTX;
358 user = obstack_alloc (&migrate_btrl_obstack, sizeof (struct btr_user_s));
359 user->bb = bb;
360 user->luid = insn_luid;
361 user->insn = insn;
362 user->use = use;
363 user->other_use_this_block = 0;
364 user->next = NULL;
365 user->n_reaching_defs = 0;
366 user->first_reaching_def = -1;
367
368 if (dump_file)
369 {
370 fprintf (dump_file, "Uses target reg: { bb %d, insn %d }",
371 bb->index, INSN_UID (insn));
372
373 if (user->use)
374 fprintf (dump_file, ": unambiguous use of reg %d\n",
375 REGNO (user->use));
376 }
377
378 return user;
379 }
380
381 /* Write the contents of S to the dump file. */
382 static void
383 dump_hard_reg_set (HARD_REG_SET s)
384 {
385 int reg;
386 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
387 if (TEST_HARD_REG_BIT (s, reg))
388 fprintf (dump_file, " %d", reg);
389 }
390
391 /* Write the set of target regs live in block BB to the dump file. */
392 static void
393 dump_btrs_live (int bb)
394 {
395 fprintf (dump_file, "BB%d live:", bb);
396 dump_hard_reg_set (btrs_live[bb]);
397 fprintf (dump_file, "\n");
398 }
399
400 /* REGNO is the number of a branch target register that is being used or
401 set. USERS_THIS_BB is a list of preceding branch target register users;
402 If any of them use the same register, set their other_use_this_block
403 flag. */
404 static void
405 note_other_use_this_block (unsigned int regno, btr_user users_this_bb)
406 {
407 btr_user user;
408
409 for (user = users_this_bb; user != NULL; user = user->next)
410 if (user->use && REGNO (user->use) == regno)
411 user->other_use_this_block = 1;
412 }
413
414 typedef struct {
415 btr_user users_this_bb;
416 HARD_REG_SET btrs_written_in_block;
417 HARD_REG_SET btrs_live_in_block;
418 sbitmap bb_gen;
419 sbitmap *btr_defset;
420 } defs_uses_info;
421
422 /* Called via note_stores or directly to register stores into /
423 clobbers of a branch target register DEST that are not recognized as
424 straightforward definitions. DATA points to information about the
425 current basic block that needs updating. */
426 static void
427 note_btr_set (rtx dest, rtx set ATTRIBUTE_UNUSED, void *data)
428 {
429 defs_uses_info *info = data;
430 int regno, end_regno;
431
432 if (!REG_P (dest))
433 return;
434 regno = REGNO (dest);
435 end_regno = END_HARD_REGNO (dest);
436 for (; regno < end_regno; regno++)
437 if (TEST_HARD_REG_BIT (all_btrs, regno))
438 {
439 note_other_use_this_block (regno, info->users_this_bb);
440 SET_HARD_REG_BIT (info->btrs_written_in_block, regno);
441 SET_HARD_REG_BIT (info->btrs_live_in_block, regno);
442 sbitmap_difference (info->bb_gen, info->bb_gen,
443 info->btr_defset[regno - first_btr]);
444 }
445 }
446
447 static void
448 compute_defs_uses_and_gen (fibheap_t all_btr_defs, btr_def *def_array,
449 btr_user *use_array, sbitmap *btr_defset,
450 sbitmap *bb_gen, HARD_REG_SET *btrs_written)
451 {
452 /* Scan the code building up the set of all defs and all uses.
453 For each target register, build the set of defs of that register.
454 For each block, calculate the set of target registers
455 written in that block.
456 Also calculate the set of btrs ever live in that block.
457 */
458 int i;
459 int insn_luid = 0;
460 btr_def_group all_btr_def_groups = NULL;
461 defs_uses_info info;
462
463 sbitmap_vector_zero (bb_gen, n_basic_blocks);
464 for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
465 {
466 basic_block bb = BASIC_BLOCK (i);
467 int reg;
468 btr_def defs_this_bb = NULL;
469 rtx insn;
470 rtx last;
471 int can_throw = 0;
472
473 info.users_this_bb = NULL;
474 info.bb_gen = bb_gen[i];
475 info.btr_defset = btr_defset;
476
477 CLEAR_HARD_REG_SET (info.btrs_live_in_block);
478 CLEAR_HARD_REG_SET (info.btrs_written_in_block);
479 for (reg = first_btr; reg <= last_btr; reg++)
480 if (TEST_HARD_REG_BIT (all_btrs, reg)
481 && REGNO_REG_SET_P (DF_LIVE_IN (bb), reg))
482 SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
483
484 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
485 insn != last;
486 insn = NEXT_INSN (insn), insn_luid++)
487 {
488 if (INSN_P (insn))
489 {
490 int regno;
491 int insn_uid = INSN_UID (insn);
492
493 if (insn_sets_btr_p (insn, 0, &regno))
494 {
495 btr_def def = add_btr_def (
496 all_btr_defs, bb, insn_luid, insn, regno,
497 TEST_HARD_REG_BIT (info.btrs_live_in_block, regno),
498 &all_btr_def_groups);
499
500 def_array[insn_uid] = def;
501 SET_HARD_REG_BIT (info.btrs_written_in_block, regno);
502 SET_HARD_REG_BIT (info.btrs_live_in_block, regno);
503 sbitmap_difference (bb_gen[i], bb_gen[i],
504 btr_defset[regno - first_btr]);
505 SET_BIT (bb_gen[i], insn_uid);
506 def->next_this_bb = defs_this_bb;
507 defs_this_bb = def;
508 SET_BIT (btr_defset[regno - first_btr], insn_uid);
509 note_other_use_this_block (regno, info.users_this_bb);
510 }
511 /* Check for the blockage emitted by expand_nl_goto_receiver. */
512 else if (current_function_has_nonlocal_label
513 && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE)
514 {
515 btr_user user;
516
517 /* Do the equivalent of calling note_other_use_this_block
518 for every target register. */
519 for (user = info.users_this_bb; user != NULL;
520 user = user->next)
521 if (user->use)
522 user->other_use_this_block = 1;
523 IOR_HARD_REG_SET (info.btrs_written_in_block, all_btrs);
524 IOR_HARD_REG_SET (info.btrs_live_in_block, all_btrs);
525 sbitmap_zero (info.bb_gen);
526 }
527 else
528 {
529 if (btr_referenced_p (PATTERN (insn), NULL))
530 {
531 btr_user user = new_btr_user (bb, insn_luid, insn);
532
533 use_array[insn_uid] = user;
534 if (user->use)
535 SET_HARD_REG_BIT (info.btrs_live_in_block,
536 REGNO (user->use));
537 else
538 {
539 int reg;
540 for (reg = first_btr; reg <= last_btr; reg++)
541 if (TEST_HARD_REG_BIT (all_btrs, reg)
542 && refers_to_regno_p (reg, reg + 1, user->insn,
543 NULL))
544 {
545 note_other_use_this_block (reg,
546 info.users_this_bb);
547 SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
548 }
549 note_stores (PATTERN (insn), note_btr_set, &info);
550 }
551 user->next = info.users_this_bb;
552 info.users_this_bb = user;
553 }
554 if (CALL_P (insn))
555 {
556 HARD_REG_SET *clobbered = &call_used_reg_set;
557 HARD_REG_SET call_saved;
558 rtx pat = PATTERN (insn);
559 int i;
560
561 /* Check for sibcall. */
562 if (GET_CODE (pat) == PARALLEL)
563 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
564 if (GET_CODE (XVECEXP (pat, 0, i)) == RETURN)
565 {
566 COMPL_HARD_REG_SET (call_saved,
567 call_used_reg_set);
568 clobbered = &call_saved;
569 }
570
571 for (regno = first_btr; regno <= last_btr; regno++)
572 if (TEST_HARD_REG_BIT (*clobbered, regno))
573 note_btr_set (regno_reg_rtx[regno], NULL_RTX, &info);
574 }
575 }
576 }
577 }
578
579 COPY_HARD_REG_SET (btrs_live[i], info.btrs_live_in_block);
580 COPY_HARD_REG_SET (btrs_written[i], info.btrs_written_in_block);
581
582 REG_SET_TO_HARD_REG_SET (btrs_live_at_end[i], DF_LIVE_OUT (bb));
583 /* If this block ends in a jump insn, add any uses or even clobbers
584 of branch target registers that it might have. */
585 for (insn = BB_END (bb); insn != BB_HEAD (bb) && ! INSN_P (insn); )
586 insn = PREV_INSN (insn);
587 /* ??? for the fall-through edge, it would make sense to insert the
588 btr set on the edge, but that would require to split the block
589 early on so that we can distinguish between dominance from the fall
590 through edge - which can use the call-clobbered registers - from
591 dominance by the throw edge. */
592 if (can_throw_internal (insn))
593 {
594 HARD_REG_SET tmp;
595
596 COPY_HARD_REG_SET (tmp, call_used_reg_set);
597 AND_HARD_REG_SET (tmp, all_btrs);
598 IOR_HARD_REG_SET (btrs_live_at_end[i], tmp);
599 can_throw = 1;
600 }
601 if (can_throw || JUMP_P (insn))
602 {
603 int regno;
604
605 for (regno = first_btr; regno <= last_btr; regno++)
606 if (refers_to_regno_p (regno, regno+1, insn, NULL))
607 SET_HARD_REG_BIT (btrs_live_at_end[i], regno);
608 }
609
610 if (dump_file)
611 dump_btrs_live(i);
612 }
613 }
614
615 static void
616 compute_kill (sbitmap *bb_kill, sbitmap *btr_defset,
617 HARD_REG_SET *btrs_written)
618 {
619 int i;
620 int regno;
621
622 /* For each basic block, form the set BB_KILL - the set
623 of definitions that the block kills. */
624 sbitmap_vector_zero (bb_kill, n_basic_blocks);
625 for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
626 {
627 for (regno = first_btr; regno <= last_btr; regno++)
628 if (TEST_HARD_REG_BIT (all_btrs, regno)
629 && TEST_HARD_REG_BIT (btrs_written[i], regno))
630 sbitmap_a_or_b (bb_kill[i], bb_kill[i],
631 btr_defset[regno - first_btr]);
632 }
633 }
634
635 static void
636 compute_out (sbitmap *bb_out, sbitmap *bb_gen, sbitmap *bb_kill, int max_uid)
637 {
638 /* Perform iterative dataflow:
639 Initially, for all blocks, BB_OUT = BB_GEN.
640 For each block,
641 BB_IN = union over predecessors of BB_OUT(pred)
642 BB_OUT = (BB_IN - BB_KILL) + BB_GEN
643 Iterate until the bb_out sets stop growing. */
644 int i;
645 int changed;
646 sbitmap bb_in = sbitmap_alloc (max_uid);
647
648 for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
649 sbitmap_copy (bb_out[i], bb_gen[i]);
650
651 changed = 1;
652 while (changed)
653 {
654 changed = 0;
655 for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
656 {
657 sbitmap_union_of_preds (bb_in, bb_out, i);
658 changed |= sbitmap_union_of_diff_cg (bb_out[i], bb_gen[i],
659 bb_in, bb_kill[i]);
660 }
661 }
662 sbitmap_free (bb_in);
663 }
664
665 static void
666 link_btr_uses (btr_def *def_array, btr_user *use_array, sbitmap *bb_out,
667 sbitmap *btr_defset, int max_uid)
668 {
669 int i;
670 sbitmap reaching_defs = sbitmap_alloc (max_uid);
671
672 /* Link uses to the uses lists of all of their reaching defs.
673 Count up the number of reaching defs of each use. */
674 for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
675 {
676 basic_block bb = BASIC_BLOCK (i);
677 rtx insn;
678 rtx last;
679
680 sbitmap_union_of_preds (reaching_defs, bb_out, i);
681 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
682 insn != last;
683 insn = NEXT_INSN (insn))
684 {
685 if (INSN_P (insn))
686 {
687 int insn_uid = INSN_UID (insn);
688
689 btr_def def = def_array[insn_uid];
690 btr_user user = use_array[insn_uid];
691 if (def != NULL)
692 {
693 /* Remove all reaching defs of regno except
694 for this one. */
695 sbitmap_difference (reaching_defs, reaching_defs,
696 btr_defset[def->btr - first_btr]);
697 SET_BIT(reaching_defs, insn_uid);
698 }
699
700 if (user != NULL)
701 {
702 /* Find all the reaching defs for this use. */
703 sbitmap reaching_defs_of_reg = sbitmap_alloc(max_uid);
704 unsigned int uid = 0;
705 sbitmap_iterator sbi;
706
707 if (user->use)
708 sbitmap_a_and_b (
709 reaching_defs_of_reg,
710 reaching_defs,
711 btr_defset[REGNO (user->use) - first_btr]);
712 else
713 {
714 int reg;
715
716 sbitmap_zero (reaching_defs_of_reg);
717 for (reg = first_btr; reg <= last_btr; reg++)
718 if (TEST_HARD_REG_BIT (all_btrs, reg)
719 && refers_to_regno_p (reg, reg + 1, user->insn,
720 NULL))
721 sbitmap_a_or_b_and_c (reaching_defs_of_reg,
722 reaching_defs_of_reg,
723 reaching_defs,
724 btr_defset[reg - first_btr]);
725 }
726 EXECUTE_IF_SET_IN_SBITMAP (reaching_defs_of_reg, 0, uid, sbi)
727 {
728 btr_def def = def_array[uid];
729
730 /* We now know that def reaches user. */
731
732 if (dump_file)
733 fprintf (dump_file,
734 "Def in insn %d reaches use in insn %d\n",
735 uid, insn_uid);
736
737 user->n_reaching_defs++;
738 if (!user->use)
739 def->has_ambiguous_use = 1;
740 if (user->first_reaching_def != -1)
741 { /* There is more than one reaching def. This is
742 a rare case, so just give up on this def/use
743 web when it occurs. */
744 def->has_ambiguous_use = 1;
745 def_array[user->first_reaching_def]
746 ->has_ambiguous_use = 1;
747 if (dump_file)
748 fprintf (dump_file,
749 "(use %d has multiple reaching defs)\n",
750 insn_uid);
751 }
752 else
753 user->first_reaching_def = uid;
754 if (user->other_use_this_block)
755 def->other_btr_uses_after_use = 1;
756 user->next = def->uses;
757 def->uses = user;
758 }
759 sbitmap_free (reaching_defs_of_reg);
760 }
761
762 if (CALL_P (insn))
763 {
764 int regno;
765
766 for (regno = first_btr; regno <= last_btr; regno++)
767 if (TEST_HARD_REG_BIT (all_btrs, regno)
768 && TEST_HARD_REG_BIT (call_used_reg_set, regno))
769 sbitmap_difference (reaching_defs, reaching_defs,
770 btr_defset[regno - first_btr]);
771 }
772 }
773 }
774 }
775 sbitmap_free (reaching_defs);
776 }
777
778 static void
779 build_btr_def_use_webs (fibheap_t all_btr_defs)
780 {
781 const int max_uid = get_max_uid ();
782 btr_def *def_array = XCNEWVEC (btr_def, max_uid);
783 btr_user *use_array = XCNEWVEC (btr_user, max_uid);
784 sbitmap *btr_defset = sbitmap_vector_alloc (
785 (last_btr - first_btr) + 1, max_uid);
786 sbitmap *bb_gen = sbitmap_vector_alloc (n_basic_blocks, max_uid);
787 HARD_REG_SET *btrs_written = XCNEWVEC (HARD_REG_SET, n_basic_blocks);
788 sbitmap *bb_kill;
789 sbitmap *bb_out;
790
791 sbitmap_vector_zero (btr_defset, (last_btr - first_btr) + 1);
792
793 compute_defs_uses_and_gen (all_btr_defs, def_array, use_array, btr_defset,
794 bb_gen, btrs_written);
795
796 bb_kill = sbitmap_vector_alloc (n_basic_blocks, max_uid);
797 compute_kill (bb_kill, btr_defset, btrs_written);
798 free (btrs_written);
799
800 bb_out = sbitmap_vector_alloc (n_basic_blocks, max_uid);
801 compute_out (bb_out, bb_gen, bb_kill, max_uid);
802
803 sbitmap_vector_free (bb_gen);
804 sbitmap_vector_free (bb_kill);
805
806 link_btr_uses (def_array, use_array, bb_out, btr_defset, max_uid);
807
808 sbitmap_vector_free (bb_out);
809 sbitmap_vector_free (btr_defset);
810 free (use_array);
811 free (def_array);
812 }
813
814 /* Return true if basic block BB contains the start or end of the
815 live range of the definition DEF, AND there are other live
816 ranges of the same target register that include BB. */
817 static int
818 block_at_edge_of_live_range_p (int bb, btr_def def)
819 {
820 if (def->other_btr_uses_before_def && BASIC_BLOCK (bb) == def->bb)
821 return 1;
822 else if (def->other_btr_uses_after_use)
823 {
824 btr_user user;
825 for (user = def->uses; user != NULL; user = user->next)
826 if (BASIC_BLOCK (bb) == user->bb)
827 return 1;
828 }
829 return 0;
830 }
831
832 /* We are removing the def/use web DEF. The target register
833 used in this web is therefore no longer live in the live range
834 of this web, so remove it from the live set of all basic blocks
835 in the live range of the web.
836 Blocks at the boundary of the live range may contain other live
837 ranges for the same target register, so we have to be careful
838 to remove the target register from the live set of these blocks
839 only if they do not contain other live ranges for the same register. */
840 static void
841 clear_btr_from_live_range (btr_def def)
842 {
843 unsigned bb;
844 bitmap_iterator bi;
845
846 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
847 {
848 if ((!def->other_btr_uses_before_def
849 && !def->other_btr_uses_after_use)
850 || !block_at_edge_of_live_range_p (bb, def))
851 {
852 CLEAR_HARD_REG_BIT (btrs_live[bb], def->btr);
853 CLEAR_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
854 if (dump_file)
855 dump_btrs_live (bb);
856 }
857 }
858 if (def->own_end)
859 CLEAR_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
860 }
861
862
863 /* We are adding the def/use web DEF. Add the target register used
864 in this web to the live set of all of the basic blocks that contain
865 the live range of the web.
866 If OWN_END is set, also show that the register is live from our
867 definitions at the end of the basic block where it is defined. */
868 static void
869 add_btr_to_live_range (btr_def def, int own_end)
870 {
871 unsigned bb;
872 bitmap_iterator bi;
873
874 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
875 {
876 SET_HARD_REG_BIT (btrs_live[bb], def->btr);
877 SET_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
878 if (dump_file)
879 dump_btrs_live (bb);
880 }
881 if (own_end)
882 {
883 SET_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
884 def->own_end = 1;
885 }
886 }
887
888 /* Update a live range to contain the basic block NEW_BLOCK, and all
889 blocks on paths between the existing live range and NEW_BLOCK.
890 HEAD is a block contained in the existing live range that dominates
891 all other blocks in the existing live range.
892 Also add to the set BTRS_LIVE_IN_RANGE all target registers that
893 are live in the blocks that we add to the live range.
894 If FULL_RANGE is set, include the full live range of NEW_BB;
895 otherwise, if NEW_BB dominates HEAD_BB, only add registers that
896 are life at the end of NEW_BB for NEW_BB itself.
897 It is a precondition that either NEW_BLOCK dominates HEAD,or
898 HEAD dom NEW_BLOCK. This is used to speed up the
899 implementation of this function. */
900 static void
901 augment_live_range (bitmap live_range, HARD_REG_SET *btrs_live_in_range,
902 basic_block head_bb, basic_block new_bb, int full_range)
903 {
904 basic_block *worklist, *tos;
905
906 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
907
908 if (dominated_by_p (CDI_DOMINATORS, new_bb, head_bb))
909 {
910 if (new_bb == head_bb)
911 {
912 if (full_range)
913 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_bb->index]);
914 free (tos);
915 return;
916 }
917 *tos++ = new_bb;
918 }
919 else
920 {
921 edge e;
922 edge_iterator ei;
923 int new_block = new_bb->index;
924
925 gcc_assert (dominated_by_p (CDI_DOMINATORS, head_bb, new_bb));
926
927 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[head_bb->index]);
928 bitmap_set_bit (live_range, new_block);
929 /* A previous btr migration could have caused a register to be
930 live just at the end of new_block which we need in full, so
931 use trs_live_at_end even if full_range is set. */
932 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live_at_end[new_block]);
933 if (full_range)
934 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_block]);
935 if (dump_file)
936 {
937 fprintf (dump_file,
938 "Adding end of block %d and rest of %d to live range\n",
939 new_block, head_bb->index);
940 fprintf (dump_file,"Now live btrs are ");
941 dump_hard_reg_set (*btrs_live_in_range);
942 fprintf (dump_file, "\n");
943 }
944 FOR_EACH_EDGE (e, ei, head_bb->preds)
945 *tos++ = e->src;
946 }
947
948 while (tos != worklist)
949 {
950 basic_block bb = *--tos;
951 if (!bitmap_bit_p (live_range, bb->index))
952 {
953 edge e;
954 edge_iterator ei;
955
956 bitmap_set_bit (live_range, bb->index);
957 IOR_HARD_REG_SET (*btrs_live_in_range,
958 btrs_live[bb->index]);
959 /* A previous btr migration could have caused a register to be
960 live just at the end of a block which we need in full. */
961 IOR_HARD_REG_SET (*btrs_live_in_range,
962 btrs_live_at_end[bb->index]);
963 if (dump_file)
964 {
965 fprintf (dump_file,
966 "Adding block %d to live range\n", bb->index);
967 fprintf (dump_file,"Now live btrs are ");
968 dump_hard_reg_set (*btrs_live_in_range);
969 fprintf (dump_file, "\n");
970 }
971
972 FOR_EACH_EDGE (e, ei, bb->preds)
973 {
974 basic_block pred = e->src;
975 if (!bitmap_bit_p (live_range, pred->index))
976 *tos++ = pred;
977 }
978 }
979 }
980
981 free (worklist);
982 }
983
984 /* Return the most desirable target register that is not in
985 the set USED_BTRS. */
986 static int
987 choose_btr (HARD_REG_SET used_btrs)
988 {
989 int i;
990
991 if (!hard_reg_set_subset_p (all_btrs, used_btrs))
992 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
993 {
994 #ifdef REG_ALLOC_ORDER
995 int regno = reg_alloc_order[i];
996 #else
997 int regno = i;
998 #endif
999 if (TEST_HARD_REG_BIT (all_btrs, regno)
1000 && !TEST_HARD_REG_BIT (used_btrs, regno))
1001 return regno;
1002 }
1003 return -1;
1004 }
1005
1006 /* Calculate the set of basic blocks that contain the live range of
1007 the def/use web DEF.
1008 Also calculate the set of target registers that are live at time
1009 in this live range, but ignore the live range represented by DEF
1010 when calculating this set. */
1011 static void
1012 btr_def_live_range (btr_def def, HARD_REG_SET *btrs_live_in_range)
1013 {
1014 if (!def->live_range)
1015 {
1016 btr_user user;
1017
1018 def->live_range = BITMAP_ALLOC (NULL);
1019
1020 bitmap_set_bit (def->live_range, def->bb->index);
1021 COPY_HARD_REG_SET (*btrs_live_in_range,
1022 (flag_btr_bb_exclusive
1023 ? btrs_live : btrs_live_at_end)[def->bb->index]);
1024
1025 for (user = def->uses; user != NULL; user = user->next)
1026 augment_live_range (def->live_range, btrs_live_in_range,
1027 def->bb, user->bb,
1028 (flag_btr_bb_exclusive
1029 || user->insn != BB_END (def->bb)
1030 || !JUMP_P (user->insn)));
1031 }
1032 else
1033 {
1034 /* def->live_range is accurate, but we need to recompute
1035 the set of target registers live over it, because migration
1036 of other PT instructions may have affected it.
1037 */
1038 unsigned bb;
1039 unsigned def_bb = flag_btr_bb_exclusive ? -1 : def->bb->index;
1040 bitmap_iterator bi;
1041
1042 CLEAR_HARD_REG_SET (*btrs_live_in_range);
1043 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
1044 {
1045 IOR_HARD_REG_SET (*btrs_live_in_range,
1046 (def_bb == bb
1047 ? btrs_live_at_end : btrs_live) [bb]);
1048 }
1049 }
1050 if (!def->other_btr_uses_before_def &&
1051 !def->other_btr_uses_after_use)
1052 CLEAR_HARD_REG_BIT (*btrs_live_in_range, def->btr);
1053 }
1054
1055 /* Merge into the def/use web DEF any other def/use webs in the same
1056 group that are dominated by DEF, provided that there is a target
1057 register available to allocate to the merged web. */
1058 static void
1059 combine_btr_defs (btr_def def, HARD_REG_SET *btrs_live_in_range)
1060 {
1061 btr_def other_def;
1062
1063 for (other_def = def->group->members;
1064 other_def != NULL;
1065 other_def = other_def->next_this_group)
1066 {
1067 if (other_def != def
1068 && other_def->uses != NULL
1069 && ! other_def->has_ambiguous_use
1070 && dominated_by_p (CDI_DOMINATORS, other_def->bb, def->bb))
1071 {
1072 /* def->bb dominates the other def, so def and other_def could
1073 be combined. */
1074 /* Merge their live ranges, and get the set of
1075 target registers live over the merged range. */
1076 int btr;
1077 HARD_REG_SET combined_btrs_live;
1078 bitmap combined_live_range = BITMAP_ALLOC (NULL);
1079 btr_user user;
1080
1081 if (other_def->live_range == NULL)
1082 {
1083 HARD_REG_SET dummy_btrs_live_in_range;
1084 btr_def_live_range (other_def, &dummy_btrs_live_in_range);
1085 }
1086 COPY_HARD_REG_SET (combined_btrs_live, *btrs_live_in_range);
1087 bitmap_copy (combined_live_range, def->live_range);
1088
1089 for (user = other_def->uses; user != NULL; user = user->next)
1090 augment_live_range (combined_live_range, &combined_btrs_live,
1091 def->bb, user->bb,
1092 (flag_btr_bb_exclusive
1093 || user->insn != BB_END (def->bb)
1094 || !JUMP_P (user->insn)));
1095
1096 btr = choose_btr (combined_btrs_live);
1097 if (btr != -1)
1098 {
1099 /* We can combine them. */
1100 if (dump_file)
1101 fprintf (dump_file,
1102 "Combining def in insn %d with def in insn %d\n",
1103 INSN_UID (other_def->insn), INSN_UID (def->insn));
1104
1105 def->btr = btr;
1106 user = other_def->uses;
1107 while (user != NULL)
1108 {
1109 btr_user next = user->next;
1110
1111 user->next = def->uses;
1112 def->uses = user;
1113 user = next;
1114 }
1115 /* Combining def/use webs can make target registers live
1116 after uses where they previously were not. This means
1117 some REG_DEAD notes may no longer be correct. We could
1118 be more precise about this if we looked at the combined
1119 live range, but here I just delete any REG_DEAD notes
1120 in case they are no longer correct. */
1121 for (user = def->uses; user != NULL; user = user->next)
1122 remove_note (user->insn,
1123 find_regno_note (user->insn, REG_DEAD,
1124 REGNO (user->use)));
1125 clear_btr_from_live_range (other_def);
1126 other_def->uses = NULL;
1127 bitmap_copy (def->live_range, combined_live_range);
1128 if (other_def->btr == btr && other_def->other_btr_uses_after_use)
1129 def->other_btr_uses_after_use = 1;
1130 COPY_HARD_REG_SET (*btrs_live_in_range, combined_btrs_live);
1131
1132 /* Delete the old target register initialization. */
1133 delete_insn (other_def->insn);
1134
1135 }
1136 BITMAP_FREE (combined_live_range);
1137 }
1138 }
1139 }
1140
1141 /* Move the definition DEF from its current position to basic
1142 block NEW_DEF_BB, and modify it to use branch target register BTR.
1143 Delete the old defining insn, and insert a new one in NEW_DEF_BB.
1144 Update all reaching uses of DEF in the RTL to use BTR.
1145 If this new position means that other defs in the
1146 same group can be combined with DEF then combine them. */
1147 static void
1148 move_btr_def (basic_block new_def_bb, int btr, btr_def def, bitmap live_range,
1149 HARD_REG_SET *btrs_live_in_range)
1150 {
1151 /* We can move the instruction.
1152 Set a target register in block NEW_DEF_BB to the value
1153 needed for this target register definition.
1154 Replace all uses of the old target register definition by
1155 uses of the new definition. Delete the old definition. */
1156 basic_block b = new_def_bb;
1157 rtx insp = BB_HEAD (b);
1158 rtx old_insn = def->insn;
1159 rtx src;
1160 rtx btr_rtx;
1161 rtx new_insn;
1162 enum machine_mode btr_mode;
1163 btr_user user;
1164 rtx set;
1165
1166 if (dump_file)
1167 fprintf(dump_file, "migrating to basic block %d, using reg %d\n",
1168 new_def_bb->index, btr);
1169
1170 clear_btr_from_live_range (def);
1171 def->btr = btr;
1172 def->bb = new_def_bb;
1173 def->luid = 0;
1174 def->cost = basic_block_freq (new_def_bb);
1175 bitmap_copy (def->live_range, live_range);
1176 combine_btr_defs (def, btrs_live_in_range);
1177 btr = def->btr;
1178 def->other_btr_uses_before_def
1179 = TEST_HARD_REG_BIT (btrs_live[b->index], btr) ? 1 : 0;
1180 add_btr_to_live_range (def, 1);
1181 if (LABEL_P (insp))
1182 insp = NEXT_INSN (insp);
1183 /* N.B.: insp is expected to be NOTE_INSN_BASIC_BLOCK now. Some
1184 optimizations can result in insp being both first and last insn of
1185 its basic block. */
1186 /* ?? some assertions to check that insp is sensible? */
1187
1188 if (def->other_btr_uses_before_def)
1189 {
1190 insp = BB_END (b);
1191 for (insp = BB_END (b); ! INSN_P (insp); insp = PREV_INSN (insp))
1192 gcc_assert (insp != BB_HEAD (b));
1193
1194 if (JUMP_P (insp) || can_throw_internal (insp))
1195 insp = PREV_INSN (insp);
1196 }
1197
1198 set = single_set (old_insn);
1199 src = SET_SRC (set);
1200 btr_mode = GET_MODE (SET_DEST (set));
1201 btr_rtx = gen_rtx_REG (btr_mode, btr);
1202
1203 new_insn = gen_move_insn (btr_rtx, src);
1204
1205 /* Insert target register initialization at head of basic block. */
1206 def->insn = emit_insn_after (new_insn, insp);
1207
1208 df_set_regs_ever_live (btr, true);
1209
1210 if (dump_file)
1211 fprintf (dump_file, "New pt is insn %d, inserted after insn %d\n",
1212 INSN_UID (def->insn), INSN_UID (insp));
1213
1214 /* Delete the old target register initialization. */
1215 delete_insn (old_insn);
1216
1217 /* Replace each use of the old target register by a use of the new target
1218 register. */
1219 for (user = def->uses; user != NULL; user = user->next)
1220 {
1221 /* Some extra work here to ensure consistent modes, because
1222 it seems that a target register REG rtx can be given a different
1223 mode depending on the context (surely that should not be
1224 the case?). */
1225 rtx replacement_rtx;
1226 if (GET_MODE (user->use) == GET_MODE (btr_rtx)
1227 || GET_MODE (user->use) == VOIDmode)
1228 replacement_rtx = btr_rtx;
1229 else
1230 replacement_rtx = gen_rtx_REG (GET_MODE (user->use), btr);
1231 validate_replace_rtx (user->use, replacement_rtx, user->insn);
1232 user->use = replacement_rtx;
1233 }
1234 }
1235
1236 /* We anticipate intra-block scheduling to be done. See if INSN could move
1237 up within BB by N_INSNS. */
1238 static int
1239 can_move_up (basic_block bb, rtx insn, int n_insns)
1240 {
1241 while (insn != BB_HEAD (bb) && n_insns > 0)
1242 {
1243 insn = PREV_INSN (insn);
1244 /* ??? What if we have an anti-dependency that actually prevents the
1245 scheduler from doing the move? We'd like to re-allocate the register,
1246 but not necessarily put the load into another basic block. */
1247 if (INSN_P (insn))
1248 n_insns--;
1249 }
1250 return n_insns <= 0;
1251 }
1252
1253 /* Attempt to migrate the target register definition DEF to an
1254 earlier point in the flowgraph.
1255
1256 It is a precondition of this function that DEF is migratable:
1257 i.e. it has a constant source, and all uses are unambiguous.
1258
1259 Only migrations that reduce the cost of DEF will be made.
1260 MIN_COST is the lower bound on the cost of the DEF after migration.
1261 If we migrate DEF so that its cost falls below MIN_COST,
1262 then we do not attempt to migrate further. The idea is that
1263 we migrate definitions in a priority order based on their cost,
1264 when the cost of this definition falls below MIN_COST, then
1265 there is another definition with cost == MIN_COST which now
1266 has a higher priority than this definition.
1267
1268 Return nonzero if there may be benefit from attempting to
1269 migrate this DEF further (i.e. we have reduced the cost below
1270 MIN_COST, but we may be able to reduce it further).
1271 Return zero if no further migration is possible. */
1272 static int
1273 migrate_btr_def (btr_def def, int min_cost)
1274 {
1275 bitmap live_range;
1276 HARD_REG_SET btrs_live_in_range;
1277 int btr_used_near_def = 0;
1278 int def_basic_block_freq;
1279 basic_block try;
1280 int give_up = 0;
1281 int def_moved = 0;
1282 btr_user user;
1283 int def_latency;
1284
1285 if (dump_file)
1286 fprintf (dump_file,
1287 "Attempting to migrate pt from insn %d (cost = %d, min_cost = %d) ... ",
1288 INSN_UID (def->insn), def->cost, min_cost);
1289
1290 if (!def->group || def->has_ambiguous_use)
1291 /* These defs are not migratable. */
1292 {
1293 if (dump_file)
1294 fprintf (dump_file, "it's not migratable\n");
1295 return 0;
1296 }
1297
1298 if (!def->uses)
1299 /* We have combined this def with another in the same group, so
1300 no need to consider it further.
1301 */
1302 {
1303 if (dump_file)
1304 fprintf (dump_file, "it's already combined with another pt\n");
1305 return 0;
1306 }
1307
1308 btr_def_live_range (def, &btrs_live_in_range);
1309 live_range = BITMAP_ALLOC (NULL);
1310 bitmap_copy (live_range, def->live_range);
1311
1312 #ifdef INSN_SCHEDULING
1313 def_latency = insn_default_latency (def->insn) * issue_rate;
1314 #else
1315 def_latency = issue_rate;
1316 #endif
1317
1318 for (user = def->uses; user != NULL; user = user->next)
1319 {
1320 if (user->bb == def->bb
1321 && user->luid > def->luid
1322 && (def->luid + def_latency) > user->luid
1323 && ! can_move_up (def->bb, def->insn,
1324 (def->luid + def_latency) - user->luid))
1325 {
1326 btr_used_near_def = 1;
1327 break;
1328 }
1329 }
1330
1331 def_basic_block_freq = basic_block_freq (def->bb);
1332
1333 for (try = get_immediate_dominator (CDI_DOMINATORS, def->bb);
1334 !give_up && try && try != ENTRY_BLOCK_PTR && def->cost >= min_cost;
1335 try = get_immediate_dominator (CDI_DOMINATORS, try))
1336 {
1337 /* Try to move the instruction that sets the target register into
1338 basic block TRY. */
1339 int try_freq = basic_block_freq (try);
1340 edge_iterator ei;
1341 edge e;
1342
1343 /* If TRY has abnormal edges, skip it. */
1344 FOR_EACH_EDGE (e, ei, try->succs)
1345 if (e->flags & EDGE_COMPLEX)
1346 break;
1347 if (e)
1348 continue;
1349
1350 if (dump_file)
1351 fprintf (dump_file, "trying block %d ...", try->index);
1352
1353 if (try_freq < def_basic_block_freq
1354 || (try_freq == def_basic_block_freq && btr_used_near_def))
1355 {
1356 int btr;
1357 augment_live_range (live_range, &btrs_live_in_range, def->bb, try,
1358 flag_btr_bb_exclusive);
1359 if (dump_file)
1360 {
1361 fprintf (dump_file, "Now btrs live in range are: ");
1362 dump_hard_reg_set (btrs_live_in_range);
1363 fprintf (dump_file, "\n");
1364 }
1365 btr = choose_btr (btrs_live_in_range);
1366 if (btr != -1)
1367 {
1368 move_btr_def (try, btr, def, live_range, &btrs_live_in_range);
1369 bitmap_copy(live_range, def->live_range);
1370 btr_used_near_def = 0;
1371 def_moved = 1;
1372 def_basic_block_freq = basic_block_freq (def->bb);
1373 }
1374 else
1375 {
1376 /* There are no free target registers available to move
1377 this far forward, so give up */
1378 give_up = 1;
1379 if (dump_file)
1380 fprintf (dump_file,
1381 "giving up because there are no free target registers\n");
1382 }
1383
1384 }
1385 }
1386 if (!def_moved)
1387 {
1388 give_up = 1;
1389 if (dump_file)
1390 fprintf (dump_file, "failed to move\n");
1391 }
1392 BITMAP_FREE (live_range);
1393 return !give_up;
1394 }
1395
1396 /* Attempt to move instructions that set target registers earlier
1397 in the flowgraph, away from their corresponding uses. */
1398 static void
1399 migrate_btr_defs (enum reg_class btr_class, int allow_callee_save)
1400 {
1401 fibheap_t all_btr_defs = fibheap_new ();
1402 int reg;
1403
1404 gcc_obstack_init (&migrate_btrl_obstack);
1405 if (dump_file)
1406 {
1407 int i;
1408
1409 for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
1410 {
1411 basic_block bb = BASIC_BLOCK (i);
1412 fprintf(dump_file,
1413 "Basic block %d: count = " HOST_WIDEST_INT_PRINT_DEC
1414 " loop-depth = %d idom = %d\n",
1415 i, (HOST_WIDEST_INT) bb->count, bb->loop_depth,
1416 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
1417 }
1418 }
1419
1420 CLEAR_HARD_REG_SET (all_btrs);
1421 for (first_btr = -1, reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
1422 if (TEST_HARD_REG_BIT (reg_class_contents[(int) btr_class], reg)
1423 && (allow_callee_save || call_used_regs[reg]
1424 || df_regs_ever_live_p (reg)))
1425 {
1426 SET_HARD_REG_BIT (all_btrs, reg);
1427 last_btr = reg;
1428 if (first_btr < 0)
1429 first_btr = reg;
1430 }
1431
1432 btrs_live = xcalloc (n_basic_blocks, sizeof (HARD_REG_SET));
1433 btrs_live_at_end = xcalloc (n_basic_blocks, sizeof (HARD_REG_SET));
1434
1435 build_btr_def_use_webs (all_btr_defs);
1436
1437 while (!fibheap_empty (all_btr_defs))
1438 {
1439 btr_def def = fibheap_extract_min (all_btr_defs);
1440 int min_cost = -fibheap_min_key (all_btr_defs);
1441 if (migrate_btr_def (def, min_cost))
1442 {
1443 fibheap_insert (all_btr_defs, -def->cost, (void *) def);
1444 if (dump_file)
1445 {
1446 fprintf (dump_file,
1447 "Putting insn %d back on queue with priority %d\n",
1448 INSN_UID (def->insn), def->cost);
1449 }
1450 }
1451 else
1452 BITMAP_FREE (def->live_range);
1453 }
1454
1455 free (btrs_live);
1456 free (btrs_live_at_end);
1457 obstack_free (&migrate_btrl_obstack, NULL);
1458 fibheap_delete (all_btr_defs);
1459 }
1460
1461 static void
1462 branch_target_load_optimize (bool after_prologue_epilogue_gen)
1463 {
1464 enum reg_class class = targetm.branch_target_register_class ();
1465 if (class != NO_REGS)
1466 {
1467 /* Initialize issue_rate. */
1468 if (targetm.sched.issue_rate)
1469 issue_rate = targetm.sched.issue_rate ();
1470 else
1471 issue_rate = 1;
1472
1473 if (!after_prologue_epilogue_gen)
1474 {
1475 /* Build the CFG for migrate_btr_defs. */
1476 #if 1
1477 /* This may or may not be needed, depending on where we
1478 run this phase. */
1479 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
1480 #endif
1481 }
1482 df_analyze ();
1483
1484
1485 /* Dominator info is also needed for migrate_btr_def. */
1486 calculate_dominance_info (CDI_DOMINATORS);
1487 migrate_btr_defs (class,
1488 (targetm.branch_target_register_callee_saved
1489 (after_prologue_epilogue_gen)));
1490
1491 free_dominance_info (CDI_DOMINATORS);
1492 }
1493 }
1494 \f
1495 static bool
1496 gate_handle_branch_target_load_optimize1 (void)
1497 {
1498 return flag_branch_target_load_optimize;
1499 }
1500
1501
1502 static unsigned int
1503 rest_of_handle_branch_target_load_optimize1 (void)
1504 {
1505 branch_target_load_optimize (epilogue_completed);
1506 return 0;
1507 }
1508
1509 struct tree_opt_pass pass_branch_target_load_optimize1 =
1510 {
1511 "btl1", /* name */
1512 gate_handle_branch_target_load_optimize1, /* gate */
1513 rest_of_handle_branch_target_load_optimize1, /* execute */
1514 NULL, /* sub */
1515 NULL, /* next */
1516 0, /* static_pass_number */
1517 0, /* tv_id */
1518 0, /* properties_required */
1519 0, /* properties_provided */
1520 0, /* properties_destroyed */
1521 0, /* todo_flags_start */
1522 TODO_dump_func |
1523 TODO_ggc_collect, /* todo_flags_finish */
1524 'd' /* letter */
1525 };
1526
1527 static bool
1528 gate_handle_branch_target_load_optimize2 (void)
1529 {
1530 return (optimize > 0 && flag_branch_target_load_optimize2);
1531 }
1532
1533
1534 static unsigned int
1535 rest_of_handle_branch_target_load_optimize2 (void)
1536 {
1537 static int warned = 0;
1538
1539 /* Leave this a warning for now so that it is possible to experiment
1540 with running this pass twice. In 3.6, we should either make this
1541 an error, or use separate dump files. */
1542 if (flag_branch_target_load_optimize
1543 && flag_branch_target_load_optimize2
1544 && !warned)
1545 {
1546 warning (0, "branch target register load optimization is not intended "
1547 "to be run twice");
1548
1549 warned = 1;
1550 }
1551
1552 branch_target_load_optimize (epilogue_completed);
1553 return 0;
1554 }
1555
1556 struct tree_opt_pass pass_branch_target_load_optimize2 =
1557 {
1558 "btl2", /* name */
1559 gate_handle_branch_target_load_optimize2, /* gate */
1560 rest_of_handle_branch_target_load_optimize2, /* execute */
1561 NULL, /* sub */
1562 NULL, /* next */
1563 0, /* static_pass_number */
1564 0, /* tv_id */
1565 0, /* properties_required */
1566 0, /* properties_provided */
1567 0, /* properties_destroyed */
1568 0, /* todo_flags_start */
1569 TODO_dump_func |
1570 TODO_ggc_collect, /* todo_flags_finish */
1571 'd' /* letter */
1572 };
1573