Update copyright years.
[gcc.git] / gcc / c-family / c-common.c
1 /* Subroutines shared by all languages that are variants of C.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #define GCC_C_COMMON_C
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "target.h"
26 #include "function.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "c-common.h"
30 #include "gimple-expr.h"
31 #include "tm_p.h"
32 #include "stringpool.h"
33 #include "cgraph.h"
34 #include "diagnostic.h"
35 #include "intl.h"
36 #include "stor-layout.h"
37 #include "calls.h"
38 #include "attribs.h"
39 #include "varasm.h"
40 #include "trans-mem.h"
41 #include "c-objc.h"
42 #include "common/common-target.h"
43 #include "langhooks.h"
44 #include "tree-inline.h"
45 #include "toplev.h"
46 #include "tree-iterator.h"
47 #include "opts.h"
48 #include "gimplify.h"
49 #include "substring-locations.h"
50 #include "spellcheck.h"
51
52 cpp_reader *parse_in; /* Declared in c-pragma.h. */
53
54 /* Mode used to build pointers (VOIDmode means ptr_mode). */
55
56 machine_mode c_default_pointer_mode = VOIDmode;
57
58 /* The following symbols are subsumed in the c_global_trees array, and
59 listed here individually for documentation purposes.
60
61 INTEGER_TYPE and REAL_TYPE nodes for the standard data types.
62
63 tree short_integer_type_node;
64 tree long_integer_type_node;
65 tree long_long_integer_type_node;
66
67 tree short_unsigned_type_node;
68 tree long_unsigned_type_node;
69 tree long_long_unsigned_type_node;
70
71 tree truthvalue_type_node;
72 tree truthvalue_false_node;
73 tree truthvalue_true_node;
74
75 tree ptrdiff_type_node;
76
77 tree unsigned_char_type_node;
78 tree signed_char_type_node;
79 tree wchar_type_node;
80
81 tree char16_type_node;
82 tree char32_type_node;
83
84 tree float_type_node;
85 tree double_type_node;
86 tree long_double_type_node;
87
88 tree complex_integer_type_node;
89 tree complex_float_type_node;
90 tree complex_double_type_node;
91 tree complex_long_double_type_node;
92
93 tree dfloat32_type_node;
94 tree dfloat64_type_node;
95 tree_dfloat128_type_node;
96
97 tree intQI_type_node;
98 tree intHI_type_node;
99 tree intSI_type_node;
100 tree intDI_type_node;
101 tree intTI_type_node;
102
103 tree unsigned_intQI_type_node;
104 tree unsigned_intHI_type_node;
105 tree unsigned_intSI_type_node;
106 tree unsigned_intDI_type_node;
107 tree unsigned_intTI_type_node;
108
109 tree widest_integer_literal_type_node;
110 tree widest_unsigned_literal_type_node;
111
112 Nodes for types `void *' and `const void *'.
113
114 tree ptr_type_node, const_ptr_type_node;
115
116 Nodes for types `char *' and `const char *'.
117
118 tree string_type_node, const_string_type_node;
119
120 Type `char[SOMENUMBER]'.
121 Used when an array of char is needed and the size is irrelevant.
122
123 tree char_array_type_node;
124
125 Type `wchar_t[SOMENUMBER]' or something like it.
126 Used when a wide string literal is created.
127
128 tree wchar_array_type_node;
129
130 Type `char16_t[SOMENUMBER]' or something like it.
131 Used when a UTF-16 string literal is created.
132
133 tree char16_array_type_node;
134
135 Type `char32_t[SOMENUMBER]' or something like it.
136 Used when a UTF-32 string literal is created.
137
138 tree char32_array_type_node;
139
140 Type `int ()' -- used for implicit declaration of functions.
141
142 tree default_function_type;
143
144 A VOID_TYPE node, packaged in a TREE_LIST.
145
146 tree void_list_node;
147
148 The lazily created VAR_DECLs for __FUNCTION__, __PRETTY_FUNCTION__,
149 and __func__. (C doesn't generate __FUNCTION__ and__PRETTY_FUNCTION__
150 VAR_DECLS, but C++ does.)
151
152 tree function_name_decl_node;
153 tree pretty_function_name_decl_node;
154 tree c99_function_name_decl_node;
155
156 Stack of nested function name VAR_DECLs.
157
158 tree saved_function_name_decls;
159
160 */
161
162 tree c_global_trees[CTI_MAX];
163 \f
164 /* Switches common to the C front ends. */
165
166 /* Nonzero means don't output line number information. */
167
168 char flag_no_line_commands;
169
170 /* Nonzero causes -E output not to be done, but directives such as
171 #define that have side effects are still obeyed. */
172
173 char flag_no_output;
174
175 /* Nonzero means dump macros in some fashion. */
176
177 char flag_dump_macros;
178
179 /* Nonzero means pass #include lines through to the output. */
180
181 char flag_dump_includes;
182
183 /* Nonzero means process PCH files while preprocessing. */
184
185 bool flag_pch_preprocess;
186
187 /* The file name to which we should write a precompiled header, or
188 NULL if no header will be written in this compile. */
189
190 const char *pch_file;
191
192 /* Nonzero if an ISO standard was selected. It rejects macros in the
193 user's namespace. */
194 int flag_iso;
195
196 /* C/ObjC language option variables. */
197
198
199 /* Nonzero means allow type mismatches in conditional expressions;
200 just make their values `void'. */
201
202 int flag_cond_mismatch;
203
204 /* Nonzero means enable C89 Amendment 1 features. */
205
206 int flag_isoc94;
207
208 /* Nonzero means use the ISO C99 (or C11) dialect of C. */
209
210 int flag_isoc99;
211
212 /* Nonzero means use the ISO C11 dialect of C. */
213
214 int flag_isoc11;
215
216 /* Nonzero means that we have builtin functions, and main is an int. */
217
218 int flag_hosted = 1;
219
220
221 /* ObjC language option variables. */
222
223
224 /* Tells the compiler that this is a special run. Do not perform any
225 compiling, instead we are to test some platform dependent features
226 and output a C header file with appropriate definitions. */
227
228 int print_struct_values;
229
230 /* Tells the compiler what is the constant string class for ObjC. */
231
232 const char *constant_string_class_name;
233
234
235 /* C++ language option variables. */
236
237 /* The reference version of the ABI for -Wabi. */
238
239 int warn_abi_version = -1;
240
241 /* Nonzero means generate separate instantiation control files and
242 juggle them at link time. */
243
244 int flag_use_repository;
245
246 /* The C++ dialect being used. Default set in c_common_post_options. */
247
248 enum cxx_dialect cxx_dialect = cxx_unset;
249
250 /* Maximum template instantiation depth. This limit exists to limit the
251 time it takes to notice excessively recursive template instantiations.
252
253 The default is lower than the 1024 recommended by the C++0x standard
254 because G++ runs out of stack before 1024 with highly recursive template
255 argument deduction substitution (g++.dg/cpp0x/enum11.C). */
256
257 int max_tinst_depth = 900;
258
259 /* The elements of `ridpointers' are identifier nodes for the reserved
260 type names and storage classes. It is indexed by a RID_... value. */
261 tree *ridpointers;
262
263 tree (*make_fname_decl) (location_t, tree, int);
264
265 /* Nonzero means don't warn about problems that occur when the code is
266 executed. */
267 int c_inhibit_evaluation_warnings;
268
269 /* Whether we are building a boolean conversion inside
270 convert_for_assignment, or some other late binary operation. If
271 build_binary_op is called for C (from code shared by C and C++) in
272 this case, then the operands have already been folded and the
273 result will not be folded again, so C_MAYBE_CONST_EXPR should not
274 be generated. */
275 bool in_late_binary_op;
276
277 /* Whether lexing has been completed, so subsequent preprocessor
278 errors should use the compiler's input_location. */
279 bool done_lexing = false;
280
281 /* Information about how a function name is generated. */
282 struct fname_var_t
283 {
284 tree *const decl; /* pointer to the VAR_DECL. */
285 const unsigned rid; /* RID number for the identifier. */
286 const int pretty; /* How pretty is it? */
287 };
288
289 /* The three ways of getting then name of the current function. */
290
291 const struct fname_var_t fname_vars[] =
292 {
293 /* C99 compliant __func__, must be first. */
294 {&c99_function_name_decl_node, RID_C99_FUNCTION_NAME, 0},
295 /* GCC __FUNCTION__ compliant. */
296 {&function_name_decl_node, RID_FUNCTION_NAME, 0},
297 /* GCC __PRETTY_FUNCTION__ compliant. */
298 {&pretty_function_name_decl_node, RID_PRETTY_FUNCTION_NAME, 1},
299 {NULL, 0, 0},
300 };
301
302 /* Global visibility options. */
303 struct visibility_flags visibility_options;
304
305 static tree check_case_value (location_t, tree);
306 static bool check_case_bounds (location_t, tree, tree, tree *, tree *,
307 bool *);
308
309
310 static void check_nonnull_arg (void *, tree, unsigned HOST_WIDE_INT);
311 static bool nonnull_check_p (tree, unsigned HOST_WIDE_INT);
312 static int resort_field_decl_cmp (const void *, const void *);
313
314 /* Reserved words. The third field is a mask: keywords are disabled
315 if they match the mask.
316
317 Masks for languages:
318 C --std=c89: D_C99 | D_CXXONLY | D_OBJC | D_CXX_OBJC
319 C --std=c99: D_CXXONLY | D_OBJC
320 ObjC is like C except that D_OBJC and D_CXX_OBJC are not set
321 C++ --std=c++98: D_CONLY | D_CXX11 | D_OBJC
322 C++ --std=c++11: D_CONLY | D_OBJC
323 ObjC++ is like C++ except that D_OBJC is not set
324
325 If -fno-asm is used, D_ASM is added to the mask. If
326 -fno-gnu-keywords is used, D_EXT is added. If -fno-asm and C in
327 C89 mode, D_EXT89 is added for both -fno-asm and -fno-gnu-keywords.
328 In C with -Wc++-compat, we warn if D_CXXWARN is set.
329
330 Note the complication of the D_CXX_OBJC keywords. These are
331 reserved words such as 'class'. In C++, 'class' is a reserved
332 word. In Objective-C++ it is too. In Objective-C, it is a
333 reserved word too, but only if it follows an '@' sign.
334 */
335 const struct c_common_resword c_common_reswords[] =
336 {
337 { "_Alignas", RID_ALIGNAS, D_CONLY },
338 { "_Alignof", RID_ALIGNOF, D_CONLY },
339 { "_Atomic", RID_ATOMIC, D_CONLY },
340 { "_Bool", RID_BOOL, D_CONLY },
341 { "_Complex", RID_COMPLEX, 0 },
342 { "_Cilk_spawn", RID_CILK_SPAWN, 0 },
343 { "_Cilk_sync", RID_CILK_SYNC, 0 },
344 { "_Cilk_for", RID_CILK_FOR, 0 },
345 { "_Imaginary", RID_IMAGINARY, D_CONLY },
346 { "_Float16", RID_FLOAT16, D_CONLY },
347 { "_Float32", RID_FLOAT32, D_CONLY },
348 { "_Float64", RID_FLOAT64, D_CONLY },
349 { "_Float128", RID_FLOAT128, D_CONLY },
350 { "_Float32x", RID_FLOAT32X, D_CONLY },
351 { "_Float64x", RID_FLOAT64X, D_CONLY },
352 { "_Float128x", RID_FLOAT128X, D_CONLY },
353 { "_Decimal32", RID_DFLOAT32, D_CONLY | D_EXT },
354 { "_Decimal64", RID_DFLOAT64, D_CONLY | D_EXT },
355 { "_Decimal128", RID_DFLOAT128, D_CONLY | D_EXT },
356 { "_Fract", RID_FRACT, D_CONLY | D_EXT },
357 { "_Accum", RID_ACCUM, D_CONLY | D_EXT },
358 { "_Sat", RID_SAT, D_CONLY | D_EXT },
359 { "_Static_assert", RID_STATIC_ASSERT, D_CONLY },
360 { "_Noreturn", RID_NORETURN, D_CONLY },
361 { "_Generic", RID_GENERIC, D_CONLY },
362 { "_Thread_local", RID_THREAD, D_CONLY },
363 { "__FUNCTION__", RID_FUNCTION_NAME, 0 },
364 { "__PRETTY_FUNCTION__", RID_PRETTY_FUNCTION_NAME, 0 },
365 { "__alignof", RID_ALIGNOF, 0 },
366 { "__alignof__", RID_ALIGNOF, 0 },
367 { "__asm", RID_ASM, 0 },
368 { "__asm__", RID_ASM, 0 },
369 { "__attribute", RID_ATTRIBUTE, 0 },
370 { "__attribute__", RID_ATTRIBUTE, 0 },
371 { "__auto_type", RID_AUTO_TYPE, D_CONLY },
372 { "__bases", RID_BASES, D_CXXONLY },
373 { "__builtin_addressof", RID_ADDRESSOF, D_CXXONLY },
374 { "__builtin_call_with_static_chain",
375 RID_BUILTIN_CALL_WITH_STATIC_CHAIN, D_CONLY },
376 { "__builtin_choose_expr", RID_CHOOSE_EXPR, D_CONLY },
377 { "__builtin_complex", RID_BUILTIN_COMPLEX, D_CONLY },
378 { "__builtin_launder", RID_BUILTIN_LAUNDER, D_CXXONLY },
379 { "__builtin_shuffle", RID_BUILTIN_SHUFFLE, 0 },
380 { "__builtin_offsetof", RID_OFFSETOF, 0 },
381 { "__builtin_types_compatible_p", RID_TYPES_COMPATIBLE_P, D_CONLY },
382 { "__builtin_va_arg", RID_VA_ARG, 0 },
383 { "__complex", RID_COMPLEX, 0 },
384 { "__complex__", RID_COMPLEX, 0 },
385 { "__const", RID_CONST, 0 },
386 { "__const__", RID_CONST, 0 },
387 { "__decltype", RID_DECLTYPE, D_CXXONLY },
388 { "__direct_bases", RID_DIRECT_BASES, D_CXXONLY },
389 { "__extension__", RID_EXTENSION, 0 },
390 { "__func__", RID_C99_FUNCTION_NAME, 0 },
391 { "__has_nothrow_assign", RID_HAS_NOTHROW_ASSIGN, D_CXXONLY },
392 { "__has_nothrow_constructor", RID_HAS_NOTHROW_CONSTRUCTOR, D_CXXONLY },
393 { "__has_nothrow_copy", RID_HAS_NOTHROW_COPY, D_CXXONLY },
394 { "__has_trivial_assign", RID_HAS_TRIVIAL_ASSIGN, D_CXXONLY },
395 { "__has_trivial_constructor", RID_HAS_TRIVIAL_CONSTRUCTOR, D_CXXONLY },
396 { "__has_trivial_copy", RID_HAS_TRIVIAL_COPY, D_CXXONLY },
397 { "__has_trivial_destructor", RID_HAS_TRIVIAL_DESTRUCTOR, D_CXXONLY },
398 { "__has_unique_object_representations", RID_HAS_UNIQUE_OBJ_REPRESENTATIONS,
399 D_CXXONLY },
400 { "__has_virtual_destructor", RID_HAS_VIRTUAL_DESTRUCTOR, D_CXXONLY },
401 { "__imag", RID_IMAGPART, 0 },
402 { "__imag__", RID_IMAGPART, 0 },
403 { "__inline", RID_INLINE, 0 },
404 { "__inline__", RID_INLINE, 0 },
405 { "__is_abstract", RID_IS_ABSTRACT, D_CXXONLY },
406 { "__is_base_of", RID_IS_BASE_OF, D_CXXONLY },
407 { "__is_class", RID_IS_CLASS, D_CXXONLY },
408 { "__is_empty", RID_IS_EMPTY, D_CXXONLY },
409 { "__is_enum", RID_IS_ENUM, D_CXXONLY },
410 { "__is_final", RID_IS_FINAL, D_CXXONLY },
411 { "__is_literal_type", RID_IS_LITERAL_TYPE, D_CXXONLY },
412 { "__is_pod", RID_IS_POD, D_CXXONLY },
413 { "__is_polymorphic", RID_IS_POLYMORPHIC, D_CXXONLY },
414 { "__is_same_as", RID_IS_SAME_AS, D_CXXONLY },
415 { "__is_standard_layout", RID_IS_STD_LAYOUT, D_CXXONLY },
416 { "__is_trivial", RID_IS_TRIVIAL, D_CXXONLY },
417 { "__is_trivially_assignable", RID_IS_TRIVIALLY_ASSIGNABLE, D_CXXONLY },
418 { "__is_trivially_constructible", RID_IS_TRIVIALLY_CONSTRUCTIBLE, D_CXXONLY },
419 { "__is_trivially_copyable", RID_IS_TRIVIALLY_COPYABLE, D_CXXONLY },
420 { "__is_union", RID_IS_UNION, D_CXXONLY },
421 { "__label__", RID_LABEL, 0 },
422 { "__null", RID_NULL, 0 },
423 { "__real", RID_REALPART, 0 },
424 { "__real__", RID_REALPART, 0 },
425 { "__restrict", RID_RESTRICT, 0 },
426 { "__restrict__", RID_RESTRICT, 0 },
427 { "__signed", RID_SIGNED, 0 },
428 { "__signed__", RID_SIGNED, 0 },
429 { "__thread", RID_THREAD, 0 },
430 { "__transaction_atomic", RID_TRANSACTION_ATOMIC, 0 },
431 { "__transaction_relaxed", RID_TRANSACTION_RELAXED, 0 },
432 { "__transaction_cancel", RID_TRANSACTION_CANCEL, 0 },
433 { "__typeof", RID_TYPEOF, 0 },
434 { "__typeof__", RID_TYPEOF, 0 },
435 { "__underlying_type", RID_UNDERLYING_TYPE, D_CXXONLY },
436 { "__volatile", RID_VOLATILE, 0 },
437 { "__volatile__", RID_VOLATILE, 0 },
438 { "__GIMPLE", RID_GIMPLE, D_CONLY },
439 { "__PHI", RID_PHI, D_CONLY },
440 { "alignas", RID_ALIGNAS, D_CXXONLY | D_CXX11 | D_CXXWARN },
441 { "alignof", RID_ALIGNOF, D_CXXONLY | D_CXX11 | D_CXXWARN },
442 { "asm", RID_ASM, D_ASM },
443 { "auto", RID_AUTO, 0 },
444 { "bool", RID_BOOL, D_CXXONLY | D_CXXWARN },
445 { "break", RID_BREAK, 0 },
446 { "case", RID_CASE, 0 },
447 { "catch", RID_CATCH, D_CXX_OBJC | D_CXXWARN },
448 { "char", RID_CHAR, 0 },
449 { "char16_t", RID_CHAR16, D_CXXONLY | D_CXX11 | D_CXXWARN },
450 { "char32_t", RID_CHAR32, D_CXXONLY | D_CXX11 | D_CXXWARN },
451 { "class", RID_CLASS, D_CXX_OBJC | D_CXXWARN },
452 { "const", RID_CONST, 0 },
453 { "constexpr", RID_CONSTEXPR, D_CXXONLY | D_CXX11 | D_CXXWARN },
454 { "const_cast", RID_CONSTCAST, D_CXXONLY | D_CXXWARN },
455 { "continue", RID_CONTINUE, 0 },
456 { "decltype", RID_DECLTYPE, D_CXXONLY | D_CXX11 | D_CXXWARN },
457 { "default", RID_DEFAULT, 0 },
458 { "delete", RID_DELETE, D_CXXONLY | D_CXXWARN },
459 { "do", RID_DO, 0 },
460 { "double", RID_DOUBLE, 0 },
461 { "dynamic_cast", RID_DYNCAST, D_CXXONLY | D_CXXWARN },
462 { "else", RID_ELSE, 0 },
463 { "enum", RID_ENUM, 0 },
464 { "explicit", RID_EXPLICIT, D_CXXONLY | D_CXXWARN },
465 { "export", RID_EXPORT, D_CXXONLY | D_CXXWARN },
466 { "extern", RID_EXTERN, 0 },
467 { "false", RID_FALSE, D_CXXONLY | D_CXXWARN },
468 { "float", RID_FLOAT, 0 },
469 { "for", RID_FOR, 0 },
470 { "friend", RID_FRIEND, D_CXXONLY | D_CXXWARN },
471 { "goto", RID_GOTO, 0 },
472 { "if", RID_IF, 0 },
473 { "inline", RID_INLINE, D_EXT89 },
474 { "int", RID_INT, 0 },
475 { "long", RID_LONG, 0 },
476 { "mutable", RID_MUTABLE, D_CXXONLY | D_CXXWARN },
477 { "namespace", RID_NAMESPACE, D_CXXONLY | D_CXXWARN },
478 { "new", RID_NEW, D_CXXONLY | D_CXXWARN },
479 { "noexcept", RID_NOEXCEPT, D_CXXONLY | D_CXX11 | D_CXXWARN },
480 { "nullptr", RID_NULLPTR, D_CXXONLY | D_CXX11 | D_CXXWARN },
481 { "operator", RID_OPERATOR, D_CXXONLY | D_CXXWARN },
482 { "private", RID_PRIVATE, D_CXX_OBJC | D_CXXWARN },
483 { "protected", RID_PROTECTED, D_CXX_OBJC | D_CXXWARN },
484 { "public", RID_PUBLIC, D_CXX_OBJC | D_CXXWARN },
485 { "register", RID_REGISTER, 0 },
486 { "reinterpret_cast", RID_REINTCAST, D_CXXONLY | D_CXXWARN },
487 { "restrict", RID_RESTRICT, D_CONLY | D_C99 },
488 { "return", RID_RETURN, 0 },
489 { "short", RID_SHORT, 0 },
490 { "signed", RID_SIGNED, 0 },
491 { "sizeof", RID_SIZEOF, 0 },
492 { "static", RID_STATIC, 0 },
493 { "static_assert", RID_STATIC_ASSERT, D_CXXONLY | D_CXX11 | D_CXXWARN },
494 { "static_cast", RID_STATCAST, D_CXXONLY | D_CXXWARN },
495 { "struct", RID_STRUCT, 0 },
496 { "switch", RID_SWITCH, 0 },
497 { "template", RID_TEMPLATE, D_CXXONLY | D_CXXWARN },
498 { "this", RID_THIS, D_CXXONLY | D_CXXWARN },
499 { "thread_local", RID_THREAD, D_CXXONLY | D_CXX11 | D_CXXWARN },
500 { "throw", RID_THROW, D_CXX_OBJC | D_CXXWARN },
501 { "true", RID_TRUE, D_CXXONLY | D_CXXWARN },
502 { "try", RID_TRY, D_CXX_OBJC | D_CXXWARN },
503 { "typedef", RID_TYPEDEF, 0 },
504 { "typename", RID_TYPENAME, D_CXXONLY | D_CXXWARN },
505 { "typeid", RID_TYPEID, D_CXXONLY | D_CXXWARN },
506 { "typeof", RID_TYPEOF, D_ASM | D_EXT },
507 { "union", RID_UNION, 0 },
508 { "unsigned", RID_UNSIGNED, 0 },
509 { "using", RID_USING, D_CXXONLY | D_CXXWARN },
510 { "virtual", RID_VIRTUAL, D_CXXONLY | D_CXXWARN },
511 { "void", RID_VOID, 0 },
512 { "volatile", RID_VOLATILE, 0 },
513 { "wchar_t", RID_WCHAR, D_CXXONLY },
514 { "while", RID_WHILE, 0 },
515
516 /* C++ transactional memory. */
517 { "synchronized", RID_SYNCHRONIZED, D_CXX_OBJC | D_TRANSMEM },
518 { "atomic_noexcept", RID_ATOMIC_NOEXCEPT, D_CXXONLY | D_TRANSMEM },
519 { "atomic_cancel", RID_ATOMIC_CANCEL, D_CXXONLY | D_TRANSMEM },
520 { "atomic_commit", RID_TRANSACTION_ATOMIC, D_CXXONLY | D_TRANSMEM },
521
522 /* Concepts-related keywords */
523 { "concept", RID_CONCEPT, D_CXX_CONCEPTS_FLAGS | D_CXXWARN },
524 { "requires", RID_REQUIRES, D_CXX_CONCEPTS_FLAGS | D_CXXWARN },
525
526 /* These Objective-C keywords are recognized only immediately after
527 an '@'. */
528 { "compatibility_alias", RID_AT_ALIAS, D_OBJC },
529 { "defs", RID_AT_DEFS, D_OBJC },
530 { "encode", RID_AT_ENCODE, D_OBJC },
531 { "end", RID_AT_END, D_OBJC },
532 { "implementation", RID_AT_IMPLEMENTATION, D_OBJC },
533 { "interface", RID_AT_INTERFACE, D_OBJC },
534 { "protocol", RID_AT_PROTOCOL, D_OBJC },
535 { "selector", RID_AT_SELECTOR, D_OBJC },
536 { "finally", RID_AT_FINALLY, D_OBJC },
537 { "optional", RID_AT_OPTIONAL, D_OBJC },
538 { "required", RID_AT_REQUIRED, D_OBJC },
539 { "property", RID_AT_PROPERTY, D_OBJC },
540 { "package", RID_AT_PACKAGE, D_OBJC },
541 { "synthesize", RID_AT_SYNTHESIZE, D_OBJC },
542 { "dynamic", RID_AT_DYNAMIC, D_OBJC },
543 /* These are recognized only in protocol-qualifier context
544 (see above) */
545 { "bycopy", RID_BYCOPY, D_OBJC },
546 { "byref", RID_BYREF, D_OBJC },
547 { "in", RID_IN, D_OBJC },
548 { "inout", RID_INOUT, D_OBJC },
549 { "oneway", RID_ONEWAY, D_OBJC },
550 { "out", RID_OUT, D_OBJC },
551 /* These are recognized inside a property attribute list */
552 { "assign", RID_ASSIGN, D_OBJC },
553 { "copy", RID_COPY, D_OBJC },
554 { "getter", RID_GETTER, D_OBJC },
555 { "nonatomic", RID_NONATOMIC, D_OBJC },
556 { "readonly", RID_READONLY, D_OBJC },
557 { "readwrite", RID_READWRITE, D_OBJC },
558 { "retain", RID_RETAIN, D_OBJC },
559 { "setter", RID_SETTER, D_OBJC },
560 };
561
562 const unsigned int num_c_common_reswords =
563 sizeof c_common_reswords / sizeof (struct c_common_resword);
564
565 /* Return identifier for address space AS. */
566
567 const char *
568 c_addr_space_name (addr_space_t as)
569 {
570 int rid = RID_FIRST_ADDR_SPACE + as;
571 gcc_assert (ridpointers [rid]);
572 return IDENTIFIER_POINTER (ridpointers [rid]);
573 }
574
575 /* Push current bindings for the function name VAR_DECLS. */
576
577 void
578 start_fname_decls (void)
579 {
580 unsigned ix;
581 tree saved = NULL_TREE;
582
583 for (ix = 0; fname_vars[ix].decl; ix++)
584 {
585 tree decl = *fname_vars[ix].decl;
586
587 if (decl)
588 {
589 saved = tree_cons (decl, build_int_cst (integer_type_node, ix),
590 saved);
591 *fname_vars[ix].decl = NULL_TREE;
592 }
593 }
594 if (saved || saved_function_name_decls)
595 /* Normally they'll have been NULL, so only push if we've got a
596 stack, or they are non-NULL. */
597 saved_function_name_decls = tree_cons (saved, NULL_TREE,
598 saved_function_name_decls);
599 }
600
601 /* Finish up the current bindings, adding them into the current function's
602 statement tree. This must be done _before_ finish_stmt_tree is called.
603 If there is no current function, we must be at file scope and no statements
604 are involved. Pop the previous bindings. */
605
606 void
607 finish_fname_decls (void)
608 {
609 unsigned ix;
610 tree stmts = NULL_TREE;
611 tree stack = saved_function_name_decls;
612
613 for (; stack && TREE_VALUE (stack); stack = TREE_CHAIN (stack))
614 append_to_statement_list (TREE_VALUE (stack), &stmts);
615
616 if (stmts)
617 {
618 tree *bodyp = &DECL_SAVED_TREE (current_function_decl);
619
620 if (TREE_CODE (*bodyp) == BIND_EXPR)
621 bodyp = &BIND_EXPR_BODY (*bodyp);
622
623 append_to_statement_list_force (*bodyp, &stmts);
624 *bodyp = stmts;
625 }
626
627 for (ix = 0; fname_vars[ix].decl; ix++)
628 *fname_vars[ix].decl = NULL_TREE;
629
630 if (stack)
631 {
632 /* We had saved values, restore them. */
633 tree saved;
634
635 for (saved = TREE_PURPOSE (stack); saved; saved = TREE_CHAIN (saved))
636 {
637 tree decl = TREE_PURPOSE (saved);
638 unsigned ix = TREE_INT_CST_LOW (TREE_VALUE (saved));
639
640 *fname_vars[ix].decl = decl;
641 }
642 stack = TREE_CHAIN (stack);
643 }
644 saved_function_name_decls = stack;
645 }
646
647 /* Return the text name of the current function, suitably prettified
648 by PRETTY_P. Return string must be freed by caller. */
649
650 const char *
651 fname_as_string (int pretty_p)
652 {
653 const char *name = "top level";
654 char *namep;
655 int vrb = 2, len;
656 cpp_string cstr = { 0, 0 }, strname;
657
658 if (!pretty_p)
659 {
660 name = "";
661 vrb = 0;
662 }
663
664 if (current_function_decl)
665 name = lang_hooks.decl_printable_name (current_function_decl, vrb);
666
667 len = strlen (name) + 3; /* Two for '"'s. One for NULL. */
668
669 namep = XNEWVEC (char, len);
670 snprintf (namep, len, "\"%s\"", name);
671 strname.text = (unsigned char *) namep;
672 strname.len = len - 1;
673
674 if (cpp_interpret_string (parse_in, &strname, 1, &cstr, CPP_STRING))
675 {
676 XDELETEVEC (namep);
677 return (const char *) cstr.text;
678 }
679
680 return namep;
681 }
682
683 /* Return the VAR_DECL for a const char array naming the current
684 function. If the VAR_DECL has not yet been created, create it
685 now. RID indicates how it should be formatted and IDENTIFIER_NODE
686 ID is its name (unfortunately C and C++ hold the RID values of
687 keywords in different places, so we can't derive RID from ID in
688 this language independent code. LOC is the location of the
689 function. */
690
691 tree
692 fname_decl (location_t loc, unsigned int rid, tree id)
693 {
694 unsigned ix;
695 tree decl = NULL_TREE;
696
697 for (ix = 0; fname_vars[ix].decl; ix++)
698 if (fname_vars[ix].rid == rid)
699 break;
700
701 decl = *fname_vars[ix].decl;
702 if (!decl)
703 {
704 /* If a tree is built here, it would normally have the lineno of
705 the current statement. Later this tree will be moved to the
706 beginning of the function and this line number will be wrong.
707 To avoid this problem set the lineno to 0 here; that prevents
708 it from appearing in the RTL. */
709 tree stmts;
710 location_t saved_location = input_location;
711 input_location = UNKNOWN_LOCATION;
712
713 stmts = push_stmt_list ();
714 decl = (*make_fname_decl) (loc, id, fname_vars[ix].pretty);
715 stmts = pop_stmt_list (stmts);
716 if (!IS_EMPTY_STMT (stmts))
717 saved_function_name_decls
718 = tree_cons (decl, stmts, saved_function_name_decls);
719 *fname_vars[ix].decl = decl;
720 input_location = saved_location;
721 }
722 if (!ix && !current_function_decl)
723 pedwarn (loc, 0, "%qD is not defined outside of function scope", decl);
724
725 return decl;
726 }
727
728 /* Given a STRING_CST, give it a suitable array-of-chars data type. */
729
730 tree
731 fix_string_type (tree value)
732 {
733 int length = TREE_STRING_LENGTH (value);
734 int nchars;
735 tree e_type, i_type, a_type;
736
737 /* Compute the number of elements, for the array type. */
738 if (TREE_TYPE (value) == char_array_type_node || !TREE_TYPE (value))
739 {
740 nchars = length;
741 e_type = char_type_node;
742 }
743 else if (TREE_TYPE (value) == char16_array_type_node)
744 {
745 nchars = length / (TYPE_PRECISION (char16_type_node) / BITS_PER_UNIT);
746 e_type = char16_type_node;
747 }
748 else if (TREE_TYPE (value) == char32_array_type_node)
749 {
750 nchars = length / (TYPE_PRECISION (char32_type_node) / BITS_PER_UNIT);
751 e_type = char32_type_node;
752 }
753 else
754 {
755 nchars = length / (TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT);
756 e_type = wchar_type_node;
757 }
758
759 /* C89 2.2.4.1, C99 5.2.4.1 (Translation limits). The analogous
760 limit in C++98 Annex B is very large (65536) and is not normative,
761 so we do not diagnose it (warn_overlength_strings is forced off
762 in c_common_post_options). */
763 if (warn_overlength_strings)
764 {
765 const int nchars_max = flag_isoc99 ? 4095 : 509;
766 const int relevant_std = flag_isoc99 ? 99 : 90;
767 if (nchars - 1 > nchars_max)
768 /* Translators: The %d after 'ISO C' will be 90 or 99. Do not
769 separate the %d from the 'C'. 'ISO' should not be
770 translated, but it may be moved after 'C%d' in languages
771 where modifiers follow nouns. */
772 pedwarn (input_location, OPT_Woverlength_strings,
773 "string length %qd is greater than the length %qd "
774 "ISO C%d compilers are required to support",
775 nchars - 1, nchars_max, relevant_std);
776 }
777
778 /* Create the array type for the string constant. The ISO C++
779 standard says that a string literal has type `const char[N]' or
780 `const wchar_t[N]'. We use the same logic when invoked as a C
781 front-end with -Wwrite-strings.
782 ??? We should change the type of an expression depending on the
783 state of a warning flag. We should just be warning -- see how
784 this is handled in the C++ front-end for the deprecated implicit
785 conversion from string literals to `char*' or `wchar_t*'.
786
787 The C++ front end relies on TYPE_MAIN_VARIANT of a cv-qualified
788 array type being the unqualified version of that type.
789 Therefore, if we are constructing an array of const char, we must
790 construct the matching unqualified array type first. The C front
791 end does not require this, but it does no harm, so we do it
792 unconditionally. */
793 i_type = build_index_type (size_int (nchars - 1));
794 a_type = build_array_type (e_type, i_type);
795 if (c_dialect_cxx() || warn_write_strings)
796 a_type = c_build_qualified_type (a_type, TYPE_QUAL_CONST);
797
798 TREE_TYPE (value) = a_type;
799 TREE_CONSTANT (value) = 1;
800 TREE_READONLY (value) = 1;
801 TREE_STATIC (value) = 1;
802 return value;
803 }
804
805 /* Given a string of type STRING_TYPE, determine what kind of string
806 token would give an equivalent execution encoding: CPP_STRING,
807 CPP_STRING16, or CPP_STRING32. Return CPP_OTHER in case of error.
808 This may not be exactly the string token type that initially created
809 the string, since CPP_WSTRING is indistinguishable from the 16/32 bit
810 string type at this point.
811
812 This effectively reverses part of the logic in lex_string and
813 fix_string_type. */
814
815 static enum cpp_ttype
816 get_cpp_ttype_from_string_type (tree string_type)
817 {
818 gcc_assert (string_type);
819 if (TREE_CODE (string_type) == POINTER_TYPE)
820 string_type = TREE_TYPE (string_type);
821
822 if (TREE_CODE (string_type) != ARRAY_TYPE)
823 return CPP_OTHER;
824
825 tree element_type = TREE_TYPE (string_type);
826 if (TREE_CODE (element_type) != INTEGER_TYPE)
827 return CPP_OTHER;
828
829 int bits_per_character = TYPE_PRECISION (element_type);
830 switch (bits_per_character)
831 {
832 case 8:
833 return CPP_STRING; /* It could have also been CPP_UTF8STRING. */
834 case 16:
835 return CPP_STRING16;
836 case 32:
837 return CPP_STRING32;
838 }
839
840 return CPP_OTHER;
841 }
842
843 /* The global record of string concatentations, for use in
844 extracting locations within string literals. */
845
846 GTY(()) string_concat_db *g_string_concat_db;
847
848 /* Implementation of LANG_HOOKS_GET_SUBSTRING_LOCATION. */
849
850 const char *
851 c_get_substring_location (const substring_loc &substr_loc,
852 location_t *out_loc)
853 {
854 enum cpp_ttype tok_type
855 = get_cpp_ttype_from_string_type (substr_loc.get_string_type ());
856 if (tok_type == CPP_OTHER)
857 return "unrecognized string type";
858
859 return get_source_location_for_substring (parse_in, g_string_concat_db,
860 substr_loc.get_fmt_string_loc (),
861 tok_type,
862 substr_loc.get_caret_idx (),
863 substr_loc.get_start_idx (),
864 substr_loc.get_end_idx (),
865 out_loc);
866 }
867
868 \f
869 /* Fold X for consideration by one of the warning functions when checking
870 whether an expression has a constant value. */
871
872 tree
873 fold_for_warn (tree x)
874 {
875 if (c_dialect_cxx ())
876 return c_fully_fold (x, /*for_init*/false, /*maybe_constp*/NULL);
877 else
878 /* The C front-end has already folded X appropriately. */
879 return x;
880 }
881
882 /* Return true iff T is a boolean promoted to int. */
883
884 bool
885 bool_promoted_to_int_p (tree t)
886 {
887 return (CONVERT_EXPR_P (t)
888 && TREE_TYPE (t) == integer_type_node
889 && TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == BOOLEAN_TYPE);
890 }
891
892 /* vector_targets_convertible_p is used for vector pointer types. The
893 callers perform various checks that the qualifiers are satisfactory,
894 while OTOH vector_targets_convertible_p ignores the number of elements
895 in the vectors. That's fine with vector pointers as we can consider,
896 say, a vector of 8 elements as two consecutive vectors of 4 elements,
897 and that does not require and conversion of the pointer values.
898 In contrast, vector_types_convertible_p and
899 vector_types_compatible_elements_p are used for vector value types. */
900 /* True if pointers to distinct types T1 and T2 can be converted to
901 each other without an explicit cast. Only returns true for opaque
902 vector types. */
903 bool
904 vector_targets_convertible_p (const_tree t1, const_tree t2)
905 {
906 if (VECTOR_TYPE_P (t1) && VECTOR_TYPE_P (t2)
907 && (TYPE_VECTOR_OPAQUE (t1) || TYPE_VECTOR_OPAQUE (t2))
908 && tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2)))
909 return true;
910
911 return false;
912 }
913
914 /* vector_types_convertible_p is used for vector value types.
915 It could in principle call vector_targets_convertible_p as a subroutine,
916 but then the check for vector type would be duplicated with its callers,
917 and also the purpose of vector_targets_convertible_p would become
918 muddled.
919 Where vector_types_convertible_p returns true, a conversion might still be
920 needed to make the types match.
921 In contrast, vector_targets_convertible_p is used for vector pointer
922 values, and vector_types_compatible_elements_p is used specifically
923 in the context for binary operators, as a check if use is possible without
924 conversion. */
925 /* True if vector types T1 and T2 can be converted to each other
926 without an explicit cast. If EMIT_LAX_NOTE is true, and T1 and T2
927 can only be converted with -flax-vector-conversions yet that is not
928 in effect, emit a note telling the user about that option if such
929 a note has not previously been emitted. */
930 bool
931 vector_types_convertible_p (const_tree t1, const_tree t2, bool emit_lax_note)
932 {
933 static bool emitted_lax_note = false;
934 bool convertible_lax;
935
936 if ((TYPE_VECTOR_OPAQUE (t1) || TYPE_VECTOR_OPAQUE (t2))
937 && tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2)))
938 return true;
939
940 convertible_lax =
941 (tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2))
942 && (TREE_CODE (TREE_TYPE (t1)) != REAL_TYPE ||
943 TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2))
944 && (INTEGRAL_TYPE_P (TREE_TYPE (t1))
945 == INTEGRAL_TYPE_P (TREE_TYPE (t2))));
946
947 if (!convertible_lax || flag_lax_vector_conversions)
948 return convertible_lax;
949
950 if (TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
951 && lang_hooks.types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
952 return true;
953
954 if (emit_lax_note && !emitted_lax_note)
955 {
956 emitted_lax_note = true;
957 inform (input_location, "use -flax-vector-conversions to permit "
958 "conversions between vectors with differing "
959 "element types or numbers of subparts");
960 }
961
962 return false;
963 }
964
965 /* Build a VEC_PERM_EXPR if V0, V1 and MASK are not error_mark_nodes
966 and have vector types, V0 has the same type as V1, and the number of
967 elements of V0, V1, MASK is the same.
968
969 In case V1 is a NULL_TREE it is assumed that __builtin_shuffle was
970 called with two arguments. In this case implementation passes the
971 first argument twice in order to share the same tree code. This fact
972 could enable the mask-values being twice the vector length. This is
973 an implementation accident and this semantics is not guaranteed to
974 the user. */
975 tree
976 c_build_vec_perm_expr (location_t loc, tree v0, tree v1, tree mask,
977 bool complain)
978 {
979 tree ret;
980 bool wrap = true;
981 bool maybe_const = false;
982 bool two_arguments = false;
983
984 if (v1 == NULL_TREE)
985 {
986 two_arguments = true;
987 v1 = v0;
988 }
989
990 if (v0 == error_mark_node || v1 == error_mark_node
991 || mask == error_mark_node)
992 return error_mark_node;
993
994 if (!VECTOR_INTEGER_TYPE_P (TREE_TYPE (mask)))
995 {
996 if (complain)
997 error_at (loc, "__builtin_shuffle last argument must "
998 "be an integer vector");
999 return error_mark_node;
1000 }
1001
1002 if (!VECTOR_TYPE_P (TREE_TYPE (v0))
1003 || !VECTOR_TYPE_P (TREE_TYPE (v1)))
1004 {
1005 if (complain)
1006 error_at (loc, "__builtin_shuffle arguments must be vectors");
1007 return error_mark_node;
1008 }
1009
1010 if (TYPE_MAIN_VARIANT (TREE_TYPE (v0)) != TYPE_MAIN_VARIANT (TREE_TYPE (v1)))
1011 {
1012 if (complain)
1013 error_at (loc, "__builtin_shuffle argument vectors must be of "
1014 "the same type");
1015 return error_mark_node;
1016 }
1017
1018 if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (v0))
1019 != TYPE_VECTOR_SUBPARTS (TREE_TYPE (mask))
1020 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (v1))
1021 != TYPE_VECTOR_SUBPARTS (TREE_TYPE (mask)))
1022 {
1023 if (complain)
1024 error_at (loc, "__builtin_shuffle number of elements of the "
1025 "argument vector(s) and the mask vector should "
1026 "be the same");
1027 return error_mark_node;
1028 }
1029
1030 if (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (v0))))
1031 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (mask)))))
1032 {
1033 if (complain)
1034 error_at (loc, "__builtin_shuffle argument vector(s) inner type "
1035 "must have the same size as inner type of the mask");
1036 return error_mark_node;
1037 }
1038
1039 if (!c_dialect_cxx ())
1040 {
1041 /* Avoid C_MAYBE_CONST_EXPRs inside VEC_PERM_EXPR. */
1042 v0 = c_fully_fold (v0, false, &maybe_const);
1043 wrap &= maybe_const;
1044
1045 if (two_arguments)
1046 v1 = v0 = save_expr (v0);
1047 else
1048 {
1049 v1 = c_fully_fold (v1, false, &maybe_const);
1050 wrap &= maybe_const;
1051 }
1052
1053 mask = c_fully_fold (mask, false, &maybe_const);
1054 wrap &= maybe_const;
1055 }
1056 else if (two_arguments)
1057 v1 = v0 = save_expr (v0);
1058
1059 ret = build3_loc (loc, VEC_PERM_EXPR, TREE_TYPE (v0), v0, v1, mask);
1060
1061 if (!c_dialect_cxx () && !wrap)
1062 ret = c_wrap_maybe_const (ret, true);
1063
1064 return ret;
1065 }
1066
1067 /* Like tree.c:get_narrower, but retain conversion from C++0x scoped enum
1068 to integral type. */
1069
1070 tree
1071 c_common_get_narrower (tree op, int *unsignedp_ptr)
1072 {
1073 op = get_narrower (op, unsignedp_ptr);
1074
1075 if (TREE_CODE (TREE_TYPE (op)) == ENUMERAL_TYPE
1076 && ENUM_IS_SCOPED (TREE_TYPE (op)))
1077 {
1078 /* C++0x scoped enumerations don't implicitly convert to integral
1079 type; if we stripped an explicit conversion to a larger type we
1080 need to replace it so common_type will still work. */
1081 tree type = c_common_type_for_size (TYPE_PRECISION (TREE_TYPE (op)),
1082 TYPE_UNSIGNED (TREE_TYPE (op)));
1083 op = fold_convert (type, op);
1084 }
1085 return op;
1086 }
1087
1088 /* This is a helper function of build_binary_op.
1089
1090 For certain operations if both args were extended from the same
1091 smaller type, do the arithmetic in that type and then extend.
1092
1093 BITWISE indicates a bitwise operation.
1094 For them, this optimization is safe only if
1095 both args are zero-extended or both are sign-extended.
1096 Otherwise, we might change the result.
1097 Eg, (short)-1 | (unsigned short)-1 is (int)-1
1098 but calculated in (unsigned short) it would be (unsigned short)-1.
1099 */
1100 tree
1101 shorten_binary_op (tree result_type, tree op0, tree op1, bool bitwise)
1102 {
1103 int unsigned0, unsigned1;
1104 tree arg0, arg1;
1105 int uns;
1106 tree type;
1107
1108 /* Cast OP0 and OP1 to RESULT_TYPE. Doing so prevents
1109 excessive narrowing when we call get_narrower below. For
1110 example, suppose that OP0 is of unsigned int extended
1111 from signed char and that RESULT_TYPE is long long int.
1112 If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
1113 like
1114
1115 (long long int) (unsigned int) signed_char
1116
1117 which get_narrower would narrow down to
1118
1119 (unsigned int) signed char
1120
1121 If we do not cast OP0 first, get_narrower would return
1122 signed_char, which is inconsistent with the case of the
1123 explicit cast. */
1124 op0 = convert (result_type, op0);
1125 op1 = convert (result_type, op1);
1126
1127 arg0 = c_common_get_narrower (op0, &unsigned0);
1128 arg1 = c_common_get_narrower (op1, &unsigned1);
1129
1130 /* UNS is 1 if the operation to be done is an unsigned one. */
1131 uns = TYPE_UNSIGNED (result_type);
1132
1133 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
1134 but it *requires* conversion to FINAL_TYPE. */
1135
1136 if ((TYPE_PRECISION (TREE_TYPE (op0))
1137 == TYPE_PRECISION (TREE_TYPE (arg0)))
1138 && TREE_TYPE (op0) != result_type)
1139 unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
1140 if ((TYPE_PRECISION (TREE_TYPE (op1))
1141 == TYPE_PRECISION (TREE_TYPE (arg1)))
1142 && TREE_TYPE (op1) != result_type)
1143 unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
1144
1145 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
1146
1147 /* For bitwise operations, signedness of nominal type
1148 does not matter. Consider only how operands were extended. */
1149 if (bitwise)
1150 uns = unsigned0;
1151
1152 /* Note that in all three cases below we refrain from optimizing
1153 an unsigned operation on sign-extended args.
1154 That would not be valid. */
1155
1156 /* Both args variable: if both extended in same way
1157 from same width, do it in that width.
1158 Do it unsigned if args were zero-extended. */
1159 if ((TYPE_PRECISION (TREE_TYPE (arg0))
1160 < TYPE_PRECISION (result_type))
1161 && (TYPE_PRECISION (TREE_TYPE (arg1))
1162 == TYPE_PRECISION (TREE_TYPE (arg0)))
1163 && unsigned0 == unsigned1
1164 && (unsigned0 || !uns))
1165 return c_common_signed_or_unsigned_type
1166 (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
1167
1168 else if (TREE_CODE (arg0) == INTEGER_CST
1169 && (unsigned1 || !uns)
1170 && (TYPE_PRECISION (TREE_TYPE (arg1))
1171 < TYPE_PRECISION (result_type))
1172 && (type
1173 = c_common_signed_or_unsigned_type (unsigned1,
1174 TREE_TYPE (arg1)))
1175 && !POINTER_TYPE_P (type)
1176 && int_fits_type_p (arg0, type))
1177 return type;
1178
1179 else if (TREE_CODE (arg1) == INTEGER_CST
1180 && (unsigned0 || !uns)
1181 && (TYPE_PRECISION (TREE_TYPE (arg0))
1182 < TYPE_PRECISION (result_type))
1183 && (type
1184 = c_common_signed_or_unsigned_type (unsigned0,
1185 TREE_TYPE (arg0)))
1186 && !POINTER_TYPE_P (type)
1187 && int_fits_type_p (arg1, type))
1188 return type;
1189
1190 return result_type;
1191 }
1192
1193 /* Returns true iff any integer value of type FROM_TYPE can be represented as
1194 real of type TO_TYPE. This is a helper function for unsafe_conversion_p. */
1195
1196 static bool
1197 int_safely_convertible_to_real_p (const_tree from_type, const_tree to_type)
1198 {
1199 tree type_low_bound = TYPE_MIN_VALUE (from_type);
1200 tree type_high_bound = TYPE_MAX_VALUE (from_type);
1201 REAL_VALUE_TYPE real_low_bound =
1202 real_value_from_int_cst (0, type_low_bound);
1203 REAL_VALUE_TYPE real_high_bound =
1204 real_value_from_int_cst (0, type_high_bound);
1205
1206 return exact_real_truncate (TYPE_MODE (to_type), &real_low_bound)
1207 && exact_real_truncate (TYPE_MODE (to_type), &real_high_bound);
1208 }
1209
1210 /* Checks if expression EXPR of complex/real/integer type cannot be converted
1211 to the complex/real/integer type TYPE. Function returns non-zero when:
1212 * EXPR is a constant which cannot be exactly converted to TYPE.
1213 * EXPR is not a constant and size of EXPR's type > than size of TYPE,
1214 for EXPR type and TYPE being both integers or both real, or both
1215 complex.
1216 * EXPR is not a constant of complex type and TYPE is a real or
1217 an integer.
1218 * EXPR is not a constant of real type and TYPE is an integer.
1219 * EXPR is not a constant of integer type which cannot be
1220 exactly converted to real type.
1221
1222 Function allows conversions between types of different signedness and
1223 can return SAFE_CONVERSION (zero) in that case. Function can produce
1224 signedness warnings if PRODUCE_WARNS is true.
1225
1226 Function allows conversions from complex constants to non-complex types,
1227 provided that imaginary part is zero and real part can be safely converted
1228 to TYPE. */
1229
1230 enum conversion_safety
1231 unsafe_conversion_p (location_t loc, tree type, tree expr, bool produce_warns)
1232 {
1233 enum conversion_safety give_warning = SAFE_CONVERSION; /* is 0 or false */
1234 tree expr_type = TREE_TYPE (expr);
1235 loc = expansion_point_location_if_in_system_header (loc);
1236
1237 if (TREE_CODE (expr) == REAL_CST || TREE_CODE (expr) == INTEGER_CST)
1238 {
1239 /* If type is complex, we are interested in compatibility with
1240 underlying type. */
1241 if (TREE_CODE (type) == COMPLEX_TYPE)
1242 type = TREE_TYPE (type);
1243
1244 /* Warn for real constant that is not an exact integer converted
1245 to integer type. */
1246 if (TREE_CODE (expr_type) == REAL_TYPE
1247 && TREE_CODE (type) == INTEGER_TYPE)
1248 {
1249 if (!real_isinteger (TREE_REAL_CST_PTR (expr), TYPE_MODE (expr_type)))
1250 give_warning = UNSAFE_REAL;
1251 }
1252 /* Warn for an integer constant that does not fit into integer type. */
1253 else if (TREE_CODE (expr_type) == INTEGER_TYPE
1254 && TREE_CODE (type) == INTEGER_TYPE
1255 && !int_fits_type_p (expr, type))
1256 {
1257 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (expr_type)
1258 && tree_int_cst_sgn (expr) < 0)
1259 {
1260 if (produce_warns)
1261 warning_at (loc, OPT_Wsign_conversion, "negative integer"
1262 " implicitly converted to unsigned type");
1263 }
1264 else if (!TYPE_UNSIGNED (type) && TYPE_UNSIGNED (expr_type))
1265 {
1266 if (produce_warns)
1267 warning_at (loc, OPT_Wsign_conversion, "conversion of unsigned"
1268 " constant value to negative integer");
1269 }
1270 else
1271 give_warning = UNSAFE_OTHER;
1272 }
1273 else if (TREE_CODE (type) == REAL_TYPE)
1274 {
1275 /* Warn for an integer constant that does not fit into real type. */
1276 if (TREE_CODE (expr_type) == INTEGER_TYPE)
1277 {
1278 REAL_VALUE_TYPE a = real_value_from_int_cst (0, expr);
1279 if (!exact_real_truncate (TYPE_MODE (type), &a))
1280 give_warning = UNSAFE_REAL;
1281 }
1282 /* Warn for a real constant that does not fit into a smaller
1283 real type. */
1284 else if (TREE_CODE (expr_type) == REAL_TYPE
1285 && TYPE_PRECISION (type) < TYPE_PRECISION (expr_type))
1286 {
1287 REAL_VALUE_TYPE a = TREE_REAL_CST (expr);
1288 if (!exact_real_truncate (TYPE_MODE (type), &a))
1289 give_warning = UNSAFE_REAL;
1290 }
1291 }
1292 }
1293
1294 else if (TREE_CODE (expr) == COMPLEX_CST)
1295 {
1296 tree imag_part = TREE_IMAGPART (expr);
1297 /* Conversion from complex constant with zero imaginary part,
1298 perform check for conversion of real part. */
1299 if ((TREE_CODE (imag_part) == REAL_CST
1300 && real_zerop (imag_part))
1301 || (TREE_CODE (imag_part) == INTEGER_CST
1302 && integer_zerop (imag_part)))
1303 /* Note: in this branch we use recursive call to unsafe_conversion_p
1304 with different type of EXPR, but it is still safe, because when EXPR
1305 is a constant, it's type is not used in text of generated warnings
1306 (otherwise they could sound misleading). */
1307 return unsafe_conversion_p (loc, type, TREE_REALPART (expr),
1308 produce_warns);
1309 /* Conversion from complex constant with non-zero imaginary part. */
1310 else
1311 {
1312 /* Conversion to complex type.
1313 Perform checks for both real and imaginary parts. */
1314 if (TREE_CODE (type) == COMPLEX_TYPE)
1315 {
1316 /* Unfortunately, produce_warns must be false in two subsequent
1317 calls of unsafe_conversion_p, because otherwise we could
1318 produce strange "double" warnings, if both real and imaginary
1319 parts have conversion problems related to signedness.
1320
1321 For example:
1322 int32_t _Complex a = 0x80000000 + 0x80000000i;
1323
1324 Possible solution: add a separate function for checking
1325 constants and combine result of two calls appropriately. */
1326 enum conversion_safety re_safety =
1327 unsafe_conversion_p (loc, type, TREE_REALPART (expr), false);
1328 enum conversion_safety im_safety =
1329 unsafe_conversion_p (loc, type, imag_part, false);
1330
1331 /* Merge the results into appropriate single warning. */
1332
1333 /* Note: this case includes SAFE_CONVERSION, i.e. success. */
1334 if (re_safety == im_safety)
1335 give_warning = re_safety;
1336 else if (!re_safety && im_safety)
1337 give_warning = im_safety;
1338 else if (re_safety && !im_safety)
1339 give_warning = re_safety;
1340 else
1341 give_warning = UNSAFE_OTHER;
1342 }
1343 /* Warn about conversion from complex to real or integer type. */
1344 else
1345 give_warning = UNSAFE_IMAGINARY;
1346 }
1347 }
1348
1349 /* Checks for remaining case: EXPR is not constant. */
1350 else
1351 {
1352 /* Warn for real types converted to integer types. */
1353 if (TREE_CODE (expr_type) == REAL_TYPE
1354 && TREE_CODE (type) == INTEGER_TYPE)
1355 give_warning = UNSAFE_REAL;
1356
1357 else if (TREE_CODE (expr_type) == INTEGER_TYPE
1358 && TREE_CODE (type) == INTEGER_TYPE)
1359 {
1360 /* Don't warn about unsigned char y = 0xff, x = (int) y; */
1361 expr = get_unwidened (expr, 0);
1362 expr_type = TREE_TYPE (expr);
1363
1364 /* Don't warn for short y; short x = ((int)y & 0xff); */
1365 if (TREE_CODE (expr) == BIT_AND_EXPR
1366 || TREE_CODE (expr) == BIT_IOR_EXPR
1367 || TREE_CODE (expr) == BIT_XOR_EXPR)
1368 {
1369 /* If both args were extended from a shortest type,
1370 use that type if that is safe. */
1371 expr_type = shorten_binary_op (expr_type,
1372 TREE_OPERAND (expr, 0),
1373 TREE_OPERAND (expr, 1),
1374 /* bitwise */1);
1375
1376 if (TREE_CODE (expr) == BIT_AND_EXPR)
1377 {
1378 tree op0 = TREE_OPERAND (expr, 0);
1379 tree op1 = TREE_OPERAND (expr, 1);
1380 bool unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
1381 bool unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
1382
1383 /* If one of the operands is a non-negative constant
1384 that fits in the target type, then the type of the
1385 other operand does not matter. */
1386 if ((TREE_CODE (op0) == INTEGER_CST
1387 && int_fits_type_p (op0, c_common_signed_type (type))
1388 && int_fits_type_p (op0, c_common_unsigned_type (type)))
1389 || (TREE_CODE (op1) == INTEGER_CST
1390 && int_fits_type_p (op1, c_common_signed_type (type))
1391 && int_fits_type_p (op1,
1392 c_common_unsigned_type (type))))
1393 return SAFE_CONVERSION;
1394 /* If constant is unsigned and fits in the target
1395 type, then the result will also fit. */
1396 else if ((TREE_CODE (op0) == INTEGER_CST
1397 && unsigned0
1398 && int_fits_type_p (op0, type))
1399 || (TREE_CODE (op1) == INTEGER_CST
1400 && unsigned1
1401 && int_fits_type_p (op1, type)))
1402 return SAFE_CONVERSION;
1403 }
1404 }
1405 /* Warn for integer types converted to smaller integer types. */
1406 if (TYPE_PRECISION (type) < TYPE_PRECISION (expr_type))
1407 give_warning = UNSAFE_OTHER;
1408
1409 /* When they are the same width but different signedness,
1410 then the value may change. */
1411 else if (((TYPE_PRECISION (type) == TYPE_PRECISION (expr_type)
1412 && TYPE_UNSIGNED (expr_type) != TYPE_UNSIGNED (type))
1413 /* Even when converted to a bigger type, if the type is
1414 unsigned but expr is signed, then negative values
1415 will be changed. */
1416 || (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (expr_type)))
1417 && produce_warns)
1418 warning_at (loc, OPT_Wsign_conversion, "conversion to %qT from %qT "
1419 "may change the sign of the result",
1420 type, expr_type);
1421 }
1422
1423 /* Warn for integer types converted to real types if and only if
1424 all the range of values of the integer type cannot be
1425 represented by the real type. */
1426 else if (TREE_CODE (expr_type) == INTEGER_TYPE
1427 && TREE_CODE (type) == REAL_TYPE)
1428 {
1429 /* Don't warn about char y = 0xff; float x = (int) y; */
1430 expr = get_unwidened (expr, 0);
1431 expr_type = TREE_TYPE (expr);
1432
1433 if (!int_safely_convertible_to_real_p (expr_type, type))
1434 give_warning = UNSAFE_OTHER;
1435 }
1436
1437 /* Warn for real types converted to smaller real types. */
1438 else if (TREE_CODE (expr_type) == REAL_TYPE
1439 && TREE_CODE (type) == REAL_TYPE
1440 && TYPE_PRECISION (type) < TYPE_PRECISION (expr_type))
1441 give_warning = UNSAFE_REAL;
1442
1443 /* Check conversion between two complex types. */
1444 else if (TREE_CODE (expr_type) == COMPLEX_TYPE
1445 && TREE_CODE (type) == COMPLEX_TYPE)
1446 {
1447 /* Extract underlying types (i.e., type of real and imaginary
1448 parts) of expr_type and type. */
1449 tree from_type = TREE_TYPE (expr_type);
1450 tree to_type = TREE_TYPE (type);
1451
1452 /* Warn for real types converted to integer types. */
1453 if (TREE_CODE (from_type) == REAL_TYPE
1454 && TREE_CODE (to_type) == INTEGER_TYPE)
1455 give_warning = UNSAFE_REAL;
1456
1457 /* Warn for real types converted to smaller real types. */
1458 else if (TREE_CODE (from_type) == REAL_TYPE
1459 && TREE_CODE (to_type) == REAL_TYPE
1460 && TYPE_PRECISION (to_type) < TYPE_PRECISION (from_type))
1461 give_warning = UNSAFE_REAL;
1462
1463 /* Check conversion for complex integer types. Here implementation
1464 is simpler than for real-domain integers because it does not
1465 involve sophisticated cases, such as bitmasks, casts, etc. */
1466 else if (TREE_CODE (from_type) == INTEGER_TYPE
1467 && TREE_CODE (to_type) == INTEGER_TYPE)
1468 {
1469 /* Warn for integer types converted to smaller integer types. */
1470 if (TYPE_PRECISION (to_type) < TYPE_PRECISION (from_type))
1471 give_warning = UNSAFE_OTHER;
1472
1473 /* Check for different signedness, see case for real-domain
1474 integers (above) for a more detailed comment. */
1475 else if (((TYPE_PRECISION (to_type) == TYPE_PRECISION (from_type)
1476 && TYPE_UNSIGNED (to_type) != TYPE_UNSIGNED (from_type))
1477 || (TYPE_UNSIGNED (to_type) && !TYPE_UNSIGNED (from_type)))
1478 && produce_warns)
1479 warning_at (loc, OPT_Wsign_conversion,
1480 "conversion to %qT from %qT "
1481 "may change the sign of the result",
1482 type, expr_type);
1483 }
1484 else if (TREE_CODE (from_type) == INTEGER_TYPE
1485 && TREE_CODE (to_type) == REAL_TYPE
1486 && !int_safely_convertible_to_real_p (from_type, to_type))
1487 give_warning = UNSAFE_OTHER;
1488 }
1489
1490 /* Warn for complex types converted to real or integer types. */
1491 else if (TREE_CODE (expr_type) == COMPLEX_TYPE
1492 && TREE_CODE (type) != COMPLEX_TYPE)
1493 give_warning = UNSAFE_IMAGINARY;
1494 }
1495
1496 return give_warning;
1497 }
1498
1499
1500 /* Convert EXPR to TYPE, warning about conversion problems with constants.
1501 Invoke this function on every expression that is converted implicitly,
1502 i.e. because of language rules and not because of an explicit cast. */
1503
1504 tree
1505 convert_and_check (location_t loc, tree type, tree expr)
1506 {
1507 tree result;
1508 tree expr_for_warning;
1509
1510 /* Convert from a value with possible excess precision rather than
1511 via the semantic type, but do not warn about values not fitting
1512 exactly in the semantic type. */
1513 if (TREE_CODE (expr) == EXCESS_PRECISION_EXPR)
1514 {
1515 tree orig_type = TREE_TYPE (expr);
1516 expr = TREE_OPERAND (expr, 0);
1517 expr_for_warning = convert (orig_type, expr);
1518 if (orig_type == type)
1519 return expr_for_warning;
1520 }
1521 else
1522 expr_for_warning = expr;
1523
1524 if (TREE_TYPE (expr) == type)
1525 return expr;
1526
1527 result = convert (type, expr);
1528
1529 if (c_inhibit_evaluation_warnings == 0
1530 && !TREE_OVERFLOW_P (expr)
1531 && result != error_mark_node)
1532 warnings_for_convert_and_check (loc, type, expr_for_warning, result);
1533
1534 return result;
1535 }
1536 \f
1537 /* A node in a list that describes references to variables (EXPR), which are
1538 either read accesses if WRITER is zero, or write accesses, in which case
1539 WRITER is the parent of EXPR. */
1540 struct tlist
1541 {
1542 struct tlist *next;
1543 tree expr, writer;
1544 };
1545
1546 /* Used to implement a cache the results of a call to verify_tree. We only
1547 use this for SAVE_EXPRs. */
1548 struct tlist_cache
1549 {
1550 struct tlist_cache *next;
1551 struct tlist *cache_before_sp;
1552 struct tlist *cache_after_sp;
1553 tree expr;
1554 };
1555
1556 /* Obstack to use when allocating tlist structures, and corresponding
1557 firstobj. */
1558 static struct obstack tlist_obstack;
1559 static char *tlist_firstobj = 0;
1560
1561 /* Keep track of the identifiers we've warned about, so we can avoid duplicate
1562 warnings. */
1563 static struct tlist *warned_ids;
1564 /* SAVE_EXPRs need special treatment. We process them only once and then
1565 cache the results. */
1566 static struct tlist_cache *save_expr_cache;
1567
1568 static void add_tlist (struct tlist **, struct tlist *, tree, int);
1569 static void merge_tlist (struct tlist **, struct tlist *, int);
1570 static void verify_tree (tree, struct tlist **, struct tlist **, tree);
1571 static bool warning_candidate_p (tree);
1572 static bool candidate_equal_p (const_tree, const_tree);
1573 static void warn_for_collisions (struct tlist *);
1574 static void warn_for_collisions_1 (tree, tree, struct tlist *, int);
1575 static struct tlist *new_tlist (struct tlist *, tree, tree);
1576
1577 /* Create a new struct tlist and fill in its fields. */
1578 static struct tlist *
1579 new_tlist (struct tlist *next, tree t, tree writer)
1580 {
1581 struct tlist *l;
1582 l = XOBNEW (&tlist_obstack, struct tlist);
1583 l->next = next;
1584 l->expr = t;
1585 l->writer = writer;
1586 return l;
1587 }
1588
1589 /* Add duplicates of the nodes found in ADD to the list *TO. If EXCLUDE_WRITER
1590 is nonnull, we ignore any node we find which has a writer equal to it. */
1591
1592 static void
1593 add_tlist (struct tlist **to, struct tlist *add, tree exclude_writer, int copy)
1594 {
1595 while (add)
1596 {
1597 struct tlist *next = add->next;
1598 if (!copy)
1599 add->next = *to;
1600 if (!exclude_writer || !candidate_equal_p (add->writer, exclude_writer))
1601 *to = copy ? new_tlist (*to, add->expr, add->writer) : add;
1602 add = next;
1603 }
1604 }
1605
1606 /* Merge the nodes of ADD into TO. This merging process is done so that for
1607 each variable that already exists in TO, no new node is added; however if
1608 there is a write access recorded in ADD, and an occurrence on TO is only
1609 a read access, then the occurrence in TO will be modified to record the
1610 write. */
1611
1612 static void
1613 merge_tlist (struct tlist **to, struct tlist *add, int copy)
1614 {
1615 struct tlist **end = to;
1616
1617 while (*end)
1618 end = &(*end)->next;
1619
1620 while (add)
1621 {
1622 int found = 0;
1623 struct tlist *tmp2;
1624 struct tlist *next = add->next;
1625
1626 for (tmp2 = *to; tmp2; tmp2 = tmp2->next)
1627 if (candidate_equal_p (tmp2->expr, add->expr))
1628 {
1629 found = 1;
1630 if (!tmp2->writer)
1631 tmp2->writer = add->writer;
1632 }
1633 if (!found)
1634 {
1635 *end = copy ? new_tlist (NULL, add->expr, add->writer) : add;
1636 end = &(*end)->next;
1637 *end = 0;
1638 }
1639 add = next;
1640 }
1641 }
1642
1643 /* WRITTEN is a variable, WRITER is its parent. Warn if any of the variable
1644 references in list LIST conflict with it, excluding reads if ONLY writers
1645 is nonzero. */
1646
1647 static void
1648 warn_for_collisions_1 (tree written, tree writer, struct tlist *list,
1649 int only_writes)
1650 {
1651 struct tlist *tmp;
1652
1653 /* Avoid duplicate warnings. */
1654 for (tmp = warned_ids; tmp; tmp = tmp->next)
1655 if (candidate_equal_p (tmp->expr, written))
1656 return;
1657
1658 while (list)
1659 {
1660 if (candidate_equal_p (list->expr, written)
1661 && !candidate_equal_p (list->writer, writer)
1662 && (!only_writes || list->writer))
1663 {
1664 warned_ids = new_tlist (warned_ids, written, NULL_TREE);
1665 warning_at (EXPR_LOC_OR_LOC (writer, input_location),
1666 OPT_Wsequence_point, "operation on %qE may be undefined",
1667 list->expr);
1668 }
1669 list = list->next;
1670 }
1671 }
1672
1673 /* Given a list LIST of references to variables, find whether any of these
1674 can cause conflicts due to missing sequence points. */
1675
1676 static void
1677 warn_for_collisions (struct tlist *list)
1678 {
1679 struct tlist *tmp;
1680
1681 for (tmp = list; tmp; tmp = tmp->next)
1682 {
1683 if (tmp->writer)
1684 warn_for_collisions_1 (tmp->expr, tmp->writer, list, 0);
1685 }
1686 }
1687
1688 /* Return nonzero if X is a tree that can be verified by the sequence point
1689 warnings. */
1690
1691 static bool
1692 warning_candidate_p (tree x)
1693 {
1694 if (DECL_P (x) && DECL_ARTIFICIAL (x))
1695 return false;
1696
1697 if (TREE_CODE (x) == BLOCK)
1698 return false;
1699
1700 /* VOID_TYPE_P (TREE_TYPE (x)) is workaround for cp/tree.c
1701 (lvalue_p) crash on TRY/CATCH. */
1702 if (TREE_TYPE (x) == NULL_TREE || VOID_TYPE_P (TREE_TYPE (x)))
1703 return false;
1704
1705 if (!lvalue_p (x))
1706 return false;
1707
1708 /* No point to track non-const calls, they will never satisfy
1709 operand_equal_p. */
1710 if (TREE_CODE (x) == CALL_EXPR && (call_expr_flags (x) & ECF_CONST) == 0)
1711 return false;
1712
1713 if (TREE_CODE (x) == STRING_CST)
1714 return false;
1715
1716 return true;
1717 }
1718
1719 /* Return nonzero if X and Y appear to be the same candidate (or NULL) */
1720 static bool
1721 candidate_equal_p (const_tree x, const_tree y)
1722 {
1723 return (x == y) || (x && y && operand_equal_p (x, y, 0));
1724 }
1725
1726 /* Walk the tree X, and record accesses to variables. If X is written by the
1727 parent tree, WRITER is the parent.
1728 We store accesses in one of the two lists: PBEFORE_SP, and PNO_SP. If this
1729 expression or its only operand forces a sequence point, then everything up
1730 to the sequence point is stored in PBEFORE_SP. Everything else gets stored
1731 in PNO_SP.
1732 Once we return, we will have emitted warnings if any subexpression before
1733 such a sequence point could be undefined. On a higher level, however, the
1734 sequence point may not be relevant, and we'll merge the two lists.
1735
1736 Example: (b++, a) + b;
1737 The call that processes the COMPOUND_EXPR will store the increment of B
1738 in PBEFORE_SP, and the use of A in PNO_SP. The higher-level call that
1739 processes the PLUS_EXPR will need to merge the two lists so that
1740 eventually, all accesses end up on the same list (and we'll warn about the
1741 unordered subexpressions b++ and b.
1742
1743 A note on merging. If we modify the former example so that our expression
1744 becomes
1745 (b++, b) + a
1746 care must be taken not simply to add all three expressions into the final
1747 PNO_SP list. The function merge_tlist takes care of that by merging the
1748 before-SP list of the COMPOUND_EXPR into its after-SP list in a special
1749 way, so that no more than one access to B is recorded. */
1750
1751 static void
1752 verify_tree (tree x, struct tlist **pbefore_sp, struct tlist **pno_sp,
1753 tree writer)
1754 {
1755 struct tlist *tmp_before, *tmp_nosp, *tmp_list2, *tmp_list3;
1756 enum tree_code code;
1757 enum tree_code_class cl;
1758
1759 /* X may be NULL if it is the operand of an empty statement expression
1760 ({ }). */
1761 if (x == NULL)
1762 return;
1763
1764 restart:
1765 code = TREE_CODE (x);
1766 cl = TREE_CODE_CLASS (code);
1767
1768 if (warning_candidate_p (x))
1769 *pno_sp = new_tlist (*pno_sp, x, writer);
1770
1771 switch (code)
1772 {
1773 case CONSTRUCTOR:
1774 case SIZEOF_EXPR:
1775 return;
1776
1777 case COMPOUND_EXPR:
1778 case TRUTH_ANDIF_EXPR:
1779 case TRUTH_ORIF_EXPR:
1780 tmp_before = tmp_nosp = tmp_list2 = tmp_list3 = 0;
1781 verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
1782 warn_for_collisions (tmp_nosp);
1783 merge_tlist (pbefore_sp, tmp_before, 0);
1784 merge_tlist (pbefore_sp, tmp_nosp, 0);
1785 verify_tree (TREE_OPERAND (x, 1), &tmp_list3, &tmp_list2, NULL_TREE);
1786 warn_for_collisions (tmp_list2);
1787 merge_tlist (pbefore_sp, tmp_list3, 0);
1788 merge_tlist (pno_sp, tmp_list2, 0);
1789 return;
1790
1791 case COND_EXPR:
1792 tmp_before = tmp_list2 = 0;
1793 verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_list2, NULL_TREE);
1794 warn_for_collisions (tmp_list2);
1795 merge_tlist (pbefore_sp, tmp_before, 0);
1796 merge_tlist (pbefore_sp, tmp_list2, 0);
1797
1798 tmp_list3 = tmp_nosp = 0;
1799 verify_tree (TREE_OPERAND (x, 1), &tmp_list3, &tmp_nosp, NULL_TREE);
1800 warn_for_collisions (tmp_nosp);
1801 merge_tlist (pbefore_sp, tmp_list3, 0);
1802
1803 tmp_list3 = tmp_list2 = 0;
1804 verify_tree (TREE_OPERAND (x, 2), &tmp_list3, &tmp_list2, NULL_TREE);
1805 warn_for_collisions (tmp_list2);
1806 merge_tlist (pbefore_sp, tmp_list3, 0);
1807 /* Rather than add both tmp_nosp and tmp_list2, we have to merge the
1808 two first, to avoid warning for (a ? b++ : b++). */
1809 merge_tlist (&tmp_nosp, tmp_list2, 0);
1810 add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
1811 return;
1812
1813 case PREDECREMENT_EXPR:
1814 case PREINCREMENT_EXPR:
1815 case POSTDECREMENT_EXPR:
1816 case POSTINCREMENT_EXPR:
1817 verify_tree (TREE_OPERAND (x, 0), pno_sp, pno_sp, x);
1818 return;
1819
1820 case MODIFY_EXPR:
1821 tmp_before = tmp_nosp = tmp_list3 = 0;
1822 verify_tree (TREE_OPERAND (x, 1), &tmp_before, &tmp_nosp, NULL_TREE);
1823 verify_tree (TREE_OPERAND (x, 0), &tmp_list3, &tmp_list3, x);
1824 /* Expressions inside the LHS are not ordered wrt. the sequence points
1825 in the RHS. Example:
1826 *a = (a++, 2)
1827 Despite the fact that the modification of "a" is in the before_sp
1828 list (tmp_before), it conflicts with the use of "a" in the LHS.
1829 We can handle this by adding the contents of tmp_list3
1830 to those of tmp_before, and redoing the collision warnings for that
1831 list. */
1832 add_tlist (&tmp_before, tmp_list3, x, 1);
1833 warn_for_collisions (tmp_before);
1834 /* Exclude the LHS itself here; we first have to merge it into the
1835 tmp_nosp list. This is done to avoid warning for "a = a"; if we
1836 didn't exclude the LHS, we'd get it twice, once as a read and once
1837 as a write. */
1838 add_tlist (pno_sp, tmp_list3, x, 0);
1839 warn_for_collisions_1 (TREE_OPERAND (x, 0), x, tmp_nosp, 1);
1840
1841 merge_tlist (pbefore_sp, tmp_before, 0);
1842 if (warning_candidate_p (TREE_OPERAND (x, 0)))
1843 merge_tlist (&tmp_nosp, new_tlist (NULL, TREE_OPERAND (x, 0), x), 0);
1844 add_tlist (pno_sp, tmp_nosp, NULL_TREE, 1);
1845 return;
1846
1847 case CALL_EXPR:
1848 /* We need to warn about conflicts among arguments and conflicts between
1849 args and the function address. Side effects of the function address,
1850 however, are not ordered by the sequence point of the call. */
1851 {
1852 call_expr_arg_iterator iter;
1853 tree arg;
1854 tmp_before = tmp_nosp = 0;
1855 verify_tree (CALL_EXPR_FN (x), &tmp_before, &tmp_nosp, NULL_TREE);
1856 FOR_EACH_CALL_EXPR_ARG (arg, iter, x)
1857 {
1858 tmp_list2 = tmp_list3 = 0;
1859 verify_tree (arg, &tmp_list2, &tmp_list3, NULL_TREE);
1860 merge_tlist (&tmp_list3, tmp_list2, 0);
1861 add_tlist (&tmp_before, tmp_list3, NULL_TREE, 0);
1862 }
1863 add_tlist (&tmp_before, tmp_nosp, NULL_TREE, 0);
1864 warn_for_collisions (tmp_before);
1865 add_tlist (pbefore_sp, tmp_before, NULL_TREE, 0);
1866 return;
1867 }
1868
1869 case TREE_LIST:
1870 /* Scan all the list, e.g. indices of multi dimensional array. */
1871 while (x)
1872 {
1873 tmp_before = tmp_nosp = 0;
1874 verify_tree (TREE_VALUE (x), &tmp_before, &tmp_nosp, NULL_TREE);
1875 merge_tlist (&tmp_nosp, tmp_before, 0);
1876 add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
1877 x = TREE_CHAIN (x);
1878 }
1879 return;
1880
1881 case SAVE_EXPR:
1882 {
1883 struct tlist_cache *t;
1884 for (t = save_expr_cache; t; t = t->next)
1885 if (candidate_equal_p (t->expr, x))
1886 break;
1887
1888 if (!t)
1889 {
1890 t = XOBNEW (&tlist_obstack, struct tlist_cache);
1891 t->next = save_expr_cache;
1892 t->expr = x;
1893 save_expr_cache = t;
1894
1895 tmp_before = tmp_nosp = 0;
1896 verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
1897 warn_for_collisions (tmp_nosp);
1898
1899 tmp_list3 = 0;
1900 merge_tlist (&tmp_list3, tmp_nosp, 0);
1901 t->cache_before_sp = tmp_before;
1902 t->cache_after_sp = tmp_list3;
1903 }
1904 merge_tlist (pbefore_sp, t->cache_before_sp, 1);
1905 add_tlist (pno_sp, t->cache_after_sp, NULL_TREE, 1);
1906 return;
1907 }
1908
1909 case ADDR_EXPR:
1910 x = TREE_OPERAND (x, 0);
1911 if (DECL_P (x))
1912 return;
1913 writer = 0;
1914 goto restart;
1915
1916 default:
1917 /* For other expressions, simply recurse on their operands.
1918 Manual tail recursion for unary expressions.
1919 Other non-expressions need not be processed. */
1920 if (cl == tcc_unary)
1921 {
1922 x = TREE_OPERAND (x, 0);
1923 writer = 0;
1924 goto restart;
1925 }
1926 else if (IS_EXPR_CODE_CLASS (cl))
1927 {
1928 int lp;
1929 int max = TREE_OPERAND_LENGTH (x);
1930 for (lp = 0; lp < max; lp++)
1931 {
1932 tmp_before = tmp_nosp = 0;
1933 verify_tree (TREE_OPERAND (x, lp), &tmp_before, &tmp_nosp, 0);
1934 merge_tlist (&tmp_nosp, tmp_before, 0);
1935 add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
1936 }
1937 }
1938 return;
1939 }
1940 }
1941
1942 /* Try to warn for undefined behavior in EXPR due to missing sequence
1943 points. */
1944
1945 DEBUG_FUNCTION void
1946 verify_sequence_points (tree expr)
1947 {
1948 struct tlist *before_sp = 0, *after_sp = 0;
1949
1950 warned_ids = 0;
1951 save_expr_cache = 0;
1952 if (tlist_firstobj == 0)
1953 {
1954 gcc_obstack_init (&tlist_obstack);
1955 tlist_firstobj = (char *) obstack_alloc (&tlist_obstack, 0);
1956 }
1957
1958 verify_tree (expr, &before_sp, &after_sp, 0);
1959 warn_for_collisions (after_sp);
1960 obstack_free (&tlist_obstack, tlist_firstobj);
1961 }
1962 \f
1963 /* Validate the expression after `case' and apply default promotions. */
1964
1965 static tree
1966 check_case_value (location_t loc, tree value)
1967 {
1968 if (value == NULL_TREE)
1969 return value;
1970
1971 if (TREE_CODE (value) == INTEGER_CST)
1972 /* Promote char or short to int. */
1973 value = perform_integral_promotions (value);
1974 else if (value != error_mark_node)
1975 {
1976 error_at (loc, "case label does not reduce to an integer constant");
1977 value = error_mark_node;
1978 }
1979
1980 constant_expression_warning (value);
1981
1982 return value;
1983 }
1984 \f
1985 /* See if the case values LOW and HIGH are in the range of the original
1986 type (i.e. before the default conversion to int) of the switch testing
1987 expression.
1988 TYPE is the promoted type of the testing expression, and ORIG_TYPE is
1989 the type before promoting it. CASE_LOW_P is a pointer to the lower
1990 bound of the case label, and CASE_HIGH_P is the upper bound or NULL
1991 if the case is not a case range.
1992 The caller has to make sure that we are not called with NULL for
1993 CASE_LOW_P (i.e. the default case). OUTSIDE_RANGE_P says whether there
1994 was a case value that doesn't fit into the range of the ORIG_TYPE.
1995 Returns true if the case label is in range of ORIG_TYPE (saturated or
1996 untouched) or false if the label is out of range. */
1997
1998 static bool
1999 check_case_bounds (location_t loc, tree type, tree orig_type,
2000 tree *case_low_p, tree *case_high_p,
2001 bool *outside_range_p)
2002 {
2003 tree min_value, max_value;
2004 tree case_low = *case_low_p;
2005 tree case_high = case_high_p ? *case_high_p : case_low;
2006
2007 /* If there was a problem with the original type, do nothing. */
2008 if (orig_type == error_mark_node)
2009 return true;
2010
2011 min_value = TYPE_MIN_VALUE (orig_type);
2012 max_value = TYPE_MAX_VALUE (orig_type);
2013
2014 /* We'll really need integer constants here. */
2015 case_low = fold (case_low);
2016 case_high = fold (case_high);
2017
2018 /* Case label is less than minimum for type. */
2019 if (tree_int_cst_compare (case_low, min_value) < 0
2020 && tree_int_cst_compare (case_high, min_value) < 0)
2021 {
2022 warning_at (loc, 0, "case label value is less than minimum value "
2023 "for type");
2024 *outside_range_p = true;
2025 return false;
2026 }
2027
2028 /* Case value is greater than maximum for type. */
2029 if (tree_int_cst_compare (case_low, max_value) > 0
2030 && tree_int_cst_compare (case_high, max_value) > 0)
2031 {
2032 warning_at (loc, 0, "case label value exceeds maximum value for type");
2033 *outside_range_p = true;
2034 return false;
2035 }
2036
2037 /* Saturate lower case label value to minimum. */
2038 if (tree_int_cst_compare (case_high, min_value) >= 0
2039 && tree_int_cst_compare (case_low, min_value) < 0)
2040 {
2041 warning_at (loc, 0, "lower value in case label range"
2042 " less than minimum value for type");
2043 *outside_range_p = true;
2044 case_low = min_value;
2045 }
2046
2047 /* Saturate upper case label value to maximum. */
2048 if (tree_int_cst_compare (case_low, max_value) <= 0
2049 && tree_int_cst_compare (case_high, max_value) > 0)
2050 {
2051 warning_at (loc, 0, "upper value in case label range"
2052 " exceeds maximum value for type");
2053 *outside_range_p = true;
2054 case_high = max_value;
2055 }
2056
2057 if (*case_low_p != case_low)
2058 *case_low_p = convert (type, case_low);
2059 if (case_high_p && *case_high_p != case_high)
2060 *case_high_p = convert (type, case_high);
2061
2062 return true;
2063 }
2064 \f
2065 /* Return an integer type with BITS bits of precision,
2066 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2067
2068 tree
2069 c_common_type_for_size (unsigned int bits, int unsignedp)
2070 {
2071 int i;
2072
2073 if (bits == TYPE_PRECISION (integer_type_node))
2074 return unsignedp ? unsigned_type_node : integer_type_node;
2075
2076 if (bits == TYPE_PRECISION (signed_char_type_node))
2077 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2078
2079 if (bits == TYPE_PRECISION (short_integer_type_node))
2080 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2081
2082 if (bits == TYPE_PRECISION (long_integer_type_node))
2083 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2084
2085 if (bits == TYPE_PRECISION (long_long_integer_type_node))
2086 return (unsignedp ? long_long_unsigned_type_node
2087 : long_long_integer_type_node);
2088
2089 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2090 if (int_n_enabled_p[i]
2091 && bits == int_n_data[i].bitsize)
2092 return (unsignedp ? int_n_trees[i].unsigned_type
2093 : int_n_trees[i].signed_type);
2094
2095 if (bits == TYPE_PRECISION (widest_integer_literal_type_node))
2096 return (unsignedp ? widest_unsigned_literal_type_node
2097 : widest_integer_literal_type_node);
2098
2099 if (bits <= TYPE_PRECISION (intQI_type_node))
2100 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2101
2102 if (bits <= TYPE_PRECISION (intHI_type_node))
2103 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2104
2105 if (bits <= TYPE_PRECISION (intSI_type_node))
2106 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2107
2108 if (bits <= TYPE_PRECISION (intDI_type_node))
2109 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2110
2111 return 0;
2112 }
2113
2114 /* Return a fixed-point type that has at least IBIT ibits and FBIT fbits
2115 that is unsigned if UNSIGNEDP is nonzero, otherwise signed;
2116 and saturating if SATP is nonzero, otherwise not saturating. */
2117
2118 tree
2119 c_common_fixed_point_type_for_size (unsigned int ibit, unsigned int fbit,
2120 int unsignedp, int satp)
2121 {
2122 machine_mode mode;
2123 if (ibit == 0)
2124 mode = unsignedp ? UQQmode : QQmode;
2125 else
2126 mode = unsignedp ? UHAmode : HAmode;
2127
2128 for (; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode))
2129 if (GET_MODE_IBIT (mode) >= ibit && GET_MODE_FBIT (mode) >= fbit)
2130 break;
2131
2132 if (mode == VOIDmode || !targetm.scalar_mode_supported_p (mode))
2133 {
2134 sorry ("GCC cannot support operators with integer types and "
2135 "fixed-point types that have too many integral and "
2136 "fractional bits together");
2137 return 0;
2138 }
2139
2140 return c_common_type_for_mode (mode, satp);
2141 }
2142
2143 /* Used for communication between c_common_type_for_mode and
2144 c_register_builtin_type. */
2145 tree registered_builtin_types;
2146
2147 /* Return a data type that has machine mode MODE.
2148 If the mode is an integer,
2149 then UNSIGNEDP selects between signed and unsigned types.
2150 If the mode is a fixed-point mode,
2151 then UNSIGNEDP selects between saturating and nonsaturating types. */
2152
2153 tree
2154 c_common_type_for_mode (machine_mode mode, int unsignedp)
2155 {
2156 tree t;
2157 int i;
2158
2159 if (mode == TYPE_MODE (integer_type_node))
2160 return unsignedp ? unsigned_type_node : integer_type_node;
2161
2162 if (mode == TYPE_MODE (signed_char_type_node))
2163 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2164
2165 if (mode == TYPE_MODE (short_integer_type_node))
2166 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2167
2168 if (mode == TYPE_MODE (long_integer_type_node))
2169 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2170
2171 if (mode == TYPE_MODE (long_long_integer_type_node))
2172 return unsignedp ? long_long_unsigned_type_node : long_long_integer_type_node;
2173
2174 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2175 if (int_n_enabled_p[i]
2176 && mode == int_n_data[i].m)
2177 return (unsignedp ? int_n_trees[i].unsigned_type
2178 : int_n_trees[i].signed_type);
2179
2180 if (mode == TYPE_MODE (widest_integer_literal_type_node))
2181 return unsignedp ? widest_unsigned_literal_type_node
2182 : widest_integer_literal_type_node;
2183
2184 if (mode == QImode)
2185 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2186
2187 if (mode == HImode)
2188 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2189
2190 if (mode == SImode)
2191 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2192
2193 if (mode == DImode)
2194 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2195
2196 #if HOST_BITS_PER_WIDE_INT >= 64
2197 if (mode == TYPE_MODE (intTI_type_node))
2198 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2199 #endif
2200
2201 if (mode == TYPE_MODE (float_type_node))
2202 return float_type_node;
2203
2204 if (mode == TYPE_MODE (double_type_node))
2205 return double_type_node;
2206
2207 if (mode == TYPE_MODE (long_double_type_node))
2208 return long_double_type_node;
2209
2210 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
2211 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE
2212 && mode == TYPE_MODE (FLOATN_NX_TYPE_NODE (i)))
2213 return FLOATN_NX_TYPE_NODE (i);
2214
2215 if (mode == TYPE_MODE (void_type_node))
2216 return void_type_node;
2217
2218 if (mode == TYPE_MODE (build_pointer_type (char_type_node)))
2219 return (unsignedp
2220 ? make_unsigned_type (GET_MODE_PRECISION (mode))
2221 : make_signed_type (GET_MODE_PRECISION (mode)));
2222
2223 if (mode == TYPE_MODE (build_pointer_type (integer_type_node)))
2224 return (unsignedp
2225 ? make_unsigned_type (GET_MODE_PRECISION (mode))
2226 : make_signed_type (GET_MODE_PRECISION (mode)));
2227
2228 if (COMPLEX_MODE_P (mode))
2229 {
2230 machine_mode inner_mode;
2231 tree inner_type;
2232
2233 if (mode == TYPE_MODE (complex_float_type_node))
2234 return complex_float_type_node;
2235 if (mode == TYPE_MODE (complex_double_type_node))
2236 return complex_double_type_node;
2237 if (mode == TYPE_MODE (complex_long_double_type_node))
2238 return complex_long_double_type_node;
2239
2240 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
2241 if (COMPLEX_FLOATN_NX_TYPE_NODE (i) != NULL_TREE
2242 && mode == TYPE_MODE (COMPLEX_FLOATN_NX_TYPE_NODE (i)))
2243 return COMPLEX_FLOATN_NX_TYPE_NODE (i);
2244
2245 if (mode == TYPE_MODE (complex_integer_type_node) && !unsignedp)
2246 return complex_integer_type_node;
2247
2248 inner_mode = GET_MODE_INNER (mode);
2249 inner_type = c_common_type_for_mode (inner_mode, unsignedp);
2250 if (inner_type != NULL_TREE)
2251 return build_complex_type (inner_type);
2252 }
2253 else if (VECTOR_MODE_P (mode))
2254 {
2255 machine_mode inner_mode = GET_MODE_INNER (mode);
2256 tree inner_type = c_common_type_for_mode (inner_mode, unsignedp);
2257 if (inner_type != NULL_TREE)
2258 return build_vector_type_for_mode (inner_type, mode);
2259 }
2260
2261 if (mode == TYPE_MODE (dfloat32_type_node))
2262 return dfloat32_type_node;
2263 if (mode == TYPE_MODE (dfloat64_type_node))
2264 return dfloat64_type_node;
2265 if (mode == TYPE_MODE (dfloat128_type_node))
2266 return dfloat128_type_node;
2267
2268 if (ALL_SCALAR_FIXED_POINT_MODE_P (mode))
2269 {
2270 if (mode == TYPE_MODE (short_fract_type_node))
2271 return unsignedp ? sat_short_fract_type_node : short_fract_type_node;
2272 if (mode == TYPE_MODE (fract_type_node))
2273 return unsignedp ? sat_fract_type_node : fract_type_node;
2274 if (mode == TYPE_MODE (long_fract_type_node))
2275 return unsignedp ? sat_long_fract_type_node : long_fract_type_node;
2276 if (mode == TYPE_MODE (long_long_fract_type_node))
2277 return unsignedp ? sat_long_long_fract_type_node
2278 : long_long_fract_type_node;
2279
2280 if (mode == TYPE_MODE (unsigned_short_fract_type_node))
2281 return unsignedp ? sat_unsigned_short_fract_type_node
2282 : unsigned_short_fract_type_node;
2283 if (mode == TYPE_MODE (unsigned_fract_type_node))
2284 return unsignedp ? sat_unsigned_fract_type_node
2285 : unsigned_fract_type_node;
2286 if (mode == TYPE_MODE (unsigned_long_fract_type_node))
2287 return unsignedp ? sat_unsigned_long_fract_type_node
2288 : unsigned_long_fract_type_node;
2289 if (mode == TYPE_MODE (unsigned_long_long_fract_type_node))
2290 return unsignedp ? sat_unsigned_long_long_fract_type_node
2291 : unsigned_long_long_fract_type_node;
2292
2293 if (mode == TYPE_MODE (short_accum_type_node))
2294 return unsignedp ? sat_short_accum_type_node : short_accum_type_node;
2295 if (mode == TYPE_MODE (accum_type_node))
2296 return unsignedp ? sat_accum_type_node : accum_type_node;
2297 if (mode == TYPE_MODE (long_accum_type_node))
2298 return unsignedp ? sat_long_accum_type_node : long_accum_type_node;
2299 if (mode == TYPE_MODE (long_long_accum_type_node))
2300 return unsignedp ? sat_long_long_accum_type_node
2301 : long_long_accum_type_node;
2302
2303 if (mode == TYPE_MODE (unsigned_short_accum_type_node))
2304 return unsignedp ? sat_unsigned_short_accum_type_node
2305 : unsigned_short_accum_type_node;
2306 if (mode == TYPE_MODE (unsigned_accum_type_node))
2307 return unsignedp ? sat_unsigned_accum_type_node
2308 : unsigned_accum_type_node;
2309 if (mode == TYPE_MODE (unsigned_long_accum_type_node))
2310 return unsignedp ? sat_unsigned_long_accum_type_node
2311 : unsigned_long_accum_type_node;
2312 if (mode == TYPE_MODE (unsigned_long_long_accum_type_node))
2313 return unsignedp ? sat_unsigned_long_long_accum_type_node
2314 : unsigned_long_long_accum_type_node;
2315
2316 if (mode == QQmode)
2317 return unsignedp ? sat_qq_type_node : qq_type_node;
2318 if (mode == HQmode)
2319 return unsignedp ? sat_hq_type_node : hq_type_node;
2320 if (mode == SQmode)
2321 return unsignedp ? sat_sq_type_node : sq_type_node;
2322 if (mode == DQmode)
2323 return unsignedp ? sat_dq_type_node : dq_type_node;
2324 if (mode == TQmode)
2325 return unsignedp ? sat_tq_type_node : tq_type_node;
2326
2327 if (mode == UQQmode)
2328 return unsignedp ? sat_uqq_type_node : uqq_type_node;
2329 if (mode == UHQmode)
2330 return unsignedp ? sat_uhq_type_node : uhq_type_node;
2331 if (mode == USQmode)
2332 return unsignedp ? sat_usq_type_node : usq_type_node;
2333 if (mode == UDQmode)
2334 return unsignedp ? sat_udq_type_node : udq_type_node;
2335 if (mode == UTQmode)
2336 return unsignedp ? sat_utq_type_node : utq_type_node;
2337
2338 if (mode == HAmode)
2339 return unsignedp ? sat_ha_type_node : ha_type_node;
2340 if (mode == SAmode)
2341 return unsignedp ? sat_sa_type_node : sa_type_node;
2342 if (mode == DAmode)
2343 return unsignedp ? sat_da_type_node : da_type_node;
2344 if (mode == TAmode)
2345 return unsignedp ? sat_ta_type_node : ta_type_node;
2346
2347 if (mode == UHAmode)
2348 return unsignedp ? sat_uha_type_node : uha_type_node;
2349 if (mode == USAmode)
2350 return unsignedp ? sat_usa_type_node : usa_type_node;
2351 if (mode == UDAmode)
2352 return unsignedp ? sat_uda_type_node : uda_type_node;
2353 if (mode == UTAmode)
2354 return unsignedp ? sat_uta_type_node : uta_type_node;
2355 }
2356
2357 for (t = registered_builtin_types; t; t = TREE_CHAIN (t))
2358 if (TYPE_MODE (TREE_VALUE (t)) == mode
2359 && !!unsignedp == !!TYPE_UNSIGNED (TREE_VALUE (t)))
2360 return TREE_VALUE (t);
2361
2362 return 0;
2363 }
2364
2365 tree
2366 c_common_unsigned_type (tree type)
2367 {
2368 return c_common_signed_or_unsigned_type (1, type);
2369 }
2370
2371 /* Return a signed type the same as TYPE in other respects. */
2372
2373 tree
2374 c_common_signed_type (tree type)
2375 {
2376 return c_common_signed_or_unsigned_type (0, type);
2377 }
2378
2379 /* Return a type the same as TYPE except unsigned or
2380 signed according to UNSIGNEDP. */
2381
2382 tree
2383 c_common_signed_or_unsigned_type (int unsignedp, tree type)
2384 {
2385 tree type1;
2386 int i;
2387
2388 /* This block of code emulates the behavior of the old
2389 c_common_unsigned_type. In particular, it returns
2390 long_unsigned_type_node if passed a long, even when a int would
2391 have the same size. This is necessary for warnings to work
2392 correctly in archs where sizeof(int) == sizeof(long) */
2393
2394 type1 = TYPE_MAIN_VARIANT (type);
2395 if (type1 == signed_char_type_node || type1 == char_type_node || type1 == unsigned_char_type_node)
2396 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2397 if (type1 == integer_type_node || type1 == unsigned_type_node)
2398 return unsignedp ? unsigned_type_node : integer_type_node;
2399 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2400 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2401 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2402 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2403 if (type1 == long_long_integer_type_node || type1 == long_long_unsigned_type_node)
2404 return unsignedp ? long_long_unsigned_type_node : long_long_integer_type_node;
2405
2406 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2407 if (int_n_enabled_p[i]
2408 && (type1 == int_n_trees[i].unsigned_type
2409 || type1 == int_n_trees[i].signed_type))
2410 return (unsignedp ? int_n_trees[i].unsigned_type
2411 : int_n_trees[i].signed_type);
2412
2413 if (type1 == widest_integer_literal_type_node || type1 == widest_unsigned_literal_type_node)
2414 return unsignedp ? widest_unsigned_literal_type_node : widest_integer_literal_type_node;
2415 #if HOST_BITS_PER_WIDE_INT >= 64
2416 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2417 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2418 #endif
2419 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2420 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2421 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2422 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2423 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2424 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2425 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2426 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2427
2428 #define C_COMMON_FIXED_TYPES(NAME) \
2429 if (type1 == short_ ## NAME ## _type_node \
2430 || type1 == unsigned_short_ ## NAME ## _type_node) \
2431 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2432 : short_ ## NAME ## _type_node; \
2433 if (type1 == NAME ## _type_node \
2434 || type1 == unsigned_ ## NAME ## _type_node) \
2435 return unsignedp ? unsigned_ ## NAME ## _type_node \
2436 : NAME ## _type_node; \
2437 if (type1 == long_ ## NAME ## _type_node \
2438 || type1 == unsigned_long_ ## NAME ## _type_node) \
2439 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2440 : long_ ## NAME ## _type_node; \
2441 if (type1 == long_long_ ## NAME ## _type_node \
2442 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2443 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2444 : long_long_ ## NAME ## _type_node;
2445
2446 #define C_COMMON_FIXED_MODE_TYPES(NAME) \
2447 if (type1 == NAME ## _type_node \
2448 || type1 == u ## NAME ## _type_node) \
2449 return unsignedp ? u ## NAME ## _type_node \
2450 : NAME ## _type_node;
2451
2452 #define C_COMMON_FIXED_TYPES_SAT(NAME) \
2453 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2454 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2455 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2456 : sat_ ## short_ ## NAME ## _type_node; \
2457 if (type1 == sat_ ## NAME ## _type_node \
2458 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2459 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2460 : sat_ ## NAME ## _type_node; \
2461 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2462 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2463 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2464 : sat_ ## long_ ## NAME ## _type_node; \
2465 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2466 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2467 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2468 : sat_ ## long_long_ ## NAME ## _type_node;
2469
2470 #define C_COMMON_FIXED_MODE_TYPES_SAT(NAME) \
2471 if (type1 == sat_ ## NAME ## _type_node \
2472 || type1 == sat_ ## u ## NAME ## _type_node) \
2473 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2474 : sat_ ## NAME ## _type_node;
2475
2476 C_COMMON_FIXED_TYPES (fract);
2477 C_COMMON_FIXED_TYPES_SAT (fract);
2478 C_COMMON_FIXED_TYPES (accum);
2479 C_COMMON_FIXED_TYPES_SAT (accum);
2480
2481 C_COMMON_FIXED_MODE_TYPES (qq);
2482 C_COMMON_FIXED_MODE_TYPES (hq);
2483 C_COMMON_FIXED_MODE_TYPES (sq);
2484 C_COMMON_FIXED_MODE_TYPES (dq);
2485 C_COMMON_FIXED_MODE_TYPES (tq);
2486 C_COMMON_FIXED_MODE_TYPES_SAT (qq);
2487 C_COMMON_FIXED_MODE_TYPES_SAT (hq);
2488 C_COMMON_FIXED_MODE_TYPES_SAT (sq);
2489 C_COMMON_FIXED_MODE_TYPES_SAT (dq);
2490 C_COMMON_FIXED_MODE_TYPES_SAT (tq);
2491 C_COMMON_FIXED_MODE_TYPES (ha);
2492 C_COMMON_FIXED_MODE_TYPES (sa);
2493 C_COMMON_FIXED_MODE_TYPES (da);
2494 C_COMMON_FIXED_MODE_TYPES (ta);
2495 C_COMMON_FIXED_MODE_TYPES_SAT (ha);
2496 C_COMMON_FIXED_MODE_TYPES_SAT (sa);
2497 C_COMMON_FIXED_MODE_TYPES_SAT (da);
2498 C_COMMON_FIXED_MODE_TYPES_SAT (ta);
2499
2500 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2501 the precision; they have precision set to match their range, but
2502 may use a wider mode to match an ABI. If we change modes, we may
2503 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2504 the precision as well, so as to yield correct results for
2505 bit-field types. C++ does not have these separate bit-field
2506 types, and producing a signed or unsigned variant of an
2507 ENUMERAL_TYPE may cause other problems as well. */
2508
2509 if (!INTEGRAL_TYPE_P (type)
2510 || TYPE_UNSIGNED (type) == unsignedp)
2511 return type;
2512
2513 #define TYPE_OK(node) \
2514 (TYPE_MODE (type) == TYPE_MODE (node) \
2515 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2516 if (TYPE_OK (signed_char_type_node))
2517 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2518 if (TYPE_OK (integer_type_node))
2519 return unsignedp ? unsigned_type_node : integer_type_node;
2520 if (TYPE_OK (short_integer_type_node))
2521 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2522 if (TYPE_OK (long_integer_type_node))
2523 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2524 if (TYPE_OK (long_long_integer_type_node))
2525 return (unsignedp ? long_long_unsigned_type_node
2526 : long_long_integer_type_node);
2527
2528 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2529 if (int_n_enabled_p[i]
2530 && TYPE_MODE (type) == int_n_data[i].m
2531 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2532 return (unsignedp ? int_n_trees[i].unsigned_type
2533 : int_n_trees[i].signed_type);
2534
2535 if (TYPE_OK (widest_integer_literal_type_node))
2536 return (unsignedp ? widest_unsigned_literal_type_node
2537 : widest_integer_literal_type_node);
2538
2539 #if HOST_BITS_PER_WIDE_INT >= 64
2540 if (TYPE_OK (intTI_type_node))
2541 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2542 #endif
2543 if (TYPE_OK (intDI_type_node))
2544 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2545 if (TYPE_OK (intSI_type_node))
2546 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2547 if (TYPE_OK (intHI_type_node))
2548 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2549 if (TYPE_OK (intQI_type_node))
2550 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2551 #undef TYPE_OK
2552
2553 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2554 }
2555
2556 /* Build a bit-field integer type for the given WIDTH and UNSIGNEDP. */
2557
2558 tree
2559 c_build_bitfield_integer_type (unsigned HOST_WIDE_INT width, int unsignedp)
2560 {
2561 int i;
2562
2563 /* Extended integer types of the same width as a standard type have
2564 lesser rank, so those of the same width as int promote to int or
2565 unsigned int and are valid for printf formats expecting int or
2566 unsigned int. To avoid such special cases, avoid creating
2567 extended integer types for bit-fields if a standard integer type
2568 is available. */
2569 if (width == TYPE_PRECISION (integer_type_node))
2570 return unsignedp ? unsigned_type_node : integer_type_node;
2571 if (width == TYPE_PRECISION (signed_char_type_node))
2572 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2573 if (width == TYPE_PRECISION (short_integer_type_node))
2574 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2575 if (width == TYPE_PRECISION (long_integer_type_node))
2576 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2577 if (width == TYPE_PRECISION (long_long_integer_type_node))
2578 return (unsignedp ? long_long_unsigned_type_node
2579 : long_long_integer_type_node);
2580 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2581 if (int_n_enabled_p[i]
2582 && width == int_n_data[i].bitsize)
2583 return (unsignedp ? int_n_trees[i].unsigned_type
2584 : int_n_trees[i].signed_type);
2585 return build_nonstandard_integer_type (width, unsignedp);
2586 }
2587
2588 /* The C version of the register_builtin_type langhook. */
2589
2590 void
2591 c_register_builtin_type (tree type, const char* name)
2592 {
2593 tree decl;
2594
2595 decl = build_decl (UNKNOWN_LOCATION,
2596 TYPE_DECL, get_identifier (name), type);
2597 DECL_ARTIFICIAL (decl) = 1;
2598 if (!TYPE_NAME (type))
2599 TYPE_NAME (type) = decl;
2600 pushdecl (decl);
2601
2602 registered_builtin_types = tree_cons (0, type, registered_builtin_types);
2603 }
2604 \f
2605 /* Print an error message for invalid operands to arith operation
2606 CODE with TYPE0 for operand 0, and TYPE1 for operand 1.
2607 RICHLOC is a rich location for the message, containing either
2608 three separate locations for each of the operator and operands
2609
2610 lhs op rhs
2611 ~~~ ^~ ~~~
2612
2613 (C FE), or one location ranging over all over them
2614
2615 lhs op rhs
2616 ~~~~^~~~~~
2617
2618 (C++ FE). */
2619
2620 void
2621 binary_op_error (rich_location *richloc, enum tree_code code,
2622 tree type0, tree type1)
2623 {
2624 const char *opname;
2625
2626 switch (code)
2627 {
2628 case PLUS_EXPR:
2629 opname = "+"; break;
2630 case MINUS_EXPR:
2631 opname = "-"; break;
2632 case MULT_EXPR:
2633 opname = "*"; break;
2634 case MAX_EXPR:
2635 opname = "max"; break;
2636 case MIN_EXPR:
2637 opname = "min"; break;
2638 case EQ_EXPR:
2639 opname = "=="; break;
2640 case NE_EXPR:
2641 opname = "!="; break;
2642 case LE_EXPR:
2643 opname = "<="; break;
2644 case GE_EXPR:
2645 opname = ">="; break;
2646 case LT_EXPR:
2647 opname = "<"; break;
2648 case GT_EXPR:
2649 opname = ">"; break;
2650 case LSHIFT_EXPR:
2651 opname = "<<"; break;
2652 case RSHIFT_EXPR:
2653 opname = ">>"; break;
2654 case TRUNC_MOD_EXPR:
2655 case FLOOR_MOD_EXPR:
2656 opname = "%"; break;
2657 case TRUNC_DIV_EXPR:
2658 case FLOOR_DIV_EXPR:
2659 opname = "/"; break;
2660 case BIT_AND_EXPR:
2661 opname = "&"; break;
2662 case BIT_IOR_EXPR:
2663 opname = "|"; break;
2664 case TRUTH_ANDIF_EXPR:
2665 opname = "&&"; break;
2666 case TRUTH_ORIF_EXPR:
2667 opname = "||"; break;
2668 case BIT_XOR_EXPR:
2669 opname = "^"; break;
2670 default:
2671 gcc_unreachable ();
2672 }
2673 error_at_rich_loc (richloc,
2674 "invalid operands to binary %s (have %qT and %qT)",
2675 opname, type0, type1);
2676 }
2677 \f
2678 /* Given an expression as a tree, return its original type. Do this
2679 by stripping any conversion that preserves the sign and precision. */
2680 static tree
2681 expr_original_type (tree expr)
2682 {
2683 STRIP_SIGN_NOPS (expr);
2684 return TREE_TYPE (expr);
2685 }
2686
2687 /* Subroutine of build_binary_op, used for comparison operations.
2688 See if the operands have both been converted from subword integer types
2689 and, if so, perhaps change them both back to their original type.
2690 This function is also responsible for converting the two operands
2691 to the proper common type for comparison.
2692
2693 The arguments of this function are all pointers to local variables
2694 of build_binary_op: OP0_PTR is &OP0, OP1_PTR is &OP1,
2695 RESTYPE_PTR is &RESULT_TYPE and RESCODE_PTR is &RESULTCODE.
2696
2697 LOC is the location of the comparison.
2698
2699 If this function returns nonzero, it means that the comparison has
2700 a constant value. What this function returns is an expression for
2701 that value. */
2702
2703 tree
2704 shorten_compare (location_t loc, tree *op0_ptr, tree *op1_ptr,
2705 tree *restype_ptr, enum tree_code *rescode_ptr)
2706 {
2707 tree type;
2708 tree op0 = *op0_ptr;
2709 tree op1 = *op1_ptr;
2710 int unsignedp0, unsignedp1;
2711 int real1, real2;
2712 tree primop0, primop1;
2713 enum tree_code code = *rescode_ptr;
2714
2715 /* Throw away any conversions to wider types
2716 already present in the operands. */
2717
2718 primop0 = c_common_get_narrower (op0, &unsignedp0);
2719 primop1 = c_common_get_narrower (op1, &unsignedp1);
2720
2721 /* If primopN is first sign-extended from primopN's precision to opN's
2722 precision, then zero-extended from opN's precision to
2723 *restype_ptr precision, shortenings might be invalid. */
2724 if (TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (TREE_TYPE (op0))
2725 && TYPE_PRECISION (TREE_TYPE (op0)) < TYPE_PRECISION (*restype_ptr)
2726 && !unsignedp0
2727 && TYPE_UNSIGNED (TREE_TYPE (op0)))
2728 primop0 = op0;
2729 if (TYPE_PRECISION (TREE_TYPE (primop1)) < TYPE_PRECISION (TREE_TYPE (op1))
2730 && TYPE_PRECISION (TREE_TYPE (op1)) < TYPE_PRECISION (*restype_ptr)
2731 && !unsignedp1
2732 && TYPE_UNSIGNED (TREE_TYPE (op1)))
2733 primop1 = op1;
2734
2735 /* Handle the case that OP0 does not *contain* a conversion
2736 but it *requires* conversion to FINAL_TYPE. */
2737
2738 if (op0 == primop0 && TREE_TYPE (op0) != *restype_ptr)
2739 unsignedp0 = TYPE_UNSIGNED (TREE_TYPE (op0));
2740 if (op1 == primop1 && TREE_TYPE (op1) != *restype_ptr)
2741 unsignedp1 = TYPE_UNSIGNED (TREE_TYPE (op1));
2742
2743 /* If one of the operands must be floated, we cannot optimize. */
2744 real1 = TREE_CODE (TREE_TYPE (primop0)) == REAL_TYPE;
2745 real2 = TREE_CODE (TREE_TYPE (primop1)) == REAL_TYPE;
2746
2747 /* If first arg is constant, swap the args (changing operation
2748 so value is preserved), for canonicalization. Don't do this if
2749 the second arg is 0. */
2750
2751 if (TREE_CONSTANT (primop0)
2752 && !integer_zerop (primop1) && !real_zerop (primop1)
2753 && !fixed_zerop (primop1))
2754 {
2755 std::swap (primop0, primop1);
2756 std::swap (op0, op1);
2757 *op0_ptr = op0;
2758 *op1_ptr = op1;
2759 std::swap (unsignedp0, unsignedp1);
2760 std::swap (real1, real2);
2761
2762 switch (code)
2763 {
2764 case LT_EXPR:
2765 code = GT_EXPR;
2766 break;
2767 case GT_EXPR:
2768 code = LT_EXPR;
2769 break;
2770 case LE_EXPR:
2771 code = GE_EXPR;
2772 break;
2773 case GE_EXPR:
2774 code = LE_EXPR;
2775 break;
2776 default:
2777 break;
2778 }
2779 *rescode_ptr = code;
2780 }
2781
2782 /* If comparing an integer against a constant more bits wide,
2783 maybe we can deduce a value of 1 or 0 independent of the data.
2784 Or else truncate the constant now
2785 rather than extend the variable at run time.
2786
2787 This is only interesting if the constant is the wider arg.
2788 Also, it is not safe if the constant is unsigned and the
2789 variable arg is signed, since in this case the variable
2790 would be sign-extended and then regarded as unsigned.
2791 Our technique fails in this case because the lowest/highest
2792 possible unsigned results don't follow naturally from the
2793 lowest/highest possible values of the variable operand.
2794 For just EQ_EXPR and NE_EXPR there is another technique that
2795 could be used: see if the constant can be faithfully represented
2796 in the other operand's type, by truncating it and reextending it
2797 and see if that preserves the constant's value. */
2798
2799 if (!real1 && !real2
2800 && TREE_CODE (TREE_TYPE (primop0)) != FIXED_POINT_TYPE
2801 && TREE_CODE (primop1) == INTEGER_CST
2802 && TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr))
2803 {
2804 int min_gt, max_gt, min_lt, max_lt;
2805 tree maxval, minval;
2806 /* 1 if comparison is nominally unsigned. */
2807 int unsignedp = TYPE_UNSIGNED (*restype_ptr);
2808 tree val;
2809
2810 type = c_common_signed_or_unsigned_type (unsignedp0,
2811 TREE_TYPE (primop0));
2812
2813 maxval = TYPE_MAX_VALUE (type);
2814 minval = TYPE_MIN_VALUE (type);
2815
2816 if (unsignedp && !unsignedp0)
2817 *restype_ptr = c_common_signed_type (*restype_ptr);
2818
2819 if (TREE_TYPE (primop1) != *restype_ptr)
2820 {
2821 /* Convert primop1 to target type, but do not introduce
2822 additional overflow. We know primop1 is an int_cst. */
2823 primop1 = force_fit_type (*restype_ptr,
2824 wi::to_wide
2825 (primop1,
2826 TYPE_PRECISION (*restype_ptr)),
2827 0, TREE_OVERFLOW (primop1));
2828 }
2829 if (type != *restype_ptr)
2830 {
2831 minval = convert (*restype_ptr, minval);
2832 maxval = convert (*restype_ptr, maxval);
2833 }
2834
2835 min_gt = tree_int_cst_lt (primop1, minval);
2836 max_gt = tree_int_cst_lt (primop1, maxval);
2837 min_lt = tree_int_cst_lt (minval, primop1);
2838 max_lt = tree_int_cst_lt (maxval, primop1);
2839
2840 val = 0;
2841 /* This used to be a switch, but Genix compiler can't handle that. */
2842 if (code == NE_EXPR)
2843 {
2844 if (max_lt || min_gt)
2845 val = truthvalue_true_node;
2846 }
2847 else if (code == EQ_EXPR)
2848 {
2849 if (max_lt || min_gt)
2850 val = truthvalue_false_node;
2851 }
2852 else if (code == LT_EXPR)
2853 {
2854 if (max_lt)
2855 val = truthvalue_true_node;
2856 if (!min_lt)
2857 val = truthvalue_false_node;
2858 }
2859 else if (code == GT_EXPR)
2860 {
2861 if (min_gt)
2862 val = truthvalue_true_node;
2863 if (!max_gt)
2864 val = truthvalue_false_node;
2865 }
2866 else if (code == LE_EXPR)
2867 {
2868 if (!max_gt)
2869 val = truthvalue_true_node;
2870 if (min_gt)
2871 val = truthvalue_false_node;
2872 }
2873 else if (code == GE_EXPR)
2874 {
2875 if (!min_lt)
2876 val = truthvalue_true_node;
2877 if (max_lt)
2878 val = truthvalue_false_node;
2879 }
2880
2881 /* If primop0 was sign-extended and unsigned comparison specd,
2882 we did a signed comparison above using the signed type bounds.
2883 But the comparison we output must be unsigned.
2884
2885 Also, for inequalities, VAL is no good; but if the signed
2886 comparison had *any* fixed result, it follows that the
2887 unsigned comparison just tests the sign in reverse
2888 (positive values are LE, negative ones GE).
2889 So we can generate an unsigned comparison
2890 against an extreme value of the signed type. */
2891
2892 if (unsignedp && !unsignedp0)
2893 {
2894 if (val != 0)
2895 switch (code)
2896 {
2897 case LT_EXPR:
2898 case GE_EXPR:
2899 primop1 = TYPE_MIN_VALUE (type);
2900 val = 0;
2901 break;
2902
2903 case LE_EXPR:
2904 case GT_EXPR:
2905 primop1 = TYPE_MAX_VALUE (type);
2906 val = 0;
2907 break;
2908
2909 default:
2910 break;
2911 }
2912 type = c_common_unsigned_type (type);
2913 }
2914
2915 if (TREE_CODE (primop0) != INTEGER_CST
2916 /* Don't warn if it's from a (non-system) macro. */
2917 && !(from_macro_expansion_at
2918 (expansion_point_location_if_in_system_header
2919 (EXPR_LOCATION (primop0)))))
2920 {
2921 if (val == truthvalue_false_node)
2922 warning_at (loc, OPT_Wtype_limits,
2923 "comparison is always false due to limited range of data type");
2924 if (val == truthvalue_true_node)
2925 warning_at (loc, OPT_Wtype_limits,
2926 "comparison is always true due to limited range of data type");
2927 }
2928
2929 if (val != 0)
2930 {
2931 /* Don't forget to evaluate PRIMOP0 if it has side effects. */
2932 if (TREE_SIDE_EFFECTS (primop0))
2933 return build2 (COMPOUND_EXPR, TREE_TYPE (val), primop0, val);
2934 return val;
2935 }
2936
2937 /* Value is not predetermined, but do the comparison
2938 in the type of the operand that is not constant.
2939 TYPE is already properly set. */
2940 }
2941
2942 /* If either arg is decimal float and the other is float, find the
2943 proper common type to use for comparison. */
2944 else if (real1 && real2
2945 && DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop0)))
2946 && DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop1))))
2947 type = common_type (TREE_TYPE (primop0), TREE_TYPE (primop1));
2948
2949 /* If either arg is decimal float and the other is float, fail. */
2950 else if (real1 && real2
2951 && (DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop0)))
2952 || DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop1)))))
2953 return 0;
2954
2955 else if (real1 && real2
2956 && (TYPE_PRECISION (TREE_TYPE (primop0))
2957 == TYPE_PRECISION (TREE_TYPE (primop1))))
2958 type = TREE_TYPE (primop0);
2959
2960 /* If args' natural types are both narrower than nominal type
2961 and both extend in the same manner, compare them
2962 in the type of the wider arg.
2963 Otherwise must actually extend both to the nominal
2964 common type lest different ways of extending
2965 alter the result.
2966 (eg, (short)-1 == (unsigned short)-1 should be 0.) */
2967
2968 else if (unsignedp0 == unsignedp1 && real1 == real2
2969 && TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr)
2970 && TYPE_PRECISION (TREE_TYPE (primop1)) < TYPE_PRECISION (*restype_ptr))
2971 {
2972 type = common_type (TREE_TYPE (primop0), TREE_TYPE (primop1));
2973 type = c_common_signed_or_unsigned_type (unsignedp0
2974 || TYPE_UNSIGNED (*restype_ptr),
2975 type);
2976 /* Make sure shorter operand is extended the right way
2977 to match the longer operand. */
2978 primop0
2979 = convert (c_common_signed_or_unsigned_type (unsignedp0,
2980 TREE_TYPE (primop0)),
2981 primop0);
2982 primop1
2983 = convert (c_common_signed_or_unsigned_type (unsignedp1,
2984 TREE_TYPE (primop1)),
2985 primop1);
2986 }
2987 else
2988 {
2989 /* Here we must do the comparison on the nominal type
2990 using the args exactly as we received them. */
2991 type = *restype_ptr;
2992 primop0 = op0;
2993 primop1 = op1;
2994
2995 if (!real1 && !real2 && integer_zerop (primop1)
2996 && TYPE_UNSIGNED (*restype_ptr))
2997 {
2998 tree value = 0;
2999 /* All unsigned values are >= 0, so we warn. However,
3000 if OP0 is a constant that is >= 0, the signedness of
3001 the comparison isn't an issue, so suppress the
3002 warning. */
3003 bool warn =
3004 warn_type_limits && !in_system_header_at (loc)
3005 && !(TREE_CODE (primop0) == INTEGER_CST
3006 && !TREE_OVERFLOW (convert (c_common_signed_type (type),
3007 primop0)))
3008 /* Do not warn for enumeration types. */
3009 && (TREE_CODE (expr_original_type (primop0)) != ENUMERAL_TYPE);
3010
3011 switch (code)
3012 {
3013 case GE_EXPR:
3014 if (warn)
3015 warning_at (loc, OPT_Wtype_limits,
3016 "comparison of unsigned expression >= 0 is always true");
3017 value = truthvalue_true_node;
3018 break;
3019
3020 case LT_EXPR:
3021 if (warn)
3022 warning_at (loc, OPT_Wtype_limits,
3023 "comparison of unsigned expression < 0 is always false");
3024 value = truthvalue_false_node;
3025 break;
3026
3027 default:
3028 break;
3029 }
3030
3031 if (value != 0)
3032 {
3033 /* Don't forget to evaluate PRIMOP0 if it has side effects. */
3034 if (TREE_SIDE_EFFECTS (primop0))
3035 return build2 (COMPOUND_EXPR, TREE_TYPE (value),
3036 primop0, value);
3037 return value;
3038 }
3039 }
3040 }
3041
3042 *op0_ptr = convert (type, primop0);
3043 *op1_ptr = convert (type, primop1);
3044
3045 *restype_ptr = truthvalue_type_node;
3046
3047 return 0;
3048 }
3049 \f
3050 /* Return a tree for the sum or difference (RESULTCODE says which)
3051 of pointer PTROP and integer INTOP. */
3052
3053 tree
3054 pointer_int_sum (location_t loc, enum tree_code resultcode,
3055 tree ptrop, tree intop, bool complain)
3056 {
3057 tree size_exp, ret;
3058
3059 /* The result is a pointer of the same type that is being added. */
3060 tree result_type = TREE_TYPE (ptrop);
3061
3062 if (TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
3063 {
3064 if (complain && warn_pointer_arith)
3065 pedwarn (loc, OPT_Wpointer_arith,
3066 "pointer of type %<void *%> used in arithmetic");
3067 else if (!complain)
3068 return error_mark_node;
3069 size_exp = integer_one_node;
3070 }
3071 else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE)
3072 {
3073 if (complain && warn_pointer_arith)
3074 pedwarn (loc, OPT_Wpointer_arith,
3075 "pointer to a function used in arithmetic");
3076 else if (!complain)
3077 return error_mark_node;
3078 size_exp = integer_one_node;
3079 }
3080 else
3081 size_exp = size_in_bytes_loc (loc, TREE_TYPE (result_type));
3082
3083 /* We are manipulating pointer values, so we don't need to warn
3084 about relying on undefined signed overflow. We disable the
3085 warning here because we use integer types so fold won't know that
3086 they are really pointers. */
3087 fold_defer_overflow_warnings ();
3088
3089 /* If what we are about to multiply by the size of the elements
3090 contains a constant term, apply distributive law
3091 and multiply that constant term separately.
3092 This helps produce common subexpressions. */
3093 if ((TREE_CODE (intop) == PLUS_EXPR || TREE_CODE (intop) == MINUS_EXPR)
3094 && !TREE_CONSTANT (intop)
3095 && TREE_CONSTANT (TREE_OPERAND (intop, 1))
3096 && TREE_CONSTANT (size_exp)
3097 /* If the constant comes from pointer subtraction,
3098 skip this optimization--it would cause an error. */
3099 && TREE_CODE (TREE_TYPE (TREE_OPERAND (intop, 0))) == INTEGER_TYPE
3100 /* If the constant is unsigned, and smaller than the pointer size,
3101 then we must skip this optimization. This is because it could cause
3102 an overflow error if the constant is negative but INTOP is not. */
3103 && (!TYPE_UNSIGNED (TREE_TYPE (intop))
3104 || (TYPE_PRECISION (TREE_TYPE (intop))
3105 == TYPE_PRECISION (TREE_TYPE (ptrop)))))
3106 {
3107 enum tree_code subcode = resultcode;
3108 tree int_type = TREE_TYPE (intop);
3109 if (TREE_CODE (intop) == MINUS_EXPR)
3110 subcode = (subcode == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR);
3111 /* Convert both subexpression types to the type of intop,
3112 because weird cases involving pointer arithmetic
3113 can result in a sum or difference with different type args. */
3114 ptrop = build_binary_op (EXPR_LOCATION (TREE_OPERAND (intop, 1)),
3115 subcode, ptrop,
3116 convert (int_type, TREE_OPERAND (intop, 1)), 1);
3117 intop = convert (int_type, TREE_OPERAND (intop, 0));
3118 }
3119
3120 /* Convert the integer argument to a type the same size as sizetype
3121 so the multiply won't overflow spuriously. */
3122 if (TYPE_PRECISION (TREE_TYPE (intop)) != TYPE_PRECISION (sizetype)
3123 || TYPE_UNSIGNED (TREE_TYPE (intop)) != TYPE_UNSIGNED (sizetype))
3124 intop = convert (c_common_type_for_size (TYPE_PRECISION (sizetype),
3125 TYPE_UNSIGNED (sizetype)), intop);
3126
3127 /* Replace the integer argument with a suitable product by the object size.
3128 Do this multiplication as signed, then convert to the appropriate type
3129 for the pointer operation and disregard an overflow that occurred only
3130 because of the sign-extension change in the latter conversion. */
3131 {
3132 tree t = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (intop), intop,
3133 convert (TREE_TYPE (intop), size_exp));
3134 intop = convert (sizetype, t);
3135 if (TREE_OVERFLOW_P (intop) && !TREE_OVERFLOW (t))
3136 intop = wide_int_to_tree (TREE_TYPE (intop), intop);
3137 }
3138
3139 /* Create the sum or difference. */
3140 if (resultcode == MINUS_EXPR)
3141 intop = fold_build1_loc (loc, NEGATE_EXPR, sizetype, intop);
3142
3143 ret = fold_build_pointer_plus_loc (loc, ptrop, intop);
3144
3145 fold_undefer_and_ignore_overflow_warnings ();
3146
3147 return ret;
3148 }
3149 \f
3150 /* Wrap a C_MAYBE_CONST_EXPR around an expression that is fully folded
3151 and if NON_CONST is known not to be permitted in an evaluated part
3152 of a constant expression. */
3153
3154 tree
3155 c_wrap_maybe_const (tree expr, bool non_const)
3156 {
3157 bool nowarning = TREE_NO_WARNING (expr);
3158 location_t loc = EXPR_LOCATION (expr);
3159
3160 /* This should never be called for C++. */
3161 if (c_dialect_cxx ())
3162 gcc_unreachable ();
3163
3164 /* The result of folding may have a NOP_EXPR to set TREE_NO_WARNING. */
3165 STRIP_TYPE_NOPS (expr);
3166 expr = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (expr), NULL, expr);
3167 C_MAYBE_CONST_EXPR_NON_CONST (expr) = non_const;
3168 if (nowarning)
3169 TREE_NO_WARNING (expr) = 1;
3170 protected_set_expr_location (expr, loc);
3171
3172 return expr;
3173 }
3174
3175 /* Wrap a SAVE_EXPR around EXPR, if appropriate. Like save_expr, but
3176 for C folds the inside expression and wraps a C_MAYBE_CONST_EXPR
3177 around the SAVE_EXPR if needed so that c_fully_fold does not need
3178 to look inside SAVE_EXPRs. */
3179
3180 tree
3181 c_save_expr (tree expr)
3182 {
3183 bool maybe_const = true;
3184 if (c_dialect_cxx ())
3185 return save_expr (expr);
3186 expr = c_fully_fold (expr, false, &maybe_const);
3187 expr = save_expr (expr);
3188 if (!maybe_const)
3189 expr = c_wrap_maybe_const (expr, true);
3190 return expr;
3191 }
3192
3193 /* Return whether EXPR is a declaration whose address can never be
3194 NULL. */
3195
3196 bool
3197 decl_with_nonnull_addr_p (const_tree expr)
3198 {
3199 return (DECL_P (expr)
3200 && (TREE_CODE (expr) == PARM_DECL
3201 || TREE_CODE (expr) == LABEL_DECL
3202 || !DECL_WEAK (expr)));
3203 }
3204
3205 /* Prepare expr to be an argument of a TRUTH_NOT_EXPR,
3206 or for an `if' or `while' statement or ?..: exp. It should already
3207 have been validated to be of suitable type; otherwise, a bad
3208 diagnostic may result.
3209
3210 The EXPR is located at LOCATION.
3211
3212 This preparation consists of taking the ordinary
3213 representation of an expression expr and producing a valid tree
3214 boolean expression describing whether expr is nonzero. We could
3215 simply always do build_binary_op (NE_EXPR, expr, truthvalue_false_node, 1),
3216 but we optimize comparisons, &&, ||, and !.
3217
3218 The resulting type should always be `truthvalue_type_node'. */
3219
3220 tree
3221 c_common_truthvalue_conversion (location_t location, tree expr)
3222 {
3223 switch (TREE_CODE (expr))
3224 {
3225 case EQ_EXPR: case NE_EXPR: case UNEQ_EXPR: case LTGT_EXPR:
3226 case LE_EXPR: case GE_EXPR: case LT_EXPR: case GT_EXPR:
3227 case UNLE_EXPR: case UNGE_EXPR: case UNLT_EXPR: case UNGT_EXPR:
3228 case ORDERED_EXPR: case UNORDERED_EXPR:
3229 if (TREE_TYPE (expr) == truthvalue_type_node)
3230 return expr;
3231 expr = build2 (TREE_CODE (expr), truthvalue_type_node,
3232 TREE_OPERAND (expr, 0), TREE_OPERAND (expr, 1));
3233 goto ret;
3234
3235 case TRUTH_ANDIF_EXPR:
3236 case TRUTH_ORIF_EXPR:
3237 case TRUTH_AND_EXPR:
3238 case TRUTH_OR_EXPR:
3239 case TRUTH_XOR_EXPR:
3240 if (TREE_TYPE (expr) == truthvalue_type_node)
3241 return expr;
3242 expr = build2 (TREE_CODE (expr), truthvalue_type_node,
3243 c_common_truthvalue_conversion (location,
3244 TREE_OPERAND (expr, 0)),
3245 c_common_truthvalue_conversion (location,
3246 TREE_OPERAND (expr, 1)));
3247 goto ret;
3248
3249 case TRUTH_NOT_EXPR:
3250 if (TREE_TYPE (expr) == truthvalue_type_node)
3251 return expr;
3252 expr = build1 (TREE_CODE (expr), truthvalue_type_node,
3253 c_common_truthvalue_conversion (location,
3254 TREE_OPERAND (expr, 0)));
3255 goto ret;
3256
3257 case ERROR_MARK:
3258 return expr;
3259
3260 case INTEGER_CST:
3261 if (TREE_CODE (TREE_TYPE (expr)) == ENUMERAL_TYPE
3262 && !integer_zerop (expr)
3263 && !integer_onep (expr))
3264 warning_at (location, OPT_Wint_in_bool_context,
3265 "enum constant in boolean context");
3266 return integer_zerop (expr) ? truthvalue_false_node
3267 : truthvalue_true_node;
3268
3269 case REAL_CST:
3270 return real_compare (NE_EXPR, &TREE_REAL_CST (expr), &dconst0)
3271 ? truthvalue_true_node
3272 : truthvalue_false_node;
3273
3274 case FIXED_CST:
3275 return fixed_compare (NE_EXPR, &TREE_FIXED_CST (expr),
3276 &FCONST0 (TYPE_MODE (TREE_TYPE (expr))))
3277 ? truthvalue_true_node
3278 : truthvalue_false_node;
3279
3280 case FUNCTION_DECL:
3281 expr = build_unary_op (location, ADDR_EXPR, expr, false);
3282 /* Fall through. */
3283
3284 case ADDR_EXPR:
3285 {
3286 tree inner = TREE_OPERAND (expr, 0);
3287 if (decl_with_nonnull_addr_p (inner))
3288 {
3289 /* Common Ada/Pascal programmer's mistake. */
3290 warning_at (location,
3291 OPT_Waddress,
3292 "the address of %qD will always evaluate as %<true%>",
3293 inner);
3294 return truthvalue_true_node;
3295 }
3296 break;
3297 }
3298
3299 case COMPLEX_EXPR:
3300 expr = build_binary_op (EXPR_LOCATION (expr),
3301 (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1))
3302 ? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
3303 c_common_truthvalue_conversion (location,
3304 TREE_OPERAND (expr, 0)),
3305 c_common_truthvalue_conversion (location,
3306 TREE_OPERAND (expr, 1)),
3307 0);
3308 goto ret;
3309
3310 case NEGATE_EXPR:
3311 case ABS_EXPR:
3312 case FLOAT_EXPR:
3313 case EXCESS_PRECISION_EXPR:
3314 /* These don't change whether an object is nonzero or zero. */
3315 return c_common_truthvalue_conversion (location, TREE_OPERAND (expr, 0));
3316
3317 case LROTATE_EXPR:
3318 case RROTATE_EXPR:
3319 /* These don't change whether an object is zero or nonzero, but
3320 we can't ignore them if their second arg has side-effects. */
3321 if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1)))
3322 {
3323 expr = build2 (COMPOUND_EXPR, truthvalue_type_node,
3324 TREE_OPERAND (expr, 1),
3325 c_common_truthvalue_conversion
3326 (location, TREE_OPERAND (expr, 0)));
3327 goto ret;
3328 }
3329 else
3330 return c_common_truthvalue_conversion (location,
3331 TREE_OPERAND (expr, 0));
3332
3333 case MULT_EXPR:
3334 warning_at (EXPR_LOCATION (expr), OPT_Wint_in_bool_context,
3335 "%<*%> in boolean context, suggest %<&&%> instead");
3336 break;
3337
3338 case LSHIFT_EXPR:
3339 /* We will only warn on signed shifts here, because the majority of
3340 false positive warnings happen in code where unsigned arithmetic
3341 was used in anticipation of a possible overflow.
3342 Furthermore, if we see an unsigned type here we know that the
3343 result of the shift is not subject to integer promotion rules. */
3344 if (TREE_CODE (TREE_TYPE (expr)) == INTEGER_TYPE
3345 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
3346 warning_at (EXPR_LOCATION (expr), OPT_Wint_in_bool_context,
3347 "%<<<%> in boolean context, did you mean %<<%> ?");
3348 break;
3349
3350 case COND_EXPR:
3351 if (warn_int_in_bool_context
3352 && !from_macro_definition_at (EXPR_LOCATION (expr)))
3353 {
3354 tree val1 = fold_for_warn (TREE_OPERAND (expr, 1));
3355 tree val2 = fold_for_warn (TREE_OPERAND (expr, 2));
3356 if (TREE_CODE (val1) == INTEGER_CST
3357 && TREE_CODE (val2) == INTEGER_CST
3358 && !integer_zerop (val1)
3359 && !integer_zerop (val2)
3360 && (!integer_onep (val1)
3361 || !integer_onep (val2)))
3362 warning_at (EXPR_LOCATION (expr), OPT_Wint_in_bool_context,
3363 "?: using integer constants in boolean context, "
3364 "the expression will always evaluate to %<true%>");
3365 else if ((TREE_CODE (val1) == INTEGER_CST
3366 && !integer_zerop (val1)
3367 && !integer_onep (val1))
3368 || (TREE_CODE (val2) == INTEGER_CST
3369 && !integer_zerop (val2)
3370 && !integer_onep (val2)))
3371 warning_at (EXPR_LOCATION (expr), OPT_Wint_in_bool_context,
3372 "?: using integer constants in boolean context");
3373 }
3374 /* Distribute the conversion into the arms of a COND_EXPR. */
3375 if (c_dialect_cxx ())
3376 /* Avoid premature folding. */
3377 break;
3378 else
3379 {
3380 int w = warn_int_in_bool_context;
3381 warn_int_in_bool_context = 0;
3382 /* Folding will happen later for C. */
3383 expr = build3 (COND_EXPR, truthvalue_type_node,
3384 TREE_OPERAND (expr, 0),
3385 c_common_truthvalue_conversion (location,
3386 TREE_OPERAND (expr, 1)),
3387 c_common_truthvalue_conversion (location,
3388 TREE_OPERAND (expr, 2)));
3389 warn_int_in_bool_context = w;
3390 goto ret;
3391 }
3392
3393 CASE_CONVERT:
3394 {
3395 tree totype = TREE_TYPE (expr);
3396 tree fromtype = TREE_TYPE (TREE_OPERAND (expr, 0));
3397
3398 if (POINTER_TYPE_P (totype)
3399 && !c_inhibit_evaluation_warnings
3400 && TREE_CODE (fromtype) == REFERENCE_TYPE)
3401 {
3402 tree inner = expr;
3403 STRIP_NOPS (inner);
3404
3405 if (DECL_P (inner))
3406 warning_at (location,
3407 OPT_Waddress,
3408 "the compiler can assume that the address of "
3409 "%qD will always evaluate to %<true%>",
3410 inner);
3411 }
3412
3413 /* Don't cancel the effect of a CONVERT_EXPR from a REFERENCE_TYPE,
3414 since that affects how `default_conversion' will behave. */
3415 if (TREE_CODE (totype) == REFERENCE_TYPE
3416 || TREE_CODE (fromtype) == REFERENCE_TYPE)
3417 break;
3418 /* Don't strip a conversion from C++0x scoped enum, since they
3419 don't implicitly convert to other types. */
3420 if (TREE_CODE (fromtype) == ENUMERAL_TYPE
3421 && ENUM_IS_SCOPED (fromtype))
3422 break;
3423 /* If this isn't narrowing the argument, we can ignore it. */
3424 if (TYPE_PRECISION (totype) >= TYPE_PRECISION (fromtype))
3425 return c_common_truthvalue_conversion (location,
3426 TREE_OPERAND (expr, 0));
3427 }
3428 break;
3429
3430 case MODIFY_EXPR:
3431 if (!TREE_NO_WARNING (expr)
3432 && warn_parentheses)
3433 {
3434 warning_at (location, OPT_Wparentheses,
3435 "suggest parentheses around assignment used as "
3436 "truth value");
3437 TREE_NO_WARNING (expr) = 1;
3438 }
3439 break;
3440
3441 default:
3442 break;
3443 }
3444
3445 if (TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
3446 {
3447 tree t = (in_late_binary_op ? save_expr (expr) : c_save_expr (expr));
3448 expr = (build_binary_op
3449 (EXPR_LOCATION (expr),
3450 (TREE_SIDE_EFFECTS (expr)
3451 ? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
3452 c_common_truthvalue_conversion
3453 (location,
3454 build_unary_op (location, REALPART_EXPR, t, false)),
3455 c_common_truthvalue_conversion
3456 (location,
3457 build_unary_op (location, IMAGPART_EXPR, t, false)),
3458 0));
3459 goto ret;
3460 }
3461
3462 if (TREE_CODE (TREE_TYPE (expr)) == FIXED_POINT_TYPE)
3463 {
3464 tree fixed_zero_node = build_fixed (TREE_TYPE (expr),
3465 FCONST0 (TYPE_MODE
3466 (TREE_TYPE (expr))));
3467 return build_binary_op (location, NE_EXPR, expr, fixed_zero_node, 1);
3468 }
3469 else
3470 return build_binary_op (location, NE_EXPR, expr, integer_zero_node, 1);
3471
3472 ret:
3473 protected_set_expr_location (expr, location);
3474 return expr;
3475 }
3476 \f
3477 static void def_builtin_1 (enum built_in_function fncode,
3478 const char *name,
3479 enum built_in_class fnclass,
3480 tree fntype, tree libtype,
3481 bool both_p, bool fallback_p, bool nonansi_p,
3482 tree fnattrs, bool implicit_p);
3483
3484
3485 /* Apply the TYPE_QUALS to the new DECL. */
3486
3487 void
3488 c_apply_type_quals_to_decl (int type_quals, tree decl)
3489 {
3490 tree type = TREE_TYPE (decl);
3491
3492 if (type == error_mark_node)
3493 return;
3494
3495 if ((type_quals & TYPE_QUAL_CONST)
3496 || (type && TREE_CODE (type) == REFERENCE_TYPE))
3497 /* We used to check TYPE_NEEDS_CONSTRUCTING here, but now a constexpr
3498 constructor can produce constant init, so rely on cp_finish_decl to
3499 clear TREE_READONLY if the variable has non-constant init. */
3500 TREE_READONLY (decl) = 1;
3501 if (type_quals & TYPE_QUAL_VOLATILE)
3502 {
3503 TREE_SIDE_EFFECTS (decl) = 1;
3504 TREE_THIS_VOLATILE (decl) = 1;
3505 }
3506 if (type_quals & TYPE_QUAL_RESTRICT)
3507 {
3508 while (type && TREE_CODE (type) == ARRAY_TYPE)
3509 /* Allow 'restrict' on arrays of pointers.
3510 FIXME currently we just ignore it. */
3511 type = TREE_TYPE (type);
3512 if (!type
3513 || !POINTER_TYPE_P (type)
3514 || !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type)))
3515 error ("invalid use of %<restrict%>");
3516 }
3517 }
3518
3519 struct c_type_hasher : ggc_ptr_hash<tree_node>
3520 {
3521 static hashval_t hash (tree);
3522 static bool equal (tree, tree);
3523 };
3524
3525 /* Hash function for the problem of multiple type definitions in
3526 different files. This must hash all types that will compare
3527 equal via comptypes to the same value. In practice it hashes
3528 on some of the simple stuff and leaves the details to comptypes. */
3529
3530 hashval_t
3531 c_type_hasher::hash (tree t)
3532 {
3533 int n_elements;
3534 int shift, size;
3535 tree t2;
3536 switch (TREE_CODE (t))
3537 {
3538 /* For pointers, hash on pointee type plus some swizzling. */
3539 case POINTER_TYPE:
3540 return hash (TREE_TYPE (t)) ^ 0x3003003;
3541 /* Hash on number of elements and total size. */
3542 case ENUMERAL_TYPE:
3543 shift = 3;
3544 t2 = TYPE_VALUES (t);
3545 break;
3546 case RECORD_TYPE:
3547 shift = 0;
3548 t2 = TYPE_FIELDS (t);
3549 break;
3550 case QUAL_UNION_TYPE:
3551 shift = 1;
3552 t2 = TYPE_FIELDS (t);
3553 break;
3554 case UNION_TYPE:
3555 shift = 2;
3556 t2 = TYPE_FIELDS (t);
3557 break;
3558 default:
3559 gcc_unreachable ();
3560 }
3561 /* FIXME: We want to use a DECL_CHAIN iteration method here, but
3562 TYPE_VALUES of ENUMERAL_TYPEs is stored as a TREE_LIST. */
3563 n_elements = list_length (t2);
3564 /* We might have a VLA here. */
3565 if (TREE_CODE (TYPE_SIZE (t)) != INTEGER_CST)
3566 size = 0;
3567 else
3568 size = TREE_INT_CST_LOW (TYPE_SIZE (t));
3569 return ((size << 24) | (n_elements << shift));
3570 }
3571
3572 bool
3573 c_type_hasher::equal (tree t1, tree t2)
3574 {
3575 return lang_hooks.types_compatible_p (t1, t2);
3576 }
3577
3578 static GTY(()) hash_table<c_type_hasher> *type_hash_table;
3579
3580 /* Return the typed-based alias set for T, which may be an expression
3581 or a type. Return -1 if we don't do anything special. */
3582
3583 alias_set_type
3584 c_common_get_alias_set (tree t)
3585 {
3586 /* For VLAs, use the alias set of the element type rather than the
3587 default of alias set 0 for types compared structurally. */
3588 if (TYPE_P (t) && TYPE_STRUCTURAL_EQUALITY_P (t))
3589 {
3590 if (TREE_CODE (t) == ARRAY_TYPE)
3591 return get_alias_set (TREE_TYPE (t));
3592 return -1;
3593 }
3594
3595 /* That's all the expressions we handle specially. */
3596 if (!TYPE_P (t))
3597 return -1;
3598
3599 /* The C standard guarantees that any object may be accessed via an
3600 lvalue that has character type. */
3601 if (t == char_type_node
3602 || t == signed_char_type_node
3603 || t == unsigned_char_type_node)
3604 return 0;
3605
3606 /* The C standard specifically allows aliasing between signed and
3607 unsigned variants of the same type. We treat the signed
3608 variant as canonical. */
3609 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
3610 {
3611 tree t1 = c_common_signed_type (t);
3612
3613 /* t1 == t can happen for boolean nodes which are always unsigned. */
3614 if (t1 != t)
3615 return get_alias_set (t1);
3616 }
3617
3618 /* Handle the case of multiple type nodes referring to "the same" type,
3619 which occurs with IMA. These share an alias set. FIXME: Currently only
3620 C90 is handled. (In C99 type compatibility is not transitive, which
3621 complicates things mightily. The alias set splay trees can theoretically
3622 represent this, but insertion is tricky when you consider all the
3623 different orders things might arrive in.) */
3624
3625 if (c_language != clk_c || flag_isoc99)
3626 return -1;
3627
3628 /* Save time if there's only one input file. */
3629 if (num_in_fnames == 1)
3630 return -1;
3631
3632 /* Pointers need special handling if they point to any type that
3633 needs special handling (below). */
3634 if (TREE_CODE (t) == POINTER_TYPE)
3635 {
3636 tree t2;
3637 /* Find bottom type under any nested POINTERs. */
3638 for (t2 = TREE_TYPE (t);
3639 TREE_CODE (t2) == POINTER_TYPE;
3640 t2 = TREE_TYPE (t2))
3641 ;
3642 if (!RECORD_OR_UNION_TYPE_P (t2)
3643 && TREE_CODE (t2) != ENUMERAL_TYPE)
3644 return -1;
3645 if (TYPE_SIZE (t2) == 0)
3646 return -1;
3647 }
3648 /* These are the only cases that need special handling. */
3649 if (!RECORD_OR_UNION_TYPE_P (t)
3650 && TREE_CODE (t) != ENUMERAL_TYPE
3651 && TREE_CODE (t) != POINTER_TYPE)
3652 return -1;
3653 /* Undefined? */
3654 if (TYPE_SIZE (t) == 0)
3655 return -1;
3656
3657 /* Look up t in hash table. Only one of the compatible types within each
3658 alias set is recorded in the table. */
3659 if (!type_hash_table)
3660 type_hash_table = hash_table<c_type_hasher>::create_ggc (1021);
3661 tree *slot = type_hash_table->find_slot (t, INSERT);
3662 if (*slot != NULL)
3663 {
3664 TYPE_ALIAS_SET (t) = TYPE_ALIAS_SET ((tree)*slot);
3665 return TYPE_ALIAS_SET ((tree)*slot);
3666 }
3667 else
3668 /* Our caller will assign and record (in t) a new alias set; all we need
3669 to do is remember t in the hash table. */
3670 *slot = t;
3671
3672 return -1;
3673 }
3674 \f
3675 /* Compute the value of 'sizeof (TYPE)' or '__alignof__ (TYPE)', where
3676 the IS_SIZEOF parameter indicates which operator is being applied.
3677 The COMPLAIN flag controls whether we should diagnose possibly
3678 ill-formed constructs or not. LOC is the location of the SIZEOF or
3679 TYPEOF operator. If MIN_ALIGNOF, the least alignment required for
3680 a type in any context should be returned, rather than the normal
3681 alignment for that type. */
3682
3683 tree
3684 c_sizeof_or_alignof_type (location_t loc,
3685 tree type, bool is_sizeof, bool min_alignof,
3686 int complain)
3687 {
3688 const char *op_name;
3689 tree value = NULL;
3690 enum tree_code type_code = TREE_CODE (type);
3691
3692 op_name = is_sizeof ? "sizeof" : "__alignof__";
3693
3694 if (type_code == FUNCTION_TYPE)
3695 {
3696 if (is_sizeof)
3697 {
3698 if (complain && warn_pointer_arith)
3699 pedwarn (loc, OPT_Wpointer_arith,
3700 "invalid application of %<sizeof%> to a function type");
3701 else if (!complain)
3702 return error_mark_node;
3703 value = size_one_node;
3704 }
3705 else
3706 {
3707 if (complain)
3708 {
3709 if (c_dialect_cxx ())
3710 pedwarn (loc, OPT_Wpedantic, "ISO C++ does not permit "
3711 "%<alignof%> applied to a function type");
3712 else
3713 pedwarn (loc, OPT_Wpedantic, "ISO C does not permit "
3714 "%<_Alignof%> applied to a function type");
3715 }
3716 value = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
3717 }
3718 }
3719 else if (type_code == VOID_TYPE || type_code == ERROR_MARK)
3720 {
3721 if (type_code == VOID_TYPE
3722 && complain && warn_pointer_arith)
3723 pedwarn (loc, OPT_Wpointer_arith,
3724 "invalid application of %qs to a void type", op_name);
3725 else if (!complain)
3726 return error_mark_node;
3727 value = size_one_node;
3728 }
3729 else if (!COMPLETE_TYPE_P (type)
3730 && (!c_dialect_cxx () || is_sizeof || type_code != ARRAY_TYPE))
3731 {
3732 if (complain)
3733 error_at (loc, "invalid application of %qs to incomplete type %qT",
3734 op_name, type);
3735 return error_mark_node;
3736 }
3737 else if (c_dialect_cxx () && type_code == ARRAY_TYPE
3738 && !COMPLETE_TYPE_P (TREE_TYPE (type)))
3739 {
3740 if (complain)
3741 error_at (loc, "invalid application of %qs to array type %qT of "
3742 "incomplete element type", op_name, type);
3743 return error_mark_node;
3744 }
3745 else
3746 {
3747 if (is_sizeof)
3748 /* Convert in case a char is more than one unit. */
3749 value = size_binop_loc (loc, CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
3750 size_int (TYPE_PRECISION (char_type_node)
3751 / BITS_PER_UNIT));
3752 else if (min_alignof)
3753 value = size_int (min_align_of_type (type));
3754 else
3755 value = size_int (TYPE_ALIGN_UNIT (type));
3756 }
3757
3758 /* VALUE will have the middle-end integer type sizetype.
3759 However, we should really return a value of type `size_t',
3760 which is just a typedef for an ordinary integer type. */
3761 value = fold_convert_loc (loc, size_type_node, value);
3762
3763 return value;
3764 }
3765
3766 /* Implement the __alignof keyword: Return the minimum required
3767 alignment of EXPR, measured in bytes. For VAR_DECLs,
3768 FUNCTION_DECLs and FIELD_DECLs return DECL_ALIGN (which can be set
3769 from an "aligned" __attribute__ specification). LOC is the
3770 location of the ALIGNOF operator. */
3771
3772 tree
3773 c_alignof_expr (location_t loc, tree expr)
3774 {
3775 tree t;
3776
3777 if (VAR_OR_FUNCTION_DECL_P (expr))
3778 t = size_int (DECL_ALIGN_UNIT (expr));
3779
3780 else if (TREE_CODE (expr) == COMPONENT_REF
3781 && DECL_C_BIT_FIELD (TREE_OPERAND (expr, 1)))
3782 {
3783 error_at (loc, "%<__alignof%> applied to a bit-field");
3784 t = size_one_node;
3785 }
3786 else if (TREE_CODE (expr) == COMPONENT_REF
3787 && TREE_CODE (TREE_OPERAND (expr, 1)) == FIELD_DECL)
3788 t = size_int (DECL_ALIGN_UNIT (TREE_OPERAND (expr, 1)));
3789
3790 else if (INDIRECT_REF_P (expr))
3791 {
3792 tree t = TREE_OPERAND (expr, 0);
3793 tree best = t;
3794 int bestalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
3795
3796 while (CONVERT_EXPR_P (t)
3797 && TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == POINTER_TYPE)
3798 {
3799 int thisalign;
3800
3801 t = TREE_OPERAND (t, 0);
3802 thisalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
3803 if (thisalign > bestalign)
3804 best = t, bestalign = thisalign;
3805 }
3806 return c_alignof (loc, TREE_TYPE (TREE_TYPE (best)));
3807 }
3808 else
3809 return c_alignof (loc, TREE_TYPE (expr));
3810
3811 return fold_convert_loc (loc, size_type_node, t);
3812 }
3813 \f
3814 /* Handle C and C++ default attributes. */
3815
3816 enum built_in_attribute
3817 {
3818 #define DEF_ATTR_NULL_TREE(ENUM) ENUM,
3819 #define DEF_ATTR_INT(ENUM, VALUE) ENUM,
3820 #define DEF_ATTR_STRING(ENUM, VALUE) ENUM,
3821 #define DEF_ATTR_IDENT(ENUM, STRING) ENUM,
3822 #define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) ENUM,
3823 #include "builtin-attrs.def"
3824 #undef DEF_ATTR_NULL_TREE
3825 #undef DEF_ATTR_INT
3826 #undef DEF_ATTR_STRING
3827 #undef DEF_ATTR_IDENT
3828 #undef DEF_ATTR_TREE_LIST
3829 ATTR_LAST
3830 };
3831
3832 static GTY(()) tree built_in_attributes[(int) ATTR_LAST];
3833
3834 static void c_init_attributes (void);
3835
3836 enum c_builtin_type
3837 {
3838 #define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME,
3839 #define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME,
3840 #define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME,
3841 #define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME,
3842 #define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
3843 #define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
3844 #define DEF_FUNCTION_TYPE_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) NAME,
3845 #define DEF_FUNCTION_TYPE_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
3846 ARG6) NAME,
3847 #define DEF_FUNCTION_TYPE_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
3848 ARG6, ARG7) NAME,
3849 #define DEF_FUNCTION_TYPE_8(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
3850 ARG6, ARG7, ARG8) NAME,
3851 #define DEF_FUNCTION_TYPE_9(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
3852 ARG6, ARG7, ARG8, ARG9) NAME,
3853 #define DEF_FUNCTION_TYPE_10(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
3854 ARG6, ARG7, ARG8, ARG9, ARG10) NAME,
3855 #define DEF_FUNCTION_TYPE_11(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
3856 ARG6, ARG7, ARG8, ARG9, ARG10, ARG11) NAME,
3857 #define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME,
3858 #define DEF_FUNCTION_TYPE_VAR_1(NAME, RETURN, ARG1) NAME,
3859 #define DEF_FUNCTION_TYPE_VAR_2(NAME, RETURN, ARG1, ARG2) NAME,
3860 #define DEF_FUNCTION_TYPE_VAR_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
3861 #define DEF_FUNCTION_TYPE_VAR_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
3862 #define DEF_FUNCTION_TYPE_VAR_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
3863 NAME,
3864 #define DEF_FUNCTION_TYPE_VAR_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
3865 ARG6) NAME,
3866 #define DEF_FUNCTION_TYPE_VAR_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
3867 ARG6, ARG7) NAME,
3868 #define DEF_POINTER_TYPE(NAME, TYPE) NAME,
3869 #include "builtin-types.def"
3870 #undef DEF_PRIMITIVE_TYPE
3871 #undef DEF_FUNCTION_TYPE_0
3872 #undef DEF_FUNCTION_TYPE_1
3873 #undef DEF_FUNCTION_TYPE_2
3874 #undef DEF_FUNCTION_TYPE_3
3875 #undef DEF_FUNCTION_TYPE_4
3876 #undef DEF_FUNCTION_TYPE_5
3877 #undef DEF_FUNCTION_TYPE_6
3878 #undef DEF_FUNCTION_TYPE_7
3879 #undef DEF_FUNCTION_TYPE_8
3880 #undef DEF_FUNCTION_TYPE_9
3881 #undef DEF_FUNCTION_TYPE_10
3882 #undef DEF_FUNCTION_TYPE_11
3883 #undef DEF_FUNCTION_TYPE_VAR_0
3884 #undef DEF_FUNCTION_TYPE_VAR_1
3885 #undef DEF_FUNCTION_TYPE_VAR_2
3886 #undef DEF_FUNCTION_TYPE_VAR_3
3887 #undef DEF_FUNCTION_TYPE_VAR_4
3888 #undef DEF_FUNCTION_TYPE_VAR_5
3889 #undef DEF_FUNCTION_TYPE_VAR_6
3890 #undef DEF_FUNCTION_TYPE_VAR_7
3891 #undef DEF_POINTER_TYPE
3892 BT_LAST
3893 };
3894
3895 typedef enum c_builtin_type builtin_type;
3896
3897 /* A temporary array for c_common_nodes_and_builtins. Used in
3898 communication with def_fn_type. */
3899 static tree builtin_types[(int) BT_LAST + 1];
3900
3901 /* A helper function for c_common_nodes_and_builtins. Build function type
3902 for DEF with return type RET and N arguments. If VAR is true, then the
3903 function should be variadic after those N arguments.
3904
3905 Takes special care not to ICE if any of the types involved are
3906 error_mark_node, which indicates that said type is not in fact available
3907 (see builtin_type_for_size). In which case the function type as a whole
3908 should be error_mark_node. */
3909
3910 static void
3911 def_fn_type (builtin_type def, builtin_type ret, bool var, int n, ...)
3912 {
3913 tree t;
3914 tree *args = XALLOCAVEC (tree, n);
3915 va_list list;
3916 int i;
3917
3918 va_start (list, n);
3919 for (i = 0; i < n; ++i)
3920 {
3921 builtin_type a = (builtin_type) va_arg (list, int);
3922 t = builtin_types[a];
3923 if (t == error_mark_node)
3924 goto egress;
3925 args[i] = t;
3926 }
3927
3928 t = builtin_types[ret];
3929 if (t == error_mark_node)
3930 goto egress;
3931 if (var)
3932 t = build_varargs_function_type_array (t, n, args);
3933 else
3934 t = build_function_type_array (t, n, args);
3935
3936 egress:
3937 builtin_types[def] = t;
3938 va_end (list);
3939 }
3940
3941 /* Build builtin functions common to both C and C++ language
3942 frontends. */
3943
3944 static void
3945 c_define_builtins (tree va_list_ref_type_node, tree va_list_arg_type_node)
3946 {
3947 #define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \
3948 builtin_types[ENUM] = VALUE;
3949 #define DEF_FUNCTION_TYPE_0(ENUM, RETURN) \
3950 def_fn_type (ENUM, RETURN, 0, 0);
3951 #define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1) \
3952 def_fn_type (ENUM, RETURN, 0, 1, ARG1);
3953 #define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2) \
3954 def_fn_type (ENUM, RETURN, 0, 2, ARG1, ARG2);
3955 #define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
3956 def_fn_type (ENUM, RETURN, 0, 3, ARG1, ARG2, ARG3);
3957 #define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
3958 def_fn_type (ENUM, RETURN, 0, 4, ARG1, ARG2, ARG3, ARG4);
3959 #define DEF_FUNCTION_TYPE_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
3960 def_fn_type (ENUM, RETURN, 0, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
3961 #define DEF_FUNCTION_TYPE_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
3962 ARG6) \
3963 def_fn_type (ENUM, RETURN, 0, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
3964 #define DEF_FUNCTION_TYPE_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
3965 ARG6, ARG7) \
3966 def_fn_type (ENUM, RETURN, 0, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
3967 #define DEF_FUNCTION_TYPE_8(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
3968 ARG6, ARG7, ARG8) \
3969 def_fn_type (ENUM, RETURN, 0, 8, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, \
3970 ARG7, ARG8);
3971 #define DEF_FUNCTION_TYPE_9(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
3972 ARG6, ARG7, ARG8, ARG9) \
3973 def_fn_type (ENUM, RETURN, 0, 9, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, \
3974 ARG7, ARG8, ARG9);
3975 #define DEF_FUNCTION_TYPE_10(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
3976 ARG6, ARG7, ARG8, ARG9, ARG10) \
3977 def_fn_type (ENUM, RETURN, 0, 10, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, \
3978 ARG7, ARG8, ARG9, ARG10);
3979 #define DEF_FUNCTION_TYPE_11(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
3980 ARG6, ARG7, ARG8, ARG9, ARG10, ARG11) \
3981 def_fn_type (ENUM, RETURN, 0, 11, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, \
3982 ARG7, ARG8, ARG9, ARG10, ARG11);
3983 #define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN) \
3984 def_fn_type (ENUM, RETURN, 1, 0);
3985 #define DEF_FUNCTION_TYPE_VAR_1(ENUM, RETURN, ARG1) \
3986 def_fn_type (ENUM, RETURN, 1, 1, ARG1);
3987 #define DEF_FUNCTION_TYPE_VAR_2(ENUM, RETURN, ARG1, ARG2) \
3988 def_fn_type (ENUM, RETURN, 1, 2, ARG1, ARG2);
3989 #define DEF_FUNCTION_TYPE_VAR_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
3990 def_fn_type (ENUM, RETURN, 1, 3, ARG1, ARG2, ARG3);
3991 #define DEF_FUNCTION_TYPE_VAR_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
3992 def_fn_type (ENUM, RETURN, 1, 4, ARG1, ARG2, ARG3, ARG4);
3993 #define DEF_FUNCTION_TYPE_VAR_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
3994 def_fn_type (ENUM, RETURN, 1, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
3995 #define DEF_FUNCTION_TYPE_VAR_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
3996 ARG6) \
3997 def_fn_type (ENUM, RETURN, 1, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
3998 #define DEF_FUNCTION_TYPE_VAR_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
3999 ARG6, ARG7) \
4000 def_fn_type (ENUM, RETURN, 1, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
4001 #define DEF_POINTER_TYPE(ENUM, TYPE) \
4002 builtin_types[(int) ENUM] = build_pointer_type (builtin_types[(int) TYPE]);
4003
4004 #include "builtin-types.def"
4005
4006 #undef DEF_PRIMITIVE_TYPE
4007 #undef DEF_FUNCTION_TYPE_0
4008 #undef DEF_FUNCTION_TYPE_1
4009 #undef DEF_FUNCTION_TYPE_2
4010 #undef DEF_FUNCTION_TYPE_3
4011 #undef DEF_FUNCTION_TYPE_4
4012 #undef DEF_FUNCTION_TYPE_5
4013 #undef DEF_FUNCTION_TYPE_6
4014 #undef DEF_FUNCTION_TYPE_7
4015 #undef DEF_FUNCTION_TYPE_8
4016 #undef DEF_FUNCTION_TYPE_9
4017 #undef DEF_FUNCTION_TYPE_10
4018 #undef DEF_FUNCTION_TYPE_11
4019 #undef DEF_FUNCTION_TYPE_VAR_0
4020 #undef DEF_FUNCTION_TYPE_VAR_1
4021 #undef DEF_FUNCTION_TYPE_VAR_2
4022 #undef DEF_FUNCTION_TYPE_VAR_3
4023 #undef DEF_FUNCTION_TYPE_VAR_4
4024 #undef DEF_FUNCTION_TYPE_VAR_5
4025 #undef DEF_FUNCTION_TYPE_VAR_6
4026 #undef DEF_FUNCTION_TYPE_VAR_7
4027 #undef DEF_POINTER_TYPE
4028 builtin_types[(int) BT_LAST] = NULL_TREE;
4029
4030 c_init_attributes ();
4031
4032 #define DEF_BUILTIN(ENUM, NAME, CLASS, TYPE, LIBTYPE, BOTH_P, FALLBACK_P, \
4033 NONANSI_P, ATTRS, IMPLICIT, COND) \
4034 if (NAME && COND) \
4035 def_builtin_1 (ENUM, NAME, CLASS, \
4036 builtin_types[(int) TYPE], \
4037 builtin_types[(int) LIBTYPE], \
4038 BOTH_P, FALLBACK_P, NONANSI_P, \
4039 built_in_attributes[(int) ATTRS], IMPLICIT);
4040 #include "builtins.def"
4041
4042 targetm.init_builtins ();
4043
4044 build_common_builtin_nodes ();
4045
4046 if (flag_cilkplus)
4047 cilk_init_builtins ();
4048 }
4049
4050 /* Like get_identifier, but avoid warnings about null arguments when
4051 the argument may be NULL for targets where GCC lacks stdint.h type
4052 information. */
4053
4054 static inline tree
4055 c_get_ident (const char *id)
4056 {
4057 return get_identifier (id);
4058 }
4059
4060 /* Build tree nodes and builtin functions common to both C and C++ language
4061 frontends. */
4062
4063 void
4064 c_common_nodes_and_builtins (void)
4065 {
4066 int char16_type_size;
4067 int char32_type_size;
4068 int wchar_type_size;
4069 tree array_domain_type;
4070 tree va_list_ref_type_node;
4071 tree va_list_arg_type_node;
4072 int i;
4073
4074 build_common_tree_nodes (flag_signed_char);
4075
4076 /* Define `int' and `char' first so that dbx will output them first. */
4077 record_builtin_type (RID_INT, NULL, integer_type_node);
4078 record_builtin_type (RID_CHAR, "char", char_type_node);
4079
4080 /* `signed' is the same as `int'. FIXME: the declarations of "signed",
4081 "unsigned long", "long long unsigned" and "unsigned short" were in C++
4082 but not C. Are the conditionals here needed? */
4083 if (c_dialect_cxx ())
4084 record_builtin_type (RID_SIGNED, NULL, integer_type_node);
4085 record_builtin_type (RID_LONG, "long int", long_integer_type_node);
4086 record_builtin_type (RID_UNSIGNED, "unsigned int", unsigned_type_node);
4087 record_builtin_type (RID_MAX, "long unsigned int",
4088 long_unsigned_type_node);
4089
4090 for (i = 0; i < NUM_INT_N_ENTS; i ++)
4091 {
4092 char name[25];
4093
4094 sprintf (name, "__int%d", int_n_data[i].bitsize);
4095 record_builtin_type ((enum rid)(RID_FIRST_INT_N + i), name,
4096 int_n_trees[i].signed_type);
4097 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
4098 record_builtin_type (RID_MAX, name, int_n_trees[i].unsigned_type);
4099 }
4100
4101 if (c_dialect_cxx ())
4102 record_builtin_type (RID_MAX, "unsigned long", long_unsigned_type_node);
4103 record_builtin_type (RID_MAX, "long long int",
4104 long_long_integer_type_node);
4105 record_builtin_type (RID_MAX, "long long unsigned int",
4106 long_long_unsigned_type_node);
4107 if (c_dialect_cxx ())
4108 record_builtin_type (RID_MAX, "long long unsigned",
4109 long_long_unsigned_type_node);
4110 record_builtin_type (RID_SHORT, "short int", short_integer_type_node);
4111 record_builtin_type (RID_MAX, "short unsigned int",
4112 short_unsigned_type_node);
4113 if (c_dialect_cxx ())
4114 record_builtin_type (RID_MAX, "unsigned short",
4115 short_unsigned_type_node);
4116
4117 /* Define both `signed char' and `unsigned char'. */
4118 record_builtin_type (RID_MAX, "signed char", signed_char_type_node);
4119 record_builtin_type (RID_MAX, "unsigned char", unsigned_char_type_node);
4120
4121 /* These are types that c_common_type_for_size and
4122 c_common_type_for_mode use. */
4123 lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
4124 TYPE_DECL, NULL_TREE,
4125 intQI_type_node));
4126 lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
4127 TYPE_DECL, NULL_TREE,
4128 intHI_type_node));
4129 lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
4130 TYPE_DECL, NULL_TREE,
4131 intSI_type_node));
4132 lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
4133 TYPE_DECL, NULL_TREE,
4134 intDI_type_node));
4135 #if HOST_BITS_PER_WIDE_INT >= 64
4136 /* Note that this is different than the __int128 type that's part of
4137 the generic __intN support. */
4138 if (targetm.scalar_mode_supported_p (TImode))
4139 lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
4140 TYPE_DECL,
4141 get_identifier ("__int128_t"),
4142 intTI_type_node));
4143 #endif
4144 lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
4145 TYPE_DECL, NULL_TREE,
4146 unsigned_intQI_type_node));
4147 lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
4148 TYPE_DECL, NULL_TREE,
4149 unsigned_intHI_type_node));
4150 lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
4151 TYPE_DECL, NULL_TREE,
4152 unsigned_intSI_type_node));
4153 lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
4154 TYPE_DECL, NULL_TREE,
4155 unsigned_intDI_type_node));
4156 #if HOST_BITS_PER_WIDE_INT >= 64
4157 if (targetm.scalar_mode_supported_p (TImode))
4158 lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
4159 TYPE_DECL,
4160 get_identifier ("__uint128_t"),
4161 unsigned_intTI_type_node));
4162 #endif
4163
4164 /* Create the widest literal types. */
4165 widest_integer_literal_type_node
4166 = make_signed_type (HOST_BITS_PER_WIDE_INT * 2);
4167 lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
4168 TYPE_DECL, NULL_TREE,
4169 widest_integer_literal_type_node));
4170
4171 widest_unsigned_literal_type_node
4172 = make_unsigned_type (HOST_BITS_PER_WIDE_INT * 2);
4173 lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
4174 TYPE_DECL, NULL_TREE,
4175 widest_unsigned_literal_type_node));
4176
4177 signed_size_type_node = c_common_signed_type (size_type_node);
4178
4179 pid_type_node =
4180 TREE_TYPE (identifier_global_value (get_identifier (PID_TYPE)));
4181
4182 record_builtin_type (RID_FLOAT, NULL, float_type_node);
4183 record_builtin_type (RID_DOUBLE, NULL, double_type_node);
4184 record_builtin_type (RID_MAX, "long double", long_double_type_node);
4185
4186 if (!c_dialect_cxx ())
4187 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
4188 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
4189 record_builtin_type ((enum rid) (RID_FLOATN_NX_FIRST + i), NULL,
4190 FLOATN_NX_TYPE_NODE (i));
4191
4192 /* Only supported decimal floating point extension if the target
4193 actually supports underlying modes. */
4194 if (targetm.scalar_mode_supported_p (SDmode)
4195 && targetm.scalar_mode_supported_p (DDmode)
4196 && targetm.scalar_mode_supported_p (TDmode))
4197 {
4198 record_builtin_type (RID_DFLOAT32, NULL, dfloat32_type_node);
4199 record_builtin_type (RID_DFLOAT64, NULL, dfloat64_type_node);
4200 record_builtin_type (RID_DFLOAT128, NULL, dfloat128_type_node);
4201 }
4202
4203 if (targetm.fixed_point_supported_p ())
4204 {
4205 record_builtin_type (RID_MAX, "short _Fract", short_fract_type_node);
4206 record_builtin_type (RID_FRACT, NULL, fract_type_node);
4207 record_builtin_type (RID_MAX, "long _Fract", long_fract_type_node);
4208 record_builtin_type (RID_MAX, "long long _Fract",
4209 long_long_fract_type_node);
4210 record_builtin_type (RID_MAX, "unsigned short _Fract",
4211 unsigned_short_fract_type_node);
4212 record_builtin_type (RID_MAX, "unsigned _Fract",
4213 unsigned_fract_type_node);
4214 record_builtin_type (RID_MAX, "unsigned long _Fract",
4215 unsigned_long_fract_type_node);
4216 record_builtin_type (RID_MAX, "unsigned long long _Fract",
4217 unsigned_long_long_fract_type_node);
4218 record_builtin_type (RID_MAX, "_Sat short _Fract",
4219 sat_short_fract_type_node);
4220 record_builtin_type (RID_MAX, "_Sat _Fract", sat_fract_type_node);
4221 record_builtin_type (RID_MAX, "_Sat long _Fract",
4222 sat_long_fract_type_node);
4223 record_builtin_type (RID_MAX, "_Sat long long _Fract",
4224 sat_long_long_fract_type_node);
4225 record_builtin_type (RID_MAX, "_Sat unsigned short _Fract",
4226 sat_unsigned_short_fract_type_node);
4227 record_builtin_type (RID_MAX, "_Sat unsigned _Fract",
4228 sat_unsigned_fract_type_node);
4229 record_builtin_type (RID_MAX, "_Sat unsigned long _Fract",
4230 sat_unsigned_long_fract_type_node);
4231 record_builtin_type (RID_MAX, "_Sat unsigned long long _Fract",
4232 sat_unsigned_long_long_fract_type_node);
4233 record_builtin_type (RID_MAX, "short _Accum", short_accum_type_node);
4234 record_builtin_type (RID_ACCUM, NULL, accum_type_node);
4235 record_builtin_type (RID_MAX, "long _Accum", long_accum_type_node);
4236 record_builtin_type (RID_MAX, "long long _Accum",
4237 long_long_accum_type_node);
4238 record_builtin_type (RID_MAX, "unsigned short _Accum",
4239 unsigned_short_accum_type_node);
4240 record_builtin_type (RID_MAX, "unsigned _Accum",
4241 unsigned_accum_type_node);
4242 record_builtin_type (RID_MAX, "unsigned long _Accum",
4243 unsigned_long_accum_type_node);
4244 record_builtin_type (RID_MAX, "unsigned long long _Accum",
4245 unsigned_long_long_accum_type_node);
4246 record_builtin_type (RID_MAX, "_Sat short _Accum",
4247 sat_short_accum_type_node);
4248 record_builtin_type (RID_MAX, "_Sat _Accum", sat_accum_type_node);
4249 record_builtin_type (RID_MAX, "_Sat long _Accum",
4250 sat_long_accum_type_node);
4251 record_builtin_type (RID_MAX, "_Sat long long _Accum",
4252 sat_long_long_accum_type_node);
4253 record_builtin_type (RID_MAX, "_Sat unsigned short _Accum",
4254 sat_unsigned_short_accum_type_node);
4255 record_builtin_type (RID_MAX, "_Sat unsigned _Accum",
4256 sat_unsigned_accum_type_node);
4257 record_builtin_type (RID_MAX, "_Sat unsigned long _Accum",
4258 sat_unsigned_long_accum_type_node);
4259 record_builtin_type (RID_MAX, "_Sat unsigned long long _Accum",
4260 sat_unsigned_long_long_accum_type_node);
4261
4262 }
4263
4264 lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
4265 TYPE_DECL,
4266 get_identifier ("complex int"),
4267 complex_integer_type_node));
4268 lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
4269 TYPE_DECL,
4270 get_identifier ("complex float"),
4271 complex_float_type_node));
4272 lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
4273 TYPE_DECL,
4274 get_identifier ("complex double"),
4275 complex_double_type_node));
4276 lang_hooks.decls.pushdecl
4277 (build_decl (UNKNOWN_LOCATION,
4278 TYPE_DECL, get_identifier ("complex long double"),
4279 complex_long_double_type_node));
4280
4281 if (!c_dialect_cxx ())
4282 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
4283 if (COMPLEX_FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
4284 {
4285 char buf[30];
4286 sprintf (buf, "complex _Float%d%s", floatn_nx_types[i].n,
4287 floatn_nx_types[i].extended ? "x" : "");
4288 lang_hooks.decls.pushdecl
4289 (build_decl (UNKNOWN_LOCATION,
4290 TYPE_DECL,
4291 get_identifier (buf),
4292 COMPLEX_FLOATN_NX_TYPE_NODE (i)));
4293 }
4294
4295 if (c_dialect_cxx ())
4296 {
4297 /* For C++, make fileptr_type_node a distinct void * type until
4298 FILE type is defined. */
4299 fileptr_type_node = build_variant_type_copy (ptr_type_node);
4300 /* Likewise for const struct tm*. */
4301 const_tm_ptr_type_node = build_variant_type_copy (const_ptr_type_node);
4302 }
4303
4304 record_builtin_type (RID_VOID, NULL, void_type_node);
4305
4306 /* Set the TYPE_NAME for any variants that were built before
4307 record_builtin_type gave names to the built-in types. */
4308 {
4309 tree void_name = TYPE_NAME (void_type_node);
4310 TYPE_NAME (void_type_node) = NULL_TREE;
4311 TYPE_NAME (build_qualified_type (void_type_node, TYPE_QUAL_CONST))
4312 = void_name;
4313 TYPE_NAME (void_type_node) = void_name;
4314 }
4315
4316 void_list_node = build_void_list_node ();
4317
4318 /* Make a type to be the domain of a few array types
4319 whose domains don't really matter.
4320 200 is small enough that it always fits in size_t
4321 and large enough that it can hold most function names for the
4322 initializations of __FUNCTION__ and __PRETTY_FUNCTION__. */
4323 array_domain_type = build_index_type (size_int (200));
4324
4325 /* Make a type for arrays of characters.
4326 With luck nothing will ever really depend on the length of this
4327 array type. */
4328 char_array_type_node
4329 = build_array_type (char_type_node, array_domain_type);
4330
4331 string_type_node = build_pointer_type (char_type_node);
4332 const_string_type_node
4333 = build_pointer_type (build_qualified_type
4334 (char_type_node, TYPE_QUAL_CONST));
4335
4336 /* This is special for C++ so functions can be overloaded. */
4337 wchar_type_node = get_identifier (MODIFIED_WCHAR_TYPE);
4338 wchar_type_node = TREE_TYPE (identifier_global_value (wchar_type_node));
4339 wchar_type_size = TYPE_PRECISION (wchar_type_node);
4340 underlying_wchar_type_node = wchar_type_node;
4341 if (c_dialect_cxx ())
4342 {
4343 if (TYPE_UNSIGNED (wchar_type_node))
4344 wchar_type_node = make_unsigned_type (wchar_type_size);
4345 else
4346 wchar_type_node = make_signed_type (wchar_type_size);
4347 record_builtin_type (RID_WCHAR, "wchar_t", wchar_type_node);
4348 }
4349
4350 /* This is for wide string constants. */
4351 wchar_array_type_node
4352 = build_array_type (wchar_type_node, array_domain_type);
4353
4354 /* Define 'char16_t'. */
4355 char16_type_node = get_identifier (CHAR16_TYPE);
4356 char16_type_node = TREE_TYPE (identifier_global_value (char16_type_node));
4357 char16_type_size = TYPE_PRECISION (char16_type_node);
4358 if (c_dialect_cxx ())
4359 {
4360 char16_type_node = make_unsigned_type (char16_type_size);
4361
4362 if (cxx_dialect >= cxx11)
4363 record_builtin_type (RID_CHAR16, "char16_t", char16_type_node);
4364 }
4365
4366 /* This is for UTF-16 string constants. */
4367 char16_array_type_node
4368 = build_array_type (char16_type_node, array_domain_type);
4369
4370 /* Define 'char32_t'. */
4371 char32_type_node = get_identifier (CHAR32_TYPE);
4372 char32_type_node = TREE_TYPE (identifier_global_value (char32_type_node));
4373 char32_type_size = TYPE_PRECISION (char32_type_node);
4374 if (c_dialect_cxx ())
4375 {
4376 char32_type_node = make_unsigned_type (char32_type_size);
4377
4378 if (cxx_dialect >= cxx11)
4379 record_builtin_type (RID_CHAR32, "char32_t", char32_type_node);
4380 }
4381
4382 /* This is for UTF-32 string constants. */
4383 char32_array_type_node
4384 = build_array_type (char32_type_node, array_domain_type);
4385
4386 wint_type_node =
4387 TREE_TYPE (identifier_global_value (get_identifier (WINT_TYPE)));
4388
4389 intmax_type_node =
4390 TREE_TYPE (identifier_global_value (get_identifier (INTMAX_TYPE)));
4391 uintmax_type_node =
4392 TREE_TYPE (identifier_global_value (get_identifier (UINTMAX_TYPE)));
4393
4394 if (SIG_ATOMIC_TYPE)
4395 sig_atomic_type_node =
4396 TREE_TYPE (identifier_global_value (c_get_ident (SIG_ATOMIC_TYPE)));
4397 if (INT8_TYPE)
4398 int8_type_node =
4399 TREE_TYPE (identifier_global_value (c_get_ident (INT8_TYPE)));
4400 if (INT16_TYPE)
4401 int16_type_node =
4402 TREE_TYPE (identifier_global_value (c_get_ident (INT16_TYPE)));
4403 if (INT32_TYPE)
4404 int32_type_node =
4405 TREE_TYPE (identifier_global_value (c_get_ident (INT32_TYPE)));
4406 if (INT64_TYPE)
4407 int64_type_node =
4408 TREE_TYPE (identifier_global_value (c_get_ident (INT64_TYPE)));
4409 if (UINT8_TYPE)
4410 uint8_type_node =
4411 TREE_TYPE (identifier_global_value (c_get_ident (UINT8_TYPE)));
4412 if (UINT16_TYPE)
4413 c_uint16_type_node = uint16_type_node =
4414 TREE_TYPE (identifier_global_value (c_get_ident (UINT16_TYPE)));
4415 if (UINT32_TYPE)
4416 c_uint32_type_node = uint32_type_node =
4417 TREE_TYPE (identifier_global_value (c_get_ident (UINT32_TYPE)));
4418 if (UINT64_TYPE)
4419 c_uint64_type_node = uint64_type_node =
4420 TREE_TYPE (identifier_global_value (c_get_ident (UINT64_TYPE)));
4421 if (INT_LEAST8_TYPE)
4422 int_least8_type_node =
4423 TREE_TYPE (identifier_global_value (c_get_ident (INT_LEAST8_TYPE)));
4424 if (INT_LEAST16_TYPE)
4425 int_least16_type_node =
4426 TREE_TYPE (identifier_global_value (c_get_ident (INT_LEAST16_TYPE)));
4427 if (INT_LEAST32_TYPE)
4428 int_least32_type_node =
4429 TREE_TYPE (identifier_global_value (c_get_ident (INT_LEAST32_TYPE)));
4430 if (INT_LEAST64_TYPE)
4431 int_least64_type_node =
4432 TREE_TYPE (identifier_global_value (c_get_ident (INT_LEAST64_TYPE)));
4433 if (UINT_LEAST8_TYPE)
4434 uint_least8_type_node =
4435 TREE_TYPE (identifier_global_value (c_get_ident (UINT_LEAST8_TYPE)));
4436 if (UINT_LEAST16_TYPE)
4437 uint_least16_type_node =
4438 TREE_TYPE (identifier_global_value (c_get_ident (UINT_LEAST16_TYPE)));
4439 if (UINT_LEAST32_TYPE)
4440 uint_least32_type_node =
4441 TREE_TYPE (identifier_global_value (c_get_ident (UINT_LEAST32_TYPE)));
4442 if (UINT_LEAST64_TYPE)
4443 uint_least64_type_node =
4444 TREE_TYPE (identifier_global_value (c_get_ident (UINT_LEAST64_TYPE)));
4445 if (INT_FAST8_TYPE)
4446 int_fast8_type_node =
4447 TREE_TYPE (identifier_global_value (c_get_ident (INT_FAST8_TYPE)));
4448 if (INT_FAST16_TYPE)
4449 int_fast16_type_node =
4450 TREE_TYPE (identifier_global_value (c_get_ident (INT_FAST16_TYPE)));
4451 if (INT_FAST32_TYPE)
4452 int_fast32_type_node =
4453 TREE_TYPE (identifier_global_value (c_get_ident (INT_FAST32_TYPE)));
4454 if (INT_FAST64_TYPE)
4455 int_fast64_type_node =
4456 TREE_TYPE (identifier_global_value (c_get_ident (INT_FAST64_TYPE)));
4457 if (UINT_FAST8_TYPE)
4458 uint_fast8_type_node =
4459 TREE_TYPE (identifier_global_value (c_get_ident (UINT_FAST8_TYPE)));
4460 if (UINT_FAST16_TYPE)
4461 uint_fast16_type_node =
4462 TREE_TYPE (identifier_global_value (c_get_ident (UINT_FAST16_TYPE)));
4463 if (UINT_FAST32_TYPE)
4464 uint_fast32_type_node =
4465 TREE_TYPE (identifier_global_value (c_get_ident (UINT_FAST32_TYPE)));
4466 if (UINT_FAST64_TYPE)
4467 uint_fast64_type_node =
4468 TREE_TYPE (identifier_global_value (c_get_ident (UINT_FAST64_TYPE)));
4469 if (INTPTR_TYPE)
4470 intptr_type_node =
4471 TREE_TYPE (identifier_global_value (c_get_ident (INTPTR_TYPE)));
4472 if (UINTPTR_TYPE)
4473 uintptr_type_node =
4474 TREE_TYPE (identifier_global_value (c_get_ident (UINTPTR_TYPE)));
4475
4476 default_function_type
4477 = build_varargs_function_type_list (integer_type_node, NULL_TREE);
4478 unsigned_ptrdiff_type_node = c_common_unsigned_type (ptrdiff_type_node);
4479
4480 lang_hooks.decls.pushdecl
4481 (build_decl (UNKNOWN_LOCATION,
4482 TYPE_DECL, get_identifier ("__builtin_va_list"),
4483 va_list_type_node));
4484 if (targetm.enum_va_list_p)
4485 {
4486 int l;
4487 const char *pname;
4488 tree ptype;
4489
4490 for (l = 0; targetm.enum_va_list_p (l, &pname, &ptype); ++l)
4491 {
4492 lang_hooks.decls.pushdecl
4493 (build_decl (UNKNOWN_LOCATION,
4494 TYPE_DECL, get_identifier (pname),
4495 ptype));
4496
4497 }
4498 }
4499
4500 if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
4501 {
4502 va_list_arg_type_node = va_list_ref_type_node =
4503 build_pointer_type (TREE_TYPE (va_list_type_node));
4504 }
4505 else
4506 {
4507 va_list_arg_type_node = va_list_type_node;
4508 va_list_ref_type_node = build_reference_type (va_list_type_node);
4509 }
4510
4511 if (!flag_preprocess_only)
4512 c_define_builtins (va_list_ref_type_node, va_list_arg_type_node);
4513
4514 main_identifier_node = get_identifier ("main");
4515
4516 /* Create the built-in __null node. It is important that this is
4517 not shared. */
4518 null_node = make_int_cst (1, 1);
4519 TREE_TYPE (null_node) = c_common_type_for_size (POINTER_SIZE, 0);
4520
4521 /* Since builtin_types isn't gc'ed, don't export these nodes. */
4522 memset (builtin_types, 0, sizeof (builtin_types));
4523 }
4524
4525 /* The number of named compound-literals generated thus far. */
4526 static GTY(()) int compound_literal_number;
4527
4528 /* Set DECL_NAME for DECL, a VAR_DECL for a compound-literal. */
4529
4530 void
4531 set_compound_literal_name (tree decl)
4532 {
4533 char *name;
4534 ASM_FORMAT_PRIVATE_NAME (name, "__compound_literal",
4535 compound_literal_number);
4536 compound_literal_number++;
4537 DECL_NAME (decl) = get_identifier (name);
4538 }
4539
4540 /* build_va_arg helper function. Return a VA_ARG_EXPR with location LOC, type
4541 TYPE and operand OP. */
4542
4543 static tree
4544 build_va_arg_1 (location_t loc, tree type, tree op)
4545 {
4546 tree expr = build1 (VA_ARG_EXPR, type, op);
4547 SET_EXPR_LOCATION (expr, loc);
4548 return expr;
4549 }
4550
4551 /* Return a VA_ARG_EXPR corresponding to a source-level expression
4552 va_arg (EXPR, TYPE) at source location LOC. */
4553
4554 tree
4555 build_va_arg (location_t loc, tree expr, tree type)
4556 {
4557 tree va_type = TREE_TYPE (expr);
4558 tree canon_va_type = (va_type == error_mark_node
4559 ? error_mark_node
4560 : targetm.canonical_va_list_type (va_type));
4561
4562 if (va_type == error_mark_node
4563 || canon_va_type == NULL_TREE)
4564 {
4565 if (canon_va_type == NULL_TREE)
4566 error_at (loc, "first argument to %<va_arg%> not of type %<va_list%>");
4567
4568 /* Let's handle things neutrallly, if expr:
4569 - has undeclared type, or
4570 - is not an va_list type. */
4571 return build_va_arg_1 (loc, type, error_mark_node);
4572 }
4573
4574 if (TREE_CODE (canon_va_type) != ARRAY_TYPE)
4575 {
4576 /* Case 1: Not an array type. */
4577
4578 /* Take the address, to get '&ap'. Note that &ap is not a va_list
4579 type. */
4580 mark_addressable (expr);
4581 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (expr)), expr);
4582
4583 return build_va_arg_1 (loc, type, expr);
4584 }
4585
4586 /* Case 2: Array type.
4587
4588 Background:
4589
4590 For contrast, let's start with the simple case (case 1). If
4591 canon_va_type is not an array type, but say a char *, then when
4592 passing-by-value a va_list, the type of the va_list param decl is
4593 the same as for another va_list decl (all ap's are char *):
4594
4595 f2_1 (char * ap)
4596 D.1815 = VA_ARG (&ap, 0B, 1);
4597 return D.1815;
4598
4599 f2 (int i)
4600 char * ap.0;
4601 char * ap;
4602 __builtin_va_start (&ap, 0);
4603 ap.0 = ap;
4604 res = f2_1 (ap.0);
4605 __builtin_va_end (&ap);
4606 D.1812 = res;
4607 return D.1812;
4608
4609 However, if canon_va_type is ARRAY_TYPE, then when passing-by-value a
4610 va_list the type of the va_list param decl (case 2b, struct * ap) is not
4611 the same as for another va_list decl (case 2a, struct ap[1]).
4612
4613 f2_1 (struct * ap)
4614 D.1844 = VA_ARG (ap, 0B, 0);
4615 return D.1844;
4616
4617 f2 (int i)
4618 struct ap[1];
4619 __builtin_va_start (&ap, 0);
4620 res = f2_1 (&ap);
4621 __builtin_va_end (&ap);
4622 D.1841 = res;
4623 return D.1841;
4624
4625 Case 2b is different because:
4626 - on the callee side, the parm decl has declared type va_list, but
4627 grokdeclarator changes the type of the parm decl to a pointer to the
4628 array elem type.
4629 - on the caller side, the pass-by-value uses &ap.
4630
4631 We unify these two cases (case 2a: va_list is array type,
4632 case 2b: va_list is pointer to array elem type), by adding '&' for the
4633 array type case, such that we have a pointer to array elem in both
4634 cases. */
4635
4636 if (TREE_CODE (va_type) == ARRAY_TYPE)
4637 {
4638 /* Case 2a: va_list is array type. */
4639
4640 /* Take the address, to get '&ap'. Make sure it's a pointer to array
4641 elem type. */
4642 mark_addressable (expr);
4643 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (canon_va_type)),
4644 expr);
4645
4646 /* Verify that &ap is still recognized as having va_list type. */
4647 tree canon_expr_type
4648 = targetm.canonical_va_list_type (TREE_TYPE (expr));
4649 gcc_assert (canon_expr_type != NULL_TREE);
4650 }
4651 else
4652 {
4653 /* Case 2b: va_list is pointer to array elem type. */
4654 gcc_assert (POINTER_TYPE_P (va_type));
4655
4656 /* Comparison as in std_canonical_va_list_type. */
4657 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (va_type))
4658 == TYPE_MAIN_VARIANT (TREE_TYPE (canon_va_type)));
4659
4660 /* Don't take the address. We've already got '&ap'. */
4661 ;
4662 }
4663
4664 return build_va_arg_1 (loc, type, expr);
4665 }
4666
4667
4668 /* Linked list of disabled built-in functions. */
4669
4670 struct disabled_builtin
4671 {
4672 const char *name;
4673 struct disabled_builtin *next;
4674 };
4675 static disabled_builtin *disabled_builtins = NULL;
4676
4677 static bool builtin_function_disabled_p (const char *);
4678
4679 /* Disable a built-in function specified by -fno-builtin-NAME. If NAME
4680 begins with "__builtin_", give an error. */
4681
4682 void
4683 disable_builtin_function (const char *name)
4684 {
4685 if (strncmp (name, "__builtin_", strlen ("__builtin_")) == 0)
4686 error ("cannot disable built-in function %qs", name);
4687 else
4688 {
4689 disabled_builtin *new_disabled_builtin = XNEW (disabled_builtin);
4690 new_disabled_builtin->name = name;
4691 new_disabled_builtin->next = disabled_builtins;
4692 disabled_builtins = new_disabled_builtin;
4693 }
4694 }
4695
4696
4697 /* Return true if the built-in function NAME has been disabled, false
4698 otherwise. */
4699
4700 static bool
4701 builtin_function_disabled_p (const char *name)
4702 {
4703 disabled_builtin *p;
4704 for (p = disabled_builtins; p != NULL; p = p->next)
4705 {
4706 if (strcmp (name, p->name) == 0)
4707 return true;
4708 }
4709 return false;
4710 }
4711
4712
4713 /* Worker for DEF_BUILTIN.
4714 Possibly define a builtin function with one or two names.
4715 Does not declare a non-__builtin_ function if flag_no_builtin, or if
4716 nonansi_p and flag_no_nonansi_builtin. */
4717
4718 static void
4719 def_builtin_1 (enum built_in_function fncode,
4720 const char *name,
4721 enum built_in_class fnclass,
4722 tree fntype, tree libtype,
4723 bool both_p, bool fallback_p, bool nonansi_p,
4724 tree fnattrs, bool implicit_p)
4725 {
4726 tree decl;
4727 const char *libname;
4728
4729 if (fntype == error_mark_node)
4730 return;
4731
4732 gcc_assert ((!both_p && !fallback_p)
4733 || !strncmp (name, "__builtin_",
4734 strlen ("__builtin_")));
4735
4736 libname = name + strlen ("__builtin_");
4737 decl = add_builtin_function (name, fntype, fncode, fnclass,
4738 (fallback_p ? libname : NULL),
4739 fnattrs);
4740
4741 set_builtin_decl (fncode, decl, implicit_p);
4742
4743 if (both_p
4744 && !flag_no_builtin && !builtin_function_disabled_p (libname)
4745 && !(nonansi_p && flag_no_nonansi_builtin))
4746 add_builtin_function (libname, libtype, fncode, fnclass,
4747 NULL, fnattrs);
4748 }
4749 \f
4750 /* Nonzero if the type T promotes to int. This is (nearly) the
4751 integral promotions defined in ISO C99 6.3.1.1/2. */
4752
4753 bool
4754 c_promoting_integer_type_p (const_tree t)
4755 {
4756 switch (TREE_CODE (t))
4757 {
4758 case INTEGER_TYPE:
4759 return (TYPE_MAIN_VARIANT (t) == char_type_node
4760 || TYPE_MAIN_VARIANT (t) == signed_char_type_node
4761 || TYPE_MAIN_VARIANT (t) == unsigned_char_type_node
4762 || TYPE_MAIN_VARIANT (t) == short_integer_type_node
4763 || TYPE_MAIN_VARIANT (t) == short_unsigned_type_node
4764 || TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node));
4765
4766 case ENUMERAL_TYPE:
4767 /* ??? Technically all enumerations not larger than an int
4768 promote to an int. But this is used along code paths
4769 that only want to notice a size change. */
4770 return TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node);
4771
4772 case BOOLEAN_TYPE:
4773 return 1;
4774
4775 default:
4776 return 0;
4777 }
4778 }
4779
4780 /* Return 1 if PARMS specifies a fixed number of parameters
4781 and none of their types is affected by default promotions. */
4782
4783 int
4784 self_promoting_args_p (const_tree parms)
4785 {
4786 const_tree t;
4787 for (t = parms; t; t = TREE_CHAIN (t))
4788 {
4789 tree type = TREE_VALUE (t);
4790
4791 if (type == error_mark_node)
4792 continue;
4793
4794 if (TREE_CHAIN (t) == 0 && type != void_type_node)
4795 return 0;
4796
4797 if (type == 0)
4798 return 0;
4799
4800 if (TYPE_MAIN_VARIANT (type) == float_type_node)
4801 return 0;
4802
4803 if (c_promoting_integer_type_p (type))
4804 return 0;
4805 }
4806 return 1;
4807 }
4808
4809 /* Recursively remove any '*' or '&' operator from TYPE. */
4810 tree
4811 strip_pointer_operator (tree t)
4812 {
4813 while (POINTER_TYPE_P (t))
4814 t = TREE_TYPE (t);
4815 return t;
4816 }
4817
4818 /* Recursively remove pointer or array type from TYPE. */
4819 tree
4820 strip_pointer_or_array_types (tree t)
4821 {
4822 while (TREE_CODE (t) == ARRAY_TYPE || POINTER_TYPE_P (t))
4823 t = TREE_TYPE (t);
4824 return t;
4825 }
4826
4827 /* Used to compare case labels. K1 and K2 are actually tree nodes
4828 representing case labels, or NULL_TREE for a `default' label.
4829 Returns -1 if K1 is ordered before K2, -1 if K1 is ordered after
4830 K2, and 0 if K1 and K2 are equal. */
4831
4832 int
4833 case_compare (splay_tree_key k1, splay_tree_key k2)
4834 {
4835 /* Consider a NULL key (such as arises with a `default' label) to be
4836 smaller than anything else. */
4837 if (!k1)
4838 return k2 ? -1 : 0;
4839 else if (!k2)
4840 return k1 ? 1 : 0;
4841
4842 return tree_int_cst_compare ((tree) k1, (tree) k2);
4843 }
4844
4845 /* Process a case label, located at LOC, for the range LOW_VALUE
4846 ... HIGH_VALUE. If LOW_VALUE and HIGH_VALUE are both NULL_TREE
4847 then this case label is actually a `default' label. If only
4848 HIGH_VALUE is NULL_TREE, then case label was declared using the
4849 usual C/C++ syntax, rather than the GNU case range extension.
4850 CASES is a tree containing all the case ranges processed so far;
4851 COND is the condition for the switch-statement itself.
4852 OUTSIDE_RANGE_P says whether there was a case value that doesn't
4853 fit into the range of the ORIG_TYPE. Returns the CASE_LABEL_EXPR
4854 created, or ERROR_MARK_NODE if no CASE_LABEL_EXPR is created. */
4855
4856 tree
4857 c_add_case_label (location_t loc, splay_tree cases, tree cond, tree orig_type,
4858 tree low_value, tree high_value, bool *outside_range_p)
4859 {
4860 tree type;
4861 tree label;
4862 tree case_label;
4863 splay_tree_node node;
4864
4865 /* Create the LABEL_DECL itself. */
4866 label = create_artificial_label (loc);
4867
4868 /* If there was an error processing the switch condition, bail now
4869 before we get more confused. */
4870 if (!cond || cond == error_mark_node)
4871 goto error_out;
4872
4873 if ((low_value && TREE_TYPE (low_value)
4874 && POINTER_TYPE_P (TREE_TYPE (low_value)))
4875 || (high_value && TREE_TYPE (high_value)
4876 && POINTER_TYPE_P (TREE_TYPE (high_value))))
4877 {
4878 error_at (loc, "pointers are not permitted as case values");
4879 goto error_out;
4880 }
4881
4882 /* Case ranges are a GNU extension. */
4883 if (high_value)
4884 pedwarn (loc, OPT_Wpedantic,
4885 "range expressions in switch statements are non-standard");
4886
4887 type = TREE_TYPE (cond);
4888 if (low_value)
4889 {
4890 low_value = check_case_value (loc, low_value);
4891 low_value = convert_and_check (loc, type, low_value);
4892 if (low_value == error_mark_node)
4893 goto error_out;
4894 }
4895 if (high_value)
4896 {
4897 high_value = check_case_value (loc, high_value);
4898 high_value = convert_and_check (loc, type, high_value);
4899 if (high_value == error_mark_node)
4900 goto error_out;
4901 }
4902
4903 if (low_value && high_value)
4904 {
4905 /* If the LOW_VALUE and HIGH_VALUE are the same, then this isn't
4906 really a case range, even though it was written that way.
4907 Remove the HIGH_VALUE to simplify later processing. */
4908 if (tree_int_cst_equal (low_value, high_value))
4909 high_value = NULL_TREE;
4910 else if (!tree_int_cst_lt (low_value, high_value))
4911 warning_at (loc, 0, "empty range specified");
4912 }
4913
4914 /* See if the case is in range of the type of the original testing
4915 expression. If both low_value and high_value are out of range,
4916 don't insert the case label and return NULL_TREE. */
4917 if (low_value
4918 && !check_case_bounds (loc, type, orig_type,
4919 &low_value, high_value ? &high_value : NULL,
4920 outside_range_p))
4921 return NULL_TREE;
4922
4923 /* Look up the LOW_VALUE in the table of case labels we already
4924 have. */
4925 node = splay_tree_lookup (cases, (splay_tree_key) low_value);
4926 /* If there was not an exact match, check for overlapping ranges.
4927 There's no need to do this if there's no LOW_VALUE or HIGH_VALUE;
4928 that's a `default' label and the only overlap is an exact match. */
4929 if (!node && (low_value || high_value))
4930 {
4931 splay_tree_node low_bound;
4932 splay_tree_node high_bound;
4933
4934 /* Even though there wasn't an exact match, there might be an
4935 overlap between this case range and another case range.
4936 Since we've (inductively) not allowed any overlapping case
4937 ranges, we simply need to find the greatest low case label
4938 that is smaller that LOW_VALUE, and the smallest low case
4939 label that is greater than LOW_VALUE. If there is an overlap
4940 it will occur in one of these two ranges. */
4941 low_bound = splay_tree_predecessor (cases,
4942 (splay_tree_key) low_value);
4943 high_bound = splay_tree_successor (cases,
4944 (splay_tree_key) low_value);
4945
4946 /* Check to see if the LOW_BOUND overlaps. It is smaller than
4947 the LOW_VALUE, so there is no need to check unless the
4948 LOW_BOUND is in fact itself a case range. */
4949 if (low_bound
4950 && CASE_HIGH ((tree) low_bound->value)
4951 && tree_int_cst_compare (CASE_HIGH ((tree) low_bound->value),
4952 low_value) >= 0)
4953 node = low_bound;
4954 /* Check to see if the HIGH_BOUND overlaps. The low end of that
4955 range is bigger than the low end of the current range, so we
4956 are only interested if the current range is a real range, and
4957 not an ordinary case label. */
4958 else if (high_bound
4959 && high_value
4960 && (tree_int_cst_compare ((tree) high_bound->key,
4961 high_value)
4962 <= 0))
4963 node = high_bound;
4964 }
4965 /* If there was an overlap, issue an error. */
4966 if (node)
4967 {
4968 tree duplicate = CASE_LABEL ((tree) node->value);
4969
4970 if (high_value)
4971 {
4972 error_at (loc, "duplicate (or overlapping) case value");
4973 inform (DECL_SOURCE_LOCATION (duplicate),
4974 "this is the first entry overlapping that value");
4975 }
4976 else if (low_value)
4977 {
4978 error_at (loc, "duplicate case value") ;
4979 inform (DECL_SOURCE_LOCATION (duplicate), "previously used here");
4980 }
4981 else
4982 {
4983 error_at (loc, "multiple default labels in one switch");
4984 inform (DECL_SOURCE_LOCATION (duplicate),
4985 "this is the first default label");
4986 }
4987 goto error_out;
4988 }
4989
4990 /* Add a CASE_LABEL to the statement-tree. */
4991 case_label = add_stmt (build_case_label (low_value, high_value, label));
4992 /* Register this case label in the splay tree. */
4993 splay_tree_insert (cases,
4994 (splay_tree_key) low_value,
4995 (splay_tree_value) case_label);
4996
4997 return case_label;
4998
4999 error_out:
5000 /* Add a label so that the back-end doesn't think that the beginning of
5001 the switch is unreachable. Note that we do not add a case label, as
5002 that just leads to duplicates and thence to failure later on. */
5003 if (!cases->root)
5004 {
5005 tree t = create_artificial_label (loc);
5006 add_stmt (build_stmt (loc, LABEL_EXPR, t));
5007 }
5008 return error_mark_node;
5009 }
5010
5011 /* Finish an expression taking the address of LABEL (an
5012 IDENTIFIER_NODE). Returns an expression for the address.
5013
5014 LOC is the location for the expression returned. */
5015
5016 tree
5017 finish_label_address_expr (tree label, location_t loc)
5018 {
5019 tree result;
5020
5021 pedwarn (input_location, OPT_Wpedantic, "taking the address of a label is non-standard");
5022
5023 if (label == error_mark_node)
5024 return error_mark_node;
5025
5026 label = lookup_label (label);
5027 if (label == NULL_TREE)
5028 result = null_pointer_node;
5029 else
5030 {
5031 TREE_USED (label) = 1;
5032 result = build1 (ADDR_EXPR, ptr_type_node, label);
5033 /* The current function is not necessarily uninlinable.
5034 Computed gotos are incompatible with inlining, but the value
5035 here could be used only in a diagnostic, for example. */
5036 protected_set_expr_location (result, loc);
5037 }
5038
5039 return result;
5040 }
5041 \f
5042
5043 /* Given a boolean expression ARG, return a tree representing an increment
5044 or decrement (as indicated by CODE) of ARG. The front end must check for
5045 invalid cases (e.g., decrement in C++). */
5046 tree
5047 boolean_increment (enum tree_code code, tree arg)
5048 {
5049 tree val;
5050 tree true_res = build_int_cst (TREE_TYPE (arg), 1);
5051
5052 arg = stabilize_reference (arg);
5053 switch (code)
5054 {
5055 case PREINCREMENT_EXPR:
5056 val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
5057 break;
5058 case POSTINCREMENT_EXPR:
5059 val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
5060 arg = save_expr (arg);
5061 val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
5062 val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
5063 break;
5064 case PREDECREMENT_EXPR:
5065 val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg,
5066 invert_truthvalue_loc (input_location, arg));
5067 break;
5068 case POSTDECREMENT_EXPR:
5069 val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg,
5070 invert_truthvalue_loc (input_location, arg));
5071 arg = save_expr (arg);
5072 val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
5073 val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
5074 break;
5075 default:
5076 gcc_unreachable ();
5077 }
5078 TREE_SIDE_EFFECTS (val) = 1;
5079 return val;
5080 }
5081 \f
5082 /* Built-in macros for stddef.h and stdint.h, that require macros
5083 defined in this file. */
5084 void
5085 c_stddef_cpp_builtins(void)
5086 {
5087 builtin_define_with_value ("__SIZE_TYPE__", SIZE_TYPE, 0);
5088 builtin_define_with_value ("__PTRDIFF_TYPE__", PTRDIFF_TYPE, 0);
5089 builtin_define_with_value ("__WCHAR_TYPE__", MODIFIED_WCHAR_TYPE, 0);
5090 builtin_define_with_value ("__WINT_TYPE__", WINT_TYPE, 0);
5091 builtin_define_with_value ("__INTMAX_TYPE__", INTMAX_TYPE, 0);
5092 builtin_define_with_value ("__UINTMAX_TYPE__", UINTMAX_TYPE, 0);
5093 builtin_define_with_value ("__CHAR16_TYPE__", CHAR16_TYPE, 0);
5094 builtin_define_with_value ("__CHAR32_TYPE__", CHAR32_TYPE, 0);
5095 if (SIG_ATOMIC_TYPE)
5096 builtin_define_with_value ("__SIG_ATOMIC_TYPE__", SIG_ATOMIC_TYPE, 0);
5097 if (INT8_TYPE)
5098 builtin_define_with_value ("__INT8_TYPE__", INT8_TYPE, 0);
5099 if (INT16_TYPE)
5100 builtin_define_with_value ("__INT16_TYPE__", INT16_TYPE, 0);
5101 if (INT32_TYPE)
5102 builtin_define_with_value ("__INT32_TYPE__", INT32_TYPE, 0);
5103 if (INT64_TYPE)
5104 builtin_define_with_value ("__INT64_TYPE__", INT64_TYPE, 0);
5105 if (UINT8_TYPE)
5106 builtin_define_with_value ("__UINT8_TYPE__", UINT8_TYPE, 0);
5107 if (UINT16_TYPE)
5108 builtin_define_with_value ("__UINT16_TYPE__", UINT16_TYPE, 0);
5109 if (UINT32_TYPE)
5110 builtin_define_with_value ("__UINT32_TYPE__", UINT32_TYPE, 0);
5111 if (UINT64_TYPE)
5112 builtin_define_with_value ("__UINT64_TYPE__", UINT64_TYPE, 0);
5113 if (INT_LEAST8_TYPE)
5114 builtin_define_with_value ("__INT_LEAST8_TYPE__", INT_LEAST8_TYPE, 0);
5115 if (INT_LEAST16_TYPE)
5116 builtin_define_with_value ("__INT_LEAST16_TYPE__", INT_LEAST16_TYPE, 0);
5117 if (INT_LEAST32_TYPE)
5118 builtin_define_with_value ("__INT_LEAST32_TYPE__", INT_LEAST32_TYPE, 0);
5119 if (INT_LEAST64_TYPE)
5120 builtin_define_with_value ("__INT_LEAST64_TYPE__", INT_LEAST64_TYPE, 0);
5121 if (UINT_LEAST8_TYPE)
5122 builtin_define_with_value ("__UINT_LEAST8_TYPE__", UINT_LEAST8_TYPE, 0);
5123 if (UINT_LEAST16_TYPE)
5124 builtin_define_with_value ("__UINT_LEAST16_TYPE__", UINT_LEAST16_TYPE, 0);
5125 if (UINT_LEAST32_TYPE)
5126 builtin_define_with_value ("__UINT_LEAST32_TYPE__", UINT_LEAST32_TYPE, 0);
5127 if (UINT_LEAST64_TYPE)
5128 builtin_define_with_value ("__UINT_LEAST64_TYPE__", UINT_LEAST64_TYPE, 0);
5129 if (INT_FAST8_TYPE)
5130 builtin_define_with_value ("__INT_FAST8_TYPE__", INT_FAST8_TYPE, 0);
5131 if (INT_FAST16_TYPE)
5132 builtin_define_with_value ("__INT_FAST16_TYPE__", INT_FAST16_TYPE, 0);
5133 if (INT_FAST32_TYPE)
5134 builtin_define_with_value ("__INT_FAST32_TYPE__", INT_FAST32_TYPE, 0);
5135 if (INT_FAST64_TYPE)
5136 builtin_define_with_value ("__INT_FAST64_TYPE__", INT_FAST64_TYPE, 0);
5137 if (UINT_FAST8_TYPE)
5138 builtin_define_with_value ("__UINT_FAST8_TYPE__", UINT_FAST8_TYPE, 0);
5139 if (UINT_FAST16_TYPE)
5140 builtin_define_with_value ("__UINT_FAST16_TYPE__", UINT_FAST16_TYPE, 0);
5141 if (UINT_FAST32_TYPE)
5142 builtin_define_with_value ("__UINT_FAST32_TYPE__", UINT_FAST32_TYPE, 0);
5143 if (UINT_FAST64_TYPE)
5144 builtin_define_with_value ("__UINT_FAST64_TYPE__", UINT_FAST64_TYPE, 0);
5145 if (INTPTR_TYPE)
5146 builtin_define_with_value ("__INTPTR_TYPE__", INTPTR_TYPE, 0);
5147 if (UINTPTR_TYPE)
5148 builtin_define_with_value ("__UINTPTR_TYPE__", UINTPTR_TYPE, 0);
5149 }
5150
5151 static void
5152 c_init_attributes (void)
5153 {
5154 /* Fill in the built_in_attributes array. */
5155 #define DEF_ATTR_NULL_TREE(ENUM) \
5156 built_in_attributes[(int) ENUM] = NULL_TREE;
5157 #define DEF_ATTR_INT(ENUM, VALUE) \
5158 built_in_attributes[(int) ENUM] = build_int_cst (integer_type_node, VALUE);
5159 #define DEF_ATTR_STRING(ENUM, VALUE) \
5160 built_in_attributes[(int) ENUM] = build_string (strlen (VALUE), VALUE);
5161 #define DEF_ATTR_IDENT(ENUM, STRING) \
5162 built_in_attributes[(int) ENUM] = get_identifier (STRING);
5163 #define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) \
5164 built_in_attributes[(int) ENUM] \
5165 = tree_cons (built_in_attributes[(int) PURPOSE], \
5166 built_in_attributes[(int) VALUE], \
5167 built_in_attributes[(int) CHAIN]);
5168 #include "builtin-attrs.def"
5169 #undef DEF_ATTR_NULL_TREE
5170 #undef DEF_ATTR_INT
5171 #undef DEF_ATTR_IDENT
5172 #undef DEF_ATTR_TREE_LIST
5173 }
5174
5175 /* Check whether ALIGN is a valid user-specified alignment. If so,
5176 return its base-2 log; if not, output an error and return -1. If
5177 ALLOW_ZERO then 0 is valid and should result in a return of -1 with
5178 no error. */
5179 int
5180 check_user_alignment (const_tree align, bool allow_zero)
5181 {
5182 int i;
5183
5184 if (error_operand_p (align))
5185 return -1;
5186 if (TREE_CODE (align) != INTEGER_CST
5187 || !INTEGRAL_TYPE_P (TREE_TYPE (align)))
5188 {
5189 error ("requested alignment is not an integer constant");
5190 return -1;
5191 }
5192 else if (allow_zero && integer_zerop (align))
5193 return -1;
5194 else if (tree_int_cst_sgn (align) == -1
5195 || (i = tree_log2 (align)) == -1)
5196 {
5197 error ("requested alignment is not a positive power of 2");
5198 return -1;
5199 }
5200 else if (i >= HOST_BITS_PER_INT - LOG2_BITS_PER_UNIT)
5201 {
5202 error ("requested alignment is too large");
5203 return -1;
5204 }
5205 return i;
5206 }
5207
5208 /* Determine the ELF symbol visibility for DECL, which is either a
5209 variable or a function. It is an error to use this function if a
5210 definition of DECL is not available in this translation unit.
5211 Returns true if the final visibility has been determined by this
5212 function; false if the caller is free to make additional
5213 modifications. */
5214
5215 bool
5216 c_determine_visibility (tree decl)
5217 {
5218 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5219
5220 /* If the user explicitly specified the visibility with an
5221 attribute, honor that. DECL_VISIBILITY will have been set during
5222 the processing of the attribute. We check for an explicit
5223 attribute, rather than just checking DECL_VISIBILITY_SPECIFIED,
5224 to distinguish the use of an attribute from the use of a "#pragma
5225 GCC visibility push(...)"; in the latter case we still want other
5226 considerations to be able to overrule the #pragma. */
5227 if (lookup_attribute ("visibility", DECL_ATTRIBUTES (decl))
5228 || (TARGET_DLLIMPORT_DECL_ATTRIBUTES
5229 && (lookup_attribute ("dllimport", DECL_ATTRIBUTES (decl))
5230 || lookup_attribute ("dllexport", DECL_ATTRIBUTES (decl)))))
5231 return true;
5232
5233 /* Set default visibility to whatever the user supplied with
5234 visibility_specified depending on #pragma GCC visibility. */
5235 if (!DECL_VISIBILITY_SPECIFIED (decl))
5236 {
5237 if (visibility_options.inpragma
5238 || DECL_VISIBILITY (decl) != default_visibility)
5239 {
5240 DECL_VISIBILITY (decl) = default_visibility;
5241 DECL_VISIBILITY_SPECIFIED (decl) = visibility_options.inpragma;
5242 /* If visibility changed and DECL already has DECL_RTL, ensure
5243 symbol flags are updated. */
5244 if (((VAR_P (decl) && TREE_STATIC (decl))
5245 || TREE_CODE (decl) == FUNCTION_DECL)
5246 && DECL_RTL_SET_P (decl))
5247 make_decl_rtl (decl);
5248 }
5249 }
5250 return false;
5251 }
5252
5253 /* Data to communicate through check_function_arguments_recurse between
5254 check_function_nonnull and check_nonnull_arg. */
5255
5256 struct nonnull_arg_ctx
5257 {
5258 location_t loc;
5259 bool warned_p;
5260 };
5261
5262 /* Check the argument list of a function call for null in argument slots
5263 that are marked as requiring a non-null pointer argument. The NARGS
5264 arguments are passed in the array ARGARRAY. Return true if we have
5265 warned. */
5266
5267 static bool
5268 check_function_nonnull (location_t loc, tree attrs, int nargs, tree *argarray)
5269 {
5270 tree a;
5271 int i;
5272
5273 attrs = lookup_attribute ("nonnull", attrs);
5274 if (attrs == NULL_TREE)
5275 return false;
5276
5277 a = attrs;
5278 /* See if any of the nonnull attributes has no arguments. If so,
5279 then every pointer argument is checked (in which case the check
5280 for pointer type is done in check_nonnull_arg). */
5281 if (TREE_VALUE (a) != NULL_TREE)
5282 do
5283 a = lookup_attribute ("nonnull", TREE_CHAIN (a));
5284 while (a != NULL_TREE && TREE_VALUE (a) != NULL_TREE);
5285
5286 struct nonnull_arg_ctx ctx = { loc, false };
5287 if (a != NULL_TREE)
5288 for (i = 0; i < nargs; i++)
5289 check_function_arguments_recurse (check_nonnull_arg, &ctx, argarray[i],
5290 i + 1);
5291 else
5292 {
5293 /* Walk the argument list. If we encounter an argument number we
5294 should check for non-null, do it. */
5295 for (i = 0; i < nargs; i++)
5296 {
5297 for (a = attrs; ; a = TREE_CHAIN (a))
5298 {
5299 a = lookup_attribute ("nonnull", a);
5300 if (a == NULL_TREE || nonnull_check_p (TREE_VALUE (a), i + 1))
5301 break;
5302 }
5303
5304 if (a != NULL_TREE)
5305 check_function_arguments_recurse (check_nonnull_arg, &ctx,
5306 argarray[i], i + 1);
5307 }
5308 }
5309 return ctx.warned_p;
5310 }
5311
5312 /* Check that the Nth argument of a function call (counting backwards
5313 from the end) is a (pointer)0. The NARGS arguments are passed in the
5314 array ARGARRAY. */
5315
5316 static void
5317 check_function_sentinel (const_tree fntype, int nargs, tree *argarray)
5318 {
5319 tree attr = lookup_attribute ("sentinel", TYPE_ATTRIBUTES (fntype));
5320
5321 if (attr)
5322 {
5323 int len = 0;
5324 int pos = 0;
5325 tree sentinel;
5326 function_args_iterator iter;
5327 tree t;
5328
5329 /* Skip over the named arguments. */
5330 FOREACH_FUNCTION_ARGS (fntype, t, iter)
5331 {
5332 if (len == nargs)
5333 break;
5334 len++;
5335 }
5336
5337 if (TREE_VALUE (attr))
5338 {
5339 tree p = TREE_VALUE (TREE_VALUE (attr));
5340 pos = TREE_INT_CST_LOW (p);
5341 }
5342
5343 /* The sentinel must be one of the varargs, i.e.
5344 in position >= the number of fixed arguments. */
5345 if ((nargs - 1 - pos) < len)
5346 {
5347 warning (OPT_Wformat_,
5348 "not enough variable arguments to fit a sentinel");
5349 return;
5350 }
5351
5352 /* Validate the sentinel. */
5353 sentinel = argarray[nargs - 1 - pos];
5354 if ((!POINTER_TYPE_P (TREE_TYPE (sentinel))
5355 || !integer_zerop (sentinel))
5356 /* Although __null (in C++) is only an integer we allow it
5357 nevertheless, as we are guaranteed that it's exactly
5358 as wide as a pointer, and we don't want to force
5359 users to cast the NULL they have written there.
5360 We warn with -Wstrict-null-sentinel, though. */
5361 && (warn_strict_null_sentinel || null_node != sentinel))
5362 warning (OPT_Wformat_, "missing sentinel in function call");
5363 }
5364 }
5365
5366 /* Helper for check_function_nonnull; given a list of operands which
5367 must be non-null in ARGS, determine if operand PARAM_NUM should be
5368 checked. */
5369
5370 static bool
5371 nonnull_check_p (tree args, unsigned HOST_WIDE_INT param_num)
5372 {
5373 unsigned HOST_WIDE_INT arg_num = 0;
5374
5375 for (; args; args = TREE_CHAIN (args))
5376 {
5377 bool found = get_nonnull_operand (TREE_VALUE (args), &arg_num);
5378
5379 gcc_assert (found);
5380
5381 if (arg_num == param_num)
5382 return true;
5383 }
5384 return false;
5385 }
5386
5387 /* Check that the function argument PARAM (which is operand number
5388 PARAM_NUM) is non-null. This is called by check_function_nonnull
5389 via check_function_arguments_recurse. */
5390
5391 static void
5392 check_nonnull_arg (void *ctx, tree param, unsigned HOST_WIDE_INT param_num)
5393 {
5394 struct nonnull_arg_ctx *pctx = (struct nonnull_arg_ctx *) ctx;
5395
5396 /* Just skip checking the argument if it's not a pointer. This can
5397 happen if the "nonnull" attribute was given without an operand
5398 list (which means to check every pointer argument). */
5399
5400 if (TREE_CODE (TREE_TYPE (param)) != POINTER_TYPE)
5401 return;
5402
5403 /* When not optimizing diagnose the simple cases of null arguments.
5404 When optimization is enabled defer the checking until expansion
5405 when more cases can be detected. */
5406 if (integer_zerop (param))
5407 {
5408 warning_at (pctx->loc, OPT_Wnonnull, "null argument where non-null "
5409 "required (argument %lu)", (unsigned long) param_num);
5410 pctx->warned_p = true;
5411 }
5412 }
5413
5414 /* Helper for nonnull attribute handling; fetch the operand number
5415 from the attribute argument list. */
5416
5417 bool
5418 get_nonnull_operand (tree arg_num_expr, unsigned HOST_WIDE_INT *valp)
5419 {
5420 /* Verify the arg number is a small constant. */
5421 if (tree_fits_uhwi_p (arg_num_expr))
5422 {
5423 *valp = TREE_INT_CST_LOW (arg_num_expr);
5424 return true;
5425 }
5426 else
5427 return false;
5428 }
5429
5430 /* Arguments being collected for optimization. */
5431 typedef const char *const_char_p; /* For DEF_VEC_P. */
5432 static GTY(()) vec<const_char_p, va_gc> *optimize_args;
5433
5434
5435 /* Inner function to convert a TREE_LIST to argv string to parse the optimize
5436 options in ARGS. ATTR_P is true if this is for attribute(optimize), and
5437 false for #pragma GCC optimize. */
5438
5439 bool
5440 parse_optimize_options (tree args, bool attr_p)
5441 {
5442 bool ret = true;
5443 unsigned opt_argc;
5444 unsigned i;
5445 const char **opt_argv;
5446 struct cl_decoded_option *decoded_options;
5447 unsigned int decoded_options_count;
5448 tree ap;
5449
5450 /* Build up argv vector. Just in case the string is stored away, use garbage
5451 collected strings. */
5452 vec_safe_truncate (optimize_args, 0);
5453 vec_safe_push (optimize_args, (const char *) NULL);
5454
5455 for (ap = args; ap != NULL_TREE; ap = TREE_CHAIN (ap))
5456 {
5457 tree value = TREE_VALUE (ap);
5458
5459 if (TREE_CODE (value) == INTEGER_CST)
5460 {
5461 char buffer[20];
5462 sprintf (buffer, "-O%ld", (long) TREE_INT_CST_LOW (value));
5463 vec_safe_push (optimize_args, ggc_strdup (buffer));
5464 }
5465
5466 else if (TREE_CODE (value) == STRING_CST)
5467 {
5468 /* Split string into multiple substrings. */
5469 size_t len = TREE_STRING_LENGTH (value);
5470 char *p = ASTRDUP (TREE_STRING_POINTER (value));
5471 char *end = p + len;
5472 char *comma;
5473 char *next_p = p;
5474
5475 while (next_p != NULL)
5476 {
5477 size_t len2;
5478 char *q, *r;
5479
5480 p = next_p;
5481 comma = strchr (p, ',');
5482 if (comma)
5483 {
5484 len2 = comma - p;
5485 *comma = '\0';
5486 next_p = comma+1;
5487 }
5488 else
5489 {
5490 len2 = end - p;
5491 next_p = NULL;
5492 }
5493
5494 r = q = (char *) ggc_alloc_atomic (len2 + 3);
5495
5496 /* If the user supplied -Oxxx or -fxxx, only allow -Oxxx or -fxxx
5497 options. */
5498 if (*p == '-' && p[1] != 'O' && p[1] != 'f')
5499 {
5500 ret = false;
5501 if (attr_p)
5502 warning (OPT_Wattributes,
5503 "bad option %qs to attribute %<optimize%>", p);
5504 else
5505 warning (OPT_Wpragmas,
5506 "bad option %qs to pragma %<optimize%>", p);
5507 continue;
5508 }
5509
5510 if (*p != '-')
5511 {
5512 *r++ = '-';
5513
5514 /* Assume that Ox is -Ox, a numeric value is -Ox, a s by
5515 itself is -Os, and any other switch begins with a -f. */
5516 if ((*p >= '0' && *p <= '9')
5517 || (p[0] == 's' && p[1] == '\0'))
5518 *r++ = 'O';
5519 else if (*p != 'O')
5520 *r++ = 'f';
5521 }
5522
5523 memcpy (r, p, len2);
5524 r[len2] = '\0';
5525 vec_safe_push (optimize_args, (const char *) q);
5526 }
5527
5528 }
5529 }
5530
5531 opt_argc = optimize_args->length ();
5532 opt_argv = (const char **) alloca (sizeof (char *) * (opt_argc + 1));
5533
5534 for (i = 1; i < opt_argc; i++)
5535 opt_argv[i] = (*optimize_args)[i];
5536
5537 /* Now parse the options. */
5538 decode_cmdline_options_to_array_default_mask (opt_argc, opt_argv,
5539 &decoded_options,
5540 &decoded_options_count);
5541 /* Drop non-Optimization options. */
5542 unsigned j = 1;
5543 for (i = 1; i < decoded_options_count; ++i)
5544 {
5545 if (! (cl_options[decoded_options[i].opt_index].flags & CL_OPTIMIZATION))
5546 {
5547 ret = false;
5548 if (attr_p)
5549 warning (OPT_Wattributes,
5550 "bad option %qs to attribute %<optimize%>",
5551 decoded_options[i].orig_option_with_args_text);
5552 else
5553 warning (OPT_Wpragmas,
5554 "bad option %qs to pragma %<optimize%>",
5555 decoded_options[i].orig_option_with_args_text);
5556 continue;
5557 }
5558 if (i != j)
5559 decoded_options[j] = decoded_options[i];
5560 j++;
5561 }
5562 decoded_options_count = j;
5563 /* And apply them. */
5564 decode_options (&global_options, &global_options_set,
5565 decoded_options, decoded_options_count,
5566 input_location, global_dc);
5567
5568 targetm.override_options_after_change();
5569
5570 optimize_args->truncate (0);
5571 return ret;
5572 }
5573
5574 /* Check whether ATTR is a valid attribute fallthrough. */
5575
5576 bool
5577 attribute_fallthrough_p (tree attr)
5578 {
5579 if (attr == error_mark_node)
5580 return false;
5581 tree t = lookup_attribute ("fallthrough", attr);
5582 if (t == NULL_TREE)
5583 return false;
5584 /* This attribute shall appear at most once in each attribute-list. */
5585 if (lookup_attribute ("fallthrough", TREE_CHAIN (t)))
5586 warning (OPT_Wattributes, "%<fallthrough%> attribute specified multiple "
5587 "times");
5588 /* No attribute-argument-clause shall be present. */
5589 else if (TREE_VALUE (t) != NULL_TREE)
5590 warning (OPT_Wattributes, "%<fallthrough%> attribute specified with "
5591 "a parameter");
5592 /* Warn if other attributes are found. */
5593 for (t = attr; t != NULL_TREE; t = TREE_CHAIN (t))
5594 {
5595 tree name = get_attribute_name (t);
5596 if (!is_attribute_p ("fallthrough", name))
5597 warning (OPT_Wattributes, "%qE attribute ignored", name);
5598 }
5599 return true;
5600 }
5601
5602 \f
5603 /* Check for valid arguments being passed to a function with FNTYPE.
5604 There are NARGS arguments in the array ARGARRAY. LOC should be used for
5605 diagnostics. Return true if -Wnonnull warning has been diagnosed. */
5606 bool
5607 check_function_arguments (location_t loc, const_tree fntype, int nargs,
5608 tree *argarray)
5609 {
5610 bool warned_p = false;
5611
5612 /* Check for null being passed in a pointer argument that must be
5613 non-null. We also need to do this if format checking is enabled. */
5614
5615 if (warn_nonnull)
5616 warned_p = check_function_nonnull (loc, TYPE_ATTRIBUTES (fntype),
5617 nargs, argarray);
5618
5619 /* Check for errors in format strings. */
5620
5621 if (warn_format || warn_suggest_attribute_format)
5622 check_function_format (TYPE_ATTRIBUTES (fntype), nargs, argarray);
5623
5624 if (warn_format)
5625 check_function_sentinel (fntype, nargs, argarray);
5626 return warned_p;
5627 }
5628
5629 /* Generic argument checking recursion routine. PARAM is the argument to
5630 be checked. PARAM_NUM is the number of the argument. CALLBACK is invoked
5631 once the argument is resolved. CTX is context for the callback. */
5632 void
5633 check_function_arguments_recurse (void (*callback)
5634 (void *, tree, unsigned HOST_WIDE_INT),
5635 void *ctx, tree param,
5636 unsigned HOST_WIDE_INT param_num)
5637 {
5638 if (CONVERT_EXPR_P (param)
5639 && (TYPE_PRECISION (TREE_TYPE (param))
5640 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (param, 0)))))
5641 {
5642 /* Strip coercion. */
5643 check_function_arguments_recurse (callback, ctx,
5644 TREE_OPERAND (param, 0), param_num);
5645 return;
5646 }
5647
5648 if (TREE_CODE (param) == CALL_EXPR)
5649 {
5650 tree type = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (param)));
5651 tree attrs;
5652 bool found_format_arg = false;
5653
5654 /* See if this is a call to a known internationalization function
5655 that modifies a format arg. Such a function may have multiple
5656 format_arg attributes (for example, ngettext). */
5657
5658 for (attrs = TYPE_ATTRIBUTES (type);
5659 attrs;
5660 attrs = TREE_CHAIN (attrs))
5661 if (is_attribute_p ("format_arg", TREE_PURPOSE (attrs)))
5662 {
5663 tree inner_arg;
5664 tree format_num_expr;
5665 int format_num;
5666 int i;
5667 call_expr_arg_iterator iter;
5668
5669 /* Extract the argument number, which was previously checked
5670 to be valid. */
5671 format_num_expr = TREE_VALUE (TREE_VALUE (attrs));
5672
5673 format_num = tree_to_uhwi (format_num_expr);
5674
5675 for (inner_arg = first_call_expr_arg (param, &iter), i = 1;
5676 inner_arg != 0;
5677 inner_arg = next_call_expr_arg (&iter), i++)
5678 if (i == format_num)
5679 {
5680 check_function_arguments_recurse (callback, ctx,
5681 inner_arg, param_num);
5682 found_format_arg = true;
5683 break;
5684 }
5685 }
5686
5687 /* If we found a format_arg attribute and did a recursive check,
5688 we are done with checking this argument. Otherwise, we continue
5689 and this will be considered a non-literal. */
5690 if (found_format_arg)
5691 return;
5692 }
5693
5694 if (TREE_CODE (param) == COND_EXPR)
5695 {
5696 /* Simplify to avoid warning for an impossible case. */
5697 param = fold_for_warn (param);
5698 if (TREE_CODE (param) == COND_EXPR)
5699 {
5700 /* Check both halves of the conditional expression. */
5701 check_function_arguments_recurse (callback, ctx,
5702 TREE_OPERAND (param, 1),
5703 param_num);
5704 check_function_arguments_recurse (callback, ctx,
5705 TREE_OPERAND (param, 2),
5706 param_num);
5707 return;
5708 }
5709 }
5710
5711 (*callback) (ctx, param, param_num);
5712 }
5713
5714 /* Checks for a builtin function FNDECL that the number of arguments
5715 NARGS against the required number REQUIRED and issues an error if
5716 there is a mismatch. Returns true if the number of arguments is
5717 correct, otherwise false. LOC is the location of FNDECL. */
5718
5719 static bool
5720 builtin_function_validate_nargs (location_t loc, tree fndecl, int nargs,
5721 int required)
5722 {
5723 if (nargs < required)
5724 {
5725 error_at (loc, "too few arguments to function %qE", fndecl);
5726 return false;
5727 }
5728 else if (nargs > required)
5729 {
5730 error_at (loc, "too many arguments to function %qE", fndecl);
5731 return false;
5732 }
5733 return true;
5734 }
5735
5736 /* Helper macro for check_builtin_function_arguments. */
5737 #define ARG_LOCATION(N) \
5738 (arg_loc.is_empty () \
5739 ? EXPR_LOC_OR_LOC (args[(N)], input_location) \
5740 : expansion_point_location (arg_loc[(N)]))
5741
5742 /* Verifies the NARGS arguments ARGS to the builtin function FNDECL.
5743 Returns false if there was an error, otherwise true. LOC is the
5744 location of the function; ARG_LOC is a vector of locations of the
5745 arguments. */
5746
5747 bool
5748 check_builtin_function_arguments (location_t loc, vec<location_t> arg_loc,
5749 tree fndecl, int nargs, tree *args)
5750 {
5751 if (!DECL_BUILT_IN (fndecl)
5752 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
5753 return true;
5754
5755 switch (DECL_FUNCTION_CODE (fndecl))
5756 {
5757 case BUILT_IN_ALLOCA_WITH_ALIGN:
5758 {
5759 /* Get the requested alignment (in bits) if it's a constant
5760 integer expression. */
5761 unsigned HOST_WIDE_INT align
5762 = tree_fits_uhwi_p (args[1]) ? tree_to_uhwi (args[1]) : 0;
5763
5764 /* Determine if the requested alignment is a power of 2. */
5765 if ((align & (align - 1)))
5766 align = 0;
5767
5768 /* The maximum alignment in bits corresponding to the same
5769 maximum in bytes enforced in check_user_alignment(). */
5770 unsigned maxalign = (UINT_MAX >> 1) + 1;
5771
5772 /* Reject invalid alignments. */
5773 if (align < BITS_PER_UNIT || maxalign < align)
5774 {
5775 error_at (ARG_LOCATION (1),
5776 "second argument to function %qE must be a constant "
5777 "integer power of 2 between %qi and %qu bits",
5778 fndecl, BITS_PER_UNIT, maxalign);
5779 return false;
5780 }
5781 return true;
5782 }
5783
5784 case BUILT_IN_CONSTANT_P:
5785 return builtin_function_validate_nargs (loc, fndecl, nargs, 1);
5786
5787 case BUILT_IN_ISFINITE:
5788 case BUILT_IN_ISINF:
5789 case BUILT_IN_ISINF_SIGN:
5790 case BUILT_IN_ISNAN:
5791 case BUILT_IN_ISNORMAL:
5792 case BUILT_IN_SIGNBIT:
5793 if (builtin_function_validate_nargs (loc, fndecl, nargs, 1))
5794 {
5795 if (TREE_CODE (TREE_TYPE (args[0])) != REAL_TYPE)
5796 {
5797 error_at (ARG_LOCATION (0), "non-floating-point argument in "
5798 "call to function %qE", fndecl);
5799 return false;
5800 }
5801 return true;
5802 }
5803 return false;
5804
5805 case BUILT_IN_ISGREATER:
5806 case BUILT_IN_ISGREATEREQUAL:
5807 case BUILT_IN_ISLESS:
5808 case BUILT_IN_ISLESSEQUAL:
5809 case BUILT_IN_ISLESSGREATER:
5810 case BUILT_IN_ISUNORDERED:
5811 if (builtin_function_validate_nargs (loc, fndecl, nargs, 2))
5812 {
5813 enum tree_code code0, code1;
5814 code0 = TREE_CODE (TREE_TYPE (args[0]));
5815 code1 = TREE_CODE (TREE_TYPE (args[1]));
5816 if (!((code0 == REAL_TYPE && code1 == REAL_TYPE)
5817 || (code0 == REAL_TYPE && code1 == INTEGER_TYPE)
5818 || (code0 == INTEGER_TYPE && code1 == REAL_TYPE)))
5819 {
5820 error_at (loc, "non-floating-point arguments in call to "
5821 "function %qE", fndecl);
5822 return false;
5823 }
5824 return true;
5825 }
5826 return false;
5827
5828 case BUILT_IN_FPCLASSIFY:
5829 if (builtin_function_validate_nargs (loc, fndecl, nargs, 6))
5830 {
5831 for (unsigned int i = 0; i < 5; i++)
5832 if (TREE_CODE (args[i]) != INTEGER_CST)
5833 {
5834 error_at (ARG_LOCATION (i), "non-const integer argument %u in "
5835 "call to function %qE", i + 1, fndecl);
5836 return false;
5837 }
5838
5839 if (TREE_CODE (TREE_TYPE (args[5])) != REAL_TYPE)
5840 {
5841 error_at (ARG_LOCATION (5), "non-floating-point argument in "
5842 "call to function %qE", fndecl);
5843 return false;
5844 }
5845 return true;
5846 }
5847 return false;
5848
5849 case BUILT_IN_ASSUME_ALIGNED:
5850 if (builtin_function_validate_nargs (loc, fndecl, nargs, 2 + (nargs > 2)))
5851 {
5852 if (nargs >= 3 && TREE_CODE (TREE_TYPE (args[2])) != INTEGER_TYPE)
5853 {
5854 error_at (ARG_LOCATION (2), "non-integer argument 3 in call to "
5855 "function %qE", fndecl);
5856 return false;
5857 }
5858 return true;
5859 }
5860 return false;
5861
5862 case BUILT_IN_ADD_OVERFLOW:
5863 case BUILT_IN_SUB_OVERFLOW:
5864 case BUILT_IN_MUL_OVERFLOW:
5865 if (builtin_function_validate_nargs (loc, fndecl, nargs, 3))
5866 {
5867 unsigned i;
5868 for (i = 0; i < 2; i++)
5869 if (!INTEGRAL_TYPE_P (TREE_TYPE (args[i])))
5870 {
5871 error_at (ARG_LOCATION (i), "argument %u in call to function "
5872 "%qE does not have integral type", i + 1, fndecl);
5873 return false;
5874 }
5875 if (TREE_CODE (TREE_TYPE (args[2])) != POINTER_TYPE
5876 || !INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (args[2]))))
5877 {
5878 error_at (ARG_LOCATION (2), "argument 3 in call to function %qE "
5879 "does not have pointer to integral type", fndecl);
5880 return false;
5881 }
5882 else if (TREE_CODE (TREE_TYPE (TREE_TYPE (args[2]))) == ENUMERAL_TYPE)
5883 {
5884 error_at (ARG_LOCATION (2), "argument 3 in call to function %qE "
5885 "has pointer to enumerated type", fndecl);
5886 return false;
5887 }
5888 else if (TREE_CODE (TREE_TYPE (TREE_TYPE (args[2]))) == BOOLEAN_TYPE)
5889 {
5890 error_at (ARG_LOCATION (2), "argument 3 in call to function %qE "
5891 "has pointer to boolean type", fndecl);
5892 return false;
5893 }
5894 return true;
5895 }
5896 return false;
5897
5898 case BUILT_IN_ADD_OVERFLOW_P:
5899 case BUILT_IN_SUB_OVERFLOW_P:
5900 case BUILT_IN_MUL_OVERFLOW_P:
5901 if (builtin_function_validate_nargs (loc, fndecl, nargs, 3))
5902 {
5903 unsigned i;
5904 for (i = 0; i < 3; i++)
5905 if (!INTEGRAL_TYPE_P (TREE_TYPE (args[i])))
5906 {
5907 error_at (ARG_LOCATION (i), "argument %u in call to function "
5908 "%qE does not have integral type", i + 1, fndecl);
5909 return false;
5910 }
5911 if (TREE_CODE (TREE_TYPE (args[2])) == ENUMERAL_TYPE)
5912 {
5913 error_at (ARG_LOCATION (2), "argument 3 in call to function "
5914 "%qE has enumerated type", fndecl);
5915 return false;
5916 }
5917 else if (TREE_CODE (TREE_TYPE (args[2])) == BOOLEAN_TYPE)
5918 {
5919 error_at (ARG_LOCATION (2), "argument 3 in call to function "
5920 "%qE has boolean type", fndecl);
5921 return false;
5922 }
5923 return true;
5924 }
5925 return false;
5926
5927 default:
5928 return true;
5929 }
5930 }
5931
5932 /* Function to help qsort sort FIELD_DECLs by name order. */
5933
5934 int
5935 field_decl_cmp (const void *x_p, const void *y_p)
5936 {
5937 const tree *const x = (const tree *const) x_p;
5938 const tree *const y = (const tree *const) y_p;
5939
5940 if (DECL_NAME (*x) == DECL_NAME (*y))
5941 /* A nontype is "greater" than a type. */
5942 return (TREE_CODE (*y) == TYPE_DECL) - (TREE_CODE (*x) == TYPE_DECL);
5943 if (DECL_NAME (*x) == NULL_TREE)
5944 return -1;
5945 if (DECL_NAME (*y) == NULL_TREE)
5946 return 1;
5947 if (DECL_NAME (*x) < DECL_NAME (*y))
5948 return -1;
5949 return 1;
5950 }
5951
5952 static struct {
5953 gt_pointer_operator new_value;
5954 void *cookie;
5955 } resort_data;
5956
5957 /* This routine compares two fields like field_decl_cmp but using the
5958 pointer operator in resort_data. */
5959
5960 static int
5961 resort_field_decl_cmp (const void *x_p, const void *y_p)
5962 {
5963 const tree *const x = (const tree *const) x_p;
5964 const tree *const y = (const tree *const) y_p;
5965
5966 if (DECL_NAME (*x) == DECL_NAME (*y))
5967 /* A nontype is "greater" than a type. */
5968 return (TREE_CODE (*y) == TYPE_DECL) - (TREE_CODE (*x) == TYPE_DECL);
5969 if (DECL_NAME (*x) == NULL_TREE)
5970 return -1;
5971 if (DECL_NAME (*y) == NULL_TREE)
5972 return 1;
5973 {
5974 tree d1 = DECL_NAME (*x);
5975 tree d2 = DECL_NAME (*y);
5976 resort_data.new_value (&d1, resort_data.cookie);
5977 resort_data.new_value (&d2, resort_data.cookie);
5978 if (d1 < d2)
5979 return -1;
5980 }
5981 return 1;
5982 }
5983
5984 /* Resort DECL_SORTED_FIELDS because pointers have been reordered. */
5985
5986 void
5987 resort_sorted_fields (void *obj,
5988 void * ARG_UNUSED (orig_obj),
5989 gt_pointer_operator new_value,
5990 void *cookie)
5991 {
5992 struct sorted_fields_type *sf = (struct sorted_fields_type *) obj;
5993 resort_data.new_value = new_value;
5994 resort_data.cookie = cookie;
5995 qsort (&sf->elts[0], sf->len, sizeof (tree),
5996 resort_field_decl_cmp);
5997 }
5998
5999 /* Subroutine of c_parse_error.
6000 Return the result of concatenating LHS and RHS. RHS is really
6001 a string literal, its first character is indicated by RHS_START and
6002 RHS_SIZE is its length (including the terminating NUL character).
6003
6004 The caller is responsible for deleting the returned pointer. */
6005
6006 static char *
6007 catenate_strings (const char *lhs, const char *rhs_start, int rhs_size)
6008 {
6009 const int lhs_size = strlen (lhs);
6010 char *result = XNEWVEC (char, lhs_size + rhs_size);
6011 strncpy (result, lhs, lhs_size);
6012 strncpy (result + lhs_size, rhs_start, rhs_size);
6013 return result;
6014 }
6015
6016 /* Issue the error given by GMSGID, indicating that it occurred before
6017 TOKEN, which had the associated VALUE. */
6018
6019 void
6020 c_parse_error (const char *gmsgid, enum cpp_ttype token_type,
6021 tree value, unsigned char token_flags)
6022 {
6023 #define catenate_messages(M1, M2) catenate_strings ((M1), (M2), sizeof (M2))
6024
6025 char *message = NULL;
6026
6027 if (token_type == CPP_EOF)
6028 message = catenate_messages (gmsgid, " at end of input");
6029 else if (token_type == CPP_CHAR
6030 || token_type == CPP_WCHAR
6031 || token_type == CPP_CHAR16
6032 || token_type == CPP_CHAR32
6033 || token_type == CPP_UTF8CHAR)
6034 {
6035 unsigned int val = TREE_INT_CST_LOW (value);
6036 const char *prefix;
6037
6038 switch (token_type)
6039 {
6040 default:
6041 prefix = "";
6042 break;
6043 case CPP_WCHAR:
6044 prefix = "L";
6045 break;
6046 case CPP_CHAR16:
6047 prefix = "u";
6048 break;
6049 case CPP_CHAR32:
6050 prefix = "U";
6051 break;
6052 case CPP_UTF8CHAR:
6053 prefix = "u8";
6054 break;
6055 }
6056
6057 if (val <= UCHAR_MAX && ISGRAPH (val))
6058 message = catenate_messages (gmsgid, " before %s'%c'");
6059 else
6060 message = catenate_messages (gmsgid, " before %s'\\x%x'");
6061
6062 error (message, prefix, val);
6063 free (message);
6064 message = NULL;
6065 }
6066 else if (token_type == CPP_CHAR_USERDEF
6067 || token_type == CPP_WCHAR_USERDEF
6068 || token_type == CPP_CHAR16_USERDEF
6069 || token_type == CPP_CHAR32_USERDEF
6070 || token_type == CPP_UTF8CHAR_USERDEF)
6071 message = catenate_messages (gmsgid,
6072 " before user-defined character literal");
6073 else if (token_type == CPP_STRING_USERDEF
6074 || token_type == CPP_WSTRING_USERDEF
6075 || token_type == CPP_STRING16_USERDEF
6076 || token_type == CPP_STRING32_USERDEF
6077 || token_type == CPP_UTF8STRING_USERDEF)
6078 message = catenate_messages (gmsgid, " before user-defined string literal");
6079 else if (token_type == CPP_STRING
6080 || token_type == CPP_WSTRING
6081 || token_type == CPP_STRING16
6082 || token_type == CPP_STRING32
6083 || token_type == CPP_UTF8STRING)
6084 message = catenate_messages (gmsgid, " before string constant");
6085 else if (token_type == CPP_NUMBER)
6086 message = catenate_messages (gmsgid, " before numeric constant");
6087 else if (token_type == CPP_NAME)
6088 {
6089 message = catenate_messages (gmsgid, " before %qE");
6090 error (message, value);
6091 free (message);
6092 message = NULL;
6093 }
6094 else if (token_type == CPP_PRAGMA)
6095 message = catenate_messages (gmsgid, " before %<#pragma%>");
6096 else if (token_type == CPP_PRAGMA_EOL)
6097 message = catenate_messages (gmsgid, " before end of line");
6098 else if (token_type == CPP_DECLTYPE)
6099 message = catenate_messages (gmsgid, " before %<decltype%>");
6100 else if (token_type < N_TTYPES)
6101 {
6102 message = catenate_messages (gmsgid, " before %qs token");
6103 error (message, cpp_type2name (token_type, token_flags));
6104 free (message);
6105 message = NULL;
6106 }
6107 else
6108 error (gmsgid);
6109
6110 if (message)
6111 {
6112 error (message);
6113 free (message);
6114 }
6115 #undef catenate_messages
6116 }
6117
6118 /* Return the gcc option code associated with the reason for a cpp
6119 message, or 0 if none. */
6120
6121 static int
6122 c_option_controlling_cpp_error (int reason)
6123 {
6124 const struct cpp_reason_option_codes_t *entry;
6125
6126 for (entry = cpp_reason_option_codes; entry->reason != CPP_W_NONE; entry++)
6127 {
6128 if (entry->reason == reason)
6129 return entry->option_code;
6130 }
6131 return 0;
6132 }
6133
6134 /* Callback from cpp_error for PFILE to print diagnostics from the
6135 preprocessor. The diagnostic is of type LEVEL, with REASON set
6136 to the reason code if LEVEL is represents a warning, at location
6137 RICHLOC unless this is after lexing and the compiler's location
6138 should be used instead; MSG is the translated message and AP
6139 the arguments. Returns true if a diagnostic was emitted, false
6140 otherwise. */
6141
6142 bool
6143 c_cpp_error (cpp_reader *pfile ATTRIBUTE_UNUSED, int level, int reason,
6144 rich_location *richloc,
6145 const char *msg, va_list *ap)
6146 {
6147 diagnostic_info diagnostic;
6148 diagnostic_t dlevel;
6149 bool save_warn_system_headers = global_dc->dc_warn_system_headers;
6150 bool ret;
6151
6152 switch (level)
6153 {
6154 case CPP_DL_WARNING_SYSHDR:
6155 if (flag_no_output)
6156 return false;
6157 global_dc->dc_warn_system_headers = 1;
6158 /* Fall through. */
6159 case CPP_DL_WARNING:
6160 if (flag_no_output)
6161 return false;
6162 dlevel = DK_WARNING;
6163 break;
6164 case CPP_DL_PEDWARN:
6165 if (flag_no_output && !flag_pedantic_errors)
6166 return false;
6167 dlevel = DK_PEDWARN;
6168 break;
6169 case CPP_DL_ERROR:
6170 dlevel = DK_ERROR;
6171 break;
6172 case CPP_DL_ICE:
6173 dlevel = DK_ICE;
6174 break;
6175 case CPP_DL_NOTE:
6176 dlevel = DK_NOTE;
6177 break;
6178 case CPP_DL_FATAL:
6179 dlevel = DK_FATAL;
6180 break;
6181 default:
6182 gcc_unreachable ();
6183 }
6184 if (done_lexing)
6185 richloc->set_range (line_table, 0, input_location, true);
6186 diagnostic_set_info_translated (&diagnostic, msg, ap,
6187 richloc, dlevel);
6188 diagnostic_override_option_index (&diagnostic,
6189 c_option_controlling_cpp_error (reason));
6190 ret = report_diagnostic (&diagnostic);
6191 if (level == CPP_DL_WARNING_SYSHDR)
6192 global_dc->dc_warn_system_headers = save_warn_system_headers;
6193 return ret;
6194 }
6195
6196 /* Convert a character from the host to the target execution character
6197 set. cpplib handles this, mostly. */
6198
6199 HOST_WIDE_INT
6200 c_common_to_target_charset (HOST_WIDE_INT c)
6201 {
6202 /* Character constants in GCC proper are sign-extended under -fsigned-char,
6203 zero-extended under -fno-signed-char. cpplib insists that characters
6204 and character constants are always unsigned. Hence we must convert
6205 back and forth. */
6206 cppchar_t uc = ((cppchar_t)c) & ((((cppchar_t)1) << CHAR_BIT)-1);
6207
6208 uc = cpp_host_to_exec_charset (parse_in, uc);
6209
6210 if (flag_signed_char)
6211 return ((HOST_WIDE_INT)uc) << (HOST_BITS_PER_WIDE_INT - CHAR_TYPE_SIZE)
6212 >> (HOST_BITS_PER_WIDE_INT - CHAR_TYPE_SIZE);
6213 else
6214 return uc;
6215 }
6216
6217 /* Fold an offsetof-like expression. EXPR is a nested sequence of component
6218 references with an INDIRECT_REF of a constant at the bottom; much like the
6219 traditional rendering of offsetof as a macro. Return the folded result. */
6220
6221 tree
6222 fold_offsetof_1 (tree expr, enum tree_code ctx)
6223 {
6224 tree base, off, t;
6225 tree_code code = TREE_CODE (expr);
6226 switch (code)
6227 {
6228 case ERROR_MARK:
6229 return expr;
6230
6231 case VAR_DECL:
6232 error ("cannot apply %<offsetof%> to static data member %qD", expr);
6233 return error_mark_node;
6234
6235 case CALL_EXPR:
6236 case TARGET_EXPR:
6237 error ("cannot apply %<offsetof%> when %<operator[]%> is overloaded");
6238 return error_mark_node;
6239
6240 case NOP_EXPR:
6241 case INDIRECT_REF:
6242 if (!TREE_CONSTANT (TREE_OPERAND (expr, 0)))
6243 {
6244 error ("cannot apply %<offsetof%> to a non constant address");
6245 return error_mark_node;
6246 }
6247 return TREE_OPERAND (expr, 0);
6248
6249 case COMPONENT_REF:
6250 base = fold_offsetof_1 (TREE_OPERAND (expr, 0), code);
6251 if (base == error_mark_node)
6252 return base;
6253
6254 t = TREE_OPERAND (expr, 1);
6255 if (DECL_C_BIT_FIELD (t))
6256 {
6257 error ("attempt to take address of bit-field structure "
6258 "member %qD", t);
6259 return error_mark_node;
6260 }
6261 off = size_binop_loc (input_location, PLUS_EXPR, DECL_FIELD_OFFSET (t),
6262 size_int (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (t))
6263 / BITS_PER_UNIT));
6264 break;
6265
6266 case ARRAY_REF:
6267 base = fold_offsetof_1 (TREE_OPERAND (expr, 0), code);
6268 if (base == error_mark_node)
6269 return base;
6270
6271 t = TREE_OPERAND (expr, 1);
6272
6273 /* Check if the offset goes beyond the upper bound of the array. */
6274 if (TREE_CODE (t) == INTEGER_CST && tree_int_cst_sgn (t) >= 0)
6275 {
6276 tree upbound = array_ref_up_bound (expr);
6277 if (upbound != NULL_TREE
6278 && TREE_CODE (upbound) == INTEGER_CST
6279 && !tree_int_cst_equal (upbound,
6280 TYPE_MAX_VALUE (TREE_TYPE (upbound))))
6281 {
6282 if (ctx != ARRAY_REF && ctx != COMPONENT_REF)
6283 upbound = size_binop (PLUS_EXPR, upbound,
6284 build_int_cst (TREE_TYPE (upbound), 1));
6285 if (tree_int_cst_lt (upbound, t))
6286 {
6287 tree v;
6288
6289 for (v = TREE_OPERAND (expr, 0);
6290 TREE_CODE (v) == COMPONENT_REF;
6291 v = TREE_OPERAND (v, 0))
6292 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0)))
6293 == RECORD_TYPE)
6294 {
6295 tree fld_chain = DECL_CHAIN (TREE_OPERAND (v, 1));
6296 for (; fld_chain; fld_chain = DECL_CHAIN (fld_chain))
6297 if (TREE_CODE (fld_chain) == FIELD_DECL)
6298 break;
6299
6300 if (fld_chain)
6301 break;
6302 }
6303 /* Don't warn if the array might be considered a poor
6304 man's flexible array member with a very permissive
6305 definition thereof. */
6306 if (TREE_CODE (v) == ARRAY_REF
6307 || TREE_CODE (v) == COMPONENT_REF)
6308 warning (OPT_Warray_bounds,
6309 "index %E denotes an offset "
6310 "greater than size of %qT",
6311 t, TREE_TYPE (TREE_OPERAND (expr, 0)));
6312 }
6313 }
6314 }
6315
6316 t = convert (sizetype, t);
6317 off = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (TREE_TYPE (expr)), t);
6318 break;
6319
6320 case COMPOUND_EXPR:
6321 /* Handle static members of volatile structs. */
6322 t = TREE_OPERAND (expr, 1);
6323 gcc_assert (VAR_P (t));
6324 return fold_offsetof_1 (t);
6325
6326 default:
6327 gcc_unreachable ();
6328 }
6329
6330 return fold_build_pointer_plus (base, off);
6331 }
6332
6333 /* Likewise, but convert it to the return type of offsetof. */
6334
6335 tree
6336 fold_offsetof (tree expr)
6337 {
6338 return convert (size_type_node, fold_offsetof_1 (expr));
6339 }
6340
6341 \f
6342 /* *PTYPE is an incomplete array. Complete it with a domain based on
6343 INITIAL_VALUE. If INITIAL_VALUE is not present, use 1 if DO_DEFAULT
6344 is true. Return 0 if successful, 1 if INITIAL_VALUE can't be deciphered,
6345 2 if INITIAL_VALUE was NULL, and 3 if INITIAL_VALUE was empty. */
6346
6347 int
6348 complete_array_type (tree *ptype, tree initial_value, bool do_default)
6349 {
6350 tree maxindex, type, main_type, elt, unqual_elt;
6351 int failure = 0, quals;
6352 hashval_t hashcode = 0;
6353 bool overflow_p = false;
6354
6355 maxindex = size_zero_node;
6356 if (initial_value)
6357 {
6358 if (TREE_CODE (initial_value) == STRING_CST)
6359 {
6360 int eltsize
6361 = int_size_in_bytes (TREE_TYPE (TREE_TYPE (initial_value)));
6362 maxindex = size_int (TREE_STRING_LENGTH (initial_value)/eltsize - 1);
6363 }
6364 else if (TREE_CODE (initial_value) == CONSTRUCTOR)
6365 {
6366 vec<constructor_elt, va_gc> *v = CONSTRUCTOR_ELTS (initial_value);
6367
6368 if (vec_safe_is_empty (v))
6369 {
6370 if (pedantic)
6371 failure = 3;
6372 maxindex = ssize_int (-1);
6373 }
6374 else
6375 {
6376 tree curindex;
6377 unsigned HOST_WIDE_INT cnt;
6378 constructor_elt *ce;
6379 bool fold_p = false;
6380
6381 if ((*v)[0].index)
6382 maxindex = (*v)[0].index, fold_p = true;
6383
6384 curindex = maxindex;
6385
6386 for (cnt = 1; vec_safe_iterate (v, cnt, &ce); cnt++)
6387 {
6388 bool curfold_p = false;
6389 if (ce->index)
6390 curindex = ce->index, curfold_p = true;
6391 else
6392 {
6393 if (fold_p)
6394 {
6395 /* Since we treat size types now as ordinary
6396 unsigned types, we need an explicit overflow
6397 check. */
6398 tree orig = curindex;
6399 curindex = fold_convert (sizetype, curindex);
6400 overflow_p |= tree_int_cst_lt (curindex, orig);
6401 }
6402 curindex = size_binop (PLUS_EXPR, curindex,
6403 size_one_node);
6404 }
6405 if (tree_int_cst_lt (maxindex, curindex))
6406 maxindex = curindex, fold_p = curfold_p;
6407 }
6408 if (fold_p)
6409 {
6410 tree orig = maxindex;
6411 maxindex = fold_convert (sizetype, maxindex);
6412 overflow_p |= tree_int_cst_lt (maxindex, orig);
6413 }
6414 }
6415 }
6416 else
6417 {
6418 /* Make an error message unless that happened already. */
6419 if (initial_value != error_mark_node)
6420 failure = 1;
6421 }
6422 }
6423 else
6424 {
6425 failure = 2;
6426 if (!do_default)
6427 return failure;
6428 }
6429
6430 type = *ptype;
6431 elt = TREE_TYPE (type);
6432 quals = TYPE_QUALS (strip_array_types (elt));
6433 if (quals == 0)
6434 unqual_elt = elt;
6435 else
6436 unqual_elt = c_build_qualified_type (elt, KEEP_QUAL_ADDR_SPACE (quals));
6437
6438 /* Using build_distinct_type_copy and modifying things afterward instead
6439 of using build_array_type to create a new type preserves all of the
6440 TYPE_LANG_FLAG_? bits that the front end may have set. */
6441 main_type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
6442 TREE_TYPE (main_type) = unqual_elt;
6443 TYPE_DOMAIN (main_type)
6444 = build_range_type (TREE_TYPE (maxindex),
6445 build_int_cst (TREE_TYPE (maxindex), 0), maxindex);
6446 layout_type (main_type);
6447
6448 /* Make sure we have the canonical MAIN_TYPE. */
6449 hashcode = iterative_hash_object (TYPE_HASH (unqual_elt), hashcode);
6450 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (main_type)),
6451 hashcode);
6452 main_type = type_hash_canon (hashcode, main_type);
6453
6454 /* Fix the canonical type. */
6455 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (main_type))
6456 || TYPE_STRUCTURAL_EQUALITY_P (TYPE_DOMAIN (main_type)))
6457 SET_TYPE_STRUCTURAL_EQUALITY (main_type);
6458 else if (TYPE_CANONICAL (TREE_TYPE (main_type)) != TREE_TYPE (main_type)
6459 || (TYPE_CANONICAL (TYPE_DOMAIN (main_type))
6460 != TYPE_DOMAIN (main_type)))
6461 TYPE_CANONICAL (main_type)
6462 = build_array_type (TYPE_CANONICAL (TREE_TYPE (main_type)),
6463 TYPE_CANONICAL (TYPE_DOMAIN (main_type)));
6464 else
6465 TYPE_CANONICAL (main_type) = main_type;
6466
6467 if (quals == 0)
6468 type = main_type;
6469 else
6470 type = c_build_qualified_type (main_type, quals);
6471
6472 if (COMPLETE_TYPE_P (type)
6473 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST
6474 && (overflow_p || TREE_OVERFLOW (TYPE_SIZE_UNIT (type))))
6475 {
6476 error ("size of array is too large");
6477 /* If we proceed with the array type as it is, we'll eventually
6478 crash in tree_to_[su]hwi(). */
6479 type = error_mark_node;
6480 }
6481
6482 *ptype = type;
6483 return failure;
6484 }
6485
6486 /* Like c_mark_addressable but don't check register qualifier. */
6487 void
6488 c_common_mark_addressable_vec (tree t)
6489 {
6490 while (handled_component_p (t))
6491 t = TREE_OPERAND (t, 0);
6492 if (!VAR_P (t)
6493 && TREE_CODE (t) != PARM_DECL
6494 && TREE_CODE (t) != COMPOUND_LITERAL_EXPR)
6495 return;
6496 TREE_ADDRESSABLE (t) = 1;
6497 }
6498
6499
6500 \f
6501 /* Used to help initialize the builtin-types.def table. When a type of
6502 the correct size doesn't exist, use error_mark_node instead of NULL.
6503 The later results in segfaults even when a decl using the type doesn't
6504 get invoked. */
6505
6506 tree
6507 builtin_type_for_size (int size, bool unsignedp)
6508 {
6509 tree type = c_common_type_for_size (size, unsignedp);
6510 return type ? type : error_mark_node;
6511 }
6512
6513 /* A helper function for resolve_overloaded_builtin in resolving the
6514 overloaded __sync_ builtins. Returns a positive power of 2 if the
6515 first operand of PARAMS is a pointer to a supported data type.
6516 Returns 0 if an error is encountered.
6517 FETCH is true when FUNCTION is one of the _FETCH_OP_ or _OP_FETCH_
6518 built-ins. */
6519
6520 static int
6521 sync_resolve_size (tree function, vec<tree, va_gc> *params, bool fetch)
6522 {
6523 /* Type of the argument. */
6524 tree argtype;
6525 /* Type the argument points to. */
6526 tree type;
6527 int size;
6528
6529 if (vec_safe_is_empty (params))
6530 {
6531 error ("too few arguments to function %qE", function);
6532 return 0;
6533 }
6534
6535 argtype = type = TREE_TYPE ((*params)[0]);
6536 if (TREE_CODE (type) == ARRAY_TYPE)
6537 {
6538 /* Force array-to-pointer decay for C++. */
6539 gcc_assert (c_dialect_cxx());
6540 (*params)[0] = default_conversion ((*params)[0]);
6541 type = TREE_TYPE ((*params)[0]);
6542 }
6543 if (TREE_CODE (type) != POINTER_TYPE)
6544 goto incompatible;
6545
6546 type = TREE_TYPE (type);
6547 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
6548 goto incompatible;
6549
6550 if (fetch && TREE_CODE (type) == BOOLEAN_TYPE)
6551 goto incompatible;
6552
6553 size = tree_to_uhwi (TYPE_SIZE_UNIT (type));
6554 if (size == 1 || size == 2 || size == 4 || size == 8 || size == 16)
6555 return size;
6556
6557 incompatible:
6558 /* Issue the diagnostic only if the argument is valid, otherwise
6559 it would be redundant at best and could be misleading. */
6560 if (argtype != error_mark_node)
6561 error ("operand type %qT is incompatible with argument %d of %qE",
6562 argtype, 1, function);
6563 return 0;
6564 }
6565
6566 /* A helper function for resolve_overloaded_builtin. Adds casts to
6567 PARAMS to make arguments match up with those of FUNCTION. Drops
6568 the variadic arguments at the end. Returns false if some error
6569 was encountered; true on success. */
6570
6571 static bool
6572 sync_resolve_params (location_t loc, tree orig_function, tree function,
6573 vec<tree, va_gc> *params, bool orig_format)
6574 {
6575 function_args_iterator iter;
6576 tree ptype;
6577 unsigned int parmnum;
6578
6579 function_args_iter_init (&iter, TREE_TYPE (function));
6580 /* We've declared the implementation functions to use "volatile void *"
6581 as the pointer parameter, so we shouldn't get any complaints from the
6582 call to check_function_arguments what ever type the user used. */
6583 function_args_iter_next (&iter);
6584 ptype = TREE_TYPE (TREE_TYPE ((*params)[0]));
6585 ptype = TYPE_MAIN_VARIANT (ptype);
6586
6587 /* For the rest of the values, we need to cast these to FTYPE, so that we
6588 don't get warnings for passing pointer types, etc. */
6589 parmnum = 0;
6590 while (1)
6591 {
6592 tree val, arg_type;
6593
6594 arg_type = function_args_iter_cond (&iter);
6595 /* XXX void_type_node belies the abstraction. */
6596 if (arg_type == void_type_node)
6597 break;
6598
6599 ++parmnum;
6600 if (params->length () <= parmnum)
6601 {
6602 error_at (loc, "too few arguments to function %qE", orig_function);
6603 return false;
6604 }
6605
6606 /* Only convert parameters if arg_type is unsigned integer type with
6607 new format sync routines, i.e. don't attempt to convert pointer
6608 arguments (e.g. EXPECTED argument of __atomic_compare_exchange_n),
6609 bool arguments (e.g. WEAK argument) or signed int arguments (memmodel
6610 kinds). */
6611 if (TREE_CODE (arg_type) == INTEGER_TYPE && TYPE_UNSIGNED (arg_type))
6612 {
6613 /* Ideally for the first conversion we'd use convert_for_assignment
6614 so that we get warnings for anything that doesn't match the pointer
6615 type. This isn't portable across the C and C++ front ends atm. */
6616 val = (*params)[parmnum];
6617 val = convert (ptype, val);
6618 val = convert (arg_type, val);
6619 (*params)[parmnum] = val;
6620 }
6621
6622 function_args_iter_next (&iter);
6623 }
6624
6625 /* __atomic routines are not variadic. */
6626 if (!orig_format && params->length () != parmnum + 1)
6627 {
6628 error_at (loc, "too many arguments to function %qE", orig_function);
6629 return false;
6630 }
6631
6632 /* The definition of these primitives is variadic, with the remaining
6633 being "an optional list of variables protected by the memory barrier".
6634 No clue what that's supposed to mean, precisely, but we consider all
6635 call-clobbered variables to be protected so we're safe. */
6636 params->truncate (parmnum + 1);
6637
6638 return true;
6639 }
6640
6641 /* A helper function for resolve_overloaded_builtin. Adds a cast to
6642 RESULT to make it match the type of the first pointer argument in
6643 PARAMS. */
6644
6645 static tree
6646 sync_resolve_return (tree first_param, tree result, bool orig_format)
6647 {
6648 tree ptype = TREE_TYPE (TREE_TYPE (first_param));
6649 tree rtype = TREE_TYPE (result);
6650 ptype = TYPE_MAIN_VARIANT (ptype);
6651
6652 /* New format doesn't require casting unless the types are the same size. */
6653 if (orig_format || tree_int_cst_equal (TYPE_SIZE (ptype), TYPE_SIZE (rtype)))
6654 return convert (ptype, result);
6655 else
6656 return result;
6657 }
6658
6659 /* This function verifies the PARAMS to generic atomic FUNCTION.
6660 It returns the size if all the parameters are the same size, otherwise
6661 0 is returned if the parameters are invalid. */
6662
6663 static int
6664 get_atomic_generic_size (location_t loc, tree function,
6665 vec<tree, va_gc> *params)
6666 {
6667 unsigned int n_param;
6668 unsigned int n_model;
6669 unsigned int x;
6670 int size_0;
6671 tree type_0;
6672
6673 /* Determine the parameter makeup. */
6674 switch (DECL_FUNCTION_CODE (function))
6675 {
6676 case BUILT_IN_ATOMIC_EXCHANGE:
6677 n_param = 4;
6678 n_model = 1;
6679 break;
6680 case BUILT_IN_ATOMIC_LOAD:
6681 case BUILT_IN_ATOMIC_STORE:
6682 n_param = 3;
6683 n_model = 1;
6684 break;
6685 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
6686 n_param = 6;
6687 n_model = 2;
6688 break;
6689 default:
6690 gcc_unreachable ();
6691 }
6692
6693 if (vec_safe_length (params) != n_param)
6694 {
6695 error_at (loc, "incorrect number of arguments to function %qE", function);
6696 return 0;
6697 }
6698
6699 /* Get type of first parameter, and determine its size. */
6700 type_0 = TREE_TYPE ((*params)[0]);
6701 if (TREE_CODE (type_0) == ARRAY_TYPE)
6702 {
6703 /* Force array-to-pointer decay for C++. */
6704 gcc_assert (c_dialect_cxx());
6705 (*params)[0] = default_conversion ((*params)[0]);
6706 type_0 = TREE_TYPE ((*params)[0]);
6707 }
6708 if (TREE_CODE (type_0) != POINTER_TYPE || VOID_TYPE_P (TREE_TYPE (type_0)))
6709 {
6710 error_at (loc, "argument 1 of %qE must be a non-void pointer type",
6711 function);
6712 return 0;
6713 }
6714
6715 /* Types must be compile time constant sizes. */
6716 if (TREE_CODE ((TYPE_SIZE_UNIT (TREE_TYPE (type_0)))) != INTEGER_CST)
6717 {
6718 error_at (loc,
6719 "argument 1 of %qE must be a pointer to a constant size type",
6720 function);
6721 return 0;
6722 }
6723
6724 size_0 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (type_0)));
6725
6726 /* Zero size objects are not allowed. */
6727 if (size_0 == 0)
6728 {
6729 error_at (loc,
6730 "argument 1 of %qE must be a pointer to a nonzero size object",
6731 function);
6732 return 0;
6733 }
6734
6735 /* Check each other parameter is a pointer and the same size. */
6736 for (x = 0; x < n_param - n_model; x++)
6737 {
6738 int size;
6739 tree type = TREE_TYPE ((*params)[x]);
6740 /* __atomic_compare_exchange has a bool in the 4th position, skip it. */
6741 if (n_param == 6 && x == 3)
6742 continue;
6743 if (!POINTER_TYPE_P (type))
6744 {
6745 error_at (loc, "argument %d of %qE must be a pointer type", x + 1,
6746 function);
6747 return 0;
6748 }
6749 else if (TYPE_SIZE_UNIT (TREE_TYPE (type))
6750 && TREE_CODE ((TYPE_SIZE_UNIT (TREE_TYPE (type))))
6751 != INTEGER_CST)
6752 {
6753 error_at (loc, "argument %d of %qE must be a pointer to a constant "
6754 "size type", x + 1, function);
6755 return 0;
6756 }
6757 else if (FUNCTION_POINTER_TYPE_P (type))
6758 {
6759 error_at (loc, "argument %d of %qE must not be a pointer to a "
6760 "function", x + 1, function);
6761 return 0;
6762 }
6763 tree type_size = TYPE_SIZE_UNIT (TREE_TYPE (type));
6764 size = type_size ? tree_to_uhwi (type_size) : 0;
6765 if (size != size_0)
6766 {
6767 error_at (loc, "size mismatch in argument %d of %qE", x + 1,
6768 function);
6769 return 0;
6770 }
6771 }
6772
6773 /* Check memory model parameters for validity. */
6774 for (x = n_param - n_model ; x < n_param; x++)
6775 {
6776 tree p = (*params)[x];
6777 if (TREE_CODE (p) == INTEGER_CST)
6778 {
6779 int i = tree_to_uhwi (p);
6780 if (i < 0 || (memmodel_base (i) >= MEMMODEL_LAST))
6781 {
6782 warning_at (loc, OPT_Winvalid_memory_model,
6783 "invalid memory model argument %d of %qE", x + 1,
6784 function);
6785 }
6786 }
6787 else
6788 if (!INTEGRAL_TYPE_P (TREE_TYPE (p)))
6789 {
6790 error_at (loc, "non-integer memory model argument %d of %qE", x + 1,
6791 function);
6792 return 0;
6793 }
6794 }
6795
6796 return size_0;
6797 }
6798
6799
6800 /* This will take an __atomic_ generic FUNCTION call, and add a size parameter N
6801 at the beginning of the parameter list PARAMS representing the size of the
6802 objects. This is to match the library ABI requirement. LOC is the location
6803 of the function call.
6804 The new function is returned if it needed rebuilding, otherwise NULL_TREE is
6805 returned to allow the external call to be constructed. */
6806
6807 static tree
6808 add_atomic_size_parameter (unsigned n, location_t loc, tree function,
6809 vec<tree, va_gc> *params)
6810 {
6811 tree size_node;
6812
6813 /* Insert a SIZE_T parameter as the first param. If there isn't
6814 enough space, allocate a new vector and recursively re-build with that. */
6815 if (!params->space (1))
6816 {
6817 unsigned int z, len;
6818 vec<tree, va_gc> *v;
6819 tree f;
6820
6821 len = params->length ();
6822 vec_alloc (v, len + 1);
6823 v->quick_push (build_int_cst (size_type_node, n));
6824 for (z = 0; z < len; z++)
6825 v->quick_push ((*params)[z]);
6826 f = build_function_call_vec (loc, vNULL, function, v, NULL);
6827 vec_free (v);
6828 return f;
6829 }
6830
6831 /* Add the size parameter and leave as a function call for processing. */
6832 size_node = build_int_cst (size_type_node, n);
6833 params->quick_insert (0, size_node);
6834 return NULL_TREE;
6835 }
6836
6837
6838 /* Return whether atomic operations for naturally aligned N-byte
6839 arguments are supported, whether inline or through libatomic. */
6840 static bool
6841 atomic_size_supported_p (int n)
6842 {
6843 switch (n)
6844 {
6845 case 1:
6846 case 2:
6847 case 4:
6848 case 8:
6849 return true;
6850
6851 case 16:
6852 return targetm.scalar_mode_supported_p (TImode);
6853
6854 default:
6855 return false;
6856 }
6857 }
6858
6859 /* This will process an __atomic_exchange function call, determine whether it
6860 needs to be mapped to the _N variation, or turned into a library call.
6861 LOC is the location of the builtin call.
6862 FUNCTION is the DECL that has been invoked;
6863 PARAMS is the argument list for the call. The return value is non-null
6864 TRUE is returned if it is translated into the proper format for a call to the
6865 external library, and NEW_RETURN is set the tree for that function.
6866 FALSE is returned if processing for the _N variation is required, and
6867 NEW_RETURN is set to the return value the result is copied into. */
6868 static bool
6869 resolve_overloaded_atomic_exchange (location_t loc, tree function,
6870 vec<tree, va_gc> *params, tree *new_return)
6871 {
6872 tree p0, p1, p2, p3;
6873 tree I_type, I_type_ptr;
6874 int n = get_atomic_generic_size (loc, function, params);
6875
6876 /* Size of 0 is an error condition. */
6877 if (n == 0)
6878 {
6879 *new_return = error_mark_node;
6880 return true;
6881 }
6882
6883 /* If not a lock-free size, change to the library generic format. */
6884 if (!atomic_size_supported_p (n))
6885 {
6886 *new_return = add_atomic_size_parameter (n, loc, function, params);
6887 return true;
6888 }
6889
6890 /* Otherwise there is a lockfree match, transform the call from:
6891 void fn(T* mem, T* desired, T* return, model)
6892 into
6893 *return = (T) (fn (In* mem, (In) *desired, model)) */
6894
6895 p0 = (*params)[0];
6896 p1 = (*params)[1];
6897 p2 = (*params)[2];
6898 p3 = (*params)[3];
6899
6900 /* Create pointer to appropriate size. */
6901 I_type = builtin_type_for_size (BITS_PER_UNIT * n, 1);
6902 I_type_ptr = build_pointer_type (I_type);
6903
6904 /* Convert object pointer to required type. */
6905 p0 = build1 (VIEW_CONVERT_EXPR, I_type_ptr, p0);
6906 (*params)[0] = p0;
6907 /* Convert new value to required type, and dereference it. */
6908 p1 = build_indirect_ref (loc, p1, RO_UNARY_STAR);
6909 p1 = build1 (VIEW_CONVERT_EXPR, I_type, p1);
6910 (*params)[1] = p1;
6911
6912 /* Move memory model to the 3rd position, and end param list. */
6913 (*params)[2] = p3;
6914 params->truncate (3);
6915
6916 /* Convert return pointer and dereference it for later assignment. */
6917 *new_return = build_indirect_ref (loc, p2, RO_UNARY_STAR);
6918
6919 return false;
6920 }
6921
6922
6923 /* This will process an __atomic_compare_exchange function call, determine
6924 whether it needs to be mapped to the _N variation, or turned into a lib call.
6925 LOC is the location of the builtin call.
6926 FUNCTION is the DECL that has been invoked;
6927 PARAMS is the argument list for the call. The return value is non-null
6928 TRUE is returned if it is translated into the proper format for a call to the
6929 external library, and NEW_RETURN is set the tree for that function.
6930 FALSE is returned if processing for the _N variation is required. */
6931
6932 static bool
6933 resolve_overloaded_atomic_compare_exchange (location_t loc, tree function,
6934 vec<tree, va_gc> *params,
6935 tree *new_return)
6936 {
6937 tree p0, p1, p2;
6938 tree I_type, I_type_ptr;
6939 int n = get_atomic_generic_size (loc, function, params);
6940
6941 /* Size of 0 is an error condition. */
6942 if (n == 0)
6943 {
6944 *new_return = error_mark_node;
6945 return true;
6946 }
6947
6948 /* If not a lock-free size, change to the library generic format. */
6949 if (!atomic_size_supported_p (n))
6950 {
6951 /* The library generic format does not have the weak parameter, so
6952 remove it from the param list. Since a parameter has been removed,
6953 we can be sure that there is room for the SIZE_T parameter, meaning
6954 there will not be a recursive rebuilding of the parameter list, so
6955 there is no danger this will be done twice. */
6956 if (n > 0)
6957 {
6958 (*params)[3] = (*params)[4];
6959 (*params)[4] = (*params)[5];
6960 params->truncate (5);
6961 }
6962 *new_return = add_atomic_size_parameter (n, loc, function, params);
6963 return true;
6964 }
6965
6966 /* Otherwise, there is a match, so the call needs to be transformed from:
6967 bool fn(T* mem, T* desired, T* return, weak, success, failure)
6968 into
6969 bool fn ((In *)mem, (In *)expected, (In) *desired, weak, succ, fail) */
6970
6971 p0 = (*params)[0];
6972 p1 = (*params)[1];
6973 p2 = (*params)[2];
6974
6975 /* Create pointer to appropriate size. */
6976 I_type = builtin_type_for_size (BITS_PER_UNIT * n, 1);
6977 I_type_ptr = build_pointer_type (I_type);
6978
6979 /* Convert object pointer to required type. */
6980 p0 = build1 (VIEW_CONVERT_EXPR, I_type_ptr, p0);
6981 (*params)[0] = p0;
6982
6983 /* Convert expected pointer to required type. */
6984 p1 = build1 (VIEW_CONVERT_EXPR, I_type_ptr, p1);
6985 (*params)[1] = p1;
6986
6987 /* Convert desired value to required type, and dereference it. */
6988 p2 = build_indirect_ref (loc, p2, RO_UNARY_STAR);
6989 p2 = build1 (VIEW_CONVERT_EXPR, I_type, p2);
6990 (*params)[2] = p2;
6991
6992 /* The rest of the parameters are fine. NULL means no special return value
6993 processing.*/
6994 *new_return = NULL;
6995 return false;
6996 }
6997
6998
6999 /* This will process an __atomic_load function call, determine whether it
7000 needs to be mapped to the _N variation, or turned into a library call.
7001 LOC is the location of the builtin call.
7002 FUNCTION is the DECL that has been invoked;
7003 PARAMS is the argument list for the call. The return value is non-null
7004 TRUE is returned if it is translated into the proper format for a call to the
7005 external library, and NEW_RETURN is set the tree for that function.
7006 FALSE is returned if processing for the _N variation is required, and
7007 NEW_RETURN is set to the return value the result is copied into. */
7008
7009 static bool
7010 resolve_overloaded_atomic_load (location_t loc, tree function,
7011 vec<tree, va_gc> *params, tree *new_return)
7012 {
7013 tree p0, p1, p2;
7014 tree I_type, I_type_ptr;
7015 int n = get_atomic_generic_size (loc, function, params);
7016
7017 /* Size of 0 is an error condition. */
7018 if (n == 0)
7019 {
7020 *new_return = error_mark_node;
7021 return true;
7022 }
7023
7024 /* If not a lock-free size, change to the library generic format. */
7025 if (!atomic_size_supported_p (n))
7026 {
7027 *new_return = add_atomic_size_parameter (n, loc, function, params);
7028 return true;
7029 }
7030
7031 /* Otherwise, there is a match, so the call needs to be transformed from:
7032 void fn(T* mem, T* return, model)
7033 into
7034 *return = (T) (fn ((In *) mem, model)) */
7035
7036 p0 = (*params)[0];
7037 p1 = (*params)[1];
7038 p2 = (*params)[2];
7039
7040 /* Create pointer to appropriate size. */
7041 I_type = builtin_type_for_size (BITS_PER_UNIT * n, 1);
7042 I_type_ptr = build_pointer_type (I_type);
7043
7044 /* Convert object pointer to required type. */
7045 p0 = build1 (VIEW_CONVERT_EXPR, I_type_ptr, p0);
7046 (*params)[0] = p0;
7047
7048 /* Move memory model to the 2nd position, and end param list. */
7049 (*params)[1] = p2;
7050 params->truncate (2);
7051
7052 /* Convert return pointer and dereference it for later assignment. */
7053 *new_return = build_indirect_ref (loc, p1, RO_UNARY_STAR);
7054
7055 return false;
7056 }
7057
7058
7059 /* This will process an __atomic_store function call, determine whether it
7060 needs to be mapped to the _N variation, or turned into a library call.
7061 LOC is the location of the builtin call.
7062 FUNCTION is the DECL that has been invoked;
7063 PARAMS is the argument list for the call. The return value is non-null
7064 TRUE is returned if it is translated into the proper format for a call to the
7065 external library, and NEW_RETURN is set the tree for that function.
7066 FALSE is returned if processing for the _N variation is required, and
7067 NEW_RETURN is set to the return value the result is copied into. */
7068
7069 static bool
7070 resolve_overloaded_atomic_store (location_t loc, tree function,
7071 vec<tree, va_gc> *params, tree *new_return)
7072 {
7073 tree p0, p1;
7074 tree I_type, I_type_ptr;
7075 int n = get_atomic_generic_size (loc, function, params);
7076
7077 /* Size of 0 is an error condition. */
7078 if (n == 0)
7079 {
7080 *new_return = error_mark_node;
7081 return true;
7082 }
7083
7084 /* If not a lock-free size, change to the library generic format. */
7085 if (!atomic_size_supported_p (n))
7086 {
7087 *new_return = add_atomic_size_parameter (n, loc, function, params);
7088 return true;
7089 }
7090
7091 /* Otherwise, there is a match, so the call needs to be transformed from:
7092 void fn(T* mem, T* value, model)
7093 into
7094 fn ((In *) mem, (In) *value, model) */
7095
7096 p0 = (*params)[0];
7097 p1 = (*params)[1];
7098
7099 /* Create pointer to appropriate size. */
7100 I_type = builtin_type_for_size (BITS_PER_UNIT * n, 1);
7101 I_type_ptr = build_pointer_type (I_type);
7102
7103 /* Convert object pointer to required type. */
7104 p0 = build1 (VIEW_CONVERT_EXPR, I_type_ptr, p0);
7105 (*params)[0] = p0;
7106
7107 /* Convert new value to required type, and dereference it. */
7108 p1 = build_indirect_ref (loc, p1, RO_UNARY_STAR);
7109 p1 = build1 (VIEW_CONVERT_EXPR, I_type, p1);
7110 (*params)[1] = p1;
7111
7112 /* The memory model is in the right spot already. Return is void. */
7113 *new_return = NULL_TREE;
7114
7115 return false;
7116 }
7117
7118
7119 /* Some builtin functions are placeholders for other expressions. This
7120 function should be called immediately after parsing the call expression
7121 before surrounding code has committed to the type of the expression.
7122
7123 LOC is the location of the builtin call.
7124
7125 FUNCTION is the DECL that has been invoked; it is known to be a builtin.
7126 PARAMS is the argument list for the call. The return value is non-null
7127 when expansion is complete, and null if normal processing should
7128 continue. */
7129
7130 tree
7131 resolve_overloaded_builtin (location_t loc, tree function,
7132 vec<tree, va_gc> *params)
7133 {
7134 enum built_in_function orig_code = DECL_FUNCTION_CODE (function);
7135
7136 /* Is function one of the _FETCH_OP_ or _OP_FETCH_ built-ins?
7137 Those are not valid to call with a pointer to _Bool (or C++ bool)
7138 and so must be rejected. */
7139 bool fetch_op = true;
7140 bool orig_format = true;
7141 tree new_return = NULL_TREE;
7142
7143 switch (DECL_BUILT_IN_CLASS (function))
7144 {
7145 case BUILT_IN_NORMAL:
7146 break;
7147 case BUILT_IN_MD:
7148 if (targetm.resolve_overloaded_builtin)
7149 return targetm.resolve_overloaded_builtin (loc, function, params);
7150 else
7151 return NULL_TREE;
7152 default:
7153 return NULL_TREE;
7154 }
7155
7156 /* Handle BUILT_IN_NORMAL here. */
7157 switch (orig_code)
7158 {
7159 case BUILT_IN_ATOMIC_EXCHANGE:
7160 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
7161 case BUILT_IN_ATOMIC_LOAD:
7162 case BUILT_IN_ATOMIC_STORE:
7163 {
7164 /* Handle these 4 together so that they can fall through to the next
7165 case if the call is transformed to an _N variant. */
7166 switch (orig_code)
7167 {
7168 case BUILT_IN_ATOMIC_EXCHANGE:
7169 {
7170 if (resolve_overloaded_atomic_exchange (loc, function, params,
7171 &new_return))
7172 return new_return;
7173 /* Change to the _N variant. */
7174 orig_code = BUILT_IN_ATOMIC_EXCHANGE_N;
7175 break;
7176 }
7177
7178 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
7179 {
7180 if (resolve_overloaded_atomic_compare_exchange (loc, function,
7181 params,
7182 &new_return))
7183 return new_return;
7184 /* Change to the _N variant. */
7185 orig_code = BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N;
7186 break;
7187 }
7188 case BUILT_IN_ATOMIC_LOAD:
7189 {
7190 if (resolve_overloaded_atomic_load (loc, function, params,
7191 &new_return))
7192 return new_return;
7193 /* Change to the _N variant. */
7194 orig_code = BUILT_IN_ATOMIC_LOAD_N;
7195 break;
7196 }
7197 case BUILT_IN_ATOMIC_STORE:
7198 {
7199 if (resolve_overloaded_atomic_store (loc, function, params,
7200 &new_return))
7201 return new_return;
7202 /* Change to the _N variant. */
7203 orig_code = BUILT_IN_ATOMIC_STORE_N;
7204 break;
7205 }
7206 default:
7207 gcc_unreachable ();
7208 }
7209 }
7210 /* FALLTHRU */
7211 case BUILT_IN_ATOMIC_EXCHANGE_N:
7212 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
7213 case BUILT_IN_ATOMIC_LOAD_N:
7214 case BUILT_IN_ATOMIC_STORE_N:
7215 fetch_op = false;
7216 /* FALLTHRU */
7217 case BUILT_IN_ATOMIC_ADD_FETCH_N:
7218 case BUILT_IN_ATOMIC_SUB_FETCH_N:
7219 case BUILT_IN_ATOMIC_AND_FETCH_N:
7220 case BUILT_IN_ATOMIC_NAND_FETCH_N:
7221 case BUILT_IN_ATOMIC_XOR_FETCH_N:
7222 case BUILT_IN_ATOMIC_OR_FETCH_N:
7223 case BUILT_IN_ATOMIC_FETCH_ADD_N:
7224 case BUILT_IN_ATOMIC_FETCH_SUB_N:
7225 case BUILT_IN_ATOMIC_FETCH_AND_N:
7226 case BUILT_IN_ATOMIC_FETCH_NAND_N:
7227 case BUILT_IN_ATOMIC_FETCH_XOR_N:
7228 case BUILT_IN_ATOMIC_FETCH_OR_N:
7229 orig_format = false;
7230 /* FALLTHRU */
7231 case BUILT_IN_SYNC_FETCH_AND_ADD_N:
7232 case BUILT_IN_SYNC_FETCH_AND_SUB_N:
7233 case BUILT_IN_SYNC_FETCH_AND_OR_N:
7234 case BUILT_IN_SYNC_FETCH_AND_AND_N:
7235 case BUILT_IN_SYNC_FETCH_AND_XOR_N:
7236 case BUILT_IN_SYNC_FETCH_AND_NAND_N:
7237 case BUILT_IN_SYNC_ADD_AND_FETCH_N:
7238 case BUILT_IN_SYNC_SUB_AND_FETCH_N:
7239 case BUILT_IN_SYNC_OR_AND_FETCH_N:
7240 case BUILT_IN_SYNC_AND_AND_FETCH_N:
7241 case BUILT_IN_SYNC_XOR_AND_FETCH_N:
7242 case BUILT_IN_SYNC_NAND_AND_FETCH_N:
7243 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
7244 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_N:
7245 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_N:
7246 case BUILT_IN_SYNC_LOCK_RELEASE_N:
7247 {
7248 /* The following are not _FETCH_OPs and must be accepted with
7249 pointers to _Bool (or C++ bool). */
7250 if (fetch_op)
7251 fetch_op =
7252 (orig_code != BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N
7253 && orig_code != BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_N
7254 && orig_code != BUILT_IN_SYNC_LOCK_TEST_AND_SET_N
7255 && orig_code != BUILT_IN_SYNC_LOCK_RELEASE_N);
7256
7257 int n = sync_resolve_size (function, params, fetch_op);
7258 tree new_function, first_param, result;
7259 enum built_in_function fncode;
7260
7261 if (n == 0)
7262 return error_mark_node;
7263
7264 fncode = (enum built_in_function)((int)orig_code + exact_log2 (n) + 1);
7265 new_function = builtin_decl_explicit (fncode);
7266 if (!sync_resolve_params (loc, function, new_function, params,
7267 orig_format))
7268 return error_mark_node;
7269
7270 first_param = (*params)[0];
7271 result = build_function_call_vec (loc, vNULL, new_function, params,
7272 NULL);
7273 if (result == error_mark_node)
7274 return result;
7275 if (orig_code != BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N
7276 && orig_code != BUILT_IN_SYNC_LOCK_RELEASE_N
7277 && orig_code != BUILT_IN_ATOMIC_STORE_N
7278 && orig_code != BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N)
7279 result = sync_resolve_return (first_param, result, orig_format);
7280
7281 if (fetch_op)
7282 /* Prevent -Wunused-value warning. */
7283 TREE_USED (result) = true;
7284
7285 /* If new_return is set, assign function to that expr and cast the
7286 result to void since the generic interface returned void. */
7287 if (new_return)
7288 {
7289 /* Cast function result from I{1,2,4,8,16} to the required type. */
7290 result = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (new_return), result);
7291 result = build2 (MODIFY_EXPR, TREE_TYPE (new_return), new_return,
7292 result);
7293 TREE_SIDE_EFFECTS (result) = 1;
7294 protected_set_expr_location (result, loc);
7295 result = convert (void_type_node, result);
7296 }
7297 return result;
7298 }
7299
7300 default:
7301 return NULL_TREE;
7302 }
7303 }
7304
7305 /* vector_types_compatible_elements_p is used in type checks of vectors
7306 values used as operands of binary operators. Where it returns true, and
7307 the other checks of the caller succeed (being vector types in he first
7308 place, and matching number of elements), we can just treat the types
7309 as essentially the same.
7310 Contrast with vector_targets_convertible_p, which is used for vector
7311 pointer types, and vector_types_convertible_p, which will allow
7312 language-specific matches under the control of flag_lax_vector_conversions,
7313 and might still require a conversion. */
7314 /* True if vector types T1 and T2 can be inputs to the same binary
7315 operator without conversion.
7316 We don't check the overall vector size here because some of our callers
7317 want to give different error messages when the vectors are compatible
7318 except for the element count. */
7319
7320 bool
7321 vector_types_compatible_elements_p (tree t1, tree t2)
7322 {
7323 bool opaque = TYPE_VECTOR_OPAQUE (t1) || TYPE_VECTOR_OPAQUE (t2);
7324 t1 = TREE_TYPE (t1);
7325 t2 = TREE_TYPE (t2);
7326
7327 enum tree_code c1 = TREE_CODE (t1), c2 = TREE_CODE (t2);
7328
7329 gcc_assert ((c1 == INTEGER_TYPE || c1 == REAL_TYPE || c1 == FIXED_POINT_TYPE)
7330 && (c2 == INTEGER_TYPE || c2 == REAL_TYPE
7331 || c2 == FIXED_POINT_TYPE));
7332
7333 t1 = c_common_signed_type (t1);
7334 t2 = c_common_signed_type (t2);
7335 /* Equality works here because c_common_signed_type uses
7336 TYPE_MAIN_VARIANT. */
7337 if (t1 == t2)
7338 return true;
7339 if (opaque && c1 == c2
7340 && (c1 == INTEGER_TYPE || c1 == REAL_TYPE)
7341 && TYPE_PRECISION (t1) == TYPE_PRECISION (t2))
7342 return true;
7343 return false;
7344 }
7345
7346 /* Check for missing format attributes on function pointers. LTYPE is
7347 the new type or left-hand side type. RTYPE is the old type or
7348 right-hand side type. Returns TRUE if LTYPE is missing the desired
7349 attribute. */
7350
7351 bool
7352 check_missing_format_attribute (tree ltype, tree rtype)
7353 {
7354 tree const ttr = TREE_TYPE (rtype), ttl = TREE_TYPE (ltype);
7355 tree ra;
7356
7357 for (ra = TYPE_ATTRIBUTES (ttr); ra; ra = TREE_CHAIN (ra))
7358 if (is_attribute_p ("format", TREE_PURPOSE (ra)))
7359 break;
7360 if (ra)
7361 {
7362 tree la;
7363 for (la = TYPE_ATTRIBUTES (ttl); la; la = TREE_CHAIN (la))
7364 if (is_attribute_p ("format", TREE_PURPOSE (la)))
7365 break;
7366 return !la;
7367 }
7368 else
7369 return false;
7370 }
7371
7372 /* Setup a TYPE_DECL node as a typedef representation.
7373
7374 X is a TYPE_DECL for a typedef statement. Create a brand new
7375 ..._TYPE node (which will be just a variant of the existing
7376 ..._TYPE node with identical properties) and then install X
7377 as the TYPE_NAME of this brand new (duplicate) ..._TYPE node.
7378
7379 The whole point here is to end up with a situation where each
7380 and every ..._TYPE node the compiler creates will be uniquely
7381 associated with AT MOST one node representing a typedef name.
7382 This way, even though the compiler substitutes corresponding
7383 ..._TYPE nodes for TYPE_DECL (i.e. "typedef name") nodes very
7384 early on, later parts of the compiler can always do the reverse
7385 translation and get back the corresponding typedef name. For
7386 example, given:
7387
7388 typedef struct S MY_TYPE;
7389 MY_TYPE object;
7390
7391 Later parts of the compiler might only know that `object' was of
7392 type `struct S' if it were not for code just below. With this
7393 code however, later parts of the compiler see something like:
7394
7395 struct S' == struct S
7396 typedef struct S' MY_TYPE;
7397 struct S' object;
7398
7399 And they can then deduce (from the node for type struct S') that
7400 the original object declaration was:
7401
7402 MY_TYPE object;
7403
7404 Being able to do this is important for proper support of protoize,
7405 and also for generating precise symbolic debugging information
7406 which takes full account of the programmer's (typedef) vocabulary.
7407
7408 Obviously, we don't want to generate a duplicate ..._TYPE node if
7409 the TYPE_DECL node that we are now processing really represents a
7410 standard built-in type. */
7411
7412 void
7413 set_underlying_type (tree x)
7414 {
7415 if (x == error_mark_node)
7416 return;
7417 if (DECL_IS_BUILTIN (x) && TREE_CODE (TREE_TYPE (x)) != ARRAY_TYPE)
7418 {
7419 if (TYPE_NAME (TREE_TYPE (x)) == 0)
7420 TYPE_NAME (TREE_TYPE (x)) = x;
7421 }
7422 else if (TREE_TYPE (x) != error_mark_node
7423 && DECL_ORIGINAL_TYPE (x) == NULL_TREE)
7424 {
7425 tree tt = TREE_TYPE (x);
7426 DECL_ORIGINAL_TYPE (x) = tt;
7427 tt = build_variant_type_copy (tt);
7428 TYPE_STUB_DECL (tt) = TYPE_STUB_DECL (DECL_ORIGINAL_TYPE (x));
7429 TYPE_NAME (tt) = x;
7430 TREE_USED (tt) = TREE_USED (x);
7431 TREE_TYPE (x) = tt;
7432 }
7433 }
7434
7435 /* Record the types used by the current global variable declaration
7436 being parsed, so that we can decide later to emit their debug info.
7437 Those types are in types_used_by_cur_var_decl, and we are going to
7438 store them in the types_used_by_vars_hash hash table.
7439 DECL is the declaration of the global variable that has been parsed. */
7440
7441 void
7442 record_types_used_by_current_var_decl (tree decl)
7443 {
7444 gcc_assert (decl && DECL_P (decl) && TREE_STATIC (decl));
7445
7446 while (types_used_by_cur_var_decl && !types_used_by_cur_var_decl->is_empty ())
7447 {
7448 tree type = types_used_by_cur_var_decl->pop ();
7449 types_used_by_var_decl_insert (type, decl);
7450 }
7451 }
7452
7453 /* The C and C++ parsers both use vectors to hold function arguments.
7454 For efficiency, we keep a cache of unused vectors. This is the
7455 cache. */
7456
7457 typedef vec<tree, va_gc> *tree_gc_vec;
7458 static GTY((deletable)) vec<tree_gc_vec, va_gc> *tree_vector_cache;
7459
7460 /* Return a new vector from the cache. If the cache is empty,
7461 allocate a new vector. These vectors are GC'ed, so it is OK if the
7462 pointer is not released.. */
7463
7464 vec<tree, va_gc> *
7465 make_tree_vector (void)
7466 {
7467 if (tree_vector_cache && !tree_vector_cache->is_empty ())
7468 return tree_vector_cache->pop ();
7469 else
7470 {
7471 /* Passing 0 to vec::alloc returns NULL, and our callers require
7472 that we always return a non-NULL value. The vector code uses
7473 4 when growing a NULL vector, so we do too. */
7474 vec<tree, va_gc> *v;
7475 vec_alloc (v, 4);
7476 return v;
7477 }
7478 }
7479
7480 /* Release a vector of trees back to the cache. */
7481
7482 void
7483 release_tree_vector (vec<tree, va_gc> *vec)
7484 {
7485 if (vec != NULL)
7486 {
7487 vec->truncate (0);
7488 vec_safe_push (tree_vector_cache, vec);
7489 }
7490 }
7491
7492 /* Get a new tree vector holding a single tree. */
7493
7494 vec<tree, va_gc> *
7495 make_tree_vector_single (tree t)
7496 {
7497 vec<tree, va_gc> *ret = make_tree_vector ();
7498 ret->quick_push (t);
7499 return ret;
7500 }
7501
7502 /* Get a new tree vector of the TREE_VALUEs of a TREE_LIST chain. */
7503
7504 vec<tree, va_gc> *
7505 make_tree_vector_from_list (tree list)
7506 {
7507 vec<tree, va_gc> *ret = make_tree_vector ();
7508 for (; list; list = TREE_CHAIN (list))
7509 vec_safe_push (ret, TREE_VALUE (list));
7510 return ret;
7511 }
7512
7513 /* Get a new tree vector of the values of a CONSTRUCTOR. */
7514
7515 vec<tree, va_gc> *
7516 make_tree_vector_from_ctor (tree ctor)
7517 {
7518 vec<tree,va_gc> *ret = make_tree_vector ();
7519 vec_safe_reserve (ret, CONSTRUCTOR_NELTS (ctor));
7520 for (unsigned i = 0; i < CONSTRUCTOR_NELTS (ctor); ++i)
7521 ret->quick_push (CONSTRUCTOR_ELT (ctor, i)->value);
7522 return ret;
7523 }
7524
7525 /* Get a new tree vector which is a copy of an existing one. */
7526
7527 vec<tree, va_gc> *
7528 make_tree_vector_copy (const vec<tree, va_gc> *orig)
7529 {
7530 vec<tree, va_gc> *ret;
7531 unsigned int ix;
7532 tree t;
7533
7534 ret = make_tree_vector ();
7535 vec_safe_reserve (ret, vec_safe_length (orig));
7536 FOR_EACH_VEC_SAFE_ELT (orig, ix, t)
7537 ret->quick_push (t);
7538 return ret;
7539 }
7540
7541 /* Return true if KEYWORD starts a type specifier. */
7542
7543 bool
7544 keyword_begins_type_specifier (enum rid keyword)
7545 {
7546 switch (keyword)
7547 {
7548 case RID_AUTO_TYPE:
7549 case RID_INT:
7550 case RID_CHAR:
7551 case RID_FLOAT:
7552 case RID_DOUBLE:
7553 case RID_VOID:
7554 case RID_UNSIGNED:
7555 case RID_LONG:
7556 case RID_SHORT:
7557 case RID_SIGNED:
7558 CASE_RID_FLOATN_NX:
7559 case RID_DFLOAT32:
7560 case RID_DFLOAT64:
7561 case RID_DFLOAT128:
7562 case RID_FRACT:
7563 case RID_ACCUM:
7564 case RID_BOOL:
7565 case RID_WCHAR:
7566 case RID_CHAR16:
7567 case RID_CHAR32:
7568 case RID_SAT:
7569 case RID_COMPLEX:
7570 case RID_TYPEOF:
7571 case RID_STRUCT:
7572 case RID_CLASS:
7573 case RID_UNION:
7574 case RID_ENUM:
7575 return true;
7576 default:
7577 if (keyword >= RID_FIRST_INT_N
7578 && keyword < RID_FIRST_INT_N + NUM_INT_N_ENTS
7579 && int_n_enabled_p[keyword-RID_FIRST_INT_N])
7580 return true;
7581 return false;
7582 }
7583 }
7584
7585 /* Return true if KEYWORD names a type qualifier. */
7586
7587 bool
7588 keyword_is_type_qualifier (enum rid keyword)
7589 {
7590 switch (keyword)
7591 {
7592 case RID_CONST:
7593 case RID_VOLATILE:
7594 case RID_RESTRICT:
7595 case RID_ATOMIC:
7596 return true;
7597 default:
7598 return false;
7599 }
7600 }
7601
7602 /* Return true if KEYWORD names a storage class specifier.
7603
7604 RID_TYPEDEF is not included in this list despite `typedef' being
7605 listed in C99 6.7.1.1. 6.7.1.3 indicates that `typedef' is listed as
7606 such for syntactic convenience only. */
7607
7608 bool
7609 keyword_is_storage_class_specifier (enum rid keyword)
7610 {
7611 switch (keyword)
7612 {
7613 case RID_STATIC:
7614 case RID_EXTERN:
7615 case RID_REGISTER:
7616 case RID_AUTO:
7617 case RID_MUTABLE:
7618 case RID_THREAD:
7619 return true;
7620 default:
7621 return false;
7622 }
7623 }
7624
7625 /* Return true if KEYWORD names a function-specifier [dcl.fct.spec]. */
7626
7627 static bool
7628 keyword_is_function_specifier (enum rid keyword)
7629 {
7630 switch (keyword)
7631 {
7632 case RID_INLINE:
7633 case RID_NORETURN:
7634 case RID_VIRTUAL:
7635 case RID_EXPLICIT:
7636 return true;
7637 default:
7638 return false;
7639 }
7640 }
7641
7642 /* Return true if KEYWORD names a decl-specifier [dcl.spec] or a
7643 declaration-specifier (C99 6.7). */
7644
7645 bool
7646 keyword_is_decl_specifier (enum rid keyword)
7647 {
7648 if (keyword_is_storage_class_specifier (keyword)
7649 || keyword_is_type_qualifier (keyword)
7650 || keyword_is_function_specifier (keyword))
7651 return true;
7652
7653 switch (keyword)
7654 {
7655 case RID_TYPEDEF:
7656 case RID_FRIEND:
7657 case RID_CONSTEXPR:
7658 return true;
7659 default:
7660 return false;
7661 }
7662 }
7663
7664 /* Initialize language-specific-bits of tree_contains_struct. */
7665
7666 void
7667 c_common_init_ts (void)
7668 {
7669 MARK_TS_TYPED (C_MAYBE_CONST_EXPR);
7670 MARK_TS_TYPED (EXCESS_PRECISION_EXPR);
7671 MARK_TS_TYPED (ARRAY_NOTATION_REF);
7672 }
7673
7674 /* Build a user-defined numeric literal out of an integer constant type VALUE
7675 with identifier SUFFIX. */
7676
7677 tree
7678 build_userdef_literal (tree suffix_id, tree value,
7679 enum overflow_type overflow, tree num_string)
7680 {
7681 tree literal = make_node (USERDEF_LITERAL);
7682 USERDEF_LITERAL_SUFFIX_ID (literal) = suffix_id;
7683 USERDEF_LITERAL_VALUE (literal) = value;
7684 USERDEF_LITERAL_OVERFLOW (literal) = overflow;
7685 USERDEF_LITERAL_NUM_STRING (literal) = num_string;
7686 return literal;
7687 }
7688
7689 /* For vector[index], convert the vector to an array of the underlying type.
7690 Return true if the resulting ARRAY_REF should not be an lvalue. */
7691
7692 bool
7693 convert_vector_to_array_for_subscript (location_t loc,
7694 tree *vecp, tree index)
7695 {
7696 bool ret = false;
7697 if (VECTOR_TYPE_P (TREE_TYPE (*vecp)))
7698 {
7699 tree type = TREE_TYPE (*vecp);
7700
7701 ret = !lvalue_p (*vecp);
7702
7703 if (TREE_CODE (index) == INTEGER_CST)
7704 if (!tree_fits_uhwi_p (index)
7705 || tree_to_uhwi (index) >= TYPE_VECTOR_SUBPARTS (type))
7706 warning_at (loc, OPT_Warray_bounds, "index value is out of bound");
7707
7708 /* We are building an ARRAY_REF so mark the vector as addressable
7709 to not run into the gimplifiers premature setting of DECL_GIMPLE_REG_P
7710 for function parameters. */
7711 c_common_mark_addressable_vec (*vecp);
7712
7713 *vecp = build1 (VIEW_CONVERT_EXPR,
7714 build_array_type_nelts (TREE_TYPE (type),
7715 TYPE_VECTOR_SUBPARTS (type)),
7716 *vecp);
7717 }
7718 return ret;
7719 }
7720
7721 /* Determine which of the operands, if any, is a scalar that needs to be
7722 converted to a vector, for the range of operations. */
7723 enum stv_conv
7724 scalar_to_vector (location_t loc, enum tree_code code, tree op0, tree op1,
7725 bool complain)
7726 {
7727 tree type0 = TREE_TYPE (op0);
7728 tree type1 = TREE_TYPE (op1);
7729 bool integer_only_op = false;
7730 enum stv_conv ret = stv_firstarg;
7731
7732 gcc_assert (VECTOR_TYPE_P (type0) || VECTOR_TYPE_P (type1));
7733 switch (code)
7734 {
7735 /* Most GENERIC binary expressions require homogeneous arguments.
7736 LSHIFT_EXPR and RSHIFT_EXPR are exceptions and accept a first
7737 argument that is a vector and a second one that is a scalar, so
7738 we never return stv_secondarg for them. */
7739 case RSHIFT_EXPR:
7740 case LSHIFT_EXPR:
7741 if (TREE_CODE (type0) == INTEGER_TYPE
7742 && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE)
7743 {
7744 if (unsafe_conversion_p (loc, TREE_TYPE (type1), op0, false))
7745 {
7746 if (complain)
7747 error_at (loc, "conversion of scalar %qT to vector %qT "
7748 "involves truncation", type0, type1);
7749 return stv_error;
7750 }
7751 else
7752 return stv_firstarg;
7753 }
7754 break;
7755
7756 case BIT_IOR_EXPR:
7757 case BIT_XOR_EXPR:
7758 case BIT_AND_EXPR:
7759 integer_only_op = true;
7760 /* fall through */
7761
7762 case VEC_COND_EXPR:
7763
7764 case PLUS_EXPR:
7765 case MINUS_EXPR:
7766 case MULT_EXPR:
7767 case TRUNC_DIV_EXPR:
7768 case CEIL_DIV_EXPR:
7769 case FLOOR_DIV_EXPR:
7770 case ROUND_DIV_EXPR:
7771 case EXACT_DIV_EXPR:
7772 case TRUNC_MOD_EXPR:
7773 case FLOOR_MOD_EXPR:
7774 case RDIV_EXPR:
7775 case EQ_EXPR:
7776 case NE_EXPR:
7777 case LE_EXPR:
7778 case GE_EXPR:
7779 case LT_EXPR:
7780 case GT_EXPR:
7781 /* What about UNLT_EXPR? */
7782 if (VECTOR_TYPE_P (type0))
7783 {
7784 ret = stv_secondarg;
7785 std::swap (type0, type1);
7786 std::swap (op0, op1);
7787 }
7788
7789 if (TREE_CODE (type0) == INTEGER_TYPE
7790 && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE)
7791 {
7792 if (unsafe_conversion_p (loc, TREE_TYPE (type1), op0, false))
7793 {
7794 if (complain)
7795 error_at (loc, "conversion of scalar %qT to vector %qT "
7796 "involves truncation", type0, type1);
7797 return stv_error;
7798 }
7799 return ret;
7800 }
7801 else if (!integer_only_op
7802 /* Allow integer --> real conversion if safe. */
7803 && (TREE_CODE (type0) == REAL_TYPE
7804 || TREE_CODE (type0) == INTEGER_TYPE)
7805 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (type1)))
7806 {
7807 if (unsafe_conversion_p (loc, TREE_TYPE (type1), op0, false))
7808 {
7809 if (complain)
7810 error_at (loc, "conversion of scalar %qT to vector %qT "
7811 "involves truncation", type0, type1);
7812 return stv_error;
7813 }
7814 return ret;
7815 }
7816 default:
7817 break;
7818 }
7819
7820 return stv_nothing;
7821 }
7822
7823 /* Return the alignment of std::max_align_t.
7824
7825 [support.types.layout] The type max_align_t is a POD type whose alignment
7826 requirement is at least as great as that of every scalar type, and whose
7827 alignment requirement is supported in every context. */
7828
7829 unsigned
7830 max_align_t_align ()
7831 {
7832 unsigned int max_align = MAX (TYPE_ALIGN (long_long_integer_type_node),
7833 TYPE_ALIGN (long_double_type_node));
7834 if (float128_type_node != NULL_TREE)
7835 max_align = MAX (max_align, TYPE_ALIGN (float128_type_node));
7836 return max_align;
7837 }
7838
7839 /* Return true iff ALIGN is an integral constant that is a fundamental
7840 alignment, as defined by [basic.align] in the c++-11
7841 specifications.
7842
7843 That is:
7844
7845 [A fundamental alignment is represented by an alignment less than or
7846 equal to the greatest alignment supported by the implementation
7847 in all contexts, which is equal to alignof(max_align_t)]. */
7848
7849 bool
7850 cxx_fundamental_alignment_p (unsigned align)
7851 {
7852 return (align <= max_align_t_align ());
7853 }
7854
7855 /* Return true if T is a pointer to a zero-sized aggregate. */
7856
7857 bool
7858 pointer_to_zero_sized_aggr_p (tree t)
7859 {
7860 if (!POINTER_TYPE_P (t))
7861 return false;
7862 t = TREE_TYPE (t);
7863 return (TYPE_SIZE (t) && integer_zerop (TYPE_SIZE (t)));
7864 }
7865
7866 /* For an EXPR of a FUNCTION_TYPE that references a GCC built-in function
7867 with no library fallback or for an ADDR_EXPR whose operand is such type
7868 issues an error pointing to the location LOC.
7869 Returns true when the expression has been diagnosed and false
7870 otherwise. */
7871
7872 bool
7873 reject_gcc_builtin (const_tree expr, location_t loc /* = UNKNOWN_LOCATION */)
7874 {
7875 if (TREE_CODE (expr) == ADDR_EXPR)
7876 expr = TREE_OPERAND (expr, 0);
7877
7878 if (TREE_TYPE (expr)
7879 && TREE_CODE (TREE_TYPE (expr)) == FUNCTION_TYPE
7880 && TREE_CODE (expr) == FUNCTION_DECL
7881 /* The intersection of DECL_BUILT_IN and DECL_IS_BUILTIN avoids
7882 false positives for user-declared built-ins such as abs or
7883 strlen, and for C++ operators new and delete.
7884 The c_decl_implicit() test avoids false positives for implicitly
7885 declared built-ins with library fallbacks (such as abs). */
7886 && DECL_BUILT_IN (expr)
7887 && DECL_IS_BUILTIN (expr)
7888 && !c_decl_implicit (expr)
7889 && !DECL_ASSEMBLER_NAME_SET_P (expr))
7890 {
7891 if (loc == UNKNOWN_LOCATION)
7892 loc = EXPR_LOC_OR_LOC (expr, input_location);
7893
7894 /* Reject arguments that are built-in functions with
7895 no library fallback. */
7896 error_at (loc, "built-in function %qE must be directly called", expr);
7897
7898 return true;
7899 }
7900
7901 return false;
7902 }
7903
7904 /* Check if array size calculations overflow or if the array covers more
7905 than half of the address space. Return true if the size of the array
7906 is valid, false otherwise. TYPE is the type of the array and NAME is
7907 the name of the array, or NULL_TREE for unnamed arrays. */
7908
7909 bool
7910 valid_array_size_p (location_t loc, tree type, tree name)
7911 {
7912 if (type != error_mark_node
7913 && COMPLETE_TYPE_P (type)
7914 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST
7915 && !valid_constant_size_p (TYPE_SIZE_UNIT (type)))
7916 {
7917 if (name)
7918 error_at (loc, "size of array %qE is too large", name);
7919 else
7920 error_at (loc, "size of unnamed array is too large");
7921 return false;
7922 }
7923 return true;
7924 }
7925
7926 /* Read SOURCE_DATE_EPOCH from environment to have a deterministic
7927 timestamp to replace embedded current dates to get reproducible
7928 results. Returns -1 if SOURCE_DATE_EPOCH is not defined. */
7929
7930 time_t
7931 cb_get_source_date_epoch (cpp_reader *pfile ATTRIBUTE_UNUSED)
7932 {
7933 char *source_date_epoch;
7934 int64_t epoch;
7935 char *endptr;
7936
7937 source_date_epoch = getenv ("SOURCE_DATE_EPOCH");
7938 if (!source_date_epoch)
7939 return (time_t) -1;
7940
7941 errno = 0;
7942 #if defined(INT64_T_IS_LONG)
7943 epoch = strtol (source_date_epoch, &endptr, 10);
7944 #else
7945 epoch = strtoll (source_date_epoch, &endptr, 10);
7946 #endif
7947 if (errno != 0 || endptr == source_date_epoch || *endptr != '\0'
7948 || epoch < 0 || epoch > MAX_SOURCE_DATE_EPOCH)
7949 {
7950 error_at (input_location, "environment variable SOURCE_DATE_EPOCH must "
7951 "expand to a non-negative integer less than or equal to %wd",
7952 MAX_SOURCE_DATE_EPOCH);
7953 return (time_t) -1;
7954 }
7955
7956 return (time_t) epoch;
7957 }
7958
7959 /* Callback for libcpp for offering spelling suggestions for misspelled
7960 directives. GOAL is an unrecognized string; CANDIDATES is a
7961 NULL-terminated array of candidate strings. Return the closest
7962 match to GOAL within CANDIDATES, or NULL if none are good
7963 suggestions. */
7964
7965 const char *
7966 cb_get_suggestion (cpp_reader *, const char *goal,
7967 const char *const *candidates)
7968 {
7969 best_match<const char *, const char *> bm (goal);
7970 while (*candidates)
7971 bm.consider (*candidates++);
7972 return bm.get_best_meaningful_candidate ();
7973 }
7974
7975 /* Return the latice point which is the wider of the two FLT_EVAL_METHOD
7976 modes X, Y. This isn't just >, as the FLT_EVAL_METHOD values added
7977 by C TS 18661-3 for interchange types that are computed in their
7978 native precision are larger than the C11 values for evaluating in the
7979 precision of float/double/long double. If either mode is
7980 FLT_EVAL_METHOD_UNPREDICTABLE, return that. */
7981
7982 enum flt_eval_method
7983 excess_precision_mode_join (enum flt_eval_method x,
7984 enum flt_eval_method y)
7985 {
7986 if (x == FLT_EVAL_METHOD_UNPREDICTABLE
7987 || y == FLT_EVAL_METHOD_UNPREDICTABLE)
7988 return FLT_EVAL_METHOD_UNPREDICTABLE;
7989
7990 /* GCC only supports one interchange type right now, _Float16. If
7991 we're evaluating _Float16 in 16-bit precision, then flt_eval_method
7992 will be FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16. */
7993 if (x == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
7994 return y;
7995 if (y == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
7996 return x;
7997
7998 /* Other values for flt_eval_method are directly comparable, and we want
7999 the maximum. */
8000 return MAX (x, y);
8001 }
8002
8003 /* Return the value that should be set for FLT_EVAL_METHOD in the
8004 context of ISO/IEC TS 18861-3.
8005
8006 This relates to the effective excess precision seen by the user,
8007 which is the join point of the precision the target requests for
8008 -fexcess-precision={standard,fast} and the implicit excess precision
8009 the target uses. */
8010
8011 static enum flt_eval_method
8012 c_ts18661_flt_eval_method (void)
8013 {
8014 enum flt_eval_method implicit
8015 = targetm.c.excess_precision (EXCESS_PRECISION_TYPE_IMPLICIT);
8016
8017 enum excess_precision_type flag_type
8018 = (flag_excess_precision_cmdline == EXCESS_PRECISION_STANDARD
8019 ? EXCESS_PRECISION_TYPE_STANDARD
8020 : EXCESS_PRECISION_TYPE_FAST);
8021
8022 enum flt_eval_method requested
8023 = targetm.c.excess_precision (flag_type);
8024
8025 return excess_precision_mode_join (implicit, requested);
8026 }
8027
8028 /* As c_cpp_ts18661_flt_eval_method, but clamps the expected values to
8029 those that were permitted by C11. That is to say, eliminates
8030 FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16. */
8031
8032 static enum flt_eval_method
8033 c_c11_flt_eval_method (void)
8034 {
8035 return excess_precision_mode_join (c_ts18661_flt_eval_method (),
8036 FLT_EVAL_METHOD_PROMOTE_TO_FLOAT);
8037 }
8038
8039 /* Return the value that should be set for FLT_EVAL_METHOD.
8040 MAYBE_C11_ONLY_P is TRUE if we should check
8041 FLAG_PERMITTED_EVAL_METHODS as to whether we should limit the possible
8042 values we can return to those from C99/C11, and FALSE otherwise.
8043 See the comments on c_ts18661_flt_eval_method for what value we choose
8044 to set here. */
8045
8046 int
8047 c_flt_eval_method (bool maybe_c11_only_p)
8048 {
8049 if (maybe_c11_only_p
8050 && flag_permitted_flt_eval_methods
8051 == PERMITTED_FLT_EVAL_METHODS_C11)
8052 return c_c11_flt_eval_method ();
8053 else
8054 return c_ts18661_flt_eval_method ();
8055 }
8056
8057 #include "gt-c-family-c-common.h"