0d395a2b3d475c89d70ac416b4682b3c96a0ef72
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* This file is part of the C front end.
24 It contains routines to build C expressions given their operands,
25 including computing the types of the result, C-specific error checks,
26 and some optimization.
27
28 There are also routines to build RETURN_STMT nodes and CASE_STMT nodes,
29 and to process initializations in declarations (since they work
30 like a strange sort of assignment). */
31
32 #include "config.h"
33 #include "system.h"
34 #include "tree.h"
35 #include "c-tree.h"
36 #include "tm_p.h"
37 #include "flags.h"
38 #include "output.h"
39 #include "rtl.h"
40 #include "expr.h"
41 #include "toplev.h"
42 #include "intl.h"
43 #include "defaults.h"
44 #include "ggc.h"
45
46 /* Nonzero if we've already printed a "missing braces around initializer"
47 message within this initializer. */
48 static int missing_braces_mentioned;
49
50 static tree qualify_type PARAMS ((tree, tree));
51 static int comp_target_types PARAMS ((tree, tree));
52 static int function_types_compatible_p PARAMS ((tree, tree));
53 static int type_lists_compatible_p PARAMS ((tree, tree));
54 static tree decl_constant_value PARAMS ((tree));
55 static tree lookup_field PARAMS ((tree, tree, tree *));
56 static tree convert_arguments PARAMS ((tree, tree, tree, tree));
57 static tree pointer_int_sum PARAMS ((enum tree_code, tree, tree));
58 static tree pointer_diff PARAMS ((tree, tree));
59 static tree unary_complex_lvalue PARAMS ((enum tree_code, tree));
60 static void pedantic_lvalue_warning PARAMS ((enum tree_code));
61 static tree internal_build_compound_expr PARAMS ((tree, int));
62 static tree convert_for_assignment PARAMS ((tree, tree, const char *,
63 tree, tree, int));
64 static void warn_for_assignment PARAMS ((const char *, const char *,
65 tree, int));
66 static tree valid_compound_expr_initializer PARAMS ((tree, tree));
67 static void push_string PARAMS ((const char *));
68 static void push_member_name PARAMS ((tree));
69 static void push_array_bounds PARAMS ((int));
70 static int spelling_length PARAMS ((void));
71 static char *print_spelling PARAMS ((char *));
72 static void warning_init PARAMS ((const char *));
73 static tree digest_init PARAMS ((tree, tree, int, int));
74 static void check_init_type_bitfields PARAMS ((tree));
75 static void output_init_element PARAMS ((tree, tree, tree, int));
76 static void output_pending_init_elements PARAMS ((int));
77 static void add_pending_init PARAMS ((tree, tree));
78 static int pending_init_member PARAMS ((tree));
79 \f
80 /* Do `exp = require_complete_type (exp);' to make sure exp
81 does not have an incomplete type. (That includes void types.) */
82
83 tree
84 require_complete_type (value)
85 tree value;
86 {
87 tree type = TREE_TYPE (value);
88
89 if (TREE_CODE (value) == ERROR_MARK)
90 return error_mark_node;
91
92 /* First, detect a valid value with a complete type. */
93 if (COMPLETE_TYPE_P (type))
94 return value;
95
96 incomplete_type_error (value, type);
97 return error_mark_node;
98 }
99
100 /* Print an error message for invalid use of an incomplete type.
101 VALUE is the expression that was used (or 0 if that isn't known)
102 and TYPE is the type that was invalid. */
103
104 void
105 incomplete_type_error (value, type)
106 tree value;
107 tree type;
108 {
109 const char *type_code_string;
110
111 /* Avoid duplicate error message. */
112 if (TREE_CODE (type) == ERROR_MARK)
113 return;
114
115 if (value != 0 && (TREE_CODE (value) == VAR_DECL
116 || TREE_CODE (value) == PARM_DECL))
117 error ("`%s' has an incomplete type",
118 IDENTIFIER_POINTER (DECL_NAME (value)));
119 else
120 {
121 retry:
122 /* We must print an error message. Be clever about what it says. */
123
124 switch (TREE_CODE (type))
125 {
126 case RECORD_TYPE:
127 type_code_string = "struct";
128 break;
129
130 case UNION_TYPE:
131 type_code_string = "union";
132 break;
133
134 case ENUMERAL_TYPE:
135 type_code_string = "enum";
136 break;
137
138 case VOID_TYPE:
139 error ("invalid use of void expression");
140 return;
141
142 case ARRAY_TYPE:
143 if (TYPE_DOMAIN (type))
144 {
145 type = TREE_TYPE (type);
146 goto retry;
147 }
148 error ("invalid use of array with unspecified bounds");
149 return;
150
151 default:
152 abort ();
153 }
154
155 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
156 error ("invalid use of undefined type `%s %s'",
157 type_code_string, IDENTIFIER_POINTER (TYPE_NAME (type)));
158 else
159 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
160 error ("invalid use of incomplete typedef `%s'",
161 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))));
162 }
163 }
164
165 /* Return a variant of TYPE which has all the type qualifiers of LIKE
166 as well as those of TYPE. */
167
168 static tree
169 qualify_type (type, like)
170 tree type, like;
171 {
172 return c_build_qualified_type (type,
173 TYPE_QUALS (type) | TYPE_QUALS (like));
174 }
175 \f
176 /* Return the common type of two types.
177 We assume that comptypes has already been done and returned 1;
178 if that isn't so, this may crash. In particular, we assume that qualifiers
179 match.
180
181 This is the type for the result of most arithmetic operations
182 if the operands have the given two types. */
183
184 tree
185 common_type (t1, t2)
186 tree t1, t2;
187 {
188 register enum tree_code code1;
189 register enum tree_code code2;
190 tree attributes;
191
192 /* Save time if the two types are the same. */
193
194 if (t1 == t2) return t1;
195
196 /* If one type is nonsense, use the other. */
197 if (t1 == error_mark_node)
198 return t2;
199 if (t2 == error_mark_node)
200 return t1;
201
202 /* Merge the attributes. */
203 attributes = merge_machine_type_attributes (t1, t2);
204
205 /* Treat an enum type as the unsigned integer type of the same width. */
206
207 if (TREE_CODE (t1) == ENUMERAL_TYPE)
208 t1 = type_for_size (TYPE_PRECISION (t1), 1);
209 if (TREE_CODE (t2) == ENUMERAL_TYPE)
210 t2 = type_for_size (TYPE_PRECISION (t2), 1);
211
212 code1 = TREE_CODE (t1);
213 code2 = TREE_CODE (t2);
214
215 /* If one type is complex, form the common type of the non-complex
216 components, then make that complex. Use T1 or T2 if it is the
217 required type. */
218 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
219 {
220 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
221 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
222 tree subtype = common_type (subtype1, subtype2);
223
224 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
225 return build_type_attribute_variant (t1, attributes);
226 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
227 return build_type_attribute_variant (t2, attributes);
228 else
229 return build_type_attribute_variant (build_complex_type (subtype),
230 attributes);
231 }
232
233 switch (code1)
234 {
235 case INTEGER_TYPE:
236 case REAL_TYPE:
237 /* If only one is real, use it as the result. */
238
239 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
240 return build_type_attribute_variant (t1, attributes);
241
242 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
243 return build_type_attribute_variant (t2, attributes);
244
245 /* Both real or both integers; use the one with greater precision. */
246
247 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
248 return build_type_attribute_variant (t1, attributes);
249 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
250 return build_type_attribute_variant (t2, attributes);
251
252 /* Same precision. Prefer longs to ints even when same size. */
253
254 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
255 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
256 return build_type_attribute_variant (long_unsigned_type_node,
257 attributes);
258
259 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
260 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
261 {
262 /* But preserve unsignedness from the other type,
263 since long cannot hold all the values of an unsigned int. */
264 if (TREE_UNSIGNED (t1) || TREE_UNSIGNED (t2))
265 t1 = long_unsigned_type_node;
266 else
267 t1 = long_integer_type_node;
268 return build_type_attribute_variant (t1, attributes);
269 }
270
271 /* Likewise, prefer long double to double even if same size. */
272 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
273 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
274 return build_type_attribute_variant (long_double_type_node,
275 attributes);
276
277 /* Otherwise prefer the unsigned one. */
278
279 if (TREE_UNSIGNED (t1))
280 return build_type_attribute_variant (t1, attributes);
281 else
282 return build_type_attribute_variant (t2, attributes);
283
284 case POINTER_TYPE:
285 /* For two pointers, do this recursively on the target type,
286 and combine the qualifiers of the two types' targets. */
287 /* This code was turned off; I don't know why.
288 But ANSI C specifies doing this with the qualifiers.
289 So I turned it on again. */
290 {
291 tree pointed_to_1 = TREE_TYPE (t1);
292 tree pointed_to_2 = TREE_TYPE (t2);
293 tree target = common_type (TYPE_MAIN_VARIANT (pointed_to_1),
294 TYPE_MAIN_VARIANT (pointed_to_2));
295 t1 = build_pointer_type (c_build_qualified_type
296 (target,
297 TYPE_QUALS (pointed_to_1) |
298 TYPE_QUALS (pointed_to_2)));
299 return build_type_attribute_variant (t1, attributes);
300 }
301 #if 0
302 t1 = build_pointer_type (common_type (TREE_TYPE (t1), TREE_TYPE (t2)));
303 return build_type_attribute_variant (t1, attributes);
304 #endif
305
306 case ARRAY_TYPE:
307 {
308 tree elt = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
309 /* Save space: see if the result is identical to one of the args. */
310 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1))
311 return build_type_attribute_variant (t1, attributes);
312 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2))
313 return build_type_attribute_variant (t2, attributes);
314 /* Merge the element types, and have a size if either arg has one. */
315 t1 = build_array_type (elt, TYPE_DOMAIN (TYPE_DOMAIN (t1) ? t1 : t2));
316 return build_type_attribute_variant (t1, attributes);
317 }
318
319 case FUNCTION_TYPE:
320 /* Function types: prefer the one that specified arg types.
321 If both do, merge the arg types. Also merge the return types. */
322 {
323 tree valtype = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
324 tree p1 = TYPE_ARG_TYPES (t1);
325 tree p2 = TYPE_ARG_TYPES (t2);
326 int len;
327 tree newargs, n;
328 int i;
329
330 /* Save space: see if the result is identical to one of the args. */
331 if (valtype == TREE_TYPE (t1) && ! TYPE_ARG_TYPES (t2))
332 return build_type_attribute_variant (t1, attributes);
333 if (valtype == TREE_TYPE (t2) && ! TYPE_ARG_TYPES (t1))
334 return build_type_attribute_variant (t2, attributes);
335
336 /* Simple way if one arg fails to specify argument types. */
337 if (TYPE_ARG_TYPES (t1) == 0)
338 {
339 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
340 return build_type_attribute_variant (t1, attributes);
341 }
342 if (TYPE_ARG_TYPES (t2) == 0)
343 {
344 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
345 return build_type_attribute_variant (t1, attributes);
346 }
347
348 /* If both args specify argument types, we must merge the two
349 lists, argument by argument. */
350
351 len = list_length (p1);
352 newargs = 0;
353
354 for (i = 0; i < len; i++)
355 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
356
357 n = newargs;
358
359 for (; p1;
360 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
361 {
362 /* A null type means arg type is not specified.
363 Take whatever the other function type has. */
364 if (TREE_VALUE (p1) == 0)
365 {
366 TREE_VALUE (n) = TREE_VALUE (p2);
367 goto parm_done;
368 }
369 if (TREE_VALUE (p2) == 0)
370 {
371 TREE_VALUE (n) = TREE_VALUE (p1);
372 goto parm_done;
373 }
374
375 /* Given wait (union {union wait *u; int *i} *)
376 and wait (union wait *),
377 prefer union wait * as type of parm. */
378 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
379 && TREE_VALUE (p1) != TREE_VALUE (p2))
380 {
381 tree memb;
382 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
383 memb; memb = TREE_CHAIN (memb))
384 if (comptypes (TREE_TYPE (memb), TREE_VALUE (p2)))
385 {
386 TREE_VALUE (n) = TREE_VALUE (p2);
387 if (pedantic)
388 pedwarn ("function types not truly compatible in ANSI C");
389 goto parm_done;
390 }
391 }
392 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
393 && TREE_VALUE (p2) != TREE_VALUE (p1))
394 {
395 tree memb;
396 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
397 memb; memb = TREE_CHAIN (memb))
398 if (comptypes (TREE_TYPE (memb), TREE_VALUE (p1)))
399 {
400 TREE_VALUE (n) = TREE_VALUE (p1);
401 if (pedantic)
402 pedwarn ("function types not truly compatible in ANSI C");
403 goto parm_done;
404 }
405 }
406 TREE_VALUE (n) = common_type (TREE_VALUE (p1), TREE_VALUE (p2));
407 parm_done: ;
408 }
409
410 t1 = build_function_type (valtype, newargs);
411 /* ... falls through ... */
412 }
413
414 default:
415 return build_type_attribute_variant (t1, attributes);
416 }
417
418 }
419 \f
420 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
421 or various other operations. Return 2 if they are compatible
422 but a warning may be needed if you use them together. */
423
424 int
425 comptypes (type1, type2)
426 tree type1, type2;
427 {
428 register tree t1 = type1;
429 register tree t2 = type2;
430 int attrval, val;
431
432 /* Suppress errors caused by previously reported errors. */
433
434 if (t1 == t2 || !t1 || !t2
435 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
436 return 1;
437
438 /* If either type is the internal version of sizetype, return the
439 language version. */
440 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
441 && TYPE_DOMAIN (t1) != 0)
442 t1 = TYPE_DOMAIN (t1);
443
444 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
445 && TYPE_DOMAIN (t2) != 0)
446 t2 = TYPE_DOMAIN (t2);
447
448 /* Treat an enum type as the integer type of the same width and
449 signedness. */
450
451 if (TREE_CODE (t1) == ENUMERAL_TYPE)
452 t1 = type_for_size (TYPE_PRECISION (t1), TREE_UNSIGNED (t1));
453 if (TREE_CODE (t2) == ENUMERAL_TYPE)
454 t2 = type_for_size (TYPE_PRECISION (t2), TREE_UNSIGNED (t2));
455
456 if (t1 == t2)
457 return 1;
458
459 /* Different classes of types can't be compatible. */
460
461 if (TREE_CODE (t1) != TREE_CODE (t2)) return 0;
462
463 /* Qualifiers must match. */
464
465 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
466 return 0;
467
468 /* Allow for two different type nodes which have essentially the same
469 definition. Note that we already checked for equality of the type
470 qualifiers (just above). */
471
472 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
473 return 1;
474
475 #ifndef COMP_TYPE_ATTRIBUTES
476 #define COMP_TYPE_ATTRIBUTES(t1,t2) 1
477 #endif
478
479 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
480 if (! (attrval = COMP_TYPE_ATTRIBUTES (t1, t2)))
481 return 0;
482
483 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
484 val = 0;
485
486 switch (TREE_CODE (t1))
487 {
488 case POINTER_TYPE:
489 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
490 ? 1 : comptypes (TREE_TYPE (t1), TREE_TYPE (t2)));
491 break;
492
493 case FUNCTION_TYPE:
494 val = function_types_compatible_p (t1, t2);
495 break;
496
497 case ARRAY_TYPE:
498 {
499 tree d1 = TYPE_DOMAIN (t1);
500 tree d2 = TYPE_DOMAIN (t2);
501 val = 1;
502
503 /* Target types must match incl. qualifiers. */
504 if (TREE_TYPE (t1) != TREE_TYPE (t2)
505 && 0 == (val = comptypes (TREE_TYPE (t1), TREE_TYPE (t2))))
506 return 0;
507
508 /* Sizes must match unless one is missing or variable. */
509 if (d1 == 0 || d2 == 0 || d1 == d2
510 || TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
511 || TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
512 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST
513 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST)
514 break;
515
516 if (! tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
517 || ! tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
518 val = 0;
519
520 break;
521 }
522
523 case RECORD_TYPE:
524 if (maybe_objc_comptypes (t1, t2, 0) == 1)
525 val = 1;
526 break;
527
528 default:
529 break;
530 }
531 return attrval == 2 && val == 1 ? 2 : val;
532 }
533
534 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
535 ignoring their qualifiers. */
536
537 static int
538 comp_target_types (ttl, ttr)
539 tree ttl, ttr;
540 {
541 int val;
542
543 /* Give maybe_objc_comptypes a crack at letting these types through. */
544 if ((val = maybe_objc_comptypes (ttl, ttr, 1)) >= 0)
545 return val;
546
547 val = comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (ttl)),
548 TYPE_MAIN_VARIANT (TREE_TYPE (ttr)));
549
550 if (val == 2 && pedantic)
551 pedwarn ("types are not quite compatible");
552 return val;
553 }
554 \f
555 /* Subroutines of `comptypes'. */
556
557 /* Return 1 if two function types F1 and F2 are compatible.
558 If either type specifies no argument types,
559 the other must specify a fixed number of self-promoting arg types.
560 Otherwise, if one type specifies only the number of arguments,
561 the other must specify that number of self-promoting arg types.
562 Otherwise, the argument types must match. */
563
564 static int
565 function_types_compatible_p (f1, f2)
566 tree f1, f2;
567 {
568 tree args1, args2;
569 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
570 int val = 1;
571 int val1;
572
573 if (!(TREE_TYPE (f1) == TREE_TYPE (f2)
574 || (val = comptypes (TREE_TYPE (f1), TREE_TYPE (f2)))))
575 return 0;
576
577 args1 = TYPE_ARG_TYPES (f1);
578 args2 = TYPE_ARG_TYPES (f2);
579
580 /* An unspecified parmlist matches any specified parmlist
581 whose argument types don't need default promotions. */
582
583 if (args1 == 0)
584 {
585 if (!self_promoting_args_p (args2))
586 return 0;
587 /* If one of these types comes from a non-prototype fn definition,
588 compare that with the other type's arglist.
589 If they don't match, ask for a warning (but no error). */
590 if (TYPE_ACTUAL_ARG_TYPES (f1)
591 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
592 val = 2;
593 return val;
594 }
595 if (args2 == 0)
596 {
597 if (!self_promoting_args_p (args1))
598 return 0;
599 if (TYPE_ACTUAL_ARG_TYPES (f2)
600 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
601 val = 2;
602 return val;
603 }
604
605 /* Both types have argument lists: compare them and propagate results. */
606 val1 = type_lists_compatible_p (args1, args2);
607 return val1 != 1 ? val1 : val;
608 }
609
610 /* Check two lists of types for compatibility,
611 returning 0 for incompatible, 1 for compatible,
612 or 2 for compatible with warning. */
613
614 static int
615 type_lists_compatible_p (args1, args2)
616 tree args1, args2;
617 {
618 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
619 int val = 1;
620 int newval = 0;
621
622 while (1)
623 {
624 if (args1 == 0 && args2 == 0)
625 return val;
626 /* If one list is shorter than the other,
627 they fail to match. */
628 if (args1 == 0 || args2 == 0)
629 return 0;
630 /* A null pointer instead of a type
631 means there is supposed to be an argument
632 but nothing is specified about what type it has.
633 So match anything that self-promotes. */
634 if (TREE_VALUE (args1) == 0)
635 {
636 if (simple_type_promotes_to (TREE_VALUE (args2)) != NULL_TREE)
637 return 0;
638 }
639 else if (TREE_VALUE (args2) == 0)
640 {
641 if (simple_type_promotes_to (TREE_VALUE (args1)) != NULL_TREE)
642 return 0;
643 }
644 else if (! (newval = comptypes (TREE_VALUE (args1), TREE_VALUE (args2))))
645 {
646 /* Allow wait (union {union wait *u; int *i} *)
647 and wait (union wait *) to be compatible. */
648 if (TREE_CODE (TREE_VALUE (args1)) == UNION_TYPE
649 && (TYPE_NAME (TREE_VALUE (args1)) == 0
650 || TYPE_TRANSPARENT_UNION (TREE_VALUE (args1)))
651 && TREE_CODE (TYPE_SIZE (TREE_VALUE (args1))) == INTEGER_CST
652 && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args1)),
653 TYPE_SIZE (TREE_VALUE (args2))))
654 {
655 tree memb;
656 for (memb = TYPE_FIELDS (TREE_VALUE (args1));
657 memb; memb = TREE_CHAIN (memb))
658 if (comptypes (TREE_TYPE (memb), TREE_VALUE (args2)))
659 break;
660 if (memb == 0)
661 return 0;
662 }
663 else if (TREE_CODE (TREE_VALUE (args2)) == UNION_TYPE
664 && (TYPE_NAME (TREE_VALUE (args2)) == 0
665 || TYPE_TRANSPARENT_UNION (TREE_VALUE (args2)))
666 && TREE_CODE (TYPE_SIZE (TREE_VALUE (args2))) == INTEGER_CST
667 && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args2)),
668 TYPE_SIZE (TREE_VALUE (args1))))
669 {
670 tree memb;
671 for (memb = TYPE_FIELDS (TREE_VALUE (args2));
672 memb; memb = TREE_CHAIN (memb))
673 if (comptypes (TREE_TYPE (memb), TREE_VALUE (args1)))
674 break;
675 if (memb == 0)
676 return 0;
677 }
678 else
679 return 0;
680 }
681
682 /* comptypes said ok, but record if it said to warn. */
683 if (newval > val)
684 val = newval;
685
686 args1 = TREE_CHAIN (args1);
687 args2 = TREE_CHAIN (args2);
688 }
689 }
690 \f
691 /* Compute the value of the `sizeof' operator. */
692
693 tree
694 c_sizeof (type)
695 tree type;
696 {
697 enum tree_code code = TREE_CODE (type);
698
699 if (code == FUNCTION_TYPE)
700 {
701 if (pedantic || warn_pointer_arith)
702 pedwarn ("sizeof applied to a function type");
703 return size_one_node;
704 }
705 if (code == VOID_TYPE)
706 {
707 if (pedantic || warn_pointer_arith)
708 pedwarn ("sizeof applied to a void type");
709 return size_one_node;
710 }
711
712 if (code == ERROR_MARK)
713 return size_one_node;
714
715 if (!COMPLETE_TYPE_P (type))
716 {
717 error ("sizeof applied to an incomplete type");
718 return size_zero_node;
719 }
720
721 /* Convert in case a char is more than one unit. */
722 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
723 size_int (TYPE_PRECISION (char_type_node)
724 / BITS_PER_UNIT));
725 }
726
727 tree
728 c_sizeof_nowarn (type)
729 tree type;
730 {
731 enum tree_code code = TREE_CODE (type);
732
733 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
734 return size_one_node;
735
736 if (!COMPLETE_TYPE_P (type))
737 return size_zero_node;
738
739 /* Convert in case a char is more than one unit. */
740 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
741 size_int (TYPE_PRECISION (char_type_node)
742 / BITS_PER_UNIT));
743 }
744
745 /* Compute the size to increment a pointer by. */
746
747 tree
748 c_size_in_bytes (type)
749 tree type;
750 {
751 enum tree_code code = TREE_CODE (type);
752
753 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
754 return size_one_node;
755
756 if (!COMPLETE_OR_VOID_TYPE_P (type))
757 {
758 error ("arithmetic on pointer to an incomplete type");
759 return size_one_node;
760 }
761
762 /* Convert in case a char is more than one unit. */
763 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
764 size_int (TYPE_PRECISION (char_type_node)
765 / BITS_PER_UNIT));
766 }
767
768 /* Implement the __alignof keyword: Return the minimum required
769 alignment of TYPE, measured in bytes. */
770
771 tree
772 c_alignof (type)
773 tree type;
774 {
775 enum tree_code code = TREE_CODE (type);
776
777 if (code == FUNCTION_TYPE)
778 return size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
779
780 if (code == VOID_TYPE || code == ERROR_MARK)
781 return size_one_node;
782
783 if (!COMPLETE_TYPE_P (type))
784 {
785 error ("__alignof__ applied to an incomplete type");
786 return size_zero_node;
787 }
788
789 return size_int (TYPE_ALIGN (type) / BITS_PER_UNIT);
790 }
791 \f
792 /* Implement the __alignof keyword: Return the minimum required
793 alignment of EXPR, measured in bytes. For VAR_DECL's and
794 FIELD_DECL's return DECL_ALIGN (which can be set from an
795 "aligned" __attribute__ specification). */
796
797 tree
798 c_alignof_expr (expr)
799 tree expr;
800 {
801 if (TREE_CODE (expr) == VAR_DECL)
802 return size_int (DECL_ALIGN (expr) / BITS_PER_UNIT);
803
804 if (TREE_CODE (expr) == COMPONENT_REF
805 && DECL_C_BIT_FIELD (TREE_OPERAND (expr, 1)))
806 {
807 error ("`__alignof' applied to a bit-field");
808 return size_one_node;
809 }
810 else if (TREE_CODE (expr) == COMPONENT_REF
811 && TREE_CODE (TREE_OPERAND (expr, 1)) == FIELD_DECL)
812 return size_int (DECL_ALIGN (TREE_OPERAND (expr, 1)) / BITS_PER_UNIT);
813
814 if (TREE_CODE (expr) == INDIRECT_REF)
815 {
816 tree t = TREE_OPERAND (expr, 0);
817 tree best = t;
818 int bestalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
819
820 while (TREE_CODE (t) == NOP_EXPR
821 && TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == POINTER_TYPE)
822 {
823 int thisalign;
824
825 t = TREE_OPERAND (t, 0);
826 thisalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
827 if (thisalign > bestalign)
828 best = t, bestalign = thisalign;
829 }
830 return c_alignof (TREE_TYPE (TREE_TYPE (best)));
831 }
832 else
833 return c_alignof (TREE_TYPE (expr));
834 }
835
836 /* Return either DECL or its known constant value (if it has one). */
837
838 static tree
839 decl_constant_value (decl)
840 tree decl;
841 {
842 if (/* Don't change a variable array bound or initial value to a constant
843 in a place where a variable is invalid. */
844 current_function_decl != 0
845 && ! pedantic
846 && ! TREE_THIS_VOLATILE (decl)
847 && TREE_READONLY (decl) && ! ITERATOR_P (decl)
848 && DECL_INITIAL (decl) != 0
849 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
850 /* This is invalid if initial value is not constant.
851 If it has either a function call, a memory reference,
852 or a variable, then re-evaluating it could give different results. */
853 && TREE_CONSTANT (DECL_INITIAL (decl))
854 /* Check for cases where this is sub-optimal, even though valid. */
855 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR
856 && DECL_MODE (decl) != BLKmode)
857 return DECL_INITIAL (decl);
858 return decl;
859 }
860
861 /* Perform default promotions for C data used in expressions.
862 Arrays and functions are converted to pointers;
863 enumeral types or short or char, to int.
864 In addition, manifest constants symbols are replaced by their values. */
865
866 tree
867 default_conversion (exp)
868 tree exp;
869 {
870 register tree type = TREE_TYPE (exp);
871 register enum tree_code code = TREE_CODE (type);
872
873 /* Constants can be used directly unless they're not loadable. */
874 if (TREE_CODE (exp) == CONST_DECL)
875 exp = DECL_INITIAL (exp);
876
877 /* Replace a nonvolatile const static variable with its value unless
878 it is an array, in which case we must be sure that taking the
879 address of the array produces consistent results. */
880 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
881 {
882 exp = decl_constant_value (exp);
883 type = TREE_TYPE (exp);
884 }
885
886 /* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
887 an lvalue.
888
889 Do not use STRIP_NOPS here! It will remove conversions from pointer
890 to integer and cause infinite recursion. */
891 while (TREE_CODE (exp) == NON_LVALUE_EXPR
892 || (TREE_CODE (exp) == NOP_EXPR
893 && TREE_TYPE (TREE_OPERAND (exp, 0)) == TREE_TYPE (exp)))
894 exp = TREE_OPERAND (exp, 0);
895
896 /* Normally convert enums to int,
897 but convert wide enums to something wider. */
898 if (code == ENUMERAL_TYPE)
899 {
900 type = type_for_size (MAX (TYPE_PRECISION (type),
901 TYPE_PRECISION (integer_type_node)),
902 ((flag_traditional
903 || (TYPE_PRECISION (type)
904 >= TYPE_PRECISION (integer_type_node)))
905 && TREE_UNSIGNED (type)));
906
907 return convert (type, exp);
908 }
909
910 if (TREE_CODE (exp) == COMPONENT_REF
911 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
912 /* If it's thinner than an int, promote it like a
913 C_PROMOTING_INTEGER_TYPE_P, otherwise leave it alone. */
914 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
915 TYPE_PRECISION (integer_type_node)))
916 return convert (flag_traditional && TREE_UNSIGNED (type)
917 ? unsigned_type_node : integer_type_node,
918 exp);
919
920 if (C_PROMOTING_INTEGER_TYPE_P (type))
921 {
922 /* Traditionally, unsignedness is preserved in default promotions.
923 Also preserve unsignedness if not really getting any wider. */
924 if (TREE_UNSIGNED (type)
925 && (flag_traditional
926 || TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
927 return convert (unsigned_type_node, exp);
928
929 return convert (integer_type_node, exp);
930 }
931
932 if (flag_traditional && !flag_allow_single_precision
933 && TYPE_MAIN_VARIANT (type) == float_type_node)
934 return convert (double_type_node, exp);
935
936 if (code == VOID_TYPE)
937 {
938 error ("void value not ignored as it ought to be");
939 return error_mark_node;
940 }
941 if (code == FUNCTION_TYPE)
942 {
943 return build_unary_op (ADDR_EXPR, exp, 0);
944 }
945 if (code == ARRAY_TYPE)
946 {
947 register tree adr;
948 tree restype = TREE_TYPE (type);
949 tree ptrtype;
950 int constp = 0;
951 int volatilep = 0;
952
953 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'r' || DECL_P (exp))
954 {
955 constp = TREE_READONLY (exp);
956 volatilep = TREE_THIS_VOLATILE (exp);
957 }
958
959 if (TYPE_QUALS (type) || constp || volatilep)
960 restype
961 = c_build_qualified_type (restype,
962 TYPE_QUALS (type)
963 | (constp * TYPE_QUAL_CONST)
964 | (volatilep * TYPE_QUAL_VOLATILE));
965
966 if (TREE_CODE (exp) == INDIRECT_REF)
967 return convert (TYPE_POINTER_TO (restype),
968 TREE_OPERAND (exp, 0));
969
970 if (TREE_CODE (exp) == COMPOUND_EXPR)
971 {
972 tree op1 = default_conversion (TREE_OPERAND (exp, 1));
973 return build (COMPOUND_EXPR, TREE_TYPE (op1),
974 TREE_OPERAND (exp, 0), op1);
975 }
976
977 if (! lvalue_p (exp)
978 && ! (TREE_CODE (exp) == CONSTRUCTOR && TREE_STATIC (exp)))
979 {
980 error ("invalid use of non-lvalue array");
981 return error_mark_node;
982 }
983
984 ptrtype = build_pointer_type (restype);
985
986 if (TREE_CODE (exp) == VAR_DECL)
987 {
988 /* ??? This is not really quite correct
989 in that the type of the operand of ADDR_EXPR
990 is not the target type of the type of the ADDR_EXPR itself.
991 Question is, can this lossage be avoided? */
992 adr = build1 (ADDR_EXPR, ptrtype, exp);
993 if (mark_addressable (exp) == 0)
994 return error_mark_node;
995 TREE_CONSTANT (adr) = staticp (exp);
996 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
997 return adr;
998 }
999 /* This way is better for a COMPONENT_REF since it can
1000 simplify the offset for a component. */
1001 adr = build_unary_op (ADDR_EXPR, exp, 1);
1002 return convert (ptrtype, adr);
1003 }
1004 return exp;
1005 }
1006 \f
1007 /* Look up component name in the structure type definition.
1008
1009 If this component name is found indirectly within an anonymous union,
1010 store in *INDIRECT the component which directly contains
1011 that anonymous union. Otherwise, set *INDIRECT to 0. */
1012
1013 static tree
1014 lookup_field (type, component, indirect)
1015 tree type, component;
1016 tree *indirect;
1017 {
1018 tree field;
1019
1020 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1021 to the field elements. Use a binary search on this array to quickly
1022 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1023 will always be set for structures which have many elements. */
1024
1025 if (TYPE_LANG_SPECIFIC (type))
1026 {
1027 int bot, top, half;
1028 tree *field_array = &TYPE_LANG_SPECIFIC (type)->elts[0];
1029
1030 field = TYPE_FIELDS (type);
1031 bot = 0;
1032 top = TYPE_LANG_SPECIFIC (type)->len;
1033 while (top - bot > 1)
1034 {
1035 half = (top - bot + 1) >> 1;
1036 field = field_array[bot+half];
1037
1038 if (DECL_NAME (field) == NULL_TREE)
1039 {
1040 /* Step through all anon unions in linear fashion. */
1041 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1042 {
1043 tree anon = 0, junk;
1044
1045 field = field_array[bot++];
1046 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1047 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1048 anon = lookup_field (TREE_TYPE (field), component, &junk);
1049
1050 if (anon != NULL_TREE)
1051 {
1052 *indirect = field;
1053 return anon;
1054 }
1055 }
1056
1057 /* Entire record is only anon unions. */
1058 if (bot > top)
1059 return NULL_TREE;
1060
1061 /* Restart the binary search, with new lower bound. */
1062 continue;
1063 }
1064
1065 if (DECL_NAME (field) == component)
1066 break;
1067 if (DECL_NAME (field) < component)
1068 bot += half;
1069 else
1070 top = bot + half;
1071 }
1072
1073 if (DECL_NAME (field_array[bot]) == component)
1074 field = field_array[bot];
1075 else if (DECL_NAME (field) != component)
1076 field = 0;
1077 }
1078 else
1079 {
1080 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1081 {
1082 if (DECL_NAME (field) == NULL_TREE)
1083 {
1084 tree junk;
1085 tree anon = 0;
1086
1087 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1088 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1089 anon = lookup_field (TREE_TYPE (field), component, &junk);
1090
1091 if (anon != NULL_TREE)
1092 {
1093 *indirect = field;
1094 return anon;
1095 }
1096 }
1097
1098 if (DECL_NAME (field) == component)
1099 break;
1100 }
1101 }
1102
1103 *indirect = NULL_TREE;
1104 return field;
1105 }
1106
1107 /* Make an expression to refer to the COMPONENT field of
1108 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1109
1110 tree
1111 build_component_ref (datum, component)
1112 tree datum, component;
1113 {
1114 register tree type = TREE_TYPE (datum);
1115 register enum tree_code code = TREE_CODE (type);
1116 register tree field = NULL;
1117 register tree ref;
1118
1119 /* If DATUM is a COMPOUND_EXPR or COND_EXPR, move our reference inside it
1120 unless we are not to support things not strictly ANSI. */
1121 switch (TREE_CODE (datum))
1122 {
1123 case COMPOUND_EXPR:
1124 {
1125 tree value = build_component_ref (TREE_OPERAND (datum, 1), component);
1126 return build (COMPOUND_EXPR, TREE_TYPE (value),
1127 TREE_OPERAND (datum, 0), value);
1128 }
1129 case COND_EXPR:
1130 return build_conditional_expr
1131 (TREE_OPERAND (datum, 0),
1132 build_component_ref (TREE_OPERAND (datum, 1), component),
1133 build_component_ref (TREE_OPERAND (datum, 2), component));
1134
1135 default:
1136 break;
1137 }
1138
1139 /* See if there is a field or component with name COMPONENT. */
1140
1141 if (code == RECORD_TYPE || code == UNION_TYPE)
1142 {
1143 tree indirect = 0;
1144
1145 if (!COMPLETE_TYPE_P (type))
1146 {
1147 incomplete_type_error (NULL_TREE, type);
1148 return error_mark_node;
1149 }
1150
1151 field = lookup_field (type, component, &indirect);
1152
1153 if (!field)
1154 {
1155 error ("%s has no member named `%s'",
1156 code == RECORD_TYPE ? "structure" : "union",
1157 IDENTIFIER_POINTER (component));
1158 return error_mark_node;
1159 }
1160 if (TREE_TYPE (field) == error_mark_node)
1161 return error_mark_node;
1162
1163 /* If FIELD was found buried within an anonymous union,
1164 make one COMPONENT_REF to get that anonymous union,
1165 then fall thru to make a second COMPONENT_REF to get FIELD. */
1166 if (indirect != 0)
1167 {
1168 ref = build (COMPONENT_REF, TREE_TYPE (indirect), datum, indirect);
1169 if (TREE_READONLY (datum) || TREE_READONLY (indirect))
1170 TREE_READONLY (ref) = 1;
1171 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (indirect))
1172 TREE_THIS_VOLATILE (ref) = 1;
1173 datum = ref;
1174 }
1175
1176 ref = build (COMPONENT_REF, TREE_TYPE (field), datum, field);
1177
1178 if (TREE_READONLY (datum) || TREE_READONLY (field))
1179 TREE_READONLY (ref) = 1;
1180 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (field))
1181 TREE_THIS_VOLATILE (ref) = 1;
1182
1183 return ref;
1184 }
1185 else if (code != ERROR_MARK)
1186 error ("request for member `%s' in something not a structure or union",
1187 IDENTIFIER_POINTER (component));
1188
1189 return error_mark_node;
1190 }
1191 \f
1192 /* Given an expression PTR for a pointer, return an expression
1193 for the value pointed to.
1194 ERRORSTRING is the name of the operator to appear in error messages. */
1195
1196 tree
1197 build_indirect_ref (ptr, errorstring)
1198 tree ptr;
1199 const char *errorstring;
1200 {
1201 register tree pointer = default_conversion (ptr);
1202 register tree type = TREE_TYPE (pointer);
1203
1204 if (TREE_CODE (type) == POINTER_TYPE)
1205 {
1206 if (TREE_CODE (pointer) == ADDR_EXPR
1207 && !flag_volatile
1208 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1209 == TREE_TYPE (type)))
1210 return TREE_OPERAND (pointer, 0);
1211 else
1212 {
1213 tree t = TREE_TYPE (type);
1214 register tree ref = build1 (INDIRECT_REF,
1215 TYPE_MAIN_VARIANT (t), pointer);
1216
1217 if (!COMPLETE_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1218 {
1219 error ("dereferencing pointer to incomplete type");
1220 return error_mark_node;
1221 }
1222 if (TREE_CODE (t) == VOID_TYPE && skip_evaluation == 0)
1223 warning ("dereferencing `void *' pointer");
1224
1225 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1226 so that we get the proper error message if the result is used
1227 to assign to. Also, &* is supposed to be a no-op.
1228 And ANSI C seems to specify that the type of the result
1229 should be the const type. */
1230 /* A de-reference of a pointer to const is not a const. It is valid
1231 to change it via some other pointer. */
1232 TREE_READONLY (ref) = TYPE_READONLY (t);
1233 TREE_SIDE_EFFECTS (ref)
1234 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer) || flag_volatile;
1235 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1236 return ref;
1237 }
1238 }
1239 else if (TREE_CODE (pointer) != ERROR_MARK)
1240 error ("invalid type argument of `%s'", errorstring);
1241 return error_mark_node;
1242 }
1243
1244 /* This handles expressions of the form "a[i]", which denotes
1245 an array reference.
1246
1247 This is logically equivalent in C to *(a+i), but we may do it differently.
1248 If A is a variable or a member, we generate a primitive ARRAY_REF.
1249 This avoids forcing the array out of registers, and can work on
1250 arrays that are not lvalues (for example, members of structures returned
1251 by functions). */
1252
1253 tree
1254 build_array_ref (array, index)
1255 tree array, index;
1256 {
1257 if (index == 0)
1258 {
1259 error ("subscript missing in array reference");
1260 return error_mark_node;
1261 }
1262
1263 if (TREE_TYPE (array) == error_mark_node
1264 || TREE_TYPE (index) == error_mark_node)
1265 return error_mark_node;
1266
1267 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE
1268 && TREE_CODE (array) != INDIRECT_REF)
1269 {
1270 tree rval, type;
1271
1272 /* Subscripting with type char is likely to lose
1273 on a machine where chars are signed.
1274 So warn on any machine, but optionally.
1275 Don't warn for unsigned char since that type is safe.
1276 Don't warn for signed char because anyone who uses that
1277 must have done so deliberately. */
1278 if (warn_char_subscripts
1279 && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1280 warning ("array subscript has type `char'");
1281
1282 /* Apply default promotions *after* noticing character types. */
1283 index = default_conversion (index);
1284
1285 /* Require integer *after* promotion, for sake of enums. */
1286 if (TREE_CODE (TREE_TYPE (index)) != INTEGER_TYPE)
1287 {
1288 error ("array subscript is not an integer");
1289 return error_mark_node;
1290 }
1291
1292 /* An array that is indexed by a non-constant
1293 cannot be stored in a register; we must be able to do
1294 address arithmetic on its address.
1295 Likewise an array of elements of variable size. */
1296 if (TREE_CODE (index) != INTEGER_CST
1297 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1298 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1299 {
1300 if (mark_addressable (array) == 0)
1301 return error_mark_node;
1302 }
1303 /* An array that is indexed by a constant value which is not within
1304 the array bounds cannot be stored in a register either; because we
1305 would get a crash in store_bit_field/extract_bit_field when trying
1306 to access a non-existent part of the register. */
1307 if (TREE_CODE (index) == INTEGER_CST
1308 && TYPE_VALUES (TREE_TYPE (array))
1309 && ! int_fits_type_p (index, TYPE_VALUES (TREE_TYPE (array))))
1310 {
1311 if (mark_addressable (array) == 0)
1312 return error_mark_node;
1313 }
1314
1315 if (pedantic && !lvalue_p (array))
1316 {
1317 if (DECL_REGISTER (array))
1318 pedwarn ("ANSI C forbids subscripting `register' array");
1319 else
1320 pedwarn ("ANSI C forbids subscripting non-lvalue array");
1321 }
1322
1323 if (pedantic)
1324 {
1325 tree foo = array;
1326 while (TREE_CODE (foo) == COMPONENT_REF)
1327 foo = TREE_OPERAND (foo, 0);
1328 if (TREE_CODE (foo) == VAR_DECL && DECL_REGISTER (foo))
1329 pedwarn ("ANSI C forbids subscripting non-lvalue array");
1330 }
1331
1332 type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (array)));
1333 rval = build (ARRAY_REF, type, array, index);
1334 /* Array ref is const/volatile if the array elements are
1335 or if the array is. */
1336 TREE_READONLY (rval)
1337 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
1338 | TREE_READONLY (array));
1339 TREE_SIDE_EFFECTS (rval)
1340 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1341 | TREE_SIDE_EFFECTS (array));
1342 TREE_THIS_VOLATILE (rval)
1343 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1344 /* This was added by rms on 16 Nov 91.
1345 It fixes vol struct foo *a; a->elts[1]
1346 in an inline function.
1347 Hope it doesn't break something else. */
1348 | TREE_THIS_VOLATILE (array));
1349 return require_complete_type (fold (rval));
1350 }
1351
1352 {
1353 tree ar = default_conversion (array);
1354 tree ind = default_conversion (index);
1355
1356 /* Do the same warning check as above, but only on the part that's
1357 syntactically the index and only if it is also semantically
1358 the index. */
1359 if (warn_char_subscripts
1360 && TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE
1361 && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1362 warning ("subscript has type `char'");
1363
1364 /* Put the integer in IND to simplify error checking. */
1365 if (TREE_CODE (TREE_TYPE (ar)) == INTEGER_TYPE)
1366 {
1367 tree temp = ar;
1368 ar = ind;
1369 ind = temp;
1370 }
1371
1372 if (ar == error_mark_node)
1373 return ar;
1374
1375 if (TREE_CODE (TREE_TYPE (ar)) != POINTER_TYPE
1376 || TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) == FUNCTION_TYPE)
1377 {
1378 error ("subscripted value is neither array nor pointer");
1379 return error_mark_node;
1380 }
1381 if (TREE_CODE (TREE_TYPE (ind)) != INTEGER_TYPE)
1382 {
1383 error ("array subscript is not an integer");
1384 return error_mark_node;
1385 }
1386
1387 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, ind, 0),
1388 "array indexing");
1389 }
1390 }
1391 \f
1392 /* Build a function call to function FUNCTION with parameters PARAMS.
1393 PARAMS is a list--a chain of TREE_LIST nodes--in which the
1394 TREE_VALUE of each node is a parameter-expression.
1395 FUNCTION's data type may be a function type or a pointer-to-function. */
1396
1397 tree
1398 build_function_call (function, params)
1399 tree function, params;
1400 {
1401 register tree fntype, fundecl = 0;
1402 register tree coerced_params;
1403 tree name = NULL_TREE, assembler_name = NULL_TREE, result;
1404
1405 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
1406 STRIP_TYPE_NOPS (function);
1407
1408 /* Convert anything with function type to a pointer-to-function. */
1409 if (TREE_CODE (function) == FUNCTION_DECL)
1410 {
1411 name = DECL_NAME (function);
1412 assembler_name = DECL_ASSEMBLER_NAME (function);
1413
1414 /* Differs from default_conversion by not setting TREE_ADDRESSABLE
1415 (because calling an inline function does not mean the function
1416 needs to be separately compiled). */
1417 fntype = build_type_variant (TREE_TYPE (function),
1418 TREE_READONLY (function),
1419 TREE_THIS_VOLATILE (function));
1420 fundecl = function;
1421 function = build1 (ADDR_EXPR, build_pointer_type (fntype), function);
1422 }
1423 else
1424 function = default_conversion (function);
1425
1426 fntype = TREE_TYPE (function);
1427
1428 if (TREE_CODE (fntype) == ERROR_MARK)
1429 return error_mark_node;
1430
1431 if (!(TREE_CODE (fntype) == POINTER_TYPE
1432 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
1433 {
1434 error ("called object is not a function");
1435 return error_mark_node;
1436 }
1437
1438 /* fntype now gets the type of function pointed to. */
1439 fntype = TREE_TYPE (fntype);
1440
1441 /* Convert the parameters to the types declared in the
1442 function prototype, or apply default promotions. */
1443
1444 coerced_params
1445 = convert_arguments (TYPE_ARG_TYPES (fntype), params, name, fundecl);
1446
1447 /* Check for errors in format strings. */
1448
1449 if (warn_format && (name || assembler_name))
1450 check_function_format (name, assembler_name, coerced_params);
1451
1452 /* Recognize certain built-in functions so we can make tree-codes
1453 other than CALL_EXPR. We do this when it enables fold-const.c
1454 to do something useful. */
1455
1456 if (TREE_CODE (function) == ADDR_EXPR
1457 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL
1458 && DECL_BUILT_IN (TREE_OPERAND (function, 0)))
1459 {
1460 result = expand_tree_builtin (TREE_OPERAND (function, 0),
1461 params, coerced_params);
1462 if (result)
1463 return result;
1464 }
1465
1466 result = build (CALL_EXPR, TREE_TYPE (fntype),
1467 function, coerced_params, NULL_TREE);
1468
1469 TREE_SIDE_EFFECTS (result) = 1;
1470 if (TREE_TYPE (result) == void_type_node)
1471 return result;
1472 return require_complete_type (result);
1473 }
1474 \f
1475 /* Convert the argument expressions in the list VALUES
1476 to the types in the list TYPELIST. The result is a list of converted
1477 argument expressions.
1478
1479 If TYPELIST is exhausted, or when an element has NULL as its type,
1480 perform the default conversions.
1481
1482 PARMLIST is the chain of parm decls for the function being called.
1483 It may be 0, if that info is not available.
1484 It is used only for generating error messages.
1485
1486 NAME is an IDENTIFIER_NODE or 0. It is used only for error messages.
1487
1488 This is also where warnings about wrong number of args are generated.
1489
1490 Both VALUES and the returned value are chains of TREE_LIST nodes
1491 with the elements of the list in the TREE_VALUE slots of those nodes. */
1492
1493 static tree
1494 convert_arguments (typelist, values, name, fundecl)
1495 tree typelist, values, name, fundecl;
1496 {
1497 register tree typetail, valtail;
1498 register tree result = NULL;
1499 int parmnum;
1500
1501 /* Scan the given expressions and types, producing individual
1502 converted arguments and pushing them on RESULT in reverse order. */
1503
1504 for (valtail = values, typetail = typelist, parmnum = 0;
1505 valtail;
1506 valtail = TREE_CHAIN (valtail), parmnum++)
1507 {
1508 register tree type = typetail ? TREE_VALUE (typetail) : 0;
1509 register tree val = TREE_VALUE (valtail);
1510
1511 if (type == void_type_node)
1512 {
1513 if (name)
1514 error ("too many arguments to function `%s'",
1515 IDENTIFIER_POINTER (name));
1516 else
1517 error ("too many arguments to function");
1518 break;
1519 }
1520
1521 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
1522 /* Do not use STRIP_NOPS here! We do not want an enumerator with value 0
1523 to convert automatically to a pointer. */
1524 if (TREE_CODE (val) == NON_LVALUE_EXPR)
1525 val = TREE_OPERAND (val, 0);
1526
1527 if (TREE_CODE (TREE_TYPE (val)) == ARRAY_TYPE
1528 || TREE_CODE (TREE_TYPE (val)) == FUNCTION_TYPE)
1529 val = default_conversion (val);
1530
1531 val = require_complete_type (val);
1532
1533 if (type != 0)
1534 {
1535 /* Formal parm type is specified by a function prototype. */
1536 tree parmval;
1537
1538 if (!COMPLETE_TYPE_P (type))
1539 {
1540 error ("type of formal parameter %d is incomplete", parmnum + 1);
1541 parmval = val;
1542 }
1543 else
1544 {
1545 /* Optionally warn about conversions that
1546 differ from the default conversions. */
1547 if (warn_conversion)
1548 {
1549 int formal_prec = TYPE_PRECISION (type);
1550
1551 if (INTEGRAL_TYPE_P (type)
1552 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1553 warn_for_assignment ("%s as integer rather than floating due to prototype", (char *) 0, name, parmnum + 1);
1554 else if (TREE_CODE (type) == COMPLEX_TYPE
1555 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1556 warn_for_assignment ("%s as complex rather than floating due to prototype", (char *) 0, name, parmnum + 1);
1557 else if (TREE_CODE (type) == REAL_TYPE
1558 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1559 warn_for_assignment ("%s as floating rather than integer due to prototype", (char *) 0, name, parmnum + 1);
1560 else if (TREE_CODE (type) == REAL_TYPE
1561 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
1562 warn_for_assignment ("%s as floating rather than complex due to prototype", (char *) 0, name, parmnum + 1);
1563 /* ??? At some point, messages should be written about
1564 conversions between complex types, but that's too messy
1565 to do now. */
1566 else if (TREE_CODE (type) == REAL_TYPE
1567 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1568 {
1569 /* Warn if any argument is passed as `float',
1570 since without a prototype it would be `double'. */
1571 if (formal_prec == TYPE_PRECISION (float_type_node))
1572 warn_for_assignment ("%s as `float' rather than `double' due to prototype", (char *) 0, name, parmnum + 1);
1573 }
1574 /* Detect integer changing in width or signedness. */
1575 else if (INTEGRAL_TYPE_P (type)
1576 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1577 {
1578 tree would_have_been = default_conversion (val);
1579 tree type1 = TREE_TYPE (would_have_been);
1580
1581 if (TREE_CODE (type) == ENUMERAL_TYPE
1582 && type == TREE_TYPE (val))
1583 /* No warning if function asks for enum
1584 and the actual arg is that enum type. */
1585 ;
1586 else if (formal_prec != TYPE_PRECISION (type1))
1587 warn_for_assignment ("%s with different width due to prototype", (char *) 0, name, parmnum + 1);
1588 else if (TREE_UNSIGNED (type) == TREE_UNSIGNED (type1))
1589 ;
1590 /* Don't complain if the formal parameter type
1591 is an enum, because we can't tell now whether
1592 the value was an enum--even the same enum. */
1593 else if (TREE_CODE (type) == ENUMERAL_TYPE)
1594 ;
1595 else if (TREE_CODE (val) == INTEGER_CST
1596 && int_fits_type_p (val, type))
1597 /* Change in signedness doesn't matter
1598 if a constant value is unaffected. */
1599 ;
1600 /* Likewise for a constant in a NOP_EXPR. */
1601 else if (TREE_CODE (val) == NOP_EXPR
1602 && TREE_CODE (TREE_OPERAND (val, 0)) == INTEGER_CST
1603 && int_fits_type_p (TREE_OPERAND (val, 0), type))
1604 ;
1605 #if 0 /* We never get such tree structure here. */
1606 else if (TREE_CODE (TREE_TYPE (val)) == ENUMERAL_TYPE
1607 && int_fits_type_p (TYPE_MIN_VALUE (TREE_TYPE (val)), type)
1608 && int_fits_type_p (TYPE_MAX_VALUE (TREE_TYPE (val)), type))
1609 /* Change in signedness doesn't matter
1610 if an enum value is unaffected. */
1611 ;
1612 #endif
1613 /* If the value is extended from a narrower
1614 unsigned type, it doesn't matter whether we
1615 pass it as signed or unsigned; the value
1616 certainly is the same either way. */
1617 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
1618 && TREE_UNSIGNED (TREE_TYPE (val)))
1619 ;
1620 else if (TREE_UNSIGNED (type))
1621 warn_for_assignment ("%s as unsigned due to prototype", (char *) 0, name, parmnum + 1);
1622 else
1623 warn_for_assignment ("%s as signed due to prototype", (char *) 0, name, parmnum + 1);
1624 }
1625 }
1626
1627 parmval = convert_for_assignment (type, val,
1628 (char *) 0, /* arg passing */
1629 fundecl, name, parmnum + 1);
1630
1631 if (PROMOTE_PROTOTYPES
1632 && (TREE_CODE (type) == INTEGER_TYPE
1633 || TREE_CODE (type) == ENUMERAL_TYPE)
1634 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
1635 parmval = default_conversion (parmval);
1636 }
1637 result = tree_cons (NULL_TREE, parmval, result);
1638 }
1639 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
1640 && (TYPE_PRECISION (TREE_TYPE (val))
1641 < TYPE_PRECISION (double_type_node)))
1642 /* Convert `float' to `double'. */
1643 result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
1644 else
1645 /* Convert `short' and `char' to full-size `int'. */
1646 result = tree_cons (NULL_TREE, default_conversion (val), result);
1647
1648 if (typetail)
1649 typetail = TREE_CHAIN (typetail);
1650 }
1651
1652 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
1653 {
1654 if (name)
1655 error ("too few arguments to function `%s'",
1656 IDENTIFIER_POINTER (name));
1657 else
1658 error ("too few arguments to function");
1659 }
1660
1661 return nreverse (result);
1662 }
1663 \f
1664 /* This is the entry point used by the parser
1665 for binary operators in the input.
1666 In addition to constructing the expression,
1667 we check for operands that were written with other binary operators
1668 in a way that is likely to confuse the user. */
1669
1670 tree
1671 parser_build_binary_op (code, arg1, arg2)
1672 enum tree_code code;
1673 tree arg1, arg2;
1674 {
1675 tree result = build_binary_op (code, arg1, arg2, 1);
1676
1677 char class;
1678 char class1 = TREE_CODE_CLASS (TREE_CODE (arg1));
1679 char class2 = TREE_CODE_CLASS (TREE_CODE (arg2));
1680 enum tree_code code1 = ERROR_MARK;
1681 enum tree_code code2 = ERROR_MARK;
1682
1683 if (class1 == 'e' || class1 == '1'
1684 || class1 == '2' || class1 == '<')
1685 code1 = C_EXP_ORIGINAL_CODE (arg1);
1686 if (class2 == 'e' || class2 == '1'
1687 || class2 == '2' || class2 == '<')
1688 code2 = C_EXP_ORIGINAL_CODE (arg2);
1689
1690 /* Check for cases such as x+y<<z which users are likely
1691 to misinterpret. If parens are used, C_EXP_ORIGINAL_CODE
1692 is cleared to prevent these warnings. */
1693 if (warn_parentheses)
1694 {
1695 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
1696 {
1697 if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
1698 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1699 warning ("suggest parentheses around + or - inside shift");
1700 }
1701
1702 if (code == TRUTH_ORIF_EXPR)
1703 {
1704 if (code1 == TRUTH_ANDIF_EXPR
1705 || code2 == TRUTH_ANDIF_EXPR)
1706 warning ("suggest parentheses around && within ||");
1707 }
1708
1709 if (code == BIT_IOR_EXPR)
1710 {
1711 if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
1712 || code1 == PLUS_EXPR || code1 == MINUS_EXPR
1713 || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
1714 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1715 warning ("suggest parentheses around arithmetic in operand of |");
1716 /* Check cases like x|y==z */
1717 if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1718 warning ("suggest parentheses around comparison in operand of |");
1719 }
1720
1721 if (code == BIT_XOR_EXPR)
1722 {
1723 if (code1 == BIT_AND_EXPR
1724 || code1 == PLUS_EXPR || code1 == MINUS_EXPR
1725 || code2 == BIT_AND_EXPR
1726 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1727 warning ("suggest parentheses around arithmetic in operand of ^");
1728 /* Check cases like x^y==z */
1729 if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1730 warning ("suggest parentheses around comparison in operand of ^");
1731 }
1732
1733 if (code == BIT_AND_EXPR)
1734 {
1735 if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
1736 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1737 warning ("suggest parentheses around + or - in operand of &");
1738 /* Check cases like x&y==z */
1739 if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1740 warning ("suggest parentheses around comparison in operand of &");
1741 }
1742 }
1743
1744 /* Similarly, check for cases like 1<=i<=10 that are probably errors. */
1745 if (TREE_CODE_CLASS (code) == '<' && extra_warnings
1746 && (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<'))
1747 warning ("comparisons like X<=Y<=Z do not have their mathematical meaning");
1748
1749 unsigned_conversion_warning (result, arg1);
1750 unsigned_conversion_warning (result, arg2);
1751 overflow_warning (result);
1752
1753 class = TREE_CODE_CLASS (TREE_CODE (result));
1754
1755 /* Record the code that was specified in the source,
1756 for the sake of warnings about confusing nesting. */
1757 if (class == 'e' || class == '1'
1758 || class == '2' || class == '<')
1759 C_SET_EXP_ORIGINAL_CODE (result, code);
1760 else
1761 {
1762 int flag = TREE_CONSTANT (result);
1763 /* We used to use NOP_EXPR rather than NON_LVALUE_EXPR
1764 so that convert_for_assignment wouldn't strip it.
1765 That way, we got warnings for things like p = (1 - 1).
1766 But it turns out we should not get those warnings. */
1767 result = build1 (NON_LVALUE_EXPR, TREE_TYPE (result), result);
1768 C_SET_EXP_ORIGINAL_CODE (result, code);
1769 TREE_CONSTANT (result) = flag;
1770 }
1771
1772 return result;
1773 }
1774
1775 /* Build a binary-operation expression without default conversions.
1776 CODE is the kind of expression to build.
1777 This function differs from `build' in several ways:
1778 the data type of the result is computed and recorded in it,
1779 warnings are generated if arg data types are invalid,
1780 special handling for addition and subtraction of pointers is known,
1781 and some optimization is done (operations on narrow ints
1782 are done in the narrower type when that gives the same result).
1783 Constant folding is also done before the result is returned.
1784
1785 Note that the operands will never have enumeral types, or function
1786 or array types, because either they will have the default conversions
1787 performed or they have both just been converted to some other type in which
1788 the arithmetic is to be done. */
1789
1790 tree
1791 build_binary_op (code, orig_op0, orig_op1, convert_p)
1792 enum tree_code code;
1793 tree orig_op0, orig_op1;
1794 int convert_p;
1795 {
1796 tree type0, type1;
1797 register enum tree_code code0, code1;
1798 tree op0, op1;
1799
1800 /* Expression code to give to the expression when it is built.
1801 Normally this is CODE, which is what the caller asked for,
1802 but in some special cases we change it. */
1803 register enum tree_code resultcode = code;
1804
1805 /* Data type in which the computation is to be performed.
1806 In the simplest cases this is the common type of the arguments. */
1807 register tree result_type = NULL;
1808
1809 /* Nonzero means operands have already been type-converted
1810 in whatever way is necessary.
1811 Zero means they need to be converted to RESULT_TYPE. */
1812 int converted = 0;
1813
1814 /* Nonzero means create the expression with this type, rather than
1815 RESULT_TYPE. */
1816 tree build_type = 0;
1817
1818 /* Nonzero means after finally constructing the expression
1819 convert it to this type. */
1820 tree final_type = 0;
1821
1822 /* Nonzero if this is an operation like MIN or MAX which can
1823 safely be computed in short if both args are promoted shorts.
1824 Also implies COMMON.
1825 -1 indicates a bitwise operation; this makes a difference
1826 in the exact conditions for when it is safe to do the operation
1827 in a narrower mode. */
1828 int shorten = 0;
1829
1830 /* Nonzero if this is a comparison operation;
1831 if both args are promoted shorts, compare the original shorts.
1832 Also implies COMMON. */
1833 int short_compare = 0;
1834
1835 /* Nonzero if this is a right-shift operation, which can be computed on the
1836 original short and then promoted if the operand is a promoted short. */
1837 int short_shift = 0;
1838
1839 /* Nonzero means set RESULT_TYPE to the common type of the args. */
1840 int common = 0;
1841
1842 if (convert_p)
1843 {
1844 op0 = default_conversion (orig_op0);
1845 op1 = default_conversion (orig_op1);
1846 }
1847 else
1848 {
1849 op0 = orig_op0;
1850 op1 = orig_op1;
1851 }
1852
1853 type0 = TREE_TYPE (op0);
1854 type1 = TREE_TYPE (op1);
1855
1856 /* The expression codes of the data types of the arguments tell us
1857 whether the arguments are integers, floating, pointers, etc. */
1858 code0 = TREE_CODE (type0);
1859 code1 = TREE_CODE (type1);
1860
1861 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
1862 STRIP_TYPE_NOPS (op0);
1863 STRIP_TYPE_NOPS (op1);
1864
1865 /* If an error was already reported for one of the arguments,
1866 avoid reporting another error. */
1867
1868 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
1869 return error_mark_node;
1870
1871 switch (code)
1872 {
1873 case PLUS_EXPR:
1874 /* Handle the pointer + int case. */
1875 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
1876 return pointer_int_sum (PLUS_EXPR, op0, op1);
1877 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
1878 return pointer_int_sum (PLUS_EXPR, op1, op0);
1879 else
1880 common = 1;
1881 break;
1882
1883 case MINUS_EXPR:
1884 /* Subtraction of two similar pointers.
1885 We must subtract them as integers, then divide by object size. */
1886 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
1887 && comp_target_types (type0, type1))
1888 return pointer_diff (op0, op1);
1889 /* Handle pointer minus int. Just like pointer plus int. */
1890 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
1891 return pointer_int_sum (MINUS_EXPR, op0, op1);
1892 else
1893 common = 1;
1894 break;
1895
1896 case MULT_EXPR:
1897 common = 1;
1898 break;
1899
1900 case TRUNC_DIV_EXPR:
1901 case CEIL_DIV_EXPR:
1902 case FLOOR_DIV_EXPR:
1903 case ROUND_DIV_EXPR:
1904 case EXACT_DIV_EXPR:
1905 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
1906 || code0 == COMPLEX_TYPE)
1907 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
1908 || code1 == COMPLEX_TYPE))
1909 {
1910 if (!(code0 == INTEGER_TYPE && code1 == INTEGER_TYPE))
1911 resultcode = RDIV_EXPR;
1912 else
1913 /* Although it would be tempting to shorten always here, that
1914 loses on some targets, since the modulo instruction is
1915 undefined if the quotient can't be represented in the
1916 computation mode. We shorten only if unsigned or if
1917 dividing by something we know != -1. */
1918 shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
1919 || (TREE_CODE (op1) == INTEGER_CST
1920 && ! integer_all_onesp (op1)));
1921 common = 1;
1922 }
1923 break;
1924
1925 case BIT_AND_EXPR:
1926 case BIT_ANDTC_EXPR:
1927 case BIT_IOR_EXPR:
1928 case BIT_XOR_EXPR:
1929 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
1930 shorten = -1;
1931 /* If one operand is a constant, and the other is a short type
1932 that has been converted to an int,
1933 really do the work in the short type and then convert the
1934 result to int. If we are lucky, the constant will be 0 or 1
1935 in the short type, making the entire operation go away. */
1936 if (TREE_CODE (op0) == INTEGER_CST
1937 && TREE_CODE (op1) == NOP_EXPR
1938 && TYPE_PRECISION (type1) > TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))
1939 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op1, 0))))
1940 {
1941 final_type = result_type;
1942 op1 = TREE_OPERAND (op1, 0);
1943 result_type = TREE_TYPE (op1);
1944 }
1945 if (TREE_CODE (op1) == INTEGER_CST
1946 && TREE_CODE (op0) == NOP_EXPR
1947 && TYPE_PRECISION (type0) > TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))
1948 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op0, 0))))
1949 {
1950 final_type = result_type;
1951 op0 = TREE_OPERAND (op0, 0);
1952 result_type = TREE_TYPE (op0);
1953 }
1954 break;
1955
1956 case TRUNC_MOD_EXPR:
1957 case FLOOR_MOD_EXPR:
1958 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
1959 {
1960 /* Although it would be tempting to shorten always here, that loses
1961 on some targets, since the modulo instruction is undefined if the
1962 quotient can't be represented in the computation mode. We shorten
1963 only if unsigned or if dividing by something we know != -1. */
1964 shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
1965 || (TREE_CODE (op1) == INTEGER_CST
1966 && ! integer_all_onesp (op1)));
1967 common = 1;
1968 }
1969 break;
1970
1971 case TRUTH_ANDIF_EXPR:
1972 case TRUTH_ORIF_EXPR:
1973 case TRUTH_AND_EXPR:
1974 case TRUTH_OR_EXPR:
1975 case TRUTH_XOR_EXPR:
1976 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
1977 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
1978 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
1979 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
1980 {
1981 /* Result of these operations is always an int,
1982 but that does not mean the operands should be
1983 converted to ints! */
1984 result_type = integer_type_node;
1985 op0 = truthvalue_conversion (op0);
1986 op1 = truthvalue_conversion (op1);
1987 converted = 1;
1988 }
1989 break;
1990
1991 /* Shift operations: result has same type as first operand;
1992 always convert second operand to int.
1993 Also set SHORT_SHIFT if shifting rightward. */
1994
1995 case RSHIFT_EXPR:
1996 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
1997 {
1998 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
1999 {
2000 if (tree_int_cst_sgn (op1) < 0)
2001 warning ("right shift count is negative");
2002 else
2003 {
2004 if (! integer_zerop (op1))
2005 short_shift = 1;
2006
2007 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
2008 warning ("right shift count >= width of type");
2009 }
2010 }
2011
2012 /* Use the type of the value to be shifted.
2013 This is what most traditional C compilers do. */
2014 result_type = type0;
2015 /* Unless traditional, convert the shift-count to an integer,
2016 regardless of size of value being shifted. */
2017 if (! flag_traditional)
2018 {
2019 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2020 op1 = convert (integer_type_node, op1);
2021 /* Avoid converting op1 to result_type later. */
2022 converted = 1;
2023 }
2024 }
2025 break;
2026
2027 case LSHIFT_EXPR:
2028 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2029 {
2030 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2031 {
2032 if (tree_int_cst_sgn (op1) < 0)
2033 warning ("left shift count is negative");
2034
2035 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
2036 warning ("left shift count >= width of type");
2037 }
2038
2039 /* Use the type of the value to be shifted.
2040 This is what most traditional C compilers do. */
2041 result_type = type0;
2042 /* Unless traditional, convert the shift-count to an integer,
2043 regardless of size of value being shifted. */
2044 if (! flag_traditional)
2045 {
2046 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2047 op1 = convert (integer_type_node, op1);
2048 /* Avoid converting op1 to result_type later. */
2049 converted = 1;
2050 }
2051 }
2052 break;
2053
2054 case RROTATE_EXPR:
2055 case LROTATE_EXPR:
2056 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2057 {
2058 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2059 {
2060 if (tree_int_cst_sgn (op1) < 0)
2061 warning ("shift count is negative");
2062 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
2063 warning ("shift count >= width of type");
2064 }
2065
2066 /* Use the type of the value to be shifted.
2067 This is what most traditional C compilers do. */
2068 result_type = type0;
2069 /* Unless traditional, convert the shift-count to an integer,
2070 regardless of size of value being shifted. */
2071 if (! flag_traditional)
2072 {
2073 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2074 op1 = convert (integer_type_node, op1);
2075 /* Avoid converting op1 to result_type later. */
2076 converted = 1;
2077 }
2078 }
2079 break;
2080
2081 case EQ_EXPR:
2082 case NE_EXPR:
2083 if (warn_float_equal && (code0 == REAL_TYPE || code1 == REAL_TYPE))
2084 warning ("comparing floating point with == or != is unsafe");
2085 /* Result of comparison is always int,
2086 but don't convert the args to int! */
2087 build_type = integer_type_node;
2088 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
2089 || code0 == COMPLEX_TYPE)
2090 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
2091 || code1 == COMPLEX_TYPE))
2092 short_compare = 1;
2093 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2094 {
2095 register tree tt0 = TREE_TYPE (type0);
2096 register tree tt1 = TREE_TYPE (type1);
2097 /* Anything compares with void *. void * compares with anything.
2098 Otherwise, the targets must be compatible
2099 and both must be object or both incomplete. */
2100 if (comp_target_types (type0, type1))
2101 result_type = common_type (type0, type1);
2102 else if (TYPE_MAIN_VARIANT (tt0) == void_type_node)
2103 {
2104 /* op0 != orig_op0 detects the case of something
2105 whose value is 0 but which isn't a valid null ptr const. */
2106 if (pedantic && (!integer_zerop (op0) || op0 != orig_op0)
2107 && TREE_CODE (tt1) == FUNCTION_TYPE)
2108 pedwarn ("ANSI C forbids comparison of `void *' with function pointer");
2109 }
2110 else if (TYPE_MAIN_VARIANT (tt1) == void_type_node)
2111 {
2112 if (pedantic && (!integer_zerop (op1) || op1 != orig_op1)
2113 && TREE_CODE (tt0) == FUNCTION_TYPE)
2114 pedwarn ("ANSI C forbids comparison of `void *' with function pointer");
2115 }
2116 else
2117 pedwarn ("comparison of distinct pointer types lacks a cast");
2118
2119 if (result_type == NULL_TREE)
2120 result_type = ptr_type_node;
2121 }
2122 else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
2123 && integer_zerop (op1))
2124 result_type = type0;
2125 else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
2126 && integer_zerop (op0))
2127 result_type = type1;
2128 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2129 {
2130 result_type = type0;
2131 if (! flag_traditional)
2132 pedwarn ("comparison between pointer and integer");
2133 }
2134 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
2135 {
2136 result_type = type1;
2137 if (! flag_traditional)
2138 pedwarn ("comparison between pointer and integer");
2139 }
2140 break;
2141
2142 case MAX_EXPR:
2143 case MIN_EXPR:
2144 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
2145 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
2146 shorten = 1;
2147 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2148 {
2149 if (comp_target_types (type0, type1))
2150 {
2151 result_type = common_type (type0, type1);
2152 if (pedantic
2153 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
2154 pedwarn ("ANSI C forbids ordered comparisons of pointers to functions");
2155 }
2156 else
2157 {
2158 result_type = ptr_type_node;
2159 pedwarn ("comparison of distinct pointer types lacks a cast");
2160 }
2161 }
2162 break;
2163
2164 case LE_EXPR:
2165 case GE_EXPR:
2166 case LT_EXPR:
2167 case GT_EXPR:
2168 build_type = integer_type_node;
2169 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
2170 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
2171 short_compare = 1;
2172 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2173 {
2174 if (comp_target_types (type0, type1))
2175 {
2176 result_type = common_type (type0, type1);
2177 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
2178 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
2179 pedwarn ("comparison of complete and incomplete pointers");
2180 else if (pedantic
2181 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
2182 pedwarn ("ANSI C forbids ordered comparisons of pointers to functions");
2183 }
2184 else
2185 {
2186 result_type = ptr_type_node;
2187 pedwarn ("comparison of distinct pointer types lacks a cast");
2188 }
2189 }
2190 else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
2191 && integer_zerop (op1))
2192 {
2193 result_type = type0;
2194 if (pedantic || extra_warnings)
2195 pedwarn ("ordered comparison of pointer with integer zero");
2196 }
2197 else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
2198 && integer_zerop (op0))
2199 {
2200 result_type = type1;
2201 if (pedantic)
2202 pedwarn ("ordered comparison of pointer with integer zero");
2203 }
2204 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2205 {
2206 result_type = type0;
2207 if (! flag_traditional)
2208 pedwarn ("comparison between pointer and integer");
2209 }
2210 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
2211 {
2212 result_type = type1;
2213 if (! flag_traditional)
2214 pedwarn ("comparison between pointer and integer");
2215 }
2216 break;
2217
2218 case UNORDERED_EXPR:
2219 case ORDERED_EXPR:
2220 case UNLT_EXPR:
2221 case UNLE_EXPR:
2222 case UNGT_EXPR:
2223 case UNGE_EXPR:
2224 case UNEQ_EXPR:
2225 build_type = integer_type_node;
2226 if (code0 != REAL_TYPE || code1 != REAL_TYPE)
2227 {
2228 error ("unordered comparison on non-floating point argument");
2229 return error_mark_node;
2230 }
2231 common = 1;
2232 break;
2233
2234 default:
2235 break;
2236 }
2237
2238 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
2239 &&
2240 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
2241 {
2242 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
2243
2244 if (shorten || common || short_compare)
2245 result_type = common_type (type0, type1);
2246
2247 /* For certain operations (which identify themselves by shorten != 0)
2248 if both args were extended from the same smaller type,
2249 do the arithmetic in that type and then extend.
2250
2251 shorten !=0 and !=1 indicates a bitwise operation.
2252 For them, this optimization is safe only if
2253 both args are zero-extended or both are sign-extended.
2254 Otherwise, we might change the result.
2255 Eg, (short)-1 | (unsigned short)-1 is (int)-1
2256 but calculated in (unsigned short) it would be (unsigned short)-1. */
2257
2258 if (shorten && none_complex)
2259 {
2260 int unsigned0, unsigned1;
2261 tree arg0 = get_narrower (op0, &unsigned0);
2262 tree arg1 = get_narrower (op1, &unsigned1);
2263 /* UNS is 1 if the operation to be done is an unsigned one. */
2264 int uns = TREE_UNSIGNED (result_type);
2265 tree type;
2266
2267 final_type = result_type;
2268
2269 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
2270 but it *requires* conversion to FINAL_TYPE. */
2271
2272 if ((TYPE_PRECISION (TREE_TYPE (op0))
2273 == TYPE_PRECISION (TREE_TYPE (arg0)))
2274 && TREE_TYPE (op0) != final_type)
2275 unsigned0 = TREE_UNSIGNED (TREE_TYPE (op0));
2276 if ((TYPE_PRECISION (TREE_TYPE (op1))
2277 == TYPE_PRECISION (TREE_TYPE (arg1)))
2278 && TREE_TYPE (op1) != final_type)
2279 unsigned1 = TREE_UNSIGNED (TREE_TYPE (op1));
2280
2281 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
2282
2283 /* For bitwise operations, signedness of nominal type
2284 does not matter. Consider only how operands were extended. */
2285 if (shorten == -1)
2286 uns = unsigned0;
2287
2288 /* Note that in all three cases below we refrain from optimizing
2289 an unsigned operation on sign-extended args.
2290 That would not be valid. */
2291
2292 /* Both args variable: if both extended in same way
2293 from same width, do it in that width.
2294 Do it unsigned if args were zero-extended. */
2295 if ((TYPE_PRECISION (TREE_TYPE (arg0))
2296 < TYPE_PRECISION (result_type))
2297 && (TYPE_PRECISION (TREE_TYPE (arg1))
2298 == TYPE_PRECISION (TREE_TYPE (arg0)))
2299 && unsigned0 == unsigned1
2300 && (unsigned0 || !uns))
2301 result_type
2302 = signed_or_unsigned_type (unsigned0,
2303 common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
2304 else if (TREE_CODE (arg0) == INTEGER_CST
2305 && (unsigned1 || !uns)
2306 && (TYPE_PRECISION (TREE_TYPE (arg1))
2307 < TYPE_PRECISION (result_type))
2308 && (type = signed_or_unsigned_type (unsigned1,
2309 TREE_TYPE (arg1)),
2310 int_fits_type_p (arg0, type)))
2311 result_type = type;
2312 else if (TREE_CODE (arg1) == INTEGER_CST
2313 && (unsigned0 || !uns)
2314 && (TYPE_PRECISION (TREE_TYPE (arg0))
2315 < TYPE_PRECISION (result_type))
2316 && (type = signed_or_unsigned_type (unsigned0,
2317 TREE_TYPE (arg0)),
2318 int_fits_type_p (arg1, type)))
2319 result_type = type;
2320 }
2321
2322 /* Shifts can be shortened if shifting right. */
2323
2324 if (short_shift)
2325 {
2326 int unsigned_arg;
2327 tree arg0 = get_narrower (op0, &unsigned_arg);
2328
2329 final_type = result_type;
2330
2331 if (arg0 == op0 && final_type == TREE_TYPE (op0))
2332 unsigned_arg = TREE_UNSIGNED (TREE_TYPE (op0));
2333
2334 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
2335 /* We can shorten only if the shift count is less than the
2336 number of bits in the smaller type size. */
2337 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
2338 /* If arg is sign-extended and then unsigned-shifted,
2339 we can simulate this with a signed shift in arg's type
2340 only if the extended result is at least twice as wide
2341 as the arg. Otherwise, the shift could use up all the
2342 ones made by sign-extension and bring in zeros.
2343 We can't optimize that case at all, but in most machines
2344 it never happens because available widths are 2**N. */
2345 && (!TREE_UNSIGNED (final_type)
2346 || unsigned_arg
2347 || (2 * TYPE_PRECISION (TREE_TYPE (arg0))
2348 <= TYPE_PRECISION (result_type))))
2349 {
2350 /* Do an unsigned shift if the operand was zero-extended. */
2351 result_type
2352 = signed_or_unsigned_type (unsigned_arg,
2353 TREE_TYPE (arg0));
2354 /* Convert value-to-be-shifted to that type. */
2355 if (TREE_TYPE (op0) != result_type)
2356 op0 = convert (result_type, op0);
2357 converted = 1;
2358 }
2359 }
2360
2361 /* Comparison operations are shortened too but differently.
2362 They identify themselves by setting short_compare = 1. */
2363
2364 if (short_compare)
2365 {
2366 /* Don't write &op0, etc., because that would prevent op0
2367 from being kept in a register.
2368 Instead, make copies of the our local variables and
2369 pass the copies by reference, then copy them back afterward. */
2370 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
2371 enum tree_code xresultcode = resultcode;
2372 tree val
2373 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
2374
2375 if (val != 0)
2376 return val;
2377
2378 op0 = xop0, op1 = xop1;
2379 converted = 1;
2380 resultcode = xresultcode;
2381
2382 if ((warn_sign_compare < 0 ? extra_warnings : warn_sign_compare != 0)
2383 && skip_evaluation == 0)
2384 {
2385 int op0_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op0));
2386 int op1_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op1));
2387 int unsignedp0, unsignedp1;
2388 tree primop0 = get_narrower (op0, &unsignedp0);
2389 tree primop1 = get_narrower (op1, &unsignedp1);
2390
2391 xop0 = orig_op0;
2392 xop1 = orig_op1;
2393 STRIP_TYPE_NOPS (xop0);
2394 STRIP_TYPE_NOPS (xop1);
2395
2396 /* Give warnings for comparisons between signed and unsigned
2397 quantities that may fail.
2398
2399 Do the checking based on the original operand trees, so that
2400 casts will be considered, but default promotions won't be.
2401
2402 Do not warn if the comparison is being done in a signed type,
2403 since the signed type will only be chosen if it can represent
2404 all the values of the unsigned type. */
2405 if (! TREE_UNSIGNED (result_type))
2406 /* OK */;
2407 /* Do not warn if both operands are the same signedness. */
2408 else if (op0_signed == op1_signed)
2409 /* OK */;
2410 else
2411 {
2412 tree sop, uop;
2413
2414 if (op0_signed)
2415 sop = xop0, uop = xop1;
2416 else
2417 sop = xop1, uop = xop0;
2418
2419 /* Do not warn if the signed quantity is an
2420 unsuffixed integer literal (or some static
2421 constant expression involving such literals or a
2422 conditional expression involving such literals)
2423 and it is non-negative. */
2424 if (tree_expr_nonnegative_p (sop))
2425 /* OK */;
2426 /* Do not warn if the comparison is an equality operation,
2427 the unsigned quantity is an integral constant, and it
2428 would fit in the result if the result were signed. */
2429 else if (TREE_CODE (uop) == INTEGER_CST
2430 && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
2431 && int_fits_type_p (uop, signed_type (result_type)))
2432 /* OK */;
2433 /* Do not warn if the unsigned quantity is an enumeration
2434 constant and its maximum value would fit in the result
2435 if the result were signed. */
2436 else if (TREE_CODE (uop) == INTEGER_CST
2437 && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
2438 && int_fits_type_p (TYPE_MAX_VALUE (TREE_TYPE(uop)),
2439 signed_type (result_type)))
2440 /* OK */;
2441 else
2442 warning ("comparison between signed and unsigned");
2443 }
2444
2445 /* Warn if two unsigned values are being compared in a size
2446 larger than their original size, and one (and only one) is the
2447 result of a `~' operator. This comparison will always fail.
2448
2449 Also warn if one operand is a constant, and the constant
2450 does not have all bits set that are set in the ~ operand
2451 when it is extended. */
2452
2453 if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
2454 != (TREE_CODE (primop1) == BIT_NOT_EXPR))
2455 {
2456 if (TREE_CODE (primop0) == BIT_NOT_EXPR)
2457 primop0 = get_narrower (TREE_OPERAND (primop0, 0),
2458 &unsignedp0);
2459 else
2460 primop1 = get_narrower (TREE_OPERAND (primop1, 0),
2461 &unsignedp1);
2462
2463 if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
2464 {
2465 tree primop;
2466 HOST_WIDE_INT constant, mask;
2467 int unsignedp, bits;
2468
2469 if (host_integerp (primop0, 0))
2470 {
2471 primop = primop1;
2472 unsignedp = unsignedp1;
2473 constant = tree_low_cst (primop0, 0);
2474 }
2475 else
2476 {
2477 primop = primop0;
2478 unsignedp = unsignedp0;
2479 constant = tree_low_cst (primop1, 0);
2480 }
2481
2482 bits = TYPE_PRECISION (TREE_TYPE (primop));
2483 if (bits < TYPE_PRECISION (result_type)
2484 && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
2485 {
2486 mask = (~ (HOST_WIDE_INT) 0) << bits;
2487 if ((mask & constant) != mask)
2488 warning ("comparison of promoted ~unsigned with constant");
2489 }
2490 }
2491 else if (unsignedp0 && unsignedp1
2492 && (TYPE_PRECISION (TREE_TYPE (primop0))
2493 < TYPE_PRECISION (result_type))
2494 && (TYPE_PRECISION (TREE_TYPE (primop1))
2495 < TYPE_PRECISION (result_type)))
2496 warning ("comparison of promoted ~unsigned with unsigned");
2497 }
2498 }
2499 }
2500 }
2501
2502 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
2503 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
2504 Then the expression will be built.
2505 It will be given type FINAL_TYPE if that is nonzero;
2506 otherwise, it will be given type RESULT_TYPE. */
2507
2508 if (!result_type)
2509 {
2510 binary_op_error (code);
2511 return error_mark_node;
2512 }
2513
2514 if (! converted)
2515 {
2516 if (TREE_TYPE (op0) != result_type)
2517 op0 = convert (result_type, op0);
2518 if (TREE_TYPE (op1) != result_type)
2519 op1 = convert (result_type, op1);
2520 }
2521
2522 if (build_type == NULL_TREE)
2523 build_type = result_type;
2524
2525 {
2526 register tree result = build (resultcode, build_type, op0, op1);
2527 register tree folded;
2528
2529 folded = fold (result);
2530 if (folded == result)
2531 TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
2532 if (final_type != 0)
2533 return convert (final_type, folded);
2534 return folded;
2535 }
2536 }
2537 \f
2538 /* Return a tree for the sum or difference (RESULTCODE says which)
2539 of pointer PTROP and integer INTOP. */
2540
2541 static tree
2542 pointer_int_sum (resultcode, ptrop, intop)
2543 enum tree_code resultcode;
2544 register tree ptrop, intop;
2545 {
2546 tree size_exp;
2547
2548 register tree result;
2549 register tree folded;
2550
2551 /* The result is a pointer of the same type that is being added. */
2552
2553 register tree result_type = TREE_TYPE (ptrop);
2554
2555 if (TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
2556 {
2557 if (pedantic || warn_pointer_arith)
2558 pedwarn ("pointer of type `void *' used in arithmetic");
2559 size_exp = integer_one_node;
2560 }
2561 else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE)
2562 {
2563 if (pedantic || warn_pointer_arith)
2564 pedwarn ("pointer to a function used in arithmetic");
2565 size_exp = integer_one_node;
2566 }
2567 else
2568 size_exp = c_size_in_bytes (TREE_TYPE (result_type));
2569
2570 /* If what we are about to multiply by the size of the elements
2571 contains a constant term, apply distributive law
2572 and multiply that constant term separately.
2573 This helps produce common subexpressions. */
2574
2575 if ((TREE_CODE (intop) == PLUS_EXPR || TREE_CODE (intop) == MINUS_EXPR)
2576 && ! TREE_CONSTANT (intop)
2577 && TREE_CONSTANT (TREE_OPERAND (intop, 1))
2578 && TREE_CONSTANT (size_exp)
2579 /* If the constant comes from pointer subtraction,
2580 skip this optimization--it would cause an error. */
2581 && TREE_CODE (TREE_TYPE (TREE_OPERAND (intop, 0))) == INTEGER_TYPE
2582 /* If the constant is unsigned, and smaller than the pointer size,
2583 then we must skip this optimization. This is because it could cause
2584 an overflow error if the constant is negative but INTOP is not. */
2585 && (! TREE_UNSIGNED (TREE_TYPE (intop))
2586 || (TYPE_PRECISION (TREE_TYPE (intop))
2587 == TYPE_PRECISION (TREE_TYPE (ptrop)))))
2588 {
2589 enum tree_code subcode = resultcode;
2590 tree int_type = TREE_TYPE (intop);
2591 if (TREE_CODE (intop) == MINUS_EXPR)
2592 subcode = (subcode == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR);
2593 /* Convert both subexpression types to the type of intop,
2594 because weird cases involving pointer arithmetic
2595 can result in a sum or difference with different type args. */
2596 ptrop = build_binary_op (subcode, ptrop,
2597 convert (int_type, TREE_OPERAND (intop, 1)), 1);
2598 intop = convert (int_type, TREE_OPERAND (intop, 0));
2599 }
2600
2601 /* Convert the integer argument to a type the same size as sizetype
2602 so the multiply won't overflow spuriously. */
2603
2604 if (TYPE_PRECISION (TREE_TYPE (intop)) != TYPE_PRECISION (sizetype)
2605 || TREE_UNSIGNED (TREE_TYPE (intop)) != TREE_UNSIGNED (sizetype))
2606 intop = convert (type_for_size (TYPE_PRECISION (sizetype),
2607 TREE_UNSIGNED (sizetype)), intop);
2608
2609 /* Replace the integer argument with a suitable product by the object size.
2610 Do this multiplication as signed, then convert to the appropriate
2611 pointer type (actually unsigned integral). */
2612
2613 intop = convert (result_type,
2614 build_binary_op (MULT_EXPR, intop,
2615 convert (TREE_TYPE (intop), size_exp), 1));
2616
2617 /* Create the sum or difference. */
2618
2619 result = build (resultcode, result_type, ptrop, intop);
2620
2621 folded = fold (result);
2622 if (folded == result)
2623 TREE_CONSTANT (folded) = TREE_CONSTANT (ptrop) & TREE_CONSTANT (intop);
2624 return folded;
2625 }
2626
2627 /* Return a tree for the difference of pointers OP0 and OP1.
2628 The resulting tree has type int. */
2629
2630 static tree
2631 pointer_diff (op0, op1)
2632 register tree op0, op1;
2633 {
2634 register tree result, folded;
2635 tree restype = ptrdiff_type_node;
2636
2637 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2638
2639 if (pedantic || warn_pointer_arith)
2640 {
2641 if (TREE_CODE (target_type) == VOID_TYPE)
2642 pedwarn ("pointer of type `void *' used in subtraction");
2643 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2644 pedwarn ("pointer to a function used in subtraction");
2645 }
2646
2647 /* First do the subtraction as integers;
2648 then drop through to build the divide operator.
2649 Do not do default conversions on the minus operator
2650 in case restype is a short type. */
2651
2652 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2653 convert (restype, op1), 0);
2654 /* This generates an error if op1 is pointer to incomplete type. */
2655 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (op1))))
2656 error ("arithmetic on pointer to an incomplete type");
2657
2658 /* This generates an error if op0 is pointer to incomplete type. */
2659 op1 = c_size_in_bytes (target_type);
2660
2661 /* Divide by the size, in easiest possible way. */
2662
2663 result = build (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2664
2665 folded = fold (result);
2666 if (folded == result)
2667 TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
2668 return folded;
2669 }
2670 \f
2671 /* Construct and perhaps optimize a tree representation
2672 for a unary operation. CODE, a tree_code, specifies the operation
2673 and XARG is the operand. NOCONVERT nonzero suppresses
2674 the default promotions (such as from short to int). */
2675
2676 tree
2677 build_unary_op (code, xarg, noconvert)
2678 enum tree_code code;
2679 tree xarg;
2680 int noconvert;
2681 {
2682 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2683 register tree arg = xarg;
2684 register tree argtype = 0;
2685 register enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2686 tree val;
2687
2688 if (typecode == ERROR_MARK)
2689 return error_mark_node;
2690 if (typecode == ENUMERAL_TYPE)
2691 typecode = INTEGER_TYPE;
2692
2693 switch (code)
2694 {
2695 case CONVERT_EXPR:
2696 /* This is used for unary plus, because a CONVERT_EXPR
2697 is enough to prevent anybody from looking inside for
2698 associativity, but won't generate any code. */
2699 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2700 || typecode == COMPLEX_TYPE))
2701 {
2702 error ("wrong type argument to unary plus");
2703 return error_mark_node;
2704 }
2705 else if (!noconvert)
2706 arg = default_conversion (arg);
2707 break;
2708
2709 case NEGATE_EXPR:
2710 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2711 || typecode == COMPLEX_TYPE))
2712 {
2713 error ("wrong type argument to unary minus");
2714 return error_mark_node;
2715 }
2716 else if (!noconvert)
2717 arg = default_conversion (arg);
2718 break;
2719
2720 case BIT_NOT_EXPR:
2721 if (typecode == COMPLEX_TYPE)
2722 {
2723 code = CONJ_EXPR;
2724 if (!noconvert)
2725 arg = default_conversion (arg);
2726 }
2727 else if (typecode != INTEGER_TYPE)
2728 {
2729 error ("wrong type argument to bit-complement");
2730 return error_mark_node;
2731 }
2732 else if (!noconvert)
2733 arg = default_conversion (arg);
2734 break;
2735
2736 case ABS_EXPR:
2737 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2738 || typecode == COMPLEX_TYPE))
2739 {
2740 error ("wrong type argument to abs");
2741 return error_mark_node;
2742 }
2743 else if (!noconvert)
2744 arg = default_conversion (arg);
2745 break;
2746
2747 case CONJ_EXPR:
2748 /* Conjugating a real value is a no-op, but allow it anyway. */
2749 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2750 || typecode == COMPLEX_TYPE))
2751 {
2752 error ("wrong type argument to conjugation");
2753 return error_mark_node;
2754 }
2755 else if (!noconvert)
2756 arg = default_conversion (arg);
2757 break;
2758
2759 case TRUTH_NOT_EXPR:
2760 if (typecode != INTEGER_TYPE
2761 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2762 && typecode != COMPLEX_TYPE
2763 /* These will convert to a pointer. */
2764 && typecode != ARRAY_TYPE && typecode != FUNCTION_TYPE)
2765 {
2766 error ("wrong type argument to unary exclamation mark");
2767 return error_mark_node;
2768 }
2769 arg = truthvalue_conversion (arg);
2770 return invert_truthvalue (arg);
2771
2772 case NOP_EXPR:
2773 break;
2774
2775 case REALPART_EXPR:
2776 if (TREE_CODE (arg) == COMPLEX_CST)
2777 return TREE_REALPART (arg);
2778 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2779 return fold (build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
2780 else
2781 return arg;
2782
2783 case IMAGPART_EXPR:
2784 if (TREE_CODE (arg) == COMPLEX_CST)
2785 return TREE_IMAGPART (arg);
2786 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2787 return fold (build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
2788 else
2789 return convert (TREE_TYPE (arg), integer_zero_node);
2790
2791 case PREINCREMENT_EXPR:
2792 case POSTINCREMENT_EXPR:
2793 case PREDECREMENT_EXPR:
2794 case POSTDECREMENT_EXPR:
2795 /* Handle complex lvalues (when permitted)
2796 by reduction to simpler cases. */
2797
2798 val = unary_complex_lvalue (code, arg);
2799 if (val != 0)
2800 return val;
2801
2802 /* Increment or decrement the real part of the value,
2803 and don't change the imaginary part. */
2804 if (typecode == COMPLEX_TYPE)
2805 {
2806 tree real, imag;
2807
2808 arg = stabilize_reference (arg);
2809 real = build_unary_op (REALPART_EXPR, arg, 1);
2810 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2811 return build (COMPLEX_EXPR, TREE_TYPE (arg),
2812 build_unary_op (code, real, 1), imag);
2813 }
2814
2815 /* Report invalid types. */
2816
2817 if (typecode != POINTER_TYPE
2818 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2819 {
2820 error ("wrong type argument to %s",
2821 code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR
2822 ? "increment" : "decrement");
2823 return error_mark_node;
2824 }
2825
2826 {
2827 register tree inc;
2828 tree result_type = TREE_TYPE (arg);
2829
2830 arg = get_unwidened (arg, 0);
2831 argtype = TREE_TYPE (arg);
2832
2833 /* Compute the increment. */
2834
2835 if (typecode == POINTER_TYPE)
2836 {
2837 /* If pointer target is an undefined struct,
2838 we just cannot know how to do the arithmetic. */
2839 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2840 error ("%s of pointer to unknown structure",
2841 code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR
2842 ? "increment" : "decrement");
2843 else if ((pedantic || warn_pointer_arith)
2844 && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2845 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2846 pedwarn ("wrong type argument to %s",
2847 code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR
2848 ? "increment" : "decrement");
2849 inc = c_size_in_bytes (TREE_TYPE (result_type));
2850 }
2851 else
2852 inc = integer_one_node;
2853
2854 inc = convert (argtype, inc);
2855
2856 /* Handle incrementing a cast-expression. */
2857
2858 while (1)
2859 switch (TREE_CODE (arg))
2860 {
2861 case NOP_EXPR:
2862 case CONVERT_EXPR:
2863 case FLOAT_EXPR:
2864 case FIX_TRUNC_EXPR:
2865 case FIX_FLOOR_EXPR:
2866 case FIX_ROUND_EXPR:
2867 case FIX_CEIL_EXPR:
2868 pedantic_lvalue_warning (CONVERT_EXPR);
2869 /* If the real type has the same machine representation
2870 as the type it is cast to, we can make better output
2871 by adding directly to the inside of the cast. */
2872 if ((TREE_CODE (TREE_TYPE (arg))
2873 == TREE_CODE (TREE_TYPE (TREE_OPERAND (arg, 0))))
2874 && (TYPE_MODE (TREE_TYPE (arg))
2875 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (arg, 0)))))
2876 arg = TREE_OPERAND (arg, 0);
2877 else
2878 {
2879 tree incremented, modify, value;
2880 arg = stabilize_reference (arg);
2881 if (code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR)
2882 value = arg;
2883 else
2884 value = save_expr (arg);
2885 incremented = build (((code == PREINCREMENT_EXPR
2886 || code == POSTINCREMENT_EXPR)
2887 ? PLUS_EXPR : MINUS_EXPR),
2888 argtype, value, inc);
2889 TREE_SIDE_EFFECTS (incremented) = 1;
2890 modify = build_modify_expr (arg, NOP_EXPR, incremented);
2891 value = build (COMPOUND_EXPR, TREE_TYPE (arg), modify, value);
2892 TREE_USED (value) = 1;
2893 return value;
2894 }
2895 break;
2896
2897 default:
2898 goto give_up;
2899 }
2900 give_up:
2901
2902 /* Complain about anything else that is not a true lvalue. */
2903 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2904 || code == POSTINCREMENT_EXPR)
2905 ? "invalid lvalue in increment"
2906 : "invalid lvalue in decrement")))
2907 return error_mark_node;
2908
2909 /* Report a read-only lvalue. */
2910 if (TREE_READONLY (arg))
2911 readonly_warning (arg,
2912 ((code == PREINCREMENT_EXPR
2913 || code == POSTINCREMENT_EXPR)
2914 ? "increment" : "decrement"));
2915
2916 val = build (code, TREE_TYPE (arg), arg, inc);
2917 TREE_SIDE_EFFECTS (val) = 1;
2918 val = convert (result_type, val);
2919 if (TREE_CODE (val) != code)
2920 TREE_NO_UNUSED_WARNING (val) = 1;
2921 return val;
2922 }
2923
2924 case ADDR_EXPR:
2925 /* Note that this operation never does default_conversion
2926 regardless of NOCONVERT. */
2927
2928 /* Let &* cancel out to simplify resulting code. */
2929 if (TREE_CODE (arg) == INDIRECT_REF)
2930 {
2931 /* Don't let this be an lvalue. */
2932 if (lvalue_p (TREE_OPERAND (arg, 0)))
2933 return non_lvalue (TREE_OPERAND (arg, 0));
2934 return TREE_OPERAND (arg, 0);
2935 }
2936
2937 /* For &x[y], return x+y */
2938 if (TREE_CODE (arg) == ARRAY_REF)
2939 {
2940 if (mark_addressable (TREE_OPERAND (arg, 0)) == 0)
2941 return error_mark_node;
2942 return build_binary_op (PLUS_EXPR, TREE_OPERAND (arg, 0),
2943 TREE_OPERAND (arg, 1), 1);
2944 }
2945
2946 /* Handle complex lvalues (when permitted)
2947 by reduction to simpler cases. */
2948 val = unary_complex_lvalue (code, arg);
2949 if (val != 0)
2950 return val;
2951
2952 #if 0 /* Turned off because inconsistent;
2953 float f; *&(int)f = 3.4 stores in int format
2954 whereas (int)f = 3.4 stores in float format. */
2955 /* Address of a cast is just a cast of the address
2956 of the operand of the cast. */
2957 switch (TREE_CODE (arg))
2958 {
2959 case NOP_EXPR:
2960 case CONVERT_EXPR:
2961 case FLOAT_EXPR:
2962 case FIX_TRUNC_EXPR:
2963 case FIX_FLOOR_EXPR:
2964 case FIX_ROUND_EXPR:
2965 case FIX_CEIL_EXPR:
2966 if (pedantic)
2967 pedwarn ("ANSI C forbids the address of a cast expression");
2968 return convert (build_pointer_type (TREE_TYPE (arg)),
2969 build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0),
2970 0));
2971 }
2972 #endif
2973
2974 /* Allow the address of a constructor if all the elements
2975 are constant. */
2976 if (TREE_CODE (arg) == CONSTRUCTOR && TREE_CONSTANT (arg))
2977 ;
2978 /* Anything not already handled and not a true memory reference
2979 is an error. */
2980 else if (typecode != FUNCTION_TYPE
2981 && !lvalue_or_else (arg, "invalid lvalue in unary `&'"))
2982 return error_mark_node;
2983
2984 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
2985 argtype = TREE_TYPE (arg);
2986
2987 /* If the lvalue is const or volatile, merge that into the type
2988 to which the address will point. Note that you can't get a
2989 restricted pointer by taking the address of something, so we
2990 only have to deal with `const' and `volatile' here. */
2991 if ((DECL_P (arg) || TREE_CODE_CLASS (TREE_CODE (arg)) == 'r')
2992 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
2993 argtype = c_build_type_variant (argtype,
2994 TREE_READONLY (arg),
2995 TREE_THIS_VOLATILE (arg));
2996
2997 argtype = build_pointer_type (argtype);
2998
2999 if (mark_addressable (arg) == 0)
3000 return error_mark_node;
3001
3002 {
3003 tree addr;
3004
3005 if (TREE_CODE (arg) == COMPONENT_REF)
3006 {
3007 tree field = TREE_OPERAND (arg, 1);
3008
3009 addr = build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0), 0);
3010
3011 if (DECL_C_BIT_FIELD (field))
3012 {
3013 error ("attempt to take address of bit-field structure member `%s'",
3014 IDENTIFIER_POINTER (DECL_NAME (field)));
3015 return error_mark_node;
3016 }
3017
3018 addr = fold (build (PLUS_EXPR, argtype,
3019 convert (argtype, addr),
3020 convert (argtype, byte_position (field))));
3021 }
3022 else
3023 addr = build1 (code, argtype, arg);
3024
3025 /* Address of a static or external variable or
3026 file-scope function counts as a constant. */
3027 if (staticp (arg)
3028 && ! (TREE_CODE (arg) == FUNCTION_DECL
3029 && DECL_CONTEXT (arg) != 0))
3030 TREE_CONSTANT (addr) = 1;
3031 return addr;
3032 }
3033
3034 default:
3035 break;
3036 }
3037
3038 if (argtype == 0)
3039 argtype = TREE_TYPE (arg);
3040 return fold (build1 (code, argtype, arg));
3041 }
3042
3043 #if 0
3044 /* If CONVERSIONS is a conversion expression or a nested sequence of such,
3045 convert ARG with the same conversions in the same order
3046 and return the result. */
3047
3048 static tree
3049 convert_sequence (conversions, arg)
3050 tree conversions;
3051 tree arg;
3052 {
3053 switch (TREE_CODE (conversions))
3054 {
3055 case NOP_EXPR:
3056 case CONVERT_EXPR:
3057 case FLOAT_EXPR:
3058 case FIX_TRUNC_EXPR:
3059 case FIX_FLOOR_EXPR:
3060 case FIX_ROUND_EXPR:
3061 case FIX_CEIL_EXPR:
3062 return convert (TREE_TYPE (conversions),
3063 convert_sequence (TREE_OPERAND (conversions, 0),
3064 arg));
3065
3066 default:
3067 return arg;
3068 }
3069 }
3070 #endif /* 0 */
3071
3072 /* Return nonzero if REF is an lvalue valid for this language.
3073 Lvalues can be assigned, unless their type has TYPE_READONLY.
3074 Lvalues can have their address taken, unless they have DECL_REGISTER. */
3075
3076 int
3077 lvalue_p (ref)
3078 tree ref;
3079 {
3080 register enum tree_code code = TREE_CODE (ref);
3081
3082 switch (code)
3083 {
3084 case REALPART_EXPR:
3085 case IMAGPART_EXPR:
3086 case COMPONENT_REF:
3087 return lvalue_p (TREE_OPERAND (ref, 0));
3088
3089 case STRING_CST:
3090 return 1;
3091
3092 case INDIRECT_REF:
3093 case ARRAY_REF:
3094 case VAR_DECL:
3095 case PARM_DECL:
3096 case RESULT_DECL:
3097 case ERROR_MARK:
3098 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3099 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3100
3101 case BIND_EXPR:
3102 case RTL_EXPR:
3103 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3104
3105 default:
3106 return 0;
3107 }
3108 }
3109
3110 /* Return nonzero if REF is an lvalue valid for this language;
3111 otherwise, print an error message and return zero. */
3112
3113 int
3114 lvalue_or_else (ref, msgid)
3115 tree ref;
3116 const char *msgid;
3117 {
3118 int win = lvalue_p (ref);
3119
3120 if (! win)
3121 error ("%s", msgid);
3122
3123 return win;
3124 }
3125
3126 /* Apply unary lvalue-demanding operator CODE to the expression ARG
3127 for certain kinds of expressions which are not really lvalues
3128 but which we can accept as lvalues.
3129
3130 If ARG is not a kind of expression we can handle, return zero. */
3131
3132 static tree
3133 unary_complex_lvalue (code, arg)
3134 enum tree_code code;
3135 tree arg;
3136 {
3137 /* Handle (a, b) used as an "lvalue". */
3138 if (TREE_CODE (arg) == COMPOUND_EXPR)
3139 {
3140 tree real_result = build_unary_op (code, TREE_OPERAND (arg, 1), 0);
3141
3142 /* If this returns a function type, it isn't really being used as
3143 an lvalue, so don't issue a warning about it. */
3144 if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE)
3145 pedantic_lvalue_warning (COMPOUND_EXPR);
3146
3147 return build (COMPOUND_EXPR, TREE_TYPE (real_result),
3148 TREE_OPERAND (arg, 0), real_result);
3149 }
3150
3151 /* Handle (a ? b : c) used as an "lvalue". */
3152 if (TREE_CODE (arg) == COND_EXPR)
3153 {
3154 pedantic_lvalue_warning (COND_EXPR);
3155 if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE)
3156 pedantic_lvalue_warning (COMPOUND_EXPR);
3157
3158 return (build_conditional_expr
3159 (TREE_OPERAND (arg, 0),
3160 build_unary_op (code, TREE_OPERAND (arg, 1), 0),
3161 build_unary_op (code, TREE_OPERAND (arg, 2), 0)));
3162 }
3163
3164 return 0;
3165 }
3166
3167 /* If pedantic, warn about improper lvalue. CODE is either COND_EXPR
3168 COMPOUND_EXPR, or CONVERT_EXPR (for casts). */
3169
3170 static void
3171 pedantic_lvalue_warning (code)
3172 enum tree_code code;
3173 {
3174 if (pedantic)
3175 switch (code)
3176 {
3177 case COND_EXPR:
3178 pedwarn ("ANSI C forbids use of conditional expressions as lvalues");
3179 break;
3180 case COMPOUND_EXPR:
3181 pedwarn ("ANSI C forbids use of compound expressions as lvalues");
3182 break;
3183 default:
3184 pedwarn ("ANSI C forbids use of cast expressions as lvalues");
3185 break;
3186 }
3187 }
3188 \f
3189 /* Warn about storing in something that is `const'. */
3190
3191 void
3192 readonly_warning (arg, msgid)
3193 tree arg;
3194 const char *msgid;
3195 {
3196 /* Forbid assignments to iterators. */
3197 if (TREE_CODE (arg) == VAR_DECL && ITERATOR_P (arg))
3198 pedwarn ("%s of iterator `%s'", _(msgid),
3199 IDENTIFIER_POINTER (DECL_NAME (arg)));
3200
3201 if (TREE_CODE (arg) == COMPONENT_REF)
3202 {
3203 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3204 readonly_warning (TREE_OPERAND (arg, 0), msgid);
3205 else
3206 pedwarn ("%s of read-only member `%s'", _(msgid),
3207 IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (arg, 1))));
3208 }
3209 else if (TREE_CODE (arg) == VAR_DECL)
3210 pedwarn ("%s of read-only variable `%s'", _(msgid),
3211 IDENTIFIER_POINTER (DECL_NAME (arg)));
3212 else
3213 pedwarn ("%s of read-only location", _(msgid));
3214 }
3215 \f
3216 /* Mark EXP saying that we need to be able to take the
3217 address of it; it should not be allocated in a register.
3218 Value is 1 if successful. */
3219
3220 int
3221 mark_addressable (exp)
3222 tree exp;
3223 {
3224 register tree x = exp;
3225 while (1)
3226 switch (TREE_CODE (x))
3227 {
3228 case COMPONENT_REF:
3229 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3230 {
3231 error ("cannot take address of bitfield `%s'",
3232 IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (x, 1))));
3233 return 0;
3234 }
3235
3236 /* ... fall through ... */
3237
3238 case ADDR_EXPR:
3239 case ARRAY_REF:
3240 case REALPART_EXPR:
3241 case IMAGPART_EXPR:
3242 x = TREE_OPERAND (x, 0);
3243 break;
3244
3245 case CONSTRUCTOR:
3246 TREE_ADDRESSABLE (x) = 1;
3247 return 1;
3248
3249 case VAR_DECL:
3250 case CONST_DECL:
3251 case PARM_DECL:
3252 case RESULT_DECL:
3253 if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x)
3254 && DECL_NONLOCAL (x))
3255 {
3256 if (TREE_PUBLIC (x))
3257 {
3258 error ("global register variable `%s' used in nested function",
3259 IDENTIFIER_POINTER (DECL_NAME (x)));
3260 return 0;
3261 }
3262 pedwarn ("register variable `%s' used in nested function",
3263 IDENTIFIER_POINTER (DECL_NAME (x)));
3264 }
3265 else if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x))
3266 {
3267 if (TREE_PUBLIC (x))
3268 {
3269 error ("address of global register variable `%s' requested",
3270 IDENTIFIER_POINTER (DECL_NAME (x)));
3271 return 0;
3272 }
3273
3274 /* If we are making this addressable due to its having
3275 volatile components, give a different error message. Also
3276 handle the case of an unnamed parameter by not trying
3277 to give the name. */
3278
3279 else if (C_TYPE_FIELDS_VOLATILE (TREE_TYPE (x)))
3280 {
3281 error ("cannot put object with volatile field into register");
3282 return 0;
3283 }
3284
3285 pedwarn ("address of register variable `%s' requested",
3286 IDENTIFIER_POINTER (DECL_NAME (x)));
3287 }
3288 put_var_into_stack (x);
3289
3290 /* drops in */
3291 case FUNCTION_DECL:
3292 TREE_ADDRESSABLE (x) = 1;
3293 #if 0 /* poplevel deals with this now. */
3294 if (DECL_CONTEXT (x) == 0)
3295 TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (x)) = 1;
3296 #endif
3297
3298 default:
3299 return 1;
3300 }
3301 }
3302 \f
3303 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3304
3305 tree
3306 build_conditional_expr (ifexp, op1, op2)
3307 tree ifexp, op1, op2;
3308 {
3309 register tree type1;
3310 register tree type2;
3311 register enum tree_code code1;
3312 register enum tree_code code2;
3313 register tree result_type = NULL;
3314 tree orig_op1 = op1, orig_op2 = op2;
3315
3316 ifexp = truthvalue_conversion (default_conversion (ifexp));
3317
3318 #if 0 /* Produces wrong result if within sizeof. */
3319 /* Don't promote the operands separately if they promote
3320 the same way. Return the unpromoted type and let the combined
3321 value get promoted if necessary. */
3322
3323 if (TREE_TYPE (op1) == TREE_TYPE (op2)
3324 && TREE_CODE (TREE_TYPE (op1)) != ARRAY_TYPE
3325 && TREE_CODE (TREE_TYPE (op1)) != ENUMERAL_TYPE
3326 && TREE_CODE (TREE_TYPE (op1)) != FUNCTION_TYPE)
3327 {
3328 if (TREE_CODE (ifexp) == INTEGER_CST)
3329 return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
3330
3331 return fold (build (COND_EXPR, TREE_TYPE (op1), ifexp, op1, op2));
3332 }
3333 #endif
3334
3335 /* Promote both alternatives. */
3336
3337 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3338 op1 = default_conversion (op1);
3339 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3340 op2 = default_conversion (op2);
3341
3342 if (TREE_CODE (ifexp) == ERROR_MARK
3343 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3344 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3345 return error_mark_node;
3346
3347 type1 = TREE_TYPE (op1);
3348 code1 = TREE_CODE (type1);
3349 type2 = TREE_TYPE (op2);
3350 code2 = TREE_CODE (type2);
3351
3352 /* Quickly detect the usual case where op1 and op2 have the same type
3353 after promotion. */
3354 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3355 {
3356 if (type1 == type2)
3357 result_type = type1;
3358 else
3359 result_type = TYPE_MAIN_VARIANT (type1);
3360 }
3361 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE)
3362 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE))
3363 {
3364 result_type = common_type (type1, type2);
3365
3366 /* If -Wsign-compare, warn here if type1 and type2 have
3367 different signedness. We'll promote the signed to unsigned
3368 and later code won't know it used to be different.
3369 Do this check on the original types, so that explicit casts
3370 will be considered, but default promotions won't. */
3371 if ((warn_sign_compare < 0 ? extra_warnings : warn_sign_compare)
3372 && !skip_evaluation)
3373 {
3374 int unsigned_op1 = TREE_UNSIGNED (TREE_TYPE (orig_op1));
3375 int unsigned_op2 = TREE_UNSIGNED (TREE_TYPE (orig_op2));
3376
3377 if (unsigned_op1 ^ unsigned_op2)
3378 {
3379 /* Do not warn if the result type is signed, since the
3380 signed type will only be chosen if it can represent
3381 all the values of the unsigned type. */
3382 if (! TREE_UNSIGNED (result_type))
3383 /* OK */;
3384 /* Do not warn if the signed quantity is an unsuffixed
3385 integer literal (or some static constant expression
3386 involving such literals) and it is non-negative. */
3387 else if ((unsigned_op2 && tree_expr_nonnegative_p (op1))
3388 || (unsigned_op1 && tree_expr_nonnegative_p (op2)))
3389 /* OK */;
3390 else
3391 warning ("signed and unsigned type in conditional expression");
3392 }
3393 }
3394 }
3395 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3396 {
3397 if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3398 pedwarn ("ANSI C forbids conditional expr with only one void side");
3399 result_type = void_type_node;
3400 }
3401 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3402 {
3403 if (comp_target_types (type1, type2))
3404 result_type = common_type (type1, type2);
3405 else if (integer_zerop (op1) && TREE_TYPE (type1) == void_type_node
3406 && TREE_CODE (orig_op1) != NOP_EXPR)
3407 result_type = qualify_type (type2, type1);
3408 else if (integer_zerop (op2) && TREE_TYPE (type2) == void_type_node
3409 && TREE_CODE (orig_op2) != NOP_EXPR)
3410 result_type = qualify_type (type1, type2);
3411 else if (TYPE_MAIN_VARIANT (TREE_TYPE (type1)) == void_type_node)
3412 {
3413 if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3414 pedwarn ("ANSI C forbids conditional expr between `void *' and function pointer");
3415 result_type = qualify_type (type1, type2);
3416 }
3417 else if (TYPE_MAIN_VARIANT (TREE_TYPE (type2)) == void_type_node)
3418 {
3419 if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3420 pedwarn ("ANSI C forbids conditional expr between `void *' and function pointer");
3421 result_type = qualify_type (type2, type1);
3422 }
3423 else
3424 {
3425 pedwarn ("pointer type mismatch in conditional expression");
3426 result_type = build_pointer_type (void_type_node);
3427 }
3428 }
3429 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3430 {
3431 if (! integer_zerop (op2))
3432 pedwarn ("pointer/integer type mismatch in conditional expression");
3433 else
3434 {
3435 op2 = null_pointer_node;
3436 #if 0 /* The spec seems to say this is permitted. */
3437 if (pedantic && TREE_CODE (type1) == FUNCTION_TYPE)
3438 pedwarn ("ANSI C forbids conditional expr between 0 and function pointer");
3439 #endif
3440 }
3441 result_type = type1;
3442 }
3443 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3444 {
3445 if (!integer_zerop (op1))
3446 pedwarn ("pointer/integer type mismatch in conditional expression");
3447 else
3448 {
3449 op1 = null_pointer_node;
3450 #if 0 /* The spec seems to say this is permitted. */
3451 if (pedantic && TREE_CODE (type2) == FUNCTION_TYPE)
3452 pedwarn ("ANSI C forbids conditional expr between 0 and function pointer");
3453 #endif
3454 }
3455 result_type = type2;
3456 }
3457
3458 if (!result_type)
3459 {
3460 if (flag_cond_mismatch)
3461 result_type = void_type_node;
3462 else
3463 {
3464 error ("type mismatch in conditional expression");
3465 return error_mark_node;
3466 }
3467 }
3468
3469 /* Merge const and volatile flags of the incoming types. */
3470 result_type
3471 = build_type_variant (result_type,
3472 TREE_READONLY (op1) || TREE_READONLY (op2),
3473 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3474
3475 if (result_type != TREE_TYPE (op1))
3476 op1 = convert_and_check (result_type, op1);
3477 if (result_type != TREE_TYPE (op2))
3478 op2 = convert_and_check (result_type, op2);
3479
3480 if (TREE_CODE (ifexp) == INTEGER_CST)
3481 return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
3482
3483 return fold (build (COND_EXPR, result_type, ifexp, op1, op2));
3484 }
3485 \f
3486 /* Given a list of expressions, return a compound expression
3487 that performs them all and returns the value of the last of them. */
3488
3489 tree
3490 build_compound_expr (list)
3491 tree list;
3492 {
3493 return internal_build_compound_expr (list, TRUE);
3494 }
3495
3496 static tree
3497 internal_build_compound_expr (list, first_p)
3498 tree list;
3499 int first_p;
3500 {
3501 register tree rest;
3502
3503 if (TREE_CHAIN (list) == 0)
3504 {
3505 #if 0 /* If something inside inhibited lvalueness, we should not override. */
3506 /* Consider (x, y+0), which is not an lvalue since y+0 is not. */
3507
3508 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3509 if (TREE_CODE (list) == NON_LVALUE_EXPR)
3510 list = TREE_OPERAND (list, 0);
3511 #endif
3512
3513 /* Don't let (0, 0) be null pointer constant. */
3514 if (!first_p && integer_zerop (TREE_VALUE (list)))
3515 return non_lvalue (TREE_VALUE (list));
3516 return TREE_VALUE (list);
3517 }
3518
3519 if (TREE_CHAIN (list) != 0 && TREE_CHAIN (TREE_CHAIN (list)) == 0)
3520 {
3521 /* Convert arrays to pointers when there really is a comma operator. */
3522 if (TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (list)))) == ARRAY_TYPE)
3523 TREE_VALUE (TREE_CHAIN (list))
3524 = default_conversion (TREE_VALUE (TREE_CHAIN (list)));
3525 }
3526
3527 rest = internal_build_compound_expr (TREE_CHAIN (list), FALSE);
3528
3529 if (! TREE_SIDE_EFFECTS (TREE_VALUE (list)))
3530 {
3531 /* The left-hand operand of a comma expression is like an expression
3532 statement: with -W or -Wunused, we should warn if it doesn't have
3533 any side-effects, unless it was explicitly cast to (void). */
3534 if ((extra_warnings || warn_unused)
3535 && ! (TREE_CODE (TREE_VALUE (list)) == CONVERT_EXPR
3536 && TREE_TYPE (TREE_VALUE (list)) == void_type_node))
3537 warning ("left-hand operand of comma expression has no effect");
3538
3539 /* When pedantic, a compound expression can be neither an lvalue
3540 nor an integer constant expression. */
3541 if (! pedantic)
3542 return rest;
3543 }
3544
3545 /* With -Wunused, we should also warn if the left-hand operand does have
3546 side-effects, but computes a value which is not used. For example, in
3547 `foo() + bar(), baz()' the result of the `+' operator is not used,
3548 so we should issue a warning. */
3549 else if (warn_unused)
3550 warn_if_unused_value (TREE_VALUE (list));
3551
3552 return build (COMPOUND_EXPR, TREE_TYPE (rest), TREE_VALUE (list), rest);
3553 }
3554
3555 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3556
3557 tree
3558 build_c_cast (type, expr)
3559 register tree type;
3560 tree expr;
3561 {
3562 register tree value = expr;
3563
3564 if (type == error_mark_node || expr == error_mark_node)
3565 return error_mark_node;
3566 type = TYPE_MAIN_VARIANT (type);
3567
3568 #if 0
3569 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3570 if (TREE_CODE (value) == NON_LVALUE_EXPR)
3571 value = TREE_OPERAND (value, 0);
3572 #endif
3573
3574 if (TREE_CODE (type) == ARRAY_TYPE)
3575 {
3576 error ("cast specifies array type");
3577 return error_mark_node;
3578 }
3579
3580 if (TREE_CODE (type) == FUNCTION_TYPE)
3581 {
3582 error ("cast specifies function type");
3583 return error_mark_node;
3584 }
3585
3586 if (type == TREE_TYPE (value))
3587 {
3588 if (pedantic)
3589 {
3590 if (TREE_CODE (type) == RECORD_TYPE
3591 || TREE_CODE (type) == UNION_TYPE)
3592 pedwarn ("ANSI C forbids casting nonscalar to the same type");
3593 }
3594 }
3595 else if (TREE_CODE (type) == UNION_TYPE)
3596 {
3597 tree field;
3598 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
3599 || TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE)
3600 value = default_conversion (value);
3601
3602 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3603 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3604 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3605 break;
3606
3607 if (field)
3608 {
3609 const char *name;
3610 tree t;
3611
3612 if (pedantic)
3613 pedwarn ("ANSI C forbids casts to union type");
3614 if (TYPE_NAME (type) != 0)
3615 {
3616 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3617 name = IDENTIFIER_POINTER (TYPE_NAME (type));
3618 else
3619 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
3620 }
3621 else
3622 name = "";
3623 t = digest_init (type, build (CONSTRUCTOR, type, NULL_TREE,
3624 build_tree_list (field, value)),
3625 0, 0);
3626 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3627 return t;
3628 }
3629 error ("cast to union type from type not present in union");
3630 return error_mark_node;
3631 }
3632 else
3633 {
3634 tree otype, ovalue;
3635
3636 /* If casting to void, avoid the error that would come
3637 from default_conversion in the case of a non-lvalue array. */
3638 if (type == void_type_node)
3639 return build1 (CONVERT_EXPR, type, value);
3640
3641 /* Convert functions and arrays to pointers,
3642 but don't convert any other types. */
3643 if (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE
3644 || TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE)
3645 value = default_conversion (value);
3646 otype = TREE_TYPE (value);
3647
3648 /* Optionally warn about potentially worrisome casts. */
3649
3650 if (warn_cast_qual
3651 && TREE_CODE (type) == POINTER_TYPE
3652 && TREE_CODE (otype) == POINTER_TYPE)
3653 {
3654 tree in_type = type;
3655 tree in_otype = otype;
3656 int warn = 0;
3657
3658 /* Check that the qualifiers on IN_TYPE are a superset of
3659 the qualifiers of IN_OTYPE. The outermost level of
3660 POINTER_TYPE nodes is uninteresting and we stop as soon
3661 as we hit a non-POINTER_TYPE node on either type. */
3662 do
3663 {
3664 in_otype = TREE_TYPE (in_otype);
3665 in_type = TREE_TYPE (in_type);
3666 warn |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3667 }
3668 while (TREE_CODE (in_type) == POINTER_TYPE
3669 && TREE_CODE (in_otype) == POINTER_TYPE);
3670
3671 if (warn)
3672 /* There are qualifiers present in IN_OTYPE that are not
3673 present in IN_TYPE. */
3674 pedwarn ("cast discards qualifiers from pointer target type");
3675 }
3676
3677 /* Warn about possible alignment problems. */
3678 if (STRICT_ALIGNMENT && warn_cast_align
3679 && TREE_CODE (type) == POINTER_TYPE
3680 && TREE_CODE (otype) == POINTER_TYPE
3681 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3682 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3683 /* Don't warn about opaque types, where the actual alignment
3684 restriction is unknown. */
3685 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3686 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3687 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3688 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3689 warning ("cast increases required alignment of target type");
3690
3691 if (TREE_CODE (type) == INTEGER_TYPE
3692 && TREE_CODE (otype) == POINTER_TYPE
3693 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3694 && !TREE_CONSTANT (value))
3695 warning ("cast from pointer to integer of different size");
3696
3697 if (warn_bad_function_cast
3698 && TREE_CODE (value) == CALL_EXPR
3699 && TREE_CODE (type) != TREE_CODE (otype))
3700 warning ("cast does not match function type");
3701
3702 if (TREE_CODE (type) == POINTER_TYPE
3703 && TREE_CODE (otype) == INTEGER_TYPE
3704 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3705 #if 0
3706 /* Don't warn about converting 0 to pointer,
3707 provided the 0 was explicit--not cast or made by folding. */
3708 && !(TREE_CODE (value) == INTEGER_CST && integer_zerop (value))
3709 #endif
3710 /* Don't warn about converting any constant. */
3711 && !TREE_CONSTANT (value))
3712 warning ("cast to pointer from integer of different size");
3713
3714 ovalue = value;
3715 value = convert (type, value);
3716
3717 /* Ignore any integer overflow caused by the cast. */
3718 if (TREE_CODE (value) == INTEGER_CST)
3719 {
3720 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3721 TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3722 }
3723 }
3724
3725 /* Pedantically, don't ley (void *) (FOO *) 0 be a null pointer constant. */
3726 if (pedantic && TREE_CODE (value) == INTEGER_CST
3727 && TREE_CODE (expr) == INTEGER_CST
3728 && TREE_CODE (TREE_TYPE (expr)) != INTEGER_TYPE)
3729 value = non_lvalue (value);
3730
3731 /* If pedantic, don't let a cast be an lvalue. */
3732 if (value == expr && pedantic)
3733 value = non_lvalue (value);
3734
3735 return value;
3736 }
3737 \f
3738 /* Build an assignment expression of lvalue LHS from value RHS.
3739 MODIFYCODE is the code for a binary operator that we use
3740 to combine the old value of LHS with RHS to get the new value.
3741 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3742
3743 tree
3744 build_modify_expr (lhs, modifycode, rhs)
3745 tree lhs, rhs;
3746 enum tree_code modifycode;
3747 {
3748 register tree result;
3749 tree newrhs;
3750 tree lhstype = TREE_TYPE (lhs);
3751 tree olhstype = lhstype;
3752
3753 /* Types that aren't fully specified cannot be used in assignments. */
3754 lhs = require_complete_type (lhs);
3755
3756 /* Avoid duplicate error messages from operands that had errors. */
3757 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3758 return error_mark_node;
3759
3760 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3761 /* Do not use STRIP_NOPS here. We do not want an enumerator
3762 whose value is 0 to count as a null pointer constant. */
3763 if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
3764 rhs = TREE_OPERAND (rhs, 0);
3765
3766 newrhs = rhs;
3767
3768 /* Handle control structure constructs used as "lvalues". */
3769
3770 switch (TREE_CODE (lhs))
3771 {
3772 /* Handle (a, b) used as an "lvalue". */
3773 case COMPOUND_EXPR:
3774 pedantic_lvalue_warning (COMPOUND_EXPR);
3775 newrhs = build_modify_expr (TREE_OPERAND (lhs, 1), modifycode, rhs);
3776 if (TREE_CODE (newrhs) == ERROR_MARK)
3777 return error_mark_node;
3778 return build (COMPOUND_EXPR, lhstype,
3779 TREE_OPERAND (lhs, 0), newrhs);
3780
3781 /* Handle (a ? b : c) used as an "lvalue". */
3782 case COND_EXPR:
3783 pedantic_lvalue_warning (COND_EXPR);
3784 rhs = save_expr (rhs);
3785 {
3786 /* Produce (a ? (b = rhs) : (c = rhs))
3787 except that the RHS goes through a save-expr
3788 so the code to compute it is only emitted once. */
3789 tree cond
3790 = build_conditional_expr (TREE_OPERAND (lhs, 0),
3791 build_modify_expr (TREE_OPERAND (lhs, 1),
3792 modifycode, rhs),
3793 build_modify_expr (TREE_OPERAND (lhs, 2),
3794 modifycode, rhs));
3795 if (TREE_CODE (cond) == ERROR_MARK)
3796 return cond;
3797 /* Make sure the code to compute the rhs comes out
3798 before the split. */
3799 return build (COMPOUND_EXPR, TREE_TYPE (lhs),
3800 /* But cast it to void to avoid an "unused" error. */
3801 convert (void_type_node, rhs), cond);
3802 }
3803 default:
3804 break;
3805 }
3806
3807 /* If a binary op has been requested, combine the old LHS value with the RHS
3808 producing the value we should actually store into the LHS. */
3809
3810 if (modifycode != NOP_EXPR)
3811 {
3812 lhs = stabilize_reference (lhs);
3813 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3814 }
3815
3816 /* Handle a cast used as an "lvalue".
3817 We have already performed any binary operator using the value as cast.
3818 Now convert the result to the cast type of the lhs,
3819 and then true type of the lhs and store it there;
3820 then convert result back to the cast type to be the value
3821 of the assignment. */
3822
3823 switch (TREE_CODE (lhs))
3824 {
3825 case NOP_EXPR:
3826 case CONVERT_EXPR:
3827 case FLOAT_EXPR:
3828 case FIX_TRUNC_EXPR:
3829 case FIX_FLOOR_EXPR:
3830 case FIX_ROUND_EXPR:
3831 case FIX_CEIL_EXPR:
3832 if (TREE_CODE (TREE_TYPE (newrhs)) == ARRAY_TYPE
3833 || TREE_CODE (TREE_TYPE (newrhs)) == FUNCTION_TYPE)
3834 newrhs = default_conversion (newrhs);
3835 {
3836 tree inner_lhs = TREE_OPERAND (lhs, 0);
3837 tree result;
3838 result = build_modify_expr (inner_lhs, NOP_EXPR,
3839 convert (TREE_TYPE (inner_lhs),
3840 convert (lhstype, newrhs)));
3841 if (TREE_CODE (result) == ERROR_MARK)
3842 return result;
3843 pedantic_lvalue_warning (CONVERT_EXPR);
3844 return convert (TREE_TYPE (lhs), result);
3845 }
3846
3847 default:
3848 break;
3849 }
3850
3851 /* Now we have handled acceptable kinds of LHS that are not truly lvalues.
3852 Reject anything strange now. */
3853
3854 if (!lvalue_or_else (lhs, "invalid lvalue in assignment"))
3855 return error_mark_node;
3856
3857 /* Warn about storing in something that is `const'. */
3858
3859 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3860 || ((TREE_CODE (lhstype) == RECORD_TYPE
3861 || TREE_CODE (lhstype) == UNION_TYPE)
3862 && C_TYPE_FIELDS_READONLY (lhstype)))
3863 readonly_warning (lhs, "assignment");
3864
3865 /* If storing into a structure or union member,
3866 it has probably been given type `int'.
3867 Compute the type that would go with
3868 the actual amount of storage the member occupies. */
3869
3870 if (TREE_CODE (lhs) == COMPONENT_REF
3871 && (TREE_CODE (lhstype) == INTEGER_TYPE
3872 || TREE_CODE (lhstype) == REAL_TYPE
3873 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3874 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3875
3876 /* If storing in a field that is in actuality a short or narrower than one,
3877 we must store in the field in its actual type. */
3878
3879 if (lhstype != TREE_TYPE (lhs))
3880 {
3881 lhs = copy_node (lhs);
3882 TREE_TYPE (lhs) = lhstype;
3883 }
3884
3885 /* Convert new value to destination type. */
3886
3887 newrhs = convert_for_assignment (lhstype, newrhs, _("assignment"),
3888 NULL_TREE, NULL_TREE, 0);
3889 if (TREE_CODE (newrhs) == ERROR_MARK)
3890 return error_mark_node;
3891
3892 result = build (MODIFY_EXPR, lhstype, lhs, newrhs);
3893 TREE_SIDE_EFFECTS (result) = 1;
3894
3895 /* If we got the LHS in a different type for storing in,
3896 convert the result back to the nominal type of LHS
3897 so that the value we return always has the same type
3898 as the LHS argument. */
3899
3900 if (olhstype == TREE_TYPE (result))
3901 return result;
3902 return convert_for_assignment (olhstype, result, _("assignment"),
3903 NULL_TREE, NULL_TREE, 0);
3904 }
3905 \f
3906 /* Convert value RHS to type TYPE as preparation for an assignment
3907 to an lvalue of type TYPE.
3908 The real work of conversion is done by `convert'.
3909 The purpose of this function is to generate error messages
3910 for assignments that are not allowed in C.
3911 ERRTYPE is a string to use in error messages:
3912 "assignment", "return", etc. If it is null, this is parameter passing
3913 for a function call (and different error messages are output).
3914
3915 FUNNAME is the name of the function being called,
3916 as an IDENTIFIER_NODE, or null.
3917 PARMNUM is the number of the argument, for printing in error messages. */
3918
3919 static tree
3920 convert_for_assignment (type, rhs, errtype, fundecl, funname, parmnum)
3921 tree type, rhs;
3922 const char *errtype;
3923 tree fundecl, funname;
3924 int parmnum;
3925 {
3926 register enum tree_code codel = TREE_CODE (type);
3927 register tree rhstype;
3928 register enum tree_code coder;
3929
3930 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3931 /* Do not use STRIP_NOPS here. We do not want an enumerator
3932 whose value is 0 to count as a null pointer constant. */
3933 if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
3934 rhs = TREE_OPERAND (rhs, 0);
3935
3936 if (TREE_CODE (TREE_TYPE (rhs)) == ARRAY_TYPE
3937 || TREE_CODE (TREE_TYPE (rhs)) == FUNCTION_TYPE)
3938 rhs = default_conversion (rhs);
3939 else if (optimize && TREE_CODE (rhs) == VAR_DECL)
3940 rhs = decl_constant_value (rhs);
3941
3942 rhstype = TREE_TYPE (rhs);
3943 coder = TREE_CODE (rhstype);
3944
3945 if (coder == ERROR_MARK)
3946 return error_mark_node;
3947
3948 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3949 {
3950 overflow_warning (rhs);
3951 /* Check for Objective-C protocols. This will issue a warning if
3952 there are protocol violations. No need to use the return value. */
3953 maybe_objc_comptypes (type, rhstype, 0);
3954 return rhs;
3955 }
3956
3957 if (coder == VOID_TYPE)
3958 {
3959 error ("void value not ignored as it ought to be");
3960 return error_mark_node;
3961 }
3962 /* A type converts to a reference to it.
3963 This code doesn't fully support references, it's just for the
3964 special case of va_start and va_copy. */
3965 if (codel == REFERENCE_TYPE
3966 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3967 {
3968 if (mark_addressable (rhs) == 0)
3969 return error_mark_node;
3970 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3971
3972 /* We already know that these two types are compatible, but they
3973 may not be exactly identical. In fact, `TREE_TYPE (type)' is
3974 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3975 likely to be va_list, a typedef to __builtin_va_list, which
3976 is different enough that it will cause problems later. */
3977 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3978 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3979
3980 rhs = build1 (NOP_EXPR, type, rhs);
3981 return rhs;
3982 }
3983 /* Arithmetic types all interconvert, and enum is treated like int. */
3984 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3985 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE)
3986 && (coder == INTEGER_TYPE || coder == REAL_TYPE
3987 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE))
3988 return convert_and_check (type, rhs);
3989
3990 /* Conversion to a transparent union from its member types.
3991 This applies only to function arguments. */
3992 else if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type) && ! errtype)
3993 {
3994 tree memb_types;
3995 tree marginal_memb_type = 0;
3996
3997 for (memb_types = TYPE_FIELDS (type); memb_types;
3998 memb_types = TREE_CHAIN (memb_types))
3999 {
4000 tree memb_type = TREE_TYPE (memb_types);
4001
4002 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
4003 TYPE_MAIN_VARIANT (rhstype)))
4004 break;
4005
4006 if (TREE_CODE (memb_type) != POINTER_TYPE)
4007 continue;
4008
4009 if (coder == POINTER_TYPE)
4010 {
4011 register tree ttl = TREE_TYPE (memb_type);
4012 register tree ttr = TREE_TYPE (rhstype);
4013
4014 /* Any non-function converts to a [const][volatile] void *
4015 and vice versa; otherwise, targets must be the same.
4016 Meanwhile, the lhs target must have all the qualifiers of
4017 the rhs. */
4018 if (TYPE_MAIN_VARIANT (ttl) == void_type_node
4019 || TYPE_MAIN_VARIANT (ttr) == void_type_node
4020 || comp_target_types (memb_type, rhstype))
4021 {
4022 /* If this type won't generate any warnings, use it. */
4023 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
4024 || ((TREE_CODE (ttr) == FUNCTION_TYPE
4025 && TREE_CODE (ttl) == FUNCTION_TYPE)
4026 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4027 == TYPE_QUALS (ttr))
4028 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4029 == TYPE_QUALS (ttl))))
4030 break;
4031
4032 /* Keep looking for a better type, but remember this one. */
4033 if (! marginal_memb_type)
4034 marginal_memb_type = memb_type;
4035 }
4036 }
4037
4038 /* Can convert integer zero to any pointer type. */
4039 if (integer_zerop (rhs)
4040 || (TREE_CODE (rhs) == NOP_EXPR
4041 && integer_zerop (TREE_OPERAND (rhs, 0))))
4042 {
4043 rhs = null_pointer_node;
4044 break;
4045 }
4046 }
4047
4048 if (memb_types || marginal_memb_type)
4049 {
4050 if (! memb_types)
4051 {
4052 /* We have only a marginally acceptable member type;
4053 it needs a warning. */
4054 register tree ttl = TREE_TYPE (marginal_memb_type);
4055 register tree ttr = TREE_TYPE (rhstype);
4056
4057 /* Const and volatile mean something different for function
4058 types, so the usual warnings are not appropriate. */
4059 if (TREE_CODE (ttr) == FUNCTION_TYPE
4060 && TREE_CODE (ttl) == FUNCTION_TYPE)
4061 {
4062 /* Because const and volatile on functions are
4063 restrictions that say the function will not do
4064 certain things, it is okay to use a const or volatile
4065 function where an ordinary one is wanted, but not
4066 vice-versa. */
4067 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4068 warn_for_assignment ("%s makes qualified function pointer from unqualified",
4069 errtype, funname, parmnum);
4070 }
4071 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4072 warn_for_assignment ("%s discards qualifiers from pointer target type",
4073 errtype, funname,
4074 parmnum);
4075 }
4076
4077 if (pedantic && ! DECL_IN_SYSTEM_HEADER (fundecl))
4078 pedwarn ("ANSI C prohibits argument conversion to union type");
4079
4080 return build1 (NOP_EXPR, type, rhs);
4081 }
4082 }
4083
4084 /* Conversions among pointers */
4085 else if (codel == POINTER_TYPE && coder == POINTER_TYPE)
4086 {
4087 register tree ttl = TREE_TYPE (type);
4088 register tree ttr = TREE_TYPE (rhstype);
4089
4090 /* Any non-function converts to a [const][volatile] void *
4091 and vice versa; otherwise, targets must be the same.
4092 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4093 if (TYPE_MAIN_VARIANT (ttl) == void_type_node
4094 || TYPE_MAIN_VARIANT (ttr) == void_type_node
4095 || comp_target_types (type, rhstype)
4096 || (unsigned_type (TYPE_MAIN_VARIANT (ttl))
4097 == unsigned_type (TYPE_MAIN_VARIANT (ttr))))
4098 {
4099 if (pedantic
4100 && ((TYPE_MAIN_VARIANT (ttl) == void_type_node
4101 && TREE_CODE (ttr) == FUNCTION_TYPE)
4102 ||
4103 (TYPE_MAIN_VARIANT (ttr) == void_type_node
4104 /* Check TREE_CODE to catch cases like (void *) (char *) 0
4105 which are not ANSI null ptr constants. */
4106 && (!integer_zerop (rhs) || TREE_CODE (rhs) == NOP_EXPR)
4107 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4108 warn_for_assignment ("ANSI forbids %s between function pointer and `void *'",
4109 errtype, funname, parmnum);
4110 /* Const and volatile mean something different for function types,
4111 so the usual warnings are not appropriate. */
4112 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4113 && TREE_CODE (ttl) != FUNCTION_TYPE)
4114 {
4115 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4116 warn_for_assignment ("%s discards qualifiers from pointer target type",
4117 errtype, funname, parmnum);
4118 /* If this is not a case of ignoring a mismatch in signedness,
4119 no warning. */
4120 else if (TYPE_MAIN_VARIANT (ttl) == void_type_node
4121 || TYPE_MAIN_VARIANT (ttr) == void_type_node
4122 || comp_target_types (type, rhstype))
4123 ;
4124 /* If there is a mismatch, do warn. */
4125 else if (pedantic)
4126 warn_for_assignment ("pointer targets in %s differ in signedness",
4127 errtype, funname, parmnum);
4128 }
4129 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4130 && TREE_CODE (ttr) == FUNCTION_TYPE)
4131 {
4132 /* Because const and volatile on functions are restrictions
4133 that say the function will not do certain things,
4134 it is okay to use a const or volatile function
4135 where an ordinary one is wanted, but not vice-versa. */
4136 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4137 warn_for_assignment ("%s makes qualified function pointer from unqualified",
4138 errtype, funname, parmnum);
4139 }
4140 }
4141 else
4142 warn_for_assignment ("%s from incompatible pointer type",
4143 errtype, funname, parmnum);
4144 return convert (type, rhs);
4145 }
4146 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4147 {
4148 /* An explicit constant 0 can convert to a pointer,
4149 or one that results from arithmetic, even including
4150 a cast to integer type. */
4151 if (! (TREE_CODE (rhs) == INTEGER_CST && integer_zerop (rhs))
4152 &&
4153 ! (TREE_CODE (rhs) == NOP_EXPR
4154 && TREE_CODE (TREE_TYPE (rhs)) == INTEGER_TYPE
4155 && TREE_CODE (TREE_OPERAND (rhs, 0)) == INTEGER_CST
4156 && integer_zerop (TREE_OPERAND (rhs, 0))))
4157 {
4158 warn_for_assignment ("%s makes pointer from integer without a cast",
4159 errtype, funname, parmnum);
4160 return convert (type, rhs);
4161 }
4162 return null_pointer_node;
4163 }
4164 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4165 {
4166 warn_for_assignment ("%s makes integer from pointer without a cast",
4167 errtype, funname, parmnum);
4168 return convert (type, rhs);
4169 }
4170
4171 if (!errtype)
4172 {
4173 if (funname)
4174 {
4175 tree selector = maybe_building_objc_message_expr ();
4176
4177 if (selector && parmnum > 2)
4178 error ("incompatible type for argument %d of `%s'",
4179 parmnum - 2, IDENTIFIER_POINTER (selector));
4180 else
4181 error ("incompatible type for argument %d of `%s'",
4182 parmnum, IDENTIFIER_POINTER (funname));
4183 }
4184 else
4185 error ("incompatible type for argument %d of indirect function call",
4186 parmnum);
4187 }
4188 else
4189 error ("incompatible types in %s", errtype);
4190
4191 return error_mark_node;
4192 }
4193
4194 /* Print a warning using MSGID.
4195 It gets OPNAME as its one parameter.
4196 If OPNAME is null, it is replaced by "passing arg ARGNUM of `FUNCTION'".
4197 FUNCTION and ARGNUM are handled specially if we are building an
4198 Objective-C selector. */
4199
4200 static void
4201 warn_for_assignment (msgid, opname, function, argnum)
4202 const char *msgid;
4203 const char *opname;
4204 tree function;
4205 int argnum;
4206 {
4207 if (opname == 0)
4208 {
4209 tree selector = maybe_building_objc_message_expr ();
4210 char * new_opname;
4211
4212 if (selector && argnum > 2)
4213 {
4214 function = selector;
4215 argnum -= 2;
4216 }
4217 if (function)
4218 {
4219 /* Function name is known; supply it. */
4220 const char *argstring = _("passing arg %d of `%s'");
4221 new_opname = (char *) alloca (IDENTIFIER_LENGTH (function)
4222 + strlen (argstring) + 1 + 25
4223 /*%d*/ + 1);
4224 sprintf (new_opname, argstring, argnum,
4225 IDENTIFIER_POINTER (function));
4226 }
4227 else
4228 {
4229 /* Function name unknown (call through ptr); just give arg number.*/
4230 const char *argnofun = _("passing arg %d of pointer to function");
4231 new_opname = (char *) alloca (strlen (argnofun) + 1 + 25 /*%d*/ + 1);
4232 sprintf (new_opname, argnofun, argnum);
4233 }
4234 opname = new_opname;
4235 }
4236 pedwarn (msgid, opname);
4237 }
4238 \f
4239 /* If VALUE is a compound expr all of whose expressions are constant, then
4240 return its value. Otherwise, return error_mark_node.
4241
4242 This is for handling COMPOUND_EXPRs as initializer elements
4243 which is allowed with a warning when -pedantic is specified. */
4244
4245 static tree
4246 valid_compound_expr_initializer (value, endtype)
4247 tree value;
4248 tree endtype;
4249 {
4250 if (TREE_CODE (value) == COMPOUND_EXPR)
4251 {
4252 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4253 == error_mark_node)
4254 return error_mark_node;
4255 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4256 endtype);
4257 }
4258 else if (! TREE_CONSTANT (value)
4259 && ! initializer_constant_valid_p (value, endtype))
4260 return error_mark_node;
4261 else
4262 return value;
4263 }
4264 \f
4265 /* Perform appropriate conversions on the initial value of a variable,
4266 store it in the declaration DECL,
4267 and print any error messages that are appropriate.
4268 If the init is invalid, store an ERROR_MARK. */
4269
4270 void
4271 store_init_value (decl, init)
4272 tree decl, init;
4273 {
4274 register tree value, type;
4275
4276 /* If variable's type was invalidly declared, just ignore it. */
4277
4278 type = TREE_TYPE (decl);
4279 if (TREE_CODE (type) == ERROR_MARK)
4280 return;
4281
4282 /* Digest the specified initializer into an expression. */
4283
4284 value = digest_init (type, init, TREE_STATIC (decl),
4285 TREE_STATIC (decl) || pedantic);
4286
4287 /* Store the expression if valid; else report error. */
4288
4289 #if 0
4290 /* Note that this is the only place we can detect the error
4291 in a case such as struct foo bar = (struct foo) { x, y };
4292 where there is one initial value which is a constructor expression. */
4293 if (value == error_mark_node)
4294 ;
4295 else if (TREE_STATIC (decl) && ! TREE_CONSTANT (value))
4296 {
4297 error ("initializer for static variable is not constant");
4298 value = error_mark_node;
4299 }
4300 else if (TREE_STATIC (decl)
4301 && initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
4302 {
4303 error ("initializer for static variable uses complicated arithmetic");
4304 value = error_mark_node;
4305 }
4306 else
4307 {
4308 if (pedantic && TREE_CODE (value) == CONSTRUCTOR)
4309 {
4310 if (! TREE_CONSTANT (value))
4311 pedwarn ("aggregate initializer is not constant");
4312 else if (! TREE_STATIC (value))
4313 pedwarn ("aggregate initializer uses complicated arithmetic");
4314 }
4315 }
4316 #endif
4317
4318 DECL_INITIAL (decl) = value;
4319
4320 /* ANSI wants warnings about out-of-range constant initializers. */
4321 STRIP_TYPE_NOPS (value);
4322 constant_expression_warning (value);
4323 }
4324 \f
4325 /* Methods for storing and printing names for error messages. */
4326
4327 /* Implement a spelling stack that allows components of a name to be pushed
4328 and popped. Each element on the stack is this structure. */
4329
4330 struct spelling
4331 {
4332 int kind;
4333 union
4334 {
4335 int i;
4336 const char *s;
4337 } u;
4338 };
4339
4340 #define SPELLING_STRING 1
4341 #define SPELLING_MEMBER 2
4342 #define SPELLING_BOUNDS 3
4343
4344 static struct spelling *spelling; /* Next stack element (unused). */
4345 static struct spelling *spelling_base; /* Spelling stack base. */
4346 static int spelling_size; /* Size of the spelling stack. */
4347
4348 /* Macros to save and restore the spelling stack around push_... functions.
4349 Alternative to SAVE_SPELLING_STACK. */
4350
4351 #define SPELLING_DEPTH() (spelling - spelling_base)
4352 #define RESTORE_SPELLING_DEPTH(depth) (spelling = spelling_base + depth)
4353
4354 /* Save and restore the spelling stack around arbitrary C code. */
4355
4356 #define SAVE_SPELLING_DEPTH(code) \
4357 { \
4358 int __depth = SPELLING_DEPTH (); \
4359 code; \
4360 RESTORE_SPELLING_DEPTH (__depth); \
4361 }
4362
4363 /* Push an element on the spelling stack with type KIND and assign VALUE
4364 to MEMBER. */
4365
4366 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4367 { \
4368 int depth = SPELLING_DEPTH (); \
4369 \
4370 if (depth >= spelling_size) \
4371 { \
4372 spelling_size += 10; \
4373 if (spelling_base == 0) \
4374 spelling_base \
4375 = (struct spelling *) xmalloc (spelling_size * sizeof (struct spelling)); \
4376 else \
4377 spelling_base \
4378 = (struct spelling *) xrealloc (spelling_base, \
4379 spelling_size * sizeof (struct spelling)); \
4380 RESTORE_SPELLING_DEPTH (depth); \
4381 } \
4382 \
4383 spelling->kind = (KIND); \
4384 spelling->MEMBER = (VALUE); \
4385 spelling++; \
4386 }
4387
4388 /* Push STRING on the stack. Printed literally. */
4389
4390 static void
4391 push_string (string)
4392 const char *string;
4393 {
4394 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4395 }
4396
4397 /* Push a member name on the stack. Printed as '.' STRING. */
4398
4399 static void
4400 push_member_name (decl)
4401 tree decl;
4402
4403 {
4404 const char *string
4405 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4406 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4407 }
4408
4409 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4410
4411 static void
4412 push_array_bounds (bounds)
4413 int bounds;
4414 {
4415 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4416 }
4417
4418 /* Compute the maximum size in bytes of the printed spelling. */
4419
4420 static int
4421 spelling_length ()
4422 {
4423 register int size = 0;
4424 register struct spelling *p;
4425
4426 for (p = spelling_base; p < spelling; p++)
4427 {
4428 if (p->kind == SPELLING_BOUNDS)
4429 size += 25;
4430 else
4431 size += strlen (p->u.s) + 1;
4432 }
4433
4434 return size;
4435 }
4436
4437 /* Print the spelling to BUFFER and return it. */
4438
4439 static char *
4440 print_spelling (buffer)
4441 register char *buffer;
4442 {
4443 register char *d = buffer;
4444 register struct spelling *p;
4445
4446 for (p = spelling_base; p < spelling; p++)
4447 if (p->kind == SPELLING_BOUNDS)
4448 {
4449 sprintf (d, "[%d]", p->u.i);
4450 d += strlen (d);
4451 }
4452 else
4453 {
4454 register const char *s;
4455 if (p->kind == SPELLING_MEMBER)
4456 *d++ = '.';
4457 for (s = p->u.s; (*d = *s++); d++)
4458 ;
4459 }
4460 *d++ = '\0';
4461 return buffer;
4462 }
4463
4464 /* Issue an error message for a bad initializer component.
4465 MSGID identifies the message.
4466 The component name is taken from the spelling stack. */
4467
4468 void
4469 error_init (msgid)
4470 const char *msgid;
4471 {
4472 char *ofwhat;
4473
4474 error ("%s", msgid);
4475 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4476 if (*ofwhat)
4477 error ("(near initialization for `%s')", ofwhat);
4478 }
4479
4480 /* Issue a pedantic warning for a bad initializer component.
4481 MSGID identifies the message.
4482 The component name is taken from the spelling stack. */
4483
4484 void
4485 pedwarn_init (msgid)
4486 const char *msgid;
4487 {
4488 char *ofwhat;
4489
4490 pedwarn ("%s", msgid);
4491 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4492 if (*ofwhat)
4493 pedwarn ("(near initialization for `%s')", ofwhat);
4494 }
4495
4496 /* Issue a warning for a bad initializer component.
4497 MSGID identifies the message.
4498 The component name is taken from the spelling stack. */
4499
4500 static void
4501 warning_init (msgid)
4502 const char *msgid;
4503 {
4504 char *ofwhat;
4505
4506 warning ("%s", msgid);
4507 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4508 if (*ofwhat)
4509 warning ("(near initialization for `%s')", ofwhat);
4510 }
4511 \f
4512 /* Digest the parser output INIT as an initializer for type TYPE.
4513 Return a C expression of type TYPE to represent the initial value.
4514
4515 The arguments REQUIRE_CONSTANT and CONSTRUCTOR_CONSTANT request errors
4516 if non-constant initializers or elements are seen. CONSTRUCTOR_CONSTANT
4517 applies only to elements of constructors. */
4518
4519 static tree
4520 digest_init (type, init, require_constant, constructor_constant)
4521 tree type, init;
4522 int require_constant, constructor_constant;
4523 {
4524 enum tree_code code = TREE_CODE (type);
4525 tree inside_init = init;
4526
4527 if (type == error_mark_node || init == error_mark_node)
4528 return error_mark_node;
4529
4530 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
4531 /* Do not use STRIP_NOPS here. We do not want an enumerator
4532 whose value is 0 to count as a null pointer constant. */
4533 if (TREE_CODE (init) == NON_LVALUE_EXPR)
4534 inside_init = TREE_OPERAND (init, 0);
4535
4536 /* Initialization of an array of chars from a string constant
4537 optionally enclosed in braces. */
4538
4539 if (code == ARRAY_TYPE)
4540 {
4541 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4542 if ((typ1 == char_type_node
4543 || typ1 == signed_char_type_node
4544 || typ1 == unsigned_char_type_node
4545 || typ1 == unsigned_wchar_type_node
4546 || typ1 == signed_wchar_type_node)
4547 && ((inside_init && TREE_CODE (inside_init) == STRING_CST)))
4548 {
4549 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4550 TYPE_MAIN_VARIANT (type)))
4551 return inside_init;
4552
4553 if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4554 != char_type_node)
4555 && TYPE_PRECISION (typ1) == TYPE_PRECISION (char_type_node))
4556 {
4557 error_init ("char-array initialized from wide string");
4558 return error_mark_node;
4559 }
4560 if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4561 == char_type_node)
4562 && TYPE_PRECISION (typ1) != TYPE_PRECISION (char_type_node))
4563 {
4564 error_init ("int-array initialized from non-wide string");
4565 return error_mark_node;
4566 }
4567
4568 TREE_TYPE (inside_init) = type;
4569 if (TYPE_DOMAIN (type) != 0
4570 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4571 /* Subtract 1 (or sizeof (wchar_t))
4572 because it's ok to ignore the terminating null char
4573 that is counted in the length of the constant. */
4574 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4575 TREE_STRING_LENGTH (inside_init)
4576 - ((TYPE_PRECISION (typ1)
4577 != TYPE_PRECISION (char_type_node))
4578 ? (TYPE_PRECISION (wchar_type_node)
4579 / BITS_PER_UNIT)
4580 : 1)))
4581 pedwarn_init ("initializer-string for array of chars is too long");
4582
4583 return inside_init;
4584 }
4585 }
4586
4587 /* Any type can be initialized
4588 from an expression of the same type, optionally with braces. */
4589
4590 if (inside_init && TREE_TYPE (inside_init) != 0
4591 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4592 TYPE_MAIN_VARIANT (type))
4593 || (code == ARRAY_TYPE
4594 && comptypes (TREE_TYPE (inside_init), type))
4595 || (code == POINTER_TYPE
4596 && (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4597 || TREE_CODE (TREE_TYPE (inside_init)) == FUNCTION_TYPE)
4598 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4599 TREE_TYPE (type)))))
4600 {
4601 if (code == POINTER_TYPE
4602 && (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4603 || TREE_CODE (TREE_TYPE (inside_init)) == FUNCTION_TYPE))
4604 inside_init = default_conversion (inside_init);
4605 else if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4606 && TREE_CODE (inside_init) != CONSTRUCTOR)
4607 {
4608 error_init ("array initialized from non-constant array expression");
4609 return error_mark_node;
4610 }
4611
4612 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4613 inside_init = decl_constant_value (inside_init);
4614
4615 /* Compound expressions can only occur here if -pedantic or
4616 -pedantic-errors is specified. In the later case, we always want
4617 an error. In the former case, we simply want a warning. */
4618 if (require_constant && pedantic
4619 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4620 {
4621 inside_init
4622 = valid_compound_expr_initializer (inside_init,
4623 TREE_TYPE (inside_init));
4624 if (inside_init == error_mark_node)
4625 error_init ("initializer element is not constant");
4626 else
4627 pedwarn_init ("initializer element is not constant");
4628 if (flag_pedantic_errors)
4629 inside_init = error_mark_node;
4630 }
4631 else if (require_constant && ! TREE_CONSTANT (inside_init))
4632 {
4633 error_init ("initializer element is not constant");
4634 inside_init = error_mark_node;
4635 }
4636 else if (require_constant
4637 && initializer_constant_valid_p (inside_init, TREE_TYPE (inside_init)) == 0)
4638 {
4639 error_init ("initializer element is not computable at load time");
4640 inside_init = error_mark_node;
4641 }
4642
4643 return inside_init;
4644 }
4645
4646 /* Handle scalar types, including conversions. */
4647
4648 if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4649 || code == ENUMERAL_TYPE || code == COMPLEX_TYPE)
4650 {
4651 /* Note that convert_for_assignment calls default_conversion
4652 for arrays and functions. We must not call it in the
4653 case where inside_init is a null pointer constant. */
4654 inside_init
4655 = convert_for_assignment (type, init, _("initialization"),
4656 NULL_TREE, NULL_TREE, 0);
4657
4658 if (require_constant && ! TREE_CONSTANT (inside_init))
4659 {
4660 error_init ("initializer element is not constant");
4661 inside_init = error_mark_node;
4662 }
4663 else if (require_constant
4664 && initializer_constant_valid_p (inside_init, TREE_TYPE (inside_init)) == 0)
4665 {
4666 error_init ("initializer element is not computable at load time");
4667 inside_init = error_mark_node;
4668 }
4669
4670 return inside_init;
4671 }
4672
4673 /* Come here only for records and arrays. */
4674
4675 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4676 {
4677 error_init ("variable-sized object may not be initialized");
4678 return error_mark_node;
4679 }
4680
4681 /* Traditionally, you can write struct foo x = 0;
4682 and it initializes the first element of x to 0. */
4683 if (flag_traditional)
4684 {
4685 tree top = 0, prev = 0, otype = type;
4686 while (TREE_CODE (type) == RECORD_TYPE
4687 || TREE_CODE (type) == ARRAY_TYPE
4688 || TREE_CODE (type) == QUAL_UNION_TYPE
4689 || TREE_CODE (type) == UNION_TYPE)
4690 {
4691 tree temp = build (CONSTRUCTOR, type, NULL_TREE, NULL_TREE);
4692 if (prev == 0)
4693 top = temp;
4694 else
4695 TREE_OPERAND (prev, 1) = build_tree_list (NULL_TREE, temp);
4696 prev = temp;
4697 if (TREE_CODE (type) == ARRAY_TYPE)
4698 type = TREE_TYPE (type);
4699 else if (TYPE_FIELDS (type))
4700 type = TREE_TYPE (TYPE_FIELDS (type));
4701 else
4702 {
4703 error_init ("invalid initializer");
4704 return error_mark_node;
4705 }
4706 }
4707
4708 if (otype != type)
4709 {
4710 TREE_OPERAND (prev, 1)
4711 = build_tree_list (NULL_TREE,
4712 digest_init (type, init, require_constant,
4713 constructor_constant));
4714 return top;
4715 }
4716 else
4717 return error_mark_node;
4718 }
4719 error_init ("invalid initializer");
4720 return error_mark_node;
4721 }
4722 \f
4723 /* Handle initializers that use braces. */
4724
4725 /* Type of object we are accumulating a constructor for.
4726 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4727 static tree constructor_type;
4728
4729 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4730 left to fill. */
4731 static tree constructor_fields;
4732
4733 /* For an ARRAY_TYPE, this is the specified index
4734 at which to store the next element we get. */
4735 static tree constructor_index;
4736
4737 /* For an ARRAY_TYPE, this is the end index of the range
4738 to initialize with the next element, or NULL in the ordinary case
4739 where the element is used just once. */
4740 static tree constructor_range_end;
4741
4742 /* For an ARRAY_TYPE, this is the maximum index. */
4743 static tree constructor_max_index;
4744
4745 /* For a RECORD_TYPE, this is the first field not yet written out. */
4746 static tree constructor_unfilled_fields;
4747
4748 /* For an ARRAY_TYPE, this is the index of the first element
4749 not yet written out. */
4750 static tree constructor_unfilled_index;
4751
4752 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4753 This is so we can generate gaps between fields, when appropriate. */
4754 static tree constructor_bit_index;
4755
4756 /* If we are saving up the elements rather than allocating them,
4757 this is the list of elements so far (in reverse order,
4758 most recent first). */
4759 static tree constructor_elements;
4760
4761 /* 1 if so far this constructor's elements are all compile-time constants. */
4762 static int constructor_constant;
4763
4764 /* 1 if so far this constructor's elements are all valid address constants. */
4765 static int constructor_simple;
4766
4767 /* 1 if this constructor is erroneous so far. */
4768 static int constructor_erroneous;
4769
4770 /* 1 if have called defer_addressed_constants. */
4771 static int constructor_subconstants_deferred;
4772
4773 /* Structure for managing pending initializer elements, organized as an
4774 AVL tree. */
4775
4776 struct init_node
4777 {
4778 struct init_node *left, *right;
4779 struct init_node *parent;
4780 int balance;
4781 tree purpose;
4782 tree value;
4783 };
4784
4785 /* Tree of pending elements at this constructor level.
4786 These are elements encountered out of order
4787 which belong at places we haven't reached yet in actually
4788 writing the output.
4789 Will never hold tree nodes across GC runs. */
4790 static struct init_node *constructor_pending_elts;
4791
4792 /* The SPELLING_DEPTH of this constructor. */
4793 static int constructor_depth;
4794
4795 /* 0 if implicitly pushing constructor levels is allowed. */
4796 int constructor_no_implicit = 0; /* 0 for C; 1 for some other languages. */
4797
4798 static int require_constant_value;
4799 static int require_constant_elements;
4800
4801 /* 1 if it is ok to output this constructor as we read it.
4802 0 means must accumulate a CONSTRUCTOR expression. */
4803 static int constructor_incremental;
4804
4805 /* DECL node for which an initializer is being read.
4806 0 means we are reading a constructor expression
4807 such as (struct foo) {...}. */
4808 static tree constructor_decl;
4809
4810 /* start_init saves the ASMSPEC arg here for really_start_incremental_init. */
4811 static char *constructor_asmspec;
4812
4813 /* Nonzero if this is an initializer for a top-level decl. */
4814 static int constructor_top_level;
4815
4816 \f
4817 /* This stack has a level for each implicit or explicit level of
4818 structuring in the initializer, including the outermost one. It
4819 saves the values of most of the variables above. */
4820
4821 struct constructor_stack
4822 {
4823 struct constructor_stack *next;
4824 tree type;
4825 tree fields;
4826 tree index;
4827 tree range_end;
4828 tree max_index;
4829 tree unfilled_index;
4830 tree unfilled_fields;
4831 tree bit_index;
4832 tree elements;
4833 int offset;
4834 struct init_node *pending_elts;
4835 int depth;
4836 /* If nonzero, this value should replace the entire
4837 constructor at this level. */
4838 tree replacement_value;
4839 char constant;
4840 char simple;
4841 char implicit;
4842 char incremental;
4843 char erroneous;
4844 char outer;
4845 };
4846
4847 struct constructor_stack *constructor_stack;
4848
4849 /* This stack records separate initializers that are nested.
4850 Nested initializers can't happen in ANSI C, but GNU C allows them
4851 in cases like { ... (struct foo) { ... } ... }. */
4852
4853 struct initializer_stack
4854 {
4855 struct initializer_stack *next;
4856 tree decl;
4857 char *asmspec;
4858 struct constructor_stack *constructor_stack;
4859 tree elements;
4860 struct spelling *spelling;
4861 struct spelling *spelling_base;
4862 int spelling_size;
4863 char top_level;
4864 char incremental;
4865 char require_constant_value;
4866 char require_constant_elements;
4867 char deferred;
4868 };
4869
4870 struct initializer_stack *initializer_stack;
4871 \f
4872 /* Prepare to parse and output the initializer for variable DECL. */
4873
4874 void
4875 start_init (decl, asmspec_tree, top_level)
4876 tree decl;
4877 tree asmspec_tree;
4878 int top_level;
4879 {
4880 const char *locus;
4881 struct initializer_stack *p
4882 = (struct initializer_stack *) xmalloc (sizeof (struct initializer_stack));
4883 char *asmspec = 0;
4884
4885 if (asmspec_tree)
4886 asmspec = TREE_STRING_POINTER (asmspec_tree);
4887
4888 p->decl = constructor_decl;
4889 p->asmspec = constructor_asmspec;
4890 p->incremental = constructor_incremental;
4891 p->require_constant_value = require_constant_value;
4892 p->require_constant_elements = require_constant_elements;
4893 p->constructor_stack = constructor_stack;
4894 p->elements = constructor_elements;
4895 p->spelling = spelling;
4896 p->spelling_base = spelling_base;
4897 p->spelling_size = spelling_size;
4898 p->deferred = constructor_subconstants_deferred;
4899 p->top_level = constructor_top_level;
4900 p->next = initializer_stack;
4901 initializer_stack = p;
4902
4903 constructor_decl = decl;
4904 constructor_incremental = top_level;
4905 constructor_asmspec = asmspec;
4906 constructor_subconstants_deferred = 0;
4907 constructor_top_level = top_level;
4908
4909 if (decl != 0)
4910 {
4911 require_constant_value = TREE_STATIC (decl);
4912 require_constant_elements
4913 = ((TREE_STATIC (decl) || pedantic)
4914 /* For a scalar, you can always use any value to initialize,
4915 even within braces. */
4916 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
4917 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4918 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
4919 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
4920 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
4921 constructor_incremental |= TREE_STATIC (decl);
4922 }
4923 else
4924 {
4925 require_constant_value = 0;
4926 require_constant_elements = 0;
4927 locus = "(anonymous)";
4928 }
4929
4930 constructor_stack = 0;
4931
4932 missing_braces_mentioned = 0;
4933
4934 spelling_base = 0;
4935 spelling_size = 0;
4936 RESTORE_SPELLING_DEPTH (0);
4937
4938 if (locus)
4939 push_string (locus);
4940 }
4941
4942 void
4943 finish_init ()
4944 {
4945 struct initializer_stack *p = initializer_stack;
4946
4947 /* Output subconstants (string constants, usually)
4948 that were referenced within this initializer and saved up.
4949 Must do this if and only if we called defer_addressed_constants. */
4950 if (constructor_subconstants_deferred)
4951 output_deferred_addressed_constants ();
4952
4953 /* Free the whole constructor stack of this initializer. */
4954 while (constructor_stack)
4955 {
4956 struct constructor_stack *q = constructor_stack;
4957 constructor_stack = q->next;
4958 free (q);
4959 }
4960
4961 /* Pop back to the data of the outer initializer (if any). */
4962 constructor_decl = p->decl;
4963 constructor_asmspec = p->asmspec;
4964 constructor_incremental = p->incremental;
4965 require_constant_value = p->require_constant_value;
4966 require_constant_elements = p->require_constant_elements;
4967 constructor_stack = p->constructor_stack;
4968 constructor_elements = p->elements;
4969 spelling = p->spelling;
4970 spelling_base = p->spelling_base;
4971 spelling_size = p->spelling_size;
4972 constructor_subconstants_deferred = p->deferred;
4973 constructor_top_level = p->top_level;
4974 initializer_stack = p->next;
4975 free (p);
4976 }
4977 \f
4978 /* Call here when we see the initializer is surrounded by braces.
4979 This is instead of a call to push_init_level;
4980 it is matched by a call to pop_init_level.
4981
4982 TYPE is the type to initialize, for a constructor expression.
4983 For an initializer for a decl, TYPE is zero. */
4984
4985 void
4986 really_start_incremental_init (type)
4987 tree type;
4988 {
4989 struct constructor_stack *p
4990 = (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
4991
4992 if (type == 0)
4993 type = TREE_TYPE (constructor_decl);
4994
4995 /* Turn off constructor_incremental if type is a struct with bitfields.
4996 Do this before the first push, so that the corrected value
4997 is available in finish_init. */
4998 check_init_type_bitfields (type);
4999
5000 p->type = constructor_type;
5001 p->fields = constructor_fields;
5002 p->index = constructor_index;
5003 p->range_end = constructor_range_end;
5004 p->max_index = constructor_max_index;
5005 p->unfilled_index = constructor_unfilled_index;
5006 p->unfilled_fields = constructor_unfilled_fields;
5007 p->bit_index = constructor_bit_index;
5008 p->elements = constructor_elements;
5009 p->constant = constructor_constant;
5010 p->simple = constructor_simple;
5011 p->erroneous = constructor_erroneous;
5012 p->pending_elts = constructor_pending_elts;
5013 p->depth = constructor_depth;
5014 p->replacement_value = 0;
5015 p->implicit = 0;
5016 p->incremental = constructor_incremental;
5017 p->outer = 0;
5018 p->next = 0;
5019 constructor_stack = p;
5020
5021 constructor_constant = 1;
5022 constructor_simple = 1;
5023 constructor_depth = SPELLING_DEPTH ();
5024 constructor_elements = 0;
5025 constructor_pending_elts = 0;
5026 constructor_type = type;
5027
5028 if (TREE_CODE (constructor_type) == RECORD_TYPE
5029 || TREE_CODE (constructor_type) == UNION_TYPE)
5030 {
5031 constructor_fields = TYPE_FIELDS (constructor_type);
5032 /* Skip any nameless bit fields at the beginning. */
5033 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5034 && DECL_NAME (constructor_fields) == 0)
5035 constructor_fields = TREE_CHAIN (constructor_fields);
5036
5037 constructor_unfilled_fields = constructor_fields;
5038 constructor_bit_index = bitsize_zero_node;
5039 }
5040 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5041 {
5042 constructor_range_end = 0;
5043 if (TYPE_DOMAIN (constructor_type))
5044 {
5045 constructor_max_index
5046 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5047 constructor_index
5048 = convert (bitsizetype,
5049 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5050 }
5051 else
5052 constructor_index = bitsize_zero_node;
5053
5054 constructor_unfilled_index = constructor_index;
5055 }
5056 else
5057 {
5058 /* Handle the case of int x = {5}; */
5059 constructor_fields = constructor_type;
5060 constructor_unfilled_fields = constructor_type;
5061 }
5062
5063 if (constructor_incremental)
5064 {
5065 make_decl_rtl (constructor_decl, constructor_asmspec,
5066 constructor_top_level);
5067 assemble_variable (constructor_decl, constructor_top_level, 0, 1);
5068
5069 defer_addressed_constants ();
5070 constructor_subconstants_deferred = 1;
5071 }
5072 }
5073 \f
5074 /* Push down into a subobject, for initialization.
5075 If this is for an explicit set of braces, IMPLICIT is 0.
5076 If it is because the next element belongs at a lower level,
5077 IMPLICIT is 1. */
5078
5079 void
5080 push_init_level (implicit)
5081 int implicit;
5082 {
5083 struct constructor_stack *p;
5084
5085 /* If we've exhausted any levels that didn't have braces,
5086 pop them now. */
5087 while (constructor_stack->implicit)
5088 {
5089 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5090 || TREE_CODE (constructor_type) == UNION_TYPE)
5091 && constructor_fields == 0)
5092 process_init_element (pop_init_level (1));
5093 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5094 && tree_int_cst_lt (constructor_max_index, constructor_index))
5095 process_init_element (pop_init_level (1));
5096 else
5097 break;
5098 }
5099
5100 /* Structure elements may require alignment. Do this now if necessary
5101 for the subaggregate, and if it comes next in sequence. Don't do
5102 this for subaggregates that will go on the pending list. */
5103 if (constructor_incremental && constructor_type != 0
5104 && TREE_CODE (constructor_type) == RECORD_TYPE && constructor_fields
5105 && constructor_fields == constructor_unfilled_fields)
5106 {
5107 /* Advance to offset of this element. */
5108 if (! tree_int_cst_equal (constructor_bit_index,
5109 bit_position (constructor_fields)))
5110 assemble_zeros
5111 (tree_low_cst
5112 (size_binop (TRUNC_DIV_EXPR,
5113 size_binop (MINUS_EXPR,
5114 bit_position (constructor_fields),
5115 constructor_bit_index),
5116 bitsize_unit_node),
5117 1));
5118
5119 /* Indicate that we have now filled the structure up to the current
5120 field. */
5121 constructor_unfilled_fields = constructor_fields;
5122 }
5123
5124 p = (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
5125 p->type = constructor_type;
5126 p->fields = constructor_fields;
5127 p->index = constructor_index;
5128 p->range_end = constructor_range_end;
5129 p->max_index = constructor_max_index;
5130 p->unfilled_index = constructor_unfilled_index;
5131 p->unfilled_fields = constructor_unfilled_fields;
5132 p->bit_index = constructor_bit_index;
5133 p->elements = constructor_elements;
5134 p->constant = constructor_constant;
5135 p->simple = constructor_simple;
5136 p->erroneous = constructor_erroneous;
5137 p->pending_elts = constructor_pending_elts;
5138 p->depth = constructor_depth;
5139 p->replacement_value = 0;
5140 p->implicit = implicit;
5141 p->incremental = constructor_incremental;
5142 p->outer = 0;
5143 p->next = constructor_stack;
5144 constructor_stack = p;
5145
5146 constructor_constant = 1;
5147 constructor_simple = 1;
5148 constructor_depth = SPELLING_DEPTH ();
5149 constructor_elements = 0;
5150 constructor_pending_elts = 0;
5151
5152 /* Don't die if an entire brace-pair level is superfluous
5153 in the containing level. */
5154 if (constructor_type == 0)
5155 ;
5156 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5157 || TREE_CODE (constructor_type) == UNION_TYPE)
5158 {
5159 /* Don't die if there are extra init elts at the end. */
5160 if (constructor_fields == 0)
5161 constructor_type = 0;
5162 else
5163 {
5164 constructor_type = TREE_TYPE (constructor_fields);
5165 push_member_name (constructor_fields);
5166 constructor_depth++;
5167 if (constructor_fields != constructor_unfilled_fields)
5168 constructor_incremental = 0;
5169 }
5170 }
5171 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5172 {
5173 constructor_type = TREE_TYPE (constructor_type);
5174 push_array_bounds (tree_low_cst (constructor_index, 0));
5175 constructor_depth++;
5176 if (! tree_int_cst_equal (constructor_index, constructor_unfilled_index)
5177 || constructor_range_end != 0)
5178 constructor_incremental = 0;
5179 }
5180
5181 if (constructor_type == 0)
5182 {
5183 error_init ("extra brace group at end of initializer");
5184 constructor_fields = 0;
5185 constructor_unfilled_fields = 0;
5186 return;
5187 }
5188
5189 /* Turn off constructor_incremental if type is a struct with bitfields. */
5190 check_init_type_bitfields (constructor_type);
5191
5192 if (implicit && warn_missing_braces && !missing_braces_mentioned)
5193 {
5194 missing_braces_mentioned = 1;
5195 warning_init ("missing braces around initializer");
5196 }
5197
5198 if (TREE_CODE (constructor_type) == RECORD_TYPE
5199 || TREE_CODE (constructor_type) == UNION_TYPE)
5200 {
5201 constructor_fields = TYPE_FIELDS (constructor_type);
5202 /* Skip any nameless bit fields at the beginning. */
5203 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5204 && DECL_NAME (constructor_fields) == 0)
5205 constructor_fields = TREE_CHAIN (constructor_fields);
5206
5207 constructor_unfilled_fields = constructor_fields;
5208 constructor_bit_index = bitsize_zero_node;
5209 }
5210 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5211 {
5212 constructor_range_end = 0;
5213 if (TYPE_DOMAIN (constructor_type))
5214 {
5215 constructor_max_index
5216 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5217 constructor_index
5218 = convert (bitsizetype,
5219 TYPE_MIN_VALUE
5220 (TYPE_DOMAIN (constructor_type)));
5221 }
5222 else
5223 constructor_index = bitsize_zero_node;
5224
5225 constructor_unfilled_index = constructor_index;
5226 }
5227 else
5228 {
5229 warning_init ("braces around scalar initializer");
5230 constructor_fields = constructor_type;
5231 constructor_unfilled_fields = constructor_type;
5232 }
5233 }
5234
5235 /* Don't read a struct incrementally if it has any bitfields,
5236 because the incremental reading code doesn't know how to
5237 handle bitfields yet. */
5238
5239 static void
5240 check_init_type_bitfields (type)
5241 tree type;
5242 {
5243 if (TREE_CODE (type) == RECORD_TYPE)
5244 {
5245 tree tail;
5246 for (tail = TYPE_FIELDS (type); tail;
5247 tail = TREE_CHAIN (tail))
5248 {
5249 if (DECL_C_BIT_FIELD (tail))
5250 {
5251 constructor_incremental = 0;
5252 break;
5253 }
5254
5255 check_init_type_bitfields (TREE_TYPE (tail));
5256 }
5257 }
5258
5259 else if (TREE_CODE (type) == UNION_TYPE)
5260 {
5261 tree tail = TYPE_FIELDS (type);
5262 if (tail && DECL_C_BIT_FIELD (tail))
5263 /* We also use the nonincremental algorithm for initiliazation
5264 of unions whose first member is a bitfield, becuase the
5265 incremental algorithm has no code for dealing with
5266 bitfields. */
5267 constructor_incremental = 0;
5268 }
5269
5270 else if (TREE_CODE (type) == ARRAY_TYPE)
5271 check_init_type_bitfields (TREE_TYPE (type));
5272 }
5273
5274 /* At the end of an implicit or explicit brace level,
5275 finish up that level of constructor.
5276 If we were outputting the elements as they are read, return 0
5277 from inner levels (process_init_element ignores that),
5278 but return error_mark_node from the outermost level
5279 (that's what we want to put in DECL_INITIAL).
5280 Otherwise, return a CONSTRUCTOR expression. */
5281
5282 tree
5283 pop_init_level (implicit)
5284 int implicit;
5285 {
5286 struct constructor_stack *p;
5287 HOST_WIDE_INT size = 0;
5288 tree constructor = 0;
5289
5290 if (implicit == 0)
5291 {
5292 /* When we come to an explicit close brace,
5293 pop any inner levels that didn't have explicit braces. */
5294 while (constructor_stack->implicit)
5295 process_init_element (pop_init_level (1));
5296 }
5297
5298 p = constructor_stack;
5299
5300 if (constructor_type != 0)
5301 size = int_size_in_bytes (constructor_type);
5302
5303 /* Warn when some struct elements are implicitly initialized to zero. */
5304 if (extra_warnings
5305 && constructor_type
5306 && TREE_CODE (constructor_type) == RECORD_TYPE
5307 && constructor_unfilled_fields)
5308 {
5309 push_member_name (constructor_unfilled_fields);
5310 warning_init ("missing initializer");
5311 RESTORE_SPELLING_DEPTH (constructor_depth);
5312 }
5313
5314 /* Now output all pending elements. */
5315 output_pending_init_elements (1);
5316
5317 #if 0 /* c-parse.in warns about {}. */
5318 /* In ANSI, each brace level must have at least one element. */
5319 if (! implicit && pedantic
5320 && (TREE_CODE (constructor_type) == ARRAY_TYPE
5321 ? integer_zerop (constructor_unfilled_index)
5322 : constructor_unfilled_fields == TYPE_FIELDS (constructor_type)))
5323 pedwarn_init ("empty braces in initializer");
5324 #endif
5325
5326 /* Pad out the end of the structure. */
5327
5328 if (p->replacement_value)
5329 {
5330 /* If this closes a superfluous brace pair,
5331 just pass out the element between them. */
5332 constructor = p->replacement_value;
5333 /* If this is the top level thing within the initializer,
5334 and it's for a variable, then since we already called
5335 assemble_variable, we must output the value now. */
5336 if (p->next == 0 && constructor_decl != 0
5337 && constructor_incremental)
5338 {
5339 constructor = digest_init (constructor_type, constructor,
5340 require_constant_value,
5341 require_constant_elements);
5342
5343 /* If initializing an array of unknown size,
5344 determine the size now. */
5345 if (TREE_CODE (constructor_type) == ARRAY_TYPE
5346 && TYPE_DOMAIN (constructor_type) == 0)
5347 {
5348 /* We shouldn't have an incomplete array type within
5349 some other type. */
5350 if (constructor_stack->next)
5351 abort ();
5352
5353 if (complete_array_type (constructor_type, constructor, 0))
5354 abort ();
5355
5356 size = int_size_in_bytes (constructor_type);
5357 }
5358
5359 output_constant (constructor, size);
5360 }
5361 }
5362 else if (constructor_type == 0)
5363 ;
5364 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5365 && TREE_CODE (constructor_type) != UNION_TYPE
5366 && TREE_CODE (constructor_type) != ARRAY_TYPE
5367 && ! constructor_incremental)
5368 {
5369 /* A nonincremental scalar initializer--just return
5370 the element, after verifying there is just one. */
5371 if (constructor_elements == 0)
5372 {
5373 error_init ("empty scalar initializer");
5374 constructor = error_mark_node;
5375 }
5376 else if (TREE_CHAIN (constructor_elements) != 0)
5377 {
5378 error_init ("extra elements in scalar initializer");
5379 constructor = TREE_VALUE (constructor_elements);
5380 }
5381 else
5382 constructor = TREE_VALUE (constructor_elements);
5383 }
5384 else if (! constructor_incremental)
5385 {
5386 if (constructor_erroneous)
5387 constructor = error_mark_node;
5388 else
5389 {
5390 constructor = build (CONSTRUCTOR, constructor_type, NULL_TREE,
5391 nreverse (constructor_elements));
5392 if (constructor_constant)
5393 TREE_CONSTANT (constructor) = 1;
5394 if (constructor_constant && constructor_simple)
5395 TREE_STATIC (constructor) = 1;
5396 }
5397 }
5398 else
5399 {
5400 tree filled;
5401
5402 if (TREE_CODE (constructor_type) == RECORD_TYPE
5403 || TREE_CODE (constructor_type) == UNION_TYPE)
5404 /* Find the offset of the end of that field. */
5405 filled = size_binop (CEIL_DIV_EXPR, constructor_bit_index,
5406 bitsize_unit_node);
5407
5408 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5409 {
5410 /* If initializing an array of unknown size,
5411 determine the size now. */
5412 if (TREE_CODE (constructor_type) == ARRAY_TYPE
5413 && TYPE_DOMAIN (constructor_type) == 0)
5414 {
5415 tree maxindex
5416 = copy_node (size_diffop (constructor_unfilled_index,
5417 bitsize_one_node));
5418
5419 TYPE_DOMAIN (constructor_type) = build_index_type (maxindex);
5420 TREE_TYPE (maxindex) = TYPE_DOMAIN (constructor_type);
5421
5422 /* TYPE_MAX_VALUE is always one less than the number of elements
5423 in the array, because we start counting at zero. Therefore,
5424 warn only if the value is less than zero. */
5425 if (pedantic
5426 && (tree_int_cst_sgn
5427 (TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5428 < 0))
5429 error_with_decl (constructor_decl,
5430 "zero or negative array size `%s'");
5431
5432 layout_type (constructor_type);
5433 size = int_size_in_bytes (constructor_type);
5434 }
5435
5436 filled
5437 = size_binop (MULT_EXPR, constructor_unfilled_index,
5438 convert (bitsizetype,
5439 TYPE_SIZE_UNIT
5440 (TREE_TYPE (constructor_type))));
5441 }
5442 else
5443 filled = 0;
5444
5445 if (filled != 0)
5446 assemble_zeros (size - tree_low_cst (filled, 1));
5447 }
5448
5449
5450 constructor_type = p->type;
5451 constructor_fields = p->fields;
5452 constructor_index = p->index;
5453 constructor_range_end = p->range_end;
5454 constructor_max_index = p->max_index;
5455 constructor_unfilled_index = p->unfilled_index;
5456 constructor_unfilled_fields = p->unfilled_fields;
5457 constructor_bit_index = p->bit_index;
5458 constructor_elements = p->elements;
5459 constructor_constant = p->constant;
5460 constructor_simple = p->simple;
5461 constructor_erroneous = p->erroneous;
5462 constructor_pending_elts = p->pending_elts;
5463 constructor_depth = p->depth;
5464 constructor_incremental = p->incremental;
5465 RESTORE_SPELLING_DEPTH (constructor_depth);
5466
5467 constructor_stack = p->next;
5468 free (p);
5469
5470 if (constructor == 0)
5471 {
5472 if (constructor_stack == 0)
5473 return error_mark_node;
5474 return NULL_TREE;
5475 }
5476 return constructor;
5477 }
5478
5479 /* Within an array initializer, specify the next index to be initialized.
5480 FIRST is that index. If LAST is nonzero, then initialize a range
5481 of indices, running from FIRST through LAST. */
5482
5483 void
5484 set_init_index (first, last)
5485 tree first, last;
5486 {
5487 while ((TREE_CODE (first) == NOP_EXPR
5488 || TREE_CODE (first) == CONVERT_EXPR
5489 || TREE_CODE (first) == NON_LVALUE_EXPR)
5490 && (TYPE_MODE (TREE_TYPE (first))
5491 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (first, 0)))))
5492 first = TREE_OPERAND (first, 0);
5493
5494 if (last)
5495 while ((TREE_CODE (last) == NOP_EXPR
5496 || TREE_CODE (last) == CONVERT_EXPR
5497 || TREE_CODE (last) == NON_LVALUE_EXPR)
5498 && (TYPE_MODE (TREE_TYPE (last))
5499 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (last, 0)))))
5500 last = TREE_OPERAND (last, 0);
5501
5502 if (TREE_CODE (first) != INTEGER_CST)
5503 error_init ("nonconstant array index in initializer");
5504 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5505 error_init ("nonconstant array index in initializer");
5506 else if (! constructor_unfilled_index)
5507 error_init ("array index in non-array initializer");
5508 else if (tree_int_cst_lt (first, constructor_unfilled_index))
5509 error_init ("duplicate array index in initializer");
5510 else
5511 {
5512 constructor_index = convert (bitsizetype, first);
5513
5514 if (last != 0 && tree_int_cst_lt (last, first))
5515 error_init ("empty index range in initializer");
5516 else
5517 {
5518 if (pedantic)
5519 pedwarn ("ANSI C forbids specifying element to initialize");
5520
5521 constructor_range_end = last ? convert (bitsizetype, last) : 0;
5522 }
5523 }
5524 }
5525
5526 /* Within a struct initializer, specify the next field to be initialized. */
5527
5528 void
5529 set_init_label (fieldname)
5530 tree fieldname;
5531 {
5532 tree tail;
5533 int passed = 0;
5534
5535 /* Don't die if an entire brace-pair level is superfluous
5536 in the containing level. */
5537 if (constructor_type == 0)
5538 return;
5539
5540 for (tail = TYPE_FIELDS (constructor_type); tail;
5541 tail = TREE_CHAIN (tail))
5542 {
5543 if (tail == constructor_unfilled_fields)
5544 passed = 1;
5545 if (DECL_NAME (tail) == fieldname)
5546 break;
5547 }
5548
5549 if (tail == 0)
5550 error ("unknown field `%s' specified in initializer",
5551 IDENTIFIER_POINTER (fieldname));
5552 else if (!passed)
5553 error ("field `%s' already initialized",
5554 IDENTIFIER_POINTER (fieldname));
5555 else
5556 {
5557 constructor_fields = tail;
5558 if (pedantic)
5559 pedwarn ("ANSI C forbids specifying structure member to initialize");
5560 }
5561 }
5562 \f
5563 /* Add a new initializer to the tree of pending initializers. PURPOSE
5564 indentifies the initializer, either array index or field in a structure.
5565 VALUE is the value of that index or field. */
5566
5567 static void
5568 add_pending_init (purpose, value)
5569 tree purpose, value;
5570 {
5571 struct init_node *p, **q, *r;
5572
5573 q = &constructor_pending_elts;
5574 p = 0;
5575
5576 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5577 {
5578 while (*q != 0)
5579 {
5580 p = *q;
5581 if (tree_int_cst_lt (purpose, p->purpose))
5582 q = &p->left;
5583 else if (p->purpose != purpose)
5584 q = &p->right;
5585 else
5586 abort ();
5587 }
5588 }
5589 else
5590 {
5591 while (*q != NULL)
5592 {
5593 p = *q;
5594 if (tree_int_cst_lt (bit_position (purpose),
5595 bit_position (p->purpose)))
5596 q = &p->left;
5597 else if (p->purpose != purpose)
5598 q = &p->right;
5599 else
5600 abort ();
5601 }
5602 }
5603
5604 r = (struct init_node *) ggc_alloc_obj (sizeof (struct init_node), 0);
5605 r->purpose = purpose;
5606 r->value = value;
5607
5608 *q = r;
5609 r->parent = p;
5610 r->left = 0;
5611 r->right = 0;
5612 r->balance = 0;
5613
5614 while (p)
5615 {
5616 struct init_node *s;
5617
5618 if (r == p->left)
5619 {
5620 if (p->balance == 0)
5621 p->balance = -1;
5622 else if (p->balance < 0)
5623 {
5624 if (r->balance < 0)
5625 {
5626 /* L rotation. */
5627 p->left = r->right;
5628 if (p->left)
5629 p->left->parent = p;
5630 r->right = p;
5631
5632 p->balance = 0;
5633 r->balance = 0;
5634
5635 s = p->parent;
5636 p->parent = r;
5637 r->parent = s;
5638 if (s)
5639 {
5640 if (s->left == p)
5641 s->left = r;
5642 else
5643 s->right = r;
5644 }
5645 else
5646 constructor_pending_elts = r;
5647 }
5648 else
5649 {
5650 /* LR rotation. */
5651 struct init_node *t = r->right;
5652
5653 r->right = t->left;
5654 if (r->right)
5655 r->right->parent = r;
5656 t->left = r;
5657
5658 p->left = t->right;
5659 if (p->left)
5660 p->left->parent = p;
5661 t->right = p;
5662
5663 p->balance = t->balance < 0;
5664 r->balance = -(t->balance > 0);
5665 t->balance = 0;
5666
5667 s = p->parent;
5668 p->parent = t;
5669 r->parent = t;
5670 t->parent = s;
5671 if (s)
5672 {
5673 if (s->left == p)
5674 s->left = t;
5675 else
5676 s->right = t;
5677 }
5678 else
5679 constructor_pending_elts = t;
5680 }
5681 break;
5682 }
5683 else
5684 {
5685 /* p->balance == +1; growth of left side balances the node. */
5686 p->balance = 0;
5687 break;
5688 }
5689 }
5690 else /* r == p->right */
5691 {
5692 if (p->balance == 0)
5693 /* Growth propagation from right side. */
5694 p->balance++;
5695 else if (p->balance > 0)
5696 {
5697 if (r->balance > 0)
5698 {
5699 /* R rotation. */
5700 p->right = r->left;
5701 if (p->right)
5702 p->right->parent = p;
5703 r->left = p;
5704
5705 p->balance = 0;
5706 r->balance = 0;
5707
5708 s = p->parent;
5709 p->parent = r;
5710 r->parent = s;
5711 if (s)
5712 {
5713 if (s->left == p)
5714 s->left = r;
5715 else
5716 s->right = r;
5717 }
5718 else
5719 constructor_pending_elts = r;
5720 }
5721 else /* r->balance == -1 */
5722 {
5723 /* RL rotation */
5724 struct init_node *t = r->left;
5725
5726 r->left = t->right;
5727 if (r->left)
5728 r->left->parent = r;
5729 t->right = r;
5730
5731 p->right = t->left;
5732 if (p->right)
5733 p->right->parent = p;
5734 t->left = p;
5735
5736 r->balance = (t->balance < 0);
5737 p->balance = -(t->balance > 0);
5738 t->balance = 0;
5739
5740 s = p->parent;
5741 p->parent = t;
5742 r->parent = t;
5743 t->parent = s;
5744 if (s)
5745 {
5746 if (s->left == p)
5747 s->left = t;
5748 else
5749 s->right = t;
5750 }
5751 else
5752 constructor_pending_elts = t;
5753 }
5754 break;
5755 }
5756 else
5757 {
5758 /* p->balance == -1; growth of right side balances the node. */
5759 p->balance = 0;
5760 break;
5761 }
5762 }
5763
5764 r = p;
5765 p = p->parent;
5766 }
5767 }
5768
5769 /* Return nonzero if FIELD is equal to the index of a pending initializer. */
5770
5771 static int
5772 pending_init_member (field)
5773 tree field;
5774 {
5775 struct init_node *p;
5776
5777 p = constructor_pending_elts;
5778 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5779 {
5780 while (p)
5781 {
5782 if (field == p->purpose)
5783 return 1;
5784 else if (tree_int_cst_lt (field, p->purpose))
5785 p = p->left;
5786 else
5787 p = p->right;
5788 }
5789 }
5790 else
5791 {
5792 while (p)
5793 {
5794 if (field == p->purpose)
5795 return 1;
5796 else if (tree_int_cst_lt (bit_position (field),
5797 bit_position (p->purpose)))
5798 p = p->left;
5799 else
5800 p = p->right;
5801 }
5802 }
5803
5804 return 0;
5805 }
5806
5807 /* "Output" the next constructor element.
5808 At top level, really output it to assembler code now.
5809 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
5810 TYPE is the data type that the containing data type wants here.
5811 FIELD is the field (a FIELD_DECL) or the index that this element fills.
5812
5813 PENDING if non-nil means output pending elements that belong
5814 right after this element. (PENDING is normally 1;
5815 it is 0 while outputting pending elements, to avoid recursion.) */
5816
5817 static void
5818 output_init_element (value, type, field, pending)
5819 tree value, type, field;
5820 int pending;
5821 {
5822 int duplicate = 0;
5823
5824 if (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE
5825 || (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
5826 && !(TREE_CODE (value) == STRING_CST
5827 && TREE_CODE (type) == ARRAY_TYPE
5828 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
5829 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
5830 TYPE_MAIN_VARIANT (type))))
5831 value = default_conversion (value);
5832
5833 if (value == error_mark_node)
5834 constructor_erroneous = 1;
5835 else if (!TREE_CONSTANT (value))
5836 constructor_constant = 0;
5837 else if (initializer_constant_valid_p (value, TREE_TYPE (value)) == 0
5838 || ((TREE_CODE (constructor_type) == RECORD_TYPE
5839 || TREE_CODE (constructor_type) == UNION_TYPE)
5840 && DECL_C_BIT_FIELD (field)
5841 && TREE_CODE (value) != INTEGER_CST))
5842 constructor_simple = 0;
5843
5844 if (require_constant_value && ! TREE_CONSTANT (value))
5845 {
5846 error_init ("initializer element is not constant");
5847 value = error_mark_node;
5848 }
5849 else if (require_constant_elements
5850 && initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
5851 {
5852 error_init ("initializer element is not computable at load time");
5853 value = error_mark_node;
5854 }
5855
5856 /* If this element duplicates one on constructor_pending_elts,
5857 print a message and ignore it. Don't do this when we're
5858 processing elements taken off constructor_pending_elts,
5859 because we'd always get spurious errors. */
5860 if (pending)
5861 {
5862 if (TREE_CODE (constructor_type) == RECORD_TYPE
5863 || TREE_CODE (constructor_type) == UNION_TYPE
5864 || TREE_CODE (constructor_type) == ARRAY_TYPE)
5865 {
5866 if (pending_init_member (field))
5867 {
5868 error_init ("duplicate initializer");
5869 duplicate = 1;
5870 }
5871 }
5872 }
5873
5874 /* If this element doesn't come next in sequence,
5875 put it on constructor_pending_elts. */
5876 if (TREE_CODE (constructor_type) == ARRAY_TYPE
5877 && ! tree_int_cst_equal (field, constructor_unfilled_index))
5878 {
5879 if (! duplicate)
5880 add_pending_init (field,
5881 digest_init (type, value, require_constant_value,
5882 require_constant_elements));
5883 }
5884 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5885 && field != constructor_unfilled_fields)
5886 {
5887 /* We do this for records but not for unions. In a union,
5888 no matter which field is specified, it can be initialized
5889 right away since it starts at the beginning of the union. */
5890 if (!duplicate)
5891 add_pending_init (field,
5892 digest_init (type, value, require_constant_value,
5893 require_constant_elements));
5894 }
5895 else
5896 {
5897 /* Otherwise, output this element either to
5898 constructor_elements or to the assembler file. */
5899
5900 if (!duplicate)
5901 {
5902 if (! constructor_incremental)
5903 {
5904 if (field && TREE_CODE (field) == INTEGER_CST)
5905 field = copy_node (field);
5906 constructor_elements
5907 = tree_cons (field, digest_init (type, value,
5908 require_constant_value,
5909 require_constant_elements),
5910 constructor_elements);
5911 }
5912 else
5913 {
5914 /* Structure elements may require alignment.
5915 Do this, if necessary. */
5916 if (TREE_CODE (constructor_type) == RECORD_TYPE
5917 && ! tree_int_cst_equal (constructor_bit_index,
5918 bit_position (field)))
5919 /* Advance to offset of this element. */
5920 assemble_zeros
5921 (tree_low_cst
5922 (size_binop (TRUNC_DIV_EXPR,
5923 size_binop (MINUS_EXPR, bit_position (field),
5924 constructor_bit_index),
5925 bitsize_unit_node),
5926 0));
5927
5928 output_constant (digest_init (type, value,
5929 require_constant_value,
5930 require_constant_elements),
5931 int_size_in_bytes (type));
5932
5933 /* For a record or union,
5934 keep track of end position of last field. */
5935 if (TREE_CODE (constructor_type) == RECORD_TYPE
5936 || TREE_CODE (constructor_type) == UNION_TYPE)
5937 constructor_bit_index
5938 = size_binop (PLUS_EXPR, bit_position (field),
5939 DECL_SIZE (field));
5940 }
5941 }
5942
5943 /* Advance the variable that indicates sequential elements output. */
5944 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5945 constructor_unfilled_index
5946 = size_binop (PLUS_EXPR, constructor_unfilled_index,
5947 bitsize_one_node);
5948 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
5949 {
5950 constructor_unfilled_fields
5951 = TREE_CHAIN (constructor_unfilled_fields);
5952
5953 /* Skip any nameless bit fields. */
5954 while (constructor_unfilled_fields != 0
5955 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5956 && DECL_NAME (constructor_unfilled_fields) == 0)
5957 constructor_unfilled_fields =
5958 TREE_CHAIN (constructor_unfilled_fields);
5959 }
5960 else if (TREE_CODE (constructor_type) == UNION_TYPE)
5961 constructor_unfilled_fields = 0;
5962
5963 /* Now output any pending elements which have become next. */
5964 if (pending)
5965 output_pending_init_elements (0);
5966 }
5967 }
5968
5969 /* Output any pending elements which have become next.
5970 As we output elements, constructor_unfilled_{fields,index}
5971 advances, which may cause other elements to become next;
5972 if so, they too are output.
5973
5974 If ALL is 0, we return when there are
5975 no more pending elements to output now.
5976
5977 If ALL is 1, we output space as necessary so that
5978 we can output all the pending elements. */
5979
5980 static void
5981 output_pending_init_elements (all)
5982 int all;
5983 {
5984 struct init_node *elt = constructor_pending_elts;
5985 tree next;
5986
5987 retry:
5988
5989 /* Look thru the whole pending tree.
5990 If we find an element that should be output now,
5991 output it. Otherwise, set NEXT to the element
5992 that comes first among those still pending. */
5993
5994 next = 0;
5995 while (elt)
5996 {
5997 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5998 {
5999 if (tree_int_cst_equal (elt->purpose,
6000 constructor_unfilled_index))
6001 output_init_element (elt->value,
6002 TREE_TYPE (constructor_type),
6003 constructor_unfilled_index, 0);
6004 else if (tree_int_cst_lt (constructor_unfilled_index,
6005 elt->purpose))
6006 {
6007 /* Advance to the next smaller node. */
6008 if (elt->left)
6009 elt = elt->left;
6010 else
6011 {
6012 /* We have reached the smallest node bigger than the
6013 current unfilled index. Fill the space first. */
6014 next = elt->purpose;
6015 break;
6016 }
6017 }
6018 else
6019 {
6020 /* Advance to the next bigger node. */
6021 if (elt->right)
6022 elt = elt->right;
6023 else
6024 {
6025 /* We have reached the biggest node in a subtree. Find
6026 the parent of it, which is the next bigger node. */
6027 while (elt->parent && elt->parent->right == elt)
6028 elt = elt->parent;
6029 elt = elt->parent;
6030 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6031 elt->purpose))
6032 {
6033 next = elt->purpose;
6034 break;
6035 }
6036 }
6037 }
6038 }
6039 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6040 || TREE_CODE (constructor_type) == UNION_TYPE)
6041 {
6042 /* If the current record is complete we are done. */
6043 if (constructor_unfilled_fields == 0)
6044 break;
6045 if (elt->purpose == constructor_unfilled_fields)
6046 {
6047 output_init_element (elt->value,
6048 TREE_TYPE (constructor_unfilled_fields),
6049 constructor_unfilled_fields,
6050 0);
6051 }
6052 else if (tree_int_cst_lt (bit_position (constructor_unfilled_fields),
6053 bit_position (elt->purpose)))
6054 {
6055 /* Advance to the next smaller node. */
6056 if (elt->left)
6057 elt = elt->left;
6058 else
6059 {
6060 /* We have reached the smallest node bigger than the
6061 current unfilled field. Fill the space first. */
6062 next = elt->purpose;
6063 break;
6064 }
6065 }
6066 else
6067 {
6068 /* Advance to the next bigger node. */
6069 if (elt->right)
6070 elt = elt->right;
6071 else
6072 {
6073 /* We have reached the biggest node in a subtree. Find
6074 the parent of it, which is the next bigger node. */
6075 while (elt->parent && elt->parent->right == elt)
6076 elt = elt->parent;
6077 elt = elt->parent;
6078 if (elt
6079 && (tree_int_cst_lt
6080 (bit_position (constructor_unfilled_fields),
6081 bit_position (elt->purpose))))
6082 {
6083 next = elt->purpose;
6084 break;
6085 }
6086 }
6087 }
6088 }
6089 }
6090
6091 /* Ordinarily return, but not if we want to output all
6092 and there are elements left. */
6093 if (! (all && next != 0))
6094 return;
6095
6096 /* Generate space up to the position of NEXT. */
6097 if (constructor_incremental)
6098 {
6099 tree filled;
6100 tree nextpos_tree = bitsize_zero_node;
6101
6102 if (TREE_CODE (constructor_type) == RECORD_TYPE
6103 || TREE_CODE (constructor_type) == UNION_TYPE)
6104 {
6105 tree tail;
6106
6107 /* Find the last field written out, if any. */
6108 for (tail = TYPE_FIELDS (constructor_type); tail;
6109 tail = TREE_CHAIN (tail))
6110 if (TREE_CHAIN (tail) == constructor_unfilled_fields)
6111 break;
6112
6113 if (tail)
6114 /* Find the offset of the end of that field. */
6115 filled = size_binop (CEIL_DIV_EXPR,
6116 size_binop (PLUS_EXPR, bit_position (tail),
6117 DECL_SIZE (tail)),
6118 bitsize_unit_node);
6119 else
6120 filled = bitsize_zero_node;
6121
6122 nextpos_tree = convert (bitsizetype, byte_position (next));
6123 constructor_bit_index = bit_position (next);
6124 constructor_unfilled_fields = next;
6125 }
6126 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6127 {
6128 filled
6129 = size_binop (MULT_EXPR, constructor_unfilled_index,
6130 convert (bitsizetype,
6131 TYPE_SIZE_UNIT
6132 (TREE_TYPE (constructor_type))));
6133 nextpos_tree
6134 = size_binop (MULT_EXPR, next,
6135 convert (bitsizetype, TYPE_SIZE_UNIT
6136 (TREE_TYPE (constructor_type))));
6137 constructor_unfilled_index = next;
6138 }
6139 else
6140 filled = 0;
6141
6142 if (filled)
6143 assemble_zeros (tree_low_cst (size_diffop (nextpos_tree, filled), 1));
6144 }
6145 else
6146 {
6147 /* If it's not incremental, just skip over the gap,
6148 so that after jumping to retry we will output the next
6149 successive element. */
6150 if (TREE_CODE (constructor_type) == RECORD_TYPE
6151 || TREE_CODE (constructor_type) == UNION_TYPE)
6152 constructor_unfilled_fields = next;
6153 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6154 constructor_unfilled_index = next;
6155 }
6156
6157 /* ELT now points to the node in the pending tree with the next
6158 initializer to output. */
6159 goto retry;
6160 }
6161 \f
6162 /* Add one non-braced element to the current constructor level.
6163 This adjusts the current position within the constructor's type.
6164 This may also start or terminate implicit levels
6165 to handle a partly-braced initializer.
6166
6167 Once this has found the correct level for the new element,
6168 it calls output_init_element.
6169
6170 Note: if we are incrementally outputting this constructor,
6171 this function may be called with a null argument
6172 representing a sub-constructor that was already incrementally output.
6173 When that happens, we output nothing, but we do the bookkeeping
6174 to skip past that element of the current constructor. */
6175
6176 void
6177 process_init_element (value)
6178 tree value;
6179 {
6180 tree orig_value = value;
6181 int string_flag = value != 0 && TREE_CODE (value) == STRING_CST;
6182
6183 /* Handle superfluous braces around string cst as in
6184 char x[] = {"foo"}; */
6185 if (string_flag
6186 && constructor_type
6187 && TREE_CODE (constructor_type) == ARRAY_TYPE
6188 && TREE_CODE (TREE_TYPE (constructor_type)) == INTEGER_TYPE
6189 && integer_zerop (constructor_unfilled_index))
6190 {
6191 if (constructor_stack->replacement_value)
6192 error_init ("excess elements in char array initializer");
6193 constructor_stack->replacement_value = value;
6194 return;
6195 }
6196
6197 if (constructor_stack->replacement_value != 0)
6198 {
6199 error_init ("excess elements in struct initializer");
6200 return;
6201 }
6202
6203 /* Ignore elements of a brace group if it is entirely superfluous
6204 and has already been diagnosed. */
6205 if (constructor_type == 0)
6206 return;
6207
6208 /* If we've exhausted any levels that didn't have braces,
6209 pop them now. */
6210 while (constructor_stack->implicit)
6211 {
6212 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6213 || TREE_CODE (constructor_type) == UNION_TYPE)
6214 && constructor_fields == 0)
6215 process_init_element (pop_init_level (1));
6216 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6217 && (constructor_max_index == 0
6218 || tree_int_cst_lt (constructor_max_index,
6219 constructor_index)))
6220 process_init_element (pop_init_level (1));
6221 else
6222 break;
6223 }
6224
6225 while (1)
6226 {
6227 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6228 {
6229 tree fieldtype;
6230 enum tree_code fieldcode;
6231
6232 if (constructor_fields == 0)
6233 {
6234 pedwarn_init ("excess elements in struct initializer");
6235 break;
6236 }
6237
6238 fieldtype = TREE_TYPE (constructor_fields);
6239 if (fieldtype != error_mark_node)
6240 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6241 fieldcode = TREE_CODE (fieldtype);
6242
6243 /* Accept a string constant to initialize a subarray. */
6244 if (value != 0
6245 && fieldcode == ARRAY_TYPE
6246 && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
6247 && string_flag)
6248 value = orig_value;
6249 /* Otherwise, if we have come to a subaggregate,
6250 and we don't have an element of its type, push into it. */
6251 else if (value != 0 && !constructor_no_implicit
6252 && value != error_mark_node
6253 && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
6254 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6255 || fieldcode == UNION_TYPE))
6256 {
6257 push_init_level (1);
6258 continue;
6259 }
6260
6261 if (value)
6262 {
6263 push_member_name (constructor_fields);
6264 output_init_element (value, fieldtype, constructor_fields, 1);
6265 RESTORE_SPELLING_DEPTH (constructor_depth);
6266 }
6267 else
6268 /* Do the bookkeeping for an element that was
6269 directly output as a constructor. */
6270 {
6271 /* For a record, keep track of end position of last field. */
6272 constructor_bit_index
6273 = size_binop (PLUS_EXPR,
6274 bit_position (constructor_fields),
6275 DECL_SIZE (constructor_fields));
6276
6277 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6278 /* Skip any nameless bit fields. */
6279 while (constructor_unfilled_fields != 0
6280 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6281 && DECL_NAME (constructor_unfilled_fields) == 0)
6282 constructor_unfilled_fields =
6283 TREE_CHAIN (constructor_unfilled_fields);
6284 }
6285
6286 constructor_fields = TREE_CHAIN (constructor_fields);
6287 /* Skip any nameless bit fields at the beginning. */
6288 while (constructor_fields != 0
6289 && DECL_C_BIT_FIELD (constructor_fields)
6290 && DECL_NAME (constructor_fields) == 0)
6291 constructor_fields = TREE_CHAIN (constructor_fields);
6292 break;
6293 }
6294 if (TREE_CODE (constructor_type) == UNION_TYPE)
6295 {
6296 tree fieldtype;
6297 enum tree_code fieldcode;
6298
6299 if (constructor_fields == 0)
6300 {
6301 pedwarn_init ("excess elements in union initializer");
6302 break;
6303 }
6304
6305 fieldtype = TREE_TYPE (constructor_fields);
6306 if (fieldtype != error_mark_node)
6307 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6308 fieldcode = TREE_CODE (fieldtype);
6309
6310 /* Accept a string constant to initialize a subarray. */
6311 if (value != 0
6312 && fieldcode == ARRAY_TYPE
6313 && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
6314 && string_flag)
6315 value = orig_value;
6316 /* Otherwise, if we have come to a subaggregate,
6317 and we don't have an element of its type, push into it. */
6318 else if (value != 0 && !constructor_no_implicit
6319 && value != error_mark_node
6320 && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
6321 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6322 || fieldcode == UNION_TYPE))
6323 {
6324 push_init_level (1);
6325 continue;
6326 }
6327
6328 if (value)
6329 {
6330 push_member_name (constructor_fields);
6331 output_init_element (value, fieldtype, constructor_fields, 1);
6332 RESTORE_SPELLING_DEPTH (constructor_depth);
6333 }
6334 else
6335 /* Do the bookkeeping for an element that was
6336 directly output as a constructor. */
6337 {
6338 constructor_bit_index = DECL_SIZE (constructor_fields);
6339 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6340 }
6341
6342 constructor_fields = 0;
6343 break;
6344 }
6345 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6346 {
6347 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6348 enum tree_code eltcode = TREE_CODE (elttype);
6349
6350 /* Accept a string constant to initialize a subarray. */
6351 if (value != 0
6352 && eltcode == ARRAY_TYPE
6353 && TREE_CODE (TREE_TYPE (elttype)) == INTEGER_TYPE
6354 && string_flag)
6355 value = orig_value;
6356 /* Otherwise, if we have come to a subaggregate,
6357 and we don't have an element of its type, push into it. */
6358 else if (value != 0 && !constructor_no_implicit
6359 && value != error_mark_node
6360 && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != elttype
6361 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6362 || eltcode == UNION_TYPE))
6363 {
6364 push_init_level (1);
6365 continue;
6366 }
6367
6368 if (constructor_max_index != 0
6369 && tree_int_cst_lt (constructor_max_index, constructor_index))
6370 {
6371 pedwarn_init ("excess elements in array initializer");
6372 break;
6373 }
6374
6375 /* In the case of [LO .. HI] = VALUE, only evaluate VALUE once. */
6376 if (constructor_range_end)
6377 {
6378 if (constructor_max_index != 0
6379 && tree_int_cst_lt (constructor_max_index,
6380 constructor_range_end))
6381 {
6382 pedwarn_init ("excess elements in array initializer");
6383 constructor_range_end = constructor_max_index;
6384 }
6385
6386 value = save_expr (value);
6387 }
6388
6389 /* Now output the actual element.
6390 Ordinarily, output once.
6391 If there is a range, repeat it till we advance past the range. */
6392 do
6393 {
6394 if (value)
6395 {
6396 push_array_bounds (tree_low_cst (constructor_index, 0));
6397 output_init_element (value, elttype, constructor_index, 1);
6398 RESTORE_SPELLING_DEPTH (constructor_depth);
6399 }
6400
6401 constructor_index
6402 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6403
6404 if (! value)
6405 /* If we are doing the bookkeeping for an element that was
6406 directly output as a constructor, we must update
6407 constructor_unfilled_index. */
6408 constructor_unfilled_index = constructor_index;
6409 }
6410 while (! (constructor_range_end == 0
6411 || tree_int_cst_lt (constructor_range_end,
6412 constructor_index)));
6413
6414 break;
6415 }
6416
6417 /* Handle the sole element allowed in a braced initializer
6418 for a scalar variable. */
6419 if (constructor_fields == 0)
6420 {
6421 pedwarn_init ("excess elements in scalar initializer");
6422 break;
6423 }
6424
6425 if (value)
6426 output_init_element (value, constructor_type, NULL_TREE, 1);
6427 constructor_fields = 0;
6428 break;
6429 }
6430 }
6431 \f
6432 /* Expand an ASM statement with operands, handling output operands
6433 that are not variables or INDIRECT_REFS by transforming such
6434 cases into cases that expand_asm_operands can handle.
6435
6436 Arguments are same as for expand_asm_operands. */
6437
6438 void
6439 c_expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
6440 tree string, outputs, inputs, clobbers;
6441 int vol;
6442 char *filename;
6443 int line;
6444 {
6445 int noutputs = list_length (outputs);
6446 register int i;
6447 /* o[I] is the place that output number I should be written. */
6448 register tree *o = (tree *) alloca (noutputs * sizeof (tree));
6449 register tree tail;
6450
6451 if (TREE_CODE (string) == ADDR_EXPR)
6452 string = TREE_OPERAND (string, 0);
6453 if (TREE_CODE (string) != STRING_CST)
6454 {
6455 error ("asm template is not a string constant");
6456 return;
6457 }
6458
6459 /* Record the contents of OUTPUTS before it is modified. */
6460 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
6461 {
6462 tree output = TREE_VALUE (tail);
6463
6464 /* We can remove conversions that just change the type, not the mode. */
6465 STRIP_NOPS (output);
6466 o[i] = output;
6467
6468 /* Allow conversions as LHS here. build_modify_expr as called below
6469 will do the right thing with them. */
6470 while (TREE_CODE (output) == NOP_EXPR
6471 || TREE_CODE (output) == CONVERT_EXPR
6472 || TREE_CODE (output) == FLOAT_EXPR
6473 || TREE_CODE (output) == FIX_TRUNC_EXPR
6474 || TREE_CODE (output) == FIX_FLOOR_EXPR
6475 || TREE_CODE (output) == FIX_ROUND_EXPR
6476 || TREE_CODE (output) == FIX_CEIL_EXPR)
6477 output = TREE_OPERAND (output, 0);
6478
6479 lvalue_or_else (o[i], "invalid lvalue in asm statement");
6480 }
6481
6482 /* Perform default conversions on array and function inputs. */
6483 /* Don't do this for other types--
6484 it would screw up operands expected to be in memory. */
6485 for (i = 0, tail = inputs; tail; tail = TREE_CHAIN (tail), i++)
6486 if (TREE_CODE (TREE_TYPE (TREE_VALUE (tail))) == ARRAY_TYPE
6487 || TREE_CODE (TREE_TYPE (TREE_VALUE (tail))) == FUNCTION_TYPE)
6488 TREE_VALUE (tail) = default_conversion (TREE_VALUE (tail));
6489
6490 /* Generate the ASM_OPERANDS insn;
6491 store into the TREE_VALUEs of OUTPUTS some trees for
6492 where the values were actually stored. */
6493 expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line);
6494
6495 /* Copy all the intermediate outputs into the specified outputs. */
6496 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
6497 {
6498 if (o[i] != TREE_VALUE (tail))
6499 {
6500 expand_expr (build_modify_expr (o[i], NOP_EXPR, TREE_VALUE (tail)),
6501 NULL_RTX, VOIDmode, EXPAND_NORMAL);
6502 free_temp_slots ();
6503 }
6504 /* Detect modification of read-only values.
6505 (Otherwise done by build_modify_expr.) */
6506 else
6507 {
6508 tree type = TREE_TYPE (o[i]);
6509 if (TREE_READONLY (o[i])
6510 || TYPE_READONLY (type)
6511 || ((TREE_CODE (type) == RECORD_TYPE
6512 || TREE_CODE (type) == UNION_TYPE)
6513 && C_TYPE_FIELDS_READONLY (type)))
6514 readonly_warning (o[i], "modification by `asm'");
6515 }
6516 }
6517
6518 /* Those MODIFY_EXPRs could do autoincrements. */
6519 emit_queue ();
6520 }
6521 \f
6522 /* Expand a C `return' statement.
6523 RETVAL is the expression for what to return,
6524 or a null pointer for `return;' with no value. */
6525
6526 void
6527 c_expand_return (retval)
6528 tree retval;
6529 {
6530 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl));
6531
6532 if (TREE_THIS_VOLATILE (current_function_decl))
6533 warning ("function declared `noreturn' has a `return' statement");
6534
6535 if (!retval)
6536 {
6537 current_function_returns_null = 1;
6538 if (warn_return_type && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6539 warning ("`return' with no value, in function returning non-void");
6540 expand_null_return ();
6541 }
6542 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6543 {
6544 current_function_returns_null = 1;
6545 if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6546 pedwarn ("`return' with a value, in function returning void");
6547 expand_return (retval);
6548 }
6549 else
6550 {
6551 tree t = convert_for_assignment (valtype, retval, _("return"),
6552 NULL_TREE, NULL_TREE, 0);
6553 tree res = DECL_RESULT (current_function_decl);
6554 tree inner;
6555
6556 if (t == error_mark_node)
6557 return;
6558
6559 inner = t = convert (TREE_TYPE (res), t);
6560
6561 /* Strip any conversions, additions, and subtractions, and see if
6562 we are returning the address of a local variable. Warn if so. */
6563 while (1)
6564 {
6565 switch (TREE_CODE (inner))
6566 {
6567 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
6568 case PLUS_EXPR:
6569 inner = TREE_OPERAND (inner, 0);
6570 continue;
6571
6572 case MINUS_EXPR:
6573 /* If the second operand of the MINUS_EXPR has a pointer
6574 type (or is converted from it), this may be valid, so
6575 don't give a warning. */
6576 {
6577 tree op1 = TREE_OPERAND (inner, 1);
6578
6579 while (! POINTER_TYPE_P (TREE_TYPE (op1))
6580 && (TREE_CODE (op1) == NOP_EXPR
6581 || TREE_CODE (op1) == NON_LVALUE_EXPR
6582 || TREE_CODE (op1) == CONVERT_EXPR))
6583 op1 = TREE_OPERAND (op1, 0);
6584
6585 if (POINTER_TYPE_P (TREE_TYPE (op1)))
6586 break;
6587
6588 inner = TREE_OPERAND (inner, 0);
6589 continue;
6590 }
6591
6592 case ADDR_EXPR:
6593 inner = TREE_OPERAND (inner, 0);
6594
6595 while (TREE_CODE_CLASS (TREE_CODE (inner)) == 'r')
6596 inner = TREE_OPERAND (inner, 0);
6597
6598 if (TREE_CODE (inner) == VAR_DECL
6599 && ! DECL_EXTERNAL (inner)
6600 && ! TREE_STATIC (inner)
6601 && DECL_CONTEXT (inner) == current_function_decl)
6602 warning ("function returns address of local variable");
6603 break;
6604
6605 default:
6606 break;
6607 }
6608
6609 break;
6610 }
6611
6612 t = build (MODIFY_EXPR, TREE_TYPE (res), res, t);
6613 TREE_SIDE_EFFECTS (t) = 1;
6614 expand_return (t);
6615 current_function_returns_value = 1;
6616 }
6617 }
6618 \f
6619 /* Start a C switch statement, testing expression EXP.
6620 Return EXP if it is valid, an error node otherwise. */
6621
6622 tree
6623 c_expand_start_case (exp)
6624 tree exp;
6625 {
6626 register enum tree_code code;
6627 tree type;
6628
6629 if (TREE_CODE (exp) == ERROR_MARK)
6630 return exp;
6631
6632 code = TREE_CODE (TREE_TYPE (exp));
6633 type = TREE_TYPE (exp);
6634
6635 if (code != INTEGER_TYPE && code != ENUMERAL_TYPE && code != ERROR_MARK)
6636 {
6637 error ("switch quantity not an integer");
6638 exp = error_mark_node;
6639 }
6640 else
6641 {
6642 tree index;
6643 type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
6644
6645 if (warn_traditional
6646 && ! in_system_header
6647 && (type == long_integer_type_node
6648 || type == long_unsigned_type_node))
6649 pedwarn ("`long' switch expression not converted to `int' in ANSI C");
6650
6651 exp = default_conversion (exp);
6652 type = TREE_TYPE (exp);
6653 index = get_unwidened (exp, NULL_TREE);
6654 /* We can't strip a conversion from a signed type to an unsigned,
6655 because if we did, int_fits_type_p would do the wrong thing
6656 when checking case values for being in range,
6657 and it's too hard to do the right thing. */
6658 if (TREE_UNSIGNED (TREE_TYPE (exp))
6659 == TREE_UNSIGNED (TREE_TYPE (index)))
6660 exp = index;
6661 }
6662
6663 expand_start_case (1, exp, type, "switch statement");
6664
6665 return exp;
6666 }