toplev.h: New file.
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 88, 91-97, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file is part of the C front end.
23 It contains routines to build C expressions given their operands,
24 including computing the types of the result, C-specific error checks,
25 and some optimization.
26
27 There are also routines to build RETURN_STMT nodes and CASE_STMT nodes,
28 and to process initializations in declarations (since they work
29 like a strange sort of assignment). */
30
31 #include "config.h"
32 #include "system.h"
33 #include "tree.h"
34 #include "c-tree.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "rtl.h"
38 #include "expr.h"
39 #include "toplev.h"
40
41 /* Nonzero if we've already printed a "missing braces around initializer"
42 message within this initializer. */
43 static int missing_braces_mentioned;
44
45 static tree qualify_type PROTO((tree, tree));
46 static int comp_target_types PROTO((tree, tree));
47 static int function_types_compatible_p PROTO((tree, tree));
48 static int type_lists_compatible_p PROTO((tree, tree));
49 static int self_promoting_type_p PROTO((tree));
50 static tree decl_constant_value PROTO((tree));
51 static tree lookup_field PROTO((tree, tree, tree *));
52 static tree convert_arguments PROTO((tree, tree, tree, tree));
53 static tree pointer_int_sum PROTO((enum tree_code, tree, tree));
54 static tree pointer_diff PROTO((tree, tree));
55 static tree unary_complex_lvalue PROTO((enum tree_code, tree));
56 static void pedantic_lvalue_warning PROTO((enum tree_code));
57 static tree internal_build_compound_expr PROTO((tree, int));
58 static tree convert_for_assignment PROTO((tree, tree, char *, tree,
59 tree, int));
60 static void warn_for_assignment PROTO((char *, char *, tree, int));
61 static tree valid_compound_expr_initializer PROTO((tree, tree));
62 static void push_string PROTO((char *));
63 static void push_member_name PROTO((tree));
64 static void push_array_bounds PROTO((int));
65 static int spelling_length PROTO((void));
66 static char *print_spelling PROTO((char *));
67 static char *get_spelling PROTO((char *));
68 static void warning_init PROTO((char *, char *,
69 char *));
70 static tree digest_init PROTO((tree, tree, int, int));
71 static void check_init_type_bitfields PROTO((tree));
72 static void output_init_element PROTO((tree, tree, tree, int));
73 static void output_pending_init_elements PROTO((int));
74 static void add_pending_init PROTO((tree, tree));
75 static int pending_init_member PROTO((tree));
76 \f
77 /* Do `exp = require_complete_type (exp);' to make sure exp
78 does not have an incomplete type. (That includes void types.) */
79
80 tree
81 require_complete_type (value)
82 tree value;
83 {
84 tree type = TREE_TYPE (value);
85
86 /* First, detect a valid value with a complete type. */
87 if (TYPE_SIZE (type) != 0
88 && type != void_type_node)
89 return value;
90
91 incomplete_type_error (value, type);
92 return error_mark_node;
93 }
94
95 /* Print an error message for invalid use of an incomplete type.
96 VALUE is the expression that was used (or 0 if that isn't known)
97 and TYPE is the type that was invalid. */
98
99 void
100 incomplete_type_error (value, type)
101 tree value;
102 tree type;
103 {
104 char *errmsg;
105
106 /* Avoid duplicate error message. */
107 if (TREE_CODE (type) == ERROR_MARK)
108 return;
109
110 if (value != 0 && (TREE_CODE (value) == VAR_DECL
111 || TREE_CODE (value) == PARM_DECL))
112 error ("`%s' has an incomplete type",
113 IDENTIFIER_POINTER (DECL_NAME (value)));
114 else
115 {
116 retry:
117 /* We must print an error message. Be clever about what it says. */
118
119 switch (TREE_CODE (type))
120 {
121 case RECORD_TYPE:
122 errmsg = "invalid use of undefined type `struct %s'";
123 break;
124
125 case UNION_TYPE:
126 errmsg = "invalid use of undefined type `union %s'";
127 break;
128
129 case ENUMERAL_TYPE:
130 errmsg = "invalid use of undefined type `enum %s'";
131 break;
132
133 case VOID_TYPE:
134 error ("invalid use of void expression");
135 return;
136
137 case ARRAY_TYPE:
138 if (TYPE_DOMAIN (type))
139 {
140 type = TREE_TYPE (type);
141 goto retry;
142 }
143 error ("invalid use of array with unspecified bounds");
144 return;
145
146 default:
147 abort ();
148 }
149
150 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
151 error (errmsg, IDENTIFIER_POINTER (TYPE_NAME (type)));
152 else
153 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
154 error ("invalid use of incomplete typedef `%s'",
155 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))));
156 }
157 }
158
159 /* Return a variant of TYPE which has all the type qualifiers of LIKE
160 as well as those of TYPE. */
161
162 static tree
163 qualify_type (type, like)
164 tree type, like;
165 {
166 int constflag = TYPE_READONLY (type) || TYPE_READONLY (like);
167 int volflag = TYPE_VOLATILE (type) || TYPE_VOLATILE (like);
168 return c_build_type_variant (type, constflag, volflag);
169 }
170 \f
171 /* Return the common type of two types.
172 We assume that comptypes has already been done and returned 1;
173 if that isn't so, this may crash. In particular, we assume that qualifiers
174 match.
175
176 This is the type for the result of most arithmetic operations
177 if the operands have the given two types. */
178
179 tree
180 common_type (t1, t2)
181 tree t1, t2;
182 {
183 register enum tree_code code1;
184 register enum tree_code code2;
185 tree attributes;
186
187 /* Save time if the two types are the same. */
188
189 if (t1 == t2) return t1;
190
191 /* If one type is nonsense, use the other. */
192 if (t1 == error_mark_node)
193 return t2;
194 if (t2 == error_mark_node)
195 return t1;
196
197 /* Merge the attributes. */
198 attributes = merge_machine_type_attributes (t1, t2);
199
200 /* Treat an enum type as the unsigned integer type of the same width. */
201
202 if (TREE_CODE (t1) == ENUMERAL_TYPE)
203 t1 = type_for_size (TYPE_PRECISION (t1), 1);
204 if (TREE_CODE (t2) == ENUMERAL_TYPE)
205 t2 = type_for_size (TYPE_PRECISION (t2), 1);
206
207 code1 = TREE_CODE (t1);
208 code2 = TREE_CODE (t2);
209
210 /* If one type is complex, form the common type of the non-complex
211 components, then make that complex. Use T1 or T2 if it is the
212 required type. */
213 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
214 {
215 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
216 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
217 tree subtype = common_type (subtype1, subtype2);
218
219 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
220 return build_type_attribute_variant (t1, attributes);
221 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
222 return build_type_attribute_variant (t2, attributes);
223 else
224 return build_type_attribute_variant (build_complex_type (subtype),
225 attributes);
226 }
227
228 switch (code1)
229 {
230 case INTEGER_TYPE:
231 case REAL_TYPE:
232 /* If only one is real, use it as the result. */
233
234 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
235 return build_type_attribute_variant (t1, attributes);
236
237 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
238 return build_type_attribute_variant (t2, attributes);
239
240 /* Both real or both integers; use the one with greater precision. */
241
242 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
243 return build_type_attribute_variant (t1, attributes);
244 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
245 return build_type_attribute_variant (t2, attributes);
246
247 /* Same precision. Prefer longs to ints even when same size. */
248
249 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
250 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
251 return build_type_attribute_variant (long_unsigned_type_node,
252 attributes);
253
254 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
255 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
256 {
257 /* But preserve unsignedness from the other type,
258 since long cannot hold all the values of an unsigned int. */
259 if (TREE_UNSIGNED (t1) || TREE_UNSIGNED (t2))
260 t1 = long_unsigned_type_node;
261 else
262 t1 = long_integer_type_node;
263 return build_type_attribute_variant (t1, attributes);
264 }
265
266 /* Likewise, prefer long double to double even if same size. */
267 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
268 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
269 return build_type_attribute_variant (long_double_type_node,
270 attributes);
271
272 /* Otherwise prefer the unsigned one. */
273
274 if (TREE_UNSIGNED (t1))
275 return build_type_attribute_variant (t1, attributes);
276 else
277 return build_type_attribute_variant (t2, attributes);
278
279 case POINTER_TYPE:
280 /* For two pointers, do this recursively on the target type,
281 and combine the qualifiers of the two types' targets. */
282 /* This code was turned off; I don't know why.
283 But ANSI C specifies doing this with the qualifiers.
284 So I turned it on again. */
285 {
286 tree target = common_type (TYPE_MAIN_VARIANT (TREE_TYPE (t1)),
287 TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
288 int constp
289 = TYPE_READONLY (TREE_TYPE (t1)) || TYPE_READONLY (TREE_TYPE (t2));
290 int volatilep
291 = TYPE_VOLATILE (TREE_TYPE (t1)) || TYPE_VOLATILE (TREE_TYPE (t2));
292 t1 = build_pointer_type (c_build_type_variant (target, constp,
293 volatilep));
294 return build_type_attribute_variant (t1, attributes);
295 }
296 #if 0
297 t1 = build_pointer_type (common_type (TREE_TYPE (t1), TREE_TYPE (t2)));
298 return build_type_attribute_variant (t1, attributes);
299 #endif
300
301 case ARRAY_TYPE:
302 {
303 tree elt = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
304 /* Save space: see if the result is identical to one of the args. */
305 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1))
306 return build_type_attribute_variant (t1, attributes);
307 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2))
308 return build_type_attribute_variant (t2, attributes);
309 /* Merge the element types, and have a size if either arg has one. */
310 t1 = build_array_type (elt, TYPE_DOMAIN (TYPE_DOMAIN (t1) ? t1 : t2));
311 return build_type_attribute_variant (t1, attributes);
312 }
313
314 case FUNCTION_TYPE:
315 /* Function types: prefer the one that specified arg types.
316 If both do, merge the arg types. Also merge the return types. */
317 {
318 tree valtype = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
319 tree p1 = TYPE_ARG_TYPES (t1);
320 tree p2 = TYPE_ARG_TYPES (t2);
321 int len;
322 tree newargs, n;
323 int i;
324
325 /* Save space: see if the result is identical to one of the args. */
326 if (valtype == TREE_TYPE (t1) && ! TYPE_ARG_TYPES (t2))
327 return build_type_attribute_variant (t1, attributes);
328 if (valtype == TREE_TYPE (t2) && ! TYPE_ARG_TYPES (t1))
329 return build_type_attribute_variant (t2, attributes);
330
331 /* Simple way if one arg fails to specify argument types. */
332 if (TYPE_ARG_TYPES (t1) == 0)
333 {
334 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
335 return build_type_attribute_variant (t1, attributes);
336 }
337 if (TYPE_ARG_TYPES (t2) == 0)
338 {
339 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
340 return build_type_attribute_variant (t1, attributes);
341 }
342
343 /* If both args specify argument types, we must merge the two
344 lists, argument by argument. */
345
346 len = list_length (p1);
347 newargs = 0;
348
349 for (i = 0; i < len; i++)
350 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
351
352 n = newargs;
353
354 for (; p1;
355 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
356 {
357 /* A null type means arg type is not specified.
358 Take whatever the other function type has. */
359 if (TREE_VALUE (p1) == 0)
360 {
361 TREE_VALUE (n) = TREE_VALUE (p2);
362 goto parm_done;
363 }
364 if (TREE_VALUE (p2) == 0)
365 {
366 TREE_VALUE (n) = TREE_VALUE (p1);
367 goto parm_done;
368 }
369
370 /* Given wait (union {union wait *u; int *i} *)
371 and wait (union wait *),
372 prefer union wait * as type of parm. */
373 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
374 && TREE_VALUE (p1) != TREE_VALUE (p2))
375 {
376 tree memb;
377 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
378 memb; memb = TREE_CHAIN (memb))
379 if (comptypes (TREE_TYPE (memb), TREE_VALUE (p2)))
380 {
381 TREE_VALUE (n) = TREE_VALUE (p2);
382 if (pedantic)
383 pedwarn ("function types not truly compatible in ANSI C");
384 goto parm_done;
385 }
386 }
387 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
388 && TREE_VALUE (p2) != TREE_VALUE (p1))
389 {
390 tree memb;
391 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
392 memb; memb = TREE_CHAIN (memb))
393 if (comptypes (TREE_TYPE (memb), TREE_VALUE (p1)))
394 {
395 TREE_VALUE (n) = TREE_VALUE (p1);
396 if (pedantic)
397 pedwarn ("function types not truly compatible in ANSI C");
398 goto parm_done;
399 }
400 }
401 TREE_VALUE (n) = common_type (TREE_VALUE (p1), TREE_VALUE (p2));
402 parm_done: ;
403 }
404
405 t1 = build_function_type (valtype, newargs);
406 /* ... falls through ... */
407 }
408
409 default:
410 return build_type_attribute_variant (t1, attributes);
411 }
412
413 }
414 \f
415 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
416 or various other operations. Return 2 if they are compatible
417 but a warning may be needed if you use them together. */
418
419 int
420 comptypes (type1, type2)
421 tree type1, type2;
422 {
423 register tree t1 = type1;
424 register tree t2 = type2;
425 int attrval, val;
426
427 /* Suppress errors caused by previously reported errors. */
428
429 if (t1 == t2 || !t1 || !t2
430 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
431 return 1;
432
433 /* Treat an enum type as the integer type of the same width and
434 signedness. */
435
436 if (TREE_CODE (t1) == ENUMERAL_TYPE)
437 t1 = type_for_size (TYPE_PRECISION (t1), TREE_UNSIGNED (t1));
438 if (TREE_CODE (t2) == ENUMERAL_TYPE)
439 t2 = type_for_size (TYPE_PRECISION (t2), TREE_UNSIGNED (t2));
440
441 if (t1 == t2)
442 return 1;
443
444 /* Different classes of types can't be compatible. */
445
446 if (TREE_CODE (t1) != TREE_CODE (t2)) return 0;
447
448 /* Qualifiers must match. */
449
450 if (TYPE_READONLY (t1) != TYPE_READONLY (t2))
451 return 0;
452 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
453 return 0;
454
455 /* Allow for two different type nodes which have essentially the same
456 definition. Note that we already checked for equality of the type
457 type qualifiers (just above). */
458
459 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
460 return 1;
461
462 #ifndef COMP_TYPE_ATTRIBUTES
463 #define COMP_TYPE_ATTRIBUTES(t1,t2) 1
464 #endif
465
466 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
467 if (! (attrval = COMP_TYPE_ATTRIBUTES (t1, t2)))
468 return 0;
469
470 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
471 val = 0;
472
473 switch (TREE_CODE (t1))
474 {
475 case POINTER_TYPE:
476 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
477 ? 1 : comptypes (TREE_TYPE (t1), TREE_TYPE (t2)));
478 break;
479
480 case FUNCTION_TYPE:
481 val = function_types_compatible_p (t1, t2);
482 break;
483
484 case ARRAY_TYPE:
485 {
486 tree d1 = TYPE_DOMAIN (t1);
487 tree d2 = TYPE_DOMAIN (t2);
488 val = 1;
489
490 /* Target types must match incl. qualifiers. */
491 if (TREE_TYPE (t1) != TREE_TYPE (t2)
492 && 0 == (val = comptypes (TREE_TYPE (t1), TREE_TYPE (t2))))
493 return 0;
494
495 /* Sizes must match unless one is missing or variable. */
496 if (d1 == 0 || d2 == 0 || d1 == d2
497 || TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
498 || TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
499 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST
500 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST)
501 break;
502
503 if (! ((TREE_INT_CST_LOW (TYPE_MIN_VALUE (d1))
504 == TREE_INT_CST_LOW (TYPE_MIN_VALUE (d2)))
505 && (TREE_INT_CST_HIGH (TYPE_MIN_VALUE (d1))
506 == TREE_INT_CST_HIGH (TYPE_MIN_VALUE (d2)))
507 && (TREE_INT_CST_LOW (TYPE_MAX_VALUE (d1))
508 == TREE_INT_CST_LOW (TYPE_MAX_VALUE (d2)))
509 && (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (d1))
510 == TREE_INT_CST_HIGH (TYPE_MAX_VALUE (d2)))))
511 val = 0;
512 break;
513 }
514
515 case RECORD_TYPE:
516 if (maybe_objc_comptypes (t1, t2, 0) == 1)
517 val = 1;
518 break;
519
520 default:
521 break;
522 }
523 return attrval == 2 && val == 1 ? 2 : val;
524 }
525
526 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
527 ignoring their qualifiers. */
528
529 static int
530 comp_target_types (ttl, ttr)
531 tree ttl, ttr;
532 {
533 int val;
534
535 /* Give maybe_objc_comptypes a crack at letting these types through. */
536 if ((val = maybe_objc_comptypes (ttl, ttr, 1)) >= 0)
537 return val;
538
539 val = comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (ttl)),
540 TYPE_MAIN_VARIANT (TREE_TYPE (ttr)));
541
542 if (val == 2 && pedantic)
543 pedwarn ("types are not quite compatible");
544 return val;
545 }
546 \f
547 /* Subroutines of `comptypes'. */
548
549 /* Return 1 if two function types F1 and F2 are compatible.
550 If either type specifies no argument types,
551 the other must specify a fixed number of self-promoting arg types.
552 Otherwise, if one type specifies only the number of arguments,
553 the other must specify that number of self-promoting arg types.
554 Otherwise, the argument types must match. */
555
556 static int
557 function_types_compatible_p (f1, f2)
558 tree f1, f2;
559 {
560 tree args1, args2;
561 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
562 int val = 1;
563 int val1;
564
565 if (!(TREE_TYPE (f1) == TREE_TYPE (f2)
566 || (val = comptypes (TREE_TYPE (f1), TREE_TYPE (f2)))))
567 return 0;
568
569 args1 = TYPE_ARG_TYPES (f1);
570 args2 = TYPE_ARG_TYPES (f2);
571
572 /* An unspecified parmlist matches any specified parmlist
573 whose argument types don't need default promotions. */
574
575 if (args1 == 0)
576 {
577 if (!self_promoting_args_p (args2))
578 return 0;
579 /* If one of these types comes from a non-prototype fn definition,
580 compare that with the other type's arglist.
581 If they don't match, ask for a warning (but no error). */
582 if (TYPE_ACTUAL_ARG_TYPES (f1)
583 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
584 val = 2;
585 return val;
586 }
587 if (args2 == 0)
588 {
589 if (!self_promoting_args_p (args1))
590 return 0;
591 if (TYPE_ACTUAL_ARG_TYPES (f2)
592 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
593 val = 2;
594 return val;
595 }
596
597 /* Both types have argument lists: compare them and propagate results. */
598 val1 = type_lists_compatible_p (args1, args2);
599 return val1 != 1 ? val1 : val;
600 }
601
602 /* Check two lists of types for compatibility,
603 returning 0 for incompatible, 1 for compatible,
604 or 2 for compatible with warning. */
605
606 static int
607 type_lists_compatible_p (args1, args2)
608 tree args1, args2;
609 {
610 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
611 int val = 1;
612 int newval = 0;
613
614 while (1)
615 {
616 if (args1 == 0 && args2 == 0)
617 return val;
618 /* If one list is shorter than the other,
619 they fail to match. */
620 if (args1 == 0 || args2 == 0)
621 return 0;
622 /* A null pointer instead of a type
623 means there is supposed to be an argument
624 but nothing is specified about what type it has.
625 So match anything that self-promotes. */
626 if (TREE_VALUE (args1) == 0)
627 {
628 if (! self_promoting_type_p (TREE_VALUE (args2)))
629 return 0;
630 }
631 else if (TREE_VALUE (args2) == 0)
632 {
633 if (! self_promoting_type_p (TREE_VALUE (args1)))
634 return 0;
635 }
636 else if (! (newval = comptypes (TREE_VALUE (args1), TREE_VALUE (args2))))
637 {
638 /* Allow wait (union {union wait *u; int *i} *)
639 and wait (union wait *) to be compatible. */
640 if (TREE_CODE (TREE_VALUE (args1)) == UNION_TYPE
641 && (TYPE_NAME (TREE_VALUE (args1)) == 0
642 || TYPE_TRANSPARENT_UNION (TREE_VALUE (args1)))
643 && TREE_CODE (TYPE_SIZE (TREE_VALUE (args1))) == INTEGER_CST
644 && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args1)),
645 TYPE_SIZE (TREE_VALUE (args2))))
646 {
647 tree memb;
648 for (memb = TYPE_FIELDS (TREE_VALUE (args1));
649 memb; memb = TREE_CHAIN (memb))
650 if (comptypes (TREE_TYPE (memb), TREE_VALUE (args2)))
651 break;
652 if (memb == 0)
653 return 0;
654 }
655 else if (TREE_CODE (TREE_VALUE (args2)) == UNION_TYPE
656 && (TYPE_NAME (TREE_VALUE (args2)) == 0
657 || TYPE_TRANSPARENT_UNION (TREE_VALUE (args2)))
658 && TREE_CODE (TYPE_SIZE (TREE_VALUE (args2))) == INTEGER_CST
659 && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args2)),
660 TYPE_SIZE (TREE_VALUE (args1))))
661 {
662 tree memb;
663 for (memb = TYPE_FIELDS (TREE_VALUE (args2));
664 memb; memb = TREE_CHAIN (memb))
665 if (comptypes (TREE_TYPE (memb), TREE_VALUE (args1)))
666 break;
667 if (memb == 0)
668 return 0;
669 }
670 else
671 return 0;
672 }
673
674 /* comptypes said ok, but record if it said to warn. */
675 if (newval > val)
676 val = newval;
677
678 args1 = TREE_CHAIN (args1);
679 args2 = TREE_CHAIN (args2);
680 }
681 }
682
683 /* Return 1 if PARMS specifies a fixed number of parameters
684 and none of their types is affected by default promotions. */
685
686 int
687 self_promoting_args_p (parms)
688 tree parms;
689 {
690 register tree t;
691 for (t = parms; t; t = TREE_CHAIN (t))
692 {
693 register tree type = TREE_VALUE (t);
694
695 if (TREE_CHAIN (t) == 0 && type != void_type_node)
696 return 0;
697
698 if (type == 0)
699 return 0;
700
701 if (TYPE_MAIN_VARIANT (type) == float_type_node)
702 return 0;
703
704 if (C_PROMOTING_INTEGER_TYPE_P (type))
705 return 0;
706 }
707 return 1;
708 }
709
710 /* Return 1 if TYPE is not affected by default promotions. */
711
712 static int
713 self_promoting_type_p (type)
714 tree type;
715 {
716 if (TYPE_MAIN_VARIANT (type) == float_type_node)
717 return 0;
718
719 if (C_PROMOTING_INTEGER_TYPE_P (type))
720 return 0;
721
722 return 1;
723 }
724 \f
725 /* Return an unsigned type the same as TYPE in other respects. */
726
727 tree
728 unsigned_type (type)
729 tree type;
730 {
731 tree type1 = TYPE_MAIN_VARIANT (type);
732 if (type1 == signed_char_type_node || type1 == char_type_node)
733 return unsigned_char_type_node;
734 if (type1 == integer_type_node)
735 return unsigned_type_node;
736 if (type1 == short_integer_type_node)
737 return short_unsigned_type_node;
738 if (type1 == long_integer_type_node)
739 return long_unsigned_type_node;
740 if (type1 == long_long_integer_type_node)
741 return long_long_unsigned_type_node;
742 if (type1 == intDI_type_node)
743 return unsigned_intDI_type_node;
744 if (type1 == intSI_type_node)
745 return unsigned_intSI_type_node;
746 if (type1 == intHI_type_node)
747 return unsigned_intHI_type_node;
748 if (type1 == intQI_type_node)
749 return unsigned_intQI_type_node;
750
751 return signed_or_unsigned_type (1, type);
752 }
753
754 /* Return a signed type the same as TYPE in other respects. */
755
756 tree
757 signed_type (type)
758 tree type;
759 {
760 tree type1 = TYPE_MAIN_VARIANT (type);
761 if (type1 == unsigned_char_type_node || type1 == char_type_node)
762 return signed_char_type_node;
763 if (type1 == unsigned_type_node)
764 return integer_type_node;
765 if (type1 == short_unsigned_type_node)
766 return short_integer_type_node;
767 if (type1 == long_unsigned_type_node)
768 return long_integer_type_node;
769 if (type1 == long_long_unsigned_type_node)
770 return long_long_integer_type_node;
771 if (type1 == unsigned_intDI_type_node)
772 return intDI_type_node;
773 if (type1 == unsigned_intSI_type_node)
774 return intSI_type_node;
775 if (type1 == unsigned_intHI_type_node)
776 return intHI_type_node;
777 if (type1 == unsigned_intQI_type_node)
778 return intQI_type_node;
779
780 return signed_or_unsigned_type (0, type);
781 }
782
783 /* Return a type the same as TYPE except unsigned or
784 signed according to UNSIGNEDP. */
785
786 tree
787 signed_or_unsigned_type (unsignedp, type)
788 int unsignedp;
789 tree type;
790 {
791 if ((! INTEGRAL_TYPE_P (type) && ! POINTER_TYPE_P (type))
792 || TREE_UNSIGNED (type) == unsignedp)
793 return type;
794 if (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node))
795 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
796 if (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
797 return unsignedp ? unsigned_type_node : integer_type_node;
798 if (TYPE_PRECISION (type) == TYPE_PRECISION (short_integer_type_node))
799 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
800 if (TYPE_PRECISION (type) == TYPE_PRECISION (long_integer_type_node))
801 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
802 if (TYPE_PRECISION (type) == TYPE_PRECISION (long_long_integer_type_node))
803 return (unsignedp ? long_long_unsigned_type_node
804 : long_long_integer_type_node);
805 return type;
806 }
807
808 /* Compute the value of the `sizeof' operator. */
809
810 tree
811 c_sizeof (type)
812 tree type;
813 {
814 enum tree_code code = TREE_CODE (type);
815 tree t;
816
817 if (code == FUNCTION_TYPE)
818 {
819 if (pedantic || warn_pointer_arith)
820 pedwarn ("sizeof applied to a function type");
821 return size_int (1);
822 }
823 if (code == VOID_TYPE)
824 {
825 if (pedantic || warn_pointer_arith)
826 pedwarn ("sizeof applied to a void type");
827 return size_int (1);
828 }
829 if (code == ERROR_MARK)
830 return size_int (1);
831 if (TYPE_SIZE (type) == 0)
832 {
833 error ("sizeof applied to an incomplete type");
834 return size_int (0);
835 }
836
837 /* Convert in case a char is more than one unit. */
838 t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
839 size_int (TYPE_PRECISION (char_type_node)));
840 t = convert (sizetype, t);
841 /* size_binop does not put the constant in range, so do it now. */
842 if (TREE_CODE (t) == INTEGER_CST && force_fit_type (t, 0))
843 TREE_CONSTANT_OVERFLOW (t) = TREE_OVERFLOW (t) = 1;
844 return t;
845 }
846
847 tree
848 c_sizeof_nowarn (type)
849 tree type;
850 {
851 enum tree_code code = TREE_CODE (type);
852 tree t;
853
854 if (code == FUNCTION_TYPE
855 || code == VOID_TYPE
856 || code == ERROR_MARK)
857 return size_int (1);
858 if (TYPE_SIZE (type) == 0)
859 return size_int (0);
860
861 /* Convert in case a char is more than one unit. */
862 t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
863 size_int (TYPE_PRECISION (char_type_node)));
864 t = convert (sizetype, t);
865 force_fit_type (t, 0);
866 return t;
867 }
868
869 /* Compute the size to increment a pointer by. */
870
871 tree
872 c_size_in_bytes (type)
873 tree type;
874 {
875 enum tree_code code = TREE_CODE (type);
876 tree t;
877
878 if (code == FUNCTION_TYPE)
879 return size_int (1);
880 if (code == VOID_TYPE)
881 return size_int (1);
882 if (code == ERROR_MARK)
883 return size_int (1);
884 if (TYPE_SIZE (type) == 0)
885 {
886 error ("arithmetic on pointer to an incomplete type");
887 return size_int (1);
888 }
889
890 /* Convert in case a char is more than one unit. */
891 t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
892 size_int (BITS_PER_UNIT));
893 t = convert (sizetype, t);
894 force_fit_type (t, 0);
895 return t;
896 }
897
898 /* Implement the __alignof keyword: Return the minimum required
899 alignment of TYPE, measured in bytes. */
900
901 tree
902 c_alignof (type)
903 tree type;
904 {
905 enum tree_code code = TREE_CODE (type);
906
907 if (code == FUNCTION_TYPE)
908 return size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
909
910 if (code == VOID_TYPE || code == ERROR_MARK)
911 return size_int (1);
912
913 return size_int (TYPE_ALIGN (type) / BITS_PER_UNIT);
914 }
915 \f
916 /* Implement the __alignof keyword: Return the minimum required
917 alignment of EXPR, measured in bytes. For VAR_DECL's and
918 FIELD_DECL's return DECL_ALIGN (which can be set from an
919 "aligned" __attribute__ specification). */
920
921 tree
922 c_alignof_expr (expr)
923 tree expr;
924 {
925 if (TREE_CODE (expr) == VAR_DECL)
926 return size_int (DECL_ALIGN (expr) / BITS_PER_UNIT);
927
928 if (TREE_CODE (expr) == COMPONENT_REF
929 && DECL_C_BIT_FIELD (TREE_OPERAND (expr, 1)))
930 {
931 error ("`__alignof' applied to a bit-field");
932 return size_int (1);
933 }
934 else if (TREE_CODE (expr) == COMPONENT_REF
935 && TREE_CODE (TREE_OPERAND (expr, 1)) == FIELD_DECL)
936 return size_int (DECL_ALIGN (TREE_OPERAND (expr, 1)) / BITS_PER_UNIT);
937
938 if (TREE_CODE (expr) == INDIRECT_REF)
939 {
940 tree t = TREE_OPERAND (expr, 0);
941 tree best = t;
942 int bestalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
943
944 while (TREE_CODE (t) == NOP_EXPR
945 && TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == POINTER_TYPE)
946 {
947 int thisalign;
948
949 t = TREE_OPERAND (t, 0);
950 thisalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
951 if (thisalign > bestalign)
952 best = t, bestalign = thisalign;
953 }
954 return c_alignof (TREE_TYPE (TREE_TYPE (best)));
955 }
956 else
957 return c_alignof (TREE_TYPE (expr));
958 }
959
960 /* Return either DECL or its known constant value (if it has one). */
961
962 static tree
963 decl_constant_value (decl)
964 tree decl;
965 {
966 if (/* Don't change a variable array bound or initial value to a constant
967 in a place where a variable is invalid. */
968 current_function_decl != 0
969 && ! pedantic
970 && ! TREE_THIS_VOLATILE (decl)
971 && TREE_READONLY (decl) && ! ITERATOR_P (decl)
972 && DECL_INITIAL (decl) != 0
973 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
974 /* This is invalid if initial value is not constant.
975 If it has either a function call, a memory reference,
976 or a variable, then re-evaluating it could give different results. */
977 && TREE_CONSTANT (DECL_INITIAL (decl))
978 /* Check for cases where this is sub-optimal, even though valid. */
979 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR
980 && DECL_MODE (decl) != BLKmode)
981 return DECL_INITIAL (decl);
982 return decl;
983 }
984
985 /* Perform default promotions for C data used in expressions.
986 Arrays and functions are converted to pointers;
987 enumeral types or short or char, to int.
988 In addition, manifest constants symbols are replaced by their values. */
989
990 tree
991 default_conversion (exp)
992 tree exp;
993 {
994 register tree type = TREE_TYPE (exp);
995 register enum tree_code code = TREE_CODE (type);
996
997 /* Constants can be used directly unless they're not loadable. */
998 if (TREE_CODE (exp) == CONST_DECL)
999 exp = DECL_INITIAL (exp);
1000
1001 /* Replace a nonvolatile const static variable with its value unless
1002 it is an array, in which case we must be sure that taking the
1003 address of the array produces consistent results. */
1004 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1005 {
1006 exp = decl_constant_value (exp);
1007 type = TREE_TYPE (exp);
1008 }
1009
1010 /* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
1011 an lvalue. */
1012 /* Do not use STRIP_NOPS here! It will remove conversions from pointer
1013 to integer and cause infinite recursion. */
1014 while (TREE_CODE (exp) == NON_LVALUE_EXPR
1015 || (TREE_CODE (exp) == NOP_EXPR
1016 && TREE_TYPE (TREE_OPERAND (exp, 0)) == TREE_TYPE (exp)))
1017 exp = TREE_OPERAND (exp, 0);
1018
1019 /* Normally convert enums to int,
1020 but convert wide enums to something wider. */
1021 if (code == ENUMERAL_TYPE)
1022 {
1023 type = type_for_size (MAX (TYPE_PRECISION (type),
1024 TYPE_PRECISION (integer_type_node)),
1025 ((flag_traditional
1026 || (TYPE_PRECISION (type)
1027 >= TYPE_PRECISION (integer_type_node)))
1028 && TREE_UNSIGNED (type)));
1029 return convert (type, exp);
1030 }
1031
1032 if (TREE_CODE (exp) == COMPONENT_REF
1033 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1)))
1034 {
1035 tree width = DECL_SIZE (TREE_OPERAND (exp, 1));
1036 HOST_WIDE_INT low = TREE_INT_CST_LOW (width);
1037
1038 /* If it's thinner than an int, promote it like a
1039 C_PROMOTING_INTEGER_TYPE_P, otherwise leave it alone. */
1040
1041 if (low < TYPE_PRECISION (integer_type_node))
1042 {
1043 if (flag_traditional && TREE_UNSIGNED (type))
1044 return convert (unsigned_type_node, exp);
1045 else
1046 return convert (integer_type_node, exp);
1047 }
1048 }
1049
1050 if (C_PROMOTING_INTEGER_TYPE_P (type))
1051 {
1052 /* Traditionally, unsignedness is preserved in default promotions.
1053 Also preserve unsignedness if not really getting any wider. */
1054 if (TREE_UNSIGNED (type)
1055 && (flag_traditional
1056 || TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
1057 return convert (unsigned_type_node, exp);
1058 return convert (integer_type_node, exp);
1059 }
1060 if (flag_traditional && !flag_allow_single_precision
1061 && TYPE_MAIN_VARIANT (type) == float_type_node)
1062 return convert (double_type_node, exp);
1063 if (code == VOID_TYPE)
1064 {
1065 error ("void value not ignored as it ought to be");
1066 return error_mark_node;
1067 }
1068 if (code == FUNCTION_TYPE)
1069 {
1070 return build_unary_op (ADDR_EXPR, exp, 0);
1071 }
1072 if (code == ARRAY_TYPE)
1073 {
1074 register tree adr;
1075 tree restype = TREE_TYPE (type);
1076 tree ptrtype;
1077 int constp = 0;
1078 int volatilep = 0;
1079
1080 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'r'
1081 || TREE_CODE_CLASS (TREE_CODE (exp)) == 'd')
1082 {
1083 constp = TREE_READONLY (exp);
1084 volatilep = TREE_THIS_VOLATILE (exp);
1085 }
1086
1087 if (TYPE_READONLY (type) || TYPE_VOLATILE (type)
1088 || constp || volatilep)
1089 restype = c_build_type_variant (restype,
1090 TYPE_READONLY (type) || constp,
1091 TYPE_VOLATILE (type) || volatilep);
1092
1093 if (TREE_CODE (exp) == INDIRECT_REF)
1094 return convert (TYPE_POINTER_TO (restype),
1095 TREE_OPERAND (exp, 0));
1096
1097 if (TREE_CODE (exp) == COMPOUND_EXPR)
1098 {
1099 tree op1 = default_conversion (TREE_OPERAND (exp, 1));
1100 return build (COMPOUND_EXPR, TREE_TYPE (op1),
1101 TREE_OPERAND (exp, 0), op1);
1102 }
1103
1104 if (! lvalue_p (exp)
1105 && ! (TREE_CODE (exp) == CONSTRUCTOR && TREE_STATIC (exp)))
1106 {
1107 error ("invalid use of non-lvalue array");
1108 return error_mark_node;
1109 }
1110
1111 ptrtype = build_pointer_type (restype);
1112
1113 if (TREE_CODE (exp) == VAR_DECL)
1114 {
1115 /* ??? This is not really quite correct
1116 in that the type of the operand of ADDR_EXPR
1117 is not the target type of the type of the ADDR_EXPR itself.
1118 Question is, can this lossage be avoided? */
1119 adr = build1 (ADDR_EXPR, ptrtype, exp);
1120 if (mark_addressable (exp) == 0)
1121 return error_mark_node;
1122 TREE_CONSTANT (adr) = staticp (exp);
1123 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
1124 return adr;
1125 }
1126 /* This way is better for a COMPONENT_REF since it can
1127 simplify the offset for a component. */
1128 adr = build_unary_op (ADDR_EXPR, exp, 1);
1129 return convert (ptrtype, adr);
1130 }
1131 return exp;
1132 }
1133 \f
1134 /* Look up component name in the structure type definition.
1135
1136 If this component name is found indirectly within an anonymous union,
1137 store in *INDIRECT the component which directly contains
1138 that anonymous union. Otherwise, set *INDIRECT to 0. */
1139
1140 static tree
1141 lookup_field (type, component, indirect)
1142 tree type, component;
1143 tree *indirect;
1144 {
1145 tree field;
1146
1147 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1148 to the field elements. Use a binary search on this array to quickly
1149 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1150 will always be set for structures which have many elements. */
1151
1152 if (TYPE_LANG_SPECIFIC (type))
1153 {
1154 int bot, top, half;
1155 tree *field_array = &TYPE_LANG_SPECIFIC (type)->elts[0];
1156
1157 field = TYPE_FIELDS (type);
1158 bot = 0;
1159 top = TYPE_LANG_SPECIFIC (type)->len;
1160 while (top - bot > 1)
1161 {
1162 half = (top - bot + 1) >> 1;
1163 field = field_array[bot+half];
1164
1165 if (DECL_NAME (field) == NULL_TREE)
1166 {
1167 /* Step through all anon unions in linear fashion. */
1168 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1169 {
1170 tree anon = 0, junk;
1171
1172 field = field_array[bot++];
1173 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1174 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1175 anon = lookup_field (TREE_TYPE (field), component, &junk);
1176
1177 if (anon != NULL_TREE)
1178 {
1179 *indirect = field;
1180 return anon;
1181 }
1182 }
1183
1184 /* Entire record is only anon unions. */
1185 if (bot > top)
1186 return NULL_TREE;
1187
1188 /* Restart the binary search, with new lower bound. */
1189 continue;
1190 }
1191
1192 if (DECL_NAME (field) == component)
1193 break;
1194 if (DECL_NAME (field) < component)
1195 bot += half;
1196 else
1197 top = bot + half;
1198 }
1199
1200 if (DECL_NAME (field_array[bot]) == component)
1201 field = field_array[bot];
1202 else if (DECL_NAME (field) != component)
1203 field = 0;
1204 }
1205 else
1206 {
1207 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1208 {
1209 if (DECL_NAME (field) == NULL_TREE)
1210 {
1211 tree junk;
1212 tree anon = 0;
1213
1214 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1215 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1216 anon = lookup_field (TREE_TYPE (field), component, &junk);
1217
1218 if (anon != NULL_TREE)
1219 {
1220 *indirect = field;
1221 return anon;
1222 }
1223 }
1224
1225 if (DECL_NAME (field) == component)
1226 break;
1227 }
1228 }
1229
1230 *indirect = NULL_TREE;
1231 return field;
1232 }
1233
1234 /* Make an expression to refer to the COMPONENT field of
1235 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1236
1237 tree
1238 build_component_ref (datum, component)
1239 tree datum, component;
1240 {
1241 register tree type = TREE_TYPE (datum);
1242 register enum tree_code code = TREE_CODE (type);
1243 register tree field = NULL;
1244 register tree ref;
1245
1246 /* If DATUM is a COMPOUND_EXPR or COND_EXPR, move our reference inside it
1247 unless we are not to support things not strictly ANSI. */
1248 switch (TREE_CODE (datum))
1249 {
1250 case COMPOUND_EXPR:
1251 {
1252 tree value = build_component_ref (TREE_OPERAND (datum, 1), component);
1253 return build (COMPOUND_EXPR, TREE_TYPE (value),
1254 TREE_OPERAND (datum, 0), value);
1255 }
1256 case COND_EXPR:
1257 return build_conditional_expr
1258 (TREE_OPERAND (datum, 0),
1259 build_component_ref (TREE_OPERAND (datum, 1), component),
1260 build_component_ref (TREE_OPERAND (datum, 2), component));
1261
1262 default:
1263 break;
1264 }
1265
1266 /* See if there is a field or component with name COMPONENT. */
1267
1268 if (code == RECORD_TYPE || code == UNION_TYPE)
1269 {
1270 tree indirect = 0;
1271
1272 if (TYPE_SIZE (type) == 0)
1273 {
1274 incomplete_type_error (NULL_TREE, type);
1275 return error_mark_node;
1276 }
1277
1278 field = lookup_field (type, component, &indirect);
1279
1280 if (!field)
1281 {
1282 error (code == RECORD_TYPE
1283 ? "structure has no member named `%s'"
1284 : "union has no member named `%s'",
1285 IDENTIFIER_POINTER (component));
1286 return error_mark_node;
1287 }
1288 if (TREE_TYPE (field) == error_mark_node)
1289 return error_mark_node;
1290
1291 /* If FIELD was found buried within an anonymous union,
1292 make one COMPONENT_REF to get that anonymous union,
1293 then fall thru to make a second COMPONENT_REF to get FIELD. */
1294 if (indirect != 0)
1295 {
1296 ref = build (COMPONENT_REF, TREE_TYPE (indirect), datum, indirect);
1297 if (TREE_READONLY (datum) || TREE_READONLY (indirect))
1298 TREE_READONLY (ref) = 1;
1299 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (indirect))
1300 TREE_THIS_VOLATILE (ref) = 1;
1301 datum = ref;
1302 }
1303
1304 ref = build (COMPONENT_REF, TREE_TYPE (field), datum, field);
1305
1306 if (TREE_READONLY (datum) || TREE_READONLY (field))
1307 TREE_READONLY (ref) = 1;
1308 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (field))
1309 TREE_THIS_VOLATILE (ref) = 1;
1310
1311 return ref;
1312 }
1313 else if (code != ERROR_MARK)
1314 error ("request for member `%s' in something not a structure or union",
1315 IDENTIFIER_POINTER (component));
1316
1317 return error_mark_node;
1318 }
1319 \f
1320 /* Given an expression PTR for a pointer, return an expression
1321 for the value pointed to.
1322 ERRORSTRING is the name of the operator to appear in error messages. */
1323
1324 tree
1325 build_indirect_ref (ptr, errorstring)
1326 tree ptr;
1327 char *errorstring;
1328 {
1329 register tree pointer = default_conversion (ptr);
1330 register tree type = TREE_TYPE (pointer);
1331
1332 if (TREE_CODE (type) == POINTER_TYPE)
1333 {
1334 if (TREE_CODE (pointer) == ADDR_EXPR
1335 && !flag_volatile
1336 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1337 == TREE_TYPE (type)))
1338 return TREE_OPERAND (pointer, 0);
1339 else
1340 {
1341 tree t = TREE_TYPE (type);
1342 register tree ref = build1 (INDIRECT_REF,
1343 TYPE_MAIN_VARIANT (t), pointer);
1344
1345 if (TYPE_SIZE (t) == 0 && TREE_CODE (t) != ARRAY_TYPE)
1346 {
1347 error ("dereferencing pointer to incomplete type");
1348 return error_mark_node;
1349 }
1350 if (TREE_CODE (t) == VOID_TYPE && skip_evaluation == 0)
1351 warning ("dereferencing `void *' pointer");
1352
1353 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1354 so that we get the proper error message if the result is used
1355 to assign to. Also, &* is supposed to be a no-op.
1356 And ANSI C seems to specify that the type of the result
1357 should be the const type. */
1358 /* A de-reference of a pointer to const is not a const. It is valid
1359 to change it via some other pointer. */
1360 TREE_READONLY (ref) = TYPE_READONLY (t);
1361 TREE_SIDE_EFFECTS (ref)
1362 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer) || flag_volatile;
1363 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1364 return ref;
1365 }
1366 }
1367 else if (TREE_CODE (pointer) != ERROR_MARK)
1368 error ("invalid type argument of `%s'", errorstring);
1369 return error_mark_node;
1370 }
1371
1372 /* This handles expressions of the form "a[i]", which denotes
1373 an array reference.
1374
1375 This is logically equivalent in C to *(a+i), but we may do it differently.
1376 If A is a variable or a member, we generate a primitive ARRAY_REF.
1377 This avoids forcing the array out of registers, and can work on
1378 arrays that are not lvalues (for example, members of structures returned
1379 by functions). */
1380
1381 tree
1382 build_array_ref (array, index)
1383 tree array, index;
1384 {
1385 if (index == 0)
1386 {
1387 error ("subscript missing in array reference");
1388 return error_mark_node;
1389 }
1390
1391 if (TREE_TYPE (array) == error_mark_node
1392 || TREE_TYPE (index) == error_mark_node)
1393 return error_mark_node;
1394
1395 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE
1396 && TREE_CODE (array) != INDIRECT_REF)
1397 {
1398 tree rval, type;
1399
1400 /* Subscripting with type char is likely to lose
1401 on a machine where chars are signed.
1402 So warn on any machine, but optionally.
1403 Don't warn for unsigned char since that type is safe.
1404 Don't warn for signed char because anyone who uses that
1405 must have done so deliberately. */
1406 if (warn_char_subscripts
1407 && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1408 warning ("array subscript has type `char'");
1409
1410 /* Apply default promotions *after* noticing character types. */
1411 index = default_conversion (index);
1412
1413 /* Require integer *after* promotion, for sake of enums. */
1414 if (TREE_CODE (TREE_TYPE (index)) != INTEGER_TYPE)
1415 {
1416 error ("array subscript is not an integer");
1417 return error_mark_node;
1418 }
1419
1420 /* An array that is indexed by a non-constant
1421 cannot be stored in a register; we must be able to do
1422 address arithmetic on its address.
1423 Likewise an array of elements of variable size. */
1424 if (TREE_CODE (index) != INTEGER_CST
1425 || (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array))) != 0
1426 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1427 {
1428 if (mark_addressable (array) == 0)
1429 return error_mark_node;
1430 }
1431 /* An array that is indexed by a constant value which is not within
1432 the array bounds cannot be stored in a register either; because we
1433 would get a crash in store_bit_field/extract_bit_field when trying
1434 to access a non-existent part of the register. */
1435 if (TREE_CODE (index) == INTEGER_CST
1436 && TYPE_VALUES (TREE_TYPE (array))
1437 && ! int_fits_type_p (index, TYPE_VALUES (TREE_TYPE (array))))
1438 {
1439 if (mark_addressable (array) == 0)
1440 return error_mark_node;
1441 }
1442
1443 if (pedantic && !lvalue_p (array))
1444 {
1445 if (DECL_REGISTER (array))
1446 pedwarn ("ANSI C forbids subscripting `register' array");
1447 else
1448 pedwarn ("ANSI C forbids subscripting non-lvalue array");
1449 }
1450
1451 if (pedantic)
1452 {
1453 tree foo = array;
1454 while (TREE_CODE (foo) == COMPONENT_REF)
1455 foo = TREE_OPERAND (foo, 0);
1456 if (TREE_CODE (foo) == VAR_DECL && DECL_REGISTER (foo))
1457 pedwarn ("ANSI C forbids subscripting non-lvalue array");
1458 }
1459
1460 type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (array)));
1461 rval = build (ARRAY_REF, type, array, index);
1462 /* Array ref is const/volatile if the array elements are
1463 or if the array is. */
1464 TREE_READONLY (rval)
1465 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
1466 | TREE_READONLY (array));
1467 TREE_SIDE_EFFECTS (rval)
1468 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1469 | TREE_SIDE_EFFECTS (array));
1470 TREE_THIS_VOLATILE (rval)
1471 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1472 /* This was added by rms on 16 Nov 91.
1473 It fixes vol struct foo *a; a->elts[1]
1474 in an inline function.
1475 Hope it doesn't break something else. */
1476 | TREE_THIS_VOLATILE (array));
1477 return require_complete_type (fold (rval));
1478 }
1479
1480 {
1481 tree ar = default_conversion (array);
1482 tree ind = default_conversion (index);
1483
1484 /* Do the same warning check as above, but only on the part that's
1485 syntactically the index and only if it is also semantically
1486 the index. */
1487 if (warn_char_subscripts
1488 && TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE
1489 && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1490 warning ("subscript has type `char'");
1491
1492 /* Put the integer in IND to simplify error checking. */
1493 if (TREE_CODE (TREE_TYPE (ar)) == INTEGER_TYPE)
1494 {
1495 tree temp = ar;
1496 ar = ind;
1497 ind = temp;
1498 }
1499
1500 if (ar == error_mark_node)
1501 return ar;
1502
1503 if (TREE_CODE (TREE_TYPE (ar)) != POINTER_TYPE
1504 || TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) == FUNCTION_TYPE)
1505 {
1506 error ("subscripted value is neither array nor pointer");
1507 return error_mark_node;
1508 }
1509 if (TREE_CODE (TREE_TYPE (ind)) != INTEGER_TYPE)
1510 {
1511 error ("array subscript is not an integer");
1512 return error_mark_node;
1513 }
1514
1515 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, ind, 0),
1516 "array indexing");
1517 }
1518 }
1519 \f
1520 /* Build a function call to function FUNCTION with parameters PARAMS.
1521 PARAMS is a list--a chain of TREE_LIST nodes--in which the
1522 TREE_VALUE of each node is a parameter-expression.
1523 FUNCTION's data type may be a function type or a pointer-to-function. */
1524
1525 tree
1526 build_function_call (function, params)
1527 tree function, params;
1528 {
1529 register tree fntype, fundecl = 0;
1530 register tree coerced_params;
1531 tree name = NULL_TREE, assembler_name = NULL_TREE;
1532
1533 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
1534 STRIP_TYPE_NOPS (function);
1535
1536 /* Convert anything with function type to a pointer-to-function. */
1537 if (TREE_CODE (function) == FUNCTION_DECL)
1538 {
1539 name = DECL_NAME (function);
1540 assembler_name = DECL_ASSEMBLER_NAME (function);
1541
1542 /* Differs from default_conversion by not setting TREE_ADDRESSABLE
1543 (because calling an inline function does not mean the function
1544 needs to be separately compiled). */
1545 fntype = build_type_variant (TREE_TYPE (function),
1546 TREE_READONLY (function),
1547 TREE_THIS_VOLATILE (function));
1548 fundecl = function;
1549 function = build1 (ADDR_EXPR, build_pointer_type (fntype), function);
1550 }
1551 else
1552 function = default_conversion (function);
1553
1554 fntype = TREE_TYPE (function);
1555
1556 if (TREE_CODE (fntype) == ERROR_MARK)
1557 return error_mark_node;
1558
1559 if (!(TREE_CODE (fntype) == POINTER_TYPE
1560 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
1561 {
1562 error ("called object is not a function");
1563 return error_mark_node;
1564 }
1565
1566 /* fntype now gets the type of function pointed to. */
1567 fntype = TREE_TYPE (fntype);
1568
1569 /* Convert the parameters to the types declared in the
1570 function prototype, or apply default promotions. */
1571
1572 coerced_params
1573 = convert_arguments (TYPE_ARG_TYPES (fntype), params, name, fundecl);
1574
1575 /* Check for errors in format strings. */
1576
1577 if (warn_format && (name || assembler_name))
1578 check_function_format (name, assembler_name, coerced_params);
1579
1580 /* Recognize certain built-in functions so we can make tree-codes
1581 other than CALL_EXPR. We do this when it enables fold-const.c
1582 to do something useful. */
1583
1584 if (TREE_CODE (function) == ADDR_EXPR
1585 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL
1586 && DECL_BUILT_IN (TREE_OPERAND (function, 0)))
1587 switch (DECL_FUNCTION_CODE (TREE_OPERAND (function, 0)))
1588 {
1589 case BUILT_IN_ABS:
1590 case BUILT_IN_LABS:
1591 case BUILT_IN_FABS:
1592 if (coerced_params == 0)
1593 return integer_zero_node;
1594 return build_unary_op (ABS_EXPR, TREE_VALUE (coerced_params), 0);
1595 default:
1596 break;
1597 }
1598
1599 {
1600 register tree result
1601 = build (CALL_EXPR, TREE_TYPE (fntype),
1602 function, coerced_params, NULL_TREE);
1603
1604 TREE_SIDE_EFFECTS (result) = 1;
1605 if (TREE_TYPE (result) == void_type_node)
1606 return result;
1607 return require_complete_type (result);
1608 }
1609 }
1610 \f
1611 /* Convert the argument expressions in the list VALUES
1612 to the types in the list TYPELIST. The result is a list of converted
1613 argument expressions.
1614
1615 If TYPELIST is exhausted, or when an element has NULL as its type,
1616 perform the default conversions.
1617
1618 PARMLIST is the chain of parm decls for the function being called.
1619 It may be 0, if that info is not available.
1620 It is used only for generating error messages.
1621
1622 NAME is an IDENTIFIER_NODE or 0. It is used only for error messages.
1623
1624 This is also where warnings about wrong number of args are generated.
1625
1626 Both VALUES and the returned value are chains of TREE_LIST nodes
1627 with the elements of the list in the TREE_VALUE slots of those nodes. */
1628
1629 static tree
1630 convert_arguments (typelist, values, name, fundecl)
1631 tree typelist, values, name, fundecl;
1632 {
1633 register tree typetail, valtail;
1634 register tree result = NULL;
1635 int parmnum;
1636
1637 /* Scan the given expressions and types, producing individual
1638 converted arguments and pushing them on RESULT in reverse order. */
1639
1640 for (valtail = values, typetail = typelist, parmnum = 0;
1641 valtail;
1642 valtail = TREE_CHAIN (valtail), parmnum++)
1643 {
1644 register tree type = typetail ? TREE_VALUE (typetail) : 0;
1645 register tree val = TREE_VALUE (valtail);
1646
1647 if (type == void_type_node)
1648 {
1649 if (name)
1650 error ("too many arguments to function `%s'",
1651 IDENTIFIER_POINTER (name));
1652 else
1653 error ("too many arguments to function");
1654 break;
1655 }
1656
1657 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
1658 /* Do not use STRIP_NOPS here! We do not want an enumerator with value 0
1659 to convert automatically to a pointer. */
1660 if (TREE_CODE (val) == NON_LVALUE_EXPR)
1661 val = TREE_OPERAND (val, 0);
1662
1663 if (TREE_CODE (TREE_TYPE (val)) == ARRAY_TYPE
1664 || TREE_CODE (TREE_TYPE (val)) == FUNCTION_TYPE)
1665 val = default_conversion (val);
1666
1667 val = require_complete_type (val);
1668
1669 if (type != 0)
1670 {
1671 /* Formal parm type is specified by a function prototype. */
1672 tree parmval;
1673
1674 if (TYPE_SIZE (type) == 0)
1675 {
1676 error ("type of formal parameter %d is incomplete", parmnum + 1);
1677 parmval = val;
1678 }
1679 else
1680 {
1681 /* Optionally warn about conversions that
1682 differ from the default conversions. */
1683 if (warn_conversion)
1684 {
1685 int formal_prec = TYPE_PRECISION (type);
1686
1687 if (INTEGRAL_TYPE_P (type)
1688 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1689 warn_for_assignment ("%s as integer rather than floating due to prototype", (char *) 0, name, parmnum + 1);
1690 else if (TREE_CODE (type) == COMPLEX_TYPE
1691 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1692 warn_for_assignment ("%s as complex rather than floating due to prototype", (char *) 0, name, parmnum + 1);
1693 else if (TREE_CODE (type) == REAL_TYPE
1694 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1695 warn_for_assignment ("%s as floating rather than integer due to prototype", (char *) 0, name, parmnum + 1);
1696 else if (TREE_CODE (type) == REAL_TYPE
1697 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
1698 warn_for_assignment ("%s as floating rather than complex due to prototype", (char *) 0, name, parmnum + 1);
1699 /* ??? At some point, messages should be written about
1700 conversions between complex types, but that's too messy
1701 to do now. */
1702 else if (TREE_CODE (type) == REAL_TYPE
1703 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1704 {
1705 /* Warn if any argument is passed as `float',
1706 since without a prototype it would be `double'. */
1707 if (formal_prec == TYPE_PRECISION (float_type_node))
1708 warn_for_assignment ("%s as `float' rather than `double' due to prototype", (char *) 0, name, parmnum + 1);
1709 }
1710 /* Detect integer changing in width or signedness. */
1711 else if (INTEGRAL_TYPE_P (type)
1712 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1713 {
1714 tree would_have_been = default_conversion (val);
1715 tree type1 = TREE_TYPE (would_have_been);
1716
1717 if (TREE_CODE (type) == ENUMERAL_TYPE
1718 && type == TREE_TYPE (val))
1719 /* No warning if function asks for enum
1720 and the actual arg is that enum type. */
1721 ;
1722 else if (formal_prec != TYPE_PRECISION (type1))
1723 warn_for_assignment ("%s with different width due to prototype", (char *) 0, name, parmnum + 1);
1724 else if (TREE_UNSIGNED (type) == TREE_UNSIGNED (type1))
1725 ;
1726 /* Don't complain if the formal parameter type
1727 is an enum, because we can't tell now whether
1728 the value was an enum--even the same enum. */
1729 else if (TREE_CODE (type) == ENUMERAL_TYPE)
1730 ;
1731 else if (TREE_CODE (val) == INTEGER_CST
1732 && int_fits_type_p (val, type))
1733 /* Change in signedness doesn't matter
1734 if a constant value is unaffected. */
1735 ;
1736 /* Likewise for a constant in a NOP_EXPR. */
1737 else if (TREE_CODE (val) == NOP_EXPR
1738 && TREE_CODE (TREE_OPERAND (val, 0)) == INTEGER_CST
1739 && int_fits_type_p (TREE_OPERAND (val, 0), type))
1740 ;
1741 #if 0 /* We never get such tree structure here. */
1742 else if (TREE_CODE (TREE_TYPE (val)) == ENUMERAL_TYPE
1743 && int_fits_type_p (TYPE_MIN_VALUE (TREE_TYPE (val)), type)
1744 && int_fits_type_p (TYPE_MAX_VALUE (TREE_TYPE (val)), type))
1745 /* Change in signedness doesn't matter
1746 if an enum value is unaffected. */
1747 ;
1748 #endif
1749 /* If the value is extended from a narrower
1750 unsigned type, it doesn't matter whether we
1751 pass it as signed or unsigned; the value
1752 certainly is the same either way. */
1753 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
1754 && TREE_UNSIGNED (TREE_TYPE (val)))
1755 ;
1756 else if (TREE_UNSIGNED (type))
1757 warn_for_assignment ("%s as unsigned due to prototype", (char *) 0, name, parmnum + 1);
1758 else
1759 warn_for_assignment ("%s as signed due to prototype", (char *) 0, name, parmnum + 1);
1760 }
1761 }
1762
1763 parmval = convert_for_assignment (type, val,
1764 (char *) 0, /* arg passing */
1765 fundecl, name, parmnum + 1);
1766
1767 #ifdef PROMOTE_PROTOTYPES
1768 if ((TREE_CODE (type) == INTEGER_TYPE
1769 || TREE_CODE (type) == ENUMERAL_TYPE)
1770 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
1771 parmval = default_conversion (parmval);
1772 #endif
1773 }
1774 result = tree_cons (NULL_TREE, parmval, result);
1775 }
1776 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
1777 && (TYPE_PRECISION (TREE_TYPE (val))
1778 < TYPE_PRECISION (double_type_node)))
1779 /* Convert `float' to `double'. */
1780 result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
1781 else
1782 /* Convert `short' and `char' to full-size `int'. */
1783 result = tree_cons (NULL_TREE, default_conversion (val), result);
1784
1785 if (typetail)
1786 typetail = TREE_CHAIN (typetail);
1787 }
1788
1789 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
1790 {
1791 if (name)
1792 error ("too few arguments to function `%s'",
1793 IDENTIFIER_POINTER (name));
1794 else
1795 error ("too few arguments to function");
1796 }
1797
1798 return nreverse (result);
1799 }
1800 \f
1801 /* This is the entry point used by the parser
1802 for binary operators in the input.
1803 In addition to constructing the expression,
1804 we check for operands that were written with other binary operators
1805 in a way that is likely to confuse the user. */
1806
1807 tree
1808 parser_build_binary_op (code, arg1, arg2)
1809 enum tree_code code;
1810 tree arg1, arg2;
1811 {
1812 tree result = build_binary_op (code, arg1, arg2, 1);
1813
1814 char class;
1815 char class1 = TREE_CODE_CLASS (TREE_CODE (arg1));
1816 char class2 = TREE_CODE_CLASS (TREE_CODE (arg2));
1817 enum tree_code code1 = ERROR_MARK;
1818 enum tree_code code2 = ERROR_MARK;
1819
1820 if (class1 == 'e' || class1 == '1'
1821 || class1 == '2' || class1 == '<')
1822 code1 = C_EXP_ORIGINAL_CODE (arg1);
1823 if (class2 == 'e' || class2 == '1'
1824 || class2 == '2' || class2 == '<')
1825 code2 = C_EXP_ORIGINAL_CODE (arg2);
1826
1827 /* Check for cases such as x+y<<z which users are likely
1828 to misinterpret. If parens are used, C_EXP_ORIGINAL_CODE
1829 is cleared to prevent these warnings. */
1830 if (warn_parentheses)
1831 {
1832 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
1833 {
1834 if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
1835 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1836 warning ("suggest parentheses around + or - inside shift");
1837 }
1838
1839 if (code == TRUTH_ORIF_EXPR)
1840 {
1841 if (code1 == TRUTH_ANDIF_EXPR
1842 || code2 == TRUTH_ANDIF_EXPR)
1843 warning ("suggest parentheses around && within ||");
1844 }
1845
1846 if (code == BIT_IOR_EXPR)
1847 {
1848 if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
1849 || code1 == PLUS_EXPR || code1 == MINUS_EXPR
1850 || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
1851 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1852 warning ("suggest parentheses around arithmetic in operand of |");
1853 /* Check cases like x|y==z */
1854 if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1855 warning ("suggest parentheses around comparison in operand of |");
1856 }
1857
1858 if (code == BIT_XOR_EXPR)
1859 {
1860 if (code1 == BIT_AND_EXPR
1861 || code1 == PLUS_EXPR || code1 == MINUS_EXPR
1862 || code2 == BIT_AND_EXPR
1863 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1864 warning ("suggest parentheses around arithmetic in operand of ^");
1865 /* Check cases like x^y==z */
1866 if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1867 warning ("suggest parentheses around comparison in operand of ^");
1868 }
1869
1870 if (code == BIT_AND_EXPR)
1871 {
1872 if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
1873 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1874 warning ("suggest parentheses around + or - in operand of &");
1875 /* Check cases like x&y==z */
1876 if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1877 warning ("suggest parentheses around comparison in operand of &");
1878 }
1879 }
1880
1881 /* Similarly, check for cases like 1<=i<=10 that are probably errors. */
1882 if (TREE_CODE_CLASS (code) == '<' && extra_warnings
1883 && (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<'))
1884 warning ("comparisons like X<=Y<=Z do not have their mathematical meaning");
1885
1886 unsigned_conversion_warning (result, arg1);
1887 unsigned_conversion_warning (result, arg2);
1888 overflow_warning (result);
1889
1890 class = TREE_CODE_CLASS (TREE_CODE (result));
1891
1892 /* Record the code that was specified in the source,
1893 for the sake of warnings about confusing nesting. */
1894 if (class == 'e' || class == '1'
1895 || class == '2' || class == '<')
1896 C_SET_EXP_ORIGINAL_CODE (result, code);
1897 else
1898 {
1899 int flag = TREE_CONSTANT (result);
1900 /* We used to use NOP_EXPR rather than NON_LVALUE_EXPR
1901 so that convert_for_assignment wouldn't strip it.
1902 That way, we got warnings for things like p = (1 - 1).
1903 But it turns out we should not get those warnings. */
1904 result = build1 (NON_LVALUE_EXPR, TREE_TYPE (result), result);
1905 C_SET_EXP_ORIGINAL_CODE (result, code);
1906 TREE_CONSTANT (result) = flag;
1907 }
1908
1909 return result;
1910 }
1911
1912 /* Build a binary-operation expression without default conversions.
1913 CODE is the kind of expression to build.
1914 This function differs from `build' in several ways:
1915 the data type of the result is computed and recorded in it,
1916 warnings are generated if arg data types are invalid,
1917 special handling for addition and subtraction of pointers is known,
1918 and some optimization is done (operations on narrow ints
1919 are done in the narrower type when that gives the same result).
1920 Constant folding is also done before the result is returned.
1921
1922 Note that the operands will never have enumeral types, or function
1923 or array types, because either they will have the default conversions
1924 performed or they have both just been converted to some other type in which
1925 the arithmetic is to be done. */
1926
1927 tree
1928 build_binary_op (code, orig_op0, orig_op1, convert_p)
1929 enum tree_code code;
1930 tree orig_op0, orig_op1;
1931 int convert_p;
1932 {
1933 tree type0, type1;
1934 register enum tree_code code0, code1;
1935 tree op0, op1;
1936
1937 /* Expression code to give to the expression when it is built.
1938 Normally this is CODE, which is what the caller asked for,
1939 but in some special cases we change it. */
1940 register enum tree_code resultcode = code;
1941
1942 /* Data type in which the computation is to be performed.
1943 In the simplest cases this is the common type of the arguments. */
1944 register tree result_type = NULL;
1945
1946 /* Nonzero means operands have already been type-converted
1947 in whatever way is necessary.
1948 Zero means they need to be converted to RESULT_TYPE. */
1949 int converted = 0;
1950
1951 /* Nonzero means create the expression with this type, rather than
1952 RESULT_TYPE. */
1953 tree build_type = 0;
1954
1955 /* Nonzero means after finally constructing the expression
1956 convert it to this type. */
1957 tree final_type = 0;
1958
1959 /* Nonzero if this is an operation like MIN or MAX which can
1960 safely be computed in short if both args are promoted shorts.
1961 Also implies COMMON.
1962 -1 indicates a bitwise operation; this makes a difference
1963 in the exact conditions for when it is safe to do the operation
1964 in a narrower mode. */
1965 int shorten = 0;
1966
1967 /* Nonzero if this is a comparison operation;
1968 if both args are promoted shorts, compare the original shorts.
1969 Also implies COMMON. */
1970 int short_compare = 0;
1971
1972 /* Nonzero if this is a right-shift operation, which can be computed on the
1973 original short and then promoted if the operand is a promoted short. */
1974 int short_shift = 0;
1975
1976 /* Nonzero means set RESULT_TYPE to the common type of the args. */
1977 int common = 0;
1978
1979 if (convert_p)
1980 {
1981 op0 = default_conversion (orig_op0);
1982 op1 = default_conversion (orig_op1);
1983 }
1984 else
1985 {
1986 op0 = orig_op0;
1987 op1 = orig_op1;
1988 }
1989
1990 type0 = TREE_TYPE (op0);
1991 type1 = TREE_TYPE (op1);
1992
1993 /* The expression codes of the data types of the arguments tell us
1994 whether the arguments are integers, floating, pointers, etc. */
1995 code0 = TREE_CODE (type0);
1996 code1 = TREE_CODE (type1);
1997
1998 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
1999 STRIP_TYPE_NOPS (op0);
2000 STRIP_TYPE_NOPS (op1);
2001
2002 /* If an error was already reported for one of the arguments,
2003 avoid reporting another error. */
2004
2005 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
2006 return error_mark_node;
2007
2008 switch (code)
2009 {
2010 case PLUS_EXPR:
2011 /* Handle the pointer + int case. */
2012 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2013 return pointer_int_sum (PLUS_EXPR, op0, op1);
2014 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
2015 return pointer_int_sum (PLUS_EXPR, op1, op0);
2016 else
2017 common = 1;
2018 break;
2019
2020 case MINUS_EXPR:
2021 /* Subtraction of two similar pointers.
2022 We must subtract them as integers, then divide by object size. */
2023 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
2024 && comp_target_types (type0, type1))
2025 return pointer_diff (op0, op1);
2026 /* Handle pointer minus int. Just like pointer plus int. */
2027 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2028 return pointer_int_sum (MINUS_EXPR, op0, op1);
2029 else
2030 common = 1;
2031 break;
2032
2033 case MULT_EXPR:
2034 common = 1;
2035 break;
2036
2037 case TRUNC_DIV_EXPR:
2038 case CEIL_DIV_EXPR:
2039 case FLOOR_DIV_EXPR:
2040 case ROUND_DIV_EXPR:
2041 case EXACT_DIV_EXPR:
2042 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
2043 || code0 == COMPLEX_TYPE)
2044 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
2045 || code1 == COMPLEX_TYPE))
2046 {
2047 if (!(code0 == INTEGER_TYPE && code1 == INTEGER_TYPE))
2048 resultcode = RDIV_EXPR;
2049 else
2050 {
2051 /* Although it would be tempting to shorten always here, that
2052 loses on some targets, since the modulo instruction is
2053 undefined if the quotient can't be represented in the
2054 computation mode. We shorten only if unsigned or if
2055 dividing by something we know != -1. */
2056 shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
2057 || (TREE_CODE (op1) == INTEGER_CST
2058 && (TREE_INT_CST_LOW (op1) != -1
2059 || TREE_INT_CST_HIGH (op1) != -1)));
2060 }
2061 common = 1;
2062 }
2063 break;
2064
2065 case BIT_AND_EXPR:
2066 case BIT_ANDTC_EXPR:
2067 case BIT_IOR_EXPR:
2068 case BIT_XOR_EXPR:
2069 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2070 shorten = -1;
2071 /* If one operand is a constant, and the other is a short type
2072 that has been converted to an int,
2073 really do the work in the short type and then convert the
2074 result to int. If we are lucky, the constant will be 0 or 1
2075 in the short type, making the entire operation go away. */
2076 if (TREE_CODE (op0) == INTEGER_CST
2077 && TREE_CODE (op1) == NOP_EXPR
2078 && TYPE_PRECISION (type1) > TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))
2079 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op1, 0))))
2080 {
2081 final_type = result_type;
2082 op1 = TREE_OPERAND (op1, 0);
2083 result_type = TREE_TYPE (op1);
2084 }
2085 if (TREE_CODE (op1) == INTEGER_CST
2086 && TREE_CODE (op0) == NOP_EXPR
2087 && TYPE_PRECISION (type0) > TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))
2088 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op0, 0))))
2089 {
2090 final_type = result_type;
2091 op0 = TREE_OPERAND (op0, 0);
2092 result_type = TREE_TYPE (op0);
2093 }
2094 break;
2095
2096 case TRUNC_MOD_EXPR:
2097 case FLOOR_MOD_EXPR:
2098 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2099 {
2100 /* Although it would be tempting to shorten always here, that loses
2101 on some targets, since the modulo instruction is undefined if the
2102 quotient can't be represented in the computation mode. We shorten
2103 only if unsigned or if dividing by something we know != -1. */
2104 shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
2105 || (TREE_CODE (op1) == INTEGER_CST
2106 && (TREE_INT_CST_LOW (op1) != -1
2107 || TREE_INT_CST_HIGH (op1) != -1)));
2108 common = 1;
2109 }
2110 break;
2111
2112 case TRUTH_ANDIF_EXPR:
2113 case TRUTH_ORIF_EXPR:
2114 case TRUTH_AND_EXPR:
2115 case TRUTH_OR_EXPR:
2116 case TRUTH_XOR_EXPR:
2117 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
2118 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
2119 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
2120 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
2121 {
2122 /* Result of these operations is always an int,
2123 but that does not mean the operands should be
2124 converted to ints! */
2125 result_type = integer_type_node;
2126 op0 = truthvalue_conversion (op0);
2127 op1 = truthvalue_conversion (op1);
2128 converted = 1;
2129 }
2130 break;
2131
2132 /* Shift operations: result has same type as first operand;
2133 always convert second operand to int.
2134 Also set SHORT_SHIFT if shifting rightward. */
2135
2136 case RSHIFT_EXPR:
2137 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2138 {
2139 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2140 {
2141 if (tree_int_cst_sgn (op1) < 0)
2142 warning ("right shift count is negative");
2143 else
2144 {
2145 if (TREE_INT_CST_LOW (op1) | TREE_INT_CST_HIGH (op1))
2146 short_shift = 1;
2147 if (TREE_INT_CST_HIGH (op1) != 0
2148 || ((unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (op1)
2149 >= TYPE_PRECISION (type0)))
2150 warning ("right shift count >= width of type");
2151 }
2152 }
2153 /* Use the type of the value to be shifted.
2154 This is what most traditional C compilers do. */
2155 result_type = type0;
2156 /* Unless traditional, convert the shift-count to an integer,
2157 regardless of size of value being shifted. */
2158 if (! flag_traditional)
2159 {
2160 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2161 op1 = convert (integer_type_node, op1);
2162 /* Avoid converting op1 to result_type later. */
2163 converted = 1;
2164 }
2165 }
2166 break;
2167
2168 case LSHIFT_EXPR:
2169 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2170 {
2171 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2172 {
2173 if (tree_int_cst_sgn (op1) < 0)
2174 warning ("left shift count is negative");
2175 else if (TREE_INT_CST_HIGH (op1) != 0
2176 || ((unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (op1)
2177 >= TYPE_PRECISION (type0)))
2178 warning ("left shift count >= width of type");
2179 }
2180 /* Use the type of the value to be shifted.
2181 This is what most traditional C compilers do. */
2182 result_type = type0;
2183 /* Unless traditional, convert the shift-count to an integer,
2184 regardless of size of value being shifted. */
2185 if (! flag_traditional)
2186 {
2187 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2188 op1 = convert (integer_type_node, op1);
2189 /* Avoid converting op1 to result_type later. */
2190 converted = 1;
2191 }
2192 }
2193 break;
2194
2195 case RROTATE_EXPR:
2196 case LROTATE_EXPR:
2197 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2198 {
2199 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2200 {
2201 if (tree_int_cst_sgn (op1) < 0)
2202 warning ("shift count is negative");
2203 else if (TREE_INT_CST_HIGH (op1) != 0
2204 || ((unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (op1)
2205 >= TYPE_PRECISION (type0)))
2206 warning ("shift count >= width of type");
2207 }
2208 /* Use the type of the value to be shifted.
2209 This is what most traditional C compilers do. */
2210 result_type = type0;
2211 /* Unless traditional, convert the shift-count to an integer,
2212 regardless of size of value being shifted. */
2213 if (! flag_traditional)
2214 {
2215 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2216 op1 = convert (integer_type_node, op1);
2217 /* Avoid converting op1 to result_type later. */
2218 converted = 1;
2219 }
2220 }
2221 break;
2222
2223 case EQ_EXPR:
2224 case NE_EXPR:
2225 /* Result of comparison is always int,
2226 but don't convert the args to int! */
2227 build_type = integer_type_node;
2228 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
2229 || code0 == COMPLEX_TYPE)
2230 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
2231 || code1 == COMPLEX_TYPE))
2232 short_compare = 1;
2233 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2234 {
2235 register tree tt0 = TREE_TYPE (type0);
2236 register tree tt1 = TREE_TYPE (type1);
2237 /* Anything compares with void *. void * compares with anything.
2238 Otherwise, the targets must be compatible
2239 and both must be object or both incomplete. */
2240 if (comp_target_types (type0, type1))
2241 result_type = common_type (type0, type1);
2242 else if (TYPE_MAIN_VARIANT (tt0) == void_type_node)
2243 {
2244 /* op0 != orig_op0 detects the case of something
2245 whose value is 0 but which isn't a valid null ptr const. */
2246 if (pedantic && (!integer_zerop (op0) || op0 != orig_op0)
2247 && TREE_CODE (tt1) == FUNCTION_TYPE)
2248 pedwarn ("ANSI C forbids comparison of `void *' with function pointer");
2249 }
2250 else if (TYPE_MAIN_VARIANT (tt1) == void_type_node)
2251 {
2252 if (pedantic && (!integer_zerop (op1) || op1 != orig_op1)
2253 && TREE_CODE (tt0) == FUNCTION_TYPE)
2254 pedwarn ("ANSI C forbids comparison of `void *' with function pointer");
2255 }
2256 else
2257 pedwarn ("comparison of distinct pointer types lacks a cast");
2258
2259 if (result_type == NULL_TREE)
2260 result_type = ptr_type_node;
2261 }
2262 else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
2263 && integer_zerop (op1))
2264 result_type = type0;
2265 else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
2266 && integer_zerop (op0))
2267 result_type = type1;
2268 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2269 {
2270 result_type = type0;
2271 if (! flag_traditional)
2272 pedwarn ("comparison between pointer and integer");
2273 }
2274 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
2275 {
2276 result_type = type1;
2277 if (! flag_traditional)
2278 pedwarn ("comparison between pointer and integer");
2279 }
2280 break;
2281
2282 case MAX_EXPR:
2283 case MIN_EXPR:
2284 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
2285 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
2286 shorten = 1;
2287 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2288 {
2289 if (comp_target_types (type0, type1))
2290 {
2291 result_type = common_type (type0, type1);
2292 if (pedantic
2293 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
2294 pedwarn ("ANSI C forbids ordered comparisons of pointers to functions");
2295 }
2296 else
2297 {
2298 result_type = ptr_type_node;
2299 pedwarn ("comparison of distinct pointer types lacks a cast");
2300 }
2301 }
2302 break;
2303
2304 case LE_EXPR:
2305 case GE_EXPR:
2306 case LT_EXPR:
2307 case GT_EXPR:
2308 build_type = integer_type_node;
2309 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
2310 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
2311 short_compare = 1;
2312 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2313 {
2314 if (comp_target_types (type0, type1))
2315 {
2316 result_type = common_type (type0, type1);
2317 if ((TYPE_SIZE (TREE_TYPE (type0)) != 0)
2318 != (TYPE_SIZE (TREE_TYPE (type1)) != 0))
2319 pedwarn ("comparison of complete and incomplete pointers");
2320 else if (pedantic
2321 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
2322 pedwarn ("ANSI C forbids ordered comparisons of pointers to functions");
2323 }
2324 else
2325 {
2326 result_type = ptr_type_node;
2327 pedwarn ("comparison of distinct pointer types lacks a cast");
2328 }
2329 }
2330 else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
2331 && integer_zerop (op1))
2332 {
2333 result_type = type0;
2334 if (pedantic || extra_warnings)
2335 pedwarn ("ordered comparison of pointer with integer zero");
2336 }
2337 else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
2338 && integer_zerop (op0))
2339 {
2340 result_type = type1;
2341 if (pedantic)
2342 pedwarn ("ordered comparison of pointer with integer zero");
2343 }
2344 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2345 {
2346 result_type = type0;
2347 if (! flag_traditional)
2348 pedwarn ("comparison between pointer and integer");
2349 }
2350 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
2351 {
2352 result_type = type1;
2353 if (! flag_traditional)
2354 pedwarn ("comparison between pointer and integer");
2355 }
2356 break;
2357
2358 default:
2359 break;
2360 }
2361
2362 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
2363 &&
2364 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
2365 {
2366 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
2367
2368 if (shorten || common || short_compare)
2369 result_type = common_type (type0, type1);
2370
2371 /* For certain operations (which identify themselves by shorten != 0)
2372 if both args were extended from the same smaller type,
2373 do the arithmetic in that type and then extend.
2374
2375 shorten !=0 and !=1 indicates a bitwise operation.
2376 For them, this optimization is safe only if
2377 both args are zero-extended or both are sign-extended.
2378 Otherwise, we might change the result.
2379 Eg, (short)-1 | (unsigned short)-1 is (int)-1
2380 but calculated in (unsigned short) it would be (unsigned short)-1. */
2381
2382 if (shorten && none_complex)
2383 {
2384 int unsigned0, unsigned1;
2385 tree arg0 = get_narrower (op0, &unsigned0);
2386 tree arg1 = get_narrower (op1, &unsigned1);
2387 /* UNS is 1 if the operation to be done is an unsigned one. */
2388 int uns = TREE_UNSIGNED (result_type);
2389 tree type;
2390
2391 final_type = result_type;
2392
2393 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
2394 but it *requires* conversion to FINAL_TYPE. */
2395
2396 if ((TYPE_PRECISION (TREE_TYPE (op0))
2397 == TYPE_PRECISION (TREE_TYPE (arg0)))
2398 && TREE_TYPE (op0) != final_type)
2399 unsigned0 = TREE_UNSIGNED (TREE_TYPE (op0));
2400 if ((TYPE_PRECISION (TREE_TYPE (op1))
2401 == TYPE_PRECISION (TREE_TYPE (arg1)))
2402 && TREE_TYPE (op1) != final_type)
2403 unsigned1 = TREE_UNSIGNED (TREE_TYPE (op1));
2404
2405 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
2406
2407 /* For bitwise operations, signedness of nominal type
2408 does not matter. Consider only how operands were extended. */
2409 if (shorten == -1)
2410 uns = unsigned0;
2411
2412 /* Note that in all three cases below we refrain from optimizing
2413 an unsigned operation on sign-extended args.
2414 That would not be valid. */
2415
2416 /* Both args variable: if both extended in same way
2417 from same width, do it in that width.
2418 Do it unsigned if args were zero-extended. */
2419 if ((TYPE_PRECISION (TREE_TYPE (arg0))
2420 < TYPE_PRECISION (result_type))
2421 && (TYPE_PRECISION (TREE_TYPE (arg1))
2422 == TYPE_PRECISION (TREE_TYPE (arg0)))
2423 && unsigned0 == unsigned1
2424 && (unsigned0 || !uns))
2425 result_type
2426 = signed_or_unsigned_type (unsigned0,
2427 common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
2428 else if (TREE_CODE (arg0) == INTEGER_CST
2429 && (unsigned1 || !uns)
2430 && (TYPE_PRECISION (TREE_TYPE (arg1))
2431 < TYPE_PRECISION (result_type))
2432 && (type = signed_or_unsigned_type (unsigned1,
2433 TREE_TYPE (arg1)),
2434 int_fits_type_p (arg0, type)))
2435 result_type = type;
2436 else if (TREE_CODE (arg1) == INTEGER_CST
2437 && (unsigned0 || !uns)
2438 && (TYPE_PRECISION (TREE_TYPE (arg0))
2439 < TYPE_PRECISION (result_type))
2440 && (type = signed_or_unsigned_type (unsigned0,
2441 TREE_TYPE (arg0)),
2442 int_fits_type_p (arg1, type)))
2443 result_type = type;
2444 }
2445
2446 /* Shifts can be shortened if shifting right. */
2447
2448 if (short_shift)
2449 {
2450 int unsigned_arg;
2451 tree arg0 = get_narrower (op0, &unsigned_arg);
2452
2453 final_type = result_type;
2454
2455 if (arg0 == op0 && final_type == TREE_TYPE (op0))
2456 unsigned_arg = TREE_UNSIGNED (TREE_TYPE (op0));
2457
2458 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
2459 /* We can shorten only if the shift count is less than the
2460 number of bits in the smaller type size. */
2461 && TREE_INT_CST_HIGH (op1) == 0
2462 && TYPE_PRECISION (TREE_TYPE (arg0)) > TREE_INT_CST_LOW (op1)
2463 /* If arg is sign-extended and then unsigned-shifted,
2464 we can simulate this with a signed shift in arg's type
2465 only if the extended result is at least twice as wide
2466 as the arg. Otherwise, the shift could use up all the
2467 ones made by sign-extension and bring in zeros.
2468 We can't optimize that case at all, but in most machines
2469 it never happens because available widths are 2**N. */
2470 && (!TREE_UNSIGNED (final_type)
2471 || unsigned_arg
2472 || 2 * TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (result_type)))
2473 {
2474 /* Do an unsigned shift if the operand was zero-extended. */
2475 result_type
2476 = signed_or_unsigned_type (unsigned_arg,
2477 TREE_TYPE (arg0));
2478 /* Convert value-to-be-shifted to that type. */
2479 if (TREE_TYPE (op0) != result_type)
2480 op0 = convert (result_type, op0);
2481 converted = 1;
2482 }
2483 }
2484
2485 /* Comparison operations are shortened too but differently.
2486 They identify themselves by setting short_compare = 1. */
2487
2488 if (short_compare)
2489 {
2490 /* Don't write &op0, etc., because that would prevent op0
2491 from being kept in a register.
2492 Instead, make copies of the our local variables and
2493 pass the copies by reference, then copy them back afterward. */
2494 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
2495 enum tree_code xresultcode = resultcode;
2496 tree val
2497 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
2498 if (val != 0)
2499 return val;
2500 op0 = xop0, op1 = xop1;
2501 converted = 1;
2502 resultcode = xresultcode;
2503
2504 if ((warn_sign_compare < 0 ? extra_warnings : warn_sign_compare != 0)
2505 && skip_evaluation == 0)
2506 {
2507 int op0_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op0));
2508 int op1_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op1));
2509
2510 int unsignedp0, unsignedp1;
2511 tree primop0 = get_narrower (op0, &unsignedp0);
2512 tree primop1 = get_narrower (op1, &unsignedp1);
2513
2514 /* Avoid spurious warnings for comparison with enumerators. */
2515
2516 xop0 = orig_op0;
2517 xop1 = orig_op1;
2518 STRIP_TYPE_NOPS (xop0);
2519 STRIP_TYPE_NOPS (xop1);
2520
2521 /* Give warnings for comparisons between signed and unsigned
2522 quantities that may fail. */
2523 /* Do the checking based on the original operand trees, so that
2524 casts will be considered, but default promotions won't be. */
2525
2526 /* Do not warn if the comparison is being done in a signed type,
2527 since the signed type will only be chosen if it can represent
2528 all the values of the unsigned type. */
2529 if (! TREE_UNSIGNED (result_type))
2530 /* OK */;
2531 /* Do not warn if both operands are unsigned. */
2532 else if (op0_signed == op1_signed)
2533 /* OK */;
2534 /* Do not warn if the signed quantity is an unsuffixed
2535 integer literal (or some static constant expression
2536 involving such literals) and it is non-negative. */
2537 else if ((op0_signed && TREE_CODE (xop0) == INTEGER_CST
2538 && tree_int_cst_sgn (xop0) >= 0)
2539 || (op1_signed && TREE_CODE (xop1) == INTEGER_CST
2540 && tree_int_cst_sgn (xop1) >= 0))
2541 /* OK */;
2542 /* Do not warn if the comparison is an equality operation,
2543 the unsigned quantity is an integral constant and it does
2544 not use the most significant bit of result_type. */
2545 else if ((resultcode == EQ_EXPR || resultcode == NE_EXPR)
2546 && ((op0_signed && TREE_CODE (xop1) == INTEGER_CST
2547 && int_fits_type_p (xop1, signed_type (result_type)))
2548 || (op1_signed && TREE_CODE (xop0) == INTEGER_CST
2549 && int_fits_type_p (xop0, signed_type (result_type)))))
2550 /* OK */;
2551 else
2552 warning ("comparison between signed and unsigned");
2553
2554 /* Warn if two unsigned values are being compared in a size
2555 larger than their original size, and one (and only one) is the
2556 result of a `~' operator. This comparison will always fail.
2557
2558 Also warn if one operand is a constant, and the constant
2559 does not have all bits set that are set in the ~ operand
2560 when it is extended. */
2561
2562 if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
2563 != (TREE_CODE (primop1) == BIT_NOT_EXPR))
2564 {
2565 if (TREE_CODE (primop0) == BIT_NOT_EXPR)
2566 primop0 = get_narrower (TREE_OPERAND (primop0, 0),
2567 &unsignedp0);
2568 else
2569 primop1 = get_narrower (TREE_OPERAND (primop1, 0),
2570 &unsignedp1);
2571
2572 if (TREE_CODE (primop0) == INTEGER_CST
2573 || TREE_CODE (primop1) == INTEGER_CST)
2574 {
2575 tree primop;
2576 long constant, mask;
2577 int unsignedp, bits;
2578
2579 if (TREE_CODE (primop0) == INTEGER_CST)
2580 {
2581 primop = primop1;
2582 unsignedp = unsignedp1;
2583 constant = TREE_INT_CST_LOW (primop0);
2584 }
2585 else
2586 {
2587 primop = primop0;
2588 unsignedp = unsignedp0;
2589 constant = TREE_INT_CST_LOW (primop1);
2590 }
2591
2592 bits = TYPE_PRECISION (TREE_TYPE (primop));
2593 if (bits < TYPE_PRECISION (result_type)
2594 && bits < HOST_BITS_PER_LONG && unsignedp)
2595 {
2596 mask = (~0L) << bits;
2597 if ((mask & constant) != mask)
2598 warning ("comparison of promoted ~unsigned with constant");
2599 }
2600 }
2601 else if (unsignedp0 && unsignedp1
2602 && (TYPE_PRECISION (TREE_TYPE (primop0))
2603 < TYPE_PRECISION (result_type))
2604 && (TYPE_PRECISION (TREE_TYPE (primop1))
2605 < TYPE_PRECISION (result_type)))
2606 warning ("comparison of promoted ~unsigned with unsigned");
2607 }
2608 }
2609 }
2610 }
2611
2612 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
2613 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
2614 Then the expression will be built.
2615 It will be given type FINAL_TYPE if that is nonzero;
2616 otherwise, it will be given type RESULT_TYPE. */
2617
2618 if (!result_type)
2619 {
2620 binary_op_error (code);
2621 return error_mark_node;
2622 }
2623
2624 if (! converted)
2625 {
2626 if (TREE_TYPE (op0) != result_type)
2627 op0 = convert (result_type, op0);
2628 if (TREE_TYPE (op1) != result_type)
2629 op1 = convert (result_type, op1);
2630 }
2631
2632 if (build_type == NULL_TREE)
2633 build_type = result_type;
2634
2635 {
2636 register tree result = build (resultcode, build_type, op0, op1);
2637 register tree folded;
2638
2639 folded = fold (result);
2640 if (folded == result)
2641 TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
2642 if (final_type != 0)
2643 return convert (final_type, folded);
2644 return folded;
2645 }
2646 }
2647 \f
2648 /* Return a tree for the sum or difference (RESULTCODE says which)
2649 of pointer PTROP and integer INTOP. */
2650
2651 static tree
2652 pointer_int_sum (resultcode, ptrop, intop)
2653 enum tree_code resultcode;
2654 register tree ptrop, intop;
2655 {
2656 tree size_exp;
2657
2658 register tree result;
2659 register tree folded;
2660
2661 /* The result is a pointer of the same type that is being added. */
2662
2663 register tree result_type = TREE_TYPE (ptrop);
2664
2665 if (TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
2666 {
2667 if (pedantic || warn_pointer_arith)
2668 pedwarn ("pointer of type `void *' used in arithmetic");
2669 size_exp = integer_one_node;
2670 }
2671 else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE)
2672 {
2673 if (pedantic || warn_pointer_arith)
2674 pedwarn ("pointer to a function used in arithmetic");
2675 size_exp = integer_one_node;
2676 }
2677 else
2678 size_exp = c_size_in_bytes (TREE_TYPE (result_type));
2679
2680 /* If what we are about to multiply by the size of the elements
2681 contains a constant term, apply distributive law
2682 and multiply that constant term separately.
2683 This helps produce common subexpressions. */
2684
2685 if ((TREE_CODE (intop) == PLUS_EXPR || TREE_CODE (intop) == MINUS_EXPR)
2686 && ! TREE_CONSTANT (intop)
2687 && TREE_CONSTANT (TREE_OPERAND (intop, 1))
2688 && TREE_CONSTANT (size_exp)
2689 /* If the constant comes from pointer subtraction,
2690 skip this optimization--it would cause an error. */
2691 && TREE_CODE (TREE_TYPE (TREE_OPERAND (intop, 0))) == INTEGER_TYPE
2692 /* If the constant is unsigned, and smaller than the pointer size,
2693 then we must skip this optimization. This is because it could cause
2694 an overflow error if the constant is negative but INTOP is not. */
2695 && (! TREE_UNSIGNED (TREE_TYPE (intop))
2696 || (TYPE_PRECISION (TREE_TYPE (intop))
2697 == TYPE_PRECISION (TREE_TYPE (ptrop)))))
2698 {
2699 enum tree_code subcode = resultcode;
2700 tree int_type = TREE_TYPE (intop);
2701 if (TREE_CODE (intop) == MINUS_EXPR)
2702 subcode = (subcode == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR);
2703 /* Convert both subexpression types to the type of intop,
2704 because weird cases involving pointer arithmetic
2705 can result in a sum or difference with different type args. */
2706 ptrop = build_binary_op (subcode, ptrop,
2707 convert (int_type, TREE_OPERAND (intop, 1)), 1);
2708 intop = convert (int_type, TREE_OPERAND (intop, 0));
2709 }
2710
2711 /* Convert the integer argument to a type the same size as sizetype
2712 so the multiply won't overflow spuriously. */
2713
2714 if (TYPE_PRECISION (TREE_TYPE (intop)) != TYPE_PRECISION (sizetype)
2715 || TREE_UNSIGNED (TREE_TYPE (intop)) != TREE_UNSIGNED (sizetype))
2716 intop = convert (type_for_size (TYPE_PRECISION (sizetype),
2717 TREE_UNSIGNED (sizetype)), intop);
2718
2719 /* Replace the integer argument with a suitable product by the object size.
2720 Do this multiplication as signed, then convert to the appropriate
2721 pointer type (actually unsigned integral). */
2722
2723 intop = convert (result_type,
2724 build_binary_op (MULT_EXPR, intop,
2725 convert (TREE_TYPE (intop), size_exp), 1));
2726
2727 /* Create the sum or difference. */
2728
2729 result = build (resultcode, result_type, ptrop, intop);
2730
2731 folded = fold (result);
2732 if (folded == result)
2733 TREE_CONSTANT (folded) = TREE_CONSTANT (ptrop) & TREE_CONSTANT (intop);
2734 return folded;
2735 }
2736
2737 /* Return a tree for the difference of pointers OP0 and OP1.
2738 The resulting tree has type int. */
2739
2740 static tree
2741 pointer_diff (op0, op1)
2742 register tree op0, op1;
2743 {
2744 register tree result, folded;
2745 tree restype = ptrdiff_type_node;
2746
2747 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2748
2749 if (pedantic || warn_pointer_arith)
2750 {
2751 if (TREE_CODE (target_type) == VOID_TYPE)
2752 pedwarn ("pointer of type `void *' used in subtraction");
2753 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2754 pedwarn ("pointer to a function used in subtraction");
2755 }
2756
2757 /* First do the subtraction as integers;
2758 then drop through to build the divide operator.
2759 Do not do default conversions on the minus operator
2760 in case restype is a short type. */
2761
2762 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2763 convert (restype, op1), 0);
2764 /* This generates an error if op1 is pointer to incomplete type. */
2765 if (TYPE_SIZE (TREE_TYPE (TREE_TYPE (op1))) == 0)
2766 error ("arithmetic on pointer to an incomplete type");
2767
2768 /* This generates an error if op0 is pointer to incomplete type. */
2769 op1 = c_size_in_bytes (target_type);
2770
2771 /* Divide by the size, in easiest possible way. */
2772
2773 result = build (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2774
2775 folded = fold (result);
2776 if (folded == result)
2777 TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
2778 return folded;
2779 }
2780 \f
2781 /* Construct and perhaps optimize a tree representation
2782 for a unary operation. CODE, a tree_code, specifies the operation
2783 and XARG is the operand. NOCONVERT nonzero suppresses
2784 the default promotions (such as from short to int). */
2785
2786 tree
2787 build_unary_op (code, xarg, noconvert)
2788 enum tree_code code;
2789 tree xarg;
2790 int noconvert;
2791 {
2792 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2793 register tree arg = xarg;
2794 register tree argtype = 0;
2795 register enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2796 char *errstring = NULL;
2797 tree val;
2798
2799 if (typecode == ERROR_MARK)
2800 return error_mark_node;
2801 if (typecode == ENUMERAL_TYPE)
2802 typecode = INTEGER_TYPE;
2803
2804 switch (code)
2805 {
2806 case CONVERT_EXPR:
2807 /* This is used for unary plus, because a CONVERT_EXPR
2808 is enough to prevent anybody from looking inside for
2809 associativity, but won't generate any code. */
2810 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2811 || typecode == COMPLEX_TYPE))
2812 errstring = "wrong type argument to unary plus";
2813 else if (!noconvert)
2814 arg = default_conversion (arg);
2815 break;
2816
2817 case NEGATE_EXPR:
2818 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2819 || typecode == COMPLEX_TYPE))
2820 errstring = "wrong type argument to unary minus";
2821 else if (!noconvert)
2822 arg = default_conversion (arg);
2823 break;
2824
2825 case BIT_NOT_EXPR:
2826 if (typecode == COMPLEX_TYPE)
2827 {
2828 code = CONJ_EXPR;
2829 if (!noconvert)
2830 arg = default_conversion (arg);
2831 }
2832 else if (typecode != INTEGER_TYPE)
2833 errstring = "wrong type argument to bit-complement";
2834 else if (!noconvert)
2835 arg = default_conversion (arg);
2836 break;
2837
2838 case ABS_EXPR:
2839 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2840 || typecode == COMPLEX_TYPE))
2841 errstring = "wrong type argument to abs";
2842 else if (!noconvert)
2843 arg = default_conversion (arg);
2844 break;
2845
2846 case CONJ_EXPR:
2847 /* Conjugating a real value is a no-op, but allow it anyway. */
2848 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2849 || typecode == COMPLEX_TYPE))
2850 errstring = "wrong type argument to conjugation";
2851 else if (!noconvert)
2852 arg = default_conversion (arg);
2853 break;
2854
2855 case TRUTH_NOT_EXPR:
2856 if (typecode != INTEGER_TYPE
2857 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2858 && typecode != COMPLEX_TYPE
2859 /* These will convert to a pointer. */
2860 && typecode != ARRAY_TYPE && typecode != FUNCTION_TYPE)
2861 {
2862 errstring = "wrong type argument to unary exclamation mark";
2863 break;
2864 }
2865 arg = truthvalue_conversion (arg);
2866 return invert_truthvalue (arg);
2867
2868 case NOP_EXPR:
2869 break;
2870
2871 case REALPART_EXPR:
2872 if (TREE_CODE (arg) == COMPLEX_CST)
2873 return TREE_REALPART (arg);
2874 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2875 return fold (build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
2876 else
2877 return arg;
2878
2879 case IMAGPART_EXPR:
2880 if (TREE_CODE (arg) == COMPLEX_CST)
2881 return TREE_IMAGPART (arg);
2882 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2883 return fold (build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
2884 else
2885 return convert (TREE_TYPE (arg), integer_zero_node);
2886
2887 case PREINCREMENT_EXPR:
2888 case POSTINCREMENT_EXPR:
2889 case PREDECREMENT_EXPR:
2890 case POSTDECREMENT_EXPR:
2891 /* Handle complex lvalues (when permitted)
2892 by reduction to simpler cases. */
2893
2894 val = unary_complex_lvalue (code, arg);
2895 if (val != 0)
2896 return val;
2897
2898 /* Increment or decrement the real part of the value,
2899 and don't change the imaginary part. */
2900 if (typecode == COMPLEX_TYPE)
2901 {
2902 tree real, imag;
2903
2904 arg = stabilize_reference (arg);
2905 real = build_unary_op (REALPART_EXPR, arg, 1);
2906 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2907 return build (COMPLEX_EXPR, TREE_TYPE (arg),
2908 build_unary_op (code, real, 1), imag);
2909 }
2910
2911 /* Report invalid types. */
2912
2913 if (typecode != POINTER_TYPE
2914 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2915 {
2916 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2917 errstring ="wrong type argument to increment";
2918 else
2919 errstring ="wrong type argument to decrement";
2920 break;
2921 }
2922
2923 {
2924 register tree inc;
2925 tree result_type = TREE_TYPE (arg);
2926
2927 arg = get_unwidened (arg, 0);
2928 argtype = TREE_TYPE (arg);
2929
2930 /* Compute the increment. */
2931
2932 if (typecode == POINTER_TYPE)
2933 {
2934 /* If pointer target is an undefined struct,
2935 we just cannot know how to do the arithmetic. */
2936 if (TYPE_SIZE (TREE_TYPE (result_type)) == 0)
2937 error ("%s of pointer to unknown structure",
2938 ((code == PREINCREMENT_EXPR
2939 || code == POSTINCREMENT_EXPR)
2940 ? "increment" : "decrement"));
2941 else if ((pedantic || warn_pointer_arith)
2942 && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2943 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2944 pedwarn ("wrong type argument to %s",
2945 ((code == PREINCREMENT_EXPR
2946 || code == POSTINCREMENT_EXPR)
2947 ? "increment" : "decrement"));
2948 inc = c_size_in_bytes (TREE_TYPE (result_type));
2949 }
2950 else
2951 inc = integer_one_node;
2952
2953 inc = convert (argtype, inc);
2954
2955 /* Handle incrementing a cast-expression. */
2956
2957 while (1)
2958 switch (TREE_CODE (arg))
2959 {
2960 case NOP_EXPR:
2961 case CONVERT_EXPR:
2962 case FLOAT_EXPR:
2963 case FIX_TRUNC_EXPR:
2964 case FIX_FLOOR_EXPR:
2965 case FIX_ROUND_EXPR:
2966 case FIX_CEIL_EXPR:
2967 pedantic_lvalue_warning (CONVERT_EXPR);
2968 /* If the real type has the same machine representation
2969 as the type it is cast to, we can make better output
2970 by adding directly to the inside of the cast. */
2971 if ((TREE_CODE (TREE_TYPE (arg))
2972 == TREE_CODE (TREE_TYPE (TREE_OPERAND (arg, 0))))
2973 && (TYPE_MODE (TREE_TYPE (arg))
2974 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (arg, 0)))))
2975 arg = TREE_OPERAND (arg, 0);
2976 else
2977 {
2978 tree incremented, modify, value;
2979 arg = stabilize_reference (arg);
2980 if (code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR)
2981 value = arg;
2982 else
2983 value = save_expr (arg);
2984 incremented = build (((code == PREINCREMENT_EXPR
2985 || code == POSTINCREMENT_EXPR)
2986 ? PLUS_EXPR : MINUS_EXPR),
2987 argtype, value, inc);
2988 TREE_SIDE_EFFECTS (incremented) = 1;
2989 modify = build_modify_expr (arg, NOP_EXPR, incremented);
2990 value = build (COMPOUND_EXPR, TREE_TYPE (arg), modify, value);
2991 TREE_USED (value) = 1;
2992 return value;
2993 }
2994 break;
2995
2996 default:
2997 goto give_up;
2998 }
2999 give_up:
3000
3001 /* Complain about anything else that is not a true lvalue. */
3002 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
3003 || code == POSTINCREMENT_EXPR)
3004 ? "increment" : "decrement")))
3005 return error_mark_node;
3006
3007 /* Report a read-only lvalue. */
3008 if (TREE_READONLY (arg))
3009 readonly_warning (arg,
3010 ((code == PREINCREMENT_EXPR
3011 || code == POSTINCREMENT_EXPR)
3012 ? "increment" : "decrement"));
3013
3014 val = build (code, TREE_TYPE (arg), arg, inc);
3015 TREE_SIDE_EFFECTS (val) = 1;
3016 val = convert (result_type, val);
3017 if (TREE_CODE (val) != code)
3018 TREE_NO_UNUSED_WARNING (val) = 1;
3019 return val;
3020 }
3021
3022 case ADDR_EXPR:
3023 /* Note that this operation never does default_conversion
3024 regardless of NOCONVERT. */
3025
3026 /* Let &* cancel out to simplify resulting code. */
3027 if (TREE_CODE (arg) == INDIRECT_REF)
3028 {
3029 /* Don't let this be an lvalue. */
3030 if (lvalue_p (TREE_OPERAND (arg, 0)))
3031 return non_lvalue (TREE_OPERAND (arg, 0));
3032 return TREE_OPERAND (arg, 0);
3033 }
3034
3035 /* For &x[y], return x+y */
3036 if (TREE_CODE (arg) == ARRAY_REF)
3037 {
3038 if (mark_addressable (TREE_OPERAND (arg, 0)) == 0)
3039 return error_mark_node;
3040 return build_binary_op (PLUS_EXPR, TREE_OPERAND (arg, 0),
3041 TREE_OPERAND (arg, 1), 1);
3042 }
3043
3044 /* Handle complex lvalues (when permitted)
3045 by reduction to simpler cases. */
3046 val = unary_complex_lvalue (code, arg);
3047 if (val != 0)
3048 return val;
3049
3050 #if 0 /* Turned off because inconsistent;
3051 float f; *&(int)f = 3.4 stores in int format
3052 whereas (int)f = 3.4 stores in float format. */
3053 /* Address of a cast is just a cast of the address
3054 of the operand of the cast. */
3055 switch (TREE_CODE (arg))
3056 {
3057 case NOP_EXPR:
3058 case CONVERT_EXPR:
3059 case FLOAT_EXPR:
3060 case FIX_TRUNC_EXPR:
3061 case FIX_FLOOR_EXPR:
3062 case FIX_ROUND_EXPR:
3063 case FIX_CEIL_EXPR:
3064 if (pedantic)
3065 pedwarn ("ANSI C forbids the address of a cast expression");
3066 return convert (build_pointer_type (TREE_TYPE (arg)),
3067 build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0),
3068 0));
3069 }
3070 #endif
3071
3072 /* Allow the address of a constructor if all the elements
3073 are constant. */
3074 if (TREE_CODE (arg) == CONSTRUCTOR && TREE_CONSTANT (arg))
3075 ;
3076 /* Anything not already handled and not a true memory reference
3077 is an error. */
3078 else if (typecode != FUNCTION_TYPE && !lvalue_or_else (arg, "unary `&'"))
3079 return error_mark_node;
3080
3081 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3082 argtype = TREE_TYPE (arg);
3083 /* If the lvalue is const or volatile,
3084 merge that into the type that the address will point to. */
3085 if (TREE_CODE_CLASS (TREE_CODE (arg)) == 'd'
3086 || TREE_CODE_CLASS (TREE_CODE (arg)) == 'r')
3087 {
3088 if (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg))
3089 argtype = c_build_type_variant (argtype,
3090 TREE_READONLY (arg),
3091 TREE_THIS_VOLATILE (arg));
3092 }
3093
3094 argtype = build_pointer_type (argtype);
3095
3096 if (mark_addressable (arg) == 0)
3097 return error_mark_node;
3098
3099 {
3100 tree addr;
3101
3102 if (TREE_CODE (arg) == COMPONENT_REF)
3103 {
3104 tree field = TREE_OPERAND (arg, 1);
3105
3106 addr = build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0), 0);
3107
3108 if (DECL_C_BIT_FIELD (field))
3109 {
3110 error ("attempt to take address of bit-field structure member `%s'",
3111 IDENTIFIER_POINTER (DECL_NAME (field)));
3112 return error_mark_node;
3113 }
3114
3115 addr = convert (argtype, addr);
3116
3117 if (! integer_zerop (DECL_FIELD_BITPOS (field)))
3118 {
3119 tree offset
3120 = size_binop (EASY_DIV_EXPR, DECL_FIELD_BITPOS (field),
3121 size_int (BITS_PER_UNIT));
3122 int flag = TREE_CONSTANT (addr);
3123 addr = fold (build (PLUS_EXPR, argtype,
3124 addr, convert (argtype, offset)));
3125 TREE_CONSTANT (addr) = flag;
3126 }
3127 }
3128 else
3129 addr = build1 (code, argtype, arg);
3130
3131 /* Address of a static or external variable or
3132 file-scope function counts as a constant. */
3133 if (staticp (arg)
3134 && ! (TREE_CODE (arg) == FUNCTION_DECL
3135 && DECL_CONTEXT (arg) != 0))
3136 TREE_CONSTANT (addr) = 1;
3137 return addr;
3138 }
3139
3140 default:
3141 break;
3142 }
3143
3144 if (!errstring)
3145 {
3146 if (argtype == 0)
3147 argtype = TREE_TYPE (arg);
3148 return fold (build1 (code, argtype, arg));
3149 }
3150
3151 error (errstring);
3152 return error_mark_node;
3153 }
3154
3155 #if 0
3156 /* If CONVERSIONS is a conversion expression or a nested sequence of such,
3157 convert ARG with the same conversions in the same order
3158 and return the result. */
3159
3160 static tree
3161 convert_sequence (conversions, arg)
3162 tree conversions;
3163 tree arg;
3164 {
3165 switch (TREE_CODE (conversions))
3166 {
3167 case NOP_EXPR:
3168 case CONVERT_EXPR:
3169 case FLOAT_EXPR:
3170 case FIX_TRUNC_EXPR:
3171 case FIX_FLOOR_EXPR:
3172 case FIX_ROUND_EXPR:
3173 case FIX_CEIL_EXPR:
3174 return convert (TREE_TYPE (conversions),
3175 convert_sequence (TREE_OPERAND (conversions, 0),
3176 arg));
3177
3178 default:
3179 return arg;
3180 }
3181 }
3182 #endif /* 0 */
3183
3184 /* Return nonzero if REF is an lvalue valid for this language.
3185 Lvalues can be assigned, unless their type has TYPE_READONLY.
3186 Lvalues can have their address taken, unless they have DECL_REGISTER. */
3187
3188 int
3189 lvalue_p (ref)
3190 tree ref;
3191 {
3192 register enum tree_code code = TREE_CODE (ref);
3193
3194 switch (code)
3195 {
3196 case REALPART_EXPR:
3197 case IMAGPART_EXPR:
3198 case COMPONENT_REF:
3199 return lvalue_p (TREE_OPERAND (ref, 0));
3200
3201 case STRING_CST:
3202 return 1;
3203
3204 case INDIRECT_REF:
3205 case ARRAY_REF:
3206 case VAR_DECL:
3207 case PARM_DECL:
3208 case RESULT_DECL:
3209 case ERROR_MARK:
3210 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3211 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3212
3213 case BIND_EXPR:
3214 case RTL_EXPR:
3215 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3216
3217 default:
3218 return 0;
3219 }
3220 }
3221
3222 /* Return nonzero if REF is an lvalue valid for this language;
3223 otherwise, print an error message and return zero. */
3224
3225 int
3226 lvalue_or_else (ref, string)
3227 tree ref;
3228 char *string;
3229 {
3230 int win = lvalue_p (ref);
3231 if (! win)
3232 error ("invalid lvalue in %s", string);
3233 return win;
3234 }
3235
3236 /* Apply unary lvalue-demanding operator CODE to the expression ARG
3237 for certain kinds of expressions which are not really lvalues
3238 but which we can accept as lvalues.
3239
3240 If ARG is not a kind of expression we can handle, return zero. */
3241
3242 static tree
3243 unary_complex_lvalue (code, arg)
3244 enum tree_code code;
3245 tree arg;
3246 {
3247 /* Handle (a, b) used as an "lvalue". */
3248 if (TREE_CODE (arg) == COMPOUND_EXPR)
3249 {
3250 tree real_result = build_unary_op (code, TREE_OPERAND (arg, 1), 0);
3251
3252 /* If this returns a function type, it isn't really being used as
3253 an lvalue, so don't issue a warning about it. */
3254 if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE)
3255 pedantic_lvalue_warning (COMPOUND_EXPR);
3256
3257 return build (COMPOUND_EXPR, TREE_TYPE (real_result),
3258 TREE_OPERAND (arg, 0), real_result);
3259 }
3260
3261 /* Handle (a ? b : c) used as an "lvalue". */
3262 if (TREE_CODE (arg) == COND_EXPR)
3263 {
3264 pedantic_lvalue_warning (COND_EXPR);
3265 if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE)
3266 pedantic_lvalue_warning (COMPOUND_EXPR);
3267
3268 return (build_conditional_expr
3269 (TREE_OPERAND (arg, 0),
3270 build_unary_op (code, TREE_OPERAND (arg, 1), 0),
3271 build_unary_op (code, TREE_OPERAND (arg, 2), 0)));
3272 }
3273
3274 return 0;
3275 }
3276
3277 /* If pedantic, warn about improper lvalue. CODE is either COND_EXPR
3278 COMPOUND_EXPR, or CONVERT_EXPR (for casts). */
3279
3280 static void
3281 pedantic_lvalue_warning (code)
3282 enum tree_code code;
3283 {
3284 if (pedantic)
3285 pedwarn ("ANSI C forbids use of %s expressions as lvalues",
3286 code == COND_EXPR ? "conditional"
3287 : code == COMPOUND_EXPR ? "compound" : "cast");
3288 }
3289 \f
3290 /* Warn about storing in something that is `const'. */
3291
3292 void
3293 readonly_warning (arg, string)
3294 tree arg;
3295 char *string;
3296 {
3297 char buf[80];
3298 strcpy (buf, string);
3299
3300 /* Forbid assignments to iterators. */
3301 if (TREE_CODE (arg) == VAR_DECL && ITERATOR_P (arg))
3302 {
3303 strcat (buf, " of iterator `%s'");
3304 pedwarn (buf, IDENTIFIER_POINTER (DECL_NAME (arg)));
3305 }
3306
3307 if (TREE_CODE (arg) == COMPONENT_REF)
3308 {
3309 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3310 readonly_warning (TREE_OPERAND (arg, 0), string);
3311 else
3312 {
3313 strcat (buf, " of read-only member `%s'");
3314 pedwarn (buf, IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (arg, 1))));
3315 }
3316 }
3317 else if (TREE_CODE (arg) == VAR_DECL)
3318 {
3319 strcat (buf, " of read-only variable `%s'");
3320 pedwarn (buf, IDENTIFIER_POINTER (DECL_NAME (arg)));
3321 }
3322 else
3323 {
3324 pedwarn ("%s of read-only location", buf);
3325 }
3326 }
3327 \f
3328 /* Mark EXP saying that we need to be able to take the
3329 address of it; it should not be allocated in a register.
3330 Value is 1 if successful. */
3331
3332 int
3333 mark_addressable (exp)
3334 tree exp;
3335 {
3336 register tree x = exp;
3337 while (1)
3338 switch (TREE_CODE (x))
3339 {
3340 case COMPONENT_REF:
3341 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3342 {
3343 error ("cannot take address of bitfield `%s'",
3344 IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (x, 1))));
3345 return 0;
3346 }
3347
3348 /* ... fall through ... */
3349
3350 case ADDR_EXPR:
3351 case ARRAY_REF:
3352 case REALPART_EXPR:
3353 case IMAGPART_EXPR:
3354 x = TREE_OPERAND (x, 0);
3355 break;
3356
3357 case CONSTRUCTOR:
3358 TREE_ADDRESSABLE (x) = 1;
3359 return 1;
3360
3361 case VAR_DECL:
3362 case CONST_DECL:
3363 case PARM_DECL:
3364 case RESULT_DECL:
3365 if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x)
3366 && DECL_NONLOCAL (x))
3367 {
3368 if (TREE_PUBLIC (x))
3369 {
3370 error ("global register variable `%s' used in nested function",
3371 IDENTIFIER_POINTER (DECL_NAME (x)));
3372 return 0;
3373 }
3374 pedwarn ("register variable `%s' used in nested function",
3375 IDENTIFIER_POINTER (DECL_NAME (x)));
3376 }
3377 else if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x))
3378 {
3379 if (TREE_PUBLIC (x))
3380 {
3381 error ("address of global register variable `%s' requested",
3382 IDENTIFIER_POINTER (DECL_NAME (x)));
3383 return 0;
3384 }
3385
3386 /* If we are making this addressable due to its having
3387 volatile components, give a different error message. Also
3388 handle the case of an unnamed parameter by not trying
3389 to give the name. */
3390
3391 else if (C_TYPE_FIELDS_VOLATILE (TREE_TYPE (x)))
3392 {
3393 error ("cannot put object with volatile field into register");
3394 return 0;
3395 }
3396
3397 pedwarn ("address of register variable `%s' requested",
3398 IDENTIFIER_POINTER (DECL_NAME (x)));
3399 }
3400 put_var_into_stack (x);
3401
3402 /* drops in */
3403 case FUNCTION_DECL:
3404 TREE_ADDRESSABLE (x) = 1;
3405 #if 0 /* poplevel deals with this now. */
3406 if (DECL_CONTEXT (x) == 0)
3407 TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (x)) = 1;
3408 #endif
3409
3410 default:
3411 return 1;
3412 }
3413 }
3414 \f
3415 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3416
3417 tree
3418 build_conditional_expr (ifexp, op1, op2)
3419 tree ifexp, op1, op2;
3420 {
3421 register tree type1;
3422 register tree type2;
3423 register enum tree_code code1;
3424 register enum tree_code code2;
3425 register tree result_type = NULL;
3426 tree orig_op1 = op1, orig_op2 = op2;
3427
3428 ifexp = truthvalue_conversion (default_conversion (ifexp));
3429
3430 #if 0 /* Produces wrong result if within sizeof. */
3431 /* Don't promote the operands separately if they promote
3432 the same way. Return the unpromoted type and let the combined
3433 value get promoted if necessary. */
3434
3435 if (TREE_TYPE (op1) == TREE_TYPE (op2)
3436 && TREE_CODE (TREE_TYPE (op1)) != ARRAY_TYPE
3437 && TREE_CODE (TREE_TYPE (op1)) != ENUMERAL_TYPE
3438 && TREE_CODE (TREE_TYPE (op1)) != FUNCTION_TYPE)
3439 {
3440 if (TREE_CODE (ifexp) == INTEGER_CST)
3441 return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
3442
3443 return fold (build (COND_EXPR, TREE_TYPE (op1), ifexp, op1, op2));
3444 }
3445 #endif
3446
3447 /* Promote both alternatives. */
3448
3449 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3450 op1 = default_conversion (op1);
3451 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3452 op2 = default_conversion (op2);
3453
3454 if (TREE_CODE (ifexp) == ERROR_MARK
3455 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3456 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3457 return error_mark_node;
3458
3459 type1 = TREE_TYPE (op1);
3460 code1 = TREE_CODE (type1);
3461 type2 = TREE_TYPE (op2);
3462 code2 = TREE_CODE (type2);
3463
3464 /* Quickly detect the usual case where op1 and op2 have the same type
3465 after promotion. */
3466 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3467 {
3468 if (type1 == type2)
3469 result_type = type1;
3470 else
3471 result_type = TYPE_MAIN_VARIANT (type1);
3472 }
3473 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE)
3474 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE))
3475 {
3476 result_type = common_type (type1, type2);
3477 }
3478 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3479 {
3480 if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3481 pedwarn ("ANSI C forbids conditional expr with only one void side");
3482 result_type = void_type_node;
3483 }
3484 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3485 {
3486 if (comp_target_types (type1, type2))
3487 result_type = common_type (type1, type2);
3488 else if (integer_zerop (op1) && TREE_TYPE (type1) == void_type_node
3489 && TREE_CODE (orig_op1) != NOP_EXPR)
3490 result_type = qualify_type (type2, type1);
3491 else if (integer_zerop (op2) && TREE_TYPE (type2) == void_type_node
3492 && TREE_CODE (orig_op2) != NOP_EXPR)
3493 result_type = qualify_type (type1, type2);
3494 else if (TYPE_MAIN_VARIANT (TREE_TYPE (type1)) == void_type_node)
3495 {
3496 if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3497 pedwarn ("ANSI C forbids conditional expr between `void *' and function pointer");
3498 result_type = qualify_type (type1, type2);
3499 }
3500 else if (TYPE_MAIN_VARIANT (TREE_TYPE (type2)) == void_type_node)
3501 {
3502 if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3503 pedwarn ("ANSI C forbids conditional expr between `void *' and function pointer");
3504 result_type = qualify_type (type2, type1);
3505 }
3506 else
3507 {
3508 pedwarn ("pointer type mismatch in conditional expression");
3509 result_type = build_pointer_type (void_type_node);
3510 }
3511 }
3512 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3513 {
3514 if (! integer_zerop (op2))
3515 pedwarn ("pointer/integer type mismatch in conditional expression");
3516 else
3517 {
3518 op2 = null_pointer_node;
3519 #if 0 /* The spec seems to say this is permitted. */
3520 if (pedantic && TREE_CODE (type1) == FUNCTION_TYPE)
3521 pedwarn ("ANSI C forbids conditional expr between 0 and function pointer");
3522 #endif
3523 }
3524 result_type = type1;
3525 }
3526 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3527 {
3528 if (!integer_zerop (op1))
3529 pedwarn ("pointer/integer type mismatch in conditional expression");
3530 else
3531 {
3532 op1 = null_pointer_node;
3533 #if 0 /* The spec seems to say this is permitted. */
3534 if (pedantic && TREE_CODE (type2) == FUNCTION_TYPE)
3535 pedwarn ("ANSI C forbids conditional expr between 0 and function pointer");
3536 #endif
3537 }
3538 result_type = type2;
3539 }
3540
3541 if (!result_type)
3542 {
3543 if (flag_cond_mismatch)
3544 result_type = void_type_node;
3545 else
3546 {
3547 error ("type mismatch in conditional expression");
3548 return error_mark_node;
3549 }
3550 }
3551
3552 /* Merge const and volatile flags of the incoming types. */
3553 result_type
3554 = build_type_variant (result_type,
3555 TREE_READONLY (op1) || TREE_READONLY (op2),
3556 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3557
3558 if (result_type != TREE_TYPE (op1))
3559 op1 = convert_and_check (result_type, op1);
3560 if (result_type != TREE_TYPE (op2))
3561 op2 = convert_and_check (result_type, op2);
3562
3563 #if 0
3564 if (code1 == RECORD_TYPE || code1 == UNION_TYPE)
3565 {
3566 result_type = TREE_TYPE (op1);
3567 if (TREE_CONSTANT (ifexp))
3568 return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
3569
3570 if (TYPE_MODE (result_type) == BLKmode)
3571 {
3572 register tree tempvar
3573 = build_decl (VAR_DECL, NULL_TREE, result_type);
3574 register tree xop1 = build_modify_expr (tempvar, op1);
3575 register tree xop2 = build_modify_expr (tempvar, op2);
3576 register tree result = fold (build (COND_EXPR, result_type,
3577 ifexp, xop1, xop2));
3578
3579 layout_decl (tempvar, TYPE_ALIGN (result_type));
3580 /* No way to handle variable-sized objects here.
3581 I fear that the entire handling of BLKmode conditional exprs
3582 needs to be redone. */
3583 if (TREE_CODE (DECL_SIZE (tempvar)) != INTEGER_CST)
3584 abort ();
3585 DECL_RTL (tempvar)
3586 = assign_stack_local (DECL_MODE (tempvar),
3587 (TREE_INT_CST_LOW (DECL_SIZE (tempvar))
3588 + BITS_PER_UNIT - 1)
3589 / BITS_PER_UNIT,
3590 0);
3591
3592 TREE_SIDE_EFFECTS (result)
3593 = TREE_SIDE_EFFECTS (ifexp) | TREE_SIDE_EFFECTS (op1)
3594 | TREE_SIDE_EFFECTS (op2);
3595 return build (COMPOUND_EXPR, result_type, result, tempvar);
3596 }
3597 }
3598 #endif /* 0 */
3599
3600 if (TREE_CODE (ifexp) == INTEGER_CST)
3601 return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
3602
3603 return fold (build (COND_EXPR, result_type, ifexp, op1, op2));
3604 }
3605 \f
3606 /* Given a list of expressions, return a compound expression
3607 that performs them all and returns the value of the last of them. */
3608
3609 tree
3610 build_compound_expr (list)
3611 tree list;
3612 {
3613 return internal_build_compound_expr (list, TRUE);
3614 }
3615
3616 static tree
3617 internal_build_compound_expr (list, first_p)
3618 tree list;
3619 int first_p;
3620 {
3621 register tree rest;
3622
3623 if (TREE_CHAIN (list) == 0)
3624 {
3625 #if 0 /* If something inside inhibited lvalueness, we should not override. */
3626 /* Consider (x, y+0), which is not an lvalue since y+0 is not. */
3627
3628 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3629 if (TREE_CODE (list) == NON_LVALUE_EXPR)
3630 list = TREE_OPERAND (list, 0);
3631 #endif
3632
3633 /* Don't let (0, 0) be null pointer constant. */
3634 if (!first_p && integer_zerop (TREE_VALUE (list)))
3635 return non_lvalue (TREE_VALUE (list));
3636 return TREE_VALUE (list);
3637 }
3638
3639 if (TREE_CHAIN (list) != 0 && TREE_CHAIN (TREE_CHAIN (list)) == 0)
3640 {
3641 /* Convert arrays to pointers when there really is a comma operator. */
3642 if (TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (list)))) == ARRAY_TYPE)
3643 TREE_VALUE (TREE_CHAIN (list))
3644 = default_conversion (TREE_VALUE (TREE_CHAIN (list)));
3645 }
3646
3647 rest = internal_build_compound_expr (TREE_CHAIN (list), FALSE);
3648
3649 if (! TREE_SIDE_EFFECTS (TREE_VALUE (list)))
3650 {
3651 /* The left-hand operand of a comma expression is like an expression
3652 statement: with -W or -Wunused, we should warn if it doesn't have
3653 any side-effects, unless it was explicitly cast to (void). */
3654 if ((extra_warnings || warn_unused)
3655 && ! (TREE_CODE (TREE_VALUE (list)) == CONVERT_EXPR
3656 && TREE_TYPE (TREE_VALUE (list)) == void_type_node))
3657 warning ("left-hand operand of comma expression has no effect");
3658
3659 /* When pedantic, a compound expression can be neither an lvalue
3660 nor an integer constant expression. */
3661 if (! pedantic)
3662 return rest;
3663 }
3664
3665 /* With -Wunused, we should also warn if the left-hand operand does have
3666 side-effects, but computes a value which is not used. For example, in
3667 `foo() + bar(), baz()' the result of the `+' operator is not used,
3668 so we should issue a warning. */
3669 else if (warn_unused)
3670 warn_if_unused_value (TREE_VALUE (list));
3671
3672 return build (COMPOUND_EXPR, TREE_TYPE (rest), TREE_VALUE (list), rest);
3673 }
3674
3675 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3676
3677 tree
3678 build_c_cast (type, expr)
3679 register tree type;
3680 tree expr;
3681 {
3682 register tree value = expr;
3683
3684 if (type == error_mark_node || expr == error_mark_node)
3685 return error_mark_node;
3686 type = TYPE_MAIN_VARIANT (type);
3687
3688 #if 0
3689 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3690 if (TREE_CODE (value) == NON_LVALUE_EXPR)
3691 value = TREE_OPERAND (value, 0);
3692 #endif
3693
3694 if (TREE_CODE (type) == ARRAY_TYPE)
3695 {
3696 error ("cast specifies array type");
3697 return error_mark_node;
3698 }
3699
3700 if (TREE_CODE (type) == FUNCTION_TYPE)
3701 {
3702 error ("cast specifies function type");
3703 return error_mark_node;
3704 }
3705
3706 if (type == TREE_TYPE (value))
3707 {
3708 if (pedantic)
3709 {
3710 if (TREE_CODE (type) == RECORD_TYPE
3711 || TREE_CODE (type) == UNION_TYPE)
3712 pedwarn ("ANSI C forbids casting nonscalar to the same type");
3713 }
3714 }
3715 else if (TREE_CODE (type) == UNION_TYPE)
3716 {
3717 tree field;
3718 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
3719 || TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE)
3720 value = default_conversion (value);
3721
3722 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3723 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3724 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3725 break;
3726
3727 if (field)
3728 {
3729 char *name;
3730 tree t;
3731
3732 if (pedantic)
3733 pedwarn ("ANSI C forbids casts to union type");
3734 if (TYPE_NAME (type) != 0)
3735 {
3736 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3737 name = IDENTIFIER_POINTER (TYPE_NAME (type));
3738 else
3739 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
3740 }
3741 else
3742 name = "";
3743 t = digest_init (type, build (CONSTRUCTOR, type, NULL_TREE,
3744 build_tree_list (field, value)),
3745 0, 0);
3746 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3747 return t;
3748 }
3749 error ("cast to union type from type not present in union");
3750 return error_mark_node;
3751 }
3752 else
3753 {
3754 tree otype, ovalue;
3755
3756 /* If casting to void, avoid the error that would come
3757 from default_conversion in the case of a non-lvalue array. */
3758 if (type == void_type_node)
3759 return build1 (CONVERT_EXPR, type, value);
3760
3761 /* Convert functions and arrays to pointers,
3762 but don't convert any other types. */
3763 if (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE
3764 || TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE)
3765 value = default_conversion (value);
3766 otype = TREE_TYPE (value);
3767
3768 /* Optionally warn about potentially worrisome casts. */
3769
3770 if (warn_cast_qual
3771 && TREE_CODE (type) == POINTER_TYPE
3772 && TREE_CODE (otype) == POINTER_TYPE)
3773 {
3774 /* Go to the innermost object being pointed to. */
3775 tree in_type = type;
3776 tree in_otype = otype;
3777
3778 while (TREE_CODE (in_type) == POINTER_TYPE)
3779 in_type = TREE_TYPE (in_type);
3780 while (TREE_CODE (in_otype) == POINTER_TYPE)
3781 in_otype = TREE_TYPE (in_otype);
3782
3783 if (TYPE_VOLATILE (in_otype) && ! TYPE_VOLATILE (in_type))
3784 pedwarn ("cast discards `volatile' from pointer target type");
3785 if (TYPE_READONLY (in_otype) && ! TYPE_READONLY (in_type))
3786 pedwarn ("cast discards `const' from pointer target type");
3787 }
3788
3789 /* Warn about possible alignment problems. */
3790 if (STRICT_ALIGNMENT && warn_cast_align
3791 && TREE_CODE (type) == POINTER_TYPE
3792 && TREE_CODE (otype) == POINTER_TYPE
3793 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3794 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3795 /* Don't warn about opaque types, where the actual alignment
3796 restriction is unknown. */
3797 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3798 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3799 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3800 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3801 warning ("cast increases required alignment of target type");
3802
3803 if (TREE_CODE (type) == INTEGER_TYPE
3804 && TREE_CODE (otype) == POINTER_TYPE
3805 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3806 && !TREE_CONSTANT (value))
3807 warning ("cast from pointer to integer of different size");
3808
3809 if (warn_bad_function_cast
3810 && TREE_CODE (value) == CALL_EXPR
3811 && TREE_CODE (type) != TREE_CODE (otype))
3812 warning ("cast does not match function type");
3813
3814 if (TREE_CODE (type) == POINTER_TYPE
3815 && TREE_CODE (otype) == INTEGER_TYPE
3816 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3817 #if 0
3818 /* Don't warn about converting 0 to pointer,
3819 provided the 0 was explicit--not cast or made by folding. */
3820 && !(TREE_CODE (value) == INTEGER_CST && integer_zerop (value))
3821 #endif
3822 /* Don't warn about converting any constant. */
3823 && !TREE_CONSTANT (value))
3824 warning ("cast to pointer from integer of different size");
3825
3826 ovalue = value;
3827 value = convert (type, value);
3828
3829 /* Ignore any integer overflow caused by the cast. */
3830 if (TREE_CODE (value) == INTEGER_CST)
3831 {
3832 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3833 TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3834 }
3835 }
3836
3837 /* Pedantically, don't ley (void *) (FOO *) 0 be a null pointer constant. */
3838 if (pedantic && TREE_CODE (value) == INTEGER_CST
3839 && TREE_CODE (expr) == INTEGER_CST
3840 && TREE_CODE (TREE_TYPE (expr)) != INTEGER_TYPE)
3841 value = non_lvalue (value);
3842
3843 /* If pedantic, don't let a cast be an lvalue. */
3844 if (value == expr && pedantic)
3845 value = non_lvalue (value);
3846
3847 return value;
3848 }
3849 \f
3850 /* Build an assignment expression of lvalue LHS from value RHS.
3851 MODIFYCODE is the code for a binary operator that we use
3852 to combine the old value of LHS with RHS to get the new value.
3853 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3854
3855 tree
3856 build_modify_expr (lhs, modifycode, rhs)
3857 tree lhs, rhs;
3858 enum tree_code modifycode;
3859 {
3860 register tree result;
3861 tree newrhs;
3862 tree lhstype = TREE_TYPE (lhs);
3863 tree olhstype = lhstype;
3864
3865 /* Types that aren't fully specified cannot be used in assignments. */
3866 lhs = require_complete_type (lhs);
3867
3868 /* Avoid duplicate error messages from operands that had errors. */
3869 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3870 return error_mark_node;
3871
3872 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3873 /* Do not use STRIP_NOPS here. We do not want an enumerator
3874 whose value is 0 to count as a null pointer constant. */
3875 if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
3876 rhs = TREE_OPERAND (rhs, 0);
3877
3878 newrhs = rhs;
3879
3880 /* Handle control structure constructs used as "lvalues". */
3881
3882 switch (TREE_CODE (lhs))
3883 {
3884 /* Handle (a, b) used as an "lvalue". */
3885 case COMPOUND_EXPR:
3886 pedantic_lvalue_warning (COMPOUND_EXPR);
3887 newrhs = build_modify_expr (TREE_OPERAND (lhs, 1),
3888 modifycode, rhs);
3889 if (TREE_CODE (newrhs) == ERROR_MARK)
3890 return error_mark_node;
3891 return build (COMPOUND_EXPR, lhstype,
3892 TREE_OPERAND (lhs, 0), newrhs);
3893
3894 /* Handle (a ? b : c) used as an "lvalue". */
3895 case COND_EXPR:
3896 pedantic_lvalue_warning (COND_EXPR);
3897 rhs = save_expr (rhs);
3898 {
3899 /* Produce (a ? (b = rhs) : (c = rhs))
3900 except that the RHS goes through a save-expr
3901 so the code to compute it is only emitted once. */
3902 tree cond
3903 = build_conditional_expr (TREE_OPERAND (lhs, 0),
3904 build_modify_expr (TREE_OPERAND (lhs, 1),
3905 modifycode, rhs),
3906 build_modify_expr (TREE_OPERAND (lhs, 2),
3907 modifycode, rhs));
3908 if (TREE_CODE (cond) == ERROR_MARK)
3909 return cond;
3910 /* Make sure the code to compute the rhs comes out
3911 before the split. */
3912 return build (COMPOUND_EXPR, TREE_TYPE (lhs),
3913 /* But cast it to void to avoid an "unused" error. */
3914 convert (void_type_node, rhs), cond);
3915 }
3916 default:
3917 break;
3918 }
3919
3920 /* If a binary op has been requested, combine the old LHS value with the RHS
3921 producing the value we should actually store into the LHS. */
3922
3923 if (modifycode != NOP_EXPR)
3924 {
3925 lhs = stabilize_reference (lhs);
3926 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3927 }
3928
3929 /* Handle a cast used as an "lvalue".
3930 We have already performed any binary operator using the value as cast.
3931 Now convert the result to the cast type of the lhs,
3932 and then true type of the lhs and store it there;
3933 then convert result back to the cast type to be the value
3934 of the assignment. */
3935
3936 switch (TREE_CODE (lhs))
3937 {
3938 case NOP_EXPR:
3939 case CONVERT_EXPR:
3940 case FLOAT_EXPR:
3941 case FIX_TRUNC_EXPR:
3942 case FIX_FLOOR_EXPR:
3943 case FIX_ROUND_EXPR:
3944 case FIX_CEIL_EXPR:
3945 if (TREE_CODE (TREE_TYPE (newrhs)) == ARRAY_TYPE
3946 || TREE_CODE (TREE_TYPE (newrhs)) == FUNCTION_TYPE)
3947 newrhs = default_conversion (newrhs);
3948 {
3949 tree inner_lhs = TREE_OPERAND (lhs, 0);
3950 tree result;
3951 result = build_modify_expr (inner_lhs, NOP_EXPR,
3952 convert (TREE_TYPE (inner_lhs),
3953 convert (lhstype, newrhs)));
3954 if (TREE_CODE (result) == ERROR_MARK)
3955 return result;
3956 pedantic_lvalue_warning (CONVERT_EXPR);
3957 return convert (TREE_TYPE (lhs), result);
3958 }
3959
3960 default:
3961 break;
3962 }
3963
3964 /* Now we have handled acceptable kinds of LHS that are not truly lvalues.
3965 Reject anything strange now. */
3966
3967 if (!lvalue_or_else (lhs, "assignment"))
3968 return error_mark_node;
3969
3970 /* Warn about storing in something that is `const'. */
3971
3972 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3973 || ((TREE_CODE (lhstype) == RECORD_TYPE
3974 || TREE_CODE (lhstype) == UNION_TYPE)
3975 && C_TYPE_FIELDS_READONLY (lhstype)))
3976 readonly_warning (lhs, "assignment");
3977
3978 /* If storing into a structure or union member,
3979 it has probably been given type `int'.
3980 Compute the type that would go with
3981 the actual amount of storage the member occupies. */
3982
3983 if (TREE_CODE (lhs) == COMPONENT_REF
3984 && (TREE_CODE (lhstype) == INTEGER_TYPE
3985 || TREE_CODE (lhstype) == REAL_TYPE
3986 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3987 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3988
3989 /* If storing in a field that is in actuality a short or narrower than one,
3990 we must store in the field in its actual type. */
3991
3992 if (lhstype != TREE_TYPE (lhs))
3993 {
3994 lhs = copy_node (lhs);
3995 TREE_TYPE (lhs) = lhstype;
3996 }
3997
3998 /* Convert new value to destination type. */
3999
4000 newrhs = convert_for_assignment (lhstype, newrhs, "assignment",
4001 NULL_TREE, NULL_TREE, 0);
4002 if (TREE_CODE (newrhs) == ERROR_MARK)
4003 return error_mark_node;
4004
4005 result = build (MODIFY_EXPR, lhstype, lhs, newrhs);
4006 TREE_SIDE_EFFECTS (result) = 1;
4007
4008 /* If we got the LHS in a different type for storing in,
4009 convert the result back to the nominal type of LHS
4010 so that the value we return always has the same type
4011 as the LHS argument. */
4012
4013 if (olhstype == TREE_TYPE (result))
4014 return result;
4015 return convert_for_assignment (olhstype, result, "assignment",
4016 NULL_TREE, NULL_TREE, 0);
4017 }
4018 \f
4019 /* Convert value RHS to type TYPE as preparation for an assignment
4020 to an lvalue of type TYPE.
4021 The real work of conversion is done by `convert'.
4022 The purpose of this function is to generate error messages
4023 for assignments that are not allowed in C.
4024 ERRTYPE is a string to use in error messages:
4025 "assignment", "return", etc. If it is null, this is parameter passing
4026 for a function call (and different error messages are output). Otherwise,
4027 it may be a name stored in the spelling stack and interpreted by
4028 get_spelling.
4029
4030 FUNNAME is the name of the function being called,
4031 as an IDENTIFIER_NODE, or null.
4032 PARMNUM is the number of the argument, for printing in error messages. */
4033
4034 static tree
4035 convert_for_assignment (type, rhs, errtype, fundecl, funname, parmnum)
4036 tree type, rhs;
4037 char *errtype;
4038 tree fundecl, funname;
4039 int parmnum;
4040 {
4041 register enum tree_code codel = TREE_CODE (type);
4042 register tree rhstype;
4043 register enum tree_code coder;
4044
4045 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
4046 /* Do not use STRIP_NOPS here. We do not want an enumerator
4047 whose value is 0 to count as a null pointer constant. */
4048 if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
4049 rhs = TREE_OPERAND (rhs, 0);
4050
4051 if (TREE_CODE (TREE_TYPE (rhs)) == ARRAY_TYPE
4052 || TREE_CODE (TREE_TYPE (rhs)) == FUNCTION_TYPE)
4053 rhs = default_conversion (rhs);
4054 else if (optimize && TREE_CODE (rhs) == VAR_DECL)
4055 rhs = decl_constant_value (rhs);
4056
4057 rhstype = TREE_TYPE (rhs);
4058 coder = TREE_CODE (rhstype);
4059
4060 if (coder == ERROR_MARK)
4061 return error_mark_node;
4062
4063 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
4064 {
4065 overflow_warning (rhs);
4066 /* Check for Objective-C protocols. This will issue a warning if
4067 there are protocol violations. No need to use the return value. */
4068 maybe_objc_comptypes (type, rhstype, 0);
4069 return rhs;
4070 }
4071
4072 if (coder == VOID_TYPE)
4073 {
4074 error ("void value not ignored as it ought to be");
4075 return error_mark_node;
4076 }
4077 /* Arithmetic types all interconvert, and enum is treated like int. */
4078 if ((codel == INTEGER_TYPE || codel == REAL_TYPE || codel == ENUMERAL_TYPE
4079 || codel == COMPLEX_TYPE)
4080 && (coder == INTEGER_TYPE || coder == REAL_TYPE || coder == ENUMERAL_TYPE
4081 || coder == COMPLEX_TYPE))
4082 return convert_and_check (type, rhs);
4083
4084 /* Conversion to a transparent union from its member types.
4085 This applies only to function arguments. */
4086 else if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type) && ! errtype)
4087 {
4088 tree memb_types;
4089 tree marginal_memb_type = 0;
4090
4091 for (memb_types = TYPE_FIELDS (type); memb_types;
4092 memb_types = TREE_CHAIN (memb_types))
4093 {
4094 tree memb_type = TREE_TYPE (memb_types);
4095
4096 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
4097 TYPE_MAIN_VARIANT (rhstype)))
4098 break;
4099
4100 if (TREE_CODE (memb_type) != POINTER_TYPE)
4101 continue;
4102
4103 if (coder == POINTER_TYPE)
4104 {
4105 register tree ttl = TREE_TYPE (memb_type);
4106 register tree ttr = TREE_TYPE (rhstype);
4107
4108 /* Any non-function converts to a [const][volatile] void *
4109 and vice versa; otherwise, targets must be the same.
4110 Meanwhile, the lhs target must have all the qualifiers of
4111 the rhs. */
4112 if (TYPE_MAIN_VARIANT (ttl) == void_type_node
4113 || TYPE_MAIN_VARIANT (ttr) == void_type_node
4114 || comp_target_types (memb_type, rhstype))
4115 {
4116 /* If this type won't generate any warnings, use it. */
4117 if ((TREE_CODE (ttr) == FUNCTION_TYPE
4118 && TREE_CODE (ttl) == FUNCTION_TYPE)
4119 ? ((! TYPE_READONLY (ttl) | TYPE_READONLY (ttr))
4120 & (! TYPE_VOLATILE (ttl) | TYPE_VOLATILE (ttr)))
4121 : ((TYPE_READONLY (ttl) | ! TYPE_READONLY (ttr))
4122 & (TYPE_VOLATILE (ttl) | ! TYPE_VOLATILE (ttr))))
4123 break;
4124
4125 /* Keep looking for a better type, but remember this one. */
4126 if (! marginal_memb_type)
4127 marginal_memb_type = memb_type;
4128 }
4129 }
4130
4131 /* Can convert integer zero to any pointer type. */
4132 if (integer_zerop (rhs)
4133 || (TREE_CODE (rhs) == NOP_EXPR
4134 && integer_zerop (TREE_OPERAND (rhs, 0))))
4135 {
4136 rhs = null_pointer_node;
4137 break;
4138 }
4139 }
4140
4141 if (memb_types || marginal_memb_type)
4142 {
4143 if (! memb_types)
4144 {
4145 /* We have only a marginally acceptable member type;
4146 it needs a warning. */
4147 register tree ttl = TREE_TYPE (marginal_memb_type);
4148 register tree ttr = TREE_TYPE (rhstype);
4149
4150 /* Const and volatile mean something different for function
4151 types, so the usual warnings are not appropriate. */
4152 if (TREE_CODE (ttr) == FUNCTION_TYPE
4153 && TREE_CODE (ttl) == FUNCTION_TYPE)
4154 {
4155 /* Because const and volatile on functions are
4156 restrictions that say the function will not do
4157 certain things, it is okay to use a const or volatile
4158 function where an ordinary one is wanted, but not
4159 vice-versa. */
4160 if (TYPE_READONLY (ttl) && ! TYPE_READONLY (ttr))
4161 warn_for_assignment ("%s makes `const *' function pointer from non-const",
4162 get_spelling (errtype), funname,
4163 parmnum);
4164 if (TYPE_VOLATILE (ttl) && ! TYPE_VOLATILE (ttr))
4165 warn_for_assignment ("%s makes `volatile *' function pointer from non-volatile",
4166 get_spelling (errtype), funname,
4167 parmnum);
4168 }
4169 else
4170 {
4171 if (! TYPE_READONLY (ttl) && TYPE_READONLY (ttr))
4172 warn_for_assignment ("%s discards `const' from pointer target type",
4173 get_spelling (errtype), funname,
4174 parmnum);
4175 if (! TYPE_VOLATILE (ttl) && TYPE_VOLATILE (ttr))
4176 warn_for_assignment ("%s discards `volatile' from pointer target type",
4177 get_spelling (errtype), funname,
4178 parmnum);
4179 }
4180 }
4181
4182 if (pedantic && ! DECL_IN_SYSTEM_HEADER (fundecl))
4183 pedwarn ("ANSI C prohibits argument conversion to union type");
4184
4185 return build1 (NOP_EXPR, type, rhs);
4186 }
4187 }
4188
4189 /* Conversions among pointers */
4190 else if (codel == POINTER_TYPE && coder == POINTER_TYPE)
4191 {
4192 register tree ttl = TREE_TYPE (type);
4193 register tree ttr = TREE_TYPE (rhstype);
4194
4195 /* Any non-function converts to a [const][volatile] void *
4196 and vice versa; otherwise, targets must be the same.
4197 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4198 if (TYPE_MAIN_VARIANT (ttl) == void_type_node
4199 || TYPE_MAIN_VARIANT (ttr) == void_type_node
4200 || comp_target_types (type, rhstype)
4201 || (unsigned_type (TYPE_MAIN_VARIANT (ttl))
4202 == unsigned_type (TYPE_MAIN_VARIANT (ttr))))
4203 {
4204 if (pedantic
4205 && ((TYPE_MAIN_VARIANT (ttl) == void_type_node
4206 && TREE_CODE (ttr) == FUNCTION_TYPE)
4207 ||
4208 (TYPE_MAIN_VARIANT (ttr) == void_type_node
4209 /* Check TREE_CODE to catch cases like (void *) (char *) 0
4210 which are not ANSI null ptr constants. */
4211 && (!integer_zerop (rhs) || TREE_CODE (rhs) == NOP_EXPR)
4212 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4213 warn_for_assignment ("ANSI forbids %s between function pointer and `void *'",
4214 get_spelling (errtype), funname, parmnum);
4215 /* Const and volatile mean something different for function types,
4216 so the usual warnings are not appropriate. */
4217 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4218 && TREE_CODE (ttl) != FUNCTION_TYPE)
4219 {
4220 if (! TYPE_READONLY (ttl) && TYPE_READONLY (ttr))
4221 warn_for_assignment ("%s discards `const' from pointer target type",
4222 get_spelling (errtype), funname, parmnum);
4223 else if (! TYPE_VOLATILE (ttl) && TYPE_VOLATILE (ttr))
4224 warn_for_assignment ("%s discards `volatile' from pointer target type",
4225 get_spelling (errtype), funname, parmnum);
4226 /* If this is not a case of ignoring a mismatch in signedness,
4227 no warning. */
4228 else if (TYPE_MAIN_VARIANT (ttl) == void_type_node
4229 || TYPE_MAIN_VARIANT (ttr) == void_type_node
4230 || comp_target_types (type, rhstype))
4231 ;
4232 /* If there is a mismatch, do warn. */
4233 else if (pedantic)
4234 warn_for_assignment ("pointer targets in %s differ in signedness",
4235 get_spelling (errtype), funname, parmnum);
4236 }
4237 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4238 && TREE_CODE (ttr) == FUNCTION_TYPE)
4239 {
4240 /* Because const and volatile on functions are restrictions
4241 that say the function will not do certain things,
4242 it is okay to use a const or volatile function
4243 where an ordinary one is wanted, but not vice-versa. */
4244 if (TYPE_READONLY (ttl) && ! TYPE_READONLY (ttr))
4245 warn_for_assignment ("%s makes `const *' function pointer from non-const",
4246 get_spelling (errtype), funname, parmnum);
4247 if (TYPE_VOLATILE (ttl) && ! TYPE_VOLATILE (ttr))
4248 warn_for_assignment ("%s makes `volatile *' function pointer from non-volatile",
4249 get_spelling (errtype), funname, parmnum);
4250 }
4251 }
4252 else
4253 warn_for_assignment ("%s from incompatible pointer type",
4254 get_spelling (errtype), funname, parmnum);
4255 return convert (type, rhs);
4256 }
4257 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4258 {
4259 /* An explicit constant 0 can convert to a pointer,
4260 or one that results from arithmetic, even including
4261 a cast to integer type. */
4262 if (! (TREE_CODE (rhs) == INTEGER_CST && integer_zerop (rhs))
4263 &&
4264 ! (TREE_CODE (rhs) == NOP_EXPR
4265 && TREE_CODE (TREE_TYPE (rhs)) == INTEGER_TYPE
4266 && TREE_CODE (TREE_OPERAND (rhs, 0)) == INTEGER_CST
4267 && integer_zerop (TREE_OPERAND (rhs, 0))))
4268 {
4269 warn_for_assignment ("%s makes pointer from integer without a cast",
4270 get_spelling (errtype), funname, parmnum);
4271 return convert (type, rhs);
4272 }
4273 return null_pointer_node;
4274 }
4275 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4276 {
4277 warn_for_assignment ("%s makes integer from pointer without a cast",
4278 get_spelling (errtype), funname, parmnum);
4279 return convert (type, rhs);
4280 }
4281
4282 if (!errtype)
4283 {
4284 if (funname)
4285 {
4286 tree selector = maybe_building_objc_message_expr ();
4287
4288 if (selector && parmnum > 2)
4289 error ("incompatible type for argument %d of `%s'",
4290 parmnum - 2, IDENTIFIER_POINTER (selector));
4291 else
4292 error ("incompatible type for argument %d of `%s'",
4293 parmnum, IDENTIFIER_POINTER (funname));
4294 }
4295 else
4296 error ("incompatible type for argument %d of indirect function call",
4297 parmnum);
4298 }
4299 else
4300 error ("incompatible types in %s", get_spelling (errtype));
4301
4302 return error_mark_node;
4303 }
4304
4305 /* Print a warning using MSG.
4306 It gets OPNAME as its one parameter.
4307 If OPNAME is null, it is replaced by "passing arg ARGNUM of `FUNCTION'".
4308 FUNCTION and ARGNUM are handled specially if we are building an
4309 Objective-C selector. */
4310
4311 static void
4312 warn_for_assignment (msg, opname, function, argnum)
4313 char *msg;
4314 char *opname;
4315 tree function;
4316 int argnum;
4317 {
4318 static char argstring[] = "passing arg %d of `%s'";
4319 static char argnofun[] = "passing arg %d";
4320
4321 if (opname == 0)
4322 {
4323 tree selector = maybe_building_objc_message_expr ();
4324
4325 if (selector && argnum > 2)
4326 {
4327 function = selector;
4328 argnum -= 2;
4329 }
4330 if (function)
4331 {
4332 /* Function name is known; supply it. */
4333 opname = (char *) alloca (IDENTIFIER_LENGTH (function)
4334 + sizeof (argstring) + 25 /*%d*/ + 1);
4335 sprintf (opname, argstring, argnum, IDENTIFIER_POINTER (function));
4336 }
4337 else
4338 {
4339 /* Function name unknown (call through ptr); just give arg number. */
4340 opname = (char *) alloca (sizeof (argnofun) + 25 /*%d*/ + 1);
4341 sprintf (opname, argnofun, argnum);
4342 }
4343 }
4344 pedwarn (msg, opname);
4345 }
4346 \f
4347 /* Return nonzero if VALUE is a valid constant-valued expression
4348 for use in initializing a static variable; one that can be an
4349 element of a "constant" initializer.
4350
4351 Return null_pointer_node if the value is absolute;
4352 if it is relocatable, return the variable that determines the relocation.
4353 We assume that VALUE has been folded as much as possible;
4354 therefore, we do not need to check for such things as
4355 arithmetic-combinations of integers. */
4356
4357 tree
4358 initializer_constant_valid_p (value, endtype)
4359 tree value;
4360 tree endtype;
4361 {
4362 switch (TREE_CODE (value))
4363 {
4364 case CONSTRUCTOR:
4365 if ((TREE_CODE (TREE_TYPE (value)) == UNION_TYPE
4366 || TREE_CODE (TREE_TYPE (value)) == RECORD_TYPE)
4367 && TREE_CONSTANT (value)
4368 && CONSTRUCTOR_ELTS (value))
4369 return
4370 initializer_constant_valid_p (TREE_VALUE (CONSTRUCTOR_ELTS (value)),
4371 endtype);
4372
4373 return TREE_STATIC (value) ? null_pointer_node : 0;
4374
4375 case INTEGER_CST:
4376 case REAL_CST:
4377 case STRING_CST:
4378 case COMPLEX_CST:
4379 return null_pointer_node;
4380
4381 case ADDR_EXPR:
4382 return TREE_OPERAND (value, 0);
4383
4384 case NON_LVALUE_EXPR:
4385 return initializer_constant_valid_p (TREE_OPERAND (value, 0), endtype);
4386
4387 case CONVERT_EXPR:
4388 case NOP_EXPR:
4389 /* Allow conversions between pointer types. */
4390 if (TREE_CODE (TREE_TYPE (value)) == POINTER_TYPE
4391 && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == POINTER_TYPE)
4392 return initializer_constant_valid_p (TREE_OPERAND (value, 0), endtype);
4393
4394 /* Allow conversions between real types. */
4395 if (TREE_CODE (TREE_TYPE (value)) == REAL_TYPE
4396 && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == REAL_TYPE)
4397 return initializer_constant_valid_p (TREE_OPERAND (value, 0), endtype);
4398
4399 /* Allow length-preserving conversions between integer types. */
4400 if (TREE_CODE (TREE_TYPE (value)) == INTEGER_TYPE
4401 && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == INTEGER_TYPE
4402 && (TYPE_PRECISION (TREE_TYPE (value))
4403 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (value, 0)))))
4404 return initializer_constant_valid_p (TREE_OPERAND (value, 0), endtype);
4405
4406 /* Allow conversions between other integer types only if
4407 explicit value. */
4408 if (TREE_CODE (TREE_TYPE (value)) == INTEGER_TYPE
4409 && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == INTEGER_TYPE)
4410 {
4411 tree inner = initializer_constant_valid_p (TREE_OPERAND (value, 0),
4412 endtype);
4413 if (inner == null_pointer_node)
4414 return null_pointer_node;
4415 return 0;
4416 }
4417
4418 /* Allow (int) &foo provided int is as wide as a pointer. */
4419 if (TREE_CODE (TREE_TYPE (value)) == INTEGER_TYPE
4420 && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == POINTER_TYPE
4421 && (TYPE_PRECISION (TREE_TYPE (value))
4422 >= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (value, 0)))))
4423 return initializer_constant_valid_p (TREE_OPERAND (value, 0),
4424 endtype);
4425
4426 /* Likewise conversions from int to pointers. */
4427 if (TREE_CODE (TREE_TYPE (value)) == POINTER_TYPE
4428 && TREE_CODE (TREE_TYPE (TREE_OPERAND (value, 0))) == INTEGER_TYPE
4429 && (TYPE_PRECISION (TREE_TYPE (value))
4430 <= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (value, 0)))))
4431 return initializer_constant_valid_p (TREE_OPERAND (value, 0),
4432 endtype);
4433
4434 /* Allow conversions to union types if the value inside is okay. */
4435 if (TREE_CODE (TREE_TYPE (value)) == UNION_TYPE)
4436 return initializer_constant_valid_p (TREE_OPERAND (value, 0),
4437 endtype);
4438 return 0;
4439
4440 case PLUS_EXPR:
4441 if (TREE_CODE (endtype) == INTEGER_TYPE
4442 && TYPE_PRECISION (endtype) < POINTER_SIZE)
4443 return 0;
4444 {
4445 tree valid0 = initializer_constant_valid_p (TREE_OPERAND (value, 0),
4446 endtype);
4447 tree valid1 = initializer_constant_valid_p (TREE_OPERAND (value, 1),
4448 endtype);
4449 /* If either term is absolute, use the other terms relocation. */
4450 if (valid0 == null_pointer_node)
4451 return valid1;
4452 if (valid1 == null_pointer_node)
4453 return valid0;
4454 return 0;
4455 }
4456
4457 case MINUS_EXPR:
4458 if (TREE_CODE (endtype) == INTEGER_TYPE
4459 && TYPE_PRECISION (endtype) < POINTER_SIZE)
4460 return 0;
4461 {
4462 tree valid0 = initializer_constant_valid_p (TREE_OPERAND (value, 0),
4463 endtype);
4464 tree valid1 = initializer_constant_valid_p (TREE_OPERAND (value, 1),
4465 endtype);
4466 /* Win if second argument is absolute. */
4467 if (valid1 == null_pointer_node)
4468 return valid0;
4469 /* Win if both arguments have the same relocation.
4470 Then the value is absolute. */
4471 if (valid0 == valid1)
4472 return null_pointer_node;
4473 return 0;
4474 }
4475
4476 default:
4477 return 0;
4478 }
4479 }
4480
4481 /* If VALUE is a compound expr all of whose expressions are constant, then
4482 return its value. Otherwise, return error_mark_node.
4483
4484 This is for handling COMPOUND_EXPRs as initializer elements
4485 which is allowed with a warning when -pedantic is specified. */
4486
4487 static tree
4488 valid_compound_expr_initializer (value, endtype)
4489 tree value;
4490 tree endtype;
4491 {
4492 if (TREE_CODE (value) == COMPOUND_EXPR)
4493 {
4494 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4495 == error_mark_node)
4496 return error_mark_node;
4497 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4498 endtype);
4499 }
4500 else if (! TREE_CONSTANT (value)
4501 && ! initializer_constant_valid_p (value, endtype))
4502 return error_mark_node;
4503 else
4504 return value;
4505 }
4506 \f
4507 /* Perform appropriate conversions on the initial value of a variable,
4508 store it in the declaration DECL,
4509 and print any error messages that are appropriate.
4510 If the init is invalid, store an ERROR_MARK. */
4511
4512 void
4513 store_init_value (decl, init)
4514 tree decl, init;
4515 {
4516 register tree value, type;
4517
4518 /* If variable's type was invalidly declared, just ignore it. */
4519
4520 type = TREE_TYPE (decl);
4521 if (TREE_CODE (type) == ERROR_MARK)
4522 return;
4523
4524 /* Digest the specified initializer into an expression. */
4525
4526 value = digest_init (type, init, TREE_STATIC (decl),
4527 TREE_STATIC (decl) || pedantic);
4528
4529 /* Store the expression if valid; else report error. */
4530
4531 #if 0
4532 /* Note that this is the only place we can detect the error
4533 in a case such as struct foo bar = (struct foo) { x, y };
4534 where there is one initial value which is a constructor expression. */
4535 if (value == error_mark_node)
4536 ;
4537 else if (TREE_STATIC (decl) && ! TREE_CONSTANT (value))
4538 {
4539 error ("initializer for static variable is not constant");
4540 value = error_mark_node;
4541 }
4542 else if (TREE_STATIC (decl)
4543 && initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
4544 {
4545 error ("initializer for static variable uses complicated arithmetic");
4546 value = error_mark_node;
4547 }
4548 else
4549 {
4550 if (pedantic && TREE_CODE (value) == CONSTRUCTOR)
4551 {
4552 if (! TREE_CONSTANT (value))
4553 pedwarn ("aggregate initializer is not constant");
4554 else if (! TREE_STATIC (value))
4555 pedwarn ("aggregate initializer uses complicated arithmetic");
4556 }
4557 }
4558 #endif
4559
4560 DECL_INITIAL (decl) = value;
4561
4562 /* ANSI wants warnings about out-of-range constant initializers. */
4563 STRIP_TYPE_NOPS (value);
4564 constant_expression_warning (value);
4565 }
4566 \f
4567 /* Methods for storing and printing names for error messages. */
4568
4569 /* Implement a spelling stack that allows components of a name to be pushed
4570 and popped. Each element on the stack is this structure. */
4571
4572 struct spelling
4573 {
4574 int kind;
4575 union
4576 {
4577 int i;
4578 char *s;
4579 } u;
4580 };
4581
4582 #define SPELLING_STRING 1
4583 #define SPELLING_MEMBER 2
4584 #define SPELLING_BOUNDS 3
4585
4586 static struct spelling *spelling; /* Next stack element (unused). */
4587 static struct spelling *spelling_base; /* Spelling stack base. */
4588 static int spelling_size; /* Size of the spelling stack. */
4589
4590 /* Macros to save and restore the spelling stack around push_... functions.
4591 Alternative to SAVE_SPELLING_STACK. */
4592
4593 #define SPELLING_DEPTH() (spelling - spelling_base)
4594 #define RESTORE_SPELLING_DEPTH(depth) (spelling = spelling_base + depth)
4595
4596 /* Save and restore the spelling stack around arbitrary C code. */
4597
4598 #define SAVE_SPELLING_DEPTH(code) \
4599 { \
4600 int __depth = SPELLING_DEPTH (); \
4601 code; \
4602 RESTORE_SPELLING_DEPTH (__depth); \
4603 }
4604
4605 /* Push an element on the spelling stack with type KIND and assign VALUE
4606 to MEMBER. */
4607
4608 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4609 { \
4610 int depth = SPELLING_DEPTH (); \
4611 \
4612 if (depth >= spelling_size) \
4613 { \
4614 spelling_size += 10; \
4615 if (spelling_base == 0) \
4616 spelling_base \
4617 = (struct spelling *) xmalloc (spelling_size * sizeof (struct spelling)); \
4618 else \
4619 spelling_base \
4620 = (struct spelling *) xrealloc (spelling_base, \
4621 spelling_size * sizeof (struct spelling)); \
4622 RESTORE_SPELLING_DEPTH (depth); \
4623 } \
4624 \
4625 spelling->kind = (KIND); \
4626 spelling->MEMBER = (VALUE); \
4627 spelling++; \
4628 }
4629
4630 /* Push STRING on the stack. Printed literally. */
4631
4632 static void
4633 push_string (string)
4634 char *string;
4635 {
4636 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4637 }
4638
4639 /* Push a member name on the stack. Printed as '.' STRING. */
4640
4641 static void
4642 push_member_name (decl)
4643 tree decl;
4644
4645 {
4646 char *string
4647 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4648 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4649 }
4650
4651 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4652
4653 static void
4654 push_array_bounds (bounds)
4655 int bounds;
4656 {
4657 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4658 }
4659
4660 /* Compute the maximum size in bytes of the printed spelling. */
4661
4662 static int
4663 spelling_length ()
4664 {
4665 register int size = 0;
4666 register struct spelling *p;
4667
4668 for (p = spelling_base; p < spelling; p++)
4669 {
4670 if (p->kind == SPELLING_BOUNDS)
4671 size += 25;
4672 else
4673 size += strlen (p->u.s) + 1;
4674 }
4675
4676 return size;
4677 }
4678
4679 /* Print the spelling to BUFFER and return it. */
4680
4681 static char *
4682 print_spelling (buffer)
4683 register char *buffer;
4684 {
4685 register char *d = buffer;
4686 register char *s;
4687 register struct spelling *p;
4688
4689 for (p = spelling_base; p < spelling; p++)
4690 if (p->kind == SPELLING_BOUNDS)
4691 {
4692 sprintf (d, "[%d]", p->u.i);
4693 d += strlen (d);
4694 }
4695 else
4696 {
4697 if (p->kind == SPELLING_MEMBER)
4698 *d++ = '.';
4699 for (s = p->u.s; (*d = *s++); d++)
4700 ;
4701 }
4702 *d++ = '\0';
4703 return buffer;
4704 }
4705
4706 /* Provide a means to pass component names derived from the spelling stack. */
4707
4708 char initialization_message;
4709
4710 /* Interpret the spelling of the given ERRTYPE message. */
4711
4712 static char *
4713 get_spelling (errtype)
4714 char *errtype;
4715 {
4716 static char *buffer;
4717 static int size = -1;
4718
4719 if (errtype == &initialization_message)
4720 {
4721 /* Avoid counting chars */
4722 static char message[] = "initialization of `%s'";
4723 register int needed = sizeof (message) + spelling_length () + 1;
4724 char *temp;
4725
4726 if (size < 0)
4727 buffer = (char *) xmalloc (size = needed);
4728 if (needed > size)
4729 buffer = (char *) xrealloc (buffer, size = needed);
4730
4731 temp = (char *) alloca (needed);
4732 sprintf (buffer, message, print_spelling (temp));
4733 return buffer;
4734 }
4735
4736 return errtype;
4737 }
4738
4739 /* Issue an error message for a bad initializer component.
4740 FORMAT describes the message. OFWHAT is the name for the component.
4741 LOCAL is a format string for formatting the insertion of the name
4742 into the message.
4743
4744 If OFWHAT is null, the component name is stored on the spelling stack.
4745 If the component name is a null string, then LOCAL is omitted entirely. */
4746
4747 void
4748 error_init (format, local, ofwhat)
4749 char *format, *local, *ofwhat;
4750 {
4751 char *buffer;
4752
4753 if (ofwhat == 0)
4754 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4755 buffer = (char *) alloca (strlen (local) + strlen (ofwhat) + 2);
4756
4757 if (*ofwhat)
4758 sprintf (buffer, local, ofwhat);
4759 else
4760 buffer[0] = 0;
4761
4762 error (format, buffer);
4763 }
4764
4765 /* Issue a pedantic warning for a bad initializer component.
4766 FORMAT describes the message. OFWHAT is the name for the component.
4767 LOCAL is a format string for formatting the insertion of the name
4768 into the message.
4769
4770 If OFWHAT is null, the component name is stored on the spelling stack.
4771 If the component name is a null string, then LOCAL is omitted entirely. */
4772
4773 void
4774 pedwarn_init (format, local, ofwhat)
4775 char *format, *local, *ofwhat;
4776 {
4777 char *buffer;
4778
4779 if (ofwhat == 0)
4780 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4781 buffer = (char *) alloca (strlen (local) + strlen (ofwhat) + 2);
4782
4783 if (*ofwhat)
4784 sprintf (buffer, local, ofwhat);
4785 else
4786 buffer[0] = 0;
4787
4788 pedwarn (format, buffer);
4789 }
4790
4791 /* Issue a warning for a bad initializer component.
4792 FORMAT describes the message. OFWHAT is the name for the component.
4793 LOCAL is a format string for formatting the insertion of the name
4794 into the message.
4795
4796 If OFWHAT is null, the component name is stored on the spelling stack.
4797 If the component name is a null string, then LOCAL is omitted entirely. */
4798
4799 static void
4800 warning_init (format, local, ofwhat)
4801 char *format, *local, *ofwhat;
4802 {
4803 char *buffer;
4804
4805 if (ofwhat == 0)
4806 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4807 buffer = (char *) alloca (strlen (local) + strlen (ofwhat) + 2);
4808
4809 if (*ofwhat)
4810 sprintf (buffer, local, ofwhat);
4811 else
4812 buffer[0] = 0;
4813
4814 warning (format, buffer);
4815 }
4816 \f
4817 /* Digest the parser output INIT as an initializer for type TYPE.
4818 Return a C expression of type TYPE to represent the initial value.
4819
4820 The arguments REQUIRE_CONSTANT and CONSTRUCTOR_CONSTANT request errors
4821 if non-constant initializers or elements are seen. CONSTRUCTOR_CONSTANT
4822 applies only to elements of constructors. */
4823
4824 static tree
4825 digest_init (type, init, require_constant, constructor_constant)
4826 tree type, init;
4827 int require_constant, constructor_constant;
4828 {
4829 enum tree_code code = TREE_CODE (type);
4830 tree inside_init = init;
4831
4832 if (init == error_mark_node)
4833 return init;
4834
4835 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
4836 /* Do not use STRIP_NOPS here. We do not want an enumerator
4837 whose value is 0 to count as a null pointer constant. */
4838 if (TREE_CODE (init) == NON_LVALUE_EXPR)
4839 inside_init = TREE_OPERAND (init, 0);
4840
4841 /* Initialization of an array of chars from a string constant
4842 optionally enclosed in braces. */
4843
4844 if (code == ARRAY_TYPE)
4845 {
4846 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4847 if ((typ1 == char_type_node
4848 || typ1 == signed_char_type_node
4849 || typ1 == unsigned_char_type_node
4850 || typ1 == unsigned_wchar_type_node
4851 || typ1 == signed_wchar_type_node)
4852 && ((inside_init && TREE_CODE (inside_init) == STRING_CST)))
4853 {
4854 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4855 TYPE_MAIN_VARIANT (type)))
4856 return inside_init;
4857
4858 if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4859 != char_type_node)
4860 && TYPE_PRECISION (typ1) == TYPE_PRECISION (char_type_node))
4861 {
4862 error_init ("char-array%s initialized from wide string",
4863 " `%s'", NULL);
4864 return error_mark_node;
4865 }
4866 if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4867 == char_type_node)
4868 && TYPE_PRECISION (typ1) != TYPE_PRECISION (char_type_node))
4869 {
4870 error_init ("int-array%s initialized from non-wide string",
4871 " `%s'", NULL);
4872 return error_mark_node;
4873 }
4874
4875 TREE_TYPE (inside_init) = type;
4876 if (TYPE_DOMAIN (type) != 0
4877 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
4878 {
4879 register int size = TREE_INT_CST_LOW (TYPE_SIZE (type));
4880 size = (size + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
4881 /* Subtract 1 (or sizeof (wchar_t))
4882 because it's ok to ignore the terminating null char
4883 that is counted in the length of the constant. */
4884 if (size < TREE_STRING_LENGTH (inside_init)
4885 - (TYPE_PRECISION (typ1) != TYPE_PRECISION (char_type_node)
4886 ? TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT
4887 : 1))
4888 pedwarn_init (
4889 "initializer-string for array of chars%s is too long",
4890 " `%s'", NULL);
4891 }
4892 return inside_init;
4893 }
4894 }
4895
4896 /* Any type can be initialized
4897 from an expression of the same type, optionally with braces. */
4898
4899 if (inside_init && TREE_TYPE (inside_init) != 0
4900 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4901 TYPE_MAIN_VARIANT (type))
4902 || (code == ARRAY_TYPE
4903 && comptypes (TREE_TYPE (inside_init), type))
4904 || (code == POINTER_TYPE
4905 && (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4906 || TREE_CODE (TREE_TYPE (inside_init)) == FUNCTION_TYPE)
4907 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4908 TREE_TYPE (type)))))
4909 {
4910 if (code == POINTER_TYPE
4911 && (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4912 || TREE_CODE (TREE_TYPE (inside_init)) == FUNCTION_TYPE))
4913 inside_init = default_conversion (inside_init);
4914 else if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4915 && TREE_CODE (inside_init) != CONSTRUCTOR)
4916 {
4917 error_init ("array%s initialized from non-constant array expression",
4918 " `%s'", NULL);
4919 return error_mark_node;
4920 }
4921
4922 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4923 inside_init = decl_constant_value (inside_init);
4924
4925 /* Compound expressions can only occur here if -pedantic or
4926 -pedantic-errors is specified. In the later case, we always want
4927 an error. In the former case, we simply want a warning. */
4928 if (require_constant && pedantic
4929 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4930 {
4931 inside_init
4932 = valid_compound_expr_initializer (inside_init,
4933 TREE_TYPE (inside_init));
4934 if (inside_init == error_mark_node)
4935 error_init ("initializer element%s is not constant",
4936 " for `%s'", NULL);
4937 else
4938 pedwarn_init ("initializer element%s is not constant",
4939 " for `%s'", NULL);
4940 if (flag_pedantic_errors)
4941 inside_init = error_mark_node;
4942 }
4943 else if (require_constant && ! TREE_CONSTANT (inside_init))
4944 {
4945 error_init ("initializer element%s is not constant",
4946 " for `%s'", NULL);
4947 inside_init = error_mark_node;
4948 }
4949 else if (require_constant
4950 && initializer_constant_valid_p (inside_init, TREE_TYPE (inside_init)) == 0)
4951 {
4952 error_init ("initializer element%s is not computable at load time",
4953 " for `%s'", NULL);
4954 inside_init = error_mark_node;
4955 }
4956
4957 return inside_init;
4958 }
4959
4960 /* Handle scalar types, including conversions. */
4961
4962 if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4963 || code == ENUMERAL_TYPE || code == COMPLEX_TYPE)
4964 {
4965 /* Note that convert_for_assignment calls default_conversion
4966 for arrays and functions. We must not call it in the
4967 case where inside_init is a null pointer constant. */
4968 inside_init
4969 = convert_for_assignment (type, init, "initialization",
4970 NULL_TREE, NULL_TREE, 0);
4971
4972 if (require_constant && ! TREE_CONSTANT (inside_init))
4973 {
4974 error_init ("initializer element%s is not constant",
4975 " for `%s'", NULL);
4976 inside_init = error_mark_node;
4977 }
4978 else if (require_constant
4979 && initializer_constant_valid_p (inside_init, TREE_TYPE (inside_init)) == 0)
4980 {
4981 error_init ("initializer element%s is not computable at load time",
4982 " for `%s'", NULL);
4983 inside_init = error_mark_node;
4984 }
4985
4986 return inside_init;
4987 }
4988
4989 /* Come here only for records and arrays. */
4990
4991 if (TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4992 {
4993 error_init ("variable-sized object%s may not be initialized",
4994 " `%s'", NULL);
4995 return error_mark_node;
4996 }
4997
4998 /* Traditionally, you can write struct foo x = 0;
4999 and it initializes the first element of x to 0. */
5000 if (flag_traditional)
5001 {
5002 tree top = 0, prev = 0, otype = type;
5003 while (TREE_CODE (type) == RECORD_TYPE
5004 || TREE_CODE (type) == ARRAY_TYPE
5005 || TREE_CODE (type) == QUAL_UNION_TYPE
5006 || TREE_CODE (type) == UNION_TYPE)
5007 {
5008 tree temp = build (CONSTRUCTOR, type, NULL_TREE, NULL_TREE);
5009 if (prev == 0)
5010 top = temp;
5011 else
5012 TREE_OPERAND (prev, 1) = build_tree_list (NULL_TREE, temp);
5013 prev = temp;
5014 if (TREE_CODE (type) == ARRAY_TYPE)
5015 type = TREE_TYPE (type);
5016 else if (TYPE_FIELDS (type))
5017 type = TREE_TYPE (TYPE_FIELDS (type));
5018 else
5019 {
5020 error_init ("invalid initializer%s", " for `%s'", NULL);
5021 return error_mark_node;
5022 }
5023 }
5024
5025 if (otype != type)
5026 {
5027 TREE_OPERAND (prev, 1)
5028 = build_tree_list (NULL_TREE,
5029 digest_init (type, init, require_constant,
5030 constructor_constant));
5031 return top;
5032 }
5033 else
5034 return error_mark_node;
5035 }
5036 error_init ("invalid initializer%s", " for `%s'", NULL);
5037 return error_mark_node;
5038 }
5039 \f
5040 /* Handle initializers that use braces. */
5041
5042 /* Type of object we are accumulating a constructor for.
5043 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
5044 static tree constructor_type;
5045
5046 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
5047 left to fill. */
5048 static tree constructor_fields;
5049
5050 /* For an ARRAY_TYPE, this is the specified index
5051 at which to store the next element we get.
5052 This is a special INTEGER_CST node that we modify in place. */
5053 static tree constructor_index;
5054
5055 /* For an ARRAY_TYPE, this is the end index of the range
5056 to initialize with the next element, or NULL in the ordinary case
5057 where the element is used just once. */
5058 static tree constructor_range_end;
5059
5060 /* For an ARRAY_TYPE, this is the maximum index. */
5061 static tree constructor_max_index;
5062
5063 /* For a RECORD_TYPE, this is the first field not yet written out. */
5064 static tree constructor_unfilled_fields;
5065
5066 /* For an ARRAY_TYPE, this is the index of the first element
5067 not yet written out.
5068 This is a special INTEGER_CST node that we modify in place. */
5069 static tree constructor_unfilled_index;
5070
5071 /* In a RECORD_TYPE, the byte index of the next consecutive field.
5072 This is so we can generate gaps between fields, when appropriate.
5073 This is a special INTEGER_CST node that we modify in place. */
5074 static tree constructor_bit_index;
5075
5076 /* If we are saving up the elements rather than allocating them,
5077 this is the list of elements so far (in reverse order,
5078 most recent first). */
5079 static tree constructor_elements;
5080
5081 /* 1 if so far this constructor's elements are all compile-time constants. */
5082 static int constructor_constant;
5083
5084 /* 1 if so far this constructor's elements are all valid address constants. */
5085 static int constructor_simple;
5086
5087 /* 1 if this constructor is erroneous so far. */
5088 static int constructor_erroneous;
5089
5090 /* 1 if have called defer_addressed_constants. */
5091 static int constructor_subconstants_deferred;
5092
5093 /* Structure for managing pending initializer elements, organized as an
5094 AVL tree. */
5095
5096 struct init_node
5097 {
5098 struct init_node *left, *right;
5099 struct init_node *parent;
5100 int balance;
5101 tree purpose;
5102 tree value;
5103 };
5104
5105 /* Tree of pending elements at this constructor level.
5106 These are elements encountered out of order
5107 which belong at places we haven't reached yet in actually
5108 writing the output. */
5109 static struct init_node *constructor_pending_elts;
5110
5111 /* The SPELLING_DEPTH of this constructor. */
5112 static int constructor_depth;
5113
5114 /* 0 if implicitly pushing constructor levels is allowed. */
5115 int constructor_no_implicit = 0; /* 0 for C; 1 for some other languages. */
5116
5117 static int require_constant_value;
5118 static int require_constant_elements;
5119
5120 /* 1 if it is ok to output this constructor as we read it.
5121 0 means must accumulate a CONSTRUCTOR expression. */
5122 static int constructor_incremental;
5123
5124 /* DECL node for which an initializer is being read.
5125 0 means we are reading a constructor expression
5126 such as (struct foo) {...}. */
5127 static tree constructor_decl;
5128
5129 /* start_init saves the ASMSPEC arg here for really_start_incremental_init. */
5130 static char *constructor_asmspec;
5131
5132 /* Nonzero if this is an initializer for a top-level decl. */
5133 static int constructor_top_level;
5134
5135 \f
5136 /* This stack has a level for each implicit or explicit level of
5137 structuring in the initializer, including the outermost one. It
5138 saves the values of most of the variables above. */
5139
5140 struct constructor_stack
5141 {
5142 struct constructor_stack *next;
5143 tree type;
5144 tree fields;
5145 tree index;
5146 tree range_end;
5147 tree max_index;
5148 tree unfilled_index;
5149 tree unfilled_fields;
5150 tree bit_index;
5151 tree elements;
5152 int offset;
5153 struct init_node *pending_elts;
5154 int depth;
5155 /* If nonzero, this value should replace the entire
5156 constructor at this level. */
5157 tree replacement_value;
5158 char constant;
5159 char simple;
5160 char implicit;
5161 char incremental;
5162 char erroneous;
5163 char outer;
5164 };
5165
5166 struct constructor_stack *constructor_stack;
5167
5168 /* This stack records separate initializers that are nested.
5169 Nested initializers can't happen in ANSI C, but GNU C allows them
5170 in cases like { ... (struct foo) { ... } ... }. */
5171
5172 struct initializer_stack
5173 {
5174 struct initializer_stack *next;
5175 tree decl;
5176 char *asmspec;
5177 struct constructor_stack *constructor_stack;
5178 tree elements;
5179 struct spelling *spelling;
5180 struct spelling *spelling_base;
5181 int spelling_size;
5182 char top_level;
5183 char incremental;
5184 char require_constant_value;
5185 char require_constant_elements;
5186 char deferred;
5187 };
5188
5189 struct initializer_stack *initializer_stack;
5190 \f
5191 /* Prepare to parse and output the initializer for variable DECL. */
5192
5193 void
5194 start_init (decl, asmspec_tree, top_level)
5195 tree decl;
5196 tree asmspec_tree;
5197 int top_level;
5198 {
5199 char *locus;
5200 struct initializer_stack *p
5201 = (struct initializer_stack *) xmalloc (sizeof (struct initializer_stack));
5202 char *asmspec = 0;
5203
5204 if (asmspec_tree)
5205 asmspec = TREE_STRING_POINTER (asmspec_tree);
5206
5207 p->decl = constructor_decl;
5208 p->asmspec = constructor_asmspec;
5209 p->incremental = constructor_incremental;
5210 p->require_constant_value = require_constant_value;
5211 p->require_constant_elements = require_constant_elements;
5212 p->constructor_stack = constructor_stack;
5213 p->elements = constructor_elements;
5214 p->spelling = spelling;
5215 p->spelling_base = spelling_base;
5216 p->spelling_size = spelling_size;
5217 p->deferred = constructor_subconstants_deferred;
5218 p->top_level = constructor_top_level;
5219 p->next = initializer_stack;
5220 initializer_stack = p;
5221
5222 constructor_decl = decl;
5223 constructor_incremental = top_level;
5224 constructor_asmspec = asmspec;
5225 constructor_subconstants_deferred = 0;
5226 constructor_top_level = top_level;
5227
5228 if (decl != 0)
5229 {
5230 require_constant_value = TREE_STATIC (decl);
5231 require_constant_elements
5232 = ((TREE_STATIC (decl) || pedantic)
5233 /* For a scalar, you can always use any value to initialize,
5234 even within braces. */
5235 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
5236 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5237 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
5238 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5239 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
5240 constructor_incremental |= TREE_STATIC (decl);
5241 }
5242 else
5243 {
5244 require_constant_value = 0;
5245 require_constant_elements = 0;
5246 locus = "(anonymous)";
5247 }
5248
5249 constructor_stack = 0;
5250
5251 missing_braces_mentioned = 0;
5252
5253 spelling_base = 0;
5254 spelling_size = 0;
5255 RESTORE_SPELLING_DEPTH (0);
5256
5257 if (locus)
5258 push_string (locus);
5259 }
5260
5261 void
5262 finish_init ()
5263 {
5264 struct initializer_stack *p = initializer_stack;
5265
5266 /* Output subconstants (string constants, usually)
5267 that were referenced within this initializer and saved up.
5268 Must do this if and only if we called defer_addressed_constants. */
5269 if (constructor_subconstants_deferred)
5270 output_deferred_addressed_constants ();
5271
5272 /* Free the whole constructor stack of this initializer. */
5273 while (constructor_stack)
5274 {
5275 struct constructor_stack *q = constructor_stack;
5276 constructor_stack = q->next;
5277 free (q);
5278 }
5279
5280 /* Pop back to the data of the outer initializer (if any). */
5281 constructor_decl = p->decl;
5282 constructor_asmspec = p->asmspec;
5283 constructor_incremental = p->incremental;
5284 require_constant_value = p->require_constant_value;
5285 require_constant_elements = p->require_constant_elements;
5286 constructor_stack = p->constructor_stack;
5287 constructor_elements = p->elements;
5288 spelling = p->spelling;
5289 spelling_base = p->spelling_base;
5290 spelling_size = p->spelling_size;
5291 constructor_subconstants_deferred = p->deferred;
5292 constructor_top_level = p->top_level;
5293 initializer_stack = p->next;
5294 free (p);
5295 }
5296 \f
5297 /* Call here when we see the initializer is surrounded by braces.
5298 This is instead of a call to push_init_level;
5299 it is matched by a call to pop_init_level.
5300
5301 TYPE is the type to initialize, for a constructor expression.
5302 For an initializer for a decl, TYPE is zero. */
5303
5304 void
5305 really_start_incremental_init (type)
5306 tree type;
5307 {
5308 struct constructor_stack *p
5309 = (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
5310
5311 if (type == 0)
5312 type = TREE_TYPE (constructor_decl);
5313
5314 /* Turn off constructor_incremental if type is a struct with bitfields.
5315 Do this before the first push, so that the corrected value
5316 is available in finish_init. */
5317 check_init_type_bitfields (type);
5318
5319 p->type = constructor_type;
5320 p->fields = constructor_fields;
5321 p->index = constructor_index;
5322 p->range_end = constructor_range_end;
5323 p->max_index = constructor_max_index;
5324 p->unfilled_index = constructor_unfilled_index;
5325 p->unfilled_fields = constructor_unfilled_fields;
5326 p->bit_index = constructor_bit_index;
5327 p->elements = constructor_elements;
5328 p->constant = constructor_constant;
5329 p->simple = constructor_simple;
5330 p->erroneous = constructor_erroneous;
5331 p->pending_elts = constructor_pending_elts;
5332 p->depth = constructor_depth;
5333 p->replacement_value = 0;
5334 p->implicit = 0;
5335 p->incremental = constructor_incremental;
5336 p->outer = 0;
5337 p->next = 0;
5338 constructor_stack = p;
5339
5340 constructor_constant = 1;
5341 constructor_simple = 1;
5342 constructor_depth = SPELLING_DEPTH ();
5343 constructor_elements = 0;
5344 constructor_pending_elts = 0;
5345 constructor_type = type;
5346
5347 if (TREE_CODE (constructor_type) == RECORD_TYPE
5348 || TREE_CODE (constructor_type) == UNION_TYPE)
5349 {
5350 constructor_fields = TYPE_FIELDS (constructor_type);
5351 /* Skip any nameless bit fields at the beginning. */
5352 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5353 && DECL_NAME (constructor_fields) == 0)
5354 constructor_fields = TREE_CHAIN (constructor_fields);
5355 constructor_unfilled_fields = constructor_fields;
5356 constructor_bit_index = copy_node (integer_zero_node);
5357 TREE_TYPE (constructor_bit_index) = sbitsizetype;
5358 }
5359 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5360 {
5361 constructor_range_end = 0;
5362 if (TYPE_DOMAIN (constructor_type))
5363 {
5364 constructor_max_index
5365 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5366 constructor_index
5367 = copy_node (TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5368 }
5369 else
5370 constructor_index = copy_node (integer_zero_node);
5371 constructor_unfilled_index = copy_node (constructor_index);
5372 }
5373 else
5374 {
5375 /* Handle the case of int x = {5}; */
5376 constructor_fields = constructor_type;
5377 constructor_unfilled_fields = constructor_type;
5378 }
5379
5380 if (constructor_incremental)
5381 {
5382 int momentary = suspend_momentary ();
5383 push_obstacks_nochange ();
5384 if (TREE_PERMANENT (constructor_decl))
5385 end_temporary_allocation ();
5386 make_decl_rtl (constructor_decl, constructor_asmspec,
5387 constructor_top_level);
5388 assemble_variable (constructor_decl, constructor_top_level, 0, 1);
5389 pop_obstacks ();
5390 resume_momentary (momentary);
5391 }
5392
5393 if (constructor_incremental)
5394 {
5395 defer_addressed_constants ();
5396 constructor_subconstants_deferred = 1;
5397 }
5398 }
5399 \f
5400 /* Push down into a subobject, for initialization.
5401 If this is for an explicit set of braces, IMPLICIT is 0.
5402 If it is because the next element belongs at a lower level,
5403 IMPLICIT is 1. */
5404
5405 void
5406 push_init_level (implicit)
5407 int implicit;
5408 {
5409 struct constructor_stack *p;
5410
5411 /* If we've exhausted any levels that didn't have braces,
5412 pop them now. */
5413 while (constructor_stack->implicit)
5414 {
5415 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5416 || TREE_CODE (constructor_type) == UNION_TYPE)
5417 && constructor_fields == 0)
5418 process_init_element (pop_init_level (1));
5419 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5420 && tree_int_cst_lt (constructor_max_index, constructor_index))
5421 process_init_element (pop_init_level (1));
5422 else
5423 break;
5424 }
5425
5426 /* Structure elements may require alignment. Do this now if necessary
5427 for the subaggregate, and if it comes next in sequence. Don't do
5428 this for subaggregates that will go on the pending list. */
5429 if (constructor_incremental && constructor_type != 0
5430 && TREE_CODE (constructor_type) == RECORD_TYPE && constructor_fields
5431 && constructor_fields == constructor_unfilled_fields)
5432 {
5433 /* Advance to offset of this element. */
5434 if (! tree_int_cst_equal (constructor_bit_index,
5435 DECL_FIELD_BITPOS (constructor_fields)))
5436 {
5437 /* By using unsigned arithmetic, the result will be correct even
5438 in case of overflows, if BITS_PER_UNIT is a power of two. */
5439 unsigned next = (TREE_INT_CST_LOW
5440 (DECL_FIELD_BITPOS (constructor_fields))
5441 / (unsigned)BITS_PER_UNIT);
5442 unsigned here = (TREE_INT_CST_LOW (constructor_bit_index)
5443 / (unsigned)BITS_PER_UNIT);
5444
5445 assemble_zeros ((next - here)
5446 * (unsigned)BITS_PER_UNIT
5447 / (unsigned)BITS_PER_UNIT);
5448 }
5449 /* Indicate that we have now filled the structure up to the current
5450 field. */
5451 constructor_unfilled_fields = constructor_fields;
5452 }
5453
5454 p = (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
5455 p->type = constructor_type;
5456 p->fields = constructor_fields;
5457 p->index = constructor_index;
5458 p->range_end = constructor_range_end;
5459 p->max_index = constructor_max_index;
5460 p->unfilled_index = constructor_unfilled_index;
5461 p->unfilled_fields = constructor_unfilled_fields;
5462 p->bit_index = constructor_bit_index;
5463 p->elements = constructor_elements;
5464 p->constant = constructor_constant;
5465 p->simple = constructor_simple;
5466 p->erroneous = constructor_erroneous;
5467 p->pending_elts = constructor_pending_elts;
5468 p->depth = constructor_depth;
5469 p->replacement_value = 0;
5470 p->implicit = implicit;
5471 p->incremental = constructor_incremental;
5472 p->outer = 0;
5473 p->next = constructor_stack;
5474 constructor_stack = p;
5475
5476 constructor_constant = 1;
5477 constructor_simple = 1;
5478 constructor_depth = SPELLING_DEPTH ();
5479 constructor_elements = 0;
5480 constructor_pending_elts = 0;
5481
5482 /* Don't die if an entire brace-pair level is superfluous
5483 in the containing level. */
5484 if (constructor_type == 0)
5485 ;
5486 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5487 || TREE_CODE (constructor_type) == UNION_TYPE)
5488 {
5489 /* Don't die if there are extra init elts at the end. */
5490 if (constructor_fields == 0)
5491 constructor_type = 0;
5492 else
5493 {
5494 constructor_type = TREE_TYPE (constructor_fields);
5495 push_member_name (constructor_fields);
5496 constructor_depth++;
5497 if (constructor_fields != constructor_unfilled_fields)
5498 constructor_incremental = 0;
5499 }
5500 }
5501 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5502 {
5503 constructor_type = TREE_TYPE (constructor_type);
5504 push_array_bounds (TREE_INT_CST_LOW (constructor_index));
5505 constructor_depth++;
5506 if (! tree_int_cst_equal (constructor_index, constructor_unfilled_index)
5507 || constructor_range_end != 0)
5508 constructor_incremental = 0;
5509 }
5510
5511 if (constructor_type == 0)
5512 {
5513 error_init ("extra brace group at end of initializer%s",
5514 " for `%s'", NULL);
5515 constructor_fields = 0;
5516 constructor_unfilled_fields = 0;
5517 return;
5518 }
5519
5520 /* Turn off constructor_incremental if type is a struct with bitfields. */
5521 check_init_type_bitfields (constructor_type);
5522
5523 if (implicit && warn_missing_braces && !missing_braces_mentioned)
5524 {
5525 missing_braces_mentioned = 1;
5526 warning_init ("missing braces around initializer%s", " for `%s'", NULL);
5527 }
5528
5529 if (TREE_CODE (constructor_type) == RECORD_TYPE
5530 || TREE_CODE (constructor_type) == UNION_TYPE)
5531 {
5532 constructor_fields = TYPE_FIELDS (constructor_type);
5533 /* Skip any nameless bit fields at the beginning. */
5534 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5535 && DECL_NAME (constructor_fields) == 0)
5536 constructor_fields = TREE_CHAIN (constructor_fields);
5537 constructor_unfilled_fields = constructor_fields;
5538 constructor_bit_index = copy_node (integer_zero_node);
5539 TREE_TYPE (constructor_bit_index) = sbitsizetype;
5540 }
5541 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5542 {
5543 constructor_range_end = 0;
5544 if (TYPE_DOMAIN (constructor_type))
5545 {
5546 constructor_max_index
5547 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5548 constructor_index
5549 = copy_node (TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5550 }
5551 else
5552 constructor_index = copy_node (integer_zero_node);
5553 constructor_unfilled_index = copy_node (constructor_index);
5554 }
5555 else
5556 {
5557 warning_init ("braces around scalar initializer%s", " for `%s'", NULL);
5558 constructor_fields = constructor_type;
5559 constructor_unfilled_fields = constructor_type;
5560 }
5561 }
5562
5563 /* Don't read a struct incrementally if it has any bitfields,
5564 because the incremental reading code doesn't know how to
5565 handle bitfields yet. */
5566
5567 static void
5568 check_init_type_bitfields (type)
5569 tree type;
5570 {
5571 if (TREE_CODE (type) == RECORD_TYPE)
5572 {
5573 tree tail;
5574 for (tail = TYPE_FIELDS (type); tail;
5575 tail = TREE_CHAIN (tail))
5576 {
5577 if (DECL_C_BIT_FIELD (tail)
5578 /* This catches cases like `int foo : 8;'. */
5579 || DECL_MODE (tail) != TYPE_MODE (TREE_TYPE (tail)))
5580 {
5581 constructor_incremental = 0;
5582 break;
5583 }
5584
5585 check_init_type_bitfields (TREE_TYPE (tail));
5586 }
5587 }
5588
5589 else if (TREE_CODE (type) == ARRAY_TYPE)
5590 check_init_type_bitfields (TREE_TYPE (type));
5591 }
5592
5593 /* At the end of an implicit or explicit brace level,
5594 finish up that level of constructor.
5595 If we were outputting the elements as they are read, return 0
5596 from inner levels (process_init_element ignores that),
5597 but return error_mark_node from the outermost level
5598 (that's what we want to put in DECL_INITIAL).
5599 Otherwise, return a CONSTRUCTOR expression. */
5600
5601 tree
5602 pop_init_level (implicit)
5603 int implicit;
5604 {
5605 struct constructor_stack *p;
5606 int size = 0;
5607 tree constructor = 0;
5608
5609 if (implicit == 0)
5610 {
5611 /* When we come to an explicit close brace,
5612 pop any inner levels that didn't have explicit braces. */
5613 while (constructor_stack->implicit)
5614 process_init_element (pop_init_level (1));
5615 }
5616
5617 p = constructor_stack;
5618
5619 if (constructor_type != 0)
5620 size = int_size_in_bytes (constructor_type);
5621
5622 /* Now output all pending elements. */
5623 output_pending_init_elements (1);
5624
5625 #if 0 /* c-parse.in warns about {}. */
5626 /* In ANSI, each brace level must have at least one element. */
5627 if (! implicit && pedantic
5628 && (TREE_CODE (constructor_type) == ARRAY_TYPE
5629 ? integer_zerop (constructor_unfilled_index)
5630 : constructor_unfilled_fields == TYPE_FIELDS (constructor_type)))
5631 pedwarn_init ("empty braces in initializer%s", " for `%s'", NULL);
5632 #endif
5633
5634 /* Pad out the end of the structure. */
5635
5636 if (p->replacement_value)
5637 {
5638 /* If this closes a superfluous brace pair,
5639 just pass out the element between them. */
5640 constructor = p->replacement_value;
5641 /* If this is the top level thing within the initializer,
5642 and it's for a variable, then since we already called
5643 assemble_variable, we must output the value now. */
5644 if (p->next == 0 && constructor_decl != 0
5645 && constructor_incremental)
5646 {
5647 constructor = digest_init (constructor_type, constructor,
5648 require_constant_value,
5649 require_constant_elements);
5650
5651 /* If initializing an array of unknown size,
5652 determine the size now. */
5653 if (TREE_CODE (constructor_type) == ARRAY_TYPE
5654 && TYPE_DOMAIN (constructor_type) == 0)
5655 {
5656 int failure;
5657 int momentary_p;
5658
5659 push_obstacks_nochange ();
5660 if (TREE_PERMANENT (constructor_type))
5661 end_temporary_allocation ();
5662
5663 momentary_p = suspend_momentary ();
5664
5665 /* We shouldn't have an incomplete array type within
5666 some other type. */
5667 if (constructor_stack->next)
5668 abort ();
5669
5670 failure
5671 = complete_array_type (constructor_type,
5672 constructor, 0);
5673 if (failure)
5674 abort ();
5675
5676 size = int_size_in_bytes (constructor_type);
5677 resume_momentary (momentary_p);
5678 pop_obstacks ();
5679 }
5680
5681 output_constant (constructor, size);
5682 }
5683 }
5684 else if (constructor_type == 0)
5685 ;
5686 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5687 && TREE_CODE (constructor_type) != UNION_TYPE
5688 && TREE_CODE (constructor_type) != ARRAY_TYPE
5689 && ! constructor_incremental)
5690 {
5691 /* A nonincremental scalar initializer--just return
5692 the element, after verifying there is just one. */
5693 if (constructor_elements == 0)
5694 {
5695 error_init ("empty scalar initializer%s",
5696 " for `%s'", NULL);
5697 constructor = error_mark_node;
5698 }
5699 else if (TREE_CHAIN (constructor_elements) != 0)
5700 {
5701 error_init ("extra elements in scalar initializer%s",
5702 " for `%s'", NULL);
5703 constructor = TREE_VALUE (constructor_elements);
5704 }
5705 else
5706 constructor = TREE_VALUE (constructor_elements);
5707 }
5708 else if (! constructor_incremental)
5709 {
5710 if (constructor_erroneous)
5711 constructor = error_mark_node;
5712 else
5713 {
5714 int momentary = suspend_momentary ();
5715
5716 constructor = build (CONSTRUCTOR, constructor_type, NULL_TREE,
5717 nreverse (constructor_elements));
5718 if (constructor_constant)
5719 TREE_CONSTANT (constructor) = 1;
5720 if (constructor_constant && constructor_simple)
5721 TREE_STATIC (constructor) = 1;
5722
5723 resume_momentary (momentary);
5724 }
5725 }
5726 else
5727 {
5728 tree filled;
5729 int momentary = suspend_momentary ();
5730
5731 if (TREE_CODE (constructor_type) == RECORD_TYPE
5732 || TREE_CODE (constructor_type) == UNION_TYPE)
5733 {
5734 /* Find the offset of the end of that field. */
5735 filled = size_binop (CEIL_DIV_EXPR,
5736 constructor_bit_index,
5737 size_int (BITS_PER_UNIT));
5738 }
5739 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5740 {
5741 /* If initializing an array of unknown size,
5742 determine the size now. */
5743 if (TREE_CODE (constructor_type) == ARRAY_TYPE
5744 && TYPE_DOMAIN (constructor_type) == 0)
5745 {
5746 tree maxindex
5747 = size_binop (MINUS_EXPR,
5748 constructor_unfilled_index,
5749 integer_one_node);
5750
5751 push_obstacks_nochange ();
5752 if (TREE_PERMANENT (constructor_type))
5753 end_temporary_allocation ();
5754 maxindex = copy_node (maxindex);
5755 TYPE_DOMAIN (constructor_type) = build_index_type (maxindex);
5756 TREE_TYPE (maxindex) = TYPE_DOMAIN (constructor_type);
5757
5758 /* TYPE_MAX_VALUE is always one less than the number of elements
5759 in the array, because we start counting at zero. Therefore,
5760 warn only if the value is less than zero. */
5761 if (pedantic
5762 && (tree_int_cst_sgn (TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5763 < 0))
5764 error_with_decl (constructor_decl,
5765 "zero or negative array size `%s'");
5766 layout_type (constructor_type);
5767 size = int_size_in_bytes (constructor_type);
5768 pop_obstacks ();
5769 }
5770
5771 filled = size_binop (MULT_EXPR, constructor_unfilled_index,
5772 size_in_bytes (TREE_TYPE (constructor_type)));
5773 }
5774 else
5775 filled = 0;
5776
5777 if (filled != 0)
5778 assemble_zeros (size - TREE_INT_CST_LOW (filled));
5779
5780 resume_momentary (momentary);
5781 }
5782
5783
5784 constructor_type = p->type;
5785 constructor_fields = p->fields;
5786 constructor_index = p->index;
5787 constructor_range_end = p->range_end;
5788 constructor_max_index = p->max_index;
5789 constructor_unfilled_index = p->unfilled_index;
5790 constructor_unfilled_fields = p->unfilled_fields;
5791 constructor_bit_index = p->bit_index;
5792 constructor_elements = p->elements;
5793 constructor_constant = p->constant;
5794 constructor_simple = p->simple;
5795 constructor_erroneous = p->erroneous;
5796 constructor_pending_elts = p->pending_elts;
5797 constructor_depth = p->depth;
5798 constructor_incremental = p->incremental;
5799 RESTORE_SPELLING_DEPTH (constructor_depth);
5800
5801 constructor_stack = p->next;
5802 free (p);
5803
5804 if (constructor == 0)
5805 {
5806 if (constructor_stack == 0)
5807 return error_mark_node;
5808 return NULL_TREE;
5809 }
5810 return constructor;
5811 }
5812
5813 /* Within an array initializer, specify the next index to be initialized.
5814 FIRST is that index. If LAST is nonzero, then initialize a range
5815 of indices, running from FIRST through LAST. */
5816
5817 void
5818 set_init_index (first, last)
5819 tree first, last;
5820 {
5821 while ((TREE_CODE (first) == NOP_EXPR
5822 || TREE_CODE (first) == CONVERT_EXPR
5823 || TREE_CODE (first) == NON_LVALUE_EXPR)
5824 && (TYPE_MODE (TREE_TYPE (first))
5825 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (first, 0)))))
5826 (first) = TREE_OPERAND (first, 0);
5827 if (last)
5828 while ((TREE_CODE (last) == NOP_EXPR
5829 || TREE_CODE (last) == CONVERT_EXPR
5830 || TREE_CODE (last) == NON_LVALUE_EXPR)
5831 && (TYPE_MODE (TREE_TYPE (last))
5832 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (last, 0)))))
5833 (last) = TREE_OPERAND (last, 0);
5834
5835 if (TREE_CODE (first) != INTEGER_CST)
5836 error_init ("nonconstant array index in initializer%s", " for `%s'", NULL);
5837 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5838 error_init ("nonconstant array index in initializer%s", " for `%s'", NULL);
5839 else if (! constructor_unfilled_index)
5840 error_init ("array index in non-array initializer%s", " for `%s'", NULL);
5841 else if (tree_int_cst_lt (first, constructor_unfilled_index))
5842 error_init ("duplicate array index in initializer%s", " for `%s'", NULL);
5843 else
5844 {
5845 TREE_INT_CST_LOW (constructor_index) = TREE_INT_CST_LOW (first);
5846 TREE_INT_CST_HIGH (constructor_index) = TREE_INT_CST_HIGH (first);
5847
5848 if (last != 0 && tree_int_cst_lt (last, first))
5849 error_init ("empty index range in initializer%s", " for `%s'", NULL);
5850 else
5851 {
5852 if (pedantic)
5853 pedwarn ("ANSI C forbids specifying element to initialize");
5854 constructor_range_end = last;
5855 }
5856 }
5857 }
5858
5859 /* Within a struct initializer, specify the next field to be initialized. */
5860
5861 void
5862 set_init_label (fieldname)
5863 tree fieldname;
5864 {
5865 tree tail;
5866 int passed = 0;
5867
5868 /* Don't die if an entire brace-pair level is superfluous
5869 in the containing level. */
5870 if (constructor_type == 0)
5871 return;
5872
5873 for (tail = TYPE_FIELDS (constructor_type); tail;
5874 tail = TREE_CHAIN (tail))
5875 {
5876 if (tail == constructor_unfilled_fields)
5877 passed = 1;
5878 if (DECL_NAME (tail) == fieldname)
5879 break;
5880 }
5881
5882 if (tail == 0)
5883 error ("unknown field `%s' specified in initializer",
5884 IDENTIFIER_POINTER (fieldname));
5885 else if (!passed)
5886 error ("field `%s' already initialized",
5887 IDENTIFIER_POINTER (fieldname));
5888 else
5889 {
5890 constructor_fields = tail;
5891 if (pedantic)
5892 pedwarn ("ANSI C forbids specifying structure member to initialize");
5893 }
5894 }
5895 \f
5896 /* Add a new initializer to the tree of pending initializers. PURPOSE
5897 indentifies the initializer, either array index or field in a structure.
5898 VALUE is the value of that index or field. */
5899
5900 static void
5901 add_pending_init (purpose, value)
5902 tree purpose, value;
5903 {
5904 struct init_node *p, **q, *r;
5905
5906 q = &constructor_pending_elts;
5907 p = 0;
5908
5909 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5910 {
5911 while (*q != 0)
5912 {
5913 p = *q;
5914 if (tree_int_cst_lt (purpose, p->purpose))
5915 q = &p->left;
5916 else if (tree_int_cst_lt (p->purpose, purpose))
5917 q = &p->right;
5918 else
5919 abort ();
5920 }
5921 }
5922 else
5923 {
5924 while (*q != NULL)
5925 {
5926 p = *q;
5927 if (tree_int_cst_lt (DECL_FIELD_BITPOS (purpose),
5928 DECL_FIELD_BITPOS (p->purpose)))
5929 q = &p->left;
5930 else if (tree_int_cst_lt (DECL_FIELD_BITPOS (p->purpose),
5931 DECL_FIELD_BITPOS (purpose)))
5932 q = &p->right;
5933 else
5934 abort ();
5935 }
5936 }
5937
5938 r = (struct init_node *) oballoc (sizeof (struct init_node));
5939 r->purpose = purpose;
5940 r->value = value;
5941
5942 *q = r;
5943 r->parent = p;
5944 r->left = 0;
5945 r->right = 0;
5946 r->balance = 0;
5947
5948 while (p)
5949 {
5950 struct init_node *s;
5951
5952 if (r == p->left)
5953 {
5954 if (p->balance == 0)
5955 p->balance = -1;
5956 else if (p->balance < 0)
5957 {
5958 if (r->balance < 0)
5959 {
5960 /* L rotation. */
5961 p->left = r->right;
5962 if (p->left)
5963 p->left->parent = p;
5964 r->right = p;
5965
5966 p->balance = 0;
5967 r->balance = 0;
5968
5969 s = p->parent;
5970 p->parent = r;
5971 r->parent = s;
5972 if (s)
5973 {
5974 if (s->left == p)
5975 s->left = r;
5976 else
5977 s->right = r;
5978 }
5979 else
5980 constructor_pending_elts = r;
5981 }
5982 else
5983 {
5984 /* LR rotation. */
5985 struct init_node *t = r->right;
5986
5987 r->right = t->left;
5988 if (r->right)
5989 r->right->parent = r;
5990 t->left = r;
5991
5992 p->left = t->right;
5993 if (p->left)
5994 p->left->parent = p;
5995 t->right = p;
5996
5997 p->balance = t->balance < 0;
5998 r->balance = -(t->balance > 0);
5999 t->balance = 0;
6000
6001 s = p->parent;
6002 p->parent = t;
6003 r->parent = t;
6004 t->parent = s;
6005 if (s)
6006 {
6007 if (s->left == p)
6008 s->left = t;
6009 else
6010 s->right = t;
6011 }
6012 else
6013 constructor_pending_elts = t;
6014 }
6015 break;
6016 }
6017 else
6018 {
6019 /* p->balance == +1; growth of left side balances the node. */
6020 p->balance = 0;
6021 break;
6022 }
6023 }
6024 else /* r == p->right */
6025 {
6026 if (p->balance == 0)
6027 /* Growth propagation from right side. */
6028 p->balance++;
6029 else if (p->balance > 0)
6030 {
6031 if (r->balance > 0)
6032 {
6033 /* R rotation. */
6034 p->right = r->left;
6035 if (p->right)
6036 p->right->parent = p;
6037 r->left = p;
6038
6039 p->balance = 0;
6040 r->balance = 0;
6041
6042 s = p->parent;
6043 p->parent = r;
6044 r->parent = s;
6045 if (s)
6046 {
6047 if (s->left == p)
6048 s->left = r;
6049 else
6050 s->right = r;
6051 }
6052 else
6053 constructor_pending_elts = r;
6054 }
6055 else /* r->balance == -1 */
6056 {
6057 /* RL rotation */
6058 struct init_node *t = r->left;
6059
6060 r->left = t->right;
6061 if (r->left)
6062 r->left->parent = r;
6063 t->right = r;
6064
6065 p->right = t->left;
6066 if (p->right)
6067 p->right->parent = p;
6068 t->left = p;
6069
6070 r->balance = (t->balance < 0);
6071 p->balance = -(t->balance > 0);
6072 t->balance = 0;
6073
6074 s = p->parent;
6075 p->parent = t;
6076 r->parent = t;
6077 t->parent = s;
6078 if (s)
6079 {
6080 if (s->left == p)
6081 s->left = t;
6082 else
6083 s->right = t;
6084 }
6085 else
6086 constructor_pending_elts = t;
6087 }
6088 break;
6089 }
6090 else
6091 {
6092 /* p->balance == -1; growth of right side balances the node. */
6093 p->balance = 0;
6094 break;
6095 }
6096 }
6097
6098 r = p;
6099 p = p->parent;
6100 }
6101 }
6102
6103 /* Return nonzero if FIELD is equal to the index of a pending initializer. */
6104
6105 static int
6106 pending_init_member (field)
6107 tree field;
6108 {
6109 struct init_node *p;
6110
6111 p = constructor_pending_elts;
6112 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6113 {
6114 while (p)
6115 {
6116 if (tree_int_cst_equal (field, p->purpose))
6117 return 1;
6118 else if (tree_int_cst_lt (field, p->purpose))
6119 p = p->left;
6120 else
6121 p = p->right;
6122 }
6123 }
6124 else
6125 {
6126 while (p)
6127 {
6128 if (field == p->purpose)
6129 return 1;
6130 else if (tree_int_cst_lt (DECL_FIELD_BITPOS (field),
6131 DECL_FIELD_BITPOS (p->purpose)))
6132 p = p->left;
6133 else
6134 p = p->right;
6135 }
6136 }
6137
6138 return 0;
6139 }
6140
6141 /* "Output" the next constructor element.
6142 At top level, really output it to assembler code now.
6143 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6144 TYPE is the data type that the containing data type wants here.
6145 FIELD is the field (a FIELD_DECL) or the index that this element fills.
6146
6147 PENDING if non-nil means output pending elements that belong
6148 right after this element. (PENDING is normally 1;
6149 it is 0 while outputting pending elements, to avoid recursion.) */
6150
6151 static void
6152 output_init_element (value, type, field, pending)
6153 tree value, type, field;
6154 int pending;
6155 {
6156 int duplicate = 0;
6157
6158 if (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE
6159 || (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6160 && !(TREE_CODE (value) == STRING_CST
6161 && TREE_CODE (type) == ARRAY_TYPE
6162 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
6163 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6164 TYPE_MAIN_VARIANT (type))))
6165 value = default_conversion (value);
6166
6167 if (value == error_mark_node)
6168 constructor_erroneous = 1;
6169 else if (!TREE_CONSTANT (value))
6170 constructor_constant = 0;
6171 else if (initializer_constant_valid_p (value, TREE_TYPE (value)) == 0
6172 || ((TREE_CODE (constructor_type) == RECORD_TYPE
6173 || TREE_CODE (constructor_type) == UNION_TYPE)
6174 && DECL_C_BIT_FIELD (field)
6175 && TREE_CODE (value) != INTEGER_CST))
6176 constructor_simple = 0;
6177
6178 if (require_constant_value && ! TREE_CONSTANT (value))
6179 {
6180 error_init ("initializer element%s is not constant",
6181 " for `%s'", NULL);
6182 value = error_mark_node;
6183 }
6184 else if (require_constant_elements
6185 && initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
6186 {
6187 error_init ("initializer element%s is not computable at load time",
6188 " for `%s'", NULL);
6189 value = error_mark_node;
6190 }
6191
6192 /* If this element duplicates one on constructor_pending_elts,
6193 print a message and ignore it. Don't do this when we're
6194 processing elements taken off constructor_pending_elts,
6195 because we'd always get spurious errors. */
6196 if (pending)
6197 {
6198 if (TREE_CODE (constructor_type) == RECORD_TYPE
6199 || TREE_CODE (constructor_type) == UNION_TYPE
6200 || TREE_CODE (constructor_type) == ARRAY_TYPE)
6201 {
6202 if (pending_init_member (field))
6203 {
6204 error_init ("duplicate initializer%s", " for `%s'", NULL);
6205 duplicate = 1;
6206 }
6207 }
6208 }
6209
6210 /* If this element doesn't come next in sequence,
6211 put it on constructor_pending_elts. */
6212 if (TREE_CODE (constructor_type) == ARRAY_TYPE
6213 && !tree_int_cst_equal (field, constructor_unfilled_index))
6214 {
6215 if (! duplicate)
6216 /* The copy_node is needed in case field is actually
6217 constructor_index, which is modified in place. */
6218 add_pending_init (copy_node (field),
6219 digest_init (type, value, require_constant_value,
6220 require_constant_elements));
6221 }
6222 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6223 && field != constructor_unfilled_fields)
6224 {
6225 /* We do this for records but not for unions. In a union,
6226 no matter which field is specified, it can be initialized
6227 right away since it starts at the beginning of the union. */
6228 if (!duplicate)
6229 add_pending_init (field,
6230 digest_init (type, value, require_constant_value,
6231 require_constant_elements));
6232 }
6233 else
6234 {
6235 /* Otherwise, output this element either to
6236 constructor_elements or to the assembler file. */
6237
6238 if (!duplicate)
6239 {
6240 if (! constructor_incremental)
6241 {
6242 if (field && TREE_CODE (field) == INTEGER_CST)
6243 field = copy_node (field);
6244 constructor_elements
6245 = tree_cons (field, digest_init (type, value,
6246 require_constant_value,
6247 require_constant_elements),
6248 constructor_elements);
6249 }
6250 else
6251 {
6252 /* Structure elements may require alignment.
6253 Do this, if necessary. */
6254 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6255 {
6256 /* Advance to offset of this element. */
6257 if (! tree_int_cst_equal (constructor_bit_index,
6258 DECL_FIELD_BITPOS (field)))
6259 {
6260 /* By using unsigned arithmetic, the result will be
6261 correct even in case of overflows, if BITS_PER_UNIT
6262 is a power of two. */
6263 unsigned next = (TREE_INT_CST_LOW
6264 (DECL_FIELD_BITPOS (field))
6265 / (unsigned)BITS_PER_UNIT);
6266 unsigned here = (TREE_INT_CST_LOW
6267 (constructor_bit_index)
6268 / (unsigned)BITS_PER_UNIT);
6269
6270 assemble_zeros ((next - here)
6271 * (unsigned)BITS_PER_UNIT
6272 / (unsigned)BITS_PER_UNIT);
6273 }
6274 }
6275 output_constant (digest_init (type, value,
6276 require_constant_value,
6277 require_constant_elements),
6278 int_size_in_bytes (type));
6279
6280 /* For a record or union,
6281 keep track of end position of last field. */
6282 if (TREE_CODE (constructor_type) == RECORD_TYPE
6283 || TREE_CODE (constructor_type) == UNION_TYPE)
6284 {
6285 tree temp = size_binop (PLUS_EXPR, DECL_FIELD_BITPOS (field),
6286 DECL_SIZE (field));
6287 TREE_INT_CST_LOW (constructor_bit_index)
6288 = TREE_INT_CST_LOW (temp);
6289 TREE_INT_CST_HIGH (constructor_bit_index)
6290 = TREE_INT_CST_HIGH (temp);
6291 }
6292 }
6293 }
6294
6295 /* Advance the variable that indicates sequential elements output. */
6296 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6297 {
6298 tree tem = size_binop (PLUS_EXPR, constructor_unfilled_index,
6299 integer_one_node);
6300 TREE_INT_CST_LOW (constructor_unfilled_index)
6301 = TREE_INT_CST_LOW (tem);
6302 TREE_INT_CST_HIGH (constructor_unfilled_index)
6303 = TREE_INT_CST_HIGH (tem);
6304 }
6305 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6306 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
6307 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6308 constructor_unfilled_fields = 0;
6309
6310 /* Now output any pending elements which have become next. */
6311 if (pending)
6312 output_pending_init_elements (0);
6313 }
6314 }
6315
6316 /* Output any pending elements which have become next.
6317 As we output elements, constructor_unfilled_{fields,index}
6318 advances, which may cause other elements to become next;
6319 if so, they too are output.
6320
6321 If ALL is 0, we return when there are
6322 no more pending elements to output now.
6323
6324 If ALL is 1, we output space as necessary so that
6325 we can output all the pending elements. */
6326
6327 static void
6328 output_pending_init_elements (all)
6329 int all;
6330 {
6331 struct init_node *elt = constructor_pending_elts;
6332 tree next;
6333
6334 retry:
6335
6336 /* Look thru the whole pending tree.
6337 If we find an element that should be output now,
6338 output it. Otherwise, set NEXT to the element
6339 that comes first among those still pending. */
6340
6341 next = 0;
6342 while (elt)
6343 {
6344 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6345 {
6346 if (tree_int_cst_equal (elt->purpose,
6347 constructor_unfilled_index))
6348 output_init_element (elt->value,
6349 TREE_TYPE (constructor_type),
6350 constructor_unfilled_index, 0);
6351 else if (tree_int_cst_lt (constructor_unfilled_index,
6352 elt->purpose))
6353 {
6354 /* Advance to the next smaller node. */
6355 if (elt->left)
6356 elt = elt->left;
6357 else
6358 {
6359 /* We have reached the smallest node bigger than the
6360 current unfilled index. Fill the space first. */
6361 next = elt->purpose;
6362 break;
6363 }
6364 }
6365 else
6366 {
6367 /* Advance to the next bigger node. */
6368 if (elt->right)
6369 elt = elt->right;
6370 else
6371 {
6372 /* We have reached the biggest node in a subtree. Find
6373 the parent of it, which is the next bigger node. */
6374 while (elt->parent && elt->parent->right == elt)
6375 elt = elt->parent;
6376 elt = elt->parent;
6377 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6378 elt->purpose))
6379 {
6380 next = elt->purpose;
6381 break;
6382 }
6383 }
6384 }
6385 }
6386 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6387 || TREE_CODE (constructor_type) == UNION_TYPE)
6388 {
6389 /* If the current record is complete we are done. */
6390 if (constructor_unfilled_fields == 0)
6391 break;
6392 if (elt->purpose == constructor_unfilled_fields)
6393 {
6394 output_init_element (elt->value,
6395 TREE_TYPE (constructor_unfilled_fields),
6396 constructor_unfilled_fields,
6397 0);
6398 }
6399 else if (tree_int_cst_lt (DECL_FIELD_BITPOS (constructor_unfilled_fields),
6400 DECL_FIELD_BITPOS (elt->purpose)))
6401 {
6402 /* Advance to the next smaller node. */
6403 if (elt->left)
6404 elt = elt->left;
6405 else
6406 {
6407 /* We have reached the smallest node bigger than the
6408 current unfilled field. Fill the space first. */
6409 next = elt->purpose;
6410 break;
6411 }
6412 }
6413 else
6414 {
6415 /* Advance to the next bigger node. */
6416 if (elt->right)
6417 elt = elt->right;
6418 else
6419 {
6420 /* We have reached the biggest node in a subtree. Find
6421 the parent of it, which is the next bigger node. */
6422 while (elt->parent && elt->parent->right == elt)
6423 elt = elt->parent;
6424 elt = elt->parent;
6425 if (elt
6426 && tree_int_cst_lt (DECL_FIELD_BITPOS (constructor_unfilled_fields),
6427 DECL_FIELD_BITPOS (elt->purpose)))
6428 {
6429 next = elt->purpose;
6430 break;
6431 }
6432 }
6433 }
6434 }
6435 }
6436
6437 /* Ordinarily return, but not if we want to output all
6438 and there are elements left. */
6439 if (! (all && next != 0))
6440 return;
6441
6442 /* Generate space up to the position of NEXT. */
6443 if (constructor_incremental)
6444 {
6445 tree filled;
6446 tree nextpos_tree = size_int (0);
6447
6448 if (TREE_CODE (constructor_type) == RECORD_TYPE
6449 || TREE_CODE (constructor_type) == UNION_TYPE)
6450 {
6451 tree tail;
6452 /* Find the last field written out, if any. */
6453 for (tail = TYPE_FIELDS (constructor_type); tail;
6454 tail = TREE_CHAIN (tail))
6455 if (TREE_CHAIN (tail) == constructor_unfilled_fields)
6456 break;
6457
6458 if (tail)
6459 /* Find the offset of the end of that field. */
6460 filled = size_binop (CEIL_DIV_EXPR,
6461 size_binop (PLUS_EXPR,
6462 DECL_FIELD_BITPOS (tail),
6463 DECL_SIZE (tail)),
6464 size_int (BITS_PER_UNIT));
6465 else
6466 filled = size_int (0);
6467
6468 nextpos_tree = size_binop (CEIL_DIV_EXPR,
6469 DECL_FIELD_BITPOS (next),
6470 size_int (BITS_PER_UNIT));
6471
6472 TREE_INT_CST_HIGH (constructor_bit_index)
6473 = TREE_INT_CST_HIGH (DECL_FIELD_BITPOS (next));
6474 TREE_INT_CST_LOW (constructor_bit_index)
6475 = TREE_INT_CST_LOW (DECL_FIELD_BITPOS (next));
6476 constructor_unfilled_fields = next;
6477 }
6478 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6479 {
6480 filled = size_binop (MULT_EXPR, constructor_unfilled_index,
6481 size_in_bytes (TREE_TYPE (constructor_type)));
6482 nextpos_tree
6483 = size_binop (MULT_EXPR, next,
6484 size_in_bytes (TREE_TYPE (constructor_type)));
6485 TREE_INT_CST_LOW (constructor_unfilled_index)
6486 = TREE_INT_CST_LOW (next);
6487 TREE_INT_CST_HIGH (constructor_unfilled_index)
6488 = TREE_INT_CST_HIGH (next);
6489 }
6490 else
6491 filled = 0;
6492
6493 if (filled)
6494 {
6495 int nextpos = TREE_INT_CST_LOW (nextpos_tree);
6496
6497 assemble_zeros (nextpos - TREE_INT_CST_LOW (filled));
6498 }
6499 }
6500 else
6501 {
6502 /* If it's not incremental, just skip over the gap,
6503 so that after jumping to retry we will output the next
6504 successive element. */
6505 if (TREE_CODE (constructor_type) == RECORD_TYPE
6506 || TREE_CODE (constructor_type) == UNION_TYPE)
6507 constructor_unfilled_fields = next;
6508 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6509 {
6510 TREE_INT_CST_LOW (constructor_unfilled_index)
6511 = TREE_INT_CST_LOW (next);
6512 TREE_INT_CST_HIGH (constructor_unfilled_index)
6513 = TREE_INT_CST_HIGH (next);
6514 }
6515 }
6516
6517 /* ELT now points to the node in the pending tree with the next
6518 initializer to output. */
6519 goto retry;
6520 }
6521 \f
6522 /* Add one non-braced element to the current constructor level.
6523 This adjusts the current position within the constructor's type.
6524 This may also start or terminate implicit levels
6525 to handle a partly-braced initializer.
6526
6527 Once this has found the correct level for the new element,
6528 it calls output_init_element.
6529
6530 Note: if we are incrementally outputting this constructor,
6531 this function may be called with a null argument
6532 representing a sub-constructor that was already incrementally output.
6533 When that happens, we output nothing, but we do the bookkeeping
6534 to skip past that element of the current constructor. */
6535
6536 void
6537 process_init_element (value)
6538 tree value;
6539 {
6540 tree orig_value = value;
6541 int string_flag = value != 0 && TREE_CODE (value) == STRING_CST;
6542
6543 /* Handle superfluous braces around string cst as in
6544 char x[] = {"foo"}; */
6545 if (string_flag
6546 && constructor_type
6547 && TREE_CODE (constructor_type) == ARRAY_TYPE
6548 && TREE_CODE (TREE_TYPE (constructor_type)) == INTEGER_TYPE
6549 && integer_zerop (constructor_unfilled_index))
6550 {
6551 constructor_stack->replacement_value = value;
6552 return;
6553 }
6554
6555 if (constructor_stack->replacement_value != 0)
6556 {
6557 error_init ("excess elements in struct initializer%s",
6558 " after `%s'", NULL_PTR);
6559 return;
6560 }
6561
6562 /* Ignore elements of a brace group if it is entirely superfluous
6563 and has already been diagnosed. */
6564 if (constructor_type == 0)
6565 return;
6566
6567 /* If we've exhausted any levels that didn't have braces,
6568 pop them now. */
6569 while (constructor_stack->implicit)
6570 {
6571 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6572 || TREE_CODE (constructor_type) == UNION_TYPE)
6573 && constructor_fields == 0)
6574 process_init_element (pop_init_level (1));
6575 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6576 && (constructor_max_index == 0
6577 || tree_int_cst_lt (constructor_max_index,
6578 constructor_index)))
6579 process_init_element (pop_init_level (1));
6580 else
6581 break;
6582 }
6583
6584 while (1)
6585 {
6586 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6587 {
6588 tree fieldtype;
6589 enum tree_code fieldcode;
6590
6591 if (constructor_fields == 0)
6592 {
6593 pedwarn_init ("excess elements in struct initializer%s",
6594 " after `%s'", NULL_PTR);
6595 break;
6596 }
6597
6598 fieldtype = TREE_TYPE (constructor_fields);
6599 if (fieldtype != error_mark_node)
6600 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6601 fieldcode = TREE_CODE (fieldtype);
6602
6603 /* Accept a string constant to initialize a subarray. */
6604 if (value != 0
6605 && fieldcode == ARRAY_TYPE
6606 && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
6607 && string_flag)
6608 value = orig_value;
6609 /* Otherwise, if we have come to a subaggregate,
6610 and we don't have an element of its type, push into it. */
6611 else if (value != 0 && !constructor_no_implicit
6612 && value != error_mark_node
6613 && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
6614 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6615 || fieldcode == UNION_TYPE))
6616 {
6617 push_init_level (1);
6618 continue;
6619 }
6620
6621 if (value)
6622 {
6623 push_member_name (constructor_fields);
6624 output_init_element (value, fieldtype, constructor_fields, 1);
6625 RESTORE_SPELLING_DEPTH (constructor_depth);
6626 }
6627 else
6628 /* Do the bookkeeping for an element that was
6629 directly output as a constructor. */
6630 {
6631 /* For a record, keep track of end position of last field. */
6632 tree temp = size_binop (PLUS_EXPR,
6633 DECL_FIELD_BITPOS (constructor_fields),
6634 DECL_SIZE (constructor_fields));
6635 TREE_INT_CST_LOW (constructor_bit_index)
6636 = TREE_INT_CST_LOW (temp);
6637 TREE_INT_CST_HIGH (constructor_bit_index)
6638 = TREE_INT_CST_HIGH (temp);
6639
6640 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6641 }
6642
6643 constructor_fields = TREE_CHAIN (constructor_fields);
6644 /* Skip any nameless bit fields at the beginning. */
6645 while (constructor_fields != 0
6646 && DECL_C_BIT_FIELD (constructor_fields)
6647 && DECL_NAME (constructor_fields) == 0)
6648 constructor_fields = TREE_CHAIN (constructor_fields);
6649 break;
6650 }
6651 if (TREE_CODE (constructor_type) == UNION_TYPE)
6652 {
6653 tree fieldtype;
6654 enum tree_code fieldcode;
6655
6656 if (constructor_fields == 0)
6657 {
6658 pedwarn_init ("excess elements in union initializer%s",
6659 " after `%s'", NULL_PTR);
6660 break;
6661 }
6662
6663 fieldtype = TREE_TYPE (constructor_fields);
6664 if (fieldtype != error_mark_node)
6665 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6666 fieldcode = TREE_CODE (fieldtype);
6667
6668 /* Accept a string constant to initialize a subarray. */
6669 if (value != 0
6670 && fieldcode == ARRAY_TYPE
6671 && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
6672 && string_flag)
6673 value = orig_value;
6674 /* Otherwise, if we have come to a subaggregate,
6675 and we don't have an element of its type, push into it. */
6676 else if (value != 0 && !constructor_no_implicit
6677 && value != error_mark_node
6678 && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
6679 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6680 || fieldcode == UNION_TYPE))
6681 {
6682 push_init_level (1);
6683 continue;
6684 }
6685
6686 if (value)
6687 {
6688 push_member_name (constructor_fields);
6689 output_init_element (value, fieldtype, constructor_fields, 1);
6690 RESTORE_SPELLING_DEPTH (constructor_depth);
6691 }
6692 else
6693 /* Do the bookkeeping for an element that was
6694 directly output as a constructor. */
6695 {
6696 TREE_INT_CST_LOW (constructor_bit_index)
6697 = TREE_INT_CST_LOW (DECL_SIZE (constructor_fields));
6698 TREE_INT_CST_HIGH (constructor_bit_index)
6699 = TREE_INT_CST_HIGH (DECL_SIZE (constructor_fields));
6700
6701 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6702 }
6703
6704 constructor_fields = 0;
6705 break;
6706 }
6707 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6708 {
6709 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6710 enum tree_code eltcode = TREE_CODE (elttype);
6711
6712 /* Accept a string constant to initialize a subarray. */
6713 if (value != 0
6714 && eltcode == ARRAY_TYPE
6715 && TREE_CODE (TREE_TYPE (elttype)) == INTEGER_TYPE
6716 && string_flag)
6717 value = orig_value;
6718 /* Otherwise, if we have come to a subaggregate,
6719 and we don't have an element of its type, push into it. */
6720 else if (value != 0 && !constructor_no_implicit
6721 && value != error_mark_node
6722 && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != elttype
6723 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6724 || eltcode == UNION_TYPE))
6725 {
6726 push_init_level (1);
6727 continue;
6728 }
6729
6730 if (constructor_max_index != 0
6731 && tree_int_cst_lt (constructor_max_index, constructor_index))
6732 {
6733 pedwarn_init ("excess elements in array initializer%s",
6734 " after `%s'", NULL_PTR);
6735 break;
6736 }
6737
6738 /* In the case of [LO .. HI] = VALUE, only evaluate VALUE once. */
6739 if (constructor_range_end)
6740 {
6741 if (constructor_max_index != 0
6742 && tree_int_cst_lt (constructor_max_index,
6743 constructor_range_end))
6744 {
6745 pedwarn_init ("excess elements in array initializer%s",
6746 " after `%s'", NULL_PTR);
6747 TREE_INT_CST_HIGH (constructor_range_end)
6748 = TREE_INT_CST_HIGH (constructor_max_index);
6749 TREE_INT_CST_LOW (constructor_range_end)
6750 = TREE_INT_CST_LOW (constructor_max_index);
6751 }
6752
6753 value = save_expr (value);
6754 }
6755
6756 /* Now output the actual element.
6757 Ordinarily, output once.
6758 If there is a range, repeat it till we advance past the range. */
6759 do
6760 {
6761 tree tem;
6762
6763 if (value)
6764 {
6765 push_array_bounds (TREE_INT_CST_LOW (constructor_index));
6766 output_init_element (value, elttype, constructor_index, 1);
6767 RESTORE_SPELLING_DEPTH (constructor_depth);
6768 }
6769
6770 tem = size_binop (PLUS_EXPR, constructor_index,
6771 integer_one_node);
6772 TREE_INT_CST_LOW (constructor_index) = TREE_INT_CST_LOW (tem);
6773 TREE_INT_CST_HIGH (constructor_index) = TREE_INT_CST_HIGH (tem);
6774
6775 if (!value)
6776 /* If we are doing the bookkeeping for an element that was
6777 directly output as a constructor,
6778 we must update constructor_unfilled_index. */
6779 {
6780 TREE_INT_CST_LOW (constructor_unfilled_index)
6781 = TREE_INT_CST_LOW (constructor_index);
6782 TREE_INT_CST_HIGH (constructor_unfilled_index)
6783 = TREE_INT_CST_HIGH (constructor_index);
6784 }
6785 }
6786 while (! (constructor_range_end == 0
6787 || tree_int_cst_lt (constructor_range_end,
6788 constructor_index)));
6789
6790 break;
6791 }
6792
6793 /* Handle the sole element allowed in a braced initializer
6794 for a scalar variable. */
6795 if (constructor_fields == 0)
6796 {
6797 pedwarn_init ("excess elements in scalar initializer%s",
6798 " after `%s'", NULL_PTR);
6799 break;
6800 }
6801
6802 if (value)
6803 output_init_element (value, constructor_type, NULL_TREE, 1);
6804 constructor_fields = 0;
6805 break;
6806 }
6807
6808 /* If the (lexically) previous elments are not now saved,
6809 we can discard the storage for them. */
6810 if (constructor_incremental && constructor_pending_elts == 0 && value != 0
6811 && constructor_stack == 0)
6812 clear_momentary ();
6813 }
6814 \f
6815 /* Expand an ASM statement with operands, handling output operands
6816 that are not variables or INDIRECT_REFS by transforming such
6817 cases into cases that expand_asm_operands can handle.
6818
6819 Arguments are same as for expand_asm_operands. */
6820
6821 void
6822 c_expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
6823 tree string, outputs, inputs, clobbers;
6824 int vol;
6825 char *filename;
6826 int line;
6827 {
6828 int noutputs = list_length (outputs);
6829 register int i;
6830 /* o[I] is the place that output number I should be written. */
6831 register tree *o = (tree *) alloca (noutputs * sizeof (tree));
6832 register tree tail;
6833
6834 if (TREE_CODE (string) == ADDR_EXPR)
6835 string = TREE_OPERAND (string, 0);
6836 if (TREE_CODE (string) != STRING_CST)
6837 {
6838 error ("asm template is not a string constant");
6839 return;
6840 }
6841
6842 /* Record the contents of OUTPUTS before it is modified. */
6843 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
6844 o[i] = TREE_VALUE (tail);
6845
6846 /* Perform default conversions on array and function inputs. */
6847 /* Don't do this for other types--
6848 it would screw up operands expected to be in memory. */
6849 for (i = 0, tail = inputs; tail; tail = TREE_CHAIN (tail), i++)
6850 if (TREE_CODE (TREE_TYPE (TREE_VALUE (tail))) == ARRAY_TYPE
6851 || TREE_CODE (TREE_TYPE (TREE_VALUE (tail))) == FUNCTION_TYPE)
6852 TREE_VALUE (tail) = default_conversion (TREE_VALUE (tail));
6853
6854 /* Generate the ASM_OPERANDS insn;
6855 store into the TREE_VALUEs of OUTPUTS some trees for
6856 where the values were actually stored. */
6857 expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line);
6858
6859 /* Copy all the intermediate outputs into the specified outputs. */
6860 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
6861 {
6862 if (o[i] != TREE_VALUE (tail))
6863 {
6864 expand_expr (build_modify_expr (o[i], NOP_EXPR, TREE_VALUE (tail)),
6865 0, VOIDmode, 0);
6866 free_temp_slots ();
6867 }
6868 /* Detect modification of read-only values.
6869 (Otherwise done by build_modify_expr.) */
6870 else
6871 {
6872 tree type = TREE_TYPE (o[i]);
6873 if (TREE_READONLY (o[i])
6874 || TYPE_READONLY (type)
6875 || ((TREE_CODE (type) == RECORD_TYPE
6876 || TREE_CODE (type) == UNION_TYPE)
6877 && C_TYPE_FIELDS_READONLY (type)))
6878 readonly_warning (o[i], "modification by `asm'");
6879 }
6880 }
6881
6882 /* Those MODIFY_EXPRs could do autoincrements. */
6883 emit_queue ();
6884 }
6885 \f
6886 /* Expand a C `return' statement.
6887 RETVAL is the expression for what to return,
6888 or a null pointer for `return;' with no value. */
6889
6890 void
6891 c_expand_return (retval)
6892 tree retval;
6893 {
6894 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl));
6895
6896 if (TREE_THIS_VOLATILE (current_function_decl))
6897 warning ("function declared `noreturn' has a `return' statement");
6898
6899 if (!retval)
6900 {
6901 current_function_returns_null = 1;
6902 if (warn_return_type && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6903 warning ("`return' with no value, in function returning non-void");
6904 expand_null_return ();
6905 }
6906 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6907 {
6908 current_function_returns_null = 1;
6909 if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6910 pedwarn ("`return' with a value, in function returning void");
6911 expand_return (retval);
6912 }
6913 else
6914 {
6915 tree t = convert_for_assignment (valtype, retval, "return",
6916 NULL_TREE, NULL_TREE, 0);
6917 tree res = DECL_RESULT (current_function_decl);
6918 tree inner;
6919
6920 if (t == error_mark_node)
6921 return;
6922
6923 inner = t = convert (TREE_TYPE (res), t);
6924
6925 /* Strip any conversions, additions, and subtractions, and see if
6926 we are returning the address of a local variable. Warn if so. */
6927 while (1)
6928 {
6929 switch (TREE_CODE (inner))
6930 {
6931 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
6932 case PLUS_EXPR:
6933 inner = TREE_OPERAND (inner, 0);
6934 continue;
6935
6936 case MINUS_EXPR:
6937 /* If the second operand of the MINUS_EXPR has a pointer
6938 type (or is converted from it), this may be valid, so
6939 don't give a warning. */
6940 {
6941 tree op1 = TREE_OPERAND (inner, 1);
6942
6943 while (! POINTER_TYPE_P (TREE_TYPE (op1))
6944 && (TREE_CODE (op1) == NOP_EXPR
6945 || TREE_CODE (op1) == NON_LVALUE_EXPR
6946 || TREE_CODE (op1) == CONVERT_EXPR))
6947 op1 = TREE_OPERAND (op1, 0);
6948
6949 if (POINTER_TYPE_P (TREE_TYPE (op1)))
6950 break;
6951
6952 inner = TREE_OPERAND (inner, 0);
6953 continue;
6954 }
6955
6956 case ADDR_EXPR:
6957 inner = TREE_OPERAND (inner, 0);
6958
6959 while (TREE_CODE_CLASS (TREE_CODE (inner)) == 'r')
6960 inner = TREE_OPERAND (inner, 0);
6961
6962 if (TREE_CODE (inner) == VAR_DECL
6963 && ! DECL_EXTERNAL (inner)
6964 && ! TREE_STATIC (inner)
6965 && DECL_CONTEXT (inner) == current_function_decl)
6966 warning ("function returns address of local variable");
6967 break;
6968
6969 default:
6970 break;
6971 }
6972
6973 break;
6974 }
6975
6976 t = build (MODIFY_EXPR, TREE_TYPE (res), res, t);
6977 TREE_SIDE_EFFECTS (t) = 1;
6978 expand_return (t);
6979 current_function_returns_value = 1;
6980 }
6981 }
6982 \f
6983 /* Start a C switch statement, testing expression EXP.
6984 Return EXP if it is valid, an error node otherwise. */
6985
6986 tree
6987 c_expand_start_case (exp)
6988 tree exp;
6989 {
6990 register enum tree_code code = TREE_CODE (TREE_TYPE (exp));
6991 tree type = TREE_TYPE (exp);
6992
6993 if (code != INTEGER_TYPE && code != ENUMERAL_TYPE && code != ERROR_MARK)
6994 {
6995 error ("switch quantity not an integer");
6996 exp = error_mark_node;
6997 }
6998 else
6999 {
7000 tree index;
7001 type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
7002
7003 if (warn_traditional
7004 && (type == long_integer_type_node
7005 || type == long_unsigned_type_node))
7006 pedwarn ("`long' switch expression not converted to `int' in ANSI C");
7007
7008 exp = default_conversion (exp);
7009 type = TREE_TYPE (exp);
7010 index = get_unwidened (exp, NULL_TREE);
7011 /* We can't strip a conversion from a signed type to an unsigned,
7012 because if we did, int_fits_type_p would do the wrong thing
7013 when checking case values for being in range,
7014 and it's too hard to do the right thing. */
7015 if (TREE_UNSIGNED (TREE_TYPE (exp))
7016 == TREE_UNSIGNED (TREE_TYPE (index)))
7017 exp = index;
7018 }
7019
7020 expand_start_case (1, exp, type, "switch statement");
7021
7022 return exp;
7023 }