64fa9f15336103822e9a135fc8868d1e6a70486e
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 /* This file is part of the C front end.
25 It contains routines to build C expressions given their operands,
26 including computing the types of the result, C-specific error checks,
27 and some optimization. */
28
29 #include "config.h"
30 #include "system.h"
31 #include "coretypes.h"
32 #include "tm.h"
33 #include "rtl.h"
34 #include "tree.h"
35 #include "langhooks.h"
36 #include "c-tree.h"
37 #include "tm_p.h"
38 #include "flags.h"
39 #include "output.h"
40 #include "expr.h"
41 #include "toplev.h"
42 #include "intl.h"
43 #include "ggc.h"
44 #include "target.h"
45 #include "tree-iterator.h"
46 #include "tree-gimple.h"
47 #include "tree-flow.h"
48
49 /* Possible cases of implicit bad conversions. Used to select
50 diagnostic messages in convert_for_assignment. */
51 enum impl_conv {
52 ic_argpass,
53 ic_argpass_nonproto,
54 ic_assign,
55 ic_init,
56 ic_return
57 };
58
59 /* The level of nesting inside "__alignof__". */
60 int in_alignof;
61
62 /* The level of nesting inside "sizeof". */
63 int in_sizeof;
64
65 /* The level of nesting inside "typeof". */
66 int in_typeof;
67
68 struct c_label_context_se *label_context_stack_se;
69 struct c_label_context_vm *label_context_stack_vm;
70
71 /* Nonzero if we've already printed a "missing braces around initializer"
72 message within this initializer. */
73 static int missing_braces_mentioned;
74
75 static int require_constant_value;
76 static int require_constant_elements;
77
78 static bool null_pointer_constant_p (tree);
79 static tree qualify_type (tree, tree);
80 static int tagged_types_tu_compatible_p (tree, tree);
81 static int comp_target_types (tree, tree);
82 static int function_types_compatible_p (tree, tree);
83 static int type_lists_compatible_p (tree, tree);
84 static tree decl_constant_value_for_broken_optimization (tree);
85 static tree lookup_field (tree, tree);
86 static tree convert_arguments (tree, tree, tree, tree);
87 static tree pointer_diff (tree, tree);
88 static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
89 int);
90 static tree valid_compound_expr_initializer (tree, tree);
91 static void push_string (const char *);
92 static void push_member_name (tree);
93 static int spelling_length (void);
94 static char *print_spelling (char *);
95 static void warning_init (const char *);
96 static tree digest_init (tree, tree, bool, int);
97 static void output_init_element (tree, bool, tree, tree, int);
98 static void output_pending_init_elements (int);
99 static int set_designator (int);
100 static void push_range_stack (tree);
101 static void add_pending_init (tree, tree);
102 static void set_nonincremental_init (void);
103 static void set_nonincremental_init_from_string (tree);
104 static tree find_init_member (tree);
105 static void readonly_error (tree, enum lvalue_use);
106 static int lvalue_or_else (tree, enum lvalue_use);
107 static int lvalue_p (tree);
108 static void record_maybe_used_decl (tree);
109 static int comptypes_internal (tree, tree);
110 \f
111 /* Return true if EXP is a null pointer constant, false otherwise. */
112
113 static bool
114 null_pointer_constant_p (tree expr)
115 {
116 /* This should really operate on c_expr structures, but they aren't
117 yet available everywhere required. */
118 tree type = TREE_TYPE (expr);
119 return (TREE_CODE (expr) == INTEGER_CST
120 && !TREE_CONSTANT_OVERFLOW (expr)
121 && integer_zerop (expr)
122 && (INTEGRAL_TYPE_P (type)
123 || (TREE_CODE (type) == POINTER_TYPE
124 && VOID_TYPE_P (TREE_TYPE (type))
125 && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
126 }
127 \f/* This is a cache to hold if two types are compatible or not. */
128
129 struct tagged_tu_seen_cache {
130 const struct tagged_tu_seen_cache * next;
131 tree t1;
132 tree t2;
133 /* The return value of tagged_types_tu_compatible_p if we had seen
134 these two types already. */
135 int val;
136 };
137
138 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
139 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
140
141 /* Do `exp = require_complete_type (exp);' to make sure exp
142 does not have an incomplete type. (That includes void types.) */
143
144 tree
145 require_complete_type (tree value)
146 {
147 tree type = TREE_TYPE (value);
148
149 if (value == error_mark_node || type == error_mark_node)
150 return error_mark_node;
151
152 /* First, detect a valid value with a complete type. */
153 if (COMPLETE_TYPE_P (type))
154 return value;
155
156 c_incomplete_type_error (value, type);
157 return error_mark_node;
158 }
159
160 /* Print an error message for invalid use of an incomplete type.
161 VALUE is the expression that was used (or 0 if that isn't known)
162 and TYPE is the type that was invalid. */
163
164 void
165 c_incomplete_type_error (tree value, tree type)
166 {
167 const char *type_code_string;
168
169 /* Avoid duplicate error message. */
170 if (TREE_CODE (type) == ERROR_MARK)
171 return;
172
173 if (value != 0 && (TREE_CODE (value) == VAR_DECL
174 || TREE_CODE (value) == PARM_DECL))
175 error ("%qD has an incomplete type", value);
176 else
177 {
178 retry:
179 /* We must print an error message. Be clever about what it says. */
180
181 switch (TREE_CODE (type))
182 {
183 case RECORD_TYPE:
184 type_code_string = "struct";
185 break;
186
187 case UNION_TYPE:
188 type_code_string = "union";
189 break;
190
191 case ENUMERAL_TYPE:
192 type_code_string = "enum";
193 break;
194
195 case VOID_TYPE:
196 error ("invalid use of void expression");
197 return;
198
199 case ARRAY_TYPE:
200 if (TYPE_DOMAIN (type))
201 {
202 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
203 {
204 error ("invalid use of flexible array member");
205 return;
206 }
207 type = TREE_TYPE (type);
208 goto retry;
209 }
210 error ("invalid use of array with unspecified bounds");
211 return;
212
213 default:
214 gcc_unreachable ();
215 }
216
217 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
218 error ("invalid use of undefined type %<%s %E%>",
219 type_code_string, TYPE_NAME (type));
220 else
221 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
222 error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
223 }
224 }
225
226 /* Given a type, apply default promotions wrt unnamed function
227 arguments and return the new type. */
228
229 tree
230 c_type_promotes_to (tree type)
231 {
232 if (TYPE_MAIN_VARIANT (type) == float_type_node)
233 return double_type_node;
234
235 if (c_promoting_integer_type_p (type))
236 {
237 /* Preserve unsignedness if not really getting any wider. */
238 if (TYPE_UNSIGNED (type)
239 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
240 return unsigned_type_node;
241 return integer_type_node;
242 }
243
244 return type;
245 }
246
247 /* Return a variant of TYPE which has all the type qualifiers of LIKE
248 as well as those of TYPE. */
249
250 static tree
251 qualify_type (tree type, tree like)
252 {
253 return c_build_qualified_type (type,
254 TYPE_QUALS (type) | TYPE_QUALS (like));
255 }
256 \f
257 /* Return the composite type of two compatible types.
258
259 We assume that comptypes has already been done and returned
260 nonzero; if that isn't so, this may crash. In particular, we
261 assume that qualifiers match. */
262
263 tree
264 composite_type (tree t1, tree t2)
265 {
266 enum tree_code code1;
267 enum tree_code code2;
268 tree attributes;
269
270 /* Save time if the two types are the same. */
271
272 if (t1 == t2) return t1;
273
274 /* If one type is nonsense, use the other. */
275 if (t1 == error_mark_node)
276 return t2;
277 if (t2 == error_mark_node)
278 return t1;
279
280 code1 = TREE_CODE (t1);
281 code2 = TREE_CODE (t2);
282
283 /* Merge the attributes. */
284 attributes = targetm.merge_type_attributes (t1, t2);
285
286 /* If one is an enumerated type and the other is the compatible
287 integer type, the composite type might be either of the two
288 (DR#013 question 3). For consistency, use the enumerated type as
289 the composite type. */
290
291 if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
292 return t1;
293 if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
294 return t2;
295
296 gcc_assert (code1 == code2);
297
298 switch (code1)
299 {
300 case POINTER_TYPE:
301 /* For two pointers, do this recursively on the target type. */
302 {
303 tree pointed_to_1 = TREE_TYPE (t1);
304 tree pointed_to_2 = TREE_TYPE (t2);
305 tree target = composite_type (pointed_to_1, pointed_to_2);
306 t1 = build_pointer_type (target);
307 t1 = build_type_attribute_variant (t1, attributes);
308 return qualify_type (t1, t2);
309 }
310
311 case ARRAY_TYPE:
312 {
313 tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
314 int quals;
315 tree unqual_elt;
316 tree d1 = TYPE_DOMAIN (t1);
317 tree d2 = TYPE_DOMAIN (t2);
318 bool d1_variable, d2_variable;
319 bool d1_zero, d2_zero;
320
321 /* We should not have any type quals on arrays at all. */
322 gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
323
324 d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
325 d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
326
327 d1_variable = (!d1_zero
328 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
329 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
330 d2_variable = (!d2_zero
331 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
332 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
333
334 /* Save space: see if the result is identical to one of the args. */
335 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
336 && (d2_variable || d2_zero || !d1_variable))
337 return build_type_attribute_variant (t1, attributes);
338 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
339 && (d1_variable || d1_zero || !d2_variable))
340 return build_type_attribute_variant (t2, attributes);
341
342 if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
343 return build_type_attribute_variant (t1, attributes);
344 if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
345 return build_type_attribute_variant (t2, attributes);
346
347 /* Merge the element types, and have a size if either arg has
348 one. We may have qualifiers on the element types. To set
349 up TYPE_MAIN_VARIANT correctly, we need to form the
350 composite of the unqualified types and add the qualifiers
351 back at the end. */
352 quals = TYPE_QUALS (strip_array_types (elt));
353 unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
354 t1 = build_array_type (unqual_elt,
355 TYPE_DOMAIN ((TYPE_DOMAIN (t1)
356 && (d2_variable
357 || d2_zero
358 || !d1_variable))
359 ? t1
360 : t2));
361 t1 = c_build_qualified_type (t1, quals);
362 return build_type_attribute_variant (t1, attributes);
363 }
364
365 case FUNCTION_TYPE:
366 /* Function types: prefer the one that specified arg types.
367 If both do, merge the arg types. Also merge the return types. */
368 {
369 tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
370 tree p1 = TYPE_ARG_TYPES (t1);
371 tree p2 = TYPE_ARG_TYPES (t2);
372 int len;
373 tree newargs, n;
374 int i;
375
376 /* Save space: see if the result is identical to one of the args. */
377 if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
378 return build_type_attribute_variant (t1, attributes);
379 if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
380 return build_type_attribute_variant (t2, attributes);
381
382 /* Simple way if one arg fails to specify argument types. */
383 if (TYPE_ARG_TYPES (t1) == 0)
384 {
385 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
386 t1 = build_type_attribute_variant (t1, attributes);
387 return qualify_type (t1, t2);
388 }
389 if (TYPE_ARG_TYPES (t2) == 0)
390 {
391 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
392 t1 = build_type_attribute_variant (t1, attributes);
393 return qualify_type (t1, t2);
394 }
395
396 /* If both args specify argument types, we must merge the two
397 lists, argument by argument. */
398 /* Tell global_bindings_p to return false so that variable_size
399 doesn't die on VLAs in parameter types. */
400 c_override_global_bindings_to_false = true;
401
402 len = list_length (p1);
403 newargs = 0;
404
405 for (i = 0; i < len; i++)
406 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
407
408 n = newargs;
409
410 for (; p1;
411 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
412 {
413 /* A null type means arg type is not specified.
414 Take whatever the other function type has. */
415 if (TREE_VALUE (p1) == 0)
416 {
417 TREE_VALUE (n) = TREE_VALUE (p2);
418 goto parm_done;
419 }
420 if (TREE_VALUE (p2) == 0)
421 {
422 TREE_VALUE (n) = TREE_VALUE (p1);
423 goto parm_done;
424 }
425
426 /* Given wait (union {union wait *u; int *i} *)
427 and wait (union wait *),
428 prefer union wait * as type of parm. */
429 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
430 && TREE_VALUE (p1) != TREE_VALUE (p2))
431 {
432 tree memb;
433 tree mv2 = TREE_VALUE (p2);
434 if (mv2 && mv2 != error_mark_node
435 && TREE_CODE (mv2) != ARRAY_TYPE)
436 mv2 = TYPE_MAIN_VARIANT (mv2);
437 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
438 memb; memb = TREE_CHAIN (memb))
439 {
440 tree mv3 = TREE_TYPE (memb);
441 if (mv3 && mv3 != error_mark_node
442 && TREE_CODE (mv3) != ARRAY_TYPE)
443 mv3 = TYPE_MAIN_VARIANT (mv3);
444 if (comptypes (mv3, mv2))
445 {
446 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
447 TREE_VALUE (p2));
448 if (pedantic)
449 pedwarn ("function types not truly compatible in ISO C");
450 goto parm_done;
451 }
452 }
453 }
454 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
455 && TREE_VALUE (p2) != TREE_VALUE (p1))
456 {
457 tree memb;
458 tree mv1 = TREE_VALUE (p1);
459 if (mv1 && mv1 != error_mark_node
460 && TREE_CODE (mv1) != ARRAY_TYPE)
461 mv1 = TYPE_MAIN_VARIANT (mv1);
462 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
463 memb; memb = TREE_CHAIN (memb))
464 {
465 tree mv3 = TREE_TYPE (memb);
466 if (mv3 && mv3 != error_mark_node
467 && TREE_CODE (mv3) != ARRAY_TYPE)
468 mv3 = TYPE_MAIN_VARIANT (mv3);
469 if (comptypes (mv3, mv1))
470 {
471 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
472 TREE_VALUE (p1));
473 if (pedantic)
474 pedwarn ("function types not truly compatible in ISO C");
475 goto parm_done;
476 }
477 }
478 }
479 TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
480 parm_done: ;
481 }
482
483 c_override_global_bindings_to_false = false;
484 t1 = build_function_type (valtype, newargs);
485 t1 = qualify_type (t1, t2);
486 /* ... falls through ... */
487 }
488
489 default:
490 return build_type_attribute_variant (t1, attributes);
491 }
492
493 }
494
495 /* Return the type of a conditional expression between pointers to
496 possibly differently qualified versions of compatible types.
497
498 We assume that comp_target_types has already been done and returned
499 nonzero; if that isn't so, this may crash. */
500
501 static tree
502 common_pointer_type (tree t1, tree t2)
503 {
504 tree attributes;
505 tree pointed_to_1, mv1;
506 tree pointed_to_2, mv2;
507 tree target;
508
509 /* Save time if the two types are the same. */
510
511 if (t1 == t2) return t1;
512
513 /* If one type is nonsense, use the other. */
514 if (t1 == error_mark_node)
515 return t2;
516 if (t2 == error_mark_node)
517 return t1;
518
519 gcc_assert (TREE_CODE (t1) == POINTER_TYPE
520 && TREE_CODE (t2) == POINTER_TYPE);
521
522 /* Merge the attributes. */
523 attributes = targetm.merge_type_attributes (t1, t2);
524
525 /* Find the composite type of the target types, and combine the
526 qualifiers of the two types' targets. Do not lose qualifiers on
527 array element types by taking the TYPE_MAIN_VARIANT. */
528 mv1 = pointed_to_1 = TREE_TYPE (t1);
529 mv2 = pointed_to_2 = TREE_TYPE (t2);
530 if (TREE_CODE (mv1) != ARRAY_TYPE)
531 mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
532 if (TREE_CODE (mv2) != ARRAY_TYPE)
533 mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
534 target = composite_type (mv1, mv2);
535 t1 = build_pointer_type (c_build_qualified_type
536 (target,
537 TYPE_QUALS (pointed_to_1) |
538 TYPE_QUALS (pointed_to_2)));
539 return build_type_attribute_variant (t1, attributes);
540 }
541
542 /* Return the common type for two arithmetic types under the usual
543 arithmetic conversions. The default conversions have already been
544 applied, and enumerated types converted to their compatible integer
545 types. The resulting type is unqualified and has no attributes.
546
547 This is the type for the result of most arithmetic operations
548 if the operands have the given two types. */
549
550 static tree
551 c_common_type (tree t1, tree t2)
552 {
553 enum tree_code code1;
554 enum tree_code code2;
555
556 /* If one type is nonsense, use the other. */
557 if (t1 == error_mark_node)
558 return t2;
559 if (t2 == error_mark_node)
560 return t1;
561
562 if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
563 t1 = TYPE_MAIN_VARIANT (t1);
564
565 if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
566 t2 = TYPE_MAIN_VARIANT (t2);
567
568 if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
569 t1 = build_type_attribute_variant (t1, NULL_TREE);
570
571 if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
572 t2 = build_type_attribute_variant (t2, NULL_TREE);
573
574 /* Save time if the two types are the same. */
575
576 if (t1 == t2) return t1;
577
578 code1 = TREE_CODE (t1);
579 code2 = TREE_CODE (t2);
580
581 gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
582 || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
583 gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
584 || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
585
586 /* If one type is a vector type, return that type. (How the usual
587 arithmetic conversions apply to the vector types extension is not
588 precisely specified.) */
589 if (code1 == VECTOR_TYPE)
590 return t1;
591
592 if (code2 == VECTOR_TYPE)
593 return t2;
594
595 /* If one type is complex, form the common type of the non-complex
596 components, then make that complex. Use T1 or T2 if it is the
597 required type. */
598 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
599 {
600 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
601 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
602 tree subtype = c_common_type (subtype1, subtype2);
603
604 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
605 return t1;
606 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
607 return t2;
608 else
609 return build_complex_type (subtype);
610 }
611
612 /* If only one is real, use it as the result. */
613
614 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
615 return t1;
616
617 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
618 return t2;
619
620 /* If both are real and either are decimal floating point types, use
621 the decimal floating point type with the greater precision. */
622
623 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
624 {
625 if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
626 || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
627 return dfloat128_type_node;
628 else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
629 || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
630 return dfloat64_type_node;
631 else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
632 || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
633 return dfloat32_type_node;
634 }
635
636 /* Both real or both integers; use the one with greater precision. */
637
638 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
639 return t1;
640 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
641 return t2;
642
643 /* Same precision. Prefer long longs to longs to ints when the
644 same precision, following the C99 rules on integer type rank
645 (which are equivalent to the C90 rules for C90 types). */
646
647 if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
648 || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
649 return long_long_unsigned_type_node;
650
651 if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
652 || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
653 {
654 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
655 return long_long_unsigned_type_node;
656 else
657 return long_long_integer_type_node;
658 }
659
660 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
661 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
662 return long_unsigned_type_node;
663
664 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
665 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
666 {
667 /* But preserve unsignedness from the other type,
668 since long cannot hold all the values of an unsigned int. */
669 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
670 return long_unsigned_type_node;
671 else
672 return long_integer_type_node;
673 }
674
675 /* Likewise, prefer long double to double even if same size. */
676 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
677 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
678 return long_double_type_node;
679
680 /* Otherwise prefer the unsigned one. */
681
682 if (TYPE_UNSIGNED (t1))
683 return t1;
684 else
685 return t2;
686 }
687 \f
688 /* Wrapper around c_common_type that is used by c-common.c and other
689 front end optimizations that remove promotions. ENUMERAL_TYPEs
690 are allowed here and are converted to their compatible integer types.
691 BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
692 preferably a non-Boolean type as the common type. */
693 tree
694 common_type (tree t1, tree t2)
695 {
696 if (TREE_CODE (t1) == ENUMERAL_TYPE)
697 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
698 if (TREE_CODE (t2) == ENUMERAL_TYPE)
699 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
700
701 /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */
702 if (TREE_CODE (t1) == BOOLEAN_TYPE
703 && TREE_CODE (t2) == BOOLEAN_TYPE)
704 return boolean_type_node;
705
706 /* If either type is BOOLEAN_TYPE, then return the other. */
707 if (TREE_CODE (t1) == BOOLEAN_TYPE)
708 return t2;
709 if (TREE_CODE (t2) == BOOLEAN_TYPE)
710 return t1;
711
712 return c_common_type (t1, t2);
713 }
714
715 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
716 or various other operations. Return 2 if they are compatible
717 but a warning may be needed if you use them together. */
718
719 int
720 comptypes (tree type1, tree type2)
721 {
722 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
723 int val;
724
725 val = comptypes_internal (type1, type2);
726 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
727
728 return val;
729 }\f
730 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
731 or various other operations. Return 2 if they are compatible
732 but a warning may be needed if you use them together. This
733 differs from comptypes, in that we don't free the seen types. */
734
735 static int
736 comptypes_internal (tree type1, tree type2)
737 {
738 tree t1 = type1;
739 tree t2 = type2;
740 int attrval, val;
741
742 /* Suppress errors caused by previously reported errors. */
743
744 if (t1 == t2 || !t1 || !t2
745 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
746 return 1;
747
748 /* If either type is the internal version of sizetype, return the
749 language version. */
750 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
751 && TYPE_ORIG_SIZE_TYPE (t1))
752 t1 = TYPE_ORIG_SIZE_TYPE (t1);
753
754 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
755 && TYPE_ORIG_SIZE_TYPE (t2))
756 t2 = TYPE_ORIG_SIZE_TYPE (t2);
757
758
759 /* Enumerated types are compatible with integer types, but this is
760 not transitive: two enumerated types in the same translation unit
761 are compatible with each other only if they are the same type. */
762
763 if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
764 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
765 else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
766 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
767
768 if (t1 == t2)
769 return 1;
770
771 /* Different classes of types can't be compatible. */
772
773 if (TREE_CODE (t1) != TREE_CODE (t2))
774 return 0;
775
776 /* Qualifiers must match. C99 6.7.3p9 */
777
778 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
779 return 0;
780
781 /* Allow for two different type nodes which have essentially the same
782 definition. Note that we already checked for equality of the type
783 qualifiers (just above). */
784
785 if (TREE_CODE (t1) != ARRAY_TYPE
786 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
787 return 1;
788
789 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
790 if (!(attrval = targetm.comp_type_attributes (t1, t2)))
791 return 0;
792
793 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
794 val = 0;
795
796 switch (TREE_CODE (t1))
797 {
798 case POINTER_TYPE:
799 /* Do not remove mode or aliasing information. */
800 if (TYPE_MODE (t1) != TYPE_MODE (t2)
801 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
802 break;
803 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
804 ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
805 break;
806
807 case FUNCTION_TYPE:
808 val = function_types_compatible_p (t1, t2);
809 break;
810
811 case ARRAY_TYPE:
812 {
813 tree d1 = TYPE_DOMAIN (t1);
814 tree d2 = TYPE_DOMAIN (t2);
815 bool d1_variable, d2_variable;
816 bool d1_zero, d2_zero;
817 val = 1;
818
819 /* Target types must match incl. qualifiers. */
820 if (TREE_TYPE (t1) != TREE_TYPE (t2)
821 && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
822 return 0;
823
824 /* Sizes must match unless one is missing or variable. */
825 if (d1 == 0 || d2 == 0 || d1 == d2)
826 break;
827
828 d1_zero = !TYPE_MAX_VALUE (d1);
829 d2_zero = !TYPE_MAX_VALUE (d2);
830
831 d1_variable = (!d1_zero
832 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
833 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
834 d2_variable = (!d2_zero
835 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
836 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
837
838 if (d1_variable || d2_variable)
839 break;
840 if (d1_zero && d2_zero)
841 break;
842 if (d1_zero || d2_zero
843 || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
844 || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
845 val = 0;
846
847 break;
848 }
849
850 case ENUMERAL_TYPE:
851 case RECORD_TYPE:
852 case UNION_TYPE:
853 if (val != 1 && !same_translation_unit_p (t1, t2))
854 {
855 if (attrval != 2)
856 return tagged_types_tu_compatible_p (t1, t2);
857 val = tagged_types_tu_compatible_p (t1, t2);
858 }
859 break;
860
861 case VECTOR_TYPE:
862 val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
863 && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
864 break;
865
866 default:
867 break;
868 }
869 return attrval == 2 && val == 1 ? 2 : val;
870 }
871
872 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
873 ignoring their qualifiers. */
874
875 static int
876 comp_target_types (tree ttl, tree ttr)
877 {
878 int val;
879 tree mvl, mvr;
880
881 /* Do not lose qualifiers on element types of array types that are
882 pointer targets by taking their TYPE_MAIN_VARIANT. */
883 mvl = TREE_TYPE (ttl);
884 mvr = TREE_TYPE (ttr);
885 if (TREE_CODE (mvl) != ARRAY_TYPE)
886 mvl = TYPE_MAIN_VARIANT (mvl);
887 if (TREE_CODE (mvr) != ARRAY_TYPE)
888 mvr = TYPE_MAIN_VARIANT (mvr);
889 val = comptypes (mvl, mvr);
890
891 if (val == 2 && pedantic)
892 pedwarn ("types are not quite compatible");
893 return val;
894 }
895 \f
896 /* Subroutines of `comptypes'. */
897
898 /* Determine whether two trees derive from the same translation unit.
899 If the CONTEXT chain ends in a null, that tree's context is still
900 being parsed, so if two trees have context chains ending in null,
901 they're in the same translation unit. */
902 int
903 same_translation_unit_p (tree t1, tree t2)
904 {
905 while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
906 switch (TREE_CODE_CLASS (TREE_CODE (t1)))
907 {
908 case tcc_declaration:
909 t1 = DECL_CONTEXT (t1); break;
910 case tcc_type:
911 t1 = TYPE_CONTEXT (t1); break;
912 case tcc_exceptional:
913 t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
914 default: gcc_unreachable ();
915 }
916
917 while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
918 switch (TREE_CODE_CLASS (TREE_CODE (t2)))
919 {
920 case tcc_declaration:
921 t2 = DECL_CONTEXT (t2); break;
922 case tcc_type:
923 t2 = TYPE_CONTEXT (t2); break;
924 case tcc_exceptional:
925 t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
926 default: gcc_unreachable ();
927 }
928
929 return t1 == t2;
930 }
931
932 /* Allocate the seen two types, assuming that they are compatible. */
933
934 static struct tagged_tu_seen_cache *
935 alloc_tagged_tu_seen_cache (tree t1, tree t2)
936 {
937 struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
938 tu->next = tagged_tu_seen_base;
939 tu->t1 = t1;
940 tu->t2 = t2;
941
942 tagged_tu_seen_base = tu;
943
944 /* The C standard says that two structures in different translation
945 units are compatible with each other only if the types of their
946 fields are compatible (among other things). We assume that they
947 are compatible until proven otherwise when building the cache.
948 An example where this can occur is:
949 struct a
950 {
951 struct a *next;
952 };
953 If we are comparing this against a similar struct in another TU,
954 and did not assume they were compatible, we end up with an infinite
955 loop. */
956 tu->val = 1;
957 return tu;
958 }
959
960 /* Free the seen types until we get to TU_TIL. */
961
962 static void
963 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
964 {
965 const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
966 while (tu != tu_til)
967 {
968 struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
969 tu = tu1->next;
970 free (tu1);
971 }
972 tagged_tu_seen_base = tu_til;
973 }
974
975 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
976 compatible. If the two types are not the same (which has been
977 checked earlier), this can only happen when multiple translation
978 units are being compiled. See C99 6.2.7 paragraph 1 for the exact
979 rules. */
980
981 static int
982 tagged_types_tu_compatible_p (tree t1, tree t2)
983 {
984 tree s1, s2;
985 bool needs_warning = false;
986
987 /* We have to verify that the tags of the types are the same. This
988 is harder than it looks because this may be a typedef, so we have
989 to go look at the original type. It may even be a typedef of a
990 typedef...
991 In the case of compiler-created builtin structs the TYPE_DECL
992 may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
993 while (TYPE_NAME (t1)
994 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
995 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
996 t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
997
998 while (TYPE_NAME (t2)
999 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1000 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1001 t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1002
1003 /* C90 didn't have the requirement that the two tags be the same. */
1004 if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1005 return 0;
1006
1007 /* C90 didn't say what happened if one or both of the types were
1008 incomplete; we choose to follow C99 rules here, which is that they
1009 are compatible. */
1010 if (TYPE_SIZE (t1) == NULL
1011 || TYPE_SIZE (t2) == NULL)
1012 return 1;
1013
1014 {
1015 const struct tagged_tu_seen_cache * tts_i;
1016 for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1017 if (tts_i->t1 == t1 && tts_i->t2 == t2)
1018 return tts_i->val;
1019 }
1020
1021 switch (TREE_CODE (t1))
1022 {
1023 case ENUMERAL_TYPE:
1024 {
1025 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1026 /* Speed up the case where the type values are in the same order. */
1027 tree tv1 = TYPE_VALUES (t1);
1028 tree tv2 = TYPE_VALUES (t2);
1029
1030 if (tv1 == tv2)
1031 {
1032 return 1;
1033 }
1034
1035 for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1036 {
1037 if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1038 break;
1039 if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1040 {
1041 tu->val = 0;
1042 return 0;
1043 }
1044 }
1045
1046 if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1047 {
1048 return 1;
1049 }
1050 if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1051 {
1052 tu->val = 0;
1053 return 0;
1054 }
1055
1056 if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1057 {
1058 tu->val = 0;
1059 return 0;
1060 }
1061
1062 for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1063 {
1064 s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1065 if (s2 == NULL
1066 || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1067 {
1068 tu->val = 0;
1069 return 0;
1070 }
1071 }
1072 return 1;
1073 }
1074
1075 case UNION_TYPE:
1076 {
1077 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1078 if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1079 {
1080 tu->val = 0;
1081 return 0;
1082 }
1083
1084 /* Speed up the common case where the fields are in the same order. */
1085 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1086 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1087 {
1088 int result;
1089
1090
1091 if (DECL_NAME (s1) == NULL
1092 || DECL_NAME (s1) != DECL_NAME (s2))
1093 break;
1094 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1095 if (result == 0)
1096 {
1097 tu->val = 0;
1098 return 0;
1099 }
1100 if (result == 2)
1101 needs_warning = true;
1102
1103 if (TREE_CODE (s1) == FIELD_DECL
1104 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1105 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1106 {
1107 tu->val = 0;
1108 return 0;
1109 }
1110 }
1111 if (!s1 && !s2)
1112 {
1113 tu->val = needs_warning ? 2 : 1;
1114 return tu->val;
1115 }
1116
1117 for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1118 {
1119 bool ok = false;
1120
1121 if (DECL_NAME (s1) != NULL)
1122 for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1123 if (DECL_NAME (s1) == DECL_NAME (s2))
1124 {
1125 int result;
1126 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1127 if (result == 0)
1128 {
1129 tu->val = 0;
1130 return 0;
1131 }
1132 if (result == 2)
1133 needs_warning = true;
1134
1135 if (TREE_CODE (s1) == FIELD_DECL
1136 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1137 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1138 break;
1139
1140 ok = true;
1141 break;
1142 }
1143 if (!ok)
1144 {
1145 tu->val = 0;
1146 return 0;
1147 }
1148 }
1149 tu->val = needs_warning ? 2 : 10;
1150 return tu->val;
1151 }
1152
1153 case RECORD_TYPE:
1154 {
1155 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1156
1157 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1158 s1 && s2;
1159 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1160 {
1161 int result;
1162 if (TREE_CODE (s1) != TREE_CODE (s2)
1163 || DECL_NAME (s1) != DECL_NAME (s2))
1164 break;
1165 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1166 if (result == 0)
1167 break;
1168 if (result == 2)
1169 needs_warning = true;
1170
1171 if (TREE_CODE (s1) == FIELD_DECL
1172 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1173 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1174 break;
1175 }
1176 if (s1 && s2)
1177 tu->val = 0;
1178 else
1179 tu->val = needs_warning ? 2 : 1;
1180 return tu->val;
1181 }
1182
1183 default:
1184 gcc_unreachable ();
1185 }
1186 }
1187
1188 /* Return 1 if two function types F1 and F2 are compatible.
1189 If either type specifies no argument types,
1190 the other must specify a fixed number of self-promoting arg types.
1191 Otherwise, if one type specifies only the number of arguments,
1192 the other must specify that number of self-promoting arg types.
1193 Otherwise, the argument types must match. */
1194
1195 static int
1196 function_types_compatible_p (tree f1, tree f2)
1197 {
1198 tree args1, args2;
1199 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1200 int val = 1;
1201 int val1;
1202 tree ret1, ret2;
1203
1204 ret1 = TREE_TYPE (f1);
1205 ret2 = TREE_TYPE (f2);
1206
1207 /* 'volatile' qualifiers on a function's return type used to mean
1208 the function is noreturn. */
1209 if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1210 pedwarn ("function return types not compatible due to %<volatile%>");
1211 if (TYPE_VOLATILE (ret1))
1212 ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1213 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1214 if (TYPE_VOLATILE (ret2))
1215 ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1216 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1217 val = comptypes_internal (ret1, ret2);
1218 if (val == 0)
1219 return 0;
1220
1221 args1 = TYPE_ARG_TYPES (f1);
1222 args2 = TYPE_ARG_TYPES (f2);
1223
1224 /* An unspecified parmlist matches any specified parmlist
1225 whose argument types don't need default promotions. */
1226
1227 if (args1 == 0)
1228 {
1229 if (!self_promoting_args_p (args2))
1230 return 0;
1231 /* If one of these types comes from a non-prototype fn definition,
1232 compare that with the other type's arglist.
1233 If they don't match, ask for a warning (but no error). */
1234 if (TYPE_ACTUAL_ARG_TYPES (f1)
1235 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1236 val = 2;
1237 return val;
1238 }
1239 if (args2 == 0)
1240 {
1241 if (!self_promoting_args_p (args1))
1242 return 0;
1243 if (TYPE_ACTUAL_ARG_TYPES (f2)
1244 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1245 val = 2;
1246 return val;
1247 }
1248
1249 /* Both types have argument lists: compare them and propagate results. */
1250 val1 = type_lists_compatible_p (args1, args2);
1251 return val1 != 1 ? val1 : val;
1252 }
1253
1254 /* Check two lists of types for compatibility,
1255 returning 0 for incompatible, 1 for compatible,
1256 or 2 for compatible with warning. */
1257
1258 static int
1259 type_lists_compatible_p (tree args1, tree args2)
1260 {
1261 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1262 int val = 1;
1263 int newval = 0;
1264
1265 while (1)
1266 {
1267 tree a1, mv1, a2, mv2;
1268 if (args1 == 0 && args2 == 0)
1269 return val;
1270 /* If one list is shorter than the other,
1271 they fail to match. */
1272 if (args1 == 0 || args2 == 0)
1273 return 0;
1274 mv1 = a1 = TREE_VALUE (args1);
1275 mv2 = a2 = TREE_VALUE (args2);
1276 if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1277 mv1 = TYPE_MAIN_VARIANT (mv1);
1278 if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1279 mv2 = TYPE_MAIN_VARIANT (mv2);
1280 /* A null pointer instead of a type
1281 means there is supposed to be an argument
1282 but nothing is specified about what type it has.
1283 So match anything that self-promotes. */
1284 if (a1 == 0)
1285 {
1286 if (c_type_promotes_to (a2) != a2)
1287 return 0;
1288 }
1289 else if (a2 == 0)
1290 {
1291 if (c_type_promotes_to (a1) != a1)
1292 return 0;
1293 }
1294 /* If one of the lists has an error marker, ignore this arg. */
1295 else if (TREE_CODE (a1) == ERROR_MARK
1296 || TREE_CODE (a2) == ERROR_MARK)
1297 ;
1298 else if (!(newval = comptypes_internal (mv1, mv2)))
1299 {
1300 /* Allow wait (union {union wait *u; int *i} *)
1301 and wait (union wait *) to be compatible. */
1302 if (TREE_CODE (a1) == UNION_TYPE
1303 && (TYPE_NAME (a1) == 0
1304 || TYPE_TRANSPARENT_UNION (a1))
1305 && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1306 && tree_int_cst_equal (TYPE_SIZE (a1),
1307 TYPE_SIZE (a2)))
1308 {
1309 tree memb;
1310 for (memb = TYPE_FIELDS (a1);
1311 memb; memb = TREE_CHAIN (memb))
1312 {
1313 tree mv3 = TREE_TYPE (memb);
1314 if (mv3 && mv3 != error_mark_node
1315 && TREE_CODE (mv3) != ARRAY_TYPE)
1316 mv3 = TYPE_MAIN_VARIANT (mv3);
1317 if (comptypes_internal (mv3, mv2))
1318 break;
1319 }
1320 if (memb == 0)
1321 return 0;
1322 }
1323 else if (TREE_CODE (a2) == UNION_TYPE
1324 && (TYPE_NAME (a2) == 0
1325 || TYPE_TRANSPARENT_UNION (a2))
1326 && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1327 && tree_int_cst_equal (TYPE_SIZE (a2),
1328 TYPE_SIZE (a1)))
1329 {
1330 tree memb;
1331 for (memb = TYPE_FIELDS (a2);
1332 memb; memb = TREE_CHAIN (memb))
1333 {
1334 tree mv3 = TREE_TYPE (memb);
1335 if (mv3 && mv3 != error_mark_node
1336 && TREE_CODE (mv3) != ARRAY_TYPE)
1337 mv3 = TYPE_MAIN_VARIANT (mv3);
1338 if (comptypes_internal (mv3, mv1))
1339 break;
1340 }
1341 if (memb == 0)
1342 return 0;
1343 }
1344 else
1345 return 0;
1346 }
1347
1348 /* comptypes said ok, but record if it said to warn. */
1349 if (newval > val)
1350 val = newval;
1351
1352 args1 = TREE_CHAIN (args1);
1353 args2 = TREE_CHAIN (args2);
1354 }
1355 }
1356 \f
1357 /* Compute the size to increment a pointer by. */
1358
1359 static tree
1360 c_size_in_bytes (tree type)
1361 {
1362 enum tree_code code = TREE_CODE (type);
1363
1364 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1365 return size_one_node;
1366
1367 if (!COMPLETE_OR_VOID_TYPE_P (type))
1368 {
1369 error ("arithmetic on pointer to an incomplete type");
1370 return size_one_node;
1371 }
1372
1373 /* Convert in case a char is more than one unit. */
1374 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1375 size_int (TYPE_PRECISION (char_type_node)
1376 / BITS_PER_UNIT));
1377 }
1378 \f
1379 /* Return either DECL or its known constant value (if it has one). */
1380
1381 tree
1382 decl_constant_value (tree decl)
1383 {
1384 if (/* Don't change a variable array bound or initial value to a constant
1385 in a place where a variable is invalid. Note that DECL_INITIAL
1386 isn't valid for a PARM_DECL. */
1387 current_function_decl != 0
1388 && TREE_CODE (decl) != PARM_DECL
1389 && !TREE_THIS_VOLATILE (decl)
1390 && TREE_READONLY (decl)
1391 && DECL_INITIAL (decl) != 0
1392 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1393 /* This is invalid if initial value is not constant.
1394 If it has either a function call, a memory reference,
1395 or a variable, then re-evaluating it could give different results. */
1396 && TREE_CONSTANT (DECL_INITIAL (decl))
1397 /* Check for cases where this is sub-optimal, even though valid. */
1398 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1399 return DECL_INITIAL (decl);
1400 return decl;
1401 }
1402
1403 /* Return either DECL or its known constant value (if it has one), but
1404 return DECL if pedantic or DECL has mode BLKmode. This is for
1405 bug-compatibility with the old behavior of decl_constant_value
1406 (before GCC 3.0); every use of this function is a bug and it should
1407 be removed before GCC 3.1. It is not appropriate to use pedantic
1408 in a way that affects optimization, and BLKmode is probably not the
1409 right test for avoiding misoptimizations either. */
1410
1411 static tree
1412 decl_constant_value_for_broken_optimization (tree decl)
1413 {
1414 tree ret;
1415
1416 if (pedantic || DECL_MODE (decl) == BLKmode)
1417 return decl;
1418
1419 ret = decl_constant_value (decl);
1420 /* Avoid unwanted tree sharing between the initializer and current
1421 function's body where the tree can be modified e.g. by the
1422 gimplifier. */
1423 if (ret != decl && TREE_STATIC (decl))
1424 ret = unshare_expr (ret);
1425 return ret;
1426 }
1427
1428 /* Convert the array expression EXP to a pointer. */
1429 static tree
1430 array_to_pointer_conversion (tree exp)
1431 {
1432 tree orig_exp = exp;
1433 tree type = TREE_TYPE (exp);
1434 tree adr;
1435 tree restype = TREE_TYPE (type);
1436 tree ptrtype;
1437
1438 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1439
1440 STRIP_TYPE_NOPS (exp);
1441
1442 if (TREE_NO_WARNING (orig_exp))
1443 TREE_NO_WARNING (exp) = 1;
1444
1445 ptrtype = build_pointer_type (restype);
1446
1447 if (TREE_CODE (exp) == INDIRECT_REF)
1448 return convert (ptrtype, TREE_OPERAND (exp, 0));
1449
1450 if (TREE_CODE (exp) == VAR_DECL)
1451 {
1452 /* We are making an ADDR_EXPR of ptrtype. This is a valid
1453 ADDR_EXPR because it's the best way of representing what
1454 happens in C when we take the address of an array and place
1455 it in a pointer to the element type. */
1456 adr = build1 (ADDR_EXPR, ptrtype, exp);
1457 if (!c_mark_addressable (exp))
1458 return error_mark_node;
1459 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
1460 return adr;
1461 }
1462
1463 /* This way is better for a COMPONENT_REF since it can
1464 simplify the offset for a component. */
1465 adr = build_unary_op (ADDR_EXPR, exp, 1);
1466 return convert (ptrtype, adr);
1467 }
1468
1469 /* Convert the function expression EXP to a pointer. */
1470 static tree
1471 function_to_pointer_conversion (tree exp)
1472 {
1473 tree orig_exp = exp;
1474
1475 gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1476
1477 STRIP_TYPE_NOPS (exp);
1478
1479 if (TREE_NO_WARNING (orig_exp))
1480 TREE_NO_WARNING (exp) = 1;
1481
1482 return build_unary_op (ADDR_EXPR, exp, 0);
1483 }
1484
1485 /* Perform the default conversion of arrays and functions to pointers.
1486 Return the result of converting EXP. For any other expression, just
1487 return EXP after removing NOPs. */
1488
1489 struct c_expr
1490 default_function_array_conversion (struct c_expr exp)
1491 {
1492 tree orig_exp = exp.value;
1493 tree type = TREE_TYPE (exp.value);
1494 enum tree_code code = TREE_CODE (type);
1495
1496 switch (code)
1497 {
1498 case ARRAY_TYPE:
1499 {
1500 bool not_lvalue = false;
1501 bool lvalue_array_p;
1502
1503 while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1504 || TREE_CODE (exp.value) == NOP_EXPR
1505 || TREE_CODE (exp.value) == CONVERT_EXPR)
1506 && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1507 {
1508 if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1509 not_lvalue = true;
1510 exp.value = TREE_OPERAND (exp.value, 0);
1511 }
1512
1513 if (TREE_NO_WARNING (orig_exp))
1514 TREE_NO_WARNING (exp.value) = 1;
1515
1516 lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1517 if (!flag_isoc99 && !lvalue_array_p)
1518 {
1519 /* Before C99, non-lvalue arrays do not decay to pointers.
1520 Normally, using such an array would be invalid; but it can
1521 be used correctly inside sizeof or as a statement expression.
1522 Thus, do not give an error here; an error will result later. */
1523 return exp;
1524 }
1525
1526 exp.value = array_to_pointer_conversion (exp.value);
1527 }
1528 break;
1529 case FUNCTION_TYPE:
1530 exp.value = function_to_pointer_conversion (exp.value);
1531 break;
1532 default:
1533 STRIP_TYPE_NOPS (exp.value);
1534 if (TREE_NO_WARNING (orig_exp))
1535 TREE_NO_WARNING (exp.value) = 1;
1536 break;
1537 }
1538
1539 return exp;
1540 }
1541
1542
1543 /* EXP is an expression of integer type. Apply the integer promotions
1544 to it and return the promoted value. */
1545
1546 tree
1547 perform_integral_promotions (tree exp)
1548 {
1549 tree type = TREE_TYPE (exp);
1550 enum tree_code code = TREE_CODE (type);
1551
1552 gcc_assert (INTEGRAL_TYPE_P (type));
1553
1554 /* Normally convert enums to int,
1555 but convert wide enums to something wider. */
1556 if (code == ENUMERAL_TYPE)
1557 {
1558 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1559 TYPE_PRECISION (integer_type_node)),
1560 ((TYPE_PRECISION (type)
1561 >= TYPE_PRECISION (integer_type_node))
1562 && TYPE_UNSIGNED (type)));
1563
1564 return convert (type, exp);
1565 }
1566
1567 /* ??? This should no longer be needed now bit-fields have their
1568 proper types. */
1569 if (TREE_CODE (exp) == COMPONENT_REF
1570 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1571 /* If it's thinner than an int, promote it like a
1572 c_promoting_integer_type_p, otherwise leave it alone. */
1573 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1574 TYPE_PRECISION (integer_type_node)))
1575 return convert (integer_type_node, exp);
1576
1577 if (c_promoting_integer_type_p (type))
1578 {
1579 /* Preserve unsignedness if not really getting any wider. */
1580 if (TYPE_UNSIGNED (type)
1581 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1582 return convert (unsigned_type_node, exp);
1583
1584 return convert (integer_type_node, exp);
1585 }
1586
1587 return exp;
1588 }
1589
1590
1591 /* Perform default promotions for C data used in expressions.
1592 Enumeral types or short or char are converted to int.
1593 In addition, manifest constants symbols are replaced by their values. */
1594
1595 tree
1596 default_conversion (tree exp)
1597 {
1598 tree orig_exp;
1599 tree type = TREE_TYPE (exp);
1600 enum tree_code code = TREE_CODE (type);
1601
1602 /* Functions and arrays have been converted during parsing. */
1603 gcc_assert (code != FUNCTION_TYPE);
1604 if (code == ARRAY_TYPE)
1605 return exp;
1606
1607 /* Constants can be used directly unless they're not loadable. */
1608 if (TREE_CODE (exp) == CONST_DECL)
1609 exp = DECL_INITIAL (exp);
1610
1611 /* Replace a nonvolatile const static variable with its value unless
1612 it is an array, in which case we must be sure that taking the
1613 address of the array produces consistent results. */
1614 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1615 {
1616 exp = decl_constant_value_for_broken_optimization (exp);
1617 type = TREE_TYPE (exp);
1618 }
1619
1620 /* Strip no-op conversions. */
1621 orig_exp = exp;
1622 STRIP_TYPE_NOPS (exp);
1623
1624 if (TREE_NO_WARNING (orig_exp))
1625 TREE_NO_WARNING (exp) = 1;
1626
1627 if (INTEGRAL_TYPE_P (type))
1628 return perform_integral_promotions (exp);
1629
1630 if (code == VOID_TYPE)
1631 {
1632 error ("void value not ignored as it ought to be");
1633 return error_mark_node;
1634 }
1635 return exp;
1636 }
1637 \f
1638 /* Look up COMPONENT in a structure or union DECL.
1639
1640 If the component name is not found, returns NULL_TREE. Otherwise,
1641 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1642 stepping down the chain to the component, which is in the last
1643 TREE_VALUE of the list. Normally the list is of length one, but if
1644 the component is embedded within (nested) anonymous structures or
1645 unions, the list steps down the chain to the component. */
1646
1647 static tree
1648 lookup_field (tree decl, tree component)
1649 {
1650 tree type = TREE_TYPE (decl);
1651 tree field;
1652
1653 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1654 to the field elements. Use a binary search on this array to quickly
1655 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1656 will always be set for structures which have many elements. */
1657
1658 if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1659 {
1660 int bot, top, half;
1661 tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1662
1663 field = TYPE_FIELDS (type);
1664 bot = 0;
1665 top = TYPE_LANG_SPECIFIC (type)->s->len;
1666 while (top - bot > 1)
1667 {
1668 half = (top - bot + 1) >> 1;
1669 field = field_array[bot+half];
1670
1671 if (DECL_NAME (field) == NULL_TREE)
1672 {
1673 /* Step through all anon unions in linear fashion. */
1674 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1675 {
1676 field = field_array[bot++];
1677 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1678 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1679 {
1680 tree anon = lookup_field (field, component);
1681
1682 if (anon)
1683 return tree_cons (NULL_TREE, field, anon);
1684 }
1685 }
1686
1687 /* Entire record is only anon unions. */
1688 if (bot > top)
1689 return NULL_TREE;
1690
1691 /* Restart the binary search, with new lower bound. */
1692 continue;
1693 }
1694
1695 if (DECL_NAME (field) == component)
1696 break;
1697 if (DECL_NAME (field) < component)
1698 bot += half;
1699 else
1700 top = bot + half;
1701 }
1702
1703 if (DECL_NAME (field_array[bot]) == component)
1704 field = field_array[bot];
1705 else if (DECL_NAME (field) != component)
1706 return NULL_TREE;
1707 }
1708 else
1709 {
1710 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1711 {
1712 if (DECL_NAME (field) == NULL_TREE
1713 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1714 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1715 {
1716 tree anon = lookup_field (field, component);
1717
1718 if (anon)
1719 return tree_cons (NULL_TREE, field, anon);
1720 }
1721
1722 if (DECL_NAME (field) == component)
1723 break;
1724 }
1725
1726 if (field == NULL_TREE)
1727 return NULL_TREE;
1728 }
1729
1730 return tree_cons (NULL_TREE, field, NULL_TREE);
1731 }
1732
1733 /* Make an expression to refer to the COMPONENT field of
1734 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1735
1736 tree
1737 build_component_ref (tree datum, tree component)
1738 {
1739 tree type = TREE_TYPE (datum);
1740 enum tree_code code = TREE_CODE (type);
1741 tree field = NULL;
1742 tree ref;
1743
1744 if (!objc_is_public (datum, component))
1745 return error_mark_node;
1746
1747 /* See if there is a field or component with name COMPONENT. */
1748
1749 if (code == RECORD_TYPE || code == UNION_TYPE)
1750 {
1751 if (!COMPLETE_TYPE_P (type))
1752 {
1753 c_incomplete_type_error (NULL_TREE, type);
1754 return error_mark_node;
1755 }
1756
1757 field = lookup_field (datum, component);
1758
1759 if (!field)
1760 {
1761 error ("%qT has no member named %qE", type, component);
1762 return error_mark_node;
1763 }
1764
1765 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1766 This might be better solved in future the way the C++ front
1767 end does it - by giving the anonymous entities each a
1768 separate name and type, and then have build_component_ref
1769 recursively call itself. We can't do that here. */
1770 do
1771 {
1772 tree subdatum = TREE_VALUE (field);
1773
1774 if (TREE_TYPE (subdatum) == error_mark_node)
1775 return error_mark_node;
1776
1777 ref = build3 (COMPONENT_REF, TREE_TYPE (subdatum), datum, subdatum,
1778 NULL_TREE);
1779 if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1780 TREE_READONLY (ref) = 1;
1781 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1782 TREE_THIS_VOLATILE (ref) = 1;
1783
1784 if (TREE_DEPRECATED (subdatum))
1785 warn_deprecated_use (subdatum);
1786
1787 datum = ref;
1788
1789 field = TREE_CHAIN (field);
1790 }
1791 while (field);
1792
1793 return ref;
1794 }
1795 else if (code != ERROR_MARK)
1796 error ("request for member %qE in something not a structure or union",
1797 component);
1798
1799 return error_mark_node;
1800 }
1801 \f
1802 /* Given an expression PTR for a pointer, return an expression
1803 for the value pointed to.
1804 ERRORSTRING is the name of the operator to appear in error messages. */
1805
1806 tree
1807 build_indirect_ref (tree ptr, const char *errorstring)
1808 {
1809 tree pointer = default_conversion (ptr);
1810 tree type = TREE_TYPE (pointer);
1811
1812 if (TREE_CODE (type) == POINTER_TYPE)
1813 {
1814 if (TREE_CODE (pointer) == ADDR_EXPR
1815 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1816 == TREE_TYPE (type)))
1817 return TREE_OPERAND (pointer, 0);
1818 else
1819 {
1820 tree t = TREE_TYPE (type);
1821 tree ref;
1822
1823 ref = build1 (INDIRECT_REF, t, pointer);
1824
1825 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1826 {
1827 error ("dereferencing pointer to incomplete type");
1828 return error_mark_node;
1829 }
1830 if (VOID_TYPE_P (t) && skip_evaluation == 0)
1831 warning (0, "dereferencing %<void *%> pointer");
1832
1833 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1834 so that we get the proper error message if the result is used
1835 to assign to. Also, &* is supposed to be a no-op.
1836 And ANSI C seems to specify that the type of the result
1837 should be the const type. */
1838 /* A de-reference of a pointer to const is not a const. It is valid
1839 to change it via some other pointer. */
1840 TREE_READONLY (ref) = TYPE_READONLY (t);
1841 TREE_SIDE_EFFECTS (ref)
1842 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1843 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1844 return ref;
1845 }
1846 }
1847 else if (TREE_CODE (pointer) != ERROR_MARK)
1848 error ("invalid type argument of %qs", errorstring);
1849 return error_mark_node;
1850 }
1851
1852 /* This handles expressions of the form "a[i]", which denotes
1853 an array reference.
1854
1855 This is logically equivalent in C to *(a+i), but we may do it differently.
1856 If A is a variable or a member, we generate a primitive ARRAY_REF.
1857 This avoids forcing the array out of registers, and can work on
1858 arrays that are not lvalues (for example, members of structures returned
1859 by functions). */
1860
1861 tree
1862 build_array_ref (tree array, tree index)
1863 {
1864 bool swapped = false;
1865 if (TREE_TYPE (array) == error_mark_node
1866 || TREE_TYPE (index) == error_mark_node)
1867 return error_mark_node;
1868
1869 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1870 && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1871 {
1872 tree temp;
1873 if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1874 && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1875 {
1876 error ("subscripted value is neither array nor pointer");
1877 return error_mark_node;
1878 }
1879 temp = array;
1880 array = index;
1881 index = temp;
1882 swapped = true;
1883 }
1884
1885 if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1886 {
1887 error ("array subscript is not an integer");
1888 return error_mark_node;
1889 }
1890
1891 if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1892 {
1893 error ("subscripted value is pointer to function");
1894 return error_mark_node;
1895 }
1896
1897 /* ??? Existing practice has been to warn only when the char
1898 index is syntactically the index, not for char[array]. */
1899 if (!swapped)
1900 warn_array_subscript_with_type_char (index);
1901
1902 /* Apply default promotions *after* noticing character types. */
1903 index = default_conversion (index);
1904
1905 gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1906
1907 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1908 {
1909 tree rval, type;
1910
1911 /* An array that is indexed by a non-constant
1912 cannot be stored in a register; we must be able to do
1913 address arithmetic on its address.
1914 Likewise an array of elements of variable size. */
1915 if (TREE_CODE (index) != INTEGER_CST
1916 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1917 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1918 {
1919 if (!c_mark_addressable (array))
1920 return error_mark_node;
1921 }
1922 /* An array that is indexed by a constant value which is not within
1923 the array bounds cannot be stored in a register either; because we
1924 would get a crash in store_bit_field/extract_bit_field when trying
1925 to access a non-existent part of the register. */
1926 if (TREE_CODE (index) == INTEGER_CST
1927 && TYPE_DOMAIN (TREE_TYPE (array))
1928 && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
1929 {
1930 if (!c_mark_addressable (array))
1931 return error_mark_node;
1932 }
1933
1934 if (pedantic)
1935 {
1936 tree foo = array;
1937 while (TREE_CODE (foo) == COMPONENT_REF)
1938 foo = TREE_OPERAND (foo, 0);
1939 if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
1940 pedwarn ("ISO C forbids subscripting %<register%> array");
1941 else if (!flag_isoc99 && !lvalue_p (foo))
1942 pedwarn ("ISO C90 forbids subscripting non-lvalue array");
1943 }
1944
1945 type = TREE_TYPE (TREE_TYPE (array));
1946 if (TREE_CODE (type) != ARRAY_TYPE)
1947 type = TYPE_MAIN_VARIANT (type);
1948 rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
1949 /* Array ref is const/volatile if the array elements are
1950 or if the array is. */
1951 TREE_READONLY (rval)
1952 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
1953 | TREE_READONLY (array));
1954 TREE_SIDE_EFFECTS (rval)
1955 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1956 | TREE_SIDE_EFFECTS (array));
1957 TREE_THIS_VOLATILE (rval)
1958 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1959 /* This was added by rms on 16 Nov 91.
1960 It fixes vol struct foo *a; a->elts[1]
1961 in an inline function.
1962 Hope it doesn't break something else. */
1963 | TREE_THIS_VOLATILE (array));
1964 return require_complete_type (fold (rval));
1965 }
1966 else
1967 {
1968 tree ar = default_conversion (array);
1969
1970 if (ar == error_mark_node)
1971 return ar;
1972
1973 gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
1974 gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
1975
1976 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
1977 "array indexing");
1978 }
1979 }
1980 \f
1981 /* Build an external reference to identifier ID. FUN indicates
1982 whether this will be used for a function call. LOC is the source
1983 location of the identifier. */
1984 tree
1985 build_external_ref (tree id, int fun, location_t loc)
1986 {
1987 tree ref;
1988 tree decl = lookup_name (id);
1989
1990 /* In Objective-C, an instance variable (ivar) may be preferred to
1991 whatever lookup_name() found. */
1992 decl = objc_lookup_ivar (decl, id);
1993
1994 if (decl && decl != error_mark_node)
1995 ref = decl;
1996 else if (fun)
1997 /* Implicit function declaration. */
1998 ref = implicitly_declare (id);
1999 else if (decl == error_mark_node)
2000 /* Don't complain about something that's already been
2001 complained about. */
2002 return error_mark_node;
2003 else
2004 {
2005 undeclared_variable (id, loc);
2006 return error_mark_node;
2007 }
2008
2009 if (TREE_TYPE (ref) == error_mark_node)
2010 return error_mark_node;
2011
2012 if (TREE_DEPRECATED (ref))
2013 warn_deprecated_use (ref);
2014
2015 if (!skip_evaluation)
2016 assemble_external (ref);
2017 TREE_USED (ref) = 1;
2018
2019 if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2020 {
2021 if (!in_sizeof && !in_typeof)
2022 C_DECL_USED (ref) = 1;
2023 else if (DECL_INITIAL (ref) == 0
2024 && DECL_EXTERNAL (ref)
2025 && !TREE_PUBLIC (ref))
2026 record_maybe_used_decl (ref);
2027 }
2028
2029 if (TREE_CODE (ref) == CONST_DECL)
2030 {
2031 ref = DECL_INITIAL (ref);
2032 TREE_CONSTANT (ref) = 1;
2033 TREE_INVARIANT (ref) = 1;
2034 }
2035 else if (current_function_decl != 0
2036 && !DECL_FILE_SCOPE_P (current_function_decl)
2037 && (TREE_CODE (ref) == VAR_DECL
2038 || TREE_CODE (ref) == PARM_DECL
2039 || TREE_CODE (ref) == FUNCTION_DECL))
2040 {
2041 tree context = decl_function_context (ref);
2042
2043 if (context != 0 && context != current_function_decl)
2044 DECL_NONLOCAL (ref) = 1;
2045 }
2046
2047 return ref;
2048 }
2049
2050 /* Record details of decls possibly used inside sizeof or typeof. */
2051 struct maybe_used_decl
2052 {
2053 /* The decl. */
2054 tree decl;
2055 /* The level seen at (in_sizeof + in_typeof). */
2056 int level;
2057 /* The next one at this level or above, or NULL. */
2058 struct maybe_used_decl *next;
2059 };
2060
2061 static struct maybe_used_decl *maybe_used_decls;
2062
2063 /* Record that DECL, an undefined static function reference seen
2064 inside sizeof or typeof, might be used if the operand of sizeof is
2065 a VLA type or the operand of typeof is a variably modified
2066 type. */
2067
2068 static void
2069 record_maybe_used_decl (tree decl)
2070 {
2071 struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2072 t->decl = decl;
2073 t->level = in_sizeof + in_typeof;
2074 t->next = maybe_used_decls;
2075 maybe_used_decls = t;
2076 }
2077
2078 /* Pop the stack of decls possibly used inside sizeof or typeof. If
2079 USED is false, just discard them. If it is true, mark them used
2080 (if no longer inside sizeof or typeof) or move them to the next
2081 level up (if still inside sizeof or typeof). */
2082
2083 void
2084 pop_maybe_used (bool used)
2085 {
2086 struct maybe_used_decl *p = maybe_used_decls;
2087 int cur_level = in_sizeof + in_typeof;
2088 while (p && p->level > cur_level)
2089 {
2090 if (used)
2091 {
2092 if (cur_level == 0)
2093 C_DECL_USED (p->decl) = 1;
2094 else
2095 p->level = cur_level;
2096 }
2097 p = p->next;
2098 }
2099 if (!used || cur_level == 0)
2100 maybe_used_decls = p;
2101 }
2102
2103 /* Return the result of sizeof applied to EXPR. */
2104
2105 struct c_expr
2106 c_expr_sizeof_expr (struct c_expr expr)
2107 {
2108 struct c_expr ret;
2109 if (expr.value == error_mark_node)
2110 {
2111 ret.value = error_mark_node;
2112 ret.original_code = ERROR_MARK;
2113 pop_maybe_used (false);
2114 }
2115 else
2116 {
2117 ret.value = c_sizeof (TREE_TYPE (expr.value));
2118 ret.original_code = ERROR_MARK;
2119 pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2120 }
2121 return ret;
2122 }
2123
2124 /* Return the result of sizeof applied to T, a structure for the type
2125 name passed to sizeof (rather than the type itself). */
2126
2127 struct c_expr
2128 c_expr_sizeof_type (struct c_type_name *t)
2129 {
2130 tree type;
2131 struct c_expr ret;
2132 type = groktypename (t);
2133 ret.value = c_sizeof (type);
2134 ret.original_code = ERROR_MARK;
2135 pop_maybe_used (C_TYPE_VARIABLE_SIZE (type));
2136 return ret;
2137 }
2138
2139 /* Build a function call to function FUNCTION with parameters PARAMS.
2140 PARAMS is a list--a chain of TREE_LIST nodes--in which the
2141 TREE_VALUE of each node is a parameter-expression.
2142 FUNCTION's data type may be a function type or a pointer-to-function. */
2143
2144 tree
2145 build_function_call (tree function, tree params)
2146 {
2147 tree fntype, fundecl = 0;
2148 tree coerced_params;
2149 tree name = NULL_TREE, result;
2150 tree tem;
2151
2152 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
2153 STRIP_TYPE_NOPS (function);
2154
2155 /* Convert anything with function type to a pointer-to-function. */
2156 if (TREE_CODE (function) == FUNCTION_DECL)
2157 {
2158 /* Implement type-directed function overloading for builtins.
2159 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2160 handle all the type checking. The result is a complete expression
2161 that implements this function call. */
2162 tem = resolve_overloaded_builtin (function, params);
2163 if (tem)
2164 return tem;
2165
2166 name = DECL_NAME (function);
2167 fundecl = function;
2168 }
2169 if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2170 function = function_to_pointer_conversion (function);
2171
2172 /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2173 expressions, like those used for ObjC messenger dispatches. */
2174 function = objc_rewrite_function_call (function, params);
2175
2176 fntype = TREE_TYPE (function);
2177
2178 if (TREE_CODE (fntype) == ERROR_MARK)
2179 return error_mark_node;
2180
2181 if (!(TREE_CODE (fntype) == POINTER_TYPE
2182 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2183 {
2184 error ("called object %qE is not a function", function);
2185 return error_mark_node;
2186 }
2187
2188 if (fundecl && TREE_THIS_VOLATILE (fundecl))
2189 current_function_returns_abnormally = 1;
2190
2191 /* fntype now gets the type of function pointed to. */
2192 fntype = TREE_TYPE (fntype);
2193
2194 /* Check that the function is called through a compatible prototype.
2195 If it is not, replace the call by a trap, wrapped up in a compound
2196 expression if necessary. This has the nice side-effect to prevent
2197 the tree-inliner from generating invalid assignment trees which may
2198 blow up in the RTL expander later. */
2199 if ((TREE_CODE (function) == NOP_EXPR
2200 || TREE_CODE (function) == CONVERT_EXPR)
2201 && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2202 && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2203 && !comptypes (fntype, TREE_TYPE (tem)))
2204 {
2205 tree return_type = TREE_TYPE (fntype);
2206 tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2207 NULL_TREE);
2208
2209 /* This situation leads to run-time undefined behavior. We can't,
2210 therefore, simply error unless we can prove that all possible
2211 executions of the program must execute the code. */
2212 warning (0, "function called through a non-compatible type");
2213
2214 /* We can, however, treat "undefined" any way we please.
2215 Call abort to encourage the user to fix the program. */
2216 inform ("if this code is reached, the program will abort");
2217
2218 if (VOID_TYPE_P (return_type))
2219 return trap;
2220 else
2221 {
2222 tree rhs;
2223
2224 if (AGGREGATE_TYPE_P (return_type))
2225 rhs = build_compound_literal (return_type,
2226 build_constructor (return_type, 0));
2227 else
2228 rhs = fold_convert (return_type, integer_zero_node);
2229
2230 return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2231 }
2232 }
2233
2234 /* Convert the parameters to the types declared in the
2235 function prototype, or apply default promotions. */
2236
2237 coerced_params
2238 = convert_arguments (TYPE_ARG_TYPES (fntype), params, function, fundecl);
2239
2240 if (coerced_params == error_mark_node)
2241 return error_mark_node;
2242
2243 /* Check that the arguments to the function are valid. */
2244
2245 check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params,
2246 TYPE_ARG_TYPES (fntype));
2247
2248 if (require_constant_value)
2249 {
2250 result = fold_build3_initializer (CALL_EXPR, TREE_TYPE (fntype),
2251 function, coerced_params, NULL_TREE);
2252
2253 if (TREE_CONSTANT (result)
2254 && (name == NULL_TREE
2255 || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2256 pedwarn_init ("initializer element is not constant");
2257 }
2258 else
2259 result = fold_build3 (CALL_EXPR, TREE_TYPE (fntype),
2260 function, coerced_params, NULL_TREE);
2261
2262 if (VOID_TYPE_P (TREE_TYPE (result)))
2263 return result;
2264 return require_complete_type (result);
2265 }
2266 \f
2267 /* Convert the argument expressions in the list VALUES
2268 to the types in the list TYPELIST. The result is a list of converted
2269 argument expressions, unless there are too few arguments in which
2270 case it is error_mark_node.
2271
2272 If TYPELIST is exhausted, or when an element has NULL as its type,
2273 perform the default conversions.
2274
2275 PARMLIST is the chain of parm decls for the function being called.
2276 It may be 0, if that info is not available.
2277 It is used only for generating error messages.
2278
2279 FUNCTION is a tree for the called function. It is used only for
2280 error messages, where it is formatted with %qE.
2281
2282 This is also where warnings about wrong number of args are generated.
2283
2284 Both VALUES and the returned value are chains of TREE_LIST nodes
2285 with the elements of the list in the TREE_VALUE slots of those nodes. */
2286
2287 static tree
2288 convert_arguments (tree typelist, tree values, tree function, tree fundecl)
2289 {
2290 tree typetail, valtail;
2291 tree result = NULL;
2292 int parmnum;
2293 tree selector;
2294
2295 /* Change pointer to function to the function itself for
2296 diagnostics. */
2297 if (TREE_CODE (function) == ADDR_EXPR
2298 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2299 function = TREE_OPERAND (function, 0);
2300
2301 /* Handle an ObjC selector specially for diagnostics. */
2302 selector = objc_message_selector ();
2303
2304 /* Scan the given expressions and types, producing individual
2305 converted arguments and pushing them on RESULT in reverse order. */
2306
2307 for (valtail = values, typetail = typelist, parmnum = 0;
2308 valtail;
2309 valtail = TREE_CHAIN (valtail), parmnum++)
2310 {
2311 tree type = typetail ? TREE_VALUE (typetail) : 0;
2312 tree val = TREE_VALUE (valtail);
2313 tree rname = function;
2314 int argnum = parmnum + 1;
2315 const char *invalid_func_diag;
2316
2317 if (type == void_type_node)
2318 {
2319 error ("too many arguments to function %qE", function);
2320 break;
2321 }
2322
2323 if (selector && argnum > 2)
2324 {
2325 rname = selector;
2326 argnum -= 2;
2327 }
2328
2329 STRIP_TYPE_NOPS (val);
2330
2331 val = require_complete_type (val);
2332
2333 if (type != 0)
2334 {
2335 /* Formal parm type is specified by a function prototype. */
2336 tree parmval;
2337
2338 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2339 {
2340 error ("type of formal parameter %d is incomplete", parmnum + 1);
2341 parmval = val;
2342 }
2343 else
2344 {
2345 /* Optionally warn about conversions that
2346 differ from the default conversions. */
2347 if (warn_conversion || warn_traditional)
2348 {
2349 unsigned int formal_prec = TYPE_PRECISION (type);
2350
2351 if (INTEGRAL_TYPE_P (type)
2352 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2353 warning (0, "passing argument %d of %qE as integer "
2354 "rather than floating due to prototype",
2355 argnum, rname);
2356 if (INTEGRAL_TYPE_P (type)
2357 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2358 warning (0, "passing argument %d of %qE as integer "
2359 "rather than complex due to prototype",
2360 argnum, rname);
2361 else if (TREE_CODE (type) == COMPLEX_TYPE
2362 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2363 warning (0, "passing argument %d of %qE as complex "
2364 "rather than floating due to prototype",
2365 argnum, rname);
2366 else if (TREE_CODE (type) == REAL_TYPE
2367 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2368 warning (0, "passing argument %d of %qE as floating "
2369 "rather than integer due to prototype",
2370 argnum, rname);
2371 else if (TREE_CODE (type) == COMPLEX_TYPE
2372 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2373 warning (0, "passing argument %d of %qE as complex "
2374 "rather than integer due to prototype",
2375 argnum, rname);
2376 else if (TREE_CODE (type) == REAL_TYPE
2377 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2378 warning (0, "passing argument %d of %qE as floating "
2379 "rather than complex due to prototype",
2380 argnum, rname);
2381 /* ??? At some point, messages should be written about
2382 conversions between complex types, but that's too messy
2383 to do now. */
2384 else if (TREE_CODE (type) == REAL_TYPE
2385 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2386 {
2387 /* Warn if any argument is passed as `float',
2388 since without a prototype it would be `double'. */
2389 if (formal_prec == TYPE_PRECISION (float_type_node)
2390 && type != dfloat32_type_node)
2391 warning (0, "passing argument %d of %qE as %<float%> "
2392 "rather than %<double%> due to prototype",
2393 argnum, rname);
2394
2395 /* Warn if mismatch between argument and prototype
2396 for decimal float types. Warn of conversions with
2397 binary float types and of precision narrowing due to
2398 prototype. */
2399 else if (type != TREE_TYPE (val)
2400 && (type == dfloat32_type_node
2401 || type == dfloat64_type_node
2402 || type == dfloat128_type_node
2403 || TREE_TYPE (val) == dfloat32_type_node
2404 || TREE_TYPE (val) == dfloat64_type_node
2405 || TREE_TYPE (val) == dfloat128_type_node)
2406 && (formal_prec
2407 <= TYPE_PRECISION (TREE_TYPE (val))
2408 || (type == dfloat128_type_node
2409 && (TREE_TYPE (val)
2410 != dfloat64_type_node
2411 && (TREE_TYPE (val)
2412 != dfloat32_type_node)))
2413 || (type == dfloat64_type_node
2414 && (TREE_TYPE (val)
2415 != dfloat32_type_node))))
2416 warning (0, "passing argument %d of %qE as %qT "
2417 "rather than %qT due to prototype",
2418 argnum, rname, type, TREE_TYPE (val));
2419
2420 }
2421 /* Detect integer changing in width or signedness.
2422 These warnings are only activated with
2423 -Wconversion, not with -Wtraditional. */
2424 else if (warn_conversion && INTEGRAL_TYPE_P (type)
2425 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2426 {
2427 tree would_have_been = default_conversion (val);
2428 tree type1 = TREE_TYPE (would_have_been);
2429
2430 if (TREE_CODE (type) == ENUMERAL_TYPE
2431 && (TYPE_MAIN_VARIANT (type)
2432 == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2433 /* No warning if function asks for enum
2434 and the actual arg is that enum type. */
2435 ;
2436 else if (formal_prec != TYPE_PRECISION (type1))
2437 warning (OPT_Wconversion, "passing argument %d of %qE "
2438 "with different width due to prototype",
2439 argnum, rname);
2440 else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2441 ;
2442 /* Don't complain if the formal parameter type
2443 is an enum, because we can't tell now whether
2444 the value was an enum--even the same enum. */
2445 else if (TREE_CODE (type) == ENUMERAL_TYPE)
2446 ;
2447 else if (TREE_CODE (val) == INTEGER_CST
2448 && int_fits_type_p (val, type))
2449 /* Change in signedness doesn't matter
2450 if a constant value is unaffected. */
2451 ;
2452 /* If the value is extended from a narrower
2453 unsigned type, it doesn't matter whether we
2454 pass it as signed or unsigned; the value
2455 certainly is the same either way. */
2456 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2457 && TYPE_UNSIGNED (TREE_TYPE (val)))
2458 ;
2459 else if (TYPE_UNSIGNED (type))
2460 warning (OPT_Wconversion, "passing argument %d of %qE "
2461 "as unsigned due to prototype",
2462 argnum, rname);
2463 else
2464 warning (OPT_Wconversion, "passing argument %d of %qE "
2465 "as signed due to prototype", argnum, rname);
2466 }
2467 }
2468
2469 parmval = convert_for_assignment (type, val, ic_argpass,
2470 fundecl, function,
2471 parmnum + 1);
2472
2473 if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2474 && INTEGRAL_TYPE_P (type)
2475 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2476 parmval = default_conversion (parmval);
2477 }
2478 result = tree_cons (NULL_TREE, parmval, result);
2479 }
2480 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2481 && (TYPE_PRECISION (TREE_TYPE (val))
2482 < TYPE_PRECISION (double_type_node))
2483 && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2484 /* Convert `float' to `double'. */
2485 result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
2486 else if ((invalid_func_diag =
2487 targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2488 {
2489 error (invalid_func_diag);
2490 return error_mark_node;
2491 }
2492 else
2493 /* Convert `short' and `char' to full-size `int'. */
2494 result = tree_cons (NULL_TREE, default_conversion (val), result);
2495
2496 if (typetail)
2497 typetail = TREE_CHAIN (typetail);
2498 }
2499
2500 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2501 {
2502 error ("too few arguments to function %qE", function);
2503 return error_mark_node;
2504 }
2505
2506 return nreverse (result);
2507 }
2508 \f
2509 /* This is the entry point used by the parser to build unary operators
2510 in the input. CODE, a tree_code, specifies the unary operator, and
2511 ARG is the operand. For unary plus, the C parser currently uses
2512 CONVERT_EXPR for code. */
2513
2514 struct c_expr
2515 parser_build_unary_op (enum tree_code code, struct c_expr arg)
2516 {
2517 struct c_expr result;
2518
2519 result.original_code = ERROR_MARK;
2520 result.value = build_unary_op (code, arg.value, 0);
2521 overflow_warning (result.value);
2522 return result;
2523 }
2524
2525 /* This is the entry point used by the parser to build binary operators
2526 in the input. CODE, a tree_code, specifies the binary operator, and
2527 ARG1 and ARG2 are the operands. In addition to constructing the
2528 expression, we check for operands that were written with other binary
2529 operators in a way that is likely to confuse the user. */
2530
2531 struct c_expr
2532 parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2533 struct c_expr arg2)
2534 {
2535 struct c_expr result;
2536
2537 enum tree_code code1 = arg1.original_code;
2538 enum tree_code code2 = arg2.original_code;
2539
2540 result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2541 result.original_code = code;
2542
2543 if (TREE_CODE (result.value) == ERROR_MARK)
2544 return result;
2545
2546 /* Check for cases such as x+y<<z which users are likely
2547 to misinterpret. */
2548 if (warn_parentheses)
2549 {
2550 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
2551 {
2552 if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2553 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2554 warning (OPT_Wparentheses,
2555 "suggest parentheses around + or - inside shift");
2556 }
2557
2558 if (code == TRUTH_ORIF_EXPR)
2559 {
2560 if (code1 == TRUTH_ANDIF_EXPR
2561 || code2 == TRUTH_ANDIF_EXPR)
2562 warning (OPT_Wparentheses,
2563 "suggest parentheses around && within ||");
2564 }
2565
2566 if (code == BIT_IOR_EXPR)
2567 {
2568 if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
2569 || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2570 || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
2571 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2572 warning (OPT_Wparentheses,
2573 "suggest parentheses around arithmetic in operand of |");
2574 /* Check cases like x|y==z */
2575 if (TREE_CODE_CLASS (code1) == tcc_comparison
2576 || TREE_CODE_CLASS (code2) == tcc_comparison)
2577 warning (OPT_Wparentheses,
2578 "suggest parentheses around comparison in operand of |");
2579 }
2580
2581 if (code == BIT_XOR_EXPR)
2582 {
2583 if (code1 == BIT_AND_EXPR
2584 || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2585 || code2 == BIT_AND_EXPR
2586 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2587 warning (OPT_Wparentheses,
2588 "suggest parentheses around arithmetic in operand of ^");
2589 /* Check cases like x^y==z */
2590 if (TREE_CODE_CLASS (code1) == tcc_comparison
2591 || TREE_CODE_CLASS (code2) == tcc_comparison)
2592 warning (OPT_Wparentheses,
2593 "suggest parentheses around comparison in operand of ^");
2594 }
2595
2596 if (code == BIT_AND_EXPR)
2597 {
2598 if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2599 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2600 warning (OPT_Wparentheses,
2601 "suggest parentheses around + or - in operand of &");
2602 /* Check cases like x&y==z */
2603 if (TREE_CODE_CLASS (code1) == tcc_comparison
2604 || TREE_CODE_CLASS (code2) == tcc_comparison)
2605 warning (OPT_Wparentheses,
2606 "suggest parentheses around comparison in operand of &");
2607 }
2608 /* Similarly, check for cases like 1<=i<=10 that are probably errors. */
2609 if (TREE_CODE_CLASS (code) == tcc_comparison
2610 && (TREE_CODE_CLASS (code1) == tcc_comparison
2611 || TREE_CODE_CLASS (code2) == tcc_comparison))
2612 warning (OPT_Wparentheses, "comparisons like X<=Y<=Z do not "
2613 "have their mathematical meaning");
2614
2615 }
2616
2617 /* Warn about comparisons against string literals, with the exception
2618 of testing for equality or inequality of a string literal with NULL. */
2619 if (code == EQ_EXPR || code == NE_EXPR)
2620 {
2621 if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2622 || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2623 warning (OPT_Wstring_literal_comparison,
2624 "comparison with string literal");
2625 }
2626 else if (TREE_CODE_CLASS (code) == tcc_comparison
2627 && (code1 == STRING_CST || code2 == STRING_CST))
2628 warning (OPT_Wstring_literal_comparison,
2629 "comparison with string literal");
2630
2631 unsigned_conversion_warning (result.value, arg1.value);
2632 unsigned_conversion_warning (result.value, arg2.value);
2633 overflow_warning (result.value);
2634
2635 return result;
2636 }
2637 \f
2638 /* Return a tree for the difference of pointers OP0 and OP1.
2639 The resulting tree has type int. */
2640
2641 static tree
2642 pointer_diff (tree op0, tree op1)
2643 {
2644 tree restype = ptrdiff_type_node;
2645
2646 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2647 tree con0, con1, lit0, lit1;
2648 tree orig_op1 = op1;
2649
2650 if (pedantic || warn_pointer_arith)
2651 {
2652 if (TREE_CODE (target_type) == VOID_TYPE)
2653 pedwarn ("pointer of type %<void *%> used in subtraction");
2654 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2655 pedwarn ("pointer to a function used in subtraction");
2656 }
2657
2658 /* If the conversion to ptrdiff_type does anything like widening or
2659 converting a partial to an integral mode, we get a convert_expression
2660 that is in the way to do any simplifications.
2661 (fold-const.c doesn't know that the extra bits won't be needed.
2662 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2663 different mode in place.)
2664 So first try to find a common term here 'by hand'; we want to cover
2665 at least the cases that occur in legal static initializers. */
2666 if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2667 && (TYPE_PRECISION (TREE_TYPE (op0))
2668 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2669 con0 = TREE_OPERAND (op0, 0);
2670 else
2671 con0 = op0;
2672 if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2673 && (TYPE_PRECISION (TREE_TYPE (op1))
2674 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2675 con1 = TREE_OPERAND (op1, 0);
2676 else
2677 con1 = op1;
2678
2679 if (TREE_CODE (con0) == PLUS_EXPR)
2680 {
2681 lit0 = TREE_OPERAND (con0, 1);
2682 con0 = TREE_OPERAND (con0, 0);
2683 }
2684 else
2685 lit0 = integer_zero_node;
2686
2687 if (TREE_CODE (con1) == PLUS_EXPR)
2688 {
2689 lit1 = TREE_OPERAND (con1, 1);
2690 con1 = TREE_OPERAND (con1, 0);
2691 }
2692 else
2693 lit1 = integer_zero_node;
2694
2695 if (operand_equal_p (con0, con1, 0))
2696 {
2697 op0 = lit0;
2698 op1 = lit1;
2699 }
2700
2701
2702 /* First do the subtraction as integers;
2703 then drop through to build the divide operator.
2704 Do not do default conversions on the minus operator
2705 in case restype is a short type. */
2706
2707 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2708 convert (restype, op1), 0);
2709 /* This generates an error if op1 is pointer to incomplete type. */
2710 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2711 error ("arithmetic on pointer to an incomplete type");
2712
2713 /* This generates an error if op0 is pointer to incomplete type. */
2714 op1 = c_size_in_bytes (target_type);
2715
2716 /* Divide by the size, in easiest possible way. */
2717 return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2718 }
2719 \f
2720 /* Construct and perhaps optimize a tree representation
2721 for a unary operation. CODE, a tree_code, specifies the operation
2722 and XARG is the operand.
2723 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2724 the default promotions (such as from short to int).
2725 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2726 allows non-lvalues; this is only used to handle conversion of non-lvalue
2727 arrays to pointers in C99. */
2728
2729 tree
2730 build_unary_op (enum tree_code code, tree xarg, int flag)
2731 {
2732 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2733 tree arg = xarg;
2734 tree argtype = 0;
2735 enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2736 tree val;
2737 int noconvert = flag;
2738 const char *invalid_op_diag;
2739
2740 if (typecode == ERROR_MARK)
2741 return error_mark_node;
2742 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2743 typecode = INTEGER_TYPE;
2744
2745 if ((invalid_op_diag
2746 = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2747 {
2748 error (invalid_op_diag);
2749 return error_mark_node;
2750 }
2751
2752 switch (code)
2753 {
2754 case CONVERT_EXPR:
2755 /* This is used for unary plus, because a CONVERT_EXPR
2756 is enough to prevent anybody from looking inside for
2757 associativity, but won't generate any code. */
2758 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2759 || typecode == COMPLEX_TYPE
2760 || typecode == VECTOR_TYPE))
2761 {
2762 error ("wrong type argument to unary plus");
2763 return error_mark_node;
2764 }
2765 else if (!noconvert)
2766 arg = default_conversion (arg);
2767 arg = non_lvalue (arg);
2768 break;
2769
2770 case NEGATE_EXPR:
2771 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2772 || typecode == COMPLEX_TYPE
2773 || typecode == VECTOR_TYPE))
2774 {
2775 error ("wrong type argument to unary minus");
2776 return error_mark_node;
2777 }
2778 else if (!noconvert)
2779 arg = default_conversion (arg);
2780 break;
2781
2782 case BIT_NOT_EXPR:
2783 if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2784 {
2785 if (!noconvert)
2786 arg = default_conversion (arg);
2787 }
2788 else if (typecode == COMPLEX_TYPE)
2789 {
2790 code = CONJ_EXPR;
2791 if (pedantic)
2792 pedwarn ("ISO C does not support %<~%> for complex conjugation");
2793 if (!noconvert)
2794 arg = default_conversion (arg);
2795 }
2796 else
2797 {
2798 error ("wrong type argument to bit-complement");
2799 return error_mark_node;
2800 }
2801 break;
2802
2803 case ABS_EXPR:
2804 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2805 {
2806 error ("wrong type argument to abs");
2807 return error_mark_node;
2808 }
2809 else if (!noconvert)
2810 arg = default_conversion (arg);
2811 break;
2812
2813 case CONJ_EXPR:
2814 /* Conjugating a real value is a no-op, but allow it anyway. */
2815 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2816 || typecode == COMPLEX_TYPE))
2817 {
2818 error ("wrong type argument to conjugation");
2819 return error_mark_node;
2820 }
2821 else if (!noconvert)
2822 arg = default_conversion (arg);
2823 break;
2824
2825 case TRUTH_NOT_EXPR:
2826 if (typecode != INTEGER_TYPE
2827 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2828 && typecode != COMPLEX_TYPE)
2829 {
2830 error ("wrong type argument to unary exclamation mark");
2831 return error_mark_node;
2832 }
2833 arg = c_objc_common_truthvalue_conversion (arg);
2834 return invert_truthvalue (arg);
2835
2836 case REALPART_EXPR:
2837 if (TREE_CODE (arg) == COMPLEX_CST)
2838 return TREE_REALPART (arg);
2839 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2840 return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2841 else
2842 return arg;
2843
2844 case IMAGPART_EXPR:
2845 if (TREE_CODE (arg) == COMPLEX_CST)
2846 return TREE_IMAGPART (arg);
2847 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2848 return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2849 else
2850 return convert (TREE_TYPE (arg), integer_zero_node);
2851
2852 case PREINCREMENT_EXPR:
2853 case POSTINCREMENT_EXPR:
2854 case PREDECREMENT_EXPR:
2855 case POSTDECREMENT_EXPR:
2856
2857 /* Increment or decrement the real part of the value,
2858 and don't change the imaginary part. */
2859 if (typecode == COMPLEX_TYPE)
2860 {
2861 tree real, imag;
2862
2863 if (pedantic)
2864 pedwarn ("ISO C does not support %<++%> and %<--%>"
2865 " on complex types");
2866
2867 arg = stabilize_reference (arg);
2868 real = build_unary_op (REALPART_EXPR, arg, 1);
2869 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2870 return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2871 build_unary_op (code, real, 1), imag);
2872 }
2873
2874 /* Report invalid types. */
2875
2876 if (typecode != POINTER_TYPE
2877 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2878 {
2879 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2880 error ("wrong type argument to increment");
2881 else
2882 error ("wrong type argument to decrement");
2883
2884 return error_mark_node;
2885 }
2886
2887 {
2888 tree inc;
2889 tree result_type = TREE_TYPE (arg);
2890
2891 arg = get_unwidened (arg, 0);
2892 argtype = TREE_TYPE (arg);
2893
2894 /* Compute the increment. */
2895
2896 if (typecode == POINTER_TYPE)
2897 {
2898 /* If pointer target is an undefined struct,
2899 we just cannot know how to do the arithmetic. */
2900 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2901 {
2902 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2903 error ("increment of pointer to unknown structure");
2904 else
2905 error ("decrement of pointer to unknown structure");
2906 }
2907 else if ((pedantic || warn_pointer_arith)
2908 && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2909 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2910 {
2911 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2912 pedwarn ("wrong type argument to increment");
2913 else
2914 pedwarn ("wrong type argument to decrement");
2915 }
2916
2917 inc = c_size_in_bytes (TREE_TYPE (result_type));
2918 }
2919 else
2920 inc = integer_one_node;
2921
2922 inc = convert (argtype, inc);
2923
2924 /* Complain about anything else that is not a true lvalue. */
2925 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2926 || code == POSTINCREMENT_EXPR)
2927 ? lv_increment
2928 : lv_decrement)))
2929 return error_mark_node;
2930
2931 /* Report a read-only lvalue. */
2932 if (TREE_READONLY (arg))
2933 {
2934 readonly_error (arg,
2935 ((code == PREINCREMENT_EXPR
2936 || code == POSTINCREMENT_EXPR)
2937 ? lv_increment : lv_decrement));
2938 return error_mark_node;
2939 }
2940
2941 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2942 val = boolean_increment (code, arg);
2943 else
2944 val = build2 (code, TREE_TYPE (arg), arg, inc);
2945 TREE_SIDE_EFFECTS (val) = 1;
2946 val = convert (result_type, val);
2947 if (TREE_CODE (val) != code)
2948 TREE_NO_WARNING (val) = 1;
2949 return val;
2950 }
2951
2952 case ADDR_EXPR:
2953 /* Note that this operation never does default_conversion. */
2954
2955 /* Let &* cancel out to simplify resulting code. */
2956 if (TREE_CODE (arg) == INDIRECT_REF)
2957 {
2958 /* Don't let this be an lvalue. */
2959 if (lvalue_p (TREE_OPERAND (arg, 0)))
2960 return non_lvalue (TREE_OPERAND (arg, 0));
2961 return TREE_OPERAND (arg, 0);
2962 }
2963
2964 /* For &x[y], return x+y */
2965 if (TREE_CODE (arg) == ARRAY_REF)
2966 {
2967 tree op0 = TREE_OPERAND (arg, 0);
2968 if (!c_mark_addressable (op0))
2969 return error_mark_node;
2970 return build_binary_op (PLUS_EXPR,
2971 (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
2972 ? array_to_pointer_conversion (op0)
2973 : op0),
2974 TREE_OPERAND (arg, 1), 1);
2975 }
2976
2977 /* Anything not already handled and not a true memory reference
2978 or a non-lvalue array is an error. */
2979 else if (typecode != FUNCTION_TYPE && !flag
2980 && !lvalue_or_else (arg, lv_addressof))
2981 return error_mark_node;
2982
2983 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
2984 argtype = TREE_TYPE (arg);
2985
2986 /* If the lvalue is const or volatile, merge that into the type
2987 to which the address will point. Note that you can't get a
2988 restricted pointer by taking the address of something, so we
2989 only have to deal with `const' and `volatile' here. */
2990 if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
2991 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
2992 argtype = c_build_type_variant (argtype,
2993 TREE_READONLY (arg),
2994 TREE_THIS_VOLATILE (arg));
2995
2996 if (!c_mark_addressable (arg))
2997 return error_mark_node;
2998
2999 gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3000 || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3001
3002 argtype = build_pointer_type (argtype);
3003
3004 /* ??? Cope with user tricks that amount to offsetof. Delete this
3005 when we have proper support for integer constant expressions. */
3006 val = get_base_address (arg);
3007 if (val && TREE_CODE (val) == INDIRECT_REF
3008 && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3009 {
3010 tree op0 = fold_convert (argtype, fold_offsetof (arg)), op1;
3011
3012 op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3013 return fold_build2 (PLUS_EXPR, argtype, op0, op1);
3014 }
3015
3016 val = build1 (ADDR_EXPR, argtype, arg);
3017
3018 return val;
3019
3020 default:
3021 gcc_unreachable ();
3022 }
3023
3024 if (argtype == 0)
3025 argtype = TREE_TYPE (arg);
3026 return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3027 : fold_build1 (code, argtype, arg);
3028 }
3029
3030 /* Return nonzero if REF is an lvalue valid for this language.
3031 Lvalues can be assigned, unless their type has TYPE_READONLY.
3032 Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
3033
3034 static int
3035 lvalue_p (tree ref)
3036 {
3037 enum tree_code code = TREE_CODE (ref);
3038
3039 switch (code)
3040 {
3041 case REALPART_EXPR:
3042 case IMAGPART_EXPR:
3043 case COMPONENT_REF:
3044 return lvalue_p (TREE_OPERAND (ref, 0));
3045
3046 case COMPOUND_LITERAL_EXPR:
3047 case STRING_CST:
3048 return 1;
3049
3050 case INDIRECT_REF:
3051 case ARRAY_REF:
3052 case VAR_DECL:
3053 case PARM_DECL:
3054 case RESULT_DECL:
3055 case ERROR_MARK:
3056 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3057 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3058
3059 case BIND_EXPR:
3060 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3061
3062 default:
3063 return 0;
3064 }
3065 }
3066 \f
3067 /* Give an error for storing in something that is 'const'. */
3068
3069 static void
3070 readonly_error (tree arg, enum lvalue_use use)
3071 {
3072 gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3073 || use == lv_asm);
3074 /* Using this macro rather than (for example) arrays of messages
3075 ensures that all the format strings are checked at compile
3076 time. */
3077 #define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A) \
3078 : (use == lv_increment ? (I) \
3079 : (use == lv_decrement ? (D) : (AS))))
3080 if (TREE_CODE (arg) == COMPONENT_REF)
3081 {
3082 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3083 readonly_error (TREE_OPERAND (arg, 0), use);
3084 else
3085 error (READONLY_MSG (G_("assignment of read-only member %qD"),
3086 G_("increment of read-only member %qD"),
3087 G_("decrement of read-only member %qD"),
3088 G_("read-only member %qD used as %<asm%> output")),
3089 TREE_OPERAND (arg, 1));
3090 }
3091 else if (TREE_CODE (arg) == VAR_DECL)
3092 error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3093 G_("increment of read-only variable %qD"),
3094 G_("decrement of read-only variable %qD"),
3095 G_("read-only variable %qD used as %<asm%> output")),
3096 arg);
3097 else
3098 error (READONLY_MSG (G_("assignment of read-only location"),
3099 G_("increment of read-only location"),
3100 G_("decrement of read-only location"),
3101 G_("read-only location used as %<asm%> output")));
3102 }
3103
3104
3105 /* Return nonzero if REF is an lvalue valid for this language;
3106 otherwise, print an error message and return zero. USE says
3107 how the lvalue is being used and so selects the error message. */
3108
3109 static int
3110 lvalue_or_else (tree ref, enum lvalue_use use)
3111 {
3112 int win = lvalue_p (ref);
3113
3114 if (!win)
3115 lvalue_error (use);
3116
3117 return win;
3118 }
3119 \f
3120 /* Mark EXP saying that we need to be able to take the
3121 address of it; it should not be allocated in a register.
3122 Returns true if successful. */
3123
3124 bool
3125 c_mark_addressable (tree exp)
3126 {
3127 tree x = exp;
3128
3129 while (1)
3130 switch (TREE_CODE (x))
3131 {
3132 case COMPONENT_REF:
3133 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3134 {
3135 error
3136 ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3137 return false;
3138 }
3139
3140 /* ... fall through ... */
3141
3142 case ADDR_EXPR:
3143 case ARRAY_REF:
3144 case REALPART_EXPR:
3145 case IMAGPART_EXPR:
3146 x = TREE_OPERAND (x, 0);
3147 break;
3148
3149 case COMPOUND_LITERAL_EXPR:
3150 case CONSTRUCTOR:
3151 TREE_ADDRESSABLE (x) = 1;
3152 return true;
3153
3154 case VAR_DECL:
3155 case CONST_DECL:
3156 case PARM_DECL:
3157 case RESULT_DECL:
3158 if (C_DECL_REGISTER (x)
3159 && DECL_NONLOCAL (x))
3160 {
3161 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3162 {
3163 error
3164 ("global register variable %qD used in nested function", x);
3165 return false;
3166 }
3167 pedwarn ("register variable %qD used in nested function", x);
3168 }
3169 else if (C_DECL_REGISTER (x))
3170 {
3171 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3172 error ("address of global register variable %qD requested", x);
3173 else
3174 error ("address of register variable %qD requested", x);
3175 return false;
3176 }
3177
3178 /* drops in */
3179 case FUNCTION_DECL:
3180 TREE_ADDRESSABLE (x) = 1;
3181 /* drops out */
3182 default:
3183 return true;
3184 }
3185 }
3186 \f
3187 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3188
3189 tree
3190 build_conditional_expr (tree ifexp, tree op1, tree op2)
3191 {
3192 tree type1;
3193 tree type2;
3194 enum tree_code code1;
3195 enum tree_code code2;
3196 tree result_type = NULL;
3197 tree orig_op1 = op1, orig_op2 = op2;
3198
3199 /* Promote both alternatives. */
3200
3201 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3202 op1 = default_conversion (op1);
3203 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3204 op2 = default_conversion (op2);
3205
3206 if (TREE_CODE (ifexp) == ERROR_MARK
3207 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3208 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3209 return error_mark_node;
3210
3211 type1 = TREE_TYPE (op1);
3212 code1 = TREE_CODE (type1);
3213 type2 = TREE_TYPE (op2);
3214 code2 = TREE_CODE (type2);
3215
3216 /* C90 does not permit non-lvalue arrays in conditional expressions.
3217 In C99 they will be pointers by now. */
3218 if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3219 {
3220 error ("non-lvalue array in conditional expression");
3221 return error_mark_node;
3222 }
3223
3224 /* Quickly detect the usual case where op1 and op2 have the same type
3225 after promotion. */
3226 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3227 {
3228 if (type1 == type2)
3229 result_type = type1;
3230 else
3231 result_type = TYPE_MAIN_VARIANT (type1);
3232 }
3233 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3234 || code1 == COMPLEX_TYPE)
3235 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3236 || code2 == COMPLEX_TYPE))
3237 {
3238 result_type = c_common_type (type1, type2);
3239
3240 /* If -Wsign-compare, warn here if type1 and type2 have
3241 different signedness. We'll promote the signed to unsigned
3242 and later code won't know it used to be different.
3243 Do this check on the original types, so that explicit casts
3244 will be considered, but default promotions won't. */
3245 if (warn_sign_compare && !skip_evaluation)
3246 {
3247 int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3248 int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3249
3250 if (unsigned_op1 ^ unsigned_op2)
3251 {
3252 /* Do not warn if the result type is signed, since the
3253 signed type will only be chosen if it can represent
3254 all the values of the unsigned type. */
3255 if (!TYPE_UNSIGNED (result_type))
3256 /* OK */;
3257 /* Do not warn if the signed quantity is an unsuffixed
3258 integer literal (or some static constant expression
3259 involving such literals) and it is non-negative. */
3260 else if ((unsigned_op2 && tree_expr_nonnegative_p (op1))
3261 || (unsigned_op1 && tree_expr_nonnegative_p (op2)))
3262 /* OK */;
3263 else
3264 warning (0, "signed and unsigned type in conditional expression");
3265 }
3266 }
3267 }
3268 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3269 {
3270 if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3271 pedwarn ("ISO C forbids conditional expr with only one void side");
3272 result_type = void_type_node;
3273 }
3274 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3275 {
3276 if (comp_target_types (type1, type2))
3277 result_type = common_pointer_type (type1, type2);
3278 else if (null_pointer_constant_p (orig_op1))
3279 result_type = qualify_type (type2, type1);
3280 else if (null_pointer_constant_p (orig_op2))
3281 result_type = qualify_type (type1, type2);
3282 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3283 {
3284 if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3285 pedwarn ("ISO C forbids conditional expr between "
3286 "%<void *%> and function pointer");
3287 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3288 TREE_TYPE (type2)));
3289 }
3290 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3291 {
3292 if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3293 pedwarn ("ISO C forbids conditional expr between "
3294 "%<void *%> and function pointer");
3295 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3296 TREE_TYPE (type1)));
3297 }
3298 else
3299 {
3300 pedwarn ("pointer type mismatch in conditional expression");
3301 result_type = build_pointer_type (void_type_node);
3302 }
3303 }
3304 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3305 {
3306 if (!null_pointer_constant_p (orig_op2))
3307 pedwarn ("pointer/integer type mismatch in conditional expression");
3308 else
3309 {
3310 op2 = null_pointer_node;
3311 }
3312 result_type = type1;
3313 }
3314 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3315 {
3316 if (!null_pointer_constant_p (orig_op1))
3317 pedwarn ("pointer/integer type mismatch in conditional expression");
3318 else
3319 {
3320 op1 = null_pointer_node;
3321 }
3322 result_type = type2;
3323 }
3324
3325 if (!result_type)
3326 {
3327 if (flag_cond_mismatch)
3328 result_type = void_type_node;
3329 else
3330 {
3331 error ("type mismatch in conditional expression");
3332 return error_mark_node;
3333 }
3334 }
3335
3336 /* Merge const and volatile flags of the incoming types. */
3337 result_type
3338 = build_type_variant (result_type,
3339 TREE_READONLY (op1) || TREE_READONLY (op2),
3340 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3341
3342 if (result_type != TREE_TYPE (op1))
3343 op1 = convert_and_check (result_type, op1);
3344 if (result_type != TREE_TYPE (op2))
3345 op2 = convert_and_check (result_type, op2);
3346
3347 return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3348 }
3349 \f
3350 /* Return a compound expression that performs two expressions and
3351 returns the value of the second of them. */
3352
3353 tree
3354 build_compound_expr (tree expr1, tree expr2)
3355 {
3356 if (!TREE_SIDE_EFFECTS (expr1))
3357 {
3358 /* The left-hand operand of a comma expression is like an expression
3359 statement: with -Wextra or -Wunused, we should warn if it doesn't have
3360 any side-effects, unless it was explicitly cast to (void). */
3361 if (warn_unused_value)
3362 {
3363 if (VOID_TYPE_P (TREE_TYPE (expr1))
3364 && (TREE_CODE (expr1) == NOP_EXPR
3365 || TREE_CODE (expr1) == CONVERT_EXPR))
3366 ; /* (void) a, b */
3367 else if (VOID_TYPE_P (TREE_TYPE (expr1))
3368 && TREE_CODE (expr1) == COMPOUND_EXPR
3369 && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3370 || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3371 ; /* (void) a, (void) b, c */
3372 else
3373 warning (0, "left-hand operand of comma expression has no effect");
3374 }
3375 }
3376
3377 /* With -Wunused, we should also warn if the left-hand operand does have
3378 side-effects, but computes a value which is not used. For example, in
3379 `foo() + bar(), baz()' the result of the `+' operator is not used,
3380 so we should issue a warning. */
3381 else if (warn_unused_value)
3382 warn_if_unused_value (expr1, input_location);
3383
3384 return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3385 }
3386
3387 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3388
3389 tree
3390 build_c_cast (tree type, tree expr)
3391 {
3392 tree value = expr;
3393
3394 if (type == error_mark_node || expr == error_mark_node)
3395 return error_mark_node;
3396
3397 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3398 only in <protocol> qualifications. But when constructing cast expressions,
3399 the protocols do matter and must be kept around. */
3400 if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3401 return build1 (NOP_EXPR, type, expr);
3402
3403 type = TYPE_MAIN_VARIANT (type);
3404
3405 if (TREE_CODE (type) == ARRAY_TYPE)
3406 {
3407 error ("cast specifies array type");
3408 return error_mark_node;
3409 }
3410
3411 if (TREE_CODE (type) == FUNCTION_TYPE)
3412 {
3413 error ("cast specifies function type");
3414 return error_mark_node;
3415 }
3416
3417 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3418 {
3419 if (pedantic)
3420 {
3421 if (TREE_CODE (type) == RECORD_TYPE
3422 || TREE_CODE (type) == UNION_TYPE)
3423 pedwarn ("ISO C forbids casting nonscalar to the same type");
3424 }
3425 }
3426 else if (TREE_CODE (type) == UNION_TYPE)
3427 {
3428 tree field;
3429
3430 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3431 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3432 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3433 break;
3434
3435 if (field)
3436 {
3437 tree t;
3438
3439 if (pedantic)
3440 pedwarn ("ISO C forbids casts to union type");
3441 t = digest_init (type,
3442 build_constructor_single (type, field, value),
3443 true, 0);
3444 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3445 TREE_INVARIANT (t) = TREE_INVARIANT (value);
3446 return t;
3447 }
3448 error ("cast to union type from type not present in union");
3449 return error_mark_node;
3450 }
3451 else
3452 {
3453 tree otype, ovalue;
3454
3455 if (type == void_type_node)
3456 return build1 (CONVERT_EXPR, type, value);
3457
3458 otype = TREE_TYPE (value);
3459
3460 /* Optionally warn about potentially worrisome casts. */
3461
3462 if (warn_cast_qual
3463 && TREE_CODE (type) == POINTER_TYPE
3464 && TREE_CODE (otype) == POINTER_TYPE)
3465 {
3466 tree in_type = type;
3467 tree in_otype = otype;
3468 int added = 0;
3469 int discarded = 0;
3470
3471 /* Check that the qualifiers on IN_TYPE are a superset of
3472 the qualifiers of IN_OTYPE. The outermost level of
3473 POINTER_TYPE nodes is uninteresting and we stop as soon
3474 as we hit a non-POINTER_TYPE node on either type. */
3475 do
3476 {
3477 in_otype = TREE_TYPE (in_otype);
3478 in_type = TREE_TYPE (in_type);
3479
3480 /* GNU C allows cv-qualified function types. 'const'
3481 means the function is very pure, 'volatile' means it
3482 can't return. We need to warn when such qualifiers
3483 are added, not when they're taken away. */
3484 if (TREE_CODE (in_otype) == FUNCTION_TYPE
3485 && TREE_CODE (in_type) == FUNCTION_TYPE)
3486 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3487 else
3488 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3489 }
3490 while (TREE_CODE (in_type) == POINTER_TYPE
3491 && TREE_CODE (in_otype) == POINTER_TYPE);
3492
3493 if (added)
3494 warning (0, "cast adds new qualifiers to function type");
3495
3496 if (discarded)
3497 /* There are qualifiers present in IN_OTYPE that are not
3498 present in IN_TYPE. */
3499 warning (0, "cast discards qualifiers from pointer target type");
3500 }
3501
3502 /* Warn about possible alignment problems. */
3503 if (STRICT_ALIGNMENT
3504 && TREE_CODE (type) == POINTER_TYPE
3505 && TREE_CODE (otype) == POINTER_TYPE
3506 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3507 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3508 /* Don't warn about opaque types, where the actual alignment
3509 restriction is unknown. */
3510 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3511 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3512 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3513 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3514 warning (OPT_Wcast_align,
3515 "cast increases required alignment of target type");
3516
3517 if (TREE_CODE (type) == INTEGER_TYPE
3518 && TREE_CODE (otype) == POINTER_TYPE
3519 && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3520 /* Unlike conversion of integers to pointers, where the
3521 warning is disabled for converting constants because
3522 of cases such as SIG_*, warn about converting constant
3523 pointers to integers. In some cases it may cause unwanted
3524 sign extension, and a warning is appropriate. */
3525 warning (OPT_Wpointer_to_int_cast,
3526 "cast from pointer to integer of different size");
3527
3528 if (TREE_CODE (value) == CALL_EXPR
3529 && TREE_CODE (type) != TREE_CODE (otype))
3530 warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3531 "to non-matching type %qT", otype, type);
3532
3533 if (TREE_CODE (type) == POINTER_TYPE
3534 && TREE_CODE (otype) == INTEGER_TYPE
3535 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3536 /* Don't warn about converting any constant. */
3537 && !TREE_CONSTANT (value))
3538 warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3539 "of different size");
3540
3541 strict_aliasing_warning (otype, type, expr);
3542
3543 /* If pedantic, warn for conversions between function and object
3544 pointer types, except for converting a null pointer constant
3545 to function pointer type. */
3546 if (pedantic
3547 && TREE_CODE (type) == POINTER_TYPE
3548 && TREE_CODE (otype) == POINTER_TYPE
3549 && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3550 && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3551 pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3552
3553 if (pedantic
3554 && TREE_CODE (type) == POINTER_TYPE
3555 && TREE_CODE (otype) == POINTER_TYPE
3556 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3557 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3558 && !null_pointer_constant_p (value))
3559 pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3560
3561 ovalue = value;
3562 value = convert (type, value);
3563
3564 /* Ignore any integer overflow caused by the cast. */
3565 if (TREE_CODE (value) == INTEGER_CST)
3566 {
3567 if (CONSTANT_CLASS_P (ovalue)
3568 && (TREE_OVERFLOW (ovalue) || TREE_CONSTANT_OVERFLOW (ovalue)))
3569 {
3570 /* Avoid clobbering a shared constant. */
3571 value = copy_node (value);
3572 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3573 TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3574 }
3575 else if (TREE_OVERFLOW (value) || TREE_CONSTANT_OVERFLOW (value))
3576 /* Reset VALUE's overflow flags, ensuring constant sharing. */
3577 value = build_int_cst_wide (TREE_TYPE (value),
3578 TREE_INT_CST_LOW (value),
3579 TREE_INT_CST_HIGH (value));
3580 }
3581 }
3582
3583 /* Don't let a cast be an lvalue. */
3584 if (value == expr)
3585 value = non_lvalue (value);
3586
3587 return value;
3588 }
3589
3590 /* Interpret a cast of expression EXPR to type TYPE. */
3591 tree
3592 c_cast_expr (struct c_type_name *type_name, tree expr)
3593 {
3594 tree type;
3595 int saved_wsp = warn_strict_prototypes;
3596
3597 /* This avoids warnings about unprototyped casts on
3598 integers. E.g. "#define SIG_DFL (void(*)())0". */
3599 if (TREE_CODE (expr) == INTEGER_CST)
3600 warn_strict_prototypes = 0;
3601 type = groktypename (type_name);
3602 warn_strict_prototypes = saved_wsp;
3603
3604 return build_c_cast (type, expr);
3605 }
3606
3607 \f
3608 /* Build an assignment expression of lvalue LHS from value RHS.
3609 MODIFYCODE is the code for a binary operator that we use
3610 to combine the old value of LHS with RHS to get the new value.
3611 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3612
3613 tree
3614 build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3615 {
3616 tree result;
3617 tree newrhs;
3618 tree lhstype = TREE_TYPE (lhs);
3619 tree olhstype = lhstype;
3620
3621 /* Types that aren't fully specified cannot be used in assignments. */
3622 lhs = require_complete_type (lhs);
3623
3624 /* Avoid duplicate error messages from operands that had errors. */
3625 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3626 return error_mark_node;
3627
3628 STRIP_TYPE_NOPS (rhs);
3629
3630 newrhs = rhs;
3631
3632 /* If a binary op has been requested, combine the old LHS value with the RHS
3633 producing the value we should actually store into the LHS. */
3634
3635 if (modifycode != NOP_EXPR)
3636 {
3637 lhs = stabilize_reference (lhs);
3638 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3639 }
3640
3641 if (!lvalue_or_else (lhs, lv_assign))
3642 return error_mark_node;
3643
3644 /* Give an error for storing in something that is 'const'. */
3645
3646 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3647 || ((TREE_CODE (lhstype) == RECORD_TYPE
3648 || TREE_CODE (lhstype) == UNION_TYPE)
3649 && C_TYPE_FIELDS_READONLY (lhstype)))
3650 {
3651 readonly_error (lhs, lv_assign);
3652 return error_mark_node;
3653 }
3654
3655 /* If storing into a structure or union member,
3656 it has probably been given type `int'.
3657 Compute the type that would go with
3658 the actual amount of storage the member occupies. */
3659
3660 if (TREE_CODE (lhs) == COMPONENT_REF
3661 && (TREE_CODE (lhstype) == INTEGER_TYPE
3662 || TREE_CODE (lhstype) == BOOLEAN_TYPE
3663 || TREE_CODE (lhstype) == REAL_TYPE
3664 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3665 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3666
3667 /* If storing in a field that is in actuality a short or narrower than one,
3668 we must store in the field in its actual type. */
3669
3670 if (lhstype != TREE_TYPE (lhs))
3671 {
3672 lhs = copy_node (lhs);
3673 TREE_TYPE (lhs) = lhstype;
3674 }
3675
3676 /* Convert new value to destination type. */
3677
3678 newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3679 NULL_TREE, NULL_TREE, 0);
3680 if (TREE_CODE (newrhs) == ERROR_MARK)
3681 return error_mark_node;
3682
3683 /* Emit ObjC write barrier, if necessary. */
3684 if (c_dialect_objc () && flag_objc_gc)
3685 {
3686 result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3687 if (result)
3688 return result;
3689 }
3690
3691 /* Scan operands. */
3692
3693 result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3694 TREE_SIDE_EFFECTS (result) = 1;
3695
3696 /* If we got the LHS in a different type for storing in,
3697 convert the result back to the nominal type of LHS
3698 so that the value we return always has the same type
3699 as the LHS argument. */
3700
3701 if (olhstype == TREE_TYPE (result))
3702 return result;
3703 return convert_for_assignment (olhstype, result, ic_assign,
3704 NULL_TREE, NULL_TREE, 0);
3705 }
3706 \f
3707 /* Convert value RHS to type TYPE as preparation for an assignment
3708 to an lvalue of type TYPE.
3709 The real work of conversion is done by `convert'.
3710 The purpose of this function is to generate error messages
3711 for assignments that are not allowed in C.
3712 ERRTYPE says whether it is argument passing, assignment,
3713 initialization or return.
3714
3715 FUNCTION is a tree for the function being called.
3716 PARMNUM is the number of the argument, for printing in error messages. */
3717
3718 static tree
3719 convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3720 tree fundecl, tree function, int parmnum)
3721 {
3722 enum tree_code codel = TREE_CODE (type);
3723 tree rhstype;
3724 enum tree_code coder;
3725 tree rname = NULL_TREE;
3726 bool objc_ok = false;
3727
3728 if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3729 {
3730 tree selector;
3731 /* Change pointer to function to the function itself for
3732 diagnostics. */
3733 if (TREE_CODE (function) == ADDR_EXPR
3734 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3735 function = TREE_OPERAND (function, 0);
3736
3737 /* Handle an ObjC selector specially for diagnostics. */
3738 selector = objc_message_selector ();
3739 rname = function;
3740 if (selector && parmnum > 2)
3741 {
3742 rname = selector;
3743 parmnum -= 2;
3744 }
3745 }
3746
3747 /* This macro is used to emit diagnostics to ensure that all format
3748 strings are complete sentences, visible to gettext and checked at
3749 compile time. */
3750 #define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE) \
3751 do { \
3752 switch (errtype) \
3753 { \
3754 case ic_argpass: \
3755 pedwarn (AR, parmnum, rname); \
3756 break; \
3757 case ic_argpass_nonproto: \
3758 warning (0, AR, parmnum, rname); \
3759 break; \
3760 case ic_assign: \
3761 pedwarn (AS); \
3762 break; \
3763 case ic_init: \
3764 pedwarn (IN); \
3765 break; \
3766 case ic_return: \
3767 pedwarn (RE); \
3768 break; \
3769 default: \
3770 gcc_unreachable (); \
3771 } \
3772 } while (0)
3773
3774 STRIP_TYPE_NOPS (rhs);
3775
3776 if (optimize && TREE_CODE (rhs) == VAR_DECL
3777 && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3778 rhs = decl_constant_value_for_broken_optimization (rhs);
3779
3780 rhstype = TREE_TYPE (rhs);
3781 coder = TREE_CODE (rhstype);
3782
3783 if (coder == ERROR_MARK)
3784 return error_mark_node;
3785
3786 if (c_dialect_objc ())
3787 {
3788 int parmno;
3789
3790 switch (errtype)
3791 {
3792 case ic_return:
3793 parmno = 0;
3794 break;
3795
3796 case ic_assign:
3797 parmno = -1;
3798 break;
3799
3800 case ic_init:
3801 parmno = -2;
3802 break;
3803
3804 default:
3805 parmno = parmnum;
3806 break;
3807 }
3808
3809 objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3810 }
3811
3812 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3813 {
3814 overflow_warning (rhs);
3815 return rhs;
3816 }
3817
3818 if (coder == VOID_TYPE)
3819 {
3820 /* Except for passing an argument to an unprototyped function,
3821 this is a constraint violation. When passing an argument to
3822 an unprototyped function, it is compile-time undefined;
3823 making it a constraint in that case was rejected in
3824 DR#252. */
3825 error ("void value not ignored as it ought to be");
3826 return error_mark_node;
3827 }
3828 /* A type converts to a reference to it.
3829 This code doesn't fully support references, it's just for the
3830 special case of va_start and va_copy. */
3831 if (codel == REFERENCE_TYPE
3832 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3833 {
3834 if (!lvalue_p (rhs))
3835 {
3836 error ("cannot pass rvalue to reference parameter");
3837 return error_mark_node;
3838 }
3839 if (!c_mark_addressable (rhs))
3840 return error_mark_node;
3841 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3842
3843 /* We already know that these two types are compatible, but they
3844 may not be exactly identical. In fact, `TREE_TYPE (type)' is
3845 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3846 likely to be va_list, a typedef to __builtin_va_list, which
3847 is different enough that it will cause problems later. */
3848 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3849 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3850
3851 rhs = build1 (NOP_EXPR, type, rhs);
3852 return rhs;
3853 }
3854 /* Some types can interconvert without explicit casts. */
3855 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3856 && vector_types_convertible_p (type, TREE_TYPE (rhs)))
3857 return convert (type, rhs);
3858 /* Arithmetic types all interconvert, and enum is treated like int. */
3859 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3860 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3861 || codel == BOOLEAN_TYPE)
3862 && (coder == INTEGER_TYPE || coder == REAL_TYPE
3863 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3864 || coder == BOOLEAN_TYPE))
3865 return convert_and_check (type, rhs);
3866
3867 /* Conversion to a transparent union from its member types.
3868 This applies only to function arguments. */
3869 else if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3870 && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3871 {
3872 tree memb, marginal_memb = NULL_TREE;
3873
3874 for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3875 {
3876 tree memb_type = TREE_TYPE (memb);
3877
3878 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3879 TYPE_MAIN_VARIANT (rhstype)))
3880 break;
3881
3882 if (TREE_CODE (memb_type) != POINTER_TYPE)
3883 continue;
3884
3885 if (coder == POINTER_TYPE)
3886 {
3887 tree ttl = TREE_TYPE (memb_type);
3888 tree ttr = TREE_TYPE (rhstype);
3889
3890 /* Any non-function converts to a [const][volatile] void *
3891 and vice versa; otherwise, targets must be the same.
3892 Meanwhile, the lhs target must have all the qualifiers of
3893 the rhs. */
3894 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3895 || comp_target_types (memb_type, rhstype))
3896 {
3897 /* If this type won't generate any warnings, use it. */
3898 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3899 || ((TREE_CODE (ttr) == FUNCTION_TYPE
3900 && TREE_CODE (ttl) == FUNCTION_TYPE)
3901 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3902 == TYPE_QUALS (ttr))
3903 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3904 == TYPE_QUALS (ttl))))
3905 break;
3906
3907 /* Keep looking for a better type, but remember this one. */
3908 if (!marginal_memb)
3909 marginal_memb = memb;
3910 }
3911 }
3912
3913 /* Can convert integer zero to any pointer type. */
3914 if (null_pointer_constant_p (rhs))
3915 {
3916 rhs = null_pointer_node;
3917 break;
3918 }
3919 }
3920
3921 if (memb || marginal_memb)
3922 {
3923 if (!memb)
3924 {
3925 /* We have only a marginally acceptable member type;
3926 it needs a warning. */
3927 tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
3928 tree ttr = TREE_TYPE (rhstype);
3929
3930 /* Const and volatile mean something different for function
3931 types, so the usual warnings are not appropriate. */
3932 if (TREE_CODE (ttr) == FUNCTION_TYPE
3933 && TREE_CODE (ttl) == FUNCTION_TYPE)
3934 {
3935 /* Because const and volatile on functions are
3936 restrictions that say the function will not do
3937 certain things, it is okay to use a const or volatile
3938 function where an ordinary one is wanted, but not
3939 vice-versa. */
3940 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
3941 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
3942 "makes qualified function "
3943 "pointer from unqualified"),
3944 G_("assignment makes qualified "
3945 "function pointer from "
3946 "unqualified"),
3947 G_("initialization makes qualified "
3948 "function pointer from "
3949 "unqualified"),
3950 G_("return makes qualified function "
3951 "pointer from unqualified"));
3952 }
3953 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
3954 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
3955 "qualifiers from pointer target type"),
3956 G_("assignment discards qualifiers "
3957 "from pointer target type"),
3958 G_("initialization discards qualifiers "
3959 "from pointer target type"),
3960 G_("return discards qualifiers from "
3961 "pointer target type"));
3962
3963 memb = marginal_memb;
3964 }
3965
3966 if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
3967 pedwarn ("ISO C prohibits argument conversion to union type");
3968
3969 return build_constructor_single (type, memb, rhs);
3970 }
3971 }
3972
3973 /* Conversions among pointers */
3974 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
3975 && (coder == codel))
3976 {
3977 tree ttl = TREE_TYPE (type);
3978 tree ttr = TREE_TYPE (rhstype);
3979 tree mvl = ttl;
3980 tree mvr = ttr;
3981 bool is_opaque_pointer;
3982 int target_cmp = 0; /* Cache comp_target_types () result. */
3983
3984 if (TREE_CODE (mvl) != ARRAY_TYPE)
3985 mvl = TYPE_MAIN_VARIANT (mvl);
3986 if (TREE_CODE (mvr) != ARRAY_TYPE)
3987 mvr = TYPE_MAIN_VARIANT (mvr);
3988 /* Opaque pointers are treated like void pointers. */
3989 is_opaque_pointer = (targetm.vector_opaque_p (type)
3990 || targetm.vector_opaque_p (rhstype))
3991 && TREE_CODE (ttl) == VECTOR_TYPE
3992 && TREE_CODE (ttr) == VECTOR_TYPE;
3993
3994 /* C++ does not allow the implicit conversion void* -> T*. However,
3995 for the purpose of reducing the number of false positives, we
3996 tolerate the special case of
3997
3998 int *p = NULL;
3999
4000 where NULL is typically defined in C to be '(void *) 0'. */
4001 if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4002 warning (OPT_Wc___compat, "request for implicit conversion from "
4003 "%qT to %qT not permitted in C++", rhstype, type);
4004
4005 /* Check if the right-hand side has a format attribute but the
4006 left-hand side doesn't. */
4007 if (warn_missing_format_attribute
4008 && check_missing_format_attribute (type, rhstype))
4009 {
4010 switch (errtype)
4011 {
4012 case ic_argpass:
4013 case ic_argpass_nonproto:
4014 warning (OPT_Wmissing_format_attribute,
4015 "argument %d of %qE might be "
4016 "a candidate for a format attribute",
4017 parmnum, rname);
4018 break;
4019 case ic_assign:
4020 warning (OPT_Wmissing_format_attribute,
4021 "assignment left-hand side might be "
4022 "a candidate for a format attribute");
4023 break;
4024 case ic_init:
4025 warning (OPT_Wmissing_format_attribute,
4026 "initialization left-hand side might be "
4027 "a candidate for a format attribute");
4028 break;
4029 case ic_return:
4030 warning (OPT_Wmissing_format_attribute,
4031 "return type might be "
4032 "a candidate for a format attribute");
4033 break;
4034 default:
4035 gcc_unreachable ();
4036 }
4037 }
4038
4039 /* Any non-function converts to a [const][volatile] void *
4040 and vice versa; otherwise, targets must be the same.
4041 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4042 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4043 || (target_cmp = comp_target_types (type, rhstype))
4044 || is_opaque_pointer
4045 || (c_common_unsigned_type (mvl)
4046 == c_common_unsigned_type (mvr)))
4047 {
4048 if (pedantic
4049 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4050 ||
4051 (VOID_TYPE_P (ttr)
4052 && !null_pointer_constant_p (rhs)
4053 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4054 WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4055 "%qE between function pointer "
4056 "and %<void *%>"),
4057 G_("ISO C forbids assignment between "
4058 "function pointer and %<void *%>"),
4059 G_("ISO C forbids initialization between "
4060 "function pointer and %<void *%>"),
4061 G_("ISO C forbids return between function "
4062 "pointer and %<void *%>"));
4063 /* Const and volatile mean something different for function types,
4064 so the usual warnings are not appropriate. */
4065 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4066 && TREE_CODE (ttl) != FUNCTION_TYPE)
4067 {
4068 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4069 {
4070 /* Types differing only by the presence of the 'volatile'
4071 qualifier are acceptable if the 'volatile' has been added
4072 in by the Objective-C EH machinery. */
4073 if (!objc_type_quals_match (ttl, ttr))
4074 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4075 "qualifiers from pointer target type"),
4076 G_("assignment discards qualifiers "
4077 "from pointer target type"),
4078 G_("initialization discards qualifiers "
4079 "from pointer target type"),
4080 G_("return discards qualifiers from "
4081 "pointer target type"));
4082 }
4083 /* If this is not a case of ignoring a mismatch in signedness,
4084 no warning. */
4085 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4086 || target_cmp)
4087 ;
4088 /* If there is a mismatch, do warn. */
4089 else if (warn_pointer_sign)
4090 WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4091 "%d of %qE differ in signedness"),
4092 G_("pointer targets in assignment "
4093 "differ in signedness"),
4094 G_("pointer targets in initialization "
4095 "differ in signedness"),
4096 G_("pointer targets in return differ "
4097 "in signedness"));
4098 }
4099 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4100 && TREE_CODE (ttr) == FUNCTION_TYPE)
4101 {
4102 /* Because const and volatile on functions are restrictions
4103 that say the function will not do certain things,
4104 it is okay to use a const or volatile function
4105 where an ordinary one is wanted, but not vice-versa. */
4106 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4107 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4108 "qualified function pointer "
4109 "from unqualified"),
4110 G_("assignment makes qualified function "
4111 "pointer from unqualified"),
4112 G_("initialization makes qualified "
4113 "function pointer from unqualified"),
4114 G_("return makes qualified function "
4115 "pointer from unqualified"));
4116 }
4117 }
4118 else
4119 /* Avoid warning about the volatile ObjC EH puts on decls. */
4120 if (!objc_ok)
4121 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4122 "incompatible pointer type"),
4123 G_("assignment from incompatible pointer type"),
4124 G_("initialization from incompatible "
4125 "pointer type"),
4126 G_("return from incompatible pointer type"));
4127
4128 return convert (type, rhs);
4129 }
4130 else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4131 {
4132 /* ??? This should not be an error when inlining calls to
4133 unprototyped functions. */
4134 error ("invalid use of non-lvalue array");
4135 return error_mark_node;
4136 }
4137 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4138 {
4139 /* An explicit constant 0 can convert to a pointer,
4140 or one that results from arithmetic, even including
4141 a cast to integer type. */
4142 if (!null_pointer_constant_p (rhs))
4143 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4144 "pointer from integer without a cast"),
4145 G_("assignment makes pointer from integer "
4146 "without a cast"),
4147 G_("initialization makes pointer from "
4148 "integer without a cast"),
4149 G_("return makes pointer from integer "
4150 "without a cast"));
4151
4152 return convert (type, rhs);
4153 }
4154 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4155 {
4156 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4157 "from pointer without a cast"),
4158 G_("assignment makes integer from pointer "
4159 "without a cast"),
4160 G_("initialization makes integer from pointer "
4161 "without a cast"),
4162 G_("return makes integer from pointer "
4163 "without a cast"));
4164 return convert (type, rhs);
4165 }
4166 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4167 return convert (type, rhs);
4168
4169 switch (errtype)
4170 {
4171 case ic_argpass:
4172 case ic_argpass_nonproto:
4173 /* ??? This should not be an error when inlining calls to
4174 unprototyped functions. */
4175 error ("incompatible type for argument %d of %qE", parmnum, rname);
4176 break;
4177 case ic_assign:
4178 error ("incompatible types in assignment");
4179 break;
4180 case ic_init:
4181 error ("incompatible types in initialization");
4182 break;
4183 case ic_return:
4184 error ("incompatible types in return");
4185 break;
4186 default:
4187 gcc_unreachable ();
4188 }
4189
4190 return error_mark_node;
4191 }
4192
4193 /* Convert VALUE for assignment into inlined parameter PARM. ARGNUM
4194 is used for error and waring reporting and indicates which argument
4195 is being processed. */
4196
4197 tree
4198 c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
4199 {
4200 tree ret, type;
4201
4202 /* If FN was prototyped, the value has been converted already
4203 in convert_arguments. */
4204 if (!value || TYPE_ARG_TYPES (TREE_TYPE (fn)))
4205 return value;
4206
4207 type = TREE_TYPE (parm);
4208 ret = convert_for_assignment (type, value,
4209 ic_argpass_nonproto, fn,
4210 fn, argnum);
4211 if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
4212 && INTEGRAL_TYPE_P (type)
4213 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4214 ret = default_conversion (ret);
4215 return ret;
4216 }
4217 \f
4218 /* If VALUE is a compound expr all of whose expressions are constant, then
4219 return its value. Otherwise, return error_mark_node.
4220
4221 This is for handling COMPOUND_EXPRs as initializer elements
4222 which is allowed with a warning when -pedantic is specified. */
4223
4224 static tree
4225 valid_compound_expr_initializer (tree value, tree endtype)
4226 {
4227 if (TREE_CODE (value) == COMPOUND_EXPR)
4228 {
4229 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4230 == error_mark_node)
4231 return error_mark_node;
4232 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4233 endtype);
4234 }
4235 else if (!initializer_constant_valid_p (value, endtype))
4236 return error_mark_node;
4237 else
4238 return value;
4239 }
4240 \f
4241 /* Perform appropriate conversions on the initial value of a variable,
4242 store it in the declaration DECL,
4243 and print any error messages that are appropriate.
4244 If the init is invalid, store an ERROR_MARK. */
4245
4246 void
4247 store_init_value (tree decl, tree init)
4248 {
4249 tree value, type;
4250
4251 /* If variable's type was invalidly declared, just ignore it. */
4252
4253 type = TREE_TYPE (decl);
4254 if (TREE_CODE (type) == ERROR_MARK)
4255 return;
4256
4257 /* Digest the specified initializer into an expression. */
4258
4259 value = digest_init (type, init, true, TREE_STATIC (decl));
4260
4261 /* Store the expression if valid; else report error. */
4262
4263 if (!in_system_header
4264 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4265 warning (OPT_Wtraditional, "traditional C rejects automatic "
4266 "aggregate initialization");
4267
4268 DECL_INITIAL (decl) = value;
4269
4270 /* ANSI wants warnings about out-of-range constant initializers. */
4271 STRIP_TYPE_NOPS (value);
4272 constant_expression_warning (value);
4273
4274 /* Check if we need to set array size from compound literal size. */
4275 if (TREE_CODE (type) == ARRAY_TYPE
4276 && TYPE_DOMAIN (type) == 0
4277 && value != error_mark_node)
4278 {
4279 tree inside_init = init;
4280
4281 STRIP_TYPE_NOPS (inside_init);
4282 inside_init = fold (inside_init);
4283
4284 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4285 {
4286 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4287
4288 if (TYPE_DOMAIN (TREE_TYPE (decl)))
4289 {
4290 /* For int foo[] = (int [3]){1}; we need to set array size
4291 now since later on array initializer will be just the
4292 brace enclosed list of the compound literal. */
4293 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (decl));
4294 layout_type (type);
4295 layout_decl (decl, 0);
4296 }
4297 }
4298 }
4299 }
4300 \f
4301 /* Methods for storing and printing names for error messages. */
4302
4303 /* Implement a spelling stack that allows components of a name to be pushed
4304 and popped. Each element on the stack is this structure. */
4305
4306 struct spelling
4307 {
4308 int kind;
4309 union
4310 {
4311 unsigned HOST_WIDE_INT i;
4312 const char *s;
4313 } u;
4314 };
4315
4316 #define SPELLING_STRING 1
4317 #define SPELLING_MEMBER 2
4318 #define SPELLING_BOUNDS 3
4319
4320 static struct spelling *spelling; /* Next stack element (unused). */
4321 static struct spelling *spelling_base; /* Spelling stack base. */
4322 static int spelling_size; /* Size of the spelling stack. */
4323
4324 /* Macros to save and restore the spelling stack around push_... functions.
4325 Alternative to SAVE_SPELLING_STACK. */
4326
4327 #define SPELLING_DEPTH() (spelling - spelling_base)
4328 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4329
4330 /* Push an element on the spelling stack with type KIND and assign VALUE
4331 to MEMBER. */
4332
4333 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4334 { \
4335 int depth = SPELLING_DEPTH (); \
4336 \
4337 if (depth >= spelling_size) \
4338 { \
4339 spelling_size += 10; \
4340 spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
4341 spelling_size); \
4342 RESTORE_SPELLING_DEPTH (depth); \
4343 } \
4344 \
4345 spelling->kind = (KIND); \
4346 spelling->MEMBER = (VALUE); \
4347 spelling++; \
4348 }
4349
4350 /* Push STRING on the stack. Printed literally. */
4351
4352 static void
4353 push_string (const char *string)
4354 {
4355 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4356 }
4357
4358 /* Push a member name on the stack. Printed as '.' STRING. */
4359
4360 static void
4361 push_member_name (tree decl)
4362 {
4363 const char *const string
4364 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4365 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4366 }
4367
4368 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4369
4370 static void
4371 push_array_bounds (unsigned HOST_WIDE_INT bounds)
4372 {
4373 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4374 }
4375
4376 /* Compute the maximum size in bytes of the printed spelling. */
4377
4378 static int
4379 spelling_length (void)
4380 {
4381 int size = 0;
4382 struct spelling *p;
4383
4384 for (p = spelling_base; p < spelling; p++)
4385 {
4386 if (p->kind == SPELLING_BOUNDS)
4387 size += 25;
4388 else
4389 size += strlen (p->u.s) + 1;
4390 }
4391
4392 return size;
4393 }
4394
4395 /* Print the spelling to BUFFER and return it. */
4396
4397 static char *
4398 print_spelling (char *buffer)
4399 {
4400 char *d = buffer;
4401 struct spelling *p;
4402
4403 for (p = spelling_base; p < spelling; p++)
4404 if (p->kind == SPELLING_BOUNDS)
4405 {
4406 sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4407 d += strlen (d);
4408 }
4409 else
4410 {
4411 const char *s;
4412 if (p->kind == SPELLING_MEMBER)
4413 *d++ = '.';
4414 for (s = p->u.s; (*d = *s++); d++)
4415 ;
4416 }
4417 *d++ = '\0';
4418 return buffer;
4419 }
4420
4421 /* Issue an error message for a bad initializer component.
4422 MSGID identifies the message.
4423 The component name is taken from the spelling stack. */
4424
4425 void
4426 error_init (const char *msgid)
4427 {
4428 char *ofwhat;
4429
4430 error ("%s", _(msgid));
4431 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4432 if (*ofwhat)
4433 error ("(near initialization for %qs)", ofwhat);
4434 }
4435
4436 /* Issue a pedantic warning for a bad initializer component.
4437 MSGID identifies the message.
4438 The component name is taken from the spelling stack. */
4439
4440 void
4441 pedwarn_init (const char *msgid)
4442 {
4443 char *ofwhat;
4444
4445 pedwarn ("%s", _(msgid));
4446 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4447 if (*ofwhat)
4448 pedwarn ("(near initialization for %qs)", ofwhat);
4449 }
4450
4451 /* Issue a warning for a bad initializer component.
4452 MSGID identifies the message.
4453 The component name is taken from the spelling stack. */
4454
4455 static void
4456 warning_init (const char *msgid)
4457 {
4458 char *ofwhat;
4459
4460 warning (0, "%s", _(msgid));
4461 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4462 if (*ofwhat)
4463 warning (0, "(near initialization for %qs)", ofwhat);
4464 }
4465 \f
4466 /* If TYPE is an array type and EXPR is a parenthesized string
4467 constant, warn if pedantic that EXPR is being used to initialize an
4468 object of type TYPE. */
4469
4470 void
4471 maybe_warn_string_init (tree type, struct c_expr expr)
4472 {
4473 if (pedantic
4474 && TREE_CODE (type) == ARRAY_TYPE
4475 && TREE_CODE (expr.value) == STRING_CST
4476 && expr.original_code != STRING_CST)
4477 pedwarn_init ("array initialized from parenthesized string constant");
4478 }
4479
4480 /* Digest the parser output INIT as an initializer for type TYPE.
4481 Return a C expression of type TYPE to represent the initial value.
4482
4483 If INIT is a string constant, STRICT_STRING is true if it is
4484 unparenthesized or we should not warn here for it being parenthesized.
4485 For other types of INIT, STRICT_STRING is not used.
4486
4487 REQUIRE_CONSTANT requests an error if non-constant initializers or
4488 elements are seen. */
4489
4490 static tree
4491 digest_init (tree type, tree init, bool strict_string, int require_constant)
4492 {
4493 enum tree_code code = TREE_CODE (type);
4494 tree inside_init = init;
4495
4496 if (type == error_mark_node
4497 || !init
4498 || init == error_mark_node
4499 || TREE_TYPE (init) == error_mark_node)
4500 return error_mark_node;
4501
4502 STRIP_TYPE_NOPS (inside_init);
4503
4504 inside_init = fold (inside_init);
4505
4506 /* Initialization of an array of chars from a string constant
4507 optionally enclosed in braces. */
4508
4509 if (code == ARRAY_TYPE && inside_init
4510 && TREE_CODE (inside_init) == STRING_CST)
4511 {
4512 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4513 /* Note that an array could be both an array of character type
4514 and an array of wchar_t if wchar_t is signed char or unsigned
4515 char. */
4516 bool char_array = (typ1 == char_type_node
4517 || typ1 == signed_char_type_node
4518 || typ1 == unsigned_char_type_node);
4519 bool wchar_array = !!comptypes (typ1, wchar_type_node);
4520 if (char_array || wchar_array)
4521 {
4522 struct c_expr expr;
4523 bool char_string;
4524 expr.value = inside_init;
4525 expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4526 maybe_warn_string_init (type, expr);
4527
4528 char_string
4529 = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4530 == char_type_node);
4531
4532 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4533 TYPE_MAIN_VARIANT (type)))
4534 return inside_init;
4535
4536 if (!wchar_array && !char_string)
4537 {
4538 error_init ("char-array initialized from wide string");
4539 return error_mark_node;
4540 }
4541 if (char_string && !char_array)
4542 {
4543 error_init ("wchar_t-array initialized from non-wide string");
4544 return error_mark_node;
4545 }
4546
4547 TREE_TYPE (inside_init) = type;
4548 if (TYPE_DOMAIN (type) != 0
4549 && TYPE_SIZE (type) != 0
4550 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4551 /* Subtract 1 (or sizeof (wchar_t))
4552 because it's ok to ignore the terminating null char
4553 that is counted in the length of the constant. */
4554 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4555 TREE_STRING_LENGTH (inside_init)
4556 - ((TYPE_PRECISION (typ1)
4557 != TYPE_PRECISION (char_type_node))
4558 ? (TYPE_PRECISION (wchar_type_node)
4559 / BITS_PER_UNIT)
4560 : 1)))
4561 pedwarn_init ("initializer-string for array of chars is too long");
4562
4563 return inside_init;
4564 }
4565 else if (INTEGRAL_TYPE_P (typ1))
4566 {
4567 error_init ("array of inappropriate type initialized "
4568 "from string constant");
4569 return error_mark_node;
4570 }
4571 }
4572
4573 /* Build a VECTOR_CST from a *constant* vector constructor. If the
4574 vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4575 below and handle as a constructor. */
4576 if (code == VECTOR_TYPE
4577 && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4578 && vector_types_convertible_p (TREE_TYPE (inside_init), type)
4579 && TREE_CONSTANT (inside_init))
4580 {
4581 if (TREE_CODE (inside_init) == VECTOR_CST
4582 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4583 TYPE_MAIN_VARIANT (type)))
4584 return inside_init;
4585
4586 if (TREE_CODE (inside_init) == CONSTRUCTOR)
4587 {
4588 unsigned HOST_WIDE_INT ix;
4589 tree value;
4590 bool constant_p = true;
4591
4592 /* Iterate through elements and check if all constructor
4593 elements are *_CSTs. */
4594 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4595 if (!CONSTANT_CLASS_P (value))
4596 {
4597 constant_p = false;
4598 break;
4599 }
4600
4601 if (constant_p)
4602 return build_vector_from_ctor (type,
4603 CONSTRUCTOR_ELTS (inside_init));
4604 }
4605 }
4606
4607 /* Any type can be initialized
4608 from an expression of the same type, optionally with braces. */
4609
4610 if (inside_init && TREE_TYPE (inside_init) != 0
4611 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4612 TYPE_MAIN_VARIANT (type))
4613 || (code == ARRAY_TYPE
4614 && comptypes (TREE_TYPE (inside_init), type))
4615 || (code == VECTOR_TYPE
4616 && comptypes (TREE_TYPE (inside_init), type))
4617 || (code == POINTER_TYPE
4618 && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4619 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4620 TREE_TYPE (type)))))
4621 {
4622 if (code == POINTER_TYPE)
4623 {
4624 if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4625 {
4626 if (TREE_CODE (inside_init) == STRING_CST
4627 || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4628 inside_init = array_to_pointer_conversion (inside_init);
4629 else
4630 {
4631 error_init ("invalid use of non-lvalue array");
4632 return error_mark_node;
4633 }
4634 }
4635 }
4636
4637 if (code == VECTOR_TYPE)
4638 /* Although the types are compatible, we may require a
4639 conversion. */
4640 inside_init = convert (type, inside_init);
4641
4642 if (require_constant && !flag_isoc99
4643 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4644 {
4645 /* As an extension, allow initializing objects with static storage
4646 duration with compound literals (which are then treated just as
4647 the brace enclosed list they contain). */
4648 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4649 inside_init = DECL_INITIAL (decl);
4650 }
4651
4652 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4653 && TREE_CODE (inside_init) != CONSTRUCTOR)
4654 {
4655 error_init ("array initialized from non-constant array expression");
4656 return error_mark_node;
4657 }
4658
4659 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4660 inside_init = decl_constant_value_for_broken_optimization (inside_init);
4661
4662 /* Compound expressions can only occur here if -pedantic or
4663 -pedantic-errors is specified. In the later case, we always want
4664 an error. In the former case, we simply want a warning. */
4665 if (require_constant && pedantic
4666 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4667 {
4668 inside_init
4669 = valid_compound_expr_initializer (inside_init,
4670 TREE_TYPE (inside_init));
4671 if (inside_init == error_mark_node)
4672 error_init ("initializer element is not constant");
4673 else
4674 pedwarn_init ("initializer element is not constant");
4675 if (flag_pedantic_errors)
4676 inside_init = error_mark_node;
4677 }
4678 else if (require_constant
4679 && !initializer_constant_valid_p (inside_init,
4680 TREE_TYPE (inside_init)))
4681 {
4682 error_init ("initializer element is not constant");
4683 inside_init = error_mark_node;
4684 }
4685
4686 /* Added to enable additional -Wmissing-format-attribute warnings. */
4687 if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4688 inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4689 NULL_TREE, 0);
4690 return inside_init;
4691 }
4692
4693 /* Handle scalar types, including conversions. */
4694
4695 if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4696 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4697 || code == VECTOR_TYPE)
4698 {
4699 if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4700 && (TREE_CODE (init) == STRING_CST
4701 || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4702 init = array_to_pointer_conversion (init);
4703 inside_init
4704 = convert_for_assignment (type, init, ic_init,
4705 NULL_TREE, NULL_TREE, 0);
4706
4707 /* Check to see if we have already given an error message. */
4708 if (inside_init == error_mark_node)
4709 ;
4710 else if (require_constant && !TREE_CONSTANT (inside_init))
4711 {
4712 error_init ("initializer element is not constant");
4713 inside_init = error_mark_node;
4714 }
4715 else if (require_constant
4716 && !initializer_constant_valid_p (inside_init,
4717 TREE_TYPE (inside_init)))
4718 {
4719 error_init ("initializer element is not computable at load time");
4720 inside_init = error_mark_node;
4721 }
4722
4723 return inside_init;
4724 }
4725
4726 /* Come here only for records and arrays. */
4727
4728 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4729 {
4730 error_init ("variable-sized object may not be initialized");
4731 return error_mark_node;
4732 }
4733
4734 error_init ("invalid initializer");
4735 return error_mark_node;
4736 }
4737 \f
4738 /* Handle initializers that use braces. */
4739
4740 /* Type of object we are accumulating a constructor for.
4741 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4742 static tree constructor_type;
4743
4744 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4745 left to fill. */
4746 static tree constructor_fields;
4747
4748 /* For an ARRAY_TYPE, this is the specified index
4749 at which to store the next element we get. */
4750 static tree constructor_index;
4751
4752 /* For an ARRAY_TYPE, this is the maximum index. */
4753 static tree constructor_max_index;
4754
4755 /* For a RECORD_TYPE, this is the first field not yet written out. */
4756 static tree constructor_unfilled_fields;
4757
4758 /* For an ARRAY_TYPE, this is the index of the first element
4759 not yet written out. */
4760 static tree constructor_unfilled_index;
4761
4762 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4763 This is so we can generate gaps between fields, when appropriate. */
4764 static tree constructor_bit_index;
4765
4766 /* If we are saving up the elements rather than allocating them,
4767 this is the list of elements so far (in reverse order,
4768 most recent first). */
4769 static VEC(constructor_elt,gc) *constructor_elements;
4770
4771 /* 1 if constructor should be incrementally stored into a constructor chain,
4772 0 if all the elements should be kept in AVL tree. */
4773 static int constructor_incremental;
4774
4775 /* 1 if so far this constructor's elements are all compile-time constants. */
4776 static int constructor_constant;
4777
4778 /* 1 if so far this constructor's elements are all valid address constants. */
4779 static int constructor_simple;
4780
4781 /* 1 if this constructor is erroneous so far. */
4782 static int constructor_erroneous;
4783
4784 /* Structure for managing pending initializer elements, organized as an
4785 AVL tree. */
4786
4787 struct init_node
4788 {
4789 struct init_node *left, *right;
4790 struct init_node *parent;
4791 int balance;
4792 tree purpose;
4793 tree value;
4794 };
4795
4796 /* Tree of pending elements at this constructor level.
4797 These are elements encountered out of order
4798 which belong at places we haven't reached yet in actually
4799 writing the output.
4800 Will never hold tree nodes across GC runs. */
4801 static struct init_node *constructor_pending_elts;
4802
4803 /* The SPELLING_DEPTH of this constructor. */
4804 static int constructor_depth;
4805
4806 /* DECL node for which an initializer is being read.
4807 0 means we are reading a constructor expression
4808 such as (struct foo) {...}. */
4809 static tree constructor_decl;
4810
4811 /* Nonzero if this is an initializer for a top-level decl. */
4812 static int constructor_top_level;
4813
4814 /* Nonzero if there were any member designators in this initializer. */
4815 static int constructor_designated;
4816
4817 /* Nesting depth of designator list. */
4818 static int designator_depth;
4819
4820 /* Nonzero if there were diagnosed errors in this designator list. */
4821 static int designator_erroneous;
4822
4823 \f
4824 /* This stack has a level for each implicit or explicit level of
4825 structuring in the initializer, including the outermost one. It
4826 saves the values of most of the variables above. */
4827
4828 struct constructor_range_stack;
4829
4830 struct constructor_stack
4831 {
4832 struct constructor_stack *next;
4833 tree type;
4834 tree fields;
4835 tree index;
4836 tree max_index;
4837 tree unfilled_index;
4838 tree unfilled_fields;
4839 tree bit_index;
4840 VEC(constructor_elt,gc) *elements;
4841 struct init_node *pending_elts;
4842 int offset;
4843 int depth;
4844 /* If value nonzero, this value should replace the entire
4845 constructor at this level. */
4846 struct c_expr replacement_value;
4847 struct constructor_range_stack *range_stack;
4848 char constant;
4849 char simple;
4850 char implicit;
4851 char erroneous;
4852 char outer;
4853 char incremental;
4854 char designated;
4855 };
4856
4857 static struct constructor_stack *constructor_stack;
4858
4859 /* This stack represents designators from some range designator up to
4860 the last designator in the list. */
4861
4862 struct constructor_range_stack
4863 {
4864 struct constructor_range_stack *next, *prev;
4865 struct constructor_stack *stack;
4866 tree range_start;
4867 tree index;
4868 tree range_end;
4869 tree fields;
4870 };
4871
4872 static struct constructor_range_stack *constructor_range_stack;
4873
4874 /* This stack records separate initializers that are nested.
4875 Nested initializers can't happen in ANSI C, but GNU C allows them
4876 in cases like { ... (struct foo) { ... } ... }. */
4877
4878 struct initializer_stack
4879 {
4880 struct initializer_stack *next;
4881 tree decl;
4882 struct constructor_stack *constructor_stack;
4883 struct constructor_range_stack *constructor_range_stack;
4884 VEC(constructor_elt,gc) *elements;
4885 struct spelling *spelling;
4886 struct spelling *spelling_base;
4887 int spelling_size;
4888 char top_level;
4889 char require_constant_value;
4890 char require_constant_elements;
4891 };
4892
4893 static struct initializer_stack *initializer_stack;
4894 \f
4895 /* Prepare to parse and output the initializer for variable DECL. */
4896
4897 void
4898 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
4899 {
4900 const char *locus;
4901 struct initializer_stack *p = XNEW (struct initializer_stack);
4902
4903 p->decl = constructor_decl;
4904 p->require_constant_value = require_constant_value;
4905 p->require_constant_elements = require_constant_elements;
4906 p->constructor_stack = constructor_stack;
4907 p->constructor_range_stack = constructor_range_stack;
4908 p->elements = constructor_elements;
4909 p->spelling = spelling;
4910 p->spelling_base = spelling_base;
4911 p->spelling_size = spelling_size;
4912 p->top_level = constructor_top_level;
4913 p->next = initializer_stack;
4914 initializer_stack = p;
4915
4916 constructor_decl = decl;
4917 constructor_designated = 0;
4918 constructor_top_level = top_level;
4919
4920 if (decl != 0 && decl != error_mark_node)
4921 {
4922 require_constant_value = TREE_STATIC (decl);
4923 require_constant_elements
4924 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
4925 /* For a scalar, you can always use any value to initialize,
4926 even within braces. */
4927 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
4928 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4929 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
4930 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
4931 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
4932 }
4933 else
4934 {
4935 require_constant_value = 0;
4936 require_constant_elements = 0;
4937 locus = "(anonymous)";
4938 }
4939
4940 constructor_stack = 0;
4941 constructor_range_stack = 0;
4942
4943 missing_braces_mentioned = 0;
4944
4945 spelling_base = 0;
4946 spelling_size = 0;
4947 RESTORE_SPELLING_DEPTH (0);
4948
4949 if (locus)
4950 push_string (locus);
4951 }
4952
4953 void
4954 finish_init (void)
4955 {
4956 struct initializer_stack *p = initializer_stack;
4957
4958 /* Free the whole constructor stack of this initializer. */
4959 while (constructor_stack)
4960 {
4961 struct constructor_stack *q = constructor_stack;
4962 constructor_stack = q->next;
4963 free (q);
4964 }
4965
4966 gcc_assert (!constructor_range_stack);
4967
4968 /* Pop back to the data of the outer initializer (if any). */
4969 free (spelling_base);
4970
4971 constructor_decl = p->decl;
4972 require_constant_value = p->require_constant_value;
4973 require_constant_elements = p->require_constant_elements;
4974 constructor_stack = p->constructor_stack;
4975 constructor_range_stack = p->constructor_range_stack;
4976 constructor_elements = p->elements;
4977 spelling = p->spelling;
4978 spelling_base = p->spelling_base;
4979 spelling_size = p->spelling_size;
4980 constructor_top_level = p->top_level;
4981 initializer_stack = p->next;
4982 free (p);
4983 }
4984 \f
4985 /* Call here when we see the initializer is surrounded by braces.
4986 This is instead of a call to push_init_level;
4987 it is matched by a call to pop_init_level.
4988
4989 TYPE is the type to initialize, for a constructor expression.
4990 For an initializer for a decl, TYPE is zero. */
4991
4992 void
4993 really_start_incremental_init (tree type)
4994 {
4995 struct constructor_stack *p = XNEW (struct constructor_stack);
4996
4997 if (type == 0)
4998 type = TREE_TYPE (constructor_decl);
4999
5000 if (targetm.vector_opaque_p (type))
5001 error ("opaque vector types cannot be initialized");
5002
5003 p->type = constructor_type;
5004 p->fields = constructor_fields;
5005 p->index = constructor_index;
5006 p->max_index = constructor_max_index;
5007 p->unfilled_index = constructor_unfilled_index;
5008 p->unfilled_fields = constructor_unfilled_fields;
5009 p->bit_index = constructor_bit_index;
5010 p->elements = constructor_elements;
5011 p->constant = constructor_constant;
5012 p->simple = constructor_simple;
5013 p->erroneous = constructor_erroneous;
5014 p->pending_elts = constructor_pending_elts;
5015 p->depth = constructor_depth;
5016 p->replacement_value.value = 0;
5017 p->replacement_value.original_code = ERROR_MARK;
5018 p->implicit = 0;
5019 p->range_stack = 0;
5020 p->outer = 0;
5021 p->incremental = constructor_incremental;
5022 p->designated = constructor_designated;
5023 p->next = 0;
5024 constructor_stack = p;
5025
5026 constructor_constant = 1;
5027 constructor_simple = 1;
5028 constructor_depth = SPELLING_DEPTH ();
5029 constructor_elements = 0;
5030 constructor_pending_elts = 0;
5031 constructor_type = type;
5032 constructor_incremental = 1;
5033 constructor_designated = 0;
5034 designator_depth = 0;
5035 designator_erroneous = 0;
5036
5037 if (TREE_CODE (constructor_type) == RECORD_TYPE
5038 || TREE_CODE (constructor_type) == UNION_TYPE)
5039 {
5040 constructor_fields = TYPE_FIELDS (constructor_type);
5041 /* Skip any nameless bit fields at the beginning. */
5042 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5043 && DECL_NAME (constructor_fields) == 0)
5044 constructor_fields = TREE_CHAIN (constructor_fields);
5045
5046 constructor_unfilled_fields = constructor_fields;
5047 constructor_bit_index = bitsize_zero_node;
5048 }
5049 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5050 {
5051 if (TYPE_DOMAIN (constructor_type))
5052 {
5053 constructor_max_index
5054 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5055
5056 /* Detect non-empty initializations of zero-length arrays. */
5057 if (constructor_max_index == NULL_TREE
5058 && TYPE_SIZE (constructor_type))
5059 constructor_max_index = build_int_cst (NULL_TREE, -1);
5060
5061 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5062 to initialize VLAs will cause a proper error; avoid tree
5063 checking errors as well by setting a safe value. */
5064 if (constructor_max_index
5065 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5066 constructor_max_index = build_int_cst (NULL_TREE, -1);
5067
5068 constructor_index
5069 = convert (bitsizetype,
5070 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5071 }
5072 else
5073 {
5074 constructor_index = bitsize_zero_node;
5075 constructor_max_index = NULL_TREE;
5076 }
5077
5078 constructor_unfilled_index = constructor_index;
5079 }
5080 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5081 {
5082 /* Vectors are like simple fixed-size arrays. */
5083 constructor_max_index =
5084 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5085 constructor_index = bitsize_zero_node;
5086 constructor_unfilled_index = constructor_index;
5087 }
5088 else
5089 {
5090 /* Handle the case of int x = {5}; */
5091 constructor_fields = constructor_type;
5092 constructor_unfilled_fields = constructor_type;
5093 }
5094 }
5095 \f
5096 /* Push down into a subobject, for initialization.
5097 If this is for an explicit set of braces, IMPLICIT is 0.
5098 If it is because the next element belongs at a lower level,
5099 IMPLICIT is 1 (or 2 if the push is because of designator list). */
5100
5101 void
5102 push_init_level (int implicit)
5103 {
5104 struct constructor_stack *p;
5105 tree value = NULL_TREE;
5106
5107 /* If we've exhausted any levels that didn't have braces,
5108 pop them now. If implicit == 1, this will have been done in
5109 process_init_element; do not repeat it here because in the case
5110 of excess initializers for an empty aggregate this leads to an
5111 infinite cycle of popping a level and immediately recreating
5112 it. */
5113 if (implicit != 1)
5114 {
5115 while (constructor_stack->implicit)
5116 {
5117 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5118 || TREE_CODE (constructor_type) == UNION_TYPE)
5119 && constructor_fields == 0)
5120 process_init_element (pop_init_level (1));
5121 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5122 && constructor_max_index
5123 && tree_int_cst_lt (constructor_max_index,
5124 constructor_index))
5125 process_init_element (pop_init_level (1));
5126 else
5127 break;
5128 }
5129 }
5130
5131 /* Unless this is an explicit brace, we need to preserve previous
5132 content if any. */
5133 if (implicit)
5134 {
5135 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5136 || TREE_CODE (constructor_type) == UNION_TYPE)
5137 && constructor_fields)
5138 value = find_init_member (constructor_fields);
5139 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5140 value = find_init_member (constructor_index);
5141 }
5142
5143 p = XNEW (struct constructor_stack);
5144 p->type = constructor_type;
5145 p->fields = constructor_fields;
5146 p->index = constructor_index;
5147 p->max_index = constructor_max_index;
5148 p->unfilled_index = constructor_unfilled_index;
5149 p->unfilled_fields = constructor_unfilled_fields;
5150 p->bit_index = constructor_bit_index;
5151 p->elements = constructor_elements;
5152 p->constant = constructor_constant;
5153 p->simple = constructor_simple;
5154 p->erroneous = constructor_erroneous;
5155 p->pending_elts = constructor_pending_elts;
5156 p->depth = constructor_depth;
5157 p->replacement_value.value = 0;
5158 p->replacement_value.original_code = ERROR_MARK;
5159 p->implicit = implicit;
5160 p->outer = 0;
5161 p->incremental = constructor_incremental;
5162 p->designated = constructor_designated;
5163 p->next = constructor_stack;
5164 p->range_stack = 0;
5165 constructor_stack = p;
5166
5167 constructor_constant = 1;
5168 constructor_simple = 1;
5169 constructor_depth = SPELLING_DEPTH ();
5170 constructor_elements = 0;
5171 constructor_incremental = 1;
5172 constructor_designated = 0;
5173 constructor_pending_elts = 0;
5174 if (!implicit)
5175 {
5176 p->range_stack = constructor_range_stack;
5177 constructor_range_stack = 0;
5178 designator_depth = 0;
5179 designator_erroneous = 0;
5180 }
5181
5182 /* Don't die if an entire brace-pair level is superfluous
5183 in the containing level. */
5184 if (constructor_type == 0)
5185 ;
5186 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5187 || TREE_CODE (constructor_type) == UNION_TYPE)
5188 {
5189 /* Don't die if there are extra init elts at the end. */
5190 if (constructor_fields == 0)
5191 constructor_type = 0;
5192 else
5193 {
5194 constructor_type = TREE_TYPE (constructor_fields);
5195 push_member_name (constructor_fields);
5196 constructor_depth++;
5197 }
5198 }
5199 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5200 {
5201 constructor_type = TREE_TYPE (constructor_type);
5202 push_array_bounds (tree_low_cst (constructor_index, 1));
5203 constructor_depth++;
5204 }
5205
5206 if (constructor_type == 0)
5207 {
5208 error_init ("extra brace group at end of initializer");
5209 constructor_fields = 0;
5210 constructor_unfilled_fields = 0;
5211 return;
5212 }
5213
5214 if (value && TREE_CODE (value) == CONSTRUCTOR)
5215 {
5216 constructor_constant = TREE_CONSTANT (value);
5217 constructor_simple = TREE_STATIC (value);
5218 constructor_elements = CONSTRUCTOR_ELTS (value);
5219 if (!VEC_empty (constructor_elt, constructor_elements)
5220 && (TREE_CODE (constructor_type) == RECORD_TYPE
5221 || TREE_CODE (constructor_type) == ARRAY_TYPE))
5222 set_nonincremental_init ();
5223 }
5224
5225 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5226 {
5227 missing_braces_mentioned = 1;
5228 warning_init ("missing braces around initializer");
5229 }
5230
5231 if (TREE_CODE (constructor_type) == RECORD_TYPE
5232 || TREE_CODE (constructor_type) == UNION_TYPE)
5233 {
5234 constructor_fields = TYPE_FIELDS (constructor_type);
5235 /* Skip any nameless bit fields at the beginning. */
5236 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5237 && DECL_NAME (constructor_fields) == 0)
5238 constructor_fields = TREE_CHAIN (constructor_fields);
5239
5240 constructor_unfilled_fields = constructor_fields;
5241 constructor_bit_index = bitsize_zero_node;
5242 }
5243 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5244 {
5245 /* Vectors are like simple fixed-size arrays. */
5246 constructor_max_index =
5247 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5248 constructor_index = convert (bitsizetype, integer_zero_node);
5249 constructor_unfilled_index = constructor_index;
5250 }
5251 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5252 {
5253 if (TYPE_DOMAIN (constructor_type))
5254 {
5255 constructor_max_index
5256 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5257
5258 /* Detect non-empty initializations of zero-length arrays. */
5259 if (constructor_max_index == NULL_TREE
5260 && TYPE_SIZE (constructor_type))
5261 constructor_max_index = build_int_cst (NULL_TREE, -1);
5262
5263 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5264 to initialize VLAs will cause a proper error; avoid tree
5265 checking errors as well by setting a safe value. */
5266 if (constructor_max_index
5267 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5268 constructor_max_index = build_int_cst (NULL_TREE, -1);
5269
5270 constructor_index
5271 = convert (bitsizetype,
5272 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5273 }
5274 else
5275 constructor_index = bitsize_zero_node;
5276
5277 constructor_unfilled_index = constructor_index;
5278 if (value && TREE_CODE (value) == STRING_CST)
5279 {
5280 /* We need to split the char/wchar array into individual
5281 characters, so that we don't have to special case it
5282 everywhere. */
5283 set_nonincremental_init_from_string (value);
5284 }
5285 }
5286 else
5287 {
5288 if (constructor_type != error_mark_node)
5289 warning_init ("braces around scalar initializer");
5290 constructor_fields = constructor_type;
5291 constructor_unfilled_fields = constructor_type;
5292 }
5293 }
5294
5295 /* At the end of an implicit or explicit brace level,
5296 finish up that level of constructor. If a single expression
5297 with redundant braces initialized that level, return the
5298 c_expr structure for that expression. Otherwise, the original_code
5299 element is set to ERROR_MARK.
5300 If we were outputting the elements as they are read, return 0 as the value
5301 from inner levels (process_init_element ignores that),
5302 but return error_mark_node as the value from the outermost level
5303 (that's what we want to put in DECL_INITIAL).
5304 Otherwise, return a CONSTRUCTOR expression as the value. */
5305
5306 struct c_expr
5307 pop_init_level (int implicit)
5308 {
5309 struct constructor_stack *p;
5310 struct c_expr ret;
5311 ret.value = 0;
5312 ret.original_code = ERROR_MARK;
5313
5314 if (implicit == 0)
5315 {
5316 /* When we come to an explicit close brace,
5317 pop any inner levels that didn't have explicit braces. */
5318 while (constructor_stack->implicit)
5319 process_init_element (pop_init_level (1));
5320
5321 gcc_assert (!constructor_range_stack);
5322 }
5323
5324 /* Now output all pending elements. */
5325 constructor_incremental = 1;
5326 output_pending_init_elements (1);
5327
5328 p = constructor_stack;
5329
5330 /* Error for initializing a flexible array member, or a zero-length
5331 array member in an inappropriate context. */
5332 if (constructor_type && constructor_fields
5333 && TREE_CODE (constructor_type) == ARRAY_TYPE
5334 && TYPE_DOMAIN (constructor_type)
5335 && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5336 {
5337 /* Silently discard empty initializations. The parser will
5338 already have pedwarned for empty brackets. */
5339 if (integer_zerop (constructor_unfilled_index))
5340 constructor_type = NULL_TREE;
5341 else
5342 {
5343 gcc_assert (!TYPE_SIZE (constructor_type));
5344
5345 if (constructor_depth > 2)
5346 error_init ("initialization of flexible array member in a nested context");
5347 else if (pedantic)
5348 pedwarn_init ("initialization of a flexible array member");
5349
5350 /* We have already issued an error message for the existence
5351 of a flexible array member not at the end of the structure.
5352 Discard the initializer so that we do not die later. */
5353 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5354 constructor_type = NULL_TREE;
5355 }
5356 }
5357
5358 /* Warn when some struct elements are implicitly initialized to zero. */
5359 if (warn_missing_field_initializers
5360 && constructor_type
5361 && TREE_CODE (constructor_type) == RECORD_TYPE
5362 && constructor_unfilled_fields)
5363 {
5364 /* Do not warn for flexible array members or zero-length arrays. */
5365 while (constructor_unfilled_fields
5366 && (!DECL_SIZE (constructor_unfilled_fields)
5367 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5368 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5369
5370 /* Do not warn if this level of the initializer uses member
5371 designators; it is likely to be deliberate. */
5372 if (constructor_unfilled_fields && !constructor_designated)
5373 {
5374 push_member_name (constructor_unfilled_fields);
5375 warning_init ("missing initializer");
5376 RESTORE_SPELLING_DEPTH (constructor_depth);
5377 }
5378 }
5379
5380 /* Pad out the end of the structure. */
5381 if (p->replacement_value.value)
5382 /* If this closes a superfluous brace pair,
5383 just pass out the element between them. */
5384 ret = p->replacement_value;
5385 else if (constructor_type == 0)
5386 ;
5387 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5388 && TREE_CODE (constructor_type) != UNION_TYPE
5389 && TREE_CODE (constructor_type) != ARRAY_TYPE
5390 && TREE_CODE (constructor_type) != VECTOR_TYPE)
5391 {
5392 /* A nonincremental scalar initializer--just return
5393 the element, after verifying there is just one. */
5394 if (VEC_empty (constructor_elt,constructor_elements))
5395 {
5396 if (!constructor_erroneous)
5397 error_init ("empty scalar initializer");
5398 ret.value = error_mark_node;
5399 }
5400 else if (VEC_length (constructor_elt,constructor_elements) != 1)
5401 {
5402 error_init ("extra elements in scalar initializer");
5403 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5404 }
5405 else
5406 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5407 }
5408 else
5409 {
5410 if (constructor_erroneous)
5411 ret.value = error_mark_node;
5412 else
5413 {
5414 ret.value = build_constructor (constructor_type,
5415 constructor_elements);
5416 if (constructor_constant)
5417 TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5418 if (constructor_constant && constructor_simple)
5419 TREE_STATIC (ret.value) = 1;
5420 }
5421 }
5422
5423 constructor_type = p->type;
5424 constructor_fields = p->fields;
5425 constructor_index = p->index;
5426 constructor_max_index = p->max_index;
5427 constructor_unfilled_index = p->unfilled_index;
5428 constructor_unfilled_fields = p->unfilled_fields;
5429 constructor_bit_index = p->bit_index;
5430 constructor_elements = p->elements;
5431 constructor_constant = p->constant;
5432 constructor_simple = p->simple;
5433 constructor_erroneous = p->erroneous;
5434 constructor_incremental = p->incremental;
5435 constructor_designated = p->designated;
5436 constructor_pending_elts = p->pending_elts;
5437 constructor_depth = p->depth;
5438 if (!p->implicit)
5439 constructor_range_stack = p->range_stack;
5440 RESTORE_SPELLING_DEPTH (constructor_depth);
5441
5442 constructor_stack = p->next;
5443 free (p);
5444
5445 if (ret.value == 0 && constructor_stack == 0)
5446 ret.value = error_mark_node;
5447 return ret;
5448 }
5449
5450 /* Common handling for both array range and field name designators.
5451 ARRAY argument is nonzero for array ranges. Returns zero for success. */
5452
5453 static int
5454 set_designator (int array)
5455 {
5456 tree subtype;
5457 enum tree_code subcode;
5458
5459 /* Don't die if an entire brace-pair level is superfluous
5460 in the containing level. */
5461 if (constructor_type == 0)
5462 return 1;
5463
5464 /* If there were errors in this designator list already, bail out
5465 silently. */
5466 if (designator_erroneous)
5467 return 1;
5468
5469 if (!designator_depth)
5470 {
5471 gcc_assert (!constructor_range_stack);
5472
5473 /* Designator list starts at the level of closest explicit
5474 braces. */
5475 while (constructor_stack->implicit)
5476 process_init_element (pop_init_level (1));
5477 constructor_designated = 1;
5478 return 0;
5479 }
5480
5481 switch (TREE_CODE (constructor_type))
5482 {
5483 case RECORD_TYPE:
5484 case UNION_TYPE:
5485 subtype = TREE_TYPE (constructor_fields);
5486 if (subtype != error_mark_node)
5487 subtype = TYPE_MAIN_VARIANT (subtype);
5488 break;
5489 case ARRAY_TYPE:
5490 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5491 break;
5492 default:
5493 gcc_unreachable ();
5494 }
5495
5496 subcode = TREE_CODE (subtype);
5497 if (array && subcode != ARRAY_TYPE)
5498 {
5499 error_init ("array index in non-array initializer");
5500 return 1;
5501 }
5502 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5503 {
5504 error_init ("field name not in record or union initializer");
5505 return 1;
5506 }
5507
5508 constructor_designated = 1;
5509 push_init_level (2);
5510 return 0;
5511 }
5512
5513 /* If there are range designators in designator list, push a new designator
5514 to constructor_range_stack. RANGE_END is end of such stack range or
5515 NULL_TREE if there is no range designator at this level. */
5516
5517 static void
5518 push_range_stack (tree range_end)
5519 {
5520 struct constructor_range_stack *p;
5521
5522 p = GGC_NEW (struct constructor_range_stack);
5523 p->prev = constructor_range_stack;
5524 p->next = 0;
5525 p->fields = constructor_fields;
5526 p->range_start = constructor_index;
5527 p->index = constructor_index;
5528 p->stack = constructor_stack;
5529 p->range_end = range_end;
5530 if (constructor_range_stack)
5531 constructor_range_stack->next = p;
5532 constructor_range_stack = p;
5533 }
5534
5535 /* Within an array initializer, specify the next index to be initialized.
5536 FIRST is that index. If LAST is nonzero, then initialize a range
5537 of indices, running from FIRST through LAST. */
5538
5539 void
5540 set_init_index (tree first, tree last)
5541 {
5542 if (set_designator (1))
5543 return;
5544
5545 designator_erroneous = 1;
5546
5547 if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5548 || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5549 {
5550 error_init ("array index in initializer not of integer type");
5551 return;
5552 }
5553
5554 if (TREE_CODE (first) != INTEGER_CST)
5555 error_init ("nonconstant array index in initializer");
5556 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5557 error_init ("nonconstant array index in initializer");
5558 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5559 error_init ("array index in non-array initializer");
5560 else if (tree_int_cst_sgn (first) == -1)
5561 error_init ("array index in initializer exceeds array bounds");
5562 else if (constructor_max_index
5563 && tree_int_cst_lt (constructor_max_index, first))
5564 error_init ("array index in initializer exceeds array bounds");
5565 else
5566 {
5567 constructor_index = convert (bitsizetype, first);
5568
5569 if (last)
5570 {
5571 if (tree_int_cst_equal (first, last))
5572 last = 0;
5573 else if (tree_int_cst_lt (last, first))
5574 {
5575 error_init ("empty index range in initializer");
5576 last = 0;
5577 }
5578 else
5579 {
5580 last = convert (bitsizetype, last);
5581 if (constructor_max_index != 0
5582 && tree_int_cst_lt (constructor_max_index, last))
5583 {
5584 error_init ("array index range in initializer exceeds array bounds");
5585 last = 0;
5586 }
5587 }
5588 }
5589
5590 designator_depth++;
5591 designator_erroneous = 0;
5592 if (constructor_range_stack || last)
5593 push_range_stack (last);
5594 }
5595 }
5596
5597 /* Within a struct initializer, specify the next field to be initialized. */
5598
5599 void
5600 set_init_label (tree fieldname)
5601 {
5602 tree tail;
5603
5604 if (set_designator (0))
5605 return;
5606
5607 designator_erroneous = 1;
5608
5609 if (TREE_CODE (constructor_type) != RECORD_TYPE
5610 && TREE_CODE (constructor_type) != UNION_TYPE)
5611 {
5612 error_init ("field name not in record or union initializer");
5613 return;
5614 }
5615
5616 for (tail = TYPE_FIELDS (constructor_type); tail;
5617 tail = TREE_CHAIN (tail))
5618 {
5619 if (DECL_NAME (tail) == fieldname)
5620 break;
5621 }
5622
5623 if (tail == 0)
5624 error ("unknown field %qE specified in initializer", fieldname);
5625 else
5626 {
5627 constructor_fields = tail;
5628 designator_depth++;
5629 designator_erroneous = 0;
5630 if (constructor_range_stack)
5631 push_range_stack (NULL_TREE);
5632 }
5633 }
5634 \f
5635 /* Add a new initializer to the tree of pending initializers. PURPOSE
5636 identifies the initializer, either array index or field in a structure.
5637 VALUE is the value of that index or field. */
5638
5639 static void
5640 add_pending_init (tree purpose, tree value)
5641 {
5642 struct init_node *p, **q, *r;
5643
5644 q = &constructor_pending_elts;
5645 p = 0;
5646
5647 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5648 {
5649 while (*q != 0)
5650 {
5651 p = *q;
5652 if (tree_int_cst_lt (purpose, p->purpose))
5653 q = &p->left;
5654 else if (tree_int_cst_lt (p->purpose, purpose))
5655 q = &p->right;
5656 else
5657 {
5658 if (TREE_SIDE_EFFECTS (p->value))
5659 warning_init ("initialized field with side-effects overwritten");
5660 p->value = value;
5661 return;
5662 }
5663 }
5664 }
5665 else
5666 {
5667 tree bitpos;
5668
5669 bitpos = bit_position (purpose);
5670 while (*q != NULL)
5671 {
5672 p = *q;
5673 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5674 q = &p->left;
5675 else if (p->purpose != purpose)
5676 q = &p->right;
5677 else
5678 {
5679 if (TREE_SIDE_EFFECTS (p->value))
5680 warning_init ("initialized field with side-effects overwritten");
5681 p->value = value;
5682 return;
5683 }
5684 }
5685 }
5686
5687 r = GGC_NEW (struct init_node);
5688 r->purpose = purpose;
5689 r->value = value;
5690
5691 *q = r;
5692 r->parent = p;
5693 r->left = 0;
5694 r->right = 0;
5695 r->balance = 0;
5696
5697 while (p)
5698 {
5699 struct init_node *s;
5700
5701 if (r == p->left)
5702 {
5703 if (p->balance == 0)
5704 p->balance = -1;
5705 else if (p->balance < 0)
5706 {
5707 if (r->balance < 0)
5708 {
5709 /* L rotation. */
5710 p->left = r->right;
5711 if (p->left)
5712 p->left->parent = p;
5713 r->right = p;
5714
5715 p->balance = 0;
5716 r->balance = 0;
5717
5718 s = p->parent;
5719 p->parent = r;
5720 r->parent = s;
5721 if (s)
5722 {
5723 if (s->left == p)
5724 s->left = r;
5725 else
5726 s->right = r;
5727 }
5728 else
5729 constructor_pending_elts = r;
5730 }
5731 else
5732 {
5733 /* LR rotation. */
5734 struct init_node *t = r->right;
5735
5736 r->right = t->left;
5737 if (r->right)
5738 r->right->parent = r;
5739 t->left = r;
5740
5741 p->left = t->right;
5742 if (p->left)
5743 p->left->parent = p;
5744 t->right = p;
5745
5746 p->balance = t->balance < 0;
5747 r->balance = -(t->balance > 0);
5748 t->balance = 0;
5749
5750 s = p->parent;
5751 p->parent = t;
5752 r->parent = t;
5753 t->parent = s;
5754 if (s)
5755 {
5756 if (s->left == p)
5757 s->left = t;
5758 else
5759 s->right = t;
5760 }
5761 else
5762 constructor_pending_elts = t;
5763 }
5764 break;
5765 }
5766 else
5767 {
5768 /* p->balance == +1; growth of left side balances the node. */
5769 p->balance = 0;
5770 break;
5771 }
5772 }
5773 else /* r == p->right */
5774 {
5775 if (p->balance == 0)
5776 /* Growth propagation from right side. */
5777 p->balance++;
5778 else if (p->balance > 0)
5779 {
5780 if (r->balance > 0)
5781 {
5782 /* R rotation. */
5783 p->right = r->left;
5784 if (p->right)
5785 p->right->parent = p;
5786 r->left = p;
5787
5788 p->balance = 0;
5789 r->balance = 0;
5790
5791 s = p->parent;
5792 p->parent = r;
5793 r->parent = s;
5794 if (s)
5795 {
5796 if (s->left == p)
5797 s->left = r;
5798 else
5799 s->right = r;
5800 }
5801 else
5802 constructor_pending_elts = r;
5803 }
5804 else /* r->balance == -1 */
5805 {
5806 /* RL rotation */
5807 struct init_node *t = r->left;
5808
5809 r->left = t->right;
5810 if (r->left)
5811 r->left->parent = r;
5812 t->right = r;
5813
5814 p->right = t->left;
5815 if (p->right)
5816 p->right->parent = p;
5817 t->left = p;
5818
5819 r->balance = (t->balance < 0);
5820 p->balance = -(t->balance > 0);
5821 t->balance = 0;
5822
5823 s = p->parent;
5824 p->parent = t;
5825 r->parent = t;
5826 t->parent = s;
5827 if (s)
5828 {
5829 if (s->left == p)
5830 s->left = t;
5831 else
5832 s->right = t;
5833 }
5834 else
5835 constructor_pending_elts = t;
5836 }
5837 break;
5838 }
5839 else
5840 {
5841 /* p->balance == -1; growth of right side balances the node. */
5842 p->balance = 0;
5843 break;
5844 }
5845 }
5846
5847 r = p;
5848 p = p->parent;
5849 }
5850 }
5851
5852 /* Build AVL tree from a sorted chain. */
5853
5854 static void
5855 set_nonincremental_init (void)
5856 {
5857 unsigned HOST_WIDE_INT ix;
5858 tree index, value;
5859
5860 if (TREE_CODE (constructor_type) != RECORD_TYPE
5861 && TREE_CODE (constructor_type) != ARRAY_TYPE)
5862 return;
5863
5864 FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
5865 add_pending_init (index, value);
5866 constructor_elements = 0;
5867 if (TREE_CODE (constructor_type) == RECORD_TYPE)
5868 {
5869 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
5870 /* Skip any nameless bit fields at the beginning. */
5871 while (constructor_unfilled_fields != 0
5872 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5873 && DECL_NAME (constructor_unfilled_fields) == 0)
5874 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5875
5876 }
5877 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5878 {
5879 if (TYPE_DOMAIN (constructor_type))
5880 constructor_unfilled_index
5881 = convert (bitsizetype,
5882 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5883 else
5884 constructor_unfilled_index = bitsize_zero_node;
5885 }
5886 constructor_incremental = 0;
5887 }
5888
5889 /* Build AVL tree from a string constant. */
5890
5891 static void
5892 set_nonincremental_init_from_string (tree str)
5893 {
5894 tree value, purpose, type;
5895 HOST_WIDE_INT val[2];
5896 const char *p, *end;
5897 int byte, wchar_bytes, charwidth, bitpos;
5898
5899 gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
5900
5901 if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5902 == TYPE_PRECISION (char_type_node))
5903 wchar_bytes = 1;
5904 else
5905 {
5906 gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5907 == TYPE_PRECISION (wchar_type_node));
5908 wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
5909 }
5910 charwidth = TYPE_PRECISION (char_type_node);
5911 type = TREE_TYPE (constructor_type);
5912 p = TREE_STRING_POINTER (str);
5913 end = p + TREE_STRING_LENGTH (str);
5914
5915 for (purpose = bitsize_zero_node;
5916 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
5917 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
5918 {
5919 if (wchar_bytes == 1)
5920 {
5921 val[1] = (unsigned char) *p++;
5922 val[0] = 0;
5923 }
5924 else
5925 {
5926 val[0] = 0;
5927 val[1] = 0;
5928 for (byte = 0; byte < wchar_bytes; byte++)
5929 {
5930 if (BYTES_BIG_ENDIAN)
5931 bitpos = (wchar_bytes - byte - 1) * charwidth;
5932 else
5933 bitpos = byte * charwidth;
5934 val[bitpos < HOST_BITS_PER_WIDE_INT]
5935 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
5936 << (bitpos % HOST_BITS_PER_WIDE_INT);
5937 }
5938 }
5939
5940 if (!TYPE_UNSIGNED (type))
5941 {
5942 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
5943 if (bitpos < HOST_BITS_PER_WIDE_INT)
5944 {
5945 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
5946 {
5947 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
5948 val[0] = -1;
5949 }
5950 }
5951 else if (bitpos == HOST_BITS_PER_WIDE_INT)
5952 {
5953 if (val[1] < 0)
5954 val[0] = -1;
5955 }
5956 else if (val[0] & (((HOST_WIDE_INT) 1)
5957 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
5958 val[0] |= ((HOST_WIDE_INT) -1)
5959 << (bitpos - HOST_BITS_PER_WIDE_INT);
5960 }
5961
5962 value = build_int_cst_wide (type, val[1], val[0]);
5963 add_pending_init (purpose, value);
5964 }
5965
5966 constructor_incremental = 0;
5967 }
5968
5969 /* Return value of FIELD in pending initializer or zero if the field was
5970 not initialized yet. */
5971
5972 static tree
5973 find_init_member (tree field)
5974 {
5975 struct init_node *p;
5976
5977 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5978 {
5979 if (constructor_incremental
5980 && tree_int_cst_lt (field, constructor_unfilled_index))
5981 set_nonincremental_init ();
5982
5983 p = constructor_pending_elts;
5984 while (p)
5985 {
5986 if (tree_int_cst_lt (field, p->purpose))
5987 p = p->left;
5988 else if (tree_int_cst_lt (p->purpose, field))
5989 p = p->right;
5990 else
5991 return p->value;
5992 }
5993 }
5994 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
5995 {
5996 tree bitpos = bit_position (field);
5997
5998 if (constructor_incremental
5999 && (!constructor_unfilled_fields
6000 || tree_int_cst_lt (bitpos,
6001 bit_position (constructor_unfilled_fields))))
6002 set_nonincremental_init ();
6003
6004 p = constructor_pending_elts;
6005 while (p)
6006 {
6007 if (field == p->purpose)
6008 return p->value;
6009 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6010 p = p->left;
6011 else
6012 p = p->right;
6013 }
6014 }
6015 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6016 {
6017 if (!VEC_empty (constructor_elt, constructor_elements)
6018 && (VEC_last (constructor_elt, constructor_elements)->index
6019 == field))
6020 return VEC_last (constructor_elt, constructor_elements)->value;
6021 }
6022 return 0;
6023 }
6024
6025 /* "Output" the next constructor element.
6026 At top level, really output it to assembler code now.
6027 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6028 TYPE is the data type that the containing data type wants here.
6029 FIELD is the field (a FIELD_DECL) or the index that this element fills.
6030 If VALUE is a string constant, STRICT_STRING is true if it is
6031 unparenthesized or we should not warn here for it being parenthesized.
6032 For other types of VALUE, STRICT_STRING is not used.
6033
6034 PENDING if non-nil means output pending elements that belong
6035 right after this element. (PENDING is normally 1;
6036 it is 0 while outputting pending elements, to avoid recursion.) */
6037
6038 static void
6039 output_init_element (tree value, bool strict_string, tree type, tree field,
6040 int pending)
6041 {
6042 constructor_elt *celt;
6043
6044 if (type == error_mark_node || value == error_mark_node)
6045 {
6046 constructor_erroneous = 1;
6047 return;
6048 }
6049 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6050 && (TREE_CODE (value) == STRING_CST
6051 || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6052 && !(TREE_CODE (value) == STRING_CST
6053 && TREE_CODE (type) == ARRAY_TYPE
6054 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6055 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6056 TYPE_MAIN_VARIANT (type)))
6057 value = array_to_pointer_conversion (value);
6058
6059 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6060 && require_constant_value && !flag_isoc99 && pending)
6061 {
6062 /* As an extension, allow initializing objects with static storage
6063 duration with compound literals (which are then treated just as
6064 the brace enclosed list they contain). */
6065 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6066 value = DECL_INITIAL (decl);
6067 }
6068
6069 if (value == error_mark_node)
6070 constructor_erroneous = 1;
6071 else if (!TREE_CONSTANT (value))
6072 constructor_constant = 0;
6073 else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6074 || ((TREE_CODE (constructor_type) == RECORD_TYPE
6075 || TREE_CODE (constructor_type) == UNION_TYPE)
6076 && DECL_C_BIT_FIELD (field)
6077 && TREE_CODE (value) != INTEGER_CST))
6078 constructor_simple = 0;
6079
6080 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6081 {
6082 if (require_constant_value)
6083 {
6084 error_init ("initializer element is not constant");
6085 value = error_mark_node;
6086 }
6087 else if (require_constant_elements)
6088 pedwarn ("initializer element is not computable at load time");
6089 }
6090
6091 /* If this field is empty (and not at the end of structure),
6092 don't do anything other than checking the initializer. */
6093 if (field
6094 && (TREE_TYPE (field) == error_mark_node
6095 || (COMPLETE_TYPE_P (TREE_TYPE (field))
6096 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6097 && (TREE_CODE (constructor_type) == ARRAY_TYPE
6098 || TREE_CHAIN (field)))))
6099 return;
6100
6101 value = digest_init (type, value, strict_string, require_constant_value);
6102 if (value == error_mark_node)
6103 {
6104 constructor_erroneous = 1;
6105 return;
6106 }
6107
6108 /* If this element doesn't come next in sequence,
6109 put it on constructor_pending_elts. */
6110 if (TREE_CODE (constructor_type) == ARRAY_TYPE
6111 && (!constructor_incremental
6112 || !tree_int_cst_equal (field, constructor_unfilled_index)))
6113 {
6114 if (constructor_incremental
6115 && tree_int_cst_lt (field, constructor_unfilled_index))
6116 set_nonincremental_init ();
6117
6118 add_pending_init (field, value);
6119 return;
6120 }
6121 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6122 && (!constructor_incremental
6123 || field != constructor_unfilled_fields))
6124 {
6125 /* We do this for records but not for unions. In a union,
6126 no matter which field is specified, it can be initialized
6127 right away since it starts at the beginning of the union. */
6128 if (constructor_incremental)
6129 {
6130 if (!constructor_unfilled_fields)
6131 set_nonincremental_init ();
6132 else
6133 {
6134 tree bitpos, unfillpos;
6135
6136 bitpos = bit_position (field);
6137 unfillpos = bit_position (constructor_unfilled_fields);
6138
6139 if (tree_int_cst_lt (bitpos, unfillpos))
6140 set_nonincremental_init ();
6141 }
6142 }
6143
6144 add_pending_init (field, value);
6145 return;
6146 }
6147 else if (TREE_CODE (constructor_type) == UNION_TYPE
6148 && !VEC_empty (constructor_elt, constructor_elements))
6149 {
6150 if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6151 constructor_elements)->value))
6152 warning_init ("initialized field with side-effects overwritten");
6153
6154 /* We can have just one union field set. */
6155 constructor_elements = 0;
6156 }
6157
6158 /* Otherwise, output this element either to
6159 constructor_elements or to the assembler file. */
6160
6161 celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6162 celt->index = field;
6163 celt->value = value;
6164
6165 /* Advance the variable that indicates sequential elements output. */
6166 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6167 constructor_unfilled_index
6168 = size_binop (PLUS_EXPR, constructor_unfilled_index,
6169 bitsize_one_node);
6170 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6171 {
6172 constructor_unfilled_fields
6173 = TREE_CHAIN (constructor_unfilled_fields);
6174
6175 /* Skip any nameless bit fields. */
6176 while (constructor_unfilled_fields != 0
6177 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6178 && DECL_NAME (constructor_unfilled_fields) == 0)
6179 constructor_unfilled_fields =
6180 TREE_CHAIN (constructor_unfilled_fields);
6181 }
6182 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6183 constructor_unfilled_fields = 0;
6184
6185 /* Now output any pending elements which have become next. */
6186 if (pending)
6187 output_pending_init_elements (0);
6188 }
6189
6190 /* Output any pending elements which have become next.
6191 As we output elements, constructor_unfilled_{fields,index}
6192 advances, which may cause other elements to become next;
6193 if so, they too are output.
6194
6195 If ALL is 0, we return when there are
6196 no more pending elements to output now.
6197
6198 If ALL is 1, we output space as necessary so that
6199 we can output all the pending elements. */
6200
6201 static void
6202 output_pending_init_elements (int all)
6203 {
6204 struct init_node *elt = constructor_pending_elts;
6205 tree next;
6206
6207 retry:
6208
6209 /* Look through the whole pending tree.
6210 If we find an element that should be output now,
6211 output it. Otherwise, set NEXT to the element
6212 that comes first among those still pending. */
6213
6214 next = 0;
6215 while (elt)
6216 {
6217 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6218 {
6219 if (tree_int_cst_equal (elt->purpose,
6220 constructor_unfilled_index))
6221 output_init_element (elt->value, true,
6222 TREE_TYPE (constructor_type),
6223 constructor_unfilled_index, 0);
6224 else if (tree_int_cst_lt (constructor_unfilled_index,
6225 elt->purpose))
6226 {
6227 /* Advance to the next smaller node. */
6228 if (elt->left)
6229 elt = elt->left;
6230 else
6231 {
6232 /* We have reached the smallest node bigger than the
6233 current unfilled index. Fill the space first. */
6234 next = elt->purpose;
6235 break;
6236 }
6237 }
6238 else
6239 {
6240 /* Advance to the next bigger node. */
6241 if (elt->right)
6242 elt = elt->right;
6243 else
6244 {
6245 /* We have reached the biggest node in a subtree. Find
6246 the parent of it, which is the next bigger node. */
6247 while (elt->parent && elt->parent->right == elt)
6248 elt = elt->parent;
6249 elt = elt->parent;
6250 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6251 elt->purpose))
6252 {
6253 next = elt->purpose;
6254 break;
6255 }
6256 }
6257 }
6258 }
6259 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6260 || TREE_CODE (constructor_type) == UNION_TYPE)
6261 {
6262 tree ctor_unfilled_bitpos, elt_bitpos;
6263
6264 /* If the current record is complete we are done. */
6265 if (constructor_unfilled_fields == 0)
6266 break;
6267
6268 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6269 elt_bitpos = bit_position (elt->purpose);
6270 /* We can't compare fields here because there might be empty
6271 fields in between. */
6272 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6273 {
6274 constructor_unfilled_fields = elt->purpose;
6275 output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6276 elt->purpose, 0);
6277 }
6278 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6279 {
6280 /* Advance to the next smaller node. */
6281 if (elt->left)
6282 elt = elt->left;
6283 else
6284 {
6285 /* We have reached the smallest node bigger than the
6286 current unfilled field. Fill the space first. */
6287 next = elt->purpose;
6288 break;
6289 }
6290 }
6291 else
6292 {
6293 /* Advance to the next bigger node. */
6294 if (elt->right)
6295 elt = elt->right;
6296 else
6297 {
6298 /* We have reached the biggest node in a subtree. Find
6299 the parent of it, which is the next bigger node. */
6300 while (elt->parent && elt->parent->right == elt)
6301 elt = elt->parent;
6302 elt = elt->parent;
6303 if (elt
6304 && (tree_int_cst_lt (ctor_unfilled_bitpos,
6305 bit_position (elt->purpose))))
6306 {
6307 next = elt->purpose;
6308 break;
6309 }
6310 }
6311 }
6312 }
6313 }
6314
6315 /* Ordinarily return, but not if we want to output all
6316 and there are elements left. */
6317 if (!(all && next != 0))
6318 return;
6319
6320 /* If it's not incremental, just skip over the gap, so that after
6321 jumping to retry we will output the next successive element. */
6322 if (TREE_CODE (constructor_type) == RECORD_TYPE
6323 || TREE_CODE (constructor_type) == UNION_TYPE)
6324 constructor_unfilled_fields = next;
6325 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6326 constructor_unfilled_index = next;
6327
6328 /* ELT now points to the node in the pending tree with the next
6329 initializer to output. */
6330 goto retry;
6331 }
6332 \f
6333 /* Add one non-braced element to the current constructor level.
6334 This adjusts the current position within the constructor's type.
6335 This may also start or terminate implicit levels
6336 to handle a partly-braced initializer.
6337
6338 Once this has found the correct level for the new element,
6339 it calls output_init_element. */
6340
6341 void
6342 process_init_element (struct c_expr value)
6343 {
6344 tree orig_value = value.value;
6345 int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6346 bool strict_string = value.original_code == STRING_CST;
6347
6348 designator_depth = 0;
6349 designator_erroneous = 0;
6350
6351 /* Handle superfluous braces around string cst as in
6352 char x[] = {"foo"}; */
6353 if (string_flag
6354 && constructor_type
6355 && TREE_CODE (constructor_type) == ARRAY_TYPE
6356 && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6357 && integer_zerop (constructor_unfilled_index))
6358 {
6359 if (constructor_stack->replacement_value.value)
6360 error_init ("excess elements in char array initializer");
6361 constructor_stack->replacement_value = value;
6362 return;
6363 }
6364
6365 if (constructor_stack->replacement_value.value != 0)
6366 {
6367 error_init ("excess elements in struct initializer");
6368 return;
6369 }
6370
6371 /* Ignore elements of a brace group if it is entirely superfluous
6372 and has already been diagnosed. */
6373 if (constructor_type == 0)
6374 return;
6375
6376 /* If we've exhausted any levels that didn't have braces,
6377 pop them now. */
6378 while (constructor_stack->implicit)
6379 {
6380 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6381 || TREE_CODE (constructor_type) == UNION_TYPE)
6382 && constructor_fields == 0)
6383 process_init_element (pop_init_level (1));
6384 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6385 && (constructor_max_index == 0
6386 || tree_int_cst_lt (constructor_max_index,
6387 constructor_index)))
6388 process_init_element (pop_init_level (1));
6389 else
6390 break;
6391 }
6392
6393 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
6394 if (constructor_range_stack)
6395 {
6396 /* If value is a compound literal and we'll be just using its
6397 content, don't put it into a SAVE_EXPR. */
6398 if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6399 || !require_constant_value
6400 || flag_isoc99)
6401 value.value = save_expr (value.value);
6402 }
6403
6404 while (1)
6405 {
6406 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6407 {
6408 tree fieldtype;
6409 enum tree_code fieldcode;
6410
6411 if (constructor_fields == 0)
6412 {
6413 pedwarn_init ("excess elements in struct initializer");
6414 break;
6415 }
6416
6417 fieldtype = TREE_TYPE (constructor_fields);
6418 if (fieldtype != error_mark_node)
6419 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6420 fieldcode = TREE_CODE (fieldtype);
6421
6422 /* Error for non-static initialization of a flexible array member. */
6423 if (fieldcode == ARRAY_TYPE
6424 && !require_constant_value
6425 && TYPE_SIZE (fieldtype) == NULL_TREE
6426 && TREE_CHAIN (constructor_fields) == NULL_TREE)
6427 {
6428 error_init ("non-static initialization of a flexible array member");
6429 break;
6430 }
6431
6432 /* Accept a string constant to initialize a subarray. */
6433 if (value.value != 0
6434 && fieldcode == ARRAY_TYPE
6435 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6436 && string_flag)
6437 value.value = orig_value;
6438 /* Otherwise, if we have come to a subaggregate,
6439 and we don't have an element of its type, push into it. */
6440 else if (value.value != 0
6441 && value.value != error_mark_node
6442 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6443 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6444 || fieldcode == UNION_TYPE))
6445 {
6446 push_init_level (1);
6447 continue;
6448 }
6449
6450 if (value.value)
6451 {
6452 push_member_name (constructor_fields);
6453 output_init_element (value.value, strict_string,
6454 fieldtype, constructor_fields, 1);
6455 RESTORE_SPELLING_DEPTH (constructor_depth);
6456 }
6457 else
6458 /* Do the bookkeeping for an element that was
6459 directly output as a constructor. */
6460 {
6461 /* For a record, keep track of end position of last field. */
6462 if (DECL_SIZE (constructor_fields))
6463 constructor_bit_index
6464 = size_binop (PLUS_EXPR,
6465 bit_position (constructor_fields),
6466 DECL_SIZE (constructor_fields));
6467
6468 /* If the current field was the first one not yet written out,
6469 it isn't now, so update. */
6470 if (constructor_unfilled_fields == constructor_fields)
6471 {
6472 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6473 /* Skip any nameless bit fields. */
6474 while (constructor_unfilled_fields != 0
6475 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6476 && DECL_NAME (constructor_unfilled_fields) == 0)
6477 constructor_unfilled_fields =
6478 TREE_CHAIN (constructor_unfilled_fields);
6479 }
6480 }
6481
6482 constructor_fields = TREE_CHAIN (constructor_fields);
6483 /* Skip any nameless bit fields at the beginning. */
6484 while (constructor_fields != 0
6485 && DECL_C_BIT_FIELD (constructor_fields)
6486 && DECL_NAME (constructor_fields) == 0)
6487 constructor_fields = TREE_CHAIN (constructor_fields);
6488 }
6489 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6490 {
6491 tree fieldtype;
6492 enum tree_code fieldcode;
6493
6494 if (constructor_fields == 0)
6495 {
6496 pedwarn_init ("excess elements in union initializer");
6497 break;
6498 }
6499
6500 fieldtype = TREE_TYPE (constructor_fields);
6501 if (fieldtype != error_mark_node)
6502 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6503 fieldcode = TREE_CODE (fieldtype);
6504
6505 /* Warn that traditional C rejects initialization of unions.
6506 We skip the warning if the value is zero. This is done
6507 under the assumption that the zero initializer in user
6508 code appears conditioned on e.g. __STDC__ to avoid
6509 "missing initializer" warnings and relies on default
6510 initialization to zero in the traditional C case.
6511 We also skip the warning if the initializer is designated,
6512 again on the assumption that this must be conditional on
6513 __STDC__ anyway (and we've already complained about the
6514 member-designator already). */
6515 if (!in_system_header && !constructor_designated
6516 && !(value.value && (integer_zerop (value.value)
6517 || real_zerop (value.value))))
6518 warning (OPT_Wtraditional, "traditional C rejects initialization "
6519 "of unions");
6520
6521 /* Accept a string constant to initialize a subarray. */
6522 if (value.value != 0
6523 && fieldcode == ARRAY_TYPE
6524 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6525 && string_flag)
6526 value.value = orig_value;
6527 /* Otherwise, if we have come to a subaggregate,
6528 and we don't have an element of its type, push into it. */
6529 else if (value.value != 0
6530 && value.value != error_mark_node
6531 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6532 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6533 || fieldcode == UNION_TYPE))
6534 {
6535 push_init_level (1);
6536 continue;
6537 }
6538
6539 if (value.value)
6540 {
6541 push_member_name (constructor_fields);
6542 output_init_element (value.value, strict_string,
6543 fieldtype, constructor_fields, 1);
6544 RESTORE_SPELLING_DEPTH (constructor_depth);
6545 }
6546 else
6547 /* Do the bookkeeping for an element that was
6548 directly output as a constructor. */
6549 {
6550 constructor_bit_index = DECL_SIZE (constructor_fields);
6551 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6552 }
6553
6554 constructor_fields = 0;
6555 }
6556 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6557 {
6558 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6559 enum tree_code eltcode = TREE_CODE (elttype);
6560
6561 /* Accept a string constant to initialize a subarray. */
6562 if (value.value != 0
6563 && eltcode == ARRAY_TYPE
6564 && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6565 && string_flag)
6566 value.value = orig_value;
6567 /* Otherwise, if we have come to a subaggregate,
6568 and we don't have an element of its type, push into it. */
6569 else if (value.value != 0
6570 && value.value != error_mark_node
6571 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6572 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6573 || eltcode == UNION_TYPE))
6574 {
6575 push_init_level (1);
6576 continue;
6577 }
6578
6579 if (constructor_max_index != 0
6580 && (tree_int_cst_lt (constructor_max_index, constructor_index)
6581 || integer_all_onesp (constructor_max_index)))
6582 {
6583 pedwarn_init ("excess elements in array initializer");
6584 break;
6585 }
6586
6587 /* Now output the actual element. */
6588 if (value.value)
6589 {
6590 push_array_bounds (tree_low_cst (constructor_index, 1));
6591 output_init_element (value.value, strict_string,
6592 elttype, constructor_index, 1);
6593 RESTORE_SPELLING_DEPTH (constructor_depth);
6594 }
6595
6596 constructor_index
6597 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6598
6599 if (!value.value)
6600 /* If we are doing the bookkeeping for an element that was
6601 directly output as a constructor, we must update
6602 constructor_unfilled_index. */
6603 constructor_unfilled_index = constructor_index;
6604 }
6605 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6606 {
6607 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6608
6609 /* Do a basic check of initializer size. Note that vectors
6610 always have a fixed size derived from their type. */
6611 if (tree_int_cst_lt (constructor_max_index, constructor_index))
6612 {
6613 pedwarn_init ("excess elements in vector initializer");
6614 break;
6615 }
6616
6617 /* Now output the actual element. */
6618 if (value.value)
6619 output_init_element (value.value, strict_string,
6620 elttype, constructor_index, 1);
6621
6622 constructor_index
6623 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6624
6625 if (!value.value)
6626 /* If we are doing the bookkeeping for an element that was
6627 directly output as a constructor, we must update
6628 constructor_unfilled_index. */
6629 constructor_unfilled_index = constructor_index;
6630 }
6631
6632 /* Handle the sole element allowed in a braced initializer
6633 for a scalar variable. */
6634 else if (constructor_type != error_mark_node
6635 && constructor_fields == 0)
6636 {
6637 pedwarn_init ("excess elements in scalar initializer");
6638 break;
6639 }
6640 else
6641 {
6642 if (value.value)
6643 output_init_element (value.value, strict_string,
6644 constructor_type, NULL_TREE, 1);
6645 constructor_fields = 0;
6646 }
6647
6648 /* Handle range initializers either at this level or anywhere higher
6649 in the designator stack. */
6650 if (constructor_range_stack)
6651 {
6652 struct constructor_range_stack *p, *range_stack;
6653 int finish = 0;
6654
6655 range_stack = constructor_range_stack;
6656 constructor_range_stack = 0;
6657 while (constructor_stack != range_stack->stack)
6658 {
6659 gcc_assert (constructor_stack->implicit);
6660 process_init_element (pop_init_level (1));
6661 }
6662 for (p = range_stack;
6663 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6664 p = p->prev)
6665 {
6666 gcc_assert (constructor_stack->implicit);
6667 process_init_element (pop_init_level (1));
6668 }
6669
6670 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6671 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6672 finish = 1;
6673
6674 while (1)
6675 {
6676 constructor_index = p->index;
6677 constructor_fields = p->fields;
6678 if (finish && p->range_end && p->index == p->range_start)
6679 {
6680 finish = 0;
6681 p->prev = 0;
6682 }
6683 p = p->next;
6684 if (!p)
6685 break;
6686 push_init_level (2);
6687 p->stack = constructor_stack;
6688 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6689 p->index = p->range_start;
6690 }
6691
6692 if (!finish)
6693 constructor_range_stack = range_stack;
6694 continue;
6695 }
6696
6697 break;
6698 }
6699
6700 constructor_range_stack = 0;
6701 }
6702 \f
6703 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
6704 (guaranteed to be 'volatile' or null) and ARGS (represented using
6705 an ASM_EXPR node). */
6706 tree
6707 build_asm_stmt (tree cv_qualifier, tree args)
6708 {
6709 if (!ASM_VOLATILE_P (args) && cv_qualifier)
6710 ASM_VOLATILE_P (args) = 1;
6711 return add_stmt (args);
6712 }
6713
6714 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6715 some INPUTS, and some CLOBBERS. The latter three may be NULL.
6716 SIMPLE indicates whether there was anything at all after the
6717 string in the asm expression -- asm("blah") and asm("blah" : )
6718 are subtly different. We use a ASM_EXPR node to represent this. */
6719 tree
6720 build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6721 bool simple)
6722 {
6723 tree tail;
6724 tree args;
6725 int i;
6726 const char *constraint;
6727 const char **oconstraints;
6728 bool allows_mem, allows_reg, is_inout;
6729 int ninputs, noutputs;
6730
6731 ninputs = list_length (inputs);
6732 noutputs = list_length (outputs);
6733 oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6734
6735 string = resolve_asm_operand_names (string, outputs, inputs);
6736
6737 /* Remove output conversions that change the type but not the mode. */
6738 for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6739 {
6740 tree output = TREE_VALUE (tail);
6741
6742 /* ??? Really, this should not be here. Users should be using a
6743 proper lvalue, dammit. But there's a long history of using casts
6744 in the output operands. In cases like longlong.h, this becomes a
6745 primitive form of typechecking -- if the cast can be removed, then
6746 the output operand had a type of the proper width; otherwise we'll
6747 get an error. Gross, but ... */
6748 STRIP_NOPS (output);
6749
6750 if (!lvalue_or_else (output, lv_asm))
6751 output = error_mark_node;
6752
6753 if (output != error_mark_node
6754 && (TREE_READONLY (output)
6755 || TYPE_READONLY (TREE_TYPE (output))
6756 || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6757 || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6758 && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6759 readonly_error (output, lv_asm);
6760
6761 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6762 oconstraints[i] = constraint;
6763
6764 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6765 &allows_mem, &allows_reg, &is_inout))
6766 {
6767 /* If the operand is going to end up in memory,
6768 mark it addressable. */
6769 if (!allows_reg && !c_mark_addressable (output))
6770 output = error_mark_node;
6771 }
6772 else
6773 output = error_mark_node;
6774
6775 TREE_VALUE (tail) = output;
6776 }
6777
6778 for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6779 {
6780 tree input;
6781
6782 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6783 input = TREE_VALUE (tail);
6784
6785 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6786 oconstraints, &allows_mem, &allows_reg))
6787 {
6788 /* If the operand is going to end up in memory,
6789 mark it addressable. */
6790 if (!allows_reg && allows_mem)
6791 {
6792 /* Strip the nops as we allow this case. FIXME, this really
6793 should be rejected or made deprecated. */
6794 STRIP_NOPS (input);
6795 if (!c_mark_addressable (input))
6796 input = error_mark_node;
6797 }
6798 }
6799 else
6800 input = error_mark_node;
6801
6802 TREE_VALUE (tail) = input;
6803 }
6804
6805 args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6806
6807 /* asm statements without outputs, including simple ones, are treated
6808 as volatile. */
6809 ASM_INPUT_P (args) = simple;
6810 ASM_VOLATILE_P (args) = (noutputs == 0);
6811
6812 return args;
6813 }
6814 \f
6815 /* Generate a goto statement to LABEL. */
6816
6817 tree
6818 c_finish_goto_label (tree label)
6819 {
6820 tree decl = lookup_label (label);
6821 if (!decl)
6822 return NULL_TREE;
6823
6824 if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6825 {
6826 error ("jump into statement expression");
6827 return NULL_TREE;
6828 }
6829
6830 if (C_DECL_UNJUMPABLE_VM (decl))
6831 {
6832 error ("jump into scope of identifier with variably modified type");
6833 return NULL_TREE;
6834 }
6835
6836 if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6837 {
6838 /* No jump from outside this statement expression context, so
6839 record that there is a jump from within this context. */
6840 struct c_label_list *nlist;
6841 nlist = XOBNEW (&parser_obstack, struct c_label_list);
6842 nlist->next = label_context_stack_se->labels_used;
6843 nlist->label = decl;
6844 label_context_stack_se->labels_used = nlist;
6845 }
6846
6847 if (!C_DECL_UNDEFINABLE_VM (decl))
6848 {
6849 /* No jump from outside this context context of identifiers with
6850 variably modified type, so record that there is a jump from
6851 within this context. */
6852 struct c_label_list *nlist;
6853 nlist = XOBNEW (&parser_obstack, struct c_label_list);
6854 nlist->next = label_context_stack_vm->labels_used;
6855 nlist->label = decl;
6856 label_context_stack_vm->labels_used = nlist;
6857 }
6858
6859 TREE_USED (decl) = 1;
6860 return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6861 }
6862
6863 /* Generate a computed goto statement to EXPR. */
6864
6865 tree
6866 c_finish_goto_ptr (tree expr)
6867 {
6868 if (pedantic)
6869 pedwarn ("ISO C forbids %<goto *expr;%>");
6870 expr = convert (ptr_type_node, expr);
6871 return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
6872 }
6873
6874 /* Generate a C `return' statement. RETVAL is the expression for what
6875 to return, or a null pointer for `return;' with no value. */
6876
6877 tree
6878 c_finish_return (tree retval)
6879 {
6880 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
6881 bool no_warning = false;
6882
6883 if (TREE_THIS_VOLATILE (current_function_decl))
6884 warning (0, "function declared %<noreturn%> has a %<return%> statement");
6885
6886 if (!retval)
6887 {
6888 current_function_returns_null = 1;
6889 if ((warn_return_type || flag_isoc99)
6890 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6891 {
6892 pedwarn_c99 ("%<return%> with no value, in "
6893 "function returning non-void");
6894 no_warning = true;
6895 }
6896 }
6897 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6898 {
6899 current_function_returns_null = 1;
6900 if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6901 pedwarn ("%<return%> with a value, in function returning void");
6902 }
6903 else
6904 {
6905 tree t = convert_for_assignment (valtype, retval, ic_return,
6906 NULL_TREE, NULL_TREE, 0);
6907 tree res = DECL_RESULT (current_function_decl);
6908 tree inner;
6909
6910 current_function_returns_value = 1;
6911 if (t == error_mark_node)
6912 return NULL_TREE;
6913
6914 inner = t = convert (TREE_TYPE (res), t);
6915
6916 /* Strip any conversions, additions, and subtractions, and see if
6917 we are returning the address of a local variable. Warn if so. */
6918 while (1)
6919 {
6920 switch (TREE_CODE (inner))
6921 {
6922 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
6923 case PLUS_EXPR:
6924 inner = TREE_OPERAND (inner, 0);
6925 continue;
6926
6927 case MINUS_EXPR:
6928 /* If the second operand of the MINUS_EXPR has a pointer
6929 type (or is converted from it), this may be valid, so
6930 don't give a warning. */
6931 {
6932 tree op1 = TREE_OPERAND (inner, 1);
6933
6934 while (!POINTER_TYPE_P (TREE_TYPE (op1))
6935 && (TREE_CODE (op1) == NOP_EXPR
6936 || TREE_CODE (op1) == NON_LVALUE_EXPR
6937 || TREE_CODE (op1) == CONVERT_EXPR))
6938 op1 = TREE_OPERAND (op1, 0);
6939
6940 if (POINTER_TYPE_P (TREE_TYPE (op1)))
6941 break;
6942
6943 inner = TREE_OPERAND (inner, 0);
6944 continue;
6945 }
6946
6947 case ADDR_EXPR:
6948 inner = TREE_OPERAND (inner, 0);
6949
6950 while (REFERENCE_CLASS_P (inner)
6951 && TREE_CODE (inner) != INDIRECT_REF)
6952 inner = TREE_OPERAND (inner, 0);
6953
6954 if (DECL_P (inner)
6955 && !DECL_EXTERNAL (inner)
6956 && !TREE_STATIC (inner)
6957 && DECL_CONTEXT (inner) == current_function_decl)
6958 warning (0, "function returns address of local variable");
6959 break;
6960
6961 default:
6962 break;
6963 }
6964
6965 break;
6966 }
6967
6968 retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
6969 }
6970
6971 ret_stmt = build_stmt (RETURN_EXPR, retval);
6972 TREE_NO_WARNING (ret_stmt) |= no_warning;
6973 return add_stmt (ret_stmt);
6974 }
6975 \f
6976 struct c_switch {
6977 /* The SWITCH_EXPR being built. */
6978 tree switch_expr;
6979
6980 /* The original type of the testing expression, i.e. before the
6981 default conversion is applied. */
6982 tree orig_type;
6983
6984 /* A splay-tree mapping the low element of a case range to the high
6985 element, or NULL_TREE if there is no high element. Used to
6986 determine whether or not a new case label duplicates an old case
6987 label. We need a tree, rather than simply a hash table, because
6988 of the GNU case range extension. */
6989 splay_tree cases;
6990
6991 /* Number of nested statement expressions within this switch
6992 statement; if nonzero, case and default labels may not
6993 appear. */
6994 unsigned int blocked_stmt_expr;
6995
6996 /* Scope of outermost declarations of identifiers with variably
6997 modified type within this switch statement; if nonzero, case and
6998 default labels may not appear. */
6999 unsigned int blocked_vm;
7000
7001 /* The next node on the stack. */
7002 struct c_switch *next;
7003 };
7004
7005 /* A stack of the currently active switch statements. The innermost
7006 switch statement is on the top of the stack. There is no need to
7007 mark the stack for garbage collection because it is only active
7008 during the processing of the body of a function, and we never
7009 collect at that point. */
7010
7011 struct c_switch *c_switch_stack;
7012
7013 /* Start a C switch statement, testing expression EXP. Return the new
7014 SWITCH_EXPR. */
7015
7016 tree
7017 c_start_case (tree exp)
7018 {
7019 enum tree_code code;
7020 tree type, orig_type = error_mark_node;
7021 struct c_switch *cs;
7022
7023 if (exp != error_mark_node)
7024 {
7025 code = TREE_CODE (TREE_TYPE (exp));
7026 orig_type = TREE_TYPE (exp);
7027
7028 if (!INTEGRAL_TYPE_P (orig_type)
7029 && code != ERROR_MARK)
7030 {
7031 error ("switch quantity not an integer");
7032 exp = integer_zero_node;
7033 orig_type = error_mark_node;
7034 }
7035 else
7036 {
7037 type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
7038
7039 if (!in_system_header
7040 && (type == long_integer_type_node
7041 || type == long_unsigned_type_node))
7042 warning (OPT_Wtraditional, "%<long%> switch expression not "
7043 "converted to %<int%> in ISO C");
7044
7045 exp = default_conversion (exp);
7046 type = TREE_TYPE (exp);
7047 }
7048 }
7049
7050 /* Add this new SWITCH_EXPR to the stack. */
7051 cs = XNEW (struct c_switch);
7052 cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7053 cs->orig_type = orig_type;
7054 cs->cases = splay_tree_new (case_compare, NULL, NULL);
7055 cs->blocked_stmt_expr = 0;
7056 cs->blocked_vm = 0;
7057 cs->next = c_switch_stack;
7058 c_switch_stack = cs;
7059
7060 return add_stmt (cs->switch_expr);
7061 }
7062
7063 /* Process a case label. */
7064
7065 tree
7066 do_case (tree low_value, tree high_value)
7067 {
7068 tree label = NULL_TREE;
7069
7070 if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7071 && !c_switch_stack->blocked_vm)
7072 {
7073 label = c_add_case_label (c_switch_stack->cases,
7074 SWITCH_COND (c_switch_stack->switch_expr),
7075 c_switch_stack->orig_type,
7076 low_value, high_value);
7077 if (label == error_mark_node)
7078 label = NULL_TREE;
7079 }
7080 else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7081 {
7082 if (low_value)
7083 error ("case label in statement expression not containing "
7084 "enclosing switch statement");
7085 else
7086 error ("%<default%> label in statement expression not containing "
7087 "enclosing switch statement");
7088 }
7089 else if (c_switch_stack && c_switch_stack->blocked_vm)
7090 {
7091 if (low_value)
7092 error ("case label in scope of identifier with variably modified "
7093 "type not containing enclosing switch statement");
7094 else
7095 error ("%<default%> label in scope of identifier with variably "
7096 "modified type not containing enclosing switch statement");
7097 }
7098 else if (low_value)
7099 error ("case label not within a switch statement");
7100 else
7101 error ("%<default%> label not within a switch statement");
7102
7103 return label;
7104 }
7105
7106 /* Finish the switch statement. */
7107
7108 void
7109 c_finish_case (tree body)
7110 {
7111 struct c_switch *cs = c_switch_stack;
7112 location_t switch_location;
7113
7114 SWITCH_BODY (cs->switch_expr) = body;
7115
7116 /* We must not be within a statement expression nested in the switch
7117 at this point; we might, however, be within the scope of an
7118 identifier with variably modified type nested in the switch. */
7119 gcc_assert (!cs->blocked_stmt_expr);
7120
7121 /* Emit warnings as needed. */
7122 if (EXPR_HAS_LOCATION (cs->switch_expr))
7123 switch_location = EXPR_LOCATION (cs->switch_expr);
7124 else
7125 switch_location = input_location;
7126 c_do_switch_warnings (cs->cases, switch_location,
7127 TREE_TYPE (cs->switch_expr),
7128 SWITCH_COND (cs->switch_expr));
7129
7130 /* Pop the stack. */
7131 c_switch_stack = cs->next;
7132 splay_tree_delete (cs->cases);
7133 XDELETE (cs);
7134 }
7135 \f
7136 /* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
7137 THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7138 may be null. NESTED_IF is true if THEN_BLOCK contains another IF
7139 statement, and was not surrounded with parenthesis. */
7140
7141 void
7142 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7143 tree else_block, bool nested_if)
7144 {
7145 tree stmt;
7146
7147 /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
7148 if (warn_parentheses && nested_if && else_block == NULL)
7149 {
7150 tree inner_if = then_block;
7151
7152 /* We know from the grammar productions that there is an IF nested
7153 within THEN_BLOCK. Due to labels and c99 conditional declarations,
7154 it might not be exactly THEN_BLOCK, but should be the last
7155 non-container statement within. */
7156 while (1)
7157 switch (TREE_CODE (inner_if))
7158 {
7159 case COND_EXPR:
7160 goto found;
7161 case BIND_EXPR:
7162 inner_if = BIND_EXPR_BODY (inner_if);
7163 break;
7164 case STATEMENT_LIST:
7165 inner_if = expr_last (then_block);
7166 break;
7167 case TRY_FINALLY_EXPR:
7168 case TRY_CATCH_EXPR:
7169 inner_if = TREE_OPERAND (inner_if, 0);
7170 break;
7171 default:
7172 gcc_unreachable ();
7173 }
7174 found:
7175
7176 if (COND_EXPR_ELSE (inner_if))
7177 warning (OPT_Wparentheses,
7178 "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7179 &if_locus);
7180 }
7181
7182 empty_body_warning (then_block, else_block);
7183
7184 stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7185 SET_EXPR_LOCATION (stmt, if_locus);
7186 add_stmt (stmt);
7187 }
7188
7189 /* Emit a general-purpose loop construct. START_LOCUS is the location of
7190 the beginning of the loop. COND is the loop condition. COND_IS_FIRST
7191 is false for DO loops. INCR is the FOR increment expression. BODY is
7192 the statement controlled by the loop. BLAB is the break label. CLAB is
7193 the continue label. Everything is allowed to be NULL. */
7194
7195 void
7196 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7197 tree blab, tree clab, bool cond_is_first)
7198 {
7199 tree entry = NULL, exit = NULL, t;
7200
7201 /* If the condition is zero don't generate a loop construct. */
7202 if (cond && integer_zerop (cond))
7203 {
7204 if (cond_is_first)
7205 {
7206 t = build_and_jump (&blab);
7207 SET_EXPR_LOCATION (t, start_locus);
7208 add_stmt (t);
7209 }
7210 }
7211 else
7212 {
7213 tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7214
7215 /* If we have an exit condition, then we build an IF with gotos either
7216 out of the loop, or to the top of it. If there's no exit condition,
7217 then we just build a jump back to the top. */
7218 exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7219
7220 if (cond && !integer_nonzerop (cond))
7221 {
7222 /* Canonicalize the loop condition to the end. This means
7223 generating a branch to the loop condition. Reuse the
7224 continue label, if possible. */
7225 if (cond_is_first)
7226 {
7227 if (incr || !clab)
7228 {
7229 entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7230 t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7231 }
7232 else
7233 t = build1 (GOTO_EXPR, void_type_node, clab);
7234 SET_EXPR_LOCATION (t, start_locus);
7235 add_stmt (t);
7236 }
7237
7238 t = build_and_jump (&blab);
7239 exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7240 if (cond_is_first)
7241 SET_EXPR_LOCATION (exit, start_locus);
7242 else
7243 SET_EXPR_LOCATION (exit, input_location);
7244 }
7245
7246 add_stmt (top);
7247 }
7248
7249 if (body)
7250 add_stmt (body);
7251 if (clab)
7252 add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7253 if (incr)
7254 add_stmt (incr);
7255 if (entry)
7256 add_stmt (entry);
7257 if (exit)
7258 add_stmt (exit);
7259 if (blab)
7260 add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7261 }
7262
7263 tree
7264 c_finish_bc_stmt (tree *label_p, bool is_break)
7265 {
7266 bool skip;
7267 tree label = *label_p;
7268
7269 /* In switch statements break is sometimes stylistically used after
7270 a return statement. This can lead to spurious warnings about
7271 control reaching the end of a non-void function when it is
7272 inlined. Note that we are calling block_may_fallthru with
7273 language specific tree nodes; this works because
7274 block_may_fallthru returns true when given something it does not
7275 understand. */
7276 skip = !block_may_fallthru (cur_stmt_list);
7277
7278 if (!label)
7279 {
7280 if (!skip)
7281 *label_p = label = create_artificial_label ();
7282 }
7283 else if (TREE_CODE (label) == LABEL_DECL)
7284 ;
7285 else switch (TREE_INT_CST_LOW (label))
7286 {
7287 case 0:
7288 if (is_break)
7289 error ("break statement not within loop or switch");
7290 else
7291 error ("continue statement not within a loop");
7292 return NULL_TREE;
7293
7294 case 1:
7295 gcc_assert (is_break);
7296 error ("break statement used with OpenMP for loop");
7297 return NULL_TREE;
7298
7299 default:
7300 gcc_unreachable ();
7301 }
7302
7303 if (skip)
7304 return NULL_TREE;
7305
7306 return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7307 }
7308
7309 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
7310
7311 static void
7312 emit_side_effect_warnings (tree expr)
7313 {
7314 if (expr == error_mark_node)
7315 ;
7316 else if (!TREE_SIDE_EFFECTS (expr))
7317 {
7318 if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7319 warning (0, "%Hstatement with no effect",
7320 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7321 }
7322 else if (warn_unused_value)
7323 warn_if_unused_value (expr, input_location);
7324 }
7325
7326 /* Process an expression as if it were a complete statement. Emit
7327 diagnostics, but do not call ADD_STMT. */
7328
7329 tree
7330 c_process_expr_stmt (tree expr)
7331 {
7332 if (!expr)
7333 return NULL_TREE;
7334
7335 if (warn_sequence_point)
7336 verify_sequence_points (expr);
7337
7338 if (TREE_TYPE (expr) != error_mark_node
7339 && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7340 && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7341 error ("expression statement has incomplete type");
7342
7343 /* If we're not processing a statement expression, warn about unused values.
7344 Warnings for statement expressions will be emitted later, once we figure
7345 out which is the result. */
7346 if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7347 && (extra_warnings || warn_unused_value))
7348 emit_side_effect_warnings (expr);
7349
7350 /* If the expression is not of a type to which we cannot assign a line
7351 number, wrap the thing in a no-op NOP_EXPR. */
7352 if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7353 expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7354
7355 if (EXPR_P (expr))
7356 SET_EXPR_LOCATION (expr, input_location);
7357
7358 return expr;
7359 }
7360
7361 /* Emit an expression as a statement. */
7362
7363 tree
7364 c_finish_expr_stmt (tree expr)
7365 {
7366 if (expr)
7367 return add_stmt (c_process_expr_stmt (expr));
7368 else
7369 return NULL;
7370 }
7371
7372 /* Do the opposite and emit a statement as an expression. To begin,
7373 create a new binding level and return it. */
7374
7375 tree
7376 c_begin_stmt_expr (void)
7377 {
7378 tree ret;
7379 struct c_label_context_se *nstack;
7380 struct c_label_list *glist;
7381
7382 /* We must force a BLOCK for this level so that, if it is not expanded
7383 later, there is a way to turn off the entire subtree of blocks that
7384 are contained in it. */
7385 keep_next_level ();
7386 ret = c_begin_compound_stmt (true);
7387 if (c_switch_stack)
7388 {
7389 c_switch_stack->blocked_stmt_expr++;
7390 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7391 }
7392 for (glist = label_context_stack_se->labels_used;
7393 glist != NULL;
7394 glist = glist->next)
7395 {
7396 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7397 }
7398 nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7399 nstack->labels_def = NULL;
7400 nstack->labels_used = NULL;
7401 nstack->next = label_context_stack_se;
7402 label_context_stack_se = nstack;
7403
7404 /* Mark the current statement list as belonging to a statement list. */
7405 STATEMENT_LIST_STMT_EXPR (ret) = 1;
7406
7407 return ret;
7408 }
7409
7410 tree
7411 c_finish_stmt_expr (tree body)
7412 {
7413 tree last, type, tmp, val;
7414 tree *last_p;
7415 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7416
7417 body = c_end_compound_stmt (body, true);
7418 if (c_switch_stack)
7419 {
7420 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7421 c_switch_stack->blocked_stmt_expr--;
7422 }
7423 /* It is no longer possible to jump to labels defined within this
7424 statement expression. */
7425 for (dlist = label_context_stack_se->labels_def;
7426 dlist != NULL;
7427 dlist = dlist->next)
7428 {
7429 C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7430 }
7431 /* It is again possible to define labels with a goto just outside
7432 this statement expression. */
7433 for (glist = label_context_stack_se->next->labels_used;
7434 glist != NULL;
7435 glist = glist->next)
7436 {
7437 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7438 glist_prev = glist;
7439 }
7440 if (glist_prev != NULL)
7441 glist_prev->next = label_context_stack_se->labels_used;
7442 else
7443 label_context_stack_se->next->labels_used
7444 = label_context_stack_se->labels_used;
7445 label_context_stack_se = label_context_stack_se->next;
7446
7447 /* Locate the last statement in BODY. See c_end_compound_stmt
7448 about always returning a BIND_EXPR. */
7449 last_p = &BIND_EXPR_BODY (body);
7450 last = BIND_EXPR_BODY (body);
7451
7452 continue_searching:
7453 if (TREE_CODE (last) == STATEMENT_LIST)
7454 {
7455 tree_stmt_iterator i;
7456
7457 /* This can happen with degenerate cases like ({ }). No value. */
7458 if (!TREE_SIDE_EFFECTS (last))
7459 return body;
7460
7461 /* If we're supposed to generate side effects warnings, process
7462 all of the statements except the last. */
7463 if (extra_warnings || warn_unused_value)
7464 {
7465 for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7466 emit_side_effect_warnings (tsi_stmt (i));
7467 }
7468 else
7469 i = tsi_last (last);
7470 last_p = tsi_stmt_ptr (i);
7471 last = *last_p;
7472 }
7473
7474 /* If the end of the list is exception related, then the list was split
7475 by a call to push_cleanup. Continue searching. */
7476 if (TREE_CODE (last) == TRY_FINALLY_EXPR
7477 || TREE_CODE (last) == TRY_CATCH_EXPR)
7478 {
7479 last_p = &TREE_OPERAND (last, 0);
7480 last = *last_p;
7481 goto continue_searching;
7482 }
7483
7484 /* In the case that the BIND_EXPR is not necessary, return the
7485 expression out from inside it. */
7486 if (last == error_mark_node
7487 || (last == BIND_EXPR_BODY (body)
7488 && BIND_EXPR_VARS (body) == NULL))
7489 {
7490 /* Do not warn if the return value of a statement expression is
7491 unused. */
7492 if (EXPR_P (last))
7493 TREE_NO_WARNING (last) = 1;
7494 return last;
7495 }
7496
7497 /* Extract the type of said expression. */
7498 type = TREE_TYPE (last);
7499
7500 /* If we're not returning a value at all, then the BIND_EXPR that
7501 we already have is a fine expression to return. */
7502 if (!type || VOID_TYPE_P (type))
7503 return body;
7504
7505 /* Now that we've located the expression containing the value, it seems
7506 silly to make voidify_wrapper_expr repeat the process. Create a
7507 temporary of the appropriate type and stick it in a TARGET_EXPR. */
7508 tmp = create_tmp_var_raw (type, NULL);
7509
7510 /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
7511 tree_expr_nonnegative_p giving up immediately. */
7512 val = last;
7513 if (TREE_CODE (val) == NOP_EXPR
7514 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7515 val = TREE_OPERAND (val, 0);
7516
7517 *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7518 SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7519
7520 return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7521 }
7522
7523 /* Begin the scope of an identifier of variably modified type, scope
7524 number SCOPE. Jumping from outside this scope to inside it is not
7525 permitted. */
7526
7527 void
7528 c_begin_vm_scope (unsigned int scope)
7529 {
7530 struct c_label_context_vm *nstack;
7531 struct c_label_list *glist;
7532
7533 gcc_assert (scope > 0);
7534 if (c_switch_stack && !c_switch_stack->blocked_vm)
7535 c_switch_stack->blocked_vm = scope;
7536 for (glist = label_context_stack_vm->labels_used;
7537 glist != NULL;
7538 glist = glist->next)
7539 {
7540 C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7541 }
7542 nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7543 nstack->labels_def = NULL;
7544 nstack->labels_used = NULL;
7545 nstack->scope = scope;
7546 nstack->next = label_context_stack_vm;
7547 label_context_stack_vm = nstack;
7548 }
7549
7550 /* End a scope which may contain identifiers of variably modified
7551 type, scope number SCOPE. */
7552
7553 void
7554 c_end_vm_scope (unsigned int scope)
7555 {
7556 if (label_context_stack_vm == NULL)
7557 return;
7558 if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7559 c_switch_stack->blocked_vm = 0;
7560 /* We may have a number of nested scopes of identifiers with
7561 variably modified type, all at this depth. Pop each in turn. */
7562 while (label_context_stack_vm->scope == scope)
7563 {
7564 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7565
7566 /* It is no longer possible to jump to labels defined within this
7567 scope. */
7568 for (dlist = label_context_stack_vm->labels_def;
7569 dlist != NULL;
7570 dlist = dlist->next)
7571 {
7572 C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7573 }
7574 /* It is again possible to define labels with a goto just outside
7575 this scope. */
7576 for (glist = label_context_stack_vm->next->labels_used;
7577 glist != NULL;
7578 glist = glist->next)
7579 {
7580 C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7581 glist_prev = glist;
7582 }
7583 if (glist_prev != NULL)
7584 glist_prev->next = label_context_stack_vm->labels_used;
7585 else
7586 label_context_stack_vm->next->labels_used
7587 = label_context_stack_vm->labels_used;
7588 label_context_stack_vm = label_context_stack_vm->next;
7589 }
7590 }
7591 \f
7592 /* Begin and end compound statements. This is as simple as pushing
7593 and popping new statement lists from the tree. */
7594
7595 tree
7596 c_begin_compound_stmt (bool do_scope)
7597 {
7598 tree stmt = push_stmt_list ();
7599 if (do_scope)
7600 push_scope ();
7601 return stmt;
7602 }
7603
7604 tree
7605 c_end_compound_stmt (tree stmt, bool do_scope)
7606 {
7607 tree block = NULL;
7608
7609 if (do_scope)
7610 {
7611 if (c_dialect_objc ())
7612 objc_clear_super_receiver ();
7613 block = pop_scope ();
7614 }
7615
7616 stmt = pop_stmt_list (stmt);
7617 stmt = c_build_bind_expr (block, stmt);
7618
7619 /* If this compound statement is nested immediately inside a statement
7620 expression, then force a BIND_EXPR to be created. Otherwise we'll
7621 do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
7622 STATEMENT_LISTs merge, and thus we can lose track of what statement
7623 was really last. */
7624 if (cur_stmt_list
7625 && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7626 && TREE_CODE (stmt) != BIND_EXPR)
7627 {
7628 stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7629 TREE_SIDE_EFFECTS (stmt) = 1;
7630 }
7631
7632 return stmt;
7633 }
7634
7635 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
7636 when the current scope is exited. EH_ONLY is true when this is not
7637 meant to apply to normal control flow transfer. */
7638
7639 void
7640 push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7641 {
7642 enum tree_code code;
7643 tree stmt, list;
7644 bool stmt_expr;
7645
7646 code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7647 stmt = build_stmt (code, NULL, cleanup);
7648 add_stmt (stmt);
7649 stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7650 list = push_stmt_list ();
7651 TREE_OPERAND (stmt, 0) = list;
7652 STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7653 }
7654 \f
7655 /* Build a binary-operation expression without default conversions.
7656 CODE is the kind of expression to build.
7657 This function differs from `build' in several ways:
7658 the data type of the result is computed and recorded in it,
7659 warnings are generated if arg data types are invalid,
7660 special handling for addition and subtraction of pointers is known,
7661 and some optimization is done (operations on narrow ints
7662 are done in the narrower type when that gives the same result).
7663 Constant folding is also done before the result is returned.
7664
7665 Note that the operands will never have enumeral types, or function
7666 or array types, because either they will have the default conversions
7667 performed or they have both just been converted to some other type in which
7668 the arithmetic is to be done. */
7669
7670 tree
7671 build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7672 int convert_p)
7673 {
7674 tree type0, type1;
7675 enum tree_code code0, code1;
7676 tree op0, op1;
7677 const char *invalid_op_diag;
7678
7679 /* Expression code to give to the expression when it is built.
7680 Normally this is CODE, which is what the caller asked for,
7681 but in some special cases we change it. */
7682 enum tree_code resultcode = code;
7683
7684 /* Data type in which the computation is to be performed.
7685 In the simplest cases this is the common type of the arguments. */
7686 tree result_type = NULL;
7687
7688 /* Nonzero means operands have already been type-converted
7689 in whatever way is necessary.
7690 Zero means they need to be converted to RESULT_TYPE. */
7691 int converted = 0;
7692
7693 /* Nonzero means create the expression with this type, rather than
7694 RESULT_TYPE. */
7695 tree build_type = 0;
7696
7697 /* Nonzero means after finally constructing the expression
7698 convert it to this type. */
7699 tree final_type = 0;
7700
7701 /* Nonzero if this is an operation like MIN or MAX which can
7702 safely be computed in short if both args are promoted shorts.
7703 Also implies COMMON.
7704 -1 indicates a bitwise operation; this makes a difference
7705 in the exact conditions for when it is safe to do the operation
7706 in a narrower mode. */
7707 int shorten = 0;
7708
7709 /* Nonzero if this is a comparison operation;
7710 if both args are promoted shorts, compare the original shorts.
7711 Also implies COMMON. */
7712 int short_compare = 0;
7713
7714 /* Nonzero if this is a right-shift operation, which can be computed on the
7715 original short and then promoted if the operand is a promoted short. */
7716 int short_shift = 0;
7717
7718 /* Nonzero means set RESULT_TYPE to the common type of the args. */
7719 int common = 0;
7720
7721 /* True means types are compatible as far as ObjC is concerned. */
7722 bool objc_ok;
7723
7724 if (convert_p)
7725 {
7726 op0 = default_conversion (orig_op0);
7727 op1 = default_conversion (orig_op1);
7728 }
7729 else
7730 {
7731 op0 = orig_op0;
7732 op1 = orig_op1;
7733 }
7734
7735 type0 = TREE_TYPE (op0);
7736 type1 = TREE_TYPE (op1);
7737
7738 /* The expression codes of the data types of the arguments tell us
7739 whether the arguments are integers, floating, pointers, etc. */
7740 code0 = TREE_CODE (type0);
7741 code1 = TREE_CODE (type1);
7742
7743 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
7744 STRIP_TYPE_NOPS (op0);
7745 STRIP_TYPE_NOPS (op1);
7746
7747 /* If an error was already reported for one of the arguments,
7748 avoid reporting another error. */
7749
7750 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7751 return error_mark_node;
7752
7753 if ((invalid_op_diag
7754 = targetm.invalid_binary_op (code, type0, type1)))
7755 {
7756 error (invalid_op_diag);
7757 return error_mark_node;
7758 }
7759
7760 objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7761
7762 switch (code)
7763 {
7764 case PLUS_EXPR:
7765 /* Handle the pointer + int case. */
7766 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7767 return pointer_int_sum (PLUS_EXPR, op0, op1);
7768 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7769 return pointer_int_sum (PLUS_EXPR, op1, op0);
7770 else
7771 common = 1;
7772 break;
7773
7774 case MINUS_EXPR:
7775 /* Subtraction of two similar pointers.
7776 We must subtract them as integers, then divide by object size. */
7777 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7778 && comp_target_types (type0, type1))
7779 return pointer_diff (op0, op1);
7780 /* Handle pointer minus int. Just like pointer plus int. */
7781 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7782 return pointer_int_sum (MINUS_EXPR, op0, op1);
7783 else
7784 common = 1;
7785 break;
7786
7787 case MULT_EXPR:
7788 common = 1;
7789 break;
7790
7791 case TRUNC_DIV_EXPR:
7792 case CEIL_DIV_EXPR:
7793 case FLOOR_DIV_EXPR:
7794 case ROUND_DIV_EXPR:
7795 case EXACT_DIV_EXPR:
7796 /* Floating point division by zero is a legitimate way to obtain
7797 infinities and NaNs. */
7798 if (skip_evaluation == 0 && integer_zerop (op1))
7799 warning (OPT_Wdiv_by_zero, "division by zero");
7800
7801 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7802 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7803 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7804 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7805 {
7806 enum tree_code tcode0 = code0, tcode1 = code1;
7807
7808 if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7809 tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7810 if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7811 tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7812
7813 if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7814 resultcode = RDIV_EXPR;
7815 else
7816 /* Although it would be tempting to shorten always here, that
7817 loses on some targets, since the modulo instruction is
7818 undefined if the quotient can't be represented in the
7819 computation mode. We shorten only if unsigned or if
7820 dividing by something we know != -1. */
7821 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7822 || (TREE_CODE (op1) == INTEGER_CST
7823 && !integer_all_onesp (op1)));
7824 common = 1;
7825 }
7826 break;
7827
7828 case BIT_AND_EXPR:
7829 case BIT_IOR_EXPR:
7830 case BIT_XOR_EXPR:
7831 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7832 shorten = -1;
7833 else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7834 common = 1;
7835 break;
7836
7837 case TRUNC_MOD_EXPR:
7838 case FLOOR_MOD_EXPR:
7839 if (skip_evaluation == 0 && integer_zerop (op1))
7840 warning (OPT_Wdiv_by_zero, "division by zero");
7841
7842 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7843 {
7844 /* Although it would be tempting to shorten always here, that loses
7845 on some targets, since the modulo instruction is undefined if the
7846 quotient can't be represented in the computation mode. We shorten
7847 only if unsigned or if dividing by something we know != -1. */
7848 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7849 || (TREE_CODE (op1) == INTEGER_CST
7850 && !integer_all_onesp (op1)));
7851 common = 1;
7852 }
7853 break;
7854
7855 case TRUTH_ANDIF_EXPR:
7856 case TRUTH_ORIF_EXPR:
7857 case TRUTH_AND_EXPR:
7858 case TRUTH_OR_EXPR:
7859 case TRUTH_XOR_EXPR:
7860 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7861 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7862 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
7863 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
7864 {
7865 /* Result of these operations is always an int,
7866 but that does not mean the operands should be
7867 converted to ints! */
7868 result_type = integer_type_node;
7869 op0 = c_common_truthvalue_conversion (op0);
7870 op1 = c_common_truthvalue_conversion (op1);
7871 converted = 1;
7872 }
7873 break;
7874
7875 /* Shift operations: result has same type as first operand;
7876 always convert second operand to int.
7877 Also set SHORT_SHIFT if shifting rightward. */
7878
7879 case RSHIFT_EXPR:
7880 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7881 {
7882 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7883 {
7884 if (tree_int_cst_sgn (op1) < 0)
7885 warning (0, "right shift count is negative");
7886 else
7887 {
7888 if (!integer_zerop (op1))
7889 short_shift = 1;
7890
7891 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7892 warning (0, "right shift count >= width of type");
7893 }
7894 }
7895
7896 /* Use the type of the value to be shifted. */
7897 result_type = type0;
7898 /* Convert the shift-count to an integer, regardless of size
7899 of value being shifted. */
7900 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7901 op1 = convert (integer_type_node, op1);
7902 /* Avoid converting op1 to result_type later. */
7903 converted = 1;
7904 }
7905 break;
7906
7907 case LSHIFT_EXPR:
7908 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7909 {
7910 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7911 {
7912 if (tree_int_cst_sgn (op1) < 0)
7913 warning (0, "left shift count is negative");
7914
7915 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7916 warning (0, "left shift count >= width of type");
7917 }
7918
7919 /* Use the type of the value to be shifted. */
7920 result_type = type0;
7921 /* Convert the shift-count to an integer, regardless of size
7922 of value being shifted. */
7923 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7924 op1 = convert (integer_type_node, op1);
7925 /* Avoid converting op1 to result_type later. */
7926 converted = 1;
7927 }
7928 break;
7929
7930 case EQ_EXPR:
7931 case NE_EXPR:
7932 if (code0 == REAL_TYPE || code1 == REAL_TYPE)
7933 warning (OPT_Wfloat_equal,
7934 "comparing floating point with == or != is unsafe");
7935 /* Result of comparison is always int,
7936 but don't convert the args to int! */
7937 build_type = integer_type_node;
7938 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7939 || code0 == COMPLEX_TYPE)
7940 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7941 || code1 == COMPLEX_TYPE))
7942 short_compare = 1;
7943 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
7944 {
7945 tree tt0 = TREE_TYPE (type0);
7946 tree tt1 = TREE_TYPE (type1);
7947 /* Anything compares with void *. void * compares with anything.
7948 Otherwise, the targets must be compatible
7949 and both must be object or both incomplete. */
7950 if (comp_target_types (type0, type1))
7951 result_type = common_pointer_type (type0, type1);
7952 else if (VOID_TYPE_P (tt0))
7953 {
7954 /* op0 != orig_op0 detects the case of something
7955 whose value is 0 but which isn't a valid null ptr const. */
7956 if (pedantic && !null_pointer_constant_p (orig_op0)
7957 && TREE_CODE (tt1) == FUNCTION_TYPE)
7958 pedwarn ("ISO C forbids comparison of %<void *%>"
7959 " with function pointer");
7960 }
7961 else if (VOID_TYPE_P (tt1))
7962 {
7963 if (pedantic && !null_pointer_constant_p (orig_op1)
7964 && TREE_CODE (tt0) == FUNCTION_TYPE)
7965 pedwarn ("ISO C forbids comparison of %<void *%>"
7966 " with function pointer");
7967 }
7968 else
7969 /* Avoid warning about the volatile ObjC EH puts on decls. */
7970 if (!objc_ok)
7971 pedwarn ("comparison of distinct pointer types lacks a cast");
7972
7973 if (result_type == NULL_TREE)
7974 result_type = ptr_type_node;
7975 }
7976 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
7977 {
7978 if (TREE_CODE (op0) == ADDR_EXPR
7979 && DECL_P (TREE_OPERAND (op0, 0))
7980 && !DECL_WEAK (TREE_OPERAND (op0, 0)))
7981 warning (OPT_Walways_true, "the address of %qD will never be NULL",
7982 TREE_OPERAND (op0, 0));
7983 result_type = type0;
7984 }
7985 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
7986 {
7987 if (TREE_CODE (op1) == ADDR_EXPR
7988 && DECL_P (TREE_OPERAND (op1, 0))
7989 && !DECL_WEAK (TREE_OPERAND (op1, 0)))
7990 warning (OPT_Walways_true, "the address of %qD will never be NULL",
7991 TREE_OPERAND (op1, 0));
7992 result_type = type1;
7993 }
7994 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7995 {
7996 result_type = type0;
7997 pedwarn ("comparison between pointer and integer");
7998 }
7999 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8000 {
8001 result_type = type1;
8002 pedwarn ("comparison between pointer and integer");
8003 }
8004 break;
8005
8006 case LE_EXPR:
8007 case GE_EXPR:
8008 case LT_EXPR:
8009 case GT_EXPR:
8010 build_type = integer_type_node;
8011 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
8012 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
8013 short_compare = 1;
8014 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8015 {
8016 if (comp_target_types (type0, type1))
8017 {
8018 result_type = common_pointer_type (type0, type1);
8019 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8020 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8021 pedwarn ("comparison of complete and incomplete pointers");
8022 else if (pedantic
8023 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8024 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8025 }
8026 else
8027 {
8028 result_type = ptr_type_node;
8029 pedwarn ("comparison of distinct pointer types lacks a cast");
8030 }
8031 }
8032 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8033 {
8034 result_type = type0;
8035 if (pedantic || extra_warnings)
8036 pedwarn ("ordered comparison of pointer with integer zero");
8037 }
8038 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8039 {
8040 result_type = type1;
8041 if (pedantic)
8042 pedwarn ("ordered comparison of pointer with integer zero");
8043 }
8044 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8045 {
8046 result_type = type0;
8047 pedwarn ("comparison between pointer and integer");
8048 }
8049 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8050 {
8051 result_type = type1;
8052 pedwarn ("comparison between pointer and integer");
8053 }
8054 break;
8055
8056 default:
8057 gcc_unreachable ();
8058 }
8059
8060 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8061 return error_mark_node;
8062
8063 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8064 && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8065 || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8066 TREE_TYPE (type1))))
8067 {
8068 binary_op_error (code);
8069 return error_mark_node;
8070 }
8071
8072 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8073 || code0 == VECTOR_TYPE)
8074 &&
8075 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8076 || code1 == VECTOR_TYPE))
8077 {
8078 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8079
8080 if (shorten || common || short_compare)
8081 result_type = c_common_type (type0, type1);
8082
8083 /* For certain operations (which identify themselves by shorten != 0)
8084 if both args were extended from the same smaller type,
8085 do the arithmetic in that type and then extend.
8086
8087 shorten !=0 and !=1 indicates a bitwise operation.
8088 For them, this optimization is safe only if
8089 both args are zero-extended or both are sign-extended.
8090 Otherwise, we might change the result.
8091 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8092 but calculated in (unsigned short) it would be (unsigned short)-1. */
8093
8094 if (shorten && none_complex)
8095 {
8096 int unsigned0, unsigned1;
8097 tree arg0, arg1;
8098 int uns;
8099 tree type;
8100
8101 /* Cast OP0 and OP1 to RESULT_TYPE. Doing so prevents
8102 excessive narrowing when we call get_narrower below. For
8103 example, suppose that OP0 is of unsigned int extended
8104 from signed char and that RESULT_TYPE is long long int.
8105 If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
8106 like
8107
8108 (long long int) (unsigned int) signed_char
8109
8110 which get_narrower would narrow down to
8111
8112 (unsigned int) signed char
8113
8114 If we do not cast OP0 first, get_narrower would return
8115 signed_char, which is inconsistent with the case of the
8116 explicit cast. */
8117 op0 = convert (result_type, op0);
8118 op1 = convert (result_type, op1);
8119
8120 arg0 = get_narrower (op0, &unsigned0);
8121 arg1 = get_narrower (op1, &unsigned1);
8122
8123 /* UNS is 1 if the operation to be done is an unsigned one. */
8124 uns = TYPE_UNSIGNED (result_type);
8125
8126 final_type = result_type;
8127
8128 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8129 but it *requires* conversion to FINAL_TYPE. */
8130
8131 if ((TYPE_PRECISION (TREE_TYPE (op0))
8132 == TYPE_PRECISION (TREE_TYPE (arg0)))
8133 && TREE_TYPE (op0) != final_type)
8134 unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8135 if ((TYPE_PRECISION (TREE_TYPE (op1))
8136 == TYPE_PRECISION (TREE_TYPE (arg1)))
8137 && TREE_TYPE (op1) != final_type)
8138 unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8139
8140 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
8141
8142 /* For bitwise operations, signedness of nominal type
8143 does not matter. Consider only how operands were extended. */
8144 if (shorten == -1)
8145 uns = unsigned0;
8146
8147 /* Note that in all three cases below we refrain from optimizing
8148 an unsigned operation on sign-extended args.
8149 That would not be valid. */
8150
8151 /* Both args variable: if both extended in same way
8152 from same width, do it in that width.
8153 Do it unsigned if args were zero-extended. */
8154 if ((TYPE_PRECISION (TREE_TYPE (arg0))
8155 < TYPE_PRECISION (result_type))
8156 && (TYPE_PRECISION (TREE_TYPE (arg1))
8157 == TYPE_PRECISION (TREE_TYPE (arg0)))
8158 && unsigned0 == unsigned1
8159 && (unsigned0 || !uns))
8160 result_type
8161 = c_common_signed_or_unsigned_type
8162 (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8163 else if (TREE_CODE (arg0) == INTEGER_CST
8164 && (unsigned1 || !uns)
8165 && (TYPE_PRECISION (TREE_TYPE (arg1))
8166 < TYPE_PRECISION (result_type))
8167 && (type
8168 = c_common_signed_or_unsigned_type (unsigned1,
8169 TREE_TYPE (arg1)),
8170 int_fits_type_p (arg0, type)))
8171 result_type = type;
8172 else if (TREE_CODE (arg1) == INTEGER_CST
8173 && (unsigned0 || !uns)
8174 && (TYPE_PRECISION (TREE_TYPE (arg0))
8175 < TYPE_PRECISION (result_type))
8176 && (type
8177 = c_common_signed_or_unsigned_type (unsigned0,
8178 TREE_TYPE (arg0)),
8179 int_fits_type_p (arg1, type)))
8180 result_type = type;
8181 }
8182
8183 /* Shifts can be shortened if shifting right. */
8184
8185 if (short_shift)
8186 {
8187 int unsigned_arg;
8188 tree arg0 = get_narrower (op0, &unsigned_arg);
8189
8190 final_type = result_type;
8191
8192 if (arg0 == op0 && final_type == TREE_TYPE (op0))
8193 unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8194
8195 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8196 /* We can shorten only if the shift count is less than the
8197 number of bits in the smaller type size. */
8198 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8199 /* We cannot drop an unsigned shift after sign-extension. */
8200 && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8201 {
8202 /* Do an unsigned shift if the operand was zero-extended. */
8203 result_type
8204 = c_common_signed_or_unsigned_type (unsigned_arg,
8205 TREE_TYPE (arg0));
8206 /* Convert value-to-be-shifted to that type. */
8207 if (TREE_TYPE (op0) != result_type)
8208 op0 = convert (result_type, op0);
8209 converted = 1;
8210 }
8211 }
8212
8213 /* Comparison operations are shortened too but differently.
8214 They identify themselves by setting short_compare = 1. */
8215
8216 if (short_compare)
8217 {
8218 /* Don't write &op0, etc., because that would prevent op0
8219 from being kept in a register.
8220 Instead, make copies of the our local variables and
8221 pass the copies by reference, then copy them back afterward. */
8222 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8223 enum tree_code xresultcode = resultcode;
8224 tree val
8225 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8226
8227 if (val != 0)
8228 return val;
8229
8230 op0 = xop0, op1 = xop1;
8231 converted = 1;
8232 resultcode = xresultcode;
8233
8234 if (warn_sign_compare && skip_evaluation == 0)
8235 {
8236 int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8237 int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8238 int unsignedp0, unsignedp1;
8239 tree primop0 = get_narrower (op0, &unsignedp0);
8240 tree primop1 = get_narrower (op1, &unsignedp1);
8241
8242 xop0 = orig_op0;
8243 xop1 = orig_op1;
8244 STRIP_TYPE_NOPS (xop0);
8245 STRIP_TYPE_NOPS (xop1);
8246
8247 /* Give warnings for comparisons between signed and unsigned
8248 quantities that may fail.
8249
8250 Do the checking based on the original operand trees, so that
8251 casts will be considered, but default promotions won't be.
8252
8253 Do not warn if the comparison is being done in a signed type,
8254 since the signed type will only be chosen if it can represent
8255 all the values of the unsigned type. */
8256 if (!TYPE_UNSIGNED (result_type))
8257 /* OK */;
8258 /* Do not warn if both operands are the same signedness. */
8259 else if (op0_signed == op1_signed)
8260 /* OK */;
8261 else
8262 {
8263 tree sop, uop;
8264
8265 if (op0_signed)
8266 sop = xop0, uop = xop1;
8267 else
8268 sop = xop1, uop = xop0;
8269
8270 /* Do not warn if the signed quantity is an
8271 unsuffixed integer literal (or some static
8272 constant expression involving such literals or a
8273 conditional expression involving such literals)
8274 and it is non-negative. */
8275 if (tree_expr_nonnegative_p (sop))
8276 /* OK */;
8277 /* Do not warn if the comparison is an equality operation,
8278 the unsigned quantity is an integral constant, and it
8279 would fit in the result if the result were signed. */
8280 else if (TREE_CODE (uop) == INTEGER_CST
8281 && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8282 && int_fits_type_p
8283 (uop, c_common_signed_type (result_type)))
8284 /* OK */;
8285 /* Do not warn if the unsigned quantity is an enumeration
8286 constant and its maximum value would fit in the result
8287 if the result were signed. */
8288 else if (TREE_CODE (uop) == INTEGER_CST
8289 && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8290 && int_fits_type_p
8291 (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8292 c_common_signed_type (result_type)))
8293 /* OK */;
8294 else
8295 warning (0, "comparison between signed and unsigned");
8296 }
8297
8298 /* Warn if two unsigned values are being compared in a size
8299 larger than their original size, and one (and only one) is the
8300 result of a `~' operator. This comparison will always fail.
8301
8302 Also warn if one operand is a constant, and the constant
8303 does not have all bits set that are set in the ~ operand
8304 when it is extended. */
8305
8306 if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8307 != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8308 {
8309 if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8310 primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8311 &unsignedp0);
8312 else
8313 primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8314 &unsignedp1);
8315
8316 if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8317 {
8318 tree primop;
8319 HOST_WIDE_INT constant, mask;
8320 int unsignedp, bits;
8321
8322 if (host_integerp (primop0, 0))
8323 {
8324 primop = primop1;
8325 unsignedp = unsignedp1;
8326 constant = tree_low_cst (primop0, 0);
8327 }
8328 else
8329 {
8330 primop = primop0;
8331 unsignedp = unsignedp0;
8332 constant = tree_low_cst (primop1, 0);
8333 }
8334
8335 bits = TYPE_PRECISION (TREE_TYPE (primop));
8336 if (bits < TYPE_PRECISION (result_type)
8337 && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8338 {
8339 mask = (~(HOST_WIDE_INT) 0) << bits;
8340 if ((mask & constant) != mask)
8341 warning (0, "comparison of promoted ~unsigned with constant");
8342 }
8343 }
8344 else if (unsignedp0 && unsignedp1
8345 && (TYPE_PRECISION (TREE_TYPE (primop0))
8346 < TYPE_PRECISION (result_type))
8347 && (TYPE_PRECISION (TREE_TYPE (primop1))
8348 < TYPE_PRECISION (result_type)))
8349 warning (0, "comparison of promoted ~unsigned with unsigned");
8350 }
8351 }
8352 }
8353 }
8354
8355 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8356 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8357 Then the expression will be built.
8358 It will be given type FINAL_TYPE if that is nonzero;
8359 otherwise, it will be given type RESULT_TYPE. */
8360
8361 if (!result_type)
8362 {
8363 binary_op_error (code);
8364 return error_mark_node;
8365 }
8366
8367 if (!converted)
8368 {
8369 if (TREE_TYPE (op0) != result_type)
8370 op0 = convert (result_type, op0);
8371 if (TREE_TYPE (op1) != result_type)
8372 op1 = convert (result_type, op1);
8373
8374 /* This can happen if one operand has a vector type, and the other
8375 has a different type. */
8376 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8377 return error_mark_node;
8378 }
8379
8380 if (build_type == NULL_TREE)
8381 build_type = result_type;
8382
8383 {
8384 /* Treat expressions in initializers specially as they can't trap. */
8385 tree result = require_constant_value ? fold_build2_initializer (resultcode,
8386 build_type,
8387 op0, op1)
8388 : fold_build2 (resultcode, build_type,
8389 op0, op1);
8390
8391 if (final_type != 0)
8392 result = convert (final_type, result);
8393 return result;
8394 }
8395 }
8396
8397
8398 /* Convert EXPR to be a truth-value, validating its type for this
8399 purpose. */
8400
8401 tree
8402 c_objc_common_truthvalue_conversion (tree expr)
8403 {
8404 switch (TREE_CODE (TREE_TYPE (expr)))
8405 {
8406 case ARRAY_TYPE:
8407 error ("used array that cannot be converted to pointer where scalar is required");
8408 return error_mark_node;
8409
8410 case RECORD_TYPE:
8411 error ("used struct type value where scalar is required");
8412 return error_mark_node;
8413
8414 case UNION_TYPE:
8415 error ("used union type value where scalar is required");
8416 return error_mark_node;
8417
8418 case FUNCTION_TYPE:
8419 gcc_unreachable ();
8420
8421 default:
8422 break;
8423 }
8424
8425 /* ??? Should we also give an error for void and vectors rather than
8426 leaving those to give errors later? */
8427 return c_common_truthvalue_conversion (expr);
8428 }
8429 \f
8430
8431 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8432 required. */
8433
8434 tree
8435 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8436 bool *ti ATTRIBUTE_UNUSED, bool *se)
8437 {
8438 if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8439 {
8440 tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8441 /* Executing a compound literal inside a function reinitializes
8442 it. */
8443 if (!TREE_STATIC (decl))
8444 *se = true;
8445 return decl;
8446 }
8447 else
8448 return expr;
8449 }
8450
8451 \f
8452 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
8453
8454 tree
8455 c_begin_omp_parallel (void)
8456 {
8457 tree block;
8458
8459 keep_next_level ();
8460 block = c_begin_compound_stmt (true);
8461
8462 return block;
8463 }
8464
8465 tree
8466 c_finish_omp_parallel (tree clauses, tree block)
8467 {
8468 tree stmt;
8469
8470 block = c_end_compound_stmt (block, true);
8471
8472 stmt = make_node (OMP_PARALLEL);
8473 TREE_TYPE (stmt) = void_type_node;
8474 OMP_PARALLEL_CLAUSES (stmt) = clauses;
8475 OMP_PARALLEL_BODY (stmt) = block;
8476
8477 return add_stmt (stmt);
8478 }
8479
8480 /* For all elements of CLAUSES, validate them vs OpenMP constraints.
8481 Remove any elements from the list that are invalid. */
8482
8483 tree
8484 c_finish_omp_clauses (tree clauses)
8485 {
8486 bitmap_head generic_head, firstprivate_head, lastprivate_head;
8487 tree c, t, *pc = &clauses;
8488 const char *name;
8489
8490 bitmap_obstack_initialize (NULL);
8491 bitmap_initialize (&generic_head, &bitmap_default_obstack);
8492 bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8493 bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8494
8495 for (pc = &clauses, c = clauses; c ; c = *pc)
8496 {
8497 bool remove = false;
8498 bool need_complete = false;
8499 bool need_implicitly_determined = false;
8500
8501 switch (OMP_CLAUSE_CODE (c))
8502 {
8503 case OMP_CLAUSE_SHARED:
8504 name = "shared";
8505 need_implicitly_determined = true;
8506 goto check_dup_generic;
8507
8508 case OMP_CLAUSE_PRIVATE:
8509 name = "private";
8510 need_complete = true;
8511 need_implicitly_determined = true;
8512 goto check_dup_generic;
8513
8514 case OMP_CLAUSE_REDUCTION:
8515 name = "reduction";
8516 need_implicitly_determined = true;
8517 t = OMP_CLAUSE_DECL (c);
8518 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8519 || POINTER_TYPE_P (TREE_TYPE (t)))
8520 {
8521 error ("%qE has invalid type for %<reduction%>", t);
8522 remove = true;
8523 }
8524 else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8525 {
8526 enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8527 const char *r_name = NULL;
8528
8529 switch (r_code)
8530 {
8531 case PLUS_EXPR:
8532 case MULT_EXPR:
8533 case MINUS_EXPR:
8534 break;
8535 case BIT_AND_EXPR:
8536 r_name = "&";
8537 break;
8538 case BIT_XOR_EXPR:
8539 r_name = "^";
8540 break;
8541 case BIT_IOR_EXPR:
8542 r_name = "|";
8543 break;
8544 case TRUTH_ANDIF_EXPR:
8545 r_name = "&&";
8546 break;
8547 case TRUTH_ORIF_EXPR:
8548 r_name = "||";
8549 break;
8550 default:
8551 gcc_unreachable ();
8552 }
8553 if (r_name)
8554 {
8555 error ("%qE has invalid type for %<reduction(%s)%>",
8556 t, r_name);
8557 remove = true;
8558 }
8559 }
8560 goto check_dup_generic;
8561
8562 case OMP_CLAUSE_COPYPRIVATE:
8563 name = "copyprivate";
8564 goto check_dup_generic;
8565
8566 case OMP_CLAUSE_COPYIN:
8567 name = "copyin";
8568 t = OMP_CLAUSE_DECL (c);
8569 if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8570 {
8571 error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8572 remove = true;
8573 }
8574 goto check_dup_generic;
8575
8576 check_dup_generic:
8577 t = OMP_CLAUSE_DECL (c);
8578 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8579 {
8580 error ("%qE is not a variable in clause %qs", t, name);
8581 remove = true;
8582 }
8583 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8584 || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8585 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8586 {
8587 error ("%qE appears more than once in data clauses", t);
8588 remove = true;
8589 }
8590 else
8591 bitmap_set_bit (&generic_head, DECL_UID (t));
8592 break;
8593
8594 case OMP_CLAUSE_FIRSTPRIVATE:
8595 name = "firstprivate";
8596 t = OMP_CLAUSE_DECL (c);
8597 need_complete = true;
8598 need_implicitly_determined = true;
8599 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8600 {
8601 error ("%qE is not a variable in clause %<firstprivate%>", t);
8602 remove = true;
8603 }
8604 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8605 || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8606 {
8607 error ("%qE appears more than once in data clauses", t);
8608 remove = true;
8609 }
8610 else
8611 bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8612 break;
8613
8614 case OMP_CLAUSE_LASTPRIVATE:
8615 name = "lastprivate";
8616 t = OMP_CLAUSE_DECL (c);
8617 need_complete = true;
8618 need_implicitly_determined = true;
8619 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8620 {
8621 error ("%qE is not a variable in clause %<lastprivate%>", t);
8622 remove = true;
8623 }
8624 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8625 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8626 {
8627 error ("%qE appears more than once in data clauses", t);
8628 remove = true;
8629 }
8630 else
8631 bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8632 break;
8633
8634 case OMP_CLAUSE_IF:
8635 case OMP_CLAUSE_NUM_THREADS:
8636 case OMP_CLAUSE_SCHEDULE:
8637 case OMP_CLAUSE_NOWAIT:
8638 case OMP_CLAUSE_ORDERED:
8639 case OMP_CLAUSE_DEFAULT:
8640 pc = &OMP_CLAUSE_CHAIN (c);
8641 continue;
8642
8643 default:
8644 gcc_unreachable ();
8645 }
8646
8647 if (!remove)
8648 {
8649 t = OMP_CLAUSE_DECL (c);
8650
8651 if (need_complete)
8652 {
8653 t = require_complete_type (t);
8654 if (t == error_mark_node)
8655 remove = true;
8656 }
8657
8658 if (need_implicitly_determined)
8659 {
8660 const char *share_name = NULL;
8661
8662 if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8663 share_name = "threadprivate";
8664 else switch (c_omp_predetermined_sharing (t))
8665 {
8666 case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8667 break;
8668 case OMP_CLAUSE_DEFAULT_SHARED:
8669 share_name = "shared";
8670 break;
8671 case OMP_CLAUSE_DEFAULT_PRIVATE:
8672 share_name = "private";
8673 break;
8674 default:
8675 gcc_unreachable ();
8676 }
8677 if (share_name)
8678 {
8679 error ("%qE is predetermined %qs for %qs",
8680 t, share_name, name);
8681 remove = true;
8682 }
8683 }
8684 }
8685
8686 if (remove)
8687 *pc = OMP_CLAUSE_CHAIN (c);
8688 else
8689 pc = &OMP_CLAUSE_CHAIN (c);
8690 }
8691
8692 bitmap_obstack_release (NULL);
8693 return clauses;
8694 }