8119e7f17b126e27d816cb37520840c4210a0d3a
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 /* This file is part of the C front end.
25 It contains routines to build C expressions given their operands,
26 including computing the types of the result, C-specific error checks,
27 and some optimization. */
28
29 #include "config.h"
30 #include "system.h"
31 #include "coretypes.h"
32 #include "tm.h"
33 #include "rtl.h"
34 #include "tree.h"
35 #include "langhooks.h"
36 #include "c-tree.h"
37 #include "tm_p.h"
38 #include "flags.h"
39 #include "output.h"
40 #include "expr.h"
41 #include "toplev.h"
42 #include "intl.h"
43 #include "ggc.h"
44 #include "target.h"
45 #include "tree-iterator.h"
46 #include "tree-gimple.h"
47 #include "tree-flow.h"
48
49 /* Possible cases of implicit bad conversions. Used to select
50 diagnostic messages in convert_for_assignment. */
51 enum impl_conv {
52 ic_argpass,
53 ic_argpass_nonproto,
54 ic_assign,
55 ic_init,
56 ic_return
57 };
58
59 /* The level of nesting inside "__alignof__". */
60 int in_alignof;
61
62 /* The level of nesting inside "sizeof". */
63 int in_sizeof;
64
65 /* The level of nesting inside "typeof". */
66 int in_typeof;
67
68 struct c_label_context_se *label_context_stack_se;
69 struct c_label_context_vm *label_context_stack_vm;
70
71 /* Nonzero if we've already printed a "missing braces around initializer"
72 message within this initializer. */
73 static int missing_braces_mentioned;
74
75 static int require_constant_value;
76 static int require_constant_elements;
77
78 static bool null_pointer_constant_p (tree);
79 static tree qualify_type (tree, tree);
80 static int tagged_types_tu_compatible_p (tree, tree);
81 static int comp_target_types (tree, tree);
82 static int function_types_compatible_p (tree, tree);
83 static int type_lists_compatible_p (tree, tree);
84 static tree decl_constant_value_for_broken_optimization (tree);
85 static tree lookup_field (tree, tree);
86 static tree convert_arguments (tree, tree, tree, tree);
87 static tree pointer_diff (tree, tree);
88 static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
89 int);
90 static tree valid_compound_expr_initializer (tree, tree);
91 static void push_string (const char *);
92 static void push_member_name (tree);
93 static int spelling_length (void);
94 static char *print_spelling (char *);
95 static void warning_init (const char *);
96 static tree digest_init (tree, tree, bool, int);
97 static void output_init_element (tree, bool, tree, tree, int);
98 static void output_pending_init_elements (int);
99 static int set_designator (int);
100 static void push_range_stack (tree);
101 static void add_pending_init (tree, tree);
102 static void set_nonincremental_init (void);
103 static void set_nonincremental_init_from_string (tree);
104 static tree find_init_member (tree);
105 static void readonly_error (tree, enum lvalue_use);
106 static int lvalue_or_else (tree, enum lvalue_use);
107 static int lvalue_p (tree);
108 static void record_maybe_used_decl (tree);
109 static int comptypes_internal (tree, tree);
110 \f
111 /* Return true if EXP is a null pointer constant, false otherwise. */
112
113 static bool
114 null_pointer_constant_p (tree expr)
115 {
116 /* This should really operate on c_expr structures, but they aren't
117 yet available everywhere required. */
118 tree type = TREE_TYPE (expr);
119 return (TREE_CODE (expr) == INTEGER_CST
120 && !TREE_CONSTANT_OVERFLOW (expr)
121 && integer_zerop (expr)
122 && (INTEGRAL_TYPE_P (type)
123 || (TREE_CODE (type) == POINTER_TYPE
124 && VOID_TYPE_P (TREE_TYPE (type))
125 && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
126 }
127 \f/* This is a cache to hold if two types are compatible or not. */
128
129 struct tagged_tu_seen_cache {
130 const struct tagged_tu_seen_cache * next;
131 tree t1;
132 tree t2;
133 /* The return value of tagged_types_tu_compatible_p if we had seen
134 these two types already. */
135 int val;
136 };
137
138 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
139 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
140
141 /* Do `exp = require_complete_type (exp);' to make sure exp
142 does not have an incomplete type. (That includes void types.) */
143
144 tree
145 require_complete_type (tree value)
146 {
147 tree type = TREE_TYPE (value);
148
149 if (value == error_mark_node || type == error_mark_node)
150 return error_mark_node;
151
152 /* First, detect a valid value with a complete type. */
153 if (COMPLETE_TYPE_P (type))
154 return value;
155
156 c_incomplete_type_error (value, type);
157 return error_mark_node;
158 }
159
160 /* Print an error message for invalid use of an incomplete type.
161 VALUE is the expression that was used (or 0 if that isn't known)
162 and TYPE is the type that was invalid. */
163
164 void
165 c_incomplete_type_error (tree value, tree type)
166 {
167 const char *type_code_string;
168
169 /* Avoid duplicate error message. */
170 if (TREE_CODE (type) == ERROR_MARK)
171 return;
172
173 if (value != 0 && (TREE_CODE (value) == VAR_DECL
174 || TREE_CODE (value) == PARM_DECL))
175 error ("%qD has an incomplete type", value);
176 else
177 {
178 retry:
179 /* We must print an error message. Be clever about what it says. */
180
181 switch (TREE_CODE (type))
182 {
183 case RECORD_TYPE:
184 type_code_string = "struct";
185 break;
186
187 case UNION_TYPE:
188 type_code_string = "union";
189 break;
190
191 case ENUMERAL_TYPE:
192 type_code_string = "enum";
193 break;
194
195 case VOID_TYPE:
196 error ("invalid use of void expression");
197 return;
198
199 case ARRAY_TYPE:
200 if (TYPE_DOMAIN (type))
201 {
202 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
203 {
204 error ("invalid use of flexible array member");
205 return;
206 }
207 type = TREE_TYPE (type);
208 goto retry;
209 }
210 error ("invalid use of array with unspecified bounds");
211 return;
212
213 default:
214 gcc_unreachable ();
215 }
216
217 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
218 error ("invalid use of undefined type %<%s %E%>",
219 type_code_string, TYPE_NAME (type));
220 else
221 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
222 error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
223 }
224 }
225
226 /* Given a type, apply default promotions wrt unnamed function
227 arguments and return the new type. */
228
229 tree
230 c_type_promotes_to (tree type)
231 {
232 if (TYPE_MAIN_VARIANT (type) == float_type_node)
233 return double_type_node;
234
235 if (c_promoting_integer_type_p (type))
236 {
237 /* Preserve unsignedness if not really getting any wider. */
238 if (TYPE_UNSIGNED (type)
239 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
240 return unsigned_type_node;
241 return integer_type_node;
242 }
243
244 return type;
245 }
246
247 /* Return a variant of TYPE which has all the type qualifiers of LIKE
248 as well as those of TYPE. */
249
250 static tree
251 qualify_type (tree type, tree like)
252 {
253 return c_build_qualified_type (type,
254 TYPE_QUALS (type) | TYPE_QUALS (like));
255 }
256
257 /* Return true iff the given tree T is a variable length array. */
258
259 bool
260 c_vla_type_p (tree t)
261 {
262 if (TREE_CODE (t) == ARRAY_TYPE
263 && C_TYPE_VARIABLE_SIZE (t))
264 return true;
265 return false;
266 }
267 \f
268 /* Return the composite type of two compatible types.
269
270 We assume that comptypes has already been done and returned
271 nonzero; if that isn't so, this may crash. In particular, we
272 assume that qualifiers match. */
273
274 tree
275 composite_type (tree t1, tree t2)
276 {
277 enum tree_code code1;
278 enum tree_code code2;
279 tree attributes;
280
281 /* Save time if the two types are the same. */
282
283 if (t1 == t2) return t1;
284
285 /* If one type is nonsense, use the other. */
286 if (t1 == error_mark_node)
287 return t2;
288 if (t2 == error_mark_node)
289 return t1;
290
291 code1 = TREE_CODE (t1);
292 code2 = TREE_CODE (t2);
293
294 /* Merge the attributes. */
295 attributes = targetm.merge_type_attributes (t1, t2);
296
297 /* If one is an enumerated type and the other is the compatible
298 integer type, the composite type might be either of the two
299 (DR#013 question 3). For consistency, use the enumerated type as
300 the composite type. */
301
302 if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
303 return t1;
304 if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
305 return t2;
306
307 gcc_assert (code1 == code2);
308
309 switch (code1)
310 {
311 case POINTER_TYPE:
312 /* For two pointers, do this recursively on the target type. */
313 {
314 tree pointed_to_1 = TREE_TYPE (t1);
315 tree pointed_to_2 = TREE_TYPE (t2);
316 tree target = composite_type (pointed_to_1, pointed_to_2);
317 t1 = build_pointer_type (target);
318 t1 = build_type_attribute_variant (t1, attributes);
319 return qualify_type (t1, t2);
320 }
321
322 case ARRAY_TYPE:
323 {
324 tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
325 int quals;
326 tree unqual_elt;
327 tree d1 = TYPE_DOMAIN (t1);
328 tree d2 = TYPE_DOMAIN (t2);
329 bool d1_variable, d2_variable;
330 bool d1_zero, d2_zero;
331
332 /* We should not have any type quals on arrays at all. */
333 gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
334
335 d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
336 d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
337
338 d1_variable = (!d1_zero
339 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
340 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
341 d2_variable = (!d2_zero
342 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
343 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
344 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
345 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
346
347 /* Save space: see if the result is identical to one of the args. */
348 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
349 && (d2_variable || d2_zero || !d1_variable))
350 return build_type_attribute_variant (t1, attributes);
351 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
352 && (d1_variable || d1_zero || !d2_variable))
353 return build_type_attribute_variant (t2, attributes);
354
355 if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
356 return build_type_attribute_variant (t1, attributes);
357 if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
358 return build_type_attribute_variant (t2, attributes);
359
360 /* Merge the element types, and have a size if either arg has
361 one. We may have qualifiers on the element types. To set
362 up TYPE_MAIN_VARIANT correctly, we need to form the
363 composite of the unqualified types and add the qualifiers
364 back at the end. */
365 quals = TYPE_QUALS (strip_array_types (elt));
366 unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
367 t1 = build_array_type (unqual_elt,
368 TYPE_DOMAIN ((TYPE_DOMAIN (t1)
369 && (d2_variable
370 || d2_zero
371 || !d1_variable))
372 ? t1
373 : t2));
374 t1 = c_build_qualified_type (t1, quals);
375 return build_type_attribute_variant (t1, attributes);
376 }
377
378 case ENUMERAL_TYPE:
379 case RECORD_TYPE:
380 case UNION_TYPE:
381 if (attributes != NULL)
382 {
383 /* Try harder not to create a new aggregate type. */
384 if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
385 return t1;
386 if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
387 return t2;
388 }
389 return build_type_attribute_variant (t1, attributes);
390
391 case FUNCTION_TYPE:
392 /* Function types: prefer the one that specified arg types.
393 If both do, merge the arg types. Also merge the return types. */
394 {
395 tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
396 tree p1 = TYPE_ARG_TYPES (t1);
397 tree p2 = TYPE_ARG_TYPES (t2);
398 int len;
399 tree newargs, n;
400 int i;
401
402 /* Save space: see if the result is identical to one of the args. */
403 if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
404 return build_type_attribute_variant (t1, attributes);
405 if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
406 return build_type_attribute_variant (t2, attributes);
407
408 /* Simple way if one arg fails to specify argument types. */
409 if (TYPE_ARG_TYPES (t1) == 0)
410 {
411 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
412 t1 = build_type_attribute_variant (t1, attributes);
413 return qualify_type (t1, t2);
414 }
415 if (TYPE_ARG_TYPES (t2) == 0)
416 {
417 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
418 t1 = build_type_attribute_variant (t1, attributes);
419 return qualify_type (t1, t2);
420 }
421
422 /* If both args specify argument types, we must merge the two
423 lists, argument by argument. */
424 /* Tell global_bindings_p to return false so that variable_size
425 doesn't die on VLAs in parameter types. */
426 c_override_global_bindings_to_false = true;
427
428 len = list_length (p1);
429 newargs = 0;
430
431 for (i = 0; i < len; i++)
432 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
433
434 n = newargs;
435
436 for (; p1;
437 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
438 {
439 /* A null type means arg type is not specified.
440 Take whatever the other function type has. */
441 if (TREE_VALUE (p1) == 0)
442 {
443 TREE_VALUE (n) = TREE_VALUE (p2);
444 goto parm_done;
445 }
446 if (TREE_VALUE (p2) == 0)
447 {
448 TREE_VALUE (n) = TREE_VALUE (p1);
449 goto parm_done;
450 }
451
452 /* Given wait (union {union wait *u; int *i} *)
453 and wait (union wait *),
454 prefer union wait * as type of parm. */
455 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
456 && TREE_VALUE (p1) != TREE_VALUE (p2))
457 {
458 tree memb;
459 tree mv2 = TREE_VALUE (p2);
460 if (mv2 && mv2 != error_mark_node
461 && TREE_CODE (mv2) != ARRAY_TYPE)
462 mv2 = TYPE_MAIN_VARIANT (mv2);
463 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
464 memb; memb = TREE_CHAIN (memb))
465 {
466 tree mv3 = TREE_TYPE (memb);
467 if (mv3 && mv3 != error_mark_node
468 && TREE_CODE (mv3) != ARRAY_TYPE)
469 mv3 = TYPE_MAIN_VARIANT (mv3);
470 if (comptypes (mv3, mv2))
471 {
472 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
473 TREE_VALUE (p2));
474 if (pedantic)
475 pedwarn ("function types not truly compatible in ISO C");
476 goto parm_done;
477 }
478 }
479 }
480 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
481 && TREE_VALUE (p2) != TREE_VALUE (p1))
482 {
483 tree memb;
484 tree mv1 = TREE_VALUE (p1);
485 if (mv1 && mv1 != error_mark_node
486 && TREE_CODE (mv1) != ARRAY_TYPE)
487 mv1 = TYPE_MAIN_VARIANT (mv1);
488 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
489 memb; memb = TREE_CHAIN (memb))
490 {
491 tree mv3 = TREE_TYPE (memb);
492 if (mv3 && mv3 != error_mark_node
493 && TREE_CODE (mv3) != ARRAY_TYPE)
494 mv3 = TYPE_MAIN_VARIANT (mv3);
495 if (comptypes (mv3, mv1))
496 {
497 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
498 TREE_VALUE (p1));
499 if (pedantic)
500 pedwarn ("function types not truly compatible in ISO C");
501 goto parm_done;
502 }
503 }
504 }
505 TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
506 parm_done: ;
507 }
508
509 c_override_global_bindings_to_false = false;
510 t1 = build_function_type (valtype, newargs);
511 t1 = qualify_type (t1, t2);
512 /* ... falls through ... */
513 }
514
515 default:
516 return build_type_attribute_variant (t1, attributes);
517 }
518
519 }
520
521 /* Return the type of a conditional expression between pointers to
522 possibly differently qualified versions of compatible types.
523
524 We assume that comp_target_types has already been done and returned
525 nonzero; if that isn't so, this may crash. */
526
527 static tree
528 common_pointer_type (tree t1, tree t2)
529 {
530 tree attributes;
531 tree pointed_to_1, mv1;
532 tree pointed_to_2, mv2;
533 tree target;
534
535 /* Save time if the two types are the same. */
536
537 if (t1 == t2) return t1;
538
539 /* If one type is nonsense, use the other. */
540 if (t1 == error_mark_node)
541 return t2;
542 if (t2 == error_mark_node)
543 return t1;
544
545 gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546 && TREE_CODE (t2) == POINTER_TYPE);
547
548 /* Merge the attributes. */
549 attributes = targetm.merge_type_attributes (t1, t2);
550
551 /* Find the composite type of the target types, and combine the
552 qualifiers of the two types' targets. Do not lose qualifiers on
553 array element types by taking the TYPE_MAIN_VARIANT. */
554 mv1 = pointed_to_1 = TREE_TYPE (t1);
555 mv2 = pointed_to_2 = TREE_TYPE (t2);
556 if (TREE_CODE (mv1) != ARRAY_TYPE)
557 mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558 if (TREE_CODE (mv2) != ARRAY_TYPE)
559 mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560 target = composite_type (mv1, mv2);
561 t1 = build_pointer_type (c_build_qualified_type
562 (target,
563 TYPE_QUALS (pointed_to_1) |
564 TYPE_QUALS (pointed_to_2)));
565 return build_type_attribute_variant (t1, attributes);
566 }
567
568 /* Return the common type for two arithmetic types under the usual
569 arithmetic conversions. The default conversions have already been
570 applied, and enumerated types converted to their compatible integer
571 types. The resulting type is unqualified and has no attributes.
572
573 This is the type for the result of most arithmetic operations
574 if the operands have the given two types. */
575
576 static tree
577 c_common_type (tree t1, tree t2)
578 {
579 enum tree_code code1;
580 enum tree_code code2;
581
582 /* If one type is nonsense, use the other. */
583 if (t1 == error_mark_node)
584 return t2;
585 if (t2 == error_mark_node)
586 return t1;
587
588 if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
589 t1 = TYPE_MAIN_VARIANT (t1);
590
591 if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
592 t2 = TYPE_MAIN_VARIANT (t2);
593
594 if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
595 t1 = build_type_attribute_variant (t1, NULL_TREE);
596
597 if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
598 t2 = build_type_attribute_variant (t2, NULL_TREE);
599
600 /* Save time if the two types are the same. */
601
602 if (t1 == t2) return t1;
603
604 code1 = TREE_CODE (t1);
605 code2 = TREE_CODE (t2);
606
607 gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
608 || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
609 gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
610 || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
611
612 /* When one operand is a decimal float type, the other operand cannot be
613 a generic float type or a complex type. We also disallow vector types
614 here. */
615 if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
616 && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
617 {
618 if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
619 {
620 error ("can%'t mix operands of decimal float and vector types");
621 return error_mark_node;
622 }
623 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
624 {
625 error ("can%'t mix operands of decimal float and complex types");
626 return error_mark_node;
627 }
628 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
629 {
630 error ("can%'t mix operands of decimal float and other float types");
631 return error_mark_node;
632 }
633 }
634
635 /* If one type is a vector type, return that type. (How the usual
636 arithmetic conversions apply to the vector types extension is not
637 precisely specified.) */
638 if (code1 == VECTOR_TYPE)
639 return t1;
640
641 if (code2 == VECTOR_TYPE)
642 return t2;
643
644 /* If one type is complex, form the common type of the non-complex
645 components, then make that complex. Use T1 or T2 if it is the
646 required type. */
647 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
648 {
649 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
650 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
651 tree subtype = c_common_type (subtype1, subtype2);
652
653 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
654 return t1;
655 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
656 return t2;
657 else
658 return build_complex_type (subtype);
659 }
660
661 /* If only one is real, use it as the result. */
662
663 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
664 return t1;
665
666 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
667 return t2;
668
669 /* If both are real and either are decimal floating point types, use
670 the decimal floating point type with the greater precision. */
671
672 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
673 {
674 if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
675 || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
676 return dfloat128_type_node;
677 else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
678 || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
679 return dfloat64_type_node;
680 else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
681 || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
682 return dfloat32_type_node;
683 }
684
685 /* Both real or both integers; use the one with greater precision. */
686
687 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
688 return t1;
689 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
690 return t2;
691
692 /* Same precision. Prefer long longs to longs to ints when the
693 same precision, following the C99 rules on integer type rank
694 (which are equivalent to the C90 rules for C90 types). */
695
696 if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
697 || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
698 return long_long_unsigned_type_node;
699
700 if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
701 || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
702 {
703 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
704 return long_long_unsigned_type_node;
705 else
706 return long_long_integer_type_node;
707 }
708
709 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
710 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
711 return long_unsigned_type_node;
712
713 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
714 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
715 {
716 /* But preserve unsignedness from the other type,
717 since long cannot hold all the values of an unsigned int. */
718 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
719 return long_unsigned_type_node;
720 else
721 return long_integer_type_node;
722 }
723
724 /* Likewise, prefer long double to double even if same size. */
725 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
726 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
727 return long_double_type_node;
728
729 /* Otherwise prefer the unsigned one. */
730
731 if (TYPE_UNSIGNED (t1))
732 return t1;
733 else
734 return t2;
735 }
736 \f
737 /* Wrapper around c_common_type that is used by c-common.c and other
738 front end optimizations that remove promotions. ENUMERAL_TYPEs
739 are allowed here and are converted to their compatible integer types.
740 BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
741 preferably a non-Boolean type as the common type. */
742 tree
743 common_type (tree t1, tree t2)
744 {
745 if (TREE_CODE (t1) == ENUMERAL_TYPE)
746 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
747 if (TREE_CODE (t2) == ENUMERAL_TYPE)
748 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
749
750 /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */
751 if (TREE_CODE (t1) == BOOLEAN_TYPE
752 && TREE_CODE (t2) == BOOLEAN_TYPE)
753 return boolean_type_node;
754
755 /* If either type is BOOLEAN_TYPE, then return the other. */
756 if (TREE_CODE (t1) == BOOLEAN_TYPE)
757 return t2;
758 if (TREE_CODE (t2) == BOOLEAN_TYPE)
759 return t1;
760
761 return c_common_type (t1, t2);
762 }
763
764 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
765 or various other operations. Return 2 if they are compatible
766 but a warning may be needed if you use them together. */
767
768 int
769 comptypes (tree type1, tree type2)
770 {
771 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
772 int val;
773
774 val = comptypes_internal (type1, type2);
775 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
776
777 return val;
778 }
779 \f
780 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
781 or various other operations. Return 2 if they are compatible
782 but a warning may be needed if you use them together. This
783 differs from comptypes, in that we don't free the seen types. */
784
785 static int
786 comptypes_internal (tree type1, tree type2)
787 {
788 tree t1 = type1;
789 tree t2 = type2;
790 int attrval, val;
791
792 /* Suppress errors caused by previously reported errors. */
793
794 if (t1 == t2 || !t1 || !t2
795 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
796 return 1;
797
798 /* If either type is the internal version of sizetype, return the
799 language version. */
800 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
801 && TYPE_ORIG_SIZE_TYPE (t1))
802 t1 = TYPE_ORIG_SIZE_TYPE (t1);
803
804 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
805 && TYPE_ORIG_SIZE_TYPE (t2))
806 t2 = TYPE_ORIG_SIZE_TYPE (t2);
807
808
809 /* Enumerated types are compatible with integer types, but this is
810 not transitive: two enumerated types in the same translation unit
811 are compatible with each other only if they are the same type. */
812
813 if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
814 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
815 else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
816 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
817
818 if (t1 == t2)
819 return 1;
820
821 /* Different classes of types can't be compatible. */
822
823 if (TREE_CODE (t1) != TREE_CODE (t2))
824 return 0;
825
826 /* Qualifiers must match. C99 6.7.3p9 */
827
828 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
829 return 0;
830
831 /* Allow for two different type nodes which have essentially the same
832 definition. Note that we already checked for equality of the type
833 qualifiers (just above). */
834
835 if (TREE_CODE (t1) != ARRAY_TYPE
836 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
837 return 1;
838
839 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
840 if (!(attrval = targetm.comp_type_attributes (t1, t2)))
841 return 0;
842
843 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
844 val = 0;
845
846 switch (TREE_CODE (t1))
847 {
848 case POINTER_TYPE:
849 /* Do not remove mode or aliasing information. */
850 if (TYPE_MODE (t1) != TYPE_MODE (t2)
851 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
852 break;
853 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
854 ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
855 break;
856
857 case FUNCTION_TYPE:
858 val = function_types_compatible_p (t1, t2);
859 break;
860
861 case ARRAY_TYPE:
862 {
863 tree d1 = TYPE_DOMAIN (t1);
864 tree d2 = TYPE_DOMAIN (t2);
865 bool d1_variable, d2_variable;
866 bool d1_zero, d2_zero;
867 val = 1;
868
869 /* Target types must match incl. qualifiers. */
870 if (TREE_TYPE (t1) != TREE_TYPE (t2)
871 && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
872 return 0;
873
874 /* Sizes must match unless one is missing or variable. */
875 if (d1 == 0 || d2 == 0 || d1 == d2)
876 break;
877
878 d1_zero = !TYPE_MAX_VALUE (d1);
879 d2_zero = !TYPE_MAX_VALUE (d2);
880
881 d1_variable = (!d1_zero
882 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
883 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
884 d2_variable = (!d2_zero
885 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
886 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
887 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
888 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
889
890 if (d1_variable || d2_variable)
891 break;
892 if (d1_zero && d2_zero)
893 break;
894 if (d1_zero || d2_zero
895 || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
896 || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
897 val = 0;
898
899 break;
900 }
901
902 case ENUMERAL_TYPE:
903 case RECORD_TYPE:
904 case UNION_TYPE:
905 if (val != 1 && !same_translation_unit_p (t1, t2))
906 {
907 tree a1 = TYPE_ATTRIBUTES (t1);
908 tree a2 = TYPE_ATTRIBUTES (t2);
909
910 if (! attribute_list_contained (a1, a2)
911 && ! attribute_list_contained (a2, a1))
912 break;
913
914 if (attrval != 2)
915 return tagged_types_tu_compatible_p (t1, t2);
916 val = tagged_types_tu_compatible_p (t1, t2);
917 }
918 break;
919
920 case VECTOR_TYPE:
921 val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
922 && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
923 break;
924
925 default:
926 break;
927 }
928 return attrval == 2 && val == 1 ? 2 : val;
929 }
930
931 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
932 ignoring their qualifiers. */
933
934 static int
935 comp_target_types (tree ttl, tree ttr)
936 {
937 int val;
938 tree mvl, mvr;
939
940 /* Do not lose qualifiers on element types of array types that are
941 pointer targets by taking their TYPE_MAIN_VARIANT. */
942 mvl = TREE_TYPE (ttl);
943 mvr = TREE_TYPE (ttr);
944 if (TREE_CODE (mvl) != ARRAY_TYPE)
945 mvl = TYPE_MAIN_VARIANT (mvl);
946 if (TREE_CODE (mvr) != ARRAY_TYPE)
947 mvr = TYPE_MAIN_VARIANT (mvr);
948 val = comptypes (mvl, mvr);
949
950 if (val == 2 && pedantic)
951 pedwarn ("types are not quite compatible");
952 return val;
953 }
954 \f
955 /* Subroutines of `comptypes'. */
956
957 /* Determine whether two trees derive from the same translation unit.
958 If the CONTEXT chain ends in a null, that tree's context is still
959 being parsed, so if two trees have context chains ending in null,
960 they're in the same translation unit. */
961 int
962 same_translation_unit_p (tree t1, tree t2)
963 {
964 while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
965 switch (TREE_CODE_CLASS (TREE_CODE (t1)))
966 {
967 case tcc_declaration:
968 t1 = DECL_CONTEXT (t1); break;
969 case tcc_type:
970 t1 = TYPE_CONTEXT (t1); break;
971 case tcc_exceptional:
972 t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
973 default: gcc_unreachable ();
974 }
975
976 while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
977 switch (TREE_CODE_CLASS (TREE_CODE (t2)))
978 {
979 case tcc_declaration:
980 t2 = DECL_CONTEXT (t2); break;
981 case tcc_type:
982 t2 = TYPE_CONTEXT (t2); break;
983 case tcc_exceptional:
984 t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
985 default: gcc_unreachable ();
986 }
987
988 return t1 == t2;
989 }
990
991 /* Allocate the seen two types, assuming that they are compatible. */
992
993 static struct tagged_tu_seen_cache *
994 alloc_tagged_tu_seen_cache (tree t1, tree t2)
995 {
996 struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
997 tu->next = tagged_tu_seen_base;
998 tu->t1 = t1;
999 tu->t2 = t2;
1000
1001 tagged_tu_seen_base = tu;
1002
1003 /* The C standard says that two structures in different translation
1004 units are compatible with each other only if the types of their
1005 fields are compatible (among other things). We assume that they
1006 are compatible until proven otherwise when building the cache.
1007 An example where this can occur is:
1008 struct a
1009 {
1010 struct a *next;
1011 };
1012 If we are comparing this against a similar struct in another TU,
1013 and did not assume they were compatible, we end up with an infinite
1014 loop. */
1015 tu->val = 1;
1016 return tu;
1017 }
1018
1019 /* Free the seen types until we get to TU_TIL. */
1020
1021 static void
1022 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1023 {
1024 const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1025 while (tu != tu_til)
1026 {
1027 struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
1028 tu = tu1->next;
1029 free (tu1);
1030 }
1031 tagged_tu_seen_base = tu_til;
1032 }
1033
1034 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1035 compatible. If the two types are not the same (which has been
1036 checked earlier), this can only happen when multiple translation
1037 units are being compiled. See C99 6.2.7 paragraph 1 for the exact
1038 rules. */
1039
1040 static int
1041 tagged_types_tu_compatible_p (tree t1, tree t2)
1042 {
1043 tree s1, s2;
1044 bool needs_warning = false;
1045
1046 /* We have to verify that the tags of the types are the same. This
1047 is harder than it looks because this may be a typedef, so we have
1048 to go look at the original type. It may even be a typedef of a
1049 typedef...
1050 In the case of compiler-created builtin structs the TYPE_DECL
1051 may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
1052 while (TYPE_NAME (t1)
1053 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1054 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1055 t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1056
1057 while (TYPE_NAME (t2)
1058 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1059 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1060 t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1061
1062 /* C90 didn't have the requirement that the two tags be the same. */
1063 if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1064 return 0;
1065
1066 /* C90 didn't say what happened if one or both of the types were
1067 incomplete; we choose to follow C99 rules here, which is that they
1068 are compatible. */
1069 if (TYPE_SIZE (t1) == NULL
1070 || TYPE_SIZE (t2) == NULL)
1071 return 1;
1072
1073 {
1074 const struct tagged_tu_seen_cache * tts_i;
1075 for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1076 if (tts_i->t1 == t1 && tts_i->t2 == t2)
1077 return tts_i->val;
1078 }
1079
1080 switch (TREE_CODE (t1))
1081 {
1082 case ENUMERAL_TYPE:
1083 {
1084 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1085 /* Speed up the case where the type values are in the same order. */
1086 tree tv1 = TYPE_VALUES (t1);
1087 tree tv2 = TYPE_VALUES (t2);
1088
1089 if (tv1 == tv2)
1090 {
1091 return 1;
1092 }
1093
1094 for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1095 {
1096 if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1097 break;
1098 if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1099 {
1100 tu->val = 0;
1101 return 0;
1102 }
1103 }
1104
1105 if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1106 {
1107 return 1;
1108 }
1109 if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1110 {
1111 tu->val = 0;
1112 return 0;
1113 }
1114
1115 if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1116 {
1117 tu->val = 0;
1118 return 0;
1119 }
1120
1121 for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1122 {
1123 s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1124 if (s2 == NULL
1125 || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1126 {
1127 tu->val = 0;
1128 return 0;
1129 }
1130 }
1131 return 1;
1132 }
1133
1134 case UNION_TYPE:
1135 {
1136 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1137 if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1138 {
1139 tu->val = 0;
1140 return 0;
1141 }
1142
1143 /* Speed up the common case where the fields are in the same order. */
1144 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1145 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1146 {
1147 int result;
1148
1149
1150 if (DECL_NAME (s1) == NULL
1151 || DECL_NAME (s1) != DECL_NAME (s2))
1152 break;
1153 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1154 if (result == 0)
1155 {
1156 tu->val = 0;
1157 return 0;
1158 }
1159 if (result == 2)
1160 needs_warning = true;
1161
1162 if (TREE_CODE (s1) == FIELD_DECL
1163 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1164 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1165 {
1166 tu->val = 0;
1167 return 0;
1168 }
1169 }
1170 if (!s1 && !s2)
1171 {
1172 tu->val = needs_warning ? 2 : 1;
1173 return tu->val;
1174 }
1175
1176 for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1177 {
1178 bool ok = false;
1179
1180 if (DECL_NAME (s1) != NULL)
1181 for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1182 if (DECL_NAME (s1) == DECL_NAME (s2))
1183 {
1184 int result;
1185 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1186 if (result == 0)
1187 {
1188 tu->val = 0;
1189 return 0;
1190 }
1191 if (result == 2)
1192 needs_warning = true;
1193
1194 if (TREE_CODE (s1) == FIELD_DECL
1195 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1196 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1197 break;
1198
1199 ok = true;
1200 break;
1201 }
1202 if (!ok)
1203 {
1204 tu->val = 0;
1205 return 0;
1206 }
1207 }
1208 tu->val = needs_warning ? 2 : 10;
1209 return tu->val;
1210 }
1211
1212 case RECORD_TYPE:
1213 {
1214 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1215
1216 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1217 s1 && s2;
1218 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1219 {
1220 int result;
1221 if (TREE_CODE (s1) != TREE_CODE (s2)
1222 || DECL_NAME (s1) != DECL_NAME (s2))
1223 break;
1224 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1225 if (result == 0)
1226 break;
1227 if (result == 2)
1228 needs_warning = true;
1229
1230 if (TREE_CODE (s1) == FIELD_DECL
1231 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1232 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1233 break;
1234 }
1235 if (s1 && s2)
1236 tu->val = 0;
1237 else
1238 tu->val = needs_warning ? 2 : 1;
1239 return tu->val;
1240 }
1241
1242 default:
1243 gcc_unreachable ();
1244 }
1245 }
1246
1247 /* Return 1 if two function types F1 and F2 are compatible.
1248 If either type specifies no argument types,
1249 the other must specify a fixed number of self-promoting arg types.
1250 Otherwise, if one type specifies only the number of arguments,
1251 the other must specify that number of self-promoting arg types.
1252 Otherwise, the argument types must match. */
1253
1254 static int
1255 function_types_compatible_p (tree f1, tree f2)
1256 {
1257 tree args1, args2;
1258 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1259 int val = 1;
1260 int val1;
1261 tree ret1, ret2;
1262
1263 ret1 = TREE_TYPE (f1);
1264 ret2 = TREE_TYPE (f2);
1265
1266 /* 'volatile' qualifiers on a function's return type used to mean
1267 the function is noreturn. */
1268 if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1269 pedwarn ("function return types not compatible due to %<volatile%>");
1270 if (TYPE_VOLATILE (ret1))
1271 ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1272 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1273 if (TYPE_VOLATILE (ret2))
1274 ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1275 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1276 val = comptypes_internal (ret1, ret2);
1277 if (val == 0)
1278 return 0;
1279
1280 args1 = TYPE_ARG_TYPES (f1);
1281 args2 = TYPE_ARG_TYPES (f2);
1282
1283 /* An unspecified parmlist matches any specified parmlist
1284 whose argument types don't need default promotions. */
1285
1286 if (args1 == 0)
1287 {
1288 if (!self_promoting_args_p (args2))
1289 return 0;
1290 /* If one of these types comes from a non-prototype fn definition,
1291 compare that with the other type's arglist.
1292 If they don't match, ask for a warning (but no error). */
1293 if (TYPE_ACTUAL_ARG_TYPES (f1)
1294 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1295 val = 2;
1296 return val;
1297 }
1298 if (args2 == 0)
1299 {
1300 if (!self_promoting_args_p (args1))
1301 return 0;
1302 if (TYPE_ACTUAL_ARG_TYPES (f2)
1303 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1304 val = 2;
1305 return val;
1306 }
1307
1308 /* Both types have argument lists: compare them and propagate results. */
1309 val1 = type_lists_compatible_p (args1, args2);
1310 return val1 != 1 ? val1 : val;
1311 }
1312
1313 /* Check two lists of types for compatibility,
1314 returning 0 for incompatible, 1 for compatible,
1315 or 2 for compatible with warning. */
1316
1317 static int
1318 type_lists_compatible_p (tree args1, tree args2)
1319 {
1320 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1321 int val = 1;
1322 int newval = 0;
1323
1324 while (1)
1325 {
1326 tree a1, mv1, a2, mv2;
1327 if (args1 == 0 && args2 == 0)
1328 return val;
1329 /* If one list is shorter than the other,
1330 they fail to match. */
1331 if (args1 == 0 || args2 == 0)
1332 return 0;
1333 mv1 = a1 = TREE_VALUE (args1);
1334 mv2 = a2 = TREE_VALUE (args2);
1335 if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1336 mv1 = TYPE_MAIN_VARIANT (mv1);
1337 if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1338 mv2 = TYPE_MAIN_VARIANT (mv2);
1339 /* A null pointer instead of a type
1340 means there is supposed to be an argument
1341 but nothing is specified about what type it has.
1342 So match anything that self-promotes. */
1343 if (a1 == 0)
1344 {
1345 if (c_type_promotes_to (a2) != a2)
1346 return 0;
1347 }
1348 else if (a2 == 0)
1349 {
1350 if (c_type_promotes_to (a1) != a1)
1351 return 0;
1352 }
1353 /* If one of the lists has an error marker, ignore this arg. */
1354 else if (TREE_CODE (a1) == ERROR_MARK
1355 || TREE_CODE (a2) == ERROR_MARK)
1356 ;
1357 else if (!(newval = comptypes_internal (mv1, mv2)))
1358 {
1359 /* Allow wait (union {union wait *u; int *i} *)
1360 and wait (union wait *) to be compatible. */
1361 if (TREE_CODE (a1) == UNION_TYPE
1362 && (TYPE_NAME (a1) == 0
1363 || TYPE_TRANSPARENT_UNION (a1))
1364 && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1365 && tree_int_cst_equal (TYPE_SIZE (a1),
1366 TYPE_SIZE (a2)))
1367 {
1368 tree memb;
1369 for (memb = TYPE_FIELDS (a1);
1370 memb; memb = TREE_CHAIN (memb))
1371 {
1372 tree mv3 = TREE_TYPE (memb);
1373 if (mv3 && mv3 != error_mark_node
1374 && TREE_CODE (mv3) != ARRAY_TYPE)
1375 mv3 = TYPE_MAIN_VARIANT (mv3);
1376 if (comptypes_internal (mv3, mv2))
1377 break;
1378 }
1379 if (memb == 0)
1380 return 0;
1381 }
1382 else if (TREE_CODE (a2) == UNION_TYPE
1383 && (TYPE_NAME (a2) == 0
1384 || TYPE_TRANSPARENT_UNION (a2))
1385 && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1386 && tree_int_cst_equal (TYPE_SIZE (a2),
1387 TYPE_SIZE (a1)))
1388 {
1389 tree memb;
1390 for (memb = TYPE_FIELDS (a2);
1391 memb; memb = TREE_CHAIN (memb))
1392 {
1393 tree mv3 = TREE_TYPE (memb);
1394 if (mv3 && mv3 != error_mark_node
1395 && TREE_CODE (mv3) != ARRAY_TYPE)
1396 mv3 = TYPE_MAIN_VARIANT (mv3);
1397 if (comptypes_internal (mv3, mv1))
1398 break;
1399 }
1400 if (memb == 0)
1401 return 0;
1402 }
1403 else
1404 return 0;
1405 }
1406
1407 /* comptypes said ok, but record if it said to warn. */
1408 if (newval > val)
1409 val = newval;
1410
1411 args1 = TREE_CHAIN (args1);
1412 args2 = TREE_CHAIN (args2);
1413 }
1414 }
1415 \f
1416 /* Compute the size to increment a pointer by. */
1417
1418 static tree
1419 c_size_in_bytes (tree type)
1420 {
1421 enum tree_code code = TREE_CODE (type);
1422
1423 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1424 return size_one_node;
1425
1426 if (!COMPLETE_OR_VOID_TYPE_P (type))
1427 {
1428 error ("arithmetic on pointer to an incomplete type");
1429 return size_one_node;
1430 }
1431
1432 /* Convert in case a char is more than one unit. */
1433 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1434 size_int (TYPE_PRECISION (char_type_node)
1435 / BITS_PER_UNIT));
1436 }
1437 \f
1438 /* Return either DECL or its known constant value (if it has one). */
1439
1440 tree
1441 decl_constant_value (tree decl)
1442 {
1443 if (/* Don't change a variable array bound or initial value to a constant
1444 in a place where a variable is invalid. Note that DECL_INITIAL
1445 isn't valid for a PARM_DECL. */
1446 current_function_decl != 0
1447 && TREE_CODE (decl) != PARM_DECL
1448 && !TREE_THIS_VOLATILE (decl)
1449 && TREE_READONLY (decl)
1450 && DECL_INITIAL (decl) != 0
1451 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1452 /* This is invalid if initial value is not constant.
1453 If it has either a function call, a memory reference,
1454 or a variable, then re-evaluating it could give different results. */
1455 && TREE_CONSTANT (DECL_INITIAL (decl))
1456 /* Check for cases where this is sub-optimal, even though valid. */
1457 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1458 return DECL_INITIAL (decl);
1459 return decl;
1460 }
1461
1462 /* Return either DECL or its known constant value (if it has one), but
1463 return DECL if pedantic or DECL has mode BLKmode. This is for
1464 bug-compatibility with the old behavior of decl_constant_value
1465 (before GCC 3.0); every use of this function is a bug and it should
1466 be removed before GCC 3.1. It is not appropriate to use pedantic
1467 in a way that affects optimization, and BLKmode is probably not the
1468 right test for avoiding misoptimizations either. */
1469
1470 static tree
1471 decl_constant_value_for_broken_optimization (tree decl)
1472 {
1473 tree ret;
1474
1475 if (pedantic || DECL_MODE (decl) == BLKmode)
1476 return decl;
1477
1478 ret = decl_constant_value (decl);
1479 /* Avoid unwanted tree sharing between the initializer and current
1480 function's body where the tree can be modified e.g. by the
1481 gimplifier. */
1482 if (ret != decl && TREE_STATIC (decl))
1483 ret = unshare_expr (ret);
1484 return ret;
1485 }
1486
1487 /* Convert the array expression EXP to a pointer. */
1488 static tree
1489 array_to_pointer_conversion (tree exp)
1490 {
1491 tree orig_exp = exp;
1492 tree type = TREE_TYPE (exp);
1493 tree adr;
1494 tree restype = TREE_TYPE (type);
1495 tree ptrtype;
1496
1497 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1498
1499 STRIP_TYPE_NOPS (exp);
1500
1501 if (TREE_NO_WARNING (orig_exp))
1502 TREE_NO_WARNING (exp) = 1;
1503
1504 ptrtype = build_pointer_type (restype);
1505
1506 if (TREE_CODE (exp) == INDIRECT_REF)
1507 return convert (ptrtype, TREE_OPERAND (exp, 0));
1508
1509 if (TREE_CODE (exp) == VAR_DECL)
1510 {
1511 /* We are making an ADDR_EXPR of ptrtype. This is a valid
1512 ADDR_EXPR because it's the best way of representing what
1513 happens in C when we take the address of an array and place
1514 it in a pointer to the element type. */
1515 adr = build1 (ADDR_EXPR, ptrtype, exp);
1516 if (!c_mark_addressable (exp))
1517 return error_mark_node;
1518 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
1519 return adr;
1520 }
1521
1522 /* This way is better for a COMPONENT_REF since it can
1523 simplify the offset for a component. */
1524 adr = build_unary_op (ADDR_EXPR, exp, 1);
1525 return convert (ptrtype, adr);
1526 }
1527
1528 /* Convert the function expression EXP to a pointer. */
1529 static tree
1530 function_to_pointer_conversion (tree exp)
1531 {
1532 tree orig_exp = exp;
1533
1534 gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1535
1536 STRIP_TYPE_NOPS (exp);
1537
1538 if (TREE_NO_WARNING (orig_exp))
1539 TREE_NO_WARNING (exp) = 1;
1540
1541 return build_unary_op (ADDR_EXPR, exp, 0);
1542 }
1543
1544 /* Perform the default conversion of arrays and functions to pointers.
1545 Return the result of converting EXP. For any other expression, just
1546 return EXP after removing NOPs. */
1547
1548 struct c_expr
1549 default_function_array_conversion (struct c_expr exp)
1550 {
1551 tree orig_exp = exp.value;
1552 tree type = TREE_TYPE (exp.value);
1553 enum tree_code code = TREE_CODE (type);
1554
1555 switch (code)
1556 {
1557 case ARRAY_TYPE:
1558 {
1559 bool not_lvalue = false;
1560 bool lvalue_array_p;
1561
1562 while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1563 || TREE_CODE (exp.value) == NOP_EXPR
1564 || TREE_CODE (exp.value) == CONVERT_EXPR)
1565 && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1566 {
1567 if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1568 not_lvalue = true;
1569 exp.value = TREE_OPERAND (exp.value, 0);
1570 }
1571
1572 if (TREE_NO_WARNING (orig_exp))
1573 TREE_NO_WARNING (exp.value) = 1;
1574
1575 lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1576 if (!flag_isoc99 && !lvalue_array_p)
1577 {
1578 /* Before C99, non-lvalue arrays do not decay to pointers.
1579 Normally, using such an array would be invalid; but it can
1580 be used correctly inside sizeof or as a statement expression.
1581 Thus, do not give an error here; an error will result later. */
1582 return exp;
1583 }
1584
1585 exp.value = array_to_pointer_conversion (exp.value);
1586 }
1587 break;
1588 case FUNCTION_TYPE:
1589 exp.value = function_to_pointer_conversion (exp.value);
1590 break;
1591 default:
1592 STRIP_TYPE_NOPS (exp.value);
1593 if (TREE_NO_WARNING (orig_exp))
1594 TREE_NO_WARNING (exp.value) = 1;
1595 break;
1596 }
1597
1598 return exp;
1599 }
1600
1601
1602 /* EXP is an expression of integer type. Apply the integer promotions
1603 to it and return the promoted value. */
1604
1605 tree
1606 perform_integral_promotions (tree exp)
1607 {
1608 tree type = TREE_TYPE (exp);
1609 enum tree_code code = TREE_CODE (type);
1610
1611 gcc_assert (INTEGRAL_TYPE_P (type));
1612
1613 /* Normally convert enums to int,
1614 but convert wide enums to something wider. */
1615 if (code == ENUMERAL_TYPE)
1616 {
1617 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1618 TYPE_PRECISION (integer_type_node)),
1619 ((TYPE_PRECISION (type)
1620 >= TYPE_PRECISION (integer_type_node))
1621 && TYPE_UNSIGNED (type)));
1622
1623 return convert (type, exp);
1624 }
1625
1626 /* ??? This should no longer be needed now bit-fields have their
1627 proper types. */
1628 if (TREE_CODE (exp) == COMPONENT_REF
1629 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1630 /* If it's thinner than an int, promote it like a
1631 c_promoting_integer_type_p, otherwise leave it alone. */
1632 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1633 TYPE_PRECISION (integer_type_node)))
1634 return convert (integer_type_node, exp);
1635
1636 if (c_promoting_integer_type_p (type))
1637 {
1638 /* Preserve unsignedness if not really getting any wider. */
1639 if (TYPE_UNSIGNED (type)
1640 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1641 return convert (unsigned_type_node, exp);
1642
1643 return convert (integer_type_node, exp);
1644 }
1645
1646 return exp;
1647 }
1648
1649
1650 /* Perform default promotions for C data used in expressions.
1651 Enumeral types or short or char are converted to int.
1652 In addition, manifest constants symbols are replaced by their values. */
1653
1654 tree
1655 default_conversion (tree exp)
1656 {
1657 tree orig_exp;
1658 tree type = TREE_TYPE (exp);
1659 enum tree_code code = TREE_CODE (type);
1660
1661 /* Functions and arrays have been converted during parsing. */
1662 gcc_assert (code != FUNCTION_TYPE);
1663 if (code == ARRAY_TYPE)
1664 return exp;
1665
1666 /* Constants can be used directly unless they're not loadable. */
1667 if (TREE_CODE (exp) == CONST_DECL)
1668 exp = DECL_INITIAL (exp);
1669
1670 /* Replace a nonvolatile const static variable with its value unless
1671 it is an array, in which case we must be sure that taking the
1672 address of the array produces consistent results. */
1673 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1674 {
1675 exp = decl_constant_value_for_broken_optimization (exp);
1676 type = TREE_TYPE (exp);
1677 }
1678
1679 /* Strip no-op conversions. */
1680 orig_exp = exp;
1681 STRIP_TYPE_NOPS (exp);
1682
1683 if (TREE_NO_WARNING (orig_exp))
1684 TREE_NO_WARNING (exp) = 1;
1685
1686 if (INTEGRAL_TYPE_P (type))
1687 return perform_integral_promotions (exp);
1688
1689 if (code == VOID_TYPE)
1690 {
1691 error ("void value not ignored as it ought to be");
1692 return error_mark_node;
1693 }
1694 return exp;
1695 }
1696 \f
1697 /* Look up COMPONENT in a structure or union DECL.
1698
1699 If the component name is not found, returns NULL_TREE. Otherwise,
1700 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1701 stepping down the chain to the component, which is in the last
1702 TREE_VALUE of the list. Normally the list is of length one, but if
1703 the component is embedded within (nested) anonymous structures or
1704 unions, the list steps down the chain to the component. */
1705
1706 static tree
1707 lookup_field (tree decl, tree component)
1708 {
1709 tree type = TREE_TYPE (decl);
1710 tree field;
1711
1712 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1713 to the field elements. Use a binary search on this array to quickly
1714 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1715 will always be set for structures which have many elements. */
1716
1717 if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1718 {
1719 int bot, top, half;
1720 tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1721
1722 field = TYPE_FIELDS (type);
1723 bot = 0;
1724 top = TYPE_LANG_SPECIFIC (type)->s->len;
1725 while (top - bot > 1)
1726 {
1727 half = (top - bot + 1) >> 1;
1728 field = field_array[bot+half];
1729
1730 if (DECL_NAME (field) == NULL_TREE)
1731 {
1732 /* Step through all anon unions in linear fashion. */
1733 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1734 {
1735 field = field_array[bot++];
1736 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1737 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1738 {
1739 tree anon = lookup_field (field, component);
1740
1741 if (anon)
1742 return tree_cons (NULL_TREE, field, anon);
1743 }
1744 }
1745
1746 /* Entire record is only anon unions. */
1747 if (bot > top)
1748 return NULL_TREE;
1749
1750 /* Restart the binary search, with new lower bound. */
1751 continue;
1752 }
1753
1754 if (DECL_NAME (field) == component)
1755 break;
1756 if (DECL_NAME (field) < component)
1757 bot += half;
1758 else
1759 top = bot + half;
1760 }
1761
1762 if (DECL_NAME (field_array[bot]) == component)
1763 field = field_array[bot];
1764 else if (DECL_NAME (field) != component)
1765 return NULL_TREE;
1766 }
1767 else
1768 {
1769 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1770 {
1771 if (DECL_NAME (field) == NULL_TREE
1772 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1773 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1774 {
1775 tree anon = lookup_field (field, component);
1776
1777 if (anon)
1778 return tree_cons (NULL_TREE, field, anon);
1779 }
1780
1781 if (DECL_NAME (field) == component)
1782 break;
1783 }
1784
1785 if (field == NULL_TREE)
1786 return NULL_TREE;
1787 }
1788
1789 return tree_cons (NULL_TREE, field, NULL_TREE);
1790 }
1791
1792 /* Make an expression to refer to the COMPONENT field of
1793 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1794
1795 tree
1796 build_component_ref (tree datum, tree component)
1797 {
1798 tree type = TREE_TYPE (datum);
1799 enum tree_code code = TREE_CODE (type);
1800 tree field = NULL;
1801 tree ref;
1802
1803 if (!objc_is_public (datum, component))
1804 return error_mark_node;
1805
1806 /* See if there is a field or component with name COMPONENT. */
1807
1808 if (code == RECORD_TYPE || code == UNION_TYPE)
1809 {
1810 if (!COMPLETE_TYPE_P (type))
1811 {
1812 c_incomplete_type_error (NULL_TREE, type);
1813 return error_mark_node;
1814 }
1815
1816 field = lookup_field (datum, component);
1817
1818 if (!field)
1819 {
1820 error ("%qT has no member named %qE", type, component);
1821 return error_mark_node;
1822 }
1823
1824 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1825 This might be better solved in future the way the C++ front
1826 end does it - by giving the anonymous entities each a
1827 separate name and type, and then have build_component_ref
1828 recursively call itself. We can't do that here. */
1829 do
1830 {
1831 tree subdatum = TREE_VALUE (field);
1832 int quals;
1833 tree subtype;
1834
1835 if (TREE_TYPE (subdatum) == error_mark_node)
1836 return error_mark_node;
1837
1838 quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1839 quals |= TYPE_QUALS (TREE_TYPE (datum));
1840 subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1841
1842 ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1843 NULL_TREE);
1844 if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1845 TREE_READONLY (ref) = 1;
1846 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1847 TREE_THIS_VOLATILE (ref) = 1;
1848
1849 if (TREE_DEPRECATED (subdatum))
1850 warn_deprecated_use (subdatum);
1851
1852 datum = ref;
1853
1854 field = TREE_CHAIN (field);
1855 }
1856 while (field);
1857
1858 return ref;
1859 }
1860 else if (code != ERROR_MARK)
1861 error ("request for member %qE in something not a structure or union",
1862 component);
1863
1864 return error_mark_node;
1865 }
1866 \f
1867 /* Given an expression PTR for a pointer, return an expression
1868 for the value pointed to.
1869 ERRORSTRING is the name of the operator to appear in error messages. */
1870
1871 tree
1872 build_indirect_ref (tree ptr, const char *errorstring)
1873 {
1874 tree pointer = default_conversion (ptr);
1875 tree type = TREE_TYPE (pointer);
1876
1877 if (TREE_CODE (type) == POINTER_TYPE)
1878 {
1879 if (TREE_CODE (pointer) == ADDR_EXPR
1880 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1881 == TREE_TYPE (type)))
1882 return TREE_OPERAND (pointer, 0);
1883 else
1884 {
1885 tree t = TREE_TYPE (type);
1886 tree ref;
1887
1888 ref = build1 (INDIRECT_REF, t, pointer);
1889
1890 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1891 {
1892 error ("dereferencing pointer to incomplete type");
1893 return error_mark_node;
1894 }
1895 if (VOID_TYPE_P (t) && skip_evaluation == 0)
1896 warning (0, "dereferencing %<void *%> pointer");
1897
1898 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1899 so that we get the proper error message if the result is used
1900 to assign to. Also, &* is supposed to be a no-op.
1901 And ANSI C seems to specify that the type of the result
1902 should be the const type. */
1903 /* A de-reference of a pointer to const is not a const. It is valid
1904 to change it via some other pointer. */
1905 TREE_READONLY (ref) = TYPE_READONLY (t);
1906 TREE_SIDE_EFFECTS (ref)
1907 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1908 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1909 return ref;
1910 }
1911 }
1912 else if (TREE_CODE (pointer) != ERROR_MARK)
1913 error ("invalid type argument of %qs", errorstring);
1914 return error_mark_node;
1915 }
1916
1917 /* This handles expressions of the form "a[i]", which denotes
1918 an array reference.
1919
1920 This is logically equivalent in C to *(a+i), but we may do it differently.
1921 If A is a variable or a member, we generate a primitive ARRAY_REF.
1922 This avoids forcing the array out of registers, and can work on
1923 arrays that are not lvalues (for example, members of structures returned
1924 by functions). */
1925
1926 tree
1927 build_array_ref (tree array, tree index)
1928 {
1929 bool swapped = false;
1930 if (TREE_TYPE (array) == error_mark_node
1931 || TREE_TYPE (index) == error_mark_node)
1932 return error_mark_node;
1933
1934 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1935 && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1936 {
1937 tree temp;
1938 if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1939 && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1940 {
1941 error ("subscripted value is neither array nor pointer");
1942 return error_mark_node;
1943 }
1944 temp = array;
1945 array = index;
1946 index = temp;
1947 swapped = true;
1948 }
1949
1950 if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1951 {
1952 error ("array subscript is not an integer");
1953 return error_mark_node;
1954 }
1955
1956 if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1957 {
1958 error ("subscripted value is pointer to function");
1959 return error_mark_node;
1960 }
1961
1962 /* ??? Existing practice has been to warn only when the char
1963 index is syntactically the index, not for char[array]. */
1964 if (!swapped)
1965 warn_array_subscript_with_type_char (index);
1966
1967 /* Apply default promotions *after* noticing character types. */
1968 index = default_conversion (index);
1969
1970 gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1971
1972 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1973 {
1974 tree rval, type;
1975
1976 /* An array that is indexed by a non-constant
1977 cannot be stored in a register; we must be able to do
1978 address arithmetic on its address.
1979 Likewise an array of elements of variable size. */
1980 if (TREE_CODE (index) != INTEGER_CST
1981 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1982 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1983 {
1984 if (!c_mark_addressable (array))
1985 return error_mark_node;
1986 }
1987 /* An array that is indexed by a constant value which is not within
1988 the array bounds cannot be stored in a register either; because we
1989 would get a crash in store_bit_field/extract_bit_field when trying
1990 to access a non-existent part of the register. */
1991 if (TREE_CODE (index) == INTEGER_CST
1992 && TYPE_DOMAIN (TREE_TYPE (array))
1993 && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
1994 {
1995 if (!c_mark_addressable (array))
1996 return error_mark_node;
1997 }
1998
1999 if (pedantic)
2000 {
2001 tree foo = array;
2002 while (TREE_CODE (foo) == COMPONENT_REF)
2003 foo = TREE_OPERAND (foo, 0);
2004 if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2005 pedwarn ("ISO C forbids subscripting %<register%> array");
2006 else if (!flag_isoc99 && !lvalue_p (foo))
2007 pedwarn ("ISO C90 forbids subscripting non-lvalue array");
2008 }
2009
2010 type = TREE_TYPE (TREE_TYPE (array));
2011 if (TREE_CODE (type) != ARRAY_TYPE)
2012 type = TYPE_MAIN_VARIANT (type);
2013 rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2014 /* Array ref is const/volatile if the array elements are
2015 or if the array is. */
2016 TREE_READONLY (rval)
2017 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2018 | TREE_READONLY (array));
2019 TREE_SIDE_EFFECTS (rval)
2020 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2021 | TREE_SIDE_EFFECTS (array));
2022 TREE_THIS_VOLATILE (rval)
2023 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2024 /* This was added by rms on 16 Nov 91.
2025 It fixes vol struct foo *a; a->elts[1]
2026 in an inline function.
2027 Hope it doesn't break something else. */
2028 | TREE_THIS_VOLATILE (array));
2029 return require_complete_type (fold (rval));
2030 }
2031 else
2032 {
2033 tree ar = default_conversion (array);
2034
2035 if (ar == error_mark_node)
2036 return ar;
2037
2038 gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2039 gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2040
2041 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2042 "array indexing");
2043 }
2044 }
2045 \f
2046 /* Build an external reference to identifier ID. FUN indicates
2047 whether this will be used for a function call. LOC is the source
2048 location of the identifier. */
2049 tree
2050 build_external_ref (tree id, int fun, location_t loc)
2051 {
2052 tree ref;
2053 tree decl = lookup_name (id);
2054
2055 /* In Objective-C, an instance variable (ivar) may be preferred to
2056 whatever lookup_name() found. */
2057 decl = objc_lookup_ivar (decl, id);
2058
2059 if (decl && decl != error_mark_node)
2060 ref = decl;
2061 else if (fun)
2062 /* Implicit function declaration. */
2063 ref = implicitly_declare (id);
2064 else if (decl == error_mark_node)
2065 /* Don't complain about something that's already been
2066 complained about. */
2067 return error_mark_node;
2068 else
2069 {
2070 undeclared_variable (id, loc);
2071 return error_mark_node;
2072 }
2073
2074 if (TREE_TYPE (ref) == error_mark_node)
2075 return error_mark_node;
2076
2077 if (TREE_DEPRECATED (ref))
2078 warn_deprecated_use (ref);
2079
2080 if (!skip_evaluation)
2081 assemble_external (ref);
2082 TREE_USED (ref) = 1;
2083
2084 if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2085 {
2086 if (!in_sizeof && !in_typeof)
2087 C_DECL_USED (ref) = 1;
2088 else if (DECL_INITIAL (ref) == 0
2089 && DECL_EXTERNAL (ref)
2090 && !TREE_PUBLIC (ref))
2091 record_maybe_used_decl (ref);
2092 }
2093
2094 if (TREE_CODE (ref) == CONST_DECL)
2095 {
2096 used_types_insert (TREE_TYPE (ref));
2097 ref = DECL_INITIAL (ref);
2098 TREE_CONSTANT (ref) = 1;
2099 TREE_INVARIANT (ref) = 1;
2100 }
2101 else if (current_function_decl != 0
2102 && !DECL_FILE_SCOPE_P (current_function_decl)
2103 && (TREE_CODE (ref) == VAR_DECL
2104 || TREE_CODE (ref) == PARM_DECL
2105 || TREE_CODE (ref) == FUNCTION_DECL))
2106 {
2107 tree context = decl_function_context (ref);
2108
2109 if (context != 0 && context != current_function_decl)
2110 DECL_NONLOCAL (ref) = 1;
2111 }
2112 /* C99 6.7.4p3: An inline definition of a function with external
2113 linkage ... shall not contain a reference to an identifier with
2114 internal linkage. */
2115 else if (current_function_decl != 0
2116 && DECL_DECLARED_INLINE_P (current_function_decl)
2117 && DECL_EXTERNAL (current_function_decl)
2118 && VAR_OR_FUNCTION_DECL_P (ref)
2119 && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2120 && ! TREE_PUBLIC (ref))
2121 pedwarn ("%H%qD is static but used in inline function %qD "
2122 "which is not static", &loc, ref, current_function_decl);
2123
2124 return ref;
2125 }
2126
2127 /* Record details of decls possibly used inside sizeof or typeof. */
2128 struct maybe_used_decl
2129 {
2130 /* The decl. */
2131 tree decl;
2132 /* The level seen at (in_sizeof + in_typeof). */
2133 int level;
2134 /* The next one at this level or above, or NULL. */
2135 struct maybe_used_decl *next;
2136 };
2137
2138 static struct maybe_used_decl *maybe_used_decls;
2139
2140 /* Record that DECL, an undefined static function reference seen
2141 inside sizeof or typeof, might be used if the operand of sizeof is
2142 a VLA type or the operand of typeof is a variably modified
2143 type. */
2144
2145 static void
2146 record_maybe_used_decl (tree decl)
2147 {
2148 struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2149 t->decl = decl;
2150 t->level = in_sizeof + in_typeof;
2151 t->next = maybe_used_decls;
2152 maybe_used_decls = t;
2153 }
2154
2155 /* Pop the stack of decls possibly used inside sizeof or typeof. If
2156 USED is false, just discard them. If it is true, mark them used
2157 (if no longer inside sizeof or typeof) or move them to the next
2158 level up (if still inside sizeof or typeof). */
2159
2160 void
2161 pop_maybe_used (bool used)
2162 {
2163 struct maybe_used_decl *p = maybe_used_decls;
2164 int cur_level = in_sizeof + in_typeof;
2165 while (p && p->level > cur_level)
2166 {
2167 if (used)
2168 {
2169 if (cur_level == 0)
2170 C_DECL_USED (p->decl) = 1;
2171 else
2172 p->level = cur_level;
2173 }
2174 p = p->next;
2175 }
2176 if (!used || cur_level == 0)
2177 maybe_used_decls = p;
2178 }
2179
2180 /* Return the result of sizeof applied to EXPR. */
2181
2182 struct c_expr
2183 c_expr_sizeof_expr (struct c_expr expr)
2184 {
2185 struct c_expr ret;
2186 if (expr.value == error_mark_node)
2187 {
2188 ret.value = error_mark_node;
2189 ret.original_code = ERROR_MARK;
2190 pop_maybe_used (false);
2191 }
2192 else
2193 {
2194 ret.value = c_sizeof (TREE_TYPE (expr.value));
2195 ret.original_code = ERROR_MARK;
2196 if (c_vla_type_p (TREE_TYPE (expr.value)))
2197 {
2198 /* sizeof is evaluated when given a vla (C99 6.5.3.4p2). */
2199 ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2200 }
2201 pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2202 }
2203 return ret;
2204 }
2205
2206 /* Return the result of sizeof applied to T, a structure for the type
2207 name passed to sizeof (rather than the type itself). */
2208
2209 struct c_expr
2210 c_expr_sizeof_type (struct c_type_name *t)
2211 {
2212 tree type;
2213 struct c_expr ret;
2214 type = groktypename (t);
2215 ret.value = c_sizeof (type);
2216 ret.original_code = ERROR_MARK;
2217 pop_maybe_used (type != error_mark_node
2218 ? C_TYPE_VARIABLE_SIZE (type) : false);
2219 return ret;
2220 }
2221
2222 /* Build a function call to function FUNCTION with parameters PARAMS.
2223 PARAMS is a list--a chain of TREE_LIST nodes--in which the
2224 TREE_VALUE of each node is a parameter-expression.
2225 FUNCTION's data type may be a function type or a pointer-to-function. */
2226
2227 tree
2228 build_function_call (tree function, tree params)
2229 {
2230 tree fntype, fundecl = 0;
2231 tree coerced_params;
2232 tree name = NULL_TREE, result;
2233 tree tem;
2234
2235 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
2236 STRIP_TYPE_NOPS (function);
2237
2238 /* Convert anything with function type to a pointer-to-function. */
2239 if (TREE_CODE (function) == FUNCTION_DECL)
2240 {
2241 /* Implement type-directed function overloading for builtins.
2242 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2243 handle all the type checking. The result is a complete expression
2244 that implements this function call. */
2245 tem = resolve_overloaded_builtin (function, params);
2246 if (tem)
2247 return tem;
2248
2249 name = DECL_NAME (function);
2250 fundecl = function;
2251 }
2252 if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2253 function = function_to_pointer_conversion (function);
2254
2255 /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2256 expressions, like those used for ObjC messenger dispatches. */
2257 function = objc_rewrite_function_call (function, params);
2258
2259 fntype = TREE_TYPE (function);
2260
2261 if (TREE_CODE (fntype) == ERROR_MARK)
2262 return error_mark_node;
2263
2264 if (!(TREE_CODE (fntype) == POINTER_TYPE
2265 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2266 {
2267 error ("called object %qE is not a function", function);
2268 return error_mark_node;
2269 }
2270
2271 if (fundecl && TREE_THIS_VOLATILE (fundecl))
2272 current_function_returns_abnormally = 1;
2273
2274 /* fntype now gets the type of function pointed to. */
2275 fntype = TREE_TYPE (fntype);
2276
2277 /* Check that the function is called through a compatible prototype.
2278 If it is not, replace the call by a trap, wrapped up in a compound
2279 expression if necessary. This has the nice side-effect to prevent
2280 the tree-inliner from generating invalid assignment trees which may
2281 blow up in the RTL expander later. */
2282 if ((TREE_CODE (function) == NOP_EXPR
2283 || TREE_CODE (function) == CONVERT_EXPR)
2284 && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2285 && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2286 && !comptypes (fntype, TREE_TYPE (tem)))
2287 {
2288 tree return_type = TREE_TYPE (fntype);
2289 tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2290 NULL_TREE);
2291
2292 /* This situation leads to run-time undefined behavior. We can't,
2293 therefore, simply error unless we can prove that all possible
2294 executions of the program must execute the code. */
2295 warning (0, "function called through a non-compatible type");
2296
2297 /* We can, however, treat "undefined" any way we please.
2298 Call abort to encourage the user to fix the program. */
2299 inform ("if this code is reached, the program will abort");
2300
2301 if (VOID_TYPE_P (return_type))
2302 return trap;
2303 else
2304 {
2305 tree rhs;
2306
2307 if (AGGREGATE_TYPE_P (return_type))
2308 rhs = build_compound_literal (return_type,
2309 build_constructor (return_type, 0));
2310 else
2311 rhs = fold_convert (return_type, integer_zero_node);
2312
2313 return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2314 }
2315 }
2316
2317 /* Convert the parameters to the types declared in the
2318 function prototype, or apply default promotions. */
2319
2320 coerced_params
2321 = convert_arguments (TYPE_ARG_TYPES (fntype), params, function, fundecl);
2322
2323 if (coerced_params == error_mark_node)
2324 return error_mark_node;
2325
2326 /* Check that the arguments to the function are valid. */
2327
2328 check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params,
2329 TYPE_ARG_TYPES (fntype));
2330
2331 if (require_constant_value)
2332 {
2333 result = fold_build3_initializer (CALL_EXPR, TREE_TYPE (fntype),
2334 function, coerced_params, NULL_TREE);
2335
2336 if (TREE_CONSTANT (result)
2337 && (name == NULL_TREE
2338 || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2339 pedwarn_init ("initializer element is not constant");
2340 }
2341 else
2342 result = fold_build3 (CALL_EXPR, TREE_TYPE (fntype),
2343 function, coerced_params, NULL_TREE);
2344
2345 if (VOID_TYPE_P (TREE_TYPE (result)))
2346 return result;
2347 return require_complete_type (result);
2348 }
2349 \f
2350 /* Convert the argument expressions in the list VALUES
2351 to the types in the list TYPELIST. The result is a list of converted
2352 argument expressions, unless there are too few arguments in which
2353 case it is error_mark_node.
2354
2355 If TYPELIST is exhausted, or when an element has NULL as its type,
2356 perform the default conversions.
2357
2358 PARMLIST is the chain of parm decls for the function being called.
2359 It may be 0, if that info is not available.
2360 It is used only for generating error messages.
2361
2362 FUNCTION is a tree for the called function. It is used only for
2363 error messages, where it is formatted with %qE.
2364
2365 This is also where warnings about wrong number of args are generated.
2366
2367 Both VALUES and the returned value are chains of TREE_LIST nodes
2368 with the elements of the list in the TREE_VALUE slots of those nodes. */
2369
2370 static tree
2371 convert_arguments (tree typelist, tree values, tree function, tree fundecl)
2372 {
2373 tree typetail, valtail;
2374 tree result = NULL;
2375 int parmnum;
2376 tree selector;
2377
2378 /* Change pointer to function to the function itself for
2379 diagnostics. */
2380 if (TREE_CODE (function) == ADDR_EXPR
2381 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2382 function = TREE_OPERAND (function, 0);
2383
2384 /* Handle an ObjC selector specially for diagnostics. */
2385 selector = objc_message_selector ();
2386
2387 /* Scan the given expressions and types, producing individual
2388 converted arguments and pushing them on RESULT in reverse order. */
2389
2390 for (valtail = values, typetail = typelist, parmnum = 0;
2391 valtail;
2392 valtail = TREE_CHAIN (valtail), parmnum++)
2393 {
2394 tree type = typetail ? TREE_VALUE (typetail) : 0;
2395 tree val = TREE_VALUE (valtail);
2396 tree rname = function;
2397 int argnum = parmnum + 1;
2398 const char *invalid_func_diag;
2399
2400 if (type == void_type_node)
2401 {
2402 error ("too many arguments to function %qE", function);
2403 break;
2404 }
2405
2406 if (selector && argnum > 2)
2407 {
2408 rname = selector;
2409 argnum -= 2;
2410 }
2411
2412 STRIP_TYPE_NOPS (val);
2413
2414 val = require_complete_type (val);
2415
2416 if (type != 0)
2417 {
2418 /* Formal parm type is specified by a function prototype. */
2419 tree parmval;
2420
2421 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2422 {
2423 error ("type of formal parameter %d is incomplete", parmnum + 1);
2424 parmval = val;
2425 }
2426 else
2427 {
2428 /* Optionally warn about conversions that
2429 differ from the default conversions. */
2430 if (warn_traditional_conversion || warn_traditional)
2431 {
2432 unsigned int formal_prec = TYPE_PRECISION (type);
2433
2434 if (INTEGRAL_TYPE_P (type)
2435 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2436 warning (0, "passing argument %d of %qE as integer "
2437 "rather than floating due to prototype",
2438 argnum, rname);
2439 if (INTEGRAL_TYPE_P (type)
2440 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2441 warning (0, "passing argument %d of %qE as integer "
2442 "rather than complex due to prototype",
2443 argnum, rname);
2444 else if (TREE_CODE (type) == COMPLEX_TYPE
2445 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2446 warning (0, "passing argument %d of %qE as complex "
2447 "rather than floating due to prototype",
2448 argnum, rname);
2449 else if (TREE_CODE (type) == REAL_TYPE
2450 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2451 warning (0, "passing argument %d of %qE as floating "
2452 "rather than integer due to prototype",
2453 argnum, rname);
2454 else if (TREE_CODE (type) == COMPLEX_TYPE
2455 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2456 warning (0, "passing argument %d of %qE as complex "
2457 "rather than integer due to prototype",
2458 argnum, rname);
2459 else if (TREE_CODE (type) == REAL_TYPE
2460 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2461 warning (0, "passing argument %d of %qE as floating "
2462 "rather than complex due to prototype",
2463 argnum, rname);
2464 /* ??? At some point, messages should be written about
2465 conversions between complex types, but that's too messy
2466 to do now. */
2467 else if (TREE_CODE (type) == REAL_TYPE
2468 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2469 {
2470 /* Warn if any argument is passed as `float',
2471 since without a prototype it would be `double'. */
2472 if (formal_prec == TYPE_PRECISION (float_type_node)
2473 && type != dfloat32_type_node)
2474 warning (0, "passing argument %d of %qE as %<float%> "
2475 "rather than %<double%> due to prototype",
2476 argnum, rname);
2477
2478 /* Warn if mismatch between argument and prototype
2479 for decimal float types. Warn of conversions with
2480 binary float types and of precision narrowing due to
2481 prototype. */
2482 else if (type != TREE_TYPE (val)
2483 && (type == dfloat32_type_node
2484 || type == dfloat64_type_node
2485 || type == dfloat128_type_node
2486 || TREE_TYPE (val) == dfloat32_type_node
2487 || TREE_TYPE (val) == dfloat64_type_node
2488 || TREE_TYPE (val) == dfloat128_type_node)
2489 && (formal_prec
2490 <= TYPE_PRECISION (TREE_TYPE (val))
2491 || (type == dfloat128_type_node
2492 && (TREE_TYPE (val)
2493 != dfloat64_type_node
2494 && (TREE_TYPE (val)
2495 != dfloat32_type_node)))
2496 || (type == dfloat64_type_node
2497 && (TREE_TYPE (val)
2498 != dfloat32_type_node))))
2499 warning (0, "passing argument %d of %qE as %qT "
2500 "rather than %qT due to prototype",
2501 argnum, rname, type, TREE_TYPE (val));
2502
2503 }
2504 /* Detect integer changing in width or signedness.
2505 These warnings are only activated with
2506 -Wtraditional-conversion, not with -Wtraditional. */
2507 else if (warn_traditional_conversion && INTEGRAL_TYPE_P (type)
2508 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2509 {
2510 tree would_have_been = default_conversion (val);
2511 tree type1 = TREE_TYPE (would_have_been);
2512
2513 if (TREE_CODE (type) == ENUMERAL_TYPE
2514 && (TYPE_MAIN_VARIANT (type)
2515 == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2516 /* No warning if function asks for enum
2517 and the actual arg is that enum type. */
2518 ;
2519 else if (formal_prec != TYPE_PRECISION (type1))
2520 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2521 "with different width due to prototype",
2522 argnum, rname);
2523 else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2524 ;
2525 /* Don't complain if the formal parameter type
2526 is an enum, because we can't tell now whether
2527 the value was an enum--even the same enum. */
2528 else if (TREE_CODE (type) == ENUMERAL_TYPE)
2529 ;
2530 else if (TREE_CODE (val) == INTEGER_CST
2531 && int_fits_type_p (val, type))
2532 /* Change in signedness doesn't matter
2533 if a constant value is unaffected. */
2534 ;
2535 /* If the value is extended from a narrower
2536 unsigned type, it doesn't matter whether we
2537 pass it as signed or unsigned; the value
2538 certainly is the same either way. */
2539 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2540 && TYPE_UNSIGNED (TREE_TYPE (val)))
2541 ;
2542 else if (TYPE_UNSIGNED (type))
2543 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2544 "as unsigned due to prototype",
2545 argnum, rname);
2546 else
2547 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2548 "as signed due to prototype", argnum, rname);
2549 }
2550 }
2551
2552 parmval = convert_for_assignment (type, val, ic_argpass,
2553 fundecl, function,
2554 parmnum + 1);
2555
2556 if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2557 && INTEGRAL_TYPE_P (type)
2558 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2559 parmval = default_conversion (parmval);
2560 }
2561 result = tree_cons (NULL_TREE, parmval, result);
2562 }
2563 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2564 && (TYPE_PRECISION (TREE_TYPE (val))
2565 < TYPE_PRECISION (double_type_node))
2566 && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2567 /* Convert `float' to `double'. */
2568 result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
2569 else if ((invalid_func_diag =
2570 targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2571 {
2572 error (invalid_func_diag);
2573 return error_mark_node;
2574 }
2575 else
2576 /* Convert `short' and `char' to full-size `int'. */
2577 result = tree_cons (NULL_TREE, default_conversion (val), result);
2578
2579 if (typetail)
2580 typetail = TREE_CHAIN (typetail);
2581 }
2582
2583 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2584 {
2585 error ("too few arguments to function %qE", function);
2586 return error_mark_node;
2587 }
2588
2589 return nreverse (result);
2590 }
2591 \f
2592 /* This is the entry point used by the parser to build unary operators
2593 in the input. CODE, a tree_code, specifies the unary operator, and
2594 ARG is the operand. For unary plus, the C parser currently uses
2595 CONVERT_EXPR for code. */
2596
2597 struct c_expr
2598 parser_build_unary_op (enum tree_code code, struct c_expr arg)
2599 {
2600 struct c_expr result;
2601
2602 result.original_code = ERROR_MARK;
2603 result.value = build_unary_op (code, arg.value, 0);
2604
2605 if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value))
2606 overflow_warning (result.value);
2607
2608 return result;
2609 }
2610
2611 /* This is the entry point used by the parser to build binary operators
2612 in the input. CODE, a tree_code, specifies the binary operator, and
2613 ARG1 and ARG2 are the operands. In addition to constructing the
2614 expression, we check for operands that were written with other binary
2615 operators in a way that is likely to confuse the user. */
2616
2617 struct c_expr
2618 parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2619 struct c_expr arg2)
2620 {
2621 struct c_expr result;
2622
2623 enum tree_code code1 = arg1.original_code;
2624 enum tree_code code2 = arg2.original_code;
2625
2626 result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2627 result.original_code = code;
2628
2629 if (TREE_CODE (result.value) == ERROR_MARK)
2630 return result;
2631
2632 /* Check for cases such as x+y<<z which users are likely
2633 to misinterpret. */
2634 if (warn_parentheses)
2635 warn_about_parentheses (code, code1, code2);
2636
2637 /* Warn about comparisons against string literals, with the exception
2638 of testing for equality or inequality of a string literal with NULL. */
2639 if (code == EQ_EXPR || code == NE_EXPR)
2640 {
2641 if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2642 || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2643 warning (OPT_Wstring_literal_comparison,
2644 "comparison with string literal");
2645 }
2646 else if (TREE_CODE_CLASS (code) == tcc_comparison
2647 && (code1 == STRING_CST || code2 == STRING_CST))
2648 warning (OPT_Wstring_literal_comparison,
2649 "comparison with string literal");
2650
2651 if (TREE_OVERFLOW_P (result.value)
2652 && !TREE_OVERFLOW_P (arg1.value)
2653 && !TREE_OVERFLOW_P (arg2.value))
2654 overflow_warning (result.value);
2655
2656 return result;
2657 }
2658 \f
2659 /* Return a tree for the difference of pointers OP0 and OP1.
2660 The resulting tree has type int. */
2661
2662 static tree
2663 pointer_diff (tree op0, tree op1)
2664 {
2665 tree restype = ptrdiff_type_node;
2666
2667 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2668 tree con0, con1, lit0, lit1;
2669 tree orig_op1 = op1;
2670
2671 if (pedantic || warn_pointer_arith)
2672 {
2673 if (TREE_CODE (target_type) == VOID_TYPE)
2674 pedwarn ("pointer of type %<void *%> used in subtraction");
2675 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2676 pedwarn ("pointer to a function used in subtraction");
2677 }
2678
2679 /* If the conversion to ptrdiff_type does anything like widening or
2680 converting a partial to an integral mode, we get a convert_expression
2681 that is in the way to do any simplifications.
2682 (fold-const.c doesn't know that the extra bits won't be needed.
2683 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2684 different mode in place.)
2685 So first try to find a common term here 'by hand'; we want to cover
2686 at least the cases that occur in legal static initializers. */
2687 if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2688 && (TYPE_PRECISION (TREE_TYPE (op0))
2689 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2690 con0 = TREE_OPERAND (op0, 0);
2691 else
2692 con0 = op0;
2693 if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2694 && (TYPE_PRECISION (TREE_TYPE (op1))
2695 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2696 con1 = TREE_OPERAND (op1, 0);
2697 else
2698 con1 = op1;
2699
2700 if (TREE_CODE (con0) == PLUS_EXPR)
2701 {
2702 lit0 = TREE_OPERAND (con0, 1);
2703 con0 = TREE_OPERAND (con0, 0);
2704 }
2705 else
2706 lit0 = integer_zero_node;
2707
2708 if (TREE_CODE (con1) == PLUS_EXPR)
2709 {
2710 lit1 = TREE_OPERAND (con1, 1);
2711 con1 = TREE_OPERAND (con1, 0);
2712 }
2713 else
2714 lit1 = integer_zero_node;
2715
2716 if (operand_equal_p (con0, con1, 0))
2717 {
2718 op0 = lit0;
2719 op1 = lit1;
2720 }
2721
2722
2723 /* First do the subtraction as integers;
2724 then drop through to build the divide operator.
2725 Do not do default conversions on the minus operator
2726 in case restype is a short type. */
2727
2728 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2729 convert (restype, op1), 0);
2730 /* This generates an error if op1 is pointer to incomplete type. */
2731 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2732 error ("arithmetic on pointer to an incomplete type");
2733
2734 /* This generates an error if op0 is pointer to incomplete type. */
2735 op1 = c_size_in_bytes (target_type);
2736
2737 /* Divide by the size, in easiest possible way. */
2738 return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2739 }
2740 \f
2741 /* Construct and perhaps optimize a tree representation
2742 for a unary operation. CODE, a tree_code, specifies the operation
2743 and XARG is the operand.
2744 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2745 the default promotions (such as from short to int).
2746 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2747 allows non-lvalues; this is only used to handle conversion of non-lvalue
2748 arrays to pointers in C99. */
2749
2750 tree
2751 build_unary_op (enum tree_code code, tree xarg, int flag)
2752 {
2753 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2754 tree arg = xarg;
2755 tree argtype = 0;
2756 enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2757 tree val;
2758 int noconvert = flag;
2759 const char *invalid_op_diag;
2760
2761 if (typecode == ERROR_MARK)
2762 return error_mark_node;
2763 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2764 typecode = INTEGER_TYPE;
2765
2766 if ((invalid_op_diag
2767 = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2768 {
2769 error (invalid_op_diag);
2770 return error_mark_node;
2771 }
2772
2773 switch (code)
2774 {
2775 case CONVERT_EXPR:
2776 /* This is used for unary plus, because a CONVERT_EXPR
2777 is enough to prevent anybody from looking inside for
2778 associativity, but won't generate any code. */
2779 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2780 || typecode == COMPLEX_TYPE
2781 || typecode == VECTOR_TYPE))
2782 {
2783 error ("wrong type argument to unary plus");
2784 return error_mark_node;
2785 }
2786 else if (!noconvert)
2787 arg = default_conversion (arg);
2788 arg = non_lvalue (arg);
2789 break;
2790
2791 case NEGATE_EXPR:
2792 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2793 || typecode == COMPLEX_TYPE
2794 || typecode == VECTOR_TYPE))
2795 {
2796 error ("wrong type argument to unary minus");
2797 return error_mark_node;
2798 }
2799 else if (!noconvert)
2800 arg = default_conversion (arg);
2801 break;
2802
2803 case BIT_NOT_EXPR:
2804 if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2805 {
2806 if (!noconvert)
2807 arg = default_conversion (arg);
2808 }
2809 else if (typecode == COMPLEX_TYPE)
2810 {
2811 code = CONJ_EXPR;
2812 if (pedantic)
2813 pedwarn ("ISO C does not support %<~%> for complex conjugation");
2814 if (!noconvert)
2815 arg = default_conversion (arg);
2816 }
2817 else
2818 {
2819 error ("wrong type argument to bit-complement");
2820 return error_mark_node;
2821 }
2822 break;
2823
2824 case ABS_EXPR:
2825 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2826 {
2827 error ("wrong type argument to abs");
2828 return error_mark_node;
2829 }
2830 else if (!noconvert)
2831 arg = default_conversion (arg);
2832 break;
2833
2834 case CONJ_EXPR:
2835 /* Conjugating a real value is a no-op, but allow it anyway. */
2836 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2837 || typecode == COMPLEX_TYPE))
2838 {
2839 error ("wrong type argument to conjugation");
2840 return error_mark_node;
2841 }
2842 else if (!noconvert)
2843 arg = default_conversion (arg);
2844 break;
2845
2846 case TRUTH_NOT_EXPR:
2847 if (typecode != INTEGER_TYPE
2848 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2849 && typecode != COMPLEX_TYPE)
2850 {
2851 error ("wrong type argument to unary exclamation mark");
2852 return error_mark_node;
2853 }
2854 arg = c_objc_common_truthvalue_conversion (arg);
2855 return invert_truthvalue (arg);
2856
2857 case REALPART_EXPR:
2858 if (TREE_CODE (arg) == COMPLEX_CST)
2859 return TREE_REALPART (arg);
2860 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2861 return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2862 else
2863 return arg;
2864
2865 case IMAGPART_EXPR:
2866 if (TREE_CODE (arg) == COMPLEX_CST)
2867 return TREE_IMAGPART (arg);
2868 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2869 return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2870 else
2871 return convert (TREE_TYPE (arg), integer_zero_node);
2872
2873 case PREINCREMENT_EXPR:
2874 case POSTINCREMENT_EXPR:
2875 case PREDECREMENT_EXPR:
2876 case POSTDECREMENT_EXPR:
2877
2878 /* Increment or decrement the real part of the value,
2879 and don't change the imaginary part. */
2880 if (typecode == COMPLEX_TYPE)
2881 {
2882 tree real, imag;
2883
2884 if (pedantic)
2885 pedwarn ("ISO C does not support %<++%> and %<--%>"
2886 " on complex types");
2887
2888 arg = stabilize_reference (arg);
2889 real = build_unary_op (REALPART_EXPR, arg, 1);
2890 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2891 return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2892 build_unary_op (code, real, 1), imag);
2893 }
2894
2895 /* Report invalid types. */
2896
2897 if (typecode != POINTER_TYPE
2898 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2899 {
2900 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2901 error ("wrong type argument to increment");
2902 else
2903 error ("wrong type argument to decrement");
2904
2905 return error_mark_node;
2906 }
2907
2908 {
2909 tree inc;
2910 tree result_type = TREE_TYPE (arg);
2911
2912 arg = get_unwidened (arg, 0);
2913 argtype = TREE_TYPE (arg);
2914
2915 /* Compute the increment. */
2916
2917 if (typecode == POINTER_TYPE)
2918 {
2919 /* If pointer target is an undefined struct,
2920 we just cannot know how to do the arithmetic. */
2921 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2922 {
2923 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2924 error ("increment of pointer to unknown structure");
2925 else
2926 error ("decrement of pointer to unknown structure");
2927 }
2928 else if ((pedantic || warn_pointer_arith)
2929 && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2930 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2931 {
2932 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2933 pedwarn ("wrong type argument to increment");
2934 else
2935 pedwarn ("wrong type argument to decrement");
2936 }
2937
2938 inc = c_size_in_bytes (TREE_TYPE (result_type));
2939 }
2940 else
2941 inc = integer_one_node;
2942
2943 inc = convert (argtype, inc);
2944
2945 /* Complain about anything else that is not a true lvalue. */
2946 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2947 || code == POSTINCREMENT_EXPR)
2948 ? lv_increment
2949 : lv_decrement)))
2950 return error_mark_node;
2951
2952 /* Report a read-only lvalue. */
2953 if (TREE_READONLY (arg))
2954 {
2955 readonly_error (arg,
2956 ((code == PREINCREMENT_EXPR
2957 || code == POSTINCREMENT_EXPR)
2958 ? lv_increment : lv_decrement));
2959 return error_mark_node;
2960 }
2961
2962 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2963 val = boolean_increment (code, arg);
2964 else
2965 val = build2 (code, TREE_TYPE (arg), arg, inc);
2966 TREE_SIDE_EFFECTS (val) = 1;
2967 val = convert (result_type, val);
2968 if (TREE_CODE (val) != code)
2969 TREE_NO_WARNING (val) = 1;
2970 return val;
2971 }
2972
2973 case ADDR_EXPR:
2974 /* Note that this operation never does default_conversion. */
2975
2976 /* Let &* cancel out to simplify resulting code. */
2977 if (TREE_CODE (arg) == INDIRECT_REF)
2978 {
2979 /* Don't let this be an lvalue. */
2980 if (lvalue_p (TREE_OPERAND (arg, 0)))
2981 return non_lvalue (TREE_OPERAND (arg, 0));
2982 return TREE_OPERAND (arg, 0);
2983 }
2984
2985 /* For &x[y], return x+y */
2986 if (TREE_CODE (arg) == ARRAY_REF)
2987 {
2988 tree op0 = TREE_OPERAND (arg, 0);
2989 if (!c_mark_addressable (op0))
2990 return error_mark_node;
2991 return build_binary_op (PLUS_EXPR,
2992 (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
2993 ? array_to_pointer_conversion (op0)
2994 : op0),
2995 TREE_OPERAND (arg, 1), 1);
2996 }
2997
2998 /* Anything not already handled and not a true memory reference
2999 or a non-lvalue array is an error. */
3000 else if (typecode != FUNCTION_TYPE && !flag
3001 && !lvalue_or_else (arg, lv_addressof))
3002 return error_mark_node;
3003
3004 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3005 argtype = TREE_TYPE (arg);
3006
3007 /* If the lvalue is const or volatile, merge that into the type
3008 to which the address will point. Note that you can't get a
3009 restricted pointer by taking the address of something, so we
3010 only have to deal with `const' and `volatile' here. */
3011 if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3012 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3013 argtype = c_build_type_variant (argtype,
3014 TREE_READONLY (arg),
3015 TREE_THIS_VOLATILE (arg));
3016
3017 if (!c_mark_addressable (arg))
3018 return error_mark_node;
3019
3020 gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3021 || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3022
3023 argtype = build_pointer_type (argtype);
3024
3025 /* ??? Cope with user tricks that amount to offsetof. Delete this
3026 when we have proper support for integer constant expressions. */
3027 val = get_base_address (arg);
3028 if (val && TREE_CODE (val) == INDIRECT_REF
3029 && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3030 {
3031 tree op0 = fold_convert (argtype, fold_offsetof (arg, val)), op1;
3032
3033 op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3034 return fold_build2 (PLUS_EXPR, argtype, op0, op1);
3035 }
3036
3037 val = build1 (ADDR_EXPR, argtype, arg);
3038
3039 return val;
3040
3041 default:
3042 gcc_unreachable ();
3043 }
3044
3045 if (argtype == 0)
3046 argtype = TREE_TYPE (arg);
3047 return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3048 : fold_build1 (code, argtype, arg);
3049 }
3050
3051 /* Return nonzero if REF is an lvalue valid for this language.
3052 Lvalues can be assigned, unless their type has TYPE_READONLY.
3053 Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
3054
3055 static int
3056 lvalue_p (tree ref)
3057 {
3058 enum tree_code code = TREE_CODE (ref);
3059
3060 switch (code)
3061 {
3062 case REALPART_EXPR:
3063 case IMAGPART_EXPR:
3064 case COMPONENT_REF:
3065 return lvalue_p (TREE_OPERAND (ref, 0));
3066
3067 case COMPOUND_LITERAL_EXPR:
3068 case STRING_CST:
3069 return 1;
3070
3071 case INDIRECT_REF:
3072 case ARRAY_REF:
3073 case VAR_DECL:
3074 case PARM_DECL:
3075 case RESULT_DECL:
3076 case ERROR_MARK:
3077 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3078 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3079
3080 case BIND_EXPR:
3081 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3082
3083 default:
3084 return 0;
3085 }
3086 }
3087 \f
3088 /* Give an error for storing in something that is 'const'. */
3089
3090 static void
3091 readonly_error (tree arg, enum lvalue_use use)
3092 {
3093 gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3094 || use == lv_asm);
3095 /* Using this macro rather than (for example) arrays of messages
3096 ensures that all the format strings are checked at compile
3097 time. */
3098 #define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A) \
3099 : (use == lv_increment ? (I) \
3100 : (use == lv_decrement ? (D) : (AS))))
3101 if (TREE_CODE (arg) == COMPONENT_REF)
3102 {
3103 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3104 readonly_error (TREE_OPERAND (arg, 0), use);
3105 else
3106 error (READONLY_MSG (G_("assignment of read-only member %qD"),
3107 G_("increment of read-only member %qD"),
3108 G_("decrement of read-only member %qD"),
3109 G_("read-only member %qD used as %<asm%> output")),
3110 TREE_OPERAND (arg, 1));
3111 }
3112 else if (TREE_CODE (arg) == VAR_DECL)
3113 error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3114 G_("increment of read-only variable %qD"),
3115 G_("decrement of read-only variable %qD"),
3116 G_("read-only variable %qD used as %<asm%> output")),
3117 arg);
3118 else
3119 error (READONLY_MSG (G_("assignment of read-only location"),
3120 G_("increment of read-only location"),
3121 G_("decrement of read-only location"),
3122 G_("read-only location used as %<asm%> output")));
3123 }
3124
3125
3126 /* Return nonzero if REF is an lvalue valid for this language;
3127 otherwise, print an error message and return zero. USE says
3128 how the lvalue is being used and so selects the error message. */
3129
3130 static int
3131 lvalue_or_else (tree ref, enum lvalue_use use)
3132 {
3133 int win = lvalue_p (ref);
3134
3135 if (!win)
3136 lvalue_error (use);
3137
3138 return win;
3139 }
3140 \f
3141 /* Mark EXP saying that we need to be able to take the
3142 address of it; it should not be allocated in a register.
3143 Returns true if successful. */
3144
3145 bool
3146 c_mark_addressable (tree exp)
3147 {
3148 tree x = exp;
3149
3150 while (1)
3151 switch (TREE_CODE (x))
3152 {
3153 case COMPONENT_REF:
3154 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3155 {
3156 error
3157 ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3158 return false;
3159 }
3160
3161 /* ... fall through ... */
3162
3163 case ADDR_EXPR:
3164 case ARRAY_REF:
3165 case REALPART_EXPR:
3166 case IMAGPART_EXPR:
3167 x = TREE_OPERAND (x, 0);
3168 break;
3169
3170 case COMPOUND_LITERAL_EXPR:
3171 case CONSTRUCTOR:
3172 TREE_ADDRESSABLE (x) = 1;
3173 return true;
3174
3175 case VAR_DECL:
3176 case CONST_DECL:
3177 case PARM_DECL:
3178 case RESULT_DECL:
3179 if (C_DECL_REGISTER (x)
3180 && DECL_NONLOCAL (x))
3181 {
3182 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3183 {
3184 error
3185 ("global register variable %qD used in nested function", x);
3186 return false;
3187 }
3188 pedwarn ("register variable %qD used in nested function", x);
3189 }
3190 else if (C_DECL_REGISTER (x))
3191 {
3192 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3193 error ("address of global register variable %qD requested", x);
3194 else
3195 error ("address of register variable %qD requested", x);
3196 return false;
3197 }
3198
3199 /* drops in */
3200 case FUNCTION_DECL:
3201 TREE_ADDRESSABLE (x) = 1;
3202 /* drops out */
3203 default:
3204 return true;
3205 }
3206 }
3207 \f
3208 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3209
3210 tree
3211 build_conditional_expr (tree ifexp, tree op1, tree op2)
3212 {
3213 tree type1;
3214 tree type2;
3215 enum tree_code code1;
3216 enum tree_code code2;
3217 tree result_type = NULL;
3218 tree orig_op1 = op1, orig_op2 = op2;
3219
3220 /* Promote both alternatives. */
3221
3222 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3223 op1 = default_conversion (op1);
3224 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3225 op2 = default_conversion (op2);
3226
3227 if (TREE_CODE (ifexp) == ERROR_MARK
3228 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3229 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3230 return error_mark_node;
3231
3232 type1 = TREE_TYPE (op1);
3233 code1 = TREE_CODE (type1);
3234 type2 = TREE_TYPE (op2);
3235 code2 = TREE_CODE (type2);
3236
3237 /* C90 does not permit non-lvalue arrays in conditional expressions.
3238 In C99 they will be pointers by now. */
3239 if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3240 {
3241 error ("non-lvalue array in conditional expression");
3242 return error_mark_node;
3243 }
3244
3245 /* Quickly detect the usual case where op1 and op2 have the same type
3246 after promotion. */
3247 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3248 {
3249 if (type1 == type2)
3250 result_type = type1;
3251 else
3252 result_type = TYPE_MAIN_VARIANT (type1);
3253 }
3254 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3255 || code1 == COMPLEX_TYPE)
3256 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3257 || code2 == COMPLEX_TYPE))
3258 {
3259 result_type = c_common_type (type1, type2);
3260
3261 /* If -Wsign-compare, warn here if type1 and type2 have
3262 different signedness. We'll promote the signed to unsigned
3263 and later code won't know it used to be different.
3264 Do this check on the original types, so that explicit casts
3265 will be considered, but default promotions won't. */
3266 if (warn_sign_compare && !skip_evaluation)
3267 {
3268 int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3269 int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3270
3271 if (unsigned_op1 ^ unsigned_op2)
3272 {
3273 /* Do not warn if the result type is signed, since the
3274 signed type will only be chosen if it can represent
3275 all the values of the unsigned type. */
3276 if (!TYPE_UNSIGNED (result_type))
3277 /* OK */;
3278 /* Do not warn if the signed quantity is an unsuffixed
3279 integer literal (or some static constant expression
3280 involving such literals) and it is non-negative. */
3281 else if ((unsigned_op2 && tree_expr_nonnegative_p (op1))
3282 || (unsigned_op1 && tree_expr_nonnegative_p (op2)))
3283 /* OK */;
3284 else
3285 warning (0, "signed and unsigned type in conditional expression");
3286 }
3287 }
3288 }
3289 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3290 {
3291 if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3292 pedwarn ("ISO C forbids conditional expr with only one void side");
3293 result_type = void_type_node;
3294 }
3295 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3296 {
3297 if (comp_target_types (type1, type2))
3298 result_type = common_pointer_type (type1, type2);
3299 else if (null_pointer_constant_p (orig_op1))
3300 result_type = qualify_type (type2, type1);
3301 else if (null_pointer_constant_p (orig_op2))
3302 result_type = qualify_type (type1, type2);
3303 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3304 {
3305 if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3306 pedwarn ("ISO C forbids conditional expr between "
3307 "%<void *%> and function pointer");
3308 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3309 TREE_TYPE (type2)));
3310 }
3311 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3312 {
3313 if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3314 pedwarn ("ISO C forbids conditional expr between "
3315 "%<void *%> and function pointer");
3316 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3317 TREE_TYPE (type1)));
3318 }
3319 else
3320 {
3321 pedwarn ("pointer type mismatch in conditional expression");
3322 result_type = build_pointer_type (void_type_node);
3323 }
3324 }
3325 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3326 {
3327 if (!null_pointer_constant_p (orig_op2))
3328 pedwarn ("pointer/integer type mismatch in conditional expression");
3329 else
3330 {
3331 op2 = null_pointer_node;
3332 }
3333 result_type = type1;
3334 }
3335 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3336 {
3337 if (!null_pointer_constant_p (orig_op1))
3338 pedwarn ("pointer/integer type mismatch in conditional expression");
3339 else
3340 {
3341 op1 = null_pointer_node;
3342 }
3343 result_type = type2;
3344 }
3345
3346 if (!result_type)
3347 {
3348 if (flag_cond_mismatch)
3349 result_type = void_type_node;
3350 else
3351 {
3352 error ("type mismatch in conditional expression");
3353 return error_mark_node;
3354 }
3355 }
3356
3357 /* Merge const and volatile flags of the incoming types. */
3358 result_type
3359 = build_type_variant (result_type,
3360 TREE_READONLY (op1) || TREE_READONLY (op2),
3361 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3362
3363 if (result_type != TREE_TYPE (op1))
3364 op1 = convert_and_check (result_type, op1);
3365 if (result_type != TREE_TYPE (op2))
3366 op2 = convert_and_check (result_type, op2);
3367
3368 return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3369 }
3370 \f
3371 /* Return a compound expression that performs two expressions and
3372 returns the value of the second of them. */
3373
3374 tree
3375 build_compound_expr (tree expr1, tree expr2)
3376 {
3377 if (!TREE_SIDE_EFFECTS (expr1))
3378 {
3379 /* The left-hand operand of a comma expression is like an expression
3380 statement: with -Wextra or -Wunused, we should warn if it doesn't have
3381 any side-effects, unless it was explicitly cast to (void). */
3382 if (warn_unused_value)
3383 {
3384 if (VOID_TYPE_P (TREE_TYPE (expr1))
3385 && (TREE_CODE (expr1) == NOP_EXPR
3386 || TREE_CODE (expr1) == CONVERT_EXPR))
3387 ; /* (void) a, b */
3388 else if (VOID_TYPE_P (TREE_TYPE (expr1))
3389 && TREE_CODE (expr1) == COMPOUND_EXPR
3390 && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3391 || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3392 ; /* (void) a, (void) b, c */
3393 else
3394 warning (0, "left-hand operand of comma expression has no effect");
3395 }
3396 }
3397
3398 /* With -Wunused, we should also warn if the left-hand operand does have
3399 side-effects, but computes a value which is not used. For example, in
3400 `foo() + bar(), baz()' the result of the `+' operator is not used,
3401 so we should issue a warning. */
3402 else if (warn_unused_value)
3403 warn_if_unused_value (expr1, input_location);
3404
3405 if (expr2 == error_mark_node)
3406 return error_mark_node;
3407
3408 return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3409 }
3410
3411 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3412
3413 tree
3414 build_c_cast (tree type, tree expr)
3415 {
3416 tree value = expr;
3417
3418 if (type == error_mark_node || expr == error_mark_node)
3419 return error_mark_node;
3420
3421 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3422 only in <protocol> qualifications. But when constructing cast expressions,
3423 the protocols do matter and must be kept around. */
3424 if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3425 return build1 (NOP_EXPR, type, expr);
3426
3427 type = TYPE_MAIN_VARIANT (type);
3428
3429 if (TREE_CODE (type) == ARRAY_TYPE)
3430 {
3431 error ("cast specifies array type");
3432 return error_mark_node;
3433 }
3434
3435 if (TREE_CODE (type) == FUNCTION_TYPE)
3436 {
3437 error ("cast specifies function type");
3438 return error_mark_node;
3439 }
3440
3441 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3442 {
3443 if (pedantic)
3444 {
3445 if (TREE_CODE (type) == RECORD_TYPE
3446 || TREE_CODE (type) == UNION_TYPE)
3447 pedwarn ("ISO C forbids casting nonscalar to the same type");
3448 }
3449 }
3450 else if (TREE_CODE (type) == UNION_TYPE)
3451 {
3452 tree field;
3453
3454 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3455 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3456 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3457 break;
3458
3459 if (field)
3460 {
3461 tree t;
3462
3463 if (pedantic)
3464 pedwarn ("ISO C forbids casts to union type");
3465 t = digest_init (type,
3466 build_constructor_single (type, field, value),
3467 true, 0);
3468 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3469 TREE_INVARIANT (t) = TREE_INVARIANT (value);
3470 return t;
3471 }
3472 error ("cast to union type from type not present in union");
3473 return error_mark_node;
3474 }
3475 else
3476 {
3477 tree otype, ovalue;
3478
3479 if (type == void_type_node)
3480 return build1 (CONVERT_EXPR, type, value);
3481
3482 otype = TREE_TYPE (value);
3483
3484 /* Optionally warn about potentially worrisome casts. */
3485
3486 if (warn_cast_qual
3487 && TREE_CODE (type) == POINTER_TYPE
3488 && TREE_CODE (otype) == POINTER_TYPE)
3489 {
3490 tree in_type = type;
3491 tree in_otype = otype;
3492 int added = 0;
3493 int discarded = 0;
3494
3495 /* Check that the qualifiers on IN_TYPE are a superset of
3496 the qualifiers of IN_OTYPE. The outermost level of
3497 POINTER_TYPE nodes is uninteresting and we stop as soon
3498 as we hit a non-POINTER_TYPE node on either type. */
3499 do
3500 {
3501 in_otype = TREE_TYPE (in_otype);
3502 in_type = TREE_TYPE (in_type);
3503
3504 /* GNU C allows cv-qualified function types. 'const'
3505 means the function is very pure, 'volatile' means it
3506 can't return. We need to warn when such qualifiers
3507 are added, not when they're taken away. */
3508 if (TREE_CODE (in_otype) == FUNCTION_TYPE
3509 && TREE_CODE (in_type) == FUNCTION_TYPE)
3510 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3511 else
3512 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3513 }
3514 while (TREE_CODE (in_type) == POINTER_TYPE
3515 && TREE_CODE (in_otype) == POINTER_TYPE);
3516
3517 if (added)
3518 warning (0, "cast adds new qualifiers to function type");
3519
3520 if (discarded)
3521 /* There are qualifiers present in IN_OTYPE that are not
3522 present in IN_TYPE. */
3523 warning (0, "cast discards qualifiers from pointer target type");
3524 }
3525
3526 /* Warn about possible alignment problems. */
3527 if (STRICT_ALIGNMENT
3528 && TREE_CODE (type) == POINTER_TYPE
3529 && TREE_CODE (otype) == POINTER_TYPE
3530 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3531 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3532 /* Don't warn about opaque types, where the actual alignment
3533 restriction is unknown. */
3534 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3535 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3536 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3537 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3538 warning (OPT_Wcast_align,
3539 "cast increases required alignment of target type");
3540
3541 if (TREE_CODE (type) == INTEGER_TYPE
3542 && TREE_CODE (otype) == POINTER_TYPE
3543 && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3544 /* Unlike conversion of integers to pointers, where the
3545 warning is disabled for converting constants because
3546 of cases such as SIG_*, warn about converting constant
3547 pointers to integers. In some cases it may cause unwanted
3548 sign extension, and a warning is appropriate. */
3549 warning (OPT_Wpointer_to_int_cast,
3550 "cast from pointer to integer of different size");
3551
3552 if (TREE_CODE (value) == CALL_EXPR
3553 && TREE_CODE (type) != TREE_CODE (otype))
3554 warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3555 "to non-matching type %qT", otype, type);
3556
3557 if (TREE_CODE (type) == POINTER_TYPE
3558 && TREE_CODE (otype) == INTEGER_TYPE
3559 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3560 /* Don't warn about converting any constant. */
3561 && !TREE_CONSTANT (value))
3562 warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3563 "of different size");
3564
3565 strict_aliasing_warning (otype, type, expr);
3566
3567 /* If pedantic, warn for conversions between function and object
3568 pointer types, except for converting a null pointer constant
3569 to function pointer type. */
3570 if (pedantic
3571 && TREE_CODE (type) == POINTER_TYPE
3572 && TREE_CODE (otype) == POINTER_TYPE
3573 && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3574 && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3575 pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3576
3577 if (pedantic
3578 && TREE_CODE (type) == POINTER_TYPE
3579 && TREE_CODE (otype) == POINTER_TYPE
3580 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3581 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3582 && !null_pointer_constant_p (value))
3583 pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3584
3585 ovalue = value;
3586 value = convert (type, value);
3587
3588 /* Ignore any integer overflow caused by the cast. */
3589 if (TREE_CODE (value) == INTEGER_CST)
3590 {
3591 if (CONSTANT_CLASS_P (ovalue)
3592 && (TREE_OVERFLOW (ovalue) || TREE_CONSTANT_OVERFLOW (ovalue)))
3593 {
3594 /* Avoid clobbering a shared constant. */
3595 value = copy_node (value);
3596 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3597 TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3598 }
3599 else if (TREE_OVERFLOW (value) || TREE_CONSTANT_OVERFLOW (value))
3600 /* Reset VALUE's overflow flags, ensuring constant sharing. */
3601 value = build_int_cst_wide (TREE_TYPE (value),
3602 TREE_INT_CST_LOW (value),
3603 TREE_INT_CST_HIGH (value));
3604 }
3605 }
3606
3607 /* Don't let a cast be an lvalue. */
3608 if (value == expr)
3609 value = non_lvalue (value);
3610
3611 return value;
3612 }
3613
3614 /* Interpret a cast of expression EXPR to type TYPE. */
3615 tree
3616 c_cast_expr (struct c_type_name *type_name, tree expr)
3617 {
3618 tree type;
3619 int saved_wsp = warn_strict_prototypes;
3620
3621 /* This avoids warnings about unprototyped casts on
3622 integers. E.g. "#define SIG_DFL (void(*)())0". */
3623 if (TREE_CODE (expr) == INTEGER_CST)
3624 warn_strict_prototypes = 0;
3625 type = groktypename (type_name);
3626 warn_strict_prototypes = saved_wsp;
3627
3628 return build_c_cast (type, expr);
3629 }
3630 \f
3631 /* Build an assignment expression of lvalue LHS from value RHS.
3632 MODIFYCODE is the code for a binary operator that we use
3633 to combine the old value of LHS with RHS to get the new value.
3634 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3635
3636 tree
3637 build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3638 {
3639 tree result;
3640 tree newrhs;
3641 tree lhstype = TREE_TYPE (lhs);
3642 tree olhstype = lhstype;
3643
3644 /* Types that aren't fully specified cannot be used in assignments. */
3645 lhs = require_complete_type (lhs);
3646
3647 /* Avoid duplicate error messages from operands that had errors. */
3648 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3649 return error_mark_node;
3650
3651 if (!lvalue_or_else (lhs, lv_assign))
3652 return error_mark_node;
3653
3654 STRIP_TYPE_NOPS (rhs);
3655
3656 newrhs = rhs;
3657
3658 /* If a binary op has been requested, combine the old LHS value with the RHS
3659 producing the value we should actually store into the LHS. */
3660
3661 if (modifycode != NOP_EXPR)
3662 {
3663 lhs = stabilize_reference (lhs);
3664 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3665 }
3666
3667 /* Give an error for storing in something that is 'const'. */
3668
3669 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3670 || ((TREE_CODE (lhstype) == RECORD_TYPE
3671 || TREE_CODE (lhstype) == UNION_TYPE)
3672 && C_TYPE_FIELDS_READONLY (lhstype)))
3673 {
3674 readonly_error (lhs, lv_assign);
3675 return error_mark_node;
3676 }
3677
3678 /* If storing into a structure or union member,
3679 it has probably been given type `int'.
3680 Compute the type that would go with
3681 the actual amount of storage the member occupies. */
3682
3683 if (TREE_CODE (lhs) == COMPONENT_REF
3684 && (TREE_CODE (lhstype) == INTEGER_TYPE
3685 || TREE_CODE (lhstype) == BOOLEAN_TYPE
3686 || TREE_CODE (lhstype) == REAL_TYPE
3687 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3688 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3689
3690 /* If storing in a field that is in actuality a short or narrower than one,
3691 we must store in the field in its actual type. */
3692
3693 if (lhstype != TREE_TYPE (lhs))
3694 {
3695 lhs = copy_node (lhs);
3696 TREE_TYPE (lhs) = lhstype;
3697 }
3698
3699 /* Convert new value to destination type. */
3700
3701 newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3702 NULL_TREE, NULL_TREE, 0);
3703 if (TREE_CODE (newrhs) == ERROR_MARK)
3704 return error_mark_node;
3705
3706 /* Emit ObjC write barrier, if necessary. */
3707 if (c_dialect_objc () && flag_objc_gc)
3708 {
3709 result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3710 if (result)
3711 return result;
3712 }
3713
3714 /* Scan operands. */
3715
3716 result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3717 TREE_SIDE_EFFECTS (result) = 1;
3718
3719 /* If we got the LHS in a different type for storing in,
3720 convert the result back to the nominal type of LHS
3721 so that the value we return always has the same type
3722 as the LHS argument. */
3723
3724 if (olhstype == TREE_TYPE (result))
3725 return result;
3726 return convert_for_assignment (olhstype, result, ic_assign,
3727 NULL_TREE, NULL_TREE, 0);
3728 }
3729 \f
3730 /* Convert value RHS to type TYPE as preparation for an assignment
3731 to an lvalue of type TYPE.
3732 The real work of conversion is done by `convert'.
3733 The purpose of this function is to generate error messages
3734 for assignments that are not allowed in C.
3735 ERRTYPE says whether it is argument passing, assignment,
3736 initialization or return.
3737
3738 FUNCTION is a tree for the function being called.
3739 PARMNUM is the number of the argument, for printing in error messages. */
3740
3741 static tree
3742 convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3743 tree fundecl, tree function, int parmnum)
3744 {
3745 enum tree_code codel = TREE_CODE (type);
3746 tree rhstype;
3747 enum tree_code coder;
3748 tree rname = NULL_TREE;
3749 bool objc_ok = false;
3750
3751 if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3752 {
3753 tree selector;
3754 /* Change pointer to function to the function itself for
3755 diagnostics. */
3756 if (TREE_CODE (function) == ADDR_EXPR
3757 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3758 function = TREE_OPERAND (function, 0);
3759
3760 /* Handle an ObjC selector specially for diagnostics. */
3761 selector = objc_message_selector ();
3762 rname = function;
3763 if (selector && parmnum > 2)
3764 {
3765 rname = selector;
3766 parmnum -= 2;
3767 }
3768 }
3769
3770 /* This macro is used to emit diagnostics to ensure that all format
3771 strings are complete sentences, visible to gettext and checked at
3772 compile time. */
3773 #define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE) \
3774 do { \
3775 switch (errtype) \
3776 { \
3777 case ic_argpass: \
3778 pedwarn (AR, parmnum, rname); \
3779 break; \
3780 case ic_argpass_nonproto: \
3781 warning (0, AR, parmnum, rname); \
3782 break; \
3783 case ic_assign: \
3784 pedwarn (AS); \
3785 break; \
3786 case ic_init: \
3787 pedwarn (IN); \
3788 break; \
3789 case ic_return: \
3790 pedwarn (RE); \
3791 break; \
3792 default: \
3793 gcc_unreachable (); \
3794 } \
3795 } while (0)
3796
3797 STRIP_TYPE_NOPS (rhs);
3798
3799 if (optimize && TREE_CODE (rhs) == VAR_DECL
3800 && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3801 rhs = decl_constant_value_for_broken_optimization (rhs);
3802
3803 rhstype = TREE_TYPE (rhs);
3804 coder = TREE_CODE (rhstype);
3805
3806 if (coder == ERROR_MARK)
3807 return error_mark_node;
3808
3809 if (c_dialect_objc ())
3810 {
3811 int parmno;
3812
3813 switch (errtype)
3814 {
3815 case ic_return:
3816 parmno = 0;
3817 break;
3818
3819 case ic_assign:
3820 parmno = -1;
3821 break;
3822
3823 case ic_init:
3824 parmno = -2;
3825 break;
3826
3827 default:
3828 parmno = parmnum;
3829 break;
3830 }
3831
3832 objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3833 }
3834
3835 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3836 return rhs;
3837
3838 if (coder == VOID_TYPE)
3839 {
3840 /* Except for passing an argument to an unprototyped function,
3841 this is a constraint violation. When passing an argument to
3842 an unprototyped function, it is compile-time undefined;
3843 making it a constraint in that case was rejected in
3844 DR#252. */
3845 error ("void value not ignored as it ought to be");
3846 return error_mark_node;
3847 }
3848 /* A type converts to a reference to it.
3849 This code doesn't fully support references, it's just for the
3850 special case of va_start and va_copy. */
3851 if (codel == REFERENCE_TYPE
3852 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3853 {
3854 if (!lvalue_p (rhs))
3855 {
3856 error ("cannot pass rvalue to reference parameter");
3857 return error_mark_node;
3858 }
3859 if (!c_mark_addressable (rhs))
3860 return error_mark_node;
3861 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3862
3863 /* We already know that these two types are compatible, but they
3864 may not be exactly identical. In fact, `TREE_TYPE (type)' is
3865 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3866 likely to be va_list, a typedef to __builtin_va_list, which
3867 is different enough that it will cause problems later. */
3868 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3869 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3870
3871 rhs = build1 (NOP_EXPR, type, rhs);
3872 return rhs;
3873 }
3874 /* Some types can interconvert without explicit casts. */
3875 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3876 && vector_types_convertible_p (type, TREE_TYPE (rhs)))
3877 return convert (type, rhs);
3878 /* Arithmetic types all interconvert, and enum is treated like int. */
3879 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3880 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3881 || codel == BOOLEAN_TYPE)
3882 && (coder == INTEGER_TYPE || coder == REAL_TYPE
3883 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3884 || coder == BOOLEAN_TYPE))
3885 return convert_and_check (type, rhs);
3886
3887 /* Conversion to a transparent union from its member types.
3888 This applies only to function arguments. */
3889 else if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3890 && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3891 {
3892 tree memb, marginal_memb = NULL_TREE;
3893
3894 for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3895 {
3896 tree memb_type = TREE_TYPE (memb);
3897
3898 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3899 TYPE_MAIN_VARIANT (rhstype)))
3900 break;
3901
3902 if (TREE_CODE (memb_type) != POINTER_TYPE)
3903 continue;
3904
3905 if (coder == POINTER_TYPE)
3906 {
3907 tree ttl = TREE_TYPE (memb_type);
3908 tree ttr = TREE_TYPE (rhstype);
3909
3910 /* Any non-function converts to a [const][volatile] void *
3911 and vice versa; otherwise, targets must be the same.
3912 Meanwhile, the lhs target must have all the qualifiers of
3913 the rhs. */
3914 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3915 || comp_target_types (memb_type, rhstype))
3916 {
3917 /* If this type won't generate any warnings, use it. */
3918 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3919 || ((TREE_CODE (ttr) == FUNCTION_TYPE
3920 && TREE_CODE (ttl) == FUNCTION_TYPE)
3921 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3922 == TYPE_QUALS (ttr))
3923 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3924 == TYPE_QUALS (ttl))))
3925 break;
3926
3927 /* Keep looking for a better type, but remember this one. */
3928 if (!marginal_memb)
3929 marginal_memb = memb;
3930 }
3931 }
3932
3933 /* Can convert integer zero to any pointer type. */
3934 if (null_pointer_constant_p (rhs))
3935 {
3936 rhs = null_pointer_node;
3937 break;
3938 }
3939 }
3940
3941 if (memb || marginal_memb)
3942 {
3943 if (!memb)
3944 {
3945 /* We have only a marginally acceptable member type;
3946 it needs a warning. */
3947 tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
3948 tree ttr = TREE_TYPE (rhstype);
3949
3950 /* Const and volatile mean something different for function
3951 types, so the usual warnings are not appropriate. */
3952 if (TREE_CODE (ttr) == FUNCTION_TYPE
3953 && TREE_CODE (ttl) == FUNCTION_TYPE)
3954 {
3955 /* Because const and volatile on functions are
3956 restrictions that say the function will not do
3957 certain things, it is okay to use a const or volatile
3958 function where an ordinary one is wanted, but not
3959 vice-versa. */
3960 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
3961 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
3962 "makes qualified function "
3963 "pointer from unqualified"),
3964 G_("assignment makes qualified "
3965 "function pointer from "
3966 "unqualified"),
3967 G_("initialization makes qualified "
3968 "function pointer from "
3969 "unqualified"),
3970 G_("return makes qualified function "
3971 "pointer from unqualified"));
3972 }
3973 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
3974 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
3975 "qualifiers from pointer target type"),
3976 G_("assignment discards qualifiers "
3977 "from pointer target type"),
3978 G_("initialization discards qualifiers "
3979 "from pointer target type"),
3980 G_("return discards qualifiers from "
3981 "pointer target type"));
3982
3983 memb = marginal_memb;
3984 }
3985
3986 if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
3987 pedwarn ("ISO C prohibits argument conversion to union type");
3988
3989 return build_constructor_single (type, memb, rhs);
3990 }
3991 }
3992
3993 /* Conversions among pointers */
3994 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
3995 && (coder == codel))
3996 {
3997 tree ttl = TREE_TYPE (type);
3998 tree ttr = TREE_TYPE (rhstype);
3999 tree mvl = ttl;
4000 tree mvr = ttr;
4001 bool is_opaque_pointer;
4002 int target_cmp = 0; /* Cache comp_target_types () result. */
4003
4004 if (TREE_CODE (mvl) != ARRAY_TYPE)
4005 mvl = TYPE_MAIN_VARIANT (mvl);
4006 if (TREE_CODE (mvr) != ARRAY_TYPE)
4007 mvr = TYPE_MAIN_VARIANT (mvr);
4008 /* Opaque pointers are treated like void pointers. */
4009 is_opaque_pointer = (targetm.vector_opaque_p (type)
4010 || targetm.vector_opaque_p (rhstype))
4011 && TREE_CODE (ttl) == VECTOR_TYPE
4012 && TREE_CODE (ttr) == VECTOR_TYPE;
4013
4014 /* C++ does not allow the implicit conversion void* -> T*. However,
4015 for the purpose of reducing the number of false positives, we
4016 tolerate the special case of
4017
4018 int *p = NULL;
4019
4020 where NULL is typically defined in C to be '(void *) 0'. */
4021 if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4022 warning (OPT_Wc___compat, "request for implicit conversion from "
4023 "%qT to %qT not permitted in C++", rhstype, type);
4024
4025 /* Check if the right-hand side has a format attribute but the
4026 left-hand side doesn't. */
4027 if (warn_missing_format_attribute
4028 && check_missing_format_attribute (type, rhstype))
4029 {
4030 switch (errtype)
4031 {
4032 case ic_argpass:
4033 case ic_argpass_nonproto:
4034 warning (OPT_Wmissing_format_attribute,
4035 "argument %d of %qE might be "
4036 "a candidate for a format attribute",
4037 parmnum, rname);
4038 break;
4039 case ic_assign:
4040 warning (OPT_Wmissing_format_attribute,
4041 "assignment left-hand side might be "
4042 "a candidate for a format attribute");
4043 break;
4044 case ic_init:
4045 warning (OPT_Wmissing_format_attribute,
4046 "initialization left-hand side might be "
4047 "a candidate for a format attribute");
4048 break;
4049 case ic_return:
4050 warning (OPT_Wmissing_format_attribute,
4051 "return type might be "
4052 "a candidate for a format attribute");
4053 break;
4054 default:
4055 gcc_unreachable ();
4056 }
4057 }
4058
4059 /* Any non-function converts to a [const][volatile] void *
4060 and vice versa; otherwise, targets must be the same.
4061 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4062 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4063 || (target_cmp = comp_target_types (type, rhstype))
4064 || is_opaque_pointer
4065 || (c_common_unsigned_type (mvl)
4066 == c_common_unsigned_type (mvr)))
4067 {
4068 if (pedantic
4069 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4070 ||
4071 (VOID_TYPE_P (ttr)
4072 && !null_pointer_constant_p (rhs)
4073 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4074 WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4075 "%qE between function pointer "
4076 "and %<void *%>"),
4077 G_("ISO C forbids assignment between "
4078 "function pointer and %<void *%>"),
4079 G_("ISO C forbids initialization between "
4080 "function pointer and %<void *%>"),
4081 G_("ISO C forbids return between function "
4082 "pointer and %<void *%>"));
4083 /* Const and volatile mean something different for function types,
4084 so the usual warnings are not appropriate. */
4085 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4086 && TREE_CODE (ttl) != FUNCTION_TYPE)
4087 {
4088 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4089 {
4090 /* Types differing only by the presence of the 'volatile'
4091 qualifier are acceptable if the 'volatile' has been added
4092 in by the Objective-C EH machinery. */
4093 if (!objc_type_quals_match (ttl, ttr))
4094 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4095 "qualifiers from pointer target type"),
4096 G_("assignment discards qualifiers "
4097 "from pointer target type"),
4098 G_("initialization discards qualifiers "
4099 "from pointer target type"),
4100 G_("return discards qualifiers from "
4101 "pointer target type"));
4102 }
4103 /* If this is not a case of ignoring a mismatch in signedness,
4104 no warning. */
4105 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4106 || target_cmp)
4107 ;
4108 /* If there is a mismatch, do warn. */
4109 else if (warn_pointer_sign)
4110 WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4111 "%d of %qE differ in signedness"),
4112 G_("pointer targets in assignment "
4113 "differ in signedness"),
4114 G_("pointer targets in initialization "
4115 "differ in signedness"),
4116 G_("pointer targets in return differ "
4117 "in signedness"));
4118 }
4119 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4120 && TREE_CODE (ttr) == FUNCTION_TYPE)
4121 {
4122 /* Because const and volatile on functions are restrictions
4123 that say the function will not do certain things,
4124 it is okay to use a const or volatile function
4125 where an ordinary one is wanted, but not vice-versa. */
4126 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4127 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4128 "qualified function pointer "
4129 "from unqualified"),
4130 G_("assignment makes qualified function "
4131 "pointer from unqualified"),
4132 G_("initialization makes qualified "
4133 "function pointer from unqualified"),
4134 G_("return makes qualified function "
4135 "pointer from unqualified"));
4136 }
4137 }
4138 else
4139 /* Avoid warning about the volatile ObjC EH puts on decls. */
4140 if (!objc_ok)
4141 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4142 "incompatible pointer type"),
4143 G_("assignment from incompatible pointer type"),
4144 G_("initialization from incompatible "
4145 "pointer type"),
4146 G_("return from incompatible pointer type"));
4147
4148 return convert (type, rhs);
4149 }
4150 else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4151 {
4152 /* ??? This should not be an error when inlining calls to
4153 unprototyped functions. */
4154 error ("invalid use of non-lvalue array");
4155 return error_mark_node;
4156 }
4157 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4158 {
4159 /* An explicit constant 0 can convert to a pointer,
4160 or one that results from arithmetic, even including
4161 a cast to integer type. */
4162 if (!null_pointer_constant_p (rhs))
4163 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4164 "pointer from integer without a cast"),
4165 G_("assignment makes pointer from integer "
4166 "without a cast"),
4167 G_("initialization makes pointer from "
4168 "integer without a cast"),
4169 G_("return makes pointer from integer "
4170 "without a cast"));
4171
4172 return convert (type, rhs);
4173 }
4174 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4175 {
4176 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4177 "from pointer without a cast"),
4178 G_("assignment makes integer from pointer "
4179 "without a cast"),
4180 G_("initialization makes integer from pointer "
4181 "without a cast"),
4182 G_("return makes integer from pointer "
4183 "without a cast"));
4184 return convert (type, rhs);
4185 }
4186 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4187 return convert (type, rhs);
4188
4189 switch (errtype)
4190 {
4191 case ic_argpass:
4192 case ic_argpass_nonproto:
4193 /* ??? This should not be an error when inlining calls to
4194 unprototyped functions. */
4195 error ("incompatible type for argument %d of %qE", parmnum, rname);
4196 break;
4197 case ic_assign:
4198 error ("incompatible types in assignment");
4199 break;
4200 case ic_init:
4201 error ("incompatible types in initialization");
4202 break;
4203 case ic_return:
4204 error ("incompatible types in return");
4205 break;
4206 default:
4207 gcc_unreachable ();
4208 }
4209
4210 return error_mark_node;
4211 }
4212
4213 /* Convert VALUE for assignment into inlined parameter PARM. ARGNUM
4214 is used for error and warning reporting and indicates which argument
4215 is being processed. */
4216
4217 tree
4218 c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
4219 {
4220 tree ret, type;
4221
4222 /* If FN was prototyped at the call site, the value has been converted
4223 already in convert_arguments.
4224 However, we might see a prototype now that was not in place when
4225 the function call was seen, so check that the VALUE actually matches
4226 PARM before taking an early exit. */
4227 if (!value
4228 || (TYPE_ARG_TYPES (TREE_TYPE (fn))
4229 && (TYPE_MAIN_VARIANT (TREE_TYPE (parm))
4230 == TYPE_MAIN_VARIANT (TREE_TYPE (value)))))
4231 return value;
4232
4233 type = TREE_TYPE (parm);
4234 ret = convert_for_assignment (type, value,
4235 ic_argpass_nonproto, fn,
4236 fn, argnum);
4237 if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
4238 && INTEGRAL_TYPE_P (type)
4239 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4240 ret = default_conversion (ret);
4241 return ret;
4242 }
4243 \f
4244 /* If VALUE is a compound expr all of whose expressions are constant, then
4245 return its value. Otherwise, return error_mark_node.
4246
4247 This is for handling COMPOUND_EXPRs as initializer elements
4248 which is allowed with a warning when -pedantic is specified. */
4249
4250 static tree
4251 valid_compound_expr_initializer (tree value, tree endtype)
4252 {
4253 if (TREE_CODE (value) == COMPOUND_EXPR)
4254 {
4255 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4256 == error_mark_node)
4257 return error_mark_node;
4258 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4259 endtype);
4260 }
4261 else if (!initializer_constant_valid_p (value, endtype))
4262 return error_mark_node;
4263 else
4264 return value;
4265 }
4266 \f
4267 /* Perform appropriate conversions on the initial value of a variable,
4268 store it in the declaration DECL,
4269 and print any error messages that are appropriate.
4270 If the init is invalid, store an ERROR_MARK. */
4271
4272 void
4273 store_init_value (tree decl, tree init)
4274 {
4275 tree value, type;
4276
4277 /* If variable's type was invalidly declared, just ignore it. */
4278
4279 type = TREE_TYPE (decl);
4280 if (TREE_CODE (type) == ERROR_MARK)
4281 return;
4282
4283 /* Digest the specified initializer into an expression. */
4284
4285 value = digest_init (type, init, true, TREE_STATIC (decl));
4286
4287 /* Store the expression if valid; else report error. */
4288
4289 if (!in_system_header
4290 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4291 warning (OPT_Wtraditional, "traditional C rejects automatic "
4292 "aggregate initialization");
4293
4294 DECL_INITIAL (decl) = value;
4295
4296 /* ANSI wants warnings about out-of-range constant initializers. */
4297 STRIP_TYPE_NOPS (value);
4298 if (TREE_STATIC (decl))
4299 constant_expression_warning (value);
4300
4301 /* Check if we need to set array size from compound literal size. */
4302 if (TREE_CODE (type) == ARRAY_TYPE
4303 && TYPE_DOMAIN (type) == 0
4304 && value != error_mark_node)
4305 {
4306 tree inside_init = init;
4307
4308 STRIP_TYPE_NOPS (inside_init);
4309 inside_init = fold (inside_init);
4310
4311 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4312 {
4313 tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4314
4315 if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4316 {
4317 /* For int foo[] = (int [3]){1}; we need to set array size
4318 now since later on array initializer will be just the
4319 brace enclosed list of the compound literal. */
4320 type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4321 TREE_TYPE (decl) = type;
4322 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4323 layout_type (type);
4324 layout_decl (cldecl, 0);
4325 }
4326 }
4327 }
4328 }
4329 \f
4330 /* Methods for storing and printing names for error messages. */
4331
4332 /* Implement a spelling stack that allows components of a name to be pushed
4333 and popped. Each element on the stack is this structure. */
4334
4335 struct spelling
4336 {
4337 int kind;
4338 union
4339 {
4340 unsigned HOST_WIDE_INT i;
4341 const char *s;
4342 } u;
4343 };
4344
4345 #define SPELLING_STRING 1
4346 #define SPELLING_MEMBER 2
4347 #define SPELLING_BOUNDS 3
4348
4349 static struct spelling *spelling; /* Next stack element (unused). */
4350 static struct spelling *spelling_base; /* Spelling stack base. */
4351 static int spelling_size; /* Size of the spelling stack. */
4352
4353 /* Macros to save and restore the spelling stack around push_... functions.
4354 Alternative to SAVE_SPELLING_STACK. */
4355
4356 #define SPELLING_DEPTH() (spelling - spelling_base)
4357 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4358
4359 /* Push an element on the spelling stack with type KIND and assign VALUE
4360 to MEMBER. */
4361
4362 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4363 { \
4364 int depth = SPELLING_DEPTH (); \
4365 \
4366 if (depth >= spelling_size) \
4367 { \
4368 spelling_size += 10; \
4369 spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
4370 spelling_size); \
4371 RESTORE_SPELLING_DEPTH (depth); \
4372 } \
4373 \
4374 spelling->kind = (KIND); \
4375 spelling->MEMBER = (VALUE); \
4376 spelling++; \
4377 }
4378
4379 /* Push STRING on the stack. Printed literally. */
4380
4381 static void
4382 push_string (const char *string)
4383 {
4384 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4385 }
4386
4387 /* Push a member name on the stack. Printed as '.' STRING. */
4388
4389 static void
4390 push_member_name (tree decl)
4391 {
4392 const char *const string
4393 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4394 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4395 }
4396
4397 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4398
4399 static void
4400 push_array_bounds (unsigned HOST_WIDE_INT bounds)
4401 {
4402 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4403 }
4404
4405 /* Compute the maximum size in bytes of the printed spelling. */
4406
4407 static int
4408 spelling_length (void)
4409 {
4410 int size = 0;
4411 struct spelling *p;
4412
4413 for (p = spelling_base; p < spelling; p++)
4414 {
4415 if (p->kind == SPELLING_BOUNDS)
4416 size += 25;
4417 else
4418 size += strlen (p->u.s) + 1;
4419 }
4420
4421 return size;
4422 }
4423
4424 /* Print the spelling to BUFFER and return it. */
4425
4426 static char *
4427 print_spelling (char *buffer)
4428 {
4429 char *d = buffer;
4430 struct spelling *p;
4431
4432 for (p = spelling_base; p < spelling; p++)
4433 if (p->kind == SPELLING_BOUNDS)
4434 {
4435 sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4436 d += strlen (d);
4437 }
4438 else
4439 {
4440 const char *s;
4441 if (p->kind == SPELLING_MEMBER)
4442 *d++ = '.';
4443 for (s = p->u.s; (*d = *s++); d++)
4444 ;
4445 }
4446 *d++ = '\0';
4447 return buffer;
4448 }
4449
4450 /* Issue an error message for a bad initializer component.
4451 MSGID identifies the message.
4452 The component name is taken from the spelling stack. */
4453
4454 void
4455 error_init (const char *msgid)
4456 {
4457 char *ofwhat;
4458
4459 error ("%s", _(msgid));
4460 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4461 if (*ofwhat)
4462 error ("(near initialization for %qs)", ofwhat);
4463 }
4464
4465 /* Issue a pedantic warning for a bad initializer component.
4466 MSGID identifies the message.
4467 The component name is taken from the spelling stack. */
4468
4469 void
4470 pedwarn_init (const char *msgid)
4471 {
4472 char *ofwhat;
4473
4474 pedwarn ("%s", _(msgid));
4475 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4476 if (*ofwhat)
4477 pedwarn ("(near initialization for %qs)", ofwhat);
4478 }
4479
4480 /* Issue a warning for a bad initializer component.
4481 MSGID identifies the message.
4482 The component name is taken from the spelling stack. */
4483
4484 static void
4485 warning_init (const char *msgid)
4486 {
4487 char *ofwhat;
4488
4489 warning (0, "%s", _(msgid));
4490 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4491 if (*ofwhat)
4492 warning (0, "(near initialization for %qs)", ofwhat);
4493 }
4494 \f
4495 /* If TYPE is an array type and EXPR is a parenthesized string
4496 constant, warn if pedantic that EXPR is being used to initialize an
4497 object of type TYPE. */
4498
4499 void
4500 maybe_warn_string_init (tree type, struct c_expr expr)
4501 {
4502 if (pedantic
4503 && TREE_CODE (type) == ARRAY_TYPE
4504 && TREE_CODE (expr.value) == STRING_CST
4505 && expr.original_code != STRING_CST)
4506 pedwarn_init ("array initialized from parenthesized string constant");
4507 }
4508
4509 /* Digest the parser output INIT as an initializer for type TYPE.
4510 Return a C expression of type TYPE to represent the initial value.
4511
4512 If INIT is a string constant, STRICT_STRING is true if it is
4513 unparenthesized or we should not warn here for it being parenthesized.
4514 For other types of INIT, STRICT_STRING is not used.
4515
4516 REQUIRE_CONSTANT requests an error if non-constant initializers or
4517 elements are seen. */
4518
4519 static tree
4520 digest_init (tree type, tree init, bool strict_string, int require_constant)
4521 {
4522 enum tree_code code = TREE_CODE (type);
4523 tree inside_init = init;
4524
4525 if (type == error_mark_node
4526 || !init
4527 || init == error_mark_node
4528 || TREE_TYPE (init) == error_mark_node)
4529 return error_mark_node;
4530
4531 STRIP_TYPE_NOPS (inside_init);
4532
4533 inside_init = fold (inside_init);
4534
4535 /* Initialization of an array of chars from a string constant
4536 optionally enclosed in braces. */
4537
4538 if (code == ARRAY_TYPE && inside_init
4539 && TREE_CODE (inside_init) == STRING_CST)
4540 {
4541 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4542 /* Note that an array could be both an array of character type
4543 and an array of wchar_t if wchar_t is signed char or unsigned
4544 char. */
4545 bool char_array = (typ1 == char_type_node
4546 || typ1 == signed_char_type_node
4547 || typ1 == unsigned_char_type_node);
4548 bool wchar_array = !!comptypes (typ1, wchar_type_node);
4549 if (char_array || wchar_array)
4550 {
4551 struct c_expr expr;
4552 bool char_string;
4553 expr.value = inside_init;
4554 expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4555 maybe_warn_string_init (type, expr);
4556
4557 char_string
4558 = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4559 == char_type_node);
4560
4561 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4562 TYPE_MAIN_VARIANT (type)))
4563 return inside_init;
4564
4565 if (!wchar_array && !char_string)
4566 {
4567 error_init ("char-array initialized from wide string");
4568 return error_mark_node;
4569 }
4570 if (char_string && !char_array)
4571 {
4572 error_init ("wchar_t-array initialized from non-wide string");
4573 return error_mark_node;
4574 }
4575
4576 TREE_TYPE (inside_init) = type;
4577 if (TYPE_DOMAIN (type) != 0
4578 && TYPE_SIZE (type) != 0
4579 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4580 /* Subtract 1 (or sizeof (wchar_t))
4581 because it's ok to ignore the terminating null char
4582 that is counted in the length of the constant. */
4583 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4584 TREE_STRING_LENGTH (inside_init)
4585 - ((TYPE_PRECISION (typ1)
4586 != TYPE_PRECISION (char_type_node))
4587 ? (TYPE_PRECISION (wchar_type_node)
4588 / BITS_PER_UNIT)
4589 : 1)))
4590 pedwarn_init ("initializer-string for array of chars is too long");
4591
4592 return inside_init;
4593 }
4594 else if (INTEGRAL_TYPE_P (typ1))
4595 {
4596 error_init ("array of inappropriate type initialized "
4597 "from string constant");
4598 return error_mark_node;
4599 }
4600 }
4601
4602 /* Build a VECTOR_CST from a *constant* vector constructor. If the
4603 vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4604 below and handle as a constructor. */
4605 if (code == VECTOR_TYPE
4606 && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4607 && vector_types_convertible_p (TREE_TYPE (inside_init), type)
4608 && TREE_CONSTANT (inside_init))
4609 {
4610 if (TREE_CODE (inside_init) == VECTOR_CST
4611 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4612 TYPE_MAIN_VARIANT (type)))
4613 return inside_init;
4614
4615 if (TREE_CODE (inside_init) == CONSTRUCTOR)
4616 {
4617 unsigned HOST_WIDE_INT ix;
4618 tree value;
4619 bool constant_p = true;
4620
4621 /* Iterate through elements and check if all constructor
4622 elements are *_CSTs. */
4623 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4624 if (!CONSTANT_CLASS_P (value))
4625 {
4626 constant_p = false;
4627 break;
4628 }
4629
4630 if (constant_p)
4631 return build_vector_from_ctor (type,
4632 CONSTRUCTOR_ELTS (inside_init));
4633 }
4634 }
4635
4636 /* Any type can be initialized
4637 from an expression of the same type, optionally with braces. */
4638
4639 if (inside_init && TREE_TYPE (inside_init) != 0
4640 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4641 TYPE_MAIN_VARIANT (type))
4642 || (code == ARRAY_TYPE
4643 && comptypes (TREE_TYPE (inside_init), type))
4644 || (code == VECTOR_TYPE
4645 && comptypes (TREE_TYPE (inside_init), type))
4646 || (code == POINTER_TYPE
4647 && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4648 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4649 TREE_TYPE (type)))))
4650 {
4651 if (code == POINTER_TYPE)
4652 {
4653 if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4654 {
4655 if (TREE_CODE (inside_init) == STRING_CST
4656 || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4657 inside_init = array_to_pointer_conversion (inside_init);
4658 else
4659 {
4660 error_init ("invalid use of non-lvalue array");
4661 return error_mark_node;
4662 }
4663 }
4664 }
4665
4666 if (code == VECTOR_TYPE)
4667 /* Although the types are compatible, we may require a
4668 conversion. */
4669 inside_init = convert (type, inside_init);
4670
4671 if (require_constant
4672 && (code == VECTOR_TYPE || !flag_isoc99)
4673 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4674 {
4675 /* As an extension, allow initializing objects with static storage
4676 duration with compound literals (which are then treated just as
4677 the brace enclosed list they contain). Also allow this for
4678 vectors, as we can only assign them with compound literals. */
4679 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4680 inside_init = DECL_INITIAL (decl);
4681 }
4682
4683 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4684 && TREE_CODE (inside_init) != CONSTRUCTOR)
4685 {
4686 error_init ("array initialized from non-constant array expression");
4687 return error_mark_node;
4688 }
4689
4690 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4691 inside_init = decl_constant_value_for_broken_optimization (inside_init);
4692
4693 /* Compound expressions can only occur here if -pedantic or
4694 -pedantic-errors is specified. In the later case, we always want
4695 an error. In the former case, we simply want a warning. */
4696 if (require_constant && pedantic
4697 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4698 {
4699 inside_init
4700 = valid_compound_expr_initializer (inside_init,
4701 TREE_TYPE (inside_init));
4702 if (inside_init == error_mark_node)
4703 error_init ("initializer element is not constant");
4704 else
4705 pedwarn_init ("initializer element is not constant");
4706 if (flag_pedantic_errors)
4707 inside_init = error_mark_node;
4708 }
4709 else if (require_constant
4710 && !initializer_constant_valid_p (inside_init,
4711 TREE_TYPE (inside_init)))
4712 {
4713 error_init ("initializer element is not constant");
4714 inside_init = error_mark_node;
4715 }
4716
4717 /* Added to enable additional -Wmissing-format-attribute warnings. */
4718 if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4719 inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4720 NULL_TREE, 0);
4721 return inside_init;
4722 }
4723
4724 /* Handle scalar types, including conversions. */
4725
4726 if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4727 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4728 || code == VECTOR_TYPE)
4729 {
4730 if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4731 && (TREE_CODE (init) == STRING_CST
4732 || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4733 init = array_to_pointer_conversion (init);
4734 inside_init
4735 = convert_for_assignment (type, init, ic_init,
4736 NULL_TREE, NULL_TREE, 0);
4737
4738 /* Check to see if we have already given an error message. */
4739 if (inside_init == error_mark_node)
4740 ;
4741 else if (require_constant && !TREE_CONSTANT (inside_init))
4742 {
4743 error_init ("initializer element is not constant");
4744 inside_init = error_mark_node;
4745 }
4746 else if (require_constant
4747 && !initializer_constant_valid_p (inside_init,
4748 TREE_TYPE (inside_init)))
4749 {
4750 error_init ("initializer element is not computable at load time");
4751 inside_init = error_mark_node;
4752 }
4753
4754 return inside_init;
4755 }
4756
4757 /* Come here only for records and arrays. */
4758
4759 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4760 {
4761 error_init ("variable-sized object may not be initialized");
4762 return error_mark_node;
4763 }
4764
4765 error_init ("invalid initializer");
4766 return error_mark_node;
4767 }
4768 \f
4769 /* Handle initializers that use braces. */
4770
4771 /* Type of object we are accumulating a constructor for.
4772 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4773 static tree constructor_type;
4774
4775 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4776 left to fill. */
4777 static tree constructor_fields;
4778
4779 /* For an ARRAY_TYPE, this is the specified index
4780 at which to store the next element we get. */
4781 static tree constructor_index;
4782
4783 /* For an ARRAY_TYPE, this is the maximum index. */
4784 static tree constructor_max_index;
4785
4786 /* For a RECORD_TYPE, this is the first field not yet written out. */
4787 static tree constructor_unfilled_fields;
4788
4789 /* For an ARRAY_TYPE, this is the index of the first element
4790 not yet written out. */
4791 static tree constructor_unfilled_index;
4792
4793 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4794 This is so we can generate gaps between fields, when appropriate. */
4795 static tree constructor_bit_index;
4796
4797 /* If we are saving up the elements rather than allocating them,
4798 this is the list of elements so far (in reverse order,
4799 most recent first). */
4800 static VEC(constructor_elt,gc) *constructor_elements;
4801
4802 /* 1 if constructor should be incrementally stored into a constructor chain,
4803 0 if all the elements should be kept in AVL tree. */
4804 static int constructor_incremental;
4805
4806 /* 1 if so far this constructor's elements are all compile-time constants. */
4807 static int constructor_constant;
4808
4809 /* 1 if so far this constructor's elements are all valid address constants. */
4810 static int constructor_simple;
4811
4812 /* 1 if this constructor is erroneous so far. */
4813 static int constructor_erroneous;
4814
4815 /* Structure for managing pending initializer elements, organized as an
4816 AVL tree. */
4817
4818 struct init_node
4819 {
4820 struct init_node *left, *right;
4821 struct init_node *parent;
4822 int balance;
4823 tree purpose;
4824 tree value;
4825 };
4826
4827 /* Tree of pending elements at this constructor level.
4828 These are elements encountered out of order
4829 which belong at places we haven't reached yet in actually
4830 writing the output.
4831 Will never hold tree nodes across GC runs. */
4832 static struct init_node *constructor_pending_elts;
4833
4834 /* The SPELLING_DEPTH of this constructor. */
4835 static int constructor_depth;
4836
4837 /* DECL node for which an initializer is being read.
4838 0 means we are reading a constructor expression
4839 such as (struct foo) {...}. */
4840 static tree constructor_decl;
4841
4842 /* Nonzero if this is an initializer for a top-level decl. */
4843 static int constructor_top_level;
4844
4845 /* Nonzero if there were any member designators in this initializer. */
4846 static int constructor_designated;
4847
4848 /* Nesting depth of designator list. */
4849 static int designator_depth;
4850
4851 /* Nonzero if there were diagnosed errors in this designator list. */
4852 static int designator_erroneous;
4853
4854 \f
4855 /* This stack has a level for each implicit or explicit level of
4856 structuring in the initializer, including the outermost one. It
4857 saves the values of most of the variables above. */
4858
4859 struct constructor_range_stack;
4860
4861 struct constructor_stack
4862 {
4863 struct constructor_stack *next;
4864 tree type;
4865 tree fields;
4866 tree index;
4867 tree max_index;
4868 tree unfilled_index;
4869 tree unfilled_fields;
4870 tree bit_index;
4871 VEC(constructor_elt,gc) *elements;
4872 struct init_node *pending_elts;
4873 int offset;
4874 int depth;
4875 /* If value nonzero, this value should replace the entire
4876 constructor at this level. */
4877 struct c_expr replacement_value;
4878 struct constructor_range_stack *range_stack;
4879 char constant;
4880 char simple;
4881 char implicit;
4882 char erroneous;
4883 char outer;
4884 char incremental;
4885 char designated;
4886 };
4887
4888 static struct constructor_stack *constructor_stack;
4889
4890 /* This stack represents designators from some range designator up to
4891 the last designator in the list. */
4892
4893 struct constructor_range_stack
4894 {
4895 struct constructor_range_stack *next, *prev;
4896 struct constructor_stack *stack;
4897 tree range_start;
4898 tree index;
4899 tree range_end;
4900 tree fields;
4901 };
4902
4903 static struct constructor_range_stack *constructor_range_stack;
4904
4905 /* This stack records separate initializers that are nested.
4906 Nested initializers can't happen in ANSI C, but GNU C allows them
4907 in cases like { ... (struct foo) { ... } ... }. */
4908
4909 struct initializer_stack
4910 {
4911 struct initializer_stack *next;
4912 tree decl;
4913 struct constructor_stack *constructor_stack;
4914 struct constructor_range_stack *constructor_range_stack;
4915 VEC(constructor_elt,gc) *elements;
4916 struct spelling *spelling;
4917 struct spelling *spelling_base;
4918 int spelling_size;
4919 char top_level;
4920 char require_constant_value;
4921 char require_constant_elements;
4922 };
4923
4924 static struct initializer_stack *initializer_stack;
4925 \f
4926 /* Prepare to parse and output the initializer for variable DECL. */
4927
4928 void
4929 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
4930 {
4931 const char *locus;
4932 struct initializer_stack *p = XNEW (struct initializer_stack);
4933
4934 p->decl = constructor_decl;
4935 p->require_constant_value = require_constant_value;
4936 p->require_constant_elements = require_constant_elements;
4937 p->constructor_stack = constructor_stack;
4938 p->constructor_range_stack = constructor_range_stack;
4939 p->elements = constructor_elements;
4940 p->spelling = spelling;
4941 p->spelling_base = spelling_base;
4942 p->spelling_size = spelling_size;
4943 p->top_level = constructor_top_level;
4944 p->next = initializer_stack;
4945 initializer_stack = p;
4946
4947 constructor_decl = decl;
4948 constructor_designated = 0;
4949 constructor_top_level = top_level;
4950
4951 if (decl != 0 && decl != error_mark_node)
4952 {
4953 require_constant_value = TREE_STATIC (decl);
4954 require_constant_elements
4955 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
4956 /* For a scalar, you can always use any value to initialize,
4957 even within braces. */
4958 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
4959 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4960 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
4961 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
4962 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
4963 }
4964 else
4965 {
4966 require_constant_value = 0;
4967 require_constant_elements = 0;
4968 locus = "(anonymous)";
4969 }
4970
4971 constructor_stack = 0;
4972 constructor_range_stack = 0;
4973
4974 missing_braces_mentioned = 0;
4975
4976 spelling_base = 0;
4977 spelling_size = 0;
4978 RESTORE_SPELLING_DEPTH (0);
4979
4980 if (locus)
4981 push_string (locus);
4982 }
4983
4984 void
4985 finish_init (void)
4986 {
4987 struct initializer_stack *p = initializer_stack;
4988
4989 /* Free the whole constructor stack of this initializer. */
4990 while (constructor_stack)
4991 {
4992 struct constructor_stack *q = constructor_stack;
4993 constructor_stack = q->next;
4994 free (q);
4995 }
4996
4997 gcc_assert (!constructor_range_stack);
4998
4999 /* Pop back to the data of the outer initializer (if any). */
5000 free (spelling_base);
5001
5002 constructor_decl = p->decl;
5003 require_constant_value = p->require_constant_value;
5004 require_constant_elements = p->require_constant_elements;
5005 constructor_stack = p->constructor_stack;
5006 constructor_range_stack = p->constructor_range_stack;
5007 constructor_elements = p->elements;
5008 spelling = p->spelling;
5009 spelling_base = p->spelling_base;
5010 spelling_size = p->spelling_size;
5011 constructor_top_level = p->top_level;
5012 initializer_stack = p->next;
5013 free (p);
5014 }
5015 \f
5016 /* Call here when we see the initializer is surrounded by braces.
5017 This is instead of a call to push_init_level;
5018 it is matched by a call to pop_init_level.
5019
5020 TYPE is the type to initialize, for a constructor expression.
5021 For an initializer for a decl, TYPE is zero. */
5022
5023 void
5024 really_start_incremental_init (tree type)
5025 {
5026 struct constructor_stack *p = XNEW (struct constructor_stack);
5027
5028 if (type == 0)
5029 type = TREE_TYPE (constructor_decl);
5030
5031 if (targetm.vector_opaque_p (type))
5032 error ("opaque vector types cannot be initialized");
5033
5034 p->type = constructor_type;
5035 p->fields = constructor_fields;
5036 p->index = constructor_index;
5037 p->max_index = constructor_max_index;
5038 p->unfilled_index = constructor_unfilled_index;
5039 p->unfilled_fields = constructor_unfilled_fields;
5040 p->bit_index = constructor_bit_index;
5041 p->elements = constructor_elements;
5042 p->constant = constructor_constant;
5043 p->simple = constructor_simple;
5044 p->erroneous = constructor_erroneous;
5045 p->pending_elts = constructor_pending_elts;
5046 p->depth = constructor_depth;
5047 p->replacement_value.value = 0;
5048 p->replacement_value.original_code = ERROR_MARK;
5049 p->implicit = 0;
5050 p->range_stack = 0;
5051 p->outer = 0;
5052 p->incremental = constructor_incremental;
5053 p->designated = constructor_designated;
5054 p->next = 0;
5055 constructor_stack = p;
5056
5057 constructor_constant = 1;
5058 constructor_simple = 1;
5059 constructor_depth = SPELLING_DEPTH ();
5060 constructor_elements = 0;
5061 constructor_pending_elts = 0;
5062 constructor_type = type;
5063 constructor_incremental = 1;
5064 constructor_designated = 0;
5065 designator_depth = 0;
5066 designator_erroneous = 0;
5067
5068 if (TREE_CODE (constructor_type) == RECORD_TYPE
5069 || TREE_CODE (constructor_type) == UNION_TYPE)
5070 {
5071 constructor_fields = TYPE_FIELDS (constructor_type);
5072 /* Skip any nameless bit fields at the beginning. */
5073 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5074 && DECL_NAME (constructor_fields) == 0)
5075 constructor_fields = TREE_CHAIN (constructor_fields);
5076
5077 constructor_unfilled_fields = constructor_fields;
5078 constructor_bit_index = bitsize_zero_node;
5079 }
5080 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5081 {
5082 if (TYPE_DOMAIN (constructor_type))
5083 {
5084 constructor_max_index
5085 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5086
5087 /* Detect non-empty initializations of zero-length arrays. */
5088 if (constructor_max_index == NULL_TREE
5089 && TYPE_SIZE (constructor_type))
5090 constructor_max_index = build_int_cst (NULL_TREE, -1);
5091
5092 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5093 to initialize VLAs will cause a proper error; avoid tree
5094 checking errors as well by setting a safe value. */
5095 if (constructor_max_index
5096 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5097 constructor_max_index = build_int_cst (NULL_TREE, -1);
5098
5099 constructor_index
5100 = convert (bitsizetype,
5101 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5102 }
5103 else
5104 {
5105 constructor_index = bitsize_zero_node;
5106 constructor_max_index = NULL_TREE;
5107 }
5108
5109 constructor_unfilled_index = constructor_index;
5110 }
5111 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5112 {
5113 /* Vectors are like simple fixed-size arrays. */
5114 constructor_max_index =
5115 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5116 constructor_index = bitsize_zero_node;
5117 constructor_unfilled_index = constructor_index;
5118 }
5119 else
5120 {
5121 /* Handle the case of int x = {5}; */
5122 constructor_fields = constructor_type;
5123 constructor_unfilled_fields = constructor_type;
5124 }
5125 }
5126 \f
5127 /* Push down into a subobject, for initialization.
5128 If this is for an explicit set of braces, IMPLICIT is 0.
5129 If it is because the next element belongs at a lower level,
5130 IMPLICIT is 1 (or 2 if the push is because of designator list). */
5131
5132 void
5133 push_init_level (int implicit)
5134 {
5135 struct constructor_stack *p;
5136 tree value = NULL_TREE;
5137
5138 /* If we've exhausted any levels that didn't have braces,
5139 pop them now. If implicit == 1, this will have been done in
5140 process_init_element; do not repeat it here because in the case
5141 of excess initializers for an empty aggregate this leads to an
5142 infinite cycle of popping a level and immediately recreating
5143 it. */
5144 if (implicit != 1)
5145 {
5146 while (constructor_stack->implicit)
5147 {
5148 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5149 || TREE_CODE (constructor_type) == UNION_TYPE)
5150 && constructor_fields == 0)
5151 process_init_element (pop_init_level (1));
5152 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5153 && constructor_max_index
5154 && tree_int_cst_lt (constructor_max_index,
5155 constructor_index))
5156 process_init_element (pop_init_level (1));
5157 else
5158 break;
5159 }
5160 }
5161
5162 /* Unless this is an explicit brace, we need to preserve previous
5163 content if any. */
5164 if (implicit)
5165 {
5166 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5167 || TREE_CODE (constructor_type) == UNION_TYPE)
5168 && constructor_fields)
5169 value = find_init_member (constructor_fields);
5170 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5171 value = find_init_member (constructor_index);
5172 }
5173
5174 p = XNEW (struct constructor_stack);
5175 p->type = constructor_type;
5176 p->fields = constructor_fields;
5177 p->index = constructor_index;
5178 p->max_index = constructor_max_index;
5179 p->unfilled_index = constructor_unfilled_index;
5180 p->unfilled_fields = constructor_unfilled_fields;
5181 p->bit_index = constructor_bit_index;
5182 p->elements = constructor_elements;
5183 p->constant = constructor_constant;
5184 p->simple = constructor_simple;
5185 p->erroneous = constructor_erroneous;
5186 p->pending_elts = constructor_pending_elts;
5187 p->depth = constructor_depth;
5188 p->replacement_value.value = 0;
5189 p->replacement_value.original_code = ERROR_MARK;
5190 p->implicit = implicit;
5191 p->outer = 0;
5192 p->incremental = constructor_incremental;
5193 p->designated = constructor_designated;
5194 p->next = constructor_stack;
5195 p->range_stack = 0;
5196 constructor_stack = p;
5197
5198 constructor_constant = 1;
5199 constructor_simple = 1;
5200 constructor_depth = SPELLING_DEPTH ();
5201 constructor_elements = 0;
5202 constructor_incremental = 1;
5203 constructor_designated = 0;
5204 constructor_pending_elts = 0;
5205 if (!implicit)
5206 {
5207 p->range_stack = constructor_range_stack;
5208 constructor_range_stack = 0;
5209 designator_depth = 0;
5210 designator_erroneous = 0;
5211 }
5212
5213 /* Don't die if an entire brace-pair level is superfluous
5214 in the containing level. */
5215 if (constructor_type == 0)
5216 ;
5217 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5218 || TREE_CODE (constructor_type) == UNION_TYPE)
5219 {
5220 /* Don't die if there are extra init elts at the end. */
5221 if (constructor_fields == 0)
5222 constructor_type = 0;
5223 else
5224 {
5225 constructor_type = TREE_TYPE (constructor_fields);
5226 push_member_name (constructor_fields);
5227 constructor_depth++;
5228 }
5229 }
5230 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5231 {
5232 constructor_type = TREE_TYPE (constructor_type);
5233 push_array_bounds (tree_low_cst (constructor_index, 1));
5234 constructor_depth++;
5235 }
5236
5237 if (constructor_type == 0)
5238 {
5239 error_init ("extra brace group at end of initializer");
5240 constructor_fields = 0;
5241 constructor_unfilled_fields = 0;
5242 return;
5243 }
5244
5245 if (value && TREE_CODE (value) == CONSTRUCTOR)
5246 {
5247 constructor_constant = TREE_CONSTANT (value);
5248 constructor_simple = TREE_STATIC (value);
5249 constructor_elements = CONSTRUCTOR_ELTS (value);
5250 if (!VEC_empty (constructor_elt, constructor_elements)
5251 && (TREE_CODE (constructor_type) == RECORD_TYPE
5252 || TREE_CODE (constructor_type) == ARRAY_TYPE))
5253 set_nonincremental_init ();
5254 }
5255
5256 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5257 {
5258 missing_braces_mentioned = 1;
5259 warning_init ("missing braces around initializer");
5260 }
5261
5262 if (TREE_CODE (constructor_type) == RECORD_TYPE
5263 || TREE_CODE (constructor_type) == UNION_TYPE)
5264 {
5265 constructor_fields = TYPE_FIELDS (constructor_type);
5266 /* Skip any nameless bit fields at the beginning. */
5267 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5268 && DECL_NAME (constructor_fields) == 0)
5269 constructor_fields = TREE_CHAIN (constructor_fields);
5270
5271 constructor_unfilled_fields = constructor_fields;
5272 constructor_bit_index = bitsize_zero_node;
5273 }
5274 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5275 {
5276 /* Vectors are like simple fixed-size arrays. */
5277 constructor_max_index =
5278 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5279 constructor_index = convert (bitsizetype, integer_zero_node);
5280 constructor_unfilled_index = constructor_index;
5281 }
5282 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5283 {
5284 if (TYPE_DOMAIN (constructor_type))
5285 {
5286 constructor_max_index
5287 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5288
5289 /* Detect non-empty initializations of zero-length arrays. */
5290 if (constructor_max_index == NULL_TREE
5291 && TYPE_SIZE (constructor_type))
5292 constructor_max_index = build_int_cst (NULL_TREE, -1);
5293
5294 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5295 to initialize VLAs will cause a proper error; avoid tree
5296 checking errors as well by setting a safe value. */
5297 if (constructor_max_index
5298 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5299 constructor_max_index = build_int_cst (NULL_TREE, -1);
5300
5301 constructor_index
5302 = convert (bitsizetype,
5303 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5304 }
5305 else
5306 constructor_index = bitsize_zero_node;
5307
5308 constructor_unfilled_index = constructor_index;
5309 if (value && TREE_CODE (value) == STRING_CST)
5310 {
5311 /* We need to split the char/wchar array into individual
5312 characters, so that we don't have to special case it
5313 everywhere. */
5314 set_nonincremental_init_from_string (value);
5315 }
5316 }
5317 else
5318 {
5319 if (constructor_type != error_mark_node)
5320 warning_init ("braces around scalar initializer");
5321 constructor_fields = constructor_type;
5322 constructor_unfilled_fields = constructor_type;
5323 }
5324 }
5325
5326 /* At the end of an implicit or explicit brace level,
5327 finish up that level of constructor. If a single expression
5328 with redundant braces initialized that level, return the
5329 c_expr structure for that expression. Otherwise, the original_code
5330 element is set to ERROR_MARK.
5331 If we were outputting the elements as they are read, return 0 as the value
5332 from inner levels (process_init_element ignores that),
5333 but return error_mark_node as the value from the outermost level
5334 (that's what we want to put in DECL_INITIAL).
5335 Otherwise, return a CONSTRUCTOR expression as the value. */
5336
5337 struct c_expr
5338 pop_init_level (int implicit)
5339 {
5340 struct constructor_stack *p;
5341 struct c_expr ret;
5342 ret.value = 0;
5343 ret.original_code = ERROR_MARK;
5344
5345 if (implicit == 0)
5346 {
5347 /* When we come to an explicit close brace,
5348 pop any inner levels that didn't have explicit braces. */
5349 while (constructor_stack->implicit)
5350 process_init_element (pop_init_level (1));
5351
5352 gcc_assert (!constructor_range_stack);
5353 }
5354
5355 /* Now output all pending elements. */
5356 constructor_incremental = 1;
5357 output_pending_init_elements (1);
5358
5359 p = constructor_stack;
5360
5361 /* Error for initializing a flexible array member, or a zero-length
5362 array member in an inappropriate context. */
5363 if (constructor_type && constructor_fields
5364 && TREE_CODE (constructor_type) == ARRAY_TYPE
5365 && TYPE_DOMAIN (constructor_type)
5366 && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5367 {
5368 /* Silently discard empty initializations. The parser will
5369 already have pedwarned for empty brackets. */
5370 if (integer_zerop (constructor_unfilled_index))
5371 constructor_type = NULL_TREE;
5372 else
5373 {
5374 gcc_assert (!TYPE_SIZE (constructor_type));
5375
5376 if (constructor_depth > 2)
5377 error_init ("initialization of flexible array member in a nested context");
5378 else if (pedantic)
5379 pedwarn_init ("initialization of a flexible array member");
5380
5381 /* We have already issued an error message for the existence
5382 of a flexible array member not at the end of the structure.
5383 Discard the initializer so that we do not die later. */
5384 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5385 constructor_type = NULL_TREE;
5386 }
5387 }
5388
5389 /* Warn when some struct elements are implicitly initialized to zero. */
5390 if (warn_missing_field_initializers
5391 && constructor_type
5392 && TREE_CODE (constructor_type) == RECORD_TYPE
5393 && constructor_unfilled_fields)
5394 {
5395 /* Do not warn for flexible array members or zero-length arrays. */
5396 while (constructor_unfilled_fields
5397 && (!DECL_SIZE (constructor_unfilled_fields)
5398 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5399 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5400
5401 /* Do not warn if this level of the initializer uses member
5402 designators; it is likely to be deliberate. */
5403 if (constructor_unfilled_fields && !constructor_designated)
5404 {
5405 push_member_name (constructor_unfilled_fields);
5406 warning_init ("missing initializer");
5407 RESTORE_SPELLING_DEPTH (constructor_depth);
5408 }
5409 }
5410
5411 /* Pad out the end of the structure. */
5412 if (p->replacement_value.value)
5413 /* If this closes a superfluous brace pair,
5414 just pass out the element between them. */
5415 ret = p->replacement_value;
5416 else if (constructor_type == 0)
5417 ;
5418 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5419 && TREE_CODE (constructor_type) != UNION_TYPE
5420 && TREE_CODE (constructor_type) != ARRAY_TYPE
5421 && TREE_CODE (constructor_type) != VECTOR_TYPE)
5422 {
5423 /* A nonincremental scalar initializer--just return
5424 the element, after verifying there is just one. */
5425 if (VEC_empty (constructor_elt,constructor_elements))
5426 {
5427 if (!constructor_erroneous)
5428 error_init ("empty scalar initializer");
5429 ret.value = error_mark_node;
5430 }
5431 else if (VEC_length (constructor_elt,constructor_elements) != 1)
5432 {
5433 error_init ("extra elements in scalar initializer");
5434 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5435 }
5436 else
5437 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5438 }
5439 else
5440 {
5441 if (constructor_erroneous)
5442 ret.value = error_mark_node;
5443 else
5444 {
5445 ret.value = build_constructor (constructor_type,
5446 constructor_elements);
5447 if (constructor_constant)
5448 TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5449 if (constructor_constant && constructor_simple)
5450 TREE_STATIC (ret.value) = 1;
5451 }
5452 }
5453
5454 constructor_type = p->type;
5455 constructor_fields = p->fields;
5456 constructor_index = p->index;
5457 constructor_max_index = p->max_index;
5458 constructor_unfilled_index = p->unfilled_index;
5459 constructor_unfilled_fields = p->unfilled_fields;
5460 constructor_bit_index = p->bit_index;
5461 constructor_elements = p->elements;
5462 constructor_constant = p->constant;
5463 constructor_simple = p->simple;
5464 constructor_erroneous = p->erroneous;
5465 constructor_incremental = p->incremental;
5466 constructor_designated = p->designated;
5467 constructor_pending_elts = p->pending_elts;
5468 constructor_depth = p->depth;
5469 if (!p->implicit)
5470 constructor_range_stack = p->range_stack;
5471 RESTORE_SPELLING_DEPTH (constructor_depth);
5472
5473 constructor_stack = p->next;
5474 free (p);
5475
5476 if (ret.value == 0 && constructor_stack == 0)
5477 ret.value = error_mark_node;
5478 return ret;
5479 }
5480
5481 /* Common handling for both array range and field name designators.
5482 ARRAY argument is nonzero for array ranges. Returns zero for success. */
5483
5484 static int
5485 set_designator (int array)
5486 {
5487 tree subtype;
5488 enum tree_code subcode;
5489
5490 /* Don't die if an entire brace-pair level is superfluous
5491 in the containing level. */
5492 if (constructor_type == 0)
5493 return 1;
5494
5495 /* If there were errors in this designator list already, bail out
5496 silently. */
5497 if (designator_erroneous)
5498 return 1;
5499
5500 if (!designator_depth)
5501 {
5502 gcc_assert (!constructor_range_stack);
5503
5504 /* Designator list starts at the level of closest explicit
5505 braces. */
5506 while (constructor_stack->implicit)
5507 process_init_element (pop_init_level (1));
5508 constructor_designated = 1;
5509 return 0;
5510 }
5511
5512 switch (TREE_CODE (constructor_type))
5513 {
5514 case RECORD_TYPE:
5515 case UNION_TYPE:
5516 subtype = TREE_TYPE (constructor_fields);
5517 if (subtype != error_mark_node)
5518 subtype = TYPE_MAIN_VARIANT (subtype);
5519 break;
5520 case ARRAY_TYPE:
5521 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5522 break;
5523 default:
5524 gcc_unreachable ();
5525 }
5526
5527 subcode = TREE_CODE (subtype);
5528 if (array && subcode != ARRAY_TYPE)
5529 {
5530 error_init ("array index in non-array initializer");
5531 return 1;
5532 }
5533 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5534 {
5535 error_init ("field name not in record or union initializer");
5536 return 1;
5537 }
5538
5539 constructor_designated = 1;
5540 push_init_level (2);
5541 return 0;
5542 }
5543
5544 /* If there are range designators in designator list, push a new designator
5545 to constructor_range_stack. RANGE_END is end of such stack range or
5546 NULL_TREE if there is no range designator at this level. */
5547
5548 static void
5549 push_range_stack (tree range_end)
5550 {
5551 struct constructor_range_stack *p;
5552
5553 p = GGC_NEW (struct constructor_range_stack);
5554 p->prev = constructor_range_stack;
5555 p->next = 0;
5556 p->fields = constructor_fields;
5557 p->range_start = constructor_index;
5558 p->index = constructor_index;
5559 p->stack = constructor_stack;
5560 p->range_end = range_end;
5561 if (constructor_range_stack)
5562 constructor_range_stack->next = p;
5563 constructor_range_stack = p;
5564 }
5565
5566 /* Within an array initializer, specify the next index to be initialized.
5567 FIRST is that index. If LAST is nonzero, then initialize a range
5568 of indices, running from FIRST through LAST. */
5569
5570 void
5571 set_init_index (tree first, tree last)
5572 {
5573 if (set_designator (1))
5574 return;
5575
5576 designator_erroneous = 1;
5577
5578 if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5579 || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5580 {
5581 error_init ("array index in initializer not of integer type");
5582 return;
5583 }
5584
5585 if (TREE_CODE (first) != INTEGER_CST)
5586 error_init ("nonconstant array index in initializer");
5587 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5588 error_init ("nonconstant array index in initializer");
5589 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5590 error_init ("array index in non-array initializer");
5591 else if (tree_int_cst_sgn (first) == -1)
5592 error_init ("array index in initializer exceeds array bounds");
5593 else if (constructor_max_index
5594 && tree_int_cst_lt (constructor_max_index, first))
5595 error_init ("array index in initializer exceeds array bounds");
5596 else
5597 {
5598 constructor_index = convert (bitsizetype, first);
5599
5600 if (last)
5601 {
5602 if (tree_int_cst_equal (first, last))
5603 last = 0;
5604 else if (tree_int_cst_lt (last, first))
5605 {
5606 error_init ("empty index range in initializer");
5607 last = 0;
5608 }
5609 else
5610 {
5611 last = convert (bitsizetype, last);
5612 if (constructor_max_index != 0
5613 && tree_int_cst_lt (constructor_max_index, last))
5614 {
5615 error_init ("array index range in initializer exceeds array bounds");
5616 last = 0;
5617 }
5618 }
5619 }
5620
5621 designator_depth++;
5622 designator_erroneous = 0;
5623 if (constructor_range_stack || last)
5624 push_range_stack (last);
5625 }
5626 }
5627
5628 /* Within a struct initializer, specify the next field to be initialized. */
5629
5630 void
5631 set_init_label (tree fieldname)
5632 {
5633 tree tail;
5634
5635 if (set_designator (0))
5636 return;
5637
5638 designator_erroneous = 1;
5639
5640 if (TREE_CODE (constructor_type) != RECORD_TYPE
5641 && TREE_CODE (constructor_type) != UNION_TYPE)
5642 {
5643 error_init ("field name not in record or union initializer");
5644 return;
5645 }
5646
5647 for (tail = TYPE_FIELDS (constructor_type); tail;
5648 tail = TREE_CHAIN (tail))
5649 {
5650 if (DECL_NAME (tail) == fieldname)
5651 break;
5652 }
5653
5654 if (tail == 0)
5655 error ("unknown field %qE specified in initializer", fieldname);
5656 else
5657 {
5658 constructor_fields = tail;
5659 designator_depth++;
5660 designator_erroneous = 0;
5661 if (constructor_range_stack)
5662 push_range_stack (NULL_TREE);
5663 }
5664 }
5665 \f
5666 /* Add a new initializer to the tree of pending initializers. PURPOSE
5667 identifies the initializer, either array index or field in a structure.
5668 VALUE is the value of that index or field. */
5669
5670 static void
5671 add_pending_init (tree purpose, tree value)
5672 {
5673 struct init_node *p, **q, *r;
5674
5675 q = &constructor_pending_elts;
5676 p = 0;
5677
5678 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5679 {
5680 while (*q != 0)
5681 {
5682 p = *q;
5683 if (tree_int_cst_lt (purpose, p->purpose))
5684 q = &p->left;
5685 else if (tree_int_cst_lt (p->purpose, purpose))
5686 q = &p->right;
5687 else
5688 {
5689 if (TREE_SIDE_EFFECTS (p->value))
5690 warning_init ("initialized field with side-effects overwritten");
5691 else if (warn_override_init)
5692 warning_init ("initialized field overwritten");
5693 p->value = value;
5694 return;
5695 }
5696 }
5697 }
5698 else
5699 {
5700 tree bitpos;
5701
5702 bitpos = bit_position (purpose);
5703 while (*q != NULL)
5704 {
5705 p = *q;
5706 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5707 q = &p->left;
5708 else if (p->purpose != purpose)
5709 q = &p->right;
5710 else
5711 {
5712 if (TREE_SIDE_EFFECTS (p->value))
5713 warning_init ("initialized field with side-effects overwritten");
5714 else if (warn_override_init)
5715 warning_init ("initialized field overwritten");
5716 p->value = value;
5717 return;
5718 }
5719 }
5720 }
5721
5722 r = GGC_NEW (struct init_node);
5723 r->purpose = purpose;
5724 r->value = value;
5725
5726 *q = r;
5727 r->parent = p;
5728 r->left = 0;
5729 r->right = 0;
5730 r->balance = 0;
5731
5732 while (p)
5733 {
5734 struct init_node *s;
5735
5736 if (r == p->left)
5737 {
5738 if (p->balance == 0)
5739 p->balance = -1;
5740 else if (p->balance < 0)
5741 {
5742 if (r->balance < 0)
5743 {
5744 /* L rotation. */
5745 p->left = r->right;
5746 if (p->left)
5747 p->left->parent = p;
5748 r->right = p;
5749
5750 p->balance = 0;
5751 r->balance = 0;
5752
5753 s = p->parent;
5754 p->parent = r;
5755 r->parent = s;
5756 if (s)
5757 {
5758 if (s->left == p)
5759 s->left = r;
5760 else
5761 s->right = r;
5762 }
5763 else
5764 constructor_pending_elts = r;
5765 }
5766 else
5767 {
5768 /* LR rotation. */
5769 struct init_node *t = r->right;
5770
5771 r->right = t->left;
5772 if (r->right)
5773 r->right->parent = r;
5774 t->left = r;
5775
5776 p->left = t->right;
5777 if (p->left)
5778 p->left->parent = p;
5779 t->right = p;
5780
5781 p->balance = t->balance < 0;
5782 r->balance = -(t->balance > 0);
5783 t->balance = 0;
5784
5785 s = p->parent;
5786 p->parent = t;
5787 r->parent = t;
5788 t->parent = s;
5789 if (s)
5790 {
5791 if (s->left == p)
5792 s->left = t;
5793 else
5794 s->right = t;
5795 }
5796 else
5797 constructor_pending_elts = t;
5798 }
5799 break;
5800 }
5801 else
5802 {
5803 /* p->balance == +1; growth of left side balances the node. */
5804 p->balance = 0;
5805 break;
5806 }
5807 }
5808 else /* r == p->right */
5809 {
5810 if (p->balance == 0)
5811 /* Growth propagation from right side. */
5812 p->balance++;
5813 else if (p->balance > 0)
5814 {
5815 if (r->balance > 0)
5816 {
5817 /* R rotation. */
5818 p->right = r->left;
5819 if (p->right)
5820 p->right->parent = p;
5821 r->left = p;
5822
5823 p->balance = 0;
5824 r->balance = 0;
5825
5826 s = p->parent;
5827 p->parent = r;
5828 r->parent = s;
5829 if (s)
5830 {
5831 if (s->left == p)
5832 s->left = r;
5833 else
5834 s->right = r;
5835 }
5836 else
5837 constructor_pending_elts = r;
5838 }
5839 else /* r->balance == -1 */
5840 {
5841 /* RL rotation */
5842 struct init_node *t = r->left;
5843
5844 r->left = t->right;
5845 if (r->left)
5846 r->left->parent = r;
5847 t->right = r;
5848
5849 p->right = t->left;
5850 if (p->right)
5851 p->right->parent = p;
5852 t->left = p;
5853
5854 r->balance = (t->balance < 0);
5855 p->balance = -(t->balance > 0);
5856 t->balance = 0;
5857
5858 s = p->parent;
5859 p->parent = t;
5860 r->parent = t;
5861 t->parent = s;
5862 if (s)
5863 {
5864 if (s->left == p)
5865 s->left = t;
5866 else
5867 s->right = t;
5868 }
5869 else
5870 constructor_pending_elts = t;
5871 }
5872 break;
5873 }
5874 else
5875 {
5876 /* p->balance == -1; growth of right side balances the node. */
5877 p->balance = 0;
5878 break;
5879 }
5880 }
5881
5882 r = p;
5883 p = p->parent;
5884 }
5885 }
5886
5887 /* Build AVL tree from a sorted chain. */
5888
5889 static void
5890 set_nonincremental_init (void)
5891 {
5892 unsigned HOST_WIDE_INT ix;
5893 tree index, value;
5894
5895 if (TREE_CODE (constructor_type) != RECORD_TYPE
5896 && TREE_CODE (constructor_type) != ARRAY_TYPE)
5897 return;
5898
5899 FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
5900 add_pending_init (index, value);
5901 constructor_elements = 0;
5902 if (TREE_CODE (constructor_type) == RECORD_TYPE)
5903 {
5904 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
5905 /* Skip any nameless bit fields at the beginning. */
5906 while (constructor_unfilled_fields != 0
5907 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5908 && DECL_NAME (constructor_unfilled_fields) == 0)
5909 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5910
5911 }
5912 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5913 {
5914 if (TYPE_DOMAIN (constructor_type))
5915 constructor_unfilled_index
5916 = convert (bitsizetype,
5917 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5918 else
5919 constructor_unfilled_index = bitsize_zero_node;
5920 }
5921 constructor_incremental = 0;
5922 }
5923
5924 /* Build AVL tree from a string constant. */
5925
5926 static void
5927 set_nonincremental_init_from_string (tree str)
5928 {
5929 tree value, purpose, type;
5930 HOST_WIDE_INT val[2];
5931 const char *p, *end;
5932 int byte, wchar_bytes, charwidth, bitpos;
5933
5934 gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
5935
5936 if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5937 == TYPE_PRECISION (char_type_node))
5938 wchar_bytes = 1;
5939 else
5940 {
5941 gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5942 == TYPE_PRECISION (wchar_type_node));
5943 wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
5944 }
5945 charwidth = TYPE_PRECISION (char_type_node);
5946 type = TREE_TYPE (constructor_type);
5947 p = TREE_STRING_POINTER (str);
5948 end = p + TREE_STRING_LENGTH (str);
5949
5950 for (purpose = bitsize_zero_node;
5951 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
5952 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
5953 {
5954 if (wchar_bytes == 1)
5955 {
5956 val[1] = (unsigned char) *p++;
5957 val[0] = 0;
5958 }
5959 else
5960 {
5961 val[0] = 0;
5962 val[1] = 0;
5963 for (byte = 0; byte < wchar_bytes; byte++)
5964 {
5965 if (BYTES_BIG_ENDIAN)
5966 bitpos = (wchar_bytes - byte - 1) * charwidth;
5967 else
5968 bitpos = byte * charwidth;
5969 val[bitpos < HOST_BITS_PER_WIDE_INT]
5970 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
5971 << (bitpos % HOST_BITS_PER_WIDE_INT);
5972 }
5973 }
5974
5975 if (!TYPE_UNSIGNED (type))
5976 {
5977 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
5978 if (bitpos < HOST_BITS_PER_WIDE_INT)
5979 {
5980 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
5981 {
5982 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
5983 val[0] = -1;
5984 }
5985 }
5986 else if (bitpos == HOST_BITS_PER_WIDE_INT)
5987 {
5988 if (val[1] < 0)
5989 val[0] = -1;
5990 }
5991 else if (val[0] & (((HOST_WIDE_INT) 1)
5992 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
5993 val[0] |= ((HOST_WIDE_INT) -1)
5994 << (bitpos - HOST_BITS_PER_WIDE_INT);
5995 }
5996
5997 value = build_int_cst_wide (type, val[1], val[0]);
5998 add_pending_init (purpose, value);
5999 }
6000
6001 constructor_incremental = 0;
6002 }
6003
6004 /* Return value of FIELD in pending initializer or zero if the field was
6005 not initialized yet. */
6006
6007 static tree
6008 find_init_member (tree field)
6009 {
6010 struct init_node *p;
6011
6012 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6013 {
6014 if (constructor_incremental
6015 && tree_int_cst_lt (field, constructor_unfilled_index))
6016 set_nonincremental_init ();
6017
6018 p = constructor_pending_elts;
6019 while (p)
6020 {
6021 if (tree_int_cst_lt (field, p->purpose))
6022 p = p->left;
6023 else if (tree_int_cst_lt (p->purpose, field))
6024 p = p->right;
6025 else
6026 return p->value;
6027 }
6028 }
6029 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6030 {
6031 tree bitpos = bit_position (field);
6032
6033 if (constructor_incremental
6034 && (!constructor_unfilled_fields
6035 || tree_int_cst_lt (bitpos,
6036 bit_position (constructor_unfilled_fields))))
6037 set_nonincremental_init ();
6038
6039 p = constructor_pending_elts;
6040 while (p)
6041 {
6042 if (field == p->purpose)
6043 return p->value;
6044 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6045 p = p->left;
6046 else
6047 p = p->right;
6048 }
6049 }
6050 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6051 {
6052 if (!VEC_empty (constructor_elt, constructor_elements)
6053 && (VEC_last (constructor_elt, constructor_elements)->index
6054 == field))
6055 return VEC_last (constructor_elt, constructor_elements)->value;
6056 }
6057 return 0;
6058 }
6059
6060 /* "Output" the next constructor element.
6061 At top level, really output it to assembler code now.
6062 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6063 TYPE is the data type that the containing data type wants here.
6064 FIELD is the field (a FIELD_DECL) or the index that this element fills.
6065 If VALUE is a string constant, STRICT_STRING is true if it is
6066 unparenthesized or we should not warn here for it being parenthesized.
6067 For other types of VALUE, STRICT_STRING is not used.
6068
6069 PENDING if non-nil means output pending elements that belong
6070 right after this element. (PENDING is normally 1;
6071 it is 0 while outputting pending elements, to avoid recursion.) */
6072
6073 static void
6074 output_init_element (tree value, bool strict_string, tree type, tree field,
6075 int pending)
6076 {
6077 constructor_elt *celt;
6078
6079 if (type == error_mark_node || value == error_mark_node)
6080 {
6081 constructor_erroneous = 1;
6082 return;
6083 }
6084 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6085 && (TREE_CODE (value) == STRING_CST
6086 || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6087 && !(TREE_CODE (value) == STRING_CST
6088 && TREE_CODE (type) == ARRAY_TYPE
6089 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6090 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6091 TYPE_MAIN_VARIANT (type)))
6092 value = array_to_pointer_conversion (value);
6093
6094 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6095 && require_constant_value && !flag_isoc99 && pending)
6096 {
6097 /* As an extension, allow initializing objects with static storage
6098 duration with compound literals (which are then treated just as
6099 the brace enclosed list they contain). */
6100 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6101 value = DECL_INITIAL (decl);
6102 }
6103
6104 if (value == error_mark_node)
6105 constructor_erroneous = 1;
6106 else if (!TREE_CONSTANT (value))
6107 constructor_constant = 0;
6108 else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6109 || ((TREE_CODE (constructor_type) == RECORD_TYPE
6110 || TREE_CODE (constructor_type) == UNION_TYPE)
6111 && DECL_C_BIT_FIELD (field)
6112 && TREE_CODE (value) != INTEGER_CST))
6113 constructor_simple = 0;
6114
6115 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6116 {
6117 if (require_constant_value)
6118 {
6119 error_init ("initializer element is not constant");
6120 value = error_mark_node;
6121 }
6122 else if (require_constant_elements)
6123 pedwarn ("initializer element is not computable at load time");
6124 }
6125
6126 /* If this field is empty (and not at the end of structure),
6127 don't do anything other than checking the initializer. */
6128 if (field
6129 && (TREE_TYPE (field) == error_mark_node
6130 || (COMPLETE_TYPE_P (TREE_TYPE (field))
6131 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6132 && (TREE_CODE (constructor_type) == ARRAY_TYPE
6133 || TREE_CHAIN (field)))))
6134 return;
6135
6136 value = digest_init (type, value, strict_string, require_constant_value);
6137 if (value == error_mark_node)
6138 {
6139 constructor_erroneous = 1;
6140 return;
6141 }
6142
6143 /* If this element doesn't come next in sequence,
6144 put it on constructor_pending_elts. */
6145 if (TREE_CODE (constructor_type) == ARRAY_TYPE
6146 && (!constructor_incremental
6147 || !tree_int_cst_equal (field, constructor_unfilled_index)))
6148 {
6149 if (constructor_incremental
6150 && tree_int_cst_lt (field, constructor_unfilled_index))
6151 set_nonincremental_init ();
6152
6153 add_pending_init (field, value);
6154 return;
6155 }
6156 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6157 && (!constructor_incremental
6158 || field != constructor_unfilled_fields))
6159 {
6160 /* We do this for records but not for unions. In a union,
6161 no matter which field is specified, it can be initialized
6162 right away since it starts at the beginning of the union. */
6163 if (constructor_incremental)
6164 {
6165 if (!constructor_unfilled_fields)
6166 set_nonincremental_init ();
6167 else
6168 {
6169 tree bitpos, unfillpos;
6170
6171 bitpos = bit_position (field);
6172 unfillpos = bit_position (constructor_unfilled_fields);
6173
6174 if (tree_int_cst_lt (bitpos, unfillpos))
6175 set_nonincremental_init ();
6176 }
6177 }
6178
6179 add_pending_init (field, value);
6180 return;
6181 }
6182 else if (TREE_CODE (constructor_type) == UNION_TYPE
6183 && !VEC_empty (constructor_elt, constructor_elements))
6184 {
6185 if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6186 constructor_elements)->value))
6187 warning_init ("initialized field with side-effects overwritten");
6188 else if (warn_override_init)
6189 warning_init ("initialized field overwritten");
6190
6191 /* We can have just one union field set. */
6192 constructor_elements = 0;
6193 }
6194
6195 /* Otherwise, output this element either to
6196 constructor_elements or to the assembler file. */
6197
6198 celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6199 celt->index = field;
6200 celt->value = value;
6201
6202 /* Advance the variable that indicates sequential elements output. */
6203 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6204 constructor_unfilled_index
6205 = size_binop (PLUS_EXPR, constructor_unfilled_index,
6206 bitsize_one_node);
6207 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6208 {
6209 constructor_unfilled_fields
6210 = TREE_CHAIN (constructor_unfilled_fields);
6211
6212 /* Skip any nameless bit fields. */
6213 while (constructor_unfilled_fields != 0
6214 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6215 && DECL_NAME (constructor_unfilled_fields) == 0)
6216 constructor_unfilled_fields =
6217 TREE_CHAIN (constructor_unfilled_fields);
6218 }
6219 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6220 constructor_unfilled_fields = 0;
6221
6222 /* Now output any pending elements which have become next. */
6223 if (pending)
6224 output_pending_init_elements (0);
6225 }
6226
6227 /* Output any pending elements which have become next.
6228 As we output elements, constructor_unfilled_{fields,index}
6229 advances, which may cause other elements to become next;
6230 if so, they too are output.
6231
6232 If ALL is 0, we return when there are
6233 no more pending elements to output now.
6234
6235 If ALL is 1, we output space as necessary so that
6236 we can output all the pending elements. */
6237
6238 static void
6239 output_pending_init_elements (int all)
6240 {
6241 struct init_node *elt = constructor_pending_elts;
6242 tree next;
6243
6244 retry:
6245
6246 /* Look through the whole pending tree.
6247 If we find an element that should be output now,
6248 output it. Otherwise, set NEXT to the element
6249 that comes first among those still pending. */
6250
6251 next = 0;
6252 while (elt)
6253 {
6254 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6255 {
6256 if (tree_int_cst_equal (elt->purpose,
6257 constructor_unfilled_index))
6258 output_init_element (elt->value, true,
6259 TREE_TYPE (constructor_type),
6260 constructor_unfilled_index, 0);
6261 else if (tree_int_cst_lt (constructor_unfilled_index,
6262 elt->purpose))
6263 {
6264 /* Advance to the next smaller node. */
6265 if (elt->left)
6266 elt = elt->left;
6267 else
6268 {
6269 /* We have reached the smallest node bigger than the
6270 current unfilled index. Fill the space first. */
6271 next = elt->purpose;
6272 break;
6273 }
6274 }
6275 else
6276 {
6277 /* Advance to the next bigger node. */
6278 if (elt->right)
6279 elt = elt->right;
6280 else
6281 {
6282 /* We have reached the biggest node in a subtree. Find
6283 the parent of it, which is the next bigger node. */
6284 while (elt->parent && elt->parent->right == elt)
6285 elt = elt->parent;
6286 elt = elt->parent;
6287 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6288 elt->purpose))
6289 {
6290 next = elt->purpose;
6291 break;
6292 }
6293 }
6294 }
6295 }
6296 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6297 || TREE_CODE (constructor_type) == UNION_TYPE)
6298 {
6299 tree ctor_unfilled_bitpos, elt_bitpos;
6300
6301 /* If the current record is complete we are done. */
6302 if (constructor_unfilled_fields == 0)
6303 break;
6304
6305 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6306 elt_bitpos = bit_position (elt->purpose);
6307 /* We can't compare fields here because there might be empty
6308 fields in between. */
6309 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6310 {
6311 constructor_unfilled_fields = elt->purpose;
6312 output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6313 elt->purpose, 0);
6314 }
6315 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6316 {
6317 /* Advance to the next smaller node. */
6318 if (elt->left)
6319 elt = elt->left;
6320 else
6321 {
6322 /* We have reached the smallest node bigger than the
6323 current unfilled field. Fill the space first. */
6324 next = elt->purpose;
6325 break;
6326 }
6327 }
6328 else
6329 {
6330 /* Advance to the next bigger node. */
6331 if (elt->right)
6332 elt = elt->right;
6333 else
6334 {
6335 /* We have reached the biggest node in a subtree. Find
6336 the parent of it, which is the next bigger node. */
6337 while (elt->parent && elt->parent->right == elt)
6338 elt = elt->parent;
6339 elt = elt->parent;
6340 if (elt
6341 && (tree_int_cst_lt (ctor_unfilled_bitpos,
6342 bit_position (elt->purpose))))
6343 {
6344 next = elt->purpose;
6345 break;
6346 }
6347 }
6348 }
6349 }
6350 }
6351
6352 /* Ordinarily return, but not if we want to output all
6353 and there are elements left. */
6354 if (!(all && next != 0))
6355 return;
6356
6357 /* If it's not incremental, just skip over the gap, so that after
6358 jumping to retry we will output the next successive element. */
6359 if (TREE_CODE (constructor_type) == RECORD_TYPE
6360 || TREE_CODE (constructor_type) == UNION_TYPE)
6361 constructor_unfilled_fields = next;
6362 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6363 constructor_unfilled_index = next;
6364
6365 /* ELT now points to the node in the pending tree with the next
6366 initializer to output. */
6367 goto retry;
6368 }
6369 \f
6370 /* Add one non-braced element to the current constructor level.
6371 This adjusts the current position within the constructor's type.
6372 This may also start or terminate implicit levels
6373 to handle a partly-braced initializer.
6374
6375 Once this has found the correct level for the new element,
6376 it calls output_init_element. */
6377
6378 void
6379 process_init_element (struct c_expr value)
6380 {
6381 tree orig_value = value.value;
6382 int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6383 bool strict_string = value.original_code == STRING_CST;
6384
6385 designator_depth = 0;
6386 designator_erroneous = 0;
6387
6388 /* Handle superfluous braces around string cst as in
6389 char x[] = {"foo"}; */
6390 if (string_flag
6391 && constructor_type
6392 && TREE_CODE (constructor_type) == ARRAY_TYPE
6393 && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6394 && integer_zerop (constructor_unfilled_index))
6395 {
6396 if (constructor_stack->replacement_value.value)
6397 error_init ("excess elements in char array initializer");
6398 constructor_stack->replacement_value = value;
6399 return;
6400 }
6401
6402 if (constructor_stack->replacement_value.value != 0)
6403 {
6404 error_init ("excess elements in struct initializer");
6405 return;
6406 }
6407
6408 /* Ignore elements of a brace group if it is entirely superfluous
6409 and has already been diagnosed. */
6410 if (constructor_type == 0)
6411 return;
6412
6413 /* If we've exhausted any levels that didn't have braces,
6414 pop them now. */
6415 while (constructor_stack->implicit)
6416 {
6417 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6418 || TREE_CODE (constructor_type) == UNION_TYPE)
6419 && constructor_fields == 0)
6420 process_init_element (pop_init_level (1));
6421 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6422 && (constructor_max_index == 0
6423 || tree_int_cst_lt (constructor_max_index,
6424 constructor_index)))
6425 process_init_element (pop_init_level (1));
6426 else
6427 break;
6428 }
6429
6430 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
6431 if (constructor_range_stack)
6432 {
6433 /* If value is a compound literal and we'll be just using its
6434 content, don't put it into a SAVE_EXPR. */
6435 if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6436 || !require_constant_value
6437 || flag_isoc99)
6438 value.value = save_expr (value.value);
6439 }
6440
6441 while (1)
6442 {
6443 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6444 {
6445 tree fieldtype;
6446 enum tree_code fieldcode;
6447
6448 if (constructor_fields == 0)
6449 {
6450 pedwarn_init ("excess elements in struct initializer");
6451 break;
6452 }
6453
6454 fieldtype = TREE_TYPE (constructor_fields);
6455 if (fieldtype != error_mark_node)
6456 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6457 fieldcode = TREE_CODE (fieldtype);
6458
6459 /* Error for non-static initialization of a flexible array member. */
6460 if (fieldcode == ARRAY_TYPE
6461 && !require_constant_value
6462 && TYPE_SIZE (fieldtype) == NULL_TREE
6463 && TREE_CHAIN (constructor_fields) == NULL_TREE)
6464 {
6465 error_init ("non-static initialization of a flexible array member");
6466 break;
6467 }
6468
6469 /* Accept a string constant to initialize a subarray. */
6470 if (value.value != 0
6471 && fieldcode == ARRAY_TYPE
6472 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6473 && string_flag)
6474 value.value = orig_value;
6475 /* Otherwise, if we have come to a subaggregate,
6476 and we don't have an element of its type, push into it. */
6477 else if (value.value != 0
6478 && value.value != error_mark_node
6479 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6480 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6481 || fieldcode == UNION_TYPE))
6482 {
6483 push_init_level (1);
6484 continue;
6485 }
6486
6487 if (value.value)
6488 {
6489 push_member_name (constructor_fields);
6490 output_init_element (value.value, strict_string,
6491 fieldtype, constructor_fields, 1);
6492 RESTORE_SPELLING_DEPTH (constructor_depth);
6493 }
6494 else
6495 /* Do the bookkeeping for an element that was
6496 directly output as a constructor. */
6497 {
6498 /* For a record, keep track of end position of last field. */
6499 if (DECL_SIZE (constructor_fields))
6500 constructor_bit_index
6501 = size_binop (PLUS_EXPR,
6502 bit_position (constructor_fields),
6503 DECL_SIZE (constructor_fields));
6504
6505 /* If the current field was the first one not yet written out,
6506 it isn't now, so update. */
6507 if (constructor_unfilled_fields == constructor_fields)
6508 {
6509 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6510 /* Skip any nameless bit fields. */
6511 while (constructor_unfilled_fields != 0
6512 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6513 && DECL_NAME (constructor_unfilled_fields) == 0)
6514 constructor_unfilled_fields =
6515 TREE_CHAIN (constructor_unfilled_fields);
6516 }
6517 }
6518
6519 constructor_fields = TREE_CHAIN (constructor_fields);
6520 /* Skip any nameless bit fields at the beginning. */
6521 while (constructor_fields != 0
6522 && DECL_C_BIT_FIELD (constructor_fields)
6523 && DECL_NAME (constructor_fields) == 0)
6524 constructor_fields = TREE_CHAIN (constructor_fields);
6525 }
6526 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6527 {
6528 tree fieldtype;
6529 enum tree_code fieldcode;
6530
6531 if (constructor_fields == 0)
6532 {
6533 pedwarn_init ("excess elements in union initializer");
6534 break;
6535 }
6536
6537 fieldtype = TREE_TYPE (constructor_fields);
6538 if (fieldtype != error_mark_node)
6539 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6540 fieldcode = TREE_CODE (fieldtype);
6541
6542 /* Warn that traditional C rejects initialization of unions.
6543 We skip the warning if the value is zero. This is done
6544 under the assumption that the zero initializer in user
6545 code appears conditioned on e.g. __STDC__ to avoid
6546 "missing initializer" warnings and relies on default
6547 initialization to zero in the traditional C case.
6548 We also skip the warning if the initializer is designated,
6549 again on the assumption that this must be conditional on
6550 __STDC__ anyway (and we've already complained about the
6551 member-designator already). */
6552 if (!in_system_header && !constructor_designated
6553 && !(value.value && (integer_zerop (value.value)
6554 || real_zerop (value.value))))
6555 warning (OPT_Wtraditional, "traditional C rejects initialization "
6556 "of unions");
6557
6558 /* Accept a string constant to initialize a subarray. */
6559 if (value.value != 0
6560 && fieldcode == ARRAY_TYPE
6561 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6562 && string_flag)
6563 value.value = orig_value;
6564 /* Otherwise, if we have come to a subaggregate,
6565 and we don't have an element of its type, push into it. */
6566 else if (value.value != 0
6567 && value.value != error_mark_node
6568 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6569 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6570 || fieldcode == UNION_TYPE))
6571 {
6572 push_init_level (1);
6573 continue;
6574 }
6575
6576 if (value.value)
6577 {
6578 push_member_name (constructor_fields);
6579 output_init_element (value.value, strict_string,
6580 fieldtype, constructor_fields, 1);
6581 RESTORE_SPELLING_DEPTH (constructor_depth);
6582 }
6583 else
6584 /* Do the bookkeeping for an element that was
6585 directly output as a constructor. */
6586 {
6587 constructor_bit_index = DECL_SIZE (constructor_fields);
6588 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6589 }
6590
6591 constructor_fields = 0;
6592 }
6593 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6594 {
6595 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6596 enum tree_code eltcode = TREE_CODE (elttype);
6597
6598 /* Accept a string constant to initialize a subarray. */
6599 if (value.value != 0
6600 && eltcode == ARRAY_TYPE
6601 && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6602 && string_flag)
6603 value.value = orig_value;
6604 /* Otherwise, if we have come to a subaggregate,
6605 and we don't have an element of its type, push into it. */
6606 else if (value.value != 0
6607 && value.value != error_mark_node
6608 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6609 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6610 || eltcode == UNION_TYPE))
6611 {
6612 push_init_level (1);
6613 continue;
6614 }
6615
6616 if (constructor_max_index != 0
6617 && (tree_int_cst_lt (constructor_max_index, constructor_index)
6618 || integer_all_onesp (constructor_max_index)))
6619 {
6620 pedwarn_init ("excess elements in array initializer");
6621 break;
6622 }
6623
6624 /* Now output the actual element. */
6625 if (value.value)
6626 {
6627 push_array_bounds (tree_low_cst (constructor_index, 1));
6628 output_init_element (value.value, strict_string,
6629 elttype, constructor_index, 1);
6630 RESTORE_SPELLING_DEPTH (constructor_depth);
6631 }
6632
6633 constructor_index
6634 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6635
6636 if (!value.value)
6637 /* If we are doing the bookkeeping for an element that was
6638 directly output as a constructor, we must update
6639 constructor_unfilled_index. */
6640 constructor_unfilled_index = constructor_index;
6641 }
6642 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6643 {
6644 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6645
6646 /* Do a basic check of initializer size. Note that vectors
6647 always have a fixed size derived from their type. */
6648 if (tree_int_cst_lt (constructor_max_index, constructor_index))
6649 {
6650 pedwarn_init ("excess elements in vector initializer");
6651 break;
6652 }
6653
6654 /* Now output the actual element. */
6655 if (value.value)
6656 output_init_element (value.value, strict_string,
6657 elttype, constructor_index, 1);
6658
6659 constructor_index
6660 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6661
6662 if (!value.value)
6663 /* If we are doing the bookkeeping for an element that was
6664 directly output as a constructor, we must update
6665 constructor_unfilled_index. */
6666 constructor_unfilled_index = constructor_index;
6667 }
6668
6669 /* Handle the sole element allowed in a braced initializer
6670 for a scalar variable. */
6671 else if (constructor_type != error_mark_node
6672 && constructor_fields == 0)
6673 {
6674 pedwarn_init ("excess elements in scalar initializer");
6675 break;
6676 }
6677 else
6678 {
6679 if (value.value)
6680 output_init_element (value.value, strict_string,
6681 constructor_type, NULL_TREE, 1);
6682 constructor_fields = 0;
6683 }
6684
6685 /* Handle range initializers either at this level or anywhere higher
6686 in the designator stack. */
6687 if (constructor_range_stack)
6688 {
6689 struct constructor_range_stack *p, *range_stack;
6690 int finish = 0;
6691
6692 range_stack = constructor_range_stack;
6693 constructor_range_stack = 0;
6694 while (constructor_stack != range_stack->stack)
6695 {
6696 gcc_assert (constructor_stack->implicit);
6697 process_init_element (pop_init_level (1));
6698 }
6699 for (p = range_stack;
6700 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6701 p = p->prev)
6702 {
6703 gcc_assert (constructor_stack->implicit);
6704 process_init_element (pop_init_level (1));
6705 }
6706
6707 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6708 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6709 finish = 1;
6710
6711 while (1)
6712 {
6713 constructor_index = p->index;
6714 constructor_fields = p->fields;
6715 if (finish && p->range_end && p->index == p->range_start)
6716 {
6717 finish = 0;
6718 p->prev = 0;
6719 }
6720 p = p->next;
6721 if (!p)
6722 break;
6723 push_init_level (2);
6724 p->stack = constructor_stack;
6725 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6726 p->index = p->range_start;
6727 }
6728
6729 if (!finish)
6730 constructor_range_stack = range_stack;
6731 continue;
6732 }
6733
6734 break;
6735 }
6736
6737 constructor_range_stack = 0;
6738 }
6739 \f
6740 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
6741 (guaranteed to be 'volatile' or null) and ARGS (represented using
6742 an ASM_EXPR node). */
6743 tree
6744 build_asm_stmt (tree cv_qualifier, tree args)
6745 {
6746 if (!ASM_VOLATILE_P (args) && cv_qualifier)
6747 ASM_VOLATILE_P (args) = 1;
6748 return add_stmt (args);
6749 }
6750
6751 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6752 some INPUTS, and some CLOBBERS. The latter three may be NULL.
6753 SIMPLE indicates whether there was anything at all after the
6754 string in the asm expression -- asm("blah") and asm("blah" : )
6755 are subtly different. We use a ASM_EXPR node to represent this. */
6756 tree
6757 build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6758 bool simple)
6759 {
6760 tree tail;
6761 tree args;
6762 int i;
6763 const char *constraint;
6764 const char **oconstraints;
6765 bool allows_mem, allows_reg, is_inout;
6766 int ninputs, noutputs;
6767
6768 ninputs = list_length (inputs);
6769 noutputs = list_length (outputs);
6770 oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6771
6772 string = resolve_asm_operand_names (string, outputs, inputs);
6773
6774 /* Remove output conversions that change the type but not the mode. */
6775 for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6776 {
6777 tree output = TREE_VALUE (tail);
6778
6779 /* ??? Really, this should not be here. Users should be using a
6780 proper lvalue, dammit. But there's a long history of using casts
6781 in the output operands. In cases like longlong.h, this becomes a
6782 primitive form of typechecking -- if the cast can be removed, then
6783 the output operand had a type of the proper width; otherwise we'll
6784 get an error. Gross, but ... */
6785 STRIP_NOPS (output);
6786
6787 if (!lvalue_or_else (output, lv_asm))
6788 output = error_mark_node;
6789
6790 if (output != error_mark_node
6791 && (TREE_READONLY (output)
6792 || TYPE_READONLY (TREE_TYPE (output))
6793 || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6794 || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6795 && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6796 readonly_error (output, lv_asm);
6797
6798 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6799 oconstraints[i] = constraint;
6800
6801 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6802 &allows_mem, &allows_reg, &is_inout))
6803 {
6804 /* If the operand is going to end up in memory,
6805 mark it addressable. */
6806 if (!allows_reg && !c_mark_addressable (output))
6807 output = error_mark_node;
6808 }
6809 else
6810 output = error_mark_node;
6811
6812 TREE_VALUE (tail) = output;
6813 }
6814
6815 for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6816 {
6817 tree input;
6818
6819 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6820 input = TREE_VALUE (tail);
6821
6822 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6823 oconstraints, &allows_mem, &allows_reg))
6824 {
6825 /* If the operand is going to end up in memory,
6826 mark it addressable. */
6827 if (!allows_reg && allows_mem)
6828 {
6829 /* Strip the nops as we allow this case. FIXME, this really
6830 should be rejected or made deprecated. */
6831 STRIP_NOPS (input);
6832 if (!c_mark_addressable (input))
6833 input = error_mark_node;
6834 }
6835 }
6836 else
6837 input = error_mark_node;
6838
6839 TREE_VALUE (tail) = input;
6840 }
6841
6842 args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6843
6844 /* asm statements without outputs, including simple ones, are treated
6845 as volatile. */
6846 ASM_INPUT_P (args) = simple;
6847 ASM_VOLATILE_P (args) = (noutputs == 0);
6848
6849 return args;
6850 }
6851 \f
6852 /* Generate a goto statement to LABEL. */
6853
6854 tree
6855 c_finish_goto_label (tree label)
6856 {
6857 tree decl = lookup_label (label);
6858 if (!decl)
6859 return NULL_TREE;
6860
6861 if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6862 {
6863 error ("jump into statement expression");
6864 return NULL_TREE;
6865 }
6866
6867 if (C_DECL_UNJUMPABLE_VM (decl))
6868 {
6869 error ("jump into scope of identifier with variably modified type");
6870 return NULL_TREE;
6871 }
6872
6873 if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6874 {
6875 /* No jump from outside this statement expression context, so
6876 record that there is a jump from within this context. */
6877 struct c_label_list *nlist;
6878 nlist = XOBNEW (&parser_obstack, struct c_label_list);
6879 nlist->next = label_context_stack_se->labels_used;
6880 nlist->label = decl;
6881 label_context_stack_se->labels_used = nlist;
6882 }
6883
6884 if (!C_DECL_UNDEFINABLE_VM (decl))
6885 {
6886 /* No jump from outside this context context of identifiers with
6887 variably modified type, so record that there is a jump from
6888 within this context. */
6889 struct c_label_list *nlist;
6890 nlist = XOBNEW (&parser_obstack, struct c_label_list);
6891 nlist->next = label_context_stack_vm->labels_used;
6892 nlist->label = decl;
6893 label_context_stack_vm->labels_used = nlist;
6894 }
6895
6896 TREE_USED (decl) = 1;
6897 return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6898 }
6899
6900 /* Generate a computed goto statement to EXPR. */
6901
6902 tree
6903 c_finish_goto_ptr (tree expr)
6904 {
6905 if (pedantic)
6906 pedwarn ("ISO C forbids %<goto *expr;%>");
6907 expr = convert (ptr_type_node, expr);
6908 return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
6909 }
6910
6911 /* Generate a C `return' statement. RETVAL is the expression for what
6912 to return, or a null pointer for `return;' with no value. */
6913
6914 tree
6915 c_finish_return (tree retval)
6916 {
6917 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
6918 bool no_warning = false;
6919
6920 if (TREE_THIS_VOLATILE (current_function_decl))
6921 warning (0, "function declared %<noreturn%> has a %<return%> statement");
6922
6923 if (!retval)
6924 {
6925 current_function_returns_null = 1;
6926 if ((warn_return_type || flag_isoc99)
6927 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6928 {
6929 pedwarn_c99 ("%<return%> with no value, in "
6930 "function returning non-void");
6931 no_warning = true;
6932 }
6933 }
6934 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6935 {
6936 current_function_returns_null = 1;
6937 if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6938 pedwarn ("%<return%> with a value, in function returning void");
6939 }
6940 else
6941 {
6942 tree t = convert_for_assignment (valtype, retval, ic_return,
6943 NULL_TREE, NULL_TREE, 0);
6944 tree res = DECL_RESULT (current_function_decl);
6945 tree inner;
6946
6947 current_function_returns_value = 1;
6948 if (t == error_mark_node)
6949 return NULL_TREE;
6950
6951 inner = t = convert (TREE_TYPE (res), t);
6952
6953 /* Strip any conversions, additions, and subtractions, and see if
6954 we are returning the address of a local variable. Warn if so. */
6955 while (1)
6956 {
6957 switch (TREE_CODE (inner))
6958 {
6959 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
6960 case PLUS_EXPR:
6961 inner = TREE_OPERAND (inner, 0);
6962 continue;
6963
6964 case MINUS_EXPR:
6965 /* If the second operand of the MINUS_EXPR has a pointer
6966 type (or is converted from it), this may be valid, so
6967 don't give a warning. */
6968 {
6969 tree op1 = TREE_OPERAND (inner, 1);
6970
6971 while (!POINTER_TYPE_P (TREE_TYPE (op1))
6972 && (TREE_CODE (op1) == NOP_EXPR
6973 || TREE_CODE (op1) == NON_LVALUE_EXPR
6974 || TREE_CODE (op1) == CONVERT_EXPR))
6975 op1 = TREE_OPERAND (op1, 0);
6976
6977 if (POINTER_TYPE_P (TREE_TYPE (op1)))
6978 break;
6979
6980 inner = TREE_OPERAND (inner, 0);
6981 continue;
6982 }
6983
6984 case ADDR_EXPR:
6985 inner = TREE_OPERAND (inner, 0);
6986
6987 while (REFERENCE_CLASS_P (inner)
6988 && TREE_CODE (inner) != INDIRECT_REF)
6989 inner = TREE_OPERAND (inner, 0);
6990
6991 if (DECL_P (inner)
6992 && !DECL_EXTERNAL (inner)
6993 && !TREE_STATIC (inner)
6994 && DECL_CONTEXT (inner) == current_function_decl)
6995 warning (0, "function returns address of local variable");
6996 break;
6997
6998 default:
6999 break;
7000 }
7001
7002 break;
7003 }
7004
7005 retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7006 }
7007
7008 ret_stmt = build_stmt (RETURN_EXPR, retval);
7009 TREE_NO_WARNING (ret_stmt) |= no_warning;
7010 return add_stmt (ret_stmt);
7011 }
7012 \f
7013 struct c_switch {
7014 /* The SWITCH_EXPR being built. */
7015 tree switch_expr;
7016
7017 /* The original type of the testing expression, i.e. before the
7018 default conversion is applied. */
7019 tree orig_type;
7020
7021 /* A splay-tree mapping the low element of a case range to the high
7022 element, or NULL_TREE if there is no high element. Used to
7023 determine whether or not a new case label duplicates an old case
7024 label. We need a tree, rather than simply a hash table, because
7025 of the GNU case range extension. */
7026 splay_tree cases;
7027
7028 /* Number of nested statement expressions within this switch
7029 statement; if nonzero, case and default labels may not
7030 appear. */
7031 unsigned int blocked_stmt_expr;
7032
7033 /* Scope of outermost declarations of identifiers with variably
7034 modified type within this switch statement; if nonzero, case and
7035 default labels may not appear. */
7036 unsigned int blocked_vm;
7037
7038 /* The next node on the stack. */
7039 struct c_switch *next;
7040 };
7041
7042 /* A stack of the currently active switch statements. The innermost
7043 switch statement is on the top of the stack. There is no need to
7044 mark the stack for garbage collection because it is only active
7045 during the processing of the body of a function, and we never
7046 collect at that point. */
7047
7048 struct c_switch *c_switch_stack;
7049
7050 /* Start a C switch statement, testing expression EXP. Return the new
7051 SWITCH_EXPR. */
7052
7053 tree
7054 c_start_case (tree exp)
7055 {
7056 tree orig_type = error_mark_node;
7057 struct c_switch *cs;
7058
7059 if (exp != error_mark_node)
7060 {
7061 orig_type = TREE_TYPE (exp);
7062
7063 if (!INTEGRAL_TYPE_P (orig_type))
7064 {
7065 if (orig_type != error_mark_node)
7066 {
7067 error ("switch quantity not an integer");
7068 orig_type = error_mark_node;
7069 }
7070 exp = integer_zero_node;
7071 }
7072 else
7073 {
7074 tree type = TYPE_MAIN_VARIANT (orig_type);
7075
7076 if (!in_system_header
7077 && (type == long_integer_type_node
7078 || type == long_unsigned_type_node))
7079 warning (OPT_Wtraditional, "%<long%> switch expression not "
7080 "converted to %<int%> in ISO C");
7081
7082 exp = default_conversion (exp);
7083 }
7084 }
7085
7086 /* Add this new SWITCH_EXPR to the stack. */
7087 cs = XNEW (struct c_switch);
7088 cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7089 cs->orig_type = orig_type;
7090 cs->cases = splay_tree_new (case_compare, NULL, NULL);
7091 cs->blocked_stmt_expr = 0;
7092 cs->blocked_vm = 0;
7093 cs->next = c_switch_stack;
7094 c_switch_stack = cs;
7095
7096 return add_stmt (cs->switch_expr);
7097 }
7098
7099 /* Process a case label. */
7100
7101 tree
7102 do_case (tree low_value, tree high_value)
7103 {
7104 tree label = NULL_TREE;
7105
7106 if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7107 && !c_switch_stack->blocked_vm)
7108 {
7109 label = c_add_case_label (c_switch_stack->cases,
7110 SWITCH_COND (c_switch_stack->switch_expr),
7111 c_switch_stack->orig_type,
7112 low_value, high_value);
7113 if (label == error_mark_node)
7114 label = NULL_TREE;
7115 }
7116 else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7117 {
7118 if (low_value)
7119 error ("case label in statement expression not containing "
7120 "enclosing switch statement");
7121 else
7122 error ("%<default%> label in statement expression not containing "
7123 "enclosing switch statement");
7124 }
7125 else if (c_switch_stack && c_switch_stack->blocked_vm)
7126 {
7127 if (low_value)
7128 error ("case label in scope of identifier with variably modified "
7129 "type not containing enclosing switch statement");
7130 else
7131 error ("%<default%> label in scope of identifier with variably "
7132 "modified type not containing enclosing switch statement");
7133 }
7134 else if (low_value)
7135 error ("case label not within a switch statement");
7136 else
7137 error ("%<default%> label not within a switch statement");
7138
7139 return label;
7140 }
7141
7142 /* Finish the switch statement. */
7143
7144 void
7145 c_finish_case (tree body)
7146 {
7147 struct c_switch *cs = c_switch_stack;
7148 location_t switch_location;
7149
7150 SWITCH_BODY (cs->switch_expr) = body;
7151
7152 /* We must not be within a statement expression nested in the switch
7153 at this point; we might, however, be within the scope of an
7154 identifier with variably modified type nested in the switch. */
7155 gcc_assert (!cs->blocked_stmt_expr);
7156
7157 /* Emit warnings as needed. */
7158 if (EXPR_HAS_LOCATION (cs->switch_expr))
7159 switch_location = EXPR_LOCATION (cs->switch_expr);
7160 else
7161 switch_location = input_location;
7162 c_do_switch_warnings (cs->cases, switch_location,
7163 TREE_TYPE (cs->switch_expr),
7164 SWITCH_COND (cs->switch_expr));
7165
7166 /* Pop the stack. */
7167 c_switch_stack = cs->next;
7168 splay_tree_delete (cs->cases);
7169 XDELETE (cs);
7170 }
7171 \f
7172 /* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
7173 THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7174 may be null. NESTED_IF is true if THEN_BLOCK contains another IF
7175 statement, and was not surrounded with parenthesis. */
7176
7177 void
7178 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7179 tree else_block, bool nested_if)
7180 {
7181 tree stmt;
7182
7183 /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
7184 if (warn_parentheses && nested_if && else_block == NULL)
7185 {
7186 tree inner_if = then_block;
7187
7188 /* We know from the grammar productions that there is an IF nested
7189 within THEN_BLOCK. Due to labels and c99 conditional declarations,
7190 it might not be exactly THEN_BLOCK, but should be the last
7191 non-container statement within. */
7192 while (1)
7193 switch (TREE_CODE (inner_if))
7194 {
7195 case COND_EXPR:
7196 goto found;
7197 case BIND_EXPR:
7198 inner_if = BIND_EXPR_BODY (inner_if);
7199 break;
7200 case STATEMENT_LIST:
7201 inner_if = expr_last (then_block);
7202 break;
7203 case TRY_FINALLY_EXPR:
7204 case TRY_CATCH_EXPR:
7205 inner_if = TREE_OPERAND (inner_if, 0);
7206 break;
7207 default:
7208 gcc_unreachable ();
7209 }
7210 found:
7211
7212 if (COND_EXPR_ELSE (inner_if))
7213 warning (OPT_Wparentheses,
7214 "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7215 &if_locus);
7216 }
7217
7218 empty_body_warning (then_block, else_block);
7219
7220 stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7221 SET_EXPR_LOCATION (stmt, if_locus);
7222 add_stmt (stmt);
7223 }
7224
7225 /* Emit a general-purpose loop construct. START_LOCUS is the location of
7226 the beginning of the loop. COND is the loop condition. COND_IS_FIRST
7227 is false for DO loops. INCR is the FOR increment expression. BODY is
7228 the statement controlled by the loop. BLAB is the break label. CLAB is
7229 the continue label. Everything is allowed to be NULL. */
7230
7231 void
7232 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7233 tree blab, tree clab, bool cond_is_first)
7234 {
7235 tree entry = NULL, exit = NULL, t;
7236
7237 /* If the condition is zero don't generate a loop construct. */
7238 if (cond && integer_zerop (cond))
7239 {
7240 if (cond_is_first)
7241 {
7242 t = build_and_jump (&blab);
7243 SET_EXPR_LOCATION (t, start_locus);
7244 add_stmt (t);
7245 }
7246 }
7247 else
7248 {
7249 tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7250
7251 /* If we have an exit condition, then we build an IF with gotos either
7252 out of the loop, or to the top of it. If there's no exit condition,
7253 then we just build a jump back to the top. */
7254 exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7255
7256 if (cond && !integer_nonzerop (cond))
7257 {
7258 /* Canonicalize the loop condition to the end. This means
7259 generating a branch to the loop condition. Reuse the
7260 continue label, if possible. */
7261 if (cond_is_first)
7262 {
7263 if (incr || !clab)
7264 {
7265 entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7266 t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7267 }
7268 else
7269 t = build1 (GOTO_EXPR, void_type_node, clab);
7270 SET_EXPR_LOCATION (t, start_locus);
7271 add_stmt (t);
7272 }
7273
7274 t = build_and_jump (&blab);
7275 exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7276 if (cond_is_first)
7277 SET_EXPR_LOCATION (exit, start_locus);
7278 else
7279 SET_EXPR_LOCATION (exit, input_location);
7280 }
7281
7282 add_stmt (top);
7283 }
7284
7285 if (body)
7286 add_stmt (body);
7287 if (clab)
7288 add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7289 if (incr)
7290 add_stmt (incr);
7291 if (entry)
7292 add_stmt (entry);
7293 if (exit)
7294 add_stmt (exit);
7295 if (blab)
7296 add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7297 }
7298
7299 tree
7300 c_finish_bc_stmt (tree *label_p, bool is_break)
7301 {
7302 bool skip;
7303 tree label = *label_p;
7304
7305 /* In switch statements break is sometimes stylistically used after
7306 a return statement. This can lead to spurious warnings about
7307 control reaching the end of a non-void function when it is
7308 inlined. Note that we are calling block_may_fallthru with
7309 language specific tree nodes; this works because
7310 block_may_fallthru returns true when given something it does not
7311 understand. */
7312 skip = !block_may_fallthru (cur_stmt_list);
7313
7314 if (!label)
7315 {
7316 if (!skip)
7317 *label_p = label = create_artificial_label ();
7318 }
7319 else if (TREE_CODE (label) == LABEL_DECL)
7320 ;
7321 else switch (TREE_INT_CST_LOW (label))
7322 {
7323 case 0:
7324 if (is_break)
7325 error ("break statement not within loop or switch");
7326 else
7327 error ("continue statement not within a loop");
7328 return NULL_TREE;
7329
7330 case 1:
7331 gcc_assert (is_break);
7332 error ("break statement used with OpenMP for loop");
7333 return NULL_TREE;
7334
7335 default:
7336 gcc_unreachable ();
7337 }
7338
7339 if (skip)
7340 return NULL_TREE;
7341
7342 return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7343 }
7344
7345 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
7346
7347 static void
7348 emit_side_effect_warnings (tree expr)
7349 {
7350 if (expr == error_mark_node)
7351 ;
7352 else if (!TREE_SIDE_EFFECTS (expr))
7353 {
7354 if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7355 warning (0, "%Hstatement with no effect",
7356 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7357 }
7358 else if (warn_unused_value)
7359 warn_if_unused_value (expr, input_location);
7360 }
7361
7362 /* Process an expression as if it were a complete statement. Emit
7363 diagnostics, but do not call ADD_STMT. */
7364
7365 tree
7366 c_process_expr_stmt (tree expr)
7367 {
7368 if (!expr)
7369 return NULL_TREE;
7370
7371 if (warn_sequence_point)
7372 verify_sequence_points (expr);
7373
7374 if (TREE_TYPE (expr) != error_mark_node
7375 && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7376 && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7377 error ("expression statement has incomplete type");
7378
7379 /* If we're not processing a statement expression, warn about unused values.
7380 Warnings for statement expressions will be emitted later, once we figure
7381 out which is the result. */
7382 if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7383 && (extra_warnings || warn_unused_value))
7384 emit_side_effect_warnings (expr);
7385
7386 /* If the expression is not of a type to which we cannot assign a line
7387 number, wrap the thing in a no-op NOP_EXPR. */
7388 if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7389 expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7390
7391 if (CAN_HAVE_LOCATION_P (expr))
7392 SET_EXPR_LOCATION (expr, input_location);
7393
7394 return expr;
7395 }
7396
7397 /* Emit an expression as a statement. */
7398
7399 tree
7400 c_finish_expr_stmt (tree expr)
7401 {
7402 if (expr)
7403 return add_stmt (c_process_expr_stmt (expr));
7404 else
7405 return NULL;
7406 }
7407
7408 /* Do the opposite and emit a statement as an expression. To begin,
7409 create a new binding level and return it. */
7410
7411 tree
7412 c_begin_stmt_expr (void)
7413 {
7414 tree ret;
7415 struct c_label_context_se *nstack;
7416 struct c_label_list *glist;
7417
7418 /* We must force a BLOCK for this level so that, if it is not expanded
7419 later, there is a way to turn off the entire subtree of blocks that
7420 are contained in it. */
7421 keep_next_level ();
7422 ret = c_begin_compound_stmt (true);
7423 if (c_switch_stack)
7424 {
7425 c_switch_stack->blocked_stmt_expr++;
7426 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7427 }
7428 for (glist = label_context_stack_se->labels_used;
7429 glist != NULL;
7430 glist = glist->next)
7431 {
7432 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7433 }
7434 nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7435 nstack->labels_def = NULL;
7436 nstack->labels_used = NULL;
7437 nstack->next = label_context_stack_se;
7438 label_context_stack_se = nstack;
7439
7440 /* Mark the current statement list as belonging to a statement list. */
7441 STATEMENT_LIST_STMT_EXPR (ret) = 1;
7442
7443 return ret;
7444 }
7445
7446 tree
7447 c_finish_stmt_expr (tree body)
7448 {
7449 tree last, type, tmp, val;
7450 tree *last_p;
7451 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7452
7453 body = c_end_compound_stmt (body, true);
7454 if (c_switch_stack)
7455 {
7456 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7457 c_switch_stack->blocked_stmt_expr--;
7458 }
7459 /* It is no longer possible to jump to labels defined within this
7460 statement expression. */
7461 for (dlist = label_context_stack_se->labels_def;
7462 dlist != NULL;
7463 dlist = dlist->next)
7464 {
7465 C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7466 }
7467 /* It is again possible to define labels with a goto just outside
7468 this statement expression. */
7469 for (glist = label_context_stack_se->next->labels_used;
7470 glist != NULL;
7471 glist = glist->next)
7472 {
7473 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7474 glist_prev = glist;
7475 }
7476 if (glist_prev != NULL)
7477 glist_prev->next = label_context_stack_se->labels_used;
7478 else
7479 label_context_stack_se->next->labels_used
7480 = label_context_stack_se->labels_used;
7481 label_context_stack_se = label_context_stack_se->next;
7482
7483 /* Locate the last statement in BODY. See c_end_compound_stmt
7484 about always returning a BIND_EXPR. */
7485 last_p = &BIND_EXPR_BODY (body);
7486 last = BIND_EXPR_BODY (body);
7487
7488 continue_searching:
7489 if (TREE_CODE (last) == STATEMENT_LIST)
7490 {
7491 tree_stmt_iterator i;
7492
7493 /* This can happen with degenerate cases like ({ }). No value. */
7494 if (!TREE_SIDE_EFFECTS (last))
7495 return body;
7496
7497 /* If we're supposed to generate side effects warnings, process
7498 all of the statements except the last. */
7499 if (extra_warnings || warn_unused_value)
7500 {
7501 for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7502 emit_side_effect_warnings (tsi_stmt (i));
7503 }
7504 else
7505 i = tsi_last (last);
7506 last_p = tsi_stmt_ptr (i);
7507 last = *last_p;
7508 }
7509
7510 /* If the end of the list is exception related, then the list was split
7511 by a call to push_cleanup. Continue searching. */
7512 if (TREE_CODE (last) == TRY_FINALLY_EXPR
7513 || TREE_CODE (last) == TRY_CATCH_EXPR)
7514 {
7515 last_p = &TREE_OPERAND (last, 0);
7516 last = *last_p;
7517 goto continue_searching;
7518 }
7519
7520 /* In the case that the BIND_EXPR is not necessary, return the
7521 expression out from inside it. */
7522 if (last == error_mark_node
7523 || (last == BIND_EXPR_BODY (body)
7524 && BIND_EXPR_VARS (body) == NULL))
7525 {
7526 /* Do not warn if the return value of a statement expression is
7527 unused. */
7528 if (CAN_HAVE_LOCATION_P (last))
7529 TREE_NO_WARNING (last) = 1;
7530 return last;
7531 }
7532
7533 /* Extract the type of said expression. */
7534 type = TREE_TYPE (last);
7535
7536 /* If we're not returning a value at all, then the BIND_EXPR that
7537 we already have is a fine expression to return. */
7538 if (!type || VOID_TYPE_P (type))
7539 return body;
7540
7541 /* Now that we've located the expression containing the value, it seems
7542 silly to make voidify_wrapper_expr repeat the process. Create a
7543 temporary of the appropriate type and stick it in a TARGET_EXPR. */
7544 tmp = create_tmp_var_raw (type, NULL);
7545
7546 /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
7547 tree_expr_nonnegative_p giving up immediately. */
7548 val = last;
7549 if (TREE_CODE (val) == NOP_EXPR
7550 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7551 val = TREE_OPERAND (val, 0);
7552
7553 *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7554 SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7555
7556 return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7557 }
7558
7559 /* Begin the scope of an identifier of variably modified type, scope
7560 number SCOPE. Jumping from outside this scope to inside it is not
7561 permitted. */
7562
7563 void
7564 c_begin_vm_scope (unsigned int scope)
7565 {
7566 struct c_label_context_vm *nstack;
7567 struct c_label_list *glist;
7568
7569 gcc_assert (scope > 0);
7570
7571 /* At file_scope, we don't have to do any processing. */
7572 if (label_context_stack_vm == NULL)
7573 return;
7574
7575 if (c_switch_stack && !c_switch_stack->blocked_vm)
7576 c_switch_stack->blocked_vm = scope;
7577 for (glist = label_context_stack_vm->labels_used;
7578 glist != NULL;
7579 glist = glist->next)
7580 {
7581 C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7582 }
7583 nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7584 nstack->labels_def = NULL;
7585 nstack->labels_used = NULL;
7586 nstack->scope = scope;
7587 nstack->next = label_context_stack_vm;
7588 label_context_stack_vm = nstack;
7589 }
7590
7591 /* End a scope which may contain identifiers of variably modified
7592 type, scope number SCOPE. */
7593
7594 void
7595 c_end_vm_scope (unsigned int scope)
7596 {
7597 if (label_context_stack_vm == NULL)
7598 return;
7599 if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7600 c_switch_stack->blocked_vm = 0;
7601 /* We may have a number of nested scopes of identifiers with
7602 variably modified type, all at this depth. Pop each in turn. */
7603 while (label_context_stack_vm->scope == scope)
7604 {
7605 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7606
7607 /* It is no longer possible to jump to labels defined within this
7608 scope. */
7609 for (dlist = label_context_stack_vm->labels_def;
7610 dlist != NULL;
7611 dlist = dlist->next)
7612 {
7613 C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7614 }
7615 /* It is again possible to define labels with a goto just outside
7616 this scope. */
7617 for (glist = label_context_stack_vm->next->labels_used;
7618 glist != NULL;
7619 glist = glist->next)
7620 {
7621 C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7622 glist_prev = glist;
7623 }
7624 if (glist_prev != NULL)
7625 glist_prev->next = label_context_stack_vm->labels_used;
7626 else
7627 label_context_stack_vm->next->labels_used
7628 = label_context_stack_vm->labels_used;
7629 label_context_stack_vm = label_context_stack_vm->next;
7630 }
7631 }
7632 \f
7633 /* Begin and end compound statements. This is as simple as pushing
7634 and popping new statement lists from the tree. */
7635
7636 tree
7637 c_begin_compound_stmt (bool do_scope)
7638 {
7639 tree stmt = push_stmt_list ();
7640 if (do_scope)
7641 push_scope ();
7642 return stmt;
7643 }
7644
7645 tree
7646 c_end_compound_stmt (tree stmt, bool do_scope)
7647 {
7648 tree block = NULL;
7649
7650 if (do_scope)
7651 {
7652 if (c_dialect_objc ())
7653 objc_clear_super_receiver ();
7654 block = pop_scope ();
7655 }
7656
7657 stmt = pop_stmt_list (stmt);
7658 stmt = c_build_bind_expr (block, stmt);
7659
7660 /* If this compound statement is nested immediately inside a statement
7661 expression, then force a BIND_EXPR to be created. Otherwise we'll
7662 do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
7663 STATEMENT_LISTs merge, and thus we can lose track of what statement
7664 was really last. */
7665 if (cur_stmt_list
7666 && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7667 && TREE_CODE (stmt) != BIND_EXPR)
7668 {
7669 stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7670 TREE_SIDE_EFFECTS (stmt) = 1;
7671 }
7672
7673 return stmt;
7674 }
7675
7676 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
7677 when the current scope is exited. EH_ONLY is true when this is not
7678 meant to apply to normal control flow transfer. */
7679
7680 void
7681 push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7682 {
7683 enum tree_code code;
7684 tree stmt, list;
7685 bool stmt_expr;
7686
7687 code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7688 stmt = build_stmt (code, NULL, cleanup);
7689 add_stmt (stmt);
7690 stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7691 list = push_stmt_list ();
7692 TREE_OPERAND (stmt, 0) = list;
7693 STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7694 }
7695 \f
7696 /* Build a binary-operation expression without default conversions.
7697 CODE is the kind of expression to build.
7698 This function differs from `build' in several ways:
7699 the data type of the result is computed and recorded in it,
7700 warnings are generated if arg data types are invalid,
7701 special handling for addition and subtraction of pointers is known,
7702 and some optimization is done (operations on narrow ints
7703 are done in the narrower type when that gives the same result).
7704 Constant folding is also done before the result is returned.
7705
7706 Note that the operands will never have enumeral types, or function
7707 or array types, because either they will have the default conversions
7708 performed or they have both just been converted to some other type in which
7709 the arithmetic is to be done. */
7710
7711 tree
7712 build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7713 int convert_p)
7714 {
7715 tree type0, type1;
7716 enum tree_code code0, code1;
7717 tree op0, op1;
7718 const char *invalid_op_diag;
7719
7720 /* Expression code to give to the expression when it is built.
7721 Normally this is CODE, which is what the caller asked for,
7722 but in some special cases we change it. */
7723 enum tree_code resultcode = code;
7724
7725 /* Data type in which the computation is to be performed.
7726 In the simplest cases this is the common type of the arguments. */
7727 tree result_type = NULL;
7728
7729 /* Nonzero means operands have already been type-converted
7730 in whatever way is necessary.
7731 Zero means they need to be converted to RESULT_TYPE. */
7732 int converted = 0;
7733
7734 /* Nonzero means create the expression with this type, rather than
7735 RESULT_TYPE. */
7736 tree build_type = 0;
7737
7738 /* Nonzero means after finally constructing the expression
7739 convert it to this type. */
7740 tree final_type = 0;
7741
7742 /* Nonzero if this is an operation like MIN or MAX which can
7743 safely be computed in short if both args are promoted shorts.
7744 Also implies COMMON.
7745 -1 indicates a bitwise operation; this makes a difference
7746 in the exact conditions for when it is safe to do the operation
7747 in a narrower mode. */
7748 int shorten = 0;
7749
7750 /* Nonzero if this is a comparison operation;
7751 if both args are promoted shorts, compare the original shorts.
7752 Also implies COMMON. */
7753 int short_compare = 0;
7754
7755 /* Nonzero if this is a right-shift operation, which can be computed on the
7756 original short and then promoted if the operand is a promoted short. */
7757 int short_shift = 0;
7758
7759 /* Nonzero means set RESULT_TYPE to the common type of the args. */
7760 int common = 0;
7761
7762 /* True means types are compatible as far as ObjC is concerned. */
7763 bool objc_ok;
7764
7765 if (convert_p)
7766 {
7767 op0 = default_conversion (orig_op0);
7768 op1 = default_conversion (orig_op1);
7769 }
7770 else
7771 {
7772 op0 = orig_op0;
7773 op1 = orig_op1;
7774 }
7775
7776 type0 = TREE_TYPE (op0);
7777 type1 = TREE_TYPE (op1);
7778
7779 /* The expression codes of the data types of the arguments tell us
7780 whether the arguments are integers, floating, pointers, etc. */
7781 code0 = TREE_CODE (type0);
7782 code1 = TREE_CODE (type1);
7783
7784 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
7785 STRIP_TYPE_NOPS (op0);
7786 STRIP_TYPE_NOPS (op1);
7787
7788 /* If an error was already reported for one of the arguments,
7789 avoid reporting another error. */
7790
7791 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7792 return error_mark_node;
7793
7794 if ((invalid_op_diag
7795 = targetm.invalid_binary_op (code, type0, type1)))
7796 {
7797 error (invalid_op_diag);
7798 return error_mark_node;
7799 }
7800
7801 objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7802
7803 switch (code)
7804 {
7805 case PLUS_EXPR:
7806 /* Handle the pointer + int case. */
7807 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7808 return pointer_int_sum (PLUS_EXPR, op0, op1);
7809 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7810 return pointer_int_sum (PLUS_EXPR, op1, op0);
7811 else
7812 common = 1;
7813 break;
7814
7815 case MINUS_EXPR:
7816 /* Subtraction of two similar pointers.
7817 We must subtract them as integers, then divide by object size. */
7818 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7819 && comp_target_types (type0, type1))
7820 return pointer_diff (op0, op1);
7821 /* Handle pointer minus int. Just like pointer plus int. */
7822 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7823 return pointer_int_sum (MINUS_EXPR, op0, op1);
7824 else
7825 common = 1;
7826 break;
7827
7828 case MULT_EXPR:
7829 common = 1;
7830 break;
7831
7832 case TRUNC_DIV_EXPR:
7833 case CEIL_DIV_EXPR:
7834 case FLOOR_DIV_EXPR:
7835 case ROUND_DIV_EXPR:
7836 case EXACT_DIV_EXPR:
7837 /* Floating point division by zero is a legitimate way to obtain
7838 infinities and NaNs. */
7839 if (skip_evaluation == 0 && integer_zerop (op1))
7840 warning (OPT_Wdiv_by_zero, "division by zero");
7841
7842 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7843 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7844 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7845 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7846 {
7847 enum tree_code tcode0 = code0, tcode1 = code1;
7848
7849 if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7850 tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7851 if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7852 tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7853
7854 if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7855 resultcode = RDIV_EXPR;
7856 else
7857 /* Although it would be tempting to shorten always here, that
7858 loses on some targets, since the modulo instruction is
7859 undefined if the quotient can't be represented in the
7860 computation mode. We shorten only if unsigned or if
7861 dividing by something we know != -1. */
7862 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7863 || (TREE_CODE (op1) == INTEGER_CST
7864 && !integer_all_onesp (op1)));
7865 common = 1;
7866 }
7867 break;
7868
7869 case BIT_AND_EXPR:
7870 case BIT_IOR_EXPR:
7871 case BIT_XOR_EXPR:
7872 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7873 shorten = -1;
7874 else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7875 common = 1;
7876 break;
7877
7878 case TRUNC_MOD_EXPR:
7879 case FLOOR_MOD_EXPR:
7880 if (skip_evaluation == 0 && integer_zerop (op1))
7881 warning (OPT_Wdiv_by_zero, "division by zero");
7882
7883 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7884 {
7885 /* Although it would be tempting to shorten always here, that loses
7886 on some targets, since the modulo instruction is undefined if the
7887 quotient can't be represented in the computation mode. We shorten
7888 only if unsigned or if dividing by something we know != -1. */
7889 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7890 || (TREE_CODE (op1) == INTEGER_CST
7891 && !integer_all_onesp (op1)));
7892 common = 1;
7893 }
7894 break;
7895
7896 case TRUTH_ANDIF_EXPR:
7897 case TRUTH_ORIF_EXPR:
7898 case TRUTH_AND_EXPR:
7899 case TRUTH_OR_EXPR:
7900 case TRUTH_XOR_EXPR:
7901 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7902 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7903 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
7904 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
7905 {
7906 /* Result of these operations is always an int,
7907 but that does not mean the operands should be
7908 converted to ints! */
7909 result_type = integer_type_node;
7910 op0 = c_common_truthvalue_conversion (op0);
7911 op1 = c_common_truthvalue_conversion (op1);
7912 converted = 1;
7913 }
7914 break;
7915
7916 /* Shift operations: result has same type as first operand;
7917 always convert second operand to int.
7918 Also set SHORT_SHIFT if shifting rightward. */
7919
7920 case RSHIFT_EXPR:
7921 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7922 {
7923 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7924 {
7925 if (tree_int_cst_sgn (op1) < 0)
7926 warning (0, "right shift count is negative");
7927 else
7928 {
7929 if (!integer_zerop (op1))
7930 short_shift = 1;
7931
7932 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7933 warning (0, "right shift count >= width of type");
7934 }
7935 }
7936
7937 /* Use the type of the value to be shifted. */
7938 result_type = type0;
7939 /* Convert the shift-count to an integer, regardless of size
7940 of value being shifted. */
7941 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7942 op1 = convert (integer_type_node, op1);
7943 /* Avoid converting op1 to result_type later. */
7944 converted = 1;
7945 }
7946 break;
7947
7948 case LSHIFT_EXPR:
7949 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7950 {
7951 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7952 {
7953 if (tree_int_cst_sgn (op1) < 0)
7954 warning (0, "left shift count is negative");
7955
7956 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7957 warning (0, "left shift count >= width of type");
7958 }
7959
7960 /* Use the type of the value to be shifted. */
7961 result_type = type0;
7962 /* Convert the shift-count to an integer, regardless of size
7963 of value being shifted. */
7964 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7965 op1 = convert (integer_type_node, op1);
7966 /* Avoid converting op1 to result_type later. */
7967 converted = 1;
7968 }
7969 break;
7970
7971 case EQ_EXPR:
7972 case NE_EXPR:
7973 if (code0 == REAL_TYPE || code1 == REAL_TYPE)
7974 warning (OPT_Wfloat_equal,
7975 "comparing floating point with == or != is unsafe");
7976 /* Result of comparison is always int,
7977 but don't convert the args to int! */
7978 build_type = integer_type_node;
7979 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7980 || code0 == COMPLEX_TYPE)
7981 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7982 || code1 == COMPLEX_TYPE))
7983 short_compare = 1;
7984 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
7985 {
7986 tree tt0 = TREE_TYPE (type0);
7987 tree tt1 = TREE_TYPE (type1);
7988 /* Anything compares with void *. void * compares with anything.
7989 Otherwise, the targets must be compatible
7990 and both must be object or both incomplete. */
7991 if (comp_target_types (type0, type1))
7992 result_type = common_pointer_type (type0, type1);
7993 else if (VOID_TYPE_P (tt0))
7994 {
7995 /* op0 != orig_op0 detects the case of something
7996 whose value is 0 but which isn't a valid null ptr const. */
7997 if (pedantic && !null_pointer_constant_p (orig_op0)
7998 && TREE_CODE (tt1) == FUNCTION_TYPE)
7999 pedwarn ("ISO C forbids comparison of %<void *%>"
8000 " with function pointer");
8001 }
8002 else if (VOID_TYPE_P (tt1))
8003 {
8004 if (pedantic && !null_pointer_constant_p (orig_op1)
8005 && TREE_CODE (tt0) == FUNCTION_TYPE)
8006 pedwarn ("ISO C forbids comparison of %<void *%>"
8007 " with function pointer");
8008 }
8009 else
8010 /* Avoid warning about the volatile ObjC EH puts on decls. */
8011 if (!objc_ok)
8012 pedwarn ("comparison of distinct pointer types lacks a cast");
8013
8014 if (result_type == NULL_TREE)
8015 result_type = ptr_type_node;
8016 }
8017 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8018 {
8019 if (TREE_CODE (op0) == ADDR_EXPR
8020 && decl_with_nonnull_addr_p (TREE_OPERAND (op0, 0)))
8021 warning (OPT_Walways_true, "the address of %qD will never be NULL",
8022 TREE_OPERAND (op0, 0));
8023 result_type = type0;
8024 }
8025 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8026 {
8027 if (TREE_CODE (op1) == ADDR_EXPR
8028 && decl_with_nonnull_addr_p (TREE_OPERAND (op1, 0)))
8029 warning (OPT_Walways_true, "the address of %qD will never be NULL",
8030 TREE_OPERAND (op1, 0));
8031 result_type = type1;
8032 }
8033 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8034 {
8035 result_type = type0;
8036 pedwarn ("comparison between pointer and integer");
8037 }
8038 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8039 {
8040 result_type = type1;
8041 pedwarn ("comparison between pointer and integer");
8042 }
8043 break;
8044
8045 case LE_EXPR:
8046 case GE_EXPR:
8047 case LT_EXPR:
8048 case GT_EXPR:
8049 build_type = integer_type_node;
8050 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
8051 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
8052 short_compare = 1;
8053 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8054 {
8055 if (comp_target_types (type0, type1))
8056 {
8057 result_type = common_pointer_type (type0, type1);
8058 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8059 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8060 pedwarn ("comparison of complete and incomplete pointers");
8061 else if (pedantic
8062 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8063 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8064 }
8065 else
8066 {
8067 result_type = ptr_type_node;
8068 pedwarn ("comparison of distinct pointer types lacks a cast");
8069 }
8070 }
8071 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8072 {
8073 result_type = type0;
8074 if (pedantic || extra_warnings)
8075 pedwarn ("ordered comparison of pointer with integer zero");
8076 }
8077 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8078 {
8079 result_type = type1;
8080 if (pedantic)
8081 pedwarn ("ordered comparison of pointer with integer zero");
8082 }
8083 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8084 {
8085 result_type = type0;
8086 pedwarn ("comparison between pointer and integer");
8087 }
8088 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8089 {
8090 result_type = type1;
8091 pedwarn ("comparison between pointer and integer");
8092 }
8093 break;
8094
8095 default:
8096 gcc_unreachable ();
8097 }
8098
8099 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8100 return error_mark_node;
8101
8102 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8103 && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8104 || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8105 TREE_TYPE (type1))))
8106 {
8107 binary_op_error (code);
8108 return error_mark_node;
8109 }
8110
8111 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8112 || code0 == VECTOR_TYPE)
8113 &&
8114 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8115 || code1 == VECTOR_TYPE))
8116 {
8117 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8118
8119 if (shorten || common || short_compare)
8120 result_type = c_common_type (type0, type1);
8121
8122 /* For certain operations (which identify themselves by shorten != 0)
8123 if both args were extended from the same smaller type,
8124 do the arithmetic in that type and then extend.
8125
8126 shorten !=0 and !=1 indicates a bitwise operation.
8127 For them, this optimization is safe only if
8128 both args are zero-extended or both are sign-extended.
8129 Otherwise, we might change the result.
8130 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8131 but calculated in (unsigned short) it would be (unsigned short)-1. */
8132
8133 if (shorten && none_complex)
8134 {
8135 int unsigned0, unsigned1;
8136 tree arg0, arg1;
8137 int uns;
8138 tree type;
8139
8140 /* Cast OP0 and OP1 to RESULT_TYPE. Doing so prevents
8141 excessive narrowing when we call get_narrower below. For
8142 example, suppose that OP0 is of unsigned int extended
8143 from signed char and that RESULT_TYPE is long long int.
8144 If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
8145 like
8146
8147 (long long int) (unsigned int) signed_char
8148
8149 which get_narrower would narrow down to
8150
8151 (unsigned int) signed char
8152
8153 If we do not cast OP0 first, get_narrower would return
8154 signed_char, which is inconsistent with the case of the
8155 explicit cast. */
8156 op0 = convert (result_type, op0);
8157 op1 = convert (result_type, op1);
8158
8159 arg0 = get_narrower (op0, &unsigned0);
8160 arg1 = get_narrower (op1, &unsigned1);
8161
8162 /* UNS is 1 if the operation to be done is an unsigned one. */
8163 uns = TYPE_UNSIGNED (result_type);
8164
8165 final_type = result_type;
8166
8167 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8168 but it *requires* conversion to FINAL_TYPE. */
8169
8170 if ((TYPE_PRECISION (TREE_TYPE (op0))
8171 == TYPE_PRECISION (TREE_TYPE (arg0)))
8172 && TREE_TYPE (op0) != final_type)
8173 unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8174 if ((TYPE_PRECISION (TREE_TYPE (op1))
8175 == TYPE_PRECISION (TREE_TYPE (arg1)))
8176 && TREE_TYPE (op1) != final_type)
8177 unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8178
8179 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
8180
8181 /* For bitwise operations, signedness of nominal type
8182 does not matter. Consider only how operands were extended. */
8183 if (shorten == -1)
8184 uns = unsigned0;
8185
8186 /* Note that in all three cases below we refrain from optimizing
8187 an unsigned operation on sign-extended args.
8188 That would not be valid. */
8189
8190 /* Both args variable: if both extended in same way
8191 from same width, do it in that width.
8192 Do it unsigned if args were zero-extended. */
8193 if ((TYPE_PRECISION (TREE_TYPE (arg0))
8194 < TYPE_PRECISION (result_type))
8195 && (TYPE_PRECISION (TREE_TYPE (arg1))
8196 == TYPE_PRECISION (TREE_TYPE (arg0)))
8197 && unsigned0 == unsigned1
8198 && (unsigned0 || !uns))
8199 result_type
8200 = c_common_signed_or_unsigned_type
8201 (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8202 else if (TREE_CODE (arg0) == INTEGER_CST
8203 && (unsigned1 || !uns)
8204 && (TYPE_PRECISION (TREE_TYPE (arg1))
8205 < TYPE_PRECISION (result_type))
8206 && (type
8207 = c_common_signed_or_unsigned_type (unsigned1,
8208 TREE_TYPE (arg1)),
8209 int_fits_type_p (arg0, type)))
8210 result_type = type;
8211 else if (TREE_CODE (arg1) == INTEGER_CST
8212 && (unsigned0 || !uns)
8213 && (TYPE_PRECISION (TREE_TYPE (arg0))
8214 < TYPE_PRECISION (result_type))
8215 && (type
8216 = c_common_signed_or_unsigned_type (unsigned0,
8217 TREE_TYPE (arg0)),
8218 int_fits_type_p (arg1, type)))
8219 result_type = type;
8220 }
8221
8222 /* Shifts can be shortened if shifting right. */
8223
8224 if (short_shift)
8225 {
8226 int unsigned_arg;
8227 tree arg0 = get_narrower (op0, &unsigned_arg);
8228
8229 final_type = result_type;
8230
8231 if (arg0 == op0 && final_type == TREE_TYPE (op0))
8232 unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8233
8234 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8235 /* We can shorten only if the shift count is less than the
8236 number of bits in the smaller type size. */
8237 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8238 /* We cannot drop an unsigned shift after sign-extension. */
8239 && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8240 {
8241 /* Do an unsigned shift if the operand was zero-extended. */
8242 result_type
8243 = c_common_signed_or_unsigned_type (unsigned_arg,
8244 TREE_TYPE (arg0));
8245 /* Convert value-to-be-shifted to that type. */
8246 if (TREE_TYPE (op0) != result_type)
8247 op0 = convert (result_type, op0);
8248 converted = 1;
8249 }
8250 }
8251
8252 /* Comparison operations are shortened too but differently.
8253 They identify themselves by setting short_compare = 1. */
8254
8255 if (short_compare)
8256 {
8257 /* Don't write &op0, etc., because that would prevent op0
8258 from being kept in a register.
8259 Instead, make copies of the our local variables and
8260 pass the copies by reference, then copy them back afterward. */
8261 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8262 enum tree_code xresultcode = resultcode;
8263 tree val
8264 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8265
8266 if (val != 0)
8267 return val;
8268
8269 op0 = xop0, op1 = xop1;
8270 converted = 1;
8271 resultcode = xresultcode;
8272
8273 if (warn_sign_compare && skip_evaluation == 0)
8274 {
8275 int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8276 int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8277 int unsignedp0, unsignedp1;
8278 tree primop0 = get_narrower (op0, &unsignedp0);
8279 tree primop1 = get_narrower (op1, &unsignedp1);
8280
8281 xop0 = orig_op0;
8282 xop1 = orig_op1;
8283 STRIP_TYPE_NOPS (xop0);
8284 STRIP_TYPE_NOPS (xop1);
8285
8286 /* Give warnings for comparisons between signed and unsigned
8287 quantities that may fail.
8288
8289 Do the checking based on the original operand trees, so that
8290 casts will be considered, but default promotions won't be.
8291
8292 Do not warn if the comparison is being done in a signed type,
8293 since the signed type will only be chosen if it can represent
8294 all the values of the unsigned type. */
8295 if (!TYPE_UNSIGNED (result_type))
8296 /* OK */;
8297 /* Do not warn if both operands are the same signedness. */
8298 else if (op0_signed == op1_signed)
8299 /* OK */;
8300 else
8301 {
8302 tree sop, uop;
8303
8304 if (op0_signed)
8305 sop = xop0, uop = xop1;
8306 else
8307 sop = xop1, uop = xop0;
8308
8309 /* Do not warn if the signed quantity is an
8310 unsuffixed integer literal (or some static
8311 constant expression involving such literals or a
8312 conditional expression involving such literals)
8313 and it is non-negative. */
8314 if (tree_expr_nonnegative_p (sop))
8315 /* OK */;
8316 /* Do not warn if the comparison is an equality operation,
8317 the unsigned quantity is an integral constant, and it
8318 would fit in the result if the result were signed. */
8319 else if (TREE_CODE (uop) == INTEGER_CST
8320 && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8321 && int_fits_type_p
8322 (uop, c_common_signed_type (result_type)))
8323 /* OK */;
8324 /* Do not warn if the unsigned quantity is an enumeration
8325 constant and its maximum value would fit in the result
8326 if the result were signed. */
8327 else if (TREE_CODE (uop) == INTEGER_CST
8328 && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8329 && int_fits_type_p
8330 (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8331 c_common_signed_type (result_type)))
8332 /* OK */;
8333 else
8334 warning (0, "comparison between signed and unsigned");
8335 }
8336
8337 /* Warn if two unsigned values are being compared in a size
8338 larger than their original size, and one (and only one) is the
8339 result of a `~' operator. This comparison will always fail.
8340
8341 Also warn if one operand is a constant, and the constant
8342 does not have all bits set that are set in the ~ operand
8343 when it is extended. */
8344
8345 if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8346 != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8347 {
8348 if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8349 primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8350 &unsignedp0);
8351 else
8352 primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8353 &unsignedp1);
8354
8355 if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8356 {
8357 tree primop;
8358 HOST_WIDE_INT constant, mask;
8359 int unsignedp, bits;
8360
8361 if (host_integerp (primop0, 0))
8362 {
8363 primop = primop1;
8364 unsignedp = unsignedp1;
8365 constant = tree_low_cst (primop0, 0);
8366 }
8367 else
8368 {
8369 primop = primop0;
8370 unsignedp = unsignedp0;
8371 constant = tree_low_cst (primop1, 0);
8372 }
8373
8374 bits = TYPE_PRECISION (TREE_TYPE (primop));
8375 if (bits < TYPE_PRECISION (result_type)
8376 && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8377 {
8378 mask = (~(HOST_WIDE_INT) 0) << bits;
8379 if ((mask & constant) != mask)
8380 warning (0, "comparison of promoted ~unsigned with constant");
8381 }
8382 }
8383 else if (unsignedp0 && unsignedp1
8384 && (TYPE_PRECISION (TREE_TYPE (primop0))
8385 < TYPE_PRECISION (result_type))
8386 && (TYPE_PRECISION (TREE_TYPE (primop1))
8387 < TYPE_PRECISION (result_type)))
8388 warning (0, "comparison of promoted ~unsigned with unsigned");
8389 }
8390 }
8391 }
8392 }
8393
8394 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8395 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8396 Then the expression will be built.
8397 It will be given type FINAL_TYPE if that is nonzero;
8398 otherwise, it will be given type RESULT_TYPE. */
8399
8400 if (!result_type)
8401 {
8402 binary_op_error (code);
8403 return error_mark_node;
8404 }
8405
8406 if (!converted)
8407 {
8408 if (TREE_TYPE (op0) != result_type)
8409 op0 = convert_and_check (result_type, op0);
8410 if (TREE_TYPE (op1) != result_type)
8411 op1 = convert_and_check (result_type, op1);
8412
8413 /* This can happen if one operand has a vector type, and the other
8414 has a different type. */
8415 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8416 return error_mark_node;
8417 }
8418
8419 if (build_type == NULL_TREE)
8420 build_type = result_type;
8421
8422 {
8423 /* Treat expressions in initializers specially as they can't trap. */
8424 tree result = require_constant_value ? fold_build2_initializer (resultcode,
8425 build_type,
8426 op0, op1)
8427 : fold_build2 (resultcode, build_type,
8428 op0, op1);
8429
8430 if (final_type != 0)
8431 result = convert (final_type, result);
8432 return result;
8433 }
8434 }
8435
8436
8437 /* Convert EXPR to be a truth-value, validating its type for this
8438 purpose. */
8439
8440 tree
8441 c_objc_common_truthvalue_conversion (tree expr)
8442 {
8443 switch (TREE_CODE (TREE_TYPE (expr)))
8444 {
8445 case ARRAY_TYPE:
8446 error ("used array that cannot be converted to pointer where scalar is required");
8447 return error_mark_node;
8448
8449 case RECORD_TYPE:
8450 error ("used struct type value where scalar is required");
8451 return error_mark_node;
8452
8453 case UNION_TYPE:
8454 error ("used union type value where scalar is required");
8455 return error_mark_node;
8456
8457 case FUNCTION_TYPE:
8458 gcc_unreachable ();
8459
8460 default:
8461 break;
8462 }
8463
8464 /* ??? Should we also give an error for void and vectors rather than
8465 leaving those to give errors later? */
8466 return c_common_truthvalue_conversion (expr);
8467 }
8468 \f
8469
8470 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8471 required. */
8472
8473 tree
8474 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8475 bool *ti ATTRIBUTE_UNUSED, bool *se)
8476 {
8477 if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8478 {
8479 tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8480 /* Executing a compound literal inside a function reinitializes
8481 it. */
8482 if (!TREE_STATIC (decl))
8483 *se = true;
8484 return decl;
8485 }
8486 else
8487 return expr;
8488 }
8489 \f
8490 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
8491
8492 tree
8493 c_begin_omp_parallel (void)
8494 {
8495 tree block;
8496
8497 keep_next_level ();
8498 block = c_begin_compound_stmt (true);
8499
8500 return block;
8501 }
8502
8503 tree
8504 c_finish_omp_parallel (tree clauses, tree block)
8505 {
8506 tree stmt;
8507
8508 block = c_end_compound_stmt (block, true);
8509
8510 stmt = make_node (OMP_PARALLEL);
8511 TREE_TYPE (stmt) = void_type_node;
8512 OMP_PARALLEL_CLAUSES (stmt) = clauses;
8513 OMP_PARALLEL_BODY (stmt) = block;
8514
8515 return add_stmt (stmt);
8516 }
8517
8518 /* For all elements of CLAUSES, validate them vs OpenMP constraints.
8519 Remove any elements from the list that are invalid. */
8520
8521 tree
8522 c_finish_omp_clauses (tree clauses)
8523 {
8524 bitmap_head generic_head, firstprivate_head, lastprivate_head;
8525 tree c, t, *pc = &clauses;
8526 const char *name;
8527
8528 bitmap_obstack_initialize (NULL);
8529 bitmap_initialize (&generic_head, &bitmap_default_obstack);
8530 bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8531 bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8532
8533 for (pc = &clauses, c = clauses; c ; c = *pc)
8534 {
8535 bool remove = false;
8536 bool need_complete = false;
8537 bool need_implicitly_determined = false;
8538
8539 switch (OMP_CLAUSE_CODE (c))
8540 {
8541 case OMP_CLAUSE_SHARED:
8542 name = "shared";
8543 need_implicitly_determined = true;
8544 goto check_dup_generic;
8545
8546 case OMP_CLAUSE_PRIVATE:
8547 name = "private";
8548 need_complete = true;
8549 need_implicitly_determined = true;
8550 goto check_dup_generic;
8551
8552 case OMP_CLAUSE_REDUCTION:
8553 name = "reduction";
8554 need_implicitly_determined = true;
8555 t = OMP_CLAUSE_DECL (c);
8556 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8557 || POINTER_TYPE_P (TREE_TYPE (t)))
8558 {
8559 error ("%qE has invalid type for %<reduction%>", t);
8560 remove = true;
8561 }
8562 else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8563 {
8564 enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8565 const char *r_name = NULL;
8566
8567 switch (r_code)
8568 {
8569 case PLUS_EXPR:
8570 case MULT_EXPR:
8571 case MINUS_EXPR:
8572 break;
8573 case BIT_AND_EXPR:
8574 r_name = "&";
8575 break;
8576 case BIT_XOR_EXPR:
8577 r_name = "^";
8578 break;
8579 case BIT_IOR_EXPR:
8580 r_name = "|";
8581 break;
8582 case TRUTH_ANDIF_EXPR:
8583 r_name = "&&";
8584 break;
8585 case TRUTH_ORIF_EXPR:
8586 r_name = "||";
8587 break;
8588 default:
8589 gcc_unreachable ();
8590 }
8591 if (r_name)
8592 {
8593 error ("%qE has invalid type for %<reduction(%s)%>",
8594 t, r_name);
8595 remove = true;
8596 }
8597 }
8598 goto check_dup_generic;
8599
8600 case OMP_CLAUSE_COPYPRIVATE:
8601 name = "copyprivate";
8602 goto check_dup_generic;
8603
8604 case OMP_CLAUSE_COPYIN:
8605 name = "copyin";
8606 t = OMP_CLAUSE_DECL (c);
8607 if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8608 {
8609 error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8610 remove = true;
8611 }
8612 goto check_dup_generic;
8613
8614 check_dup_generic:
8615 t = OMP_CLAUSE_DECL (c);
8616 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8617 {
8618 error ("%qE is not a variable in clause %qs", t, name);
8619 remove = true;
8620 }
8621 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8622 || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8623 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8624 {
8625 error ("%qE appears more than once in data clauses", t);
8626 remove = true;
8627 }
8628 else
8629 bitmap_set_bit (&generic_head, DECL_UID (t));
8630 break;
8631
8632 case OMP_CLAUSE_FIRSTPRIVATE:
8633 name = "firstprivate";
8634 t = OMP_CLAUSE_DECL (c);
8635 need_complete = true;
8636 need_implicitly_determined = true;
8637 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8638 {
8639 error ("%qE is not a variable in clause %<firstprivate%>", t);
8640 remove = true;
8641 }
8642 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8643 || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8644 {
8645 error ("%qE appears more than once in data clauses", t);
8646 remove = true;
8647 }
8648 else
8649 bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8650 break;
8651
8652 case OMP_CLAUSE_LASTPRIVATE:
8653 name = "lastprivate";
8654 t = OMP_CLAUSE_DECL (c);
8655 need_complete = true;
8656 need_implicitly_determined = true;
8657 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8658 {
8659 error ("%qE is not a variable in clause %<lastprivate%>", t);
8660 remove = true;
8661 }
8662 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8663 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8664 {
8665 error ("%qE appears more than once in data clauses", t);
8666 remove = true;
8667 }
8668 else
8669 bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8670 break;
8671
8672 case OMP_CLAUSE_IF:
8673 case OMP_CLAUSE_NUM_THREADS:
8674 case OMP_CLAUSE_SCHEDULE:
8675 case OMP_CLAUSE_NOWAIT:
8676 case OMP_CLAUSE_ORDERED:
8677 case OMP_CLAUSE_DEFAULT:
8678 pc = &OMP_CLAUSE_CHAIN (c);
8679 continue;
8680
8681 default:
8682 gcc_unreachable ();
8683 }
8684
8685 if (!remove)
8686 {
8687 t = OMP_CLAUSE_DECL (c);
8688
8689 if (need_complete)
8690 {
8691 t = require_complete_type (t);
8692 if (t == error_mark_node)
8693 remove = true;
8694 }
8695
8696 if (need_implicitly_determined)
8697 {
8698 const char *share_name = NULL;
8699
8700 if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8701 share_name = "threadprivate";
8702 else switch (c_omp_predetermined_sharing (t))
8703 {
8704 case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8705 break;
8706 case OMP_CLAUSE_DEFAULT_SHARED:
8707 share_name = "shared";
8708 break;
8709 case OMP_CLAUSE_DEFAULT_PRIVATE:
8710 share_name = "private";
8711 break;
8712 default:
8713 gcc_unreachable ();
8714 }
8715 if (share_name)
8716 {
8717 error ("%qE is predetermined %qs for %qs",
8718 t, share_name, name);
8719 remove = true;
8720 }
8721 }
8722 }
8723
8724 if (remove)
8725 *pc = OMP_CLAUSE_CHAIN (c);
8726 else
8727 pc = &OMP_CLAUSE_CHAIN (c);
8728 }
8729
8730 bitmap_obstack_release (NULL);
8731 return clauses;
8732 }