b28466122fa04a34e990f33686f630ed4090ebcb
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* This file is part of the C front end.
24 It contains routines to build C expressions given their operands,
25 including computing the types of the result, C-specific error checks,
26 and some optimization.
27
28 There are also routines to build RETURN_STMT nodes and CASE_STMT nodes,
29 and to process initializations in declarations (since they work
30 like a strange sort of assignment). */
31
32 #include "config.h"
33 #include "system.h"
34 #include "rtl.h"
35 #include "tree.h"
36 #include "c-tree.h"
37 #include "tm_p.h"
38 #include "flags.h"
39 #include "output.h"
40 #include "expr.h"
41 #include "toplev.h"
42 #include "intl.h"
43 #include "ggc.h"
44 #include "target.h"
45
46 /* Nonzero if we've already printed a "missing braces around initializer"
47 message within this initializer. */
48 static int missing_braces_mentioned;
49
50 /* 1 if we explained undeclared var errors. */
51 static int undeclared_variable_notice;
52
53 static tree qualify_type PARAMS ((tree, tree));
54 static int comp_target_types PARAMS ((tree, tree));
55 static int function_types_compatible_p PARAMS ((tree, tree));
56 static int type_lists_compatible_p PARAMS ((tree, tree));
57 static tree decl_constant_value_for_broken_optimization PARAMS ((tree));
58 static tree default_function_array_conversion PARAMS ((tree));
59 static tree lookup_field PARAMS ((tree, tree));
60 static tree convert_arguments PARAMS ((tree, tree, tree, tree));
61 static tree pointer_diff PARAMS ((tree, tree));
62 static tree unary_complex_lvalue PARAMS ((enum tree_code, tree, int));
63 static void pedantic_lvalue_warning PARAMS ((enum tree_code));
64 static tree internal_build_compound_expr PARAMS ((tree, int));
65 static tree convert_for_assignment PARAMS ((tree, tree, const char *,
66 tree, tree, int));
67 static void warn_for_assignment PARAMS ((const char *, const char *,
68 tree, int));
69 static tree valid_compound_expr_initializer PARAMS ((tree, tree));
70 static void push_string PARAMS ((const char *));
71 static void push_member_name PARAMS ((tree));
72 static void push_array_bounds PARAMS ((int));
73 static int spelling_length PARAMS ((void));
74 static char *print_spelling PARAMS ((char *));
75 static void warning_init PARAMS ((const char *));
76 static tree digest_init PARAMS ((tree, tree, int));
77 static void output_init_element PARAMS ((tree, tree, tree, int));
78 static void output_pending_init_elements PARAMS ((int));
79 static int set_designator PARAMS ((int));
80 static void push_range_stack PARAMS ((tree));
81 static void add_pending_init PARAMS ((tree, tree));
82 static void set_nonincremental_init PARAMS ((void));
83 static void set_nonincremental_init_from_string PARAMS ((tree));
84 static tree find_init_member PARAMS ((tree));
85 \f
86 /* Do `exp = require_complete_type (exp);' to make sure exp
87 does not have an incomplete type. (That includes void types.) */
88
89 tree
90 require_complete_type (value)
91 tree value;
92 {
93 tree type = TREE_TYPE (value);
94
95 if (value == error_mark_node || type == error_mark_node)
96 return error_mark_node;
97
98 /* First, detect a valid value with a complete type. */
99 if (COMPLETE_TYPE_P (type))
100 return value;
101
102 incomplete_type_error (value, type);
103 return error_mark_node;
104 }
105
106 /* Print an error message for invalid use of an incomplete type.
107 VALUE is the expression that was used (or 0 if that isn't known)
108 and TYPE is the type that was invalid. */
109
110 void
111 incomplete_type_error (value, type)
112 tree value;
113 tree type;
114 {
115 const char *type_code_string;
116
117 /* Avoid duplicate error message. */
118 if (TREE_CODE (type) == ERROR_MARK)
119 return;
120
121 if (value != 0 && (TREE_CODE (value) == VAR_DECL
122 || TREE_CODE (value) == PARM_DECL))
123 error ("`%s' has an incomplete type",
124 IDENTIFIER_POINTER (DECL_NAME (value)));
125 else
126 {
127 retry:
128 /* We must print an error message. Be clever about what it says. */
129
130 switch (TREE_CODE (type))
131 {
132 case RECORD_TYPE:
133 type_code_string = "struct";
134 break;
135
136 case UNION_TYPE:
137 type_code_string = "union";
138 break;
139
140 case ENUMERAL_TYPE:
141 type_code_string = "enum";
142 break;
143
144 case VOID_TYPE:
145 error ("invalid use of void expression");
146 return;
147
148 case ARRAY_TYPE:
149 if (TYPE_DOMAIN (type))
150 {
151 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
152 {
153 error ("invalid use of flexible array member");
154 return;
155 }
156 type = TREE_TYPE (type);
157 goto retry;
158 }
159 error ("invalid use of array with unspecified bounds");
160 return;
161
162 default:
163 abort ();
164 }
165
166 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
167 error ("invalid use of undefined type `%s %s'",
168 type_code_string, IDENTIFIER_POINTER (TYPE_NAME (type)));
169 else
170 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
171 error ("invalid use of incomplete typedef `%s'",
172 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))));
173 }
174 }
175
176 /* Return a variant of TYPE which has all the type qualifiers of LIKE
177 as well as those of TYPE. */
178
179 static tree
180 qualify_type (type, like)
181 tree type, like;
182 {
183 return c_build_qualified_type (type,
184 TYPE_QUALS (type) | TYPE_QUALS (like));
185 }
186 \f
187 /* Return the common type of two types.
188 We assume that comptypes has already been done and returned 1;
189 if that isn't so, this may crash. In particular, we assume that qualifiers
190 match.
191
192 This is the type for the result of most arithmetic operations
193 if the operands have the given two types. */
194
195 tree
196 common_type (t1, t2)
197 tree t1, t2;
198 {
199 enum tree_code code1;
200 enum tree_code code2;
201 tree attributes;
202
203 /* Save time if the two types are the same. */
204
205 if (t1 == t2) return t1;
206
207 /* If one type is nonsense, use the other. */
208 if (t1 == error_mark_node)
209 return t2;
210 if (t2 == error_mark_node)
211 return t1;
212
213 /* Merge the attributes. */
214 attributes = (*targetm.merge_type_attributes) (t1, t2);
215
216 /* Treat an enum type as the unsigned integer type of the same width. */
217
218 if (TREE_CODE (t1) == ENUMERAL_TYPE)
219 t1 = type_for_size (TYPE_PRECISION (t1), 1);
220 if (TREE_CODE (t2) == ENUMERAL_TYPE)
221 t2 = type_for_size (TYPE_PRECISION (t2), 1);
222
223 code1 = TREE_CODE (t1);
224 code2 = TREE_CODE (t2);
225
226 /* If one type is complex, form the common type of the non-complex
227 components, then make that complex. Use T1 or T2 if it is the
228 required type. */
229 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
230 {
231 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
232 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
233 tree subtype = common_type (subtype1, subtype2);
234
235 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
236 return build_type_attribute_variant (t1, attributes);
237 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
238 return build_type_attribute_variant (t2, attributes);
239 else
240 return build_type_attribute_variant (build_complex_type (subtype),
241 attributes);
242 }
243
244 switch (code1)
245 {
246 case INTEGER_TYPE:
247 case REAL_TYPE:
248 /* If only one is real, use it as the result. */
249
250 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
251 return build_type_attribute_variant (t1, attributes);
252
253 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
254 return build_type_attribute_variant (t2, attributes);
255
256 /* Both real or both integers; use the one with greater precision. */
257
258 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
259 return build_type_attribute_variant (t1, attributes);
260 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
261 return build_type_attribute_variant (t2, attributes);
262
263 /* Same precision. Prefer longs to ints even when same size. */
264
265 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
266 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
267 return build_type_attribute_variant (long_unsigned_type_node,
268 attributes);
269
270 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
271 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
272 {
273 /* But preserve unsignedness from the other type,
274 since long cannot hold all the values of an unsigned int. */
275 if (TREE_UNSIGNED (t1) || TREE_UNSIGNED (t2))
276 t1 = long_unsigned_type_node;
277 else
278 t1 = long_integer_type_node;
279 return build_type_attribute_variant (t1, attributes);
280 }
281
282 /* Likewise, prefer long double to double even if same size. */
283 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
284 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
285 return build_type_attribute_variant (long_double_type_node,
286 attributes);
287
288 /* Otherwise prefer the unsigned one. */
289
290 if (TREE_UNSIGNED (t1))
291 return build_type_attribute_variant (t1, attributes);
292 else
293 return build_type_attribute_variant (t2, attributes);
294
295 case POINTER_TYPE:
296 /* For two pointers, do this recursively on the target type,
297 and combine the qualifiers of the two types' targets. */
298 /* This code was turned off; I don't know why.
299 But ANSI C specifies doing this with the qualifiers.
300 So I turned it on again. */
301 {
302 tree pointed_to_1 = TREE_TYPE (t1);
303 tree pointed_to_2 = TREE_TYPE (t2);
304 tree target = common_type (TYPE_MAIN_VARIANT (pointed_to_1),
305 TYPE_MAIN_VARIANT (pointed_to_2));
306 t1 = build_pointer_type (c_build_qualified_type
307 (target,
308 TYPE_QUALS (pointed_to_1) |
309 TYPE_QUALS (pointed_to_2)));
310 return build_type_attribute_variant (t1, attributes);
311 }
312 #if 0
313 t1 = build_pointer_type (common_type (TREE_TYPE (t1), TREE_TYPE (t2)));
314 return build_type_attribute_variant (t1, attributes);
315 #endif
316
317 case ARRAY_TYPE:
318 {
319 tree elt = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
320 /* Save space: see if the result is identical to one of the args. */
321 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1))
322 return build_type_attribute_variant (t1, attributes);
323 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2))
324 return build_type_attribute_variant (t2, attributes);
325 /* Merge the element types, and have a size if either arg has one. */
326 t1 = build_array_type (elt, TYPE_DOMAIN (TYPE_DOMAIN (t1) ? t1 : t2));
327 return build_type_attribute_variant (t1, attributes);
328 }
329
330 case FUNCTION_TYPE:
331 /* Function types: prefer the one that specified arg types.
332 If both do, merge the arg types. Also merge the return types. */
333 {
334 tree valtype = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
335 tree p1 = TYPE_ARG_TYPES (t1);
336 tree p2 = TYPE_ARG_TYPES (t2);
337 int len;
338 tree newargs, n;
339 int i;
340
341 /* Save space: see if the result is identical to one of the args. */
342 if (valtype == TREE_TYPE (t1) && ! TYPE_ARG_TYPES (t2))
343 return build_type_attribute_variant (t1, attributes);
344 if (valtype == TREE_TYPE (t2) && ! TYPE_ARG_TYPES (t1))
345 return build_type_attribute_variant (t2, attributes);
346
347 /* Simple way if one arg fails to specify argument types. */
348 if (TYPE_ARG_TYPES (t1) == 0)
349 {
350 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
351 return build_type_attribute_variant (t1, attributes);
352 }
353 if (TYPE_ARG_TYPES (t2) == 0)
354 {
355 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
356 return build_type_attribute_variant (t1, attributes);
357 }
358
359 /* If both args specify argument types, we must merge the two
360 lists, argument by argument. */
361
362 pushlevel (0);
363 declare_parm_level (1);
364
365 len = list_length (p1);
366 newargs = 0;
367
368 for (i = 0; i < len; i++)
369 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
370
371 n = newargs;
372
373 for (; p1;
374 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
375 {
376 /* A null type means arg type is not specified.
377 Take whatever the other function type has. */
378 if (TREE_VALUE (p1) == 0)
379 {
380 TREE_VALUE (n) = TREE_VALUE (p2);
381 goto parm_done;
382 }
383 if (TREE_VALUE (p2) == 0)
384 {
385 TREE_VALUE (n) = TREE_VALUE (p1);
386 goto parm_done;
387 }
388
389 /* Given wait (union {union wait *u; int *i} *)
390 and wait (union wait *),
391 prefer union wait * as type of parm. */
392 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
393 && TREE_VALUE (p1) != TREE_VALUE (p2))
394 {
395 tree memb;
396 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
397 memb; memb = TREE_CHAIN (memb))
398 if (comptypes (TREE_TYPE (memb), TREE_VALUE (p2)))
399 {
400 TREE_VALUE (n) = TREE_VALUE (p2);
401 if (pedantic)
402 pedwarn ("function types not truly compatible in ISO C");
403 goto parm_done;
404 }
405 }
406 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
407 && TREE_VALUE (p2) != TREE_VALUE (p1))
408 {
409 tree memb;
410 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
411 memb; memb = TREE_CHAIN (memb))
412 if (comptypes (TREE_TYPE (memb), TREE_VALUE (p1)))
413 {
414 TREE_VALUE (n) = TREE_VALUE (p1);
415 if (pedantic)
416 pedwarn ("function types not truly compatible in ISO C");
417 goto parm_done;
418 }
419 }
420 TREE_VALUE (n) = common_type (TREE_VALUE (p1), TREE_VALUE (p2));
421 parm_done: ;
422 }
423
424 poplevel (0, 0, 0);
425
426 t1 = build_function_type (valtype, newargs);
427 /* ... falls through ... */
428 }
429
430 default:
431 return build_type_attribute_variant (t1, attributes);
432 }
433
434 }
435 \f
436 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
437 or various other operations. Return 2 if they are compatible
438 but a warning may be needed if you use them together. */
439
440 int
441 comptypes (type1, type2)
442 tree type1, type2;
443 {
444 tree t1 = type1;
445 tree t2 = type2;
446 int attrval, val;
447
448 /* Suppress errors caused by previously reported errors. */
449
450 if (t1 == t2 || !t1 || !t2
451 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
452 return 1;
453
454 /* If either type is the internal version of sizetype, return the
455 language version. */
456 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
457 && TYPE_DOMAIN (t1) != 0)
458 t1 = TYPE_DOMAIN (t1);
459
460 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
461 && TYPE_DOMAIN (t2) != 0)
462 t2 = TYPE_DOMAIN (t2);
463
464 /* Treat an enum type as the integer type of the same width and
465 signedness. */
466
467 if (TREE_CODE (t1) == ENUMERAL_TYPE)
468 t1 = type_for_size (TYPE_PRECISION (t1), TREE_UNSIGNED (t1));
469 if (TREE_CODE (t2) == ENUMERAL_TYPE)
470 t2 = type_for_size (TYPE_PRECISION (t2), TREE_UNSIGNED (t2));
471
472 if (t1 == t2)
473 return 1;
474
475 /* Different classes of types can't be compatible. */
476
477 if (TREE_CODE (t1) != TREE_CODE (t2)) return 0;
478
479 /* Qualifiers must match. */
480
481 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
482 return 0;
483
484 /* Allow for two different type nodes which have essentially the same
485 definition. Note that we already checked for equality of the type
486 qualifiers (just above). */
487
488 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
489 return 1;
490
491 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
492 if (! (attrval = (*targetm.comp_type_attributes) (t1, t2)))
493 return 0;
494
495 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
496 val = 0;
497
498 switch (TREE_CODE (t1))
499 {
500 case POINTER_TYPE:
501 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
502 ? 1 : comptypes (TREE_TYPE (t1), TREE_TYPE (t2)));
503 break;
504
505 case FUNCTION_TYPE:
506 val = function_types_compatible_p (t1, t2);
507 break;
508
509 case ARRAY_TYPE:
510 {
511 tree d1 = TYPE_DOMAIN (t1);
512 tree d2 = TYPE_DOMAIN (t2);
513 bool d1_variable, d2_variable;
514 bool d1_zero, d2_zero;
515 val = 1;
516
517 /* Target types must match incl. qualifiers. */
518 if (TREE_TYPE (t1) != TREE_TYPE (t2)
519 && 0 == (val = comptypes (TREE_TYPE (t1), TREE_TYPE (t2))))
520 return 0;
521
522 /* Sizes must match unless one is missing or variable. */
523 if (d1 == 0 || d2 == 0 || d1 == d2)
524 break;
525
526 d1_zero = ! TYPE_MAX_VALUE (d1);
527 d2_zero = ! TYPE_MAX_VALUE (d2);
528
529 d1_variable = (! d1_zero
530 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
531 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
532 d2_variable = (! d2_zero
533 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
534 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
535
536 if (d1_variable || d2_variable)
537 break;
538 if (d1_zero && d2_zero)
539 break;
540 if (d1_zero || d2_zero
541 || ! tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
542 || ! tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
543 val = 0;
544
545 break;
546 }
547
548 case RECORD_TYPE:
549 if (maybe_objc_comptypes (t1, t2, 0) == 1)
550 val = 1;
551 break;
552
553 default:
554 break;
555 }
556 return attrval == 2 && val == 1 ? 2 : val;
557 }
558
559 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
560 ignoring their qualifiers. */
561
562 static int
563 comp_target_types (ttl, ttr)
564 tree ttl, ttr;
565 {
566 int val;
567
568 /* Give maybe_objc_comptypes a crack at letting these types through. */
569 if ((val = maybe_objc_comptypes (ttl, ttr, 1)) >= 0)
570 return val;
571
572 val = comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (ttl)),
573 TYPE_MAIN_VARIANT (TREE_TYPE (ttr)));
574
575 if (val == 2 && pedantic)
576 pedwarn ("types are not quite compatible");
577 return val;
578 }
579 \f
580 /* Subroutines of `comptypes'. */
581
582 /* Return 1 if two function types F1 and F2 are compatible.
583 If either type specifies no argument types,
584 the other must specify a fixed number of self-promoting arg types.
585 Otherwise, if one type specifies only the number of arguments,
586 the other must specify that number of self-promoting arg types.
587 Otherwise, the argument types must match. */
588
589 static int
590 function_types_compatible_p (f1, f2)
591 tree f1, f2;
592 {
593 tree args1, args2;
594 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
595 int val = 1;
596 int val1;
597
598 if (!(TREE_TYPE (f1) == TREE_TYPE (f2)
599 || (val = comptypes (TREE_TYPE (f1), TREE_TYPE (f2)))))
600 return 0;
601
602 args1 = TYPE_ARG_TYPES (f1);
603 args2 = TYPE_ARG_TYPES (f2);
604
605 /* An unspecified parmlist matches any specified parmlist
606 whose argument types don't need default promotions. */
607
608 if (args1 == 0)
609 {
610 if (!self_promoting_args_p (args2))
611 return 0;
612 /* If one of these types comes from a non-prototype fn definition,
613 compare that with the other type's arglist.
614 If they don't match, ask for a warning (but no error). */
615 if (TYPE_ACTUAL_ARG_TYPES (f1)
616 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
617 val = 2;
618 return val;
619 }
620 if (args2 == 0)
621 {
622 if (!self_promoting_args_p (args1))
623 return 0;
624 if (TYPE_ACTUAL_ARG_TYPES (f2)
625 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
626 val = 2;
627 return val;
628 }
629
630 /* Both types have argument lists: compare them and propagate results. */
631 val1 = type_lists_compatible_p (args1, args2);
632 return val1 != 1 ? val1 : val;
633 }
634
635 /* Check two lists of types for compatibility,
636 returning 0 for incompatible, 1 for compatible,
637 or 2 for compatible with warning. */
638
639 static int
640 type_lists_compatible_p (args1, args2)
641 tree args1, args2;
642 {
643 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
644 int val = 1;
645 int newval = 0;
646
647 while (1)
648 {
649 if (args1 == 0 && args2 == 0)
650 return val;
651 /* If one list is shorter than the other,
652 they fail to match. */
653 if (args1 == 0 || args2 == 0)
654 return 0;
655 /* A null pointer instead of a type
656 means there is supposed to be an argument
657 but nothing is specified about what type it has.
658 So match anything that self-promotes. */
659 if (TREE_VALUE (args1) == 0)
660 {
661 if (simple_type_promotes_to (TREE_VALUE (args2)) != NULL_TREE)
662 return 0;
663 }
664 else if (TREE_VALUE (args2) == 0)
665 {
666 if (simple_type_promotes_to (TREE_VALUE (args1)) != NULL_TREE)
667 return 0;
668 }
669 else if (! (newval = comptypes (TYPE_MAIN_VARIANT (TREE_VALUE (args1)),
670 TYPE_MAIN_VARIANT (TREE_VALUE (args2)))))
671 {
672 /* Allow wait (union {union wait *u; int *i} *)
673 and wait (union wait *) to be compatible. */
674 if (TREE_CODE (TREE_VALUE (args1)) == UNION_TYPE
675 && (TYPE_NAME (TREE_VALUE (args1)) == 0
676 || TYPE_TRANSPARENT_UNION (TREE_VALUE (args1)))
677 && TREE_CODE (TYPE_SIZE (TREE_VALUE (args1))) == INTEGER_CST
678 && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args1)),
679 TYPE_SIZE (TREE_VALUE (args2))))
680 {
681 tree memb;
682 for (memb = TYPE_FIELDS (TREE_VALUE (args1));
683 memb; memb = TREE_CHAIN (memb))
684 if (comptypes (TREE_TYPE (memb), TREE_VALUE (args2)))
685 break;
686 if (memb == 0)
687 return 0;
688 }
689 else if (TREE_CODE (TREE_VALUE (args2)) == UNION_TYPE
690 && (TYPE_NAME (TREE_VALUE (args2)) == 0
691 || TYPE_TRANSPARENT_UNION (TREE_VALUE (args2)))
692 && TREE_CODE (TYPE_SIZE (TREE_VALUE (args2))) == INTEGER_CST
693 && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args2)),
694 TYPE_SIZE (TREE_VALUE (args1))))
695 {
696 tree memb;
697 for (memb = TYPE_FIELDS (TREE_VALUE (args2));
698 memb; memb = TREE_CHAIN (memb))
699 if (comptypes (TREE_TYPE (memb), TREE_VALUE (args1)))
700 break;
701 if (memb == 0)
702 return 0;
703 }
704 else
705 return 0;
706 }
707
708 /* comptypes said ok, but record if it said to warn. */
709 if (newval > val)
710 val = newval;
711
712 args1 = TREE_CHAIN (args1);
713 args2 = TREE_CHAIN (args2);
714 }
715 }
716 \f
717 /* Compute the value of the `sizeof' operator. */
718
719 tree
720 c_sizeof (type)
721 tree type;
722 {
723 enum tree_code code = TREE_CODE (type);
724 tree size;
725
726 if (code == FUNCTION_TYPE)
727 {
728 if (pedantic || warn_pointer_arith)
729 pedwarn ("sizeof applied to a function type");
730 size = size_one_node;
731 }
732 else if (code == VOID_TYPE)
733 {
734 if (pedantic || warn_pointer_arith)
735 pedwarn ("sizeof applied to a void type");
736 size = size_one_node;
737 }
738 else if (code == ERROR_MARK)
739 size = size_one_node;
740 else if (!COMPLETE_TYPE_P (type))
741 {
742 error ("sizeof applied to an incomplete type");
743 size = size_zero_node;
744 }
745 else
746 /* Convert in case a char is more than one unit. */
747 size = size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
748 size_int (TYPE_PRECISION (char_type_node)
749 / BITS_PER_UNIT));
750
751 /* SIZE will have an integer type with TYPE_IS_SIZETYPE set.
752 TYPE_IS_SIZETYPE means that certain things (like overflow) will
753 never happen. However, this node should really have type
754 `size_t', which is just a typedef for an ordinary integer type. */
755 return fold (build1 (NOP_EXPR, c_size_type_node, size));
756 }
757
758 tree
759 c_sizeof_nowarn (type)
760 tree type;
761 {
762 enum tree_code code = TREE_CODE (type);
763 tree size;
764
765 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
766 size = size_one_node;
767 else if (!COMPLETE_TYPE_P (type))
768 size = size_zero_node;
769 else
770 /* Convert in case a char is more than one unit. */
771 size = size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
772 size_int (TYPE_PRECISION (char_type_node)
773 / BITS_PER_UNIT));
774
775 /* SIZE will have an integer type with TYPE_IS_SIZETYPE set.
776 TYPE_IS_SIZETYPE means that certain things (like overflow) will
777 never happen. However, this node should really have type
778 `size_t', which is just a typedef for an ordinary integer type. */
779 return fold (build1 (NOP_EXPR, c_size_type_node, size));
780 }
781
782 /* Compute the size to increment a pointer by. */
783
784 tree
785 c_size_in_bytes (type)
786 tree type;
787 {
788 enum tree_code code = TREE_CODE (type);
789
790 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
791 return size_one_node;
792
793 if (!COMPLETE_OR_VOID_TYPE_P (type))
794 {
795 error ("arithmetic on pointer to an incomplete type");
796 return size_one_node;
797 }
798
799 /* Convert in case a char is more than one unit. */
800 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
801 size_int (TYPE_PRECISION (char_type_node)
802 / BITS_PER_UNIT));
803 }
804 \f
805 /* Return either DECL or its known constant value (if it has one). */
806
807 tree
808 decl_constant_value (decl)
809 tree decl;
810 {
811 if (/* Don't change a variable array bound or initial value to a constant
812 in a place where a variable is invalid. */
813 current_function_decl != 0
814 && ! TREE_THIS_VOLATILE (decl)
815 && TREE_READONLY (decl)
816 && DECL_INITIAL (decl) != 0
817 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
818 /* This is invalid if initial value is not constant.
819 If it has either a function call, a memory reference,
820 or a variable, then re-evaluating it could give different results. */
821 && TREE_CONSTANT (DECL_INITIAL (decl))
822 /* Check for cases where this is sub-optimal, even though valid. */
823 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
824 return DECL_INITIAL (decl);
825 return decl;
826 }
827
828 /* Return either DECL or its known constant value (if it has one), but
829 return DECL if pedantic or DECL has mode BLKmode. This is for
830 bug-compatibility with the old behavior of decl_constant_value
831 (before GCC 3.0); every use of this function is a bug and it should
832 be removed before GCC 3.1. It is not appropriate to use pedantic
833 in a way that affects optimization, and BLKmode is probably not the
834 right test for avoiding misoptimizations either. */
835
836 static tree
837 decl_constant_value_for_broken_optimization (decl)
838 tree decl;
839 {
840 if (pedantic || DECL_MODE (decl) == BLKmode)
841 return decl;
842 else
843 return decl_constant_value (decl);
844 }
845
846
847 /* Perform the default conversion of arrays and functions to pointers.
848 Return the result of converting EXP. For any other expression, just
849 return EXP. */
850
851 static tree
852 default_function_array_conversion (exp)
853 tree exp;
854 {
855 tree orig_exp;
856 tree type = TREE_TYPE (exp);
857 enum tree_code code = TREE_CODE (type);
858 int not_lvalue = 0;
859
860 /* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
861 an lvalue.
862
863 Do not use STRIP_NOPS here! It will remove conversions from pointer
864 to integer and cause infinite recursion. */
865 orig_exp = exp;
866 while (TREE_CODE (exp) == NON_LVALUE_EXPR
867 || (TREE_CODE (exp) == NOP_EXPR
868 && TREE_TYPE (TREE_OPERAND (exp, 0)) == TREE_TYPE (exp)))
869 {
870 if (TREE_CODE (exp) == NON_LVALUE_EXPR)
871 not_lvalue = 1;
872 exp = TREE_OPERAND (exp, 0);
873 }
874
875 /* Preserve the original expression code. */
876 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (exp))))
877 C_SET_EXP_ORIGINAL_CODE (exp, C_EXP_ORIGINAL_CODE (orig_exp));
878
879 if (code == FUNCTION_TYPE)
880 {
881 return build_unary_op (ADDR_EXPR, exp, 0);
882 }
883 if (code == ARRAY_TYPE)
884 {
885 tree adr;
886 tree restype = TREE_TYPE (type);
887 tree ptrtype;
888 int constp = 0;
889 int volatilep = 0;
890 int lvalue_array_p;
891
892 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'r' || DECL_P (exp))
893 {
894 constp = TREE_READONLY (exp);
895 volatilep = TREE_THIS_VOLATILE (exp);
896 }
897
898 if (TYPE_QUALS (type) || constp || volatilep)
899 restype
900 = c_build_qualified_type (restype,
901 TYPE_QUALS (type)
902 | (constp * TYPE_QUAL_CONST)
903 | (volatilep * TYPE_QUAL_VOLATILE));
904
905 if (TREE_CODE (exp) == INDIRECT_REF)
906 return convert (TYPE_POINTER_TO (restype),
907 TREE_OPERAND (exp, 0));
908
909 if (TREE_CODE (exp) == COMPOUND_EXPR)
910 {
911 tree op1 = default_conversion (TREE_OPERAND (exp, 1));
912 return build (COMPOUND_EXPR, TREE_TYPE (op1),
913 TREE_OPERAND (exp, 0), op1);
914 }
915
916 lvalue_array_p = !not_lvalue && lvalue_p (exp);
917 if (!flag_isoc99 && !lvalue_array_p)
918 {
919 /* Before C99, non-lvalue arrays do not decay to pointers.
920 Normally, using such an array would be invalid; but it can
921 be used correctly inside sizeof or as a statement expression.
922 Thus, do not give an error here; an error will result later. */
923 return exp;
924 }
925
926 ptrtype = build_pointer_type (restype);
927
928 if (TREE_CODE (exp) == VAR_DECL)
929 {
930 /* ??? This is not really quite correct
931 in that the type of the operand of ADDR_EXPR
932 is not the target type of the type of the ADDR_EXPR itself.
933 Question is, can this lossage be avoided? */
934 adr = build1 (ADDR_EXPR, ptrtype, exp);
935 if (mark_addressable (exp) == 0)
936 return error_mark_node;
937 TREE_CONSTANT (adr) = staticp (exp);
938 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
939 return adr;
940 }
941 /* This way is better for a COMPONENT_REF since it can
942 simplify the offset for a component. */
943 adr = build_unary_op (ADDR_EXPR, exp, 1);
944 return convert (ptrtype, adr);
945 }
946 return exp;
947 }
948
949 /* Perform default promotions for C data used in expressions.
950 Arrays and functions are converted to pointers;
951 enumeral types or short or char, to int.
952 In addition, manifest constants symbols are replaced by their values. */
953
954 tree
955 default_conversion (exp)
956 tree exp;
957 {
958 tree orig_exp;
959 tree type = TREE_TYPE (exp);
960 enum tree_code code = TREE_CODE (type);
961
962 if (code == FUNCTION_TYPE || code == ARRAY_TYPE)
963 return default_function_array_conversion (exp);
964
965 /* Constants can be used directly unless they're not loadable. */
966 if (TREE_CODE (exp) == CONST_DECL)
967 exp = DECL_INITIAL (exp);
968
969 /* Replace a nonvolatile const static variable with its value unless
970 it is an array, in which case we must be sure that taking the
971 address of the array produces consistent results. */
972 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
973 {
974 exp = decl_constant_value_for_broken_optimization (exp);
975 type = TREE_TYPE (exp);
976 }
977
978 /* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
979 an lvalue.
980
981 Do not use STRIP_NOPS here! It will remove conversions from pointer
982 to integer and cause infinite recursion. */
983 orig_exp = exp;
984 while (TREE_CODE (exp) == NON_LVALUE_EXPR
985 || (TREE_CODE (exp) == NOP_EXPR
986 && TREE_TYPE (TREE_OPERAND (exp, 0)) == TREE_TYPE (exp)))
987 exp = TREE_OPERAND (exp, 0);
988
989 /* Preserve the original expression code. */
990 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (exp))))
991 C_SET_EXP_ORIGINAL_CODE (exp, C_EXP_ORIGINAL_CODE (orig_exp));
992
993 /* Normally convert enums to int,
994 but convert wide enums to something wider. */
995 if (code == ENUMERAL_TYPE)
996 {
997 type = type_for_size (MAX (TYPE_PRECISION (type),
998 TYPE_PRECISION (integer_type_node)),
999 ((TYPE_PRECISION (type)
1000 >= TYPE_PRECISION (integer_type_node))
1001 && TREE_UNSIGNED (type)));
1002
1003 return convert (type, exp);
1004 }
1005
1006 if (TREE_CODE (exp) == COMPONENT_REF
1007 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1008 /* If it's thinner than an int, promote it like a
1009 c_promoting_integer_type_p, otherwise leave it alone. */
1010 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1011 TYPE_PRECISION (integer_type_node)))
1012 return convert (integer_type_node, exp);
1013
1014 if (c_promoting_integer_type_p (type))
1015 {
1016 /* Preserve unsignedness if not really getting any wider. */
1017 if (TREE_UNSIGNED (type)
1018 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1019 return convert (unsigned_type_node, exp);
1020
1021 return convert (integer_type_node, exp);
1022 }
1023
1024 if (code == VOID_TYPE)
1025 {
1026 error ("void value not ignored as it ought to be");
1027 return error_mark_node;
1028 }
1029 return exp;
1030 }
1031 \f
1032 /* Look up COMPONENT in a structure or union DECL.
1033
1034 If the component name is not found, returns NULL_TREE. Otherwise,
1035 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1036 stepping down the chain to the component, which is in the last
1037 TREE_VALUE of the list. Normally the list is of length one, but if
1038 the component is embedded within (nested) anonymous structures or
1039 unions, the list steps down the chain to the component. */
1040
1041 static tree
1042 lookup_field (decl, component)
1043 tree decl, component;
1044 {
1045 tree type = TREE_TYPE (decl);
1046 tree field;
1047
1048 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1049 to the field elements. Use a binary search on this array to quickly
1050 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1051 will always be set for structures which have many elements. */
1052
1053 if (TYPE_LANG_SPECIFIC (type))
1054 {
1055 int bot, top, half;
1056 tree *field_array = &TYPE_LANG_SPECIFIC (type)->elts[0];
1057
1058 field = TYPE_FIELDS (type);
1059 bot = 0;
1060 top = TYPE_LANG_SPECIFIC (type)->len;
1061 while (top - bot > 1)
1062 {
1063 half = (top - bot + 1) >> 1;
1064 field = field_array[bot+half];
1065
1066 if (DECL_NAME (field) == NULL_TREE)
1067 {
1068 /* Step through all anon unions in linear fashion. */
1069 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1070 {
1071 field = field_array[bot++];
1072 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1073 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1074 {
1075 tree anon = lookup_field (field, component);
1076
1077 if (anon)
1078 return tree_cons (NULL_TREE, field, anon);
1079 }
1080 }
1081
1082 /* Entire record is only anon unions. */
1083 if (bot > top)
1084 return NULL_TREE;
1085
1086 /* Restart the binary search, with new lower bound. */
1087 continue;
1088 }
1089
1090 if (DECL_NAME (field) == component)
1091 break;
1092 if (DECL_NAME (field) < component)
1093 bot += half;
1094 else
1095 top = bot + half;
1096 }
1097
1098 if (DECL_NAME (field_array[bot]) == component)
1099 field = field_array[bot];
1100 else if (DECL_NAME (field) != component)
1101 return NULL_TREE;
1102 }
1103 else
1104 {
1105 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1106 {
1107 if (DECL_NAME (field) == NULL_TREE
1108 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1109 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1110 {
1111 tree anon = lookup_field (field, component);
1112
1113 if (anon)
1114 return tree_cons (NULL_TREE, field, anon);
1115 }
1116
1117 if (DECL_NAME (field) == component)
1118 break;
1119 }
1120
1121 if (field == NULL_TREE)
1122 return NULL_TREE;
1123 }
1124
1125 return tree_cons (NULL_TREE, field, NULL_TREE);
1126 }
1127
1128 /* Make an expression to refer to the COMPONENT field of
1129 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1130
1131 tree
1132 build_component_ref (datum, component)
1133 tree datum, component;
1134 {
1135 tree type = TREE_TYPE (datum);
1136 enum tree_code code = TREE_CODE (type);
1137 tree field = NULL;
1138 tree ref;
1139
1140 /* If DATUM is a COMPOUND_EXPR, move our reference inside it.
1141 If pedantic ensure that the arguments are not lvalues; otherwise,
1142 if the component is an array, it would wrongly decay to a pointer in
1143 C89 mode.
1144 We cannot do this with a COND_EXPR, because in a conditional expression
1145 the default promotions are applied to both sides, and this would yield
1146 the wrong type of the result; for example, if the components have
1147 type "char". */
1148 switch (TREE_CODE (datum))
1149 {
1150 case COMPOUND_EXPR:
1151 {
1152 tree value = build_component_ref (TREE_OPERAND (datum, 1), component);
1153 return build (COMPOUND_EXPR, TREE_TYPE (value),
1154 TREE_OPERAND (datum, 0), pedantic_non_lvalue (value));
1155 }
1156 default:
1157 break;
1158 }
1159
1160 /* See if there is a field or component with name COMPONENT. */
1161
1162 if (code == RECORD_TYPE || code == UNION_TYPE)
1163 {
1164 if (!COMPLETE_TYPE_P (type))
1165 {
1166 incomplete_type_error (NULL_TREE, type);
1167 return error_mark_node;
1168 }
1169
1170 field = lookup_field (datum, component);
1171
1172 if (!field)
1173 {
1174 error ("%s has no member named `%s'",
1175 code == RECORD_TYPE ? "structure" : "union",
1176 IDENTIFIER_POINTER (component));
1177 return error_mark_node;
1178 }
1179
1180 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1181 This might be better solved in future the way the C++ front
1182 end does it - by giving the anonymous entities each a
1183 separate name and type, and then have build_component_ref
1184 recursively call itself. We can't do that here. */
1185 for (; field; field = TREE_CHAIN (field))
1186 {
1187 tree subdatum = TREE_VALUE (field);
1188
1189 if (TREE_TYPE (subdatum) == error_mark_node)
1190 return error_mark_node;
1191
1192 ref = build (COMPONENT_REF, TREE_TYPE (subdatum), datum, subdatum);
1193 if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1194 TREE_READONLY (ref) = 1;
1195 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1196 TREE_THIS_VOLATILE (ref) = 1;
1197
1198 if (TREE_DEPRECATED (subdatum))
1199 warn_deprecated_use (subdatum);
1200
1201 datum = ref;
1202 }
1203
1204 return ref;
1205 }
1206 else if (code != ERROR_MARK)
1207 error ("request for member `%s' in something not a structure or union",
1208 IDENTIFIER_POINTER (component));
1209
1210 return error_mark_node;
1211 }
1212 \f
1213 /* Given an expression PTR for a pointer, return an expression
1214 for the value pointed to.
1215 ERRORSTRING is the name of the operator to appear in error messages. */
1216
1217 tree
1218 build_indirect_ref (ptr, errorstring)
1219 tree ptr;
1220 const char *errorstring;
1221 {
1222 tree pointer = default_conversion (ptr);
1223 tree type = TREE_TYPE (pointer);
1224
1225 if (TREE_CODE (type) == POINTER_TYPE)
1226 {
1227 if (TREE_CODE (pointer) == ADDR_EXPR
1228 && !flag_volatile
1229 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1230 == TREE_TYPE (type)))
1231 return TREE_OPERAND (pointer, 0);
1232 else
1233 {
1234 tree t = TREE_TYPE (type);
1235 tree ref = build1 (INDIRECT_REF, TYPE_MAIN_VARIANT (t), pointer);
1236
1237 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1238 {
1239 error ("dereferencing pointer to incomplete type");
1240 return error_mark_node;
1241 }
1242 if (VOID_TYPE_P (t) && skip_evaluation == 0)
1243 warning ("dereferencing `void *' pointer");
1244
1245 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1246 so that we get the proper error message if the result is used
1247 to assign to. Also, &* is supposed to be a no-op.
1248 And ANSI C seems to specify that the type of the result
1249 should be the const type. */
1250 /* A de-reference of a pointer to const is not a const. It is valid
1251 to change it via some other pointer. */
1252 TREE_READONLY (ref) = TYPE_READONLY (t);
1253 TREE_SIDE_EFFECTS (ref)
1254 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer) || flag_volatile;
1255 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1256 return ref;
1257 }
1258 }
1259 else if (TREE_CODE (pointer) != ERROR_MARK)
1260 error ("invalid type argument of `%s'", errorstring);
1261 return error_mark_node;
1262 }
1263
1264 /* This handles expressions of the form "a[i]", which denotes
1265 an array reference.
1266
1267 This is logically equivalent in C to *(a+i), but we may do it differently.
1268 If A is a variable or a member, we generate a primitive ARRAY_REF.
1269 This avoids forcing the array out of registers, and can work on
1270 arrays that are not lvalues (for example, members of structures returned
1271 by functions). */
1272
1273 tree
1274 build_array_ref (array, index)
1275 tree array, index;
1276 {
1277 if (index == 0)
1278 {
1279 error ("subscript missing in array reference");
1280 return error_mark_node;
1281 }
1282
1283 if (TREE_TYPE (array) == error_mark_node
1284 || TREE_TYPE (index) == error_mark_node)
1285 return error_mark_node;
1286
1287 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE
1288 && TREE_CODE (array) != INDIRECT_REF)
1289 {
1290 tree rval, type;
1291
1292 /* Subscripting with type char is likely to lose
1293 on a machine where chars are signed.
1294 So warn on any machine, but optionally.
1295 Don't warn for unsigned char since that type is safe.
1296 Don't warn for signed char because anyone who uses that
1297 must have done so deliberately. */
1298 if (warn_char_subscripts
1299 && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1300 warning ("array subscript has type `char'");
1301
1302 /* Apply default promotions *after* noticing character types. */
1303 index = default_conversion (index);
1304
1305 /* Require integer *after* promotion, for sake of enums. */
1306 if (TREE_CODE (TREE_TYPE (index)) != INTEGER_TYPE)
1307 {
1308 error ("array subscript is not an integer");
1309 return error_mark_node;
1310 }
1311
1312 /* An array that is indexed by a non-constant
1313 cannot be stored in a register; we must be able to do
1314 address arithmetic on its address.
1315 Likewise an array of elements of variable size. */
1316 if (TREE_CODE (index) != INTEGER_CST
1317 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1318 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1319 {
1320 if (mark_addressable (array) == 0)
1321 return error_mark_node;
1322 }
1323 /* An array that is indexed by a constant value which is not within
1324 the array bounds cannot be stored in a register either; because we
1325 would get a crash in store_bit_field/extract_bit_field when trying
1326 to access a non-existent part of the register. */
1327 if (TREE_CODE (index) == INTEGER_CST
1328 && TYPE_VALUES (TREE_TYPE (array))
1329 && ! int_fits_type_p (index, TYPE_VALUES (TREE_TYPE (array))))
1330 {
1331 if (mark_addressable (array) == 0)
1332 return error_mark_node;
1333 }
1334
1335 if (pedantic)
1336 {
1337 tree foo = array;
1338 while (TREE_CODE (foo) == COMPONENT_REF)
1339 foo = TREE_OPERAND (foo, 0);
1340 if (TREE_CODE (foo) == VAR_DECL && DECL_REGISTER (foo))
1341 pedwarn ("ISO C forbids subscripting `register' array");
1342 else if (! flag_isoc99 && ! lvalue_p (foo))
1343 pedwarn ("ISO C89 forbids subscripting non-lvalue array");
1344 }
1345
1346 type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (array)));
1347 rval = build (ARRAY_REF, type, array, index);
1348 /* Array ref is const/volatile if the array elements are
1349 or if the array is. */
1350 TREE_READONLY (rval)
1351 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
1352 | TREE_READONLY (array));
1353 TREE_SIDE_EFFECTS (rval)
1354 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1355 | TREE_SIDE_EFFECTS (array));
1356 TREE_THIS_VOLATILE (rval)
1357 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1358 /* This was added by rms on 16 Nov 91.
1359 It fixes vol struct foo *a; a->elts[1]
1360 in an inline function.
1361 Hope it doesn't break something else. */
1362 | TREE_THIS_VOLATILE (array));
1363 return require_complete_type (fold (rval));
1364 }
1365
1366 {
1367 tree ar = default_conversion (array);
1368 tree ind = default_conversion (index);
1369
1370 /* Do the same warning check as above, but only on the part that's
1371 syntactically the index and only if it is also semantically
1372 the index. */
1373 if (warn_char_subscripts
1374 && TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE
1375 && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1376 warning ("subscript has type `char'");
1377
1378 /* Put the integer in IND to simplify error checking. */
1379 if (TREE_CODE (TREE_TYPE (ar)) == INTEGER_TYPE)
1380 {
1381 tree temp = ar;
1382 ar = ind;
1383 ind = temp;
1384 }
1385
1386 if (ar == error_mark_node)
1387 return ar;
1388
1389 if (TREE_CODE (TREE_TYPE (ar)) != POINTER_TYPE
1390 || TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) == FUNCTION_TYPE)
1391 {
1392 error ("subscripted value is neither array nor pointer");
1393 return error_mark_node;
1394 }
1395 if (TREE_CODE (TREE_TYPE (ind)) != INTEGER_TYPE)
1396 {
1397 error ("array subscript is not an integer");
1398 return error_mark_node;
1399 }
1400
1401 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, ind, 0),
1402 "array indexing");
1403 }
1404 }
1405 \f
1406 /* Build an external reference to identifier ID. FUN indicates
1407 whether this will be used for a function call. */
1408 tree
1409 build_external_ref (id, fun)
1410 tree id;
1411 int fun;
1412 {
1413 tree ref;
1414 tree decl = lookup_name (id);
1415 tree objc_ivar = lookup_objc_ivar (id);
1416
1417 if (decl && TREE_DEPRECATED (decl))
1418 warn_deprecated_use (decl);
1419
1420 if (!decl || decl == error_mark_node || C_DECL_ANTICIPATED (decl))
1421 {
1422 if (objc_ivar)
1423 ref = objc_ivar;
1424 else if (fun)
1425 {
1426 if (!decl || decl == error_mark_node)
1427 /* Ordinary implicit function declaration. */
1428 ref = implicitly_declare (id);
1429 else
1430 {
1431 /* Implicit declaration of built-in function. Don't
1432 change the built-in declaration, but don't let this
1433 go by silently, either. */
1434 implicit_decl_warning (id);
1435
1436 /* only issue this warning once */
1437 C_DECL_ANTICIPATED (decl) = 0;
1438 ref = decl;
1439 }
1440 }
1441 else
1442 {
1443 /* Reference to undeclared variable, including reference to
1444 builtin outside of function-call context. */
1445 if (current_function_decl == 0)
1446 error ("`%s' undeclared here (not in a function)",
1447 IDENTIFIER_POINTER (id));
1448 else
1449 {
1450 if (IDENTIFIER_GLOBAL_VALUE (id) != error_mark_node
1451 || IDENTIFIER_ERROR_LOCUS (id) != current_function_decl)
1452 {
1453 error ("`%s' undeclared (first use in this function)",
1454 IDENTIFIER_POINTER (id));
1455
1456 if (! undeclared_variable_notice)
1457 {
1458 error ("(Each undeclared identifier is reported only once");
1459 error ("for each function it appears in.)");
1460 undeclared_variable_notice = 1;
1461 }
1462 }
1463 IDENTIFIER_GLOBAL_VALUE (id) = error_mark_node;
1464 IDENTIFIER_ERROR_LOCUS (id) = current_function_decl;
1465 }
1466 return error_mark_node;
1467 }
1468 }
1469 else
1470 {
1471 /* Properly declared variable or function reference. */
1472 if (!objc_ivar)
1473 ref = decl;
1474 else if (decl != objc_ivar && IDENTIFIER_LOCAL_VALUE (id))
1475 {
1476 warning ("local declaration of `%s' hides instance variable",
1477 IDENTIFIER_POINTER (id));
1478 ref = decl;
1479 }
1480 else
1481 ref = objc_ivar;
1482 }
1483
1484 if (TREE_TYPE (ref) == error_mark_node)
1485 return error_mark_node;
1486
1487 assemble_external (ref);
1488 TREE_USED (ref) = 1;
1489
1490 if (TREE_CODE (ref) == CONST_DECL)
1491 {
1492 ref = DECL_INITIAL (ref);
1493 TREE_CONSTANT (ref) = 1;
1494 }
1495
1496 return ref;
1497 }
1498
1499 /* Build a function call to function FUNCTION with parameters PARAMS.
1500 PARAMS is a list--a chain of TREE_LIST nodes--in which the
1501 TREE_VALUE of each node is a parameter-expression.
1502 FUNCTION's data type may be a function type or a pointer-to-function. */
1503
1504 tree
1505 build_function_call (function, params)
1506 tree function, params;
1507 {
1508 tree fntype, fundecl = 0;
1509 tree coerced_params;
1510 tree name = NULL_TREE, assembler_name = NULL_TREE, result;
1511
1512 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
1513 STRIP_TYPE_NOPS (function);
1514
1515 /* Convert anything with function type to a pointer-to-function. */
1516 if (TREE_CODE (function) == FUNCTION_DECL)
1517 {
1518 name = DECL_NAME (function);
1519 assembler_name = DECL_ASSEMBLER_NAME (function);
1520
1521 /* Differs from default_conversion by not setting TREE_ADDRESSABLE
1522 (because calling an inline function does not mean the function
1523 needs to be separately compiled). */
1524 fntype = build_type_variant (TREE_TYPE (function),
1525 TREE_READONLY (function),
1526 TREE_THIS_VOLATILE (function));
1527 fundecl = function;
1528 function = build1 (ADDR_EXPR, build_pointer_type (fntype), function);
1529 }
1530 else
1531 function = default_conversion (function);
1532
1533 fntype = TREE_TYPE (function);
1534
1535 if (TREE_CODE (fntype) == ERROR_MARK)
1536 return error_mark_node;
1537
1538 if (!(TREE_CODE (fntype) == POINTER_TYPE
1539 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
1540 {
1541 error ("called object is not a function");
1542 return error_mark_node;
1543 }
1544
1545 if (fundecl && TREE_THIS_VOLATILE (fundecl))
1546 current_function_returns_abnormally = 1;
1547
1548 /* fntype now gets the type of function pointed to. */
1549 fntype = TREE_TYPE (fntype);
1550
1551 /* Convert the parameters to the types declared in the
1552 function prototype, or apply default promotions. */
1553
1554 coerced_params
1555 = convert_arguments (TYPE_ARG_TYPES (fntype), params, name, fundecl);
1556
1557 /* Check for errors in format strings. */
1558
1559 if (warn_format)
1560 check_function_format (NULL, TYPE_ATTRIBUTES (fntype), coerced_params);
1561
1562 /* Recognize certain built-in functions so we can make tree-codes
1563 other than CALL_EXPR. We do this when it enables fold-const.c
1564 to do something useful. */
1565
1566 if (TREE_CODE (function) == ADDR_EXPR
1567 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL
1568 && DECL_BUILT_IN (TREE_OPERAND (function, 0)))
1569 {
1570 result = expand_tree_builtin (TREE_OPERAND (function, 0),
1571 params, coerced_params);
1572 if (result)
1573 return result;
1574 }
1575
1576 result = build (CALL_EXPR, TREE_TYPE (fntype),
1577 function, coerced_params, NULL_TREE);
1578 TREE_SIDE_EFFECTS (result) = 1;
1579 result = fold (result);
1580
1581 if (VOID_TYPE_P (TREE_TYPE (result)))
1582 return result;
1583 return require_complete_type (result);
1584 }
1585 \f
1586 /* Convert the argument expressions in the list VALUES
1587 to the types in the list TYPELIST. The result is a list of converted
1588 argument expressions.
1589
1590 If TYPELIST is exhausted, or when an element has NULL as its type,
1591 perform the default conversions.
1592
1593 PARMLIST is the chain of parm decls for the function being called.
1594 It may be 0, if that info is not available.
1595 It is used only for generating error messages.
1596
1597 NAME is an IDENTIFIER_NODE or 0. It is used only for error messages.
1598
1599 This is also where warnings about wrong number of args are generated.
1600
1601 Both VALUES and the returned value are chains of TREE_LIST nodes
1602 with the elements of the list in the TREE_VALUE slots of those nodes. */
1603
1604 static tree
1605 convert_arguments (typelist, values, name, fundecl)
1606 tree typelist, values, name, fundecl;
1607 {
1608 tree typetail, valtail;
1609 tree result = NULL;
1610 int parmnum;
1611
1612 /* Scan the given expressions and types, producing individual
1613 converted arguments and pushing them on RESULT in reverse order. */
1614
1615 for (valtail = values, typetail = typelist, parmnum = 0;
1616 valtail;
1617 valtail = TREE_CHAIN (valtail), parmnum++)
1618 {
1619 tree type = typetail ? TREE_VALUE (typetail) : 0;
1620 tree val = TREE_VALUE (valtail);
1621
1622 if (type == void_type_node)
1623 {
1624 if (name)
1625 error ("too many arguments to function `%s'",
1626 IDENTIFIER_POINTER (name));
1627 else
1628 error ("too many arguments to function");
1629 break;
1630 }
1631
1632 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
1633 /* Do not use STRIP_NOPS here! We do not want an enumerator with value 0
1634 to convert automatically to a pointer. */
1635 if (TREE_CODE (val) == NON_LVALUE_EXPR)
1636 val = TREE_OPERAND (val, 0);
1637
1638 val = default_function_array_conversion (val);
1639
1640 val = require_complete_type (val);
1641
1642 if (type != 0)
1643 {
1644 /* Formal parm type is specified by a function prototype. */
1645 tree parmval;
1646
1647 if (!COMPLETE_TYPE_P (type))
1648 {
1649 error ("type of formal parameter %d is incomplete", parmnum + 1);
1650 parmval = val;
1651 }
1652 else
1653 {
1654 /* Optionally warn about conversions that
1655 differ from the default conversions. */
1656 if (warn_conversion || warn_traditional)
1657 {
1658 int formal_prec = TYPE_PRECISION (type);
1659
1660 if (INTEGRAL_TYPE_P (type)
1661 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1662 warn_for_assignment ("%s as integer rather than floating due to prototype", (char *) 0, name, parmnum + 1);
1663 if (INTEGRAL_TYPE_P (type)
1664 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
1665 warn_for_assignment ("%s as integer rather than complex due to prototype", (char *) 0, name, parmnum + 1);
1666 else if (TREE_CODE (type) == COMPLEX_TYPE
1667 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1668 warn_for_assignment ("%s as complex rather than floating due to prototype", (char *) 0, name, parmnum + 1);
1669 else if (TREE_CODE (type) == REAL_TYPE
1670 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1671 warn_for_assignment ("%s as floating rather than integer due to prototype", (char *) 0, name, parmnum + 1);
1672 else if (TREE_CODE (type) == COMPLEX_TYPE
1673 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1674 warn_for_assignment ("%s as complex rather than integer due to prototype", (char *) 0, name, parmnum + 1);
1675 else if (TREE_CODE (type) == REAL_TYPE
1676 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
1677 warn_for_assignment ("%s as floating rather than complex due to prototype", (char *) 0, name, parmnum + 1);
1678 /* ??? At some point, messages should be written about
1679 conversions between complex types, but that's too messy
1680 to do now. */
1681 else if (TREE_CODE (type) == REAL_TYPE
1682 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1683 {
1684 /* Warn if any argument is passed as `float',
1685 since without a prototype it would be `double'. */
1686 if (formal_prec == TYPE_PRECISION (float_type_node))
1687 warn_for_assignment ("%s as `float' rather than `double' due to prototype", (char *) 0, name, parmnum + 1);
1688 }
1689 /* Detect integer changing in width or signedness.
1690 These warnings are only activated with
1691 -Wconversion, not with -Wtraditional. */
1692 else if (warn_conversion && INTEGRAL_TYPE_P (type)
1693 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1694 {
1695 tree would_have_been = default_conversion (val);
1696 tree type1 = TREE_TYPE (would_have_been);
1697
1698 if (TREE_CODE (type) == ENUMERAL_TYPE
1699 && (TYPE_MAIN_VARIANT (type)
1700 == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
1701 /* No warning if function asks for enum
1702 and the actual arg is that enum type. */
1703 ;
1704 else if (formal_prec != TYPE_PRECISION (type1))
1705 warn_for_assignment ("%s with different width due to prototype", (char *) 0, name, parmnum + 1);
1706 else if (TREE_UNSIGNED (type) == TREE_UNSIGNED (type1))
1707 ;
1708 /* Don't complain if the formal parameter type
1709 is an enum, because we can't tell now whether
1710 the value was an enum--even the same enum. */
1711 else if (TREE_CODE (type) == ENUMERAL_TYPE)
1712 ;
1713 else if (TREE_CODE (val) == INTEGER_CST
1714 && int_fits_type_p (val, type))
1715 /* Change in signedness doesn't matter
1716 if a constant value is unaffected. */
1717 ;
1718 /* Likewise for a constant in a NOP_EXPR. */
1719 else if (TREE_CODE (val) == NOP_EXPR
1720 && TREE_CODE (TREE_OPERAND (val, 0)) == INTEGER_CST
1721 && int_fits_type_p (TREE_OPERAND (val, 0), type))
1722 ;
1723 #if 0 /* We never get such tree structure here. */
1724 else if (TREE_CODE (TREE_TYPE (val)) == ENUMERAL_TYPE
1725 && int_fits_type_p (TYPE_MIN_VALUE (TREE_TYPE (val)), type)
1726 && int_fits_type_p (TYPE_MAX_VALUE (TREE_TYPE (val)), type))
1727 /* Change in signedness doesn't matter
1728 if an enum value is unaffected. */
1729 ;
1730 #endif
1731 /* If the value is extended from a narrower
1732 unsigned type, it doesn't matter whether we
1733 pass it as signed or unsigned; the value
1734 certainly is the same either way. */
1735 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
1736 && TREE_UNSIGNED (TREE_TYPE (val)))
1737 ;
1738 else if (TREE_UNSIGNED (type))
1739 warn_for_assignment ("%s as unsigned due to prototype", (char *) 0, name, parmnum + 1);
1740 else
1741 warn_for_assignment ("%s as signed due to prototype", (char *) 0, name, parmnum + 1);
1742 }
1743 }
1744
1745 parmval = convert_for_assignment (type, val,
1746 (char *) 0, /* arg passing */
1747 fundecl, name, parmnum + 1);
1748
1749 if (PROMOTE_PROTOTYPES
1750 && INTEGRAL_TYPE_P (type)
1751 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
1752 parmval = default_conversion (parmval);
1753 }
1754 result = tree_cons (NULL_TREE, parmval, result);
1755 }
1756 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
1757 && (TYPE_PRECISION (TREE_TYPE (val))
1758 < TYPE_PRECISION (double_type_node)))
1759 /* Convert `float' to `double'. */
1760 result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
1761 else
1762 /* Convert `short' and `char' to full-size `int'. */
1763 result = tree_cons (NULL_TREE, default_conversion (val), result);
1764
1765 if (typetail)
1766 typetail = TREE_CHAIN (typetail);
1767 }
1768
1769 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
1770 {
1771 if (name)
1772 error ("too few arguments to function `%s'",
1773 IDENTIFIER_POINTER (name));
1774 else
1775 error ("too few arguments to function");
1776 }
1777
1778 return nreverse (result);
1779 }
1780 \f
1781 /* This is the entry point used by the parser
1782 for binary operators in the input.
1783 In addition to constructing the expression,
1784 we check for operands that were written with other binary operators
1785 in a way that is likely to confuse the user. */
1786
1787 tree
1788 parser_build_binary_op (code, arg1, arg2)
1789 enum tree_code code;
1790 tree arg1, arg2;
1791 {
1792 tree result = build_binary_op (code, arg1, arg2, 1);
1793
1794 char class;
1795 char class1 = TREE_CODE_CLASS (TREE_CODE (arg1));
1796 char class2 = TREE_CODE_CLASS (TREE_CODE (arg2));
1797 enum tree_code code1 = ERROR_MARK;
1798 enum tree_code code2 = ERROR_MARK;
1799
1800 if (TREE_CODE (result) == ERROR_MARK)
1801 return error_mark_node;
1802
1803 if (IS_EXPR_CODE_CLASS (class1))
1804 code1 = C_EXP_ORIGINAL_CODE (arg1);
1805 if (IS_EXPR_CODE_CLASS (class2))
1806 code2 = C_EXP_ORIGINAL_CODE (arg2);
1807
1808 /* Check for cases such as x+y<<z which users are likely
1809 to misinterpret. If parens are used, C_EXP_ORIGINAL_CODE
1810 is cleared to prevent these warnings. */
1811 if (warn_parentheses)
1812 {
1813 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
1814 {
1815 if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
1816 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1817 warning ("suggest parentheses around + or - inside shift");
1818 }
1819
1820 if (code == TRUTH_ORIF_EXPR)
1821 {
1822 if (code1 == TRUTH_ANDIF_EXPR
1823 || code2 == TRUTH_ANDIF_EXPR)
1824 warning ("suggest parentheses around && within ||");
1825 }
1826
1827 if (code == BIT_IOR_EXPR)
1828 {
1829 if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
1830 || code1 == PLUS_EXPR || code1 == MINUS_EXPR
1831 || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
1832 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1833 warning ("suggest parentheses around arithmetic in operand of |");
1834 /* Check cases like x|y==z */
1835 if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1836 warning ("suggest parentheses around comparison in operand of |");
1837 }
1838
1839 if (code == BIT_XOR_EXPR)
1840 {
1841 if (code1 == BIT_AND_EXPR
1842 || code1 == PLUS_EXPR || code1 == MINUS_EXPR
1843 || code2 == BIT_AND_EXPR
1844 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1845 warning ("suggest parentheses around arithmetic in operand of ^");
1846 /* Check cases like x^y==z */
1847 if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1848 warning ("suggest parentheses around comparison in operand of ^");
1849 }
1850
1851 if (code == BIT_AND_EXPR)
1852 {
1853 if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
1854 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1855 warning ("suggest parentheses around + or - in operand of &");
1856 /* Check cases like x&y==z */
1857 if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1858 warning ("suggest parentheses around comparison in operand of &");
1859 }
1860 }
1861
1862 /* Similarly, check for cases like 1<=i<=10 that are probably errors. */
1863 if (TREE_CODE_CLASS (code) == '<' && extra_warnings
1864 && (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<'))
1865 warning ("comparisons like X<=Y<=Z do not have their mathematical meaning");
1866
1867 unsigned_conversion_warning (result, arg1);
1868 unsigned_conversion_warning (result, arg2);
1869 overflow_warning (result);
1870
1871 class = TREE_CODE_CLASS (TREE_CODE (result));
1872
1873 /* Record the code that was specified in the source,
1874 for the sake of warnings about confusing nesting. */
1875 if (IS_EXPR_CODE_CLASS (class))
1876 C_SET_EXP_ORIGINAL_CODE (result, code);
1877 else
1878 {
1879 int flag = TREE_CONSTANT (result);
1880 /* We used to use NOP_EXPR rather than NON_LVALUE_EXPR
1881 so that convert_for_assignment wouldn't strip it.
1882 That way, we got warnings for things like p = (1 - 1).
1883 But it turns out we should not get those warnings. */
1884 result = build1 (NON_LVALUE_EXPR, TREE_TYPE (result), result);
1885 C_SET_EXP_ORIGINAL_CODE (result, code);
1886 TREE_CONSTANT (result) = flag;
1887 }
1888
1889 return result;
1890 }
1891
1892 /* Build a binary-operation expression without default conversions.
1893 CODE is the kind of expression to build.
1894 This function differs from `build' in several ways:
1895 the data type of the result is computed and recorded in it,
1896 warnings are generated if arg data types are invalid,
1897 special handling for addition and subtraction of pointers is known,
1898 and some optimization is done (operations on narrow ints
1899 are done in the narrower type when that gives the same result).
1900 Constant folding is also done before the result is returned.
1901
1902 Note that the operands will never have enumeral types, or function
1903 or array types, because either they will have the default conversions
1904 performed or they have both just been converted to some other type in which
1905 the arithmetic is to be done. */
1906
1907 tree
1908 build_binary_op (code, orig_op0, orig_op1, convert_p)
1909 enum tree_code code;
1910 tree orig_op0, orig_op1;
1911 int convert_p;
1912 {
1913 tree type0, type1;
1914 enum tree_code code0, code1;
1915 tree op0, op1;
1916
1917 /* Expression code to give to the expression when it is built.
1918 Normally this is CODE, which is what the caller asked for,
1919 but in some special cases we change it. */
1920 enum tree_code resultcode = code;
1921
1922 /* Data type in which the computation is to be performed.
1923 In the simplest cases this is the common type of the arguments. */
1924 tree result_type = NULL;
1925
1926 /* Nonzero means operands have already been type-converted
1927 in whatever way is necessary.
1928 Zero means they need to be converted to RESULT_TYPE. */
1929 int converted = 0;
1930
1931 /* Nonzero means create the expression with this type, rather than
1932 RESULT_TYPE. */
1933 tree build_type = 0;
1934
1935 /* Nonzero means after finally constructing the expression
1936 convert it to this type. */
1937 tree final_type = 0;
1938
1939 /* Nonzero if this is an operation like MIN or MAX which can
1940 safely be computed in short if both args are promoted shorts.
1941 Also implies COMMON.
1942 -1 indicates a bitwise operation; this makes a difference
1943 in the exact conditions for when it is safe to do the operation
1944 in a narrower mode. */
1945 int shorten = 0;
1946
1947 /* Nonzero if this is a comparison operation;
1948 if both args are promoted shorts, compare the original shorts.
1949 Also implies COMMON. */
1950 int short_compare = 0;
1951
1952 /* Nonzero if this is a right-shift operation, which can be computed on the
1953 original short and then promoted if the operand is a promoted short. */
1954 int short_shift = 0;
1955
1956 /* Nonzero means set RESULT_TYPE to the common type of the args. */
1957 int common = 0;
1958
1959 if (convert_p)
1960 {
1961 op0 = default_conversion (orig_op0);
1962 op1 = default_conversion (orig_op1);
1963 }
1964 else
1965 {
1966 op0 = orig_op0;
1967 op1 = orig_op1;
1968 }
1969
1970 type0 = TREE_TYPE (op0);
1971 type1 = TREE_TYPE (op1);
1972
1973 /* The expression codes of the data types of the arguments tell us
1974 whether the arguments are integers, floating, pointers, etc. */
1975 code0 = TREE_CODE (type0);
1976 code1 = TREE_CODE (type1);
1977
1978 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
1979 STRIP_TYPE_NOPS (op0);
1980 STRIP_TYPE_NOPS (op1);
1981
1982 /* If an error was already reported for one of the arguments,
1983 avoid reporting another error. */
1984
1985 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
1986 return error_mark_node;
1987
1988 switch (code)
1989 {
1990 case PLUS_EXPR:
1991 /* Handle the pointer + int case. */
1992 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
1993 return pointer_int_sum (PLUS_EXPR, op0, op1);
1994 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
1995 return pointer_int_sum (PLUS_EXPR, op1, op0);
1996 else
1997 common = 1;
1998 break;
1999
2000 case MINUS_EXPR:
2001 /* Subtraction of two similar pointers.
2002 We must subtract them as integers, then divide by object size. */
2003 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
2004 && comp_target_types (type0, type1))
2005 return pointer_diff (op0, op1);
2006 /* Handle pointer minus int. Just like pointer plus int. */
2007 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2008 return pointer_int_sum (MINUS_EXPR, op0, op1);
2009 else
2010 common = 1;
2011 break;
2012
2013 case MULT_EXPR:
2014 common = 1;
2015 break;
2016
2017 case TRUNC_DIV_EXPR:
2018 case CEIL_DIV_EXPR:
2019 case FLOOR_DIV_EXPR:
2020 case ROUND_DIV_EXPR:
2021 case EXACT_DIV_EXPR:
2022 /* Floating point division by zero is a legitimate way to obtain
2023 infinities and NaNs. */
2024 if (warn_div_by_zero && skip_evaluation == 0 && integer_zerop (op1))
2025 warning ("division by zero");
2026
2027 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
2028 || code0 == COMPLEX_TYPE)
2029 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
2030 || code1 == COMPLEX_TYPE))
2031 {
2032 if (!(code0 == INTEGER_TYPE && code1 == INTEGER_TYPE))
2033 resultcode = RDIV_EXPR;
2034 else
2035 /* Although it would be tempting to shorten always here, that
2036 loses on some targets, since the modulo instruction is
2037 undefined if the quotient can't be represented in the
2038 computation mode. We shorten only if unsigned or if
2039 dividing by something we know != -1. */
2040 shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
2041 || (TREE_CODE (op1) == INTEGER_CST
2042 && ! integer_all_onesp (op1)));
2043 common = 1;
2044 }
2045 break;
2046
2047 case BIT_AND_EXPR:
2048 case BIT_ANDTC_EXPR:
2049 case BIT_IOR_EXPR:
2050 case BIT_XOR_EXPR:
2051 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2052 shorten = -1;
2053 break;
2054
2055 case TRUNC_MOD_EXPR:
2056 case FLOOR_MOD_EXPR:
2057 if (warn_div_by_zero && skip_evaluation == 0 && integer_zerop (op1))
2058 warning ("division by zero");
2059
2060 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2061 {
2062 /* Although it would be tempting to shorten always here, that loses
2063 on some targets, since the modulo instruction is undefined if the
2064 quotient can't be represented in the computation mode. We shorten
2065 only if unsigned or if dividing by something we know != -1. */
2066 shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
2067 || (TREE_CODE (op1) == INTEGER_CST
2068 && ! integer_all_onesp (op1)));
2069 common = 1;
2070 }
2071 break;
2072
2073 case TRUTH_ANDIF_EXPR:
2074 case TRUTH_ORIF_EXPR:
2075 case TRUTH_AND_EXPR:
2076 case TRUTH_OR_EXPR:
2077 case TRUTH_XOR_EXPR:
2078 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
2079 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
2080 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
2081 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
2082 {
2083 /* Result of these operations is always an int,
2084 but that does not mean the operands should be
2085 converted to ints! */
2086 result_type = integer_type_node;
2087 op0 = truthvalue_conversion (op0);
2088 op1 = truthvalue_conversion (op1);
2089 converted = 1;
2090 }
2091 break;
2092
2093 /* Shift operations: result has same type as first operand;
2094 always convert second operand to int.
2095 Also set SHORT_SHIFT if shifting rightward. */
2096
2097 case RSHIFT_EXPR:
2098 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2099 {
2100 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2101 {
2102 if (tree_int_cst_sgn (op1) < 0)
2103 warning ("right shift count is negative");
2104 else
2105 {
2106 if (! integer_zerop (op1))
2107 short_shift = 1;
2108
2109 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
2110 warning ("right shift count >= width of type");
2111 }
2112 }
2113
2114 /* Use the type of the value to be shifted. */
2115 result_type = type0;
2116 /* Convert the shift-count to an integer, regardless of size
2117 of value being shifted. */
2118 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2119 op1 = convert (integer_type_node, op1);
2120 /* Avoid converting op1 to result_type later. */
2121 converted = 1;
2122 }
2123 break;
2124
2125 case LSHIFT_EXPR:
2126 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2127 {
2128 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2129 {
2130 if (tree_int_cst_sgn (op1) < 0)
2131 warning ("left shift count is negative");
2132
2133 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
2134 warning ("left shift count >= width of type");
2135 }
2136
2137 /* Use the type of the value to be shifted. */
2138 result_type = type0;
2139 /* Convert the shift-count to an integer, regardless of size
2140 of value being shifted. */
2141 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2142 op1 = convert (integer_type_node, op1);
2143 /* Avoid converting op1 to result_type later. */
2144 converted = 1;
2145 }
2146 break;
2147
2148 case RROTATE_EXPR:
2149 case LROTATE_EXPR:
2150 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2151 {
2152 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2153 {
2154 if (tree_int_cst_sgn (op1) < 0)
2155 warning ("shift count is negative");
2156 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
2157 warning ("shift count >= width of type");
2158 }
2159
2160 /* Use the type of the value to be shifted. */
2161 result_type = type0;
2162 /* Convert the shift-count to an integer, regardless of size
2163 of value being shifted. */
2164 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2165 op1 = convert (integer_type_node, op1);
2166 /* Avoid converting op1 to result_type later. */
2167 converted = 1;
2168 }
2169 break;
2170
2171 case EQ_EXPR:
2172 case NE_EXPR:
2173 if (warn_float_equal && (code0 == REAL_TYPE || code1 == REAL_TYPE))
2174 warning ("comparing floating point with == or != is unsafe");
2175 /* Result of comparison is always int,
2176 but don't convert the args to int! */
2177 build_type = integer_type_node;
2178 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
2179 || code0 == COMPLEX_TYPE)
2180 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
2181 || code1 == COMPLEX_TYPE))
2182 short_compare = 1;
2183 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2184 {
2185 tree tt0 = TREE_TYPE (type0);
2186 tree tt1 = TREE_TYPE (type1);
2187 /* Anything compares with void *. void * compares with anything.
2188 Otherwise, the targets must be compatible
2189 and both must be object or both incomplete. */
2190 if (comp_target_types (type0, type1))
2191 result_type = common_type (type0, type1);
2192 else if (VOID_TYPE_P (tt0))
2193 {
2194 /* op0 != orig_op0 detects the case of something
2195 whose value is 0 but which isn't a valid null ptr const. */
2196 if (pedantic && (!integer_zerop (op0) || op0 != orig_op0)
2197 && TREE_CODE (tt1) == FUNCTION_TYPE)
2198 pedwarn ("ISO C forbids comparison of `void *' with function pointer");
2199 }
2200 else if (VOID_TYPE_P (tt1))
2201 {
2202 if (pedantic && (!integer_zerop (op1) || op1 != orig_op1)
2203 && TREE_CODE (tt0) == FUNCTION_TYPE)
2204 pedwarn ("ISO C forbids comparison of `void *' with function pointer");
2205 }
2206 else
2207 pedwarn ("comparison of distinct pointer types lacks a cast");
2208
2209 if (result_type == NULL_TREE)
2210 result_type = ptr_type_node;
2211 }
2212 else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
2213 && integer_zerop (op1))
2214 result_type = type0;
2215 else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
2216 && integer_zerop (op0))
2217 result_type = type1;
2218 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2219 {
2220 result_type = type0;
2221 pedwarn ("comparison between pointer and integer");
2222 }
2223 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
2224 {
2225 result_type = type1;
2226 pedwarn ("comparison between pointer and integer");
2227 }
2228 break;
2229
2230 case MAX_EXPR:
2231 case MIN_EXPR:
2232 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
2233 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
2234 shorten = 1;
2235 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2236 {
2237 if (comp_target_types (type0, type1))
2238 {
2239 result_type = common_type (type0, type1);
2240 if (pedantic
2241 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
2242 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
2243 }
2244 else
2245 {
2246 result_type = ptr_type_node;
2247 pedwarn ("comparison of distinct pointer types lacks a cast");
2248 }
2249 }
2250 break;
2251
2252 case LE_EXPR:
2253 case GE_EXPR:
2254 case LT_EXPR:
2255 case GT_EXPR:
2256 build_type = integer_type_node;
2257 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
2258 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
2259 short_compare = 1;
2260 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2261 {
2262 if (comp_target_types (type0, type1))
2263 {
2264 result_type = common_type (type0, type1);
2265 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
2266 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
2267 pedwarn ("comparison of complete and incomplete pointers");
2268 else if (pedantic
2269 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
2270 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
2271 }
2272 else
2273 {
2274 result_type = ptr_type_node;
2275 pedwarn ("comparison of distinct pointer types lacks a cast");
2276 }
2277 }
2278 else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
2279 && integer_zerop (op1))
2280 {
2281 result_type = type0;
2282 if (pedantic || extra_warnings)
2283 pedwarn ("ordered comparison of pointer with integer zero");
2284 }
2285 else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
2286 && integer_zerop (op0))
2287 {
2288 result_type = type1;
2289 if (pedantic)
2290 pedwarn ("ordered comparison of pointer with integer zero");
2291 }
2292 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2293 {
2294 result_type = type0;
2295 pedwarn ("comparison between pointer and integer");
2296 }
2297 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
2298 {
2299 result_type = type1;
2300 pedwarn ("comparison between pointer and integer");
2301 }
2302 break;
2303
2304 case UNORDERED_EXPR:
2305 case ORDERED_EXPR:
2306 case UNLT_EXPR:
2307 case UNLE_EXPR:
2308 case UNGT_EXPR:
2309 case UNGE_EXPR:
2310 case UNEQ_EXPR:
2311 build_type = integer_type_node;
2312 if (code0 != REAL_TYPE || code1 != REAL_TYPE)
2313 {
2314 error ("unordered comparison on non-floating point argument");
2315 return error_mark_node;
2316 }
2317 common = 1;
2318 break;
2319
2320 default:
2321 break;
2322 }
2323
2324 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
2325 &&
2326 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
2327 {
2328 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
2329
2330 if (shorten || common || short_compare)
2331 result_type = common_type (type0, type1);
2332
2333 /* For certain operations (which identify themselves by shorten != 0)
2334 if both args were extended from the same smaller type,
2335 do the arithmetic in that type and then extend.
2336
2337 shorten !=0 and !=1 indicates a bitwise operation.
2338 For them, this optimization is safe only if
2339 both args are zero-extended or both are sign-extended.
2340 Otherwise, we might change the result.
2341 Eg, (short)-1 | (unsigned short)-1 is (int)-1
2342 but calculated in (unsigned short) it would be (unsigned short)-1. */
2343
2344 if (shorten && none_complex)
2345 {
2346 int unsigned0, unsigned1;
2347 tree arg0 = get_narrower (op0, &unsigned0);
2348 tree arg1 = get_narrower (op1, &unsigned1);
2349 /* UNS is 1 if the operation to be done is an unsigned one. */
2350 int uns = TREE_UNSIGNED (result_type);
2351 tree type;
2352
2353 final_type = result_type;
2354
2355 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
2356 but it *requires* conversion to FINAL_TYPE. */
2357
2358 if ((TYPE_PRECISION (TREE_TYPE (op0))
2359 == TYPE_PRECISION (TREE_TYPE (arg0)))
2360 && TREE_TYPE (op0) != final_type)
2361 unsigned0 = TREE_UNSIGNED (TREE_TYPE (op0));
2362 if ((TYPE_PRECISION (TREE_TYPE (op1))
2363 == TYPE_PRECISION (TREE_TYPE (arg1)))
2364 && TREE_TYPE (op1) != final_type)
2365 unsigned1 = TREE_UNSIGNED (TREE_TYPE (op1));
2366
2367 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
2368
2369 /* For bitwise operations, signedness of nominal type
2370 does not matter. Consider only how operands were extended. */
2371 if (shorten == -1)
2372 uns = unsigned0;
2373
2374 /* Note that in all three cases below we refrain from optimizing
2375 an unsigned operation on sign-extended args.
2376 That would not be valid. */
2377
2378 /* Both args variable: if both extended in same way
2379 from same width, do it in that width.
2380 Do it unsigned if args were zero-extended. */
2381 if ((TYPE_PRECISION (TREE_TYPE (arg0))
2382 < TYPE_PRECISION (result_type))
2383 && (TYPE_PRECISION (TREE_TYPE (arg1))
2384 == TYPE_PRECISION (TREE_TYPE (arg0)))
2385 && unsigned0 == unsigned1
2386 && (unsigned0 || !uns))
2387 result_type
2388 = signed_or_unsigned_type (unsigned0,
2389 common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
2390 else if (TREE_CODE (arg0) == INTEGER_CST
2391 && (unsigned1 || !uns)
2392 && (TYPE_PRECISION (TREE_TYPE (arg1))
2393 < TYPE_PRECISION (result_type))
2394 && (type = signed_or_unsigned_type (unsigned1,
2395 TREE_TYPE (arg1)),
2396 int_fits_type_p (arg0, type)))
2397 result_type = type;
2398 else if (TREE_CODE (arg1) == INTEGER_CST
2399 && (unsigned0 || !uns)
2400 && (TYPE_PRECISION (TREE_TYPE (arg0))
2401 < TYPE_PRECISION (result_type))
2402 && (type = signed_or_unsigned_type (unsigned0,
2403 TREE_TYPE (arg0)),
2404 int_fits_type_p (arg1, type)))
2405 result_type = type;
2406 }
2407
2408 /* Shifts can be shortened if shifting right. */
2409
2410 if (short_shift)
2411 {
2412 int unsigned_arg;
2413 tree arg0 = get_narrower (op0, &unsigned_arg);
2414
2415 final_type = result_type;
2416
2417 if (arg0 == op0 && final_type == TREE_TYPE (op0))
2418 unsigned_arg = TREE_UNSIGNED (TREE_TYPE (op0));
2419
2420 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
2421 /* We can shorten only if the shift count is less than the
2422 number of bits in the smaller type size. */
2423 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
2424 /* We cannot drop an unsigned shift after sign-extension. */
2425 && (!TREE_UNSIGNED (final_type) || unsigned_arg))
2426 {
2427 /* Do an unsigned shift if the operand was zero-extended. */
2428 result_type
2429 = signed_or_unsigned_type (unsigned_arg, TREE_TYPE (arg0));
2430 /* Convert value-to-be-shifted to that type. */
2431 if (TREE_TYPE (op0) != result_type)
2432 op0 = convert (result_type, op0);
2433 converted = 1;
2434 }
2435 }
2436
2437 /* Comparison operations are shortened too but differently.
2438 They identify themselves by setting short_compare = 1. */
2439
2440 if (short_compare)
2441 {
2442 /* Don't write &op0, etc., because that would prevent op0
2443 from being kept in a register.
2444 Instead, make copies of the our local variables and
2445 pass the copies by reference, then copy them back afterward. */
2446 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
2447 enum tree_code xresultcode = resultcode;
2448 tree val
2449 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
2450
2451 if (val != 0)
2452 return val;
2453
2454 op0 = xop0, op1 = xop1;
2455 converted = 1;
2456 resultcode = xresultcode;
2457
2458 if ((warn_sign_compare < 0 ? extra_warnings : warn_sign_compare != 0)
2459 && skip_evaluation == 0)
2460 {
2461 int op0_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op0));
2462 int op1_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op1));
2463 int unsignedp0, unsignedp1;
2464 tree primop0 = get_narrower (op0, &unsignedp0);
2465 tree primop1 = get_narrower (op1, &unsignedp1);
2466
2467 xop0 = orig_op0;
2468 xop1 = orig_op1;
2469 STRIP_TYPE_NOPS (xop0);
2470 STRIP_TYPE_NOPS (xop1);
2471
2472 /* Give warnings for comparisons between signed and unsigned
2473 quantities that may fail.
2474
2475 Do the checking based on the original operand trees, so that
2476 casts will be considered, but default promotions won't be.
2477
2478 Do not warn if the comparison is being done in a signed type,
2479 since the signed type will only be chosen if it can represent
2480 all the values of the unsigned type. */
2481 if (! TREE_UNSIGNED (result_type))
2482 /* OK */;
2483 /* Do not warn if both operands are the same signedness. */
2484 else if (op0_signed == op1_signed)
2485 /* OK */;
2486 else
2487 {
2488 tree sop, uop;
2489
2490 if (op0_signed)
2491 sop = xop0, uop = xop1;
2492 else
2493 sop = xop1, uop = xop0;
2494
2495 /* Do not warn if the signed quantity is an
2496 unsuffixed integer literal (or some static
2497 constant expression involving such literals or a
2498 conditional expression involving such literals)
2499 and it is non-negative. */
2500 if (tree_expr_nonnegative_p (sop))
2501 /* OK */;
2502 /* Do not warn if the comparison is an equality operation,
2503 the unsigned quantity is an integral constant, and it
2504 would fit in the result if the result were signed. */
2505 else if (TREE_CODE (uop) == INTEGER_CST
2506 && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
2507 && int_fits_type_p (uop, signed_type (result_type)))
2508 /* OK */;
2509 /* Do not warn if the unsigned quantity is an enumeration
2510 constant and its maximum value would fit in the result
2511 if the result were signed. */
2512 else if (TREE_CODE (uop) == INTEGER_CST
2513 && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
2514 && int_fits_type_p (TYPE_MAX_VALUE (TREE_TYPE(uop)),
2515 signed_type (result_type)))
2516 /* OK */;
2517 else
2518 warning ("comparison between signed and unsigned");
2519 }
2520
2521 /* Warn if two unsigned values are being compared in a size
2522 larger than their original size, and one (and only one) is the
2523 result of a `~' operator. This comparison will always fail.
2524
2525 Also warn if one operand is a constant, and the constant
2526 does not have all bits set that are set in the ~ operand
2527 when it is extended. */
2528
2529 if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
2530 != (TREE_CODE (primop1) == BIT_NOT_EXPR))
2531 {
2532 if (TREE_CODE (primop0) == BIT_NOT_EXPR)
2533 primop0 = get_narrower (TREE_OPERAND (primop0, 0),
2534 &unsignedp0);
2535 else
2536 primop1 = get_narrower (TREE_OPERAND (primop1, 0),
2537 &unsignedp1);
2538
2539 if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
2540 {
2541 tree primop;
2542 HOST_WIDE_INT constant, mask;
2543 int unsignedp, bits;
2544
2545 if (host_integerp (primop0, 0))
2546 {
2547 primop = primop1;
2548 unsignedp = unsignedp1;
2549 constant = tree_low_cst (primop0, 0);
2550 }
2551 else
2552 {
2553 primop = primop0;
2554 unsignedp = unsignedp0;
2555 constant = tree_low_cst (primop1, 0);
2556 }
2557
2558 bits = TYPE_PRECISION (TREE_TYPE (primop));
2559 if (bits < TYPE_PRECISION (result_type)
2560 && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
2561 {
2562 mask = (~ (HOST_WIDE_INT) 0) << bits;
2563 if ((mask & constant) != mask)
2564 warning ("comparison of promoted ~unsigned with constant");
2565 }
2566 }
2567 else if (unsignedp0 && unsignedp1
2568 && (TYPE_PRECISION (TREE_TYPE (primop0))
2569 < TYPE_PRECISION (result_type))
2570 && (TYPE_PRECISION (TREE_TYPE (primop1))
2571 < TYPE_PRECISION (result_type)))
2572 warning ("comparison of promoted ~unsigned with unsigned");
2573 }
2574 }
2575 }
2576 }
2577
2578 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
2579 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
2580 Then the expression will be built.
2581 It will be given type FINAL_TYPE if that is nonzero;
2582 otherwise, it will be given type RESULT_TYPE. */
2583
2584 if (!result_type)
2585 {
2586 binary_op_error (code);
2587 return error_mark_node;
2588 }
2589
2590 if (! converted)
2591 {
2592 if (TREE_TYPE (op0) != result_type)
2593 op0 = convert (result_type, op0);
2594 if (TREE_TYPE (op1) != result_type)
2595 op1 = convert (result_type, op1);
2596 }
2597
2598 if (build_type == NULL_TREE)
2599 build_type = result_type;
2600
2601 {
2602 tree result = build (resultcode, build_type, op0, op1);
2603 tree folded;
2604
2605 folded = fold (result);
2606 if (folded == result)
2607 TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
2608 if (final_type != 0)
2609 return convert (final_type, folded);
2610 return folded;
2611 }
2612 }
2613 \f
2614 /* Return a tree for the difference of pointers OP0 and OP1.
2615 The resulting tree has type int. */
2616
2617 static tree
2618 pointer_diff (op0, op1)
2619 tree op0, op1;
2620 {
2621 tree result, folded;
2622 tree restype = ptrdiff_type_node;
2623
2624 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2625 tree con0, con1, lit0, lit1;
2626 tree orig_op1 = op1;
2627
2628 if (pedantic || warn_pointer_arith)
2629 {
2630 if (TREE_CODE (target_type) == VOID_TYPE)
2631 pedwarn ("pointer of type `void *' used in subtraction");
2632 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2633 pedwarn ("pointer to a function used in subtraction");
2634 }
2635
2636 /* If the conversion to ptrdiff_type does anything like widening or
2637 converting a partial to an integral mode, we get a convert_expression
2638 that is in the way to do any simplifications.
2639 (fold-const.c doesn't know that the extra bits won't be needed.
2640 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2641 different mode in place.)
2642 So first try to find a common term here 'by hand'; we want to cover
2643 at least the cases that occur in legal static initializers. */
2644 con0 = TREE_CODE (op0) == NOP_EXPR ? TREE_OPERAND (op0, 0) : op0;
2645 con1 = TREE_CODE (op1) == NOP_EXPR ? TREE_OPERAND (op1, 0) : op1;
2646
2647 if (TREE_CODE (con0) == PLUS_EXPR)
2648 {
2649 lit0 = TREE_OPERAND (con0, 1);
2650 con0 = TREE_OPERAND (con0, 0);
2651 }
2652 else
2653 lit0 = integer_zero_node;
2654
2655 if (TREE_CODE (con1) == PLUS_EXPR)
2656 {
2657 lit1 = TREE_OPERAND (con1, 1);
2658 con1 = TREE_OPERAND (con1, 0);
2659 }
2660 else
2661 lit1 = integer_zero_node;
2662
2663 if (operand_equal_p (con0, con1, 0))
2664 {
2665 op0 = lit0;
2666 op1 = lit1;
2667 }
2668
2669
2670 /* First do the subtraction as integers;
2671 then drop through to build the divide operator.
2672 Do not do default conversions on the minus operator
2673 in case restype is a short type. */
2674
2675 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2676 convert (restype, op1), 0);
2677 /* This generates an error if op1 is pointer to incomplete type. */
2678 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2679 error ("arithmetic on pointer to an incomplete type");
2680
2681 /* This generates an error if op0 is pointer to incomplete type. */
2682 op1 = c_size_in_bytes (target_type);
2683
2684 /* Divide by the size, in easiest possible way. */
2685
2686 result = build (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2687
2688 folded = fold (result);
2689 if (folded == result)
2690 TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
2691 return folded;
2692 }
2693 \f
2694 /* Construct and perhaps optimize a tree representation
2695 for a unary operation. CODE, a tree_code, specifies the operation
2696 and XARG is the operand.
2697 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2698 the default promotions (such as from short to int).
2699 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2700 allows non-lvalues; this is only used to handle conversion of non-lvalue
2701 arrays to pointers in C99. */
2702
2703 tree
2704 build_unary_op (code, xarg, flag)
2705 enum tree_code code;
2706 tree xarg;
2707 int flag;
2708 {
2709 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2710 tree arg = xarg;
2711 tree argtype = 0;
2712 enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2713 tree val;
2714 int noconvert = flag;
2715
2716 if (typecode == ERROR_MARK)
2717 return error_mark_node;
2718 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2719 typecode = INTEGER_TYPE;
2720
2721 switch (code)
2722 {
2723 case CONVERT_EXPR:
2724 /* This is used for unary plus, because a CONVERT_EXPR
2725 is enough to prevent anybody from looking inside for
2726 associativity, but won't generate any code. */
2727 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2728 || typecode == COMPLEX_TYPE))
2729 {
2730 error ("wrong type argument to unary plus");
2731 return error_mark_node;
2732 }
2733 else if (!noconvert)
2734 arg = default_conversion (arg);
2735 break;
2736
2737 case NEGATE_EXPR:
2738 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2739 || typecode == COMPLEX_TYPE))
2740 {
2741 error ("wrong type argument to unary minus");
2742 return error_mark_node;
2743 }
2744 else if (!noconvert)
2745 arg = default_conversion (arg);
2746 break;
2747
2748 case BIT_NOT_EXPR:
2749 if (typecode == COMPLEX_TYPE)
2750 {
2751 code = CONJ_EXPR;
2752 if (pedantic)
2753 pedwarn ("ISO C does not support `~' for complex conjugation");
2754 if (!noconvert)
2755 arg = default_conversion (arg);
2756 }
2757 else if (typecode != INTEGER_TYPE)
2758 {
2759 error ("wrong type argument to bit-complement");
2760 return error_mark_node;
2761 }
2762 else if (!noconvert)
2763 arg = default_conversion (arg);
2764 break;
2765
2766 case ABS_EXPR:
2767 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2768 || typecode == COMPLEX_TYPE))
2769 {
2770 error ("wrong type argument to abs");
2771 return error_mark_node;
2772 }
2773 else if (!noconvert)
2774 arg = default_conversion (arg);
2775 break;
2776
2777 case CONJ_EXPR:
2778 /* Conjugating a real value is a no-op, but allow it anyway. */
2779 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2780 || typecode == COMPLEX_TYPE))
2781 {
2782 error ("wrong type argument to conjugation");
2783 return error_mark_node;
2784 }
2785 else if (!noconvert)
2786 arg = default_conversion (arg);
2787 break;
2788
2789 case TRUTH_NOT_EXPR:
2790 if (typecode != INTEGER_TYPE
2791 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2792 && typecode != COMPLEX_TYPE
2793 /* These will convert to a pointer. */
2794 && typecode != ARRAY_TYPE && typecode != FUNCTION_TYPE)
2795 {
2796 error ("wrong type argument to unary exclamation mark");
2797 return error_mark_node;
2798 }
2799 arg = truthvalue_conversion (arg);
2800 return invert_truthvalue (arg);
2801
2802 case NOP_EXPR:
2803 break;
2804
2805 case REALPART_EXPR:
2806 if (TREE_CODE (arg) == COMPLEX_CST)
2807 return TREE_REALPART (arg);
2808 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2809 return fold (build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
2810 else
2811 return arg;
2812
2813 case IMAGPART_EXPR:
2814 if (TREE_CODE (arg) == COMPLEX_CST)
2815 return TREE_IMAGPART (arg);
2816 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2817 return fold (build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
2818 else
2819 return convert (TREE_TYPE (arg), integer_zero_node);
2820
2821 case PREINCREMENT_EXPR:
2822 case POSTINCREMENT_EXPR:
2823 case PREDECREMENT_EXPR:
2824 case POSTDECREMENT_EXPR:
2825 /* Handle complex lvalues (when permitted)
2826 by reduction to simpler cases. */
2827
2828 val = unary_complex_lvalue (code, arg, 0);
2829 if (val != 0)
2830 return val;
2831
2832 /* Increment or decrement the real part of the value,
2833 and don't change the imaginary part. */
2834 if (typecode == COMPLEX_TYPE)
2835 {
2836 tree real, imag;
2837
2838 if (pedantic)
2839 pedwarn ("ISO C does not support `++' and `--' on complex types");
2840
2841 arg = stabilize_reference (arg);
2842 real = build_unary_op (REALPART_EXPR, arg, 1);
2843 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2844 return build (COMPLEX_EXPR, TREE_TYPE (arg),
2845 build_unary_op (code, real, 1), imag);
2846 }
2847
2848 /* Report invalid types. */
2849
2850 if (typecode != POINTER_TYPE
2851 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2852 {
2853 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2854 error ("wrong type argument to increment");
2855 else
2856 error ("wrong type argument to decrement");
2857
2858 return error_mark_node;
2859 }
2860
2861 {
2862 tree inc;
2863 tree result_type = TREE_TYPE (arg);
2864
2865 arg = get_unwidened (arg, 0);
2866 argtype = TREE_TYPE (arg);
2867
2868 /* Compute the increment. */
2869
2870 if (typecode == POINTER_TYPE)
2871 {
2872 /* If pointer target is an undefined struct,
2873 we just cannot know how to do the arithmetic. */
2874 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2875 {
2876 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2877 error ("increment of pointer to unknown structure");
2878 else
2879 error ("decrement of pointer to unknown structure");
2880 }
2881 else if ((pedantic || warn_pointer_arith)
2882 && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2883 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2884 {
2885 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2886 pedwarn ("wrong type argument to increment");
2887 else
2888 pedwarn ("wrong type argument to decrement");
2889 }
2890
2891 inc = c_size_in_bytes (TREE_TYPE (result_type));
2892 }
2893 else
2894 inc = integer_one_node;
2895
2896 inc = convert (argtype, inc);
2897
2898 /* Handle incrementing a cast-expression. */
2899
2900 while (1)
2901 switch (TREE_CODE (arg))
2902 {
2903 case NOP_EXPR:
2904 case CONVERT_EXPR:
2905 case FLOAT_EXPR:
2906 case FIX_TRUNC_EXPR:
2907 case FIX_FLOOR_EXPR:
2908 case FIX_ROUND_EXPR:
2909 case FIX_CEIL_EXPR:
2910 pedantic_lvalue_warning (CONVERT_EXPR);
2911 /* If the real type has the same machine representation
2912 as the type it is cast to, we can make better output
2913 by adding directly to the inside of the cast. */
2914 if ((TREE_CODE (TREE_TYPE (arg))
2915 == TREE_CODE (TREE_TYPE (TREE_OPERAND (arg, 0))))
2916 && (TYPE_MODE (TREE_TYPE (arg))
2917 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (arg, 0)))))
2918 arg = TREE_OPERAND (arg, 0);
2919 else
2920 {
2921 tree incremented, modify, value;
2922 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2923 value = boolean_increment (code, arg);
2924 else
2925 {
2926 arg = stabilize_reference (arg);
2927 if (code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR)
2928 value = arg;
2929 else
2930 value = save_expr (arg);
2931 incremented = build (((code == PREINCREMENT_EXPR
2932 || code == POSTINCREMENT_EXPR)
2933 ? PLUS_EXPR : MINUS_EXPR),
2934 argtype, value, inc);
2935 TREE_SIDE_EFFECTS (incremented) = 1;
2936 modify = build_modify_expr (arg, NOP_EXPR, incremented);
2937 value = build (COMPOUND_EXPR, TREE_TYPE (arg), modify, value);
2938 }
2939 TREE_USED (value) = 1;
2940 return value;
2941 }
2942 break;
2943
2944 default:
2945 goto give_up;
2946 }
2947 give_up:
2948
2949 /* Complain about anything else that is not a true lvalue. */
2950 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2951 || code == POSTINCREMENT_EXPR)
2952 ? "invalid lvalue in increment"
2953 : "invalid lvalue in decrement")))
2954 return error_mark_node;
2955
2956 /* Report a read-only lvalue. */
2957 if (TREE_READONLY (arg))
2958 readonly_warning (arg,
2959 ((code == PREINCREMENT_EXPR
2960 || code == POSTINCREMENT_EXPR)
2961 ? "increment" : "decrement"));
2962
2963 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2964 val = boolean_increment (code, arg);
2965 else
2966 val = build (code, TREE_TYPE (arg), arg, inc);
2967 TREE_SIDE_EFFECTS (val) = 1;
2968 val = convert (result_type, val);
2969 if (TREE_CODE (val) != code)
2970 TREE_NO_UNUSED_WARNING (val) = 1;
2971 return val;
2972 }
2973
2974 case ADDR_EXPR:
2975 /* Note that this operation never does default_conversion. */
2976
2977 /* Let &* cancel out to simplify resulting code. */
2978 if (TREE_CODE (arg) == INDIRECT_REF)
2979 {
2980 /* Don't let this be an lvalue. */
2981 if (lvalue_p (TREE_OPERAND (arg, 0)))
2982 return non_lvalue (TREE_OPERAND (arg, 0));
2983 return TREE_OPERAND (arg, 0);
2984 }
2985
2986 /* For &x[y], return x+y */
2987 if (TREE_CODE (arg) == ARRAY_REF)
2988 {
2989 if (mark_addressable (TREE_OPERAND (arg, 0)) == 0)
2990 return error_mark_node;
2991 return build_binary_op (PLUS_EXPR, TREE_OPERAND (arg, 0),
2992 TREE_OPERAND (arg, 1), 1);
2993 }
2994
2995 /* Handle complex lvalues (when permitted)
2996 by reduction to simpler cases. */
2997 val = unary_complex_lvalue (code, arg, flag);
2998 if (val != 0)
2999 return val;
3000
3001 #if 0 /* Turned off because inconsistent;
3002 float f; *&(int)f = 3.4 stores in int format
3003 whereas (int)f = 3.4 stores in float format. */
3004 /* Address of a cast is just a cast of the address
3005 of the operand of the cast. */
3006 switch (TREE_CODE (arg))
3007 {
3008 case NOP_EXPR:
3009 case CONVERT_EXPR:
3010 case FLOAT_EXPR:
3011 case FIX_TRUNC_EXPR:
3012 case FIX_FLOOR_EXPR:
3013 case FIX_ROUND_EXPR:
3014 case FIX_CEIL_EXPR:
3015 if (pedantic)
3016 pedwarn ("ISO C forbids the address of a cast expression");
3017 return convert (build_pointer_type (TREE_TYPE (arg)),
3018 build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0),
3019 0));
3020 }
3021 #endif
3022
3023 /* Anything not already handled and not a true memory reference
3024 or a non-lvalue array is an error. */
3025 else if (typecode != FUNCTION_TYPE && !flag
3026 && !lvalue_or_else (arg, "invalid lvalue in unary `&'"))
3027 return error_mark_node;
3028
3029 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3030 argtype = TREE_TYPE (arg);
3031
3032 /* If the lvalue is const or volatile, merge that into the type
3033 to which the address will point. Note that you can't get a
3034 restricted pointer by taking the address of something, so we
3035 only have to deal with `const' and `volatile' here. */
3036 if ((DECL_P (arg) || TREE_CODE_CLASS (TREE_CODE (arg)) == 'r')
3037 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3038 argtype = c_build_type_variant (argtype,
3039 TREE_READONLY (arg),
3040 TREE_THIS_VOLATILE (arg));
3041
3042 argtype = build_pointer_type (argtype);
3043
3044 if (mark_addressable (arg) == 0)
3045 return error_mark_node;
3046
3047 {
3048 tree addr;
3049
3050 if (TREE_CODE (arg) == COMPONENT_REF)
3051 {
3052 tree field = TREE_OPERAND (arg, 1);
3053
3054 addr = build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0), flag);
3055
3056 if (DECL_C_BIT_FIELD (field))
3057 {
3058 error ("attempt to take address of bit-field structure member `%s'",
3059 IDENTIFIER_POINTER (DECL_NAME (field)));
3060 return error_mark_node;
3061 }
3062
3063 addr = fold (build (PLUS_EXPR, argtype,
3064 convert (argtype, addr),
3065 convert (argtype, byte_position (field))));
3066 }
3067 else
3068 addr = build1 (code, argtype, arg);
3069
3070 /* Address of a static or external variable or
3071 file-scope function counts as a constant. */
3072 if (staticp (arg)
3073 && ! (TREE_CODE (arg) == FUNCTION_DECL
3074 && DECL_CONTEXT (arg) != 0))
3075 TREE_CONSTANT (addr) = 1;
3076 return addr;
3077 }
3078
3079 default:
3080 break;
3081 }
3082
3083 if (argtype == 0)
3084 argtype = TREE_TYPE (arg);
3085 return fold (build1 (code, argtype, arg));
3086 }
3087
3088 #if 0
3089 /* If CONVERSIONS is a conversion expression or a nested sequence of such,
3090 convert ARG with the same conversions in the same order
3091 and return the result. */
3092
3093 static tree
3094 convert_sequence (conversions, arg)
3095 tree conversions;
3096 tree arg;
3097 {
3098 switch (TREE_CODE (conversions))
3099 {
3100 case NOP_EXPR:
3101 case CONVERT_EXPR:
3102 case FLOAT_EXPR:
3103 case FIX_TRUNC_EXPR:
3104 case FIX_FLOOR_EXPR:
3105 case FIX_ROUND_EXPR:
3106 case FIX_CEIL_EXPR:
3107 return convert (TREE_TYPE (conversions),
3108 convert_sequence (TREE_OPERAND (conversions, 0),
3109 arg));
3110
3111 default:
3112 return arg;
3113 }
3114 }
3115 #endif /* 0 */
3116
3117 /* Return nonzero if REF is an lvalue valid for this language.
3118 Lvalues can be assigned, unless their type has TYPE_READONLY.
3119 Lvalues can have their address taken, unless they have DECL_REGISTER. */
3120
3121 int
3122 lvalue_p (ref)
3123 tree ref;
3124 {
3125 enum tree_code code = TREE_CODE (ref);
3126
3127 switch (code)
3128 {
3129 case REALPART_EXPR:
3130 case IMAGPART_EXPR:
3131 case COMPONENT_REF:
3132 return lvalue_p (TREE_OPERAND (ref, 0));
3133
3134 case COMPOUND_LITERAL_EXPR:
3135 case STRING_CST:
3136 return 1;
3137
3138 case INDIRECT_REF:
3139 case ARRAY_REF:
3140 case VAR_DECL:
3141 case PARM_DECL:
3142 case RESULT_DECL:
3143 case ERROR_MARK:
3144 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3145 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3146
3147 case BIND_EXPR:
3148 case RTL_EXPR:
3149 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3150
3151 default:
3152 return 0;
3153 }
3154 }
3155
3156 /* Return nonzero if REF is an lvalue valid for this language;
3157 otherwise, print an error message and return zero. */
3158
3159 int
3160 lvalue_or_else (ref, msgid)
3161 tree ref;
3162 const char *msgid;
3163 {
3164 int win = lvalue_p (ref);
3165
3166 if (! win)
3167 error ("%s", msgid);
3168
3169 return win;
3170 }
3171
3172 /* Apply unary lvalue-demanding operator CODE to the expression ARG
3173 for certain kinds of expressions which are not really lvalues
3174 but which we can accept as lvalues. If FLAG is nonzero, then
3175 non-lvalues are OK since we may be converting a non-lvalue array to
3176 a pointer in C99.
3177
3178 If ARG is not a kind of expression we can handle, return zero. */
3179
3180 static tree
3181 unary_complex_lvalue (code, arg, flag)
3182 enum tree_code code;
3183 tree arg;
3184 int flag;
3185 {
3186 /* Handle (a, b) used as an "lvalue". */
3187 if (TREE_CODE (arg) == COMPOUND_EXPR)
3188 {
3189 tree real_result = build_unary_op (code, TREE_OPERAND (arg, 1), 0);
3190
3191 /* If this returns a function type, it isn't really being used as
3192 an lvalue, so don't issue a warning about it. */
3193 if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE && !flag)
3194 pedantic_lvalue_warning (COMPOUND_EXPR);
3195
3196 return build (COMPOUND_EXPR, TREE_TYPE (real_result),
3197 TREE_OPERAND (arg, 0), real_result);
3198 }
3199
3200 /* Handle (a ? b : c) used as an "lvalue". */
3201 if (TREE_CODE (arg) == COND_EXPR)
3202 {
3203 if (!flag)
3204 pedantic_lvalue_warning (COND_EXPR);
3205 if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE && !flag)
3206 pedantic_lvalue_warning (COMPOUND_EXPR);
3207
3208 return (build_conditional_expr
3209 (TREE_OPERAND (arg, 0),
3210 build_unary_op (code, TREE_OPERAND (arg, 1), flag),
3211 build_unary_op (code, TREE_OPERAND (arg, 2), flag)));
3212 }
3213
3214 return 0;
3215 }
3216
3217 /* If pedantic, warn about improper lvalue. CODE is either COND_EXPR
3218 COMPOUND_EXPR, or CONVERT_EXPR (for casts). */
3219
3220 static void
3221 pedantic_lvalue_warning (code)
3222 enum tree_code code;
3223 {
3224 if (pedantic)
3225 switch (code)
3226 {
3227 case COND_EXPR:
3228 pedwarn ("ISO C forbids use of conditional expressions as lvalues");
3229 break;
3230 case COMPOUND_EXPR:
3231 pedwarn ("ISO C forbids use of compound expressions as lvalues");
3232 break;
3233 default:
3234 pedwarn ("ISO C forbids use of cast expressions as lvalues");
3235 break;
3236 }
3237 }
3238 \f
3239 /* Warn about storing in something that is `const'. */
3240
3241 void
3242 readonly_warning (arg, msgid)
3243 tree arg;
3244 const char *msgid;
3245 {
3246 if (TREE_CODE (arg) == COMPONENT_REF)
3247 {
3248 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3249 readonly_warning (TREE_OPERAND (arg, 0), msgid);
3250 else
3251 pedwarn ("%s of read-only member `%s'", _(msgid),
3252 IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (arg, 1))));
3253 }
3254 else if (TREE_CODE (arg) == VAR_DECL)
3255 pedwarn ("%s of read-only variable `%s'", _(msgid),
3256 IDENTIFIER_POINTER (DECL_NAME (arg)));
3257 else
3258 pedwarn ("%s of read-only location", _(msgid));
3259 }
3260 \f
3261 /* Mark EXP saying that we need to be able to take the
3262 address of it; it should not be allocated in a register.
3263 Value is 1 if successful. */
3264
3265 int
3266 mark_addressable (exp)
3267 tree exp;
3268 {
3269 tree x = exp;
3270 while (1)
3271 switch (TREE_CODE (x))
3272 {
3273 case COMPONENT_REF:
3274 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3275 {
3276 error ("cannot take address of bit-field `%s'",
3277 IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (x, 1))));
3278 return 0;
3279 }
3280
3281 /* ... fall through ... */
3282
3283 case ADDR_EXPR:
3284 case ARRAY_REF:
3285 case REALPART_EXPR:
3286 case IMAGPART_EXPR:
3287 x = TREE_OPERAND (x, 0);
3288 break;
3289
3290 case COMPOUND_LITERAL_EXPR:
3291 case CONSTRUCTOR:
3292 TREE_ADDRESSABLE (x) = 1;
3293 return 1;
3294
3295 case VAR_DECL:
3296 case CONST_DECL:
3297 case PARM_DECL:
3298 case RESULT_DECL:
3299 if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x)
3300 && DECL_NONLOCAL (x))
3301 {
3302 if (TREE_PUBLIC (x))
3303 {
3304 error ("global register variable `%s' used in nested function",
3305 IDENTIFIER_POINTER (DECL_NAME (x)));
3306 return 0;
3307 }
3308 pedwarn ("register variable `%s' used in nested function",
3309 IDENTIFIER_POINTER (DECL_NAME (x)));
3310 }
3311 else if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x))
3312 {
3313 if (TREE_PUBLIC (x))
3314 {
3315 error ("address of global register variable `%s' requested",
3316 IDENTIFIER_POINTER (DECL_NAME (x)));
3317 return 0;
3318 }
3319
3320 /* If we are making this addressable due to its having
3321 volatile components, give a different error message. Also
3322 handle the case of an unnamed parameter by not trying
3323 to give the name. */
3324
3325 else if (C_TYPE_FIELDS_VOLATILE (TREE_TYPE (x)))
3326 {
3327 error ("cannot put object with volatile field into register");
3328 return 0;
3329 }
3330
3331 pedwarn ("address of register variable `%s' requested",
3332 IDENTIFIER_POINTER (DECL_NAME (x)));
3333 }
3334 put_var_into_stack (x);
3335
3336 /* drops in */
3337 case FUNCTION_DECL:
3338 TREE_ADDRESSABLE (x) = 1;
3339 #if 0 /* poplevel deals with this now. */
3340 if (DECL_CONTEXT (x) == 0)
3341 TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (x)) = 1;
3342 #endif
3343
3344 default:
3345 return 1;
3346 }
3347 }
3348 \f
3349 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3350
3351 tree
3352 build_conditional_expr (ifexp, op1, op2)
3353 tree ifexp, op1, op2;
3354 {
3355 tree type1;
3356 tree type2;
3357 enum tree_code code1;
3358 enum tree_code code2;
3359 tree result_type = NULL;
3360 tree orig_op1 = op1, orig_op2 = op2;
3361
3362 ifexp = truthvalue_conversion (default_conversion (ifexp));
3363
3364 #if 0 /* Produces wrong result if within sizeof. */
3365 /* Don't promote the operands separately if they promote
3366 the same way. Return the unpromoted type and let the combined
3367 value get promoted if necessary. */
3368
3369 if (TREE_TYPE (op1) == TREE_TYPE (op2)
3370 && TREE_CODE (TREE_TYPE (op1)) != ARRAY_TYPE
3371 && TREE_CODE (TREE_TYPE (op1)) != ENUMERAL_TYPE
3372 && TREE_CODE (TREE_TYPE (op1)) != FUNCTION_TYPE)
3373 {
3374 if (TREE_CODE (ifexp) == INTEGER_CST)
3375 return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
3376
3377 return fold (build (COND_EXPR, TREE_TYPE (op1), ifexp, op1, op2));
3378 }
3379 #endif
3380
3381 /* Promote both alternatives. */
3382
3383 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3384 op1 = default_conversion (op1);
3385 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3386 op2 = default_conversion (op2);
3387
3388 if (TREE_CODE (ifexp) == ERROR_MARK
3389 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3390 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3391 return error_mark_node;
3392
3393 type1 = TREE_TYPE (op1);
3394 code1 = TREE_CODE (type1);
3395 type2 = TREE_TYPE (op2);
3396 code2 = TREE_CODE (type2);
3397
3398 /* Quickly detect the usual case where op1 and op2 have the same type
3399 after promotion. */
3400 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3401 {
3402 if (type1 == type2)
3403 result_type = type1;
3404 else
3405 result_type = TYPE_MAIN_VARIANT (type1);
3406 }
3407 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3408 || code1 == COMPLEX_TYPE)
3409 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3410 || code2 == COMPLEX_TYPE))
3411 {
3412 result_type = common_type (type1, type2);
3413
3414 /* If -Wsign-compare, warn here if type1 and type2 have
3415 different signedness. We'll promote the signed to unsigned
3416 and later code won't know it used to be different.
3417 Do this check on the original types, so that explicit casts
3418 will be considered, but default promotions won't. */
3419 if ((warn_sign_compare < 0 ? extra_warnings : warn_sign_compare)
3420 && !skip_evaluation)
3421 {
3422 int unsigned_op1 = TREE_UNSIGNED (TREE_TYPE (orig_op1));
3423 int unsigned_op2 = TREE_UNSIGNED (TREE_TYPE (orig_op2));
3424
3425 if (unsigned_op1 ^ unsigned_op2)
3426 {
3427 /* Do not warn if the result type is signed, since the
3428 signed type will only be chosen if it can represent
3429 all the values of the unsigned type. */
3430 if (! TREE_UNSIGNED (result_type))
3431 /* OK */;
3432 /* Do not warn if the signed quantity is an unsuffixed
3433 integer literal (or some static constant expression
3434 involving such literals) and it is non-negative. */
3435 else if ((unsigned_op2 && tree_expr_nonnegative_p (op1))
3436 || (unsigned_op1 && tree_expr_nonnegative_p (op2)))
3437 /* OK */;
3438 else
3439 warning ("signed and unsigned type in conditional expression");
3440 }
3441 }
3442 }
3443 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3444 {
3445 if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3446 pedwarn ("ISO C forbids conditional expr with only one void side");
3447 result_type = void_type_node;
3448 }
3449 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3450 {
3451 if (comp_target_types (type1, type2))
3452 result_type = common_type (type1, type2);
3453 else if (integer_zerop (op1) && TREE_TYPE (type1) == void_type_node
3454 && TREE_CODE (orig_op1) != NOP_EXPR)
3455 result_type = qualify_type (type2, type1);
3456 else if (integer_zerop (op2) && TREE_TYPE (type2) == void_type_node
3457 && TREE_CODE (orig_op2) != NOP_EXPR)
3458 result_type = qualify_type (type1, type2);
3459 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3460 {
3461 if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3462 pedwarn ("ISO C forbids conditional expr between `void *' and function pointer");
3463 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3464 TREE_TYPE (type2)));
3465 }
3466 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3467 {
3468 if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3469 pedwarn ("ISO C forbids conditional expr between `void *' and function pointer");
3470 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3471 TREE_TYPE (type1)));
3472 }
3473 else
3474 {
3475 pedwarn ("pointer type mismatch in conditional expression");
3476 result_type = build_pointer_type (void_type_node);
3477 }
3478 }
3479 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3480 {
3481 if (! integer_zerop (op2))
3482 pedwarn ("pointer/integer type mismatch in conditional expression");
3483 else
3484 {
3485 op2 = null_pointer_node;
3486 }
3487 result_type = type1;
3488 }
3489 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3490 {
3491 if (!integer_zerop (op1))
3492 pedwarn ("pointer/integer type mismatch in conditional expression");
3493 else
3494 {
3495 op1 = null_pointer_node;
3496 }
3497 result_type = type2;
3498 }
3499
3500 if (!result_type)
3501 {
3502 if (flag_cond_mismatch)
3503 result_type = void_type_node;
3504 else
3505 {
3506 error ("type mismatch in conditional expression");
3507 return error_mark_node;
3508 }
3509 }
3510
3511 /* Merge const and volatile flags of the incoming types. */
3512 result_type
3513 = build_type_variant (result_type,
3514 TREE_READONLY (op1) || TREE_READONLY (op2),
3515 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3516
3517 if (result_type != TREE_TYPE (op1))
3518 op1 = convert_and_check (result_type, op1);
3519 if (result_type != TREE_TYPE (op2))
3520 op2 = convert_and_check (result_type, op2);
3521
3522 if (TREE_CODE (ifexp) == INTEGER_CST)
3523 return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
3524
3525 return fold (build (COND_EXPR, result_type, ifexp, op1, op2));
3526 }
3527 \f
3528 /* Given a list of expressions, return a compound expression
3529 that performs them all and returns the value of the last of them. */
3530
3531 tree
3532 build_compound_expr (list)
3533 tree list;
3534 {
3535 return internal_build_compound_expr (list, TRUE);
3536 }
3537
3538 static tree
3539 internal_build_compound_expr (list, first_p)
3540 tree list;
3541 int first_p;
3542 {
3543 tree rest;
3544
3545 if (TREE_CHAIN (list) == 0)
3546 {
3547 /* Convert arrays and functions to pointers when there
3548 really is a comma operator. */
3549 if (!first_p)
3550 TREE_VALUE (list)
3551 = default_function_array_conversion (TREE_VALUE (list));
3552
3553 #if 0 /* If something inside inhibited lvalueness, we should not override. */
3554 /* Consider (x, y+0), which is not an lvalue since y+0 is not. */
3555
3556 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3557 if (TREE_CODE (list) == NON_LVALUE_EXPR)
3558 list = TREE_OPERAND (list, 0);
3559 #endif
3560
3561 /* Don't let (0, 0) be null pointer constant. */
3562 if (!first_p && integer_zerop (TREE_VALUE (list)))
3563 return non_lvalue (TREE_VALUE (list));
3564 return TREE_VALUE (list);
3565 }
3566
3567 rest = internal_build_compound_expr (TREE_CHAIN (list), FALSE);
3568
3569 if (! TREE_SIDE_EFFECTS (TREE_VALUE (list)))
3570 {
3571 /* The left-hand operand of a comma expression is like an expression
3572 statement: with -W or -Wunused, we should warn if it doesn't have
3573 any side-effects, unless it was explicitly cast to (void). */
3574 if ((extra_warnings || warn_unused_value)
3575 && ! (TREE_CODE (TREE_VALUE (list)) == CONVERT_EXPR
3576 && VOID_TYPE_P (TREE_TYPE (TREE_VALUE (list)))))
3577 warning ("left-hand operand of comma expression has no effect");
3578
3579 /* When pedantic, a compound expression can be neither an lvalue
3580 nor an integer constant expression. */
3581 if (! pedantic)
3582 return rest;
3583 }
3584
3585 /* With -Wunused, we should also warn if the left-hand operand does have
3586 side-effects, but computes a value which is not used. For example, in
3587 `foo() + bar(), baz()' the result of the `+' operator is not used,
3588 so we should issue a warning. */
3589 else if (warn_unused_value)
3590 warn_if_unused_value (TREE_VALUE (list));
3591
3592 return build (COMPOUND_EXPR, TREE_TYPE (rest), TREE_VALUE (list), rest);
3593 }
3594
3595 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3596
3597 tree
3598 build_c_cast (type, expr)
3599 tree type;
3600 tree expr;
3601 {
3602 tree value = expr;
3603
3604 if (type == error_mark_node || expr == error_mark_node)
3605 return error_mark_node;
3606 type = TYPE_MAIN_VARIANT (type);
3607
3608 #if 0
3609 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3610 if (TREE_CODE (value) == NON_LVALUE_EXPR)
3611 value = TREE_OPERAND (value, 0);
3612 #endif
3613
3614 if (TREE_CODE (type) == ARRAY_TYPE)
3615 {
3616 error ("cast specifies array type");
3617 return error_mark_node;
3618 }
3619
3620 if (TREE_CODE (type) == FUNCTION_TYPE)
3621 {
3622 error ("cast specifies function type");
3623 return error_mark_node;
3624 }
3625
3626 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3627 {
3628 if (pedantic)
3629 {
3630 if (TREE_CODE (type) == RECORD_TYPE
3631 || TREE_CODE (type) == UNION_TYPE)
3632 pedwarn ("ISO C forbids casting nonscalar to the same type");
3633 }
3634 }
3635 else if (TREE_CODE (type) == UNION_TYPE)
3636 {
3637 tree field;
3638 value = default_function_array_conversion (value);
3639
3640 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3641 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3642 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3643 break;
3644
3645 if (field)
3646 {
3647 const char *name;
3648 tree t;
3649
3650 if (pedantic)
3651 pedwarn ("ISO C forbids casts to union type");
3652 if (TYPE_NAME (type) != 0)
3653 {
3654 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3655 name = IDENTIFIER_POINTER (TYPE_NAME (type));
3656 else
3657 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
3658 }
3659 else
3660 name = "";
3661 t = digest_init (type, build (CONSTRUCTOR, type, NULL_TREE,
3662 build_tree_list (field, value)), 0);
3663 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3664 return t;
3665 }
3666 error ("cast to union type from type not present in union");
3667 return error_mark_node;
3668 }
3669 else
3670 {
3671 tree otype, ovalue;
3672
3673 /* If casting to void, avoid the error that would come
3674 from default_conversion in the case of a non-lvalue array. */
3675 if (type == void_type_node)
3676 return build1 (CONVERT_EXPR, type, value);
3677
3678 /* Convert functions and arrays to pointers,
3679 but don't convert any other types. */
3680 value = default_function_array_conversion (value);
3681 otype = TREE_TYPE (value);
3682
3683 /* Optionally warn about potentially worrisome casts. */
3684
3685 if (warn_cast_qual
3686 && TREE_CODE (type) == POINTER_TYPE
3687 && TREE_CODE (otype) == POINTER_TYPE)
3688 {
3689 tree in_type = type;
3690 tree in_otype = otype;
3691 int added = 0;
3692 int discarded = 0;
3693
3694 /* Check that the qualifiers on IN_TYPE are a superset of
3695 the qualifiers of IN_OTYPE. The outermost level of
3696 POINTER_TYPE nodes is uninteresting and we stop as soon
3697 as we hit a non-POINTER_TYPE node on either type. */
3698 do
3699 {
3700 in_otype = TREE_TYPE (in_otype);
3701 in_type = TREE_TYPE (in_type);
3702
3703 /* GNU C allows cv-qualified function types. 'const'
3704 means the function is very pure, 'volatile' means it
3705 can't return. We need to warn when such qualifiers
3706 are added, not when they're taken away. */
3707 if (TREE_CODE (in_otype) == FUNCTION_TYPE
3708 && TREE_CODE (in_type) == FUNCTION_TYPE)
3709 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3710 else
3711 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3712 }
3713 while (TREE_CODE (in_type) == POINTER_TYPE
3714 && TREE_CODE (in_otype) == POINTER_TYPE);
3715
3716 if (added)
3717 warning ("cast adds new qualifiers to function type");
3718
3719 if (discarded)
3720 /* There are qualifiers present in IN_OTYPE that are not
3721 present in IN_TYPE. */
3722 warning ("cast discards qualifiers from pointer target type");
3723 }
3724
3725 /* Warn about possible alignment problems. */
3726 if (STRICT_ALIGNMENT && warn_cast_align
3727 && TREE_CODE (type) == POINTER_TYPE
3728 && TREE_CODE (otype) == POINTER_TYPE
3729 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3730 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3731 /* Don't warn about opaque types, where the actual alignment
3732 restriction is unknown. */
3733 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3734 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3735 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3736 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3737 warning ("cast increases required alignment of target type");
3738
3739 if (TREE_CODE (type) == INTEGER_TYPE
3740 && TREE_CODE (otype) == POINTER_TYPE
3741 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3742 && !TREE_CONSTANT (value))
3743 warning ("cast from pointer to integer of different size");
3744
3745 if (warn_bad_function_cast
3746 && TREE_CODE (value) == CALL_EXPR
3747 && TREE_CODE (type) != TREE_CODE (otype))
3748 warning ("cast does not match function type");
3749
3750 if (TREE_CODE (type) == POINTER_TYPE
3751 && TREE_CODE (otype) == INTEGER_TYPE
3752 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3753 /* Don't warn about converting any constant. */
3754 && !TREE_CONSTANT (value))
3755 warning ("cast to pointer from integer of different size");
3756
3757 ovalue = value;
3758 value = convert (type, value);
3759
3760 /* Ignore any integer overflow caused by the cast. */
3761 if (TREE_CODE (value) == INTEGER_CST)
3762 {
3763 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3764 TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3765 }
3766 }
3767
3768 /* Pedantically, don't let (void *) (FOO *) 0 be a null pointer constant. */
3769 if (pedantic && TREE_CODE (value) == INTEGER_CST
3770 && TREE_CODE (expr) == INTEGER_CST
3771 && TREE_CODE (TREE_TYPE (expr)) != INTEGER_TYPE)
3772 value = non_lvalue (value);
3773
3774 /* If pedantic, don't let a cast be an lvalue. */
3775 if (value == expr && pedantic)
3776 value = non_lvalue (value);
3777
3778 return value;
3779 }
3780
3781 /* Interpret a cast of expression EXPR to type TYPE. */
3782 tree
3783 c_cast_expr (type, expr)
3784 tree type, expr;
3785 {
3786 int saved_wsp = warn_strict_prototypes;
3787
3788 /* This avoids warnings about unprototyped casts on
3789 integers. E.g. "#define SIG_DFL (void(*)())0". */
3790 if (TREE_CODE (expr) == INTEGER_CST)
3791 warn_strict_prototypes = 0;
3792 type = groktypename (type);
3793 warn_strict_prototypes = saved_wsp;
3794
3795 return build_c_cast (type, expr);
3796 }
3797
3798 \f
3799 /* Build an assignment expression of lvalue LHS from value RHS.
3800 MODIFYCODE is the code for a binary operator that we use
3801 to combine the old value of LHS with RHS to get the new value.
3802 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3803
3804 tree
3805 build_modify_expr (lhs, modifycode, rhs)
3806 tree lhs, rhs;
3807 enum tree_code modifycode;
3808 {
3809 tree result;
3810 tree newrhs;
3811 tree lhstype = TREE_TYPE (lhs);
3812 tree olhstype = lhstype;
3813
3814 /* Types that aren't fully specified cannot be used in assignments. */
3815 lhs = require_complete_type (lhs);
3816
3817 /* Avoid duplicate error messages from operands that had errors. */
3818 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3819 return error_mark_node;
3820
3821 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3822 /* Do not use STRIP_NOPS here. We do not want an enumerator
3823 whose value is 0 to count as a null pointer constant. */
3824 if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
3825 rhs = TREE_OPERAND (rhs, 0);
3826
3827 newrhs = rhs;
3828
3829 /* Handle control structure constructs used as "lvalues". */
3830
3831 switch (TREE_CODE (lhs))
3832 {
3833 /* Handle (a, b) used as an "lvalue". */
3834 case COMPOUND_EXPR:
3835 pedantic_lvalue_warning (COMPOUND_EXPR);
3836 newrhs = build_modify_expr (TREE_OPERAND (lhs, 1), modifycode, rhs);
3837 if (TREE_CODE (newrhs) == ERROR_MARK)
3838 return error_mark_node;
3839 return build (COMPOUND_EXPR, lhstype,
3840 TREE_OPERAND (lhs, 0), newrhs);
3841
3842 /* Handle (a ? b : c) used as an "lvalue". */
3843 case COND_EXPR:
3844 pedantic_lvalue_warning (COND_EXPR);
3845 rhs = save_expr (rhs);
3846 {
3847 /* Produce (a ? (b = rhs) : (c = rhs))
3848 except that the RHS goes through a save-expr
3849 so the code to compute it is only emitted once. */
3850 tree cond
3851 = build_conditional_expr (TREE_OPERAND (lhs, 0),
3852 build_modify_expr (TREE_OPERAND (lhs, 1),
3853 modifycode, rhs),
3854 build_modify_expr (TREE_OPERAND (lhs, 2),
3855 modifycode, rhs));
3856 if (TREE_CODE (cond) == ERROR_MARK)
3857 return cond;
3858 /* Make sure the code to compute the rhs comes out
3859 before the split. */
3860 return build (COMPOUND_EXPR, TREE_TYPE (lhs),
3861 /* But cast it to void to avoid an "unused" error. */
3862 convert (void_type_node, rhs), cond);
3863 }
3864 default:
3865 break;
3866 }
3867
3868 /* If a binary op has been requested, combine the old LHS value with the RHS
3869 producing the value we should actually store into the LHS. */
3870
3871 if (modifycode != NOP_EXPR)
3872 {
3873 lhs = stabilize_reference (lhs);
3874 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3875 }
3876
3877 /* Handle a cast used as an "lvalue".
3878 We have already performed any binary operator using the value as cast.
3879 Now convert the result to the cast type of the lhs,
3880 and then true type of the lhs and store it there;
3881 then convert result back to the cast type to be the value
3882 of the assignment. */
3883
3884 switch (TREE_CODE (lhs))
3885 {
3886 case NOP_EXPR:
3887 case CONVERT_EXPR:
3888 case FLOAT_EXPR:
3889 case FIX_TRUNC_EXPR:
3890 case FIX_FLOOR_EXPR:
3891 case FIX_ROUND_EXPR:
3892 case FIX_CEIL_EXPR:
3893 newrhs = default_function_array_conversion (newrhs);
3894 {
3895 tree inner_lhs = TREE_OPERAND (lhs, 0);
3896 tree result;
3897 result = build_modify_expr (inner_lhs, NOP_EXPR,
3898 convert (TREE_TYPE (inner_lhs),
3899 convert (lhstype, newrhs)));
3900 if (TREE_CODE (result) == ERROR_MARK)
3901 return result;
3902 pedantic_lvalue_warning (CONVERT_EXPR);
3903 return convert (TREE_TYPE (lhs), result);
3904 }
3905
3906 default:
3907 break;
3908 }
3909
3910 /* Now we have handled acceptable kinds of LHS that are not truly lvalues.
3911 Reject anything strange now. */
3912
3913 if (!lvalue_or_else (lhs, "invalid lvalue in assignment"))
3914 return error_mark_node;
3915
3916 /* Warn about storing in something that is `const'. */
3917
3918 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3919 || ((TREE_CODE (lhstype) == RECORD_TYPE
3920 || TREE_CODE (lhstype) == UNION_TYPE)
3921 && C_TYPE_FIELDS_READONLY (lhstype)))
3922 readonly_warning (lhs, "assignment");
3923
3924 /* If storing into a structure or union member,
3925 it has probably been given type `int'.
3926 Compute the type that would go with
3927 the actual amount of storage the member occupies. */
3928
3929 if (TREE_CODE (lhs) == COMPONENT_REF
3930 && (TREE_CODE (lhstype) == INTEGER_TYPE
3931 || TREE_CODE (lhstype) == BOOLEAN_TYPE
3932 || TREE_CODE (lhstype) == REAL_TYPE
3933 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3934 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3935
3936 /* If storing in a field that is in actuality a short or narrower than one,
3937 we must store in the field in its actual type. */
3938
3939 if (lhstype != TREE_TYPE (lhs))
3940 {
3941 lhs = copy_node (lhs);
3942 TREE_TYPE (lhs) = lhstype;
3943 }
3944
3945 /* Convert new value to destination type. */
3946
3947 newrhs = convert_for_assignment (lhstype, newrhs, _("assignment"),
3948 NULL_TREE, NULL_TREE, 0);
3949 if (TREE_CODE (newrhs) == ERROR_MARK)
3950 return error_mark_node;
3951
3952 /* Scan operands */
3953
3954 result = build (MODIFY_EXPR, lhstype, lhs, newrhs);
3955 TREE_SIDE_EFFECTS (result) = 1;
3956
3957 /* If we got the LHS in a different type for storing in,
3958 convert the result back to the nominal type of LHS
3959 so that the value we return always has the same type
3960 as the LHS argument. */
3961
3962 if (olhstype == TREE_TYPE (result))
3963 return result;
3964 return convert_for_assignment (olhstype, result, _("assignment"),
3965 NULL_TREE, NULL_TREE, 0);
3966 }
3967 \f
3968 /* Convert value RHS to type TYPE as preparation for an assignment
3969 to an lvalue of type TYPE.
3970 The real work of conversion is done by `convert'.
3971 The purpose of this function is to generate error messages
3972 for assignments that are not allowed in C.
3973 ERRTYPE is a string to use in error messages:
3974 "assignment", "return", etc. If it is null, this is parameter passing
3975 for a function call (and different error messages are output).
3976
3977 FUNNAME is the name of the function being called,
3978 as an IDENTIFIER_NODE, or null.
3979 PARMNUM is the number of the argument, for printing in error messages. */
3980
3981 static tree
3982 convert_for_assignment (type, rhs, errtype, fundecl, funname, parmnum)
3983 tree type, rhs;
3984 const char *errtype;
3985 tree fundecl, funname;
3986 int parmnum;
3987 {
3988 enum tree_code codel = TREE_CODE (type);
3989 tree rhstype;
3990 enum tree_code coder;
3991
3992 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3993 /* Do not use STRIP_NOPS here. We do not want an enumerator
3994 whose value is 0 to count as a null pointer constant. */
3995 if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
3996 rhs = TREE_OPERAND (rhs, 0);
3997
3998 if (TREE_CODE (TREE_TYPE (rhs)) == ARRAY_TYPE
3999 || TREE_CODE (TREE_TYPE (rhs)) == FUNCTION_TYPE)
4000 rhs = default_conversion (rhs);
4001 else if (optimize && TREE_CODE (rhs) == VAR_DECL)
4002 rhs = decl_constant_value_for_broken_optimization (rhs);
4003
4004 rhstype = TREE_TYPE (rhs);
4005 coder = TREE_CODE (rhstype);
4006
4007 if (coder == ERROR_MARK)
4008 return error_mark_node;
4009
4010 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
4011 {
4012 overflow_warning (rhs);
4013 /* Check for Objective-C protocols. This will issue a warning if
4014 there are protocol violations. No need to use the return value. */
4015 maybe_objc_comptypes (type, rhstype, 0);
4016 return rhs;
4017 }
4018
4019 if (coder == VOID_TYPE)
4020 {
4021 error ("void value not ignored as it ought to be");
4022 return error_mark_node;
4023 }
4024 /* A type converts to a reference to it.
4025 This code doesn't fully support references, it's just for the
4026 special case of va_start and va_copy. */
4027 if (codel == REFERENCE_TYPE
4028 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
4029 {
4030 if (!lvalue_p (rhs))
4031 {
4032 error ("cannot pass rvalue to reference parameter");
4033 return error_mark_node;
4034 }
4035 if (mark_addressable (rhs) == 0)
4036 return error_mark_node;
4037 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
4038
4039 /* We already know that these two types are compatible, but they
4040 may not be exactly identical. In fact, `TREE_TYPE (type)' is
4041 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
4042 likely to be va_list, a typedef to __builtin_va_list, which
4043 is different enough that it will cause problems later. */
4044 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
4045 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
4046
4047 rhs = build1 (NOP_EXPR, type, rhs);
4048 return rhs;
4049 }
4050 /* Arithmetic types all interconvert, and enum is treated like int. */
4051 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
4052 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
4053 || codel == BOOLEAN_TYPE)
4054 && (coder == INTEGER_TYPE || coder == REAL_TYPE
4055 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
4056 || coder == BOOLEAN_TYPE))
4057 return convert_and_check (type, rhs);
4058
4059 /* Conversion to a transparent union from its member types.
4060 This applies only to function arguments. */
4061 else if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type) && ! errtype)
4062 {
4063 tree memb_types;
4064 tree marginal_memb_type = 0;
4065
4066 for (memb_types = TYPE_FIELDS (type); memb_types;
4067 memb_types = TREE_CHAIN (memb_types))
4068 {
4069 tree memb_type = TREE_TYPE (memb_types);
4070
4071 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
4072 TYPE_MAIN_VARIANT (rhstype)))
4073 break;
4074
4075 if (TREE_CODE (memb_type) != POINTER_TYPE)
4076 continue;
4077
4078 if (coder == POINTER_TYPE)
4079 {
4080 tree ttl = TREE_TYPE (memb_type);
4081 tree ttr = TREE_TYPE (rhstype);
4082
4083 /* Any non-function converts to a [const][volatile] void *
4084 and vice versa; otherwise, targets must be the same.
4085 Meanwhile, the lhs target must have all the qualifiers of
4086 the rhs. */
4087 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4088 || comp_target_types (memb_type, rhstype))
4089 {
4090 /* If this type won't generate any warnings, use it. */
4091 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
4092 || ((TREE_CODE (ttr) == FUNCTION_TYPE
4093 && TREE_CODE (ttl) == FUNCTION_TYPE)
4094 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4095 == TYPE_QUALS (ttr))
4096 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4097 == TYPE_QUALS (ttl))))
4098 break;
4099
4100 /* Keep looking for a better type, but remember this one. */
4101 if (! marginal_memb_type)
4102 marginal_memb_type = memb_type;
4103 }
4104 }
4105
4106 /* Can convert integer zero to any pointer type. */
4107 if (integer_zerop (rhs)
4108 || (TREE_CODE (rhs) == NOP_EXPR
4109 && integer_zerop (TREE_OPERAND (rhs, 0))))
4110 {
4111 rhs = null_pointer_node;
4112 break;
4113 }
4114 }
4115
4116 if (memb_types || marginal_memb_type)
4117 {
4118 if (! memb_types)
4119 {
4120 /* We have only a marginally acceptable member type;
4121 it needs a warning. */
4122 tree ttl = TREE_TYPE (marginal_memb_type);
4123 tree ttr = TREE_TYPE (rhstype);
4124
4125 /* Const and volatile mean something different for function
4126 types, so the usual warnings are not appropriate. */
4127 if (TREE_CODE (ttr) == FUNCTION_TYPE
4128 && TREE_CODE (ttl) == FUNCTION_TYPE)
4129 {
4130 /* Because const and volatile on functions are
4131 restrictions that say the function will not do
4132 certain things, it is okay to use a const or volatile
4133 function where an ordinary one is wanted, but not
4134 vice-versa. */
4135 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4136 warn_for_assignment ("%s makes qualified function pointer from unqualified",
4137 errtype, funname, parmnum);
4138 }
4139 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4140 warn_for_assignment ("%s discards qualifiers from pointer target type",
4141 errtype, funname,
4142 parmnum);
4143 }
4144
4145 if (pedantic && ! DECL_IN_SYSTEM_HEADER (fundecl))
4146 pedwarn ("ISO C prohibits argument conversion to union type");
4147
4148 return build1 (NOP_EXPR, type, rhs);
4149 }
4150 }
4151
4152 /* Conversions among pointers */
4153 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4154 && (coder == codel))
4155 {
4156 tree ttl = TREE_TYPE (type);
4157 tree ttr = TREE_TYPE (rhstype);
4158
4159 /* Any non-function converts to a [const][volatile] void *
4160 and vice versa; otherwise, targets must be the same.
4161 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4162 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4163 || comp_target_types (type, rhstype)
4164 || (unsigned_type (TYPE_MAIN_VARIANT (ttl))
4165 == unsigned_type (TYPE_MAIN_VARIANT (ttr))))
4166 {
4167 if (pedantic
4168 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4169 ||
4170 (VOID_TYPE_P (ttr)
4171 /* Check TREE_CODE to catch cases like (void *) (char *) 0
4172 which are not ANSI null ptr constants. */
4173 && (!integer_zerop (rhs) || TREE_CODE (rhs) == NOP_EXPR)
4174 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4175 warn_for_assignment ("ISO C forbids %s between function pointer and `void *'",
4176 errtype, funname, parmnum);
4177 /* Const and volatile mean something different for function types,
4178 so the usual warnings are not appropriate. */
4179 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4180 && TREE_CODE (ttl) != FUNCTION_TYPE)
4181 {
4182 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4183 warn_for_assignment ("%s discards qualifiers from pointer target type",
4184 errtype, funname, parmnum);
4185 /* If this is not a case of ignoring a mismatch in signedness,
4186 no warning. */
4187 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4188 || comp_target_types (type, rhstype))
4189 ;
4190 /* If there is a mismatch, do warn. */
4191 else if (pedantic)
4192 warn_for_assignment ("pointer targets in %s differ in signedness",
4193 errtype, funname, parmnum);
4194 }
4195 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4196 && TREE_CODE (ttr) == FUNCTION_TYPE)
4197 {
4198 /* Because const and volatile on functions are restrictions
4199 that say the function will not do certain things,
4200 it is okay to use a const or volatile function
4201 where an ordinary one is wanted, but not vice-versa. */
4202 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4203 warn_for_assignment ("%s makes qualified function pointer from unqualified",
4204 errtype, funname, parmnum);
4205 }
4206 }
4207 else
4208 warn_for_assignment ("%s from incompatible pointer type",
4209 errtype, funname, parmnum);
4210 return convert (type, rhs);
4211 }
4212 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4213 {
4214 /* An explicit constant 0 can convert to a pointer,
4215 or one that results from arithmetic, even including
4216 a cast to integer type. */
4217 if (! (TREE_CODE (rhs) == INTEGER_CST && integer_zerop (rhs))
4218 &&
4219 ! (TREE_CODE (rhs) == NOP_EXPR
4220 && TREE_CODE (TREE_TYPE (rhs)) == INTEGER_TYPE
4221 && TREE_CODE (TREE_OPERAND (rhs, 0)) == INTEGER_CST
4222 && integer_zerop (TREE_OPERAND (rhs, 0))))
4223 {
4224 warn_for_assignment ("%s makes pointer from integer without a cast",
4225 errtype, funname, parmnum);
4226 return convert (type, rhs);
4227 }
4228 return null_pointer_node;
4229 }
4230 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4231 {
4232 warn_for_assignment ("%s makes integer from pointer without a cast",
4233 errtype, funname, parmnum);
4234 return convert (type, rhs);
4235 }
4236 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4237 return convert (type, rhs);
4238
4239 if (!errtype)
4240 {
4241 if (funname)
4242 {
4243 tree selector = maybe_building_objc_message_expr ();
4244
4245 if (selector && parmnum > 2)
4246 error ("incompatible type for argument %d of `%s'",
4247 parmnum - 2, IDENTIFIER_POINTER (selector));
4248 else
4249 error ("incompatible type for argument %d of `%s'",
4250 parmnum, IDENTIFIER_POINTER (funname));
4251 }
4252 else
4253 error ("incompatible type for argument %d of indirect function call",
4254 parmnum);
4255 }
4256 else
4257 error ("incompatible types in %s", errtype);
4258
4259 return error_mark_node;
4260 }
4261
4262 /* Print a warning using MSGID.
4263 It gets OPNAME as its one parameter.
4264 If OPNAME is null, it is replaced by "passing arg ARGNUM of `FUNCTION'".
4265 FUNCTION and ARGNUM are handled specially if we are building an
4266 Objective-C selector. */
4267
4268 static void
4269 warn_for_assignment (msgid, opname, function, argnum)
4270 const char *msgid;
4271 const char *opname;
4272 tree function;
4273 int argnum;
4274 {
4275 if (opname == 0)
4276 {
4277 tree selector = maybe_building_objc_message_expr ();
4278 char * new_opname;
4279
4280 if (selector && argnum > 2)
4281 {
4282 function = selector;
4283 argnum -= 2;
4284 }
4285 if (function)
4286 {
4287 /* Function name is known; supply it. */
4288 const char *const argstring = _("passing arg %d of `%s'");
4289 new_opname = (char *) alloca (IDENTIFIER_LENGTH (function)
4290 + strlen (argstring) + 1 + 25
4291 /*%d*/ + 1);
4292 sprintf (new_opname, argstring, argnum,
4293 IDENTIFIER_POINTER (function));
4294 }
4295 else
4296 {
4297 /* Function name unknown (call through ptr); just give arg number. */
4298 const char *const argnofun = _("passing arg %d of pointer to function");
4299 new_opname = (char *) alloca (strlen (argnofun) + 1 + 25 /*%d*/ + 1);
4300 sprintf (new_opname, argnofun, argnum);
4301 }
4302 opname = new_opname;
4303 }
4304 pedwarn (msgid, opname);
4305 }
4306 \f
4307 /* If VALUE is a compound expr all of whose expressions are constant, then
4308 return its value. Otherwise, return error_mark_node.
4309
4310 This is for handling COMPOUND_EXPRs as initializer elements
4311 which is allowed with a warning when -pedantic is specified. */
4312
4313 static tree
4314 valid_compound_expr_initializer (value, endtype)
4315 tree value;
4316 tree endtype;
4317 {
4318 if (TREE_CODE (value) == COMPOUND_EXPR)
4319 {
4320 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4321 == error_mark_node)
4322 return error_mark_node;
4323 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4324 endtype);
4325 }
4326 else if (! TREE_CONSTANT (value)
4327 && ! initializer_constant_valid_p (value, endtype))
4328 return error_mark_node;
4329 else
4330 return value;
4331 }
4332 \f
4333 /* Perform appropriate conversions on the initial value of a variable,
4334 store it in the declaration DECL,
4335 and print any error messages that are appropriate.
4336 If the init is invalid, store an ERROR_MARK. */
4337
4338 void
4339 store_init_value (decl, init)
4340 tree decl, init;
4341 {
4342 tree value, type;
4343
4344 /* If variable's type was invalidly declared, just ignore it. */
4345
4346 type = TREE_TYPE (decl);
4347 if (TREE_CODE (type) == ERROR_MARK)
4348 return;
4349
4350 /* Digest the specified initializer into an expression. */
4351
4352 value = digest_init (type, init, TREE_STATIC (decl));
4353
4354 /* Store the expression if valid; else report error. */
4355
4356 #if 0
4357 /* Note that this is the only place we can detect the error
4358 in a case such as struct foo bar = (struct foo) { x, y };
4359 where there is one initial value which is a constructor expression. */
4360 if (value == error_mark_node)
4361 ;
4362 else if (TREE_STATIC (decl) && ! TREE_CONSTANT (value))
4363 {
4364 error ("initializer for static variable is not constant");
4365 value = error_mark_node;
4366 }
4367 else if (TREE_STATIC (decl)
4368 && initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
4369 {
4370 error ("initializer for static variable uses complicated arithmetic");
4371 value = error_mark_node;
4372 }
4373 else
4374 {
4375 if (pedantic && TREE_CODE (value) == CONSTRUCTOR)
4376 {
4377 if (! TREE_CONSTANT (value))
4378 pedwarn ("aggregate initializer is not constant");
4379 else if (! TREE_STATIC (value))
4380 pedwarn ("aggregate initializer uses complicated arithmetic");
4381 }
4382 }
4383 #endif
4384
4385 if (warn_traditional && !in_system_header
4386 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && ! TREE_STATIC (decl))
4387 warning ("traditional C rejects automatic aggregate initialization");
4388
4389 DECL_INITIAL (decl) = value;
4390
4391 /* ANSI wants warnings about out-of-range constant initializers. */
4392 STRIP_TYPE_NOPS (value);
4393 constant_expression_warning (value);
4394
4395 /* Check if we need to set array size from compound literal size. */
4396 if (TREE_CODE (type) == ARRAY_TYPE
4397 && TYPE_DOMAIN (type) == 0
4398 && value != error_mark_node)
4399 {
4400 tree inside_init = init;
4401
4402 if (TREE_CODE (init) == NON_LVALUE_EXPR)
4403 inside_init = TREE_OPERAND (init, 0);
4404 inside_init = fold (inside_init);
4405
4406 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4407 {
4408 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4409
4410 if (TYPE_DOMAIN (TREE_TYPE (decl)))
4411 {
4412 /* For int foo[] = (int [3]){1}; we need to set array size
4413 now since later on array initializer will be just the
4414 brace enclosed list of the compound literal. */
4415 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (decl));
4416 layout_type (type);
4417 layout_decl (decl, 0);
4418 }
4419 }
4420 }
4421 }
4422 \f
4423 /* Methods for storing and printing names for error messages. */
4424
4425 /* Implement a spelling stack that allows components of a name to be pushed
4426 and popped. Each element on the stack is this structure. */
4427
4428 struct spelling
4429 {
4430 int kind;
4431 union
4432 {
4433 int i;
4434 const char *s;
4435 } u;
4436 };
4437
4438 #define SPELLING_STRING 1
4439 #define SPELLING_MEMBER 2
4440 #define SPELLING_BOUNDS 3
4441
4442 static struct spelling *spelling; /* Next stack element (unused). */
4443 static struct spelling *spelling_base; /* Spelling stack base. */
4444 static int spelling_size; /* Size of the spelling stack. */
4445
4446 /* Macros to save and restore the spelling stack around push_... functions.
4447 Alternative to SAVE_SPELLING_STACK. */
4448
4449 #define SPELLING_DEPTH() (spelling - spelling_base)
4450 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4451
4452 /* Save and restore the spelling stack around arbitrary C code. */
4453
4454 #define SAVE_SPELLING_DEPTH(code) \
4455 { \
4456 int __depth = SPELLING_DEPTH (); \
4457 code; \
4458 RESTORE_SPELLING_DEPTH (__depth); \
4459 }
4460
4461 /* Push an element on the spelling stack with type KIND and assign VALUE
4462 to MEMBER. */
4463
4464 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4465 { \
4466 int depth = SPELLING_DEPTH (); \
4467 \
4468 if (depth >= spelling_size) \
4469 { \
4470 spelling_size += 10; \
4471 if (spelling_base == 0) \
4472 spelling_base \
4473 = (struct spelling *) xmalloc (spelling_size * sizeof (struct spelling)); \
4474 else \
4475 spelling_base \
4476 = (struct spelling *) xrealloc (spelling_base, \
4477 spelling_size * sizeof (struct spelling)); \
4478 RESTORE_SPELLING_DEPTH (depth); \
4479 } \
4480 \
4481 spelling->kind = (KIND); \
4482 spelling->MEMBER = (VALUE); \
4483 spelling++; \
4484 }
4485
4486 /* Push STRING on the stack. Printed literally. */
4487
4488 static void
4489 push_string (string)
4490 const char *string;
4491 {
4492 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4493 }
4494
4495 /* Push a member name on the stack. Printed as '.' STRING. */
4496
4497 static void
4498 push_member_name (decl)
4499 tree decl;
4500
4501 {
4502 const char *const string
4503 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4504 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4505 }
4506
4507 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4508
4509 static void
4510 push_array_bounds (bounds)
4511 int bounds;
4512 {
4513 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4514 }
4515
4516 /* Compute the maximum size in bytes of the printed spelling. */
4517
4518 static int
4519 spelling_length ()
4520 {
4521 int size = 0;
4522 struct spelling *p;
4523
4524 for (p = spelling_base; p < spelling; p++)
4525 {
4526 if (p->kind == SPELLING_BOUNDS)
4527 size += 25;
4528 else
4529 size += strlen (p->u.s) + 1;
4530 }
4531
4532 return size;
4533 }
4534
4535 /* Print the spelling to BUFFER and return it. */
4536
4537 static char *
4538 print_spelling (buffer)
4539 char *buffer;
4540 {
4541 char *d = buffer;
4542 struct spelling *p;
4543
4544 for (p = spelling_base; p < spelling; p++)
4545 if (p->kind == SPELLING_BOUNDS)
4546 {
4547 sprintf (d, "[%d]", p->u.i);
4548 d += strlen (d);
4549 }
4550 else
4551 {
4552 const char *s;
4553 if (p->kind == SPELLING_MEMBER)
4554 *d++ = '.';
4555 for (s = p->u.s; (*d = *s++); d++)
4556 ;
4557 }
4558 *d++ = '\0';
4559 return buffer;
4560 }
4561
4562 /* Issue an error message for a bad initializer component.
4563 MSGID identifies the message.
4564 The component name is taken from the spelling stack. */
4565
4566 void
4567 error_init (msgid)
4568 const char *msgid;
4569 {
4570 char *ofwhat;
4571
4572 error ("%s", _(msgid));
4573 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4574 if (*ofwhat)
4575 error ("(near initialization for `%s')", ofwhat);
4576 }
4577
4578 /* Issue a pedantic warning for a bad initializer component.
4579 MSGID identifies the message.
4580 The component name is taken from the spelling stack. */
4581
4582 void
4583 pedwarn_init (msgid)
4584 const char *msgid;
4585 {
4586 char *ofwhat;
4587
4588 pedwarn ("%s", _(msgid));
4589 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4590 if (*ofwhat)
4591 pedwarn ("(near initialization for `%s')", ofwhat);
4592 }
4593
4594 /* Issue a warning for a bad initializer component.
4595 MSGID identifies the message.
4596 The component name is taken from the spelling stack. */
4597
4598 static void
4599 warning_init (msgid)
4600 const char *msgid;
4601 {
4602 char *ofwhat;
4603
4604 warning ("%s", _(msgid));
4605 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4606 if (*ofwhat)
4607 warning ("(near initialization for `%s')", ofwhat);
4608 }
4609 \f
4610 /* Digest the parser output INIT as an initializer for type TYPE.
4611 Return a C expression of type TYPE to represent the initial value.
4612
4613 REQUIRE_CONSTANT requests an error if non-constant initializers or
4614 elements are seen. */
4615
4616 static tree
4617 digest_init (type, init, require_constant)
4618 tree type, init;
4619 int require_constant;
4620 {
4621 enum tree_code code = TREE_CODE (type);
4622 tree inside_init = init;
4623
4624 if (type == error_mark_node
4625 || init == error_mark_node
4626 || TREE_TYPE (init) == error_mark_node)
4627 return error_mark_node;
4628
4629 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
4630 /* Do not use STRIP_NOPS here. We do not want an enumerator
4631 whose value is 0 to count as a null pointer constant. */
4632 if (TREE_CODE (init) == NON_LVALUE_EXPR)
4633 inside_init = TREE_OPERAND (init, 0);
4634
4635 inside_init = fold (inside_init);
4636
4637 /* Initialization of an array of chars from a string constant
4638 optionally enclosed in braces. */
4639
4640 if (code == ARRAY_TYPE)
4641 {
4642 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4643 if ((typ1 == char_type_node
4644 || typ1 == signed_char_type_node
4645 || typ1 == unsigned_char_type_node
4646 || typ1 == unsigned_wchar_type_node
4647 || typ1 == signed_wchar_type_node)
4648 && ((inside_init && TREE_CODE (inside_init) == STRING_CST)))
4649 {
4650 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4651 TYPE_MAIN_VARIANT (type)))
4652 return inside_init;
4653
4654 if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4655 != char_type_node)
4656 && TYPE_PRECISION (typ1) == TYPE_PRECISION (char_type_node))
4657 {
4658 error_init ("char-array initialized from wide string");
4659 return error_mark_node;
4660 }
4661 if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4662 == char_type_node)
4663 && TYPE_PRECISION (typ1) != TYPE_PRECISION (char_type_node))
4664 {
4665 error_init ("int-array initialized from non-wide string");
4666 return error_mark_node;
4667 }
4668
4669 TREE_TYPE (inside_init) = type;
4670 if (TYPE_DOMAIN (type) != 0
4671 && TYPE_SIZE (type) != 0
4672 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4673 /* Subtract 1 (or sizeof (wchar_t))
4674 because it's ok to ignore the terminating null char
4675 that is counted in the length of the constant. */
4676 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4677 TREE_STRING_LENGTH (inside_init)
4678 - ((TYPE_PRECISION (typ1)
4679 != TYPE_PRECISION (char_type_node))
4680 ? (TYPE_PRECISION (wchar_type_node)
4681 / BITS_PER_UNIT)
4682 : 1)))
4683 pedwarn_init ("initializer-string for array of chars is too long");
4684
4685 return inside_init;
4686 }
4687 }
4688
4689 /* Any type can be initialized
4690 from an expression of the same type, optionally with braces. */
4691
4692 if (inside_init && TREE_TYPE (inside_init) != 0
4693 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4694 TYPE_MAIN_VARIANT (type))
4695 || (code == ARRAY_TYPE
4696 && comptypes (TREE_TYPE (inside_init), type))
4697 || (code == VECTOR_TYPE
4698 && comptypes (TREE_TYPE (inside_init), type))
4699 || (code == POINTER_TYPE
4700 && (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4701 || TREE_CODE (TREE_TYPE (inside_init)) == FUNCTION_TYPE)
4702 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4703 TREE_TYPE (type)))))
4704 {
4705 if (code == POINTER_TYPE)
4706 inside_init = default_function_array_conversion (inside_init);
4707
4708 if (require_constant && !flag_isoc99
4709 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4710 {
4711 /* As an extension, allow initializing objects with static storage
4712 duration with compound literals (which are then treated just as
4713 the brace enclosed list they contain). */
4714 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4715 inside_init = DECL_INITIAL (decl);
4716 }
4717
4718 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4719 && TREE_CODE (inside_init) != CONSTRUCTOR)
4720 {
4721 error_init ("array initialized from non-constant array expression");
4722 return error_mark_node;
4723 }
4724
4725 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4726 inside_init = decl_constant_value_for_broken_optimization (inside_init);
4727
4728 /* Compound expressions can only occur here if -pedantic or
4729 -pedantic-errors is specified. In the later case, we always want
4730 an error. In the former case, we simply want a warning. */
4731 if (require_constant && pedantic
4732 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4733 {
4734 inside_init
4735 = valid_compound_expr_initializer (inside_init,
4736 TREE_TYPE (inside_init));
4737 if (inside_init == error_mark_node)
4738 error_init ("initializer element is not constant");
4739 else
4740 pedwarn_init ("initializer element is not constant");
4741 if (flag_pedantic_errors)
4742 inside_init = error_mark_node;
4743 }
4744 else if (require_constant
4745 && (!TREE_CONSTANT (inside_init)
4746 /* This test catches things like `7 / 0' which
4747 result in an expression for which TREE_CONSTANT
4748 is true, but which is not actually something
4749 that is a legal constant. We really should not
4750 be using this function, because it is a part of
4751 the back-end. Instead, the expression should
4752 already have been turned into ERROR_MARK_NODE. */
4753 || !initializer_constant_valid_p (inside_init,
4754 TREE_TYPE (inside_init))))
4755 {
4756 error_init ("initializer element is not constant");
4757 inside_init = error_mark_node;
4758 }
4759
4760 return inside_init;
4761 }
4762
4763 /* Handle scalar types, including conversions. */
4764
4765 if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4766 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE)
4767 {
4768 /* Note that convert_for_assignment calls default_conversion
4769 for arrays and functions. We must not call it in the
4770 case where inside_init is a null pointer constant. */
4771 inside_init
4772 = convert_for_assignment (type, init, _("initialization"),
4773 NULL_TREE, NULL_TREE, 0);
4774
4775 if (require_constant && ! TREE_CONSTANT (inside_init))
4776 {
4777 error_init ("initializer element is not constant");
4778 inside_init = error_mark_node;
4779 }
4780 else if (require_constant
4781 && initializer_constant_valid_p (inside_init, TREE_TYPE (inside_init)) == 0)
4782 {
4783 error_init ("initializer element is not computable at load time");
4784 inside_init = error_mark_node;
4785 }
4786
4787 return inside_init;
4788 }
4789
4790 /* Come here only for records and arrays. */
4791
4792 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4793 {
4794 error_init ("variable-sized object may not be initialized");
4795 return error_mark_node;
4796 }
4797
4798 error_init ("invalid initializer");
4799 return error_mark_node;
4800 }
4801 \f
4802 /* Handle initializers that use braces. */
4803
4804 /* Type of object we are accumulating a constructor for.
4805 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4806 static tree constructor_type;
4807
4808 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4809 left to fill. */
4810 static tree constructor_fields;
4811
4812 /* For an ARRAY_TYPE, this is the specified index
4813 at which to store the next element we get. */
4814 static tree constructor_index;
4815
4816 /* For an ARRAY_TYPE, this is the maximum index. */
4817 static tree constructor_max_index;
4818
4819 /* For a RECORD_TYPE, this is the first field not yet written out. */
4820 static tree constructor_unfilled_fields;
4821
4822 /* For an ARRAY_TYPE, this is the index of the first element
4823 not yet written out. */
4824 static tree constructor_unfilled_index;
4825
4826 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4827 This is so we can generate gaps between fields, when appropriate. */
4828 static tree constructor_bit_index;
4829
4830 /* If we are saving up the elements rather than allocating them,
4831 this is the list of elements so far (in reverse order,
4832 most recent first). */
4833 static tree constructor_elements;
4834
4835 /* 1 if constructor should be incrementally stored into a constructor chain,
4836 0 if all the elements should be kept in AVL tree. */
4837 static int constructor_incremental;
4838
4839 /* 1 if so far this constructor's elements are all compile-time constants. */
4840 static int constructor_constant;
4841
4842 /* 1 if so far this constructor's elements are all valid address constants. */
4843 static int constructor_simple;
4844
4845 /* 1 if this constructor is erroneous so far. */
4846 static int constructor_erroneous;
4847
4848 /* 1 if have called defer_addressed_constants. */
4849 static int constructor_subconstants_deferred;
4850
4851 /* Structure for managing pending initializer elements, organized as an
4852 AVL tree. */
4853
4854 struct init_node
4855 {
4856 struct init_node *left, *right;
4857 struct init_node *parent;
4858 int balance;
4859 tree purpose;
4860 tree value;
4861 };
4862
4863 /* Tree of pending elements at this constructor level.
4864 These are elements encountered out of order
4865 which belong at places we haven't reached yet in actually
4866 writing the output.
4867 Will never hold tree nodes across GC runs. */
4868 static struct init_node *constructor_pending_elts;
4869
4870 /* The SPELLING_DEPTH of this constructor. */
4871 static int constructor_depth;
4872
4873 /* 0 if implicitly pushing constructor levels is allowed. */
4874 int constructor_no_implicit = 0; /* 0 for C; 1 for some other languages. */
4875
4876 static int require_constant_value;
4877 static int require_constant_elements;
4878
4879 /* DECL node for which an initializer is being read.
4880 0 means we are reading a constructor expression
4881 such as (struct foo) {...}. */
4882 static tree constructor_decl;
4883
4884 /* start_init saves the ASMSPEC arg here for really_start_incremental_init. */
4885 static const char *constructor_asmspec;
4886
4887 /* Nonzero if this is an initializer for a top-level decl. */
4888 static int constructor_top_level;
4889
4890 /* Nonzero if there were any member designators in this initializer. */
4891 static int constructor_designated;
4892
4893 /* Nesting depth of designator list. */
4894 static int designator_depth;
4895
4896 /* Nonzero if there were diagnosed errors in this designator list. */
4897 static int designator_errorneous;
4898
4899 \f
4900 /* This stack has a level for each implicit or explicit level of
4901 structuring in the initializer, including the outermost one. It
4902 saves the values of most of the variables above. */
4903
4904 struct constructor_range_stack;
4905
4906 struct constructor_stack
4907 {
4908 struct constructor_stack *next;
4909 tree type;
4910 tree fields;
4911 tree index;
4912 tree max_index;
4913 tree unfilled_index;
4914 tree unfilled_fields;
4915 tree bit_index;
4916 tree elements;
4917 struct init_node *pending_elts;
4918 int offset;
4919 int depth;
4920 /* If nonzero, this value should replace the entire
4921 constructor at this level. */
4922 tree replacement_value;
4923 struct constructor_range_stack *range_stack;
4924 char constant;
4925 char simple;
4926 char implicit;
4927 char erroneous;
4928 char outer;
4929 char incremental;
4930 char designated;
4931 };
4932
4933 struct constructor_stack *constructor_stack;
4934
4935 /* This stack represents designators from some range designator up to
4936 the last designator in the list. */
4937
4938 struct constructor_range_stack
4939 {
4940 struct constructor_range_stack *next, *prev;
4941 struct constructor_stack *stack;
4942 tree range_start;
4943 tree index;
4944 tree range_end;
4945 tree fields;
4946 };
4947
4948 struct constructor_range_stack *constructor_range_stack;
4949
4950 /* This stack records separate initializers that are nested.
4951 Nested initializers can't happen in ANSI C, but GNU C allows them
4952 in cases like { ... (struct foo) { ... } ... }. */
4953
4954 struct initializer_stack
4955 {
4956 struct initializer_stack *next;
4957 tree decl;
4958 const char *asmspec;
4959 struct constructor_stack *constructor_stack;
4960 struct constructor_range_stack *constructor_range_stack;
4961 tree elements;
4962 struct spelling *spelling;
4963 struct spelling *spelling_base;
4964 int spelling_size;
4965 char top_level;
4966 char require_constant_value;
4967 char require_constant_elements;
4968 char deferred;
4969 };
4970
4971 struct initializer_stack *initializer_stack;
4972 \f
4973 /* Prepare to parse and output the initializer for variable DECL. */
4974
4975 void
4976 start_init (decl, asmspec_tree, top_level)
4977 tree decl;
4978 tree asmspec_tree;
4979 int top_level;
4980 {
4981 const char *locus;
4982 struct initializer_stack *p
4983 = (struct initializer_stack *) xmalloc (sizeof (struct initializer_stack));
4984 const char *asmspec = 0;
4985
4986 if (asmspec_tree)
4987 asmspec = TREE_STRING_POINTER (asmspec_tree);
4988
4989 p->decl = constructor_decl;
4990 p->asmspec = constructor_asmspec;
4991 p->require_constant_value = require_constant_value;
4992 p->require_constant_elements = require_constant_elements;
4993 p->constructor_stack = constructor_stack;
4994 p->constructor_range_stack = constructor_range_stack;
4995 p->elements = constructor_elements;
4996 p->spelling = spelling;
4997 p->spelling_base = spelling_base;
4998 p->spelling_size = spelling_size;
4999 p->deferred = constructor_subconstants_deferred;
5000 p->top_level = constructor_top_level;
5001 p->next = initializer_stack;
5002 initializer_stack = p;
5003
5004 constructor_decl = decl;
5005 constructor_asmspec = asmspec;
5006 constructor_subconstants_deferred = 0;
5007 constructor_designated = 0;
5008 constructor_top_level = top_level;
5009
5010 if (decl != 0)
5011 {
5012 require_constant_value = TREE_STATIC (decl);
5013 require_constant_elements
5014 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
5015 /* For a scalar, you can always use any value to initialize,
5016 even within braces. */
5017 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
5018 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5019 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
5020 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5021 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
5022 }
5023 else
5024 {
5025 require_constant_value = 0;
5026 require_constant_elements = 0;
5027 locus = "(anonymous)";
5028 }
5029
5030 constructor_stack = 0;
5031 constructor_range_stack = 0;
5032
5033 missing_braces_mentioned = 0;
5034
5035 spelling_base = 0;
5036 spelling_size = 0;
5037 RESTORE_SPELLING_DEPTH (0);
5038
5039 if (locus)
5040 push_string (locus);
5041 }
5042
5043 void
5044 finish_init ()
5045 {
5046 struct initializer_stack *p = initializer_stack;
5047
5048 /* Output subconstants (string constants, usually)
5049 that were referenced within this initializer and saved up.
5050 Must do this if and only if we called defer_addressed_constants. */
5051 if (constructor_subconstants_deferred)
5052 output_deferred_addressed_constants ();
5053
5054 /* Free the whole constructor stack of this initializer. */
5055 while (constructor_stack)
5056 {
5057 struct constructor_stack *q = constructor_stack;
5058 constructor_stack = q->next;
5059 free (q);
5060 }
5061
5062 if (constructor_range_stack)
5063 abort ();
5064
5065 /* Pop back to the data of the outer initializer (if any). */
5066 constructor_decl = p->decl;
5067 constructor_asmspec = p->asmspec;
5068 require_constant_value = p->require_constant_value;
5069 require_constant_elements = p->require_constant_elements;
5070 constructor_stack = p->constructor_stack;
5071 constructor_range_stack = p->constructor_range_stack;
5072 constructor_elements = p->elements;
5073 spelling = p->spelling;
5074 spelling_base = p->spelling_base;
5075 spelling_size = p->spelling_size;
5076 constructor_subconstants_deferred = p->deferred;
5077 constructor_top_level = p->top_level;
5078 initializer_stack = p->next;
5079 free (p);
5080 }
5081 \f
5082 /* Call here when we see the initializer is surrounded by braces.
5083 This is instead of a call to push_init_level;
5084 it is matched by a call to pop_init_level.
5085
5086 TYPE is the type to initialize, for a constructor expression.
5087 For an initializer for a decl, TYPE is zero. */
5088
5089 void
5090 really_start_incremental_init (type)
5091 tree type;
5092 {
5093 struct constructor_stack *p
5094 = (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
5095
5096 if (type == 0)
5097 type = TREE_TYPE (constructor_decl);
5098
5099 p->type = constructor_type;
5100 p->fields = constructor_fields;
5101 p->index = constructor_index;
5102 p->max_index = constructor_max_index;
5103 p->unfilled_index = constructor_unfilled_index;
5104 p->unfilled_fields = constructor_unfilled_fields;
5105 p->bit_index = constructor_bit_index;
5106 p->elements = constructor_elements;
5107 p->constant = constructor_constant;
5108 p->simple = constructor_simple;
5109 p->erroneous = constructor_erroneous;
5110 p->pending_elts = constructor_pending_elts;
5111 p->depth = constructor_depth;
5112 p->replacement_value = 0;
5113 p->implicit = 0;
5114 p->range_stack = 0;
5115 p->outer = 0;
5116 p->incremental = constructor_incremental;
5117 p->designated = constructor_designated;
5118 p->next = 0;
5119 constructor_stack = p;
5120
5121 constructor_constant = 1;
5122 constructor_simple = 1;
5123 constructor_depth = SPELLING_DEPTH ();
5124 constructor_elements = 0;
5125 constructor_pending_elts = 0;
5126 constructor_type = type;
5127 constructor_incremental = 1;
5128 constructor_designated = 0;
5129 designator_depth = 0;
5130 designator_errorneous = 0;
5131
5132 if (TREE_CODE (constructor_type) == RECORD_TYPE
5133 || TREE_CODE (constructor_type) == UNION_TYPE)
5134 {
5135 constructor_fields = TYPE_FIELDS (constructor_type);
5136 /* Skip any nameless bit fields at the beginning. */
5137 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5138 && DECL_NAME (constructor_fields) == 0)
5139 constructor_fields = TREE_CHAIN (constructor_fields);
5140
5141 constructor_unfilled_fields = constructor_fields;
5142 constructor_bit_index = bitsize_zero_node;
5143 }
5144 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5145 {
5146 if (TYPE_DOMAIN (constructor_type))
5147 {
5148 constructor_max_index
5149 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5150
5151 /* Detect non-empty initializations of zero-length arrays. */
5152 if (constructor_max_index == NULL_TREE
5153 && TYPE_SIZE (constructor_type))
5154 constructor_max_index = build_int_2 (-1, -1);
5155
5156 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5157 to initialize VLAs will cause an proper error; avoid tree
5158 checking errors as well by setting a safe value. */
5159 if (constructor_max_index
5160 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5161 constructor_max_index = build_int_2 (-1, -1);
5162
5163 constructor_index
5164 = convert (bitsizetype,
5165 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5166 }
5167 else
5168 constructor_index = bitsize_zero_node;
5169
5170 constructor_unfilled_index = constructor_index;
5171 }
5172 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5173 {
5174 /* Vectors are like simple fixed-size arrays. */
5175 constructor_max_index =
5176 build_int_2 (TYPE_VECTOR_SUBPARTS (constructor_type) - 1, 0);
5177 constructor_index = convert (bitsizetype, bitsize_zero_node);
5178 constructor_unfilled_index = constructor_index;
5179 }
5180 else
5181 {
5182 /* Handle the case of int x = {5}; */
5183 constructor_fields = constructor_type;
5184 constructor_unfilled_fields = constructor_type;
5185 }
5186 }
5187 \f
5188 /* Push down into a subobject, for initialization.
5189 If this is for an explicit set of braces, IMPLICIT is 0.
5190 If it is because the next element belongs at a lower level,
5191 IMPLICIT is 1 (or 2 if the push is because of designator list). */
5192
5193 void
5194 push_init_level (implicit)
5195 int implicit;
5196 {
5197 struct constructor_stack *p;
5198 tree value = NULL_TREE;
5199
5200 /* If we've exhausted any levels that didn't have braces,
5201 pop them now. */
5202 while (constructor_stack->implicit)
5203 {
5204 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5205 || TREE_CODE (constructor_type) == UNION_TYPE)
5206 && constructor_fields == 0)
5207 process_init_element (pop_init_level (1));
5208 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5209 && tree_int_cst_lt (constructor_max_index, constructor_index))
5210 process_init_element (pop_init_level (1));
5211 else
5212 break;
5213 }
5214
5215 /* Unless this is an explicit brace, we need to preserve previous
5216 content if any. */
5217 if (implicit)
5218 {
5219 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5220 || TREE_CODE (constructor_type) == UNION_TYPE)
5221 && constructor_fields)
5222 value = find_init_member (constructor_fields);
5223 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5224 value = find_init_member (constructor_index);
5225 }
5226
5227 p = (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
5228 p->type = constructor_type;
5229 p->fields = constructor_fields;
5230 p->index = constructor_index;
5231 p->max_index = constructor_max_index;
5232 p->unfilled_index = constructor_unfilled_index;
5233 p->unfilled_fields = constructor_unfilled_fields;
5234 p->bit_index = constructor_bit_index;
5235 p->elements = constructor_elements;
5236 p->constant = constructor_constant;
5237 p->simple = constructor_simple;
5238 p->erroneous = constructor_erroneous;
5239 p->pending_elts = constructor_pending_elts;
5240 p->depth = constructor_depth;
5241 p->replacement_value = 0;
5242 p->implicit = implicit;
5243 p->outer = 0;
5244 p->incremental = constructor_incremental;
5245 p->designated = constructor_designated;
5246 p->next = constructor_stack;
5247 p->range_stack = 0;
5248 constructor_stack = p;
5249
5250 constructor_constant = 1;
5251 constructor_simple = 1;
5252 constructor_depth = SPELLING_DEPTH ();
5253 constructor_elements = 0;
5254 constructor_incremental = 1;
5255 constructor_designated = 0;
5256 constructor_pending_elts = 0;
5257 if (!implicit)
5258 {
5259 p->range_stack = constructor_range_stack;
5260 constructor_range_stack = 0;
5261 designator_depth = 0;
5262 designator_errorneous = 0;
5263 }
5264
5265 /* Don't die if an entire brace-pair level is superfluous
5266 in the containing level. */
5267 if (constructor_type == 0)
5268 ;
5269 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5270 || TREE_CODE (constructor_type) == UNION_TYPE)
5271 {
5272 /* Don't die if there are extra init elts at the end. */
5273 if (constructor_fields == 0)
5274 constructor_type = 0;
5275 else
5276 {
5277 constructor_type = TREE_TYPE (constructor_fields);
5278 push_member_name (constructor_fields);
5279 constructor_depth++;
5280 }
5281 }
5282 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5283 {
5284 constructor_type = TREE_TYPE (constructor_type);
5285 push_array_bounds (tree_low_cst (constructor_index, 0));
5286 constructor_depth++;
5287 }
5288
5289 if (constructor_type == 0)
5290 {
5291 error_init ("extra brace group at end of initializer");
5292 constructor_fields = 0;
5293 constructor_unfilled_fields = 0;
5294 return;
5295 }
5296
5297 if (value && TREE_CODE (value) == CONSTRUCTOR)
5298 {
5299 constructor_constant = TREE_CONSTANT (value);
5300 constructor_simple = TREE_STATIC (value);
5301 constructor_elements = TREE_OPERAND (value, 1);
5302 if (constructor_elements
5303 && (TREE_CODE (constructor_type) == RECORD_TYPE
5304 || TREE_CODE (constructor_type) == ARRAY_TYPE))
5305 set_nonincremental_init ();
5306 }
5307
5308 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5309 {
5310 missing_braces_mentioned = 1;
5311 warning_init ("missing braces around initializer");
5312 }
5313
5314 if (TREE_CODE (constructor_type) == RECORD_TYPE
5315 || TREE_CODE (constructor_type) == UNION_TYPE)
5316 {
5317 constructor_fields = TYPE_FIELDS (constructor_type);
5318 /* Skip any nameless bit fields at the beginning. */
5319 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5320 && DECL_NAME (constructor_fields) == 0)
5321 constructor_fields = TREE_CHAIN (constructor_fields);
5322
5323 constructor_unfilled_fields = constructor_fields;
5324 constructor_bit_index = bitsize_zero_node;
5325 }
5326 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5327 {
5328 /* Vectors are like simple fixed-size arrays. */
5329 constructor_max_index =
5330 build_int_2 (TYPE_VECTOR_SUBPARTS (constructor_type) - 1, 0);
5331 constructor_index = convert (bitsizetype, integer_zero_node);
5332 constructor_unfilled_index = constructor_index;
5333 }
5334 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5335 {
5336 if (TYPE_DOMAIN (constructor_type))
5337 {
5338 constructor_max_index
5339 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5340
5341 /* Detect non-empty initializations of zero-length arrays. */
5342 if (constructor_max_index == NULL_TREE
5343 && TYPE_SIZE (constructor_type))
5344 constructor_max_index = build_int_2 (-1, -1);
5345
5346 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5347 to initialize VLAs will cause an proper error; avoid tree
5348 checking errors as well by setting a safe value. */
5349 if (constructor_max_index
5350 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5351 constructor_max_index = build_int_2 (-1, -1);
5352
5353 constructor_index
5354 = convert (bitsizetype,
5355 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5356 }
5357 else
5358 constructor_index = bitsize_zero_node;
5359
5360 constructor_unfilled_index = constructor_index;
5361 if (value && TREE_CODE (value) == STRING_CST)
5362 {
5363 /* We need to split the char/wchar array into individual
5364 characters, so that we don't have to special case it
5365 everywhere. */
5366 set_nonincremental_init_from_string (value);
5367 }
5368 }
5369 else
5370 {
5371 warning_init ("braces around scalar initializer");
5372 constructor_fields = constructor_type;
5373 constructor_unfilled_fields = constructor_type;
5374 }
5375 }
5376
5377 /* At the end of an implicit or explicit brace level,
5378 finish up that level of constructor.
5379 If we were outputting the elements as they are read, return 0
5380 from inner levels (process_init_element ignores that),
5381 but return error_mark_node from the outermost level
5382 (that's what we want to put in DECL_INITIAL).
5383 Otherwise, return a CONSTRUCTOR expression. */
5384
5385 tree
5386 pop_init_level (implicit)
5387 int implicit;
5388 {
5389 struct constructor_stack *p;
5390 tree constructor = 0;
5391
5392 if (implicit == 0)
5393 {
5394 /* When we come to an explicit close brace,
5395 pop any inner levels that didn't have explicit braces. */
5396 while (constructor_stack->implicit)
5397 process_init_element (pop_init_level (1));
5398
5399 if (constructor_range_stack)
5400 abort ();
5401 }
5402
5403 p = constructor_stack;
5404
5405 /* Error for initializing a flexible array member, or a zero-length
5406 array member in an inappropriate context. */
5407 if (constructor_type && constructor_fields
5408 && TREE_CODE (constructor_type) == ARRAY_TYPE
5409 && TYPE_DOMAIN (constructor_type)
5410 && ! TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5411 {
5412 /* Silently discard empty initializations. The parser will
5413 already have pedwarned for empty brackets. */
5414 if (integer_zerop (constructor_unfilled_index))
5415 constructor_type = NULL_TREE;
5416 else if (! TYPE_SIZE (constructor_type))
5417 {
5418 if (constructor_depth > 2)
5419 error_init ("initialization of flexible array member in a nested context");
5420 else if (pedantic)
5421 pedwarn_init ("initialization of a flexible array member");
5422
5423 /* We have already issued an error message for the existence
5424 of a flexible array member not at the end of the structure.
5425 Discard the initializer so that we do not abort later. */
5426 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5427 constructor_type = NULL_TREE;
5428 }
5429 else
5430 /* Zero-length arrays are no longer special, so we should no longer
5431 get here. */
5432 abort ();
5433 }
5434
5435 /* Warn when some struct elements are implicitly initialized to zero. */
5436 if (extra_warnings
5437 && constructor_type
5438 && TREE_CODE (constructor_type) == RECORD_TYPE
5439 && constructor_unfilled_fields)
5440 {
5441 /* Do not warn for flexible array members or zero-length arrays. */
5442 while (constructor_unfilled_fields
5443 && (! DECL_SIZE (constructor_unfilled_fields)
5444 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5445 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5446
5447 /* Do not warn if this level of the initializer uses member
5448 designators; it is likely to be deliberate. */
5449 if (constructor_unfilled_fields && !constructor_designated)
5450 {
5451 push_member_name (constructor_unfilled_fields);
5452 warning_init ("missing initializer");
5453 RESTORE_SPELLING_DEPTH (constructor_depth);
5454 }
5455 }
5456
5457 /* Now output all pending elements. */
5458 constructor_incremental = 1;
5459 output_pending_init_elements (1);
5460
5461 /* Pad out the end of the structure. */
5462 if (p->replacement_value)
5463 /* If this closes a superfluous brace pair,
5464 just pass out the element between them. */
5465 constructor = p->replacement_value;
5466 else if (constructor_type == 0)
5467 ;
5468 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5469 && TREE_CODE (constructor_type) != UNION_TYPE
5470 && TREE_CODE (constructor_type) != ARRAY_TYPE
5471 && TREE_CODE (constructor_type) != VECTOR_TYPE)
5472 {
5473 /* A nonincremental scalar initializer--just return
5474 the element, after verifying there is just one. */
5475 if (constructor_elements == 0)
5476 {
5477 if (!constructor_erroneous)
5478 error_init ("empty scalar initializer");
5479 constructor = error_mark_node;
5480 }
5481 else if (TREE_CHAIN (constructor_elements) != 0)
5482 {
5483 error_init ("extra elements in scalar initializer");
5484 constructor = TREE_VALUE (constructor_elements);
5485 }
5486 else
5487 constructor = TREE_VALUE (constructor_elements);
5488 }
5489 else
5490 {
5491 if (constructor_erroneous)
5492 constructor = error_mark_node;
5493 else
5494 {
5495 constructor = build (CONSTRUCTOR, constructor_type, NULL_TREE,
5496 nreverse (constructor_elements));
5497 if (constructor_constant)
5498 TREE_CONSTANT (constructor) = 1;
5499 if (constructor_constant && constructor_simple)
5500 TREE_STATIC (constructor) = 1;
5501 }
5502 }
5503
5504 constructor_type = p->type;
5505 constructor_fields = p->fields;
5506 constructor_index = p->index;
5507 constructor_max_index = p->max_index;
5508 constructor_unfilled_index = p->unfilled_index;
5509 constructor_unfilled_fields = p->unfilled_fields;
5510 constructor_bit_index = p->bit_index;
5511 constructor_elements = p->elements;
5512 constructor_constant = p->constant;
5513 constructor_simple = p->simple;
5514 constructor_erroneous = p->erroneous;
5515 constructor_incremental = p->incremental;
5516 constructor_designated = p->designated;
5517 constructor_pending_elts = p->pending_elts;
5518 constructor_depth = p->depth;
5519 if (!p->implicit)
5520 constructor_range_stack = p->range_stack;
5521 RESTORE_SPELLING_DEPTH (constructor_depth);
5522
5523 constructor_stack = p->next;
5524 free (p);
5525
5526 if (constructor == 0)
5527 {
5528 if (constructor_stack == 0)
5529 return error_mark_node;
5530 return NULL_TREE;
5531 }
5532 return constructor;
5533 }
5534
5535 /* Common handling for both array range and field name designators.
5536 ARRAY argument is non-zero for array ranges. Returns zero for success. */
5537
5538 static int
5539 set_designator (array)
5540 int array;
5541 {
5542 tree subtype;
5543 enum tree_code subcode;
5544
5545 /* Don't die if an entire brace-pair level is superfluous
5546 in the containing level. */
5547 if (constructor_type == 0)
5548 return 1;
5549
5550 /* If there were errors in this designator list already, bail out silently. */
5551 if (designator_errorneous)
5552 return 1;
5553
5554 if (!designator_depth)
5555 {
5556 if (constructor_range_stack)
5557 abort ();
5558
5559 /* Designator list starts at the level of closest explicit
5560 braces. */
5561 while (constructor_stack->implicit)
5562 process_init_element (pop_init_level (1));
5563 constructor_designated = 1;
5564 return 0;
5565 }
5566
5567 if (constructor_no_implicit)
5568 {
5569 error_init ("initialization designators may not nest");
5570 return 1;
5571 }
5572
5573 if (TREE_CODE (constructor_type) == RECORD_TYPE
5574 || TREE_CODE (constructor_type) == UNION_TYPE)
5575 {
5576 subtype = TREE_TYPE (constructor_fields);
5577 if (subtype != error_mark_node)
5578 subtype = TYPE_MAIN_VARIANT (subtype);
5579 }
5580 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5581 {
5582 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5583 }
5584 else
5585 abort ();
5586
5587 subcode = TREE_CODE (subtype);
5588 if (array && subcode != ARRAY_TYPE)
5589 {
5590 error_init ("array index in non-array initializer");
5591 return 1;
5592 }
5593 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5594 {
5595 error_init ("field name not in record or union initializer");
5596 return 1;
5597 }
5598
5599 constructor_designated = 1;
5600 push_init_level (2);
5601 return 0;
5602 }
5603
5604 /* If there are range designators in designator list, push a new designator
5605 to constructor_range_stack. RANGE_END is end of such stack range or
5606 NULL_TREE if there is no range designator at this level. */
5607
5608 static void
5609 push_range_stack (range_end)
5610 tree range_end;
5611 {
5612 struct constructor_range_stack *p;
5613
5614 p = (struct constructor_range_stack *)
5615 ggc_alloc (sizeof (struct constructor_range_stack));
5616 p->prev = constructor_range_stack;
5617 p->next = 0;
5618 p->fields = constructor_fields;
5619 p->range_start = constructor_index;
5620 p->index = constructor_index;
5621 p->stack = constructor_stack;
5622 p->range_end = range_end;
5623 if (constructor_range_stack)
5624 constructor_range_stack->next = p;
5625 constructor_range_stack = p;
5626 }
5627
5628 /* Within an array initializer, specify the next index to be initialized.
5629 FIRST is that index. If LAST is nonzero, then initialize a range
5630 of indices, running from FIRST through LAST. */
5631
5632 void
5633 set_init_index (first, last)
5634 tree first, last;
5635 {
5636 if (set_designator (1))
5637 return;
5638
5639 designator_errorneous = 1;
5640
5641 while ((TREE_CODE (first) == NOP_EXPR
5642 || TREE_CODE (first) == CONVERT_EXPR
5643 || TREE_CODE (first) == NON_LVALUE_EXPR)
5644 && (TYPE_MODE (TREE_TYPE (first))
5645 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (first, 0)))))
5646 first = TREE_OPERAND (first, 0);
5647
5648 if (last)
5649 while ((TREE_CODE (last) == NOP_EXPR
5650 || TREE_CODE (last) == CONVERT_EXPR
5651 || TREE_CODE (last) == NON_LVALUE_EXPR)
5652 && (TYPE_MODE (TREE_TYPE (last))
5653 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (last, 0)))))
5654 last = TREE_OPERAND (last, 0);
5655
5656 if (TREE_CODE (first) != INTEGER_CST)
5657 error_init ("nonconstant array index in initializer");
5658 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5659 error_init ("nonconstant array index in initializer");
5660 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5661 error_init ("array index in non-array initializer");
5662 else if (constructor_max_index
5663 && tree_int_cst_lt (constructor_max_index, first))
5664 error_init ("array index in initializer exceeds array bounds");
5665 else
5666 {
5667 constructor_index = convert (bitsizetype, first);
5668
5669 if (last)
5670 {
5671 if (tree_int_cst_equal (first, last))
5672 last = 0;
5673 else if (tree_int_cst_lt (last, first))
5674 {
5675 error_init ("empty index range in initializer");
5676 last = 0;
5677 }
5678 else
5679 {
5680 last = convert (bitsizetype, last);
5681 if (constructor_max_index != 0
5682 && tree_int_cst_lt (constructor_max_index, last))
5683 {
5684 error_init ("array index range in initializer exceeds array bounds");
5685 last = 0;
5686 }
5687 }
5688 }
5689
5690 designator_depth++;
5691 designator_errorneous = 0;
5692 if (constructor_range_stack || last)
5693 push_range_stack (last);
5694 }
5695 }
5696
5697 /* Within a struct initializer, specify the next field to be initialized. */
5698
5699 void
5700 set_init_label (fieldname)
5701 tree fieldname;
5702 {
5703 tree tail;
5704
5705 if (set_designator (0))
5706 return;
5707
5708 designator_errorneous = 1;
5709
5710 if (TREE_CODE (constructor_type) != RECORD_TYPE
5711 && TREE_CODE (constructor_type) != UNION_TYPE)
5712 {
5713 error_init ("field name not in record or union initializer");
5714 return;
5715 }
5716
5717 for (tail = TYPE_FIELDS (constructor_type); tail;
5718 tail = TREE_CHAIN (tail))
5719 {
5720 if (DECL_NAME (tail) == fieldname)
5721 break;
5722 }
5723
5724 if (tail == 0)
5725 error ("unknown field `%s' specified in initializer",
5726 IDENTIFIER_POINTER (fieldname));
5727 else
5728 {
5729 constructor_fields = tail;
5730 designator_depth++;
5731 designator_errorneous = 0;
5732 if (constructor_range_stack)
5733 push_range_stack (NULL_TREE);
5734 }
5735 }
5736 \f
5737 /* Add a new initializer to the tree of pending initializers. PURPOSE
5738 identifies the initializer, either array index or field in a structure.
5739 VALUE is the value of that index or field. */
5740
5741 static void
5742 add_pending_init (purpose, value)
5743 tree purpose, value;
5744 {
5745 struct init_node *p, **q, *r;
5746
5747 q = &constructor_pending_elts;
5748 p = 0;
5749
5750 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5751 {
5752 while (*q != 0)
5753 {
5754 p = *q;
5755 if (tree_int_cst_lt (purpose, p->purpose))
5756 q = &p->left;
5757 else if (tree_int_cst_lt (p->purpose, purpose))
5758 q = &p->right;
5759 else
5760 {
5761 if (TREE_SIDE_EFFECTS (p->value))
5762 warning_init ("initialized field with side-effects overwritten");
5763 p->value = value;
5764 return;
5765 }
5766 }
5767 }
5768 else
5769 {
5770 tree bitpos;
5771
5772 bitpos = bit_position (purpose);
5773 while (*q != NULL)
5774 {
5775 p = *q;
5776 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5777 q = &p->left;
5778 else if (p->purpose != purpose)
5779 q = &p->right;
5780 else
5781 {
5782 if (TREE_SIDE_EFFECTS (p->value))
5783 warning_init ("initialized field with side-effects overwritten");
5784 p->value = value;
5785 return;
5786 }
5787 }
5788 }
5789
5790 r = (struct init_node *) ggc_alloc (sizeof (struct init_node));
5791 r->purpose = purpose;
5792 r->value = value;
5793
5794 *q = r;
5795 r->parent = p;
5796 r->left = 0;
5797 r->right = 0;
5798 r->balance = 0;
5799
5800 while (p)
5801 {
5802 struct init_node *s;
5803
5804 if (r == p->left)
5805 {
5806 if (p->balance == 0)
5807 p->balance = -1;
5808 else if (p->balance < 0)
5809 {
5810 if (r->balance < 0)
5811 {
5812 /* L rotation. */
5813 p->left = r->right;
5814 if (p->left)
5815 p->left->parent = p;
5816 r->right = p;
5817
5818 p->balance = 0;
5819 r->balance = 0;
5820
5821 s = p->parent;
5822 p->parent = r;
5823 r->parent = s;
5824 if (s)
5825 {
5826 if (s->left == p)
5827 s->left = r;
5828 else
5829 s->right = r;
5830 }
5831 else
5832 constructor_pending_elts = r;
5833 }
5834 else
5835 {
5836 /* LR rotation. */
5837 struct init_node *t = r->right;
5838
5839 r->right = t->left;
5840 if (r->right)
5841 r->right->parent = r;
5842 t->left = r;
5843
5844 p->left = t->right;
5845 if (p->left)
5846 p->left->parent = p;
5847 t->right = p;
5848
5849 p->balance = t->balance < 0;
5850 r->balance = -(t->balance > 0);
5851 t->balance = 0;
5852
5853 s = p->parent;
5854 p->parent = t;
5855 r->parent = t;
5856 t->parent = s;
5857 if (s)
5858 {
5859 if (s->left == p)
5860 s->left = t;
5861 else
5862 s->right = t;
5863 }
5864 else
5865 constructor_pending_elts = t;
5866 }
5867 break;
5868 }
5869 else
5870 {
5871 /* p->balance == +1; growth of left side balances the node. */
5872 p->balance = 0;
5873 break;
5874 }
5875 }
5876 else /* r == p->right */
5877 {
5878 if (p->balance == 0)
5879 /* Growth propagation from right side. */
5880 p->balance++;
5881 else if (p->balance > 0)
5882 {
5883 if (r->balance > 0)
5884 {
5885 /* R rotation. */
5886 p->right = r->left;
5887 if (p->right)
5888 p->right->parent = p;
5889 r->left = p;
5890
5891 p->balance = 0;
5892 r->balance = 0;
5893
5894 s = p->parent;
5895 p->parent = r;
5896 r->parent = s;
5897 if (s)
5898 {
5899 if (s->left == p)
5900 s->left = r;
5901 else
5902 s->right = r;
5903 }
5904 else
5905 constructor_pending_elts = r;
5906 }
5907 else /* r->balance == -1 */
5908 {
5909 /* RL rotation */
5910 struct init_node *t = r->left;
5911
5912 r->left = t->right;
5913 if (r->left)
5914 r->left->parent = r;
5915 t->right = r;
5916
5917 p->right = t->left;
5918 if (p->right)
5919 p->right->parent = p;
5920 t->left = p;
5921
5922 r->balance = (t->balance < 0);
5923 p->balance = -(t->balance > 0);
5924 t->balance = 0;
5925
5926 s = p->parent;
5927 p->parent = t;
5928 r->parent = t;
5929 t->parent = s;
5930 if (s)
5931 {
5932 if (s->left == p)
5933 s->left = t;
5934 else
5935 s->right = t;
5936 }
5937 else
5938 constructor_pending_elts = t;
5939 }
5940 break;
5941 }
5942 else
5943 {
5944 /* p->balance == -1; growth of right side balances the node. */
5945 p->balance = 0;
5946 break;
5947 }
5948 }
5949
5950 r = p;
5951 p = p->parent;
5952 }
5953 }
5954
5955 /* Build AVL tree from a sorted chain. */
5956
5957 static void
5958 set_nonincremental_init ()
5959 {
5960 tree chain;
5961
5962 if (TREE_CODE (constructor_type) != RECORD_TYPE
5963 && TREE_CODE (constructor_type) != ARRAY_TYPE)
5964 return;
5965
5966 for (chain = constructor_elements; chain; chain = TREE_CHAIN (chain))
5967 add_pending_init (TREE_PURPOSE (chain), TREE_VALUE (chain));
5968 constructor_elements = 0;
5969 if (TREE_CODE (constructor_type) == RECORD_TYPE)
5970 {
5971 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
5972 /* Skip any nameless bit fields at the beginning. */
5973 while (constructor_unfilled_fields != 0
5974 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5975 && DECL_NAME (constructor_unfilled_fields) == 0)
5976 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5977
5978 }
5979 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5980 {
5981 if (TYPE_DOMAIN (constructor_type))
5982 constructor_unfilled_index
5983 = convert (bitsizetype,
5984 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5985 else
5986 constructor_unfilled_index = bitsize_zero_node;
5987 }
5988 constructor_incremental = 0;
5989 }
5990
5991 /* Build AVL tree from a string constant. */
5992
5993 static void
5994 set_nonincremental_init_from_string (str)
5995 tree str;
5996 {
5997 tree value, purpose, type;
5998 HOST_WIDE_INT val[2];
5999 const char *p, *end;
6000 int byte, wchar_bytes, charwidth, bitpos;
6001
6002 if (TREE_CODE (constructor_type) != ARRAY_TYPE)
6003 abort ();
6004
6005 if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6006 == TYPE_PRECISION (char_type_node))
6007 wchar_bytes = 1;
6008 else if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6009 == TYPE_PRECISION (wchar_type_node))
6010 wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
6011 else
6012 abort ();
6013
6014 charwidth = TYPE_PRECISION (char_type_node);
6015 type = TREE_TYPE (constructor_type);
6016 p = TREE_STRING_POINTER (str);
6017 end = p + TREE_STRING_LENGTH (str);
6018
6019 for (purpose = bitsize_zero_node;
6020 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
6021 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
6022 {
6023 if (wchar_bytes == 1)
6024 {
6025 val[1] = (unsigned char) *p++;
6026 val[0] = 0;
6027 }
6028 else
6029 {
6030 val[0] = 0;
6031 val[1] = 0;
6032 for (byte = 0; byte < wchar_bytes; byte++)
6033 {
6034 if (BYTES_BIG_ENDIAN)
6035 bitpos = (wchar_bytes - byte - 1) * charwidth;
6036 else
6037 bitpos = byte * charwidth;
6038 val[bitpos < HOST_BITS_PER_WIDE_INT]
6039 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
6040 << (bitpos % HOST_BITS_PER_WIDE_INT);
6041 }
6042 }
6043
6044 if (!TREE_UNSIGNED (type))
6045 {
6046 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6047 if (bitpos < HOST_BITS_PER_WIDE_INT)
6048 {
6049 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6050 {
6051 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6052 val[0] = -1;
6053 }
6054 }
6055 else if (bitpos == HOST_BITS_PER_WIDE_INT)
6056 {
6057 if (val[1] < 0)
6058 val[0] = -1;
6059 }
6060 else if (val[0] & (((HOST_WIDE_INT) 1)
6061 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6062 val[0] |= ((HOST_WIDE_INT) -1)
6063 << (bitpos - HOST_BITS_PER_WIDE_INT);
6064 }
6065
6066 value = build_int_2 (val[1], val[0]);
6067 TREE_TYPE (value) = type;
6068 add_pending_init (purpose, value);
6069 }
6070
6071 constructor_incremental = 0;
6072 }
6073
6074 /* Return value of FIELD in pending initializer or zero if the field was
6075 not initialized yet. */
6076
6077 static tree
6078 find_init_member (field)
6079 tree field;
6080 {
6081 struct init_node *p;
6082
6083 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6084 {
6085 if (constructor_incremental
6086 && tree_int_cst_lt (field, constructor_unfilled_index))
6087 set_nonincremental_init ();
6088
6089 p = constructor_pending_elts;
6090 while (p)
6091 {
6092 if (tree_int_cst_lt (field, p->purpose))
6093 p = p->left;
6094 else if (tree_int_cst_lt (p->purpose, field))
6095 p = p->right;
6096 else
6097 return p->value;
6098 }
6099 }
6100 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6101 {
6102 tree bitpos = bit_position (field);
6103
6104 if (constructor_incremental
6105 && (!constructor_unfilled_fields
6106 || tree_int_cst_lt (bitpos,
6107 bit_position (constructor_unfilled_fields))))
6108 set_nonincremental_init ();
6109
6110 p = constructor_pending_elts;
6111 while (p)
6112 {
6113 if (field == p->purpose)
6114 return p->value;
6115 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6116 p = p->left;
6117 else
6118 p = p->right;
6119 }
6120 }
6121 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6122 {
6123 if (constructor_elements
6124 && TREE_PURPOSE (constructor_elements) == field)
6125 return TREE_VALUE (constructor_elements);
6126 }
6127 return 0;
6128 }
6129
6130 /* "Output" the next constructor element.
6131 At top level, really output it to assembler code now.
6132 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6133 TYPE is the data type that the containing data type wants here.
6134 FIELD is the field (a FIELD_DECL) or the index that this element fills.
6135
6136 PENDING if non-nil means output pending elements that belong
6137 right after this element. (PENDING is normally 1;
6138 it is 0 while outputting pending elements, to avoid recursion.) */
6139
6140 static void
6141 output_init_element (value, type, field, pending)
6142 tree value, type, field;
6143 int pending;
6144 {
6145 if (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE
6146 || (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6147 && !(TREE_CODE (value) == STRING_CST
6148 && TREE_CODE (type) == ARRAY_TYPE
6149 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
6150 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6151 TYPE_MAIN_VARIANT (type))))
6152 value = default_conversion (value);
6153
6154 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6155 && require_constant_value && !flag_isoc99 && pending)
6156 {
6157 /* As an extension, allow initializing objects with static storage
6158 duration with compound literals (which are then treated just as
6159 the brace enclosed list they contain). */
6160 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6161 value = DECL_INITIAL (decl);
6162 }
6163
6164 if (value == error_mark_node)
6165 constructor_erroneous = 1;
6166 else if (!TREE_CONSTANT (value))
6167 constructor_constant = 0;
6168 else if (initializer_constant_valid_p (value, TREE_TYPE (value)) == 0
6169 || ((TREE_CODE (constructor_type) == RECORD_TYPE
6170 || TREE_CODE (constructor_type) == UNION_TYPE)
6171 && DECL_C_BIT_FIELD (field)
6172 && TREE_CODE (value) != INTEGER_CST))
6173 constructor_simple = 0;
6174
6175 if (require_constant_value && ! TREE_CONSTANT (value))
6176 {
6177 error_init ("initializer element is not constant");
6178 value = error_mark_node;
6179 }
6180 else if (require_constant_elements
6181 && initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
6182 pedwarn ("initializer element is not computable at load time");
6183
6184 /* If this field is empty (and not at the end of structure),
6185 don't do anything other than checking the initializer. */
6186 if (field
6187 && (TREE_TYPE (field) == error_mark_node
6188 || (COMPLETE_TYPE_P (TREE_TYPE (field))
6189 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6190 && (TREE_CODE (constructor_type) == ARRAY_TYPE
6191 || TREE_CHAIN (field)))))
6192 return;
6193
6194 value = digest_init (type, value, require_constant_value);
6195 if (value == error_mark_node)
6196 {
6197 constructor_erroneous = 1;
6198 return;
6199 }
6200
6201 /* If this element doesn't come next in sequence,
6202 put it on constructor_pending_elts. */
6203 if (TREE_CODE (constructor_type) == ARRAY_TYPE
6204 && (!constructor_incremental
6205 || !tree_int_cst_equal (field, constructor_unfilled_index)))
6206 {
6207 if (constructor_incremental
6208 && tree_int_cst_lt (field, constructor_unfilled_index))
6209 set_nonincremental_init ();
6210
6211 add_pending_init (field, value);
6212 return;
6213 }
6214 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6215 && (!constructor_incremental
6216 || field != constructor_unfilled_fields))
6217 {
6218 /* We do this for records but not for unions. In a union,
6219 no matter which field is specified, it can be initialized
6220 right away since it starts at the beginning of the union. */
6221 if (constructor_incremental)
6222 {
6223 if (!constructor_unfilled_fields)
6224 set_nonincremental_init ();
6225 else
6226 {
6227 tree bitpos, unfillpos;
6228
6229 bitpos = bit_position (field);
6230 unfillpos = bit_position (constructor_unfilled_fields);
6231
6232 if (tree_int_cst_lt (bitpos, unfillpos))
6233 set_nonincremental_init ();
6234 }
6235 }
6236
6237 add_pending_init (field, value);
6238 return;
6239 }
6240 else if (TREE_CODE (constructor_type) == UNION_TYPE
6241 && constructor_elements)
6242 {
6243 if (TREE_SIDE_EFFECTS (TREE_VALUE (constructor_elements)))
6244 warning_init ("initialized field with side-effects overwritten");
6245
6246 /* We can have just one union field set. */
6247 constructor_elements = 0;
6248 }
6249
6250 /* Otherwise, output this element either to
6251 constructor_elements or to the assembler file. */
6252
6253 if (field && TREE_CODE (field) == INTEGER_CST)
6254 field = copy_node (field);
6255 constructor_elements
6256 = tree_cons (field, value, constructor_elements);
6257
6258 /* Advance the variable that indicates sequential elements output. */
6259 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6260 constructor_unfilled_index
6261 = size_binop (PLUS_EXPR, constructor_unfilled_index,
6262 bitsize_one_node);
6263 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6264 {
6265 constructor_unfilled_fields
6266 = TREE_CHAIN (constructor_unfilled_fields);
6267
6268 /* Skip any nameless bit fields. */
6269 while (constructor_unfilled_fields != 0
6270 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6271 && DECL_NAME (constructor_unfilled_fields) == 0)
6272 constructor_unfilled_fields =
6273 TREE_CHAIN (constructor_unfilled_fields);
6274 }
6275 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6276 constructor_unfilled_fields = 0;
6277
6278 /* Now output any pending elements which have become next. */
6279 if (pending)
6280 output_pending_init_elements (0);
6281 }
6282
6283 /* Output any pending elements which have become next.
6284 As we output elements, constructor_unfilled_{fields,index}
6285 advances, which may cause other elements to become next;
6286 if so, they too are output.
6287
6288 If ALL is 0, we return when there are
6289 no more pending elements to output now.
6290
6291 If ALL is 1, we output space as necessary so that
6292 we can output all the pending elements. */
6293
6294 static void
6295 output_pending_init_elements (all)
6296 int all;
6297 {
6298 struct init_node *elt = constructor_pending_elts;
6299 tree next;
6300
6301 retry:
6302
6303 /* Look thru the whole pending tree.
6304 If we find an element that should be output now,
6305 output it. Otherwise, set NEXT to the element
6306 that comes first among those still pending. */
6307
6308 next = 0;
6309 while (elt)
6310 {
6311 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6312 {
6313 if (tree_int_cst_equal (elt->purpose,
6314 constructor_unfilled_index))
6315 output_init_element (elt->value,
6316 TREE_TYPE (constructor_type),
6317 constructor_unfilled_index, 0);
6318 else if (tree_int_cst_lt (constructor_unfilled_index,
6319 elt->purpose))
6320 {
6321 /* Advance to the next smaller node. */
6322 if (elt->left)
6323 elt = elt->left;
6324 else
6325 {
6326 /* We have reached the smallest node bigger than the
6327 current unfilled index. Fill the space first. */
6328 next = elt->purpose;
6329 break;
6330 }
6331 }
6332 else
6333 {
6334 /* Advance to the next bigger node. */
6335 if (elt->right)
6336 elt = elt->right;
6337 else
6338 {
6339 /* We have reached the biggest node in a subtree. Find
6340 the parent of it, which is the next bigger node. */
6341 while (elt->parent && elt->parent->right == elt)
6342 elt = elt->parent;
6343 elt = elt->parent;
6344 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6345 elt->purpose))
6346 {
6347 next = elt->purpose;
6348 break;
6349 }
6350 }
6351 }
6352 }
6353 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6354 || TREE_CODE (constructor_type) == UNION_TYPE)
6355 {
6356 tree ctor_unfilled_bitpos, elt_bitpos;
6357
6358 /* If the current record is complete we are done. */
6359 if (constructor_unfilled_fields == 0)
6360 break;
6361
6362 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6363 elt_bitpos = bit_position (elt->purpose);
6364 /* We can't compare fields here because there might be empty
6365 fields in between. */
6366 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6367 {
6368 constructor_unfilled_fields = elt->purpose;
6369 output_init_element (elt->value, TREE_TYPE (elt->purpose),
6370 elt->purpose, 0);
6371 }
6372 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6373 {
6374 /* Advance to the next smaller node. */
6375 if (elt->left)
6376 elt = elt->left;
6377 else
6378 {
6379 /* We have reached the smallest node bigger than the
6380 current unfilled field. Fill the space first. */
6381 next = elt->purpose;
6382 break;
6383 }
6384 }
6385 else
6386 {
6387 /* Advance to the next bigger node. */
6388 if (elt->right)
6389 elt = elt->right;
6390 else
6391 {
6392 /* We have reached the biggest node in a subtree. Find
6393 the parent of it, which is the next bigger node. */
6394 while (elt->parent && elt->parent->right == elt)
6395 elt = elt->parent;
6396 elt = elt->parent;
6397 if (elt
6398 && (tree_int_cst_lt (ctor_unfilled_bitpos,
6399 bit_position (elt->purpose))))
6400 {
6401 next = elt->purpose;
6402 break;
6403 }
6404 }
6405 }
6406 }
6407 }
6408
6409 /* Ordinarily return, but not if we want to output all
6410 and there are elements left. */
6411 if (! (all && next != 0))
6412 return;
6413
6414 /* If it's not incremental, just skip over the gap, so that after
6415 jumping to retry we will output the next successive element. */
6416 if (TREE_CODE (constructor_type) == RECORD_TYPE
6417 || TREE_CODE (constructor_type) == UNION_TYPE)
6418 constructor_unfilled_fields = next;
6419 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6420 constructor_unfilled_index = next;
6421
6422 /* ELT now points to the node in the pending tree with the next
6423 initializer to output. */
6424 goto retry;
6425 }
6426 \f
6427 /* Add one non-braced element to the current constructor level.
6428 This adjusts the current position within the constructor's type.
6429 This may also start or terminate implicit levels
6430 to handle a partly-braced initializer.
6431
6432 Once this has found the correct level for the new element,
6433 it calls output_init_element. */
6434
6435 void
6436 process_init_element (value)
6437 tree value;
6438 {
6439 tree orig_value = value;
6440 int string_flag = value != 0 && TREE_CODE (value) == STRING_CST;
6441
6442 designator_depth = 0;
6443 designator_errorneous = 0;
6444
6445 /* Handle superfluous braces around string cst as in
6446 char x[] = {"foo"}; */
6447 if (string_flag
6448 && constructor_type
6449 && TREE_CODE (constructor_type) == ARRAY_TYPE
6450 && TREE_CODE (TREE_TYPE (constructor_type)) == INTEGER_TYPE
6451 && integer_zerop (constructor_unfilled_index))
6452 {
6453 if (constructor_stack->replacement_value)
6454 error_init ("excess elements in char array initializer");
6455 constructor_stack->replacement_value = value;
6456 return;
6457 }
6458
6459 if (constructor_stack->replacement_value != 0)
6460 {
6461 error_init ("excess elements in struct initializer");
6462 return;
6463 }
6464
6465 /* Ignore elements of a brace group if it is entirely superfluous
6466 and has already been diagnosed. */
6467 if (constructor_type == 0)
6468 return;
6469
6470 /* If we've exhausted any levels that didn't have braces,
6471 pop them now. */
6472 while (constructor_stack->implicit)
6473 {
6474 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6475 || TREE_CODE (constructor_type) == UNION_TYPE)
6476 && constructor_fields == 0)
6477 process_init_element (pop_init_level (1));
6478 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6479 && (constructor_max_index == 0
6480 || tree_int_cst_lt (constructor_max_index,
6481 constructor_index)))
6482 process_init_element (pop_init_level (1));
6483 else
6484 break;
6485 }
6486
6487 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
6488 if (constructor_range_stack)
6489 {
6490 /* If value is a compound literal and we'll be just using its
6491 content, don't put it into a SAVE_EXPR. */
6492 if (TREE_CODE (value) != COMPOUND_LITERAL_EXPR
6493 || !require_constant_value
6494 || flag_isoc99)
6495 value = save_expr (value);
6496 }
6497
6498 while (1)
6499 {
6500 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6501 {
6502 tree fieldtype;
6503 enum tree_code fieldcode;
6504
6505 if (constructor_fields == 0)
6506 {
6507 pedwarn_init ("excess elements in struct initializer");
6508 break;
6509 }
6510
6511 fieldtype = TREE_TYPE (constructor_fields);
6512 if (fieldtype != error_mark_node)
6513 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6514 fieldcode = TREE_CODE (fieldtype);
6515
6516 /* Accept a string constant to initialize a subarray. */
6517 if (value != 0
6518 && fieldcode == ARRAY_TYPE
6519 && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
6520 && string_flag)
6521 value = orig_value;
6522 /* Otherwise, if we have come to a subaggregate,
6523 and we don't have an element of its type, push into it. */
6524 else if (value != 0 && !constructor_no_implicit
6525 && value != error_mark_node
6526 && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
6527 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6528 || fieldcode == UNION_TYPE))
6529 {
6530 push_init_level (1);
6531 continue;
6532 }
6533
6534 if (value)
6535 {
6536 push_member_name (constructor_fields);
6537 output_init_element (value, fieldtype, constructor_fields, 1);
6538 RESTORE_SPELLING_DEPTH (constructor_depth);
6539 }
6540 else
6541 /* Do the bookkeeping for an element that was
6542 directly output as a constructor. */
6543 {
6544 /* For a record, keep track of end position of last field. */
6545 if (DECL_SIZE (constructor_fields))
6546 constructor_bit_index
6547 = size_binop (PLUS_EXPR,
6548 bit_position (constructor_fields),
6549 DECL_SIZE (constructor_fields));
6550
6551 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6552 /* Skip any nameless bit fields. */
6553 while (constructor_unfilled_fields != 0
6554 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6555 && DECL_NAME (constructor_unfilled_fields) == 0)
6556 constructor_unfilled_fields =
6557 TREE_CHAIN (constructor_unfilled_fields);
6558 }
6559
6560 constructor_fields = TREE_CHAIN (constructor_fields);
6561 /* Skip any nameless bit fields at the beginning. */
6562 while (constructor_fields != 0
6563 && DECL_C_BIT_FIELD (constructor_fields)
6564 && DECL_NAME (constructor_fields) == 0)
6565 constructor_fields = TREE_CHAIN (constructor_fields);
6566 }
6567 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6568 {
6569 tree fieldtype;
6570 enum tree_code fieldcode;
6571
6572 if (constructor_fields == 0)
6573 {
6574 pedwarn_init ("excess elements in union initializer");
6575 break;
6576 }
6577
6578 fieldtype = TREE_TYPE (constructor_fields);
6579 if (fieldtype != error_mark_node)
6580 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6581 fieldcode = TREE_CODE (fieldtype);
6582
6583 /* Warn that traditional C rejects initialization of unions.
6584 We skip the warning if the value is zero. This is done
6585 under the assumption that the zero initializer in user
6586 code appears conditioned on e.g. __STDC__ to avoid
6587 "missing initializer" warnings and relies on default
6588 initialization to zero in the traditional C case.
6589 We also skip the warning if the initializer is designated,
6590 again on the assumption that this must be conditional on
6591 __STDC__ anyway (and we've already complained about the
6592 member-designator already). */
6593 if (warn_traditional && !in_system_header && !constructor_designated
6594 && !(value && (integer_zerop (value) || real_zerop (value))))
6595 warning ("traditional C rejects initialization of unions");
6596
6597 /* Accept a string constant to initialize a subarray. */
6598 if (value != 0
6599 && fieldcode == ARRAY_TYPE
6600 && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
6601 && string_flag)
6602 value = orig_value;
6603 /* Otherwise, if we have come to a subaggregate,
6604 and we don't have an element of its type, push into it. */
6605 else if (value != 0 && !constructor_no_implicit
6606 && value != error_mark_node
6607 && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
6608 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6609 || fieldcode == UNION_TYPE))
6610 {
6611 push_init_level (1);
6612 continue;
6613 }
6614
6615 if (value)
6616 {
6617 push_member_name (constructor_fields);
6618 output_init_element (value, fieldtype, constructor_fields, 1);
6619 RESTORE_SPELLING_DEPTH (constructor_depth);
6620 }
6621 else
6622 /* Do the bookkeeping for an element that was
6623 directly output as a constructor. */
6624 {
6625 constructor_bit_index = DECL_SIZE (constructor_fields);
6626 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6627 }
6628
6629 constructor_fields = 0;
6630 }
6631 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6632 {
6633 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6634 enum tree_code eltcode = TREE_CODE (elttype);
6635
6636 /* Accept a string constant to initialize a subarray. */
6637 if (value != 0
6638 && eltcode == ARRAY_TYPE
6639 && TREE_CODE (TREE_TYPE (elttype)) == INTEGER_TYPE
6640 && string_flag)
6641 value = orig_value;
6642 /* Otherwise, if we have come to a subaggregate,
6643 and we don't have an element of its type, push into it. */
6644 else if (value != 0 && !constructor_no_implicit
6645 && value != error_mark_node
6646 && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != elttype
6647 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6648 || eltcode == UNION_TYPE))
6649 {
6650 push_init_level (1);
6651 continue;
6652 }
6653
6654 if (constructor_max_index != 0
6655 && (tree_int_cst_lt (constructor_max_index, constructor_index)
6656 || integer_all_onesp (constructor_max_index)))
6657 {
6658 pedwarn_init ("excess elements in array initializer");
6659 break;
6660 }
6661
6662 /* Now output the actual element. */
6663 if (value)
6664 {
6665 push_array_bounds (tree_low_cst (constructor_index, 0));
6666 output_init_element (value, elttype, constructor_index, 1);
6667 RESTORE_SPELLING_DEPTH (constructor_depth);
6668 }
6669
6670 constructor_index
6671 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6672
6673 if (! value)
6674 /* If we are doing the bookkeeping for an element that was
6675 directly output as a constructor, we must update
6676 constructor_unfilled_index. */
6677 constructor_unfilled_index = constructor_index;
6678 }
6679 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6680 {
6681 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6682
6683 /* Do a basic check of initializer size. Note that vectors
6684 always have a fixed size derived from their type. */
6685 if (tree_int_cst_lt (constructor_max_index, constructor_index))
6686 {
6687 pedwarn_init ("excess elements in vector initializer");
6688 break;
6689 }
6690
6691 /* Now output the actual element. */
6692 if (value)
6693 output_init_element (value, elttype, constructor_index, 1);
6694
6695 constructor_index
6696 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6697
6698 if (! value)
6699 /* If we are doing the bookkeeping for an element that was
6700 directly output as a constructor, we must update
6701 constructor_unfilled_index. */
6702 constructor_unfilled_index = constructor_index;
6703 }
6704
6705 /* Handle the sole element allowed in a braced initializer
6706 for a scalar variable. */
6707 else if (constructor_fields == 0)
6708 {
6709 pedwarn_init ("excess elements in scalar initializer");
6710 break;
6711 }
6712 else
6713 {
6714 if (value)
6715 output_init_element (value, constructor_type, NULL_TREE, 1);
6716 constructor_fields = 0;
6717 }
6718
6719 /* Handle range initializers either at this level or anywhere higher
6720 in the designator stack. */
6721 if (constructor_range_stack)
6722 {
6723 struct constructor_range_stack *p, *range_stack;
6724 int finish = 0;
6725
6726 range_stack = constructor_range_stack;
6727 constructor_range_stack = 0;
6728 while (constructor_stack != range_stack->stack)
6729 {
6730 if (!constructor_stack->implicit)
6731 abort ();
6732 process_init_element (pop_init_level (1));
6733 }
6734 for (p = range_stack;
6735 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6736 p = p->prev)
6737 {
6738 if (!constructor_stack->implicit)
6739 abort ();
6740 process_init_element (pop_init_level (1));
6741 }
6742
6743 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6744 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6745 finish = 1;
6746
6747 while (1)
6748 {
6749 constructor_index = p->index;
6750 constructor_fields = p->fields;
6751 if (finish && p->range_end && p->index == p->range_start)
6752 {
6753 finish = 0;
6754 p->prev = 0;
6755 }
6756 p = p->next;
6757 if (!p)
6758 break;
6759 push_init_level (2);
6760 p->stack = constructor_stack;
6761 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6762 p->index = p->range_start;
6763 }
6764
6765 if (!finish)
6766 constructor_range_stack = range_stack;
6767 continue;
6768 }
6769
6770 break;
6771 }
6772
6773 constructor_range_stack = 0;
6774 }
6775 \f
6776 /* Build a simple asm-statement, from one string literal. */
6777 tree
6778 simple_asm_stmt (expr)
6779 tree expr;
6780 {
6781 STRIP_NOPS (expr);
6782
6783 if (TREE_CODE (expr) == ADDR_EXPR)
6784 expr = TREE_OPERAND (expr, 0);
6785
6786 if (TREE_CODE (expr) == STRING_CST)
6787 {
6788 tree stmt;
6789
6790 if (TREE_CHAIN (expr))
6791 expr = combine_strings (expr);
6792 stmt = add_stmt (build_stmt (ASM_STMT, NULL_TREE, expr,
6793 NULL_TREE, NULL_TREE,
6794 NULL_TREE));
6795 ASM_INPUT_P (stmt) = 1;
6796 return stmt;
6797 }
6798
6799 error ("argument of `asm' is not a constant string");
6800 return NULL_TREE;
6801 }
6802
6803 /* Build an asm-statement, whose components are a CV_QUALIFIER, a
6804 STRING, some OUTPUTS, some INPUTS, and some CLOBBERS. */
6805
6806 tree
6807 build_asm_stmt (cv_qualifier, string, outputs, inputs, clobbers)
6808 tree cv_qualifier;
6809 tree string;
6810 tree outputs;
6811 tree inputs;
6812 tree clobbers;
6813 {
6814 tree tail;
6815
6816 if (TREE_CHAIN (string))
6817 string = combine_strings (string);
6818 if (TREE_CODE (string) != STRING_CST)
6819 {
6820 error ("asm template is not a string constant");
6821 return NULL_TREE;
6822 }
6823
6824 if (cv_qualifier != NULL_TREE
6825 && cv_qualifier != ridpointers[(int) RID_VOLATILE])
6826 {
6827 warning ("%s qualifier ignored on asm",
6828 IDENTIFIER_POINTER (cv_qualifier));
6829 cv_qualifier = NULL_TREE;
6830 }
6831
6832 /* We can remove output conversions that change the type,
6833 but not the mode. */
6834 for (tail = outputs; tail; tail = TREE_CHAIN (tail))
6835 {
6836 tree output = TREE_VALUE (tail);
6837
6838 STRIP_NOPS (output);
6839 TREE_VALUE (tail) = output;
6840
6841 /* Allow conversions as LHS here. build_modify_expr as called below
6842 will do the right thing with them. */
6843 while (TREE_CODE (output) == NOP_EXPR
6844 || TREE_CODE (output) == CONVERT_EXPR
6845 || TREE_CODE (output) == FLOAT_EXPR
6846 || TREE_CODE (output) == FIX_TRUNC_EXPR
6847 || TREE_CODE (output) == FIX_FLOOR_EXPR
6848 || TREE_CODE (output) == FIX_ROUND_EXPR
6849 || TREE_CODE (output) == FIX_CEIL_EXPR)
6850 output = TREE_OPERAND (output, 0);
6851
6852 lvalue_or_else (TREE_VALUE (tail), "invalid lvalue in asm statement");
6853 }
6854
6855 /* Remove output conversions that change the type but not the mode. */
6856 for (tail = outputs; tail; tail = TREE_CHAIN (tail))
6857 {
6858 tree output = TREE_VALUE (tail);
6859 STRIP_NOPS (output);
6860 TREE_VALUE (tail) = output;
6861 }
6862
6863 /* Perform default conversions on array and function inputs.
6864 Don't do this for other types as it would screw up operands
6865 expected to be in memory. */
6866 for (tail = inputs; tail; tail = TREE_CHAIN (tail))
6867 TREE_VALUE (tail) = default_function_array_conversion (TREE_VALUE (tail));
6868
6869 return add_stmt (build_stmt (ASM_STMT, cv_qualifier, string,
6870 outputs, inputs, clobbers));
6871 }
6872
6873 /* Expand an ASM statement with operands, handling output operands
6874 that are not variables or INDIRECT_REFS by transforming such
6875 cases into cases that expand_asm_operands can handle.
6876
6877 Arguments are same as for expand_asm_operands. */
6878
6879 void
6880 c_expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
6881 tree string, outputs, inputs, clobbers;
6882 int vol;
6883 const char *filename;
6884 int line;
6885 {
6886 int noutputs = list_length (outputs);
6887 int i;
6888 /* o[I] is the place that output number I should be written. */
6889 tree *o = (tree *) alloca (noutputs * sizeof (tree));
6890 tree tail;
6891
6892 /* Record the contents of OUTPUTS before it is modified. */
6893 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
6894 o[i] = TREE_VALUE (tail);
6895
6896 /* Generate the ASM_OPERANDS insn; store into the TREE_VALUEs of
6897 OUTPUTS some trees for where the values were actually stored. */
6898 expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line);
6899
6900 /* Copy all the intermediate outputs into the specified outputs. */
6901 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
6902 {
6903 if (o[i] != TREE_VALUE (tail))
6904 {
6905 expand_expr (build_modify_expr (o[i], NOP_EXPR, TREE_VALUE (tail)),
6906 NULL_RTX, VOIDmode, EXPAND_NORMAL);
6907 free_temp_slots ();
6908
6909 /* Restore the original value so that it's correct the next
6910 time we expand this function. */
6911 TREE_VALUE (tail) = o[i];
6912 }
6913 /* Detect modification of read-only values.
6914 (Otherwise done by build_modify_expr.) */
6915 else
6916 {
6917 tree type = TREE_TYPE (o[i]);
6918 if (TREE_READONLY (o[i])
6919 || TYPE_READONLY (type)
6920 || ((TREE_CODE (type) == RECORD_TYPE
6921 || TREE_CODE (type) == UNION_TYPE)
6922 && C_TYPE_FIELDS_READONLY (type)))
6923 readonly_warning (o[i], "modification by `asm'");
6924 }
6925 }
6926
6927 /* Those MODIFY_EXPRs could do autoincrements. */
6928 emit_queue ();
6929 }
6930 \f
6931 /* Expand a C `return' statement.
6932 RETVAL is the expression for what to return,
6933 or a null pointer for `return;' with no value. */
6934
6935 tree
6936 c_expand_return (retval)
6937 tree retval;
6938 {
6939 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl));
6940
6941 if (TREE_THIS_VOLATILE (current_function_decl))
6942 warning ("function declared `noreturn' has a `return' statement");
6943
6944 if (!retval)
6945 {
6946 current_function_returns_null = 1;
6947 if ((warn_return_type || flag_isoc99)
6948 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6949 pedwarn_c99 ("`return' with no value, in function returning non-void");
6950 }
6951 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6952 {
6953 current_function_returns_null = 1;
6954 if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6955 pedwarn ("`return' with a value, in function returning void");
6956 }
6957 else
6958 {
6959 tree t = convert_for_assignment (valtype, retval, _("return"),
6960 NULL_TREE, NULL_TREE, 0);
6961 tree res = DECL_RESULT (current_function_decl);
6962 tree inner;
6963
6964 current_function_returns_value = 1;
6965 if (t == error_mark_node)
6966 return NULL_TREE;
6967
6968 inner = t = convert (TREE_TYPE (res), t);
6969
6970 /* Strip any conversions, additions, and subtractions, and see if
6971 we are returning the address of a local variable. Warn if so. */
6972 while (1)
6973 {
6974 switch (TREE_CODE (inner))
6975 {
6976 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
6977 case PLUS_EXPR:
6978 inner = TREE_OPERAND (inner, 0);
6979 continue;
6980
6981 case MINUS_EXPR:
6982 /* If the second operand of the MINUS_EXPR has a pointer
6983 type (or is converted from it), this may be valid, so
6984 don't give a warning. */
6985 {
6986 tree op1 = TREE_OPERAND (inner, 1);
6987
6988 while (! POINTER_TYPE_P (TREE_TYPE (op1))
6989 && (TREE_CODE (op1) == NOP_EXPR
6990 || TREE_CODE (op1) == NON_LVALUE_EXPR
6991 || TREE_CODE (op1) == CONVERT_EXPR))
6992 op1 = TREE_OPERAND (op1, 0);
6993
6994 if (POINTER_TYPE_P (TREE_TYPE (op1)))
6995 break;
6996
6997 inner = TREE_OPERAND (inner, 0);
6998 continue;
6999 }
7000
7001 case ADDR_EXPR:
7002 inner = TREE_OPERAND (inner, 0);
7003
7004 while (TREE_CODE_CLASS (TREE_CODE (inner)) == 'r')
7005 inner = TREE_OPERAND (inner, 0);
7006
7007 if (TREE_CODE (inner) == VAR_DECL
7008 && ! DECL_EXTERNAL (inner)
7009 && ! TREE_STATIC (inner)
7010 && DECL_CONTEXT (inner) == current_function_decl)
7011 warning ("function returns address of local variable");
7012 break;
7013
7014 default:
7015 break;
7016 }
7017
7018 break;
7019 }
7020
7021 retval = build (MODIFY_EXPR, TREE_TYPE (res), res, t);
7022 }
7023
7024 return add_stmt (build_return_stmt (retval));
7025 }
7026 \f
7027 struct c_switch {
7028 /* The SWITCH_STMT being built. */
7029 tree switch_stmt;
7030 /* A splay-tree mapping the low element of a case range to the high
7031 element, or NULL_TREE if there is no high element. Used to
7032 determine whether or not a new case label duplicates an old case
7033 label. We need a tree, rather than simply a hash table, because
7034 of the GNU case range extension. */
7035 splay_tree cases;
7036 /* The next node on the stack. */
7037 struct c_switch *next;
7038 };
7039
7040 /* A stack of the currently active switch statements. The innermost
7041 switch statement is on the top of the stack. There is no need to
7042 mark the stack for garbage collection because it is only active
7043 during the processing of the body of a function, and we never
7044 collect at that point. */
7045
7046 static struct c_switch *switch_stack;
7047
7048 /* Start a C switch statement, testing expression EXP. Return the new
7049 SWITCH_STMT. */
7050
7051 tree
7052 c_start_case (exp)
7053 tree exp;
7054 {
7055 enum tree_code code;
7056 tree type, orig_type = error_mark_node;
7057 struct c_switch *cs;
7058
7059 if (exp != error_mark_node)
7060 {
7061 code = TREE_CODE (TREE_TYPE (exp));
7062 orig_type = TREE_TYPE (exp);
7063
7064 if (! INTEGRAL_TYPE_P (orig_type)
7065 && code != ERROR_MARK)
7066 {
7067 error ("switch quantity not an integer");
7068 exp = integer_zero_node;
7069 }
7070 else
7071 {
7072 type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
7073
7074 if (warn_traditional && !in_system_header
7075 && (type == long_integer_type_node
7076 || type == long_unsigned_type_node))
7077 warning ("`long' switch expression not converted to `int' in ISO C");
7078
7079 exp = default_conversion (exp);
7080 type = TREE_TYPE (exp);
7081 }
7082 }
7083
7084 /* Add this new SWITCH_STMT to the stack. */
7085 cs = (struct c_switch *) xmalloc (sizeof (*cs));
7086 cs->switch_stmt = build_stmt (SWITCH_STMT, exp, NULL_TREE, orig_type);
7087 cs->cases = splay_tree_new (case_compare, NULL, NULL);
7088 cs->next = switch_stack;
7089 switch_stack = cs;
7090
7091 return add_stmt (switch_stack->switch_stmt);
7092 }
7093
7094 /* Process a case label. */
7095
7096 tree
7097 do_case (low_value, high_value)
7098 tree low_value;
7099 tree high_value;
7100 {
7101 tree label = NULL_TREE;
7102
7103 if (switch_stack)
7104 {
7105 label = c_add_case_label (switch_stack->cases,
7106 SWITCH_COND (switch_stack->switch_stmt),
7107 low_value, high_value);
7108 if (label == error_mark_node)
7109 label = NULL_TREE;
7110 }
7111 else if (low_value)
7112 error ("case label not within a switch statement");
7113 else
7114 error ("`default' label not within a switch statement");
7115
7116 return label;
7117 }
7118
7119 /* Finish the switch statement. */
7120
7121 void
7122 c_finish_case ()
7123 {
7124 struct c_switch *cs = switch_stack;
7125
7126 RECHAIN_STMTS (cs->switch_stmt, SWITCH_BODY (cs->switch_stmt));
7127
7128 /* Pop the stack. */
7129 switch_stack = switch_stack->next;
7130 splay_tree_delete (cs->cases);
7131 free (cs);
7132 }