physmem.c (physmem_total): Use getsysinfo on Tru64 UNIX.
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* This file is part of the C front end.
24 It contains routines to build C expressions given their operands,
25 including computing the types of the result, C-specific error checks,
26 and some optimization.
27
28 There are also routines to build RETURN_STMT nodes and CASE_STMT nodes,
29 and to process initializations in declarations (since they work
30 like a strange sort of assignment). */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "rtl.h"
37 #include "tree.h"
38 #include "c-tree.h"
39 #include "tm_p.h"
40 #include "flags.h"
41 #include "output.h"
42 #include "expr.h"
43 #include "toplev.h"
44 #include "intl.h"
45 #include "ggc.h"
46 #include "target.h"
47
48 /* Nonzero if we've already printed a "missing braces around initializer"
49 message within this initializer. */
50 static int missing_braces_mentioned;
51
52 /* 1 if we explained undeclared var errors. */
53 static int undeclared_variable_notice;
54
55 static tree qualify_type PARAMS ((tree, tree));
56 static int comp_target_types PARAMS ((tree, tree, int));
57 static int function_types_compatible_p PARAMS ((tree, tree));
58 static int type_lists_compatible_p PARAMS ((tree, tree));
59 static tree decl_constant_value_for_broken_optimization PARAMS ((tree));
60 static tree default_function_array_conversion PARAMS ((tree));
61 static tree lookup_field PARAMS ((tree, tree));
62 static tree convert_arguments PARAMS ((tree, tree, tree, tree));
63 static tree pointer_diff PARAMS ((tree, tree));
64 static tree unary_complex_lvalue PARAMS ((enum tree_code, tree, int));
65 static void pedantic_lvalue_warning PARAMS ((enum tree_code));
66 static tree internal_build_compound_expr PARAMS ((tree, int));
67 static tree convert_for_assignment PARAMS ((tree, tree, const char *,
68 tree, tree, int));
69 static void warn_for_assignment PARAMS ((const char *, const char *,
70 tree, int));
71 static tree valid_compound_expr_initializer PARAMS ((tree, tree));
72 static void push_string PARAMS ((const char *));
73 static void push_member_name PARAMS ((tree));
74 static void push_array_bounds PARAMS ((int));
75 static int spelling_length PARAMS ((void));
76 static char *print_spelling PARAMS ((char *));
77 static void warning_init PARAMS ((const char *));
78 static tree digest_init PARAMS ((tree, tree, int));
79 static void output_init_element PARAMS ((tree, tree, tree, int));
80 static void output_pending_init_elements PARAMS ((int));
81 static int set_designator PARAMS ((int));
82 static void push_range_stack PARAMS ((tree));
83 static void add_pending_init PARAMS ((tree, tree));
84 static void set_nonincremental_init PARAMS ((void));
85 static void set_nonincremental_init_from_string PARAMS ((tree));
86 static tree find_init_member PARAMS ((tree));
87 \f
88 /* Do `exp = require_complete_type (exp);' to make sure exp
89 does not have an incomplete type. (That includes void types.) */
90
91 tree
92 require_complete_type (value)
93 tree value;
94 {
95 tree type = TREE_TYPE (value);
96
97 if (value == error_mark_node || type == error_mark_node)
98 return error_mark_node;
99
100 /* First, detect a valid value with a complete type. */
101 if (COMPLETE_TYPE_P (type))
102 return value;
103
104 c_incomplete_type_error (value, type);
105 return error_mark_node;
106 }
107
108 /* Print an error message for invalid use of an incomplete type.
109 VALUE is the expression that was used (or 0 if that isn't known)
110 and TYPE is the type that was invalid. */
111
112 void
113 c_incomplete_type_error (value, type)
114 tree value;
115 tree type;
116 {
117 const char *type_code_string;
118
119 /* Avoid duplicate error message. */
120 if (TREE_CODE (type) == ERROR_MARK)
121 return;
122
123 if (value != 0 && (TREE_CODE (value) == VAR_DECL
124 || TREE_CODE (value) == PARM_DECL))
125 error ("`%s' has an incomplete type",
126 IDENTIFIER_POINTER (DECL_NAME (value)));
127 else
128 {
129 retry:
130 /* We must print an error message. Be clever about what it says. */
131
132 switch (TREE_CODE (type))
133 {
134 case RECORD_TYPE:
135 type_code_string = "struct";
136 break;
137
138 case UNION_TYPE:
139 type_code_string = "union";
140 break;
141
142 case ENUMERAL_TYPE:
143 type_code_string = "enum";
144 break;
145
146 case VOID_TYPE:
147 error ("invalid use of void expression");
148 return;
149
150 case ARRAY_TYPE:
151 if (TYPE_DOMAIN (type))
152 {
153 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
154 {
155 error ("invalid use of flexible array member");
156 return;
157 }
158 type = TREE_TYPE (type);
159 goto retry;
160 }
161 error ("invalid use of array with unspecified bounds");
162 return;
163
164 default:
165 abort ();
166 }
167
168 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
169 error ("invalid use of undefined type `%s %s'",
170 type_code_string, IDENTIFIER_POINTER (TYPE_NAME (type)));
171 else
172 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
173 error ("invalid use of incomplete typedef `%s'",
174 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))));
175 }
176 }
177
178 /* Given a type, apply default promotions wrt unnamed function
179 arguments and return the new type. */
180
181 tree
182 c_type_promotes_to (type)
183 tree type;
184 {
185 if (TYPE_MAIN_VARIANT (type) == float_type_node)
186 return double_type_node;
187
188 if (c_promoting_integer_type_p (type))
189 {
190 /* Preserve unsignedness if not really getting any wider. */
191 if (TREE_UNSIGNED (type)
192 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
193 return unsigned_type_node;
194 return integer_type_node;
195 }
196
197 return type;
198 }
199
200 /* Return a variant of TYPE which has all the type qualifiers of LIKE
201 as well as those of TYPE. */
202
203 static tree
204 qualify_type (type, like)
205 tree type, like;
206 {
207 return c_build_qualified_type (type,
208 TYPE_QUALS (type) | TYPE_QUALS (like));
209 }
210 \f
211 /* Return the common type of two types.
212 We assume that comptypes has already been done and returned 1;
213 if that isn't so, this may crash. In particular, we assume that qualifiers
214 match.
215
216 This is the type for the result of most arithmetic operations
217 if the operands have the given two types. */
218
219 tree
220 common_type (t1, t2)
221 tree t1, t2;
222 {
223 enum tree_code code1;
224 enum tree_code code2;
225 tree attributes;
226
227 /* Save time if the two types are the same. */
228
229 if (t1 == t2) return t1;
230
231 /* If one type is nonsense, use the other. */
232 if (t1 == error_mark_node)
233 return t2;
234 if (t2 == error_mark_node)
235 return t1;
236
237 /* Merge the attributes. */
238 attributes = (*targetm.merge_type_attributes) (t1, t2);
239
240 /* Treat an enum type as the unsigned integer type of the same width. */
241
242 if (TREE_CODE (t1) == ENUMERAL_TYPE)
243 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
244 if (TREE_CODE (t2) == ENUMERAL_TYPE)
245 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
246
247 code1 = TREE_CODE (t1);
248 code2 = TREE_CODE (t2);
249
250 /* If one type is complex, form the common type of the non-complex
251 components, then make that complex. Use T1 or T2 if it is the
252 required type. */
253 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
254 {
255 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
256 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
257 tree subtype = common_type (subtype1, subtype2);
258
259 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
260 return build_type_attribute_variant (t1, attributes);
261 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
262 return build_type_attribute_variant (t2, attributes);
263 else
264 return build_type_attribute_variant (build_complex_type (subtype),
265 attributes);
266 }
267
268 switch (code1)
269 {
270 case INTEGER_TYPE:
271 case REAL_TYPE:
272 /* If only one is real, use it as the result. */
273
274 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
275 return build_type_attribute_variant (t1, attributes);
276
277 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
278 return build_type_attribute_variant (t2, attributes);
279
280 /* Both real or both integers; use the one with greater precision. */
281
282 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
283 return build_type_attribute_variant (t1, attributes);
284 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
285 return build_type_attribute_variant (t2, attributes);
286
287 /* Same precision. Prefer longs to ints even when same size. */
288
289 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
290 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
291 return build_type_attribute_variant (long_unsigned_type_node,
292 attributes);
293
294 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
295 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
296 {
297 /* But preserve unsignedness from the other type,
298 since long cannot hold all the values of an unsigned int. */
299 if (TREE_UNSIGNED (t1) || TREE_UNSIGNED (t2))
300 t1 = long_unsigned_type_node;
301 else
302 t1 = long_integer_type_node;
303 return build_type_attribute_variant (t1, attributes);
304 }
305
306 /* Likewise, prefer long double to double even if same size. */
307 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
308 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
309 return build_type_attribute_variant (long_double_type_node,
310 attributes);
311
312 /* Otherwise prefer the unsigned one. */
313
314 if (TREE_UNSIGNED (t1))
315 return build_type_attribute_variant (t1, attributes);
316 else
317 return build_type_attribute_variant (t2, attributes);
318
319 case POINTER_TYPE:
320 /* For two pointers, do this recursively on the target type,
321 and combine the qualifiers of the two types' targets. */
322 /* This code was turned off; I don't know why.
323 But ANSI C specifies doing this with the qualifiers.
324 So I turned it on again. */
325 {
326 tree pointed_to_1 = TREE_TYPE (t1);
327 tree pointed_to_2 = TREE_TYPE (t2);
328 tree target = common_type (TYPE_MAIN_VARIANT (pointed_to_1),
329 TYPE_MAIN_VARIANT (pointed_to_2));
330 t1 = build_pointer_type (c_build_qualified_type
331 (target,
332 TYPE_QUALS (pointed_to_1) |
333 TYPE_QUALS (pointed_to_2)));
334 return build_type_attribute_variant (t1, attributes);
335 }
336 #if 0
337 t1 = build_pointer_type (common_type (TREE_TYPE (t1), TREE_TYPE (t2)));
338 return build_type_attribute_variant (t1, attributes);
339 #endif
340
341 case ARRAY_TYPE:
342 {
343 tree elt = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
344 /* Save space: see if the result is identical to one of the args. */
345 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1))
346 return build_type_attribute_variant (t1, attributes);
347 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2))
348 return build_type_attribute_variant (t2, attributes);
349 /* Merge the element types, and have a size if either arg has one. */
350 t1 = build_array_type (elt, TYPE_DOMAIN (TYPE_DOMAIN (t1) ? t1 : t2));
351 return build_type_attribute_variant (t1, attributes);
352 }
353
354 case FUNCTION_TYPE:
355 /* Function types: prefer the one that specified arg types.
356 If both do, merge the arg types. Also merge the return types. */
357 {
358 tree valtype = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
359 tree p1 = TYPE_ARG_TYPES (t1);
360 tree p2 = TYPE_ARG_TYPES (t2);
361 int len;
362 tree newargs, n;
363 int i;
364
365 /* Save space: see if the result is identical to one of the args. */
366 if (valtype == TREE_TYPE (t1) && ! TYPE_ARG_TYPES (t2))
367 return build_type_attribute_variant (t1, attributes);
368 if (valtype == TREE_TYPE (t2) && ! TYPE_ARG_TYPES (t1))
369 return build_type_attribute_variant (t2, attributes);
370
371 /* Simple way if one arg fails to specify argument types. */
372 if (TYPE_ARG_TYPES (t1) == 0)
373 {
374 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
375 return build_type_attribute_variant (t1, attributes);
376 }
377 if (TYPE_ARG_TYPES (t2) == 0)
378 {
379 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
380 return build_type_attribute_variant (t1, attributes);
381 }
382
383 /* If both args specify argument types, we must merge the two
384 lists, argument by argument. */
385
386 pushlevel (0);
387 declare_parm_level (1);
388
389 len = list_length (p1);
390 newargs = 0;
391
392 for (i = 0; i < len; i++)
393 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
394
395 n = newargs;
396
397 for (; p1;
398 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
399 {
400 /* A null type means arg type is not specified.
401 Take whatever the other function type has. */
402 if (TREE_VALUE (p1) == 0)
403 {
404 TREE_VALUE (n) = TREE_VALUE (p2);
405 goto parm_done;
406 }
407 if (TREE_VALUE (p2) == 0)
408 {
409 TREE_VALUE (n) = TREE_VALUE (p1);
410 goto parm_done;
411 }
412
413 /* Given wait (union {union wait *u; int *i} *)
414 and wait (union wait *),
415 prefer union wait * as type of parm. */
416 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
417 && TREE_VALUE (p1) != TREE_VALUE (p2))
418 {
419 tree memb;
420 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
421 memb; memb = TREE_CHAIN (memb))
422 if (comptypes (TREE_TYPE (memb), TREE_VALUE (p2)))
423 {
424 TREE_VALUE (n) = TREE_VALUE (p2);
425 if (pedantic)
426 pedwarn ("function types not truly compatible in ISO C");
427 goto parm_done;
428 }
429 }
430 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
431 && TREE_VALUE (p2) != TREE_VALUE (p1))
432 {
433 tree memb;
434 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
435 memb; memb = TREE_CHAIN (memb))
436 if (comptypes (TREE_TYPE (memb), TREE_VALUE (p1)))
437 {
438 TREE_VALUE (n) = TREE_VALUE (p1);
439 if (pedantic)
440 pedwarn ("function types not truly compatible in ISO C");
441 goto parm_done;
442 }
443 }
444 TREE_VALUE (n) = common_type (TREE_VALUE (p1), TREE_VALUE (p2));
445 parm_done: ;
446 }
447
448 poplevel (0, 0, 0);
449
450 t1 = build_function_type (valtype, newargs);
451 /* ... falls through ... */
452 }
453
454 default:
455 return build_type_attribute_variant (t1, attributes);
456 }
457
458 }
459 \f
460 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
461 or various other operations. Return 2 if they are compatible
462 but a warning may be needed if you use them together. */
463
464 int
465 comptypes (type1, type2)
466 tree type1, type2;
467 {
468 tree t1 = type1;
469 tree t2 = type2;
470 int attrval, val;
471
472 /* Suppress errors caused by previously reported errors. */
473
474 if (t1 == t2 || !t1 || !t2
475 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
476 return 1;
477
478 /* If either type is the internal version of sizetype, return the
479 language version. */
480 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
481 && TYPE_DOMAIN (t1) != 0)
482 t1 = TYPE_DOMAIN (t1);
483
484 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
485 && TYPE_DOMAIN (t2) != 0)
486 t2 = TYPE_DOMAIN (t2);
487
488 /* Treat an enum type as the integer type of the same width and
489 signedness. */
490
491 if (TREE_CODE (t1) == ENUMERAL_TYPE)
492 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TREE_UNSIGNED (t1));
493 if (TREE_CODE (t2) == ENUMERAL_TYPE)
494 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TREE_UNSIGNED (t2));
495
496 if (t1 == t2)
497 return 1;
498
499 /* Different classes of types can't be compatible. */
500
501 if (TREE_CODE (t1) != TREE_CODE (t2)) return 0;
502
503 /* Qualifiers must match. */
504
505 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
506 return 0;
507
508 /* Allow for two different type nodes which have essentially the same
509 definition. Note that we already checked for equality of the type
510 qualifiers (just above). */
511
512 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
513 return 1;
514
515 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
516 if (! (attrval = (*targetm.comp_type_attributes) (t1, t2)))
517 return 0;
518
519 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
520 val = 0;
521
522 switch (TREE_CODE (t1))
523 {
524 case POINTER_TYPE:
525 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
526 ? 1 : comptypes (TREE_TYPE (t1), TREE_TYPE (t2)));
527 break;
528
529 case FUNCTION_TYPE:
530 val = function_types_compatible_p (t1, t2);
531 break;
532
533 case ARRAY_TYPE:
534 {
535 tree d1 = TYPE_DOMAIN (t1);
536 tree d2 = TYPE_DOMAIN (t2);
537 bool d1_variable, d2_variable;
538 bool d1_zero, d2_zero;
539 val = 1;
540
541 /* Target types must match incl. qualifiers. */
542 if (TREE_TYPE (t1) != TREE_TYPE (t2)
543 && 0 == (val = comptypes (TREE_TYPE (t1), TREE_TYPE (t2))))
544 return 0;
545
546 /* Sizes must match unless one is missing or variable. */
547 if (d1 == 0 || d2 == 0 || d1 == d2)
548 break;
549
550 d1_zero = ! TYPE_MAX_VALUE (d1);
551 d2_zero = ! TYPE_MAX_VALUE (d2);
552
553 d1_variable = (! d1_zero
554 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
555 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
556 d2_variable = (! d2_zero
557 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
558 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
559
560 if (d1_variable || d2_variable)
561 break;
562 if (d1_zero && d2_zero)
563 break;
564 if (d1_zero || d2_zero
565 || ! tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
566 || ! tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
567 val = 0;
568
569 break;
570 }
571
572 case RECORD_TYPE:
573 if (flag_objc && objc_comptypes (t1, t2, 0) == 1)
574 val = 1;
575 break;
576
577 case VECTOR_TYPE:
578 /* The target might allow certain vector types to be compatible. */
579 val = (*targetm.vector_types_compatible) (t1, t2);
580 break;
581
582 default:
583 break;
584 }
585 return attrval == 2 && val == 1 ? 2 : val;
586 }
587
588 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
589 ignoring their qualifiers. REFLEXIVE is only used by ObjC - set it
590 to 1 or 0 depending if the check of the pointer types is meant to
591 be reflexive or not (typically, assignments are not reflexive,
592 while comparisons are reflexive).
593 */
594
595 static int
596 comp_target_types (ttl, ttr, reflexive)
597 tree ttl, ttr;
598 int reflexive;
599 {
600 int val;
601
602 /* Give objc_comptypes a crack at letting these types through. */
603 if ((val = objc_comptypes (ttl, ttr, reflexive)) >= 0)
604 return val;
605
606 val = comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (ttl)),
607 TYPE_MAIN_VARIANT (TREE_TYPE (ttr)));
608
609 if (val == 2 && pedantic)
610 pedwarn ("types are not quite compatible");
611 return val;
612 }
613 \f
614 /* Subroutines of `comptypes'. */
615
616 /* Return 1 if two function types F1 and F2 are compatible.
617 If either type specifies no argument types,
618 the other must specify a fixed number of self-promoting arg types.
619 Otherwise, if one type specifies only the number of arguments,
620 the other must specify that number of self-promoting arg types.
621 Otherwise, the argument types must match. */
622
623 static int
624 function_types_compatible_p (f1, f2)
625 tree f1, f2;
626 {
627 tree args1, args2;
628 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
629 int val = 1;
630 int val1;
631
632 if (!(TREE_TYPE (f1) == TREE_TYPE (f2)
633 || (val = comptypes (TREE_TYPE (f1), TREE_TYPE (f2)))))
634 return 0;
635
636 args1 = TYPE_ARG_TYPES (f1);
637 args2 = TYPE_ARG_TYPES (f2);
638
639 /* An unspecified parmlist matches any specified parmlist
640 whose argument types don't need default promotions. */
641
642 if (args1 == 0)
643 {
644 if (!self_promoting_args_p (args2))
645 return 0;
646 /* If one of these types comes from a non-prototype fn definition,
647 compare that with the other type's arglist.
648 If they don't match, ask for a warning (but no error). */
649 if (TYPE_ACTUAL_ARG_TYPES (f1)
650 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
651 val = 2;
652 return val;
653 }
654 if (args2 == 0)
655 {
656 if (!self_promoting_args_p (args1))
657 return 0;
658 if (TYPE_ACTUAL_ARG_TYPES (f2)
659 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
660 val = 2;
661 return val;
662 }
663
664 /* Both types have argument lists: compare them and propagate results. */
665 val1 = type_lists_compatible_p (args1, args2);
666 return val1 != 1 ? val1 : val;
667 }
668
669 /* Check two lists of types for compatibility,
670 returning 0 for incompatible, 1 for compatible,
671 or 2 for compatible with warning. */
672
673 static int
674 type_lists_compatible_p (args1, args2)
675 tree args1, args2;
676 {
677 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
678 int val = 1;
679 int newval = 0;
680
681 while (1)
682 {
683 if (args1 == 0 && args2 == 0)
684 return val;
685 /* If one list is shorter than the other,
686 they fail to match. */
687 if (args1 == 0 || args2 == 0)
688 return 0;
689 /* A null pointer instead of a type
690 means there is supposed to be an argument
691 but nothing is specified about what type it has.
692 So match anything that self-promotes. */
693 if (TREE_VALUE (args1) == 0)
694 {
695 if (c_type_promotes_to (TREE_VALUE (args2)) != TREE_VALUE (args2))
696 return 0;
697 }
698 else if (TREE_VALUE (args2) == 0)
699 {
700 if (c_type_promotes_to (TREE_VALUE (args1)) != TREE_VALUE (args1))
701 return 0;
702 }
703 else if (! (newval = comptypes (TYPE_MAIN_VARIANT (TREE_VALUE (args1)),
704 TYPE_MAIN_VARIANT (TREE_VALUE (args2)))))
705 {
706 /* Allow wait (union {union wait *u; int *i} *)
707 and wait (union wait *) to be compatible. */
708 if (TREE_CODE (TREE_VALUE (args1)) == UNION_TYPE
709 && (TYPE_NAME (TREE_VALUE (args1)) == 0
710 || TYPE_TRANSPARENT_UNION (TREE_VALUE (args1)))
711 && TREE_CODE (TYPE_SIZE (TREE_VALUE (args1))) == INTEGER_CST
712 && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args1)),
713 TYPE_SIZE (TREE_VALUE (args2))))
714 {
715 tree memb;
716 for (memb = TYPE_FIELDS (TREE_VALUE (args1));
717 memb; memb = TREE_CHAIN (memb))
718 if (comptypes (TREE_TYPE (memb), TREE_VALUE (args2)))
719 break;
720 if (memb == 0)
721 return 0;
722 }
723 else if (TREE_CODE (TREE_VALUE (args2)) == UNION_TYPE
724 && (TYPE_NAME (TREE_VALUE (args2)) == 0
725 || TYPE_TRANSPARENT_UNION (TREE_VALUE (args2)))
726 && TREE_CODE (TYPE_SIZE (TREE_VALUE (args2))) == INTEGER_CST
727 && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args2)),
728 TYPE_SIZE (TREE_VALUE (args1))))
729 {
730 tree memb;
731 for (memb = TYPE_FIELDS (TREE_VALUE (args2));
732 memb; memb = TREE_CHAIN (memb))
733 if (comptypes (TREE_TYPE (memb), TREE_VALUE (args1)))
734 break;
735 if (memb == 0)
736 return 0;
737 }
738 else
739 return 0;
740 }
741
742 /* comptypes said ok, but record if it said to warn. */
743 if (newval > val)
744 val = newval;
745
746 args1 = TREE_CHAIN (args1);
747 args2 = TREE_CHAIN (args2);
748 }
749 }
750 \f
751 /* Compute the size to increment a pointer by. */
752
753 tree
754 c_size_in_bytes (type)
755 tree type;
756 {
757 enum tree_code code = TREE_CODE (type);
758
759 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
760 return size_one_node;
761
762 if (!COMPLETE_OR_VOID_TYPE_P (type))
763 {
764 error ("arithmetic on pointer to an incomplete type");
765 return size_one_node;
766 }
767
768 /* Convert in case a char is more than one unit. */
769 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
770 size_int (TYPE_PRECISION (char_type_node)
771 / BITS_PER_UNIT));
772 }
773 \f
774 /* Return either DECL or its known constant value (if it has one). */
775
776 tree
777 decl_constant_value (decl)
778 tree decl;
779 {
780 if (/* Don't change a variable array bound or initial value to a constant
781 in a place where a variable is invalid. */
782 current_function_decl != 0
783 && ! TREE_THIS_VOLATILE (decl)
784 && TREE_READONLY (decl)
785 && DECL_INITIAL (decl) != 0
786 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
787 /* This is invalid if initial value is not constant.
788 If it has either a function call, a memory reference,
789 or a variable, then re-evaluating it could give different results. */
790 && TREE_CONSTANT (DECL_INITIAL (decl))
791 /* Check for cases where this is sub-optimal, even though valid. */
792 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
793 return DECL_INITIAL (decl);
794 return decl;
795 }
796
797 /* Return either DECL or its known constant value (if it has one), but
798 return DECL if pedantic or DECL has mode BLKmode. This is for
799 bug-compatibility with the old behavior of decl_constant_value
800 (before GCC 3.0); every use of this function is a bug and it should
801 be removed before GCC 3.1. It is not appropriate to use pedantic
802 in a way that affects optimization, and BLKmode is probably not the
803 right test for avoiding misoptimizations either. */
804
805 static tree
806 decl_constant_value_for_broken_optimization (decl)
807 tree decl;
808 {
809 if (pedantic || DECL_MODE (decl) == BLKmode)
810 return decl;
811 else
812 return decl_constant_value (decl);
813 }
814
815
816 /* Perform the default conversion of arrays and functions to pointers.
817 Return the result of converting EXP. For any other expression, just
818 return EXP. */
819
820 static tree
821 default_function_array_conversion (exp)
822 tree exp;
823 {
824 tree orig_exp;
825 tree type = TREE_TYPE (exp);
826 enum tree_code code = TREE_CODE (type);
827 int not_lvalue = 0;
828
829 /* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
830 an lvalue.
831
832 Do not use STRIP_NOPS here! It will remove conversions from pointer
833 to integer and cause infinite recursion. */
834 orig_exp = exp;
835 while (TREE_CODE (exp) == NON_LVALUE_EXPR
836 || (TREE_CODE (exp) == NOP_EXPR
837 && TREE_TYPE (TREE_OPERAND (exp, 0)) == TREE_TYPE (exp)))
838 {
839 if (TREE_CODE (exp) == NON_LVALUE_EXPR)
840 not_lvalue = 1;
841 exp = TREE_OPERAND (exp, 0);
842 }
843
844 /* Preserve the original expression code. */
845 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (exp))))
846 C_SET_EXP_ORIGINAL_CODE (exp, C_EXP_ORIGINAL_CODE (orig_exp));
847
848 if (code == FUNCTION_TYPE)
849 {
850 return build_unary_op (ADDR_EXPR, exp, 0);
851 }
852 if (code == ARRAY_TYPE)
853 {
854 tree adr;
855 tree restype = TREE_TYPE (type);
856 tree ptrtype;
857 int constp = 0;
858 int volatilep = 0;
859 int lvalue_array_p;
860
861 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'r' || DECL_P (exp))
862 {
863 constp = TREE_READONLY (exp);
864 volatilep = TREE_THIS_VOLATILE (exp);
865 }
866
867 if (TYPE_QUALS (type) || constp || volatilep)
868 restype
869 = c_build_qualified_type (restype,
870 TYPE_QUALS (type)
871 | (constp * TYPE_QUAL_CONST)
872 | (volatilep * TYPE_QUAL_VOLATILE));
873
874 if (TREE_CODE (exp) == INDIRECT_REF)
875 return convert (TYPE_POINTER_TO (restype),
876 TREE_OPERAND (exp, 0));
877
878 if (TREE_CODE (exp) == COMPOUND_EXPR)
879 {
880 tree op1 = default_conversion (TREE_OPERAND (exp, 1));
881 return build (COMPOUND_EXPR, TREE_TYPE (op1),
882 TREE_OPERAND (exp, 0), op1);
883 }
884
885 lvalue_array_p = !not_lvalue && lvalue_p (exp);
886 if (!flag_isoc99 && !lvalue_array_p)
887 {
888 /* Before C99, non-lvalue arrays do not decay to pointers.
889 Normally, using such an array would be invalid; but it can
890 be used correctly inside sizeof or as a statement expression.
891 Thus, do not give an error here; an error will result later. */
892 return exp;
893 }
894
895 ptrtype = build_pointer_type (restype);
896
897 if (TREE_CODE (exp) == VAR_DECL)
898 {
899 /* ??? This is not really quite correct
900 in that the type of the operand of ADDR_EXPR
901 is not the target type of the type of the ADDR_EXPR itself.
902 Question is, can this lossage be avoided? */
903 adr = build1 (ADDR_EXPR, ptrtype, exp);
904 if (!c_mark_addressable (exp))
905 return error_mark_node;
906 TREE_CONSTANT (adr) = staticp (exp);
907 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
908 return adr;
909 }
910 /* This way is better for a COMPONENT_REF since it can
911 simplify the offset for a component. */
912 adr = build_unary_op (ADDR_EXPR, exp, 1);
913 return convert (ptrtype, adr);
914 }
915 return exp;
916 }
917
918 /* Perform default promotions for C data used in expressions.
919 Arrays and functions are converted to pointers;
920 enumeral types or short or char, to int.
921 In addition, manifest constants symbols are replaced by their values. */
922
923 tree
924 default_conversion (exp)
925 tree exp;
926 {
927 tree orig_exp;
928 tree type = TREE_TYPE (exp);
929 enum tree_code code = TREE_CODE (type);
930
931 if (code == FUNCTION_TYPE || code == ARRAY_TYPE)
932 return default_function_array_conversion (exp);
933
934 /* Constants can be used directly unless they're not loadable. */
935 if (TREE_CODE (exp) == CONST_DECL)
936 exp = DECL_INITIAL (exp);
937
938 /* Replace a nonvolatile const static variable with its value unless
939 it is an array, in which case we must be sure that taking the
940 address of the array produces consistent results. */
941 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
942 {
943 exp = decl_constant_value_for_broken_optimization (exp);
944 type = TREE_TYPE (exp);
945 }
946
947 /* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
948 an lvalue.
949
950 Do not use STRIP_NOPS here! It will remove conversions from pointer
951 to integer and cause infinite recursion. */
952 orig_exp = exp;
953 while (TREE_CODE (exp) == NON_LVALUE_EXPR
954 || (TREE_CODE (exp) == NOP_EXPR
955 && TREE_TYPE (TREE_OPERAND (exp, 0)) == TREE_TYPE (exp)))
956 exp = TREE_OPERAND (exp, 0);
957
958 /* Preserve the original expression code. */
959 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (exp))))
960 C_SET_EXP_ORIGINAL_CODE (exp, C_EXP_ORIGINAL_CODE (orig_exp));
961
962 /* Normally convert enums to int,
963 but convert wide enums to something wider. */
964 if (code == ENUMERAL_TYPE)
965 {
966 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
967 TYPE_PRECISION (integer_type_node)),
968 ((TYPE_PRECISION (type)
969 >= TYPE_PRECISION (integer_type_node))
970 && TREE_UNSIGNED (type)));
971
972 return convert (type, exp);
973 }
974
975 if (TREE_CODE (exp) == COMPONENT_REF
976 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
977 /* If it's thinner than an int, promote it like a
978 c_promoting_integer_type_p, otherwise leave it alone. */
979 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
980 TYPE_PRECISION (integer_type_node)))
981 return convert (integer_type_node, exp);
982
983 if (c_promoting_integer_type_p (type))
984 {
985 /* Preserve unsignedness if not really getting any wider. */
986 if (TREE_UNSIGNED (type)
987 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
988 return convert (unsigned_type_node, exp);
989
990 return convert (integer_type_node, exp);
991 }
992
993 if (code == VOID_TYPE)
994 {
995 error ("void value not ignored as it ought to be");
996 return error_mark_node;
997 }
998 return exp;
999 }
1000 \f
1001 /* Look up COMPONENT in a structure or union DECL.
1002
1003 If the component name is not found, returns NULL_TREE. Otherwise,
1004 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1005 stepping down the chain to the component, which is in the last
1006 TREE_VALUE of the list. Normally the list is of length one, but if
1007 the component is embedded within (nested) anonymous structures or
1008 unions, the list steps down the chain to the component. */
1009
1010 static tree
1011 lookup_field (decl, component)
1012 tree decl, component;
1013 {
1014 tree type = TREE_TYPE (decl);
1015 tree field;
1016
1017 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1018 to the field elements. Use a binary search on this array to quickly
1019 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1020 will always be set for structures which have many elements. */
1021
1022 if (TYPE_LANG_SPECIFIC (type))
1023 {
1024 int bot, top, half;
1025 tree *field_array = &TYPE_LANG_SPECIFIC (type)->elts[0];
1026
1027 field = TYPE_FIELDS (type);
1028 bot = 0;
1029 top = TYPE_LANG_SPECIFIC (type)->len;
1030 while (top - bot > 1)
1031 {
1032 half = (top - bot + 1) >> 1;
1033 field = field_array[bot+half];
1034
1035 if (DECL_NAME (field) == NULL_TREE)
1036 {
1037 /* Step through all anon unions in linear fashion. */
1038 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1039 {
1040 field = field_array[bot++];
1041 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1042 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1043 {
1044 tree anon = lookup_field (field, component);
1045
1046 if (anon)
1047 return tree_cons (NULL_TREE, field, anon);
1048 }
1049 }
1050
1051 /* Entire record is only anon unions. */
1052 if (bot > top)
1053 return NULL_TREE;
1054
1055 /* Restart the binary search, with new lower bound. */
1056 continue;
1057 }
1058
1059 if (DECL_NAME (field) == component)
1060 break;
1061 if (DECL_NAME (field) < component)
1062 bot += half;
1063 else
1064 top = bot + half;
1065 }
1066
1067 if (DECL_NAME (field_array[bot]) == component)
1068 field = field_array[bot];
1069 else if (DECL_NAME (field) != component)
1070 return NULL_TREE;
1071 }
1072 else
1073 {
1074 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1075 {
1076 if (DECL_NAME (field) == NULL_TREE
1077 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1078 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1079 {
1080 tree anon = lookup_field (field, component);
1081
1082 if (anon)
1083 return tree_cons (NULL_TREE, field, anon);
1084 }
1085
1086 if (DECL_NAME (field) == component)
1087 break;
1088 }
1089
1090 if (field == NULL_TREE)
1091 return NULL_TREE;
1092 }
1093
1094 return tree_cons (NULL_TREE, field, NULL_TREE);
1095 }
1096
1097 /* Make an expression to refer to the COMPONENT field of
1098 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1099
1100 tree
1101 build_component_ref (datum, component)
1102 tree datum, component;
1103 {
1104 tree type = TREE_TYPE (datum);
1105 enum tree_code code = TREE_CODE (type);
1106 tree field = NULL;
1107 tree ref;
1108
1109 /* If DATUM is a COMPOUND_EXPR, move our reference inside it.
1110 If pedantic ensure that the arguments are not lvalues; otherwise,
1111 if the component is an array, it would wrongly decay to a pointer in
1112 C89 mode.
1113 We cannot do this with a COND_EXPR, because in a conditional expression
1114 the default promotions are applied to both sides, and this would yield
1115 the wrong type of the result; for example, if the components have
1116 type "char". */
1117 switch (TREE_CODE (datum))
1118 {
1119 case COMPOUND_EXPR:
1120 {
1121 tree value = build_component_ref (TREE_OPERAND (datum, 1), component);
1122 return build (COMPOUND_EXPR, TREE_TYPE (value),
1123 TREE_OPERAND (datum, 0), pedantic_non_lvalue (value));
1124 }
1125 default:
1126 break;
1127 }
1128
1129 /* See if there is a field or component with name COMPONENT. */
1130
1131 if (code == RECORD_TYPE || code == UNION_TYPE)
1132 {
1133 if (!COMPLETE_TYPE_P (type))
1134 {
1135 c_incomplete_type_error (NULL_TREE, type);
1136 return error_mark_node;
1137 }
1138
1139 field = lookup_field (datum, component);
1140
1141 if (!field)
1142 {
1143 error ("%s has no member named `%s'",
1144 code == RECORD_TYPE ? "structure" : "union",
1145 IDENTIFIER_POINTER (component));
1146 return error_mark_node;
1147 }
1148
1149 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1150 This might be better solved in future the way the C++ front
1151 end does it - by giving the anonymous entities each a
1152 separate name and type, and then have build_component_ref
1153 recursively call itself. We can't do that here. */
1154 for (; field; field = TREE_CHAIN (field))
1155 {
1156 tree subdatum = TREE_VALUE (field);
1157
1158 if (TREE_TYPE (subdatum) == error_mark_node)
1159 return error_mark_node;
1160
1161 ref = build (COMPONENT_REF, TREE_TYPE (subdatum), datum, subdatum);
1162 if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1163 TREE_READONLY (ref) = 1;
1164 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1165 TREE_THIS_VOLATILE (ref) = 1;
1166
1167 if (TREE_DEPRECATED (subdatum))
1168 warn_deprecated_use (subdatum);
1169
1170 datum = ref;
1171 }
1172
1173 return ref;
1174 }
1175 else if (code != ERROR_MARK)
1176 error ("request for member `%s' in something not a structure or union",
1177 IDENTIFIER_POINTER (component));
1178
1179 return error_mark_node;
1180 }
1181 \f
1182 /* Given an expression PTR for a pointer, return an expression
1183 for the value pointed to.
1184 ERRORSTRING is the name of the operator to appear in error messages. */
1185
1186 tree
1187 build_indirect_ref (ptr, errorstring)
1188 tree ptr;
1189 const char *errorstring;
1190 {
1191 tree pointer = default_conversion (ptr);
1192 tree type = TREE_TYPE (pointer);
1193
1194 if (TREE_CODE (type) == POINTER_TYPE)
1195 {
1196 if (TREE_CODE (pointer) == ADDR_EXPR
1197 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1198 == TREE_TYPE (type)))
1199 return TREE_OPERAND (pointer, 0);
1200 else
1201 {
1202 tree t = TREE_TYPE (type);
1203 tree ref = build1 (INDIRECT_REF, TYPE_MAIN_VARIANT (t), pointer);
1204
1205 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1206 {
1207 error ("dereferencing pointer to incomplete type");
1208 return error_mark_node;
1209 }
1210 if (VOID_TYPE_P (t) && skip_evaluation == 0)
1211 warning ("dereferencing `void *' pointer");
1212
1213 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1214 so that we get the proper error message if the result is used
1215 to assign to. Also, &* is supposed to be a no-op.
1216 And ANSI C seems to specify that the type of the result
1217 should be the const type. */
1218 /* A de-reference of a pointer to const is not a const. It is valid
1219 to change it via some other pointer. */
1220 TREE_READONLY (ref) = TYPE_READONLY (t);
1221 TREE_SIDE_EFFECTS (ref)
1222 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1223 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1224 return ref;
1225 }
1226 }
1227 else if (TREE_CODE (pointer) != ERROR_MARK)
1228 error ("invalid type argument of `%s'", errorstring);
1229 return error_mark_node;
1230 }
1231
1232 /* This handles expressions of the form "a[i]", which denotes
1233 an array reference.
1234
1235 This is logically equivalent in C to *(a+i), but we may do it differently.
1236 If A is a variable or a member, we generate a primitive ARRAY_REF.
1237 This avoids forcing the array out of registers, and can work on
1238 arrays that are not lvalues (for example, members of structures returned
1239 by functions). */
1240
1241 tree
1242 build_array_ref (array, index)
1243 tree array, index;
1244 {
1245 if (index == 0)
1246 {
1247 error ("subscript missing in array reference");
1248 return error_mark_node;
1249 }
1250
1251 if (TREE_TYPE (array) == error_mark_node
1252 || TREE_TYPE (index) == error_mark_node)
1253 return error_mark_node;
1254
1255 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE
1256 && TREE_CODE (array) != INDIRECT_REF)
1257 {
1258 tree rval, type;
1259
1260 /* Subscripting with type char is likely to lose
1261 on a machine where chars are signed.
1262 So warn on any machine, but optionally.
1263 Don't warn for unsigned char since that type is safe.
1264 Don't warn for signed char because anyone who uses that
1265 must have done so deliberately. */
1266 if (warn_char_subscripts
1267 && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1268 warning ("array subscript has type `char'");
1269
1270 /* Apply default promotions *after* noticing character types. */
1271 index = default_conversion (index);
1272
1273 /* Require integer *after* promotion, for sake of enums. */
1274 if (TREE_CODE (TREE_TYPE (index)) != INTEGER_TYPE)
1275 {
1276 error ("array subscript is not an integer");
1277 return error_mark_node;
1278 }
1279
1280 /* An array that is indexed by a non-constant
1281 cannot be stored in a register; we must be able to do
1282 address arithmetic on its address.
1283 Likewise an array of elements of variable size. */
1284 if (TREE_CODE (index) != INTEGER_CST
1285 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1286 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1287 {
1288 if (!c_mark_addressable (array))
1289 return error_mark_node;
1290 }
1291 /* An array that is indexed by a constant value which is not within
1292 the array bounds cannot be stored in a register either; because we
1293 would get a crash in store_bit_field/extract_bit_field when trying
1294 to access a non-existent part of the register. */
1295 if (TREE_CODE (index) == INTEGER_CST
1296 && TYPE_VALUES (TREE_TYPE (array))
1297 && ! int_fits_type_p (index, TYPE_VALUES (TREE_TYPE (array))))
1298 {
1299 if (!c_mark_addressable (array))
1300 return error_mark_node;
1301 }
1302
1303 if (pedantic)
1304 {
1305 tree foo = array;
1306 while (TREE_CODE (foo) == COMPONENT_REF)
1307 foo = TREE_OPERAND (foo, 0);
1308 if (TREE_CODE (foo) == VAR_DECL && DECL_REGISTER (foo))
1309 pedwarn ("ISO C forbids subscripting `register' array");
1310 else if (! flag_isoc99 && ! lvalue_p (foo))
1311 pedwarn ("ISO C90 forbids subscripting non-lvalue array");
1312 }
1313
1314 type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (array)));
1315 rval = build (ARRAY_REF, type, array, index);
1316 /* Array ref is const/volatile if the array elements are
1317 or if the array is. */
1318 TREE_READONLY (rval)
1319 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
1320 | TREE_READONLY (array));
1321 TREE_SIDE_EFFECTS (rval)
1322 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1323 | TREE_SIDE_EFFECTS (array));
1324 TREE_THIS_VOLATILE (rval)
1325 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1326 /* This was added by rms on 16 Nov 91.
1327 It fixes vol struct foo *a; a->elts[1]
1328 in an inline function.
1329 Hope it doesn't break something else. */
1330 | TREE_THIS_VOLATILE (array));
1331 return require_complete_type (fold (rval));
1332 }
1333
1334 {
1335 tree ar = default_conversion (array);
1336 tree ind = default_conversion (index);
1337
1338 /* Do the same warning check as above, but only on the part that's
1339 syntactically the index and only if it is also semantically
1340 the index. */
1341 if (warn_char_subscripts
1342 && TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE
1343 && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1344 warning ("subscript has type `char'");
1345
1346 /* Put the integer in IND to simplify error checking. */
1347 if (TREE_CODE (TREE_TYPE (ar)) == INTEGER_TYPE)
1348 {
1349 tree temp = ar;
1350 ar = ind;
1351 ind = temp;
1352 }
1353
1354 if (ar == error_mark_node)
1355 return ar;
1356
1357 if (TREE_CODE (TREE_TYPE (ar)) != POINTER_TYPE
1358 || TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) == FUNCTION_TYPE)
1359 {
1360 error ("subscripted value is neither array nor pointer");
1361 return error_mark_node;
1362 }
1363 if (TREE_CODE (TREE_TYPE (ind)) != INTEGER_TYPE)
1364 {
1365 error ("array subscript is not an integer");
1366 return error_mark_node;
1367 }
1368
1369 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, ind, 0),
1370 "array indexing");
1371 }
1372 }
1373 \f
1374 /* Build an external reference to identifier ID. FUN indicates
1375 whether this will be used for a function call. */
1376 tree
1377 build_external_ref (id, fun)
1378 tree id;
1379 int fun;
1380 {
1381 tree ref;
1382 tree decl = lookup_name (id);
1383 tree objc_ivar = lookup_objc_ivar (id);
1384
1385 if (decl && TREE_DEPRECATED (decl))
1386 warn_deprecated_use (decl);
1387
1388 if (!decl || decl == error_mark_node || C_DECL_ANTICIPATED (decl))
1389 {
1390 if (objc_ivar)
1391 ref = objc_ivar;
1392 else if (fun)
1393 {
1394 if (!decl || decl == error_mark_node)
1395 /* Ordinary implicit function declaration. */
1396 ref = implicitly_declare (id);
1397 else
1398 {
1399 /* Implicit declaration of built-in function. Don't
1400 change the built-in declaration, but don't let this
1401 go by silently, either. */
1402 implicit_decl_warning (id);
1403
1404 /* only issue this warning once */
1405 C_DECL_ANTICIPATED (decl) = 0;
1406 ref = decl;
1407 }
1408 }
1409 else
1410 {
1411 /* Reference to undeclared variable, including reference to
1412 builtin outside of function-call context. */
1413 if (current_function_decl == 0)
1414 error ("`%s' undeclared here (not in a function)",
1415 IDENTIFIER_POINTER (id));
1416 else
1417 {
1418 if (IDENTIFIER_GLOBAL_VALUE (id) != error_mark_node
1419 || IDENTIFIER_ERROR_LOCUS (id) != current_function_decl)
1420 {
1421 error ("`%s' undeclared (first use in this function)",
1422 IDENTIFIER_POINTER (id));
1423
1424 if (! undeclared_variable_notice)
1425 {
1426 error ("(Each undeclared identifier is reported only once");
1427 error ("for each function it appears in.)");
1428 undeclared_variable_notice = 1;
1429 }
1430 }
1431 IDENTIFIER_GLOBAL_VALUE (id) = error_mark_node;
1432 IDENTIFIER_ERROR_LOCUS (id) = current_function_decl;
1433 }
1434 return error_mark_node;
1435 }
1436 }
1437 else
1438 {
1439 /* Properly declared variable or function reference. */
1440 if (!objc_ivar)
1441 ref = decl;
1442 else if (decl != objc_ivar && IDENTIFIER_LOCAL_VALUE (id))
1443 {
1444 warning ("local declaration of `%s' hides instance variable",
1445 IDENTIFIER_POINTER (id));
1446 ref = decl;
1447 }
1448 else
1449 ref = objc_ivar;
1450 }
1451
1452 if (TREE_TYPE (ref) == error_mark_node)
1453 return error_mark_node;
1454
1455 if (!skip_evaluation)
1456 assemble_external (ref);
1457 TREE_USED (ref) = 1;
1458
1459 if (TREE_CODE (ref) == CONST_DECL)
1460 {
1461 ref = DECL_INITIAL (ref);
1462 TREE_CONSTANT (ref) = 1;
1463 }
1464
1465 return ref;
1466 }
1467
1468 /* Build a function call to function FUNCTION with parameters PARAMS.
1469 PARAMS is a list--a chain of TREE_LIST nodes--in which the
1470 TREE_VALUE of each node is a parameter-expression.
1471 FUNCTION's data type may be a function type or a pointer-to-function. */
1472
1473 tree
1474 build_function_call (function, params)
1475 tree function, params;
1476 {
1477 tree fntype, fundecl = 0;
1478 tree coerced_params;
1479 tree name = NULL_TREE, result;
1480
1481 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
1482 STRIP_TYPE_NOPS (function);
1483
1484 /* Convert anything with function type to a pointer-to-function. */
1485 if (TREE_CODE (function) == FUNCTION_DECL)
1486 {
1487 name = DECL_NAME (function);
1488
1489 /* Differs from default_conversion by not setting TREE_ADDRESSABLE
1490 (because calling an inline function does not mean the function
1491 needs to be separately compiled). */
1492 fntype = build_type_variant (TREE_TYPE (function),
1493 TREE_READONLY (function),
1494 TREE_THIS_VOLATILE (function));
1495 fundecl = function;
1496 function = build1 (ADDR_EXPR, build_pointer_type (fntype), function);
1497 }
1498 else
1499 function = default_conversion (function);
1500
1501 fntype = TREE_TYPE (function);
1502
1503 if (TREE_CODE (fntype) == ERROR_MARK)
1504 return error_mark_node;
1505
1506 if (!(TREE_CODE (fntype) == POINTER_TYPE
1507 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
1508 {
1509 error ("called object is not a function");
1510 return error_mark_node;
1511 }
1512
1513 if (fundecl && TREE_THIS_VOLATILE (fundecl))
1514 current_function_returns_abnormally = 1;
1515
1516 /* fntype now gets the type of function pointed to. */
1517 fntype = TREE_TYPE (fntype);
1518
1519 /* Convert the parameters to the types declared in the
1520 function prototype, or apply default promotions. */
1521
1522 coerced_params
1523 = convert_arguments (TYPE_ARG_TYPES (fntype), params, name, fundecl);
1524
1525 /* Check that the arguments to the function are valid. */
1526
1527 check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params);
1528
1529 /* Recognize certain built-in functions so we can make tree-codes
1530 other than CALL_EXPR. We do this when it enables fold-const.c
1531 to do something useful. */
1532
1533 if (TREE_CODE (function) == ADDR_EXPR
1534 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL
1535 && DECL_BUILT_IN (TREE_OPERAND (function, 0)))
1536 {
1537 result = expand_tree_builtin (TREE_OPERAND (function, 0),
1538 params, coerced_params);
1539 if (result)
1540 return result;
1541 }
1542
1543 result = build (CALL_EXPR, TREE_TYPE (fntype),
1544 function, coerced_params, NULL_TREE);
1545 TREE_SIDE_EFFECTS (result) = 1;
1546 result = fold (result);
1547
1548 if (VOID_TYPE_P (TREE_TYPE (result)))
1549 return result;
1550 return require_complete_type (result);
1551 }
1552 \f
1553 /* Convert the argument expressions in the list VALUES
1554 to the types in the list TYPELIST. The result is a list of converted
1555 argument expressions.
1556
1557 If TYPELIST is exhausted, or when an element has NULL as its type,
1558 perform the default conversions.
1559
1560 PARMLIST is the chain of parm decls for the function being called.
1561 It may be 0, if that info is not available.
1562 It is used only for generating error messages.
1563
1564 NAME is an IDENTIFIER_NODE or 0. It is used only for error messages.
1565
1566 This is also where warnings about wrong number of args are generated.
1567
1568 Both VALUES and the returned value are chains of TREE_LIST nodes
1569 with the elements of the list in the TREE_VALUE slots of those nodes. */
1570
1571 static tree
1572 convert_arguments (typelist, values, name, fundecl)
1573 tree typelist, values, name, fundecl;
1574 {
1575 tree typetail, valtail;
1576 tree result = NULL;
1577 int parmnum;
1578
1579 /* Scan the given expressions and types, producing individual
1580 converted arguments and pushing them on RESULT in reverse order. */
1581
1582 for (valtail = values, typetail = typelist, parmnum = 0;
1583 valtail;
1584 valtail = TREE_CHAIN (valtail), parmnum++)
1585 {
1586 tree type = typetail ? TREE_VALUE (typetail) : 0;
1587 tree val = TREE_VALUE (valtail);
1588
1589 if (type == void_type_node)
1590 {
1591 if (name)
1592 error ("too many arguments to function `%s'",
1593 IDENTIFIER_POINTER (name));
1594 else
1595 error ("too many arguments to function");
1596 break;
1597 }
1598
1599 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
1600 /* Do not use STRIP_NOPS here! We do not want an enumerator with value 0
1601 to convert automatically to a pointer. */
1602 if (TREE_CODE (val) == NON_LVALUE_EXPR)
1603 val = TREE_OPERAND (val, 0);
1604
1605 val = default_function_array_conversion (val);
1606
1607 val = require_complete_type (val);
1608
1609 if (type != 0)
1610 {
1611 /* Formal parm type is specified by a function prototype. */
1612 tree parmval;
1613
1614 if (!COMPLETE_TYPE_P (type))
1615 {
1616 error ("type of formal parameter %d is incomplete", parmnum + 1);
1617 parmval = val;
1618 }
1619 else
1620 {
1621 /* Optionally warn about conversions that
1622 differ from the default conversions. */
1623 if (warn_conversion || warn_traditional)
1624 {
1625 int formal_prec = TYPE_PRECISION (type);
1626
1627 if (INTEGRAL_TYPE_P (type)
1628 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1629 warn_for_assignment ("%s as integer rather than floating due to prototype", (char *) 0, name, parmnum + 1);
1630 if (INTEGRAL_TYPE_P (type)
1631 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
1632 warn_for_assignment ("%s as integer rather than complex due to prototype", (char *) 0, name, parmnum + 1);
1633 else if (TREE_CODE (type) == COMPLEX_TYPE
1634 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1635 warn_for_assignment ("%s as complex rather than floating due to prototype", (char *) 0, name, parmnum + 1);
1636 else if (TREE_CODE (type) == REAL_TYPE
1637 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1638 warn_for_assignment ("%s as floating rather than integer due to prototype", (char *) 0, name, parmnum + 1);
1639 else if (TREE_CODE (type) == COMPLEX_TYPE
1640 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1641 warn_for_assignment ("%s as complex rather than integer due to prototype", (char *) 0, name, parmnum + 1);
1642 else if (TREE_CODE (type) == REAL_TYPE
1643 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
1644 warn_for_assignment ("%s as floating rather than complex due to prototype", (char *) 0, name, parmnum + 1);
1645 /* ??? At some point, messages should be written about
1646 conversions between complex types, but that's too messy
1647 to do now. */
1648 else if (TREE_CODE (type) == REAL_TYPE
1649 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
1650 {
1651 /* Warn if any argument is passed as `float',
1652 since without a prototype it would be `double'. */
1653 if (formal_prec == TYPE_PRECISION (float_type_node))
1654 warn_for_assignment ("%s as `float' rather than `double' due to prototype", (char *) 0, name, parmnum + 1);
1655 }
1656 /* Detect integer changing in width or signedness.
1657 These warnings are only activated with
1658 -Wconversion, not with -Wtraditional. */
1659 else if (warn_conversion && INTEGRAL_TYPE_P (type)
1660 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
1661 {
1662 tree would_have_been = default_conversion (val);
1663 tree type1 = TREE_TYPE (would_have_been);
1664
1665 if (TREE_CODE (type) == ENUMERAL_TYPE
1666 && (TYPE_MAIN_VARIANT (type)
1667 == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
1668 /* No warning if function asks for enum
1669 and the actual arg is that enum type. */
1670 ;
1671 else if (formal_prec != TYPE_PRECISION (type1))
1672 warn_for_assignment ("%s with different width due to prototype", (char *) 0, name, parmnum + 1);
1673 else if (TREE_UNSIGNED (type) == TREE_UNSIGNED (type1))
1674 ;
1675 /* Don't complain if the formal parameter type
1676 is an enum, because we can't tell now whether
1677 the value was an enum--even the same enum. */
1678 else if (TREE_CODE (type) == ENUMERAL_TYPE)
1679 ;
1680 else if (TREE_CODE (val) == INTEGER_CST
1681 && int_fits_type_p (val, type))
1682 /* Change in signedness doesn't matter
1683 if a constant value is unaffected. */
1684 ;
1685 /* Likewise for a constant in a NOP_EXPR. */
1686 else if (TREE_CODE (val) == NOP_EXPR
1687 && TREE_CODE (TREE_OPERAND (val, 0)) == INTEGER_CST
1688 && int_fits_type_p (TREE_OPERAND (val, 0), type))
1689 ;
1690 #if 0 /* We never get such tree structure here. */
1691 else if (TREE_CODE (TREE_TYPE (val)) == ENUMERAL_TYPE
1692 && int_fits_type_p (TYPE_MIN_VALUE (TREE_TYPE (val)), type)
1693 && int_fits_type_p (TYPE_MAX_VALUE (TREE_TYPE (val)), type))
1694 /* Change in signedness doesn't matter
1695 if an enum value is unaffected. */
1696 ;
1697 #endif
1698 /* If the value is extended from a narrower
1699 unsigned type, it doesn't matter whether we
1700 pass it as signed or unsigned; the value
1701 certainly is the same either way. */
1702 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
1703 && TREE_UNSIGNED (TREE_TYPE (val)))
1704 ;
1705 else if (TREE_UNSIGNED (type))
1706 warn_for_assignment ("%s as unsigned due to prototype", (char *) 0, name, parmnum + 1);
1707 else
1708 warn_for_assignment ("%s as signed due to prototype", (char *) 0, name, parmnum + 1);
1709 }
1710 }
1711
1712 parmval = convert_for_assignment (type, val,
1713 (char *) 0, /* arg passing */
1714 fundecl, name, parmnum + 1);
1715
1716 if (PROMOTE_PROTOTYPES
1717 && INTEGRAL_TYPE_P (type)
1718 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
1719 parmval = default_conversion (parmval);
1720 }
1721 result = tree_cons (NULL_TREE, parmval, result);
1722 }
1723 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
1724 && (TYPE_PRECISION (TREE_TYPE (val))
1725 < TYPE_PRECISION (double_type_node)))
1726 /* Convert `float' to `double'. */
1727 result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
1728 else
1729 /* Convert `short' and `char' to full-size `int'. */
1730 result = tree_cons (NULL_TREE, default_conversion (val), result);
1731
1732 if (typetail)
1733 typetail = TREE_CHAIN (typetail);
1734 }
1735
1736 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
1737 {
1738 if (name)
1739 error ("too few arguments to function `%s'",
1740 IDENTIFIER_POINTER (name));
1741 else
1742 error ("too few arguments to function");
1743 }
1744
1745 return nreverse (result);
1746 }
1747 \f
1748 /* This is the entry point used by the parser
1749 for binary operators in the input.
1750 In addition to constructing the expression,
1751 we check for operands that were written with other binary operators
1752 in a way that is likely to confuse the user. */
1753
1754 tree
1755 parser_build_binary_op (code, arg1, arg2)
1756 enum tree_code code;
1757 tree arg1, arg2;
1758 {
1759 tree result = build_binary_op (code, arg1, arg2, 1);
1760
1761 char class;
1762 char class1 = TREE_CODE_CLASS (TREE_CODE (arg1));
1763 char class2 = TREE_CODE_CLASS (TREE_CODE (arg2));
1764 enum tree_code code1 = ERROR_MARK;
1765 enum tree_code code2 = ERROR_MARK;
1766
1767 if (TREE_CODE (result) == ERROR_MARK)
1768 return error_mark_node;
1769
1770 if (IS_EXPR_CODE_CLASS (class1))
1771 code1 = C_EXP_ORIGINAL_CODE (arg1);
1772 if (IS_EXPR_CODE_CLASS (class2))
1773 code2 = C_EXP_ORIGINAL_CODE (arg2);
1774
1775 /* Check for cases such as x+y<<z which users are likely
1776 to misinterpret. If parens are used, C_EXP_ORIGINAL_CODE
1777 is cleared to prevent these warnings. */
1778 if (warn_parentheses)
1779 {
1780 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
1781 {
1782 if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
1783 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1784 warning ("suggest parentheses around + or - inside shift");
1785 }
1786
1787 if (code == TRUTH_ORIF_EXPR)
1788 {
1789 if (code1 == TRUTH_ANDIF_EXPR
1790 || code2 == TRUTH_ANDIF_EXPR)
1791 warning ("suggest parentheses around && within ||");
1792 }
1793
1794 if (code == BIT_IOR_EXPR)
1795 {
1796 if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
1797 || code1 == PLUS_EXPR || code1 == MINUS_EXPR
1798 || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
1799 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1800 warning ("suggest parentheses around arithmetic in operand of |");
1801 /* Check cases like x|y==z */
1802 if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1803 warning ("suggest parentheses around comparison in operand of |");
1804 }
1805
1806 if (code == BIT_XOR_EXPR)
1807 {
1808 if (code1 == BIT_AND_EXPR
1809 || code1 == PLUS_EXPR || code1 == MINUS_EXPR
1810 || code2 == BIT_AND_EXPR
1811 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1812 warning ("suggest parentheses around arithmetic in operand of ^");
1813 /* Check cases like x^y==z */
1814 if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1815 warning ("suggest parentheses around comparison in operand of ^");
1816 }
1817
1818 if (code == BIT_AND_EXPR)
1819 {
1820 if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
1821 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
1822 warning ("suggest parentheses around + or - in operand of &");
1823 /* Check cases like x&y==z */
1824 if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
1825 warning ("suggest parentheses around comparison in operand of &");
1826 }
1827 }
1828
1829 /* Similarly, check for cases like 1<=i<=10 that are probably errors. */
1830 if (TREE_CODE_CLASS (code) == '<' && extra_warnings
1831 && (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<'))
1832 warning ("comparisons like X<=Y<=Z do not have their mathematical meaning");
1833
1834 unsigned_conversion_warning (result, arg1);
1835 unsigned_conversion_warning (result, arg2);
1836 overflow_warning (result);
1837
1838 class = TREE_CODE_CLASS (TREE_CODE (result));
1839
1840 /* Record the code that was specified in the source,
1841 for the sake of warnings about confusing nesting. */
1842 if (IS_EXPR_CODE_CLASS (class))
1843 C_SET_EXP_ORIGINAL_CODE (result, code);
1844 else
1845 {
1846 int flag = TREE_CONSTANT (result);
1847 /* We used to use NOP_EXPR rather than NON_LVALUE_EXPR
1848 so that convert_for_assignment wouldn't strip it.
1849 That way, we got warnings for things like p = (1 - 1).
1850 But it turns out we should not get those warnings. */
1851 result = build1 (NON_LVALUE_EXPR, TREE_TYPE (result), result);
1852 C_SET_EXP_ORIGINAL_CODE (result, code);
1853 TREE_CONSTANT (result) = flag;
1854 }
1855
1856 return result;
1857 }
1858
1859 /* Build a binary-operation expression without default conversions.
1860 CODE is the kind of expression to build.
1861 This function differs from `build' in several ways:
1862 the data type of the result is computed and recorded in it,
1863 warnings are generated if arg data types are invalid,
1864 special handling for addition and subtraction of pointers is known,
1865 and some optimization is done (operations on narrow ints
1866 are done in the narrower type when that gives the same result).
1867 Constant folding is also done before the result is returned.
1868
1869 Note that the operands will never have enumeral types, or function
1870 or array types, because either they will have the default conversions
1871 performed or they have both just been converted to some other type in which
1872 the arithmetic is to be done. */
1873
1874 tree
1875 build_binary_op (code, orig_op0, orig_op1, convert_p)
1876 enum tree_code code;
1877 tree orig_op0, orig_op1;
1878 int convert_p;
1879 {
1880 tree type0, type1;
1881 enum tree_code code0, code1;
1882 tree op0, op1;
1883
1884 /* Expression code to give to the expression when it is built.
1885 Normally this is CODE, which is what the caller asked for,
1886 but in some special cases we change it. */
1887 enum tree_code resultcode = code;
1888
1889 /* Data type in which the computation is to be performed.
1890 In the simplest cases this is the common type of the arguments. */
1891 tree result_type = NULL;
1892
1893 /* Nonzero means operands have already been type-converted
1894 in whatever way is necessary.
1895 Zero means they need to be converted to RESULT_TYPE. */
1896 int converted = 0;
1897
1898 /* Nonzero means create the expression with this type, rather than
1899 RESULT_TYPE. */
1900 tree build_type = 0;
1901
1902 /* Nonzero means after finally constructing the expression
1903 convert it to this type. */
1904 tree final_type = 0;
1905
1906 /* Nonzero if this is an operation like MIN or MAX which can
1907 safely be computed in short if both args are promoted shorts.
1908 Also implies COMMON.
1909 -1 indicates a bitwise operation; this makes a difference
1910 in the exact conditions for when it is safe to do the operation
1911 in a narrower mode. */
1912 int shorten = 0;
1913
1914 /* Nonzero if this is a comparison operation;
1915 if both args are promoted shorts, compare the original shorts.
1916 Also implies COMMON. */
1917 int short_compare = 0;
1918
1919 /* Nonzero if this is a right-shift operation, which can be computed on the
1920 original short and then promoted if the operand is a promoted short. */
1921 int short_shift = 0;
1922
1923 /* Nonzero means set RESULT_TYPE to the common type of the args. */
1924 int common = 0;
1925
1926 if (convert_p)
1927 {
1928 op0 = default_conversion (orig_op0);
1929 op1 = default_conversion (orig_op1);
1930 }
1931 else
1932 {
1933 op0 = orig_op0;
1934 op1 = orig_op1;
1935 }
1936
1937 type0 = TREE_TYPE (op0);
1938 type1 = TREE_TYPE (op1);
1939
1940 /* The expression codes of the data types of the arguments tell us
1941 whether the arguments are integers, floating, pointers, etc. */
1942 code0 = TREE_CODE (type0);
1943 code1 = TREE_CODE (type1);
1944
1945 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
1946 STRIP_TYPE_NOPS (op0);
1947 STRIP_TYPE_NOPS (op1);
1948
1949 /* If an error was already reported for one of the arguments,
1950 avoid reporting another error. */
1951
1952 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
1953 return error_mark_node;
1954
1955 switch (code)
1956 {
1957 case PLUS_EXPR:
1958 /* Handle the pointer + int case. */
1959 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
1960 return pointer_int_sum (PLUS_EXPR, op0, op1);
1961 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
1962 return pointer_int_sum (PLUS_EXPR, op1, op0);
1963 else
1964 common = 1;
1965 break;
1966
1967 case MINUS_EXPR:
1968 /* Subtraction of two similar pointers.
1969 We must subtract them as integers, then divide by object size. */
1970 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
1971 && comp_target_types (type0, type1, 1))
1972 return pointer_diff (op0, op1);
1973 /* Handle pointer minus int. Just like pointer plus int. */
1974 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
1975 return pointer_int_sum (MINUS_EXPR, op0, op1);
1976 else
1977 common = 1;
1978 break;
1979
1980 case MULT_EXPR:
1981 common = 1;
1982 break;
1983
1984 case TRUNC_DIV_EXPR:
1985 case CEIL_DIV_EXPR:
1986 case FLOOR_DIV_EXPR:
1987 case ROUND_DIV_EXPR:
1988 case EXACT_DIV_EXPR:
1989 /* Floating point division by zero is a legitimate way to obtain
1990 infinities and NaNs. */
1991 if (warn_div_by_zero && skip_evaluation == 0 && integer_zerop (op1))
1992 warning ("division by zero");
1993
1994 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
1995 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
1996 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
1997 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
1998 {
1999 if (!(code0 == INTEGER_TYPE && code1 == INTEGER_TYPE))
2000 resultcode = RDIV_EXPR;
2001 else
2002 /* Although it would be tempting to shorten always here, that
2003 loses on some targets, since the modulo instruction is
2004 undefined if the quotient can't be represented in the
2005 computation mode. We shorten only if unsigned or if
2006 dividing by something we know != -1. */
2007 shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
2008 || (TREE_CODE (op1) == INTEGER_CST
2009 && ! integer_all_onesp (op1)));
2010 common = 1;
2011 }
2012 break;
2013
2014 case BIT_AND_EXPR:
2015 case BIT_ANDTC_EXPR:
2016 case BIT_IOR_EXPR:
2017 case BIT_XOR_EXPR:
2018 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2019 shorten = -1;
2020 else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
2021 common = 1;
2022 break;
2023
2024 case TRUNC_MOD_EXPR:
2025 case FLOOR_MOD_EXPR:
2026 if (warn_div_by_zero && skip_evaluation == 0 && integer_zerop (op1))
2027 warning ("division by zero");
2028
2029 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2030 {
2031 /* Although it would be tempting to shorten always here, that loses
2032 on some targets, since the modulo instruction is undefined if the
2033 quotient can't be represented in the computation mode. We shorten
2034 only if unsigned or if dividing by something we know != -1. */
2035 shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
2036 || (TREE_CODE (op1) == INTEGER_CST
2037 && ! integer_all_onesp (op1)));
2038 common = 1;
2039 }
2040 break;
2041
2042 case TRUTH_ANDIF_EXPR:
2043 case TRUTH_ORIF_EXPR:
2044 case TRUTH_AND_EXPR:
2045 case TRUTH_OR_EXPR:
2046 case TRUTH_XOR_EXPR:
2047 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
2048 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
2049 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
2050 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
2051 {
2052 /* Result of these operations is always an int,
2053 but that does not mean the operands should be
2054 converted to ints! */
2055 result_type = integer_type_node;
2056 op0 = c_common_truthvalue_conversion (op0);
2057 op1 = c_common_truthvalue_conversion (op1);
2058 converted = 1;
2059 }
2060 break;
2061
2062 /* Shift operations: result has same type as first operand;
2063 always convert second operand to int.
2064 Also set SHORT_SHIFT if shifting rightward. */
2065
2066 case RSHIFT_EXPR:
2067 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2068 {
2069 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2070 {
2071 if (tree_int_cst_sgn (op1) < 0)
2072 warning ("right shift count is negative");
2073 else
2074 {
2075 if (! integer_zerop (op1))
2076 short_shift = 1;
2077
2078 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
2079 warning ("right shift count >= width of type");
2080 }
2081 }
2082
2083 /* Use the type of the value to be shifted. */
2084 result_type = type0;
2085 /* Convert the shift-count to an integer, regardless of size
2086 of value being shifted. */
2087 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2088 op1 = convert (integer_type_node, op1);
2089 /* Avoid converting op1 to result_type later. */
2090 converted = 1;
2091 }
2092 break;
2093
2094 case LSHIFT_EXPR:
2095 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2096 {
2097 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2098 {
2099 if (tree_int_cst_sgn (op1) < 0)
2100 warning ("left shift count is negative");
2101
2102 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
2103 warning ("left shift count >= width of type");
2104 }
2105
2106 /* Use the type of the value to be shifted. */
2107 result_type = type0;
2108 /* Convert the shift-count to an integer, regardless of size
2109 of value being shifted. */
2110 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2111 op1 = convert (integer_type_node, op1);
2112 /* Avoid converting op1 to result_type later. */
2113 converted = 1;
2114 }
2115 break;
2116
2117 case RROTATE_EXPR:
2118 case LROTATE_EXPR:
2119 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
2120 {
2121 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
2122 {
2123 if (tree_int_cst_sgn (op1) < 0)
2124 warning ("shift count is negative");
2125 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
2126 warning ("shift count >= width of type");
2127 }
2128
2129 /* Use the type of the value to be shifted. */
2130 result_type = type0;
2131 /* Convert the shift-count to an integer, regardless of size
2132 of value being shifted. */
2133 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
2134 op1 = convert (integer_type_node, op1);
2135 /* Avoid converting op1 to result_type later. */
2136 converted = 1;
2137 }
2138 break;
2139
2140 case EQ_EXPR:
2141 case NE_EXPR:
2142 if (warn_float_equal && (code0 == REAL_TYPE || code1 == REAL_TYPE))
2143 warning ("comparing floating point with == or != is unsafe");
2144 /* Result of comparison is always int,
2145 but don't convert the args to int! */
2146 build_type = integer_type_node;
2147 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
2148 || code0 == COMPLEX_TYPE
2149 || code0 == VECTOR_TYPE)
2150 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
2151 || code1 == COMPLEX_TYPE
2152 || code1 == VECTOR_TYPE))
2153 short_compare = 1;
2154 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2155 {
2156 tree tt0 = TREE_TYPE (type0);
2157 tree tt1 = TREE_TYPE (type1);
2158 /* Anything compares with void *. void * compares with anything.
2159 Otherwise, the targets must be compatible
2160 and both must be object or both incomplete. */
2161 if (comp_target_types (type0, type1, 1))
2162 result_type = common_type (type0, type1);
2163 else if (VOID_TYPE_P (tt0))
2164 {
2165 /* op0 != orig_op0 detects the case of something
2166 whose value is 0 but which isn't a valid null ptr const. */
2167 if (pedantic && (!integer_zerop (op0) || op0 != orig_op0)
2168 && TREE_CODE (tt1) == FUNCTION_TYPE)
2169 pedwarn ("ISO C forbids comparison of `void *' with function pointer");
2170 }
2171 else if (VOID_TYPE_P (tt1))
2172 {
2173 if (pedantic && (!integer_zerop (op1) || op1 != orig_op1)
2174 && TREE_CODE (tt0) == FUNCTION_TYPE)
2175 pedwarn ("ISO C forbids comparison of `void *' with function pointer");
2176 }
2177 else
2178 pedwarn ("comparison of distinct pointer types lacks a cast");
2179
2180 if (result_type == NULL_TREE)
2181 result_type = ptr_type_node;
2182 }
2183 else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
2184 && integer_zerop (op1))
2185 result_type = type0;
2186 else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
2187 && integer_zerop (op0))
2188 result_type = type1;
2189 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2190 {
2191 result_type = type0;
2192 pedwarn ("comparison between pointer and integer");
2193 }
2194 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
2195 {
2196 result_type = type1;
2197 pedwarn ("comparison between pointer and integer");
2198 }
2199 break;
2200
2201 case MAX_EXPR:
2202 case MIN_EXPR:
2203 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
2204 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
2205 shorten = 1;
2206 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2207 {
2208 if (comp_target_types (type0, type1, 1))
2209 {
2210 result_type = common_type (type0, type1);
2211 if (pedantic
2212 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
2213 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
2214 }
2215 else
2216 {
2217 result_type = ptr_type_node;
2218 pedwarn ("comparison of distinct pointer types lacks a cast");
2219 }
2220 }
2221 break;
2222
2223 case LE_EXPR:
2224 case GE_EXPR:
2225 case LT_EXPR:
2226 case GT_EXPR:
2227 build_type = integer_type_node;
2228 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
2229 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
2230 short_compare = 1;
2231 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
2232 {
2233 if (comp_target_types (type0, type1, 1))
2234 {
2235 result_type = common_type (type0, type1);
2236 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
2237 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
2238 pedwarn ("comparison of complete and incomplete pointers");
2239 else if (pedantic
2240 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
2241 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
2242 }
2243 else
2244 {
2245 result_type = ptr_type_node;
2246 pedwarn ("comparison of distinct pointer types lacks a cast");
2247 }
2248 }
2249 else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
2250 && integer_zerop (op1))
2251 {
2252 result_type = type0;
2253 if (pedantic || extra_warnings)
2254 pedwarn ("ordered comparison of pointer with integer zero");
2255 }
2256 else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
2257 && integer_zerop (op0))
2258 {
2259 result_type = type1;
2260 if (pedantic)
2261 pedwarn ("ordered comparison of pointer with integer zero");
2262 }
2263 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
2264 {
2265 result_type = type0;
2266 pedwarn ("comparison between pointer and integer");
2267 }
2268 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
2269 {
2270 result_type = type1;
2271 pedwarn ("comparison between pointer and integer");
2272 }
2273 break;
2274
2275 case UNORDERED_EXPR:
2276 case ORDERED_EXPR:
2277 case UNLT_EXPR:
2278 case UNLE_EXPR:
2279 case UNGT_EXPR:
2280 case UNGE_EXPR:
2281 case UNEQ_EXPR:
2282 build_type = integer_type_node;
2283 if (code0 != REAL_TYPE || code1 != REAL_TYPE)
2284 {
2285 error ("unordered comparison on non-floating point argument");
2286 return error_mark_node;
2287 }
2288 common = 1;
2289 break;
2290
2291 default:
2292 break;
2293 }
2294
2295 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
2296 || code0 == VECTOR_TYPE)
2297 &&
2298 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
2299 || code1 == VECTOR_TYPE))
2300 {
2301 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
2302
2303 if (shorten || common || short_compare)
2304 result_type = common_type (type0, type1);
2305
2306 /* For certain operations (which identify themselves by shorten != 0)
2307 if both args were extended from the same smaller type,
2308 do the arithmetic in that type and then extend.
2309
2310 shorten !=0 and !=1 indicates a bitwise operation.
2311 For them, this optimization is safe only if
2312 both args are zero-extended or both are sign-extended.
2313 Otherwise, we might change the result.
2314 Eg, (short)-1 | (unsigned short)-1 is (int)-1
2315 but calculated in (unsigned short) it would be (unsigned short)-1. */
2316
2317 if (shorten && none_complex)
2318 {
2319 int unsigned0, unsigned1;
2320 tree arg0 = get_narrower (op0, &unsigned0);
2321 tree arg1 = get_narrower (op1, &unsigned1);
2322 /* UNS is 1 if the operation to be done is an unsigned one. */
2323 int uns = TREE_UNSIGNED (result_type);
2324 tree type;
2325
2326 final_type = result_type;
2327
2328 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
2329 but it *requires* conversion to FINAL_TYPE. */
2330
2331 if ((TYPE_PRECISION (TREE_TYPE (op0))
2332 == TYPE_PRECISION (TREE_TYPE (arg0)))
2333 && TREE_TYPE (op0) != final_type)
2334 unsigned0 = TREE_UNSIGNED (TREE_TYPE (op0));
2335 if ((TYPE_PRECISION (TREE_TYPE (op1))
2336 == TYPE_PRECISION (TREE_TYPE (arg1)))
2337 && TREE_TYPE (op1) != final_type)
2338 unsigned1 = TREE_UNSIGNED (TREE_TYPE (op1));
2339
2340 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
2341
2342 /* For bitwise operations, signedness of nominal type
2343 does not matter. Consider only how operands were extended. */
2344 if (shorten == -1)
2345 uns = unsigned0;
2346
2347 /* Note that in all three cases below we refrain from optimizing
2348 an unsigned operation on sign-extended args.
2349 That would not be valid. */
2350
2351 /* Both args variable: if both extended in same way
2352 from same width, do it in that width.
2353 Do it unsigned if args were zero-extended. */
2354 if ((TYPE_PRECISION (TREE_TYPE (arg0))
2355 < TYPE_PRECISION (result_type))
2356 && (TYPE_PRECISION (TREE_TYPE (arg1))
2357 == TYPE_PRECISION (TREE_TYPE (arg0)))
2358 && unsigned0 == unsigned1
2359 && (unsigned0 || !uns))
2360 result_type
2361 = c_common_signed_or_unsigned_type
2362 (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
2363 else if (TREE_CODE (arg0) == INTEGER_CST
2364 && (unsigned1 || !uns)
2365 && (TYPE_PRECISION (TREE_TYPE (arg1))
2366 < TYPE_PRECISION (result_type))
2367 && (type
2368 = c_common_signed_or_unsigned_type (unsigned1,
2369 TREE_TYPE (arg1)),
2370 int_fits_type_p (arg0, type)))
2371 result_type = type;
2372 else if (TREE_CODE (arg1) == INTEGER_CST
2373 && (unsigned0 || !uns)
2374 && (TYPE_PRECISION (TREE_TYPE (arg0))
2375 < TYPE_PRECISION (result_type))
2376 && (type
2377 = c_common_signed_or_unsigned_type (unsigned0,
2378 TREE_TYPE (arg0)),
2379 int_fits_type_p (arg1, type)))
2380 result_type = type;
2381 }
2382
2383 /* Shifts can be shortened if shifting right. */
2384
2385 if (short_shift)
2386 {
2387 int unsigned_arg;
2388 tree arg0 = get_narrower (op0, &unsigned_arg);
2389
2390 final_type = result_type;
2391
2392 if (arg0 == op0 && final_type == TREE_TYPE (op0))
2393 unsigned_arg = TREE_UNSIGNED (TREE_TYPE (op0));
2394
2395 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
2396 /* We can shorten only if the shift count is less than the
2397 number of bits in the smaller type size. */
2398 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
2399 /* We cannot drop an unsigned shift after sign-extension. */
2400 && (!TREE_UNSIGNED (final_type) || unsigned_arg))
2401 {
2402 /* Do an unsigned shift if the operand was zero-extended. */
2403 result_type
2404 = c_common_signed_or_unsigned_type (unsigned_arg,
2405 TREE_TYPE (arg0));
2406 /* Convert value-to-be-shifted to that type. */
2407 if (TREE_TYPE (op0) != result_type)
2408 op0 = convert (result_type, op0);
2409 converted = 1;
2410 }
2411 }
2412
2413 /* Comparison operations are shortened too but differently.
2414 They identify themselves by setting short_compare = 1. */
2415
2416 if (short_compare)
2417 {
2418 /* Don't write &op0, etc., because that would prevent op0
2419 from being kept in a register.
2420 Instead, make copies of the our local variables and
2421 pass the copies by reference, then copy them back afterward. */
2422 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
2423 enum tree_code xresultcode = resultcode;
2424 tree val
2425 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
2426
2427 if (val != 0)
2428 return val;
2429
2430 op0 = xop0, op1 = xop1;
2431 converted = 1;
2432 resultcode = xresultcode;
2433
2434 if ((warn_sign_compare < 0 ? extra_warnings : warn_sign_compare != 0)
2435 && skip_evaluation == 0)
2436 {
2437 int op0_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op0));
2438 int op1_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op1));
2439 int unsignedp0, unsignedp1;
2440 tree primop0 = get_narrower (op0, &unsignedp0);
2441 tree primop1 = get_narrower (op1, &unsignedp1);
2442
2443 xop0 = orig_op0;
2444 xop1 = orig_op1;
2445 STRIP_TYPE_NOPS (xop0);
2446 STRIP_TYPE_NOPS (xop1);
2447
2448 /* Give warnings for comparisons between signed and unsigned
2449 quantities that may fail.
2450
2451 Do the checking based on the original operand trees, so that
2452 casts will be considered, but default promotions won't be.
2453
2454 Do not warn if the comparison is being done in a signed type,
2455 since the signed type will only be chosen if it can represent
2456 all the values of the unsigned type. */
2457 if (! TREE_UNSIGNED (result_type))
2458 /* OK */;
2459 /* Do not warn if both operands are the same signedness. */
2460 else if (op0_signed == op1_signed)
2461 /* OK */;
2462 else
2463 {
2464 tree sop, uop;
2465
2466 if (op0_signed)
2467 sop = xop0, uop = xop1;
2468 else
2469 sop = xop1, uop = xop0;
2470
2471 /* Do not warn if the signed quantity is an
2472 unsuffixed integer literal (or some static
2473 constant expression involving such literals or a
2474 conditional expression involving such literals)
2475 and it is non-negative. */
2476 if (c_tree_expr_nonnegative_p (sop))
2477 /* OK */;
2478 /* Do not warn if the comparison is an equality operation,
2479 the unsigned quantity is an integral constant, and it
2480 would fit in the result if the result were signed. */
2481 else if (TREE_CODE (uop) == INTEGER_CST
2482 && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
2483 && int_fits_type_p
2484 (uop, c_common_signed_type (result_type)))
2485 /* OK */;
2486 /* Do not warn if the unsigned quantity is an enumeration
2487 constant and its maximum value would fit in the result
2488 if the result were signed. */
2489 else if (TREE_CODE (uop) == INTEGER_CST
2490 && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
2491 && int_fits_type_p
2492 (TYPE_MAX_VALUE (TREE_TYPE(uop)),
2493 c_common_signed_type (result_type)))
2494 /* OK */;
2495 else
2496 warning ("comparison between signed and unsigned");
2497 }
2498
2499 /* Warn if two unsigned values are being compared in a size
2500 larger than their original size, and one (and only one) is the
2501 result of a `~' operator. This comparison will always fail.
2502
2503 Also warn if one operand is a constant, and the constant
2504 does not have all bits set that are set in the ~ operand
2505 when it is extended. */
2506
2507 if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
2508 != (TREE_CODE (primop1) == BIT_NOT_EXPR))
2509 {
2510 if (TREE_CODE (primop0) == BIT_NOT_EXPR)
2511 primop0 = get_narrower (TREE_OPERAND (primop0, 0),
2512 &unsignedp0);
2513 else
2514 primop1 = get_narrower (TREE_OPERAND (primop1, 0),
2515 &unsignedp1);
2516
2517 if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
2518 {
2519 tree primop;
2520 HOST_WIDE_INT constant, mask;
2521 int unsignedp, bits;
2522
2523 if (host_integerp (primop0, 0))
2524 {
2525 primop = primop1;
2526 unsignedp = unsignedp1;
2527 constant = tree_low_cst (primop0, 0);
2528 }
2529 else
2530 {
2531 primop = primop0;
2532 unsignedp = unsignedp0;
2533 constant = tree_low_cst (primop1, 0);
2534 }
2535
2536 bits = TYPE_PRECISION (TREE_TYPE (primop));
2537 if (bits < TYPE_PRECISION (result_type)
2538 && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
2539 {
2540 mask = (~ (HOST_WIDE_INT) 0) << bits;
2541 if ((mask & constant) != mask)
2542 warning ("comparison of promoted ~unsigned with constant");
2543 }
2544 }
2545 else if (unsignedp0 && unsignedp1
2546 && (TYPE_PRECISION (TREE_TYPE (primop0))
2547 < TYPE_PRECISION (result_type))
2548 && (TYPE_PRECISION (TREE_TYPE (primop1))
2549 < TYPE_PRECISION (result_type)))
2550 warning ("comparison of promoted ~unsigned with unsigned");
2551 }
2552 }
2553 }
2554 }
2555
2556 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
2557 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
2558 Then the expression will be built.
2559 It will be given type FINAL_TYPE if that is nonzero;
2560 otherwise, it will be given type RESULT_TYPE. */
2561
2562 if (!result_type)
2563 {
2564 binary_op_error (code);
2565 return error_mark_node;
2566 }
2567
2568 if (! converted)
2569 {
2570 if (TREE_TYPE (op0) != result_type)
2571 op0 = convert (result_type, op0);
2572 if (TREE_TYPE (op1) != result_type)
2573 op1 = convert (result_type, op1);
2574 }
2575
2576 if (build_type == NULL_TREE)
2577 build_type = result_type;
2578
2579 {
2580 tree result = build (resultcode, build_type, op0, op1);
2581 tree folded;
2582
2583 folded = fold (result);
2584 if (folded == result)
2585 TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
2586 if (final_type != 0)
2587 return convert (final_type, folded);
2588 return folded;
2589 }
2590 }
2591 \f
2592
2593 /* Return true if `t' is known to be non-negative. */
2594
2595 int
2596 c_tree_expr_nonnegative_p (t)
2597 tree t;
2598 {
2599 if (TREE_CODE (t) == STMT_EXPR)
2600 {
2601 t=COMPOUND_BODY (STMT_EXPR_STMT (t));
2602
2603 /* Find the last statement in the chain, ignoring the final
2604 * scope statement */
2605 while (TREE_CHAIN (t) != NULL_TREE
2606 && TREE_CODE (TREE_CHAIN (t)) != SCOPE_STMT)
2607 t=TREE_CHAIN (t);
2608 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
2609 }
2610 return tree_expr_nonnegative_p (t);
2611 }
2612
2613 /* Return a tree for the difference of pointers OP0 and OP1.
2614 The resulting tree has type int. */
2615
2616 static tree
2617 pointer_diff (op0, op1)
2618 tree op0, op1;
2619 {
2620 tree result, folded;
2621 tree restype = ptrdiff_type_node;
2622
2623 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2624 tree con0, con1, lit0, lit1;
2625 tree orig_op1 = op1;
2626
2627 if (pedantic || warn_pointer_arith)
2628 {
2629 if (TREE_CODE (target_type) == VOID_TYPE)
2630 pedwarn ("pointer of type `void *' used in subtraction");
2631 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2632 pedwarn ("pointer to a function used in subtraction");
2633 }
2634
2635 /* If the conversion to ptrdiff_type does anything like widening or
2636 converting a partial to an integral mode, we get a convert_expression
2637 that is in the way to do any simplifications.
2638 (fold-const.c doesn't know that the extra bits won't be needed.
2639 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2640 different mode in place.)
2641 So first try to find a common term here 'by hand'; we want to cover
2642 at least the cases that occur in legal static initializers. */
2643 con0 = TREE_CODE (op0) == NOP_EXPR ? TREE_OPERAND (op0, 0) : op0;
2644 con1 = TREE_CODE (op1) == NOP_EXPR ? TREE_OPERAND (op1, 0) : op1;
2645
2646 if (TREE_CODE (con0) == PLUS_EXPR)
2647 {
2648 lit0 = TREE_OPERAND (con0, 1);
2649 con0 = TREE_OPERAND (con0, 0);
2650 }
2651 else
2652 lit0 = integer_zero_node;
2653
2654 if (TREE_CODE (con1) == PLUS_EXPR)
2655 {
2656 lit1 = TREE_OPERAND (con1, 1);
2657 con1 = TREE_OPERAND (con1, 0);
2658 }
2659 else
2660 lit1 = integer_zero_node;
2661
2662 if (operand_equal_p (con0, con1, 0))
2663 {
2664 op0 = lit0;
2665 op1 = lit1;
2666 }
2667
2668
2669 /* First do the subtraction as integers;
2670 then drop through to build the divide operator.
2671 Do not do default conversions on the minus operator
2672 in case restype is a short type. */
2673
2674 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2675 convert (restype, op1), 0);
2676 /* This generates an error if op1 is pointer to incomplete type. */
2677 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2678 error ("arithmetic on pointer to an incomplete type");
2679
2680 /* This generates an error if op0 is pointer to incomplete type. */
2681 op1 = c_size_in_bytes (target_type);
2682
2683 /* Divide by the size, in easiest possible way. */
2684
2685 result = build (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2686
2687 folded = fold (result);
2688 if (folded == result)
2689 TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
2690 return folded;
2691 }
2692 \f
2693 /* Construct and perhaps optimize a tree representation
2694 for a unary operation. CODE, a tree_code, specifies the operation
2695 and XARG is the operand.
2696 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2697 the default promotions (such as from short to int).
2698 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2699 allows non-lvalues; this is only used to handle conversion of non-lvalue
2700 arrays to pointers in C99. */
2701
2702 tree
2703 build_unary_op (code, xarg, flag)
2704 enum tree_code code;
2705 tree xarg;
2706 int flag;
2707 {
2708 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2709 tree arg = xarg;
2710 tree argtype = 0;
2711 enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2712 tree val;
2713 int noconvert = flag;
2714
2715 if (typecode == ERROR_MARK)
2716 return error_mark_node;
2717 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2718 typecode = INTEGER_TYPE;
2719
2720 switch (code)
2721 {
2722 case CONVERT_EXPR:
2723 /* This is used for unary plus, because a CONVERT_EXPR
2724 is enough to prevent anybody from looking inside for
2725 associativity, but won't generate any code. */
2726 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2727 || typecode == COMPLEX_TYPE))
2728 {
2729 error ("wrong type argument to unary plus");
2730 return error_mark_node;
2731 }
2732 else if (!noconvert)
2733 arg = default_conversion (arg);
2734 arg = non_lvalue (arg);
2735 break;
2736
2737 case NEGATE_EXPR:
2738 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2739 || typecode == COMPLEX_TYPE
2740 || typecode == VECTOR_TYPE))
2741 {
2742 error ("wrong type argument to unary minus");
2743 return error_mark_node;
2744 }
2745 else if (!noconvert)
2746 arg = default_conversion (arg);
2747 break;
2748
2749 case BIT_NOT_EXPR:
2750 if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2751 {
2752 if (!noconvert)
2753 arg = default_conversion (arg);
2754 }
2755 else if (typecode == COMPLEX_TYPE)
2756 {
2757 code = CONJ_EXPR;
2758 if (pedantic)
2759 pedwarn ("ISO C does not support `~' for complex conjugation");
2760 if (!noconvert)
2761 arg = default_conversion (arg);
2762 }
2763 else
2764 {
2765 error ("wrong type argument to bit-complement");
2766 return error_mark_node;
2767 }
2768 break;
2769
2770 case ABS_EXPR:
2771 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2772 || typecode == COMPLEX_TYPE))
2773 {
2774 error ("wrong type argument to abs");
2775 return error_mark_node;
2776 }
2777 else if (!noconvert)
2778 arg = default_conversion (arg);
2779 break;
2780
2781 case CONJ_EXPR:
2782 /* Conjugating a real value is a no-op, but allow it anyway. */
2783 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2784 || typecode == COMPLEX_TYPE))
2785 {
2786 error ("wrong type argument to conjugation");
2787 return error_mark_node;
2788 }
2789 else if (!noconvert)
2790 arg = default_conversion (arg);
2791 break;
2792
2793 case TRUTH_NOT_EXPR:
2794 if (typecode != INTEGER_TYPE
2795 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2796 && typecode != COMPLEX_TYPE
2797 /* These will convert to a pointer. */
2798 && typecode != ARRAY_TYPE && typecode != FUNCTION_TYPE)
2799 {
2800 error ("wrong type argument to unary exclamation mark");
2801 return error_mark_node;
2802 }
2803 arg = c_common_truthvalue_conversion (arg);
2804 return invert_truthvalue (arg);
2805
2806 case NOP_EXPR:
2807 break;
2808
2809 case REALPART_EXPR:
2810 if (TREE_CODE (arg) == COMPLEX_CST)
2811 return TREE_REALPART (arg);
2812 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2813 return fold (build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
2814 else
2815 return arg;
2816
2817 case IMAGPART_EXPR:
2818 if (TREE_CODE (arg) == COMPLEX_CST)
2819 return TREE_IMAGPART (arg);
2820 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2821 return fold (build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
2822 else
2823 return convert (TREE_TYPE (arg), integer_zero_node);
2824
2825 case PREINCREMENT_EXPR:
2826 case POSTINCREMENT_EXPR:
2827 case PREDECREMENT_EXPR:
2828 case POSTDECREMENT_EXPR:
2829 /* Handle complex lvalues (when permitted)
2830 by reduction to simpler cases. */
2831
2832 val = unary_complex_lvalue (code, arg, 0);
2833 if (val != 0)
2834 return val;
2835
2836 /* Increment or decrement the real part of the value,
2837 and don't change the imaginary part. */
2838 if (typecode == COMPLEX_TYPE)
2839 {
2840 tree real, imag;
2841
2842 if (pedantic)
2843 pedwarn ("ISO C does not support `++' and `--' on complex types");
2844
2845 arg = stabilize_reference (arg);
2846 real = build_unary_op (REALPART_EXPR, arg, 1);
2847 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2848 return build (COMPLEX_EXPR, TREE_TYPE (arg),
2849 build_unary_op (code, real, 1), imag);
2850 }
2851
2852 /* Report invalid types. */
2853
2854 if (typecode != POINTER_TYPE
2855 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2856 {
2857 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2858 error ("wrong type argument to increment");
2859 else
2860 error ("wrong type argument to decrement");
2861
2862 return error_mark_node;
2863 }
2864
2865 {
2866 tree inc;
2867 tree result_type = TREE_TYPE (arg);
2868
2869 arg = get_unwidened (arg, 0);
2870 argtype = TREE_TYPE (arg);
2871
2872 /* Compute the increment. */
2873
2874 if (typecode == POINTER_TYPE)
2875 {
2876 /* If pointer target is an undefined struct,
2877 we just cannot know how to do the arithmetic. */
2878 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2879 {
2880 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2881 error ("increment of pointer to unknown structure");
2882 else
2883 error ("decrement of pointer to unknown structure");
2884 }
2885 else if ((pedantic || warn_pointer_arith)
2886 && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2887 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2888 {
2889 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2890 pedwarn ("wrong type argument to increment");
2891 else
2892 pedwarn ("wrong type argument to decrement");
2893 }
2894
2895 inc = c_size_in_bytes (TREE_TYPE (result_type));
2896 }
2897 else
2898 inc = integer_one_node;
2899
2900 inc = convert (argtype, inc);
2901
2902 /* Handle incrementing a cast-expression. */
2903
2904 while (1)
2905 switch (TREE_CODE (arg))
2906 {
2907 case NOP_EXPR:
2908 case CONVERT_EXPR:
2909 case FLOAT_EXPR:
2910 case FIX_TRUNC_EXPR:
2911 case FIX_FLOOR_EXPR:
2912 case FIX_ROUND_EXPR:
2913 case FIX_CEIL_EXPR:
2914 pedantic_lvalue_warning (CONVERT_EXPR);
2915 /* If the real type has the same machine representation
2916 as the type it is cast to, we can make better output
2917 by adding directly to the inside of the cast. */
2918 if ((TREE_CODE (TREE_TYPE (arg))
2919 == TREE_CODE (TREE_TYPE (TREE_OPERAND (arg, 0))))
2920 && (TYPE_MODE (TREE_TYPE (arg))
2921 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (arg, 0)))))
2922 arg = TREE_OPERAND (arg, 0);
2923 else
2924 {
2925 tree incremented, modify, value;
2926 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2927 value = boolean_increment (code, arg);
2928 else
2929 {
2930 arg = stabilize_reference (arg);
2931 if (code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR)
2932 value = arg;
2933 else
2934 value = save_expr (arg);
2935 incremented = build (((code == PREINCREMENT_EXPR
2936 || code == POSTINCREMENT_EXPR)
2937 ? PLUS_EXPR : MINUS_EXPR),
2938 argtype, value, inc);
2939 TREE_SIDE_EFFECTS (incremented) = 1;
2940 modify = build_modify_expr (arg, NOP_EXPR, incremented);
2941 value = build (COMPOUND_EXPR, TREE_TYPE (arg), modify, value);
2942 }
2943 TREE_USED (value) = 1;
2944 return value;
2945 }
2946 break;
2947
2948 default:
2949 goto give_up;
2950 }
2951 give_up:
2952
2953 /* Complain about anything else that is not a true lvalue. */
2954 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2955 || code == POSTINCREMENT_EXPR)
2956 ? "invalid lvalue in increment"
2957 : "invalid lvalue in decrement")))
2958 return error_mark_node;
2959
2960 /* Report a read-only lvalue. */
2961 if (TREE_READONLY (arg))
2962 readonly_warning (arg,
2963 ((code == PREINCREMENT_EXPR
2964 || code == POSTINCREMENT_EXPR)
2965 ? "increment" : "decrement"));
2966
2967 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2968 val = boolean_increment (code, arg);
2969 else
2970 val = build (code, TREE_TYPE (arg), arg, inc);
2971 TREE_SIDE_EFFECTS (val) = 1;
2972 val = convert (result_type, val);
2973 if (TREE_CODE (val) != code)
2974 TREE_NO_UNUSED_WARNING (val) = 1;
2975 return val;
2976 }
2977
2978 case ADDR_EXPR:
2979 /* Note that this operation never does default_conversion. */
2980
2981 /* Let &* cancel out to simplify resulting code. */
2982 if (TREE_CODE (arg) == INDIRECT_REF)
2983 {
2984 /* Don't let this be an lvalue. */
2985 if (lvalue_p (TREE_OPERAND (arg, 0)))
2986 return non_lvalue (TREE_OPERAND (arg, 0));
2987 return TREE_OPERAND (arg, 0);
2988 }
2989
2990 /* For &x[y], return x+y */
2991 if (TREE_CODE (arg) == ARRAY_REF)
2992 {
2993 if (!c_mark_addressable (TREE_OPERAND (arg, 0)))
2994 return error_mark_node;
2995 return build_binary_op (PLUS_EXPR, TREE_OPERAND (arg, 0),
2996 TREE_OPERAND (arg, 1), 1);
2997 }
2998
2999 /* Handle complex lvalues (when permitted)
3000 by reduction to simpler cases. */
3001 val = unary_complex_lvalue (code, arg, flag);
3002 if (val != 0)
3003 return val;
3004
3005 #if 0 /* Turned off because inconsistent;
3006 float f; *&(int)f = 3.4 stores in int format
3007 whereas (int)f = 3.4 stores in float format. */
3008 /* Address of a cast is just a cast of the address
3009 of the operand of the cast. */
3010 switch (TREE_CODE (arg))
3011 {
3012 case NOP_EXPR:
3013 case CONVERT_EXPR:
3014 case FLOAT_EXPR:
3015 case FIX_TRUNC_EXPR:
3016 case FIX_FLOOR_EXPR:
3017 case FIX_ROUND_EXPR:
3018 case FIX_CEIL_EXPR:
3019 if (pedantic)
3020 pedwarn ("ISO C forbids the address of a cast expression");
3021 return convert (build_pointer_type (TREE_TYPE (arg)),
3022 build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0),
3023 0));
3024 }
3025 #endif
3026
3027 /* Anything not already handled and not a true memory reference
3028 or a non-lvalue array is an error. */
3029 else if (typecode != FUNCTION_TYPE && !flag
3030 && !lvalue_or_else (arg, "invalid lvalue in unary `&'"))
3031 return error_mark_node;
3032
3033 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3034 argtype = TREE_TYPE (arg);
3035
3036 /* If the lvalue is const or volatile, merge that into the type
3037 to which the address will point. Note that you can't get a
3038 restricted pointer by taking the address of something, so we
3039 only have to deal with `const' and `volatile' here. */
3040 if ((DECL_P (arg) || TREE_CODE_CLASS (TREE_CODE (arg)) == 'r')
3041 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3042 argtype = c_build_type_variant (argtype,
3043 TREE_READONLY (arg),
3044 TREE_THIS_VOLATILE (arg));
3045
3046 argtype = build_pointer_type (argtype);
3047
3048 if (!c_mark_addressable (arg))
3049 return error_mark_node;
3050
3051 {
3052 tree addr;
3053
3054 if (TREE_CODE (arg) == COMPONENT_REF)
3055 {
3056 tree field = TREE_OPERAND (arg, 1);
3057
3058 addr = build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0), flag);
3059
3060 if (DECL_C_BIT_FIELD (field))
3061 {
3062 error ("attempt to take address of bit-field structure member `%s'",
3063 IDENTIFIER_POINTER (DECL_NAME (field)));
3064 return error_mark_node;
3065 }
3066
3067 addr = fold (build (PLUS_EXPR, argtype,
3068 convert (argtype, addr),
3069 convert (argtype, byte_position (field))));
3070 }
3071 else
3072 addr = build1 (code, argtype, arg);
3073
3074 /* Address of a static or external variable or
3075 file-scope function counts as a constant. */
3076 if (staticp (arg)
3077 && ! (TREE_CODE (arg) == FUNCTION_DECL
3078 && DECL_CONTEXT (arg) != 0))
3079 TREE_CONSTANT (addr) = 1;
3080 return addr;
3081 }
3082
3083 default:
3084 break;
3085 }
3086
3087 if (argtype == 0)
3088 argtype = TREE_TYPE (arg);
3089 return fold (build1 (code, argtype, arg));
3090 }
3091
3092 #if 0
3093 /* If CONVERSIONS is a conversion expression or a nested sequence of such,
3094 convert ARG with the same conversions in the same order
3095 and return the result. */
3096
3097 static tree
3098 convert_sequence (conversions, arg)
3099 tree conversions;
3100 tree arg;
3101 {
3102 switch (TREE_CODE (conversions))
3103 {
3104 case NOP_EXPR:
3105 case CONVERT_EXPR:
3106 case FLOAT_EXPR:
3107 case FIX_TRUNC_EXPR:
3108 case FIX_FLOOR_EXPR:
3109 case FIX_ROUND_EXPR:
3110 case FIX_CEIL_EXPR:
3111 return convert (TREE_TYPE (conversions),
3112 convert_sequence (TREE_OPERAND (conversions, 0),
3113 arg));
3114
3115 default:
3116 return arg;
3117 }
3118 }
3119 #endif /* 0 */
3120
3121 /* Return nonzero if REF is an lvalue valid for this language.
3122 Lvalues can be assigned, unless their type has TYPE_READONLY.
3123 Lvalues can have their address taken, unless they have DECL_REGISTER. */
3124
3125 int
3126 lvalue_p (ref)
3127 tree ref;
3128 {
3129 enum tree_code code = TREE_CODE (ref);
3130
3131 switch (code)
3132 {
3133 case REALPART_EXPR:
3134 case IMAGPART_EXPR:
3135 case COMPONENT_REF:
3136 return lvalue_p (TREE_OPERAND (ref, 0));
3137
3138 case COMPOUND_LITERAL_EXPR:
3139 case STRING_CST:
3140 return 1;
3141
3142 case INDIRECT_REF:
3143 case ARRAY_REF:
3144 case VAR_DECL:
3145 case PARM_DECL:
3146 case RESULT_DECL:
3147 case ERROR_MARK:
3148 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3149 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3150
3151 case BIND_EXPR:
3152 case RTL_EXPR:
3153 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3154
3155 default:
3156 return 0;
3157 }
3158 }
3159
3160 /* Return nonzero if REF is an lvalue valid for this language;
3161 otherwise, print an error message and return zero. */
3162
3163 int
3164 lvalue_or_else (ref, msgid)
3165 tree ref;
3166 const char *msgid;
3167 {
3168 int win = lvalue_p (ref);
3169
3170 if (! win)
3171 error ("%s", msgid);
3172
3173 return win;
3174 }
3175
3176 /* Apply unary lvalue-demanding operator CODE to the expression ARG
3177 for certain kinds of expressions which are not really lvalues
3178 but which we can accept as lvalues. If FLAG is nonzero, then
3179 non-lvalues are OK since we may be converting a non-lvalue array to
3180 a pointer in C99.
3181
3182 If ARG is not a kind of expression we can handle, return zero. */
3183
3184 static tree
3185 unary_complex_lvalue (code, arg, flag)
3186 enum tree_code code;
3187 tree arg;
3188 int flag;
3189 {
3190 /* Handle (a, b) used as an "lvalue". */
3191 if (TREE_CODE (arg) == COMPOUND_EXPR)
3192 {
3193 tree real_result = build_unary_op (code, TREE_OPERAND (arg, 1), 0);
3194
3195 /* If this returns a function type, it isn't really being used as
3196 an lvalue, so don't issue a warning about it. */
3197 if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE && !flag)
3198 pedantic_lvalue_warning (COMPOUND_EXPR);
3199
3200 return build (COMPOUND_EXPR, TREE_TYPE (real_result),
3201 TREE_OPERAND (arg, 0), real_result);
3202 }
3203
3204 /* Handle (a ? b : c) used as an "lvalue". */
3205 if (TREE_CODE (arg) == COND_EXPR)
3206 {
3207 if (!flag)
3208 pedantic_lvalue_warning (COND_EXPR);
3209 if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE && !flag)
3210 pedantic_lvalue_warning (COMPOUND_EXPR);
3211
3212 return (build_conditional_expr
3213 (TREE_OPERAND (arg, 0),
3214 build_unary_op (code, TREE_OPERAND (arg, 1), flag),
3215 build_unary_op (code, TREE_OPERAND (arg, 2), flag)));
3216 }
3217
3218 return 0;
3219 }
3220
3221 /* If pedantic, warn about improper lvalue. CODE is either COND_EXPR
3222 COMPOUND_EXPR, or CONVERT_EXPR (for casts). */
3223
3224 static void
3225 pedantic_lvalue_warning (code)
3226 enum tree_code code;
3227 {
3228 if (pedantic)
3229 switch (code)
3230 {
3231 case COND_EXPR:
3232 pedwarn ("ISO C forbids use of conditional expressions as lvalues");
3233 break;
3234 case COMPOUND_EXPR:
3235 pedwarn ("ISO C forbids use of compound expressions as lvalues");
3236 break;
3237 default:
3238 pedwarn ("ISO C forbids use of cast expressions as lvalues");
3239 break;
3240 }
3241 }
3242 \f
3243 /* Warn about storing in something that is `const'. */
3244
3245 void
3246 readonly_warning (arg, msgid)
3247 tree arg;
3248 const char *msgid;
3249 {
3250 if (TREE_CODE (arg) == COMPONENT_REF)
3251 {
3252 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3253 readonly_warning (TREE_OPERAND (arg, 0), msgid);
3254 else
3255 pedwarn ("%s of read-only member `%s'", _(msgid),
3256 IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (arg, 1))));
3257 }
3258 else if (TREE_CODE (arg) == VAR_DECL)
3259 pedwarn ("%s of read-only variable `%s'", _(msgid),
3260 IDENTIFIER_POINTER (DECL_NAME (arg)));
3261 else
3262 pedwarn ("%s of read-only location", _(msgid));
3263 }
3264 \f
3265 /* Mark EXP saying that we need to be able to take the
3266 address of it; it should not be allocated in a register.
3267 Returns true if successful. */
3268
3269 bool
3270 c_mark_addressable (exp)
3271 tree exp;
3272 {
3273 tree x = exp;
3274
3275 while (1)
3276 switch (TREE_CODE (x))
3277 {
3278 case COMPONENT_REF:
3279 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3280 {
3281 error ("cannot take address of bit-field `%s'",
3282 IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (x, 1))));
3283 return false;
3284 }
3285
3286 /* ... fall through ... */
3287
3288 case ADDR_EXPR:
3289 case ARRAY_REF:
3290 case REALPART_EXPR:
3291 case IMAGPART_EXPR:
3292 x = TREE_OPERAND (x, 0);
3293 break;
3294
3295 case COMPOUND_LITERAL_EXPR:
3296 case CONSTRUCTOR:
3297 TREE_ADDRESSABLE (x) = 1;
3298 return true;
3299
3300 case VAR_DECL:
3301 case CONST_DECL:
3302 case PARM_DECL:
3303 case RESULT_DECL:
3304 if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x)
3305 && DECL_NONLOCAL (x))
3306 {
3307 if (TREE_PUBLIC (x))
3308 {
3309 error ("global register variable `%s' used in nested function",
3310 IDENTIFIER_POINTER (DECL_NAME (x)));
3311 return false;
3312 }
3313 pedwarn ("register variable `%s' used in nested function",
3314 IDENTIFIER_POINTER (DECL_NAME (x)));
3315 }
3316 else if (DECL_REGISTER (x) && !TREE_ADDRESSABLE (x))
3317 {
3318 if (TREE_PUBLIC (x))
3319 {
3320 error ("address of global register variable `%s' requested",
3321 IDENTIFIER_POINTER (DECL_NAME (x)));
3322 return false;
3323 }
3324
3325 /* If we are making this addressable due to its having
3326 volatile components, give a different error message. Also
3327 handle the case of an unnamed parameter by not trying
3328 to give the name. */
3329
3330 else if (C_TYPE_FIELDS_VOLATILE (TREE_TYPE (x)))
3331 {
3332 error ("cannot put object with volatile field into register");
3333 return false;
3334 }
3335
3336 pedwarn ("address of register variable `%s' requested",
3337 IDENTIFIER_POINTER (DECL_NAME (x)));
3338 }
3339 put_var_into_stack (x);
3340
3341 /* drops in */
3342 case FUNCTION_DECL:
3343 TREE_ADDRESSABLE (x) = 1;
3344 #if 0 /* poplevel deals with this now. */
3345 if (DECL_CONTEXT (x) == 0)
3346 TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (x)) = 1;
3347 #endif
3348
3349 default:
3350 return true;
3351 }
3352 }
3353 \f
3354 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3355
3356 tree
3357 build_conditional_expr (ifexp, op1, op2)
3358 tree ifexp, op1, op2;
3359 {
3360 tree type1;
3361 tree type2;
3362 enum tree_code code1;
3363 enum tree_code code2;
3364 tree result_type = NULL;
3365 tree orig_op1 = op1, orig_op2 = op2;
3366
3367 ifexp = c_common_truthvalue_conversion (default_conversion (ifexp));
3368
3369 #if 0 /* Produces wrong result if within sizeof. */
3370 /* Don't promote the operands separately if they promote
3371 the same way. Return the unpromoted type and let the combined
3372 value get promoted if necessary. */
3373
3374 if (TREE_TYPE (op1) == TREE_TYPE (op2)
3375 && TREE_CODE (TREE_TYPE (op1)) != ARRAY_TYPE
3376 && TREE_CODE (TREE_TYPE (op1)) != ENUMERAL_TYPE
3377 && TREE_CODE (TREE_TYPE (op1)) != FUNCTION_TYPE)
3378 {
3379 if (TREE_CODE (ifexp) == INTEGER_CST)
3380 return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
3381
3382 return fold (build (COND_EXPR, TREE_TYPE (op1), ifexp, op1, op2));
3383 }
3384 #endif
3385
3386 /* Promote both alternatives. */
3387
3388 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3389 op1 = default_conversion (op1);
3390 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3391 op2 = default_conversion (op2);
3392
3393 if (TREE_CODE (ifexp) == ERROR_MARK
3394 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3395 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3396 return error_mark_node;
3397
3398 type1 = TREE_TYPE (op1);
3399 code1 = TREE_CODE (type1);
3400 type2 = TREE_TYPE (op2);
3401 code2 = TREE_CODE (type2);
3402
3403 /* Quickly detect the usual case where op1 and op2 have the same type
3404 after promotion. */
3405 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3406 {
3407 if (type1 == type2)
3408 result_type = type1;
3409 else
3410 result_type = TYPE_MAIN_VARIANT (type1);
3411 }
3412 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3413 || code1 == COMPLEX_TYPE)
3414 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3415 || code2 == COMPLEX_TYPE))
3416 {
3417 result_type = common_type (type1, type2);
3418
3419 /* If -Wsign-compare, warn here if type1 and type2 have
3420 different signedness. We'll promote the signed to unsigned
3421 and later code won't know it used to be different.
3422 Do this check on the original types, so that explicit casts
3423 will be considered, but default promotions won't. */
3424 if ((warn_sign_compare < 0 ? extra_warnings : warn_sign_compare)
3425 && !skip_evaluation)
3426 {
3427 int unsigned_op1 = TREE_UNSIGNED (TREE_TYPE (orig_op1));
3428 int unsigned_op2 = TREE_UNSIGNED (TREE_TYPE (orig_op2));
3429
3430 if (unsigned_op1 ^ unsigned_op2)
3431 {
3432 /* Do not warn if the result type is signed, since the
3433 signed type will only be chosen if it can represent
3434 all the values of the unsigned type. */
3435 if (! TREE_UNSIGNED (result_type))
3436 /* OK */;
3437 /* Do not warn if the signed quantity is an unsuffixed
3438 integer literal (or some static constant expression
3439 involving such literals) and it is non-negative. */
3440 else if ((unsigned_op2 && c_tree_expr_nonnegative_p (op1))
3441 || (unsigned_op1 && c_tree_expr_nonnegative_p (op2)))
3442 /* OK */;
3443 else
3444 warning ("signed and unsigned type in conditional expression");
3445 }
3446 }
3447 }
3448 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3449 {
3450 if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3451 pedwarn ("ISO C forbids conditional expr with only one void side");
3452 result_type = void_type_node;
3453 }
3454 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3455 {
3456 if (comp_target_types (type1, type2, 1))
3457 result_type = common_type (type1, type2);
3458 else if (integer_zerop (op1) && TREE_TYPE (type1) == void_type_node
3459 && TREE_CODE (orig_op1) != NOP_EXPR)
3460 result_type = qualify_type (type2, type1);
3461 else if (integer_zerop (op2) && TREE_TYPE (type2) == void_type_node
3462 && TREE_CODE (orig_op2) != NOP_EXPR)
3463 result_type = qualify_type (type1, type2);
3464 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3465 {
3466 if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3467 pedwarn ("ISO C forbids conditional expr between `void *' and function pointer");
3468 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3469 TREE_TYPE (type2)));
3470 }
3471 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3472 {
3473 if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3474 pedwarn ("ISO C forbids conditional expr between `void *' and function pointer");
3475 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3476 TREE_TYPE (type1)));
3477 }
3478 else
3479 {
3480 pedwarn ("pointer type mismatch in conditional expression");
3481 result_type = build_pointer_type (void_type_node);
3482 }
3483 }
3484 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3485 {
3486 if (! integer_zerop (op2))
3487 pedwarn ("pointer/integer type mismatch in conditional expression");
3488 else
3489 {
3490 op2 = null_pointer_node;
3491 }
3492 result_type = type1;
3493 }
3494 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3495 {
3496 if (!integer_zerop (op1))
3497 pedwarn ("pointer/integer type mismatch in conditional expression");
3498 else
3499 {
3500 op1 = null_pointer_node;
3501 }
3502 result_type = type2;
3503 }
3504
3505 if (!result_type)
3506 {
3507 if (flag_cond_mismatch)
3508 result_type = void_type_node;
3509 else
3510 {
3511 error ("type mismatch in conditional expression");
3512 return error_mark_node;
3513 }
3514 }
3515
3516 /* Merge const and volatile flags of the incoming types. */
3517 result_type
3518 = build_type_variant (result_type,
3519 TREE_READONLY (op1) || TREE_READONLY (op2),
3520 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3521
3522 if (result_type != TREE_TYPE (op1))
3523 op1 = convert_and_check (result_type, op1);
3524 if (result_type != TREE_TYPE (op2))
3525 op2 = convert_and_check (result_type, op2);
3526
3527 if (TREE_CODE (ifexp) == INTEGER_CST)
3528 return pedantic_non_lvalue (integer_zerop (ifexp) ? op2 : op1);
3529
3530 return fold (build (COND_EXPR, result_type, ifexp, op1, op2));
3531 }
3532 \f
3533 /* Given a list of expressions, return a compound expression
3534 that performs them all and returns the value of the last of them. */
3535
3536 tree
3537 build_compound_expr (list)
3538 tree list;
3539 {
3540 return internal_build_compound_expr (list, TRUE);
3541 }
3542
3543 static tree
3544 internal_build_compound_expr (list, first_p)
3545 tree list;
3546 int first_p;
3547 {
3548 tree rest;
3549
3550 if (TREE_CHAIN (list) == 0)
3551 {
3552 /* Convert arrays and functions to pointers when there
3553 really is a comma operator. */
3554 if (!first_p)
3555 TREE_VALUE (list)
3556 = default_function_array_conversion (TREE_VALUE (list));
3557
3558 #if 0 /* If something inside inhibited lvalueness, we should not override. */
3559 /* Consider (x, y+0), which is not an lvalue since y+0 is not. */
3560
3561 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3562 if (TREE_CODE (list) == NON_LVALUE_EXPR)
3563 list = TREE_OPERAND (list, 0);
3564 #endif
3565
3566 /* Don't let (0, 0) be null pointer constant. */
3567 if (!first_p && integer_zerop (TREE_VALUE (list)))
3568 return non_lvalue (TREE_VALUE (list));
3569 return TREE_VALUE (list);
3570 }
3571
3572 rest = internal_build_compound_expr (TREE_CHAIN (list), FALSE);
3573
3574 if (! TREE_SIDE_EFFECTS (TREE_VALUE (list)))
3575 {
3576 /* The left-hand operand of a comma expression is like an expression
3577 statement: with -Wextra or -Wunused, we should warn if it doesn't have
3578 any side-effects, unless it was explicitly cast to (void). */
3579 if ((extra_warnings || warn_unused_value)
3580 && ! (TREE_CODE (TREE_VALUE (list)) == CONVERT_EXPR
3581 && VOID_TYPE_P (TREE_TYPE (TREE_VALUE (list)))))
3582 warning ("left-hand operand of comma expression has no effect");
3583
3584 /* When pedantic, a compound expression can be neither an lvalue
3585 nor an integer constant expression. */
3586 if (! pedantic)
3587 return rest;
3588 }
3589
3590 /* With -Wunused, we should also warn if the left-hand operand does have
3591 side-effects, but computes a value which is not used. For example, in
3592 `foo() + bar(), baz()' the result of the `+' operator is not used,
3593 so we should issue a warning. */
3594 else if (warn_unused_value)
3595 warn_if_unused_value (TREE_VALUE (list));
3596
3597 return build (COMPOUND_EXPR, TREE_TYPE (rest), TREE_VALUE (list), rest);
3598 }
3599
3600 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3601
3602 tree
3603 build_c_cast (type, expr)
3604 tree type;
3605 tree expr;
3606 {
3607 tree value = expr;
3608
3609 if (type == error_mark_node || expr == error_mark_node)
3610 return error_mark_node;
3611
3612 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3613 only in <protocol> qualifications. But when constructing cast expressions,
3614 the protocols do matter and must be kept around. */
3615 if (!flag_objc || !objc_is_id (type))
3616 type = TYPE_MAIN_VARIANT (type);
3617
3618 #if 0
3619 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3620 if (TREE_CODE (value) == NON_LVALUE_EXPR)
3621 value = TREE_OPERAND (value, 0);
3622 #endif
3623
3624 if (TREE_CODE (type) == ARRAY_TYPE)
3625 {
3626 error ("cast specifies array type");
3627 return error_mark_node;
3628 }
3629
3630 if (TREE_CODE (type) == FUNCTION_TYPE)
3631 {
3632 error ("cast specifies function type");
3633 return error_mark_node;
3634 }
3635
3636 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3637 {
3638 if (pedantic)
3639 {
3640 if (TREE_CODE (type) == RECORD_TYPE
3641 || TREE_CODE (type) == UNION_TYPE)
3642 pedwarn ("ISO C forbids casting nonscalar to the same type");
3643 }
3644 }
3645 else if (TREE_CODE (type) == UNION_TYPE)
3646 {
3647 tree field;
3648 value = default_function_array_conversion (value);
3649
3650 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3651 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3652 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3653 break;
3654
3655 if (field)
3656 {
3657 tree t;
3658
3659 if (pedantic)
3660 pedwarn ("ISO C forbids casts to union type");
3661 t = digest_init (type, build (CONSTRUCTOR, type, NULL_TREE,
3662 build_tree_list (field, value)), 0);
3663 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3664 return t;
3665 }
3666 error ("cast to union type from type not present in union");
3667 return error_mark_node;
3668 }
3669 else
3670 {
3671 tree otype, ovalue;
3672
3673 /* If casting to void, avoid the error that would come
3674 from default_conversion in the case of a non-lvalue array. */
3675 if (type == void_type_node)
3676 return build1 (CONVERT_EXPR, type, value);
3677
3678 /* Convert functions and arrays to pointers,
3679 but don't convert any other types. */
3680 value = default_function_array_conversion (value);
3681 otype = TREE_TYPE (value);
3682
3683 /* Optionally warn about potentially worrisome casts. */
3684
3685 if (warn_cast_qual
3686 && TREE_CODE (type) == POINTER_TYPE
3687 && TREE_CODE (otype) == POINTER_TYPE)
3688 {
3689 tree in_type = type;
3690 tree in_otype = otype;
3691 int added = 0;
3692 int discarded = 0;
3693
3694 /* Check that the qualifiers on IN_TYPE are a superset of
3695 the qualifiers of IN_OTYPE. The outermost level of
3696 POINTER_TYPE nodes is uninteresting and we stop as soon
3697 as we hit a non-POINTER_TYPE node on either type. */
3698 do
3699 {
3700 in_otype = TREE_TYPE (in_otype);
3701 in_type = TREE_TYPE (in_type);
3702
3703 /* GNU C allows cv-qualified function types. 'const'
3704 means the function is very pure, 'volatile' means it
3705 can't return. We need to warn when such qualifiers
3706 are added, not when they're taken away. */
3707 if (TREE_CODE (in_otype) == FUNCTION_TYPE
3708 && TREE_CODE (in_type) == FUNCTION_TYPE)
3709 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3710 else
3711 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3712 }
3713 while (TREE_CODE (in_type) == POINTER_TYPE
3714 && TREE_CODE (in_otype) == POINTER_TYPE);
3715
3716 if (added)
3717 warning ("cast adds new qualifiers to function type");
3718
3719 if (discarded)
3720 /* There are qualifiers present in IN_OTYPE that are not
3721 present in IN_TYPE. */
3722 warning ("cast discards qualifiers from pointer target type");
3723 }
3724
3725 /* Warn about possible alignment problems. */
3726 if (STRICT_ALIGNMENT && warn_cast_align
3727 && TREE_CODE (type) == POINTER_TYPE
3728 && TREE_CODE (otype) == POINTER_TYPE
3729 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3730 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3731 /* Don't warn about opaque types, where the actual alignment
3732 restriction is unknown. */
3733 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3734 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3735 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3736 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3737 warning ("cast increases required alignment of target type");
3738
3739 if (TREE_CODE (type) == INTEGER_TYPE
3740 && TREE_CODE (otype) == POINTER_TYPE
3741 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3742 && !TREE_CONSTANT (value))
3743 warning ("cast from pointer to integer of different size");
3744
3745 if (warn_bad_function_cast
3746 && TREE_CODE (value) == CALL_EXPR
3747 && TREE_CODE (type) != TREE_CODE (otype))
3748 warning ("cast does not match function type");
3749
3750 if (TREE_CODE (type) == POINTER_TYPE
3751 && TREE_CODE (otype) == INTEGER_TYPE
3752 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3753 /* Don't warn about converting any constant. */
3754 && !TREE_CONSTANT (value))
3755 warning ("cast to pointer from integer of different size");
3756
3757 if (TREE_CODE (type) == POINTER_TYPE
3758 && TREE_CODE (otype) == POINTER_TYPE
3759 && TREE_CODE (expr) == ADDR_EXPR
3760 && DECL_P (TREE_OPERAND (expr, 0))
3761 && flag_strict_aliasing && warn_strict_aliasing
3762 && !VOID_TYPE_P (TREE_TYPE (type)))
3763 {
3764 /* Casting the address of a decl to non void pointer. Warn
3765 if the cast breaks type based aliasing. */
3766 if (!COMPLETE_TYPE_P (TREE_TYPE (type)))
3767 warning ("type-punning to incomplete type might break strict-aliasing rules");
3768 else if (!alias_sets_conflict_p
3769 (get_alias_set (TREE_TYPE (TREE_OPERAND (expr, 0))),
3770 get_alias_set (TREE_TYPE (type))))
3771 warning ("dereferencing type-punned pointer will break strict-aliasing rules");
3772 }
3773
3774 ovalue = value;
3775 /* Replace a nonvolatile const static variable with its value. */
3776 if (optimize && TREE_CODE (value) == VAR_DECL)
3777 value = decl_constant_value (value);
3778 value = convert (type, value);
3779
3780 /* Ignore any integer overflow caused by the cast. */
3781 if (TREE_CODE (value) == INTEGER_CST)
3782 {
3783 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3784 TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3785 }
3786 }
3787
3788 /* Pedantically, don't let (void *) (FOO *) 0 be a null pointer constant. */
3789 if (pedantic && TREE_CODE (value) == INTEGER_CST
3790 && TREE_CODE (expr) == INTEGER_CST
3791 && TREE_CODE (TREE_TYPE (expr)) != INTEGER_TYPE)
3792 value = non_lvalue (value);
3793
3794 /* If pedantic, don't let a cast be an lvalue. */
3795 if (value == expr && pedantic)
3796 value = non_lvalue (value);
3797
3798 return value;
3799 }
3800
3801 /* Interpret a cast of expression EXPR to type TYPE. */
3802 tree
3803 c_cast_expr (type, expr)
3804 tree type, expr;
3805 {
3806 int saved_wsp = warn_strict_prototypes;
3807
3808 /* This avoids warnings about unprototyped casts on
3809 integers. E.g. "#define SIG_DFL (void(*)())0". */
3810 if (TREE_CODE (expr) == INTEGER_CST)
3811 warn_strict_prototypes = 0;
3812 type = groktypename (type);
3813 warn_strict_prototypes = saved_wsp;
3814
3815 return build_c_cast (type, expr);
3816 }
3817
3818 \f
3819 /* Build an assignment expression of lvalue LHS from value RHS.
3820 MODIFYCODE is the code for a binary operator that we use
3821 to combine the old value of LHS with RHS to get the new value.
3822 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3823
3824 tree
3825 build_modify_expr (lhs, modifycode, rhs)
3826 tree lhs, rhs;
3827 enum tree_code modifycode;
3828 {
3829 tree result;
3830 tree newrhs;
3831 tree lhstype = TREE_TYPE (lhs);
3832 tree olhstype = lhstype;
3833
3834 /* Types that aren't fully specified cannot be used in assignments. */
3835 lhs = require_complete_type (lhs);
3836
3837 /* Avoid duplicate error messages from operands that had errors. */
3838 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3839 return error_mark_node;
3840
3841 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3842 /* Do not use STRIP_NOPS here. We do not want an enumerator
3843 whose value is 0 to count as a null pointer constant. */
3844 if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
3845 rhs = TREE_OPERAND (rhs, 0);
3846
3847 newrhs = rhs;
3848
3849 /* Handle control structure constructs used as "lvalues". */
3850
3851 switch (TREE_CODE (lhs))
3852 {
3853 /* Handle (a, b) used as an "lvalue". */
3854 case COMPOUND_EXPR:
3855 pedantic_lvalue_warning (COMPOUND_EXPR);
3856 newrhs = build_modify_expr (TREE_OPERAND (lhs, 1), modifycode, rhs);
3857 if (TREE_CODE (newrhs) == ERROR_MARK)
3858 return error_mark_node;
3859 return build (COMPOUND_EXPR, lhstype,
3860 TREE_OPERAND (lhs, 0), newrhs);
3861
3862 /* Handle (a ? b : c) used as an "lvalue". */
3863 case COND_EXPR:
3864 pedantic_lvalue_warning (COND_EXPR);
3865 rhs = save_expr (rhs);
3866 {
3867 /* Produce (a ? (b = rhs) : (c = rhs))
3868 except that the RHS goes through a save-expr
3869 so the code to compute it is only emitted once. */
3870 tree cond
3871 = build_conditional_expr (TREE_OPERAND (lhs, 0),
3872 build_modify_expr (TREE_OPERAND (lhs, 1),
3873 modifycode, rhs),
3874 build_modify_expr (TREE_OPERAND (lhs, 2),
3875 modifycode, rhs));
3876 if (TREE_CODE (cond) == ERROR_MARK)
3877 return cond;
3878 /* Make sure the code to compute the rhs comes out
3879 before the split. */
3880 return build (COMPOUND_EXPR, TREE_TYPE (lhs),
3881 /* But cast it to void to avoid an "unused" error. */
3882 convert (void_type_node, rhs), cond);
3883 }
3884 default:
3885 break;
3886 }
3887
3888 /* If a binary op has been requested, combine the old LHS value with the RHS
3889 producing the value we should actually store into the LHS. */
3890
3891 if (modifycode != NOP_EXPR)
3892 {
3893 lhs = stabilize_reference (lhs);
3894 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3895 }
3896
3897 /* Handle a cast used as an "lvalue".
3898 We have already performed any binary operator using the value as cast.
3899 Now convert the result to the cast type of the lhs,
3900 and then true type of the lhs and store it there;
3901 then convert result back to the cast type to be the value
3902 of the assignment. */
3903
3904 switch (TREE_CODE (lhs))
3905 {
3906 case NOP_EXPR:
3907 case CONVERT_EXPR:
3908 case FLOAT_EXPR:
3909 case FIX_TRUNC_EXPR:
3910 case FIX_FLOOR_EXPR:
3911 case FIX_ROUND_EXPR:
3912 case FIX_CEIL_EXPR:
3913 newrhs = default_function_array_conversion (newrhs);
3914 {
3915 tree inner_lhs = TREE_OPERAND (lhs, 0);
3916 tree result;
3917 result = build_modify_expr (inner_lhs, NOP_EXPR,
3918 convert (TREE_TYPE (inner_lhs),
3919 convert (lhstype, newrhs)));
3920 if (TREE_CODE (result) == ERROR_MARK)
3921 return result;
3922 pedantic_lvalue_warning (CONVERT_EXPR);
3923 return convert (TREE_TYPE (lhs), result);
3924 }
3925
3926 default:
3927 break;
3928 }
3929
3930 /* Now we have handled acceptable kinds of LHS that are not truly lvalues.
3931 Reject anything strange now. */
3932
3933 if (!lvalue_or_else (lhs, "invalid lvalue in assignment"))
3934 return error_mark_node;
3935
3936 /* Warn about storing in something that is `const'. */
3937
3938 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3939 || ((TREE_CODE (lhstype) == RECORD_TYPE
3940 || TREE_CODE (lhstype) == UNION_TYPE)
3941 && C_TYPE_FIELDS_READONLY (lhstype)))
3942 readonly_warning (lhs, "assignment");
3943
3944 /* If storing into a structure or union member,
3945 it has probably been given type `int'.
3946 Compute the type that would go with
3947 the actual amount of storage the member occupies. */
3948
3949 if (TREE_CODE (lhs) == COMPONENT_REF
3950 && (TREE_CODE (lhstype) == INTEGER_TYPE
3951 || TREE_CODE (lhstype) == BOOLEAN_TYPE
3952 || TREE_CODE (lhstype) == REAL_TYPE
3953 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3954 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3955
3956 /* If storing in a field that is in actuality a short or narrower than one,
3957 we must store in the field in its actual type. */
3958
3959 if (lhstype != TREE_TYPE (lhs))
3960 {
3961 lhs = copy_node (lhs);
3962 TREE_TYPE (lhs) = lhstype;
3963 }
3964
3965 /* Convert new value to destination type. */
3966
3967 newrhs = convert_for_assignment (lhstype, newrhs, _("assignment"),
3968 NULL_TREE, NULL_TREE, 0);
3969 if (TREE_CODE (newrhs) == ERROR_MARK)
3970 return error_mark_node;
3971
3972 /* Scan operands */
3973
3974 result = build (MODIFY_EXPR, lhstype, lhs, newrhs);
3975 TREE_SIDE_EFFECTS (result) = 1;
3976
3977 /* If we got the LHS in a different type for storing in,
3978 convert the result back to the nominal type of LHS
3979 so that the value we return always has the same type
3980 as the LHS argument. */
3981
3982 if (olhstype == TREE_TYPE (result))
3983 return result;
3984 return convert_for_assignment (olhstype, result, _("assignment"),
3985 NULL_TREE, NULL_TREE, 0);
3986 }
3987 \f
3988 /* Convert value RHS to type TYPE as preparation for an assignment
3989 to an lvalue of type TYPE.
3990 The real work of conversion is done by `convert'.
3991 The purpose of this function is to generate error messages
3992 for assignments that are not allowed in C.
3993 ERRTYPE is a string to use in error messages:
3994 "assignment", "return", etc. If it is null, this is parameter passing
3995 for a function call (and different error messages are output).
3996
3997 FUNNAME is the name of the function being called,
3998 as an IDENTIFIER_NODE, or null.
3999 PARMNUM is the number of the argument, for printing in error messages. */
4000
4001 static tree
4002 convert_for_assignment (type, rhs, errtype, fundecl, funname, parmnum)
4003 tree type, rhs;
4004 const char *errtype;
4005 tree fundecl, funname;
4006 int parmnum;
4007 {
4008 enum tree_code codel = TREE_CODE (type);
4009 tree rhstype;
4010 enum tree_code coder;
4011
4012 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
4013 /* Do not use STRIP_NOPS here. We do not want an enumerator
4014 whose value is 0 to count as a null pointer constant. */
4015 if (TREE_CODE (rhs) == NON_LVALUE_EXPR)
4016 rhs = TREE_OPERAND (rhs, 0);
4017
4018 if (TREE_CODE (TREE_TYPE (rhs)) == ARRAY_TYPE
4019 || TREE_CODE (TREE_TYPE (rhs)) == FUNCTION_TYPE)
4020 rhs = default_conversion (rhs);
4021 else if (optimize && TREE_CODE (rhs) == VAR_DECL)
4022 rhs = decl_constant_value_for_broken_optimization (rhs);
4023
4024 rhstype = TREE_TYPE (rhs);
4025 coder = TREE_CODE (rhstype);
4026
4027 if (coder == ERROR_MARK)
4028 return error_mark_node;
4029
4030 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
4031 {
4032 overflow_warning (rhs);
4033 /* Check for Objective-C protocols. This will automatically
4034 issue a warning if there are protocol violations. No need to
4035 use the return value. */
4036 if (flag_objc)
4037 objc_comptypes (type, rhstype, 0);
4038 return rhs;
4039 }
4040
4041 if (coder == VOID_TYPE)
4042 {
4043 error ("void value not ignored as it ought to be");
4044 return error_mark_node;
4045 }
4046 /* A type converts to a reference to it.
4047 This code doesn't fully support references, it's just for the
4048 special case of va_start and va_copy. */
4049 if (codel == REFERENCE_TYPE
4050 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
4051 {
4052 if (!lvalue_p (rhs))
4053 {
4054 error ("cannot pass rvalue to reference parameter");
4055 return error_mark_node;
4056 }
4057 if (!c_mark_addressable (rhs))
4058 return error_mark_node;
4059 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
4060
4061 /* We already know that these two types are compatible, but they
4062 may not be exactly identical. In fact, `TREE_TYPE (type)' is
4063 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
4064 likely to be va_list, a typedef to __builtin_va_list, which
4065 is different enough that it will cause problems later. */
4066 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
4067 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
4068
4069 rhs = build1 (NOP_EXPR, type, rhs);
4070 return rhs;
4071 }
4072 /* Some types can interconvert without explicit casts. */
4073 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
4074 && (*targetm.vector_types_compatible) (type, rhstype))
4075 return convert (type, rhs);
4076 /* Arithmetic types all interconvert, and enum is treated like int. */
4077 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
4078 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
4079 || codel == BOOLEAN_TYPE)
4080 && (coder == INTEGER_TYPE || coder == REAL_TYPE
4081 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
4082 || coder == BOOLEAN_TYPE))
4083 return convert_and_check (type, rhs);
4084
4085 /* Conversion to a transparent union from its member types.
4086 This applies only to function arguments. */
4087 else if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type) && ! errtype)
4088 {
4089 tree memb_types;
4090 tree marginal_memb_type = 0;
4091
4092 for (memb_types = TYPE_FIELDS (type); memb_types;
4093 memb_types = TREE_CHAIN (memb_types))
4094 {
4095 tree memb_type = TREE_TYPE (memb_types);
4096
4097 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
4098 TYPE_MAIN_VARIANT (rhstype)))
4099 break;
4100
4101 if (TREE_CODE (memb_type) != POINTER_TYPE)
4102 continue;
4103
4104 if (coder == POINTER_TYPE)
4105 {
4106 tree ttl = TREE_TYPE (memb_type);
4107 tree ttr = TREE_TYPE (rhstype);
4108
4109 /* Any non-function converts to a [const][volatile] void *
4110 and vice versa; otherwise, targets must be the same.
4111 Meanwhile, the lhs target must have all the qualifiers of
4112 the rhs. */
4113 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4114 || comp_target_types (memb_type, rhstype, 0))
4115 {
4116 /* If this type won't generate any warnings, use it. */
4117 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
4118 || ((TREE_CODE (ttr) == FUNCTION_TYPE
4119 && TREE_CODE (ttl) == FUNCTION_TYPE)
4120 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4121 == TYPE_QUALS (ttr))
4122 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4123 == TYPE_QUALS (ttl))))
4124 break;
4125
4126 /* Keep looking for a better type, but remember this one. */
4127 if (! marginal_memb_type)
4128 marginal_memb_type = memb_type;
4129 }
4130 }
4131
4132 /* Can convert integer zero to any pointer type. */
4133 if (integer_zerop (rhs)
4134 || (TREE_CODE (rhs) == NOP_EXPR
4135 && integer_zerop (TREE_OPERAND (rhs, 0))))
4136 {
4137 rhs = null_pointer_node;
4138 break;
4139 }
4140 }
4141
4142 if (memb_types || marginal_memb_type)
4143 {
4144 if (! memb_types)
4145 {
4146 /* We have only a marginally acceptable member type;
4147 it needs a warning. */
4148 tree ttl = TREE_TYPE (marginal_memb_type);
4149 tree ttr = TREE_TYPE (rhstype);
4150
4151 /* Const and volatile mean something different for function
4152 types, so the usual warnings are not appropriate. */
4153 if (TREE_CODE (ttr) == FUNCTION_TYPE
4154 && TREE_CODE (ttl) == FUNCTION_TYPE)
4155 {
4156 /* Because const and volatile on functions are
4157 restrictions that say the function will not do
4158 certain things, it is okay to use a const or volatile
4159 function where an ordinary one is wanted, but not
4160 vice-versa. */
4161 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4162 warn_for_assignment ("%s makes qualified function pointer from unqualified",
4163 errtype, funname, parmnum);
4164 }
4165 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4166 warn_for_assignment ("%s discards qualifiers from pointer target type",
4167 errtype, funname,
4168 parmnum);
4169 }
4170
4171 if (pedantic && ! DECL_IN_SYSTEM_HEADER (fundecl))
4172 pedwarn ("ISO C prohibits argument conversion to union type");
4173
4174 return build1 (NOP_EXPR, type, rhs);
4175 }
4176 }
4177
4178 /* Conversions among pointers */
4179 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4180 && (coder == codel))
4181 {
4182 tree ttl = TREE_TYPE (type);
4183 tree ttr = TREE_TYPE (rhstype);
4184
4185 /* Any non-function converts to a [const][volatile] void *
4186 and vice versa; otherwise, targets must be the same.
4187 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4188 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4189 || comp_target_types (type, rhstype, 0)
4190 || (c_common_unsigned_type (TYPE_MAIN_VARIANT (ttl))
4191 == c_common_unsigned_type (TYPE_MAIN_VARIANT (ttr))))
4192 {
4193 if (pedantic
4194 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4195 ||
4196 (VOID_TYPE_P (ttr)
4197 /* Check TREE_CODE to catch cases like (void *) (char *) 0
4198 which are not ANSI null ptr constants. */
4199 && (!integer_zerop (rhs) || TREE_CODE (rhs) == NOP_EXPR)
4200 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4201 warn_for_assignment ("ISO C forbids %s between function pointer and `void *'",
4202 errtype, funname, parmnum);
4203 /* Const and volatile mean something different for function types,
4204 so the usual warnings are not appropriate. */
4205 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4206 && TREE_CODE (ttl) != FUNCTION_TYPE)
4207 {
4208 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4209 warn_for_assignment ("%s discards qualifiers from pointer target type",
4210 errtype, funname, parmnum);
4211 /* If this is not a case of ignoring a mismatch in signedness,
4212 no warning. */
4213 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4214 || comp_target_types (type, rhstype, 0))
4215 ;
4216 /* If there is a mismatch, do warn. */
4217 else if (pedantic)
4218 warn_for_assignment ("pointer targets in %s differ in signedness",
4219 errtype, funname, parmnum);
4220 }
4221 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4222 && TREE_CODE (ttr) == FUNCTION_TYPE)
4223 {
4224 /* Because const and volatile on functions are restrictions
4225 that say the function will not do certain things,
4226 it is okay to use a const or volatile function
4227 where an ordinary one is wanted, but not vice-versa. */
4228 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4229 warn_for_assignment ("%s makes qualified function pointer from unqualified",
4230 errtype, funname, parmnum);
4231 }
4232 }
4233 else
4234 warn_for_assignment ("%s from incompatible pointer type",
4235 errtype, funname, parmnum);
4236 return convert (type, rhs);
4237 }
4238 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4239 {
4240 /* An explicit constant 0 can convert to a pointer,
4241 or one that results from arithmetic, even including
4242 a cast to integer type. */
4243 if (! (TREE_CODE (rhs) == INTEGER_CST && integer_zerop (rhs))
4244 &&
4245 ! (TREE_CODE (rhs) == NOP_EXPR
4246 && TREE_CODE (TREE_TYPE (rhs)) == INTEGER_TYPE
4247 && TREE_CODE (TREE_OPERAND (rhs, 0)) == INTEGER_CST
4248 && integer_zerop (TREE_OPERAND (rhs, 0))))
4249 {
4250 warn_for_assignment ("%s makes pointer from integer without a cast",
4251 errtype, funname, parmnum);
4252 return convert (type, rhs);
4253 }
4254 return null_pointer_node;
4255 }
4256 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4257 {
4258 warn_for_assignment ("%s makes integer from pointer without a cast",
4259 errtype, funname, parmnum);
4260 return convert (type, rhs);
4261 }
4262 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4263 return convert (type, rhs);
4264
4265 if (!errtype)
4266 {
4267 if (funname)
4268 {
4269 tree selector = objc_message_selector ();
4270
4271 if (selector && parmnum > 2)
4272 error ("incompatible type for argument %d of `%s'",
4273 parmnum - 2, IDENTIFIER_POINTER (selector));
4274 else
4275 error ("incompatible type for argument %d of `%s'",
4276 parmnum, IDENTIFIER_POINTER (funname));
4277 }
4278 else
4279 error ("incompatible type for argument %d of indirect function call",
4280 parmnum);
4281 }
4282 else
4283 error ("incompatible types in %s", errtype);
4284
4285 return error_mark_node;
4286 }
4287
4288 /* Convert VALUE for assignment into inlined parameter PARM. */
4289
4290 tree
4291 c_convert_parm_for_inlining (parm, value, fn)
4292 tree parm, value, fn;
4293 {
4294 tree ret, type;
4295
4296 /* If FN was prototyped, the value has been converted already
4297 in convert_arguments. */
4298 if (! value || TYPE_ARG_TYPES (TREE_TYPE (fn)))
4299 return value;
4300
4301 type = TREE_TYPE (parm);
4302 ret = convert_for_assignment (type, value,
4303 (char *) 0 /* arg passing */, fn,
4304 DECL_NAME (fn), 0);
4305 if (PROMOTE_PROTOTYPES
4306 && INTEGRAL_TYPE_P (type)
4307 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4308 ret = default_conversion (ret);
4309 return ret;
4310 }
4311
4312 /* Print a warning using MSGID.
4313 It gets OPNAME as its one parameter.
4314 if OPNAME is null and ARGNUM is 0, it is replaced by "passing arg of `FUNCTION'".
4315 Otherwise if OPNAME is null, it is replaced by "passing arg ARGNUM of `FUNCTION'".
4316 FUNCTION and ARGNUM are handled specially if we are building an
4317 Objective-C selector. */
4318
4319 static void
4320 warn_for_assignment (msgid, opname, function, argnum)
4321 const char *msgid;
4322 const char *opname;
4323 tree function;
4324 int argnum;
4325 {
4326 if (opname == 0)
4327 {
4328 tree selector = objc_message_selector ();
4329 char * new_opname;
4330
4331 if (selector && argnum > 2)
4332 {
4333 function = selector;
4334 argnum -= 2;
4335 }
4336 if (argnum == 0)
4337 {
4338 if (function)
4339 {
4340 /* Function name is known; supply it. */
4341 const char *const argstring = _("passing arg of `%s'");
4342 new_opname = (char *) alloca (IDENTIFIER_LENGTH (function)
4343 + strlen (argstring) + 1
4344 + 1);
4345 sprintf (new_opname, argstring,
4346 IDENTIFIER_POINTER (function));
4347 }
4348 else
4349 {
4350 /* Function name unknown (call through ptr). */
4351 const char *const argnofun = _("passing arg of pointer to function");
4352 new_opname = (char *) alloca (strlen (argnofun) + 1 + 1);
4353 sprintf (new_opname, argnofun);
4354 }
4355 }
4356 else if (function)
4357 {
4358 /* Function name is known; supply it. */
4359 const char *const argstring = _("passing arg %d of `%s'");
4360 new_opname = (char *) alloca (IDENTIFIER_LENGTH (function)
4361 + strlen (argstring) + 1 + 25
4362 /*%d*/ + 1);
4363 sprintf (new_opname, argstring, argnum,
4364 IDENTIFIER_POINTER (function));
4365 }
4366 else
4367 {
4368 /* Function name unknown (call through ptr); just give arg number. */
4369 const char *const argnofun = _("passing arg %d of pointer to function");
4370 new_opname = (char *) alloca (strlen (argnofun) + 1 + 25 /*%d*/ + 1);
4371 sprintf (new_opname, argnofun, argnum);
4372 }
4373 opname = new_opname;
4374 }
4375 pedwarn (msgid, opname);
4376 }
4377 \f
4378 /* If VALUE is a compound expr all of whose expressions are constant, then
4379 return its value. Otherwise, return error_mark_node.
4380
4381 This is for handling COMPOUND_EXPRs as initializer elements
4382 which is allowed with a warning when -pedantic is specified. */
4383
4384 static tree
4385 valid_compound_expr_initializer (value, endtype)
4386 tree value;
4387 tree endtype;
4388 {
4389 if (TREE_CODE (value) == COMPOUND_EXPR)
4390 {
4391 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4392 == error_mark_node)
4393 return error_mark_node;
4394 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4395 endtype);
4396 }
4397 else if (! TREE_CONSTANT (value)
4398 && ! initializer_constant_valid_p (value, endtype))
4399 return error_mark_node;
4400 else
4401 return value;
4402 }
4403 \f
4404 /* Perform appropriate conversions on the initial value of a variable,
4405 store it in the declaration DECL,
4406 and print any error messages that are appropriate.
4407 If the init is invalid, store an ERROR_MARK. */
4408
4409 void
4410 store_init_value (decl, init)
4411 tree decl, init;
4412 {
4413 tree value, type;
4414
4415 /* If variable's type was invalidly declared, just ignore it. */
4416
4417 type = TREE_TYPE (decl);
4418 if (TREE_CODE (type) == ERROR_MARK)
4419 return;
4420
4421 /* Digest the specified initializer into an expression. */
4422
4423 value = digest_init (type, init, TREE_STATIC (decl));
4424
4425 /* Store the expression if valid; else report error. */
4426
4427 #if 0
4428 /* Note that this is the only place we can detect the error
4429 in a case such as struct foo bar = (struct foo) { x, y };
4430 where there is one initial value which is a constructor expression. */
4431 if (value == error_mark_node)
4432 ;
4433 else if (TREE_STATIC (decl) && ! TREE_CONSTANT (value))
4434 {
4435 error ("initializer for static variable is not constant");
4436 value = error_mark_node;
4437 }
4438 else if (TREE_STATIC (decl)
4439 && initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
4440 {
4441 error ("initializer for static variable uses complicated arithmetic");
4442 value = error_mark_node;
4443 }
4444 else
4445 {
4446 if (pedantic && TREE_CODE (value) == CONSTRUCTOR)
4447 {
4448 if (! TREE_CONSTANT (value))
4449 pedwarn ("aggregate initializer is not constant");
4450 else if (! TREE_STATIC (value))
4451 pedwarn ("aggregate initializer uses complicated arithmetic");
4452 }
4453 }
4454 #endif
4455
4456 if (warn_traditional && !in_system_header
4457 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && ! TREE_STATIC (decl))
4458 warning ("traditional C rejects automatic aggregate initialization");
4459
4460 DECL_INITIAL (decl) = value;
4461
4462 /* ANSI wants warnings about out-of-range constant initializers. */
4463 STRIP_TYPE_NOPS (value);
4464 constant_expression_warning (value);
4465
4466 /* Check if we need to set array size from compound literal size. */
4467 if (TREE_CODE (type) == ARRAY_TYPE
4468 && TYPE_DOMAIN (type) == 0
4469 && value != error_mark_node)
4470 {
4471 tree inside_init = init;
4472
4473 if (TREE_CODE (init) == NON_LVALUE_EXPR)
4474 inside_init = TREE_OPERAND (init, 0);
4475 inside_init = fold (inside_init);
4476
4477 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4478 {
4479 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4480
4481 if (TYPE_DOMAIN (TREE_TYPE (decl)))
4482 {
4483 /* For int foo[] = (int [3]){1}; we need to set array size
4484 now since later on array initializer will be just the
4485 brace enclosed list of the compound literal. */
4486 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (decl));
4487 layout_type (type);
4488 layout_decl (decl, 0);
4489 }
4490 }
4491 }
4492 }
4493 \f
4494 /* Methods for storing and printing names for error messages. */
4495
4496 /* Implement a spelling stack that allows components of a name to be pushed
4497 and popped. Each element on the stack is this structure. */
4498
4499 struct spelling
4500 {
4501 int kind;
4502 union
4503 {
4504 int i;
4505 const char *s;
4506 } u;
4507 };
4508
4509 #define SPELLING_STRING 1
4510 #define SPELLING_MEMBER 2
4511 #define SPELLING_BOUNDS 3
4512
4513 static struct spelling *spelling; /* Next stack element (unused). */
4514 static struct spelling *spelling_base; /* Spelling stack base. */
4515 static int spelling_size; /* Size of the spelling stack. */
4516
4517 /* Macros to save and restore the spelling stack around push_... functions.
4518 Alternative to SAVE_SPELLING_STACK. */
4519
4520 #define SPELLING_DEPTH() (spelling - spelling_base)
4521 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4522
4523 /* Push an element on the spelling stack with type KIND and assign VALUE
4524 to MEMBER. */
4525
4526 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4527 { \
4528 int depth = SPELLING_DEPTH (); \
4529 \
4530 if (depth >= spelling_size) \
4531 { \
4532 spelling_size += 10; \
4533 if (spelling_base == 0) \
4534 spelling_base \
4535 = (struct spelling *) xmalloc (spelling_size * sizeof (struct spelling)); \
4536 else \
4537 spelling_base \
4538 = (struct spelling *) xrealloc (spelling_base, \
4539 spelling_size * sizeof (struct spelling)); \
4540 RESTORE_SPELLING_DEPTH (depth); \
4541 } \
4542 \
4543 spelling->kind = (KIND); \
4544 spelling->MEMBER = (VALUE); \
4545 spelling++; \
4546 }
4547
4548 /* Push STRING on the stack. Printed literally. */
4549
4550 static void
4551 push_string (string)
4552 const char *string;
4553 {
4554 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4555 }
4556
4557 /* Push a member name on the stack. Printed as '.' STRING. */
4558
4559 static void
4560 push_member_name (decl)
4561 tree decl;
4562
4563 {
4564 const char *const string
4565 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4566 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4567 }
4568
4569 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4570
4571 static void
4572 push_array_bounds (bounds)
4573 int bounds;
4574 {
4575 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4576 }
4577
4578 /* Compute the maximum size in bytes of the printed spelling. */
4579
4580 static int
4581 spelling_length ()
4582 {
4583 int size = 0;
4584 struct spelling *p;
4585
4586 for (p = spelling_base; p < spelling; p++)
4587 {
4588 if (p->kind == SPELLING_BOUNDS)
4589 size += 25;
4590 else
4591 size += strlen (p->u.s) + 1;
4592 }
4593
4594 return size;
4595 }
4596
4597 /* Print the spelling to BUFFER and return it. */
4598
4599 static char *
4600 print_spelling (buffer)
4601 char *buffer;
4602 {
4603 char *d = buffer;
4604 struct spelling *p;
4605
4606 for (p = spelling_base; p < spelling; p++)
4607 if (p->kind == SPELLING_BOUNDS)
4608 {
4609 sprintf (d, "[%d]", p->u.i);
4610 d += strlen (d);
4611 }
4612 else
4613 {
4614 const char *s;
4615 if (p->kind == SPELLING_MEMBER)
4616 *d++ = '.';
4617 for (s = p->u.s; (*d = *s++); d++)
4618 ;
4619 }
4620 *d++ = '\0';
4621 return buffer;
4622 }
4623
4624 /* Issue an error message for a bad initializer component.
4625 MSGID identifies the message.
4626 The component name is taken from the spelling stack. */
4627
4628 void
4629 error_init (msgid)
4630 const char *msgid;
4631 {
4632 char *ofwhat;
4633
4634 error ("%s", _(msgid));
4635 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4636 if (*ofwhat)
4637 error ("(near initialization for `%s')", ofwhat);
4638 }
4639
4640 /* Issue a pedantic warning for a bad initializer component.
4641 MSGID identifies the message.
4642 The component name is taken from the spelling stack. */
4643
4644 void
4645 pedwarn_init (msgid)
4646 const char *msgid;
4647 {
4648 char *ofwhat;
4649
4650 pedwarn ("%s", _(msgid));
4651 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4652 if (*ofwhat)
4653 pedwarn ("(near initialization for `%s')", ofwhat);
4654 }
4655
4656 /* Issue a warning for a bad initializer component.
4657 MSGID identifies the message.
4658 The component name is taken from the spelling stack. */
4659
4660 static void
4661 warning_init (msgid)
4662 const char *msgid;
4663 {
4664 char *ofwhat;
4665
4666 warning ("%s", _(msgid));
4667 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4668 if (*ofwhat)
4669 warning ("(near initialization for `%s')", ofwhat);
4670 }
4671 \f
4672 /* Digest the parser output INIT as an initializer for type TYPE.
4673 Return a C expression of type TYPE to represent the initial value.
4674
4675 REQUIRE_CONSTANT requests an error if non-constant initializers or
4676 elements are seen. */
4677
4678 static tree
4679 digest_init (type, init, require_constant)
4680 tree type, init;
4681 int require_constant;
4682 {
4683 enum tree_code code = TREE_CODE (type);
4684 tree inside_init = init;
4685
4686 if (type == error_mark_node
4687 || init == error_mark_node
4688 || TREE_TYPE (init) == error_mark_node)
4689 return error_mark_node;
4690
4691 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
4692 /* Do not use STRIP_NOPS here. We do not want an enumerator
4693 whose value is 0 to count as a null pointer constant. */
4694 if (TREE_CODE (init) == NON_LVALUE_EXPR)
4695 inside_init = TREE_OPERAND (init, 0);
4696
4697 inside_init = fold (inside_init);
4698
4699 /* Initialization of an array of chars from a string constant
4700 optionally enclosed in braces. */
4701
4702 if (code == ARRAY_TYPE)
4703 {
4704 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4705 if ((typ1 == char_type_node
4706 || typ1 == signed_char_type_node
4707 || typ1 == unsigned_char_type_node
4708 || typ1 == unsigned_wchar_type_node
4709 || typ1 == signed_wchar_type_node)
4710 && ((inside_init && TREE_CODE (inside_init) == STRING_CST)))
4711 {
4712 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4713 TYPE_MAIN_VARIANT (type)))
4714 return inside_init;
4715
4716 if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4717 != char_type_node)
4718 && TYPE_PRECISION (typ1) == TYPE_PRECISION (char_type_node))
4719 {
4720 error_init ("char-array initialized from wide string");
4721 return error_mark_node;
4722 }
4723 if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4724 == char_type_node)
4725 && TYPE_PRECISION (typ1) != TYPE_PRECISION (char_type_node))
4726 {
4727 error_init ("int-array initialized from non-wide string");
4728 return error_mark_node;
4729 }
4730
4731 TREE_TYPE (inside_init) = type;
4732 if (TYPE_DOMAIN (type) != 0
4733 && TYPE_SIZE (type) != 0
4734 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4735 /* Subtract 1 (or sizeof (wchar_t))
4736 because it's ok to ignore the terminating null char
4737 that is counted in the length of the constant. */
4738 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4739 TREE_STRING_LENGTH (inside_init)
4740 - ((TYPE_PRECISION (typ1)
4741 != TYPE_PRECISION (char_type_node))
4742 ? (TYPE_PRECISION (wchar_type_node)
4743 / BITS_PER_UNIT)
4744 : 1)))
4745 pedwarn_init ("initializer-string for array of chars is too long");
4746
4747 return inside_init;
4748 }
4749 }
4750
4751 /* Any type can be initialized
4752 from an expression of the same type, optionally with braces. */
4753
4754 if (inside_init && TREE_TYPE (inside_init) != 0
4755 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4756 TYPE_MAIN_VARIANT (type))
4757 || (code == ARRAY_TYPE
4758 && comptypes (TREE_TYPE (inside_init), type))
4759 || (code == VECTOR_TYPE
4760 && comptypes (TREE_TYPE (inside_init), type))
4761 || (code == POINTER_TYPE
4762 && (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4763 || TREE_CODE (TREE_TYPE (inside_init)) == FUNCTION_TYPE)
4764 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4765 TREE_TYPE (type)))))
4766 {
4767 if (code == POINTER_TYPE)
4768 inside_init = default_function_array_conversion (inside_init);
4769
4770 if (require_constant && !flag_isoc99
4771 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4772 {
4773 /* As an extension, allow initializing objects with static storage
4774 duration with compound literals (which are then treated just as
4775 the brace enclosed list they contain). */
4776 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4777 inside_init = DECL_INITIAL (decl);
4778 }
4779
4780 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4781 && TREE_CODE (inside_init) != CONSTRUCTOR)
4782 {
4783 error_init ("array initialized from non-constant array expression");
4784 return error_mark_node;
4785 }
4786
4787 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4788 inside_init = decl_constant_value_for_broken_optimization (inside_init);
4789
4790 /* Compound expressions can only occur here if -pedantic or
4791 -pedantic-errors is specified. In the later case, we always want
4792 an error. In the former case, we simply want a warning. */
4793 if (require_constant && pedantic
4794 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4795 {
4796 inside_init
4797 = valid_compound_expr_initializer (inside_init,
4798 TREE_TYPE (inside_init));
4799 if (inside_init == error_mark_node)
4800 error_init ("initializer element is not constant");
4801 else
4802 pedwarn_init ("initializer element is not constant");
4803 if (flag_pedantic_errors)
4804 inside_init = error_mark_node;
4805 }
4806 else if (require_constant
4807 && (!TREE_CONSTANT (inside_init)
4808 /* This test catches things like `7 / 0' which
4809 result in an expression for which TREE_CONSTANT
4810 is true, but which is not actually something
4811 that is a legal constant. We really should not
4812 be using this function, because it is a part of
4813 the back-end. Instead, the expression should
4814 already have been turned into ERROR_MARK_NODE. */
4815 || !initializer_constant_valid_p (inside_init,
4816 TREE_TYPE (inside_init))))
4817 {
4818 error_init ("initializer element is not constant");
4819 inside_init = error_mark_node;
4820 }
4821
4822 return inside_init;
4823 }
4824
4825 /* Handle scalar types, including conversions. */
4826
4827 if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4828 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE)
4829 {
4830 /* Note that convert_for_assignment calls default_conversion
4831 for arrays and functions. We must not call it in the
4832 case where inside_init is a null pointer constant. */
4833 inside_init
4834 = convert_for_assignment (type, init, _("initialization"),
4835 NULL_TREE, NULL_TREE, 0);
4836
4837 if (require_constant && ! TREE_CONSTANT (inside_init))
4838 {
4839 error_init ("initializer element is not constant");
4840 inside_init = error_mark_node;
4841 }
4842 else if (require_constant
4843 && initializer_constant_valid_p (inside_init, TREE_TYPE (inside_init)) == 0)
4844 {
4845 error_init ("initializer element is not computable at load time");
4846 inside_init = error_mark_node;
4847 }
4848
4849 return inside_init;
4850 }
4851
4852 /* Come here only for records and arrays. */
4853
4854 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4855 {
4856 error_init ("variable-sized object may not be initialized");
4857 return error_mark_node;
4858 }
4859
4860 error_init ("invalid initializer");
4861 return error_mark_node;
4862 }
4863 \f
4864 /* Handle initializers that use braces. */
4865
4866 /* Type of object we are accumulating a constructor for.
4867 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4868 static tree constructor_type;
4869
4870 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4871 left to fill. */
4872 static tree constructor_fields;
4873
4874 /* For an ARRAY_TYPE, this is the specified index
4875 at which to store the next element we get. */
4876 static tree constructor_index;
4877
4878 /* For an ARRAY_TYPE, this is the maximum index. */
4879 static tree constructor_max_index;
4880
4881 /* For a RECORD_TYPE, this is the first field not yet written out. */
4882 static tree constructor_unfilled_fields;
4883
4884 /* For an ARRAY_TYPE, this is the index of the first element
4885 not yet written out. */
4886 static tree constructor_unfilled_index;
4887
4888 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4889 This is so we can generate gaps between fields, when appropriate. */
4890 static tree constructor_bit_index;
4891
4892 /* If we are saving up the elements rather than allocating them,
4893 this is the list of elements so far (in reverse order,
4894 most recent first). */
4895 static tree constructor_elements;
4896
4897 /* 1 if constructor should be incrementally stored into a constructor chain,
4898 0 if all the elements should be kept in AVL tree. */
4899 static int constructor_incremental;
4900
4901 /* 1 if so far this constructor's elements are all compile-time constants. */
4902 static int constructor_constant;
4903
4904 /* 1 if so far this constructor's elements are all valid address constants. */
4905 static int constructor_simple;
4906
4907 /* 1 if this constructor is erroneous so far. */
4908 static int constructor_erroneous;
4909
4910 /* 1 if have called defer_addressed_constants. */
4911 static int constructor_subconstants_deferred;
4912
4913 /* Structure for managing pending initializer elements, organized as an
4914 AVL tree. */
4915
4916 struct init_node
4917 {
4918 struct init_node *left, *right;
4919 struct init_node *parent;
4920 int balance;
4921 tree purpose;
4922 tree value;
4923 };
4924
4925 /* Tree of pending elements at this constructor level.
4926 These are elements encountered out of order
4927 which belong at places we haven't reached yet in actually
4928 writing the output.
4929 Will never hold tree nodes across GC runs. */
4930 static struct init_node *constructor_pending_elts;
4931
4932 /* The SPELLING_DEPTH of this constructor. */
4933 static int constructor_depth;
4934
4935 /* 0 if implicitly pushing constructor levels is allowed. */
4936 int constructor_no_implicit = 0; /* 0 for C; 1 for some other languages. */
4937
4938 static int require_constant_value;
4939 static int require_constant_elements;
4940
4941 /* DECL node for which an initializer is being read.
4942 0 means we are reading a constructor expression
4943 such as (struct foo) {...}. */
4944 static tree constructor_decl;
4945
4946 /* start_init saves the ASMSPEC arg here for really_start_incremental_init. */
4947 static const char *constructor_asmspec;
4948
4949 /* Nonzero if this is an initializer for a top-level decl. */
4950 static int constructor_top_level;
4951
4952 /* Nonzero if there were any member designators in this initializer. */
4953 static int constructor_designated;
4954
4955 /* Nesting depth of designator list. */
4956 static int designator_depth;
4957
4958 /* Nonzero if there were diagnosed errors in this designator list. */
4959 static int designator_errorneous;
4960
4961 \f
4962 /* This stack has a level for each implicit or explicit level of
4963 structuring in the initializer, including the outermost one. It
4964 saves the values of most of the variables above. */
4965
4966 struct constructor_range_stack;
4967
4968 struct constructor_stack
4969 {
4970 struct constructor_stack *next;
4971 tree type;
4972 tree fields;
4973 tree index;
4974 tree max_index;
4975 tree unfilled_index;
4976 tree unfilled_fields;
4977 tree bit_index;
4978 tree elements;
4979 struct init_node *pending_elts;
4980 int offset;
4981 int depth;
4982 /* If nonzero, this value should replace the entire
4983 constructor at this level. */
4984 tree replacement_value;
4985 struct constructor_range_stack *range_stack;
4986 char constant;
4987 char simple;
4988 char implicit;
4989 char erroneous;
4990 char outer;
4991 char incremental;
4992 char designated;
4993 };
4994
4995 struct constructor_stack *constructor_stack;
4996
4997 /* This stack represents designators from some range designator up to
4998 the last designator in the list. */
4999
5000 struct constructor_range_stack
5001 {
5002 struct constructor_range_stack *next, *prev;
5003 struct constructor_stack *stack;
5004 tree range_start;
5005 tree index;
5006 tree range_end;
5007 tree fields;
5008 };
5009
5010 struct constructor_range_stack *constructor_range_stack;
5011
5012 /* This stack records separate initializers that are nested.
5013 Nested initializers can't happen in ANSI C, but GNU C allows them
5014 in cases like { ... (struct foo) { ... } ... }. */
5015
5016 struct initializer_stack
5017 {
5018 struct initializer_stack *next;
5019 tree decl;
5020 const char *asmspec;
5021 struct constructor_stack *constructor_stack;
5022 struct constructor_range_stack *constructor_range_stack;
5023 tree elements;
5024 struct spelling *spelling;
5025 struct spelling *spelling_base;
5026 int spelling_size;
5027 char top_level;
5028 char require_constant_value;
5029 char require_constant_elements;
5030 char deferred;
5031 };
5032
5033 struct initializer_stack *initializer_stack;
5034 \f
5035 /* Prepare to parse and output the initializer for variable DECL. */
5036
5037 void
5038 start_init (decl, asmspec_tree, top_level)
5039 tree decl;
5040 tree asmspec_tree;
5041 int top_level;
5042 {
5043 const char *locus;
5044 struct initializer_stack *p
5045 = (struct initializer_stack *) xmalloc (sizeof (struct initializer_stack));
5046 const char *asmspec = 0;
5047
5048 if (asmspec_tree)
5049 asmspec = TREE_STRING_POINTER (asmspec_tree);
5050
5051 p->decl = constructor_decl;
5052 p->asmspec = constructor_asmspec;
5053 p->require_constant_value = require_constant_value;
5054 p->require_constant_elements = require_constant_elements;
5055 p->constructor_stack = constructor_stack;
5056 p->constructor_range_stack = constructor_range_stack;
5057 p->elements = constructor_elements;
5058 p->spelling = spelling;
5059 p->spelling_base = spelling_base;
5060 p->spelling_size = spelling_size;
5061 p->deferred = constructor_subconstants_deferred;
5062 p->top_level = constructor_top_level;
5063 p->next = initializer_stack;
5064 initializer_stack = p;
5065
5066 constructor_decl = decl;
5067 constructor_asmspec = asmspec;
5068 constructor_subconstants_deferred = 0;
5069 constructor_designated = 0;
5070 constructor_top_level = top_level;
5071
5072 if (decl != 0)
5073 {
5074 require_constant_value = TREE_STATIC (decl);
5075 require_constant_elements
5076 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
5077 /* For a scalar, you can always use any value to initialize,
5078 even within braces. */
5079 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
5080 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5081 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
5082 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5083 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
5084 }
5085 else
5086 {
5087 require_constant_value = 0;
5088 require_constant_elements = 0;
5089 locus = "(anonymous)";
5090 }
5091
5092 constructor_stack = 0;
5093 constructor_range_stack = 0;
5094
5095 missing_braces_mentioned = 0;
5096
5097 spelling_base = 0;
5098 spelling_size = 0;
5099 RESTORE_SPELLING_DEPTH (0);
5100
5101 if (locus)
5102 push_string (locus);
5103 }
5104
5105 void
5106 finish_init ()
5107 {
5108 struct initializer_stack *p = initializer_stack;
5109
5110 /* Output subconstants (string constants, usually)
5111 that were referenced within this initializer and saved up.
5112 Must do this if and only if we called defer_addressed_constants. */
5113 if (constructor_subconstants_deferred)
5114 output_deferred_addressed_constants ();
5115
5116 /* Free the whole constructor stack of this initializer. */
5117 while (constructor_stack)
5118 {
5119 struct constructor_stack *q = constructor_stack;
5120 constructor_stack = q->next;
5121 free (q);
5122 }
5123
5124 if (constructor_range_stack)
5125 abort ();
5126
5127 /* Pop back to the data of the outer initializer (if any). */
5128 constructor_decl = p->decl;
5129 constructor_asmspec = p->asmspec;
5130 require_constant_value = p->require_constant_value;
5131 require_constant_elements = p->require_constant_elements;
5132 constructor_stack = p->constructor_stack;
5133 constructor_range_stack = p->constructor_range_stack;
5134 constructor_elements = p->elements;
5135 spelling = p->spelling;
5136 spelling_base = p->spelling_base;
5137 spelling_size = p->spelling_size;
5138 constructor_subconstants_deferred = p->deferred;
5139 constructor_top_level = p->top_level;
5140 initializer_stack = p->next;
5141 free (p);
5142 }
5143 \f
5144 /* Call here when we see the initializer is surrounded by braces.
5145 This is instead of a call to push_init_level;
5146 it is matched by a call to pop_init_level.
5147
5148 TYPE is the type to initialize, for a constructor expression.
5149 For an initializer for a decl, TYPE is zero. */
5150
5151 void
5152 really_start_incremental_init (type)
5153 tree type;
5154 {
5155 struct constructor_stack *p
5156 = (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
5157
5158 if (type == 0)
5159 type = TREE_TYPE (constructor_decl);
5160
5161 p->type = constructor_type;
5162 p->fields = constructor_fields;
5163 p->index = constructor_index;
5164 p->max_index = constructor_max_index;
5165 p->unfilled_index = constructor_unfilled_index;
5166 p->unfilled_fields = constructor_unfilled_fields;
5167 p->bit_index = constructor_bit_index;
5168 p->elements = constructor_elements;
5169 p->constant = constructor_constant;
5170 p->simple = constructor_simple;
5171 p->erroneous = constructor_erroneous;
5172 p->pending_elts = constructor_pending_elts;
5173 p->depth = constructor_depth;
5174 p->replacement_value = 0;
5175 p->implicit = 0;
5176 p->range_stack = 0;
5177 p->outer = 0;
5178 p->incremental = constructor_incremental;
5179 p->designated = constructor_designated;
5180 p->next = 0;
5181 constructor_stack = p;
5182
5183 constructor_constant = 1;
5184 constructor_simple = 1;
5185 constructor_depth = SPELLING_DEPTH ();
5186 constructor_elements = 0;
5187 constructor_pending_elts = 0;
5188 constructor_type = type;
5189 constructor_incremental = 1;
5190 constructor_designated = 0;
5191 designator_depth = 0;
5192 designator_errorneous = 0;
5193
5194 if (TREE_CODE (constructor_type) == RECORD_TYPE
5195 || TREE_CODE (constructor_type) == UNION_TYPE)
5196 {
5197 constructor_fields = TYPE_FIELDS (constructor_type);
5198 /* Skip any nameless bit fields at the beginning. */
5199 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5200 && DECL_NAME (constructor_fields) == 0)
5201 constructor_fields = TREE_CHAIN (constructor_fields);
5202
5203 constructor_unfilled_fields = constructor_fields;
5204 constructor_bit_index = bitsize_zero_node;
5205 }
5206 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5207 {
5208 if (TYPE_DOMAIN (constructor_type))
5209 {
5210 constructor_max_index
5211 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5212
5213 /* Detect non-empty initializations of zero-length arrays. */
5214 if (constructor_max_index == NULL_TREE
5215 && TYPE_SIZE (constructor_type))
5216 constructor_max_index = build_int_2 (-1, -1);
5217
5218 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5219 to initialize VLAs will cause a proper error; avoid tree
5220 checking errors as well by setting a safe value. */
5221 if (constructor_max_index
5222 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5223 constructor_max_index = build_int_2 (-1, -1);
5224
5225 constructor_index
5226 = convert (bitsizetype,
5227 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5228 }
5229 else
5230 constructor_index = bitsize_zero_node;
5231
5232 constructor_unfilled_index = constructor_index;
5233 }
5234 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5235 {
5236 /* Vectors are like simple fixed-size arrays. */
5237 constructor_max_index =
5238 build_int_2 (TYPE_VECTOR_SUBPARTS (constructor_type) - 1, 0);
5239 constructor_index = convert (bitsizetype, bitsize_zero_node);
5240 constructor_unfilled_index = constructor_index;
5241 }
5242 else
5243 {
5244 /* Handle the case of int x = {5}; */
5245 constructor_fields = constructor_type;
5246 constructor_unfilled_fields = constructor_type;
5247 }
5248 }
5249 \f
5250 /* Push down into a subobject, for initialization.
5251 If this is for an explicit set of braces, IMPLICIT is 0.
5252 If it is because the next element belongs at a lower level,
5253 IMPLICIT is 1 (or 2 if the push is because of designator list). */
5254
5255 void
5256 push_init_level (implicit)
5257 int implicit;
5258 {
5259 struct constructor_stack *p;
5260 tree value = NULL_TREE;
5261
5262 /* If we've exhausted any levels that didn't have braces,
5263 pop them now. */
5264 while (constructor_stack->implicit)
5265 {
5266 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5267 || TREE_CODE (constructor_type) == UNION_TYPE)
5268 && constructor_fields == 0)
5269 process_init_element (pop_init_level (1));
5270 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5271 && tree_int_cst_lt (constructor_max_index, constructor_index))
5272 process_init_element (pop_init_level (1));
5273 else
5274 break;
5275 }
5276
5277 /* Unless this is an explicit brace, we need to preserve previous
5278 content if any. */
5279 if (implicit)
5280 {
5281 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5282 || TREE_CODE (constructor_type) == UNION_TYPE)
5283 && constructor_fields)
5284 value = find_init_member (constructor_fields);
5285 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5286 value = find_init_member (constructor_index);
5287 }
5288
5289 p = (struct constructor_stack *) xmalloc (sizeof (struct constructor_stack));
5290 p->type = constructor_type;
5291 p->fields = constructor_fields;
5292 p->index = constructor_index;
5293 p->max_index = constructor_max_index;
5294 p->unfilled_index = constructor_unfilled_index;
5295 p->unfilled_fields = constructor_unfilled_fields;
5296 p->bit_index = constructor_bit_index;
5297 p->elements = constructor_elements;
5298 p->constant = constructor_constant;
5299 p->simple = constructor_simple;
5300 p->erroneous = constructor_erroneous;
5301 p->pending_elts = constructor_pending_elts;
5302 p->depth = constructor_depth;
5303 p->replacement_value = 0;
5304 p->implicit = implicit;
5305 p->outer = 0;
5306 p->incremental = constructor_incremental;
5307 p->designated = constructor_designated;
5308 p->next = constructor_stack;
5309 p->range_stack = 0;
5310 constructor_stack = p;
5311
5312 constructor_constant = 1;
5313 constructor_simple = 1;
5314 constructor_depth = SPELLING_DEPTH ();
5315 constructor_elements = 0;
5316 constructor_incremental = 1;
5317 constructor_designated = 0;
5318 constructor_pending_elts = 0;
5319 if (!implicit)
5320 {
5321 p->range_stack = constructor_range_stack;
5322 constructor_range_stack = 0;
5323 designator_depth = 0;
5324 designator_errorneous = 0;
5325 }
5326
5327 /* Don't die if an entire brace-pair level is superfluous
5328 in the containing level. */
5329 if (constructor_type == 0)
5330 ;
5331 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5332 || TREE_CODE (constructor_type) == UNION_TYPE)
5333 {
5334 /* Don't die if there are extra init elts at the end. */
5335 if (constructor_fields == 0)
5336 constructor_type = 0;
5337 else
5338 {
5339 constructor_type = TREE_TYPE (constructor_fields);
5340 push_member_name (constructor_fields);
5341 constructor_depth++;
5342 }
5343 }
5344 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5345 {
5346 constructor_type = TREE_TYPE (constructor_type);
5347 push_array_bounds (tree_low_cst (constructor_index, 0));
5348 constructor_depth++;
5349 }
5350
5351 if (constructor_type == 0)
5352 {
5353 error_init ("extra brace group at end of initializer");
5354 constructor_fields = 0;
5355 constructor_unfilled_fields = 0;
5356 return;
5357 }
5358
5359 if (value && TREE_CODE (value) == CONSTRUCTOR)
5360 {
5361 constructor_constant = TREE_CONSTANT (value);
5362 constructor_simple = TREE_STATIC (value);
5363 constructor_elements = TREE_OPERAND (value, 1);
5364 if (constructor_elements
5365 && (TREE_CODE (constructor_type) == RECORD_TYPE
5366 || TREE_CODE (constructor_type) == ARRAY_TYPE))
5367 set_nonincremental_init ();
5368 }
5369
5370 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5371 {
5372 missing_braces_mentioned = 1;
5373 warning_init ("missing braces around initializer");
5374 }
5375
5376 if (TREE_CODE (constructor_type) == RECORD_TYPE
5377 || TREE_CODE (constructor_type) == UNION_TYPE)
5378 {
5379 constructor_fields = TYPE_FIELDS (constructor_type);
5380 /* Skip any nameless bit fields at the beginning. */
5381 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5382 && DECL_NAME (constructor_fields) == 0)
5383 constructor_fields = TREE_CHAIN (constructor_fields);
5384
5385 constructor_unfilled_fields = constructor_fields;
5386 constructor_bit_index = bitsize_zero_node;
5387 }
5388 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5389 {
5390 /* Vectors are like simple fixed-size arrays. */
5391 constructor_max_index =
5392 build_int_2 (TYPE_VECTOR_SUBPARTS (constructor_type) - 1, 0);
5393 constructor_index = convert (bitsizetype, integer_zero_node);
5394 constructor_unfilled_index = constructor_index;
5395 }
5396 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5397 {
5398 if (TYPE_DOMAIN (constructor_type))
5399 {
5400 constructor_max_index
5401 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5402
5403 /* Detect non-empty initializations of zero-length arrays. */
5404 if (constructor_max_index == NULL_TREE
5405 && TYPE_SIZE (constructor_type))
5406 constructor_max_index = build_int_2 (-1, -1);
5407
5408 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5409 to initialize VLAs will cause a proper error; avoid tree
5410 checking errors as well by setting a safe value. */
5411 if (constructor_max_index
5412 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5413 constructor_max_index = build_int_2 (-1, -1);
5414
5415 constructor_index
5416 = convert (bitsizetype,
5417 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5418 }
5419 else
5420 constructor_index = bitsize_zero_node;
5421
5422 constructor_unfilled_index = constructor_index;
5423 if (value && TREE_CODE (value) == STRING_CST)
5424 {
5425 /* We need to split the char/wchar array into individual
5426 characters, so that we don't have to special case it
5427 everywhere. */
5428 set_nonincremental_init_from_string (value);
5429 }
5430 }
5431 else
5432 {
5433 warning_init ("braces around scalar initializer");
5434 constructor_fields = constructor_type;
5435 constructor_unfilled_fields = constructor_type;
5436 }
5437 }
5438
5439 /* At the end of an implicit or explicit brace level,
5440 finish up that level of constructor.
5441 If we were outputting the elements as they are read, return 0
5442 from inner levels (process_init_element ignores that),
5443 but return error_mark_node from the outermost level
5444 (that's what we want to put in DECL_INITIAL).
5445 Otherwise, return a CONSTRUCTOR expression. */
5446
5447 tree
5448 pop_init_level (implicit)
5449 int implicit;
5450 {
5451 struct constructor_stack *p;
5452 tree constructor = 0;
5453
5454 if (implicit == 0)
5455 {
5456 /* When we come to an explicit close brace,
5457 pop any inner levels that didn't have explicit braces. */
5458 while (constructor_stack->implicit)
5459 process_init_element (pop_init_level (1));
5460
5461 if (constructor_range_stack)
5462 abort ();
5463 }
5464
5465 p = constructor_stack;
5466
5467 /* Error for initializing a flexible array member, or a zero-length
5468 array member in an inappropriate context. */
5469 if (constructor_type && constructor_fields
5470 && TREE_CODE (constructor_type) == ARRAY_TYPE
5471 && TYPE_DOMAIN (constructor_type)
5472 && ! TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5473 {
5474 /* Silently discard empty initializations. The parser will
5475 already have pedwarned for empty brackets. */
5476 if (integer_zerop (constructor_unfilled_index))
5477 constructor_type = NULL_TREE;
5478 else if (! TYPE_SIZE (constructor_type))
5479 {
5480 if (constructor_depth > 2)
5481 error_init ("initialization of flexible array member in a nested context");
5482 else if (pedantic)
5483 pedwarn_init ("initialization of a flexible array member");
5484
5485 /* We have already issued an error message for the existence
5486 of a flexible array member not at the end of the structure.
5487 Discard the initializer so that we do not abort later. */
5488 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5489 constructor_type = NULL_TREE;
5490 }
5491 else
5492 /* Zero-length arrays are no longer special, so we should no longer
5493 get here. */
5494 abort ();
5495 }
5496
5497 /* Warn when some struct elements are implicitly initialized to zero. */
5498 if (extra_warnings
5499 && constructor_type
5500 && TREE_CODE (constructor_type) == RECORD_TYPE
5501 && constructor_unfilled_fields)
5502 {
5503 /* Do not warn for flexible array members or zero-length arrays. */
5504 while (constructor_unfilled_fields
5505 && (! DECL_SIZE (constructor_unfilled_fields)
5506 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5507 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5508
5509 /* Do not warn if this level of the initializer uses member
5510 designators; it is likely to be deliberate. */
5511 if (constructor_unfilled_fields && !constructor_designated)
5512 {
5513 push_member_name (constructor_unfilled_fields);
5514 warning_init ("missing initializer");
5515 RESTORE_SPELLING_DEPTH (constructor_depth);
5516 }
5517 }
5518
5519 /* Now output all pending elements. */
5520 constructor_incremental = 1;
5521 output_pending_init_elements (1);
5522
5523 /* Pad out the end of the structure. */
5524 if (p->replacement_value)
5525 /* If this closes a superfluous brace pair,
5526 just pass out the element between them. */
5527 constructor = p->replacement_value;
5528 else if (constructor_type == 0)
5529 ;
5530 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5531 && TREE_CODE (constructor_type) != UNION_TYPE
5532 && TREE_CODE (constructor_type) != ARRAY_TYPE
5533 && TREE_CODE (constructor_type) != VECTOR_TYPE)
5534 {
5535 /* A nonincremental scalar initializer--just return
5536 the element, after verifying there is just one. */
5537 if (constructor_elements == 0)
5538 {
5539 if (!constructor_erroneous)
5540 error_init ("empty scalar initializer");
5541 constructor = error_mark_node;
5542 }
5543 else if (TREE_CHAIN (constructor_elements) != 0)
5544 {
5545 error_init ("extra elements in scalar initializer");
5546 constructor = TREE_VALUE (constructor_elements);
5547 }
5548 else
5549 constructor = TREE_VALUE (constructor_elements);
5550 }
5551 else
5552 {
5553 if (constructor_erroneous)
5554 constructor = error_mark_node;
5555 else
5556 {
5557 constructor = build (CONSTRUCTOR, constructor_type, NULL_TREE,
5558 nreverse (constructor_elements));
5559 if (constructor_constant)
5560 TREE_CONSTANT (constructor) = 1;
5561 if (constructor_constant && constructor_simple)
5562 TREE_STATIC (constructor) = 1;
5563 }
5564 }
5565
5566 constructor_type = p->type;
5567 constructor_fields = p->fields;
5568 constructor_index = p->index;
5569 constructor_max_index = p->max_index;
5570 constructor_unfilled_index = p->unfilled_index;
5571 constructor_unfilled_fields = p->unfilled_fields;
5572 constructor_bit_index = p->bit_index;
5573 constructor_elements = p->elements;
5574 constructor_constant = p->constant;
5575 constructor_simple = p->simple;
5576 constructor_erroneous = p->erroneous;
5577 constructor_incremental = p->incremental;
5578 constructor_designated = p->designated;
5579 constructor_pending_elts = p->pending_elts;
5580 constructor_depth = p->depth;
5581 if (!p->implicit)
5582 constructor_range_stack = p->range_stack;
5583 RESTORE_SPELLING_DEPTH (constructor_depth);
5584
5585 constructor_stack = p->next;
5586 free (p);
5587
5588 if (constructor == 0)
5589 {
5590 if (constructor_stack == 0)
5591 return error_mark_node;
5592 return NULL_TREE;
5593 }
5594 return constructor;
5595 }
5596
5597 /* Common handling for both array range and field name designators.
5598 ARRAY argument is nonzero for array ranges. Returns zero for success. */
5599
5600 static int
5601 set_designator (array)
5602 int array;
5603 {
5604 tree subtype;
5605 enum tree_code subcode;
5606
5607 /* Don't die if an entire brace-pair level is superfluous
5608 in the containing level. */
5609 if (constructor_type == 0)
5610 return 1;
5611
5612 /* If there were errors in this designator list already, bail out silently. */
5613 if (designator_errorneous)
5614 return 1;
5615
5616 if (!designator_depth)
5617 {
5618 if (constructor_range_stack)
5619 abort ();
5620
5621 /* Designator list starts at the level of closest explicit
5622 braces. */
5623 while (constructor_stack->implicit)
5624 process_init_element (pop_init_level (1));
5625 constructor_designated = 1;
5626 return 0;
5627 }
5628
5629 if (constructor_no_implicit)
5630 {
5631 error_init ("initialization designators may not nest");
5632 return 1;
5633 }
5634
5635 if (TREE_CODE (constructor_type) == RECORD_TYPE
5636 || TREE_CODE (constructor_type) == UNION_TYPE)
5637 {
5638 subtype = TREE_TYPE (constructor_fields);
5639 if (subtype != error_mark_node)
5640 subtype = TYPE_MAIN_VARIANT (subtype);
5641 }
5642 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5643 {
5644 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5645 }
5646 else
5647 abort ();
5648
5649 subcode = TREE_CODE (subtype);
5650 if (array && subcode != ARRAY_TYPE)
5651 {
5652 error_init ("array index in non-array initializer");
5653 return 1;
5654 }
5655 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5656 {
5657 error_init ("field name not in record or union initializer");
5658 return 1;
5659 }
5660
5661 constructor_designated = 1;
5662 push_init_level (2);
5663 return 0;
5664 }
5665
5666 /* If there are range designators in designator list, push a new designator
5667 to constructor_range_stack. RANGE_END is end of such stack range or
5668 NULL_TREE if there is no range designator at this level. */
5669
5670 static void
5671 push_range_stack (range_end)
5672 tree range_end;
5673 {
5674 struct constructor_range_stack *p;
5675
5676 p = (struct constructor_range_stack *)
5677 ggc_alloc (sizeof (struct constructor_range_stack));
5678 p->prev = constructor_range_stack;
5679 p->next = 0;
5680 p->fields = constructor_fields;
5681 p->range_start = constructor_index;
5682 p->index = constructor_index;
5683 p->stack = constructor_stack;
5684 p->range_end = range_end;
5685 if (constructor_range_stack)
5686 constructor_range_stack->next = p;
5687 constructor_range_stack = p;
5688 }
5689
5690 /* Within an array initializer, specify the next index to be initialized.
5691 FIRST is that index. If LAST is nonzero, then initialize a range
5692 of indices, running from FIRST through LAST. */
5693
5694 void
5695 set_init_index (first, last)
5696 tree first, last;
5697 {
5698 if (set_designator (1))
5699 return;
5700
5701 designator_errorneous = 1;
5702
5703 while ((TREE_CODE (first) == NOP_EXPR
5704 || TREE_CODE (first) == CONVERT_EXPR
5705 || TREE_CODE (first) == NON_LVALUE_EXPR)
5706 && (TYPE_MODE (TREE_TYPE (first))
5707 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (first, 0)))))
5708 first = TREE_OPERAND (first, 0);
5709
5710 if (last)
5711 while ((TREE_CODE (last) == NOP_EXPR
5712 || TREE_CODE (last) == CONVERT_EXPR
5713 || TREE_CODE (last) == NON_LVALUE_EXPR)
5714 && (TYPE_MODE (TREE_TYPE (last))
5715 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (last, 0)))))
5716 last = TREE_OPERAND (last, 0);
5717
5718 if (TREE_CODE (first) != INTEGER_CST)
5719 error_init ("nonconstant array index in initializer");
5720 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5721 error_init ("nonconstant array index in initializer");
5722 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5723 error_init ("array index in non-array initializer");
5724 else if (constructor_max_index
5725 && tree_int_cst_lt (constructor_max_index, first))
5726 error_init ("array index in initializer exceeds array bounds");
5727 else
5728 {
5729 constructor_index = convert (bitsizetype, first);
5730
5731 if (last)
5732 {
5733 if (tree_int_cst_equal (first, last))
5734 last = 0;
5735 else if (tree_int_cst_lt (last, first))
5736 {
5737 error_init ("empty index range in initializer");
5738 last = 0;
5739 }
5740 else
5741 {
5742 last = convert (bitsizetype, last);
5743 if (constructor_max_index != 0
5744 && tree_int_cst_lt (constructor_max_index, last))
5745 {
5746 error_init ("array index range in initializer exceeds array bounds");
5747 last = 0;
5748 }
5749 }
5750 }
5751
5752 designator_depth++;
5753 designator_errorneous = 0;
5754 if (constructor_range_stack || last)
5755 push_range_stack (last);
5756 }
5757 }
5758
5759 /* Within a struct initializer, specify the next field to be initialized. */
5760
5761 void
5762 set_init_label (fieldname)
5763 tree fieldname;
5764 {
5765 tree tail;
5766
5767 if (set_designator (0))
5768 return;
5769
5770 designator_errorneous = 1;
5771
5772 if (TREE_CODE (constructor_type) != RECORD_TYPE
5773 && TREE_CODE (constructor_type) != UNION_TYPE)
5774 {
5775 error_init ("field name not in record or union initializer");
5776 return;
5777 }
5778
5779 for (tail = TYPE_FIELDS (constructor_type); tail;
5780 tail = TREE_CHAIN (tail))
5781 {
5782 if (DECL_NAME (tail) == fieldname)
5783 break;
5784 }
5785
5786 if (tail == 0)
5787 error ("unknown field `%s' specified in initializer",
5788 IDENTIFIER_POINTER (fieldname));
5789 else
5790 {
5791 constructor_fields = tail;
5792 designator_depth++;
5793 designator_errorneous = 0;
5794 if (constructor_range_stack)
5795 push_range_stack (NULL_TREE);
5796 }
5797 }
5798 \f
5799 /* Add a new initializer to the tree of pending initializers. PURPOSE
5800 identifies the initializer, either array index or field in a structure.
5801 VALUE is the value of that index or field. */
5802
5803 static void
5804 add_pending_init (purpose, value)
5805 tree purpose, value;
5806 {
5807 struct init_node *p, **q, *r;
5808
5809 q = &constructor_pending_elts;
5810 p = 0;
5811
5812 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5813 {
5814 while (*q != 0)
5815 {
5816 p = *q;
5817 if (tree_int_cst_lt (purpose, p->purpose))
5818 q = &p->left;
5819 else if (tree_int_cst_lt (p->purpose, purpose))
5820 q = &p->right;
5821 else
5822 {
5823 if (TREE_SIDE_EFFECTS (p->value))
5824 warning_init ("initialized field with side-effects overwritten");
5825 p->value = value;
5826 return;
5827 }
5828 }
5829 }
5830 else
5831 {
5832 tree bitpos;
5833
5834 bitpos = bit_position (purpose);
5835 while (*q != NULL)
5836 {
5837 p = *q;
5838 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5839 q = &p->left;
5840 else if (p->purpose != purpose)
5841 q = &p->right;
5842 else
5843 {
5844 if (TREE_SIDE_EFFECTS (p->value))
5845 warning_init ("initialized field with side-effects overwritten");
5846 p->value = value;
5847 return;
5848 }
5849 }
5850 }
5851
5852 r = (struct init_node *) ggc_alloc (sizeof (struct init_node));
5853 r->purpose = purpose;
5854 r->value = value;
5855
5856 *q = r;
5857 r->parent = p;
5858 r->left = 0;
5859 r->right = 0;
5860 r->balance = 0;
5861
5862 while (p)
5863 {
5864 struct init_node *s;
5865
5866 if (r == p->left)
5867 {
5868 if (p->balance == 0)
5869 p->balance = -1;
5870 else if (p->balance < 0)
5871 {
5872 if (r->balance < 0)
5873 {
5874 /* L rotation. */
5875 p->left = r->right;
5876 if (p->left)
5877 p->left->parent = p;
5878 r->right = p;
5879
5880 p->balance = 0;
5881 r->balance = 0;
5882
5883 s = p->parent;
5884 p->parent = r;
5885 r->parent = s;
5886 if (s)
5887 {
5888 if (s->left == p)
5889 s->left = r;
5890 else
5891 s->right = r;
5892 }
5893 else
5894 constructor_pending_elts = r;
5895 }
5896 else
5897 {
5898 /* LR rotation. */
5899 struct init_node *t = r->right;
5900
5901 r->right = t->left;
5902 if (r->right)
5903 r->right->parent = r;
5904 t->left = r;
5905
5906 p->left = t->right;
5907 if (p->left)
5908 p->left->parent = p;
5909 t->right = p;
5910
5911 p->balance = t->balance < 0;
5912 r->balance = -(t->balance > 0);
5913 t->balance = 0;
5914
5915 s = p->parent;
5916 p->parent = t;
5917 r->parent = t;
5918 t->parent = s;
5919 if (s)
5920 {
5921 if (s->left == p)
5922 s->left = t;
5923 else
5924 s->right = t;
5925 }
5926 else
5927 constructor_pending_elts = t;
5928 }
5929 break;
5930 }
5931 else
5932 {
5933 /* p->balance == +1; growth of left side balances the node. */
5934 p->balance = 0;
5935 break;
5936 }
5937 }
5938 else /* r == p->right */
5939 {
5940 if (p->balance == 0)
5941 /* Growth propagation from right side. */
5942 p->balance++;
5943 else if (p->balance > 0)
5944 {
5945 if (r->balance > 0)
5946 {
5947 /* R rotation. */
5948 p->right = r->left;
5949 if (p->right)
5950 p->right->parent = p;
5951 r->left = p;
5952
5953 p->balance = 0;
5954 r->balance = 0;
5955
5956 s = p->parent;
5957 p->parent = r;
5958 r->parent = s;
5959 if (s)
5960 {
5961 if (s->left == p)
5962 s->left = r;
5963 else
5964 s->right = r;
5965 }
5966 else
5967 constructor_pending_elts = r;
5968 }
5969 else /* r->balance == -1 */
5970 {
5971 /* RL rotation */
5972 struct init_node *t = r->left;
5973
5974 r->left = t->right;
5975 if (r->left)
5976 r->left->parent = r;
5977 t->right = r;
5978
5979 p->right = t->left;
5980 if (p->right)
5981 p->right->parent = p;
5982 t->left = p;
5983
5984 r->balance = (t->balance < 0);
5985 p->balance = -(t->balance > 0);
5986 t->balance = 0;
5987
5988 s = p->parent;
5989 p->parent = t;
5990 r->parent = t;
5991 t->parent = s;
5992 if (s)
5993 {
5994 if (s->left == p)
5995 s->left = t;
5996 else
5997 s->right = t;
5998 }
5999 else
6000 constructor_pending_elts = t;
6001 }
6002 break;
6003 }
6004 else
6005 {
6006 /* p->balance == -1; growth of right side balances the node. */
6007 p->balance = 0;
6008 break;
6009 }
6010 }
6011
6012 r = p;
6013 p = p->parent;
6014 }
6015 }
6016
6017 /* Build AVL tree from a sorted chain. */
6018
6019 static void
6020 set_nonincremental_init ()
6021 {
6022 tree chain;
6023
6024 if (TREE_CODE (constructor_type) != RECORD_TYPE
6025 && TREE_CODE (constructor_type) != ARRAY_TYPE)
6026 return;
6027
6028 for (chain = constructor_elements; chain; chain = TREE_CHAIN (chain))
6029 add_pending_init (TREE_PURPOSE (chain), TREE_VALUE (chain));
6030 constructor_elements = 0;
6031 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6032 {
6033 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
6034 /* Skip any nameless bit fields at the beginning. */
6035 while (constructor_unfilled_fields != 0
6036 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6037 && DECL_NAME (constructor_unfilled_fields) == 0)
6038 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
6039
6040 }
6041 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6042 {
6043 if (TYPE_DOMAIN (constructor_type))
6044 constructor_unfilled_index
6045 = convert (bitsizetype,
6046 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6047 else
6048 constructor_unfilled_index = bitsize_zero_node;
6049 }
6050 constructor_incremental = 0;
6051 }
6052
6053 /* Build AVL tree from a string constant. */
6054
6055 static void
6056 set_nonincremental_init_from_string (str)
6057 tree str;
6058 {
6059 tree value, purpose, type;
6060 HOST_WIDE_INT val[2];
6061 const char *p, *end;
6062 int byte, wchar_bytes, charwidth, bitpos;
6063
6064 if (TREE_CODE (constructor_type) != ARRAY_TYPE)
6065 abort ();
6066
6067 if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6068 == TYPE_PRECISION (char_type_node))
6069 wchar_bytes = 1;
6070 else if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6071 == TYPE_PRECISION (wchar_type_node))
6072 wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
6073 else
6074 abort ();
6075
6076 charwidth = TYPE_PRECISION (char_type_node);
6077 type = TREE_TYPE (constructor_type);
6078 p = TREE_STRING_POINTER (str);
6079 end = p + TREE_STRING_LENGTH (str);
6080
6081 for (purpose = bitsize_zero_node;
6082 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
6083 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
6084 {
6085 if (wchar_bytes == 1)
6086 {
6087 val[1] = (unsigned char) *p++;
6088 val[0] = 0;
6089 }
6090 else
6091 {
6092 val[0] = 0;
6093 val[1] = 0;
6094 for (byte = 0; byte < wchar_bytes; byte++)
6095 {
6096 if (BYTES_BIG_ENDIAN)
6097 bitpos = (wchar_bytes - byte - 1) * charwidth;
6098 else
6099 bitpos = byte * charwidth;
6100 val[bitpos < HOST_BITS_PER_WIDE_INT]
6101 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
6102 << (bitpos % HOST_BITS_PER_WIDE_INT);
6103 }
6104 }
6105
6106 if (!TREE_UNSIGNED (type))
6107 {
6108 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6109 if (bitpos < HOST_BITS_PER_WIDE_INT)
6110 {
6111 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6112 {
6113 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6114 val[0] = -1;
6115 }
6116 }
6117 else if (bitpos == HOST_BITS_PER_WIDE_INT)
6118 {
6119 if (val[1] < 0)
6120 val[0] = -1;
6121 }
6122 else if (val[0] & (((HOST_WIDE_INT) 1)
6123 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6124 val[0] |= ((HOST_WIDE_INT) -1)
6125 << (bitpos - HOST_BITS_PER_WIDE_INT);
6126 }
6127
6128 value = build_int_2 (val[1], val[0]);
6129 TREE_TYPE (value) = type;
6130 add_pending_init (purpose, value);
6131 }
6132
6133 constructor_incremental = 0;
6134 }
6135
6136 /* Return value of FIELD in pending initializer or zero if the field was
6137 not initialized yet. */
6138
6139 static tree
6140 find_init_member (field)
6141 tree field;
6142 {
6143 struct init_node *p;
6144
6145 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6146 {
6147 if (constructor_incremental
6148 && tree_int_cst_lt (field, constructor_unfilled_index))
6149 set_nonincremental_init ();
6150
6151 p = constructor_pending_elts;
6152 while (p)
6153 {
6154 if (tree_int_cst_lt (field, p->purpose))
6155 p = p->left;
6156 else if (tree_int_cst_lt (p->purpose, field))
6157 p = p->right;
6158 else
6159 return p->value;
6160 }
6161 }
6162 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6163 {
6164 tree bitpos = bit_position (field);
6165
6166 if (constructor_incremental
6167 && (!constructor_unfilled_fields
6168 || tree_int_cst_lt (bitpos,
6169 bit_position (constructor_unfilled_fields))))
6170 set_nonincremental_init ();
6171
6172 p = constructor_pending_elts;
6173 while (p)
6174 {
6175 if (field == p->purpose)
6176 return p->value;
6177 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6178 p = p->left;
6179 else
6180 p = p->right;
6181 }
6182 }
6183 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6184 {
6185 if (constructor_elements
6186 && TREE_PURPOSE (constructor_elements) == field)
6187 return TREE_VALUE (constructor_elements);
6188 }
6189 return 0;
6190 }
6191
6192 /* "Output" the next constructor element.
6193 At top level, really output it to assembler code now.
6194 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6195 TYPE is the data type that the containing data type wants here.
6196 FIELD is the field (a FIELD_DECL) or the index that this element fills.
6197
6198 PENDING if non-nil means output pending elements that belong
6199 right after this element. (PENDING is normally 1;
6200 it is 0 while outputting pending elements, to avoid recursion.) */
6201
6202 static void
6203 output_init_element (value, type, field, pending)
6204 tree value, type, field;
6205 int pending;
6206 {
6207 if (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE
6208 || (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6209 && !(TREE_CODE (value) == STRING_CST
6210 && TREE_CODE (type) == ARRAY_TYPE
6211 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
6212 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6213 TYPE_MAIN_VARIANT (type))))
6214 value = default_conversion (value);
6215
6216 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6217 && require_constant_value && !flag_isoc99 && pending)
6218 {
6219 /* As an extension, allow initializing objects with static storage
6220 duration with compound literals (which are then treated just as
6221 the brace enclosed list they contain). */
6222 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6223 value = DECL_INITIAL (decl);
6224 }
6225
6226 if (value == error_mark_node)
6227 constructor_erroneous = 1;
6228 else if (!TREE_CONSTANT (value))
6229 constructor_constant = 0;
6230 else if (initializer_constant_valid_p (value, TREE_TYPE (value)) == 0
6231 || ((TREE_CODE (constructor_type) == RECORD_TYPE
6232 || TREE_CODE (constructor_type) == UNION_TYPE)
6233 && DECL_C_BIT_FIELD (field)
6234 && TREE_CODE (value) != INTEGER_CST))
6235 constructor_simple = 0;
6236
6237 if (require_constant_value && ! TREE_CONSTANT (value))
6238 {
6239 error_init ("initializer element is not constant");
6240 value = error_mark_node;
6241 }
6242 else if (require_constant_elements
6243 && initializer_constant_valid_p (value, TREE_TYPE (value)) == 0)
6244 pedwarn ("initializer element is not computable at load time");
6245
6246 /* If this field is empty (and not at the end of structure),
6247 don't do anything other than checking the initializer. */
6248 if (field
6249 && (TREE_TYPE (field) == error_mark_node
6250 || (COMPLETE_TYPE_P (TREE_TYPE (field))
6251 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6252 && (TREE_CODE (constructor_type) == ARRAY_TYPE
6253 || TREE_CHAIN (field)))))
6254 return;
6255
6256 value = digest_init (type, value, require_constant_value);
6257 if (value == error_mark_node)
6258 {
6259 constructor_erroneous = 1;
6260 return;
6261 }
6262
6263 /* If this element doesn't come next in sequence,
6264 put it on constructor_pending_elts. */
6265 if (TREE_CODE (constructor_type) == ARRAY_TYPE
6266 && (!constructor_incremental
6267 || !tree_int_cst_equal (field, constructor_unfilled_index)))
6268 {
6269 if (constructor_incremental
6270 && tree_int_cst_lt (field, constructor_unfilled_index))
6271 set_nonincremental_init ();
6272
6273 add_pending_init (field, value);
6274 return;
6275 }
6276 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6277 && (!constructor_incremental
6278 || field != constructor_unfilled_fields))
6279 {
6280 /* We do this for records but not for unions. In a union,
6281 no matter which field is specified, it can be initialized
6282 right away since it starts at the beginning of the union. */
6283 if (constructor_incremental)
6284 {
6285 if (!constructor_unfilled_fields)
6286 set_nonincremental_init ();
6287 else
6288 {
6289 tree bitpos, unfillpos;
6290
6291 bitpos = bit_position (field);
6292 unfillpos = bit_position (constructor_unfilled_fields);
6293
6294 if (tree_int_cst_lt (bitpos, unfillpos))
6295 set_nonincremental_init ();
6296 }
6297 }
6298
6299 add_pending_init (field, value);
6300 return;
6301 }
6302 else if (TREE_CODE (constructor_type) == UNION_TYPE
6303 && constructor_elements)
6304 {
6305 if (TREE_SIDE_EFFECTS (TREE_VALUE (constructor_elements)))
6306 warning_init ("initialized field with side-effects overwritten");
6307
6308 /* We can have just one union field set. */
6309 constructor_elements = 0;
6310 }
6311
6312 /* Otherwise, output this element either to
6313 constructor_elements or to the assembler file. */
6314
6315 if (field && TREE_CODE (field) == INTEGER_CST)
6316 field = copy_node (field);
6317 constructor_elements
6318 = tree_cons (field, value, constructor_elements);
6319
6320 /* Advance the variable that indicates sequential elements output. */
6321 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6322 constructor_unfilled_index
6323 = size_binop (PLUS_EXPR, constructor_unfilled_index,
6324 bitsize_one_node);
6325 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6326 {
6327 constructor_unfilled_fields
6328 = TREE_CHAIN (constructor_unfilled_fields);
6329
6330 /* Skip any nameless bit fields. */
6331 while (constructor_unfilled_fields != 0
6332 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6333 && DECL_NAME (constructor_unfilled_fields) == 0)
6334 constructor_unfilled_fields =
6335 TREE_CHAIN (constructor_unfilled_fields);
6336 }
6337 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6338 constructor_unfilled_fields = 0;
6339
6340 /* Now output any pending elements which have become next. */
6341 if (pending)
6342 output_pending_init_elements (0);
6343 }
6344
6345 /* Output any pending elements which have become next.
6346 As we output elements, constructor_unfilled_{fields,index}
6347 advances, which may cause other elements to become next;
6348 if so, they too are output.
6349
6350 If ALL is 0, we return when there are
6351 no more pending elements to output now.
6352
6353 If ALL is 1, we output space as necessary so that
6354 we can output all the pending elements. */
6355
6356 static void
6357 output_pending_init_elements (all)
6358 int all;
6359 {
6360 struct init_node *elt = constructor_pending_elts;
6361 tree next;
6362
6363 retry:
6364
6365 /* Look thru the whole pending tree.
6366 If we find an element that should be output now,
6367 output it. Otherwise, set NEXT to the element
6368 that comes first among those still pending. */
6369
6370 next = 0;
6371 while (elt)
6372 {
6373 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6374 {
6375 if (tree_int_cst_equal (elt->purpose,
6376 constructor_unfilled_index))
6377 output_init_element (elt->value,
6378 TREE_TYPE (constructor_type),
6379 constructor_unfilled_index, 0);
6380 else if (tree_int_cst_lt (constructor_unfilled_index,
6381 elt->purpose))
6382 {
6383 /* Advance to the next smaller node. */
6384 if (elt->left)
6385 elt = elt->left;
6386 else
6387 {
6388 /* We have reached the smallest node bigger than the
6389 current unfilled index. Fill the space first. */
6390 next = elt->purpose;
6391 break;
6392 }
6393 }
6394 else
6395 {
6396 /* Advance to the next bigger node. */
6397 if (elt->right)
6398 elt = elt->right;
6399 else
6400 {
6401 /* We have reached the biggest node in a subtree. Find
6402 the parent of it, which is the next bigger node. */
6403 while (elt->parent && elt->parent->right == elt)
6404 elt = elt->parent;
6405 elt = elt->parent;
6406 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6407 elt->purpose))
6408 {
6409 next = elt->purpose;
6410 break;
6411 }
6412 }
6413 }
6414 }
6415 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6416 || TREE_CODE (constructor_type) == UNION_TYPE)
6417 {
6418 tree ctor_unfilled_bitpos, elt_bitpos;
6419
6420 /* If the current record is complete we are done. */
6421 if (constructor_unfilled_fields == 0)
6422 break;
6423
6424 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6425 elt_bitpos = bit_position (elt->purpose);
6426 /* We can't compare fields here because there might be empty
6427 fields in between. */
6428 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6429 {
6430 constructor_unfilled_fields = elt->purpose;
6431 output_init_element (elt->value, TREE_TYPE (elt->purpose),
6432 elt->purpose, 0);
6433 }
6434 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6435 {
6436 /* Advance to the next smaller node. */
6437 if (elt->left)
6438 elt = elt->left;
6439 else
6440 {
6441 /* We have reached the smallest node bigger than the
6442 current unfilled field. Fill the space first. */
6443 next = elt->purpose;
6444 break;
6445 }
6446 }
6447 else
6448 {
6449 /* Advance to the next bigger node. */
6450 if (elt->right)
6451 elt = elt->right;
6452 else
6453 {
6454 /* We have reached the biggest node in a subtree. Find
6455 the parent of it, which is the next bigger node. */
6456 while (elt->parent && elt->parent->right == elt)
6457 elt = elt->parent;
6458 elt = elt->parent;
6459 if (elt
6460 && (tree_int_cst_lt (ctor_unfilled_bitpos,
6461 bit_position (elt->purpose))))
6462 {
6463 next = elt->purpose;
6464 break;
6465 }
6466 }
6467 }
6468 }
6469 }
6470
6471 /* Ordinarily return, but not if we want to output all
6472 and there are elements left. */
6473 if (! (all && next != 0))
6474 return;
6475
6476 /* If it's not incremental, just skip over the gap, so that after
6477 jumping to retry we will output the next successive element. */
6478 if (TREE_CODE (constructor_type) == RECORD_TYPE
6479 || TREE_CODE (constructor_type) == UNION_TYPE)
6480 constructor_unfilled_fields = next;
6481 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6482 constructor_unfilled_index = next;
6483
6484 /* ELT now points to the node in the pending tree with the next
6485 initializer to output. */
6486 goto retry;
6487 }
6488 \f
6489 /* Add one non-braced element to the current constructor level.
6490 This adjusts the current position within the constructor's type.
6491 This may also start or terminate implicit levels
6492 to handle a partly-braced initializer.
6493
6494 Once this has found the correct level for the new element,
6495 it calls output_init_element. */
6496
6497 void
6498 process_init_element (value)
6499 tree value;
6500 {
6501 tree orig_value = value;
6502 int string_flag = value != 0 && TREE_CODE (value) == STRING_CST;
6503
6504 designator_depth = 0;
6505 designator_errorneous = 0;
6506
6507 /* Handle superfluous braces around string cst as in
6508 char x[] = {"foo"}; */
6509 if (string_flag
6510 && constructor_type
6511 && TREE_CODE (constructor_type) == ARRAY_TYPE
6512 && TREE_CODE (TREE_TYPE (constructor_type)) == INTEGER_TYPE
6513 && integer_zerop (constructor_unfilled_index))
6514 {
6515 if (constructor_stack->replacement_value)
6516 error_init ("excess elements in char array initializer");
6517 constructor_stack->replacement_value = value;
6518 return;
6519 }
6520
6521 if (constructor_stack->replacement_value != 0)
6522 {
6523 error_init ("excess elements in struct initializer");
6524 return;
6525 }
6526
6527 /* Ignore elements of a brace group if it is entirely superfluous
6528 and has already been diagnosed. */
6529 if (constructor_type == 0)
6530 return;
6531
6532 /* If we've exhausted any levels that didn't have braces,
6533 pop them now. */
6534 while (constructor_stack->implicit)
6535 {
6536 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6537 || TREE_CODE (constructor_type) == UNION_TYPE)
6538 && constructor_fields == 0)
6539 process_init_element (pop_init_level (1));
6540 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6541 && (constructor_max_index == 0
6542 || tree_int_cst_lt (constructor_max_index,
6543 constructor_index)))
6544 process_init_element (pop_init_level (1));
6545 else
6546 break;
6547 }
6548
6549 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
6550 if (constructor_range_stack)
6551 {
6552 /* If value is a compound literal and we'll be just using its
6553 content, don't put it into a SAVE_EXPR. */
6554 if (TREE_CODE (value) != COMPOUND_LITERAL_EXPR
6555 || !require_constant_value
6556 || flag_isoc99)
6557 value = save_expr (value);
6558 }
6559
6560 while (1)
6561 {
6562 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6563 {
6564 tree fieldtype;
6565 enum tree_code fieldcode;
6566
6567 if (constructor_fields == 0)
6568 {
6569 pedwarn_init ("excess elements in struct initializer");
6570 break;
6571 }
6572
6573 fieldtype = TREE_TYPE (constructor_fields);
6574 if (fieldtype != error_mark_node)
6575 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6576 fieldcode = TREE_CODE (fieldtype);
6577
6578 /* Error for non-static initialization of a flexible array member. */
6579 if (fieldcode == ARRAY_TYPE
6580 && !require_constant_value
6581 && TYPE_SIZE (fieldtype) == NULL_TREE
6582 && TREE_CHAIN (constructor_fields) == NULL_TREE)
6583 {
6584 error_init ("non-static initialization of a flexible array member");
6585 break;
6586 }
6587
6588 /* Accept a string constant to initialize a subarray. */
6589 if (value != 0
6590 && fieldcode == ARRAY_TYPE
6591 && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
6592 && string_flag)
6593 value = orig_value;
6594 /* Otherwise, if we have come to a subaggregate,
6595 and we don't have an element of its type, push into it. */
6596 else if (value != 0 && !constructor_no_implicit
6597 && value != error_mark_node
6598 && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
6599 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6600 || fieldcode == UNION_TYPE))
6601 {
6602 push_init_level (1);
6603 continue;
6604 }
6605
6606 if (value)
6607 {
6608 push_member_name (constructor_fields);
6609 output_init_element (value, fieldtype, constructor_fields, 1);
6610 RESTORE_SPELLING_DEPTH (constructor_depth);
6611 }
6612 else
6613 /* Do the bookkeeping for an element that was
6614 directly output as a constructor. */
6615 {
6616 /* For a record, keep track of end position of last field. */
6617 if (DECL_SIZE (constructor_fields))
6618 constructor_bit_index
6619 = size_binop (PLUS_EXPR,
6620 bit_position (constructor_fields),
6621 DECL_SIZE (constructor_fields));
6622
6623 /* If the current field was the first one not yet written out,
6624 it isn't now, so update. */
6625 if (constructor_unfilled_fields == constructor_fields)
6626 {
6627 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6628 /* Skip any nameless bit fields. */
6629 while (constructor_unfilled_fields != 0
6630 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6631 && DECL_NAME (constructor_unfilled_fields) == 0)
6632 constructor_unfilled_fields =
6633 TREE_CHAIN (constructor_unfilled_fields);
6634 }
6635 }
6636
6637 constructor_fields = TREE_CHAIN (constructor_fields);
6638 /* Skip any nameless bit fields at the beginning. */
6639 while (constructor_fields != 0
6640 && DECL_C_BIT_FIELD (constructor_fields)
6641 && DECL_NAME (constructor_fields) == 0)
6642 constructor_fields = TREE_CHAIN (constructor_fields);
6643 }
6644 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6645 {
6646 tree fieldtype;
6647 enum tree_code fieldcode;
6648
6649 if (constructor_fields == 0)
6650 {
6651 pedwarn_init ("excess elements in union initializer");
6652 break;
6653 }
6654
6655 fieldtype = TREE_TYPE (constructor_fields);
6656 if (fieldtype != error_mark_node)
6657 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6658 fieldcode = TREE_CODE (fieldtype);
6659
6660 /* Warn that traditional C rejects initialization of unions.
6661 We skip the warning if the value is zero. This is done
6662 under the assumption that the zero initializer in user
6663 code appears conditioned on e.g. __STDC__ to avoid
6664 "missing initializer" warnings and relies on default
6665 initialization to zero in the traditional C case.
6666 We also skip the warning if the initializer is designated,
6667 again on the assumption that this must be conditional on
6668 __STDC__ anyway (and we've already complained about the
6669 member-designator already). */
6670 if (warn_traditional && !in_system_header && !constructor_designated
6671 && !(value && (integer_zerop (value) || real_zerop (value))))
6672 warning ("traditional C rejects initialization of unions");
6673
6674 /* Accept a string constant to initialize a subarray. */
6675 if (value != 0
6676 && fieldcode == ARRAY_TYPE
6677 && TREE_CODE (TREE_TYPE (fieldtype)) == INTEGER_TYPE
6678 && string_flag)
6679 value = orig_value;
6680 /* Otherwise, if we have come to a subaggregate,
6681 and we don't have an element of its type, push into it. */
6682 else if (value != 0 && !constructor_no_implicit
6683 && value != error_mark_node
6684 && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != fieldtype
6685 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6686 || fieldcode == UNION_TYPE))
6687 {
6688 push_init_level (1);
6689 continue;
6690 }
6691
6692 if (value)
6693 {
6694 push_member_name (constructor_fields);
6695 output_init_element (value, fieldtype, constructor_fields, 1);
6696 RESTORE_SPELLING_DEPTH (constructor_depth);
6697 }
6698 else
6699 /* Do the bookkeeping for an element that was
6700 directly output as a constructor. */
6701 {
6702 constructor_bit_index = DECL_SIZE (constructor_fields);
6703 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6704 }
6705
6706 constructor_fields = 0;
6707 }
6708 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6709 {
6710 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6711 enum tree_code eltcode = TREE_CODE (elttype);
6712
6713 /* Accept a string constant to initialize a subarray. */
6714 if (value != 0
6715 && eltcode == ARRAY_TYPE
6716 && TREE_CODE (TREE_TYPE (elttype)) == INTEGER_TYPE
6717 && string_flag)
6718 value = orig_value;
6719 /* Otherwise, if we have come to a subaggregate,
6720 and we don't have an element of its type, push into it. */
6721 else if (value != 0 && !constructor_no_implicit
6722 && value != error_mark_node
6723 && TYPE_MAIN_VARIANT (TREE_TYPE (value)) != elttype
6724 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6725 || eltcode == UNION_TYPE))
6726 {
6727 push_init_level (1);
6728 continue;
6729 }
6730
6731 if (constructor_max_index != 0
6732 && (tree_int_cst_lt (constructor_max_index, constructor_index)
6733 || integer_all_onesp (constructor_max_index)))
6734 {
6735 pedwarn_init ("excess elements in array initializer");
6736 break;
6737 }
6738
6739 /* Now output the actual element. */
6740 if (value)
6741 {
6742 push_array_bounds (tree_low_cst (constructor_index, 0));
6743 output_init_element (value, elttype, constructor_index, 1);
6744 RESTORE_SPELLING_DEPTH (constructor_depth);
6745 }
6746
6747 constructor_index
6748 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6749
6750 if (! value)
6751 /* If we are doing the bookkeeping for an element that was
6752 directly output as a constructor, we must update
6753 constructor_unfilled_index. */
6754 constructor_unfilled_index = constructor_index;
6755 }
6756 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6757 {
6758 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6759
6760 /* Do a basic check of initializer size. Note that vectors
6761 always have a fixed size derived from their type. */
6762 if (tree_int_cst_lt (constructor_max_index, constructor_index))
6763 {
6764 pedwarn_init ("excess elements in vector initializer");
6765 break;
6766 }
6767
6768 /* Now output the actual element. */
6769 if (value)
6770 output_init_element (value, elttype, constructor_index, 1);
6771
6772 constructor_index
6773 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6774
6775 if (! value)
6776 /* If we are doing the bookkeeping for an element that was
6777 directly output as a constructor, we must update
6778 constructor_unfilled_index. */
6779 constructor_unfilled_index = constructor_index;
6780 }
6781
6782 /* Handle the sole element allowed in a braced initializer
6783 for a scalar variable. */
6784 else if (constructor_fields == 0)
6785 {
6786 pedwarn_init ("excess elements in scalar initializer");
6787 break;
6788 }
6789 else
6790 {
6791 if (value)
6792 output_init_element (value, constructor_type, NULL_TREE, 1);
6793 constructor_fields = 0;
6794 }
6795
6796 /* Handle range initializers either at this level or anywhere higher
6797 in the designator stack. */
6798 if (constructor_range_stack)
6799 {
6800 struct constructor_range_stack *p, *range_stack;
6801 int finish = 0;
6802
6803 range_stack = constructor_range_stack;
6804 constructor_range_stack = 0;
6805 while (constructor_stack != range_stack->stack)
6806 {
6807 if (!constructor_stack->implicit)
6808 abort ();
6809 process_init_element (pop_init_level (1));
6810 }
6811 for (p = range_stack;
6812 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6813 p = p->prev)
6814 {
6815 if (!constructor_stack->implicit)
6816 abort ();
6817 process_init_element (pop_init_level (1));
6818 }
6819
6820 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6821 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6822 finish = 1;
6823
6824 while (1)
6825 {
6826 constructor_index = p->index;
6827 constructor_fields = p->fields;
6828 if (finish && p->range_end && p->index == p->range_start)
6829 {
6830 finish = 0;
6831 p->prev = 0;
6832 }
6833 p = p->next;
6834 if (!p)
6835 break;
6836 push_init_level (2);
6837 p->stack = constructor_stack;
6838 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6839 p->index = p->range_start;
6840 }
6841
6842 if (!finish)
6843 constructor_range_stack = range_stack;
6844 continue;
6845 }
6846
6847 break;
6848 }
6849
6850 constructor_range_stack = 0;
6851 }
6852 \f
6853 /* Build a simple asm-statement, from one string literal. */
6854 tree
6855 simple_asm_stmt (expr)
6856 tree expr;
6857 {
6858 STRIP_NOPS (expr);
6859
6860 if (TREE_CODE (expr) == ADDR_EXPR)
6861 expr = TREE_OPERAND (expr, 0);
6862
6863 if (TREE_CODE (expr) == STRING_CST)
6864 {
6865 tree stmt;
6866
6867 /* Simple asm statements are treated as volatile. */
6868 stmt = add_stmt (build_stmt (ASM_STMT, ridpointers[(int) RID_VOLATILE],
6869 expr, NULL_TREE, NULL_TREE, NULL_TREE));
6870 ASM_INPUT_P (stmt) = 1;
6871 return stmt;
6872 }
6873
6874 error ("argument of `asm' is not a constant string");
6875 return NULL_TREE;
6876 }
6877
6878 /* Build an asm-statement, whose components are a CV_QUALIFIER, a
6879 STRING, some OUTPUTS, some INPUTS, and some CLOBBERS. */
6880
6881 tree
6882 build_asm_stmt (cv_qualifier, string, outputs, inputs, clobbers)
6883 tree cv_qualifier;
6884 tree string;
6885 tree outputs;
6886 tree inputs;
6887 tree clobbers;
6888 {
6889 tree tail;
6890
6891 if (TREE_CODE (string) != STRING_CST)
6892 {
6893 error ("asm template is not a string constant");
6894 return NULL_TREE;
6895 }
6896
6897 if (cv_qualifier != NULL_TREE
6898 && cv_qualifier != ridpointers[(int) RID_VOLATILE])
6899 {
6900 warning ("%s qualifier ignored on asm",
6901 IDENTIFIER_POINTER (cv_qualifier));
6902 cv_qualifier = NULL_TREE;
6903 }
6904
6905 /* We can remove output conversions that change the type,
6906 but not the mode. */
6907 for (tail = outputs; tail; tail = TREE_CHAIN (tail))
6908 {
6909 tree output = TREE_VALUE (tail);
6910
6911 STRIP_NOPS (output);
6912 TREE_VALUE (tail) = output;
6913
6914 /* Allow conversions as LHS here. build_modify_expr as called below
6915 will do the right thing with them. */
6916 while (TREE_CODE (output) == NOP_EXPR
6917 || TREE_CODE (output) == CONVERT_EXPR
6918 || TREE_CODE (output) == FLOAT_EXPR
6919 || TREE_CODE (output) == FIX_TRUNC_EXPR
6920 || TREE_CODE (output) == FIX_FLOOR_EXPR
6921 || TREE_CODE (output) == FIX_ROUND_EXPR
6922 || TREE_CODE (output) == FIX_CEIL_EXPR)
6923 output = TREE_OPERAND (output, 0);
6924
6925 lvalue_or_else (TREE_VALUE (tail), "invalid lvalue in asm statement");
6926 }
6927
6928 /* Remove output conversions that change the type but not the mode. */
6929 for (tail = outputs; tail; tail = TREE_CHAIN (tail))
6930 {
6931 tree output = TREE_VALUE (tail);
6932 STRIP_NOPS (output);
6933 TREE_VALUE (tail) = output;
6934 }
6935
6936 /* Perform default conversions on array and function inputs.
6937 Don't do this for other types as it would screw up operands
6938 expected to be in memory. */
6939 for (tail = inputs; tail; tail = TREE_CHAIN (tail))
6940 TREE_VALUE (tail) = default_function_array_conversion (TREE_VALUE (tail));
6941
6942 return add_stmt (build_stmt (ASM_STMT, cv_qualifier, string,
6943 outputs, inputs, clobbers));
6944 }
6945
6946 /* Expand an ASM statement with operands, handling output operands
6947 that are not variables or INDIRECT_REFS by transforming such
6948 cases into cases that expand_asm_operands can handle.
6949
6950 Arguments are same as for expand_asm_operands. */
6951
6952 void
6953 c_expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
6954 tree string, outputs, inputs, clobbers;
6955 int vol;
6956 const char *filename;
6957 int line;
6958 {
6959 int noutputs = list_length (outputs);
6960 int i;
6961 /* o[I] is the place that output number I should be written. */
6962 tree *o = (tree *) alloca (noutputs * sizeof (tree));
6963 tree tail;
6964
6965 /* Record the contents of OUTPUTS before it is modified. */
6966 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
6967 {
6968 o[i] = TREE_VALUE (tail);
6969 if (o[i] == error_mark_node)
6970 return;
6971 }
6972
6973 /* Generate the ASM_OPERANDS insn; store into the TREE_VALUEs of
6974 OUTPUTS some trees for where the values were actually stored. */
6975 expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line);
6976
6977 /* Copy all the intermediate outputs into the specified outputs. */
6978 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
6979 {
6980 if (o[i] != TREE_VALUE (tail))
6981 {
6982 expand_expr (build_modify_expr (o[i], NOP_EXPR, TREE_VALUE (tail)),
6983 NULL_RTX, VOIDmode, EXPAND_NORMAL);
6984 free_temp_slots ();
6985
6986 /* Restore the original value so that it's correct the next
6987 time we expand this function. */
6988 TREE_VALUE (tail) = o[i];
6989 }
6990 /* Detect modification of read-only values.
6991 (Otherwise done by build_modify_expr.) */
6992 else
6993 {
6994 tree type = TREE_TYPE (o[i]);
6995 if (TREE_READONLY (o[i])
6996 || TYPE_READONLY (type)
6997 || ((TREE_CODE (type) == RECORD_TYPE
6998 || TREE_CODE (type) == UNION_TYPE)
6999 && C_TYPE_FIELDS_READONLY (type)))
7000 readonly_warning (o[i], "modification by `asm'");
7001 }
7002 }
7003
7004 /* Those MODIFY_EXPRs could do autoincrements. */
7005 emit_queue ();
7006 }
7007 \f
7008 /* Expand a C `return' statement.
7009 RETVAL is the expression for what to return,
7010 or a null pointer for `return;' with no value. */
7011
7012 tree
7013 c_expand_return (retval)
7014 tree retval;
7015 {
7016 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl));
7017
7018 if (TREE_THIS_VOLATILE (current_function_decl))
7019 warning ("function declared `noreturn' has a `return' statement");
7020
7021 if (!retval)
7022 {
7023 current_function_returns_null = 1;
7024 if ((warn_return_type || flag_isoc99)
7025 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
7026 pedwarn_c99 ("`return' with no value, in function returning non-void");
7027 }
7028 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
7029 {
7030 current_function_returns_null = 1;
7031 if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
7032 pedwarn ("`return' with a value, in function returning void");
7033 }
7034 else
7035 {
7036 tree t = convert_for_assignment (valtype, retval, _("return"),
7037 NULL_TREE, NULL_TREE, 0);
7038 tree res = DECL_RESULT (current_function_decl);
7039 tree inner;
7040
7041 current_function_returns_value = 1;
7042 if (t == error_mark_node)
7043 return NULL_TREE;
7044
7045 inner = t = convert (TREE_TYPE (res), t);
7046
7047 /* Strip any conversions, additions, and subtractions, and see if
7048 we are returning the address of a local variable. Warn if so. */
7049 while (1)
7050 {
7051 switch (TREE_CODE (inner))
7052 {
7053 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
7054 case PLUS_EXPR:
7055 inner = TREE_OPERAND (inner, 0);
7056 continue;
7057
7058 case MINUS_EXPR:
7059 /* If the second operand of the MINUS_EXPR has a pointer
7060 type (or is converted from it), this may be valid, so
7061 don't give a warning. */
7062 {
7063 tree op1 = TREE_OPERAND (inner, 1);
7064
7065 while (! POINTER_TYPE_P (TREE_TYPE (op1))
7066 && (TREE_CODE (op1) == NOP_EXPR
7067 || TREE_CODE (op1) == NON_LVALUE_EXPR
7068 || TREE_CODE (op1) == CONVERT_EXPR))
7069 op1 = TREE_OPERAND (op1, 0);
7070
7071 if (POINTER_TYPE_P (TREE_TYPE (op1)))
7072 break;
7073
7074 inner = TREE_OPERAND (inner, 0);
7075 continue;
7076 }
7077
7078 case ADDR_EXPR:
7079 inner = TREE_OPERAND (inner, 0);
7080
7081 while (TREE_CODE_CLASS (TREE_CODE (inner)) == 'r')
7082 inner = TREE_OPERAND (inner, 0);
7083
7084 if (TREE_CODE (inner) == VAR_DECL
7085 && ! DECL_EXTERNAL (inner)
7086 && ! TREE_STATIC (inner)
7087 && DECL_CONTEXT (inner) == current_function_decl)
7088 warning ("function returns address of local variable");
7089 break;
7090
7091 default:
7092 break;
7093 }
7094
7095 break;
7096 }
7097
7098 retval = build (MODIFY_EXPR, TREE_TYPE (res), res, t);
7099 }
7100
7101 return add_stmt (build_return_stmt (retval));
7102 }
7103 \f
7104 struct c_switch {
7105 /* The SWITCH_STMT being built. */
7106 tree switch_stmt;
7107 /* A splay-tree mapping the low element of a case range to the high
7108 element, or NULL_TREE if there is no high element. Used to
7109 determine whether or not a new case label duplicates an old case
7110 label. We need a tree, rather than simply a hash table, because
7111 of the GNU case range extension. */
7112 splay_tree cases;
7113 /* The next node on the stack. */
7114 struct c_switch *next;
7115 };
7116
7117 /* A stack of the currently active switch statements. The innermost
7118 switch statement is on the top of the stack. There is no need to
7119 mark the stack for garbage collection because it is only active
7120 during the processing of the body of a function, and we never
7121 collect at that point. */
7122
7123 static struct c_switch *switch_stack;
7124
7125 /* Start a C switch statement, testing expression EXP. Return the new
7126 SWITCH_STMT. */
7127
7128 tree
7129 c_start_case (exp)
7130 tree exp;
7131 {
7132 enum tree_code code;
7133 tree type, orig_type = error_mark_node;
7134 struct c_switch *cs;
7135
7136 if (exp != error_mark_node)
7137 {
7138 code = TREE_CODE (TREE_TYPE (exp));
7139 orig_type = TREE_TYPE (exp);
7140
7141 if (! INTEGRAL_TYPE_P (orig_type)
7142 && code != ERROR_MARK)
7143 {
7144 error ("switch quantity not an integer");
7145 exp = integer_zero_node;
7146 }
7147 else
7148 {
7149 type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
7150
7151 if (warn_traditional && !in_system_header
7152 && (type == long_integer_type_node
7153 || type == long_unsigned_type_node))
7154 warning ("`long' switch expression not converted to `int' in ISO C");
7155
7156 exp = default_conversion (exp);
7157 type = TREE_TYPE (exp);
7158 }
7159 }
7160
7161 /* Add this new SWITCH_STMT to the stack. */
7162 cs = (struct c_switch *) xmalloc (sizeof (*cs));
7163 cs->switch_stmt = build_stmt (SWITCH_STMT, exp, NULL_TREE, orig_type);
7164 cs->cases = splay_tree_new (case_compare, NULL, NULL);
7165 cs->next = switch_stack;
7166 switch_stack = cs;
7167
7168 return add_stmt (switch_stack->switch_stmt);
7169 }
7170
7171 /* Process a case label. */
7172
7173 tree
7174 do_case (low_value, high_value)
7175 tree low_value;
7176 tree high_value;
7177 {
7178 tree label = NULL_TREE;
7179
7180 if (switch_stack)
7181 {
7182 label = c_add_case_label (switch_stack->cases,
7183 SWITCH_COND (switch_stack->switch_stmt),
7184 low_value, high_value);
7185 if (label == error_mark_node)
7186 label = NULL_TREE;
7187 }
7188 else if (low_value)
7189 error ("case label not within a switch statement");
7190 else
7191 error ("`default' label not within a switch statement");
7192
7193 return label;
7194 }
7195
7196 /* Finish the switch statement. */
7197
7198 void
7199 c_finish_case ()
7200 {
7201 struct c_switch *cs = switch_stack;
7202
7203 RECHAIN_STMTS (cs->switch_stmt, SWITCH_BODY (cs->switch_stmt));
7204
7205 /* Pop the stack. */
7206 switch_stack = switch_stack->next;
7207 splay_tree_delete (cs->cases);
7208 free (cs);
7209 }