tree.h (convert_to_ptrofftype_loc): New function.
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* This file is part of the C front end.
24 It contains routines to build C expressions given their operands,
25 including computing the types of the result, C-specific error checks,
26 and some optimization. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "tree.h"
33 #include "langhooks.h"
34 #include "c-tree.h"
35 #include "c-lang.h"
36 #include "flags.h"
37 #include "output.h"
38 #include "intl.h"
39 #include "target.h"
40 #include "tree-iterator.h"
41 #include "bitmap.h"
42 #include "gimple.h"
43 #include "c-family/c-objc.h"
44
45 /* Possible cases of implicit bad conversions. Used to select
46 diagnostic messages in convert_for_assignment. */
47 enum impl_conv {
48 ic_argpass,
49 ic_assign,
50 ic_init,
51 ic_return
52 };
53
54 /* Possibe cases of scalar_to_vector conversion. */
55 enum stv_conv {
56 stv_error, /* Error occured. */
57 stv_nothing, /* Nothing happened. */
58 stv_firstarg, /* First argument must be expanded. */
59 stv_secondarg /* Second argument must be expanded. */
60 };
61
62 /* The level of nesting inside "__alignof__". */
63 int in_alignof;
64
65 /* The level of nesting inside "sizeof". */
66 int in_sizeof;
67
68 /* The level of nesting inside "typeof". */
69 int in_typeof;
70
71 /* Nonzero if we've already printed a "missing braces around initializer"
72 message within this initializer. */
73 static int missing_braces_mentioned;
74
75 static int require_constant_value;
76 static int require_constant_elements;
77
78 static bool null_pointer_constant_p (const_tree);
79 static tree qualify_type (tree, tree);
80 static int tagged_types_tu_compatible_p (const_tree, const_tree, bool *,
81 bool *);
82 static int comp_target_types (location_t, tree, tree);
83 static int function_types_compatible_p (const_tree, const_tree, bool *,
84 bool *);
85 static int type_lists_compatible_p (const_tree, const_tree, bool *, bool *);
86 static tree lookup_field (tree, tree);
87 static int convert_arguments (tree, VEC(tree,gc) *, VEC(tree,gc) *, tree,
88 tree);
89 static tree pointer_diff (location_t, tree, tree);
90 static tree convert_for_assignment (location_t, tree, tree, tree,
91 enum impl_conv, bool, tree, tree, int);
92 static tree valid_compound_expr_initializer (tree, tree);
93 static void push_string (const char *);
94 static void push_member_name (tree);
95 static int spelling_length (void);
96 static char *print_spelling (char *);
97 static void warning_init (int, const char *);
98 static tree digest_init (location_t, tree, tree, tree, bool, bool, int);
99 static void output_init_element (tree, tree, bool, tree, tree, int, bool,
100 struct obstack *);
101 static void output_pending_init_elements (int, struct obstack *);
102 static int set_designator (int, struct obstack *);
103 static void push_range_stack (tree, struct obstack *);
104 static void add_pending_init (tree, tree, tree, bool, struct obstack *);
105 static void set_nonincremental_init (struct obstack *);
106 static void set_nonincremental_init_from_string (tree, struct obstack *);
107 static tree find_init_member (tree, struct obstack *);
108 static void readonly_warning (tree, enum lvalue_use);
109 static int lvalue_or_else (location_t, const_tree, enum lvalue_use);
110 static void record_maybe_used_decl (tree);
111 static int comptypes_internal (const_tree, const_tree, bool *, bool *);
112 \f
113 /* Return true if EXP is a null pointer constant, false otherwise. */
114
115 static bool
116 null_pointer_constant_p (const_tree expr)
117 {
118 /* This should really operate on c_expr structures, but they aren't
119 yet available everywhere required. */
120 tree type = TREE_TYPE (expr);
121 return (TREE_CODE (expr) == INTEGER_CST
122 && !TREE_OVERFLOW (expr)
123 && integer_zerop (expr)
124 && (INTEGRAL_TYPE_P (type)
125 || (TREE_CODE (type) == POINTER_TYPE
126 && VOID_TYPE_P (TREE_TYPE (type))
127 && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
128 }
129
130 /* EXPR may appear in an unevaluated part of an integer constant
131 expression, but not in an evaluated part. Wrap it in a
132 C_MAYBE_CONST_EXPR, or mark it with TREE_OVERFLOW if it is just an
133 INTEGER_CST and we cannot create a C_MAYBE_CONST_EXPR. */
134
135 static tree
136 note_integer_operands (tree expr)
137 {
138 tree ret;
139 if (TREE_CODE (expr) == INTEGER_CST && in_late_binary_op)
140 {
141 ret = copy_node (expr);
142 TREE_OVERFLOW (ret) = 1;
143 }
144 else
145 {
146 ret = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (expr), NULL_TREE, expr);
147 C_MAYBE_CONST_EXPR_INT_OPERANDS (ret) = 1;
148 }
149 return ret;
150 }
151
152 /* Having checked whether EXPR may appear in an unevaluated part of an
153 integer constant expression and found that it may, remove any
154 C_MAYBE_CONST_EXPR noting this fact and return the resulting
155 expression. */
156
157 static inline tree
158 remove_c_maybe_const_expr (tree expr)
159 {
160 if (TREE_CODE (expr) == C_MAYBE_CONST_EXPR)
161 return C_MAYBE_CONST_EXPR_EXPR (expr);
162 else
163 return expr;
164 }
165
166 \f/* This is a cache to hold if two types are compatible or not. */
167
168 struct tagged_tu_seen_cache {
169 const struct tagged_tu_seen_cache * next;
170 const_tree t1;
171 const_tree t2;
172 /* The return value of tagged_types_tu_compatible_p if we had seen
173 these two types already. */
174 int val;
175 };
176
177 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
178 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
179
180 /* Do `exp = require_complete_type (exp);' to make sure exp
181 does not have an incomplete type. (That includes void types.) */
182
183 tree
184 require_complete_type (tree value)
185 {
186 tree type = TREE_TYPE (value);
187
188 if (value == error_mark_node || type == error_mark_node)
189 return error_mark_node;
190
191 /* First, detect a valid value with a complete type. */
192 if (COMPLETE_TYPE_P (type))
193 return value;
194
195 c_incomplete_type_error (value, type);
196 return error_mark_node;
197 }
198
199 /* Print an error message for invalid use of an incomplete type.
200 VALUE is the expression that was used (or 0 if that isn't known)
201 and TYPE is the type that was invalid. */
202
203 void
204 c_incomplete_type_error (const_tree value, const_tree type)
205 {
206 const char *type_code_string;
207
208 /* Avoid duplicate error message. */
209 if (TREE_CODE (type) == ERROR_MARK)
210 return;
211
212 if (value != 0 && (TREE_CODE (value) == VAR_DECL
213 || TREE_CODE (value) == PARM_DECL))
214 error ("%qD has an incomplete type", value);
215 else
216 {
217 retry:
218 /* We must print an error message. Be clever about what it says. */
219
220 switch (TREE_CODE (type))
221 {
222 case RECORD_TYPE:
223 type_code_string = "struct";
224 break;
225
226 case UNION_TYPE:
227 type_code_string = "union";
228 break;
229
230 case ENUMERAL_TYPE:
231 type_code_string = "enum";
232 break;
233
234 case VOID_TYPE:
235 error ("invalid use of void expression");
236 return;
237
238 case ARRAY_TYPE:
239 if (TYPE_DOMAIN (type))
240 {
241 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
242 {
243 error ("invalid use of flexible array member");
244 return;
245 }
246 type = TREE_TYPE (type);
247 goto retry;
248 }
249 error ("invalid use of array with unspecified bounds");
250 return;
251
252 default:
253 gcc_unreachable ();
254 }
255
256 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
257 error ("invalid use of undefined type %<%s %E%>",
258 type_code_string, TYPE_NAME (type));
259 else
260 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
261 error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
262 }
263 }
264
265 /* Given a type, apply default promotions wrt unnamed function
266 arguments and return the new type. */
267
268 tree
269 c_type_promotes_to (tree type)
270 {
271 if (TYPE_MAIN_VARIANT (type) == float_type_node)
272 return double_type_node;
273
274 if (c_promoting_integer_type_p (type))
275 {
276 /* Preserve unsignedness if not really getting any wider. */
277 if (TYPE_UNSIGNED (type)
278 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
279 return unsigned_type_node;
280 return integer_type_node;
281 }
282
283 return type;
284 }
285
286 /* Return true if between two named address spaces, whether there is a superset
287 named address space that encompasses both address spaces. If there is a
288 superset, return which address space is the superset. */
289
290 static bool
291 addr_space_superset (addr_space_t as1, addr_space_t as2, addr_space_t *common)
292 {
293 if (as1 == as2)
294 {
295 *common = as1;
296 return true;
297 }
298 else if (targetm.addr_space.subset_p (as1, as2))
299 {
300 *common = as2;
301 return true;
302 }
303 else if (targetm.addr_space.subset_p (as2, as1))
304 {
305 *common = as1;
306 return true;
307 }
308 else
309 return false;
310 }
311
312 /* Return a variant of TYPE which has all the type qualifiers of LIKE
313 as well as those of TYPE. */
314
315 static tree
316 qualify_type (tree type, tree like)
317 {
318 addr_space_t as_type = TYPE_ADDR_SPACE (type);
319 addr_space_t as_like = TYPE_ADDR_SPACE (like);
320 addr_space_t as_common;
321
322 /* If the two named address spaces are different, determine the common
323 superset address space. If there isn't one, raise an error. */
324 if (!addr_space_superset (as_type, as_like, &as_common))
325 {
326 as_common = as_type;
327 error ("%qT and %qT are in disjoint named address spaces",
328 type, like);
329 }
330
331 return c_build_qualified_type (type,
332 TYPE_QUALS_NO_ADDR_SPACE (type)
333 | TYPE_QUALS_NO_ADDR_SPACE (like)
334 | ENCODE_QUAL_ADDR_SPACE (as_common));
335 }
336
337 /* Return true iff the given tree T is a variable length array. */
338
339 bool
340 c_vla_type_p (const_tree t)
341 {
342 if (TREE_CODE (t) == ARRAY_TYPE
343 && C_TYPE_VARIABLE_SIZE (t))
344 return true;
345 return false;
346 }
347 \f
348 /* Return the composite type of two compatible types.
349
350 We assume that comptypes has already been done and returned
351 nonzero; if that isn't so, this may crash. In particular, we
352 assume that qualifiers match. */
353
354 tree
355 composite_type (tree t1, tree t2)
356 {
357 enum tree_code code1;
358 enum tree_code code2;
359 tree attributes;
360
361 /* Save time if the two types are the same. */
362
363 if (t1 == t2) return t1;
364
365 /* If one type is nonsense, use the other. */
366 if (t1 == error_mark_node)
367 return t2;
368 if (t2 == error_mark_node)
369 return t1;
370
371 code1 = TREE_CODE (t1);
372 code2 = TREE_CODE (t2);
373
374 /* Merge the attributes. */
375 attributes = targetm.merge_type_attributes (t1, t2);
376
377 /* If one is an enumerated type and the other is the compatible
378 integer type, the composite type might be either of the two
379 (DR#013 question 3). For consistency, use the enumerated type as
380 the composite type. */
381
382 if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
383 return t1;
384 if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
385 return t2;
386
387 gcc_assert (code1 == code2);
388
389 switch (code1)
390 {
391 case POINTER_TYPE:
392 /* For two pointers, do this recursively on the target type. */
393 {
394 tree pointed_to_1 = TREE_TYPE (t1);
395 tree pointed_to_2 = TREE_TYPE (t2);
396 tree target = composite_type (pointed_to_1, pointed_to_2);
397 t1 = build_pointer_type (target);
398 t1 = build_type_attribute_variant (t1, attributes);
399 return qualify_type (t1, t2);
400 }
401
402 case ARRAY_TYPE:
403 {
404 tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
405 int quals;
406 tree unqual_elt;
407 tree d1 = TYPE_DOMAIN (t1);
408 tree d2 = TYPE_DOMAIN (t2);
409 bool d1_variable, d2_variable;
410 bool d1_zero, d2_zero;
411 bool t1_complete, t2_complete;
412
413 /* We should not have any type quals on arrays at all. */
414 gcc_assert (!TYPE_QUALS_NO_ADDR_SPACE (t1)
415 && !TYPE_QUALS_NO_ADDR_SPACE (t2));
416
417 t1_complete = COMPLETE_TYPE_P (t1);
418 t2_complete = COMPLETE_TYPE_P (t2);
419
420 d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
421 d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
422
423 d1_variable = (!d1_zero
424 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
425 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
426 d2_variable = (!d2_zero
427 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
428 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
429 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
430 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
431
432 /* Save space: see if the result is identical to one of the args. */
433 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
434 && (d2_variable || d2_zero || !d1_variable))
435 return build_type_attribute_variant (t1, attributes);
436 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
437 && (d1_variable || d1_zero || !d2_variable))
438 return build_type_attribute_variant (t2, attributes);
439
440 if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
441 return build_type_attribute_variant (t1, attributes);
442 if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
443 return build_type_attribute_variant (t2, attributes);
444
445 /* Merge the element types, and have a size if either arg has
446 one. We may have qualifiers on the element types. To set
447 up TYPE_MAIN_VARIANT correctly, we need to form the
448 composite of the unqualified types and add the qualifiers
449 back at the end. */
450 quals = TYPE_QUALS (strip_array_types (elt));
451 unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
452 t1 = build_array_type (unqual_elt,
453 TYPE_DOMAIN ((TYPE_DOMAIN (t1)
454 && (d2_variable
455 || d2_zero
456 || !d1_variable))
457 ? t1
458 : t2));
459 /* Ensure a composite type involving a zero-length array type
460 is a zero-length type not an incomplete type. */
461 if (d1_zero && d2_zero
462 && (t1_complete || t2_complete)
463 && !COMPLETE_TYPE_P (t1))
464 {
465 TYPE_SIZE (t1) = bitsize_zero_node;
466 TYPE_SIZE_UNIT (t1) = size_zero_node;
467 }
468 t1 = c_build_qualified_type (t1, quals);
469 return build_type_attribute_variant (t1, attributes);
470 }
471
472 case ENUMERAL_TYPE:
473 case RECORD_TYPE:
474 case UNION_TYPE:
475 if (attributes != NULL)
476 {
477 /* Try harder not to create a new aggregate type. */
478 if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
479 return t1;
480 if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
481 return t2;
482 }
483 return build_type_attribute_variant (t1, attributes);
484
485 case FUNCTION_TYPE:
486 /* Function types: prefer the one that specified arg types.
487 If both do, merge the arg types. Also merge the return types. */
488 {
489 tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
490 tree p1 = TYPE_ARG_TYPES (t1);
491 tree p2 = TYPE_ARG_TYPES (t2);
492 int len;
493 tree newargs, n;
494 int i;
495
496 /* Save space: see if the result is identical to one of the args. */
497 if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
498 return build_type_attribute_variant (t1, attributes);
499 if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
500 return build_type_attribute_variant (t2, attributes);
501
502 /* Simple way if one arg fails to specify argument types. */
503 if (TYPE_ARG_TYPES (t1) == 0)
504 {
505 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
506 t1 = build_type_attribute_variant (t1, attributes);
507 return qualify_type (t1, t2);
508 }
509 if (TYPE_ARG_TYPES (t2) == 0)
510 {
511 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
512 t1 = build_type_attribute_variant (t1, attributes);
513 return qualify_type (t1, t2);
514 }
515
516 /* If both args specify argument types, we must merge the two
517 lists, argument by argument. */
518
519 len = list_length (p1);
520 newargs = 0;
521
522 for (i = 0; i < len; i++)
523 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
524
525 n = newargs;
526
527 for (; p1;
528 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
529 {
530 /* A null type means arg type is not specified.
531 Take whatever the other function type has. */
532 if (TREE_VALUE (p1) == 0)
533 {
534 TREE_VALUE (n) = TREE_VALUE (p2);
535 goto parm_done;
536 }
537 if (TREE_VALUE (p2) == 0)
538 {
539 TREE_VALUE (n) = TREE_VALUE (p1);
540 goto parm_done;
541 }
542
543 /* Given wait (union {union wait *u; int *i} *)
544 and wait (union wait *),
545 prefer union wait * as type of parm. */
546 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
547 && TREE_VALUE (p1) != TREE_VALUE (p2))
548 {
549 tree memb;
550 tree mv2 = TREE_VALUE (p2);
551 if (mv2 && mv2 != error_mark_node
552 && TREE_CODE (mv2) != ARRAY_TYPE)
553 mv2 = TYPE_MAIN_VARIANT (mv2);
554 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
555 memb; memb = DECL_CHAIN (memb))
556 {
557 tree mv3 = TREE_TYPE (memb);
558 if (mv3 && mv3 != error_mark_node
559 && TREE_CODE (mv3) != ARRAY_TYPE)
560 mv3 = TYPE_MAIN_VARIANT (mv3);
561 if (comptypes (mv3, mv2))
562 {
563 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
564 TREE_VALUE (p2));
565 pedwarn (input_location, OPT_pedantic,
566 "function types not truly compatible in ISO C");
567 goto parm_done;
568 }
569 }
570 }
571 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
572 && TREE_VALUE (p2) != TREE_VALUE (p1))
573 {
574 tree memb;
575 tree mv1 = TREE_VALUE (p1);
576 if (mv1 && mv1 != error_mark_node
577 && TREE_CODE (mv1) != ARRAY_TYPE)
578 mv1 = TYPE_MAIN_VARIANT (mv1);
579 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
580 memb; memb = DECL_CHAIN (memb))
581 {
582 tree mv3 = TREE_TYPE (memb);
583 if (mv3 && mv3 != error_mark_node
584 && TREE_CODE (mv3) != ARRAY_TYPE)
585 mv3 = TYPE_MAIN_VARIANT (mv3);
586 if (comptypes (mv3, mv1))
587 {
588 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
589 TREE_VALUE (p1));
590 pedwarn (input_location, OPT_pedantic,
591 "function types not truly compatible in ISO C");
592 goto parm_done;
593 }
594 }
595 }
596 TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
597 parm_done: ;
598 }
599
600 t1 = build_function_type (valtype, newargs);
601 t1 = qualify_type (t1, t2);
602 /* ... falls through ... */
603 }
604
605 default:
606 return build_type_attribute_variant (t1, attributes);
607 }
608
609 }
610
611 /* Return the type of a conditional expression between pointers to
612 possibly differently qualified versions of compatible types.
613
614 We assume that comp_target_types has already been done and returned
615 nonzero; if that isn't so, this may crash. */
616
617 static tree
618 common_pointer_type (tree t1, tree t2)
619 {
620 tree attributes;
621 tree pointed_to_1, mv1;
622 tree pointed_to_2, mv2;
623 tree target;
624 unsigned target_quals;
625 addr_space_t as1, as2, as_common;
626 int quals1, quals2;
627
628 /* Save time if the two types are the same. */
629
630 if (t1 == t2) return t1;
631
632 /* If one type is nonsense, use the other. */
633 if (t1 == error_mark_node)
634 return t2;
635 if (t2 == error_mark_node)
636 return t1;
637
638 gcc_assert (TREE_CODE (t1) == POINTER_TYPE
639 && TREE_CODE (t2) == POINTER_TYPE);
640
641 /* Merge the attributes. */
642 attributes = targetm.merge_type_attributes (t1, t2);
643
644 /* Find the composite type of the target types, and combine the
645 qualifiers of the two types' targets. Do not lose qualifiers on
646 array element types by taking the TYPE_MAIN_VARIANT. */
647 mv1 = pointed_to_1 = TREE_TYPE (t1);
648 mv2 = pointed_to_2 = TREE_TYPE (t2);
649 if (TREE_CODE (mv1) != ARRAY_TYPE)
650 mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
651 if (TREE_CODE (mv2) != ARRAY_TYPE)
652 mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
653 target = composite_type (mv1, mv2);
654
655 /* For function types do not merge const qualifiers, but drop them
656 if used inconsistently. The middle-end uses these to mark const
657 and noreturn functions. */
658 quals1 = TYPE_QUALS_NO_ADDR_SPACE (pointed_to_1);
659 quals2 = TYPE_QUALS_NO_ADDR_SPACE (pointed_to_2);
660
661 if (TREE_CODE (pointed_to_1) == FUNCTION_TYPE)
662 target_quals = (quals1 & quals2);
663 else
664 target_quals = (quals1 | quals2);
665
666 /* If the two named address spaces are different, determine the common
667 superset address space. This is guaranteed to exist due to the
668 assumption that comp_target_type returned non-zero. */
669 as1 = TYPE_ADDR_SPACE (pointed_to_1);
670 as2 = TYPE_ADDR_SPACE (pointed_to_2);
671 if (!addr_space_superset (as1, as2, &as_common))
672 gcc_unreachable ();
673
674 target_quals |= ENCODE_QUAL_ADDR_SPACE (as_common);
675
676 t1 = build_pointer_type (c_build_qualified_type (target, target_quals));
677 return build_type_attribute_variant (t1, attributes);
678 }
679
680 /* Return the common type for two arithmetic types under the usual
681 arithmetic conversions. The default conversions have already been
682 applied, and enumerated types converted to their compatible integer
683 types. The resulting type is unqualified and has no attributes.
684
685 This is the type for the result of most arithmetic operations
686 if the operands have the given two types. */
687
688 static tree
689 c_common_type (tree t1, tree t2)
690 {
691 enum tree_code code1;
692 enum tree_code code2;
693
694 /* If one type is nonsense, use the other. */
695 if (t1 == error_mark_node)
696 return t2;
697 if (t2 == error_mark_node)
698 return t1;
699
700 if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
701 t1 = TYPE_MAIN_VARIANT (t1);
702
703 if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
704 t2 = TYPE_MAIN_VARIANT (t2);
705
706 if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
707 t1 = build_type_attribute_variant (t1, NULL_TREE);
708
709 if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
710 t2 = build_type_attribute_variant (t2, NULL_TREE);
711
712 /* Save time if the two types are the same. */
713
714 if (t1 == t2) return t1;
715
716 code1 = TREE_CODE (t1);
717 code2 = TREE_CODE (t2);
718
719 gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
720 || code1 == FIXED_POINT_TYPE || code1 == REAL_TYPE
721 || code1 == INTEGER_TYPE);
722 gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
723 || code2 == FIXED_POINT_TYPE || code2 == REAL_TYPE
724 || code2 == INTEGER_TYPE);
725
726 /* When one operand is a decimal float type, the other operand cannot be
727 a generic float type or a complex type. We also disallow vector types
728 here. */
729 if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
730 && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
731 {
732 if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
733 {
734 error ("can%'t mix operands of decimal float and vector types");
735 return error_mark_node;
736 }
737 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
738 {
739 error ("can%'t mix operands of decimal float and complex types");
740 return error_mark_node;
741 }
742 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
743 {
744 error ("can%'t mix operands of decimal float and other float types");
745 return error_mark_node;
746 }
747 }
748
749 /* If one type is a vector type, return that type. (How the usual
750 arithmetic conversions apply to the vector types extension is not
751 precisely specified.) */
752 if (code1 == VECTOR_TYPE)
753 return t1;
754
755 if (code2 == VECTOR_TYPE)
756 return t2;
757
758 /* If one type is complex, form the common type of the non-complex
759 components, then make that complex. Use T1 or T2 if it is the
760 required type. */
761 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
762 {
763 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
764 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
765 tree subtype = c_common_type (subtype1, subtype2);
766
767 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
768 return t1;
769 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
770 return t2;
771 else
772 return build_complex_type (subtype);
773 }
774
775 /* If only one is real, use it as the result. */
776
777 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
778 return t1;
779
780 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
781 return t2;
782
783 /* If both are real and either are decimal floating point types, use
784 the decimal floating point type with the greater precision. */
785
786 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
787 {
788 if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
789 || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
790 return dfloat128_type_node;
791 else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
792 || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
793 return dfloat64_type_node;
794 else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
795 || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
796 return dfloat32_type_node;
797 }
798
799 /* Deal with fixed-point types. */
800 if (code1 == FIXED_POINT_TYPE || code2 == FIXED_POINT_TYPE)
801 {
802 unsigned int unsignedp = 0, satp = 0;
803 enum machine_mode m1, m2;
804 unsigned int fbit1, ibit1, fbit2, ibit2, max_fbit, max_ibit;
805
806 m1 = TYPE_MODE (t1);
807 m2 = TYPE_MODE (t2);
808
809 /* If one input type is saturating, the result type is saturating. */
810 if (TYPE_SATURATING (t1) || TYPE_SATURATING (t2))
811 satp = 1;
812
813 /* If both fixed-point types are unsigned, the result type is unsigned.
814 When mixing fixed-point and integer types, follow the sign of the
815 fixed-point type.
816 Otherwise, the result type is signed. */
817 if ((TYPE_UNSIGNED (t1) && TYPE_UNSIGNED (t2)
818 && code1 == FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE)
819 || (code1 == FIXED_POINT_TYPE && code2 != FIXED_POINT_TYPE
820 && TYPE_UNSIGNED (t1))
821 || (code1 != FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE
822 && TYPE_UNSIGNED (t2)))
823 unsignedp = 1;
824
825 /* The result type is signed. */
826 if (unsignedp == 0)
827 {
828 /* If the input type is unsigned, we need to convert to the
829 signed type. */
830 if (code1 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t1))
831 {
832 enum mode_class mclass = (enum mode_class) 0;
833 if (GET_MODE_CLASS (m1) == MODE_UFRACT)
834 mclass = MODE_FRACT;
835 else if (GET_MODE_CLASS (m1) == MODE_UACCUM)
836 mclass = MODE_ACCUM;
837 else
838 gcc_unreachable ();
839 m1 = mode_for_size (GET_MODE_PRECISION (m1), mclass, 0);
840 }
841 if (code2 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t2))
842 {
843 enum mode_class mclass = (enum mode_class) 0;
844 if (GET_MODE_CLASS (m2) == MODE_UFRACT)
845 mclass = MODE_FRACT;
846 else if (GET_MODE_CLASS (m2) == MODE_UACCUM)
847 mclass = MODE_ACCUM;
848 else
849 gcc_unreachable ();
850 m2 = mode_for_size (GET_MODE_PRECISION (m2), mclass, 0);
851 }
852 }
853
854 if (code1 == FIXED_POINT_TYPE)
855 {
856 fbit1 = GET_MODE_FBIT (m1);
857 ibit1 = GET_MODE_IBIT (m1);
858 }
859 else
860 {
861 fbit1 = 0;
862 /* Signed integers need to subtract one sign bit. */
863 ibit1 = TYPE_PRECISION (t1) - (!TYPE_UNSIGNED (t1));
864 }
865
866 if (code2 == FIXED_POINT_TYPE)
867 {
868 fbit2 = GET_MODE_FBIT (m2);
869 ibit2 = GET_MODE_IBIT (m2);
870 }
871 else
872 {
873 fbit2 = 0;
874 /* Signed integers need to subtract one sign bit. */
875 ibit2 = TYPE_PRECISION (t2) - (!TYPE_UNSIGNED (t2));
876 }
877
878 max_ibit = ibit1 >= ibit2 ? ibit1 : ibit2;
879 max_fbit = fbit1 >= fbit2 ? fbit1 : fbit2;
880 return c_common_fixed_point_type_for_size (max_ibit, max_fbit, unsignedp,
881 satp);
882 }
883
884 /* Both real or both integers; use the one with greater precision. */
885
886 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
887 return t1;
888 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
889 return t2;
890
891 /* Same precision. Prefer long longs to longs to ints when the
892 same precision, following the C99 rules on integer type rank
893 (which are equivalent to the C90 rules for C90 types). */
894
895 if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
896 || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
897 return long_long_unsigned_type_node;
898
899 if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
900 || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
901 {
902 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
903 return long_long_unsigned_type_node;
904 else
905 return long_long_integer_type_node;
906 }
907
908 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
909 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
910 return long_unsigned_type_node;
911
912 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
913 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
914 {
915 /* But preserve unsignedness from the other type,
916 since long cannot hold all the values of an unsigned int. */
917 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
918 return long_unsigned_type_node;
919 else
920 return long_integer_type_node;
921 }
922
923 /* Likewise, prefer long double to double even if same size. */
924 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
925 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
926 return long_double_type_node;
927
928 /* Otherwise prefer the unsigned one. */
929
930 if (TYPE_UNSIGNED (t1))
931 return t1;
932 else
933 return t2;
934 }
935 \f
936 /* Wrapper around c_common_type that is used by c-common.c and other
937 front end optimizations that remove promotions. ENUMERAL_TYPEs
938 are allowed here and are converted to their compatible integer types.
939 BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
940 preferably a non-Boolean type as the common type. */
941 tree
942 common_type (tree t1, tree t2)
943 {
944 if (TREE_CODE (t1) == ENUMERAL_TYPE)
945 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
946 if (TREE_CODE (t2) == ENUMERAL_TYPE)
947 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
948
949 /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */
950 if (TREE_CODE (t1) == BOOLEAN_TYPE
951 && TREE_CODE (t2) == BOOLEAN_TYPE)
952 return boolean_type_node;
953
954 /* If either type is BOOLEAN_TYPE, then return the other. */
955 if (TREE_CODE (t1) == BOOLEAN_TYPE)
956 return t2;
957 if (TREE_CODE (t2) == BOOLEAN_TYPE)
958 return t1;
959
960 return c_common_type (t1, t2);
961 }
962
963 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
964 or various other operations. Return 2 if they are compatible
965 but a warning may be needed if you use them together. */
966
967 int
968 comptypes (tree type1, tree type2)
969 {
970 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
971 int val;
972
973 val = comptypes_internal (type1, type2, NULL, NULL);
974 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
975
976 return val;
977 }
978
979 /* Like comptypes, but if it returns non-zero because enum and int are
980 compatible, it sets *ENUM_AND_INT_P to true. */
981
982 static int
983 comptypes_check_enum_int (tree type1, tree type2, bool *enum_and_int_p)
984 {
985 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
986 int val;
987
988 val = comptypes_internal (type1, type2, enum_and_int_p, NULL);
989 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
990
991 return val;
992 }
993
994 /* Like comptypes, but if it returns nonzero for different types, it
995 sets *DIFFERENT_TYPES_P to true. */
996
997 int
998 comptypes_check_different_types (tree type1, tree type2,
999 bool *different_types_p)
1000 {
1001 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
1002 int val;
1003
1004 val = comptypes_internal (type1, type2, NULL, different_types_p);
1005 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
1006
1007 return val;
1008 }
1009 \f
1010 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
1011 or various other operations. Return 2 if they are compatible
1012 but a warning may be needed if you use them together. If
1013 ENUM_AND_INT_P is not NULL, and one type is an enum and the other a
1014 compatible integer type, then this sets *ENUM_AND_INT_P to true;
1015 *ENUM_AND_INT_P is never set to false. If DIFFERENT_TYPES_P is not
1016 NULL, and the types are compatible but different enough not to be
1017 permitted in C1X typedef redeclarations, then this sets
1018 *DIFFERENT_TYPES_P to true; *DIFFERENT_TYPES_P is never set to
1019 false, but may or may not be set if the types are incompatible.
1020 This differs from comptypes, in that we don't free the seen
1021 types. */
1022
1023 static int
1024 comptypes_internal (const_tree type1, const_tree type2, bool *enum_and_int_p,
1025 bool *different_types_p)
1026 {
1027 const_tree t1 = type1;
1028 const_tree t2 = type2;
1029 int attrval, val;
1030
1031 /* Suppress errors caused by previously reported errors. */
1032
1033 if (t1 == t2 || !t1 || !t2
1034 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
1035 return 1;
1036
1037 /* Enumerated types are compatible with integer types, but this is
1038 not transitive: two enumerated types in the same translation unit
1039 are compatible with each other only if they are the same type. */
1040
1041 if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
1042 {
1043 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
1044 if (TREE_CODE (t2) != VOID_TYPE)
1045 {
1046 if (enum_and_int_p != NULL)
1047 *enum_and_int_p = true;
1048 if (different_types_p != NULL)
1049 *different_types_p = true;
1050 }
1051 }
1052 else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
1053 {
1054 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
1055 if (TREE_CODE (t1) != VOID_TYPE)
1056 {
1057 if (enum_and_int_p != NULL)
1058 *enum_and_int_p = true;
1059 if (different_types_p != NULL)
1060 *different_types_p = true;
1061 }
1062 }
1063
1064 if (t1 == t2)
1065 return 1;
1066
1067 /* Different classes of types can't be compatible. */
1068
1069 if (TREE_CODE (t1) != TREE_CODE (t2))
1070 return 0;
1071
1072 /* Qualifiers must match. C99 6.7.3p9 */
1073
1074 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
1075 return 0;
1076
1077 /* Allow for two different type nodes which have essentially the same
1078 definition. Note that we already checked for equality of the type
1079 qualifiers (just above). */
1080
1081 if (TREE_CODE (t1) != ARRAY_TYPE
1082 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
1083 return 1;
1084
1085 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1086 if (!(attrval = comp_type_attributes (t1, t2)))
1087 return 0;
1088
1089 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1090 val = 0;
1091
1092 switch (TREE_CODE (t1))
1093 {
1094 case POINTER_TYPE:
1095 /* Do not remove mode or aliasing information. */
1096 if (TYPE_MODE (t1) != TYPE_MODE (t2)
1097 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
1098 break;
1099 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
1100 ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2),
1101 enum_and_int_p, different_types_p));
1102 break;
1103
1104 case FUNCTION_TYPE:
1105 val = function_types_compatible_p (t1, t2, enum_and_int_p,
1106 different_types_p);
1107 break;
1108
1109 case ARRAY_TYPE:
1110 {
1111 tree d1 = TYPE_DOMAIN (t1);
1112 tree d2 = TYPE_DOMAIN (t2);
1113 bool d1_variable, d2_variable;
1114 bool d1_zero, d2_zero;
1115 val = 1;
1116
1117 /* Target types must match incl. qualifiers. */
1118 if (TREE_TYPE (t1) != TREE_TYPE (t2)
1119 && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2),
1120 enum_and_int_p,
1121 different_types_p)))
1122 return 0;
1123
1124 if (different_types_p != NULL
1125 && (d1 == 0) != (d2 == 0))
1126 *different_types_p = true;
1127 /* Sizes must match unless one is missing or variable. */
1128 if (d1 == 0 || d2 == 0 || d1 == d2)
1129 break;
1130
1131 d1_zero = !TYPE_MAX_VALUE (d1);
1132 d2_zero = !TYPE_MAX_VALUE (d2);
1133
1134 d1_variable = (!d1_zero
1135 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
1136 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
1137 d2_variable = (!d2_zero
1138 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
1139 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
1140 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
1141 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
1142
1143 if (different_types_p != NULL
1144 && d1_variable != d2_variable)
1145 *different_types_p = true;
1146 if (d1_variable || d2_variable)
1147 break;
1148 if (d1_zero && d2_zero)
1149 break;
1150 if (d1_zero || d2_zero
1151 || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
1152 || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
1153 val = 0;
1154
1155 break;
1156 }
1157
1158 case ENUMERAL_TYPE:
1159 case RECORD_TYPE:
1160 case UNION_TYPE:
1161 if (val != 1 && !same_translation_unit_p (t1, t2))
1162 {
1163 tree a1 = TYPE_ATTRIBUTES (t1);
1164 tree a2 = TYPE_ATTRIBUTES (t2);
1165
1166 if (! attribute_list_contained (a1, a2)
1167 && ! attribute_list_contained (a2, a1))
1168 break;
1169
1170 if (attrval != 2)
1171 return tagged_types_tu_compatible_p (t1, t2, enum_and_int_p,
1172 different_types_p);
1173 val = tagged_types_tu_compatible_p (t1, t2, enum_and_int_p,
1174 different_types_p);
1175 }
1176 break;
1177
1178 case VECTOR_TYPE:
1179 val = (TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
1180 && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2),
1181 enum_and_int_p, different_types_p));
1182 break;
1183
1184 default:
1185 break;
1186 }
1187 return attrval == 2 && val == 1 ? 2 : val;
1188 }
1189
1190 /* Return 1 if TTL and TTR are pointers to types that are equivalent, ignoring
1191 their qualifiers, except for named address spaces. If the pointers point to
1192 different named addresses, then we must determine if one address space is a
1193 subset of the other. */
1194
1195 static int
1196 comp_target_types (location_t location, tree ttl, tree ttr)
1197 {
1198 int val;
1199 tree mvl = TREE_TYPE (ttl);
1200 tree mvr = TREE_TYPE (ttr);
1201 addr_space_t asl = TYPE_ADDR_SPACE (mvl);
1202 addr_space_t asr = TYPE_ADDR_SPACE (mvr);
1203 addr_space_t as_common;
1204 bool enum_and_int_p;
1205
1206 /* Fail if pointers point to incompatible address spaces. */
1207 if (!addr_space_superset (asl, asr, &as_common))
1208 return 0;
1209
1210 /* Do not lose qualifiers on element types of array types that are
1211 pointer targets by taking their TYPE_MAIN_VARIANT. */
1212 if (TREE_CODE (mvl) != ARRAY_TYPE)
1213 mvl = TYPE_MAIN_VARIANT (mvl);
1214 if (TREE_CODE (mvr) != ARRAY_TYPE)
1215 mvr = TYPE_MAIN_VARIANT (mvr);
1216 enum_and_int_p = false;
1217 val = comptypes_check_enum_int (mvl, mvr, &enum_and_int_p);
1218
1219 if (val == 2)
1220 pedwarn (location, OPT_pedantic, "types are not quite compatible");
1221
1222 if (val == 1 && enum_and_int_p && warn_cxx_compat)
1223 warning_at (location, OPT_Wc___compat,
1224 "pointer target types incompatible in C++");
1225
1226 return val;
1227 }
1228 \f
1229 /* Subroutines of `comptypes'. */
1230
1231 /* Determine whether two trees derive from the same translation unit.
1232 If the CONTEXT chain ends in a null, that tree's context is still
1233 being parsed, so if two trees have context chains ending in null,
1234 they're in the same translation unit. */
1235 int
1236 same_translation_unit_p (const_tree t1, const_tree t2)
1237 {
1238 while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
1239 switch (TREE_CODE_CLASS (TREE_CODE (t1)))
1240 {
1241 case tcc_declaration:
1242 t1 = DECL_CONTEXT (t1); break;
1243 case tcc_type:
1244 t1 = TYPE_CONTEXT (t1); break;
1245 case tcc_exceptional:
1246 t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
1247 default: gcc_unreachable ();
1248 }
1249
1250 while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
1251 switch (TREE_CODE_CLASS (TREE_CODE (t2)))
1252 {
1253 case tcc_declaration:
1254 t2 = DECL_CONTEXT (t2); break;
1255 case tcc_type:
1256 t2 = TYPE_CONTEXT (t2); break;
1257 case tcc_exceptional:
1258 t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
1259 default: gcc_unreachable ();
1260 }
1261
1262 return t1 == t2;
1263 }
1264
1265 /* Allocate the seen two types, assuming that they are compatible. */
1266
1267 static struct tagged_tu_seen_cache *
1268 alloc_tagged_tu_seen_cache (const_tree t1, const_tree t2)
1269 {
1270 struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
1271 tu->next = tagged_tu_seen_base;
1272 tu->t1 = t1;
1273 tu->t2 = t2;
1274
1275 tagged_tu_seen_base = tu;
1276
1277 /* The C standard says that two structures in different translation
1278 units are compatible with each other only if the types of their
1279 fields are compatible (among other things). We assume that they
1280 are compatible until proven otherwise when building the cache.
1281 An example where this can occur is:
1282 struct a
1283 {
1284 struct a *next;
1285 };
1286 If we are comparing this against a similar struct in another TU,
1287 and did not assume they were compatible, we end up with an infinite
1288 loop. */
1289 tu->val = 1;
1290 return tu;
1291 }
1292
1293 /* Free the seen types until we get to TU_TIL. */
1294
1295 static void
1296 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1297 {
1298 const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1299 while (tu != tu_til)
1300 {
1301 const struct tagged_tu_seen_cache *const tu1
1302 = (const struct tagged_tu_seen_cache *) tu;
1303 tu = tu1->next;
1304 free (CONST_CAST (struct tagged_tu_seen_cache *, tu1));
1305 }
1306 tagged_tu_seen_base = tu_til;
1307 }
1308
1309 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1310 compatible. If the two types are not the same (which has been
1311 checked earlier), this can only happen when multiple translation
1312 units are being compiled. See C99 6.2.7 paragraph 1 for the exact
1313 rules. ENUM_AND_INT_P and DIFFERENT_TYPES_P are as in
1314 comptypes_internal. */
1315
1316 static int
1317 tagged_types_tu_compatible_p (const_tree t1, const_tree t2,
1318 bool *enum_and_int_p, bool *different_types_p)
1319 {
1320 tree s1, s2;
1321 bool needs_warning = false;
1322
1323 /* We have to verify that the tags of the types are the same. This
1324 is harder than it looks because this may be a typedef, so we have
1325 to go look at the original type. It may even be a typedef of a
1326 typedef...
1327 In the case of compiler-created builtin structs the TYPE_DECL
1328 may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
1329 while (TYPE_NAME (t1)
1330 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1331 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1332 t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1333
1334 while (TYPE_NAME (t2)
1335 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1336 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1337 t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1338
1339 /* C90 didn't have the requirement that the two tags be the same. */
1340 if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1341 return 0;
1342
1343 /* C90 didn't say what happened if one or both of the types were
1344 incomplete; we choose to follow C99 rules here, which is that they
1345 are compatible. */
1346 if (TYPE_SIZE (t1) == NULL
1347 || TYPE_SIZE (t2) == NULL)
1348 return 1;
1349
1350 {
1351 const struct tagged_tu_seen_cache * tts_i;
1352 for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1353 if (tts_i->t1 == t1 && tts_i->t2 == t2)
1354 return tts_i->val;
1355 }
1356
1357 switch (TREE_CODE (t1))
1358 {
1359 case ENUMERAL_TYPE:
1360 {
1361 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1362 /* Speed up the case where the type values are in the same order. */
1363 tree tv1 = TYPE_VALUES (t1);
1364 tree tv2 = TYPE_VALUES (t2);
1365
1366 if (tv1 == tv2)
1367 {
1368 return 1;
1369 }
1370
1371 for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1372 {
1373 if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1374 break;
1375 if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1376 {
1377 tu->val = 0;
1378 return 0;
1379 }
1380 }
1381
1382 if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1383 {
1384 return 1;
1385 }
1386 if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1387 {
1388 tu->val = 0;
1389 return 0;
1390 }
1391
1392 if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1393 {
1394 tu->val = 0;
1395 return 0;
1396 }
1397
1398 for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1399 {
1400 s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1401 if (s2 == NULL
1402 || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1403 {
1404 tu->val = 0;
1405 return 0;
1406 }
1407 }
1408 return 1;
1409 }
1410
1411 case UNION_TYPE:
1412 {
1413 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1414 if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1415 {
1416 tu->val = 0;
1417 return 0;
1418 }
1419
1420 /* Speed up the common case where the fields are in the same order. */
1421 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1422 s1 = DECL_CHAIN (s1), s2 = DECL_CHAIN (s2))
1423 {
1424 int result;
1425
1426 if (DECL_NAME (s1) != DECL_NAME (s2))
1427 break;
1428 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2),
1429 enum_and_int_p, different_types_p);
1430
1431 if (result != 1 && !DECL_NAME (s1))
1432 break;
1433 if (result == 0)
1434 {
1435 tu->val = 0;
1436 return 0;
1437 }
1438 if (result == 2)
1439 needs_warning = true;
1440
1441 if (TREE_CODE (s1) == FIELD_DECL
1442 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1443 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1444 {
1445 tu->val = 0;
1446 return 0;
1447 }
1448 }
1449 if (!s1 && !s2)
1450 {
1451 tu->val = needs_warning ? 2 : 1;
1452 return tu->val;
1453 }
1454
1455 for (s1 = TYPE_FIELDS (t1); s1; s1 = DECL_CHAIN (s1))
1456 {
1457 bool ok = false;
1458
1459 for (s2 = TYPE_FIELDS (t2); s2; s2 = DECL_CHAIN (s2))
1460 if (DECL_NAME (s1) == DECL_NAME (s2))
1461 {
1462 int result;
1463
1464 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2),
1465 enum_and_int_p,
1466 different_types_p);
1467
1468 if (result != 1 && !DECL_NAME (s1))
1469 continue;
1470 if (result == 0)
1471 {
1472 tu->val = 0;
1473 return 0;
1474 }
1475 if (result == 2)
1476 needs_warning = true;
1477
1478 if (TREE_CODE (s1) == FIELD_DECL
1479 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1480 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1481 break;
1482
1483 ok = true;
1484 break;
1485 }
1486 if (!ok)
1487 {
1488 tu->val = 0;
1489 return 0;
1490 }
1491 }
1492 tu->val = needs_warning ? 2 : 10;
1493 return tu->val;
1494 }
1495
1496 case RECORD_TYPE:
1497 {
1498 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1499
1500 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1501 s1 && s2;
1502 s1 = DECL_CHAIN (s1), s2 = DECL_CHAIN (s2))
1503 {
1504 int result;
1505 if (TREE_CODE (s1) != TREE_CODE (s2)
1506 || DECL_NAME (s1) != DECL_NAME (s2))
1507 break;
1508 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2),
1509 enum_and_int_p, different_types_p);
1510 if (result == 0)
1511 break;
1512 if (result == 2)
1513 needs_warning = true;
1514
1515 if (TREE_CODE (s1) == FIELD_DECL
1516 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1517 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1518 break;
1519 }
1520 if (s1 && s2)
1521 tu->val = 0;
1522 else
1523 tu->val = needs_warning ? 2 : 1;
1524 return tu->val;
1525 }
1526
1527 default:
1528 gcc_unreachable ();
1529 }
1530 }
1531
1532 /* Return 1 if two function types F1 and F2 are compatible.
1533 If either type specifies no argument types,
1534 the other must specify a fixed number of self-promoting arg types.
1535 Otherwise, if one type specifies only the number of arguments,
1536 the other must specify that number of self-promoting arg types.
1537 Otherwise, the argument types must match.
1538 ENUM_AND_INT_P and DIFFERENT_TYPES_P are as in comptypes_internal. */
1539
1540 static int
1541 function_types_compatible_p (const_tree f1, const_tree f2,
1542 bool *enum_and_int_p, bool *different_types_p)
1543 {
1544 tree args1, args2;
1545 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1546 int val = 1;
1547 int val1;
1548 tree ret1, ret2;
1549
1550 ret1 = TREE_TYPE (f1);
1551 ret2 = TREE_TYPE (f2);
1552
1553 /* 'volatile' qualifiers on a function's return type used to mean
1554 the function is noreturn. */
1555 if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1556 pedwarn (input_location, 0, "function return types not compatible due to %<volatile%>");
1557 if (TYPE_VOLATILE (ret1))
1558 ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1559 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1560 if (TYPE_VOLATILE (ret2))
1561 ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1562 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1563 val = comptypes_internal (ret1, ret2, enum_and_int_p, different_types_p);
1564 if (val == 0)
1565 return 0;
1566
1567 args1 = TYPE_ARG_TYPES (f1);
1568 args2 = TYPE_ARG_TYPES (f2);
1569
1570 if (different_types_p != NULL
1571 && (args1 == 0) != (args2 == 0))
1572 *different_types_p = true;
1573
1574 /* An unspecified parmlist matches any specified parmlist
1575 whose argument types don't need default promotions. */
1576
1577 if (args1 == 0)
1578 {
1579 if (!self_promoting_args_p (args2))
1580 return 0;
1581 /* If one of these types comes from a non-prototype fn definition,
1582 compare that with the other type's arglist.
1583 If they don't match, ask for a warning (but no error). */
1584 if (TYPE_ACTUAL_ARG_TYPES (f1)
1585 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1),
1586 enum_and_int_p, different_types_p))
1587 val = 2;
1588 return val;
1589 }
1590 if (args2 == 0)
1591 {
1592 if (!self_promoting_args_p (args1))
1593 return 0;
1594 if (TYPE_ACTUAL_ARG_TYPES (f2)
1595 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2),
1596 enum_and_int_p, different_types_p))
1597 val = 2;
1598 return val;
1599 }
1600
1601 /* Both types have argument lists: compare them and propagate results. */
1602 val1 = type_lists_compatible_p (args1, args2, enum_and_int_p,
1603 different_types_p);
1604 return val1 != 1 ? val1 : val;
1605 }
1606
1607 /* Check two lists of types for compatibility, returning 0 for
1608 incompatible, 1 for compatible, or 2 for compatible with
1609 warning. ENUM_AND_INT_P and DIFFERENT_TYPES_P are as in
1610 comptypes_internal. */
1611
1612 static int
1613 type_lists_compatible_p (const_tree args1, const_tree args2,
1614 bool *enum_and_int_p, bool *different_types_p)
1615 {
1616 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1617 int val = 1;
1618 int newval = 0;
1619
1620 while (1)
1621 {
1622 tree a1, mv1, a2, mv2;
1623 if (args1 == 0 && args2 == 0)
1624 return val;
1625 /* If one list is shorter than the other,
1626 they fail to match. */
1627 if (args1 == 0 || args2 == 0)
1628 return 0;
1629 mv1 = a1 = TREE_VALUE (args1);
1630 mv2 = a2 = TREE_VALUE (args2);
1631 if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1632 mv1 = TYPE_MAIN_VARIANT (mv1);
1633 if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1634 mv2 = TYPE_MAIN_VARIANT (mv2);
1635 /* A null pointer instead of a type
1636 means there is supposed to be an argument
1637 but nothing is specified about what type it has.
1638 So match anything that self-promotes. */
1639 if (different_types_p != NULL
1640 && (a1 == 0) != (a2 == 0))
1641 *different_types_p = true;
1642 if (a1 == 0)
1643 {
1644 if (c_type_promotes_to (a2) != a2)
1645 return 0;
1646 }
1647 else if (a2 == 0)
1648 {
1649 if (c_type_promotes_to (a1) != a1)
1650 return 0;
1651 }
1652 /* If one of the lists has an error marker, ignore this arg. */
1653 else if (TREE_CODE (a1) == ERROR_MARK
1654 || TREE_CODE (a2) == ERROR_MARK)
1655 ;
1656 else if (!(newval = comptypes_internal (mv1, mv2, enum_and_int_p,
1657 different_types_p)))
1658 {
1659 if (different_types_p != NULL)
1660 *different_types_p = true;
1661 /* Allow wait (union {union wait *u; int *i} *)
1662 and wait (union wait *) to be compatible. */
1663 if (TREE_CODE (a1) == UNION_TYPE
1664 && (TYPE_NAME (a1) == 0
1665 || TYPE_TRANSPARENT_AGGR (a1))
1666 && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1667 && tree_int_cst_equal (TYPE_SIZE (a1),
1668 TYPE_SIZE (a2)))
1669 {
1670 tree memb;
1671 for (memb = TYPE_FIELDS (a1);
1672 memb; memb = DECL_CHAIN (memb))
1673 {
1674 tree mv3 = TREE_TYPE (memb);
1675 if (mv3 && mv3 != error_mark_node
1676 && TREE_CODE (mv3) != ARRAY_TYPE)
1677 mv3 = TYPE_MAIN_VARIANT (mv3);
1678 if (comptypes_internal (mv3, mv2, enum_and_int_p,
1679 different_types_p))
1680 break;
1681 }
1682 if (memb == 0)
1683 return 0;
1684 }
1685 else if (TREE_CODE (a2) == UNION_TYPE
1686 && (TYPE_NAME (a2) == 0
1687 || TYPE_TRANSPARENT_AGGR (a2))
1688 && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1689 && tree_int_cst_equal (TYPE_SIZE (a2),
1690 TYPE_SIZE (a1)))
1691 {
1692 tree memb;
1693 for (memb = TYPE_FIELDS (a2);
1694 memb; memb = DECL_CHAIN (memb))
1695 {
1696 tree mv3 = TREE_TYPE (memb);
1697 if (mv3 && mv3 != error_mark_node
1698 && TREE_CODE (mv3) != ARRAY_TYPE)
1699 mv3 = TYPE_MAIN_VARIANT (mv3);
1700 if (comptypes_internal (mv3, mv1, enum_and_int_p,
1701 different_types_p))
1702 break;
1703 }
1704 if (memb == 0)
1705 return 0;
1706 }
1707 else
1708 return 0;
1709 }
1710
1711 /* comptypes said ok, but record if it said to warn. */
1712 if (newval > val)
1713 val = newval;
1714
1715 args1 = TREE_CHAIN (args1);
1716 args2 = TREE_CHAIN (args2);
1717 }
1718 }
1719 \f
1720 /* Compute the size to increment a pointer by. */
1721
1722 static tree
1723 c_size_in_bytes (const_tree type)
1724 {
1725 enum tree_code code = TREE_CODE (type);
1726
1727 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1728 return size_one_node;
1729
1730 if (!COMPLETE_OR_VOID_TYPE_P (type))
1731 {
1732 error ("arithmetic on pointer to an incomplete type");
1733 return size_one_node;
1734 }
1735
1736 /* Convert in case a char is more than one unit. */
1737 return size_binop_loc (input_location, CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1738 size_int (TYPE_PRECISION (char_type_node)
1739 / BITS_PER_UNIT));
1740 }
1741 \f
1742 /* Return either DECL or its known constant value (if it has one). */
1743
1744 tree
1745 decl_constant_value (tree decl)
1746 {
1747 if (/* Don't change a variable array bound or initial value to a constant
1748 in a place where a variable is invalid. Note that DECL_INITIAL
1749 isn't valid for a PARM_DECL. */
1750 current_function_decl != 0
1751 && TREE_CODE (decl) != PARM_DECL
1752 && !TREE_THIS_VOLATILE (decl)
1753 && TREE_READONLY (decl)
1754 && DECL_INITIAL (decl) != 0
1755 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1756 /* This is invalid if initial value is not constant.
1757 If it has either a function call, a memory reference,
1758 or a variable, then re-evaluating it could give different results. */
1759 && TREE_CONSTANT (DECL_INITIAL (decl))
1760 /* Check for cases where this is sub-optimal, even though valid. */
1761 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1762 return DECL_INITIAL (decl);
1763 return decl;
1764 }
1765
1766 /* Convert the array expression EXP to a pointer. */
1767 static tree
1768 array_to_pointer_conversion (location_t loc, tree exp)
1769 {
1770 tree orig_exp = exp;
1771 tree type = TREE_TYPE (exp);
1772 tree adr;
1773 tree restype = TREE_TYPE (type);
1774 tree ptrtype;
1775
1776 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1777
1778 STRIP_TYPE_NOPS (exp);
1779
1780 if (TREE_NO_WARNING (orig_exp))
1781 TREE_NO_WARNING (exp) = 1;
1782
1783 ptrtype = build_pointer_type (restype);
1784
1785 if (TREE_CODE (exp) == INDIRECT_REF)
1786 return convert (ptrtype, TREE_OPERAND (exp, 0));
1787
1788 adr = build_unary_op (loc, ADDR_EXPR, exp, 1);
1789 return convert (ptrtype, adr);
1790 }
1791
1792 /* Convert the function expression EXP to a pointer. */
1793 static tree
1794 function_to_pointer_conversion (location_t loc, tree exp)
1795 {
1796 tree orig_exp = exp;
1797
1798 gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1799
1800 STRIP_TYPE_NOPS (exp);
1801
1802 if (TREE_NO_WARNING (orig_exp))
1803 TREE_NO_WARNING (exp) = 1;
1804
1805 return build_unary_op (loc, ADDR_EXPR, exp, 0);
1806 }
1807
1808 /* Mark EXP as read, not just set, for set but not used -Wunused
1809 warning purposes. */
1810
1811 void
1812 mark_exp_read (tree exp)
1813 {
1814 switch (TREE_CODE (exp))
1815 {
1816 case VAR_DECL:
1817 case PARM_DECL:
1818 DECL_READ_P (exp) = 1;
1819 break;
1820 case ARRAY_REF:
1821 case COMPONENT_REF:
1822 case MODIFY_EXPR:
1823 case REALPART_EXPR:
1824 case IMAGPART_EXPR:
1825 CASE_CONVERT:
1826 case ADDR_EXPR:
1827 mark_exp_read (TREE_OPERAND (exp, 0));
1828 break;
1829 case COMPOUND_EXPR:
1830 case C_MAYBE_CONST_EXPR:
1831 mark_exp_read (TREE_OPERAND (exp, 1));
1832 break;
1833 default:
1834 break;
1835 }
1836 }
1837
1838 /* Perform the default conversion of arrays and functions to pointers.
1839 Return the result of converting EXP. For any other expression, just
1840 return EXP.
1841
1842 LOC is the location of the expression. */
1843
1844 struct c_expr
1845 default_function_array_conversion (location_t loc, struct c_expr exp)
1846 {
1847 tree orig_exp = exp.value;
1848 tree type = TREE_TYPE (exp.value);
1849 enum tree_code code = TREE_CODE (type);
1850
1851 switch (code)
1852 {
1853 case ARRAY_TYPE:
1854 {
1855 bool not_lvalue = false;
1856 bool lvalue_array_p;
1857
1858 while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1859 || CONVERT_EXPR_P (exp.value))
1860 && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1861 {
1862 if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1863 not_lvalue = true;
1864 exp.value = TREE_OPERAND (exp.value, 0);
1865 }
1866
1867 if (TREE_NO_WARNING (orig_exp))
1868 TREE_NO_WARNING (exp.value) = 1;
1869
1870 lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1871 if (!flag_isoc99 && !lvalue_array_p)
1872 {
1873 /* Before C99, non-lvalue arrays do not decay to pointers.
1874 Normally, using such an array would be invalid; but it can
1875 be used correctly inside sizeof or as a statement expression.
1876 Thus, do not give an error here; an error will result later. */
1877 return exp;
1878 }
1879
1880 exp.value = array_to_pointer_conversion (loc, exp.value);
1881 }
1882 break;
1883 case FUNCTION_TYPE:
1884 exp.value = function_to_pointer_conversion (loc, exp.value);
1885 break;
1886 default:
1887 break;
1888 }
1889
1890 return exp;
1891 }
1892
1893 struct c_expr
1894 default_function_array_read_conversion (location_t loc, struct c_expr exp)
1895 {
1896 mark_exp_read (exp.value);
1897 return default_function_array_conversion (loc, exp);
1898 }
1899
1900 /* EXP is an expression of integer type. Apply the integer promotions
1901 to it and return the promoted value. */
1902
1903 tree
1904 perform_integral_promotions (tree exp)
1905 {
1906 tree type = TREE_TYPE (exp);
1907 enum tree_code code = TREE_CODE (type);
1908
1909 gcc_assert (INTEGRAL_TYPE_P (type));
1910
1911 /* Normally convert enums to int,
1912 but convert wide enums to something wider. */
1913 if (code == ENUMERAL_TYPE)
1914 {
1915 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1916 TYPE_PRECISION (integer_type_node)),
1917 ((TYPE_PRECISION (type)
1918 >= TYPE_PRECISION (integer_type_node))
1919 && TYPE_UNSIGNED (type)));
1920
1921 return convert (type, exp);
1922 }
1923
1924 /* ??? This should no longer be needed now bit-fields have their
1925 proper types. */
1926 if (TREE_CODE (exp) == COMPONENT_REF
1927 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1928 /* If it's thinner than an int, promote it like a
1929 c_promoting_integer_type_p, otherwise leave it alone. */
1930 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1931 TYPE_PRECISION (integer_type_node)))
1932 return convert (integer_type_node, exp);
1933
1934 if (c_promoting_integer_type_p (type))
1935 {
1936 /* Preserve unsignedness if not really getting any wider. */
1937 if (TYPE_UNSIGNED (type)
1938 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1939 return convert (unsigned_type_node, exp);
1940
1941 return convert (integer_type_node, exp);
1942 }
1943
1944 return exp;
1945 }
1946
1947
1948 /* Perform default promotions for C data used in expressions.
1949 Enumeral types or short or char are converted to int.
1950 In addition, manifest constants symbols are replaced by their values. */
1951
1952 tree
1953 default_conversion (tree exp)
1954 {
1955 tree orig_exp;
1956 tree type = TREE_TYPE (exp);
1957 enum tree_code code = TREE_CODE (type);
1958 tree promoted_type;
1959
1960 mark_exp_read (exp);
1961
1962 /* Functions and arrays have been converted during parsing. */
1963 gcc_assert (code != FUNCTION_TYPE);
1964 if (code == ARRAY_TYPE)
1965 return exp;
1966
1967 /* Constants can be used directly unless they're not loadable. */
1968 if (TREE_CODE (exp) == CONST_DECL)
1969 exp = DECL_INITIAL (exp);
1970
1971 /* Strip no-op conversions. */
1972 orig_exp = exp;
1973 STRIP_TYPE_NOPS (exp);
1974
1975 if (TREE_NO_WARNING (orig_exp))
1976 TREE_NO_WARNING (exp) = 1;
1977
1978 if (code == VOID_TYPE)
1979 {
1980 error ("void value not ignored as it ought to be");
1981 return error_mark_node;
1982 }
1983
1984 exp = require_complete_type (exp);
1985 if (exp == error_mark_node)
1986 return error_mark_node;
1987
1988 promoted_type = targetm.promoted_type (type);
1989 if (promoted_type)
1990 return convert (promoted_type, exp);
1991
1992 if (INTEGRAL_TYPE_P (type))
1993 return perform_integral_promotions (exp);
1994
1995 return exp;
1996 }
1997 \f
1998 /* Look up COMPONENT in a structure or union TYPE.
1999
2000 If the component name is not found, returns NULL_TREE. Otherwise,
2001 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
2002 stepping down the chain to the component, which is in the last
2003 TREE_VALUE of the list. Normally the list is of length one, but if
2004 the component is embedded within (nested) anonymous structures or
2005 unions, the list steps down the chain to the component. */
2006
2007 static tree
2008 lookup_field (tree type, tree component)
2009 {
2010 tree field;
2011
2012 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
2013 to the field elements. Use a binary search on this array to quickly
2014 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
2015 will always be set for structures which have many elements. */
2016
2017 if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
2018 {
2019 int bot, top, half;
2020 tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
2021
2022 field = TYPE_FIELDS (type);
2023 bot = 0;
2024 top = TYPE_LANG_SPECIFIC (type)->s->len;
2025 while (top - bot > 1)
2026 {
2027 half = (top - bot + 1) >> 1;
2028 field = field_array[bot+half];
2029
2030 if (DECL_NAME (field) == NULL_TREE)
2031 {
2032 /* Step through all anon unions in linear fashion. */
2033 while (DECL_NAME (field_array[bot]) == NULL_TREE)
2034 {
2035 field = field_array[bot++];
2036 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
2037 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
2038 {
2039 tree anon = lookup_field (TREE_TYPE (field), component);
2040
2041 if (anon)
2042 return tree_cons (NULL_TREE, field, anon);
2043
2044 /* The Plan 9 compiler permits referring
2045 directly to an anonymous struct/union field
2046 using a typedef name. */
2047 if (flag_plan9_extensions
2048 && TYPE_NAME (TREE_TYPE (field)) != NULL_TREE
2049 && (TREE_CODE (TYPE_NAME (TREE_TYPE (field)))
2050 == TYPE_DECL)
2051 && (DECL_NAME (TYPE_NAME (TREE_TYPE (field)))
2052 == component))
2053 break;
2054 }
2055 }
2056
2057 /* Entire record is only anon unions. */
2058 if (bot > top)
2059 return NULL_TREE;
2060
2061 /* Restart the binary search, with new lower bound. */
2062 continue;
2063 }
2064
2065 if (DECL_NAME (field) == component)
2066 break;
2067 if (DECL_NAME (field) < component)
2068 bot += half;
2069 else
2070 top = bot + half;
2071 }
2072
2073 if (DECL_NAME (field_array[bot]) == component)
2074 field = field_array[bot];
2075 else if (DECL_NAME (field) != component)
2076 return NULL_TREE;
2077 }
2078 else
2079 {
2080 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2081 {
2082 if (DECL_NAME (field) == NULL_TREE
2083 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
2084 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
2085 {
2086 tree anon = lookup_field (TREE_TYPE (field), component);
2087
2088 if (anon)
2089 return tree_cons (NULL_TREE, field, anon);
2090
2091 /* The Plan 9 compiler permits referring directly to an
2092 anonymous struct/union field using a typedef
2093 name. */
2094 if (flag_plan9_extensions
2095 && TYPE_NAME (TREE_TYPE (field)) != NULL_TREE
2096 && TREE_CODE (TYPE_NAME (TREE_TYPE (field))) == TYPE_DECL
2097 && (DECL_NAME (TYPE_NAME (TREE_TYPE (field)))
2098 == component))
2099 break;
2100 }
2101
2102 if (DECL_NAME (field) == component)
2103 break;
2104 }
2105
2106 if (field == NULL_TREE)
2107 return NULL_TREE;
2108 }
2109
2110 return tree_cons (NULL_TREE, field, NULL_TREE);
2111 }
2112
2113 /* Make an expression to refer to the COMPONENT field of structure or
2114 union value DATUM. COMPONENT is an IDENTIFIER_NODE. LOC is the
2115 location of the COMPONENT_REF. */
2116
2117 tree
2118 build_component_ref (location_t loc, tree datum, tree component)
2119 {
2120 tree type = TREE_TYPE (datum);
2121 enum tree_code code = TREE_CODE (type);
2122 tree field = NULL;
2123 tree ref;
2124 bool datum_lvalue = lvalue_p (datum);
2125
2126 if (!objc_is_public (datum, component))
2127 return error_mark_node;
2128
2129 /* Detect Objective-C property syntax object.property. */
2130 if (c_dialect_objc ()
2131 && (ref = objc_maybe_build_component_ref (datum, component)))
2132 return ref;
2133
2134 /* See if there is a field or component with name COMPONENT. */
2135
2136 if (code == RECORD_TYPE || code == UNION_TYPE)
2137 {
2138 if (!COMPLETE_TYPE_P (type))
2139 {
2140 c_incomplete_type_error (NULL_TREE, type);
2141 return error_mark_node;
2142 }
2143
2144 field = lookup_field (type, component);
2145
2146 if (!field)
2147 {
2148 error_at (loc, "%qT has no member named %qE", type, component);
2149 return error_mark_node;
2150 }
2151
2152 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
2153 This might be better solved in future the way the C++ front
2154 end does it - by giving the anonymous entities each a
2155 separate name and type, and then have build_component_ref
2156 recursively call itself. We can't do that here. */
2157 do
2158 {
2159 tree subdatum = TREE_VALUE (field);
2160 int quals;
2161 tree subtype;
2162 bool use_datum_quals;
2163
2164 if (TREE_TYPE (subdatum) == error_mark_node)
2165 return error_mark_node;
2166
2167 /* If this is an rvalue, it does not have qualifiers in C
2168 standard terms and we must avoid propagating such
2169 qualifiers down to a non-lvalue array that is then
2170 converted to a pointer. */
2171 use_datum_quals = (datum_lvalue
2172 || TREE_CODE (TREE_TYPE (subdatum)) != ARRAY_TYPE);
2173
2174 quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
2175 if (use_datum_quals)
2176 quals |= TYPE_QUALS (TREE_TYPE (datum));
2177 subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
2178
2179 ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
2180 NULL_TREE);
2181 SET_EXPR_LOCATION (ref, loc);
2182 if (TREE_READONLY (subdatum)
2183 || (use_datum_quals && TREE_READONLY (datum)))
2184 TREE_READONLY (ref) = 1;
2185 if (TREE_THIS_VOLATILE (subdatum)
2186 || (use_datum_quals && TREE_THIS_VOLATILE (datum)))
2187 TREE_THIS_VOLATILE (ref) = 1;
2188
2189 if (TREE_DEPRECATED (subdatum))
2190 warn_deprecated_use (subdatum, NULL_TREE);
2191
2192 datum = ref;
2193
2194 field = TREE_CHAIN (field);
2195 }
2196 while (field);
2197
2198 return ref;
2199 }
2200 else if (code != ERROR_MARK)
2201 error_at (loc,
2202 "request for member %qE in something not a structure or union",
2203 component);
2204
2205 return error_mark_node;
2206 }
2207 \f
2208 /* Given an expression PTR for a pointer, return an expression
2209 for the value pointed to.
2210 ERRORSTRING is the name of the operator to appear in error messages.
2211
2212 LOC is the location to use for the generated tree. */
2213
2214 tree
2215 build_indirect_ref (location_t loc, tree ptr, ref_operator errstring)
2216 {
2217 tree pointer = default_conversion (ptr);
2218 tree type = TREE_TYPE (pointer);
2219 tree ref;
2220
2221 if (TREE_CODE (type) == POINTER_TYPE)
2222 {
2223 if (CONVERT_EXPR_P (pointer)
2224 || TREE_CODE (pointer) == VIEW_CONVERT_EXPR)
2225 {
2226 /* If a warning is issued, mark it to avoid duplicates from
2227 the backend. This only needs to be done at
2228 warn_strict_aliasing > 2. */
2229 if (warn_strict_aliasing > 2)
2230 if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (pointer, 0)),
2231 type, TREE_OPERAND (pointer, 0)))
2232 TREE_NO_WARNING (pointer) = 1;
2233 }
2234
2235 if (TREE_CODE (pointer) == ADDR_EXPR
2236 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
2237 == TREE_TYPE (type)))
2238 {
2239 ref = TREE_OPERAND (pointer, 0);
2240 protected_set_expr_location (ref, loc);
2241 return ref;
2242 }
2243 else
2244 {
2245 tree t = TREE_TYPE (type);
2246
2247 ref = build1 (INDIRECT_REF, t, pointer);
2248
2249 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
2250 {
2251 error_at (loc, "dereferencing pointer to incomplete type");
2252 return error_mark_node;
2253 }
2254 if (VOID_TYPE_P (t) && c_inhibit_evaluation_warnings == 0)
2255 warning_at (loc, 0, "dereferencing %<void *%> pointer");
2256
2257 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
2258 so that we get the proper error message if the result is used
2259 to assign to. Also, &* is supposed to be a no-op.
2260 And ANSI C seems to specify that the type of the result
2261 should be the const type. */
2262 /* A de-reference of a pointer to const is not a const. It is valid
2263 to change it via some other pointer. */
2264 TREE_READONLY (ref) = TYPE_READONLY (t);
2265 TREE_SIDE_EFFECTS (ref)
2266 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
2267 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
2268 protected_set_expr_location (ref, loc);
2269 return ref;
2270 }
2271 }
2272 else if (TREE_CODE (pointer) != ERROR_MARK)
2273 invalid_indirection_error (loc, type, errstring);
2274
2275 return error_mark_node;
2276 }
2277
2278 /* This handles expressions of the form "a[i]", which denotes
2279 an array reference.
2280
2281 This is logically equivalent in C to *(a+i), but we may do it differently.
2282 If A is a variable or a member, we generate a primitive ARRAY_REF.
2283 This avoids forcing the array out of registers, and can work on
2284 arrays that are not lvalues (for example, members of structures returned
2285 by functions).
2286
2287 For vector types, allow vector[i] but not i[vector], and create
2288 *(((type*)&vectortype) + i) for the expression.
2289
2290 LOC is the location to use for the returned expression. */
2291
2292 tree
2293 build_array_ref (location_t loc, tree array, tree index)
2294 {
2295 tree ret;
2296 bool swapped = false;
2297 if (TREE_TYPE (array) == error_mark_node
2298 || TREE_TYPE (index) == error_mark_node)
2299 return error_mark_node;
2300
2301 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
2302 && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE
2303 /* Allow vector[index] but not index[vector]. */
2304 && TREE_CODE (TREE_TYPE (array)) != VECTOR_TYPE)
2305 {
2306 tree temp;
2307 if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
2308 && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
2309 {
2310 error_at (loc,
2311 "subscripted value is neither array nor pointer nor vector");
2312
2313 return error_mark_node;
2314 }
2315 temp = array;
2316 array = index;
2317 index = temp;
2318 swapped = true;
2319 }
2320
2321 if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
2322 {
2323 error_at (loc, "array subscript is not an integer");
2324 return error_mark_node;
2325 }
2326
2327 if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
2328 {
2329 error_at (loc, "subscripted value is pointer to function");
2330 return error_mark_node;
2331 }
2332
2333 /* ??? Existing practice has been to warn only when the char
2334 index is syntactically the index, not for char[array]. */
2335 if (!swapped)
2336 warn_array_subscript_with_type_char (index);
2337
2338 /* Apply default promotions *after* noticing character types. */
2339 index = default_conversion (index);
2340
2341 gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
2342
2343 /* For vector[index], convert the vector to a
2344 pointer of the underlying type. */
2345 if (TREE_CODE (TREE_TYPE (array)) == VECTOR_TYPE)
2346 {
2347 tree type = TREE_TYPE (array);
2348 tree type1;
2349
2350 if (TREE_CODE (index) == INTEGER_CST)
2351 if (!host_integerp (index, 1)
2352 || ((unsigned HOST_WIDE_INT) tree_low_cst (index, 1)
2353 >= TYPE_VECTOR_SUBPARTS (TREE_TYPE (array))))
2354 warning_at (loc, OPT_Warray_bounds, "index value is out of bound");
2355
2356 c_common_mark_addressable_vec (array);
2357 type = build_qualified_type (TREE_TYPE (type), TYPE_QUALS (type));
2358 type = build_pointer_type (type);
2359 type1 = build_pointer_type (TREE_TYPE (array));
2360 array = build1 (ADDR_EXPR, type1, array);
2361 array = convert (type, array);
2362 }
2363
2364 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
2365 {
2366 tree rval, type;
2367
2368 /* An array that is indexed by a non-constant
2369 cannot be stored in a register; we must be able to do
2370 address arithmetic on its address.
2371 Likewise an array of elements of variable size. */
2372 if (TREE_CODE (index) != INTEGER_CST
2373 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
2374 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
2375 {
2376 if (!c_mark_addressable (array))
2377 return error_mark_node;
2378 }
2379 /* An array that is indexed by a constant value which is not within
2380 the array bounds cannot be stored in a register either; because we
2381 would get a crash in store_bit_field/extract_bit_field when trying
2382 to access a non-existent part of the register. */
2383 if (TREE_CODE (index) == INTEGER_CST
2384 && TYPE_DOMAIN (TREE_TYPE (array))
2385 && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
2386 {
2387 if (!c_mark_addressable (array))
2388 return error_mark_node;
2389 }
2390
2391 if (pedantic)
2392 {
2393 tree foo = array;
2394 while (TREE_CODE (foo) == COMPONENT_REF)
2395 foo = TREE_OPERAND (foo, 0);
2396 if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2397 pedwarn (loc, OPT_pedantic,
2398 "ISO C forbids subscripting %<register%> array");
2399 else if (!flag_isoc99 && !lvalue_p (foo))
2400 pedwarn (loc, OPT_pedantic,
2401 "ISO C90 forbids subscripting non-lvalue array");
2402 }
2403
2404 type = TREE_TYPE (TREE_TYPE (array));
2405 rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2406 /* Array ref is const/volatile if the array elements are
2407 or if the array is. */
2408 TREE_READONLY (rval)
2409 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2410 | TREE_READONLY (array));
2411 TREE_SIDE_EFFECTS (rval)
2412 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2413 | TREE_SIDE_EFFECTS (array));
2414 TREE_THIS_VOLATILE (rval)
2415 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2416 /* This was added by rms on 16 Nov 91.
2417 It fixes vol struct foo *a; a->elts[1]
2418 in an inline function.
2419 Hope it doesn't break something else. */
2420 | TREE_THIS_VOLATILE (array));
2421 ret = require_complete_type (rval);
2422 protected_set_expr_location (ret, loc);
2423 return ret;
2424 }
2425 else
2426 {
2427 tree ar = default_conversion (array);
2428
2429 if (ar == error_mark_node)
2430 return ar;
2431
2432 gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2433 gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2434
2435 return build_indirect_ref
2436 (loc, build_binary_op (loc, PLUS_EXPR, ar, index, 0),
2437 RO_ARRAY_INDEXING);
2438 }
2439 }
2440 \f
2441 /* Build an external reference to identifier ID. FUN indicates
2442 whether this will be used for a function call. LOC is the source
2443 location of the identifier. This sets *TYPE to the type of the
2444 identifier, which is not the same as the type of the returned value
2445 for CONST_DECLs defined as enum constants. If the type of the
2446 identifier is not available, *TYPE is set to NULL. */
2447 tree
2448 build_external_ref (location_t loc, tree id, int fun, tree *type)
2449 {
2450 tree ref;
2451 tree decl = lookup_name (id);
2452
2453 /* In Objective-C, an instance variable (ivar) may be preferred to
2454 whatever lookup_name() found. */
2455 decl = objc_lookup_ivar (decl, id);
2456
2457 *type = NULL;
2458 if (decl && decl != error_mark_node)
2459 {
2460 ref = decl;
2461 *type = TREE_TYPE (ref);
2462 }
2463 else if (fun)
2464 /* Implicit function declaration. */
2465 ref = implicitly_declare (loc, id);
2466 else if (decl == error_mark_node)
2467 /* Don't complain about something that's already been
2468 complained about. */
2469 return error_mark_node;
2470 else
2471 {
2472 undeclared_variable (loc, id);
2473 return error_mark_node;
2474 }
2475
2476 if (TREE_TYPE (ref) == error_mark_node)
2477 return error_mark_node;
2478
2479 if (TREE_DEPRECATED (ref))
2480 warn_deprecated_use (ref, NULL_TREE);
2481
2482 /* Recursive call does not count as usage. */
2483 if (ref != current_function_decl)
2484 {
2485 TREE_USED (ref) = 1;
2486 }
2487
2488 if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2489 {
2490 if (!in_sizeof && !in_typeof)
2491 C_DECL_USED (ref) = 1;
2492 else if (DECL_INITIAL (ref) == 0
2493 && DECL_EXTERNAL (ref)
2494 && !TREE_PUBLIC (ref))
2495 record_maybe_used_decl (ref);
2496 }
2497
2498 if (TREE_CODE (ref) == CONST_DECL)
2499 {
2500 used_types_insert (TREE_TYPE (ref));
2501
2502 if (warn_cxx_compat
2503 && TREE_CODE (TREE_TYPE (ref)) == ENUMERAL_TYPE
2504 && C_TYPE_DEFINED_IN_STRUCT (TREE_TYPE (ref)))
2505 {
2506 warning_at (loc, OPT_Wc___compat,
2507 ("enum constant defined in struct or union "
2508 "is not visible in C++"));
2509 inform (DECL_SOURCE_LOCATION (ref), "enum constant defined here");
2510 }
2511
2512 ref = DECL_INITIAL (ref);
2513 TREE_CONSTANT (ref) = 1;
2514 }
2515 else if (current_function_decl != 0
2516 && !DECL_FILE_SCOPE_P (current_function_decl)
2517 && (TREE_CODE (ref) == VAR_DECL
2518 || TREE_CODE (ref) == PARM_DECL
2519 || TREE_CODE (ref) == FUNCTION_DECL))
2520 {
2521 tree context = decl_function_context (ref);
2522
2523 if (context != 0 && context != current_function_decl)
2524 DECL_NONLOCAL (ref) = 1;
2525 }
2526 /* C99 6.7.4p3: An inline definition of a function with external
2527 linkage ... shall not contain a reference to an identifier with
2528 internal linkage. */
2529 else if (current_function_decl != 0
2530 && DECL_DECLARED_INLINE_P (current_function_decl)
2531 && DECL_EXTERNAL (current_function_decl)
2532 && VAR_OR_FUNCTION_DECL_P (ref)
2533 && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2534 && ! TREE_PUBLIC (ref)
2535 && DECL_CONTEXT (ref) != current_function_decl)
2536 record_inline_static (loc, current_function_decl, ref,
2537 csi_internal);
2538
2539 return ref;
2540 }
2541
2542 /* Record details of decls possibly used inside sizeof or typeof. */
2543 struct maybe_used_decl
2544 {
2545 /* The decl. */
2546 tree decl;
2547 /* The level seen at (in_sizeof + in_typeof). */
2548 int level;
2549 /* The next one at this level or above, or NULL. */
2550 struct maybe_used_decl *next;
2551 };
2552
2553 static struct maybe_used_decl *maybe_used_decls;
2554
2555 /* Record that DECL, an undefined static function reference seen
2556 inside sizeof or typeof, might be used if the operand of sizeof is
2557 a VLA type or the operand of typeof is a variably modified
2558 type. */
2559
2560 static void
2561 record_maybe_used_decl (tree decl)
2562 {
2563 struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2564 t->decl = decl;
2565 t->level = in_sizeof + in_typeof;
2566 t->next = maybe_used_decls;
2567 maybe_used_decls = t;
2568 }
2569
2570 /* Pop the stack of decls possibly used inside sizeof or typeof. If
2571 USED is false, just discard them. If it is true, mark them used
2572 (if no longer inside sizeof or typeof) or move them to the next
2573 level up (if still inside sizeof or typeof). */
2574
2575 void
2576 pop_maybe_used (bool used)
2577 {
2578 struct maybe_used_decl *p = maybe_used_decls;
2579 int cur_level = in_sizeof + in_typeof;
2580 while (p && p->level > cur_level)
2581 {
2582 if (used)
2583 {
2584 if (cur_level == 0)
2585 C_DECL_USED (p->decl) = 1;
2586 else
2587 p->level = cur_level;
2588 }
2589 p = p->next;
2590 }
2591 if (!used || cur_level == 0)
2592 maybe_used_decls = p;
2593 }
2594
2595 /* Return the result of sizeof applied to EXPR. */
2596
2597 struct c_expr
2598 c_expr_sizeof_expr (location_t loc, struct c_expr expr)
2599 {
2600 struct c_expr ret;
2601 if (expr.value == error_mark_node)
2602 {
2603 ret.value = error_mark_node;
2604 ret.original_code = ERROR_MARK;
2605 ret.original_type = NULL;
2606 pop_maybe_used (false);
2607 }
2608 else
2609 {
2610 bool expr_const_operands = true;
2611 tree folded_expr = c_fully_fold (expr.value, require_constant_value,
2612 &expr_const_operands);
2613 ret.value = c_sizeof (loc, TREE_TYPE (folded_expr));
2614 ret.original_code = ERROR_MARK;
2615 ret.original_type = NULL;
2616 if (c_vla_type_p (TREE_TYPE (folded_expr)))
2617 {
2618 /* sizeof is evaluated when given a vla (C99 6.5.3.4p2). */
2619 ret.value = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (ret.value),
2620 folded_expr, ret.value);
2621 C_MAYBE_CONST_EXPR_NON_CONST (ret.value) = !expr_const_operands;
2622 SET_EXPR_LOCATION (ret.value, loc);
2623 }
2624 pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (folded_expr)));
2625 }
2626 return ret;
2627 }
2628
2629 /* Return the result of sizeof applied to T, a structure for the type
2630 name passed to sizeof (rather than the type itself). LOC is the
2631 location of the original expression. */
2632
2633 struct c_expr
2634 c_expr_sizeof_type (location_t loc, struct c_type_name *t)
2635 {
2636 tree type;
2637 struct c_expr ret;
2638 tree type_expr = NULL_TREE;
2639 bool type_expr_const = true;
2640 type = groktypename (t, &type_expr, &type_expr_const);
2641 ret.value = c_sizeof (loc, type);
2642 ret.original_code = ERROR_MARK;
2643 ret.original_type = NULL;
2644 if ((type_expr || TREE_CODE (ret.value) == INTEGER_CST)
2645 && c_vla_type_p (type))
2646 {
2647 /* If the type is a [*] array, it is a VLA but is represented as
2648 having a size of zero. In such a case we must ensure that
2649 the result of sizeof does not get folded to a constant by
2650 c_fully_fold, because if the size is evaluated the result is
2651 not constant and so constraints on zero or negative size
2652 arrays must not be applied when this sizeof call is inside
2653 another array declarator. */
2654 if (!type_expr)
2655 type_expr = integer_zero_node;
2656 ret.value = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (ret.value),
2657 type_expr, ret.value);
2658 C_MAYBE_CONST_EXPR_NON_CONST (ret.value) = !type_expr_const;
2659 }
2660 pop_maybe_used (type != error_mark_node
2661 ? C_TYPE_VARIABLE_SIZE (type) : false);
2662 return ret;
2663 }
2664
2665 /* Build a function call to function FUNCTION with parameters PARAMS.
2666 The function call is at LOC.
2667 PARAMS is a list--a chain of TREE_LIST nodes--in which the
2668 TREE_VALUE of each node is a parameter-expression.
2669 FUNCTION's data type may be a function type or a pointer-to-function. */
2670
2671 tree
2672 build_function_call (location_t loc, tree function, tree params)
2673 {
2674 VEC(tree,gc) *vec;
2675 tree ret;
2676
2677 vec = VEC_alloc (tree, gc, list_length (params));
2678 for (; params; params = TREE_CHAIN (params))
2679 VEC_quick_push (tree, vec, TREE_VALUE (params));
2680 ret = build_function_call_vec (loc, function, vec, NULL);
2681 VEC_free (tree, gc, vec);
2682 return ret;
2683 }
2684
2685 /* Build a function call to function FUNCTION with parameters PARAMS.
2686 ORIGTYPES, if not NULL, is a vector of types; each element is
2687 either NULL or the original type of the corresponding element in
2688 PARAMS. The original type may differ from TREE_TYPE of the
2689 parameter for enums. FUNCTION's data type may be a function type
2690 or pointer-to-function. This function changes the elements of
2691 PARAMS. */
2692
2693 tree
2694 build_function_call_vec (location_t loc, tree function, VEC(tree,gc) *params,
2695 VEC(tree,gc) *origtypes)
2696 {
2697 tree fntype, fundecl = 0;
2698 tree name = NULL_TREE, result;
2699 tree tem;
2700 int nargs;
2701 tree *argarray;
2702
2703
2704 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
2705 STRIP_TYPE_NOPS (function);
2706
2707 /* Convert anything with function type to a pointer-to-function. */
2708 if (TREE_CODE (function) == FUNCTION_DECL)
2709 {
2710 /* Implement type-directed function overloading for builtins.
2711 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2712 handle all the type checking. The result is a complete expression
2713 that implements this function call. */
2714 tem = resolve_overloaded_builtin (loc, function, params);
2715 if (tem)
2716 return tem;
2717
2718 name = DECL_NAME (function);
2719 fundecl = function;
2720 }
2721 if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2722 function = function_to_pointer_conversion (loc, function);
2723
2724 /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2725 expressions, like those used for ObjC messenger dispatches. */
2726 if (!VEC_empty (tree, params))
2727 function = objc_rewrite_function_call (function,
2728 VEC_index (tree, params, 0));
2729
2730 function = c_fully_fold (function, false, NULL);
2731
2732 fntype = TREE_TYPE (function);
2733
2734 if (TREE_CODE (fntype) == ERROR_MARK)
2735 return error_mark_node;
2736
2737 if (!(TREE_CODE (fntype) == POINTER_TYPE
2738 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2739 {
2740 error_at (loc, "called object %qE is not a function", function);
2741 return error_mark_node;
2742 }
2743
2744 if (fundecl && TREE_THIS_VOLATILE (fundecl))
2745 current_function_returns_abnormally = 1;
2746
2747 /* fntype now gets the type of function pointed to. */
2748 fntype = TREE_TYPE (fntype);
2749
2750 /* Convert the parameters to the types declared in the
2751 function prototype, or apply default promotions. */
2752
2753 nargs = convert_arguments (TYPE_ARG_TYPES (fntype), params, origtypes,
2754 function, fundecl);
2755 if (nargs < 0)
2756 return error_mark_node;
2757
2758 /* Check that the function is called through a compatible prototype.
2759 If it is not, replace the call by a trap, wrapped up in a compound
2760 expression if necessary. This has the nice side-effect to prevent
2761 the tree-inliner from generating invalid assignment trees which may
2762 blow up in the RTL expander later. */
2763 if (CONVERT_EXPR_P (function)
2764 && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2765 && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2766 && !comptypes (fntype, TREE_TYPE (tem)))
2767 {
2768 tree return_type = TREE_TYPE (fntype);
2769 tree trap = build_function_call (loc, built_in_decls[BUILT_IN_TRAP],
2770 NULL_TREE);
2771 int i;
2772
2773 /* This situation leads to run-time undefined behavior. We can't,
2774 therefore, simply error unless we can prove that all possible
2775 executions of the program must execute the code. */
2776 if (warning_at (loc, 0, "function called through a non-compatible type"))
2777 /* We can, however, treat "undefined" any way we please.
2778 Call abort to encourage the user to fix the program. */
2779 inform (loc, "if this code is reached, the program will abort");
2780 /* Before the abort, allow the function arguments to exit or
2781 call longjmp. */
2782 for (i = 0; i < nargs; i++)
2783 trap = build2 (COMPOUND_EXPR, void_type_node,
2784 VEC_index (tree, params, i), trap);
2785
2786 if (VOID_TYPE_P (return_type))
2787 {
2788 if (TYPE_QUALS (return_type) != TYPE_UNQUALIFIED)
2789 pedwarn (loc, 0,
2790 "function with qualified void return type called");
2791 return trap;
2792 }
2793 else
2794 {
2795 tree rhs;
2796
2797 if (AGGREGATE_TYPE_P (return_type))
2798 rhs = build_compound_literal (loc, return_type,
2799 build_constructor (return_type, 0),
2800 false);
2801 else
2802 rhs = build_zero_cst (return_type);
2803
2804 return require_complete_type (build2 (COMPOUND_EXPR, return_type,
2805 trap, rhs));
2806 }
2807 }
2808
2809 argarray = VEC_address (tree, params);
2810
2811 /* Check that arguments to builtin functions match the expectations. */
2812 if (fundecl
2813 && DECL_BUILT_IN (fundecl)
2814 && DECL_BUILT_IN_CLASS (fundecl) == BUILT_IN_NORMAL
2815 && !check_builtin_function_arguments (fundecl, nargs, argarray))
2816 return error_mark_node;
2817
2818 /* Check that the arguments to the function are valid. */
2819 check_function_arguments (fntype, nargs, argarray);
2820
2821 if (name != NULL_TREE
2822 && !strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10))
2823 {
2824 if (require_constant_value)
2825 result =
2826 fold_build_call_array_initializer_loc (loc, TREE_TYPE (fntype),
2827 function, nargs, argarray);
2828 else
2829 result = fold_build_call_array_loc (loc, TREE_TYPE (fntype),
2830 function, nargs, argarray);
2831 if (TREE_CODE (result) == NOP_EXPR
2832 && TREE_CODE (TREE_OPERAND (result, 0)) == INTEGER_CST)
2833 STRIP_TYPE_NOPS (result);
2834 }
2835 else
2836 result = build_call_array_loc (loc, TREE_TYPE (fntype),
2837 function, nargs, argarray);
2838
2839 if (VOID_TYPE_P (TREE_TYPE (result)))
2840 {
2841 if (TYPE_QUALS (TREE_TYPE (result)) != TYPE_UNQUALIFIED)
2842 pedwarn (loc, 0,
2843 "function with qualified void return type called");
2844 return result;
2845 }
2846 return require_complete_type (result);
2847 }
2848 \f
2849 /* Convert the argument expressions in the vector VALUES
2850 to the types in the list TYPELIST.
2851
2852 If TYPELIST is exhausted, or when an element has NULL as its type,
2853 perform the default conversions.
2854
2855 ORIGTYPES is the original types of the expressions in VALUES. This
2856 holds the type of enum values which have been converted to integral
2857 types. It may be NULL.
2858
2859 FUNCTION is a tree for the called function. It is used only for
2860 error messages, where it is formatted with %qE.
2861
2862 This is also where warnings about wrong number of args are generated.
2863
2864 Returns the actual number of arguments processed (which may be less
2865 than the length of VALUES in some error situations), or -1 on
2866 failure. */
2867
2868 static int
2869 convert_arguments (tree typelist, VEC(tree,gc) *values,
2870 VEC(tree,gc) *origtypes, tree function, tree fundecl)
2871 {
2872 tree typetail, val;
2873 unsigned int parmnum;
2874 bool error_args = false;
2875 const bool type_generic = fundecl
2876 && lookup_attribute ("type generic", TYPE_ATTRIBUTES(TREE_TYPE (fundecl)));
2877 bool type_generic_remove_excess_precision = false;
2878 tree selector;
2879
2880 /* Change pointer to function to the function itself for
2881 diagnostics. */
2882 if (TREE_CODE (function) == ADDR_EXPR
2883 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2884 function = TREE_OPERAND (function, 0);
2885
2886 /* Handle an ObjC selector specially for diagnostics. */
2887 selector = objc_message_selector ();
2888
2889 /* For type-generic built-in functions, determine whether excess
2890 precision should be removed (classification) or not
2891 (comparison). */
2892 if (type_generic
2893 && DECL_BUILT_IN (fundecl)
2894 && DECL_BUILT_IN_CLASS (fundecl) == BUILT_IN_NORMAL)
2895 {
2896 switch (DECL_FUNCTION_CODE (fundecl))
2897 {
2898 case BUILT_IN_ISFINITE:
2899 case BUILT_IN_ISINF:
2900 case BUILT_IN_ISINF_SIGN:
2901 case BUILT_IN_ISNAN:
2902 case BUILT_IN_ISNORMAL:
2903 case BUILT_IN_FPCLASSIFY:
2904 type_generic_remove_excess_precision = true;
2905 break;
2906
2907 default:
2908 type_generic_remove_excess_precision = false;
2909 break;
2910 }
2911 }
2912
2913 /* Scan the given expressions and types, producing individual
2914 converted arguments. */
2915
2916 for (typetail = typelist, parmnum = 0;
2917 VEC_iterate (tree, values, parmnum, val);
2918 ++parmnum)
2919 {
2920 tree type = typetail ? TREE_VALUE (typetail) : 0;
2921 tree valtype = TREE_TYPE (val);
2922 tree rname = function;
2923 int argnum = parmnum + 1;
2924 const char *invalid_func_diag;
2925 bool excess_precision = false;
2926 bool npc;
2927 tree parmval;
2928
2929 if (type == void_type_node)
2930 {
2931 if (selector)
2932 error_at (input_location,
2933 "too many arguments to method %qE", selector);
2934 else
2935 error_at (input_location,
2936 "too many arguments to function %qE", function);
2937
2938 if (fundecl && !DECL_BUILT_IN (fundecl))
2939 inform (DECL_SOURCE_LOCATION (fundecl), "declared here");
2940 return parmnum;
2941 }
2942
2943 if (selector && argnum > 2)
2944 {
2945 rname = selector;
2946 argnum -= 2;
2947 }
2948
2949 npc = null_pointer_constant_p (val);
2950
2951 /* If there is excess precision and a prototype, convert once to
2952 the required type rather than converting via the semantic
2953 type. Likewise without a prototype a float value represented
2954 as long double should be converted once to double. But for
2955 type-generic classification functions excess precision must
2956 be removed here. */
2957 if (TREE_CODE (val) == EXCESS_PRECISION_EXPR
2958 && (type || !type_generic || !type_generic_remove_excess_precision))
2959 {
2960 val = TREE_OPERAND (val, 0);
2961 excess_precision = true;
2962 }
2963 val = c_fully_fold (val, false, NULL);
2964 STRIP_TYPE_NOPS (val);
2965
2966 val = require_complete_type (val);
2967
2968 if (type != 0)
2969 {
2970 /* Formal parm type is specified by a function prototype. */
2971
2972 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2973 {
2974 error ("type of formal parameter %d is incomplete", parmnum + 1);
2975 parmval = val;
2976 }
2977 else
2978 {
2979 tree origtype;
2980
2981 /* Optionally warn about conversions that
2982 differ from the default conversions. */
2983 if (warn_traditional_conversion || warn_traditional)
2984 {
2985 unsigned int formal_prec = TYPE_PRECISION (type);
2986
2987 if (INTEGRAL_TYPE_P (type)
2988 && TREE_CODE (valtype) == REAL_TYPE)
2989 warning (0, "passing argument %d of %qE as integer "
2990 "rather than floating due to prototype",
2991 argnum, rname);
2992 if (INTEGRAL_TYPE_P (type)
2993 && TREE_CODE (valtype) == COMPLEX_TYPE)
2994 warning (0, "passing argument %d of %qE as integer "
2995 "rather than complex due to prototype",
2996 argnum, rname);
2997 else if (TREE_CODE (type) == COMPLEX_TYPE
2998 && TREE_CODE (valtype) == REAL_TYPE)
2999 warning (0, "passing argument %d of %qE as complex "
3000 "rather than floating due to prototype",
3001 argnum, rname);
3002 else if (TREE_CODE (type) == REAL_TYPE
3003 && INTEGRAL_TYPE_P (valtype))
3004 warning (0, "passing argument %d of %qE as floating "
3005 "rather than integer due to prototype",
3006 argnum, rname);
3007 else if (TREE_CODE (type) == COMPLEX_TYPE
3008 && INTEGRAL_TYPE_P (valtype))
3009 warning (0, "passing argument %d of %qE as complex "
3010 "rather than integer due to prototype",
3011 argnum, rname);
3012 else if (TREE_CODE (type) == REAL_TYPE
3013 && TREE_CODE (valtype) == COMPLEX_TYPE)
3014 warning (0, "passing argument %d of %qE as floating "
3015 "rather than complex due to prototype",
3016 argnum, rname);
3017 /* ??? At some point, messages should be written about
3018 conversions between complex types, but that's too messy
3019 to do now. */
3020 else if (TREE_CODE (type) == REAL_TYPE
3021 && TREE_CODE (valtype) == REAL_TYPE)
3022 {
3023 /* Warn if any argument is passed as `float',
3024 since without a prototype it would be `double'. */
3025 if (formal_prec == TYPE_PRECISION (float_type_node)
3026 && type != dfloat32_type_node)
3027 warning (0, "passing argument %d of %qE as %<float%> "
3028 "rather than %<double%> due to prototype",
3029 argnum, rname);
3030
3031 /* Warn if mismatch between argument and prototype
3032 for decimal float types. Warn of conversions with
3033 binary float types and of precision narrowing due to
3034 prototype. */
3035 else if (type != valtype
3036 && (type == dfloat32_type_node
3037 || type == dfloat64_type_node
3038 || type == dfloat128_type_node
3039 || valtype == dfloat32_type_node
3040 || valtype == dfloat64_type_node
3041 || valtype == dfloat128_type_node)
3042 && (formal_prec
3043 <= TYPE_PRECISION (valtype)
3044 || (type == dfloat128_type_node
3045 && (valtype
3046 != dfloat64_type_node
3047 && (valtype
3048 != dfloat32_type_node)))
3049 || (type == dfloat64_type_node
3050 && (valtype
3051 != dfloat32_type_node))))
3052 warning (0, "passing argument %d of %qE as %qT "
3053 "rather than %qT due to prototype",
3054 argnum, rname, type, valtype);
3055
3056 }
3057 /* Detect integer changing in width or signedness.
3058 These warnings are only activated with
3059 -Wtraditional-conversion, not with -Wtraditional. */
3060 else if (warn_traditional_conversion && INTEGRAL_TYPE_P (type)
3061 && INTEGRAL_TYPE_P (valtype))
3062 {
3063 tree would_have_been = default_conversion (val);
3064 tree type1 = TREE_TYPE (would_have_been);
3065
3066 if (TREE_CODE (type) == ENUMERAL_TYPE
3067 && (TYPE_MAIN_VARIANT (type)
3068 == TYPE_MAIN_VARIANT (valtype)))
3069 /* No warning if function asks for enum
3070 and the actual arg is that enum type. */
3071 ;
3072 else if (formal_prec != TYPE_PRECISION (type1))
3073 warning (OPT_Wtraditional_conversion,
3074 "passing argument %d of %qE "
3075 "with different width due to prototype",
3076 argnum, rname);
3077 else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
3078 ;
3079 /* Don't complain if the formal parameter type
3080 is an enum, because we can't tell now whether
3081 the value was an enum--even the same enum. */
3082 else if (TREE_CODE (type) == ENUMERAL_TYPE)
3083 ;
3084 else if (TREE_CODE (val) == INTEGER_CST
3085 && int_fits_type_p (val, type))
3086 /* Change in signedness doesn't matter
3087 if a constant value is unaffected. */
3088 ;
3089 /* If the value is extended from a narrower
3090 unsigned type, it doesn't matter whether we
3091 pass it as signed or unsigned; the value
3092 certainly is the same either way. */
3093 else if (TYPE_PRECISION (valtype) < TYPE_PRECISION (type)
3094 && TYPE_UNSIGNED (valtype))
3095 ;
3096 else if (TYPE_UNSIGNED (type))
3097 warning (OPT_Wtraditional_conversion,
3098 "passing argument %d of %qE "
3099 "as unsigned due to prototype",
3100 argnum, rname);
3101 else
3102 warning (OPT_Wtraditional_conversion,
3103 "passing argument %d of %qE "
3104 "as signed due to prototype", argnum, rname);
3105 }
3106 }
3107
3108 /* Possibly restore an EXCESS_PRECISION_EXPR for the
3109 sake of better warnings from convert_and_check. */
3110 if (excess_precision)
3111 val = build1 (EXCESS_PRECISION_EXPR, valtype, val);
3112 origtype = (origtypes == NULL
3113 ? NULL_TREE
3114 : VEC_index (tree, origtypes, parmnum));
3115 parmval = convert_for_assignment (input_location, type, val,
3116 origtype, ic_argpass, npc,
3117 fundecl, function,
3118 parmnum + 1);
3119
3120 if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
3121 && INTEGRAL_TYPE_P (type)
3122 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
3123 parmval = default_conversion (parmval);
3124 }
3125 }
3126 else if (TREE_CODE (valtype) == REAL_TYPE
3127 && (TYPE_PRECISION (valtype)
3128 < TYPE_PRECISION (double_type_node))
3129 && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (valtype)))
3130 {
3131 if (type_generic)
3132 parmval = val;
3133 else
3134 {
3135 /* Convert `float' to `double'. */
3136 if (warn_double_promotion && !c_inhibit_evaluation_warnings)
3137 warning (OPT_Wdouble_promotion,
3138 "implicit conversion from %qT to %qT when passing "
3139 "argument to function",
3140 valtype, double_type_node);
3141 parmval = convert (double_type_node, val);
3142 }
3143 }
3144 else if (excess_precision && !type_generic)
3145 /* A "double" argument with excess precision being passed
3146 without a prototype or in variable arguments. */
3147 parmval = convert (valtype, val);
3148 else if ((invalid_func_diag =
3149 targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
3150 {
3151 error (invalid_func_diag);
3152 return -1;
3153 }
3154 else
3155 /* Convert `short' and `char' to full-size `int'. */
3156 parmval = default_conversion (val);
3157
3158 VEC_replace (tree, values, parmnum, parmval);
3159 if (parmval == error_mark_node)
3160 error_args = true;
3161
3162 if (typetail)
3163 typetail = TREE_CHAIN (typetail);
3164 }
3165
3166 gcc_assert (parmnum == VEC_length (tree, values));
3167
3168 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
3169 {
3170 error_at (input_location,
3171 "too few arguments to function %qE", function);
3172 if (fundecl && !DECL_BUILT_IN (fundecl))
3173 inform (DECL_SOURCE_LOCATION (fundecl), "declared here");
3174 return -1;
3175 }
3176
3177 return error_args ? -1 : (int) parmnum;
3178 }
3179 \f
3180 /* This is the entry point used by the parser to build unary operators
3181 in the input. CODE, a tree_code, specifies the unary operator, and
3182 ARG is the operand. For unary plus, the C parser currently uses
3183 CONVERT_EXPR for code.
3184
3185 LOC is the location to use for the tree generated.
3186 */
3187
3188 struct c_expr
3189 parser_build_unary_op (location_t loc, enum tree_code code, struct c_expr arg)
3190 {
3191 struct c_expr result;
3192
3193 result.value = build_unary_op (loc, code, arg.value, 0);
3194 result.original_code = code;
3195 result.original_type = NULL;
3196
3197 if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value))
3198 overflow_warning (loc, result.value);
3199
3200 return result;
3201 }
3202
3203 /* This is the entry point used by the parser to build binary operators
3204 in the input. CODE, a tree_code, specifies the binary operator, and
3205 ARG1 and ARG2 are the operands. In addition to constructing the
3206 expression, we check for operands that were written with other binary
3207 operators in a way that is likely to confuse the user.
3208
3209 LOCATION is the location of the binary operator. */
3210
3211 struct c_expr
3212 parser_build_binary_op (location_t location, enum tree_code code,
3213 struct c_expr arg1, struct c_expr arg2)
3214 {
3215 struct c_expr result;
3216
3217 enum tree_code code1 = arg1.original_code;
3218 enum tree_code code2 = arg2.original_code;
3219 tree type1 = (arg1.original_type
3220 ? arg1.original_type
3221 : TREE_TYPE (arg1.value));
3222 tree type2 = (arg2.original_type
3223 ? arg2.original_type
3224 : TREE_TYPE (arg2.value));
3225
3226 result.value = build_binary_op (location, code,
3227 arg1.value, arg2.value, 1);
3228 result.original_code = code;
3229 result.original_type = NULL;
3230
3231 if (TREE_CODE (result.value) == ERROR_MARK)
3232 return result;
3233
3234 if (location != UNKNOWN_LOCATION)
3235 protected_set_expr_location (result.value, location);
3236
3237 /* Check for cases such as x+y<<z which users are likely
3238 to misinterpret. */
3239 if (warn_parentheses)
3240 warn_about_parentheses (code, code1, arg1.value, code2, arg2.value);
3241
3242 if (warn_logical_op)
3243 warn_logical_operator (input_location, code, TREE_TYPE (result.value),
3244 code1, arg1.value, code2, arg2.value);
3245
3246 /* Warn about comparisons against string literals, with the exception
3247 of testing for equality or inequality of a string literal with NULL. */
3248 if (code == EQ_EXPR || code == NE_EXPR)
3249 {
3250 if ((code1 == STRING_CST && !integer_zerop (arg2.value))
3251 || (code2 == STRING_CST && !integer_zerop (arg1.value)))
3252 warning_at (location, OPT_Waddress,
3253 "comparison with string literal results in unspecified behavior");
3254 }
3255 else if (TREE_CODE_CLASS (code) == tcc_comparison
3256 && (code1 == STRING_CST || code2 == STRING_CST))
3257 warning_at (location, OPT_Waddress,
3258 "comparison with string literal results in unspecified behavior");
3259
3260 if (TREE_OVERFLOW_P (result.value)
3261 && !TREE_OVERFLOW_P (arg1.value)
3262 && !TREE_OVERFLOW_P (arg2.value))
3263 overflow_warning (location, result.value);
3264
3265 /* Warn about comparisons of different enum types. */
3266 if (warn_enum_compare
3267 && TREE_CODE_CLASS (code) == tcc_comparison
3268 && TREE_CODE (type1) == ENUMERAL_TYPE
3269 && TREE_CODE (type2) == ENUMERAL_TYPE
3270 && TYPE_MAIN_VARIANT (type1) != TYPE_MAIN_VARIANT (type2))
3271 warning_at (location, OPT_Wenum_compare,
3272 "comparison between %qT and %qT",
3273 type1, type2);
3274
3275 return result;
3276 }
3277 \f
3278 /* Return a tree for the difference of pointers OP0 and OP1.
3279 The resulting tree has type int. */
3280
3281 static tree
3282 pointer_diff (location_t loc, tree op0, tree op1)
3283 {
3284 tree restype = ptrdiff_type_node;
3285 tree result, inttype;
3286
3287 addr_space_t as0 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (op0)));
3288 addr_space_t as1 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (op1)));
3289 tree target_type = TREE_TYPE (TREE_TYPE (op0));
3290 tree con0, con1, lit0, lit1;
3291 tree orig_op1 = op1;
3292
3293 /* If the operands point into different address spaces, we need to
3294 explicitly convert them to pointers into the common address space
3295 before we can subtract the numerical address values. */
3296 if (as0 != as1)
3297 {
3298 addr_space_t as_common;
3299 tree common_type;
3300
3301 /* Determine the common superset address space. This is guaranteed
3302 to exist because the caller verified that comp_target_types
3303 returned non-zero. */
3304 if (!addr_space_superset (as0, as1, &as_common))
3305 gcc_unreachable ();
3306
3307 common_type = common_pointer_type (TREE_TYPE (op0), TREE_TYPE (op1));
3308 op0 = convert (common_type, op0);
3309 op1 = convert (common_type, op1);
3310 }
3311
3312 /* Determine integer type to perform computations in. This will usually
3313 be the same as the result type (ptrdiff_t), but may need to be a wider
3314 type if pointers for the address space are wider than ptrdiff_t. */
3315 if (TYPE_PRECISION (restype) < TYPE_PRECISION (TREE_TYPE (op0)))
3316 inttype = lang_hooks.types.type_for_size
3317 (TYPE_PRECISION (TREE_TYPE (op0)), 0);
3318 else
3319 inttype = restype;
3320
3321
3322 if (TREE_CODE (target_type) == VOID_TYPE)
3323 pedwarn (loc, pedantic ? OPT_pedantic : OPT_Wpointer_arith,
3324 "pointer of type %<void *%> used in subtraction");
3325 if (TREE_CODE (target_type) == FUNCTION_TYPE)
3326 pedwarn (loc, pedantic ? OPT_pedantic : OPT_Wpointer_arith,
3327 "pointer to a function used in subtraction");
3328
3329 /* If the conversion to ptrdiff_type does anything like widening or
3330 converting a partial to an integral mode, we get a convert_expression
3331 that is in the way to do any simplifications.
3332 (fold-const.c doesn't know that the extra bits won't be needed.
3333 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
3334 different mode in place.)
3335 So first try to find a common term here 'by hand'; we want to cover
3336 at least the cases that occur in legal static initializers. */
3337 if (CONVERT_EXPR_P (op0)
3338 && (TYPE_PRECISION (TREE_TYPE (op0))
3339 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
3340 con0 = TREE_OPERAND (op0, 0);
3341 else
3342 con0 = op0;
3343 if (CONVERT_EXPR_P (op1)
3344 && (TYPE_PRECISION (TREE_TYPE (op1))
3345 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
3346 con1 = TREE_OPERAND (op1, 0);
3347 else
3348 con1 = op1;
3349
3350 if (TREE_CODE (con0) == PLUS_EXPR)
3351 {
3352 lit0 = TREE_OPERAND (con0, 1);
3353 con0 = TREE_OPERAND (con0, 0);
3354 }
3355 else
3356 lit0 = integer_zero_node;
3357
3358 if (TREE_CODE (con1) == PLUS_EXPR)
3359 {
3360 lit1 = TREE_OPERAND (con1, 1);
3361 con1 = TREE_OPERAND (con1, 0);
3362 }
3363 else
3364 lit1 = integer_zero_node;
3365
3366 if (operand_equal_p (con0, con1, 0))
3367 {
3368 op0 = lit0;
3369 op1 = lit1;
3370 }
3371
3372
3373 /* First do the subtraction as integers;
3374 then drop through to build the divide operator.
3375 Do not do default conversions on the minus operator
3376 in case restype is a short type. */
3377
3378 op0 = build_binary_op (loc,
3379 MINUS_EXPR, convert (inttype, op0),
3380 convert (inttype, op1), 0);
3381 /* This generates an error if op1 is pointer to incomplete type. */
3382 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
3383 error_at (loc, "arithmetic on pointer to an incomplete type");
3384
3385 /* This generates an error if op0 is pointer to incomplete type. */
3386 op1 = c_size_in_bytes (target_type);
3387
3388 /* Divide by the size, in easiest possible way. */
3389 result = fold_build2_loc (loc, EXACT_DIV_EXPR, inttype,
3390 op0, convert (inttype, op1));
3391
3392 /* Convert to final result type if necessary. */
3393 return convert (restype, result);
3394 }
3395 \f
3396 /* Construct and perhaps optimize a tree representation
3397 for a unary operation. CODE, a tree_code, specifies the operation
3398 and XARG is the operand.
3399 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
3400 the default promotions (such as from short to int).
3401 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
3402 allows non-lvalues; this is only used to handle conversion of non-lvalue
3403 arrays to pointers in C99.
3404
3405 LOCATION is the location of the operator. */
3406
3407 tree
3408 build_unary_op (location_t location,
3409 enum tree_code code, tree xarg, int flag)
3410 {
3411 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
3412 tree arg = xarg;
3413 tree argtype = 0;
3414 enum tree_code typecode;
3415 tree val;
3416 tree ret = error_mark_node;
3417 tree eptype = NULL_TREE;
3418 int noconvert = flag;
3419 const char *invalid_op_diag;
3420 bool int_operands;
3421
3422 int_operands = EXPR_INT_CONST_OPERANDS (xarg);
3423 if (int_operands)
3424 arg = remove_c_maybe_const_expr (arg);
3425
3426 if (code != ADDR_EXPR)
3427 arg = require_complete_type (arg);
3428
3429 typecode = TREE_CODE (TREE_TYPE (arg));
3430 if (typecode == ERROR_MARK)
3431 return error_mark_node;
3432 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
3433 typecode = INTEGER_TYPE;
3434
3435 if ((invalid_op_diag
3436 = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
3437 {
3438 error_at (location, invalid_op_diag);
3439 return error_mark_node;
3440 }
3441
3442 if (TREE_CODE (arg) == EXCESS_PRECISION_EXPR)
3443 {
3444 eptype = TREE_TYPE (arg);
3445 arg = TREE_OPERAND (arg, 0);
3446 }
3447
3448 switch (code)
3449 {
3450 case CONVERT_EXPR:
3451 /* This is used for unary plus, because a CONVERT_EXPR
3452 is enough to prevent anybody from looking inside for
3453 associativity, but won't generate any code. */
3454 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
3455 || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE
3456 || typecode == VECTOR_TYPE))
3457 {
3458 error_at (location, "wrong type argument to unary plus");
3459 return error_mark_node;
3460 }
3461 else if (!noconvert)
3462 arg = default_conversion (arg);
3463 arg = non_lvalue_loc (location, arg);
3464 break;
3465
3466 case NEGATE_EXPR:
3467 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
3468 || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE
3469 || typecode == VECTOR_TYPE))
3470 {
3471 error_at (location, "wrong type argument to unary minus");
3472 return error_mark_node;
3473 }
3474 else if (!noconvert)
3475 arg = default_conversion (arg);
3476 break;
3477
3478 case BIT_NOT_EXPR:
3479 /* ~ works on integer types and non float vectors. */
3480 if (typecode == INTEGER_TYPE
3481 || (typecode == VECTOR_TYPE
3482 && !VECTOR_FLOAT_TYPE_P (TREE_TYPE (arg))))
3483 {
3484 if (!noconvert)
3485 arg = default_conversion (arg);
3486 }
3487 else if (typecode == COMPLEX_TYPE)
3488 {
3489 code = CONJ_EXPR;
3490 pedwarn (location, OPT_pedantic,
3491 "ISO C does not support %<~%> for complex conjugation");
3492 if (!noconvert)
3493 arg = default_conversion (arg);
3494 }
3495 else
3496 {
3497 error_at (location, "wrong type argument to bit-complement");
3498 return error_mark_node;
3499 }
3500 break;
3501
3502 case ABS_EXPR:
3503 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
3504 {
3505 error_at (location, "wrong type argument to abs");
3506 return error_mark_node;
3507 }
3508 else if (!noconvert)
3509 arg = default_conversion (arg);
3510 break;
3511
3512 case CONJ_EXPR:
3513 /* Conjugating a real value is a no-op, but allow it anyway. */
3514 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
3515 || typecode == COMPLEX_TYPE))
3516 {
3517 error_at (location, "wrong type argument to conjugation");
3518 return error_mark_node;
3519 }
3520 else if (!noconvert)
3521 arg = default_conversion (arg);
3522 break;
3523
3524 case TRUTH_NOT_EXPR:
3525 if (typecode != INTEGER_TYPE && typecode != FIXED_POINT_TYPE
3526 && typecode != REAL_TYPE && typecode != POINTER_TYPE
3527 && typecode != COMPLEX_TYPE)
3528 {
3529 error_at (location,
3530 "wrong type argument to unary exclamation mark");
3531 return error_mark_node;
3532 }
3533 arg = c_objc_common_truthvalue_conversion (location, arg);
3534 ret = invert_truthvalue_loc (location, arg);
3535 /* If the TRUTH_NOT_EXPR has been folded, reset the location. */
3536 if (EXPR_P (ret) && EXPR_HAS_LOCATION (ret))
3537 location = EXPR_LOCATION (ret);
3538 goto return_build_unary_op;
3539
3540 case REALPART_EXPR:
3541 case IMAGPART_EXPR:
3542 ret = build_real_imag_expr (location, code, arg);
3543 if (ret == error_mark_node)
3544 return error_mark_node;
3545 if (eptype && TREE_CODE (eptype) == COMPLEX_TYPE)
3546 eptype = TREE_TYPE (eptype);
3547 goto return_build_unary_op;
3548
3549 case PREINCREMENT_EXPR:
3550 case POSTINCREMENT_EXPR:
3551 case PREDECREMENT_EXPR:
3552 case POSTDECREMENT_EXPR:
3553
3554 if (TREE_CODE (arg) == C_MAYBE_CONST_EXPR)
3555 {
3556 tree inner = build_unary_op (location, code,
3557 C_MAYBE_CONST_EXPR_EXPR (arg), flag);
3558 if (inner == error_mark_node)
3559 return error_mark_node;
3560 ret = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (inner),
3561 C_MAYBE_CONST_EXPR_PRE (arg), inner);
3562 gcc_assert (!C_MAYBE_CONST_EXPR_INT_OPERANDS (arg));
3563 C_MAYBE_CONST_EXPR_NON_CONST (ret) = 1;
3564 goto return_build_unary_op;
3565 }
3566
3567 /* Complain about anything that is not a true lvalue. In
3568 Objective-C, skip this check for property_refs. */
3569 if (!objc_is_property_ref (arg)
3570 && !lvalue_or_else (location,
3571 arg, ((code == PREINCREMENT_EXPR
3572 || code == POSTINCREMENT_EXPR)
3573 ? lv_increment
3574 : lv_decrement)))
3575 return error_mark_node;
3576
3577 if (warn_cxx_compat && TREE_CODE (TREE_TYPE (arg)) == ENUMERAL_TYPE)
3578 {
3579 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3580 warning_at (location, OPT_Wc___compat,
3581 "increment of enumeration value is invalid in C++");
3582 else
3583 warning_at (location, OPT_Wc___compat,
3584 "decrement of enumeration value is invalid in C++");
3585 }
3586
3587 /* Ensure the argument is fully folded inside any SAVE_EXPR. */
3588 arg = c_fully_fold (arg, false, NULL);
3589
3590 /* Increment or decrement the real part of the value,
3591 and don't change the imaginary part. */
3592 if (typecode == COMPLEX_TYPE)
3593 {
3594 tree real, imag;
3595
3596 pedwarn (location, OPT_pedantic,
3597 "ISO C does not support %<++%> and %<--%> on complex types");
3598
3599 arg = stabilize_reference (arg);
3600 real = build_unary_op (EXPR_LOCATION (arg), REALPART_EXPR, arg, 1);
3601 imag = build_unary_op (EXPR_LOCATION (arg), IMAGPART_EXPR, arg, 1);
3602 real = build_unary_op (EXPR_LOCATION (arg), code, real, 1);
3603 if (real == error_mark_node || imag == error_mark_node)
3604 return error_mark_node;
3605 ret = build2 (COMPLEX_EXPR, TREE_TYPE (arg),
3606 real, imag);
3607 goto return_build_unary_op;
3608 }
3609
3610 /* Report invalid types. */
3611
3612 if (typecode != POINTER_TYPE && typecode != FIXED_POINT_TYPE
3613 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
3614 {
3615 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3616 error_at (location, "wrong type argument to increment");
3617 else
3618 error_at (location, "wrong type argument to decrement");
3619
3620 return error_mark_node;
3621 }
3622
3623 {
3624 tree inc;
3625
3626 argtype = TREE_TYPE (arg);
3627
3628 /* Compute the increment. */
3629
3630 if (typecode == POINTER_TYPE)
3631 {
3632 /* If pointer target is an undefined struct,
3633 we just cannot know how to do the arithmetic. */
3634 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (argtype)))
3635 {
3636 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3637 error_at (location,
3638 "increment of pointer to unknown structure");
3639 else
3640 error_at (location,
3641 "decrement of pointer to unknown structure");
3642 }
3643 else if (TREE_CODE (TREE_TYPE (argtype)) == FUNCTION_TYPE
3644 || TREE_CODE (TREE_TYPE (argtype)) == VOID_TYPE)
3645 {
3646 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3647 pedwarn (location, pedantic ? OPT_pedantic : OPT_Wpointer_arith,
3648 "wrong type argument to increment");
3649 else
3650 pedwarn (location, pedantic ? OPT_pedantic : OPT_Wpointer_arith,
3651 "wrong type argument to decrement");
3652 }
3653
3654 inc = c_size_in_bytes (TREE_TYPE (argtype));
3655 inc = convert_to_ptrofftype_loc (location, inc);
3656 }
3657 else if (FRACT_MODE_P (TYPE_MODE (argtype)))
3658 {
3659 /* For signed fract types, we invert ++ to -- or
3660 -- to ++, and change inc from 1 to -1, because
3661 it is not possible to represent 1 in signed fract constants.
3662 For unsigned fract types, the result always overflows and
3663 we get an undefined (original) or the maximum value. */
3664 if (code == PREINCREMENT_EXPR)
3665 code = PREDECREMENT_EXPR;
3666 else if (code == PREDECREMENT_EXPR)
3667 code = PREINCREMENT_EXPR;
3668 else if (code == POSTINCREMENT_EXPR)
3669 code = POSTDECREMENT_EXPR;
3670 else /* code == POSTDECREMENT_EXPR */
3671 code = POSTINCREMENT_EXPR;
3672
3673 inc = integer_minus_one_node;
3674 inc = convert (argtype, inc);
3675 }
3676 else
3677 {
3678 inc = integer_one_node;
3679 inc = convert (argtype, inc);
3680 }
3681
3682 /* If 'arg' is an Objective-C PROPERTY_REF expression, then we
3683 need to ask Objective-C to build the increment or decrement
3684 expression for it. */
3685 if (objc_is_property_ref (arg))
3686 return objc_build_incr_expr_for_property_ref (location, code,
3687 arg, inc);
3688
3689 /* Report a read-only lvalue. */
3690 if (TYPE_READONLY (argtype))
3691 {
3692 readonly_error (arg,
3693 ((code == PREINCREMENT_EXPR
3694 || code == POSTINCREMENT_EXPR)
3695 ? lv_increment : lv_decrement));
3696 return error_mark_node;
3697 }
3698 else if (TREE_READONLY (arg))
3699 readonly_warning (arg,
3700 ((code == PREINCREMENT_EXPR
3701 || code == POSTINCREMENT_EXPR)
3702 ? lv_increment : lv_decrement));
3703
3704 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3705 val = boolean_increment (code, arg);
3706 else
3707 val = build2 (code, TREE_TYPE (arg), arg, inc);
3708 TREE_SIDE_EFFECTS (val) = 1;
3709 if (TREE_CODE (val) != code)
3710 TREE_NO_WARNING (val) = 1;
3711 ret = val;
3712 goto return_build_unary_op;
3713 }
3714
3715 case ADDR_EXPR:
3716 /* Note that this operation never does default_conversion. */
3717
3718 /* The operand of unary '&' must be an lvalue (which excludes
3719 expressions of type void), or, in C99, the result of a [] or
3720 unary '*' operator. */
3721 if (VOID_TYPE_P (TREE_TYPE (arg))
3722 && TYPE_QUALS (TREE_TYPE (arg)) == TYPE_UNQUALIFIED
3723 && (TREE_CODE (arg) != INDIRECT_REF
3724 || !flag_isoc99))
3725 pedwarn (location, 0, "taking address of expression of type %<void%>");
3726
3727 /* Let &* cancel out to simplify resulting code. */
3728 if (TREE_CODE (arg) == INDIRECT_REF)
3729 {
3730 /* Don't let this be an lvalue. */
3731 if (lvalue_p (TREE_OPERAND (arg, 0)))
3732 return non_lvalue_loc (location, TREE_OPERAND (arg, 0));
3733 ret = TREE_OPERAND (arg, 0);
3734 goto return_build_unary_op;
3735 }
3736
3737 /* For &x[y], return x+y */
3738 if (TREE_CODE (arg) == ARRAY_REF)
3739 {
3740 tree op0 = TREE_OPERAND (arg, 0);
3741 if (!c_mark_addressable (op0))
3742 return error_mark_node;
3743 }
3744
3745 /* Anything not already handled and not a true memory reference
3746 or a non-lvalue array is an error. */
3747 else if (typecode != FUNCTION_TYPE && !flag
3748 && !lvalue_or_else (location, arg, lv_addressof))
3749 return error_mark_node;
3750
3751 /* Move address operations inside C_MAYBE_CONST_EXPR to simplify
3752 folding later. */
3753 if (TREE_CODE (arg) == C_MAYBE_CONST_EXPR)
3754 {
3755 tree inner = build_unary_op (location, code,
3756 C_MAYBE_CONST_EXPR_EXPR (arg), flag);
3757 ret = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (inner),
3758 C_MAYBE_CONST_EXPR_PRE (arg), inner);
3759 gcc_assert (!C_MAYBE_CONST_EXPR_INT_OPERANDS (arg));
3760 C_MAYBE_CONST_EXPR_NON_CONST (ret)
3761 = C_MAYBE_CONST_EXPR_NON_CONST (arg);
3762 goto return_build_unary_op;
3763 }
3764
3765 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3766 argtype = TREE_TYPE (arg);
3767
3768 /* If the lvalue is const or volatile, merge that into the type
3769 to which the address will point. This is only needed
3770 for function types. */
3771 if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3772 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg))
3773 && TREE_CODE (argtype) == FUNCTION_TYPE)
3774 {
3775 int orig_quals = TYPE_QUALS (strip_array_types (argtype));
3776 int quals = orig_quals;
3777
3778 if (TREE_READONLY (arg))
3779 quals |= TYPE_QUAL_CONST;
3780 if (TREE_THIS_VOLATILE (arg))
3781 quals |= TYPE_QUAL_VOLATILE;
3782
3783 argtype = c_build_qualified_type (argtype, quals);
3784 }
3785
3786 if (!c_mark_addressable (arg))
3787 return error_mark_node;
3788
3789 gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3790 || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3791
3792 argtype = build_pointer_type (argtype);
3793
3794 /* ??? Cope with user tricks that amount to offsetof. Delete this
3795 when we have proper support for integer constant expressions. */
3796 val = get_base_address (arg);
3797 if (val && TREE_CODE (val) == INDIRECT_REF
3798 && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3799 {
3800 tree op0 = fold_offsetof (arg, val), op1;
3801
3802 op1 = fold_convert_loc (location, argtype, TREE_OPERAND (val, 0));
3803 ret = fold_build_pointer_plus_loc (location, op1, op0);
3804 goto return_build_unary_op;
3805 }
3806
3807 val = build1 (ADDR_EXPR, argtype, arg);
3808
3809 ret = val;
3810 goto return_build_unary_op;
3811
3812 default:
3813 gcc_unreachable ();
3814 }
3815
3816 if (argtype == 0)
3817 argtype = TREE_TYPE (arg);
3818 if (TREE_CODE (arg) == INTEGER_CST)
3819 ret = (require_constant_value
3820 ? fold_build1_initializer_loc (location, code, argtype, arg)
3821 : fold_build1_loc (location, code, argtype, arg));
3822 else
3823 ret = build1 (code, argtype, arg);
3824 return_build_unary_op:
3825 gcc_assert (ret != error_mark_node);
3826 if (TREE_CODE (ret) == INTEGER_CST && !TREE_OVERFLOW (ret)
3827 && !(TREE_CODE (xarg) == INTEGER_CST && !TREE_OVERFLOW (xarg)))
3828 ret = build1 (NOP_EXPR, TREE_TYPE (ret), ret);
3829 else if (TREE_CODE (ret) != INTEGER_CST && int_operands)
3830 ret = note_integer_operands (ret);
3831 if (eptype)
3832 ret = build1 (EXCESS_PRECISION_EXPR, eptype, ret);
3833 protected_set_expr_location (ret, location);
3834 return ret;
3835 }
3836
3837 /* Return nonzero if REF is an lvalue valid for this language.
3838 Lvalues can be assigned, unless their type has TYPE_READONLY.
3839 Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
3840
3841 bool
3842 lvalue_p (const_tree ref)
3843 {
3844 const enum tree_code code = TREE_CODE (ref);
3845
3846 switch (code)
3847 {
3848 case REALPART_EXPR:
3849 case IMAGPART_EXPR:
3850 case COMPONENT_REF:
3851 return lvalue_p (TREE_OPERAND (ref, 0));
3852
3853 case C_MAYBE_CONST_EXPR:
3854 return lvalue_p (TREE_OPERAND (ref, 1));
3855
3856 case COMPOUND_LITERAL_EXPR:
3857 case STRING_CST:
3858 return 1;
3859
3860 case INDIRECT_REF:
3861 case ARRAY_REF:
3862 case VAR_DECL:
3863 case PARM_DECL:
3864 case RESULT_DECL:
3865 case ERROR_MARK:
3866 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3867 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3868
3869 case BIND_EXPR:
3870 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3871
3872 default:
3873 return 0;
3874 }
3875 }
3876 \f
3877 /* Give a warning for storing in something that is read-only in GCC
3878 terms but not const in ISO C terms. */
3879
3880 static void
3881 readonly_warning (tree arg, enum lvalue_use use)
3882 {
3883 switch (use)
3884 {
3885 case lv_assign:
3886 warning (0, "assignment of read-only location %qE", arg);
3887 break;
3888 case lv_increment:
3889 warning (0, "increment of read-only location %qE", arg);
3890 break;
3891 case lv_decrement:
3892 warning (0, "decrement of read-only location %qE", arg);
3893 break;
3894 default:
3895 gcc_unreachable ();
3896 }
3897 return;
3898 }
3899
3900
3901 /* Return nonzero if REF is an lvalue valid for this language;
3902 otherwise, print an error message and return zero. USE says
3903 how the lvalue is being used and so selects the error message.
3904 LOCATION is the location at which any error should be reported. */
3905
3906 static int
3907 lvalue_or_else (location_t loc, const_tree ref, enum lvalue_use use)
3908 {
3909 int win = lvalue_p (ref);
3910
3911 if (!win)
3912 lvalue_error (loc, use);
3913
3914 return win;
3915 }
3916 \f
3917 /* Mark EXP saying that we need to be able to take the
3918 address of it; it should not be allocated in a register.
3919 Returns true if successful. */
3920
3921 bool
3922 c_mark_addressable (tree exp)
3923 {
3924 tree x = exp;
3925
3926 while (1)
3927 switch (TREE_CODE (x))
3928 {
3929 case COMPONENT_REF:
3930 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3931 {
3932 error
3933 ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3934 return false;
3935 }
3936
3937 /* ... fall through ... */
3938
3939 case ADDR_EXPR:
3940 case ARRAY_REF:
3941 case REALPART_EXPR:
3942 case IMAGPART_EXPR:
3943 x = TREE_OPERAND (x, 0);
3944 break;
3945
3946 case COMPOUND_LITERAL_EXPR:
3947 case CONSTRUCTOR:
3948 TREE_ADDRESSABLE (x) = 1;
3949 return true;
3950
3951 case VAR_DECL:
3952 case CONST_DECL:
3953 case PARM_DECL:
3954 case RESULT_DECL:
3955 if (C_DECL_REGISTER (x)
3956 && DECL_NONLOCAL (x))
3957 {
3958 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3959 {
3960 error
3961 ("global register variable %qD used in nested function", x);
3962 return false;
3963 }
3964 pedwarn (input_location, 0, "register variable %qD used in nested function", x);
3965 }
3966 else if (C_DECL_REGISTER (x))
3967 {
3968 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3969 error ("address of global register variable %qD requested", x);
3970 else
3971 error ("address of register variable %qD requested", x);
3972 return false;
3973 }
3974
3975 /* drops in */
3976 case FUNCTION_DECL:
3977 TREE_ADDRESSABLE (x) = 1;
3978 /* drops out */
3979 default:
3980 return true;
3981 }
3982 }
3983 \f
3984 /* Convert EXPR to TYPE, warning about conversion problems with
3985 constants. SEMANTIC_TYPE is the type this conversion would use
3986 without excess precision. If SEMANTIC_TYPE is NULL, this function
3987 is equivalent to convert_and_check. This function is a wrapper that
3988 handles conversions that may be different than
3989 the usual ones because of excess precision. */
3990
3991 static tree
3992 ep_convert_and_check (tree type, tree expr, tree semantic_type)
3993 {
3994 if (TREE_TYPE (expr) == type)
3995 return expr;
3996
3997 if (!semantic_type)
3998 return convert_and_check (type, expr);
3999
4000 if (TREE_CODE (TREE_TYPE (expr)) == INTEGER_TYPE
4001 && TREE_TYPE (expr) != semantic_type)
4002 {
4003 /* For integers, we need to check the real conversion, not
4004 the conversion to the excess precision type. */
4005 expr = convert_and_check (semantic_type, expr);
4006 }
4007 /* Result type is the excess precision type, which should be
4008 large enough, so do not check. */
4009 return convert (type, expr);
4010 }
4011
4012 /* Build and return a conditional expression IFEXP ? OP1 : OP2. If
4013 IFEXP_BCP then the condition is a call to __builtin_constant_p, and
4014 if folded to an integer constant then the unselected half may
4015 contain arbitrary operations not normally permitted in constant
4016 expressions. Set the location of the expression to LOC. */
4017
4018 tree
4019 build_conditional_expr (location_t colon_loc, tree ifexp, bool ifexp_bcp,
4020 tree op1, tree op1_original_type, tree op2,
4021 tree op2_original_type)
4022 {
4023 tree type1;
4024 tree type2;
4025 enum tree_code code1;
4026 enum tree_code code2;
4027 tree result_type = NULL;
4028 tree semantic_result_type = NULL;
4029 tree orig_op1 = op1, orig_op2 = op2;
4030 bool int_const, op1_int_operands, op2_int_operands, int_operands;
4031 bool ifexp_int_operands;
4032 tree ret;
4033
4034 op1_int_operands = EXPR_INT_CONST_OPERANDS (orig_op1);
4035 if (op1_int_operands)
4036 op1 = remove_c_maybe_const_expr (op1);
4037 op2_int_operands = EXPR_INT_CONST_OPERANDS (orig_op2);
4038 if (op2_int_operands)
4039 op2 = remove_c_maybe_const_expr (op2);
4040 ifexp_int_operands = EXPR_INT_CONST_OPERANDS (ifexp);
4041 if (ifexp_int_operands)
4042 ifexp = remove_c_maybe_const_expr (ifexp);
4043
4044 /* Promote both alternatives. */
4045
4046 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
4047 op1 = default_conversion (op1);
4048 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
4049 op2 = default_conversion (op2);
4050
4051 if (TREE_CODE (ifexp) == ERROR_MARK
4052 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
4053 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
4054 return error_mark_node;
4055
4056 type1 = TREE_TYPE (op1);
4057 code1 = TREE_CODE (type1);
4058 type2 = TREE_TYPE (op2);
4059 code2 = TREE_CODE (type2);
4060
4061 /* C90 does not permit non-lvalue arrays in conditional expressions.
4062 In C99 they will be pointers by now. */
4063 if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
4064 {
4065 error_at (colon_loc, "non-lvalue array in conditional expression");
4066 return error_mark_node;
4067 }
4068
4069 if ((TREE_CODE (op1) == EXCESS_PRECISION_EXPR
4070 || TREE_CODE (op2) == EXCESS_PRECISION_EXPR)
4071 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
4072 || code1 == COMPLEX_TYPE)
4073 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
4074 || code2 == COMPLEX_TYPE))
4075 {
4076 semantic_result_type = c_common_type (type1, type2);
4077 if (TREE_CODE (op1) == EXCESS_PRECISION_EXPR)
4078 {
4079 op1 = TREE_OPERAND (op1, 0);
4080 type1 = TREE_TYPE (op1);
4081 gcc_assert (TREE_CODE (type1) == code1);
4082 }
4083 if (TREE_CODE (op2) == EXCESS_PRECISION_EXPR)
4084 {
4085 op2 = TREE_OPERAND (op2, 0);
4086 type2 = TREE_TYPE (op2);
4087 gcc_assert (TREE_CODE (type2) == code2);
4088 }
4089 }
4090
4091 if (warn_cxx_compat)
4092 {
4093 tree t1 = op1_original_type ? op1_original_type : TREE_TYPE (orig_op1);
4094 tree t2 = op2_original_type ? op2_original_type : TREE_TYPE (orig_op2);
4095
4096 if (TREE_CODE (t1) == ENUMERAL_TYPE
4097 && TREE_CODE (t2) == ENUMERAL_TYPE
4098 && TYPE_MAIN_VARIANT (t1) != TYPE_MAIN_VARIANT (t2))
4099 warning_at (colon_loc, OPT_Wc___compat,
4100 ("different enum types in conditional is "
4101 "invalid in C++: %qT vs %qT"),
4102 t1, t2);
4103 }
4104
4105 /* Quickly detect the usual case where op1 and op2 have the same type
4106 after promotion. */
4107 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
4108 {
4109 if (type1 == type2)
4110 result_type = type1;
4111 else
4112 result_type = TYPE_MAIN_VARIANT (type1);
4113 }
4114 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
4115 || code1 == COMPLEX_TYPE)
4116 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
4117 || code2 == COMPLEX_TYPE))
4118 {
4119 result_type = c_common_type (type1, type2);
4120 do_warn_double_promotion (result_type, type1, type2,
4121 "implicit conversion from %qT to %qT to "
4122 "match other result of conditional",
4123 colon_loc);
4124
4125 /* If -Wsign-compare, warn here if type1 and type2 have
4126 different signedness. We'll promote the signed to unsigned
4127 and later code won't know it used to be different.
4128 Do this check on the original types, so that explicit casts
4129 will be considered, but default promotions won't. */
4130 if (c_inhibit_evaluation_warnings == 0)
4131 {
4132 int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
4133 int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
4134
4135 if (unsigned_op1 ^ unsigned_op2)
4136 {
4137 bool ovf;
4138
4139 /* Do not warn if the result type is signed, since the
4140 signed type will only be chosen if it can represent
4141 all the values of the unsigned type. */
4142 if (!TYPE_UNSIGNED (result_type))
4143 /* OK */;
4144 else
4145 {
4146 bool op1_maybe_const = true;
4147 bool op2_maybe_const = true;
4148
4149 /* Do not warn if the signed quantity is an
4150 unsuffixed integer literal (or some static
4151 constant expression involving such literals) and
4152 it is non-negative. This warning requires the
4153 operands to be folded for best results, so do
4154 that folding in this case even without
4155 warn_sign_compare to avoid warning options
4156 possibly affecting code generation. */
4157 c_inhibit_evaluation_warnings
4158 += (ifexp == truthvalue_false_node);
4159 op1 = c_fully_fold (op1, require_constant_value,
4160 &op1_maybe_const);
4161 c_inhibit_evaluation_warnings
4162 -= (ifexp == truthvalue_false_node);
4163
4164 c_inhibit_evaluation_warnings
4165 += (ifexp == truthvalue_true_node);
4166 op2 = c_fully_fold (op2, require_constant_value,
4167 &op2_maybe_const);
4168 c_inhibit_evaluation_warnings
4169 -= (ifexp == truthvalue_true_node);
4170
4171 if (warn_sign_compare)
4172 {
4173 if ((unsigned_op2
4174 && tree_expr_nonnegative_warnv_p (op1, &ovf))
4175 || (unsigned_op1
4176 && tree_expr_nonnegative_warnv_p (op2, &ovf)))
4177 /* OK */;
4178 else
4179 warning_at (colon_loc, OPT_Wsign_compare,
4180 ("signed and unsigned type in "
4181 "conditional expression"));
4182 }
4183 if (!op1_maybe_const || TREE_CODE (op1) != INTEGER_CST)
4184 op1 = c_wrap_maybe_const (op1, !op1_maybe_const);
4185 if (!op2_maybe_const || TREE_CODE (op2) != INTEGER_CST)
4186 op2 = c_wrap_maybe_const (op2, !op2_maybe_const);
4187 }
4188 }
4189 }
4190 }
4191 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
4192 {
4193 if (code1 != VOID_TYPE || code2 != VOID_TYPE)
4194 pedwarn (colon_loc, OPT_pedantic,
4195 "ISO C forbids conditional expr with only one void side");
4196 result_type = void_type_node;
4197 }
4198 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
4199 {
4200 addr_space_t as1 = TYPE_ADDR_SPACE (TREE_TYPE (type1));
4201 addr_space_t as2 = TYPE_ADDR_SPACE (TREE_TYPE (type2));
4202 addr_space_t as_common;
4203
4204 if (comp_target_types (colon_loc, type1, type2))
4205 result_type = common_pointer_type (type1, type2);
4206 else if (null_pointer_constant_p (orig_op1))
4207 result_type = type2;
4208 else if (null_pointer_constant_p (orig_op2))
4209 result_type = type1;
4210 else if (!addr_space_superset (as1, as2, &as_common))
4211 {
4212 error_at (colon_loc, "pointers to disjoint address spaces "
4213 "used in conditional expression");
4214 return error_mark_node;
4215 }
4216 else if (VOID_TYPE_P (TREE_TYPE (type1)))
4217 {
4218 if (TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
4219 pedwarn (colon_loc, OPT_pedantic,
4220 "ISO C forbids conditional expr between "
4221 "%<void *%> and function pointer");
4222 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
4223 TREE_TYPE (type2)));
4224 }
4225 else if (VOID_TYPE_P (TREE_TYPE (type2)))
4226 {
4227 if (TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
4228 pedwarn (colon_loc, OPT_pedantic,
4229 "ISO C forbids conditional expr between "
4230 "%<void *%> and function pointer");
4231 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
4232 TREE_TYPE (type1)));
4233 }
4234 /* Objective-C pointer comparisons are a bit more lenient. */
4235 else if (objc_have_common_type (type1, type2, -3, NULL_TREE))
4236 result_type = objc_common_type (type1, type2);
4237 else
4238 {
4239 int qual = ENCODE_QUAL_ADDR_SPACE (as_common);
4240
4241 pedwarn (colon_loc, 0,
4242 "pointer type mismatch in conditional expression");
4243 result_type = build_pointer_type
4244 (build_qualified_type (void_type_node, qual));
4245 }
4246 }
4247 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
4248 {
4249 if (!null_pointer_constant_p (orig_op2))
4250 pedwarn (colon_loc, 0,
4251 "pointer/integer type mismatch in conditional expression");
4252 else
4253 {
4254 op2 = null_pointer_node;
4255 }
4256 result_type = type1;
4257 }
4258 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
4259 {
4260 if (!null_pointer_constant_p (orig_op1))
4261 pedwarn (colon_loc, 0,
4262 "pointer/integer type mismatch in conditional expression");
4263 else
4264 {
4265 op1 = null_pointer_node;
4266 }
4267 result_type = type2;
4268 }
4269
4270 if (!result_type)
4271 {
4272 if (flag_cond_mismatch)
4273 result_type = void_type_node;
4274 else
4275 {
4276 error_at (colon_loc, "type mismatch in conditional expression");
4277 return error_mark_node;
4278 }
4279 }
4280
4281 /* Merge const and volatile flags of the incoming types. */
4282 result_type
4283 = build_type_variant (result_type,
4284 TYPE_READONLY (type1) || TYPE_READONLY (type2),
4285 TYPE_VOLATILE (type1) || TYPE_VOLATILE (type2));
4286
4287 op1 = ep_convert_and_check (result_type, op1, semantic_result_type);
4288 op2 = ep_convert_and_check (result_type, op2, semantic_result_type);
4289
4290 if (ifexp_bcp && ifexp == truthvalue_true_node)
4291 {
4292 op2_int_operands = true;
4293 op1 = c_fully_fold (op1, require_constant_value, NULL);
4294 }
4295 if (ifexp_bcp && ifexp == truthvalue_false_node)
4296 {
4297 op1_int_operands = true;
4298 op2 = c_fully_fold (op2, require_constant_value, NULL);
4299 }
4300 int_const = int_operands = (ifexp_int_operands
4301 && op1_int_operands
4302 && op2_int_operands);
4303 if (int_operands)
4304 {
4305 int_const = ((ifexp == truthvalue_true_node
4306 && TREE_CODE (orig_op1) == INTEGER_CST
4307 && !TREE_OVERFLOW (orig_op1))
4308 || (ifexp == truthvalue_false_node
4309 && TREE_CODE (orig_op2) == INTEGER_CST
4310 && !TREE_OVERFLOW (orig_op2)));
4311 }
4312 if (int_const || (ifexp_bcp && TREE_CODE (ifexp) == INTEGER_CST))
4313 ret = fold_build3_loc (colon_loc, COND_EXPR, result_type, ifexp, op1, op2);
4314 else
4315 {
4316 ret = build3 (COND_EXPR, result_type, ifexp, op1, op2);
4317 if (int_operands)
4318 ret = note_integer_operands (ret);
4319 }
4320 if (semantic_result_type)
4321 ret = build1 (EXCESS_PRECISION_EXPR, semantic_result_type, ret);
4322
4323 protected_set_expr_location (ret, colon_loc);
4324 return ret;
4325 }
4326 \f
4327 /* Return a compound expression that performs two expressions and
4328 returns the value of the second of them.
4329
4330 LOC is the location of the COMPOUND_EXPR. */
4331
4332 tree
4333 build_compound_expr (location_t loc, tree expr1, tree expr2)
4334 {
4335 bool expr1_int_operands, expr2_int_operands;
4336 tree eptype = NULL_TREE;
4337 tree ret;
4338
4339 expr1_int_operands = EXPR_INT_CONST_OPERANDS (expr1);
4340 if (expr1_int_operands)
4341 expr1 = remove_c_maybe_const_expr (expr1);
4342 expr2_int_operands = EXPR_INT_CONST_OPERANDS (expr2);
4343 if (expr2_int_operands)
4344 expr2 = remove_c_maybe_const_expr (expr2);
4345
4346 if (TREE_CODE (expr1) == EXCESS_PRECISION_EXPR)
4347 expr1 = TREE_OPERAND (expr1, 0);
4348 if (TREE_CODE (expr2) == EXCESS_PRECISION_EXPR)
4349 {
4350 eptype = TREE_TYPE (expr2);
4351 expr2 = TREE_OPERAND (expr2, 0);
4352 }
4353
4354 if (!TREE_SIDE_EFFECTS (expr1))
4355 {
4356 /* The left-hand operand of a comma expression is like an expression
4357 statement: with -Wunused, we should warn if it doesn't have
4358 any side-effects, unless it was explicitly cast to (void). */
4359 if (warn_unused_value)
4360 {
4361 if (VOID_TYPE_P (TREE_TYPE (expr1))
4362 && CONVERT_EXPR_P (expr1))
4363 ; /* (void) a, b */
4364 else if (VOID_TYPE_P (TREE_TYPE (expr1))
4365 && TREE_CODE (expr1) == COMPOUND_EXPR
4366 && CONVERT_EXPR_P (TREE_OPERAND (expr1, 1)))
4367 ; /* (void) a, (void) b, c */
4368 else
4369 warning_at (loc, OPT_Wunused_value,
4370 "left-hand operand of comma expression has no effect");
4371 }
4372 }
4373
4374 /* With -Wunused, we should also warn if the left-hand operand does have
4375 side-effects, but computes a value which is not used. For example, in
4376 `foo() + bar(), baz()' the result of the `+' operator is not used,
4377 so we should issue a warning. */
4378 else if (warn_unused_value)
4379 warn_if_unused_value (expr1, loc);
4380
4381 if (expr2 == error_mark_node)
4382 return error_mark_node;
4383
4384 ret = build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
4385
4386 if (flag_isoc99
4387 && expr1_int_operands
4388 && expr2_int_operands)
4389 ret = note_integer_operands (ret);
4390
4391 if (eptype)
4392 ret = build1 (EXCESS_PRECISION_EXPR, eptype, ret);
4393
4394 protected_set_expr_location (ret, loc);
4395 return ret;
4396 }
4397
4398 /* Issue -Wcast-qual warnings when appropriate. TYPE is the type to
4399 which we are casting. OTYPE is the type of the expression being
4400 cast. Both TYPE and OTYPE are pointer types. LOC is the location
4401 of the cast. -Wcast-qual appeared on the command line. Named
4402 address space qualifiers are not handled here, because they result
4403 in different warnings. */
4404
4405 static void
4406 handle_warn_cast_qual (location_t loc, tree type, tree otype)
4407 {
4408 tree in_type = type;
4409 tree in_otype = otype;
4410 int added = 0;
4411 int discarded = 0;
4412 bool is_const;
4413
4414 /* Check that the qualifiers on IN_TYPE are a superset of the
4415 qualifiers of IN_OTYPE. The outermost level of POINTER_TYPE
4416 nodes is uninteresting and we stop as soon as we hit a
4417 non-POINTER_TYPE node on either type. */
4418 do
4419 {
4420 in_otype = TREE_TYPE (in_otype);
4421 in_type = TREE_TYPE (in_type);
4422
4423 /* GNU C allows cv-qualified function types. 'const' means the
4424 function is very pure, 'volatile' means it can't return. We
4425 need to warn when such qualifiers are added, not when they're
4426 taken away. */
4427 if (TREE_CODE (in_otype) == FUNCTION_TYPE
4428 && TREE_CODE (in_type) == FUNCTION_TYPE)
4429 added |= (TYPE_QUALS_NO_ADDR_SPACE (in_type)
4430 & ~TYPE_QUALS_NO_ADDR_SPACE (in_otype));
4431 else
4432 discarded |= (TYPE_QUALS_NO_ADDR_SPACE (in_otype)
4433 & ~TYPE_QUALS_NO_ADDR_SPACE (in_type));
4434 }
4435 while (TREE_CODE (in_type) == POINTER_TYPE
4436 && TREE_CODE (in_otype) == POINTER_TYPE);
4437
4438 if (added)
4439 warning_at (loc, OPT_Wcast_qual,
4440 "cast adds %q#v qualifier to function type", added);
4441
4442 if (discarded)
4443 /* There are qualifiers present in IN_OTYPE that are not present
4444 in IN_TYPE. */
4445 warning_at (loc, OPT_Wcast_qual,
4446 "cast discards %q#v qualifier from pointer target type",
4447 discarded);
4448
4449 if (added || discarded)
4450 return;
4451
4452 /* A cast from **T to const **T is unsafe, because it can cause a
4453 const value to be changed with no additional warning. We only
4454 issue this warning if T is the same on both sides, and we only
4455 issue the warning if there are the same number of pointers on
4456 both sides, as otherwise the cast is clearly unsafe anyhow. A
4457 cast is unsafe when a qualifier is added at one level and const
4458 is not present at all outer levels.
4459
4460 To issue this warning, we check at each level whether the cast
4461 adds new qualifiers not already seen. We don't need to special
4462 case function types, as they won't have the same
4463 TYPE_MAIN_VARIANT. */
4464
4465 if (TYPE_MAIN_VARIANT (in_type) != TYPE_MAIN_VARIANT (in_otype))
4466 return;
4467 if (TREE_CODE (TREE_TYPE (type)) != POINTER_TYPE)
4468 return;
4469
4470 in_type = type;
4471 in_otype = otype;
4472 is_const = TYPE_READONLY (TREE_TYPE (in_type));
4473 do
4474 {
4475 in_type = TREE_TYPE (in_type);
4476 in_otype = TREE_TYPE (in_otype);
4477 if ((TYPE_QUALS (in_type) &~ TYPE_QUALS (in_otype)) != 0
4478 && !is_const)
4479 {
4480 warning_at (loc, OPT_Wcast_qual,
4481 "to be safe all intermediate pointers in cast from "
4482 "%qT to %qT must be %<const%> qualified",
4483 otype, type);
4484 break;
4485 }
4486 if (is_const)
4487 is_const = TYPE_READONLY (in_type);
4488 }
4489 while (TREE_CODE (in_type) == POINTER_TYPE);
4490 }
4491
4492 /* Build an expression representing a cast to type TYPE of expression EXPR.
4493 LOC is the location of the cast-- typically the open paren of the cast. */
4494
4495 tree
4496 build_c_cast (location_t loc, tree type, tree expr)
4497 {
4498 tree value;
4499
4500 if (TREE_CODE (expr) == EXCESS_PRECISION_EXPR)
4501 expr = TREE_OPERAND (expr, 0);
4502
4503 value = expr;
4504
4505 if (type == error_mark_node || expr == error_mark_node)
4506 return error_mark_node;
4507
4508 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
4509 only in <protocol> qualifications. But when constructing cast expressions,
4510 the protocols do matter and must be kept around. */
4511 if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
4512 return build1 (NOP_EXPR, type, expr);
4513
4514 type = TYPE_MAIN_VARIANT (type);
4515
4516 if (TREE_CODE (type) == ARRAY_TYPE)
4517 {
4518 error_at (loc, "cast specifies array type");
4519 return error_mark_node;
4520 }
4521
4522 if (TREE_CODE (type) == FUNCTION_TYPE)
4523 {
4524 error_at (loc, "cast specifies function type");
4525 return error_mark_node;
4526 }
4527
4528 if (!VOID_TYPE_P (type))
4529 {
4530 value = require_complete_type (value);
4531 if (value == error_mark_node)
4532 return error_mark_node;
4533 }
4534
4535 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
4536 {
4537 if (TREE_CODE (type) == RECORD_TYPE
4538 || TREE_CODE (type) == UNION_TYPE)
4539 pedwarn (loc, OPT_pedantic,
4540 "ISO C forbids casting nonscalar to the same type");
4541 }
4542 else if (TREE_CODE (type) == UNION_TYPE)
4543 {
4544 tree field;
4545
4546 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
4547 if (TREE_TYPE (field) != error_mark_node
4548 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
4549 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
4550 break;
4551
4552 if (field)
4553 {
4554 tree t;
4555 bool maybe_const = true;
4556
4557 pedwarn (loc, OPT_pedantic, "ISO C forbids casts to union type");
4558 t = c_fully_fold (value, false, &maybe_const);
4559 t = build_constructor_single (type, field, t);
4560 if (!maybe_const)
4561 t = c_wrap_maybe_const (t, true);
4562 t = digest_init (loc, type, t,
4563 NULL_TREE, false, true, 0);
4564 TREE_CONSTANT (t) = TREE_CONSTANT (value);
4565 return t;
4566 }
4567 error_at (loc, "cast to union type from type not present in union");
4568 return error_mark_node;
4569 }
4570 else
4571 {
4572 tree otype, ovalue;
4573
4574 if (type == void_type_node)
4575 {
4576 tree t = build1 (CONVERT_EXPR, type, value);
4577 SET_EXPR_LOCATION (t, loc);
4578 return t;
4579 }
4580
4581 otype = TREE_TYPE (value);
4582
4583 /* Optionally warn about potentially worrisome casts. */
4584 if (warn_cast_qual
4585 && TREE_CODE (type) == POINTER_TYPE
4586 && TREE_CODE (otype) == POINTER_TYPE)
4587 handle_warn_cast_qual (loc, type, otype);
4588
4589 /* Warn about conversions between pointers to disjoint
4590 address spaces. */
4591 if (TREE_CODE (type) == POINTER_TYPE
4592 && TREE_CODE (otype) == POINTER_TYPE
4593 && !null_pointer_constant_p (value))
4594 {
4595 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
4596 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (otype));
4597 addr_space_t as_common;
4598
4599 if (!addr_space_superset (as_to, as_from, &as_common))
4600 {
4601 if (ADDR_SPACE_GENERIC_P (as_from))
4602 warning_at (loc, 0, "cast to %s address space pointer "
4603 "from disjoint generic address space pointer",
4604 c_addr_space_name (as_to));
4605
4606 else if (ADDR_SPACE_GENERIC_P (as_to))
4607 warning_at (loc, 0, "cast to generic address space pointer "
4608 "from disjoint %s address space pointer",
4609 c_addr_space_name (as_from));
4610
4611 else
4612 warning_at (loc, 0, "cast to %s address space pointer "
4613 "from disjoint %s address space pointer",
4614 c_addr_space_name (as_to),
4615 c_addr_space_name (as_from));
4616 }
4617 }
4618
4619 /* Warn about possible alignment problems. */
4620 if (STRICT_ALIGNMENT
4621 && TREE_CODE (type) == POINTER_TYPE
4622 && TREE_CODE (otype) == POINTER_TYPE
4623 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
4624 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
4625 /* Don't warn about opaque types, where the actual alignment
4626 restriction is unknown. */
4627 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
4628 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
4629 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
4630 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
4631 warning_at (loc, OPT_Wcast_align,
4632 "cast increases required alignment of target type");
4633
4634 if (TREE_CODE (type) == INTEGER_TYPE
4635 && TREE_CODE (otype) == POINTER_TYPE
4636 && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
4637 /* Unlike conversion of integers to pointers, where the
4638 warning is disabled for converting constants because
4639 of cases such as SIG_*, warn about converting constant
4640 pointers to integers. In some cases it may cause unwanted
4641 sign extension, and a warning is appropriate. */
4642 warning_at (loc, OPT_Wpointer_to_int_cast,
4643 "cast from pointer to integer of different size");
4644
4645 if (TREE_CODE (value) == CALL_EXPR
4646 && TREE_CODE (type) != TREE_CODE (otype))
4647 warning_at (loc, OPT_Wbad_function_cast,
4648 "cast from function call of type %qT "
4649 "to non-matching type %qT", otype, type);
4650
4651 if (TREE_CODE (type) == POINTER_TYPE
4652 && TREE_CODE (otype) == INTEGER_TYPE
4653 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
4654 /* Don't warn about converting any constant. */
4655 && !TREE_CONSTANT (value))
4656 warning_at (loc,
4657 OPT_Wint_to_pointer_cast, "cast to pointer from integer "
4658 "of different size");
4659
4660 if (warn_strict_aliasing <= 2)
4661 strict_aliasing_warning (otype, type, expr);
4662
4663 /* If pedantic, warn for conversions between function and object
4664 pointer types, except for converting a null pointer constant
4665 to function pointer type. */
4666 if (pedantic
4667 && TREE_CODE (type) == POINTER_TYPE
4668 && TREE_CODE (otype) == POINTER_TYPE
4669 && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
4670 && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
4671 pedwarn (loc, OPT_pedantic, "ISO C forbids "
4672 "conversion of function pointer to object pointer type");
4673
4674 if (pedantic
4675 && TREE_CODE (type) == POINTER_TYPE
4676 && TREE_CODE (otype) == POINTER_TYPE
4677 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
4678 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
4679 && !null_pointer_constant_p (value))
4680 pedwarn (loc, OPT_pedantic, "ISO C forbids "
4681 "conversion of object pointer to function pointer type");
4682
4683 ovalue = value;
4684 value = convert (type, value);
4685
4686 /* Ignore any integer overflow caused by the cast. */
4687 if (TREE_CODE (value) == INTEGER_CST && !FLOAT_TYPE_P (otype))
4688 {
4689 if (CONSTANT_CLASS_P (ovalue) && TREE_OVERFLOW (ovalue))
4690 {
4691 if (!TREE_OVERFLOW (value))
4692 {
4693 /* Avoid clobbering a shared constant. */
4694 value = copy_node (value);
4695 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
4696 }
4697 }
4698 else if (TREE_OVERFLOW (value))
4699 /* Reset VALUE's overflow flags, ensuring constant sharing. */
4700 value = build_int_cst_wide (TREE_TYPE (value),
4701 TREE_INT_CST_LOW (value),
4702 TREE_INT_CST_HIGH (value));
4703 }
4704 }
4705
4706 /* Don't let a cast be an lvalue. */
4707 if (value == expr)
4708 value = non_lvalue_loc (loc, value);
4709
4710 /* Don't allow the results of casting to floating-point or complex
4711 types be confused with actual constants, or casts involving
4712 integer and pointer types other than direct integer-to-integer
4713 and integer-to-pointer be confused with integer constant
4714 expressions and null pointer constants. */
4715 if (TREE_CODE (value) == REAL_CST
4716 || TREE_CODE (value) == COMPLEX_CST
4717 || (TREE_CODE (value) == INTEGER_CST
4718 && !((TREE_CODE (expr) == INTEGER_CST
4719 && INTEGRAL_TYPE_P (TREE_TYPE (expr)))
4720 || TREE_CODE (expr) == REAL_CST
4721 || TREE_CODE (expr) == COMPLEX_CST)))
4722 value = build1 (NOP_EXPR, type, value);
4723
4724 if (CAN_HAVE_LOCATION_P (value))
4725 SET_EXPR_LOCATION (value, loc);
4726 return value;
4727 }
4728
4729 /* Interpret a cast of expression EXPR to type TYPE. LOC is the
4730 location of the open paren of the cast, or the position of the cast
4731 expr. */
4732 tree
4733 c_cast_expr (location_t loc, struct c_type_name *type_name, tree expr)
4734 {
4735 tree type;
4736 tree type_expr = NULL_TREE;
4737 bool type_expr_const = true;
4738 tree ret;
4739 int saved_wsp = warn_strict_prototypes;
4740
4741 /* This avoids warnings about unprototyped casts on
4742 integers. E.g. "#define SIG_DFL (void(*)())0". */
4743 if (TREE_CODE (expr) == INTEGER_CST)
4744 warn_strict_prototypes = 0;
4745 type = groktypename (type_name, &type_expr, &type_expr_const);
4746 warn_strict_prototypes = saved_wsp;
4747
4748 ret = build_c_cast (loc, type, expr);
4749 if (type_expr)
4750 {
4751 ret = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (ret), type_expr, ret);
4752 C_MAYBE_CONST_EXPR_NON_CONST (ret) = !type_expr_const;
4753 SET_EXPR_LOCATION (ret, loc);
4754 }
4755
4756 if (CAN_HAVE_LOCATION_P (ret) && !EXPR_HAS_LOCATION (ret))
4757 SET_EXPR_LOCATION (ret, loc);
4758
4759 /* C++ does not permits types to be defined in a cast, but it
4760 allows references to incomplete types. */
4761 if (warn_cxx_compat && type_name->specs->typespec_kind == ctsk_tagdef)
4762 warning_at (loc, OPT_Wc___compat,
4763 "defining a type in a cast is invalid in C++");
4764
4765 return ret;
4766 }
4767 \f
4768 /* Build an assignment expression of lvalue LHS from value RHS.
4769 If LHS_ORIGTYPE is not NULL, it is the original type of LHS, which
4770 may differ from TREE_TYPE (LHS) for an enum bitfield.
4771 MODIFYCODE is the code for a binary operator that we use
4772 to combine the old value of LHS with RHS to get the new value.
4773 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.
4774 If RHS_ORIGTYPE is not NULL_TREE, it is the original type of RHS,
4775 which may differ from TREE_TYPE (RHS) for an enum value.
4776
4777 LOCATION is the location of the MODIFYCODE operator.
4778 RHS_LOC is the location of the RHS. */
4779
4780 tree
4781 build_modify_expr (location_t location, tree lhs, tree lhs_origtype,
4782 enum tree_code modifycode,
4783 location_t rhs_loc, tree rhs, tree rhs_origtype)
4784 {
4785 tree result;
4786 tree newrhs;
4787 tree rhs_semantic_type = NULL_TREE;
4788 tree lhstype = TREE_TYPE (lhs);
4789 tree olhstype = lhstype;
4790 bool npc;
4791
4792 /* Types that aren't fully specified cannot be used in assignments. */
4793 lhs = require_complete_type (lhs);
4794
4795 /* Avoid duplicate error messages from operands that had errors. */
4796 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
4797 return error_mark_node;
4798
4799 /* For ObjC properties, defer this check. */
4800 if (!objc_is_property_ref (lhs) && !lvalue_or_else (location, lhs, lv_assign))
4801 return error_mark_node;
4802
4803 if (TREE_CODE (rhs) == EXCESS_PRECISION_EXPR)
4804 {
4805 rhs_semantic_type = TREE_TYPE (rhs);
4806 rhs = TREE_OPERAND (rhs, 0);
4807 }
4808
4809 newrhs = rhs;
4810
4811 if (TREE_CODE (lhs) == C_MAYBE_CONST_EXPR)
4812 {
4813 tree inner = build_modify_expr (location, C_MAYBE_CONST_EXPR_EXPR (lhs),
4814 lhs_origtype, modifycode, rhs_loc, rhs,
4815 rhs_origtype);
4816 if (inner == error_mark_node)
4817 return error_mark_node;
4818 result = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (inner),
4819 C_MAYBE_CONST_EXPR_PRE (lhs), inner);
4820 gcc_assert (!C_MAYBE_CONST_EXPR_INT_OPERANDS (lhs));
4821 C_MAYBE_CONST_EXPR_NON_CONST (result) = 1;
4822 protected_set_expr_location (result, location);
4823 return result;
4824 }
4825
4826 /* If a binary op has been requested, combine the old LHS value with the RHS
4827 producing the value we should actually store into the LHS. */
4828
4829 if (modifycode != NOP_EXPR)
4830 {
4831 lhs = c_fully_fold (lhs, false, NULL);
4832 lhs = stabilize_reference (lhs);
4833 newrhs = build_binary_op (location,
4834 modifycode, lhs, rhs, 1);
4835
4836 /* The original type of the right hand side is no longer
4837 meaningful. */
4838 rhs_origtype = NULL_TREE;
4839 }
4840
4841 if (c_dialect_objc ())
4842 {
4843 /* Check if we are modifying an Objective-C property reference;
4844 if so, we need to generate setter calls. */
4845 result = objc_maybe_build_modify_expr (lhs, newrhs);
4846 if (result)
4847 return result;
4848
4849 /* Else, do the check that we postponed for Objective-C. */
4850 if (!lvalue_or_else (location, lhs, lv_assign))
4851 return error_mark_node;
4852 }
4853
4854 /* Give an error for storing in something that is 'const'. */
4855
4856 if (TYPE_READONLY (lhstype)
4857 || ((TREE_CODE (lhstype) == RECORD_TYPE
4858 || TREE_CODE (lhstype) == UNION_TYPE)
4859 && C_TYPE_FIELDS_READONLY (lhstype)))
4860 {
4861 readonly_error (lhs, lv_assign);
4862 return error_mark_node;
4863 }
4864 else if (TREE_READONLY (lhs))
4865 readonly_warning (lhs, lv_assign);
4866
4867 /* If storing into a structure or union member,
4868 it has probably been given type `int'.
4869 Compute the type that would go with
4870 the actual amount of storage the member occupies. */
4871
4872 if (TREE_CODE (lhs) == COMPONENT_REF
4873 && (TREE_CODE (lhstype) == INTEGER_TYPE
4874 || TREE_CODE (lhstype) == BOOLEAN_TYPE
4875 || TREE_CODE (lhstype) == REAL_TYPE
4876 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
4877 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
4878
4879 /* If storing in a field that is in actuality a short or narrower than one,
4880 we must store in the field in its actual type. */
4881
4882 if (lhstype != TREE_TYPE (lhs))
4883 {
4884 lhs = copy_node (lhs);
4885 TREE_TYPE (lhs) = lhstype;
4886 }
4887
4888 /* Issue -Wc++-compat warnings about an assignment to an enum type
4889 when LHS does not have its original type. This happens for,
4890 e.g., an enum bitfield in a struct. */
4891 if (warn_cxx_compat
4892 && lhs_origtype != NULL_TREE
4893 && lhs_origtype != lhstype
4894 && TREE_CODE (lhs_origtype) == ENUMERAL_TYPE)
4895 {
4896 tree checktype = (rhs_origtype != NULL_TREE
4897 ? rhs_origtype
4898 : TREE_TYPE (rhs));
4899 if (checktype != error_mark_node
4900 && TYPE_MAIN_VARIANT (checktype) != TYPE_MAIN_VARIANT (lhs_origtype))
4901 warning_at (location, OPT_Wc___compat,
4902 "enum conversion in assignment is invalid in C++");
4903 }
4904
4905 /* Convert new value to destination type. Fold it first, then
4906 restore any excess precision information, for the sake of
4907 conversion warnings. */
4908
4909 npc = null_pointer_constant_p (newrhs);
4910 newrhs = c_fully_fold (newrhs, false, NULL);
4911 if (rhs_semantic_type)
4912 newrhs = build1 (EXCESS_PRECISION_EXPR, rhs_semantic_type, newrhs);
4913 newrhs = convert_for_assignment (location, lhstype, newrhs, rhs_origtype,
4914 ic_assign, npc, NULL_TREE, NULL_TREE, 0);
4915 if (TREE_CODE (newrhs) == ERROR_MARK)
4916 return error_mark_node;
4917
4918 /* Emit ObjC write barrier, if necessary. */
4919 if (c_dialect_objc () && flag_objc_gc)
4920 {
4921 result = objc_generate_write_barrier (lhs, modifycode, newrhs);
4922 if (result)
4923 {
4924 protected_set_expr_location (result, location);
4925 return result;
4926 }
4927 }
4928
4929 /* Scan operands. */
4930
4931 result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
4932 TREE_SIDE_EFFECTS (result) = 1;
4933 protected_set_expr_location (result, location);
4934
4935 /* If we got the LHS in a different type for storing in,
4936 convert the result back to the nominal type of LHS
4937 so that the value we return always has the same type
4938 as the LHS argument. */
4939
4940 if (olhstype == TREE_TYPE (result))
4941 return result;
4942
4943 result = convert_for_assignment (location, olhstype, result, rhs_origtype,
4944 ic_assign, false, NULL_TREE, NULL_TREE, 0);
4945 protected_set_expr_location (result, location);
4946 return result;
4947 }
4948 \f
4949 /* Return whether STRUCT_TYPE has an anonymous field with type TYPE.
4950 This is used to implement -fplan9-extensions. */
4951
4952 static bool
4953 find_anonymous_field_with_type (tree struct_type, tree type)
4954 {
4955 tree field;
4956 bool found;
4957
4958 gcc_assert (TREE_CODE (struct_type) == RECORD_TYPE
4959 || TREE_CODE (struct_type) == UNION_TYPE);
4960 found = false;
4961 for (field = TYPE_FIELDS (struct_type);
4962 field != NULL_TREE;
4963 field = TREE_CHAIN (field))
4964 {
4965 if (DECL_NAME (field) == NULL
4966 && comptypes (type, TYPE_MAIN_VARIANT (TREE_TYPE (field))))
4967 {
4968 if (found)
4969 return false;
4970 found = true;
4971 }
4972 else if (DECL_NAME (field) == NULL
4973 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
4974 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
4975 && find_anonymous_field_with_type (TREE_TYPE (field), type))
4976 {
4977 if (found)
4978 return false;
4979 found = true;
4980 }
4981 }
4982 return found;
4983 }
4984
4985 /* RHS is an expression whose type is pointer to struct. If there is
4986 an anonymous field in RHS with type TYPE, then return a pointer to
4987 that field in RHS. This is used with -fplan9-extensions. This
4988 returns NULL if no conversion could be found. */
4989
4990 static tree
4991 convert_to_anonymous_field (location_t location, tree type, tree rhs)
4992 {
4993 tree rhs_struct_type, lhs_main_type;
4994 tree field, found_field;
4995 bool found_sub_field;
4996 tree ret;
4997
4998 gcc_assert (POINTER_TYPE_P (TREE_TYPE (rhs)));
4999 rhs_struct_type = TREE_TYPE (TREE_TYPE (rhs));
5000 gcc_assert (TREE_CODE (rhs_struct_type) == RECORD_TYPE
5001 || TREE_CODE (rhs_struct_type) == UNION_TYPE);
5002
5003 gcc_assert (POINTER_TYPE_P (type));
5004 lhs_main_type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
5005
5006 found_field = NULL_TREE;
5007 found_sub_field = false;
5008 for (field = TYPE_FIELDS (rhs_struct_type);
5009 field != NULL_TREE;
5010 field = TREE_CHAIN (field))
5011 {
5012 if (DECL_NAME (field) != NULL_TREE
5013 || (TREE_CODE (TREE_TYPE (field)) != RECORD_TYPE
5014 && TREE_CODE (TREE_TYPE (field)) != UNION_TYPE))
5015 continue;
5016 if (comptypes (lhs_main_type, TYPE_MAIN_VARIANT (TREE_TYPE (field))))
5017 {
5018 if (found_field != NULL_TREE)
5019 return NULL_TREE;
5020 found_field = field;
5021 }
5022 else if (find_anonymous_field_with_type (TREE_TYPE (field),
5023 lhs_main_type))
5024 {
5025 if (found_field != NULL_TREE)
5026 return NULL_TREE;
5027 found_field = field;
5028 found_sub_field = true;
5029 }
5030 }
5031
5032 if (found_field == NULL_TREE)
5033 return NULL_TREE;
5034
5035 ret = fold_build3_loc (location, COMPONENT_REF, TREE_TYPE (found_field),
5036 build_fold_indirect_ref (rhs), found_field,
5037 NULL_TREE);
5038 ret = build_fold_addr_expr_loc (location, ret);
5039
5040 if (found_sub_field)
5041 {
5042 ret = convert_to_anonymous_field (location, type, ret);
5043 gcc_assert (ret != NULL_TREE);
5044 }
5045
5046 return ret;
5047 }
5048
5049 /* Convert value RHS to type TYPE as preparation for an assignment to
5050 an lvalue of type TYPE. If ORIGTYPE is not NULL_TREE, it is the
5051 original type of RHS; this differs from TREE_TYPE (RHS) for enum
5052 types. NULL_POINTER_CONSTANT says whether RHS was a null pointer
5053 constant before any folding.
5054 The real work of conversion is done by `convert'.
5055 The purpose of this function is to generate error messages
5056 for assignments that are not allowed in C.
5057 ERRTYPE says whether it is argument passing, assignment,
5058 initialization or return.
5059
5060 LOCATION is the location of the RHS.
5061 FUNCTION is a tree for the function being called.
5062 PARMNUM is the number of the argument, for printing in error messages. */
5063
5064 static tree
5065 convert_for_assignment (location_t location, tree type, tree rhs,
5066 tree origtype, enum impl_conv errtype,
5067 bool null_pointer_constant, tree fundecl,
5068 tree function, int parmnum)
5069 {
5070 enum tree_code codel = TREE_CODE (type);
5071 tree orig_rhs = rhs;
5072 tree rhstype;
5073 enum tree_code coder;
5074 tree rname = NULL_TREE;
5075 bool objc_ok = false;
5076
5077 if (errtype == ic_argpass)
5078 {
5079 tree selector;
5080 /* Change pointer to function to the function itself for
5081 diagnostics. */
5082 if (TREE_CODE (function) == ADDR_EXPR
5083 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
5084 function = TREE_OPERAND (function, 0);
5085
5086 /* Handle an ObjC selector specially for diagnostics. */
5087 selector = objc_message_selector ();
5088 rname = function;
5089 if (selector && parmnum > 2)
5090 {
5091 rname = selector;
5092 parmnum -= 2;
5093 }
5094 }
5095
5096 /* This macro is used to emit diagnostics to ensure that all format
5097 strings are complete sentences, visible to gettext and checked at
5098 compile time. */
5099 #define WARN_FOR_ASSIGNMENT(LOCATION, OPT, AR, AS, IN, RE) \
5100 do { \
5101 switch (errtype) \
5102 { \
5103 case ic_argpass: \
5104 if (pedwarn (LOCATION, OPT, AR, parmnum, rname)) \
5105 inform ((fundecl && !DECL_IS_BUILTIN (fundecl)) \
5106 ? DECL_SOURCE_LOCATION (fundecl) : LOCATION, \
5107 "expected %qT but argument is of type %qT", \
5108 type, rhstype); \
5109 break; \
5110 case ic_assign: \
5111 pedwarn (LOCATION, OPT, AS); \
5112 break; \
5113 case ic_init: \
5114 pedwarn_init (LOCATION, OPT, IN); \
5115 break; \
5116 case ic_return: \
5117 pedwarn (LOCATION, OPT, RE); \
5118 break; \
5119 default: \
5120 gcc_unreachable (); \
5121 } \
5122 } while (0)
5123
5124 /* This macro is used to emit diagnostics to ensure that all format
5125 strings are complete sentences, visible to gettext and checked at
5126 compile time. It is the same as WARN_FOR_ASSIGNMENT but with an
5127 extra parameter to enumerate qualifiers. */
5128
5129 #define WARN_FOR_QUALIFIERS(LOCATION, OPT, AR, AS, IN, RE, QUALS) \
5130 do { \
5131 switch (errtype) \
5132 { \
5133 case ic_argpass: \
5134 if (pedwarn (LOCATION, OPT, AR, parmnum, rname, QUALS)) \
5135 inform ((fundecl && !DECL_IS_BUILTIN (fundecl)) \
5136 ? DECL_SOURCE_LOCATION (fundecl) : LOCATION, \
5137 "expected %qT but argument is of type %qT", \
5138 type, rhstype); \
5139 break; \
5140 case ic_assign: \
5141 pedwarn (LOCATION, OPT, AS, QUALS); \
5142 break; \
5143 case ic_init: \
5144 pedwarn (LOCATION, OPT, IN, QUALS); \
5145 break; \
5146 case ic_return: \
5147 pedwarn (LOCATION, OPT, RE, QUALS); \
5148 break; \
5149 default: \
5150 gcc_unreachable (); \
5151 } \
5152 } while (0)
5153
5154 if (TREE_CODE (rhs) == EXCESS_PRECISION_EXPR)
5155 rhs = TREE_OPERAND (rhs, 0);
5156
5157 rhstype = TREE_TYPE (rhs);
5158 coder = TREE_CODE (rhstype);
5159
5160 if (coder == ERROR_MARK)
5161 return error_mark_node;
5162
5163 if (c_dialect_objc ())
5164 {
5165 int parmno;
5166
5167 switch (errtype)
5168 {
5169 case ic_return:
5170 parmno = 0;
5171 break;
5172
5173 case ic_assign:
5174 parmno = -1;
5175 break;
5176
5177 case ic_init:
5178 parmno = -2;
5179 break;
5180
5181 default:
5182 parmno = parmnum;
5183 break;
5184 }
5185
5186 objc_ok = objc_compare_types (type, rhstype, parmno, rname);
5187 }
5188
5189 if (warn_cxx_compat)
5190 {
5191 tree checktype = origtype != NULL_TREE ? origtype : rhstype;
5192 if (checktype != error_mark_node
5193 && TREE_CODE (type) == ENUMERAL_TYPE
5194 && TYPE_MAIN_VARIANT (checktype) != TYPE_MAIN_VARIANT (type))
5195 {
5196 WARN_FOR_ASSIGNMENT (input_location, OPT_Wc___compat,
5197 G_("enum conversion when passing argument "
5198 "%d of %qE is invalid in C++"),
5199 G_("enum conversion in assignment is "
5200 "invalid in C++"),
5201 G_("enum conversion in initialization is "
5202 "invalid in C++"),
5203 G_("enum conversion in return is "
5204 "invalid in C++"));
5205 }
5206 }
5207
5208 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
5209 return rhs;
5210
5211 if (coder == VOID_TYPE)
5212 {
5213 /* Except for passing an argument to an unprototyped function,
5214 this is a constraint violation. When passing an argument to
5215 an unprototyped function, it is compile-time undefined;
5216 making it a constraint in that case was rejected in
5217 DR#252. */
5218 error_at (location, "void value not ignored as it ought to be");
5219 return error_mark_node;
5220 }
5221 rhs = require_complete_type (rhs);
5222 if (rhs == error_mark_node)
5223 return error_mark_node;
5224 /* A type converts to a reference to it.
5225 This code doesn't fully support references, it's just for the
5226 special case of va_start and va_copy. */
5227 if (codel == REFERENCE_TYPE
5228 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
5229 {
5230 if (!lvalue_p (rhs))
5231 {
5232 error_at (location, "cannot pass rvalue to reference parameter");
5233 return error_mark_node;
5234 }
5235 if (!c_mark_addressable (rhs))
5236 return error_mark_node;
5237 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
5238 SET_EXPR_LOCATION (rhs, location);
5239
5240 /* We already know that these two types are compatible, but they
5241 may not be exactly identical. In fact, `TREE_TYPE (type)' is
5242 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
5243 likely to be va_list, a typedef to __builtin_va_list, which
5244 is different enough that it will cause problems later. */
5245 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
5246 {
5247 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
5248 SET_EXPR_LOCATION (rhs, location);
5249 }
5250
5251 rhs = build1 (NOP_EXPR, type, rhs);
5252 SET_EXPR_LOCATION (rhs, location);
5253 return rhs;
5254 }
5255 /* Some types can interconvert without explicit casts. */
5256 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
5257 && vector_types_convertible_p (type, TREE_TYPE (rhs), true))
5258 return convert (type, rhs);
5259 /* Arithmetic types all interconvert, and enum is treated like int. */
5260 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
5261 || codel == FIXED_POINT_TYPE
5262 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
5263 || codel == BOOLEAN_TYPE)
5264 && (coder == INTEGER_TYPE || coder == REAL_TYPE
5265 || coder == FIXED_POINT_TYPE
5266 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
5267 || coder == BOOLEAN_TYPE))
5268 {
5269 tree ret;
5270 bool save = in_late_binary_op;
5271 if (codel == BOOLEAN_TYPE || codel == COMPLEX_TYPE)
5272 in_late_binary_op = true;
5273 ret = convert_and_check (type, orig_rhs);
5274 if (codel == BOOLEAN_TYPE || codel == COMPLEX_TYPE)
5275 in_late_binary_op = save;
5276 return ret;
5277 }
5278
5279 /* Aggregates in different TUs might need conversion. */
5280 if ((codel == RECORD_TYPE || codel == UNION_TYPE)
5281 && codel == coder
5282 && comptypes (type, rhstype))
5283 return convert_and_check (type, rhs);
5284
5285 /* Conversion to a transparent union or record from its member types.
5286 This applies only to function arguments. */
5287 if (((codel == UNION_TYPE || codel == RECORD_TYPE)
5288 && TYPE_TRANSPARENT_AGGR (type))
5289 && errtype == ic_argpass)
5290 {
5291 tree memb, marginal_memb = NULL_TREE;
5292
5293 for (memb = TYPE_FIELDS (type); memb ; memb = DECL_CHAIN (memb))
5294 {
5295 tree memb_type = TREE_TYPE (memb);
5296
5297 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
5298 TYPE_MAIN_VARIANT (rhstype)))
5299 break;
5300
5301 if (TREE_CODE (memb_type) != POINTER_TYPE)
5302 continue;
5303
5304 if (coder == POINTER_TYPE)
5305 {
5306 tree ttl = TREE_TYPE (memb_type);
5307 tree ttr = TREE_TYPE (rhstype);
5308
5309 /* Any non-function converts to a [const][volatile] void *
5310 and vice versa; otherwise, targets must be the same.
5311 Meanwhile, the lhs target must have all the qualifiers of
5312 the rhs. */
5313 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
5314 || comp_target_types (location, memb_type, rhstype))
5315 {
5316 /* If this type won't generate any warnings, use it. */
5317 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
5318 || ((TREE_CODE (ttr) == FUNCTION_TYPE
5319 && TREE_CODE (ttl) == FUNCTION_TYPE)
5320 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
5321 == TYPE_QUALS (ttr))
5322 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
5323 == TYPE_QUALS (ttl))))
5324 break;
5325
5326 /* Keep looking for a better type, but remember this one. */
5327 if (!marginal_memb)
5328 marginal_memb = memb;
5329 }
5330 }
5331
5332 /* Can convert integer zero to any pointer type. */
5333 if (null_pointer_constant)
5334 {
5335 rhs = null_pointer_node;
5336 break;
5337 }
5338 }
5339
5340 if (memb || marginal_memb)
5341 {
5342 if (!memb)
5343 {
5344 /* We have only a marginally acceptable member type;
5345 it needs a warning. */
5346 tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
5347 tree ttr = TREE_TYPE (rhstype);
5348
5349 /* Const and volatile mean something different for function
5350 types, so the usual warnings are not appropriate. */
5351 if (TREE_CODE (ttr) == FUNCTION_TYPE
5352 && TREE_CODE (ttl) == FUNCTION_TYPE)
5353 {
5354 /* Because const and volatile on functions are
5355 restrictions that say the function will not do
5356 certain things, it is okay to use a const or volatile
5357 function where an ordinary one is wanted, but not
5358 vice-versa. */
5359 if (TYPE_QUALS_NO_ADDR_SPACE (ttl)
5360 & ~TYPE_QUALS_NO_ADDR_SPACE (ttr))
5361 WARN_FOR_QUALIFIERS (location, 0,
5362 G_("passing argument %d of %qE "
5363 "makes %q#v qualified function "
5364 "pointer from unqualified"),
5365 G_("assignment makes %q#v qualified "
5366 "function pointer from "
5367 "unqualified"),
5368 G_("initialization makes %q#v qualified "
5369 "function pointer from "
5370 "unqualified"),
5371 G_("return makes %q#v qualified function "
5372 "pointer from unqualified"),
5373 TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr));
5374 }
5375 else if (TYPE_QUALS_NO_ADDR_SPACE (ttr)
5376 & ~TYPE_QUALS_NO_ADDR_SPACE (ttl))
5377 WARN_FOR_QUALIFIERS (location, 0,
5378 G_("passing argument %d of %qE discards "
5379 "%qv qualifier from pointer target type"),
5380 G_("assignment discards %qv qualifier "
5381 "from pointer target type"),
5382 G_("initialization discards %qv qualifier "
5383 "from pointer target type"),
5384 G_("return discards %qv qualifier from "
5385 "pointer target type"),
5386 TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl));
5387
5388 memb = marginal_memb;
5389 }
5390
5391 if (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl))
5392 pedwarn (location, OPT_pedantic,
5393 "ISO C prohibits argument conversion to union type");
5394
5395 rhs = fold_convert_loc (location, TREE_TYPE (memb), rhs);
5396 return build_constructor_single (type, memb, rhs);
5397 }
5398 }
5399
5400 /* Conversions among pointers */
5401 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
5402 && (coder == codel))
5403 {
5404 tree ttl = TREE_TYPE (type);
5405 tree ttr = TREE_TYPE (rhstype);
5406 tree mvl = ttl;
5407 tree mvr = ttr;
5408 bool is_opaque_pointer;
5409 int target_cmp = 0; /* Cache comp_target_types () result. */
5410 addr_space_t asl;
5411 addr_space_t asr;
5412
5413 if (TREE_CODE (mvl) != ARRAY_TYPE)
5414 mvl = TYPE_MAIN_VARIANT (mvl);
5415 if (TREE_CODE (mvr) != ARRAY_TYPE)
5416 mvr = TYPE_MAIN_VARIANT (mvr);
5417 /* Opaque pointers are treated like void pointers. */
5418 is_opaque_pointer = vector_targets_convertible_p (ttl, ttr);
5419
5420 /* The Plan 9 compiler permits a pointer to a struct to be
5421 automatically converted into a pointer to an anonymous field
5422 within the struct. */
5423 if (flag_plan9_extensions
5424 && (TREE_CODE (mvl) == RECORD_TYPE || TREE_CODE(mvl) == UNION_TYPE)
5425 && (TREE_CODE (mvr) == RECORD_TYPE || TREE_CODE(mvr) == UNION_TYPE)
5426 && mvl != mvr)
5427 {
5428 tree new_rhs = convert_to_anonymous_field (location, type, rhs);
5429 if (new_rhs != NULL_TREE)
5430 {
5431 rhs = new_rhs;
5432 rhstype = TREE_TYPE (rhs);
5433 coder = TREE_CODE (rhstype);
5434 ttr = TREE_TYPE (rhstype);
5435 mvr = TYPE_MAIN_VARIANT (ttr);
5436 }
5437 }
5438
5439 /* C++ does not allow the implicit conversion void* -> T*. However,
5440 for the purpose of reducing the number of false positives, we
5441 tolerate the special case of
5442
5443 int *p = NULL;
5444
5445 where NULL is typically defined in C to be '(void *) 0'. */
5446 if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
5447 warning_at (location, OPT_Wc___compat,
5448 "request for implicit conversion "
5449 "from %qT to %qT not permitted in C++", rhstype, type);
5450
5451 /* See if the pointers point to incompatible address spaces. */
5452 asl = TYPE_ADDR_SPACE (ttl);
5453 asr = TYPE_ADDR_SPACE (ttr);
5454 if (!null_pointer_constant_p (rhs)
5455 && asr != asl && !targetm.addr_space.subset_p (asr, asl))
5456 {
5457 switch (errtype)
5458 {
5459 case ic_argpass:
5460 error_at (location, "passing argument %d of %qE from pointer to "
5461 "non-enclosed address space", parmnum, rname);
5462 break;
5463 case ic_assign:
5464 error_at (location, "assignment from pointer to "
5465 "non-enclosed address space");
5466 break;
5467 case ic_init:
5468 error_at (location, "initialization from pointer to "
5469 "non-enclosed address space");
5470 break;
5471 case ic_return:
5472 error_at (location, "return from pointer to "
5473 "non-enclosed address space");
5474 break;
5475 default:
5476 gcc_unreachable ();
5477 }
5478 return error_mark_node;
5479 }
5480
5481 /* Check if the right-hand side has a format attribute but the
5482 left-hand side doesn't. */
5483 if (warn_missing_format_attribute
5484 && check_missing_format_attribute (type, rhstype))
5485 {
5486 switch (errtype)
5487 {
5488 case ic_argpass:
5489 warning_at (location, OPT_Wmissing_format_attribute,
5490 "argument %d of %qE might be "
5491 "a candidate for a format attribute",
5492 parmnum, rname);
5493 break;
5494 case ic_assign:
5495 warning_at (location, OPT_Wmissing_format_attribute,
5496 "assignment left-hand side might be "
5497 "a candidate for a format attribute");
5498 break;
5499 case ic_init:
5500 warning_at (location, OPT_Wmissing_format_attribute,
5501 "initialization left-hand side might be "
5502 "a candidate for a format attribute");
5503 break;
5504 case ic_return:
5505 warning_at (location, OPT_Wmissing_format_attribute,
5506 "return type might be "
5507 "a candidate for a format attribute");
5508 break;
5509 default:
5510 gcc_unreachable ();
5511 }
5512 }
5513
5514 /* Any non-function converts to a [const][volatile] void *
5515 and vice versa; otherwise, targets must be the same.
5516 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
5517 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
5518 || (target_cmp = comp_target_types (location, type, rhstype))
5519 || is_opaque_pointer
5520 || (c_common_unsigned_type (mvl)
5521 == c_common_unsigned_type (mvr)))
5522 {
5523 if (pedantic
5524 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
5525 ||
5526 (VOID_TYPE_P (ttr)
5527 && !null_pointer_constant
5528 && TREE_CODE (ttl) == FUNCTION_TYPE)))
5529 WARN_FOR_ASSIGNMENT (location, OPT_pedantic,
5530 G_("ISO C forbids passing argument %d of "
5531 "%qE between function pointer "
5532 "and %<void *%>"),
5533 G_("ISO C forbids assignment between "
5534 "function pointer and %<void *%>"),
5535 G_("ISO C forbids initialization between "
5536 "function pointer and %<void *%>"),
5537 G_("ISO C forbids return between function "
5538 "pointer and %<void *%>"));
5539 /* Const and volatile mean something different for function types,
5540 so the usual warnings are not appropriate. */
5541 else if (TREE_CODE (ttr) != FUNCTION_TYPE
5542 && TREE_CODE (ttl) != FUNCTION_TYPE)
5543 {
5544 if (TYPE_QUALS_NO_ADDR_SPACE (ttr)
5545 & ~TYPE_QUALS_NO_ADDR_SPACE (ttl))
5546 {
5547 WARN_FOR_QUALIFIERS (location, 0,
5548 G_("passing argument %d of %qE discards "
5549 "%qv qualifier from pointer target type"),
5550 G_("assignment discards %qv qualifier "
5551 "from pointer target type"),
5552 G_("initialization discards %qv qualifier "
5553 "from pointer target type"),
5554 G_("return discards %qv qualifier from "
5555 "pointer target type"),
5556 TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl));
5557 }
5558 /* If this is not a case of ignoring a mismatch in signedness,
5559 no warning. */
5560 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
5561 || target_cmp)
5562 ;
5563 /* If there is a mismatch, do warn. */
5564 else if (warn_pointer_sign)
5565 WARN_FOR_ASSIGNMENT (location, OPT_Wpointer_sign,
5566 G_("pointer targets in passing argument "
5567 "%d of %qE differ in signedness"),
5568 G_("pointer targets in assignment "
5569 "differ in signedness"),
5570 G_("pointer targets in initialization "
5571 "differ in signedness"),
5572 G_("pointer targets in return differ "
5573 "in signedness"));
5574 }
5575 else if (TREE_CODE (ttl) == FUNCTION_TYPE
5576 && TREE_CODE (ttr) == FUNCTION_TYPE)
5577 {
5578 /* Because const and volatile on functions are restrictions
5579 that say the function will not do certain things,
5580 it is okay to use a const or volatile function
5581 where an ordinary one is wanted, but not vice-versa. */
5582 if (TYPE_QUALS_NO_ADDR_SPACE (ttl)
5583 & ~TYPE_QUALS_NO_ADDR_SPACE (ttr))
5584 WARN_FOR_QUALIFIERS (location, 0,
5585 G_("passing argument %d of %qE makes "
5586 "%q#v qualified function pointer "
5587 "from unqualified"),
5588 G_("assignment makes %q#v qualified function "
5589 "pointer from unqualified"),
5590 G_("initialization makes %q#v qualified "
5591 "function pointer from unqualified"),
5592 G_("return makes %q#v qualified function "
5593 "pointer from unqualified"),
5594 TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr));
5595 }
5596 }
5597 else
5598 /* Avoid warning about the volatile ObjC EH puts on decls. */
5599 if (!objc_ok)
5600 WARN_FOR_ASSIGNMENT (location, 0,
5601 G_("passing argument %d of %qE from "
5602 "incompatible pointer type"),
5603 G_("assignment from incompatible pointer type"),
5604 G_("initialization from incompatible "
5605 "pointer type"),
5606 G_("return from incompatible pointer type"));
5607
5608 return convert (type, rhs);
5609 }
5610 else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
5611 {
5612 /* ??? This should not be an error when inlining calls to
5613 unprototyped functions. */
5614 error_at (location, "invalid use of non-lvalue array");
5615 return error_mark_node;
5616 }
5617 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
5618 {
5619 /* An explicit constant 0 can convert to a pointer,
5620 or one that results from arithmetic, even including
5621 a cast to integer type. */
5622 if (!null_pointer_constant)
5623 WARN_FOR_ASSIGNMENT (location, 0,
5624 G_("passing argument %d of %qE makes "
5625 "pointer from integer without a cast"),
5626 G_("assignment makes pointer from integer "
5627 "without a cast"),
5628 G_("initialization makes pointer from "
5629 "integer without a cast"),
5630 G_("return makes pointer from integer "
5631 "without a cast"));
5632
5633 return convert (type, rhs);
5634 }
5635 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
5636 {
5637 WARN_FOR_ASSIGNMENT (location, 0,
5638 G_("passing argument %d of %qE makes integer "
5639 "from pointer without a cast"),
5640 G_("assignment makes integer from pointer "
5641 "without a cast"),
5642 G_("initialization makes integer from pointer "
5643 "without a cast"),
5644 G_("return makes integer from pointer "
5645 "without a cast"));
5646 return convert (type, rhs);
5647 }
5648 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
5649 {
5650 tree ret;
5651 bool save = in_late_binary_op;
5652 in_late_binary_op = true;
5653 ret = convert (type, rhs);
5654 in_late_binary_op = save;
5655 return ret;
5656 }
5657
5658 switch (errtype)
5659 {
5660 case ic_argpass:
5661 error_at (location, "incompatible type for argument %d of %qE", parmnum, rname);
5662 inform ((fundecl && !DECL_IS_BUILTIN (fundecl))
5663 ? DECL_SOURCE_LOCATION (fundecl) : input_location,
5664 "expected %qT but argument is of type %qT", type, rhstype);
5665 break;
5666 case ic_assign:
5667 error_at (location, "incompatible types when assigning to type %qT from "
5668 "type %qT", type, rhstype);
5669 break;
5670 case ic_init:
5671 error_at (location,
5672 "incompatible types when initializing type %qT using type %qT",
5673 type, rhstype);
5674 break;
5675 case ic_return:
5676 error_at (location,
5677 "incompatible types when returning type %qT but %qT was "
5678 "expected", rhstype, type);
5679 break;
5680 default:
5681 gcc_unreachable ();
5682 }
5683
5684 return error_mark_node;
5685 }
5686 \f
5687 /* If VALUE is a compound expr all of whose expressions are constant, then
5688 return its value. Otherwise, return error_mark_node.
5689
5690 This is for handling COMPOUND_EXPRs as initializer elements
5691 which is allowed with a warning when -pedantic is specified. */
5692
5693 static tree
5694 valid_compound_expr_initializer (tree value, tree endtype)
5695 {
5696 if (TREE_CODE (value) == COMPOUND_EXPR)
5697 {
5698 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
5699 == error_mark_node)
5700 return error_mark_node;
5701 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
5702 endtype);
5703 }
5704 else if (!initializer_constant_valid_p (value, endtype))
5705 return error_mark_node;
5706 else
5707 return value;
5708 }
5709 \f
5710 /* Perform appropriate conversions on the initial value of a variable,
5711 store it in the declaration DECL,
5712 and print any error messages that are appropriate.
5713 If ORIGTYPE is not NULL_TREE, it is the original type of INIT.
5714 If the init is invalid, store an ERROR_MARK.
5715
5716 INIT_LOC is the location of the initial value. */
5717
5718 void
5719 store_init_value (location_t init_loc, tree decl, tree init, tree origtype)
5720 {
5721 tree value, type;
5722 bool npc = false;
5723
5724 /* If variable's type was invalidly declared, just ignore it. */
5725
5726 type = TREE_TYPE (decl);
5727 if (TREE_CODE (type) == ERROR_MARK)
5728 return;
5729
5730 /* Digest the specified initializer into an expression. */
5731
5732 if (init)
5733 npc = null_pointer_constant_p (init);
5734 value = digest_init (init_loc, type, init, origtype, npc,
5735 true, TREE_STATIC (decl));
5736
5737 /* Store the expression if valid; else report error. */
5738
5739 if (!in_system_header
5740 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
5741 warning (OPT_Wtraditional, "traditional C rejects automatic "
5742 "aggregate initialization");
5743
5744 DECL_INITIAL (decl) = value;
5745
5746 /* ANSI wants warnings about out-of-range constant initializers. */
5747 STRIP_TYPE_NOPS (value);
5748 if (TREE_STATIC (decl))
5749 constant_expression_warning (value);
5750
5751 /* Check if we need to set array size from compound literal size. */
5752 if (TREE_CODE (type) == ARRAY_TYPE
5753 && TYPE_DOMAIN (type) == 0
5754 && value != error_mark_node)
5755 {
5756 tree inside_init = init;
5757
5758 STRIP_TYPE_NOPS (inside_init);
5759 inside_init = fold (inside_init);
5760
5761 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
5762 {
5763 tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
5764
5765 if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
5766 {
5767 /* For int foo[] = (int [3]){1}; we need to set array size
5768 now since later on array initializer will be just the
5769 brace enclosed list of the compound literal. */
5770 tree etype = strip_array_types (TREE_TYPE (decl));
5771 type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
5772 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
5773 layout_type (type);
5774 layout_decl (cldecl, 0);
5775 TREE_TYPE (decl)
5776 = c_build_qualified_type (type, TYPE_QUALS (etype));
5777 }
5778 }
5779 }
5780 }
5781 \f
5782 /* Methods for storing and printing names for error messages. */
5783
5784 /* Implement a spelling stack that allows components of a name to be pushed
5785 and popped. Each element on the stack is this structure. */
5786
5787 struct spelling
5788 {
5789 int kind;
5790 union
5791 {
5792 unsigned HOST_WIDE_INT i;
5793 const char *s;
5794 } u;
5795 };
5796
5797 #define SPELLING_STRING 1
5798 #define SPELLING_MEMBER 2
5799 #define SPELLING_BOUNDS 3
5800
5801 static struct spelling *spelling; /* Next stack element (unused). */
5802 static struct spelling *spelling_base; /* Spelling stack base. */
5803 static int spelling_size; /* Size of the spelling stack. */
5804
5805 /* Macros to save and restore the spelling stack around push_... functions.
5806 Alternative to SAVE_SPELLING_STACK. */
5807
5808 #define SPELLING_DEPTH() (spelling - spelling_base)
5809 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
5810
5811 /* Push an element on the spelling stack with type KIND and assign VALUE
5812 to MEMBER. */
5813
5814 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
5815 { \
5816 int depth = SPELLING_DEPTH (); \
5817 \
5818 if (depth >= spelling_size) \
5819 { \
5820 spelling_size += 10; \
5821 spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
5822 spelling_size); \
5823 RESTORE_SPELLING_DEPTH (depth); \
5824 } \
5825 \
5826 spelling->kind = (KIND); \
5827 spelling->MEMBER = (VALUE); \
5828 spelling++; \
5829 }
5830
5831 /* Push STRING on the stack. Printed literally. */
5832
5833 static void
5834 push_string (const char *string)
5835 {
5836 PUSH_SPELLING (SPELLING_STRING, string, u.s);
5837 }
5838
5839 /* Push a member name on the stack. Printed as '.' STRING. */
5840
5841 static void
5842 push_member_name (tree decl)
5843 {
5844 const char *const string
5845 = (DECL_NAME (decl)
5846 ? identifier_to_locale (IDENTIFIER_POINTER (DECL_NAME (decl)))
5847 : _("<anonymous>"));
5848 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
5849 }
5850
5851 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
5852
5853 static void
5854 push_array_bounds (unsigned HOST_WIDE_INT bounds)
5855 {
5856 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
5857 }
5858
5859 /* Compute the maximum size in bytes of the printed spelling. */
5860
5861 static int
5862 spelling_length (void)
5863 {
5864 int size = 0;
5865 struct spelling *p;
5866
5867 for (p = spelling_base; p < spelling; p++)
5868 {
5869 if (p->kind == SPELLING_BOUNDS)
5870 size += 25;
5871 else
5872 size += strlen (p->u.s) + 1;
5873 }
5874
5875 return size;
5876 }
5877
5878 /* Print the spelling to BUFFER and return it. */
5879
5880 static char *
5881 print_spelling (char *buffer)
5882 {
5883 char *d = buffer;
5884 struct spelling *p;
5885
5886 for (p = spelling_base; p < spelling; p++)
5887 if (p->kind == SPELLING_BOUNDS)
5888 {
5889 sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
5890 d += strlen (d);
5891 }
5892 else
5893 {
5894 const char *s;
5895 if (p->kind == SPELLING_MEMBER)
5896 *d++ = '.';
5897 for (s = p->u.s; (*d = *s++); d++)
5898 ;
5899 }
5900 *d++ = '\0';
5901 return buffer;
5902 }
5903
5904 /* Issue an error message for a bad initializer component.
5905 GMSGID identifies the message.
5906 The component name is taken from the spelling stack. */
5907
5908 void
5909 error_init (const char *gmsgid)
5910 {
5911 char *ofwhat;
5912
5913 /* The gmsgid may be a format string with %< and %>. */
5914 error (gmsgid);
5915 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
5916 if (*ofwhat)
5917 error ("(near initialization for %qs)", ofwhat);
5918 }
5919
5920 /* Issue a pedantic warning for a bad initializer component. OPT is
5921 the option OPT_* (from options.h) controlling this warning or 0 if
5922 it is unconditionally given. GMSGID identifies the message. The
5923 component name is taken from the spelling stack. */
5924
5925 void
5926 pedwarn_init (location_t location, int opt, const char *gmsgid)
5927 {
5928 char *ofwhat;
5929
5930 /* The gmsgid may be a format string with %< and %>. */
5931 pedwarn (location, opt, gmsgid);
5932 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
5933 if (*ofwhat)
5934 pedwarn (location, opt, "(near initialization for %qs)", ofwhat);
5935 }
5936
5937 /* Issue a warning for a bad initializer component.
5938
5939 OPT is the OPT_W* value corresponding to the warning option that
5940 controls this warning. GMSGID identifies the message. The
5941 component name is taken from the spelling stack. */
5942
5943 static void
5944 warning_init (int opt, const char *gmsgid)
5945 {
5946 char *ofwhat;
5947
5948 /* The gmsgid may be a format string with %< and %>. */
5949 warning (opt, gmsgid);
5950 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
5951 if (*ofwhat)
5952 warning (opt, "(near initialization for %qs)", ofwhat);
5953 }
5954 \f
5955 /* If TYPE is an array type and EXPR is a parenthesized string
5956 constant, warn if pedantic that EXPR is being used to initialize an
5957 object of type TYPE. */
5958
5959 void
5960 maybe_warn_string_init (tree type, struct c_expr expr)
5961 {
5962 if (pedantic
5963 && TREE_CODE (type) == ARRAY_TYPE
5964 && TREE_CODE (expr.value) == STRING_CST
5965 && expr.original_code != STRING_CST)
5966 pedwarn_init (input_location, OPT_pedantic,
5967 "array initialized from parenthesized string constant");
5968 }
5969
5970 /* Digest the parser output INIT as an initializer for type TYPE.
5971 Return a C expression of type TYPE to represent the initial value.
5972
5973 If ORIGTYPE is not NULL_TREE, it is the original type of INIT.
5974
5975 NULL_POINTER_CONSTANT is true if INIT is a null pointer constant.
5976
5977 If INIT is a string constant, STRICT_STRING is true if it is
5978 unparenthesized or we should not warn here for it being parenthesized.
5979 For other types of INIT, STRICT_STRING is not used.
5980
5981 INIT_LOC is the location of the INIT.
5982
5983 REQUIRE_CONSTANT requests an error if non-constant initializers or
5984 elements are seen. */
5985
5986 static tree
5987 digest_init (location_t init_loc, tree type, tree init, tree origtype,
5988 bool null_pointer_constant, bool strict_string,
5989 int require_constant)
5990 {
5991 enum tree_code code = TREE_CODE (type);
5992 tree inside_init = init;
5993 tree semantic_type = NULL_TREE;
5994 bool maybe_const = true;
5995
5996 if (type == error_mark_node
5997 || !init
5998 || init == error_mark_node
5999 || TREE_TYPE (init) == error_mark_node)
6000 return error_mark_node;
6001
6002 STRIP_TYPE_NOPS (inside_init);
6003
6004 if (TREE_CODE (inside_init) == EXCESS_PRECISION_EXPR)
6005 {
6006 semantic_type = TREE_TYPE (inside_init);
6007 inside_init = TREE_OPERAND (inside_init, 0);
6008 }
6009 inside_init = c_fully_fold (inside_init, require_constant, &maybe_const);
6010 inside_init = decl_constant_value_for_optimization (inside_init);
6011
6012 /* Initialization of an array of chars from a string constant
6013 optionally enclosed in braces. */
6014
6015 if (code == ARRAY_TYPE && inside_init
6016 && TREE_CODE (inside_init) == STRING_CST)
6017 {
6018 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
6019 /* Note that an array could be both an array of character type
6020 and an array of wchar_t if wchar_t is signed char or unsigned
6021 char. */
6022 bool char_array = (typ1 == char_type_node
6023 || typ1 == signed_char_type_node
6024 || typ1 == unsigned_char_type_node);
6025 bool wchar_array = !!comptypes (typ1, wchar_type_node);
6026 bool char16_array = !!comptypes (typ1, char16_type_node);
6027 bool char32_array = !!comptypes (typ1, char32_type_node);
6028
6029 if (char_array || wchar_array || char16_array || char32_array)
6030 {
6031 struct c_expr expr;
6032 tree typ2 = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)));
6033 expr.value = inside_init;
6034 expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
6035 expr.original_type = NULL;
6036 maybe_warn_string_init (type, expr);
6037
6038 if (TYPE_DOMAIN (type) && !TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
6039 pedwarn_init (init_loc, OPT_pedantic,
6040 "initialization of a flexible array member");
6041
6042 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
6043 TYPE_MAIN_VARIANT (type)))
6044 return inside_init;
6045
6046 if (char_array)
6047 {
6048 if (typ2 != char_type_node)
6049 {
6050 error_init ("char-array initialized from wide string");
6051 return error_mark_node;
6052 }
6053 }
6054 else
6055 {
6056 if (typ2 == char_type_node)
6057 {
6058 error_init ("wide character array initialized from non-wide "
6059 "string");
6060 return error_mark_node;
6061 }
6062 else if (!comptypes(typ1, typ2))
6063 {
6064 error_init ("wide character array initialized from "
6065 "incompatible wide string");
6066 return error_mark_node;
6067 }
6068 }
6069
6070 TREE_TYPE (inside_init) = type;
6071 if (TYPE_DOMAIN (type) != 0
6072 && TYPE_SIZE (type) != 0
6073 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
6074 {
6075 unsigned HOST_WIDE_INT len = TREE_STRING_LENGTH (inside_init);
6076
6077 /* Subtract the size of a single (possibly wide) character
6078 because it's ok to ignore the terminating null char
6079 that is counted in the length of the constant. */
6080 if (0 > compare_tree_int (TYPE_SIZE_UNIT (type),
6081 (len
6082 - (TYPE_PRECISION (typ1)
6083 / BITS_PER_UNIT))))
6084 pedwarn_init (init_loc, 0,
6085 ("initializer-string for array of chars "
6086 "is too long"));
6087 else if (warn_cxx_compat
6088 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type), len))
6089 warning_at (init_loc, OPT_Wc___compat,
6090 ("initializer-string for array chars "
6091 "is too long for C++"));
6092 }
6093
6094 return inside_init;
6095 }
6096 else if (INTEGRAL_TYPE_P (typ1))
6097 {
6098 error_init ("array of inappropriate type initialized "
6099 "from string constant");
6100 return error_mark_node;
6101 }
6102 }
6103
6104 /* Build a VECTOR_CST from a *constant* vector constructor. If the
6105 vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
6106 below and handle as a constructor. */
6107 if (code == VECTOR_TYPE
6108 && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
6109 && vector_types_convertible_p (TREE_TYPE (inside_init), type, true)
6110 && TREE_CONSTANT (inside_init))
6111 {
6112 if (TREE_CODE (inside_init) == VECTOR_CST
6113 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
6114 TYPE_MAIN_VARIANT (type)))
6115 return inside_init;
6116
6117 if (TREE_CODE (inside_init) == CONSTRUCTOR)
6118 {
6119 unsigned HOST_WIDE_INT ix;
6120 tree value;
6121 bool constant_p = true;
6122
6123 /* Iterate through elements and check if all constructor
6124 elements are *_CSTs. */
6125 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
6126 if (!CONSTANT_CLASS_P (value))
6127 {
6128 constant_p = false;
6129 break;
6130 }
6131
6132 if (constant_p)
6133 return build_vector_from_ctor (type,
6134 CONSTRUCTOR_ELTS (inside_init));
6135 }
6136 }
6137
6138 if (warn_sequence_point)
6139 verify_sequence_points (inside_init);
6140
6141 /* Any type can be initialized
6142 from an expression of the same type, optionally with braces. */
6143
6144 if (inside_init && TREE_TYPE (inside_init) != 0
6145 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
6146 TYPE_MAIN_VARIANT (type))
6147 || (code == ARRAY_TYPE
6148 && comptypes (TREE_TYPE (inside_init), type))
6149 || (code == VECTOR_TYPE
6150 && comptypes (TREE_TYPE (inside_init), type))
6151 || (code == POINTER_TYPE
6152 && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
6153 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
6154 TREE_TYPE (type)))))
6155 {
6156 if (code == POINTER_TYPE)
6157 {
6158 if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
6159 {
6160 if (TREE_CODE (inside_init) == STRING_CST
6161 || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
6162 inside_init = array_to_pointer_conversion
6163 (init_loc, inside_init);
6164 else
6165 {
6166 error_init ("invalid use of non-lvalue array");
6167 return error_mark_node;
6168 }
6169 }
6170 }
6171
6172 if (code == VECTOR_TYPE)
6173 /* Although the types are compatible, we may require a
6174 conversion. */
6175 inside_init = convert (type, inside_init);
6176
6177 if (require_constant
6178 && (code == VECTOR_TYPE || !flag_isoc99)
6179 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
6180 {
6181 /* As an extension, allow initializing objects with static storage
6182 duration with compound literals (which are then treated just as
6183 the brace enclosed list they contain). Also allow this for
6184 vectors, as we can only assign them with compound literals. */
6185 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
6186 inside_init = DECL_INITIAL (decl);
6187 }
6188
6189 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
6190 && TREE_CODE (inside_init) != CONSTRUCTOR)
6191 {
6192 error_init ("array initialized from non-constant array expression");
6193 return error_mark_node;
6194 }
6195
6196 /* Compound expressions can only occur here if -pedantic or
6197 -pedantic-errors is specified. In the later case, we always want
6198 an error. In the former case, we simply want a warning. */
6199 if (require_constant && pedantic
6200 && TREE_CODE (inside_init) == COMPOUND_EXPR)
6201 {
6202 inside_init
6203 = valid_compound_expr_initializer (inside_init,
6204 TREE_TYPE (inside_init));
6205 if (inside_init == error_mark_node)
6206 error_init ("initializer element is not constant");
6207 else
6208 pedwarn_init (init_loc, OPT_pedantic,
6209 "initializer element is not constant");
6210 if (flag_pedantic_errors)
6211 inside_init = error_mark_node;
6212 }
6213 else if (require_constant
6214 && !initializer_constant_valid_p (inside_init,
6215 TREE_TYPE (inside_init)))
6216 {
6217 error_init ("initializer element is not constant");
6218 inside_init = error_mark_node;
6219 }
6220 else if (require_constant && !maybe_const)
6221 pedwarn_init (init_loc, 0,
6222 "initializer element is not a constant expression");
6223
6224 /* Added to enable additional -Wmissing-format-attribute warnings. */
6225 if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
6226 inside_init = convert_for_assignment (init_loc, type, inside_init,
6227 origtype,
6228 ic_init, null_pointer_constant,
6229 NULL_TREE, NULL_TREE, 0);
6230 return inside_init;
6231 }
6232
6233 /* Handle scalar types, including conversions. */
6234
6235 if (code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE
6236 || code == POINTER_TYPE || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
6237 || code == COMPLEX_TYPE || code == VECTOR_TYPE)
6238 {
6239 if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
6240 && (TREE_CODE (init) == STRING_CST
6241 || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
6242 inside_init = init = array_to_pointer_conversion (init_loc, init);
6243 if (semantic_type)
6244 inside_init = build1 (EXCESS_PRECISION_EXPR, semantic_type,
6245 inside_init);
6246 inside_init
6247 = convert_for_assignment (init_loc, type, inside_init, origtype,
6248 ic_init, null_pointer_constant,
6249 NULL_TREE, NULL_TREE, 0);
6250
6251 /* Check to see if we have already given an error message. */
6252 if (inside_init == error_mark_node)
6253 ;
6254 else if (require_constant && !TREE_CONSTANT (inside_init))
6255 {
6256 error_init ("initializer element is not constant");
6257 inside_init = error_mark_node;
6258 }
6259 else if (require_constant
6260 && !initializer_constant_valid_p (inside_init,
6261 TREE_TYPE (inside_init)))
6262 {
6263 error_init ("initializer element is not computable at load time");
6264 inside_init = error_mark_node;
6265 }
6266 else if (require_constant && !maybe_const)
6267 pedwarn_init (init_loc, 0,
6268 "initializer element is not a constant expression");
6269
6270 return inside_init;
6271 }
6272
6273 /* Come here only for records and arrays. */
6274
6275 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
6276 {
6277 error_init ("variable-sized object may not be initialized");
6278 return error_mark_node;
6279 }
6280
6281 error_init ("invalid initializer");
6282 return error_mark_node;
6283 }
6284 \f
6285 /* Handle initializers that use braces. */
6286
6287 /* Type of object we are accumulating a constructor for.
6288 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
6289 static tree constructor_type;
6290
6291 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
6292 left to fill. */
6293 static tree constructor_fields;
6294
6295 /* For an ARRAY_TYPE, this is the specified index
6296 at which to store the next element we get. */
6297 static tree constructor_index;
6298
6299 /* For an ARRAY_TYPE, this is the maximum index. */
6300 static tree constructor_max_index;
6301
6302 /* For a RECORD_TYPE, this is the first field not yet written out. */
6303 static tree constructor_unfilled_fields;
6304
6305 /* For an ARRAY_TYPE, this is the index of the first element
6306 not yet written out. */
6307 static tree constructor_unfilled_index;
6308
6309 /* In a RECORD_TYPE, the byte index of the next consecutive field.
6310 This is so we can generate gaps between fields, when appropriate. */
6311 static tree constructor_bit_index;
6312
6313 /* If we are saving up the elements rather than allocating them,
6314 this is the list of elements so far (in reverse order,
6315 most recent first). */
6316 static VEC(constructor_elt,gc) *constructor_elements;
6317
6318 /* 1 if constructor should be incrementally stored into a constructor chain,
6319 0 if all the elements should be kept in AVL tree. */
6320 static int constructor_incremental;
6321
6322 /* 1 if so far this constructor's elements are all compile-time constants. */
6323 static int constructor_constant;
6324
6325 /* 1 if so far this constructor's elements are all valid address constants. */
6326 static int constructor_simple;
6327
6328 /* 1 if this constructor has an element that cannot be part of a
6329 constant expression. */
6330 static int constructor_nonconst;
6331
6332 /* 1 if this constructor is erroneous so far. */
6333 static int constructor_erroneous;
6334
6335 /* Structure for managing pending initializer elements, organized as an
6336 AVL tree. */
6337
6338 struct init_node
6339 {
6340 struct init_node *left, *right;
6341 struct init_node *parent;
6342 int balance;
6343 tree purpose;
6344 tree value;
6345 tree origtype;
6346 };
6347
6348 /* Tree of pending elements at this constructor level.
6349 These are elements encountered out of order
6350 which belong at places we haven't reached yet in actually
6351 writing the output.
6352 Will never hold tree nodes across GC runs. */
6353 static struct init_node *constructor_pending_elts;
6354
6355 /* The SPELLING_DEPTH of this constructor. */
6356 static int constructor_depth;
6357
6358 /* DECL node for which an initializer is being read.
6359 0 means we are reading a constructor expression
6360 such as (struct foo) {...}. */
6361 static tree constructor_decl;
6362
6363 /* Nonzero if this is an initializer for a top-level decl. */
6364 static int constructor_top_level;
6365
6366 /* Nonzero if there were any member designators in this initializer. */
6367 static int constructor_designated;
6368
6369 /* Nesting depth of designator list. */
6370 static int designator_depth;
6371
6372 /* Nonzero if there were diagnosed errors in this designator list. */
6373 static int designator_erroneous;
6374
6375 \f
6376 /* This stack has a level for each implicit or explicit level of
6377 structuring in the initializer, including the outermost one. It
6378 saves the values of most of the variables above. */
6379
6380 struct constructor_range_stack;
6381
6382 struct constructor_stack
6383 {
6384 struct constructor_stack *next;
6385 tree type;
6386 tree fields;
6387 tree index;
6388 tree max_index;
6389 tree unfilled_index;
6390 tree unfilled_fields;
6391 tree bit_index;
6392 VEC(constructor_elt,gc) *elements;
6393 struct init_node *pending_elts;
6394 int offset;
6395 int depth;
6396 /* If value nonzero, this value should replace the entire
6397 constructor at this level. */
6398 struct c_expr replacement_value;
6399 struct constructor_range_stack *range_stack;
6400 char constant;
6401 char simple;
6402 char nonconst;
6403 char implicit;
6404 char erroneous;
6405 char outer;
6406 char incremental;
6407 char designated;
6408 };
6409
6410 static struct constructor_stack *constructor_stack;
6411
6412 /* This stack represents designators from some range designator up to
6413 the last designator in the list. */
6414
6415 struct constructor_range_stack
6416 {
6417 struct constructor_range_stack *next, *prev;
6418 struct constructor_stack *stack;
6419 tree range_start;
6420 tree index;
6421 tree range_end;
6422 tree fields;
6423 };
6424
6425 static struct constructor_range_stack *constructor_range_stack;
6426
6427 /* This stack records separate initializers that are nested.
6428 Nested initializers can't happen in ANSI C, but GNU C allows them
6429 in cases like { ... (struct foo) { ... } ... }. */
6430
6431 struct initializer_stack
6432 {
6433 struct initializer_stack *next;
6434 tree decl;
6435 struct constructor_stack *constructor_stack;
6436 struct constructor_range_stack *constructor_range_stack;
6437 VEC(constructor_elt,gc) *elements;
6438 struct spelling *spelling;
6439 struct spelling *spelling_base;
6440 int spelling_size;
6441 char top_level;
6442 char require_constant_value;
6443 char require_constant_elements;
6444 };
6445
6446 static struct initializer_stack *initializer_stack;
6447 \f
6448 /* Prepare to parse and output the initializer for variable DECL. */
6449
6450 void
6451 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
6452 {
6453 const char *locus;
6454 struct initializer_stack *p = XNEW (struct initializer_stack);
6455
6456 p->decl = constructor_decl;
6457 p->require_constant_value = require_constant_value;
6458 p->require_constant_elements = require_constant_elements;
6459 p->constructor_stack = constructor_stack;
6460 p->constructor_range_stack = constructor_range_stack;
6461 p->elements = constructor_elements;
6462 p->spelling = spelling;
6463 p->spelling_base = spelling_base;
6464 p->spelling_size = spelling_size;
6465 p->top_level = constructor_top_level;
6466 p->next = initializer_stack;
6467 initializer_stack = p;
6468
6469 constructor_decl = decl;
6470 constructor_designated = 0;
6471 constructor_top_level = top_level;
6472
6473 if (decl != 0 && decl != error_mark_node)
6474 {
6475 require_constant_value = TREE_STATIC (decl);
6476 require_constant_elements
6477 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
6478 /* For a scalar, you can always use any value to initialize,
6479 even within braces. */
6480 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
6481 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
6482 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
6483 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
6484 locus = identifier_to_locale (IDENTIFIER_POINTER (DECL_NAME (decl)));
6485 }
6486 else
6487 {
6488 require_constant_value = 0;
6489 require_constant_elements = 0;
6490 locus = _("(anonymous)");
6491 }
6492
6493 constructor_stack = 0;
6494 constructor_range_stack = 0;
6495
6496 missing_braces_mentioned = 0;
6497
6498 spelling_base = 0;
6499 spelling_size = 0;
6500 RESTORE_SPELLING_DEPTH (0);
6501
6502 if (locus)
6503 push_string (locus);
6504 }
6505
6506 void
6507 finish_init (void)
6508 {
6509 struct initializer_stack *p = initializer_stack;
6510
6511 /* Free the whole constructor stack of this initializer. */
6512 while (constructor_stack)
6513 {
6514 struct constructor_stack *q = constructor_stack;
6515 constructor_stack = q->next;
6516 free (q);
6517 }
6518
6519 gcc_assert (!constructor_range_stack);
6520
6521 /* Pop back to the data of the outer initializer (if any). */
6522 free (spelling_base);
6523
6524 constructor_decl = p->decl;
6525 require_constant_value = p->require_constant_value;
6526 require_constant_elements = p->require_constant_elements;
6527 constructor_stack = p->constructor_stack;
6528 constructor_range_stack = p->constructor_range_stack;
6529 constructor_elements = p->elements;
6530 spelling = p->spelling;
6531 spelling_base = p->spelling_base;
6532 spelling_size = p->spelling_size;
6533 constructor_top_level = p->top_level;
6534 initializer_stack = p->next;
6535 free (p);
6536 }
6537 \f
6538 /* Call here when we see the initializer is surrounded by braces.
6539 This is instead of a call to push_init_level;
6540 it is matched by a call to pop_init_level.
6541
6542 TYPE is the type to initialize, for a constructor expression.
6543 For an initializer for a decl, TYPE is zero. */
6544
6545 void
6546 really_start_incremental_init (tree type)
6547 {
6548 struct constructor_stack *p = XNEW (struct constructor_stack);
6549
6550 if (type == 0)
6551 type = TREE_TYPE (constructor_decl);
6552
6553 if (TREE_CODE (type) == VECTOR_TYPE
6554 && TYPE_VECTOR_OPAQUE (type))
6555 error ("opaque vector types cannot be initialized");
6556
6557 p->type = constructor_type;
6558 p->fields = constructor_fields;
6559 p->index = constructor_index;
6560 p->max_index = constructor_max_index;
6561 p->unfilled_index = constructor_unfilled_index;
6562 p->unfilled_fields = constructor_unfilled_fields;
6563 p->bit_index = constructor_bit_index;
6564 p->elements = constructor_elements;
6565 p->constant = constructor_constant;
6566 p->simple = constructor_simple;
6567 p->nonconst = constructor_nonconst;
6568 p->erroneous = constructor_erroneous;
6569 p->pending_elts = constructor_pending_elts;
6570 p->depth = constructor_depth;
6571 p->replacement_value.value = 0;
6572 p->replacement_value.original_code = ERROR_MARK;
6573 p->replacement_value.original_type = NULL;
6574 p->implicit = 0;
6575 p->range_stack = 0;
6576 p->outer = 0;
6577 p->incremental = constructor_incremental;
6578 p->designated = constructor_designated;
6579 p->next = 0;
6580 constructor_stack = p;
6581
6582 constructor_constant = 1;
6583 constructor_simple = 1;
6584 constructor_nonconst = 0;
6585 constructor_depth = SPELLING_DEPTH ();
6586 constructor_elements = 0;
6587 constructor_pending_elts = 0;
6588 constructor_type = type;
6589 constructor_incremental = 1;
6590 constructor_designated = 0;
6591 designator_depth = 0;
6592 designator_erroneous = 0;
6593
6594 if (TREE_CODE (constructor_type) == RECORD_TYPE
6595 || TREE_CODE (constructor_type) == UNION_TYPE)
6596 {
6597 constructor_fields = TYPE_FIELDS (constructor_type);
6598 /* Skip any nameless bit fields at the beginning. */
6599 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
6600 && DECL_NAME (constructor_fields) == 0)
6601 constructor_fields = DECL_CHAIN (constructor_fields);
6602
6603 constructor_unfilled_fields = constructor_fields;
6604 constructor_bit_index = bitsize_zero_node;
6605 }
6606 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6607 {
6608 if (TYPE_DOMAIN (constructor_type))
6609 {
6610 constructor_max_index
6611 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
6612
6613 /* Detect non-empty initializations of zero-length arrays. */
6614 if (constructor_max_index == NULL_TREE
6615 && TYPE_SIZE (constructor_type))
6616 constructor_max_index = integer_minus_one_node;
6617
6618 /* constructor_max_index needs to be an INTEGER_CST. Attempts
6619 to initialize VLAs will cause a proper error; avoid tree
6620 checking errors as well by setting a safe value. */
6621 if (constructor_max_index
6622 && TREE_CODE (constructor_max_index) != INTEGER_CST)
6623 constructor_max_index = integer_minus_one_node;
6624
6625 constructor_index
6626 = convert (bitsizetype,
6627 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6628 }
6629 else
6630 {
6631 constructor_index = bitsize_zero_node;
6632 constructor_max_index = NULL_TREE;
6633 }
6634
6635 constructor_unfilled_index = constructor_index;
6636 }
6637 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6638 {
6639 /* Vectors are like simple fixed-size arrays. */
6640 constructor_max_index =
6641 bitsize_int (TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
6642 constructor_index = bitsize_zero_node;
6643 constructor_unfilled_index = constructor_index;
6644 }
6645 else
6646 {
6647 /* Handle the case of int x = {5}; */
6648 constructor_fields = constructor_type;
6649 constructor_unfilled_fields = constructor_type;
6650 }
6651 }
6652 \f
6653 /* Push down into a subobject, for initialization.
6654 If this is for an explicit set of braces, IMPLICIT is 0.
6655 If it is because the next element belongs at a lower level,
6656 IMPLICIT is 1 (or 2 if the push is because of designator list). */
6657
6658 void
6659 push_init_level (int implicit, struct obstack * braced_init_obstack)
6660 {
6661 struct constructor_stack *p;
6662 tree value = NULL_TREE;
6663
6664 /* If we've exhausted any levels that didn't have braces,
6665 pop them now. If implicit == 1, this will have been done in
6666 process_init_element; do not repeat it here because in the case
6667 of excess initializers for an empty aggregate this leads to an
6668 infinite cycle of popping a level and immediately recreating
6669 it. */
6670 if (implicit != 1)
6671 {
6672 while (constructor_stack->implicit)
6673 {
6674 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6675 || TREE_CODE (constructor_type) == UNION_TYPE)
6676 && constructor_fields == 0)
6677 process_init_element (pop_init_level (1, braced_init_obstack),
6678 true, braced_init_obstack);
6679 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6680 && constructor_max_index
6681 && tree_int_cst_lt (constructor_max_index,
6682 constructor_index))
6683 process_init_element (pop_init_level (1, braced_init_obstack),
6684 true, braced_init_obstack);
6685 else
6686 break;
6687 }
6688 }
6689
6690 /* Unless this is an explicit brace, we need to preserve previous
6691 content if any. */
6692 if (implicit)
6693 {
6694 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6695 || TREE_CODE (constructor_type) == UNION_TYPE)
6696 && constructor_fields)
6697 value = find_init_member (constructor_fields, braced_init_obstack);
6698 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6699 value = find_init_member (constructor_index, braced_init_obstack);
6700 }
6701
6702 p = XNEW (struct constructor_stack);
6703 p->type = constructor_type;
6704 p->fields = constructor_fields;
6705 p->index = constructor_index;
6706 p->max_index = constructor_max_index;
6707 p->unfilled_index = constructor_unfilled_index;
6708 p->unfilled_fields = constructor_unfilled_fields;
6709 p->bit_index = constructor_bit_index;
6710 p->elements = constructor_elements;
6711 p->constant = constructor_constant;
6712 p->simple = constructor_simple;
6713 p->nonconst = constructor_nonconst;
6714 p->erroneous = constructor_erroneous;
6715 p->pending_elts = constructor_pending_elts;
6716 p->depth = constructor_depth;
6717 p->replacement_value.value = 0;
6718 p->replacement_value.original_code = ERROR_MARK;
6719 p->replacement_value.original_type = NULL;
6720 p->implicit = implicit;
6721 p->outer = 0;
6722 p->incremental = constructor_incremental;
6723 p->designated = constructor_designated;
6724 p->next = constructor_stack;
6725 p->range_stack = 0;
6726 constructor_stack = p;
6727
6728 constructor_constant = 1;
6729 constructor_simple = 1;
6730 constructor_nonconst = 0;
6731 constructor_depth = SPELLING_DEPTH ();
6732 constructor_elements = 0;
6733 constructor_incremental = 1;
6734 constructor_designated = 0;
6735 constructor_pending_elts = 0;
6736 if (!implicit)
6737 {
6738 p->range_stack = constructor_range_stack;
6739 constructor_range_stack = 0;
6740 designator_depth = 0;
6741 designator_erroneous = 0;
6742 }
6743
6744 /* Don't die if an entire brace-pair level is superfluous
6745 in the containing level. */
6746 if (constructor_type == 0)
6747 ;
6748 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6749 || TREE_CODE (constructor_type) == UNION_TYPE)
6750 {
6751 /* Don't die if there are extra init elts at the end. */
6752 if (constructor_fields == 0)
6753 constructor_type = 0;
6754 else
6755 {
6756 constructor_type = TREE_TYPE (constructor_fields);
6757 push_member_name (constructor_fields);
6758 constructor_depth++;
6759 }
6760 }
6761 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6762 {
6763 constructor_type = TREE_TYPE (constructor_type);
6764 push_array_bounds (tree_low_cst (constructor_index, 1));
6765 constructor_depth++;
6766 }
6767
6768 if (constructor_type == 0)
6769 {
6770 error_init ("extra brace group at end of initializer");
6771 constructor_fields = 0;
6772 constructor_unfilled_fields = 0;
6773 return;
6774 }
6775
6776 if (value && TREE_CODE (value) == CONSTRUCTOR)
6777 {
6778 constructor_constant = TREE_CONSTANT (value);
6779 constructor_simple = TREE_STATIC (value);
6780 constructor_nonconst = CONSTRUCTOR_NON_CONST (value);
6781 constructor_elements = CONSTRUCTOR_ELTS (value);
6782 if (!VEC_empty (constructor_elt, constructor_elements)
6783 && (TREE_CODE (constructor_type) == RECORD_TYPE
6784 || TREE_CODE (constructor_type) == ARRAY_TYPE))
6785 set_nonincremental_init (braced_init_obstack);
6786 }
6787
6788 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
6789 {
6790 missing_braces_mentioned = 1;
6791 warning_init (OPT_Wmissing_braces, "missing braces around initializer");
6792 }
6793
6794 if (TREE_CODE (constructor_type) == RECORD_TYPE
6795 || TREE_CODE (constructor_type) == UNION_TYPE)
6796 {
6797 constructor_fields = TYPE_FIELDS (constructor_type);
6798 /* Skip any nameless bit fields at the beginning. */
6799 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
6800 && DECL_NAME (constructor_fields) == 0)
6801 constructor_fields = DECL_CHAIN (constructor_fields);
6802
6803 constructor_unfilled_fields = constructor_fields;
6804 constructor_bit_index = bitsize_zero_node;
6805 }
6806 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6807 {
6808 /* Vectors are like simple fixed-size arrays. */
6809 constructor_max_index =
6810 bitsize_int (TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
6811 constructor_index = bitsize_int (0);
6812 constructor_unfilled_index = constructor_index;
6813 }
6814 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6815 {
6816 if (TYPE_DOMAIN (constructor_type))
6817 {
6818 constructor_max_index
6819 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
6820
6821 /* Detect non-empty initializations of zero-length arrays. */
6822 if (constructor_max_index == NULL_TREE
6823 && TYPE_SIZE (constructor_type))
6824 constructor_max_index = integer_minus_one_node;
6825
6826 /* constructor_max_index needs to be an INTEGER_CST. Attempts
6827 to initialize VLAs will cause a proper error; avoid tree
6828 checking errors as well by setting a safe value. */
6829 if (constructor_max_index
6830 && TREE_CODE (constructor_max_index) != INTEGER_CST)
6831 constructor_max_index = integer_minus_one_node;
6832
6833 constructor_index
6834 = convert (bitsizetype,
6835 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6836 }
6837 else
6838 constructor_index = bitsize_zero_node;
6839
6840 constructor_unfilled_index = constructor_index;
6841 if (value && TREE_CODE (value) == STRING_CST)
6842 {
6843 /* We need to split the char/wchar array into individual
6844 characters, so that we don't have to special case it
6845 everywhere. */
6846 set_nonincremental_init_from_string (value, braced_init_obstack);
6847 }
6848 }
6849 else
6850 {
6851 if (constructor_type != error_mark_node)
6852 warning_init (0, "braces around scalar initializer");
6853 constructor_fields = constructor_type;
6854 constructor_unfilled_fields = constructor_type;
6855 }
6856 }
6857
6858 /* At the end of an implicit or explicit brace level,
6859 finish up that level of constructor. If a single expression
6860 with redundant braces initialized that level, return the
6861 c_expr structure for that expression. Otherwise, the original_code
6862 element is set to ERROR_MARK.
6863 If we were outputting the elements as they are read, return 0 as the value
6864 from inner levels (process_init_element ignores that),
6865 but return error_mark_node as the value from the outermost level
6866 (that's what we want to put in DECL_INITIAL).
6867 Otherwise, return a CONSTRUCTOR expression as the value. */
6868
6869 struct c_expr
6870 pop_init_level (int implicit, struct obstack * braced_init_obstack)
6871 {
6872 struct constructor_stack *p;
6873 struct c_expr ret;
6874 ret.value = 0;
6875 ret.original_code = ERROR_MARK;
6876 ret.original_type = NULL;
6877
6878 if (implicit == 0)
6879 {
6880 /* When we come to an explicit close brace,
6881 pop any inner levels that didn't have explicit braces. */
6882 while (constructor_stack->implicit)
6883 {
6884 process_init_element (pop_init_level (1, braced_init_obstack),
6885 true, braced_init_obstack);
6886 }
6887 gcc_assert (!constructor_range_stack);
6888 }
6889
6890 /* Now output all pending elements. */
6891 constructor_incremental = 1;
6892 output_pending_init_elements (1, braced_init_obstack);
6893
6894 p = constructor_stack;
6895
6896 /* Error for initializing a flexible array member, or a zero-length
6897 array member in an inappropriate context. */
6898 if (constructor_type && constructor_fields
6899 && TREE_CODE (constructor_type) == ARRAY_TYPE
6900 && TYPE_DOMAIN (constructor_type)
6901 && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
6902 {
6903 /* Silently discard empty initializations. The parser will
6904 already have pedwarned for empty brackets. */
6905 if (integer_zerop (constructor_unfilled_index))
6906 constructor_type = NULL_TREE;
6907 else
6908 {
6909 gcc_assert (!TYPE_SIZE (constructor_type));
6910
6911 if (constructor_depth > 2)
6912 error_init ("initialization of flexible array member in a nested context");
6913 else
6914 pedwarn_init (input_location, OPT_pedantic,
6915 "initialization of a flexible array member");
6916
6917 /* We have already issued an error message for the existence
6918 of a flexible array member not at the end of the structure.
6919 Discard the initializer so that we do not die later. */
6920 if (DECL_CHAIN (constructor_fields) != NULL_TREE)
6921 constructor_type = NULL_TREE;
6922 }
6923 }
6924
6925 /* Warn when some struct elements are implicitly initialized to zero. */
6926 if (warn_missing_field_initializers
6927 && constructor_type
6928 && TREE_CODE (constructor_type) == RECORD_TYPE
6929 && constructor_unfilled_fields)
6930 {
6931 bool constructor_zeroinit =
6932 (VEC_length (constructor_elt, constructor_elements) == 1
6933 && integer_zerop
6934 (VEC_index (constructor_elt, constructor_elements, 0)->value));
6935
6936 /* Do not warn for flexible array members or zero-length arrays. */
6937 while (constructor_unfilled_fields
6938 && (!DECL_SIZE (constructor_unfilled_fields)
6939 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
6940 constructor_unfilled_fields = DECL_CHAIN (constructor_unfilled_fields);
6941
6942 if (constructor_unfilled_fields
6943 /* Do not warn if this level of the initializer uses member
6944 designators; it is likely to be deliberate. */
6945 && !constructor_designated
6946 /* Do not warn about initializing with ` = {0}'. */
6947 && !constructor_zeroinit)
6948 {
6949 push_member_name (constructor_unfilled_fields);
6950 warning_init (OPT_Wmissing_field_initializers,
6951 "missing initializer");
6952 RESTORE_SPELLING_DEPTH (constructor_depth);
6953 }
6954 }
6955
6956 /* Pad out the end of the structure. */
6957 if (p->replacement_value.value)
6958 /* If this closes a superfluous brace pair,
6959 just pass out the element between them. */
6960 ret = p->replacement_value;
6961 else if (constructor_type == 0)
6962 ;
6963 else if (TREE_CODE (constructor_type) != RECORD_TYPE
6964 && TREE_CODE (constructor_type) != UNION_TYPE
6965 && TREE_CODE (constructor_type) != ARRAY_TYPE
6966 && TREE_CODE (constructor_type) != VECTOR_TYPE)
6967 {
6968 /* A nonincremental scalar initializer--just return
6969 the element, after verifying there is just one. */
6970 if (VEC_empty (constructor_elt,constructor_elements))
6971 {
6972 if (!constructor_erroneous)
6973 error_init ("empty scalar initializer");
6974 ret.value = error_mark_node;
6975 }
6976 else if (VEC_length (constructor_elt,constructor_elements) != 1)
6977 {
6978 error_init ("extra elements in scalar initializer");
6979 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
6980 }
6981 else
6982 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
6983 }
6984 else
6985 {
6986 if (constructor_erroneous)
6987 ret.value = error_mark_node;
6988 else
6989 {
6990 ret.value = build_constructor (constructor_type,
6991 constructor_elements);
6992 if (constructor_constant)
6993 TREE_CONSTANT (ret.value) = 1;
6994 if (constructor_constant && constructor_simple)
6995 TREE_STATIC (ret.value) = 1;
6996 if (constructor_nonconst)
6997 CONSTRUCTOR_NON_CONST (ret.value) = 1;
6998 }
6999 }
7000
7001 if (ret.value && TREE_CODE (ret.value) != CONSTRUCTOR)
7002 {
7003 if (constructor_nonconst)
7004 ret.original_code = C_MAYBE_CONST_EXPR;
7005 else if (ret.original_code == C_MAYBE_CONST_EXPR)
7006 ret.original_code = ERROR_MARK;
7007 }
7008
7009 constructor_type = p->type;
7010 constructor_fields = p->fields;
7011 constructor_index = p->index;
7012 constructor_max_index = p->max_index;
7013 constructor_unfilled_index = p->unfilled_index;
7014 constructor_unfilled_fields = p->unfilled_fields;
7015 constructor_bit_index = p->bit_index;
7016 constructor_elements = p->elements;
7017 constructor_constant = p->constant;
7018 constructor_simple = p->simple;
7019 constructor_nonconst = p->nonconst;
7020 constructor_erroneous = p->erroneous;
7021 constructor_incremental = p->incremental;
7022 constructor_designated = p->designated;
7023 constructor_pending_elts = p->pending_elts;
7024 constructor_depth = p->depth;
7025 if (!p->implicit)
7026 constructor_range_stack = p->range_stack;
7027 RESTORE_SPELLING_DEPTH (constructor_depth);
7028
7029 constructor_stack = p->next;
7030 free (p);
7031
7032 if (ret.value == 0 && constructor_stack == 0)
7033 ret.value = error_mark_node;
7034 return ret;
7035 }
7036
7037 /* Common handling for both array range and field name designators.
7038 ARRAY argument is nonzero for array ranges. Returns zero for success. */
7039
7040 static int
7041 set_designator (int array, struct obstack * braced_init_obstack)
7042 {
7043 tree subtype;
7044 enum tree_code subcode;
7045
7046 /* Don't die if an entire brace-pair level is superfluous
7047 in the containing level. */
7048 if (constructor_type == 0)
7049 return 1;
7050
7051 /* If there were errors in this designator list already, bail out
7052 silently. */
7053 if (designator_erroneous)
7054 return 1;
7055
7056 if (!designator_depth)
7057 {
7058 gcc_assert (!constructor_range_stack);
7059
7060 /* Designator list starts at the level of closest explicit
7061 braces. */
7062 while (constructor_stack->implicit)
7063 {
7064 process_init_element (pop_init_level (1, braced_init_obstack),
7065 true, braced_init_obstack);
7066 }
7067 constructor_designated = 1;
7068 return 0;
7069 }
7070
7071 switch (TREE_CODE (constructor_type))
7072 {
7073 case RECORD_TYPE:
7074 case UNION_TYPE:
7075 subtype = TREE_TYPE (constructor_fields);
7076 if (subtype != error_mark_node)
7077 subtype = TYPE_MAIN_VARIANT (subtype);
7078 break;
7079 case ARRAY_TYPE:
7080 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
7081 break;
7082 default:
7083 gcc_unreachable ();
7084 }
7085
7086 subcode = TREE_CODE (subtype);
7087 if (array && subcode != ARRAY_TYPE)
7088 {
7089 error_init ("array index in non-array initializer");
7090 return 1;
7091 }
7092 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
7093 {
7094 error_init ("field name not in record or union initializer");
7095 return 1;
7096 }
7097
7098 constructor_designated = 1;
7099 push_init_level (2, braced_init_obstack);
7100 return 0;
7101 }
7102
7103 /* If there are range designators in designator list, push a new designator
7104 to constructor_range_stack. RANGE_END is end of such stack range or
7105 NULL_TREE if there is no range designator at this level. */
7106
7107 static void
7108 push_range_stack (tree range_end, struct obstack * braced_init_obstack)
7109 {
7110 struct constructor_range_stack *p;
7111
7112 p = (struct constructor_range_stack *)
7113 obstack_alloc (braced_init_obstack,
7114 sizeof (struct constructor_range_stack));
7115 p->prev = constructor_range_stack;
7116 p->next = 0;
7117 p->fields = constructor_fields;
7118 p->range_start = constructor_index;
7119 p->index = constructor_index;
7120 p->stack = constructor_stack;
7121 p->range_end = range_end;
7122 if (constructor_range_stack)
7123 constructor_range_stack->next = p;
7124 constructor_range_stack = p;
7125 }
7126
7127 /* Within an array initializer, specify the next index to be initialized.
7128 FIRST is that index. If LAST is nonzero, then initialize a range
7129 of indices, running from FIRST through LAST. */
7130
7131 void
7132 set_init_index (tree first, tree last,
7133 struct obstack * braced_init_obstack)
7134 {
7135 if (set_designator (1, braced_init_obstack))
7136 return;
7137
7138 designator_erroneous = 1;
7139
7140 if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
7141 || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
7142 {
7143 error_init ("array index in initializer not of integer type");
7144 return;
7145 }
7146
7147 if (TREE_CODE (first) != INTEGER_CST)
7148 {
7149 first = c_fully_fold (first, false, NULL);
7150 if (TREE_CODE (first) == INTEGER_CST)
7151 pedwarn_init (input_location, OPT_pedantic,
7152 "array index in initializer is not "
7153 "an integer constant expression");
7154 }
7155
7156 if (last && TREE_CODE (last) != INTEGER_CST)
7157 {
7158 last = c_fully_fold (last, false, NULL);
7159 if (TREE_CODE (last) == INTEGER_CST)
7160 pedwarn_init (input_location, OPT_pedantic,
7161 "array index in initializer is not "
7162 "an integer constant expression");
7163 }
7164
7165 if (TREE_CODE (first) != INTEGER_CST)
7166 error_init ("nonconstant array index in initializer");
7167 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
7168 error_init ("nonconstant array index in initializer");
7169 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
7170 error_init ("array index in non-array initializer");
7171 else if (tree_int_cst_sgn (first) == -1)
7172 error_init ("array index in initializer exceeds array bounds");
7173 else if (constructor_max_index
7174 && tree_int_cst_lt (constructor_max_index, first))
7175 error_init ("array index in initializer exceeds array bounds");
7176 else
7177 {
7178 constant_expression_warning (first);
7179 if (last)
7180 constant_expression_warning (last);
7181 constructor_index = convert (bitsizetype, first);
7182
7183 if (last)
7184 {
7185 if (tree_int_cst_equal (first, last))
7186 last = 0;
7187 else if (tree_int_cst_lt (last, first))
7188 {
7189 error_init ("empty index range in initializer");
7190 last = 0;
7191 }
7192 else
7193 {
7194 last = convert (bitsizetype, last);
7195 if (constructor_max_index != 0
7196 && tree_int_cst_lt (constructor_max_index, last))
7197 {
7198 error_init ("array index range in initializer exceeds array bounds");
7199 last = 0;
7200 }
7201 }
7202 }
7203
7204 designator_depth++;
7205 designator_erroneous = 0;
7206 if (constructor_range_stack || last)
7207 push_range_stack (last, braced_init_obstack);
7208 }
7209 }
7210
7211 /* Within a struct initializer, specify the next field to be initialized. */
7212
7213 void
7214 set_init_label (tree fieldname, struct obstack * braced_init_obstack)
7215 {
7216 tree field;
7217
7218 if (set_designator (0, braced_init_obstack))
7219 return;
7220
7221 designator_erroneous = 1;
7222
7223 if (TREE_CODE (constructor_type) != RECORD_TYPE
7224 && TREE_CODE (constructor_type) != UNION_TYPE)
7225 {
7226 error_init ("field name not in record or union initializer");
7227 return;
7228 }
7229
7230 field = lookup_field (constructor_type, fieldname);
7231
7232 if (field == 0)
7233 error ("unknown field %qE specified in initializer", fieldname);
7234 else
7235 do
7236 {
7237 constructor_fields = TREE_VALUE (field);
7238 designator_depth++;
7239 designator_erroneous = 0;
7240 if (constructor_range_stack)
7241 push_range_stack (NULL_TREE, braced_init_obstack);
7242 field = TREE_CHAIN (field);
7243 if (field)
7244 {
7245 if (set_designator (0, braced_init_obstack))
7246 return;
7247 }
7248 }
7249 while (field != NULL_TREE);
7250 }
7251 \f
7252 /* Add a new initializer to the tree of pending initializers. PURPOSE
7253 identifies the initializer, either array index or field in a structure.
7254 VALUE is the value of that index or field. If ORIGTYPE is not
7255 NULL_TREE, it is the original type of VALUE.
7256
7257 IMPLICIT is true if value comes from pop_init_level (1),
7258 the new initializer has been merged with the existing one
7259 and thus no warnings should be emitted about overriding an
7260 existing initializer. */
7261
7262 static void
7263 add_pending_init (tree purpose, tree value, tree origtype, bool implicit,
7264 struct obstack * braced_init_obstack)
7265 {
7266 struct init_node *p, **q, *r;
7267
7268 q = &constructor_pending_elts;
7269 p = 0;
7270
7271 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
7272 {
7273 while (*q != 0)
7274 {
7275 p = *q;
7276 if (tree_int_cst_lt (purpose, p->purpose))
7277 q = &p->left;
7278 else if (tree_int_cst_lt (p->purpose, purpose))
7279 q = &p->right;
7280 else
7281 {
7282 if (!implicit)
7283 {
7284 if (TREE_SIDE_EFFECTS (p->value))
7285 warning_init (0, "initialized field with side-effects overwritten");
7286 else if (warn_override_init)
7287 warning_init (OPT_Woverride_init, "initialized field overwritten");
7288 }
7289 p->value = value;
7290 p->origtype = origtype;
7291 return;
7292 }
7293 }
7294 }
7295 else
7296 {
7297 tree bitpos;
7298
7299 bitpos = bit_position (purpose);
7300 while (*q != NULL)
7301 {
7302 p = *q;
7303 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
7304 q = &p->left;
7305 else if (p->purpose != purpose)
7306 q = &p->right;
7307 else
7308 {
7309 if (!implicit)
7310 {
7311 if (TREE_SIDE_EFFECTS (p->value))
7312 warning_init (0, "initialized field with side-effects overwritten");
7313 else if (warn_override_init)
7314 warning_init (OPT_Woverride_init, "initialized field overwritten");
7315 }
7316 p->value = value;
7317 p->origtype = origtype;
7318 return;
7319 }
7320 }
7321 }
7322
7323 r = (struct init_node *) obstack_alloc (braced_init_obstack,
7324 sizeof (struct init_node));
7325 r->purpose = purpose;
7326 r->value = value;
7327 r->origtype = origtype;
7328
7329 *q = r;
7330 r->parent = p;
7331 r->left = 0;
7332 r->right = 0;
7333 r->balance = 0;
7334
7335 while (p)
7336 {
7337 struct init_node *s;
7338
7339 if (r == p->left)
7340 {
7341 if (p->balance == 0)
7342 p->balance = -1;
7343 else if (p->balance < 0)
7344 {
7345 if (r->balance < 0)
7346 {
7347 /* L rotation. */
7348 p->left = r->right;
7349 if (p->left)
7350 p->left->parent = p;
7351 r->right = p;
7352
7353 p->balance = 0;
7354 r->balance = 0;
7355
7356 s = p->parent;
7357 p->parent = r;
7358 r->parent = s;
7359 if (s)
7360 {
7361 if (s->left == p)
7362 s->left = r;
7363 else
7364 s->right = r;
7365 }
7366 else
7367 constructor_pending_elts = r;
7368 }
7369 else
7370 {
7371 /* LR rotation. */
7372 struct init_node *t = r->right;
7373
7374 r->right = t->left;
7375 if (r->right)
7376 r->right->parent = r;
7377 t->left = r;
7378
7379 p->left = t->right;
7380 if (p->left)
7381 p->left->parent = p;
7382 t->right = p;
7383
7384 p->balance = t->balance < 0;
7385 r->balance = -(t->balance > 0);
7386 t->balance = 0;
7387
7388 s = p->parent;
7389 p->parent = t;
7390 r->parent = t;
7391 t->parent = s;
7392 if (s)
7393 {
7394 if (s->left == p)
7395 s->left = t;
7396 else
7397 s->right = t;
7398 }
7399 else
7400 constructor_pending_elts = t;
7401 }
7402 break;
7403 }
7404 else
7405 {
7406 /* p->balance == +1; growth of left side balances the node. */
7407 p->balance = 0;
7408 break;
7409 }
7410 }
7411 else /* r == p->right */
7412 {
7413 if (p->balance == 0)
7414 /* Growth propagation from right side. */
7415 p->balance++;
7416 else if (p->balance > 0)
7417 {
7418 if (r->balance > 0)
7419 {
7420 /* R rotation. */
7421 p->right = r->left;
7422 if (p->right)
7423 p->right->parent = p;
7424 r->left = p;
7425
7426 p->balance = 0;
7427 r->balance = 0;
7428
7429 s = p->parent;
7430 p->parent = r;
7431 r->parent = s;
7432 if (s)
7433 {
7434 if (s->left == p)
7435 s->left = r;
7436 else
7437 s->right = r;
7438 }
7439 else
7440 constructor_pending_elts = r;
7441 }
7442 else /* r->balance == -1 */
7443 {
7444 /* RL rotation */
7445 struct init_node *t = r->left;
7446
7447 r->left = t->right;
7448 if (r->left)
7449 r->left->parent = r;
7450 t->right = r;
7451
7452 p->right = t->left;
7453 if (p->right)
7454 p->right->parent = p;
7455 t->left = p;
7456
7457 r->balance = (t->balance < 0);
7458 p->balance = -(t->balance > 0);
7459 t->balance = 0;
7460
7461 s = p->parent;
7462 p->parent = t;
7463 r->parent = t;
7464 t->parent = s;
7465 if (s)
7466 {
7467 if (s->left == p)
7468 s->left = t;
7469 else
7470 s->right = t;
7471 }
7472 else
7473 constructor_pending_elts = t;
7474 }
7475 break;
7476 }
7477 else
7478 {
7479 /* p->balance == -1; growth of right side balances the node. */
7480 p->balance = 0;
7481 break;
7482 }
7483 }
7484
7485 r = p;
7486 p = p->parent;
7487 }
7488 }
7489
7490 /* Build AVL tree from a sorted chain. */
7491
7492 static void
7493 set_nonincremental_init (struct obstack * braced_init_obstack)
7494 {
7495 unsigned HOST_WIDE_INT ix;
7496 tree index, value;
7497
7498 if (TREE_CODE (constructor_type) != RECORD_TYPE
7499 && TREE_CODE (constructor_type) != ARRAY_TYPE)
7500 return;
7501
7502 FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
7503 {
7504 add_pending_init (index, value, NULL_TREE, false,
7505 braced_init_obstack);
7506 }
7507 constructor_elements = 0;
7508 if (TREE_CODE (constructor_type) == RECORD_TYPE)
7509 {
7510 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
7511 /* Skip any nameless bit fields at the beginning. */
7512 while (constructor_unfilled_fields != 0
7513 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
7514 && DECL_NAME (constructor_unfilled_fields) == 0)
7515 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
7516
7517 }
7518 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
7519 {
7520 if (TYPE_DOMAIN (constructor_type))
7521 constructor_unfilled_index
7522 = convert (bitsizetype,
7523 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
7524 else
7525 constructor_unfilled_index = bitsize_zero_node;
7526 }
7527 constructor_incremental = 0;
7528 }
7529
7530 /* Build AVL tree from a string constant. */
7531
7532 static void
7533 set_nonincremental_init_from_string (tree str,
7534 struct obstack * braced_init_obstack)
7535 {
7536 tree value, purpose, type;
7537 HOST_WIDE_INT val[2];
7538 const char *p, *end;
7539 int byte, wchar_bytes, charwidth, bitpos;
7540
7541 gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
7542
7543 wchar_bytes = TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str))) / BITS_PER_UNIT;
7544 charwidth = TYPE_PRECISION (char_type_node);
7545 type = TREE_TYPE (constructor_type);
7546 p = TREE_STRING_POINTER (str);
7547 end = p + TREE_STRING_LENGTH (str);
7548
7549 for (purpose = bitsize_zero_node;
7550 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
7551 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
7552 {
7553 if (wchar_bytes == 1)
7554 {
7555 val[1] = (unsigned char) *p++;
7556 val[0] = 0;
7557 }
7558 else
7559 {
7560 val[0] = 0;
7561 val[1] = 0;
7562 for (byte = 0; byte < wchar_bytes; byte++)
7563 {
7564 if (BYTES_BIG_ENDIAN)
7565 bitpos = (wchar_bytes - byte - 1) * charwidth;
7566 else
7567 bitpos = byte * charwidth;
7568 val[bitpos < HOST_BITS_PER_WIDE_INT]
7569 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
7570 << (bitpos % HOST_BITS_PER_WIDE_INT);
7571 }
7572 }
7573
7574 if (!TYPE_UNSIGNED (type))
7575 {
7576 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
7577 if (bitpos < HOST_BITS_PER_WIDE_INT)
7578 {
7579 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
7580 {
7581 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
7582 val[0] = -1;
7583 }
7584 }
7585 else if (bitpos == HOST_BITS_PER_WIDE_INT)
7586 {
7587 if (val[1] < 0)
7588 val[0] = -1;
7589 }
7590 else if (val[0] & (((HOST_WIDE_INT) 1)
7591 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
7592 val[0] |= ((HOST_WIDE_INT) -1)
7593 << (bitpos - HOST_BITS_PER_WIDE_INT);
7594 }
7595
7596 value = build_int_cst_wide (type, val[1], val[0]);
7597 add_pending_init (purpose, value, NULL_TREE, false,
7598 braced_init_obstack);
7599 }
7600
7601 constructor_incremental = 0;
7602 }
7603
7604 /* Return value of FIELD in pending initializer or zero if the field was
7605 not initialized yet. */
7606
7607 static tree
7608 find_init_member (tree field, struct obstack * braced_init_obstack)
7609 {
7610 struct init_node *p;
7611
7612 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
7613 {
7614 if (constructor_incremental
7615 && tree_int_cst_lt (field, constructor_unfilled_index))
7616 set_nonincremental_init (braced_init_obstack);
7617
7618 p = constructor_pending_elts;
7619 while (p)
7620 {
7621 if (tree_int_cst_lt (field, p->purpose))
7622 p = p->left;
7623 else if (tree_int_cst_lt (p->purpose, field))
7624 p = p->right;
7625 else
7626 return p->value;
7627 }
7628 }
7629 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
7630 {
7631 tree bitpos = bit_position (field);
7632
7633 if (constructor_incremental
7634 && (!constructor_unfilled_fields
7635 || tree_int_cst_lt (bitpos,
7636 bit_position (constructor_unfilled_fields))))
7637 set_nonincremental_init (braced_init_obstack);
7638
7639 p = constructor_pending_elts;
7640 while (p)
7641 {
7642 if (field == p->purpose)
7643 return p->value;
7644 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
7645 p = p->left;
7646 else
7647 p = p->right;
7648 }
7649 }
7650 else if (TREE_CODE (constructor_type) == UNION_TYPE)
7651 {
7652 if (!VEC_empty (constructor_elt, constructor_elements)
7653 && (VEC_last (constructor_elt, constructor_elements)->index
7654 == field))
7655 return VEC_last (constructor_elt, constructor_elements)->value;
7656 }
7657 return 0;
7658 }
7659
7660 /* "Output" the next constructor element.
7661 At top level, really output it to assembler code now.
7662 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
7663 If ORIGTYPE is not NULL_TREE, it is the original type of VALUE.
7664 TYPE is the data type that the containing data type wants here.
7665 FIELD is the field (a FIELD_DECL) or the index that this element fills.
7666 If VALUE is a string constant, STRICT_STRING is true if it is
7667 unparenthesized or we should not warn here for it being parenthesized.
7668 For other types of VALUE, STRICT_STRING is not used.
7669
7670 PENDING if non-nil means output pending elements that belong
7671 right after this element. (PENDING is normally 1;
7672 it is 0 while outputting pending elements, to avoid recursion.)
7673
7674 IMPLICIT is true if value comes from pop_init_level (1),
7675 the new initializer has been merged with the existing one
7676 and thus no warnings should be emitted about overriding an
7677 existing initializer. */
7678
7679 static void
7680 output_init_element (tree value, tree origtype, bool strict_string, tree type,
7681 tree field, int pending, bool implicit,
7682 struct obstack * braced_init_obstack)
7683 {
7684 tree semantic_type = NULL_TREE;
7685 constructor_elt *celt;
7686 bool maybe_const = true;
7687 bool npc;
7688
7689 if (type == error_mark_node || value == error_mark_node)
7690 {
7691 constructor_erroneous = 1;
7692 return;
7693 }
7694 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
7695 && (TREE_CODE (value) == STRING_CST
7696 || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
7697 && !(TREE_CODE (value) == STRING_CST
7698 && TREE_CODE (type) == ARRAY_TYPE
7699 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
7700 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
7701 TYPE_MAIN_VARIANT (type)))
7702 value = array_to_pointer_conversion (input_location, value);
7703
7704 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
7705 && require_constant_value && !flag_isoc99 && pending)
7706 {
7707 /* As an extension, allow initializing objects with static storage
7708 duration with compound literals (which are then treated just as
7709 the brace enclosed list they contain). */
7710 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
7711 value = DECL_INITIAL (decl);
7712 }
7713
7714 npc = null_pointer_constant_p (value);
7715 if (TREE_CODE (value) == EXCESS_PRECISION_EXPR)
7716 {
7717 semantic_type = TREE_TYPE (value);
7718 value = TREE_OPERAND (value, 0);
7719 }
7720 value = c_fully_fold (value, require_constant_value, &maybe_const);
7721
7722 if (value == error_mark_node)
7723 constructor_erroneous = 1;
7724 else if (!TREE_CONSTANT (value))
7725 constructor_constant = 0;
7726 else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
7727 || ((TREE_CODE (constructor_type) == RECORD_TYPE
7728 || TREE_CODE (constructor_type) == UNION_TYPE)
7729 && DECL_C_BIT_FIELD (field)
7730 && TREE_CODE (value) != INTEGER_CST))
7731 constructor_simple = 0;
7732 if (!maybe_const)
7733 constructor_nonconst = 1;
7734
7735 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
7736 {
7737 if (require_constant_value)
7738 {
7739 error_init ("initializer element is not constant");
7740 value = error_mark_node;
7741 }
7742 else if (require_constant_elements)
7743 pedwarn (input_location, 0,
7744 "initializer element is not computable at load time");
7745 }
7746 else if (!maybe_const
7747 && (require_constant_value || require_constant_elements))
7748 pedwarn_init (input_location, 0,
7749 "initializer element is not a constant expression");
7750
7751 /* Issue -Wc++-compat warnings about initializing a bitfield with
7752 enum type. */
7753 if (warn_cxx_compat
7754 && field != NULL_TREE
7755 && TREE_CODE (field) == FIELD_DECL
7756 && DECL_BIT_FIELD_TYPE (field) != NULL_TREE
7757 && (TYPE_MAIN_VARIANT (DECL_BIT_FIELD_TYPE (field))
7758 != TYPE_MAIN_VARIANT (type))
7759 && TREE_CODE (DECL_BIT_FIELD_TYPE (field)) == ENUMERAL_TYPE)
7760 {
7761 tree checktype = origtype != NULL_TREE ? origtype : TREE_TYPE (value);
7762 if (checktype != error_mark_node
7763 && (TYPE_MAIN_VARIANT (checktype)
7764 != TYPE_MAIN_VARIANT (DECL_BIT_FIELD_TYPE (field))))
7765 warning_init (OPT_Wc___compat,
7766 "enum conversion in initialization is invalid in C++");
7767 }
7768
7769 /* If this field is empty (and not at the end of structure),
7770 don't do anything other than checking the initializer. */
7771 if (field
7772 && (TREE_TYPE (field) == error_mark_node
7773 || (COMPLETE_TYPE_P (TREE_TYPE (field))
7774 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
7775 && (TREE_CODE (constructor_type) == ARRAY_TYPE
7776 || DECL_CHAIN (field)))))
7777 return;
7778
7779 if (semantic_type)
7780 value = build1 (EXCESS_PRECISION_EXPR, semantic_type, value);
7781 value = digest_init (input_location, type, value, origtype, npc,
7782 strict_string, require_constant_value);
7783 if (value == error_mark_node)
7784 {
7785 constructor_erroneous = 1;
7786 return;
7787 }
7788 if (require_constant_value || require_constant_elements)
7789 constant_expression_warning (value);
7790
7791 /* If this element doesn't come next in sequence,
7792 put it on constructor_pending_elts. */
7793 if (TREE_CODE (constructor_type) == ARRAY_TYPE
7794 && (!constructor_incremental
7795 || !tree_int_cst_equal (field, constructor_unfilled_index)))
7796 {
7797 if (constructor_incremental
7798 && tree_int_cst_lt (field, constructor_unfilled_index))
7799 set_nonincremental_init (braced_init_obstack);
7800
7801 add_pending_init (field, value, origtype, implicit,
7802 braced_init_obstack);
7803 return;
7804 }
7805 else if (TREE_CODE (constructor_type) == RECORD_TYPE
7806 && (!constructor_incremental
7807 || field != constructor_unfilled_fields))
7808 {
7809 /* We do this for records but not for unions. In a union,
7810 no matter which field is specified, it can be initialized
7811 right away since it starts at the beginning of the union. */
7812 if (constructor_incremental)
7813 {
7814 if (!constructor_unfilled_fields)
7815 set_nonincremental_init (braced_init_obstack);
7816 else
7817 {
7818 tree bitpos, unfillpos;
7819
7820 bitpos = bit_position (field);
7821 unfillpos = bit_position (constructor_unfilled_fields);
7822
7823 if (tree_int_cst_lt (bitpos, unfillpos))
7824 set_nonincremental_init (braced_init_obstack);
7825 }
7826 }
7827
7828 add_pending_init (field, value, origtype, implicit,
7829 braced_init_obstack);
7830 return;
7831 }
7832 else if (TREE_CODE (constructor_type) == UNION_TYPE
7833 && !VEC_empty (constructor_elt, constructor_elements))
7834 {
7835 if (!implicit)
7836 {
7837 if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
7838 constructor_elements)->value))
7839 warning_init (0,
7840 "initialized field with side-effects overwritten");
7841 else if (warn_override_init)
7842 warning_init (OPT_Woverride_init, "initialized field overwritten");
7843 }
7844
7845 /* We can have just one union field set. */
7846 constructor_elements = 0;
7847 }
7848
7849 /* Otherwise, output this element either to
7850 constructor_elements or to the assembler file. */
7851
7852 celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
7853 celt->index = field;
7854 celt->value = value;
7855
7856 /* Advance the variable that indicates sequential elements output. */
7857 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
7858 constructor_unfilled_index
7859 = size_binop_loc (input_location, PLUS_EXPR, constructor_unfilled_index,
7860 bitsize_one_node);
7861 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
7862 {
7863 constructor_unfilled_fields
7864 = DECL_CHAIN (constructor_unfilled_fields);
7865
7866 /* Skip any nameless bit fields. */
7867 while (constructor_unfilled_fields != 0
7868 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
7869 && DECL_NAME (constructor_unfilled_fields) == 0)
7870 constructor_unfilled_fields =
7871 DECL_CHAIN (constructor_unfilled_fields);
7872 }
7873 else if (TREE_CODE (constructor_type) == UNION_TYPE)
7874 constructor_unfilled_fields = 0;
7875
7876 /* Now output any pending elements which have become next. */
7877 if (pending)
7878 output_pending_init_elements (0, braced_init_obstack);
7879 }
7880
7881 /* Output any pending elements which have become next.
7882 As we output elements, constructor_unfilled_{fields,index}
7883 advances, which may cause other elements to become next;
7884 if so, they too are output.
7885
7886 If ALL is 0, we return when there are
7887 no more pending elements to output now.
7888
7889 If ALL is 1, we output space as necessary so that
7890 we can output all the pending elements. */
7891 static void
7892 output_pending_init_elements (int all, struct obstack * braced_init_obstack)
7893 {
7894 struct init_node *elt = constructor_pending_elts;
7895 tree next;
7896
7897 retry:
7898
7899 /* Look through the whole pending tree.
7900 If we find an element that should be output now,
7901 output it. Otherwise, set NEXT to the element
7902 that comes first among those still pending. */
7903
7904 next = 0;
7905 while (elt)
7906 {
7907 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
7908 {
7909 if (tree_int_cst_equal (elt->purpose,
7910 constructor_unfilled_index))
7911 output_init_element (elt->value, elt->origtype, true,
7912 TREE_TYPE (constructor_type),
7913 constructor_unfilled_index, 0, false,
7914 braced_init_obstack);
7915 else if (tree_int_cst_lt (constructor_unfilled_index,
7916 elt->purpose))
7917 {
7918 /* Advance to the next smaller node. */
7919 if (elt->left)
7920 elt = elt->left;
7921 else
7922 {
7923 /* We have reached the smallest node bigger than the
7924 current unfilled index. Fill the space first. */
7925 next = elt->purpose;
7926 break;
7927 }
7928 }
7929 else
7930 {
7931 /* Advance to the next bigger node. */
7932 if (elt->right)
7933 elt = elt->right;
7934 else
7935 {
7936 /* We have reached the biggest node in a subtree. Find
7937 the parent of it, which is the next bigger node. */
7938 while (elt->parent && elt->parent->right == elt)
7939 elt = elt->parent;
7940 elt = elt->parent;
7941 if (elt && tree_int_cst_lt (constructor_unfilled_index,
7942 elt->purpose))
7943 {
7944 next = elt->purpose;
7945 break;
7946 }
7947 }
7948 }
7949 }
7950 else if (TREE_CODE (constructor_type) == RECORD_TYPE
7951 || TREE_CODE (constructor_type) == UNION_TYPE)
7952 {
7953 tree ctor_unfilled_bitpos, elt_bitpos;
7954
7955 /* If the current record is complete we are done. */
7956 if (constructor_unfilled_fields == 0)
7957 break;
7958
7959 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
7960 elt_bitpos = bit_position (elt->purpose);
7961 /* We can't compare fields here because there might be empty
7962 fields in between. */
7963 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
7964 {
7965 constructor_unfilled_fields = elt->purpose;
7966 output_init_element (elt->value, elt->origtype, true,
7967 TREE_TYPE (elt->purpose),
7968 elt->purpose, 0, false,
7969 braced_init_obstack);
7970 }
7971 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
7972 {
7973 /* Advance to the next smaller node. */
7974 if (elt->left)
7975 elt = elt->left;
7976 else
7977 {
7978 /* We have reached the smallest node bigger than the
7979 current unfilled field. Fill the space first. */
7980 next = elt->purpose;
7981 break;
7982 }
7983 }
7984 else
7985 {
7986 /* Advance to the next bigger node. */
7987 if (elt->right)
7988 elt = elt->right;
7989 else
7990 {
7991 /* We have reached the biggest node in a subtree. Find
7992 the parent of it, which is the next bigger node. */
7993 while (elt->parent && elt->parent->right == elt)
7994 elt = elt->parent;
7995 elt = elt->parent;
7996 if (elt
7997 && (tree_int_cst_lt (ctor_unfilled_bitpos,
7998 bit_position (elt->purpose))))
7999 {
8000 next = elt->purpose;
8001 break;
8002 }
8003 }
8004 }
8005 }
8006 }
8007
8008 /* Ordinarily return, but not if we want to output all
8009 and there are elements left. */
8010 if (!(all && next != 0))
8011 return;
8012
8013 /* If it's not incremental, just skip over the gap, so that after
8014 jumping to retry we will output the next successive element. */
8015 if (TREE_CODE (constructor_type) == RECORD_TYPE
8016 || TREE_CODE (constructor_type) == UNION_TYPE)
8017 constructor_unfilled_fields = next;
8018 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
8019 constructor_unfilled_index = next;
8020
8021 /* ELT now points to the node in the pending tree with the next
8022 initializer to output. */
8023 goto retry;
8024 }
8025 \f
8026 /* Add one non-braced element to the current constructor level.
8027 This adjusts the current position within the constructor's type.
8028 This may also start or terminate implicit levels
8029 to handle a partly-braced initializer.
8030
8031 Once this has found the correct level for the new element,
8032 it calls output_init_element.
8033
8034 IMPLICIT is true if value comes from pop_init_level (1),
8035 the new initializer has been merged with the existing one
8036 and thus no warnings should be emitted about overriding an
8037 existing initializer. */
8038
8039 void
8040 process_init_element (struct c_expr value, bool implicit,
8041 struct obstack * braced_init_obstack)
8042 {
8043 tree orig_value = value.value;
8044 int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
8045 bool strict_string = value.original_code == STRING_CST;
8046
8047 designator_depth = 0;
8048 designator_erroneous = 0;
8049
8050 /* Handle superfluous braces around string cst as in
8051 char x[] = {"foo"}; */
8052 if (string_flag
8053 && constructor_type
8054 && TREE_CODE (constructor_type) == ARRAY_TYPE
8055 && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
8056 && integer_zerop (constructor_unfilled_index))
8057 {
8058 if (constructor_stack->replacement_value.value)
8059 error_init ("excess elements in char array initializer");
8060 constructor_stack->replacement_value = value;
8061 return;
8062 }
8063
8064 if (constructor_stack->replacement_value.value != 0)
8065 {
8066 error_init ("excess elements in struct initializer");
8067 return;
8068 }
8069
8070 /* Ignore elements of a brace group if it is entirely superfluous
8071 and has already been diagnosed. */
8072 if (constructor_type == 0)
8073 return;
8074
8075 /* If we've exhausted any levels that didn't have braces,
8076 pop them now. */
8077 while (constructor_stack->implicit)
8078 {
8079 if ((TREE_CODE (constructor_type) == RECORD_TYPE
8080 || TREE_CODE (constructor_type) == UNION_TYPE)
8081 && constructor_fields == 0)
8082 process_init_element (pop_init_level (1, braced_init_obstack),
8083 true, braced_init_obstack);
8084 else if ((TREE_CODE (constructor_type) == ARRAY_TYPE
8085 || TREE_CODE (constructor_type) == VECTOR_TYPE)
8086 && (constructor_max_index == 0
8087 || tree_int_cst_lt (constructor_max_index,
8088 constructor_index)))
8089 process_init_element (pop_init_level (1, braced_init_obstack),
8090 true, braced_init_obstack);
8091 else
8092 break;
8093 }
8094
8095 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
8096 if (constructor_range_stack)
8097 {
8098 /* If value is a compound literal and we'll be just using its
8099 content, don't put it into a SAVE_EXPR. */
8100 if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
8101 || !require_constant_value
8102 || flag_isoc99)
8103 {
8104 tree semantic_type = NULL_TREE;
8105 if (TREE_CODE (value.value) == EXCESS_PRECISION_EXPR)
8106 {
8107 semantic_type = TREE_TYPE (value.value);
8108 value.value = TREE_OPERAND (value.value, 0);
8109 }
8110 value.value = c_save_expr (value.value);
8111 if (semantic_type)
8112 value.value = build1 (EXCESS_PRECISION_EXPR, semantic_type,
8113 value.value);
8114 }
8115 }
8116
8117 while (1)
8118 {
8119 if (TREE_CODE (constructor_type) == RECORD_TYPE)
8120 {
8121 tree fieldtype;
8122 enum tree_code fieldcode;
8123
8124 if (constructor_fields == 0)
8125 {
8126 pedwarn_init (input_location, 0,
8127 "excess elements in struct initializer");
8128 break;
8129 }
8130
8131 fieldtype = TREE_TYPE (constructor_fields);
8132 if (fieldtype != error_mark_node)
8133 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
8134 fieldcode = TREE_CODE (fieldtype);
8135
8136 /* Error for non-static initialization of a flexible array member. */
8137 if (fieldcode == ARRAY_TYPE
8138 && !require_constant_value
8139 && TYPE_SIZE (fieldtype) == NULL_TREE
8140 && DECL_CHAIN (constructor_fields) == NULL_TREE)
8141 {
8142 error_init ("non-static initialization of a flexible array member");
8143 break;
8144 }
8145
8146 /* Accept a string constant to initialize a subarray. */
8147 if (value.value != 0
8148 && fieldcode == ARRAY_TYPE
8149 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
8150 && string_flag)
8151 value.value = orig_value;
8152 /* Otherwise, if we have come to a subaggregate,
8153 and we don't have an element of its type, push into it. */
8154 else if (value.value != 0
8155 && value.value != error_mark_node
8156 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
8157 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
8158 || fieldcode == UNION_TYPE || fieldcode == VECTOR_TYPE))
8159 {
8160 push_init_level (1, braced_init_obstack);
8161 continue;
8162 }
8163
8164 if (value.value)
8165 {
8166 push_member_name (constructor_fields);
8167 output_init_element (value.value, value.original_type,
8168 strict_string, fieldtype,
8169 constructor_fields, 1, implicit,
8170 braced_init_obstack);
8171 RESTORE_SPELLING_DEPTH (constructor_depth);
8172 }
8173 else
8174 /* Do the bookkeeping for an element that was
8175 directly output as a constructor. */
8176 {
8177 /* For a record, keep track of end position of last field. */
8178 if (DECL_SIZE (constructor_fields))
8179 constructor_bit_index
8180 = size_binop_loc (input_location, PLUS_EXPR,
8181 bit_position (constructor_fields),
8182 DECL_SIZE (constructor_fields));
8183
8184 /* If the current field was the first one not yet written out,
8185 it isn't now, so update. */
8186 if (constructor_unfilled_fields == constructor_fields)
8187 {
8188 constructor_unfilled_fields = DECL_CHAIN (constructor_fields);
8189 /* Skip any nameless bit fields. */
8190 while (constructor_unfilled_fields != 0
8191 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
8192 && DECL_NAME (constructor_unfilled_fields) == 0)
8193 constructor_unfilled_fields =
8194 DECL_CHAIN (constructor_unfilled_fields);
8195 }
8196 }
8197
8198 constructor_fields = DECL_CHAIN (constructor_fields);
8199 /* Skip any nameless bit fields at the beginning. */
8200 while (constructor_fields != 0
8201 && DECL_C_BIT_FIELD (constructor_fields)
8202 && DECL_NAME (constructor_fields) == 0)
8203 constructor_fields = DECL_CHAIN (constructor_fields);
8204 }
8205 else if (TREE_CODE (constructor_type) == UNION_TYPE)
8206 {
8207 tree fieldtype;
8208 enum tree_code fieldcode;
8209
8210 if (constructor_fields == 0)
8211 {
8212 pedwarn_init (input_location, 0,
8213 "excess elements in union initializer");
8214 break;
8215 }
8216
8217 fieldtype = TREE_TYPE (constructor_fields);
8218 if (fieldtype != error_mark_node)
8219 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
8220 fieldcode = TREE_CODE (fieldtype);
8221
8222 /* Warn that traditional C rejects initialization of unions.
8223 We skip the warning if the value is zero. This is done
8224 under the assumption that the zero initializer in user
8225 code appears conditioned on e.g. __STDC__ to avoid
8226 "missing initializer" warnings and relies on default
8227 initialization to zero in the traditional C case.
8228 We also skip the warning if the initializer is designated,
8229 again on the assumption that this must be conditional on
8230 __STDC__ anyway (and we've already complained about the
8231 member-designator already). */
8232 if (!in_system_header && !constructor_designated
8233 && !(value.value && (integer_zerop (value.value)
8234 || real_zerop (value.value))))
8235 warning (OPT_Wtraditional, "traditional C rejects initialization "
8236 "of unions");
8237
8238 /* Accept a string constant to initialize a subarray. */
8239 if (value.value != 0
8240 && fieldcode == ARRAY_TYPE
8241 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
8242 && string_flag)
8243 value.value = orig_value;
8244 /* Otherwise, if we have come to a subaggregate,
8245 and we don't have an element of its type, push into it. */
8246 else if (value.value != 0
8247 && value.value != error_mark_node
8248 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
8249 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
8250 || fieldcode == UNION_TYPE || fieldcode == VECTOR_TYPE))
8251 {
8252 push_init_level (1, braced_init_obstack);
8253 continue;
8254 }
8255
8256 if (value.value)
8257 {
8258 push_member_name (constructor_fields);
8259 output_init_element (value.value, value.original_type,
8260 strict_string, fieldtype,
8261 constructor_fields, 1, implicit,
8262 braced_init_obstack);
8263 RESTORE_SPELLING_DEPTH (constructor_depth);
8264 }
8265 else
8266 /* Do the bookkeeping for an element that was
8267 directly output as a constructor. */
8268 {
8269 constructor_bit_index = DECL_SIZE (constructor_fields);
8270 constructor_unfilled_fields = DECL_CHAIN (constructor_fields);
8271 }
8272
8273 constructor_fields = 0;
8274 }
8275 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
8276 {
8277 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
8278 enum tree_code eltcode = TREE_CODE (elttype);
8279
8280 /* Accept a string constant to initialize a subarray. */
8281 if (value.value != 0
8282 && eltcode == ARRAY_TYPE
8283 && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
8284 && string_flag)
8285 value.value = orig_value;
8286 /* Otherwise, if we have come to a subaggregate,
8287 and we don't have an element of its type, push into it. */
8288 else if (value.value != 0
8289 && value.value != error_mark_node
8290 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
8291 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
8292 || eltcode == UNION_TYPE || eltcode == VECTOR_TYPE))
8293 {
8294 push_init_level (1, braced_init_obstack);
8295 continue;
8296 }
8297
8298 if (constructor_max_index != 0
8299 && (tree_int_cst_lt (constructor_max_index, constructor_index)
8300 || integer_all_onesp (constructor_max_index)))
8301 {
8302 pedwarn_init (input_location, 0,
8303 "excess elements in array initializer");
8304 break;
8305 }
8306
8307 /* Now output the actual element. */
8308 if (value.value)
8309 {
8310 push_array_bounds (tree_low_cst (constructor_index, 1));
8311 output_init_element (value.value, value.original_type,
8312 strict_string, elttype,
8313 constructor_index, 1, implicit,
8314 braced_init_obstack);
8315 RESTORE_SPELLING_DEPTH (constructor_depth);
8316 }
8317
8318 constructor_index
8319 = size_binop_loc (input_location, PLUS_EXPR,
8320 constructor_index, bitsize_one_node);
8321
8322 if (!value.value)
8323 /* If we are doing the bookkeeping for an element that was
8324 directly output as a constructor, we must update
8325 constructor_unfilled_index. */
8326 constructor_unfilled_index = constructor_index;
8327 }
8328 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
8329 {
8330 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
8331
8332 /* Do a basic check of initializer size. Note that vectors
8333 always have a fixed size derived from their type. */
8334 if (tree_int_cst_lt (constructor_max_index, constructor_index))
8335 {
8336 pedwarn_init (input_location, 0,
8337 "excess elements in vector initializer");
8338 break;
8339 }
8340
8341 /* Now output the actual element. */
8342 if (value.value)
8343 {
8344 if (TREE_CODE (value.value) == VECTOR_CST)
8345 elttype = TYPE_MAIN_VARIANT (constructor_type);
8346 output_init_element (value.value, value.original_type,
8347 strict_string, elttype,
8348 constructor_index, 1, implicit,
8349 braced_init_obstack);
8350 }
8351
8352 constructor_index
8353 = size_binop_loc (input_location,
8354 PLUS_EXPR, constructor_index, bitsize_one_node);
8355
8356 if (!value.value)
8357 /* If we are doing the bookkeeping for an element that was
8358 directly output as a constructor, we must update
8359 constructor_unfilled_index. */
8360 constructor_unfilled_index = constructor_index;
8361 }
8362
8363 /* Handle the sole element allowed in a braced initializer
8364 for a scalar variable. */
8365 else if (constructor_type != error_mark_node
8366 && constructor_fields == 0)
8367 {
8368 pedwarn_init (input_location, 0,
8369 "excess elements in scalar initializer");
8370 break;
8371 }
8372 else
8373 {
8374 if (value.value)
8375 output_init_element (value.value, value.original_type,
8376 strict_string, constructor_type,
8377 NULL_TREE, 1, implicit,
8378 braced_init_obstack);
8379 constructor_fields = 0;
8380 }
8381
8382 /* Handle range initializers either at this level or anywhere higher
8383 in the designator stack. */
8384 if (constructor_range_stack)
8385 {
8386 struct constructor_range_stack *p, *range_stack;
8387 int finish = 0;
8388
8389 range_stack = constructor_range_stack;
8390 constructor_range_stack = 0;
8391 while (constructor_stack != range_stack->stack)
8392 {
8393 gcc_assert (constructor_stack->implicit);
8394 process_init_element (pop_init_level (1,
8395 braced_init_obstack),
8396 true, braced_init_obstack);
8397 }
8398 for (p = range_stack;
8399 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
8400 p = p->prev)
8401 {
8402 gcc_assert (constructor_stack->implicit);
8403 process_init_element (pop_init_level (1, braced_init_obstack),
8404 true, braced_init_obstack);
8405 }
8406
8407 p->index = size_binop_loc (input_location,
8408 PLUS_EXPR, p->index, bitsize_one_node);
8409 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
8410 finish = 1;
8411
8412 while (1)
8413 {
8414 constructor_index = p->index;
8415 constructor_fields = p->fields;
8416 if (finish && p->range_end && p->index == p->range_start)
8417 {
8418 finish = 0;
8419 p->prev = 0;
8420 }
8421 p = p->next;
8422 if (!p)
8423 break;
8424 push_init_level (2, braced_init_obstack);
8425 p->stack = constructor_stack;
8426 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
8427 p->index = p->range_start;
8428 }
8429
8430 if (!finish)
8431 constructor_range_stack = range_stack;
8432 continue;
8433 }
8434
8435 break;
8436 }
8437
8438 constructor_range_stack = 0;
8439 }
8440 \f
8441 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
8442 (guaranteed to be 'volatile' or null) and ARGS (represented using
8443 an ASM_EXPR node). */
8444 tree
8445 build_asm_stmt (tree cv_qualifier, tree args)
8446 {
8447 if (!ASM_VOLATILE_P (args) && cv_qualifier)
8448 ASM_VOLATILE_P (args) = 1;
8449 return add_stmt (args);
8450 }
8451
8452 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
8453 some INPUTS, and some CLOBBERS. The latter three may be NULL.
8454 SIMPLE indicates whether there was anything at all after the
8455 string in the asm expression -- asm("blah") and asm("blah" : )
8456 are subtly different. We use a ASM_EXPR node to represent this. */
8457 tree
8458 build_asm_expr (location_t loc, tree string, tree outputs, tree inputs,
8459 tree clobbers, tree labels, bool simple)
8460 {
8461 tree tail;
8462 tree args;
8463 int i;
8464 const char *constraint;
8465 const char **oconstraints;
8466 bool allows_mem, allows_reg, is_inout;
8467 int ninputs, noutputs;
8468
8469 ninputs = list_length (inputs);
8470 noutputs = list_length (outputs);
8471 oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
8472
8473 string = resolve_asm_operand_names (string, outputs, inputs, labels);
8474
8475 /* Remove output conversions that change the type but not the mode. */
8476 for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
8477 {
8478 tree output = TREE_VALUE (tail);
8479
8480 /* ??? Really, this should not be here. Users should be using a
8481 proper lvalue, dammit. But there's a long history of using casts
8482 in the output operands. In cases like longlong.h, this becomes a
8483 primitive form of typechecking -- if the cast can be removed, then
8484 the output operand had a type of the proper width; otherwise we'll
8485 get an error. Gross, but ... */
8486 STRIP_NOPS (output);
8487
8488 if (!lvalue_or_else (loc, output, lv_asm))
8489 output = error_mark_node;
8490
8491 if (output != error_mark_node
8492 && (TREE_READONLY (output)
8493 || TYPE_READONLY (TREE_TYPE (output))
8494 || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
8495 || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
8496 && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
8497 readonly_error (output, lv_asm);
8498
8499 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
8500 oconstraints[i] = constraint;
8501
8502 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
8503 &allows_mem, &allows_reg, &is_inout))
8504 {
8505 /* If the operand is going to end up in memory,
8506 mark it addressable. */
8507 if (!allows_reg && !c_mark_addressable (output))
8508 output = error_mark_node;
8509 if (!(!allows_reg && allows_mem)
8510 && output != error_mark_node
8511 && VOID_TYPE_P (TREE_TYPE (output)))
8512 {
8513 error_at (loc, "invalid use of void expression");
8514 output = error_mark_node;
8515 }
8516 }
8517 else
8518 output = error_mark_node;
8519
8520 TREE_VALUE (tail) = output;
8521 }
8522
8523 for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
8524 {
8525 tree input;
8526
8527 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
8528 input = TREE_VALUE (tail);
8529
8530 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
8531 oconstraints, &allows_mem, &allows_reg))
8532 {
8533 /* If the operand is going to end up in memory,
8534 mark it addressable. */
8535 if (!allows_reg && allows_mem)
8536 {
8537 /* Strip the nops as we allow this case. FIXME, this really
8538 should be rejected or made deprecated. */
8539 STRIP_NOPS (input);
8540 if (!c_mark_addressable (input))
8541 input = error_mark_node;
8542 }
8543 else if (input != error_mark_node && VOID_TYPE_P (TREE_TYPE (input)))
8544 {
8545 error_at (loc, "invalid use of void expression");
8546 input = error_mark_node;
8547 }
8548 }
8549 else
8550 input = error_mark_node;
8551
8552 TREE_VALUE (tail) = input;
8553 }
8554
8555 /* ASMs with labels cannot have outputs. This should have been
8556 enforced by the parser. */
8557 gcc_assert (outputs == NULL || labels == NULL);
8558
8559 args = build_stmt (loc, ASM_EXPR, string, outputs, inputs, clobbers, labels);
8560
8561 /* asm statements without outputs, including simple ones, are treated
8562 as volatile. */
8563 ASM_INPUT_P (args) = simple;
8564 ASM_VOLATILE_P (args) = (noutputs == 0);
8565
8566 return args;
8567 }
8568 \f
8569 /* Generate a goto statement to LABEL. LOC is the location of the
8570 GOTO. */
8571
8572 tree
8573 c_finish_goto_label (location_t loc, tree label)
8574 {
8575 tree decl = lookup_label_for_goto (loc, label);
8576 if (!decl)
8577 return NULL_TREE;
8578 TREE_USED (decl) = 1;
8579 {
8580 tree t = build1 (GOTO_EXPR, void_type_node, decl);
8581 SET_EXPR_LOCATION (t, loc);
8582 return add_stmt (t);
8583 }
8584 }
8585
8586 /* Generate a computed goto statement to EXPR. LOC is the location of
8587 the GOTO. */
8588
8589 tree
8590 c_finish_goto_ptr (location_t loc, tree expr)
8591 {
8592 tree t;
8593 pedwarn (loc, OPT_pedantic, "ISO C forbids %<goto *expr;%>");
8594 expr = c_fully_fold (expr, false, NULL);
8595 expr = convert (ptr_type_node, expr);
8596 t = build1 (GOTO_EXPR, void_type_node, expr);
8597 SET_EXPR_LOCATION (t, loc);
8598 return add_stmt (t);
8599 }
8600
8601 /* Generate a C `return' statement. RETVAL is the expression for what
8602 to return, or a null pointer for `return;' with no value. LOC is
8603 the location of the return statement. If ORIGTYPE is not NULL_TREE, it
8604 is the original type of RETVAL. */
8605
8606 tree
8607 c_finish_return (location_t loc, tree retval, tree origtype)
8608 {
8609 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
8610 bool no_warning = false;
8611 bool npc = false;
8612
8613 if (TREE_THIS_VOLATILE (current_function_decl))
8614 warning_at (loc, 0,
8615 "function declared %<noreturn%> has a %<return%> statement");
8616
8617 if (retval)
8618 {
8619 tree semantic_type = NULL_TREE;
8620 npc = null_pointer_constant_p (retval);
8621 if (TREE_CODE (retval) == EXCESS_PRECISION_EXPR)
8622 {
8623 semantic_type = TREE_TYPE (retval);
8624 retval = TREE_OPERAND (retval, 0);
8625 }
8626 retval = c_fully_fold (retval, false, NULL);
8627 if (semantic_type)
8628 retval = build1 (EXCESS_PRECISION_EXPR, semantic_type, retval);
8629 }
8630
8631 if (!retval)
8632 {
8633 current_function_returns_null = 1;
8634 if ((warn_return_type || flag_isoc99)
8635 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
8636 {
8637 pedwarn_c99 (loc, flag_isoc99 ? 0 : OPT_Wreturn_type,
8638 "%<return%> with no value, in "
8639 "function returning non-void");
8640 no_warning = true;
8641 }
8642 }
8643 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
8644 {
8645 current_function_returns_null = 1;
8646 if (TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
8647 pedwarn (loc, 0,
8648 "%<return%> with a value, in function returning void");
8649 else
8650 pedwarn (loc, OPT_pedantic, "ISO C forbids "
8651 "%<return%> with expression, in function returning void");
8652 }
8653 else
8654 {
8655 tree t = convert_for_assignment (loc, valtype, retval, origtype,
8656 ic_return,
8657 npc, NULL_TREE, NULL_TREE, 0);
8658 tree res = DECL_RESULT (current_function_decl);
8659 tree inner;
8660
8661 current_function_returns_value = 1;
8662 if (t == error_mark_node)
8663 return NULL_TREE;
8664
8665 inner = t = convert (TREE_TYPE (res), t);
8666
8667 /* Strip any conversions, additions, and subtractions, and see if
8668 we are returning the address of a local variable. Warn if so. */
8669 while (1)
8670 {
8671 switch (TREE_CODE (inner))
8672 {
8673 CASE_CONVERT:
8674 case NON_LVALUE_EXPR:
8675 case PLUS_EXPR:
8676 case POINTER_PLUS_EXPR:
8677 inner = TREE_OPERAND (inner, 0);
8678 continue;
8679
8680 case MINUS_EXPR:
8681 /* If the second operand of the MINUS_EXPR has a pointer
8682 type (or is converted from it), this may be valid, so
8683 don't give a warning. */
8684 {
8685 tree op1 = TREE_OPERAND (inner, 1);
8686
8687 while (!POINTER_TYPE_P (TREE_TYPE (op1))
8688 && (CONVERT_EXPR_P (op1)
8689 || TREE_CODE (op1) == NON_LVALUE_EXPR))
8690 op1 = TREE_OPERAND (op1, 0);
8691
8692 if (POINTER_TYPE_P (TREE_TYPE (op1)))
8693 break;
8694
8695 inner = TREE_OPERAND (inner, 0);
8696 continue;
8697 }
8698
8699 case ADDR_EXPR:
8700 inner = TREE_OPERAND (inner, 0);
8701
8702 while (REFERENCE_CLASS_P (inner)
8703 && TREE_CODE (inner) != INDIRECT_REF)
8704 inner = TREE_OPERAND (inner, 0);
8705
8706 if (DECL_P (inner)
8707 && !DECL_EXTERNAL (inner)
8708 && !TREE_STATIC (inner)
8709 && DECL_CONTEXT (inner) == current_function_decl)
8710 warning_at (loc,
8711 0, "function returns address of local variable");
8712 break;
8713
8714 default:
8715 break;
8716 }
8717
8718 break;
8719 }
8720
8721 retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
8722 SET_EXPR_LOCATION (retval, loc);
8723
8724 if (warn_sequence_point)
8725 verify_sequence_points (retval);
8726 }
8727
8728 ret_stmt = build_stmt (loc, RETURN_EXPR, retval);
8729 TREE_NO_WARNING (ret_stmt) |= no_warning;
8730 return add_stmt (ret_stmt);
8731 }
8732 \f
8733 struct c_switch {
8734 /* The SWITCH_EXPR being built. */
8735 tree switch_expr;
8736
8737 /* The original type of the testing expression, i.e. before the
8738 default conversion is applied. */
8739 tree orig_type;
8740
8741 /* A splay-tree mapping the low element of a case range to the high
8742 element, or NULL_TREE if there is no high element. Used to
8743 determine whether or not a new case label duplicates an old case
8744 label. We need a tree, rather than simply a hash table, because
8745 of the GNU case range extension. */
8746 splay_tree cases;
8747
8748 /* The bindings at the point of the switch. This is used for
8749 warnings crossing decls when branching to a case label. */
8750 struct c_spot_bindings *bindings;
8751
8752 /* The next node on the stack. */
8753 struct c_switch *next;
8754 };
8755
8756 /* A stack of the currently active switch statements. The innermost
8757 switch statement is on the top of the stack. There is no need to
8758 mark the stack for garbage collection because it is only active
8759 during the processing of the body of a function, and we never
8760 collect at that point. */
8761
8762 struct c_switch *c_switch_stack;
8763
8764 /* Start a C switch statement, testing expression EXP. Return the new
8765 SWITCH_EXPR. SWITCH_LOC is the location of the `switch'.
8766 SWITCH_COND_LOC is the location of the switch's condition. */
8767
8768 tree
8769 c_start_case (location_t switch_loc,
8770 location_t switch_cond_loc,
8771 tree exp)
8772 {
8773 tree orig_type = error_mark_node;
8774 struct c_switch *cs;
8775
8776 if (exp != error_mark_node)
8777 {
8778 orig_type = TREE_TYPE (exp);
8779
8780 if (!INTEGRAL_TYPE_P (orig_type))
8781 {
8782 if (orig_type != error_mark_node)
8783 {
8784 error_at (switch_cond_loc, "switch quantity not an integer");
8785 orig_type = error_mark_node;
8786 }
8787 exp = integer_zero_node;
8788 }
8789 else
8790 {
8791 tree type = TYPE_MAIN_VARIANT (orig_type);
8792
8793 if (!in_system_header
8794 && (type == long_integer_type_node
8795 || type == long_unsigned_type_node))
8796 warning_at (switch_cond_loc,
8797 OPT_Wtraditional, "%<long%> switch expression not "
8798 "converted to %<int%> in ISO C");
8799
8800 exp = c_fully_fold (exp, false, NULL);
8801 exp = default_conversion (exp);
8802
8803 if (warn_sequence_point)
8804 verify_sequence_points (exp);
8805 }
8806 }
8807
8808 /* Add this new SWITCH_EXPR to the stack. */
8809 cs = XNEW (struct c_switch);
8810 cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
8811 SET_EXPR_LOCATION (cs->switch_expr, switch_loc);
8812 cs->orig_type = orig_type;
8813 cs->cases = splay_tree_new (case_compare, NULL, NULL);
8814 cs->bindings = c_get_switch_bindings ();
8815 cs->next = c_switch_stack;
8816 c_switch_stack = cs;
8817
8818 return add_stmt (cs->switch_expr);
8819 }
8820
8821 /* Process a case label at location LOC. */
8822
8823 tree
8824 do_case (location_t loc, tree low_value, tree high_value)
8825 {
8826 tree label = NULL_TREE;
8827
8828 if (low_value && TREE_CODE (low_value) != INTEGER_CST)
8829 {
8830 low_value = c_fully_fold (low_value, false, NULL);
8831 if (TREE_CODE (low_value) == INTEGER_CST)
8832 pedwarn (input_location, OPT_pedantic,
8833 "case label is not an integer constant expression");
8834 }
8835
8836 if (high_value && TREE_CODE (high_value) != INTEGER_CST)
8837 {
8838 high_value = c_fully_fold (high_value, false, NULL);
8839 if (TREE_CODE (high_value) == INTEGER_CST)
8840 pedwarn (input_location, OPT_pedantic,
8841 "case label is not an integer constant expression");
8842 }
8843
8844 if (c_switch_stack == NULL)
8845 {
8846 if (low_value)
8847 error_at (loc, "case label not within a switch statement");
8848 else
8849 error_at (loc, "%<default%> label not within a switch statement");
8850 return NULL_TREE;
8851 }
8852
8853 if (c_check_switch_jump_warnings (c_switch_stack->bindings,
8854 EXPR_LOCATION (c_switch_stack->switch_expr),
8855 loc))
8856 return NULL_TREE;
8857
8858 label = c_add_case_label (loc, c_switch_stack->cases,
8859 SWITCH_COND (c_switch_stack->switch_expr),
8860 c_switch_stack->orig_type,
8861 low_value, high_value);
8862 if (label == error_mark_node)
8863 label = NULL_TREE;
8864 return label;
8865 }
8866
8867 /* Finish the switch statement. */
8868
8869 void
8870 c_finish_case (tree body)
8871 {
8872 struct c_switch *cs = c_switch_stack;
8873 location_t switch_location;
8874
8875 SWITCH_BODY (cs->switch_expr) = body;
8876
8877 /* Emit warnings as needed. */
8878 switch_location = EXPR_LOCATION (cs->switch_expr);
8879 c_do_switch_warnings (cs->cases, switch_location,
8880 TREE_TYPE (cs->switch_expr),
8881 SWITCH_COND (cs->switch_expr));
8882
8883 /* Pop the stack. */
8884 c_switch_stack = cs->next;
8885 splay_tree_delete (cs->cases);
8886 c_release_switch_bindings (cs->bindings);
8887 XDELETE (cs);
8888 }
8889 \f
8890 /* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
8891 THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
8892 may be null. NESTED_IF is true if THEN_BLOCK contains another IF
8893 statement, and was not surrounded with parenthesis. */
8894
8895 void
8896 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
8897 tree else_block, bool nested_if)
8898 {
8899 tree stmt;
8900
8901 /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
8902 if (warn_parentheses && nested_if && else_block == NULL)
8903 {
8904 tree inner_if = then_block;
8905
8906 /* We know from the grammar productions that there is an IF nested
8907 within THEN_BLOCK. Due to labels and c99 conditional declarations,
8908 it might not be exactly THEN_BLOCK, but should be the last
8909 non-container statement within. */
8910 while (1)
8911 switch (TREE_CODE (inner_if))
8912 {
8913 case COND_EXPR:
8914 goto found;
8915 case BIND_EXPR:
8916 inner_if = BIND_EXPR_BODY (inner_if);
8917 break;
8918 case STATEMENT_LIST:
8919 inner_if = expr_last (then_block);
8920 break;
8921 case TRY_FINALLY_EXPR:
8922 case TRY_CATCH_EXPR:
8923 inner_if = TREE_OPERAND (inner_if, 0);
8924 break;
8925 default:
8926 gcc_unreachable ();
8927 }
8928 found:
8929
8930 if (COND_EXPR_ELSE (inner_if))
8931 warning_at (if_locus, OPT_Wparentheses,
8932 "suggest explicit braces to avoid ambiguous %<else%>");
8933 }
8934
8935 stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
8936 SET_EXPR_LOCATION (stmt, if_locus);
8937 add_stmt (stmt);
8938 }
8939
8940 /* Emit a general-purpose loop construct. START_LOCUS is the location of
8941 the beginning of the loop. COND is the loop condition. COND_IS_FIRST
8942 is false for DO loops. INCR is the FOR increment expression. BODY is
8943 the statement controlled by the loop. BLAB is the break label. CLAB is
8944 the continue label. Everything is allowed to be NULL. */
8945
8946 void
8947 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
8948 tree blab, tree clab, bool cond_is_first)
8949 {
8950 tree entry = NULL, exit = NULL, t;
8951
8952 /* If the condition is zero don't generate a loop construct. */
8953 if (cond && integer_zerop (cond))
8954 {
8955 if (cond_is_first)
8956 {
8957 t = build_and_jump (&blab);
8958 SET_EXPR_LOCATION (t, start_locus);
8959 add_stmt (t);
8960 }
8961 }
8962 else
8963 {
8964 tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
8965
8966 /* If we have an exit condition, then we build an IF with gotos either
8967 out of the loop, or to the top of it. If there's no exit condition,
8968 then we just build a jump back to the top. */
8969 exit = build_and_jump (&LABEL_EXPR_LABEL (top));
8970
8971 if (cond && !integer_nonzerop (cond))
8972 {
8973 /* Canonicalize the loop condition to the end. This means
8974 generating a branch to the loop condition. Reuse the
8975 continue label, if possible. */
8976 if (cond_is_first)
8977 {
8978 if (incr || !clab)
8979 {
8980 entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
8981 t = build_and_jump (&LABEL_EXPR_LABEL (entry));
8982 }
8983 else
8984 t = build1 (GOTO_EXPR, void_type_node, clab);
8985 SET_EXPR_LOCATION (t, start_locus);
8986 add_stmt (t);
8987 }
8988
8989 t = build_and_jump (&blab);
8990 if (cond_is_first)
8991 exit = fold_build3_loc (start_locus,
8992 COND_EXPR, void_type_node, cond, exit, t);
8993 else
8994 exit = fold_build3_loc (input_location,
8995 COND_EXPR, void_type_node, cond, exit, t);
8996 }
8997
8998 add_stmt (top);
8999 }
9000
9001 if (body)
9002 add_stmt (body);
9003 if (clab)
9004 add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
9005 if (incr)
9006 add_stmt (incr);
9007 if (entry)
9008 add_stmt (entry);
9009 if (exit)
9010 add_stmt (exit);
9011 if (blab)
9012 add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
9013 }
9014
9015 tree
9016 c_finish_bc_stmt (location_t loc, tree *label_p, bool is_break)
9017 {
9018 bool skip;
9019 tree label = *label_p;
9020
9021 /* In switch statements break is sometimes stylistically used after
9022 a return statement. This can lead to spurious warnings about
9023 control reaching the end of a non-void function when it is
9024 inlined. Note that we are calling block_may_fallthru with
9025 language specific tree nodes; this works because
9026 block_may_fallthru returns true when given something it does not
9027 understand. */
9028 skip = !block_may_fallthru (cur_stmt_list);
9029
9030 if (!label)
9031 {
9032 if (!skip)
9033 *label_p = label = create_artificial_label (loc);
9034 }
9035 else if (TREE_CODE (label) == LABEL_DECL)
9036 ;
9037 else switch (TREE_INT_CST_LOW (label))
9038 {
9039 case 0:
9040 if (is_break)
9041 error_at (loc, "break statement not within loop or switch");
9042 else
9043 error_at (loc, "continue statement not within a loop");
9044 return NULL_TREE;
9045
9046 case 1:
9047 gcc_assert (is_break);
9048 error_at (loc, "break statement used with OpenMP for loop");
9049 return NULL_TREE;
9050
9051 default:
9052 gcc_unreachable ();
9053 }
9054
9055 if (skip)
9056 return NULL_TREE;
9057
9058 if (!is_break)
9059 add_stmt (build_predict_expr (PRED_CONTINUE, NOT_TAKEN));
9060
9061 return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
9062 }
9063
9064 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
9065
9066 static void
9067 emit_side_effect_warnings (location_t loc, tree expr)
9068 {
9069 if (expr == error_mark_node)
9070 ;
9071 else if (!TREE_SIDE_EFFECTS (expr))
9072 {
9073 if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
9074 warning_at (loc, OPT_Wunused_value, "statement with no effect");
9075 }
9076 else
9077 warn_if_unused_value (expr, loc);
9078 }
9079
9080 /* Process an expression as if it were a complete statement. Emit
9081 diagnostics, but do not call ADD_STMT. LOC is the location of the
9082 statement. */
9083
9084 tree
9085 c_process_expr_stmt (location_t loc, tree expr)
9086 {
9087 tree exprv;
9088
9089 if (!expr)
9090 return NULL_TREE;
9091
9092 expr = c_fully_fold (expr, false, NULL);
9093
9094 if (warn_sequence_point)
9095 verify_sequence_points (expr);
9096
9097 if (TREE_TYPE (expr) != error_mark_node
9098 && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
9099 && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
9100 error_at (loc, "expression statement has incomplete type");
9101
9102 /* If we're not processing a statement expression, warn about unused values.
9103 Warnings for statement expressions will be emitted later, once we figure
9104 out which is the result. */
9105 if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
9106 && warn_unused_value)
9107 emit_side_effect_warnings (loc, expr);
9108
9109 exprv = expr;
9110 while (TREE_CODE (exprv) == COMPOUND_EXPR)
9111 exprv = TREE_OPERAND (exprv, 1);
9112 if (DECL_P (exprv) || handled_component_p (exprv))
9113 mark_exp_read (exprv);
9114
9115 /* If the expression is not of a type to which we cannot assign a line
9116 number, wrap the thing in a no-op NOP_EXPR. */
9117 if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
9118 {
9119 expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
9120 SET_EXPR_LOCATION (expr, loc);
9121 }
9122
9123 return expr;
9124 }
9125
9126 /* Emit an expression as a statement. LOC is the location of the
9127 expression. */
9128
9129 tree
9130 c_finish_expr_stmt (location_t loc, tree expr)
9131 {
9132 if (expr)
9133 return add_stmt (c_process_expr_stmt (loc, expr));
9134 else
9135 return NULL;
9136 }
9137
9138 /* Do the opposite and emit a statement as an expression. To begin,
9139 create a new binding level and return it. */
9140
9141 tree
9142 c_begin_stmt_expr (void)
9143 {
9144 tree ret;
9145
9146 /* We must force a BLOCK for this level so that, if it is not expanded
9147 later, there is a way to turn off the entire subtree of blocks that
9148 are contained in it. */
9149 keep_next_level ();
9150 ret = c_begin_compound_stmt (true);
9151
9152 c_bindings_start_stmt_expr (c_switch_stack == NULL
9153 ? NULL
9154 : c_switch_stack->bindings);
9155
9156 /* Mark the current statement list as belonging to a statement list. */
9157 STATEMENT_LIST_STMT_EXPR (ret) = 1;
9158
9159 return ret;
9160 }
9161
9162 /* LOC is the location of the compound statement to which this body
9163 belongs. */
9164
9165 tree
9166 c_finish_stmt_expr (location_t loc, tree body)
9167 {
9168 tree last, type, tmp, val;
9169 tree *last_p;
9170
9171 body = c_end_compound_stmt (loc, body, true);
9172
9173 c_bindings_end_stmt_expr (c_switch_stack == NULL
9174 ? NULL
9175 : c_switch_stack->bindings);
9176
9177 /* Locate the last statement in BODY. See c_end_compound_stmt
9178 about always returning a BIND_EXPR. */
9179 last_p = &BIND_EXPR_BODY (body);
9180 last = BIND_EXPR_BODY (body);
9181
9182 continue_searching:
9183 if (TREE_CODE (last) == STATEMENT_LIST)
9184 {
9185 tree_stmt_iterator i;
9186
9187 /* This can happen with degenerate cases like ({ }). No value. */
9188 if (!TREE_SIDE_EFFECTS (last))
9189 return body;
9190
9191 /* If we're supposed to generate side effects warnings, process
9192 all of the statements except the last. */
9193 if (warn_unused_value)
9194 {
9195 for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
9196 {
9197 location_t tloc;
9198 tree t = tsi_stmt (i);
9199
9200 tloc = EXPR_HAS_LOCATION (t) ? EXPR_LOCATION (t) : loc;
9201 emit_side_effect_warnings (tloc, t);
9202 }
9203 }
9204 else
9205 i = tsi_last (last);
9206 last_p = tsi_stmt_ptr (i);
9207 last = *last_p;
9208 }
9209
9210 /* If the end of the list is exception related, then the list was split
9211 by a call to push_cleanup. Continue searching. */
9212 if (TREE_CODE (last) == TRY_FINALLY_EXPR
9213 || TREE_CODE (last) == TRY_CATCH_EXPR)
9214 {
9215 last_p = &TREE_OPERAND (last, 0);
9216 last = *last_p;
9217 goto continue_searching;
9218 }
9219
9220 if (last == error_mark_node)
9221 return last;
9222
9223 /* In the case that the BIND_EXPR is not necessary, return the
9224 expression out from inside it. */
9225 if (last == BIND_EXPR_BODY (body)
9226 && BIND_EXPR_VARS (body) == NULL)
9227 {
9228 /* Even if this looks constant, do not allow it in a constant
9229 expression. */
9230 last = c_wrap_maybe_const (last, true);
9231 /* Do not warn if the return value of a statement expression is
9232 unused. */
9233 TREE_NO_WARNING (last) = 1;
9234 return last;
9235 }
9236
9237 /* Extract the type of said expression. */
9238 type = TREE_TYPE (last);
9239
9240 /* If we're not returning a value at all, then the BIND_EXPR that
9241 we already have is a fine expression to return. */
9242 if (!type || VOID_TYPE_P (type))
9243 return body;
9244
9245 /* Now that we've located the expression containing the value, it seems
9246 silly to make voidify_wrapper_expr repeat the process. Create a
9247 temporary of the appropriate type and stick it in a TARGET_EXPR. */
9248 tmp = create_tmp_var_raw (type, NULL);
9249
9250 /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
9251 tree_expr_nonnegative_p giving up immediately. */
9252 val = last;
9253 if (TREE_CODE (val) == NOP_EXPR
9254 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
9255 val = TREE_OPERAND (val, 0);
9256
9257 *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
9258 SET_EXPR_LOCATION (*last_p, EXPR_LOCATION (last));
9259
9260 {
9261 tree t = build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
9262 SET_EXPR_LOCATION (t, loc);
9263 return t;
9264 }
9265 }
9266 \f
9267 /* Begin and end compound statements. This is as simple as pushing
9268 and popping new statement lists from the tree. */
9269
9270 tree
9271 c_begin_compound_stmt (bool do_scope)
9272 {
9273 tree stmt = push_stmt_list ();
9274 if (do_scope)
9275 push_scope ();
9276 return stmt;
9277 }
9278
9279 /* End a compound statement. STMT is the statement. LOC is the
9280 location of the compound statement-- this is usually the location
9281 of the opening brace. */
9282
9283 tree
9284 c_end_compound_stmt (location_t loc, tree stmt, bool do_scope)
9285 {
9286 tree block = NULL;
9287
9288 if (do_scope)
9289 {
9290 if (c_dialect_objc ())
9291 objc_clear_super_receiver ();
9292 block = pop_scope ();
9293 }
9294
9295 stmt = pop_stmt_list (stmt);
9296 stmt = c_build_bind_expr (loc, block, stmt);
9297
9298 /* If this compound statement is nested immediately inside a statement
9299 expression, then force a BIND_EXPR to be created. Otherwise we'll
9300 do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
9301 STATEMENT_LISTs merge, and thus we can lose track of what statement
9302 was really last. */
9303 if (building_stmt_list_p ()
9304 && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
9305 && TREE_CODE (stmt) != BIND_EXPR)
9306 {
9307 stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
9308 TREE_SIDE_EFFECTS (stmt) = 1;
9309 SET_EXPR_LOCATION (stmt, loc);
9310 }
9311
9312 return stmt;
9313 }
9314
9315 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
9316 when the current scope is exited. EH_ONLY is true when this is not
9317 meant to apply to normal control flow transfer. */
9318
9319 void
9320 push_cleanup (tree decl, tree cleanup, bool eh_only)
9321 {
9322 enum tree_code code;
9323 tree stmt, list;
9324 bool stmt_expr;
9325
9326 code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
9327 stmt = build_stmt (DECL_SOURCE_LOCATION (decl), code, NULL, cleanup);
9328 add_stmt (stmt);
9329 stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
9330 list = push_stmt_list ();
9331 TREE_OPERAND (stmt, 0) = list;
9332 STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
9333 }
9334
9335 /* Convert scalar to vector for the range of operations. */
9336 static enum stv_conv
9337 scalar_to_vector (location_t loc, enum tree_code code, tree op0, tree op1)
9338 {
9339 tree type0 = TREE_TYPE (op0);
9340 tree type1 = TREE_TYPE (op1);
9341 bool integer_only_op = false;
9342 enum stv_conv ret = stv_firstarg;
9343
9344 gcc_assert (TREE_CODE (type0) == VECTOR_TYPE
9345 || TREE_CODE (type1) == VECTOR_TYPE);
9346 switch (code)
9347 {
9348 case RSHIFT_EXPR:
9349 case LSHIFT_EXPR:
9350 if (TREE_CODE (type0) == INTEGER_TYPE
9351 && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE)
9352 {
9353 if (unsafe_conversion_p (TREE_TYPE (type1), op0, false))
9354 {
9355 error_at (loc, "conversion of scalar to vector "
9356 "involves truncation");
9357 return stv_error;
9358 }
9359 else
9360 return stv_firstarg;
9361 }
9362 break;
9363
9364 case BIT_IOR_EXPR:
9365 case BIT_XOR_EXPR:
9366 case BIT_AND_EXPR:
9367 integer_only_op = true;
9368 /* ... fall through ... */
9369
9370 case PLUS_EXPR:
9371 case MINUS_EXPR:
9372 case MULT_EXPR:
9373 case TRUNC_DIV_EXPR:
9374 case TRUNC_MOD_EXPR:
9375 case RDIV_EXPR:
9376 if (TREE_CODE (type0) == VECTOR_TYPE)
9377 {
9378 tree tmp;
9379 ret = stv_secondarg;
9380 /* Swap TYPE0 with TYPE1 and OP0 with OP1 */
9381 tmp = type0; type0 = type1; type1 = tmp;
9382 tmp = op0; op0 = op1; op1 = tmp;
9383 }
9384
9385 if (TREE_CODE (type0) == INTEGER_TYPE
9386 && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE)
9387 {
9388 if (unsafe_conversion_p (TREE_TYPE (type1), op0, false))
9389 {
9390 error_at (loc, "conversion of scalar to vector "
9391 "involves truncation");
9392 return stv_error;
9393 }
9394 return ret;
9395 }
9396 else if (!integer_only_op
9397 /* Allow integer --> real conversion if safe. */
9398 && (TREE_CODE (type0) == REAL_TYPE
9399 || TREE_CODE (type0) == INTEGER_TYPE)
9400 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (type1)))
9401 {
9402 if (unsafe_conversion_p (TREE_TYPE (type1), op0, false))
9403 {
9404 error_at (loc, "conversion of scalar to vector "
9405 "involves truncation");
9406 return stv_error;
9407 }
9408 return ret;
9409 }
9410 default:
9411 break;
9412 }
9413
9414 return stv_nothing;
9415 }
9416 \f
9417 /* Build a binary-operation expression without default conversions.
9418 CODE is the kind of expression to build.
9419 LOCATION is the operator's location.
9420 This function differs from `build' in several ways:
9421 the data type of the result is computed and recorded in it,
9422 warnings are generated if arg data types are invalid,
9423 special handling for addition and subtraction of pointers is known,
9424 and some optimization is done (operations on narrow ints
9425 are done in the narrower type when that gives the same result).
9426 Constant folding is also done before the result is returned.
9427
9428 Note that the operands will never have enumeral types, or function
9429 or array types, because either they will have the default conversions
9430 performed or they have both just been converted to some other type in which
9431 the arithmetic is to be done. */
9432
9433 tree
9434 build_binary_op (location_t location, enum tree_code code,
9435 tree orig_op0, tree orig_op1, int convert_p)
9436 {
9437 tree type0, type1, orig_type0, orig_type1;
9438 tree eptype;
9439 enum tree_code code0, code1;
9440 tree op0, op1;
9441 tree ret = error_mark_node;
9442 const char *invalid_op_diag;
9443 bool op0_int_operands, op1_int_operands;
9444 bool int_const, int_const_or_overflow, int_operands;
9445
9446 /* Expression code to give to the expression when it is built.
9447 Normally this is CODE, which is what the caller asked for,
9448 but in some special cases we change it. */
9449 enum tree_code resultcode = code;
9450
9451 /* Data type in which the computation is to be performed.
9452 In the simplest cases this is the common type of the arguments. */
9453 tree result_type = NULL;
9454
9455 /* When the computation is in excess precision, the type of the
9456 final EXCESS_PRECISION_EXPR. */
9457 tree semantic_result_type = NULL;
9458
9459 /* Nonzero means operands have already been type-converted
9460 in whatever way is necessary.
9461 Zero means they need to be converted to RESULT_TYPE. */
9462 int converted = 0;
9463
9464 /* Nonzero means create the expression with this type, rather than
9465 RESULT_TYPE. */
9466 tree build_type = 0;
9467
9468 /* Nonzero means after finally constructing the expression
9469 convert it to this type. */
9470 tree final_type = 0;
9471
9472 /* Nonzero if this is an operation like MIN or MAX which can
9473 safely be computed in short if both args are promoted shorts.
9474 Also implies COMMON.
9475 -1 indicates a bitwise operation; this makes a difference
9476 in the exact conditions for when it is safe to do the operation
9477 in a narrower mode. */
9478 int shorten = 0;
9479
9480 /* Nonzero if this is a comparison operation;
9481 if both args are promoted shorts, compare the original shorts.
9482 Also implies COMMON. */
9483 int short_compare = 0;
9484
9485 /* Nonzero if this is a right-shift operation, which can be computed on the
9486 original short and then promoted if the operand is a promoted short. */
9487 int short_shift = 0;
9488
9489 /* Nonzero means set RESULT_TYPE to the common type of the args. */
9490 int common = 0;
9491
9492 /* True means types are compatible as far as ObjC is concerned. */
9493 bool objc_ok;
9494
9495 /* True means this is an arithmetic operation that may need excess
9496 precision. */
9497 bool may_need_excess_precision;
9498
9499 /* True means this is a boolean operation that converts both its
9500 operands to truth-values. */
9501 bool boolean_op = false;
9502
9503 if (location == UNKNOWN_LOCATION)
9504 location = input_location;
9505
9506 op0 = orig_op0;
9507 op1 = orig_op1;
9508
9509 op0_int_operands = EXPR_INT_CONST_OPERANDS (orig_op0);
9510 if (op0_int_operands)
9511 op0 = remove_c_maybe_const_expr (op0);
9512 op1_int_operands = EXPR_INT_CONST_OPERANDS (orig_op1);
9513 if (op1_int_operands)
9514 op1 = remove_c_maybe_const_expr (op1);
9515 int_operands = (op0_int_operands && op1_int_operands);
9516 if (int_operands)
9517 {
9518 int_const_or_overflow = (TREE_CODE (orig_op0) == INTEGER_CST
9519 && TREE_CODE (orig_op1) == INTEGER_CST);
9520 int_const = (int_const_or_overflow
9521 && !TREE_OVERFLOW (orig_op0)
9522 && !TREE_OVERFLOW (orig_op1));
9523 }
9524 else
9525 int_const = int_const_or_overflow = false;
9526
9527 /* Do not apply default conversion in mixed vector/scalar expression. */
9528 if (convert_p
9529 && !((TREE_CODE (TREE_TYPE (op0)) == VECTOR_TYPE)
9530 != (TREE_CODE (TREE_TYPE (op1)) == VECTOR_TYPE)))
9531 {
9532 op0 = default_conversion (op0);
9533 op1 = default_conversion (op1);
9534 }
9535
9536 orig_type0 = type0 = TREE_TYPE (op0);
9537 orig_type1 = type1 = TREE_TYPE (op1);
9538
9539 /* The expression codes of the data types of the arguments tell us
9540 whether the arguments are integers, floating, pointers, etc. */
9541 code0 = TREE_CODE (type0);
9542 code1 = TREE_CODE (type1);
9543
9544 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
9545 STRIP_TYPE_NOPS (op0);
9546 STRIP_TYPE_NOPS (op1);
9547
9548 /* If an error was already reported for one of the arguments,
9549 avoid reporting another error. */
9550
9551 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
9552 return error_mark_node;
9553
9554 if ((invalid_op_diag
9555 = targetm.invalid_binary_op (code, type0, type1)))
9556 {
9557 error_at (location, invalid_op_diag);
9558 return error_mark_node;
9559 }
9560
9561 switch (code)
9562 {
9563 case PLUS_EXPR:
9564 case MINUS_EXPR:
9565 case MULT_EXPR:
9566 case TRUNC_DIV_EXPR:
9567 case CEIL_DIV_EXPR:
9568 case FLOOR_DIV_EXPR:
9569 case ROUND_DIV_EXPR:
9570 case EXACT_DIV_EXPR:
9571 may_need_excess_precision = true;
9572 break;
9573 default:
9574 may_need_excess_precision = false;
9575 break;
9576 }
9577 if (TREE_CODE (op0) == EXCESS_PRECISION_EXPR)
9578 {
9579 op0 = TREE_OPERAND (op0, 0);
9580 type0 = TREE_TYPE (op0);
9581 }
9582 else if (may_need_excess_precision
9583 && (eptype = excess_precision_type (type0)) != NULL_TREE)
9584 {
9585 type0 = eptype;
9586 op0 = convert (eptype, op0);
9587 }
9588 if (TREE_CODE (op1) == EXCESS_PRECISION_EXPR)
9589 {
9590 op1 = TREE_OPERAND (op1, 0);
9591 type1 = TREE_TYPE (op1);
9592 }
9593 else if (may_need_excess_precision
9594 && (eptype = excess_precision_type (type1)) != NULL_TREE)
9595 {
9596 type1 = eptype;
9597 op1 = convert (eptype, op1);
9598 }
9599
9600 objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
9601
9602 /* In case when one of the operands of the binary operation is
9603 a vector and another is a scalar -- convert scalar to vector. */
9604 if ((code0 == VECTOR_TYPE) != (code1 == VECTOR_TYPE))
9605 {
9606 enum stv_conv convert_flag = scalar_to_vector (location, code, op0, op1);
9607
9608 switch (convert_flag)
9609 {
9610 case stv_error:
9611 return error_mark_node;
9612 case stv_firstarg:
9613 {
9614 bool maybe_const = true;
9615 tree sc;
9616 sc = c_fully_fold (op0, false, &maybe_const);
9617 sc = save_expr (sc);
9618 sc = convert (TREE_TYPE (type1), sc);
9619 op0 = build_vector_from_val (type1, sc);
9620 if (!maybe_const)
9621 op0 = c_wrap_maybe_const (op0, true);
9622 orig_type0 = type0 = TREE_TYPE (op0);
9623 code0 = TREE_CODE (type0);
9624 converted = 1;
9625 break;
9626 }
9627 case stv_secondarg:
9628 {
9629 bool maybe_const = true;
9630 tree sc;
9631 sc = c_fully_fold (op1, false, &maybe_const);
9632 sc = save_expr (sc);
9633 sc = convert (TREE_TYPE (type0), sc);
9634 op1 = build_vector_from_val (type0, sc);
9635 if (!maybe_const)
9636 op0 = c_wrap_maybe_const (op1, true);
9637 orig_type1 = type1 = TREE_TYPE (op1);
9638 code1 = TREE_CODE (type1);
9639 converted = 1;
9640 break;
9641 }
9642 default:
9643 break;
9644 }
9645 }
9646
9647 switch (code)
9648 {
9649 case PLUS_EXPR:
9650 /* Handle the pointer + int case. */
9651 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
9652 {
9653 ret = pointer_int_sum (location, PLUS_EXPR, op0, op1);
9654 goto return_build_binary_op;
9655 }
9656 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
9657 {
9658 ret = pointer_int_sum (location, PLUS_EXPR, op1, op0);
9659 goto return_build_binary_op;
9660 }
9661 else
9662 common = 1;
9663 break;
9664
9665 case MINUS_EXPR:
9666 /* Subtraction of two similar pointers.
9667 We must subtract them as integers, then divide by object size. */
9668 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
9669 && comp_target_types (location, type0, type1))
9670 {
9671 ret = pointer_diff (location, op0, op1);
9672 goto return_build_binary_op;
9673 }
9674 /* Handle pointer minus int. Just like pointer plus int. */
9675 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
9676 {
9677 ret = pointer_int_sum (location, MINUS_EXPR, op0, op1);
9678 goto return_build_binary_op;
9679 }
9680 else
9681 common = 1;
9682 break;
9683
9684 case MULT_EXPR:
9685 common = 1;
9686 break;
9687
9688 case TRUNC_DIV_EXPR:
9689 case CEIL_DIV_EXPR:
9690 case FLOOR_DIV_EXPR:
9691 case ROUND_DIV_EXPR:
9692 case EXACT_DIV_EXPR:
9693 warn_for_div_by_zero (location, op1);
9694
9695 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
9696 || code0 == FIXED_POINT_TYPE
9697 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
9698 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
9699 || code1 == FIXED_POINT_TYPE
9700 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
9701 {
9702 enum tree_code tcode0 = code0, tcode1 = code1;
9703
9704 if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
9705 tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
9706 if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
9707 tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
9708
9709 if (!((tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE)
9710 || (tcode0 == FIXED_POINT_TYPE && tcode1 == FIXED_POINT_TYPE)))
9711 resultcode = RDIV_EXPR;
9712 else
9713 /* Although it would be tempting to shorten always here, that
9714 loses on some targets, since the modulo instruction is
9715 undefined if the quotient can't be represented in the
9716 computation mode. We shorten only if unsigned or if
9717 dividing by something we know != -1. */
9718 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
9719 || (TREE_CODE (op1) == INTEGER_CST
9720 && !integer_all_onesp (op1)));
9721 common = 1;
9722 }
9723 break;
9724
9725 case BIT_AND_EXPR:
9726 case BIT_IOR_EXPR:
9727 case BIT_XOR_EXPR:
9728 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
9729 shorten = -1;
9730 /* Allow vector types which are not floating point types. */
9731 else if (code0 == VECTOR_TYPE
9732 && code1 == VECTOR_TYPE
9733 && !VECTOR_FLOAT_TYPE_P (type0)
9734 && !VECTOR_FLOAT_TYPE_P (type1))
9735 common = 1;
9736 break;
9737
9738 case TRUNC_MOD_EXPR:
9739 case FLOOR_MOD_EXPR:
9740 warn_for_div_by_zero (location, op1);
9741
9742 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
9743 && TREE_CODE (TREE_TYPE (type0)) == INTEGER_TYPE
9744 && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE)
9745 common = 1;
9746 else if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
9747 {
9748 /* Although it would be tempting to shorten always here, that loses
9749 on some targets, since the modulo instruction is undefined if the
9750 quotient can't be represented in the computation mode. We shorten
9751 only if unsigned or if dividing by something we know != -1. */
9752 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
9753 || (TREE_CODE (op1) == INTEGER_CST
9754 && !integer_all_onesp (op1)));
9755 common = 1;
9756 }
9757 break;
9758
9759 case TRUTH_ANDIF_EXPR:
9760 case TRUTH_ORIF_EXPR:
9761 case TRUTH_AND_EXPR:
9762 case TRUTH_OR_EXPR:
9763 case TRUTH_XOR_EXPR:
9764 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
9765 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
9766 || code0 == FIXED_POINT_TYPE)
9767 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
9768 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
9769 || code1 == FIXED_POINT_TYPE))
9770 {
9771 /* Result of these operations is always an int,
9772 but that does not mean the operands should be
9773 converted to ints! */
9774 result_type = integer_type_node;
9775 op0 = c_common_truthvalue_conversion (location, op0);
9776 op1 = c_common_truthvalue_conversion (location, op1);
9777 converted = 1;
9778 boolean_op = true;
9779 }
9780 if (code == TRUTH_ANDIF_EXPR)
9781 {
9782 int_const_or_overflow = (int_operands
9783 && TREE_CODE (orig_op0) == INTEGER_CST
9784 && (op0 == truthvalue_false_node
9785 || TREE_CODE (orig_op1) == INTEGER_CST));
9786 int_const = (int_const_or_overflow
9787 && !TREE_OVERFLOW (orig_op0)
9788 && (op0 == truthvalue_false_node
9789 || !TREE_OVERFLOW (orig_op1)));
9790 }
9791 else if (code == TRUTH_ORIF_EXPR)
9792 {
9793 int_const_or_overflow = (int_operands
9794 && TREE_CODE (orig_op0) == INTEGER_CST
9795 && (op0 == truthvalue_true_node
9796 || TREE_CODE (orig_op1) == INTEGER_CST));
9797 int_const = (int_const_or_overflow
9798 && !TREE_OVERFLOW (orig_op0)
9799 && (op0 == truthvalue_true_node
9800 || !TREE_OVERFLOW (orig_op1)));
9801 }
9802 break;
9803
9804 /* Shift operations: result has same type as first operand;
9805 always convert second operand to int.
9806 Also set SHORT_SHIFT if shifting rightward. */
9807
9808 case RSHIFT_EXPR:
9809 if (code0 == VECTOR_TYPE && code1 == INTEGER_TYPE
9810 && TREE_CODE (TREE_TYPE (type0)) == INTEGER_TYPE)
9811 {
9812 result_type = type0;
9813 converted = 1;
9814 }
9815 else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
9816 && TREE_CODE (TREE_TYPE (type0)) == INTEGER_TYPE
9817 && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE
9818 && TYPE_VECTOR_SUBPARTS (type0) == TYPE_VECTOR_SUBPARTS (type1))
9819 {
9820 result_type = type0;
9821 converted = 1;
9822 }
9823 else if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE)
9824 && code1 == INTEGER_TYPE)
9825 {
9826 if (TREE_CODE (op1) == INTEGER_CST)
9827 {
9828 if (tree_int_cst_sgn (op1) < 0)
9829 {
9830 int_const = false;
9831 if (c_inhibit_evaluation_warnings == 0)
9832 warning (0, "right shift count is negative");
9833 }
9834 else
9835 {
9836 if (!integer_zerop (op1))
9837 short_shift = 1;
9838
9839 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
9840 {
9841 int_const = false;
9842 if (c_inhibit_evaluation_warnings == 0)
9843 warning (0, "right shift count >= width of type");
9844 }
9845 }
9846 }
9847
9848 /* Use the type of the value to be shifted. */
9849 result_type = type0;
9850 /* Convert the non vector shift-count to an integer, regardless
9851 of size of value being shifted. */
9852 if (TREE_CODE (TREE_TYPE (op1)) != VECTOR_TYPE
9853 && TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
9854 op1 = convert (integer_type_node, op1);
9855 /* Avoid converting op1 to result_type later. */
9856 converted = 1;
9857 }
9858 break;
9859
9860 case LSHIFT_EXPR:
9861 if (code0 == VECTOR_TYPE && code1 == INTEGER_TYPE
9862 && TREE_CODE (TREE_TYPE (type0)) == INTEGER_TYPE)
9863 {
9864 result_type = type0;
9865 converted = 1;
9866 }
9867 else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
9868 && TREE_CODE (TREE_TYPE (type0)) == INTEGER_TYPE
9869 && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE
9870 && TYPE_VECTOR_SUBPARTS (type0) == TYPE_VECTOR_SUBPARTS (type1))
9871 {
9872 result_type = type0;
9873 converted = 1;
9874 }
9875 else if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE)
9876 && code1 == INTEGER_TYPE)
9877 {
9878 if (TREE_CODE (op1) == INTEGER_CST)
9879 {
9880 if (tree_int_cst_sgn (op1) < 0)
9881 {
9882 int_const = false;
9883 if (c_inhibit_evaluation_warnings == 0)
9884 warning (0, "left shift count is negative");
9885 }
9886
9887 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
9888 {
9889 int_const = false;
9890 if (c_inhibit_evaluation_warnings == 0)
9891 warning (0, "left shift count >= width of type");
9892 }
9893 }
9894
9895 /* Use the type of the value to be shifted. */
9896 result_type = type0;
9897 /* Convert the non vector shift-count to an integer, regardless
9898 of size of value being shifted. */
9899 if (TREE_CODE (TREE_TYPE (op1)) != VECTOR_TYPE
9900 && TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
9901 op1 = convert (integer_type_node, op1);
9902 /* Avoid converting op1 to result_type later. */
9903 converted = 1;
9904 }
9905 break;
9906
9907 case EQ_EXPR:
9908 case NE_EXPR:
9909 if (FLOAT_TYPE_P (type0) || FLOAT_TYPE_P (type1))
9910 warning_at (location,
9911 OPT_Wfloat_equal,
9912 "comparing floating point with == or != is unsafe");
9913 /* Result of comparison is always int,
9914 but don't convert the args to int! */
9915 build_type = integer_type_node;
9916 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
9917 || code0 == FIXED_POINT_TYPE || code0 == COMPLEX_TYPE)
9918 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
9919 || code1 == FIXED_POINT_TYPE || code1 == COMPLEX_TYPE))
9920 short_compare = 1;
9921 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
9922 {
9923 if (TREE_CODE (op0) == ADDR_EXPR
9924 && decl_with_nonnull_addr_p (TREE_OPERAND (op0, 0)))
9925 {
9926 if (code == EQ_EXPR)
9927 warning_at (location,
9928 OPT_Waddress,
9929 "the comparison will always evaluate as %<false%> "
9930 "for the address of %qD will never be NULL",
9931 TREE_OPERAND (op0, 0));
9932 else
9933 warning_at (location,
9934 OPT_Waddress,
9935 "the comparison will always evaluate as %<true%> "
9936 "for the address of %qD will never be NULL",
9937 TREE_OPERAND (op0, 0));
9938 }
9939 result_type = type0;
9940 }
9941 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
9942 {
9943 if (TREE_CODE (op1) == ADDR_EXPR
9944 && decl_with_nonnull_addr_p (TREE_OPERAND (op1, 0)))
9945 {
9946 if (code == EQ_EXPR)
9947 warning_at (location,
9948 OPT_Waddress,
9949 "the comparison will always evaluate as %<false%> "
9950 "for the address of %qD will never be NULL",
9951 TREE_OPERAND (op1, 0));
9952 else
9953 warning_at (location,
9954 OPT_Waddress,
9955 "the comparison will always evaluate as %<true%> "
9956 "for the address of %qD will never be NULL",
9957 TREE_OPERAND (op1, 0));
9958 }
9959 result_type = type1;
9960 }
9961 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
9962 {
9963 tree tt0 = TREE_TYPE (type0);
9964 tree tt1 = TREE_TYPE (type1);
9965 addr_space_t as0 = TYPE_ADDR_SPACE (tt0);
9966 addr_space_t as1 = TYPE_ADDR_SPACE (tt1);
9967 addr_space_t as_common = ADDR_SPACE_GENERIC;
9968
9969 /* Anything compares with void *. void * compares with anything.
9970 Otherwise, the targets must be compatible
9971 and both must be object or both incomplete. */
9972 if (comp_target_types (location, type0, type1))
9973 result_type = common_pointer_type (type0, type1);
9974 else if (!addr_space_superset (as0, as1, &as_common))
9975 {
9976 error_at (location, "comparison of pointers to "
9977 "disjoint address spaces");
9978 return error_mark_node;
9979 }
9980 else if (VOID_TYPE_P (tt0))
9981 {
9982 if (pedantic && TREE_CODE (tt1) == FUNCTION_TYPE)
9983 pedwarn (location, OPT_pedantic, "ISO C forbids "
9984 "comparison of %<void *%> with function pointer");
9985 }
9986 else if (VOID_TYPE_P (tt1))
9987 {
9988 if (pedantic && TREE_CODE (tt0) == FUNCTION_TYPE)
9989 pedwarn (location, OPT_pedantic, "ISO C forbids "
9990 "comparison of %<void *%> with function pointer");
9991 }
9992 else
9993 /* Avoid warning about the volatile ObjC EH puts on decls. */
9994 if (!objc_ok)
9995 pedwarn (location, 0,
9996 "comparison of distinct pointer types lacks a cast");
9997
9998 if (result_type == NULL_TREE)
9999 {
10000 int qual = ENCODE_QUAL_ADDR_SPACE (as_common);
10001 result_type = build_pointer_type
10002 (build_qualified_type (void_type_node, qual));
10003 }
10004 }
10005 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
10006 {
10007 result_type = type0;
10008 pedwarn (location, 0, "comparison between pointer and integer");
10009 }
10010 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
10011 {
10012 result_type = type1;
10013 pedwarn (location, 0, "comparison between pointer and integer");
10014 }
10015 break;
10016
10017 case LE_EXPR:
10018 case GE_EXPR:
10019 case LT_EXPR:
10020 case GT_EXPR:
10021 build_type = integer_type_node;
10022 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
10023 || code0 == FIXED_POINT_TYPE)
10024 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
10025 || code1 == FIXED_POINT_TYPE))
10026 short_compare = 1;
10027 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
10028 {
10029 addr_space_t as0 = TYPE_ADDR_SPACE (TREE_TYPE (type0));
10030 addr_space_t as1 = TYPE_ADDR_SPACE (TREE_TYPE (type1));
10031 addr_space_t as_common;
10032
10033 if (comp_target_types (location, type0, type1))
10034 {
10035 result_type = common_pointer_type (type0, type1);
10036 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
10037 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
10038 pedwarn (location, 0,
10039 "comparison of complete and incomplete pointers");
10040 else if (TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
10041 pedwarn (location, OPT_pedantic, "ISO C forbids "
10042 "ordered comparisons of pointers to functions");
10043 else if (null_pointer_constant_p (orig_op0)
10044 || null_pointer_constant_p (orig_op1))
10045 warning_at (location, OPT_Wextra,
10046 "ordered comparison of pointer with null pointer");
10047
10048 }
10049 else if (!addr_space_superset (as0, as1, &as_common))
10050 {
10051 error_at (location, "comparison of pointers to "
10052 "disjoint address spaces");
10053 return error_mark_node;
10054 }
10055 else
10056 {
10057 int qual = ENCODE_QUAL_ADDR_SPACE (as_common);
10058 result_type = build_pointer_type
10059 (build_qualified_type (void_type_node, qual));
10060 pedwarn (location, 0,
10061 "comparison of distinct pointer types lacks a cast");
10062 }
10063 }
10064 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
10065 {
10066 result_type = type0;
10067 if (pedantic)
10068 pedwarn (location, OPT_pedantic,
10069 "ordered comparison of pointer with integer zero");
10070 else if (extra_warnings)
10071 warning_at (location, OPT_Wextra,
10072 "ordered comparison of pointer with integer zero");
10073 }
10074 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
10075 {
10076 result_type = type1;
10077 if (pedantic)
10078 pedwarn (location, OPT_pedantic,
10079 "ordered comparison of pointer with integer zero");
10080 else if (extra_warnings)
10081 warning_at (location, OPT_Wextra,
10082 "ordered comparison of pointer with integer zero");
10083 }
10084 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
10085 {
10086 result_type = type0;
10087 pedwarn (location, 0, "comparison between pointer and integer");
10088 }
10089 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
10090 {
10091 result_type = type1;
10092 pedwarn (location, 0, "comparison between pointer and integer");
10093 }
10094 break;
10095
10096 default:
10097 gcc_unreachable ();
10098 }
10099
10100 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
10101 return error_mark_node;
10102
10103 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
10104 && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
10105 || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
10106 TREE_TYPE (type1))))
10107 {
10108 binary_op_error (location, code, type0, type1);
10109 return error_mark_node;
10110 }
10111
10112 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
10113 || code0 == FIXED_POINT_TYPE || code0 == VECTOR_TYPE)
10114 &&
10115 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
10116 || code1 == FIXED_POINT_TYPE || code1 == VECTOR_TYPE))
10117 {
10118 bool first_complex = (code0 == COMPLEX_TYPE);
10119 bool second_complex = (code1 == COMPLEX_TYPE);
10120 int none_complex = (!first_complex && !second_complex);
10121
10122 if (shorten || common || short_compare)
10123 {
10124 result_type = c_common_type (type0, type1);
10125 do_warn_double_promotion (result_type, type0, type1,
10126 "implicit conversion from %qT to %qT "
10127 "to match other operand of binary "
10128 "expression",
10129 location);
10130 if (result_type == error_mark_node)
10131 return error_mark_node;
10132 }
10133
10134 if (first_complex != second_complex
10135 && (code == PLUS_EXPR
10136 || code == MINUS_EXPR
10137 || code == MULT_EXPR
10138 || (code == TRUNC_DIV_EXPR && first_complex))
10139 && TREE_CODE (TREE_TYPE (result_type)) == REAL_TYPE
10140 && flag_signed_zeros)
10141 {
10142 /* An operation on mixed real/complex operands must be
10143 handled specially, but the language-independent code can
10144 more easily optimize the plain complex arithmetic if
10145 -fno-signed-zeros. */
10146 tree real_type = TREE_TYPE (result_type);
10147 tree real, imag;
10148 if (type0 != orig_type0 || type1 != orig_type1)
10149 {
10150 gcc_assert (may_need_excess_precision && common);
10151 semantic_result_type = c_common_type (orig_type0, orig_type1);
10152 }
10153 if (first_complex)
10154 {
10155 if (TREE_TYPE (op0) != result_type)
10156 op0 = convert_and_check (result_type, op0);
10157 if (TREE_TYPE (op1) != real_type)
10158 op1 = convert_and_check (real_type, op1);
10159 }
10160 else
10161 {
10162 if (TREE_TYPE (op0) != real_type)
10163 op0 = convert_and_check (real_type, op0);
10164 if (TREE_TYPE (op1) != result_type)
10165 op1 = convert_and_check (result_type, op1);
10166 }
10167 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
10168 return error_mark_node;
10169 if (first_complex)
10170 {
10171 op0 = c_save_expr (op0);
10172 real = build_unary_op (EXPR_LOCATION (orig_op0), REALPART_EXPR,
10173 op0, 1);
10174 imag = build_unary_op (EXPR_LOCATION (orig_op0), IMAGPART_EXPR,
10175 op0, 1);
10176 switch (code)
10177 {
10178 case MULT_EXPR:
10179 case TRUNC_DIV_EXPR:
10180 op1 = c_save_expr (op1);
10181 imag = build2 (resultcode, real_type, imag, op1);
10182 /* Fall through. */
10183 case PLUS_EXPR:
10184 case MINUS_EXPR:
10185 real = build2 (resultcode, real_type, real, op1);
10186 break;
10187 default:
10188 gcc_unreachable();
10189 }
10190 }
10191 else
10192 {
10193 op1 = c_save_expr (op1);
10194 real = build_unary_op (EXPR_LOCATION (orig_op1), REALPART_EXPR,
10195 op1, 1);
10196 imag = build_unary_op (EXPR_LOCATION (orig_op1), IMAGPART_EXPR,
10197 op1, 1);
10198 switch (code)
10199 {
10200 case MULT_EXPR:
10201 op0 = c_save_expr (op0);
10202 imag = build2 (resultcode, real_type, op0, imag);
10203 /* Fall through. */
10204 case PLUS_EXPR:
10205 real = build2 (resultcode, real_type, op0, real);
10206 break;
10207 case MINUS_EXPR:
10208 real = build2 (resultcode, real_type, op0, real);
10209 imag = build1 (NEGATE_EXPR, real_type, imag);
10210 break;
10211 default:
10212 gcc_unreachable();
10213 }
10214 }
10215 ret = build2 (COMPLEX_EXPR, result_type, real, imag);
10216 goto return_build_binary_op;
10217 }
10218
10219 /* For certain operations (which identify themselves by shorten != 0)
10220 if both args were extended from the same smaller type,
10221 do the arithmetic in that type and then extend.
10222
10223 shorten !=0 and !=1 indicates a bitwise operation.
10224 For them, this optimization is safe only if
10225 both args are zero-extended or both are sign-extended.
10226 Otherwise, we might change the result.
10227 Eg, (short)-1 | (unsigned short)-1 is (int)-1
10228 but calculated in (unsigned short) it would be (unsigned short)-1. */
10229
10230 if (shorten && none_complex)
10231 {
10232 final_type = result_type;
10233 result_type = shorten_binary_op (result_type, op0, op1,
10234 shorten == -1);
10235 }
10236
10237 /* Shifts can be shortened if shifting right. */
10238
10239 if (short_shift)
10240 {
10241 int unsigned_arg;
10242 tree arg0 = get_narrower (op0, &unsigned_arg);
10243
10244 final_type = result_type;
10245
10246 if (arg0 == op0 && final_type == TREE_TYPE (op0))
10247 unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
10248
10249 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
10250 && tree_int_cst_sgn (op1) > 0
10251 /* We can shorten only if the shift count is less than the
10252 number of bits in the smaller type size. */
10253 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
10254 /* We cannot drop an unsigned shift after sign-extension. */
10255 && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
10256 {
10257 /* Do an unsigned shift if the operand was zero-extended. */
10258 result_type
10259 = c_common_signed_or_unsigned_type (unsigned_arg,
10260 TREE_TYPE (arg0));
10261 /* Convert value-to-be-shifted to that type. */
10262 if (TREE_TYPE (op0) != result_type)
10263 op0 = convert (result_type, op0);
10264 converted = 1;
10265 }
10266 }
10267
10268 /* Comparison operations are shortened too but differently.
10269 They identify themselves by setting short_compare = 1. */
10270
10271 if (short_compare)
10272 {
10273 /* Don't write &op0, etc., because that would prevent op0
10274 from being kept in a register.
10275 Instead, make copies of the our local variables and
10276 pass the copies by reference, then copy them back afterward. */
10277 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
10278 enum tree_code xresultcode = resultcode;
10279 tree val
10280 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
10281
10282 if (val != 0)
10283 {
10284 ret = val;
10285 goto return_build_binary_op;
10286 }
10287
10288 op0 = xop0, op1 = xop1;
10289 converted = 1;
10290 resultcode = xresultcode;
10291
10292 if (c_inhibit_evaluation_warnings == 0)
10293 {
10294 bool op0_maybe_const = true;
10295 bool op1_maybe_const = true;
10296 tree orig_op0_folded, orig_op1_folded;
10297
10298 if (in_late_binary_op)
10299 {
10300 orig_op0_folded = orig_op0;
10301 orig_op1_folded = orig_op1;
10302 }
10303 else
10304 {
10305 /* Fold for the sake of possible warnings, as in
10306 build_conditional_expr. This requires the
10307 "original" values to be folded, not just op0 and
10308 op1. */
10309 c_inhibit_evaluation_warnings++;
10310 op0 = c_fully_fold (op0, require_constant_value,
10311 &op0_maybe_const);
10312 op1 = c_fully_fold (op1, require_constant_value,
10313 &op1_maybe_const);
10314 c_inhibit_evaluation_warnings--;
10315 orig_op0_folded = c_fully_fold (orig_op0,
10316 require_constant_value,
10317 NULL);
10318 orig_op1_folded = c_fully_fold (orig_op1,
10319 require_constant_value,
10320 NULL);
10321 }
10322
10323 if (warn_sign_compare)
10324 warn_for_sign_compare (location, orig_op0_folded,
10325 orig_op1_folded, op0, op1,
10326 result_type, resultcode);
10327 if (!in_late_binary_op && !int_operands)
10328 {
10329 if (!op0_maybe_const || TREE_CODE (op0) != INTEGER_CST)
10330 op0 = c_wrap_maybe_const (op0, !op0_maybe_const);
10331 if (!op1_maybe_const || TREE_CODE (op1) != INTEGER_CST)
10332 op1 = c_wrap_maybe_const (op1, !op1_maybe_const);
10333 }
10334 }
10335 }
10336 }
10337
10338 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
10339 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
10340 Then the expression will be built.
10341 It will be given type FINAL_TYPE if that is nonzero;
10342 otherwise, it will be given type RESULT_TYPE. */
10343
10344 if (!result_type)
10345 {
10346 binary_op_error (location, code, TREE_TYPE (op0), TREE_TYPE (op1));
10347 return error_mark_node;
10348 }
10349
10350 if (build_type == NULL_TREE)
10351 {
10352 build_type = result_type;
10353 if ((type0 != orig_type0 || type1 != orig_type1)
10354 && !boolean_op)
10355 {
10356 gcc_assert (may_need_excess_precision && common);
10357 semantic_result_type = c_common_type (orig_type0, orig_type1);
10358 }
10359 }
10360
10361 if (!converted)
10362 {
10363 op0 = ep_convert_and_check (result_type, op0, semantic_result_type);
10364 op1 = ep_convert_and_check (result_type, op1, semantic_result_type);
10365
10366 /* This can happen if one operand has a vector type, and the other
10367 has a different type. */
10368 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
10369 return error_mark_node;
10370 }
10371
10372 /* Treat expressions in initializers specially as they can't trap. */
10373 if (int_const_or_overflow)
10374 ret = (require_constant_value
10375 ? fold_build2_initializer_loc (location, resultcode, build_type,
10376 op0, op1)
10377 : fold_build2_loc (location, resultcode, build_type, op0, op1));
10378 else
10379 ret = build2 (resultcode, build_type, op0, op1);
10380 if (final_type != 0)
10381 ret = convert (final_type, ret);
10382
10383 return_build_binary_op:
10384 gcc_assert (ret != error_mark_node);
10385 if (TREE_CODE (ret) == INTEGER_CST && !TREE_OVERFLOW (ret) && !int_const)
10386 ret = (int_operands
10387 ? note_integer_operands (ret)
10388 : build1 (NOP_EXPR, TREE_TYPE (ret), ret));
10389 else if (TREE_CODE (ret) != INTEGER_CST && int_operands
10390 && !in_late_binary_op)
10391 ret = note_integer_operands (ret);
10392 if (semantic_result_type)
10393 ret = build1 (EXCESS_PRECISION_EXPR, semantic_result_type, ret);
10394 protected_set_expr_location (ret, location);
10395 return ret;
10396 }
10397
10398
10399 /* Convert EXPR to be a truth-value, validating its type for this
10400 purpose. LOCATION is the source location for the expression. */
10401
10402 tree
10403 c_objc_common_truthvalue_conversion (location_t location, tree expr)
10404 {
10405 bool int_const, int_operands;
10406
10407 switch (TREE_CODE (TREE_TYPE (expr)))
10408 {
10409 case ARRAY_TYPE:
10410 error_at (location, "used array that cannot be converted to pointer where scalar is required");
10411 return error_mark_node;
10412
10413 case RECORD_TYPE:
10414 error_at (location, "used struct type value where scalar is required");
10415 return error_mark_node;
10416
10417 case UNION_TYPE:
10418 error_at (location, "used union type value where scalar is required");
10419 return error_mark_node;
10420
10421 case VOID_TYPE:
10422 error_at (location, "void value not ignored as it ought to be");
10423 return error_mark_node;
10424
10425 case FUNCTION_TYPE:
10426 gcc_unreachable ();
10427
10428 default:
10429 break;
10430 }
10431
10432 int_const = (TREE_CODE (expr) == INTEGER_CST && !TREE_OVERFLOW (expr));
10433 int_operands = EXPR_INT_CONST_OPERANDS (expr);
10434 if (int_operands)
10435 expr = remove_c_maybe_const_expr (expr);
10436
10437 /* ??? Should we also give an error for vectors rather than leaving
10438 those to give errors later? */
10439 expr = c_common_truthvalue_conversion (location, expr);
10440
10441 if (TREE_CODE (expr) == INTEGER_CST && int_operands && !int_const)
10442 {
10443 if (TREE_OVERFLOW (expr))
10444 return expr;
10445 else
10446 return note_integer_operands (expr);
10447 }
10448 if (TREE_CODE (expr) == INTEGER_CST && !int_const)
10449 return build1 (NOP_EXPR, TREE_TYPE (expr), expr);
10450 return expr;
10451 }
10452 \f
10453
10454 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
10455 required. */
10456
10457 tree
10458 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED, bool *se)
10459 {
10460 if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
10461 {
10462 tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
10463 /* Executing a compound literal inside a function reinitializes
10464 it. */
10465 if (!TREE_STATIC (decl))
10466 *se = true;
10467 return decl;
10468 }
10469 else
10470 return expr;
10471 }
10472 \f
10473 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
10474
10475 tree
10476 c_begin_omp_parallel (void)
10477 {
10478 tree block;
10479
10480 keep_next_level ();
10481 block = c_begin_compound_stmt (true);
10482
10483 return block;
10484 }
10485
10486 /* Generate OMP_PARALLEL, with CLAUSES and BLOCK as its compound
10487 statement. LOC is the location of the OMP_PARALLEL. */
10488
10489 tree
10490 c_finish_omp_parallel (location_t loc, tree clauses, tree block)
10491 {
10492 tree stmt;
10493
10494 block = c_end_compound_stmt (loc, block, true);
10495
10496 stmt = make_node (OMP_PARALLEL);
10497 TREE_TYPE (stmt) = void_type_node;
10498 OMP_PARALLEL_CLAUSES (stmt) = clauses;
10499 OMP_PARALLEL_BODY (stmt) = block;
10500 SET_EXPR_LOCATION (stmt, loc);
10501
10502 return add_stmt (stmt);
10503 }
10504
10505 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
10506
10507 tree
10508 c_begin_omp_task (void)
10509 {
10510 tree block;
10511
10512 keep_next_level ();
10513 block = c_begin_compound_stmt (true);
10514
10515 return block;
10516 }
10517
10518 /* Generate OMP_TASK, with CLAUSES and BLOCK as its compound
10519 statement. LOC is the location of the #pragma. */
10520
10521 tree
10522 c_finish_omp_task (location_t loc, tree clauses, tree block)
10523 {
10524 tree stmt;
10525
10526 block = c_end_compound_stmt (loc, block, true);
10527
10528 stmt = make_node (OMP_TASK);
10529 TREE_TYPE (stmt) = void_type_node;
10530 OMP_TASK_CLAUSES (stmt) = clauses;
10531 OMP_TASK_BODY (stmt) = block;
10532 SET_EXPR_LOCATION (stmt, loc);
10533
10534 return add_stmt (stmt);
10535 }
10536
10537 /* For all elements of CLAUSES, validate them vs OpenMP constraints.
10538 Remove any elements from the list that are invalid. */
10539
10540 tree
10541 c_finish_omp_clauses (tree clauses)
10542 {
10543 bitmap_head generic_head, firstprivate_head, lastprivate_head;
10544 tree c, t, *pc = &clauses;
10545 const char *name;
10546
10547 bitmap_obstack_initialize (NULL);
10548 bitmap_initialize (&generic_head, &bitmap_default_obstack);
10549 bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
10550 bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
10551
10552 for (pc = &clauses, c = clauses; c ; c = *pc)
10553 {
10554 bool remove = false;
10555 bool need_complete = false;
10556 bool need_implicitly_determined = false;
10557
10558 switch (OMP_CLAUSE_CODE (c))
10559 {
10560 case OMP_CLAUSE_SHARED:
10561 name = "shared";
10562 need_implicitly_determined = true;
10563 goto check_dup_generic;
10564
10565 case OMP_CLAUSE_PRIVATE:
10566 name = "private";
10567 need_complete = true;
10568 need_implicitly_determined = true;
10569 goto check_dup_generic;
10570
10571 case OMP_CLAUSE_REDUCTION:
10572 name = "reduction";
10573 need_implicitly_determined = true;
10574 t = OMP_CLAUSE_DECL (c);
10575 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
10576 || POINTER_TYPE_P (TREE_TYPE (t)))
10577 {
10578 error_at (OMP_CLAUSE_LOCATION (c),
10579 "%qE has invalid type for %<reduction%>", t);
10580 remove = true;
10581 }
10582 else if (FLOAT_TYPE_P (TREE_TYPE (t)))
10583 {
10584 enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
10585 const char *r_name = NULL;
10586
10587 switch (r_code)
10588 {
10589 case PLUS_EXPR:
10590 case MULT_EXPR:
10591 case MINUS_EXPR:
10592 case MIN_EXPR:
10593 case MAX_EXPR:
10594 break;
10595 case BIT_AND_EXPR:
10596 r_name = "&";
10597 break;
10598 case BIT_XOR_EXPR:
10599 r_name = "^";
10600 break;
10601 case BIT_IOR_EXPR:
10602 r_name = "|";
10603 break;
10604 case TRUTH_ANDIF_EXPR:
10605 r_name = "&&";
10606 break;
10607 case TRUTH_ORIF_EXPR:
10608 r_name = "||";
10609 break;
10610 default:
10611 gcc_unreachable ();
10612 }
10613 if (r_name)
10614 {
10615 error_at (OMP_CLAUSE_LOCATION (c),
10616 "%qE has invalid type for %<reduction(%s)%>",
10617 t, r_name);
10618 remove = true;
10619 }
10620 }
10621 goto check_dup_generic;
10622
10623 case OMP_CLAUSE_COPYPRIVATE:
10624 name = "copyprivate";
10625 goto check_dup_generic;
10626
10627 case OMP_CLAUSE_COPYIN:
10628 name = "copyin";
10629 t = OMP_CLAUSE_DECL (c);
10630 if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
10631 {
10632 error_at (OMP_CLAUSE_LOCATION (c),
10633 "%qE must be %<threadprivate%> for %<copyin%>", t);
10634 remove = true;
10635 }
10636 goto check_dup_generic;
10637
10638 check_dup_generic:
10639 t = OMP_CLAUSE_DECL (c);
10640 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
10641 {
10642 error_at (OMP_CLAUSE_LOCATION (c),
10643 "%qE is not a variable in clause %qs", t, name);
10644 remove = true;
10645 }
10646 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
10647 || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
10648 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
10649 {
10650 error_at (OMP_CLAUSE_LOCATION (c),
10651 "%qE appears more than once in data clauses", t);
10652 remove = true;
10653 }
10654 else
10655 bitmap_set_bit (&generic_head, DECL_UID (t));
10656 break;
10657
10658 case OMP_CLAUSE_FIRSTPRIVATE:
10659 name = "firstprivate";
10660 t = OMP_CLAUSE_DECL (c);
10661 need_complete = true;
10662 need_implicitly_determined = true;
10663 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
10664 {
10665 error_at (OMP_CLAUSE_LOCATION (c),
10666 "%qE is not a variable in clause %<firstprivate%>", t);
10667 remove = true;
10668 }
10669 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
10670 || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
10671 {
10672 error_at (OMP_CLAUSE_LOCATION (c),
10673 "%qE appears more than once in data clauses", t);
10674 remove = true;
10675 }
10676 else
10677 bitmap_set_bit (&firstprivate_head, DECL_UID (t));
10678 break;
10679
10680 case OMP_CLAUSE_LASTPRIVATE:
10681 name = "lastprivate";
10682 t = OMP_CLAUSE_DECL (c);
10683 need_complete = true;
10684 need_implicitly_determined = true;
10685 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
10686 {
10687 error_at (OMP_CLAUSE_LOCATION (c),
10688 "%qE is not a variable in clause %<lastprivate%>", t);
10689 remove = true;
10690 }
10691 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
10692 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
10693 {
10694 error_at (OMP_CLAUSE_LOCATION (c),
10695 "%qE appears more than once in data clauses", t);
10696 remove = true;
10697 }
10698 else
10699 bitmap_set_bit (&lastprivate_head, DECL_UID (t));
10700 break;
10701
10702 case OMP_CLAUSE_IF:
10703 case OMP_CLAUSE_NUM_THREADS:
10704 case OMP_CLAUSE_SCHEDULE:
10705 case OMP_CLAUSE_NOWAIT:
10706 case OMP_CLAUSE_ORDERED:
10707 case OMP_CLAUSE_DEFAULT:
10708 case OMP_CLAUSE_UNTIED:
10709 case OMP_CLAUSE_COLLAPSE:
10710 case OMP_CLAUSE_FINAL:
10711 case OMP_CLAUSE_MERGEABLE:
10712 pc = &OMP_CLAUSE_CHAIN (c);
10713 continue;
10714
10715 default:
10716 gcc_unreachable ();
10717 }
10718
10719 if (!remove)
10720 {
10721 t = OMP_CLAUSE_DECL (c);
10722
10723 if (need_complete)
10724 {
10725 t = require_complete_type (t);
10726 if (t == error_mark_node)
10727 remove = true;
10728 }
10729
10730 if (need_implicitly_determined)
10731 {
10732 const char *share_name = NULL;
10733
10734 if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
10735 share_name = "threadprivate";
10736 else switch (c_omp_predetermined_sharing (t))
10737 {
10738 case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
10739 break;
10740 case OMP_CLAUSE_DEFAULT_SHARED:
10741 /* const vars may be specified in firstprivate clause. */
10742 if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_FIRSTPRIVATE
10743 && TREE_READONLY (t))
10744 break;
10745 share_name = "shared";
10746 break;
10747 case OMP_CLAUSE_DEFAULT_PRIVATE:
10748 share_name = "private";
10749 break;
10750 default:
10751 gcc_unreachable ();
10752 }
10753 if (share_name)
10754 {
10755 error_at (OMP_CLAUSE_LOCATION (c),
10756 "%qE is predetermined %qs for %qs",
10757 t, share_name, name);
10758 remove = true;
10759 }
10760 }
10761 }
10762
10763 if (remove)
10764 *pc = OMP_CLAUSE_CHAIN (c);
10765 else
10766 pc = &OMP_CLAUSE_CHAIN (c);
10767 }
10768
10769 bitmap_obstack_release (NULL);
10770 return clauses;
10771 }
10772
10773 /* Make a variant type in the proper way for C/C++, propagating qualifiers
10774 down to the element type of an array. */
10775
10776 tree
10777 c_build_qualified_type (tree type, int type_quals)
10778 {
10779 if (type == error_mark_node)
10780 return type;
10781
10782 if (TREE_CODE (type) == ARRAY_TYPE)
10783 {
10784 tree t;
10785 tree element_type = c_build_qualified_type (TREE_TYPE (type),
10786 type_quals);
10787
10788 /* See if we already have an identically qualified type. */
10789 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
10790 {
10791 if (TYPE_QUALS (strip_array_types (t)) == type_quals
10792 && TYPE_NAME (t) == TYPE_NAME (type)
10793 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
10794 && attribute_list_equal (TYPE_ATTRIBUTES (t),
10795 TYPE_ATTRIBUTES (type)))
10796 break;
10797 }
10798 if (!t)
10799 {
10800 tree domain = TYPE_DOMAIN (type);
10801
10802 t = build_variant_type_copy (type);
10803 TREE_TYPE (t) = element_type;
10804
10805 if (TYPE_STRUCTURAL_EQUALITY_P (element_type)
10806 || (domain && TYPE_STRUCTURAL_EQUALITY_P (domain)))
10807 SET_TYPE_STRUCTURAL_EQUALITY (t);
10808 else if (TYPE_CANONICAL (element_type) != element_type
10809 || (domain && TYPE_CANONICAL (domain) != domain))
10810 {
10811 tree unqualified_canon
10812 = build_array_type (TYPE_CANONICAL (element_type),
10813 domain? TYPE_CANONICAL (domain)
10814 : NULL_TREE);
10815 TYPE_CANONICAL (t)
10816 = c_build_qualified_type (unqualified_canon, type_quals);
10817 }
10818 else
10819 TYPE_CANONICAL (t) = t;
10820 }
10821 return t;
10822 }
10823
10824 /* A restrict-qualified pointer type must be a pointer to object or
10825 incomplete type. Note that the use of POINTER_TYPE_P also allows
10826 REFERENCE_TYPEs, which is appropriate for C++. */
10827 if ((type_quals & TYPE_QUAL_RESTRICT)
10828 && (!POINTER_TYPE_P (type)
10829 || !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type))))
10830 {
10831 error ("invalid use of %<restrict%>");
10832 type_quals &= ~TYPE_QUAL_RESTRICT;
10833 }
10834
10835 return build_qualified_type (type, type_quals);
10836 }
10837
10838 /* Build a VA_ARG_EXPR for the C parser. */
10839
10840 tree
10841 c_build_va_arg (location_t loc, tree expr, tree type)
10842 {
10843 if (warn_cxx_compat && TREE_CODE (type) == ENUMERAL_TYPE)
10844 warning_at (loc, OPT_Wc___compat,
10845 "C++ requires promoted type, not enum type, in %<va_arg%>");
10846 return build_va_arg (loc, expr, type);
10847 }