re PR c/35748 (ICE with cast to invalid union)
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* This file is part of the C front end.
24 It contains routines to build C expressions given their operands,
25 including computing the types of the result, C-specific error checks,
26 and some optimization. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "langhooks.h"
35 #include "c-tree.h"
36 #include "tm_p.h"
37 #include "flags.h"
38 #include "output.h"
39 #include "expr.h"
40 #include "toplev.h"
41 #include "intl.h"
42 #include "ggc.h"
43 #include "target.h"
44 #include "tree-iterator.h"
45 #include "tree-gimple.h"
46 #include "tree-flow.h"
47
48 /* Possible cases of implicit bad conversions. Used to select
49 diagnostic messages in convert_for_assignment. */
50 enum impl_conv {
51 ic_argpass,
52 ic_argpass_nonproto,
53 ic_assign,
54 ic_init,
55 ic_return
56 };
57
58 /* The level of nesting inside "__alignof__". */
59 int in_alignof;
60
61 /* The level of nesting inside "sizeof". */
62 int in_sizeof;
63
64 /* The level of nesting inside "typeof". */
65 int in_typeof;
66
67 struct c_label_context_se *label_context_stack_se;
68 struct c_label_context_vm *label_context_stack_vm;
69
70 /* Nonzero if we've already printed a "missing braces around initializer"
71 message within this initializer. */
72 static int missing_braces_mentioned;
73
74 static int require_constant_value;
75 static int require_constant_elements;
76
77 static bool null_pointer_constant_p (const_tree);
78 static tree qualify_type (tree, tree);
79 static int tagged_types_tu_compatible_p (const_tree, const_tree);
80 static int comp_target_types (tree, tree);
81 static int function_types_compatible_p (const_tree, const_tree);
82 static int type_lists_compatible_p (const_tree, const_tree);
83 static tree decl_constant_value_for_broken_optimization (tree);
84 static tree lookup_field (tree, tree);
85 static int convert_arguments (int, tree *, tree, tree, tree, tree);
86 static tree pointer_diff (tree, tree);
87 static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
88 int);
89 static tree valid_compound_expr_initializer (tree, tree);
90 static void push_string (const char *);
91 static void push_member_name (tree);
92 static int spelling_length (void);
93 static char *print_spelling (char *);
94 static void warning_init (int, const char *);
95 static tree digest_init (tree, tree, bool, int);
96 static void output_init_element (tree, bool, tree, tree, int);
97 static void output_pending_init_elements (int);
98 static int set_designator (int);
99 static void push_range_stack (tree);
100 static void add_pending_init (tree, tree);
101 static void set_nonincremental_init (void);
102 static void set_nonincremental_init_from_string (tree);
103 static tree find_init_member (tree);
104 static void readonly_error (tree, enum lvalue_use);
105 static int lvalue_or_else (const_tree, enum lvalue_use);
106 static int lvalue_p (const_tree);
107 static void record_maybe_used_decl (tree);
108 static int comptypes_internal (const_tree, const_tree);
109 \f
110 /* Return true if EXP is a null pointer constant, false otherwise. */
111
112 static bool
113 null_pointer_constant_p (const_tree expr)
114 {
115 /* This should really operate on c_expr structures, but they aren't
116 yet available everywhere required. */
117 tree type = TREE_TYPE (expr);
118 return (TREE_CODE (expr) == INTEGER_CST
119 && !TREE_OVERFLOW (expr)
120 && integer_zerop (expr)
121 && (INTEGRAL_TYPE_P (type)
122 || (TREE_CODE (type) == POINTER_TYPE
123 && VOID_TYPE_P (TREE_TYPE (type))
124 && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
125 }
126 \f/* This is a cache to hold if two types are compatible or not. */
127
128 struct tagged_tu_seen_cache {
129 const struct tagged_tu_seen_cache * next;
130 const_tree t1;
131 const_tree t2;
132 /* The return value of tagged_types_tu_compatible_p if we had seen
133 these two types already. */
134 int val;
135 };
136
137 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
138 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
139
140 /* Do `exp = require_complete_type (exp);' to make sure exp
141 does not have an incomplete type. (That includes void types.) */
142
143 tree
144 require_complete_type (tree value)
145 {
146 tree type = TREE_TYPE (value);
147
148 if (value == error_mark_node || type == error_mark_node)
149 return error_mark_node;
150
151 /* First, detect a valid value with a complete type. */
152 if (COMPLETE_TYPE_P (type))
153 return value;
154
155 c_incomplete_type_error (value, type);
156 return error_mark_node;
157 }
158
159 /* Print an error message for invalid use of an incomplete type.
160 VALUE is the expression that was used (or 0 if that isn't known)
161 and TYPE is the type that was invalid. */
162
163 void
164 c_incomplete_type_error (const_tree value, const_tree type)
165 {
166 const char *type_code_string;
167
168 /* Avoid duplicate error message. */
169 if (TREE_CODE (type) == ERROR_MARK)
170 return;
171
172 if (value != 0 && (TREE_CODE (value) == VAR_DECL
173 || TREE_CODE (value) == PARM_DECL))
174 error ("%qD has an incomplete type", value);
175 else
176 {
177 retry:
178 /* We must print an error message. Be clever about what it says. */
179
180 switch (TREE_CODE (type))
181 {
182 case RECORD_TYPE:
183 type_code_string = "struct";
184 break;
185
186 case UNION_TYPE:
187 type_code_string = "union";
188 break;
189
190 case ENUMERAL_TYPE:
191 type_code_string = "enum";
192 break;
193
194 case VOID_TYPE:
195 error ("invalid use of void expression");
196 return;
197
198 case ARRAY_TYPE:
199 if (TYPE_DOMAIN (type))
200 {
201 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
202 {
203 error ("invalid use of flexible array member");
204 return;
205 }
206 type = TREE_TYPE (type);
207 goto retry;
208 }
209 error ("invalid use of array with unspecified bounds");
210 return;
211
212 default:
213 gcc_unreachable ();
214 }
215
216 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
217 error ("invalid use of undefined type %<%s %E%>",
218 type_code_string, TYPE_NAME (type));
219 else
220 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
221 error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
222 }
223 }
224
225 /* Given a type, apply default promotions wrt unnamed function
226 arguments and return the new type. */
227
228 tree
229 c_type_promotes_to (tree type)
230 {
231 if (TYPE_MAIN_VARIANT (type) == float_type_node)
232 return double_type_node;
233
234 if (c_promoting_integer_type_p (type))
235 {
236 /* Preserve unsignedness if not really getting any wider. */
237 if (TYPE_UNSIGNED (type)
238 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
239 return unsigned_type_node;
240 return integer_type_node;
241 }
242
243 return type;
244 }
245
246 /* Return a variant of TYPE which has all the type qualifiers of LIKE
247 as well as those of TYPE. */
248
249 static tree
250 qualify_type (tree type, tree like)
251 {
252 return c_build_qualified_type (type,
253 TYPE_QUALS (type) | TYPE_QUALS (like));
254 }
255
256 /* Return true iff the given tree T is a variable length array. */
257
258 bool
259 c_vla_type_p (const_tree t)
260 {
261 if (TREE_CODE (t) == ARRAY_TYPE
262 && C_TYPE_VARIABLE_SIZE (t))
263 return true;
264 return false;
265 }
266 \f
267 /* Return the composite type of two compatible types.
268
269 We assume that comptypes has already been done and returned
270 nonzero; if that isn't so, this may crash. In particular, we
271 assume that qualifiers match. */
272
273 tree
274 composite_type (tree t1, tree t2)
275 {
276 enum tree_code code1;
277 enum tree_code code2;
278 tree attributes;
279
280 /* Save time if the two types are the same. */
281
282 if (t1 == t2) return t1;
283
284 /* If one type is nonsense, use the other. */
285 if (t1 == error_mark_node)
286 return t2;
287 if (t2 == error_mark_node)
288 return t1;
289
290 code1 = TREE_CODE (t1);
291 code2 = TREE_CODE (t2);
292
293 /* Merge the attributes. */
294 attributes = targetm.merge_type_attributes (t1, t2);
295
296 /* If one is an enumerated type and the other is the compatible
297 integer type, the composite type might be either of the two
298 (DR#013 question 3). For consistency, use the enumerated type as
299 the composite type. */
300
301 if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
302 return t1;
303 if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
304 return t2;
305
306 gcc_assert (code1 == code2);
307
308 switch (code1)
309 {
310 case POINTER_TYPE:
311 /* For two pointers, do this recursively on the target type. */
312 {
313 tree pointed_to_1 = TREE_TYPE (t1);
314 tree pointed_to_2 = TREE_TYPE (t2);
315 tree target = composite_type (pointed_to_1, pointed_to_2);
316 t1 = build_pointer_type (target);
317 t1 = build_type_attribute_variant (t1, attributes);
318 return qualify_type (t1, t2);
319 }
320
321 case ARRAY_TYPE:
322 {
323 tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
324 int quals;
325 tree unqual_elt;
326 tree d1 = TYPE_DOMAIN (t1);
327 tree d2 = TYPE_DOMAIN (t2);
328 bool d1_variable, d2_variable;
329 bool d1_zero, d2_zero;
330
331 /* We should not have any type quals on arrays at all. */
332 gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
333
334 d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
335 d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
336
337 d1_variable = (!d1_zero
338 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
339 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
340 d2_variable = (!d2_zero
341 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
342 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
343 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
344 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
345
346 /* Save space: see if the result is identical to one of the args. */
347 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
348 && (d2_variable || d2_zero || !d1_variable))
349 return build_type_attribute_variant (t1, attributes);
350 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
351 && (d1_variable || d1_zero || !d2_variable))
352 return build_type_attribute_variant (t2, attributes);
353
354 if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
355 return build_type_attribute_variant (t1, attributes);
356 if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
357 return build_type_attribute_variant (t2, attributes);
358
359 /* Merge the element types, and have a size if either arg has
360 one. We may have qualifiers on the element types. To set
361 up TYPE_MAIN_VARIANT correctly, we need to form the
362 composite of the unqualified types and add the qualifiers
363 back at the end. */
364 quals = TYPE_QUALS (strip_array_types (elt));
365 unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
366 t1 = build_array_type (unqual_elt,
367 TYPE_DOMAIN ((TYPE_DOMAIN (t1)
368 && (d2_variable
369 || d2_zero
370 || !d1_variable))
371 ? t1
372 : t2));
373 t1 = c_build_qualified_type (t1, quals);
374 return build_type_attribute_variant (t1, attributes);
375 }
376
377 case ENUMERAL_TYPE:
378 case RECORD_TYPE:
379 case UNION_TYPE:
380 if (attributes != NULL)
381 {
382 /* Try harder not to create a new aggregate type. */
383 if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
384 return t1;
385 if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
386 return t2;
387 }
388 return build_type_attribute_variant (t1, attributes);
389
390 case FUNCTION_TYPE:
391 /* Function types: prefer the one that specified arg types.
392 If both do, merge the arg types. Also merge the return types. */
393 {
394 tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
395 tree p1 = TYPE_ARG_TYPES (t1);
396 tree p2 = TYPE_ARG_TYPES (t2);
397 int len;
398 tree newargs, n;
399 int i;
400
401 /* Save space: see if the result is identical to one of the args. */
402 if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
403 return build_type_attribute_variant (t1, attributes);
404 if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
405 return build_type_attribute_variant (t2, attributes);
406
407 /* Simple way if one arg fails to specify argument types. */
408 if (TYPE_ARG_TYPES (t1) == 0)
409 {
410 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
411 t1 = build_type_attribute_variant (t1, attributes);
412 return qualify_type (t1, t2);
413 }
414 if (TYPE_ARG_TYPES (t2) == 0)
415 {
416 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
417 t1 = build_type_attribute_variant (t1, attributes);
418 return qualify_type (t1, t2);
419 }
420
421 /* If both args specify argument types, we must merge the two
422 lists, argument by argument. */
423 /* Tell global_bindings_p to return false so that variable_size
424 doesn't die on VLAs in parameter types. */
425 c_override_global_bindings_to_false = true;
426
427 len = list_length (p1);
428 newargs = 0;
429
430 for (i = 0; i < len; i++)
431 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
432
433 n = newargs;
434
435 for (; p1;
436 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
437 {
438 /* A null type means arg type is not specified.
439 Take whatever the other function type has. */
440 if (TREE_VALUE (p1) == 0)
441 {
442 TREE_VALUE (n) = TREE_VALUE (p2);
443 goto parm_done;
444 }
445 if (TREE_VALUE (p2) == 0)
446 {
447 TREE_VALUE (n) = TREE_VALUE (p1);
448 goto parm_done;
449 }
450
451 /* Given wait (union {union wait *u; int *i} *)
452 and wait (union wait *),
453 prefer union wait * as type of parm. */
454 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
455 && TREE_VALUE (p1) != TREE_VALUE (p2))
456 {
457 tree memb;
458 tree mv2 = TREE_VALUE (p2);
459 if (mv2 && mv2 != error_mark_node
460 && TREE_CODE (mv2) != ARRAY_TYPE)
461 mv2 = TYPE_MAIN_VARIANT (mv2);
462 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
463 memb; memb = TREE_CHAIN (memb))
464 {
465 tree mv3 = TREE_TYPE (memb);
466 if (mv3 && mv3 != error_mark_node
467 && TREE_CODE (mv3) != ARRAY_TYPE)
468 mv3 = TYPE_MAIN_VARIANT (mv3);
469 if (comptypes (mv3, mv2))
470 {
471 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
472 TREE_VALUE (p2));
473 if (pedantic)
474 pedwarn ("function types not truly compatible in ISO C");
475 goto parm_done;
476 }
477 }
478 }
479 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
480 && TREE_VALUE (p2) != TREE_VALUE (p1))
481 {
482 tree memb;
483 tree mv1 = TREE_VALUE (p1);
484 if (mv1 && mv1 != error_mark_node
485 && TREE_CODE (mv1) != ARRAY_TYPE)
486 mv1 = TYPE_MAIN_VARIANT (mv1);
487 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
488 memb; memb = TREE_CHAIN (memb))
489 {
490 tree mv3 = TREE_TYPE (memb);
491 if (mv3 && mv3 != error_mark_node
492 && TREE_CODE (mv3) != ARRAY_TYPE)
493 mv3 = TYPE_MAIN_VARIANT (mv3);
494 if (comptypes (mv3, mv1))
495 {
496 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
497 TREE_VALUE (p1));
498 if (pedantic)
499 pedwarn ("function types not truly compatible in ISO C");
500 goto parm_done;
501 }
502 }
503 }
504 TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
505 parm_done: ;
506 }
507
508 c_override_global_bindings_to_false = false;
509 t1 = build_function_type (valtype, newargs);
510 t1 = qualify_type (t1, t2);
511 /* ... falls through ... */
512 }
513
514 default:
515 return build_type_attribute_variant (t1, attributes);
516 }
517
518 }
519
520 /* Return the type of a conditional expression between pointers to
521 possibly differently qualified versions of compatible types.
522
523 We assume that comp_target_types has already been done and returned
524 nonzero; if that isn't so, this may crash. */
525
526 static tree
527 common_pointer_type (tree t1, tree t2)
528 {
529 tree attributes;
530 tree pointed_to_1, mv1;
531 tree pointed_to_2, mv2;
532 tree target;
533 unsigned target_quals;
534
535 /* Save time if the two types are the same. */
536
537 if (t1 == t2) return t1;
538
539 /* If one type is nonsense, use the other. */
540 if (t1 == error_mark_node)
541 return t2;
542 if (t2 == error_mark_node)
543 return t1;
544
545 gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546 && TREE_CODE (t2) == POINTER_TYPE);
547
548 /* Merge the attributes. */
549 attributes = targetm.merge_type_attributes (t1, t2);
550
551 /* Find the composite type of the target types, and combine the
552 qualifiers of the two types' targets. Do not lose qualifiers on
553 array element types by taking the TYPE_MAIN_VARIANT. */
554 mv1 = pointed_to_1 = TREE_TYPE (t1);
555 mv2 = pointed_to_2 = TREE_TYPE (t2);
556 if (TREE_CODE (mv1) != ARRAY_TYPE)
557 mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558 if (TREE_CODE (mv2) != ARRAY_TYPE)
559 mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560 target = composite_type (mv1, mv2);
561
562 /* For function types do not merge const qualifiers, but drop them
563 if used inconsistently. The middle-end uses these to mark const
564 and noreturn functions. */
565 if (TREE_CODE (pointed_to_1) == FUNCTION_TYPE)
566 target_quals = TYPE_QUALS (pointed_to_1) & TYPE_QUALS (pointed_to_2);
567 else
568 target_quals = TYPE_QUALS (pointed_to_1) | TYPE_QUALS (pointed_to_2);
569 t1 = build_pointer_type (c_build_qualified_type (target, target_quals));
570 return build_type_attribute_variant (t1, attributes);
571 }
572
573 /* Return the common type for two arithmetic types under the usual
574 arithmetic conversions. The default conversions have already been
575 applied, and enumerated types converted to their compatible integer
576 types. The resulting type is unqualified and has no attributes.
577
578 This is the type for the result of most arithmetic operations
579 if the operands have the given two types. */
580
581 static tree
582 c_common_type (tree t1, tree t2)
583 {
584 enum tree_code code1;
585 enum tree_code code2;
586
587 /* If one type is nonsense, use the other. */
588 if (t1 == error_mark_node)
589 return t2;
590 if (t2 == error_mark_node)
591 return t1;
592
593 if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
594 t1 = TYPE_MAIN_VARIANT (t1);
595
596 if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
597 t2 = TYPE_MAIN_VARIANT (t2);
598
599 if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
600 t1 = build_type_attribute_variant (t1, NULL_TREE);
601
602 if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
603 t2 = build_type_attribute_variant (t2, NULL_TREE);
604
605 /* Save time if the two types are the same. */
606
607 if (t1 == t2) return t1;
608
609 code1 = TREE_CODE (t1);
610 code2 = TREE_CODE (t2);
611
612 gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
613 || code1 == FIXED_POINT_TYPE || code1 == REAL_TYPE
614 || code1 == INTEGER_TYPE);
615 gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
616 || code2 == FIXED_POINT_TYPE || code2 == REAL_TYPE
617 || code2 == INTEGER_TYPE);
618
619 /* When one operand is a decimal float type, the other operand cannot be
620 a generic float type or a complex type. We also disallow vector types
621 here. */
622 if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
623 && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
624 {
625 if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
626 {
627 error ("can%'t mix operands of decimal float and vector types");
628 return error_mark_node;
629 }
630 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
631 {
632 error ("can%'t mix operands of decimal float and complex types");
633 return error_mark_node;
634 }
635 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
636 {
637 error ("can%'t mix operands of decimal float and other float types");
638 return error_mark_node;
639 }
640 }
641
642 /* If one type is a vector type, return that type. (How the usual
643 arithmetic conversions apply to the vector types extension is not
644 precisely specified.) */
645 if (code1 == VECTOR_TYPE)
646 return t1;
647
648 if (code2 == VECTOR_TYPE)
649 return t2;
650
651 /* If one type is complex, form the common type of the non-complex
652 components, then make that complex. Use T1 or T2 if it is the
653 required type. */
654 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
655 {
656 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
657 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
658 tree subtype = c_common_type (subtype1, subtype2);
659
660 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
661 return t1;
662 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
663 return t2;
664 else
665 return build_complex_type (subtype);
666 }
667
668 /* If only one is real, use it as the result. */
669
670 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
671 return t1;
672
673 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
674 return t2;
675
676 /* If both are real and either are decimal floating point types, use
677 the decimal floating point type with the greater precision. */
678
679 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
680 {
681 if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
682 || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
683 return dfloat128_type_node;
684 else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
685 || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
686 return dfloat64_type_node;
687 else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
688 || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
689 return dfloat32_type_node;
690 }
691
692 /* Deal with fixed-point types. */
693 if (code1 == FIXED_POINT_TYPE || code2 == FIXED_POINT_TYPE)
694 {
695 unsigned int unsignedp = 0, satp = 0;
696 enum machine_mode m1, m2;
697 unsigned int fbit1, ibit1, fbit2, ibit2, max_fbit, max_ibit;
698
699 m1 = TYPE_MODE (t1);
700 m2 = TYPE_MODE (t2);
701
702 /* If one input type is saturating, the result type is saturating. */
703 if (TYPE_SATURATING (t1) || TYPE_SATURATING (t2))
704 satp = 1;
705
706 /* If both fixed-point types are unsigned, the result type is unsigned.
707 When mixing fixed-point and integer types, follow the sign of the
708 fixed-point type.
709 Otherwise, the result type is signed. */
710 if ((TYPE_UNSIGNED (t1) && TYPE_UNSIGNED (t2)
711 && code1 == FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE)
712 || (code1 == FIXED_POINT_TYPE && code2 != FIXED_POINT_TYPE
713 && TYPE_UNSIGNED (t1))
714 || (code1 != FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE
715 && TYPE_UNSIGNED (t2)))
716 unsignedp = 1;
717
718 /* The result type is signed. */
719 if (unsignedp == 0)
720 {
721 /* If the input type is unsigned, we need to convert to the
722 signed type. */
723 if (code1 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t1))
724 {
725 unsigned char mclass = 0;
726 if (GET_MODE_CLASS (m1) == MODE_UFRACT)
727 mclass = MODE_FRACT;
728 else if (GET_MODE_CLASS (m1) == MODE_UACCUM)
729 mclass = MODE_ACCUM;
730 else
731 gcc_unreachable ();
732 m1 = mode_for_size (GET_MODE_PRECISION (m1), mclass, 0);
733 }
734 if (code2 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t2))
735 {
736 unsigned char mclass = 0;
737 if (GET_MODE_CLASS (m2) == MODE_UFRACT)
738 mclass = MODE_FRACT;
739 else if (GET_MODE_CLASS (m2) == MODE_UACCUM)
740 mclass = MODE_ACCUM;
741 else
742 gcc_unreachable ();
743 m2 = mode_for_size (GET_MODE_PRECISION (m2), mclass, 0);
744 }
745 }
746
747 if (code1 == FIXED_POINT_TYPE)
748 {
749 fbit1 = GET_MODE_FBIT (m1);
750 ibit1 = GET_MODE_IBIT (m1);
751 }
752 else
753 {
754 fbit1 = 0;
755 /* Signed integers need to subtract one sign bit. */
756 ibit1 = TYPE_PRECISION (t1) - (!TYPE_UNSIGNED (t1));
757 }
758
759 if (code2 == FIXED_POINT_TYPE)
760 {
761 fbit2 = GET_MODE_FBIT (m2);
762 ibit2 = GET_MODE_IBIT (m2);
763 }
764 else
765 {
766 fbit2 = 0;
767 /* Signed integers need to subtract one sign bit. */
768 ibit2 = TYPE_PRECISION (t2) - (!TYPE_UNSIGNED (t2));
769 }
770
771 max_ibit = ibit1 >= ibit2 ? ibit1 : ibit2;
772 max_fbit = fbit1 >= fbit2 ? fbit1 : fbit2;
773 return c_common_fixed_point_type_for_size (max_ibit, max_fbit, unsignedp,
774 satp);
775 }
776
777 /* Both real or both integers; use the one with greater precision. */
778
779 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
780 return t1;
781 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
782 return t2;
783
784 /* Same precision. Prefer long longs to longs to ints when the
785 same precision, following the C99 rules on integer type rank
786 (which are equivalent to the C90 rules for C90 types). */
787
788 if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
789 || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
790 return long_long_unsigned_type_node;
791
792 if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
793 || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
794 {
795 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
796 return long_long_unsigned_type_node;
797 else
798 return long_long_integer_type_node;
799 }
800
801 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
802 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
803 return long_unsigned_type_node;
804
805 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
806 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
807 {
808 /* But preserve unsignedness from the other type,
809 since long cannot hold all the values of an unsigned int. */
810 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
811 return long_unsigned_type_node;
812 else
813 return long_integer_type_node;
814 }
815
816 /* Likewise, prefer long double to double even if same size. */
817 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
818 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
819 return long_double_type_node;
820
821 /* Otherwise prefer the unsigned one. */
822
823 if (TYPE_UNSIGNED (t1))
824 return t1;
825 else
826 return t2;
827 }
828 \f
829 /* Wrapper around c_common_type that is used by c-common.c and other
830 front end optimizations that remove promotions. ENUMERAL_TYPEs
831 are allowed here and are converted to their compatible integer types.
832 BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
833 preferably a non-Boolean type as the common type. */
834 tree
835 common_type (tree t1, tree t2)
836 {
837 if (TREE_CODE (t1) == ENUMERAL_TYPE)
838 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
839 if (TREE_CODE (t2) == ENUMERAL_TYPE)
840 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
841
842 /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */
843 if (TREE_CODE (t1) == BOOLEAN_TYPE
844 && TREE_CODE (t2) == BOOLEAN_TYPE)
845 return boolean_type_node;
846
847 /* If either type is BOOLEAN_TYPE, then return the other. */
848 if (TREE_CODE (t1) == BOOLEAN_TYPE)
849 return t2;
850 if (TREE_CODE (t2) == BOOLEAN_TYPE)
851 return t1;
852
853 return c_common_type (t1, t2);
854 }
855
856 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
857 or various other operations. Return 2 if they are compatible
858 but a warning may be needed if you use them together. */
859
860 int
861 comptypes (tree type1, tree type2)
862 {
863 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
864 int val;
865
866 val = comptypes_internal (type1, type2);
867 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
868
869 return val;
870 }
871 \f
872 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
873 or various other operations. Return 2 if they are compatible
874 but a warning may be needed if you use them together. This
875 differs from comptypes, in that we don't free the seen types. */
876
877 static int
878 comptypes_internal (const_tree type1, const_tree type2)
879 {
880 const_tree t1 = type1;
881 const_tree t2 = type2;
882 int attrval, val;
883
884 /* Suppress errors caused by previously reported errors. */
885
886 if (t1 == t2 || !t1 || !t2
887 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
888 return 1;
889
890 /* If either type is the internal version of sizetype, return the
891 language version. */
892 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
893 && TYPE_ORIG_SIZE_TYPE (t1))
894 t1 = TYPE_ORIG_SIZE_TYPE (t1);
895
896 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
897 && TYPE_ORIG_SIZE_TYPE (t2))
898 t2 = TYPE_ORIG_SIZE_TYPE (t2);
899
900
901 /* Enumerated types are compatible with integer types, but this is
902 not transitive: two enumerated types in the same translation unit
903 are compatible with each other only if they are the same type. */
904
905 if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
906 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
907 else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
908 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
909
910 if (t1 == t2)
911 return 1;
912
913 /* Different classes of types can't be compatible. */
914
915 if (TREE_CODE (t1) != TREE_CODE (t2))
916 return 0;
917
918 /* Qualifiers must match. C99 6.7.3p9 */
919
920 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
921 return 0;
922
923 /* Allow for two different type nodes which have essentially the same
924 definition. Note that we already checked for equality of the type
925 qualifiers (just above). */
926
927 if (TREE_CODE (t1) != ARRAY_TYPE
928 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
929 return 1;
930
931 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
932 if (!(attrval = targetm.comp_type_attributes (t1, t2)))
933 return 0;
934
935 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
936 val = 0;
937
938 switch (TREE_CODE (t1))
939 {
940 case POINTER_TYPE:
941 /* Do not remove mode or aliasing information. */
942 if (TYPE_MODE (t1) != TYPE_MODE (t2)
943 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
944 break;
945 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
946 ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
947 break;
948
949 case FUNCTION_TYPE:
950 val = function_types_compatible_p (t1, t2);
951 break;
952
953 case ARRAY_TYPE:
954 {
955 tree d1 = TYPE_DOMAIN (t1);
956 tree d2 = TYPE_DOMAIN (t2);
957 bool d1_variable, d2_variable;
958 bool d1_zero, d2_zero;
959 val = 1;
960
961 /* Target types must match incl. qualifiers. */
962 if (TREE_TYPE (t1) != TREE_TYPE (t2)
963 && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
964 return 0;
965
966 /* Sizes must match unless one is missing or variable. */
967 if (d1 == 0 || d2 == 0 || d1 == d2)
968 break;
969
970 d1_zero = !TYPE_MAX_VALUE (d1);
971 d2_zero = !TYPE_MAX_VALUE (d2);
972
973 d1_variable = (!d1_zero
974 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
975 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
976 d2_variable = (!d2_zero
977 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
978 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
979 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
980 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
981
982 if (d1_variable || d2_variable)
983 break;
984 if (d1_zero && d2_zero)
985 break;
986 if (d1_zero || d2_zero
987 || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
988 || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
989 val = 0;
990
991 break;
992 }
993
994 case ENUMERAL_TYPE:
995 case RECORD_TYPE:
996 case UNION_TYPE:
997 if (val != 1 && !same_translation_unit_p (t1, t2))
998 {
999 tree a1 = TYPE_ATTRIBUTES (t1);
1000 tree a2 = TYPE_ATTRIBUTES (t2);
1001
1002 if (! attribute_list_contained (a1, a2)
1003 && ! attribute_list_contained (a2, a1))
1004 break;
1005
1006 if (attrval != 2)
1007 return tagged_types_tu_compatible_p (t1, t2);
1008 val = tagged_types_tu_compatible_p (t1, t2);
1009 }
1010 break;
1011
1012 case VECTOR_TYPE:
1013 val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
1014 && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
1015 break;
1016
1017 default:
1018 break;
1019 }
1020 return attrval == 2 && val == 1 ? 2 : val;
1021 }
1022
1023 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
1024 ignoring their qualifiers. */
1025
1026 static int
1027 comp_target_types (tree ttl, tree ttr)
1028 {
1029 int val;
1030 tree mvl, mvr;
1031
1032 /* Do not lose qualifiers on element types of array types that are
1033 pointer targets by taking their TYPE_MAIN_VARIANT. */
1034 mvl = TREE_TYPE (ttl);
1035 mvr = TREE_TYPE (ttr);
1036 if (TREE_CODE (mvl) != ARRAY_TYPE)
1037 mvl = TYPE_MAIN_VARIANT (mvl);
1038 if (TREE_CODE (mvr) != ARRAY_TYPE)
1039 mvr = TYPE_MAIN_VARIANT (mvr);
1040 val = comptypes (mvl, mvr);
1041
1042 if (val == 2 && pedantic)
1043 pedwarn ("types are not quite compatible");
1044 return val;
1045 }
1046 \f
1047 /* Subroutines of `comptypes'. */
1048
1049 /* Determine whether two trees derive from the same translation unit.
1050 If the CONTEXT chain ends in a null, that tree's context is still
1051 being parsed, so if two trees have context chains ending in null,
1052 they're in the same translation unit. */
1053 int
1054 same_translation_unit_p (const_tree t1, const_tree t2)
1055 {
1056 while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
1057 switch (TREE_CODE_CLASS (TREE_CODE (t1)))
1058 {
1059 case tcc_declaration:
1060 t1 = DECL_CONTEXT (t1); break;
1061 case tcc_type:
1062 t1 = TYPE_CONTEXT (t1); break;
1063 case tcc_exceptional:
1064 t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
1065 default: gcc_unreachable ();
1066 }
1067
1068 while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
1069 switch (TREE_CODE_CLASS (TREE_CODE (t2)))
1070 {
1071 case tcc_declaration:
1072 t2 = DECL_CONTEXT (t2); break;
1073 case tcc_type:
1074 t2 = TYPE_CONTEXT (t2); break;
1075 case tcc_exceptional:
1076 t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
1077 default: gcc_unreachable ();
1078 }
1079
1080 return t1 == t2;
1081 }
1082
1083 /* Allocate the seen two types, assuming that they are compatible. */
1084
1085 static struct tagged_tu_seen_cache *
1086 alloc_tagged_tu_seen_cache (const_tree t1, const_tree t2)
1087 {
1088 struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
1089 tu->next = tagged_tu_seen_base;
1090 tu->t1 = t1;
1091 tu->t2 = t2;
1092
1093 tagged_tu_seen_base = tu;
1094
1095 /* The C standard says that two structures in different translation
1096 units are compatible with each other only if the types of their
1097 fields are compatible (among other things). We assume that they
1098 are compatible until proven otherwise when building the cache.
1099 An example where this can occur is:
1100 struct a
1101 {
1102 struct a *next;
1103 };
1104 If we are comparing this against a similar struct in another TU,
1105 and did not assume they were compatible, we end up with an infinite
1106 loop. */
1107 tu->val = 1;
1108 return tu;
1109 }
1110
1111 /* Free the seen types until we get to TU_TIL. */
1112
1113 static void
1114 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1115 {
1116 const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1117 while (tu != tu_til)
1118 {
1119 const struct tagged_tu_seen_cache *const tu1
1120 = (const struct tagged_tu_seen_cache *) tu;
1121 tu = tu1->next;
1122 free (CONST_CAST (struct tagged_tu_seen_cache *, tu1));
1123 }
1124 tagged_tu_seen_base = tu_til;
1125 }
1126
1127 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1128 compatible. If the two types are not the same (which has been
1129 checked earlier), this can only happen when multiple translation
1130 units are being compiled. See C99 6.2.7 paragraph 1 for the exact
1131 rules. */
1132
1133 static int
1134 tagged_types_tu_compatible_p (const_tree t1, const_tree t2)
1135 {
1136 tree s1, s2;
1137 bool needs_warning = false;
1138
1139 /* We have to verify that the tags of the types are the same. This
1140 is harder than it looks because this may be a typedef, so we have
1141 to go look at the original type. It may even be a typedef of a
1142 typedef...
1143 In the case of compiler-created builtin structs the TYPE_DECL
1144 may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
1145 while (TYPE_NAME (t1)
1146 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1147 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1148 t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1149
1150 while (TYPE_NAME (t2)
1151 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1152 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1153 t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1154
1155 /* C90 didn't have the requirement that the two tags be the same. */
1156 if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1157 return 0;
1158
1159 /* C90 didn't say what happened if one or both of the types were
1160 incomplete; we choose to follow C99 rules here, which is that they
1161 are compatible. */
1162 if (TYPE_SIZE (t1) == NULL
1163 || TYPE_SIZE (t2) == NULL)
1164 return 1;
1165
1166 {
1167 const struct tagged_tu_seen_cache * tts_i;
1168 for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1169 if (tts_i->t1 == t1 && tts_i->t2 == t2)
1170 return tts_i->val;
1171 }
1172
1173 switch (TREE_CODE (t1))
1174 {
1175 case ENUMERAL_TYPE:
1176 {
1177 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1178 /* Speed up the case where the type values are in the same order. */
1179 tree tv1 = TYPE_VALUES (t1);
1180 tree tv2 = TYPE_VALUES (t2);
1181
1182 if (tv1 == tv2)
1183 {
1184 return 1;
1185 }
1186
1187 for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1188 {
1189 if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1190 break;
1191 if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1192 {
1193 tu->val = 0;
1194 return 0;
1195 }
1196 }
1197
1198 if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1199 {
1200 return 1;
1201 }
1202 if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1203 {
1204 tu->val = 0;
1205 return 0;
1206 }
1207
1208 if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1209 {
1210 tu->val = 0;
1211 return 0;
1212 }
1213
1214 for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1215 {
1216 s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1217 if (s2 == NULL
1218 || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1219 {
1220 tu->val = 0;
1221 return 0;
1222 }
1223 }
1224 return 1;
1225 }
1226
1227 case UNION_TYPE:
1228 {
1229 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1230 if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1231 {
1232 tu->val = 0;
1233 return 0;
1234 }
1235
1236 /* Speed up the common case where the fields are in the same order. */
1237 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1238 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1239 {
1240 int result;
1241
1242 if (DECL_NAME (s1) != DECL_NAME (s2))
1243 break;
1244 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1245
1246 if (result != 1 && !DECL_NAME (s1))
1247 break;
1248 if (result == 0)
1249 {
1250 tu->val = 0;
1251 return 0;
1252 }
1253 if (result == 2)
1254 needs_warning = true;
1255
1256 if (TREE_CODE (s1) == FIELD_DECL
1257 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1258 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1259 {
1260 tu->val = 0;
1261 return 0;
1262 }
1263 }
1264 if (!s1 && !s2)
1265 {
1266 tu->val = needs_warning ? 2 : 1;
1267 return tu->val;
1268 }
1269
1270 for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1271 {
1272 bool ok = false;
1273
1274 for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1275 if (DECL_NAME (s1) == DECL_NAME (s2))
1276 {
1277 int result;
1278
1279 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1280
1281 if (result != 1 && !DECL_NAME (s1))
1282 continue;
1283 if (result == 0)
1284 {
1285 tu->val = 0;
1286 return 0;
1287 }
1288 if (result == 2)
1289 needs_warning = true;
1290
1291 if (TREE_CODE (s1) == FIELD_DECL
1292 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1293 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1294 break;
1295
1296 ok = true;
1297 break;
1298 }
1299 if (!ok)
1300 {
1301 tu->val = 0;
1302 return 0;
1303 }
1304 }
1305 tu->val = needs_warning ? 2 : 10;
1306 return tu->val;
1307 }
1308
1309 case RECORD_TYPE:
1310 {
1311 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1312
1313 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1314 s1 && s2;
1315 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1316 {
1317 int result;
1318 if (TREE_CODE (s1) != TREE_CODE (s2)
1319 || DECL_NAME (s1) != DECL_NAME (s2))
1320 break;
1321 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1322 if (result == 0)
1323 break;
1324 if (result == 2)
1325 needs_warning = true;
1326
1327 if (TREE_CODE (s1) == FIELD_DECL
1328 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1329 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1330 break;
1331 }
1332 if (s1 && s2)
1333 tu->val = 0;
1334 else
1335 tu->val = needs_warning ? 2 : 1;
1336 return tu->val;
1337 }
1338
1339 default:
1340 gcc_unreachable ();
1341 }
1342 }
1343
1344 /* Return 1 if two function types F1 and F2 are compatible.
1345 If either type specifies no argument types,
1346 the other must specify a fixed number of self-promoting arg types.
1347 Otherwise, if one type specifies only the number of arguments,
1348 the other must specify that number of self-promoting arg types.
1349 Otherwise, the argument types must match. */
1350
1351 static int
1352 function_types_compatible_p (const_tree f1, const_tree f2)
1353 {
1354 tree args1, args2;
1355 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1356 int val = 1;
1357 int val1;
1358 tree ret1, ret2;
1359
1360 ret1 = TREE_TYPE (f1);
1361 ret2 = TREE_TYPE (f2);
1362
1363 /* 'volatile' qualifiers on a function's return type used to mean
1364 the function is noreturn. */
1365 if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1366 pedwarn ("function return types not compatible due to %<volatile%>");
1367 if (TYPE_VOLATILE (ret1))
1368 ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1369 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1370 if (TYPE_VOLATILE (ret2))
1371 ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1372 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1373 val = comptypes_internal (ret1, ret2);
1374 if (val == 0)
1375 return 0;
1376
1377 args1 = TYPE_ARG_TYPES (f1);
1378 args2 = TYPE_ARG_TYPES (f2);
1379
1380 /* An unspecified parmlist matches any specified parmlist
1381 whose argument types don't need default promotions. */
1382
1383 if (args1 == 0)
1384 {
1385 if (!self_promoting_args_p (args2))
1386 return 0;
1387 /* If one of these types comes from a non-prototype fn definition,
1388 compare that with the other type's arglist.
1389 If they don't match, ask for a warning (but no error). */
1390 if (TYPE_ACTUAL_ARG_TYPES (f1)
1391 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1392 val = 2;
1393 return val;
1394 }
1395 if (args2 == 0)
1396 {
1397 if (!self_promoting_args_p (args1))
1398 return 0;
1399 if (TYPE_ACTUAL_ARG_TYPES (f2)
1400 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1401 val = 2;
1402 return val;
1403 }
1404
1405 /* Both types have argument lists: compare them and propagate results. */
1406 val1 = type_lists_compatible_p (args1, args2);
1407 return val1 != 1 ? val1 : val;
1408 }
1409
1410 /* Check two lists of types for compatibility,
1411 returning 0 for incompatible, 1 for compatible,
1412 or 2 for compatible with warning. */
1413
1414 static int
1415 type_lists_compatible_p (const_tree args1, const_tree args2)
1416 {
1417 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1418 int val = 1;
1419 int newval = 0;
1420
1421 while (1)
1422 {
1423 tree a1, mv1, a2, mv2;
1424 if (args1 == 0 && args2 == 0)
1425 return val;
1426 /* If one list is shorter than the other,
1427 they fail to match. */
1428 if (args1 == 0 || args2 == 0)
1429 return 0;
1430 mv1 = a1 = TREE_VALUE (args1);
1431 mv2 = a2 = TREE_VALUE (args2);
1432 if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1433 mv1 = TYPE_MAIN_VARIANT (mv1);
1434 if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1435 mv2 = TYPE_MAIN_VARIANT (mv2);
1436 /* A null pointer instead of a type
1437 means there is supposed to be an argument
1438 but nothing is specified about what type it has.
1439 So match anything that self-promotes. */
1440 if (a1 == 0)
1441 {
1442 if (c_type_promotes_to (a2) != a2)
1443 return 0;
1444 }
1445 else if (a2 == 0)
1446 {
1447 if (c_type_promotes_to (a1) != a1)
1448 return 0;
1449 }
1450 /* If one of the lists has an error marker, ignore this arg. */
1451 else if (TREE_CODE (a1) == ERROR_MARK
1452 || TREE_CODE (a2) == ERROR_MARK)
1453 ;
1454 else if (!(newval = comptypes_internal (mv1, mv2)))
1455 {
1456 /* Allow wait (union {union wait *u; int *i} *)
1457 and wait (union wait *) to be compatible. */
1458 if (TREE_CODE (a1) == UNION_TYPE
1459 && (TYPE_NAME (a1) == 0
1460 || TYPE_TRANSPARENT_UNION (a1))
1461 && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1462 && tree_int_cst_equal (TYPE_SIZE (a1),
1463 TYPE_SIZE (a2)))
1464 {
1465 tree memb;
1466 for (memb = TYPE_FIELDS (a1);
1467 memb; memb = TREE_CHAIN (memb))
1468 {
1469 tree mv3 = TREE_TYPE (memb);
1470 if (mv3 && mv3 != error_mark_node
1471 && TREE_CODE (mv3) != ARRAY_TYPE)
1472 mv3 = TYPE_MAIN_VARIANT (mv3);
1473 if (comptypes_internal (mv3, mv2))
1474 break;
1475 }
1476 if (memb == 0)
1477 return 0;
1478 }
1479 else if (TREE_CODE (a2) == UNION_TYPE
1480 && (TYPE_NAME (a2) == 0
1481 || TYPE_TRANSPARENT_UNION (a2))
1482 && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1483 && tree_int_cst_equal (TYPE_SIZE (a2),
1484 TYPE_SIZE (a1)))
1485 {
1486 tree memb;
1487 for (memb = TYPE_FIELDS (a2);
1488 memb; memb = TREE_CHAIN (memb))
1489 {
1490 tree mv3 = TREE_TYPE (memb);
1491 if (mv3 && mv3 != error_mark_node
1492 && TREE_CODE (mv3) != ARRAY_TYPE)
1493 mv3 = TYPE_MAIN_VARIANT (mv3);
1494 if (comptypes_internal (mv3, mv1))
1495 break;
1496 }
1497 if (memb == 0)
1498 return 0;
1499 }
1500 else
1501 return 0;
1502 }
1503
1504 /* comptypes said ok, but record if it said to warn. */
1505 if (newval > val)
1506 val = newval;
1507
1508 args1 = TREE_CHAIN (args1);
1509 args2 = TREE_CHAIN (args2);
1510 }
1511 }
1512 \f
1513 /* Compute the size to increment a pointer by. */
1514
1515 static tree
1516 c_size_in_bytes (const_tree type)
1517 {
1518 enum tree_code code = TREE_CODE (type);
1519
1520 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1521 return size_one_node;
1522
1523 if (!COMPLETE_OR_VOID_TYPE_P (type))
1524 {
1525 error ("arithmetic on pointer to an incomplete type");
1526 return size_one_node;
1527 }
1528
1529 /* Convert in case a char is more than one unit. */
1530 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1531 size_int (TYPE_PRECISION (char_type_node)
1532 / BITS_PER_UNIT));
1533 }
1534 \f
1535 /* Return either DECL or its known constant value (if it has one). */
1536
1537 tree
1538 decl_constant_value (tree decl)
1539 {
1540 if (/* Don't change a variable array bound or initial value to a constant
1541 in a place where a variable is invalid. Note that DECL_INITIAL
1542 isn't valid for a PARM_DECL. */
1543 current_function_decl != 0
1544 && TREE_CODE (decl) != PARM_DECL
1545 && !TREE_THIS_VOLATILE (decl)
1546 && TREE_READONLY (decl)
1547 && DECL_INITIAL (decl) != 0
1548 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1549 /* This is invalid if initial value is not constant.
1550 If it has either a function call, a memory reference,
1551 or a variable, then re-evaluating it could give different results. */
1552 && TREE_CONSTANT (DECL_INITIAL (decl))
1553 /* Check for cases where this is sub-optimal, even though valid. */
1554 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1555 return DECL_INITIAL (decl);
1556 return decl;
1557 }
1558
1559 /* Return either DECL or its known constant value (if it has one), but
1560 return DECL if pedantic or DECL has mode BLKmode. This is for
1561 bug-compatibility with the old behavior of decl_constant_value
1562 (before GCC 3.0); every use of this function is a bug and it should
1563 be removed before GCC 3.1. It is not appropriate to use pedantic
1564 in a way that affects optimization, and BLKmode is probably not the
1565 right test for avoiding misoptimizations either. */
1566
1567 static tree
1568 decl_constant_value_for_broken_optimization (tree decl)
1569 {
1570 tree ret;
1571
1572 if (pedantic || DECL_MODE (decl) == BLKmode)
1573 return decl;
1574
1575 ret = decl_constant_value (decl);
1576 /* Avoid unwanted tree sharing between the initializer and current
1577 function's body where the tree can be modified e.g. by the
1578 gimplifier. */
1579 if (ret != decl && TREE_STATIC (decl))
1580 ret = unshare_expr (ret);
1581 return ret;
1582 }
1583
1584 /* Convert the array expression EXP to a pointer. */
1585 static tree
1586 array_to_pointer_conversion (tree exp)
1587 {
1588 tree orig_exp = exp;
1589 tree type = TREE_TYPE (exp);
1590 tree adr;
1591 tree restype = TREE_TYPE (type);
1592 tree ptrtype;
1593
1594 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1595
1596 STRIP_TYPE_NOPS (exp);
1597
1598 if (TREE_NO_WARNING (orig_exp))
1599 TREE_NO_WARNING (exp) = 1;
1600
1601 ptrtype = build_pointer_type (restype);
1602
1603 if (TREE_CODE (exp) == INDIRECT_REF)
1604 return convert (ptrtype, TREE_OPERAND (exp, 0));
1605
1606 if (TREE_CODE (exp) == VAR_DECL)
1607 {
1608 /* We are making an ADDR_EXPR of ptrtype. This is a valid
1609 ADDR_EXPR because it's the best way of representing what
1610 happens in C when we take the address of an array and place
1611 it in a pointer to the element type. */
1612 adr = build1 (ADDR_EXPR, ptrtype, exp);
1613 if (!c_mark_addressable (exp))
1614 return error_mark_node;
1615 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
1616 return adr;
1617 }
1618
1619 /* This way is better for a COMPONENT_REF since it can
1620 simplify the offset for a component. */
1621 adr = build_unary_op (ADDR_EXPR, exp, 1);
1622 return convert (ptrtype, adr);
1623 }
1624
1625 /* Convert the function expression EXP to a pointer. */
1626 static tree
1627 function_to_pointer_conversion (tree exp)
1628 {
1629 tree orig_exp = exp;
1630
1631 gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1632
1633 STRIP_TYPE_NOPS (exp);
1634
1635 if (TREE_NO_WARNING (orig_exp))
1636 TREE_NO_WARNING (exp) = 1;
1637
1638 return build_unary_op (ADDR_EXPR, exp, 0);
1639 }
1640
1641 /* Perform the default conversion of arrays and functions to pointers.
1642 Return the result of converting EXP. For any other expression, just
1643 return EXP after removing NOPs. */
1644
1645 struct c_expr
1646 default_function_array_conversion (struct c_expr exp)
1647 {
1648 tree orig_exp = exp.value;
1649 tree type = TREE_TYPE (exp.value);
1650 enum tree_code code = TREE_CODE (type);
1651
1652 switch (code)
1653 {
1654 case ARRAY_TYPE:
1655 {
1656 bool not_lvalue = false;
1657 bool lvalue_array_p;
1658
1659 while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1660 || TREE_CODE (exp.value) == NOP_EXPR
1661 || TREE_CODE (exp.value) == CONVERT_EXPR)
1662 && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1663 {
1664 if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1665 not_lvalue = true;
1666 exp.value = TREE_OPERAND (exp.value, 0);
1667 }
1668
1669 if (TREE_NO_WARNING (orig_exp))
1670 TREE_NO_WARNING (exp.value) = 1;
1671
1672 lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1673 if (!flag_isoc99 && !lvalue_array_p)
1674 {
1675 /* Before C99, non-lvalue arrays do not decay to pointers.
1676 Normally, using such an array would be invalid; but it can
1677 be used correctly inside sizeof or as a statement expression.
1678 Thus, do not give an error here; an error will result later. */
1679 return exp;
1680 }
1681
1682 exp.value = array_to_pointer_conversion (exp.value);
1683 }
1684 break;
1685 case FUNCTION_TYPE:
1686 exp.value = function_to_pointer_conversion (exp.value);
1687 break;
1688 default:
1689 STRIP_TYPE_NOPS (exp.value);
1690 if (TREE_NO_WARNING (orig_exp))
1691 TREE_NO_WARNING (exp.value) = 1;
1692 break;
1693 }
1694
1695 return exp;
1696 }
1697
1698
1699 /* EXP is an expression of integer type. Apply the integer promotions
1700 to it and return the promoted value. */
1701
1702 tree
1703 perform_integral_promotions (tree exp)
1704 {
1705 tree type = TREE_TYPE (exp);
1706 enum tree_code code = TREE_CODE (type);
1707
1708 gcc_assert (INTEGRAL_TYPE_P (type));
1709
1710 /* Normally convert enums to int,
1711 but convert wide enums to something wider. */
1712 if (code == ENUMERAL_TYPE)
1713 {
1714 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1715 TYPE_PRECISION (integer_type_node)),
1716 ((TYPE_PRECISION (type)
1717 >= TYPE_PRECISION (integer_type_node))
1718 && TYPE_UNSIGNED (type)));
1719
1720 return convert (type, exp);
1721 }
1722
1723 /* ??? This should no longer be needed now bit-fields have their
1724 proper types. */
1725 if (TREE_CODE (exp) == COMPONENT_REF
1726 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1727 /* If it's thinner than an int, promote it like a
1728 c_promoting_integer_type_p, otherwise leave it alone. */
1729 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1730 TYPE_PRECISION (integer_type_node)))
1731 return convert (integer_type_node, exp);
1732
1733 if (c_promoting_integer_type_p (type))
1734 {
1735 /* Preserve unsignedness if not really getting any wider. */
1736 if (TYPE_UNSIGNED (type)
1737 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1738 return convert (unsigned_type_node, exp);
1739
1740 return convert (integer_type_node, exp);
1741 }
1742
1743 return exp;
1744 }
1745
1746
1747 /* Perform default promotions for C data used in expressions.
1748 Enumeral types or short or char are converted to int.
1749 In addition, manifest constants symbols are replaced by their values. */
1750
1751 tree
1752 default_conversion (tree exp)
1753 {
1754 tree orig_exp;
1755 tree type = TREE_TYPE (exp);
1756 enum tree_code code = TREE_CODE (type);
1757
1758 /* Functions and arrays have been converted during parsing. */
1759 gcc_assert (code != FUNCTION_TYPE);
1760 if (code == ARRAY_TYPE)
1761 return exp;
1762
1763 /* Constants can be used directly unless they're not loadable. */
1764 if (TREE_CODE (exp) == CONST_DECL)
1765 exp = DECL_INITIAL (exp);
1766
1767 /* Replace a nonvolatile const static variable with its value unless
1768 it is an array, in which case we must be sure that taking the
1769 address of the array produces consistent results. */
1770 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1771 {
1772 exp = decl_constant_value_for_broken_optimization (exp);
1773 type = TREE_TYPE (exp);
1774 }
1775
1776 /* Strip no-op conversions. */
1777 orig_exp = exp;
1778 STRIP_TYPE_NOPS (exp);
1779
1780 if (TREE_NO_WARNING (orig_exp))
1781 TREE_NO_WARNING (exp) = 1;
1782
1783 if (code == VOID_TYPE)
1784 {
1785 error ("void value not ignored as it ought to be");
1786 return error_mark_node;
1787 }
1788
1789 exp = require_complete_type (exp);
1790 if (exp == error_mark_node)
1791 return error_mark_node;
1792
1793 if (INTEGRAL_TYPE_P (type))
1794 return perform_integral_promotions (exp);
1795
1796 return exp;
1797 }
1798 \f
1799 /* Look up COMPONENT in a structure or union DECL.
1800
1801 If the component name is not found, returns NULL_TREE. Otherwise,
1802 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1803 stepping down the chain to the component, which is in the last
1804 TREE_VALUE of the list. Normally the list is of length one, but if
1805 the component is embedded within (nested) anonymous structures or
1806 unions, the list steps down the chain to the component. */
1807
1808 static tree
1809 lookup_field (tree decl, tree component)
1810 {
1811 tree type = TREE_TYPE (decl);
1812 tree field;
1813
1814 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1815 to the field elements. Use a binary search on this array to quickly
1816 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1817 will always be set for structures which have many elements. */
1818
1819 if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1820 {
1821 int bot, top, half;
1822 tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1823
1824 field = TYPE_FIELDS (type);
1825 bot = 0;
1826 top = TYPE_LANG_SPECIFIC (type)->s->len;
1827 while (top - bot > 1)
1828 {
1829 half = (top - bot + 1) >> 1;
1830 field = field_array[bot+half];
1831
1832 if (DECL_NAME (field) == NULL_TREE)
1833 {
1834 /* Step through all anon unions in linear fashion. */
1835 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1836 {
1837 field = field_array[bot++];
1838 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1839 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1840 {
1841 tree anon = lookup_field (field, component);
1842
1843 if (anon)
1844 return tree_cons (NULL_TREE, field, anon);
1845 }
1846 }
1847
1848 /* Entire record is only anon unions. */
1849 if (bot > top)
1850 return NULL_TREE;
1851
1852 /* Restart the binary search, with new lower bound. */
1853 continue;
1854 }
1855
1856 if (DECL_NAME (field) == component)
1857 break;
1858 if (DECL_NAME (field) < component)
1859 bot += half;
1860 else
1861 top = bot + half;
1862 }
1863
1864 if (DECL_NAME (field_array[bot]) == component)
1865 field = field_array[bot];
1866 else if (DECL_NAME (field) != component)
1867 return NULL_TREE;
1868 }
1869 else
1870 {
1871 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1872 {
1873 if (DECL_NAME (field) == NULL_TREE
1874 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1875 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1876 {
1877 tree anon = lookup_field (field, component);
1878
1879 if (anon)
1880 return tree_cons (NULL_TREE, field, anon);
1881 }
1882
1883 if (DECL_NAME (field) == component)
1884 break;
1885 }
1886
1887 if (field == NULL_TREE)
1888 return NULL_TREE;
1889 }
1890
1891 return tree_cons (NULL_TREE, field, NULL_TREE);
1892 }
1893
1894 /* Make an expression to refer to the COMPONENT field of
1895 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1896
1897 tree
1898 build_component_ref (tree datum, tree component)
1899 {
1900 tree type = TREE_TYPE (datum);
1901 enum tree_code code = TREE_CODE (type);
1902 tree field = NULL;
1903 tree ref;
1904
1905 if (!objc_is_public (datum, component))
1906 return error_mark_node;
1907
1908 /* See if there is a field or component with name COMPONENT. */
1909
1910 if (code == RECORD_TYPE || code == UNION_TYPE)
1911 {
1912 if (!COMPLETE_TYPE_P (type))
1913 {
1914 c_incomplete_type_error (NULL_TREE, type);
1915 return error_mark_node;
1916 }
1917
1918 field = lookup_field (datum, component);
1919
1920 if (!field)
1921 {
1922 error ("%qT has no member named %qE", type, component);
1923 return error_mark_node;
1924 }
1925
1926 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1927 This might be better solved in future the way the C++ front
1928 end does it - by giving the anonymous entities each a
1929 separate name and type, and then have build_component_ref
1930 recursively call itself. We can't do that here. */
1931 do
1932 {
1933 tree subdatum = TREE_VALUE (field);
1934 int quals;
1935 tree subtype;
1936
1937 if (TREE_TYPE (subdatum) == error_mark_node)
1938 return error_mark_node;
1939
1940 quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1941 quals |= TYPE_QUALS (TREE_TYPE (datum));
1942 subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1943
1944 ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1945 NULL_TREE);
1946 if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1947 TREE_READONLY (ref) = 1;
1948 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1949 TREE_THIS_VOLATILE (ref) = 1;
1950
1951 if (TREE_DEPRECATED (subdatum))
1952 warn_deprecated_use (subdatum);
1953
1954 datum = ref;
1955
1956 field = TREE_CHAIN (field);
1957 }
1958 while (field);
1959
1960 return ref;
1961 }
1962 else if (code != ERROR_MARK)
1963 error ("request for member %qE in something not a structure or union",
1964 component);
1965
1966 return error_mark_node;
1967 }
1968 \f
1969 /* Given an expression PTR for a pointer, return an expression
1970 for the value pointed to.
1971 ERRORSTRING is the name of the operator to appear in error messages. */
1972
1973 tree
1974 build_indirect_ref (tree ptr, const char *errorstring)
1975 {
1976 tree pointer = default_conversion (ptr);
1977 tree type = TREE_TYPE (pointer);
1978
1979 if (TREE_CODE (type) == POINTER_TYPE)
1980 {
1981 if (TREE_CODE (pointer) == CONVERT_EXPR
1982 || TREE_CODE (pointer) == NOP_EXPR
1983 || TREE_CODE (pointer) == VIEW_CONVERT_EXPR)
1984 {
1985 /* If a warning is issued, mark it to avoid duplicates from
1986 the backend. This only needs to be done at
1987 warn_strict_aliasing > 2. */
1988 if (warn_strict_aliasing > 2)
1989 if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (pointer, 0)),
1990 type, TREE_OPERAND (pointer, 0)))
1991 TREE_NO_WARNING (pointer) = 1;
1992 }
1993
1994 if (TREE_CODE (pointer) == ADDR_EXPR
1995 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1996 == TREE_TYPE (type)))
1997 return TREE_OPERAND (pointer, 0);
1998 else
1999 {
2000 tree t = TREE_TYPE (type);
2001 tree ref;
2002
2003 ref = build1 (INDIRECT_REF, t, pointer);
2004
2005 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
2006 {
2007 error ("dereferencing pointer to incomplete type");
2008 return error_mark_node;
2009 }
2010 if (VOID_TYPE_P (t) && skip_evaluation == 0)
2011 warning (0, "dereferencing %<void *%> pointer");
2012
2013 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
2014 so that we get the proper error message if the result is used
2015 to assign to. Also, &* is supposed to be a no-op.
2016 And ANSI C seems to specify that the type of the result
2017 should be the const type. */
2018 /* A de-reference of a pointer to const is not a const. It is valid
2019 to change it via some other pointer. */
2020 TREE_READONLY (ref) = TYPE_READONLY (t);
2021 TREE_SIDE_EFFECTS (ref)
2022 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
2023 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
2024 return ref;
2025 }
2026 }
2027 else if (TREE_CODE (pointer) != ERROR_MARK)
2028 error ("invalid type argument of %qs (have %qT)", errorstring, type);
2029 return error_mark_node;
2030 }
2031
2032 /* This handles expressions of the form "a[i]", which denotes
2033 an array reference.
2034
2035 This is logically equivalent in C to *(a+i), but we may do it differently.
2036 If A is a variable or a member, we generate a primitive ARRAY_REF.
2037 This avoids forcing the array out of registers, and can work on
2038 arrays that are not lvalues (for example, members of structures returned
2039 by functions). */
2040
2041 tree
2042 build_array_ref (tree array, tree index)
2043 {
2044 bool swapped = false;
2045 if (TREE_TYPE (array) == error_mark_node
2046 || TREE_TYPE (index) == error_mark_node)
2047 return error_mark_node;
2048
2049 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
2050 && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
2051 {
2052 tree temp;
2053 if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
2054 && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
2055 {
2056 error ("subscripted value is neither array nor pointer");
2057 return error_mark_node;
2058 }
2059 temp = array;
2060 array = index;
2061 index = temp;
2062 swapped = true;
2063 }
2064
2065 if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
2066 {
2067 error ("array subscript is not an integer");
2068 return error_mark_node;
2069 }
2070
2071 if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
2072 {
2073 error ("subscripted value is pointer to function");
2074 return error_mark_node;
2075 }
2076
2077 /* ??? Existing practice has been to warn only when the char
2078 index is syntactically the index, not for char[array]. */
2079 if (!swapped)
2080 warn_array_subscript_with_type_char (index);
2081
2082 /* Apply default promotions *after* noticing character types. */
2083 index = default_conversion (index);
2084
2085 gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
2086
2087 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
2088 {
2089 tree rval, type;
2090
2091 /* An array that is indexed by a non-constant
2092 cannot be stored in a register; we must be able to do
2093 address arithmetic on its address.
2094 Likewise an array of elements of variable size. */
2095 if (TREE_CODE (index) != INTEGER_CST
2096 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
2097 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
2098 {
2099 if (!c_mark_addressable (array))
2100 return error_mark_node;
2101 }
2102 /* An array that is indexed by a constant value which is not within
2103 the array bounds cannot be stored in a register either; because we
2104 would get a crash in store_bit_field/extract_bit_field when trying
2105 to access a non-existent part of the register. */
2106 if (TREE_CODE (index) == INTEGER_CST
2107 && TYPE_DOMAIN (TREE_TYPE (array))
2108 && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
2109 {
2110 if (!c_mark_addressable (array))
2111 return error_mark_node;
2112 }
2113
2114 if (pedantic)
2115 {
2116 tree foo = array;
2117 while (TREE_CODE (foo) == COMPONENT_REF)
2118 foo = TREE_OPERAND (foo, 0);
2119 if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2120 pedwarn ("ISO C forbids subscripting %<register%> array");
2121 else if (!flag_isoc99 && !lvalue_p (foo))
2122 pedwarn ("ISO C90 forbids subscripting non-lvalue array");
2123 }
2124
2125 type = TREE_TYPE (TREE_TYPE (array));
2126 rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2127 /* Array ref is const/volatile if the array elements are
2128 or if the array is. */
2129 TREE_READONLY (rval)
2130 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2131 | TREE_READONLY (array));
2132 TREE_SIDE_EFFECTS (rval)
2133 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2134 | TREE_SIDE_EFFECTS (array));
2135 TREE_THIS_VOLATILE (rval)
2136 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2137 /* This was added by rms on 16 Nov 91.
2138 It fixes vol struct foo *a; a->elts[1]
2139 in an inline function.
2140 Hope it doesn't break something else. */
2141 | TREE_THIS_VOLATILE (array));
2142 return require_complete_type (fold (rval));
2143 }
2144 else
2145 {
2146 tree ar = default_conversion (array);
2147
2148 if (ar == error_mark_node)
2149 return ar;
2150
2151 gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2152 gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2153
2154 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2155 "array indexing");
2156 }
2157 }
2158 \f
2159 /* Build an external reference to identifier ID. FUN indicates
2160 whether this will be used for a function call. LOC is the source
2161 location of the identifier. */
2162 tree
2163 build_external_ref (tree id, int fun, location_t loc)
2164 {
2165 tree ref;
2166 tree decl = lookup_name (id);
2167
2168 /* In Objective-C, an instance variable (ivar) may be preferred to
2169 whatever lookup_name() found. */
2170 decl = objc_lookup_ivar (decl, id);
2171
2172 if (decl && decl != error_mark_node)
2173 ref = decl;
2174 else if (fun)
2175 /* Implicit function declaration. */
2176 ref = implicitly_declare (id);
2177 else if (decl == error_mark_node)
2178 /* Don't complain about something that's already been
2179 complained about. */
2180 return error_mark_node;
2181 else
2182 {
2183 undeclared_variable (id, loc);
2184 return error_mark_node;
2185 }
2186
2187 if (TREE_TYPE (ref) == error_mark_node)
2188 return error_mark_node;
2189
2190 if (TREE_DEPRECATED (ref))
2191 warn_deprecated_use (ref);
2192
2193 /* Recursive call does not count as usage. */
2194 if (ref != current_function_decl)
2195 {
2196 if (!skip_evaluation)
2197 assemble_external (ref);
2198 TREE_USED (ref) = 1;
2199 }
2200
2201 if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2202 {
2203 if (!in_sizeof && !in_typeof)
2204 C_DECL_USED (ref) = 1;
2205 else if (DECL_INITIAL (ref) == 0
2206 && DECL_EXTERNAL (ref)
2207 && !TREE_PUBLIC (ref))
2208 record_maybe_used_decl (ref);
2209 }
2210
2211 if (TREE_CODE (ref) == CONST_DECL)
2212 {
2213 used_types_insert (TREE_TYPE (ref));
2214 ref = DECL_INITIAL (ref);
2215 TREE_CONSTANT (ref) = 1;
2216 TREE_INVARIANT (ref) = 1;
2217 }
2218 else if (current_function_decl != 0
2219 && !DECL_FILE_SCOPE_P (current_function_decl)
2220 && (TREE_CODE (ref) == VAR_DECL
2221 || TREE_CODE (ref) == PARM_DECL
2222 || TREE_CODE (ref) == FUNCTION_DECL))
2223 {
2224 tree context = decl_function_context (ref);
2225
2226 if (context != 0 && context != current_function_decl)
2227 DECL_NONLOCAL (ref) = 1;
2228 }
2229 /* C99 6.7.4p3: An inline definition of a function with external
2230 linkage ... shall not contain a reference to an identifier with
2231 internal linkage. */
2232 else if (current_function_decl != 0
2233 && DECL_DECLARED_INLINE_P (current_function_decl)
2234 && DECL_EXTERNAL (current_function_decl)
2235 && VAR_OR_FUNCTION_DECL_P (ref)
2236 && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2237 && ! TREE_PUBLIC (ref)
2238 && DECL_CONTEXT (ref) != current_function_decl)
2239 pedwarn ("%H%qD is static but used in inline function %qD "
2240 "which is not static", &loc, ref, current_function_decl);
2241
2242 return ref;
2243 }
2244
2245 /* Record details of decls possibly used inside sizeof or typeof. */
2246 struct maybe_used_decl
2247 {
2248 /* The decl. */
2249 tree decl;
2250 /* The level seen at (in_sizeof + in_typeof). */
2251 int level;
2252 /* The next one at this level or above, or NULL. */
2253 struct maybe_used_decl *next;
2254 };
2255
2256 static struct maybe_used_decl *maybe_used_decls;
2257
2258 /* Record that DECL, an undefined static function reference seen
2259 inside sizeof or typeof, might be used if the operand of sizeof is
2260 a VLA type or the operand of typeof is a variably modified
2261 type. */
2262
2263 static void
2264 record_maybe_used_decl (tree decl)
2265 {
2266 struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2267 t->decl = decl;
2268 t->level = in_sizeof + in_typeof;
2269 t->next = maybe_used_decls;
2270 maybe_used_decls = t;
2271 }
2272
2273 /* Pop the stack of decls possibly used inside sizeof or typeof. If
2274 USED is false, just discard them. If it is true, mark them used
2275 (if no longer inside sizeof or typeof) or move them to the next
2276 level up (if still inside sizeof or typeof). */
2277
2278 void
2279 pop_maybe_used (bool used)
2280 {
2281 struct maybe_used_decl *p = maybe_used_decls;
2282 int cur_level = in_sizeof + in_typeof;
2283 while (p && p->level > cur_level)
2284 {
2285 if (used)
2286 {
2287 if (cur_level == 0)
2288 C_DECL_USED (p->decl) = 1;
2289 else
2290 p->level = cur_level;
2291 }
2292 p = p->next;
2293 }
2294 if (!used || cur_level == 0)
2295 maybe_used_decls = p;
2296 }
2297
2298 /* Return the result of sizeof applied to EXPR. */
2299
2300 struct c_expr
2301 c_expr_sizeof_expr (struct c_expr expr)
2302 {
2303 struct c_expr ret;
2304 if (expr.value == error_mark_node)
2305 {
2306 ret.value = error_mark_node;
2307 ret.original_code = ERROR_MARK;
2308 pop_maybe_used (false);
2309 }
2310 else
2311 {
2312 ret.value = c_sizeof (TREE_TYPE (expr.value));
2313 ret.original_code = ERROR_MARK;
2314 if (c_vla_type_p (TREE_TYPE (expr.value)))
2315 {
2316 /* sizeof is evaluated when given a vla (C99 6.5.3.4p2). */
2317 ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2318 }
2319 pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2320 }
2321 return ret;
2322 }
2323
2324 /* Return the result of sizeof applied to T, a structure for the type
2325 name passed to sizeof (rather than the type itself). */
2326
2327 struct c_expr
2328 c_expr_sizeof_type (struct c_type_name *t)
2329 {
2330 tree type;
2331 struct c_expr ret;
2332 type = groktypename (t);
2333 ret.value = c_sizeof (type);
2334 ret.original_code = ERROR_MARK;
2335 pop_maybe_used (type != error_mark_node
2336 ? C_TYPE_VARIABLE_SIZE (type) : false);
2337 return ret;
2338 }
2339
2340 /* Build a function call to function FUNCTION with parameters PARAMS.
2341 PARAMS is a list--a chain of TREE_LIST nodes--in which the
2342 TREE_VALUE of each node is a parameter-expression.
2343 FUNCTION's data type may be a function type or a pointer-to-function. */
2344
2345 tree
2346 build_function_call (tree function, tree params)
2347 {
2348 tree fntype, fundecl = 0;
2349 tree name = NULL_TREE, result;
2350 tree tem;
2351 int nargs;
2352 tree *argarray;
2353
2354
2355 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
2356 STRIP_TYPE_NOPS (function);
2357
2358 /* Convert anything with function type to a pointer-to-function. */
2359 if (TREE_CODE (function) == FUNCTION_DECL)
2360 {
2361 /* Implement type-directed function overloading for builtins.
2362 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2363 handle all the type checking. The result is a complete expression
2364 that implements this function call. */
2365 tem = resolve_overloaded_builtin (function, params);
2366 if (tem)
2367 return tem;
2368
2369 name = DECL_NAME (function);
2370 fundecl = function;
2371 }
2372 if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2373 function = function_to_pointer_conversion (function);
2374
2375 /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2376 expressions, like those used for ObjC messenger dispatches. */
2377 function = objc_rewrite_function_call (function, params);
2378
2379 fntype = TREE_TYPE (function);
2380
2381 if (TREE_CODE (fntype) == ERROR_MARK)
2382 return error_mark_node;
2383
2384 if (!(TREE_CODE (fntype) == POINTER_TYPE
2385 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2386 {
2387 error ("called object %qE is not a function", function);
2388 return error_mark_node;
2389 }
2390
2391 if (fundecl && TREE_THIS_VOLATILE (fundecl))
2392 current_function_returns_abnormally = 1;
2393
2394 /* fntype now gets the type of function pointed to. */
2395 fntype = TREE_TYPE (fntype);
2396
2397 /* Check that the function is called through a compatible prototype.
2398 If it is not, replace the call by a trap, wrapped up in a compound
2399 expression if necessary. This has the nice side-effect to prevent
2400 the tree-inliner from generating invalid assignment trees which may
2401 blow up in the RTL expander later. */
2402 if ((TREE_CODE (function) == NOP_EXPR
2403 || TREE_CODE (function) == CONVERT_EXPR)
2404 && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2405 && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2406 && !comptypes (fntype, TREE_TYPE (tem)))
2407 {
2408 tree return_type = TREE_TYPE (fntype);
2409 tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2410 NULL_TREE);
2411
2412 /* This situation leads to run-time undefined behavior. We can't,
2413 therefore, simply error unless we can prove that all possible
2414 executions of the program must execute the code. */
2415 warning (0, "function called through a non-compatible type");
2416
2417 /* We can, however, treat "undefined" any way we please.
2418 Call abort to encourage the user to fix the program. */
2419 inform ("if this code is reached, the program will abort");
2420
2421 if (VOID_TYPE_P (return_type))
2422 return trap;
2423 else
2424 {
2425 tree rhs;
2426
2427 if (AGGREGATE_TYPE_P (return_type))
2428 rhs = build_compound_literal (return_type,
2429 build_constructor (return_type, 0));
2430 else
2431 rhs = fold_convert (return_type, integer_zero_node);
2432
2433 return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2434 }
2435 }
2436
2437 /* Convert the parameters to the types declared in the
2438 function prototype, or apply default promotions. */
2439
2440 nargs = list_length (params);
2441 argarray = (tree *) alloca (nargs * sizeof (tree));
2442 nargs = convert_arguments (nargs, argarray, TYPE_ARG_TYPES (fntype),
2443 params, function, fundecl);
2444 if (nargs < 0)
2445 return error_mark_node;
2446
2447 /* Check that the arguments to the function are valid. */
2448
2449 check_function_arguments (TYPE_ATTRIBUTES (fntype), nargs, argarray,
2450 TYPE_ARG_TYPES (fntype));
2451
2452 if (require_constant_value)
2453 {
2454 result = fold_build_call_array_initializer (TREE_TYPE (fntype),
2455 function, nargs, argarray);
2456 if (TREE_CONSTANT (result)
2457 && (name == NULL_TREE
2458 || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2459 pedwarn_init ("initializer element is not constant");
2460 }
2461 else
2462 result = fold_build_call_array (TREE_TYPE (fntype),
2463 function, nargs, argarray);
2464
2465 if (VOID_TYPE_P (TREE_TYPE (result)))
2466 return result;
2467 return require_complete_type (result);
2468 }
2469 \f
2470 /* Convert the argument expressions in the list VALUES
2471 to the types in the list TYPELIST. The resulting arguments are
2472 stored in the array ARGARRAY which has size NARGS.
2473
2474 If TYPELIST is exhausted, or when an element has NULL as its type,
2475 perform the default conversions.
2476
2477 PARMLIST is the chain of parm decls for the function being called.
2478 It may be 0, if that info is not available.
2479 It is used only for generating error messages.
2480
2481 FUNCTION is a tree for the called function. It is used only for
2482 error messages, where it is formatted with %qE.
2483
2484 This is also where warnings about wrong number of args are generated.
2485
2486 VALUES is a chain of TREE_LIST nodes with the elements of the list
2487 in the TREE_VALUE slots of those nodes.
2488
2489 Returns the actual number of arguments processed (which may be less
2490 than NARGS in some error situations), or -1 on failure. */
2491
2492 static int
2493 convert_arguments (int nargs, tree *argarray,
2494 tree typelist, tree values, tree function, tree fundecl)
2495 {
2496 tree typetail, valtail;
2497 int parmnum;
2498 const bool type_generic = fundecl
2499 && lookup_attribute ("type generic", TYPE_ATTRIBUTES(TREE_TYPE (fundecl)));
2500 tree selector;
2501
2502 /* Change pointer to function to the function itself for
2503 diagnostics. */
2504 if (TREE_CODE (function) == ADDR_EXPR
2505 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2506 function = TREE_OPERAND (function, 0);
2507
2508 /* Handle an ObjC selector specially for diagnostics. */
2509 selector = objc_message_selector ();
2510
2511 /* Scan the given expressions and types, producing individual
2512 converted arguments and storing them in ARGARRAY. */
2513
2514 for (valtail = values, typetail = typelist, parmnum = 0;
2515 valtail;
2516 valtail = TREE_CHAIN (valtail), parmnum++)
2517 {
2518 tree type = typetail ? TREE_VALUE (typetail) : 0;
2519 tree val = TREE_VALUE (valtail);
2520 tree rname = function;
2521 int argnum = parmnum + 1;
2522 const char *invalid_func_diag;
2523
2524 if (type == void_type_node)
2525 {
2526 error ("too many arguments to function %qE", function);
2527 return parmnum;
2528 }
2529
2530 if (selector && argnum > 2)
2531 {
2532 rname = selector;
2533 argnum -= 2;
2534 }
2535
2536 STRIP_TYPE_NOPS (val);
2537
2538 val = require_complete_type (val);
2539
2540 if (type != 0)
2541 {
2542 /* Formal parm type is specified by a function prototype. */
2543 tree parmval;
2544
2545 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2546 {
2547 error ("type of formal parameter %d is incomplete", parmnum + 1);
2548 parmval = val;
2549 }
2550 else
2551 {
2552 /* Optionally warn about conversions that
2553 differ from the default conversions. */
2554 if (warn_traditional_conversion || warn_traditional)
2555 {
2556 unsigned int formal_prec = TYPE_PRECISION (type);
2557
2558 if (INTEGRAL_TYPE_P (type)
2559 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2560 warning (0, "passing argument %d of %qE as integer "
2561 "rather than floating due to prototype",
2562 argnum, rname);
2563 if (INTEGRAL_TYPE_P (type)
2564 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2565 warning (0, "passing argument %d of %qE as integer "
2566 "rather than complex due to prototype",
2567 argnum, rname);
2568 else if (TREE_CODE (type) == COMPLEX_TYPE
2569 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2570 warning (0, "passing argument %d of %qE as complex "
2571 "rather than floating due to prototype",
2572 argnum, rname);
2573 else if (TREE_CODE (type) == REAL_TYPE
2574 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2575 warning (0, "passing argument %d of %qE as floating "
2576 "rather than integer due to prototype",
2577 argnum, rname);
2578 else if (TREE_CODE (type) == COMPLEX_TYPE
2579 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2580 warning (0, "passing argument %d of %qE as complex "
2581 "rather than integer due to prototype",
2582 argnum, rname);
2583 else if (TREE_CODE (type) == REAL_TYPE
2584 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2585 warning (0, "passing argument %d of %qE as floating "
2586 "rather than complex due to prototype",
2587 argnum, rname);
2588 /* ??? At some point, messages should be written about
2589 conversions between complex types, but that's too messy
2590 to do now. */
2591 else if (TREE_CODE (type) == REAL_TYPE
2592 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2593 {
2594 /* Warn if any argument is passed as `float',
2595 since without a prototype it would be `double'. */
2596 if (formal_prec == TYPE_PRECISION (float_type_node)
2597 && type != dfloat32_type_node)
2598 warning (0, "passing argument %d of %qE as %<float%> "
2599 "rather than %<double%> due to prototype",
2600 argnum, rname);
2601
2602 /* Warn if mismatch between argument and prototype
2603 for decimal float types. Warn of conversions with
2604 binary float types and of precision narrowing due to
2605 prototype. */
2606 else if (type != TREE_TYPE (val)
2607 && (type == dfloat32_type_node
2608 || type == dfloat64_type_node
2609 || type == dfloat128_type_node
2610 || TREE_TYPE (val) == dfloat32_type_node
2611 || TREE_TYPE (val) == dfloat64_type_node
2612 || TREE_TYPE (val) == dfloat128_type_node)
2613 && (formal_prec
2614 <= TYPE_PRECISION (TREE_TYPE (val))
2615 || (type == dfloat128_type_node
2616 && (TREE_TYPE (val)
2617 != dfloat64_type_node
2618 && (TREE_TYPE (val)
2619 != dfloat32_type_node)))
2620 || (type == dfloat64_type_node
2621 && (TREE_TYPE (val)
2622 != dfloat32_type_node))))
2623 warning (0, "passing argument %d of %qE as %qT "
2624 "rather than %qT due to prototype",
2625 argnum, rname, type, TREE_TYPE (val));
2626
2627 }
2628 /* Detect integer changing in width or signedness.
2629 These warnings are only activated with
2630 -Wtraditional-conversion, not with -Wtraditional. */
2631 else if (warn_traditional_conversion && INTEGRAL_TYPE_P (type)
2632 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2633 {
2634 tree would_have_been = default_conversion (val);
2635 tree type1 = TREE_TYPE (would_have_been);
2636
2637 if (TREE_CODE (type) == ENUMERAL_TYPE
2638 && (TYPE_MAIN_VARIANT (type)
2639 == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2640 /* No warning if function asks for enum
2641 and the actual arg is that enum type. */
2642 ;
2643 else if (formal_prec != TYPE_PRECISION (type1))
2644 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2645 "with different width due to prototype",
2646 argnum, rname);
2647 else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2648 ;
2649 /* Don't complain if the formal parameter type
2650 is an enum, because we can't tell now whether
2651 the value was an enum--even the same enum. */
2652 else if (TREE_CODE (type) == ENUMERAL_TYPE)
2653 ;
2654 else if (TREE_CODE (val) == INTEGER_CST
2655 && int_fits_type_p (val, type))
2656 /* Change in signedness doesn't matter
2657 if a constant value is unaffected. */
2658 ;
2659 /* If the value is extended from a narrower
2660 unsigned type, it doesn't matter whether we
2661 pass it as signed or unsigned; the value
2662 certainly is the same either way. */
2663 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2664 && TYPE_UNSIGNED (TREE_TYPE (val)))
2665 ;
2666 else if (TYPE_UNSIGNED (type))
2667 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2668 "as unsigned due to prototype",
2669 argnum, rname);
2670 else
2671 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2672 "as signed due to prototype", argnum, rname);
2673 }
2674 }
2675
2676 parmval = convert_for_assignment (type, val, ic_argpass,
2677 fundecl, function,
2678 parmnum + 1);
2679
2680 if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2681 && INTEGRAL_TYPE_P (type)
2682 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2683 parmval = default_conversion (parmval);
2684 }
2685 argarray[parmnum] = parmval;
2686 }
2687 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2688 && (TYPE_PRECISION (TREE_TYPE (val))
2689 < TYPE_PRECISION (double_type_node))
2690 && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2691 {
2692 if (type_generic)
2693 argarray[parmnum] = val;
2694 else
2695 /* Convert `float' to `double'. */
2696 argarray[parmnum] = convert (double_type_node, val);
2697 }
2698 else if ((invalid_func_diag =
2699 targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2700 {
2701 error (invalid_func_diag);
2702 return -1;
2703 }
2704 else
2705 /* Convert `short' and `char' to full-size `int'. */
2706 argarray[parmnum] = default_conversion (val);
2707
2708 if (typetail)
2709 typetail = TREE_CHAIN (typetail);
2710 }
2711
2712 gcc_assert (parmnum == nargs);
2713
2714 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2715 {
2716 error ("too few arguments to function %qE", function);
2717 return -1;
2718 }
2719
2720 return parmnum;
2721 }
2722 \f
2723 /* This is the entry point used by the parser to build unary operators
2724 in the input. CODE, a tree_code, specifies the unary operator, and
2725 ARG is the operand. For unary plus, the C parser currently uses
2726 CONVERT_EXPR for code. */
2727
2728 struct c_expr
2729 parser_build_unary_op (enum tree_code code, struct c_expr arg)
2730 {
2731 struct c_expr result;
2732
2733 result.original_code = ERROR_MARK;
2734 result.value = build_unary_op (code, arg.value, 0);
2735
2736 if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value))
2737 overflow_warning (result.value);
2738
2739 return result;
2740 }
2741
2742 /* This is the entry point used by the parser to build binary operators
2743 in the input. CODE, a tree_code, specifies the binary operator, and
2744 ARG1 and ARG2 are the operands. In addition to constructing the
2745 expression, we check for operands that were written with other binary
2746 operators in a way that is likely to confuse the user. */
2747
2748 struct c_expr
2749 parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2750 struct c_expr arg2)
2751 {
2752 struct c_expr result;
2753
2754 enum tree_code code1 = arg1.original_code;
2755 enum tree_code code2 = arg2.original_code;
2756
2757 result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2758 result.original_code = code;
2759
2760 if (TREE_CODE (result.value) == ERROR_MARK)
2761 return result;
2762
2763 /* Check for cases such as x+y<<z which users are likely
2764 to misinterpret. */
2765 if (warn_parentheses)
2766 warn_about_parentheses (code, code1, code2);
2767
2768 if (code1 != tcc_comparison)
2769 warn_logical_operator (code, arg1.value, arg2.value);
2770
2771 /* Warn about comparisons against string literals, with the exception
2772 of testing for equality or inequality of a string literal with NULL. */
2773 if (code == EQ_EXPR || code == NE_EXPR)
2774 {
2775 if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2776 || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2777 warning (OPT_Waddress, "comparison with string literal results in unspecified behavior");
2778 }
2779 else if (TREE_CODE_CLASS (code) == tcc_comparison
2780 && (code1 == STRING_CST || code2 == STRING_CST))
2781 warning (OPT_Waddress, "comparison with string literal results in unspecified behavior");
2782
2783 if (TREE_OVERFLOW_P (result.value)
2784 && !TREE_OVERFLOW_P (arg1.value)
2785 && !TREE_OVERFLOW_P (arg2.value))
2786 overflow_warning (result.value);
2787
2788 return result;
2789 }
2790 \f
2791 /* Return a tree for the difference of pointers OP0 and OP1.
2792 The resulting tree has type int. */
2793
2794 static tree
2795 pointer_diff (tree op0, tree op1)
2796 {
2797 tree restype = ptrdiff_type_node;
2798
2799 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2800 tree con0, con1, lit0, lit1;
2801 tree orig_op1 = op1;
2802
2803 if (pedantic || warn_pointer_arith)
2804 {
2805 if (TREE_CODE (target_type) == VOID_TYPE)
2806 pedwarn ("pointer of type %<void *%> used in subtraction");
2807 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2808 pedwarn ("pointer to a function used in subtraction");
2809 }
2810
2811 /* If the conversion to ptrdiff_type does anything like widening or
2812 converting a partial to an integral mode, we get a convert_expression
2813 that is in the way to do any simplifications.
2814 (fold-const.c doesn't know that the extra bits won't be needed.
2815 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2816 different mode in place.)
2817 So first try to find a common term here 'by hand'; we want to cover
2818 at least the cases that occur in legal static initializers. */
2819 if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2820 && (TYPE_PRECISION (TREE_TYPE (op0))
2821 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2822 con0 = TREE_OPERAND (op0, 0);
2823 else
2824 con0 = op0;
2825 if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2826 && (TYPE_PRECISION (TREE_TYPE (op1))
2827 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2828 con1 = TREE_OPERAND (op1, 0);
2829 else
2830 con1 = op1;
2831
2832 if (TREE_CODE (con0) == PLUS_EXPR)
2833 {
2834 lit0 = TREE_OPERAND (con0, 1);
2835 con0 = TREE_OPERAND (con0, 0);
2836 }
2837 else
2838 lit0 = integer_zero_node;
2839
2840 if (TREE_CODE (con1) == PLUS_EXPR)
2841 {
2842 lit1 = TREE_OPERAND (con1, 1);
2843 con1 = TREE_OPERAND (con1, 0);
2844 }
2845 else
2846 lit1 = integer_zero_node;
2847
2848 if (operand_equal_p (con0, con1, 0))
2849 {
2850 op0 = lit0;
2851 op1 = lit1;
2852 }
2853
2854
2855 /* First do the subtraction as integers;
2856 then drop through to build the divide operator.
2857 Do not do default conversions on the minus operator
2858 in case restype is a short type. */
2859
2860 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2861 convert (restype, op1), 0);
2862 /* This generates an error if op1 is pointer to incomplete type. */
2863 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2864 error ("arithmetic on pointer to an incomplete type");
2865
2866 /* This generates an error if op0 is pointer to incomplete type. */
2867 op1 = c_size_in_bytes (target_type);
2868
2869 /* Divide by the size, in easiest possible way. */
2870 return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2871 }
2872 \f
2873 /* Construct and perhaps optimize a tree representation
2874 for a unary operation. CODE, a tree_code, specifies the operation
2875 and XARG is the operand.
2876 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2877 the default promotions (such as from short to int).
2878 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2879 allows non-lvalues; this is only used to handle conversion of non-lvalue
2880 arrays to pointers in C99. */
2881
2882 tree
2883 build_unary_op (enum tree_code code, tree xarg, int flag)
2884 {
2885 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2886 tree arg = xarg;
2887 tree argtype = 0;
2888 enum tree_code typecode;
2889 tree val;
2890 int noconvert = flag;
2891 const char *invalid_op_diag;
2892
2893 if (code != ADDR_EXPR)
2894 arg = require_complete_type (arg);
2895
2896 typecode = TREE_CODE (TREE_TYPE (arg));
2897 if (typecode == ERROR_MARK)
2898 return error_mark_node;
2899 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2900 typecode = INTEGER_TYPE;
2901
2902 if ((invalid_op_diag
2903 = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2904 {
2905 error (invalid_op_diag);
2906 return error_mark_node;
2907 }
2908
2909 switch (code)
2910 {
2911 case CONVERT_EXPR:
2912 /* This is used for unary plus, because a CONVERT_EXPR
2913 is enough to prevent anybody from looking inside for
2914 associativity, but won't generate any code. */
2915 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2916 || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE
2917 || typecode == VECTOR_TYPE))
2918 {
2919 error ("wrong type argument to unary plus");
2920 return error_mark_node;
2921 }
2922 else if (!noconvert)
2923 arg = default_conversion (arg);
2924 arg = non_lvalue (arg);
2925 break;
2926
2927 case NEGATE_EXPR:
2928 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2929 || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE
2930 || typecode == VECTOR_TYPE))
2931 {
2932 error ("wrong type argument to unary minus");
2933 return error_mark_node;
2934 }
2935 else if (!noconvert)
2936 arg = default_conversion (arg);
2937 break;
2938
2939 case BIT_NOT_EXPR:
2940 /* ~ works on integer types and non float vectors. */
2941 if (typecode == INTEGER_TYPE
2942 || (typecode == VECTOR_TYPE
2943 && !VECTOR_FLOAT_TYPE_P (TREE_TYPE (arg))))
2944 {
2945 if (!noconvert)
2946 arg = default_conversion (arg);
2947 }
2948 else if (typecode == COMPLEX_TYPE)
2949 {
2950 code = CONJ_EXPR;
2951 if (pedantic)
2952 pedwarn ("ISO C does not support %<~%> for complex conjugation");
2953 if (!noconvert)
2954 arg = default_conversion (arg);
2955 }
2956 else
2957 {
2958 error ("wrong type argument to bit-complement");
2959 return error_mark_node;
2960 }
2961 break;
2962
2963 case ABS_EXPR:
2964 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2965 {
2966 error ("wrong type argument to abs");
2967 return error_mark_node;
2968 }
2969 else if (!noconvert)
2970 arg = default_conversion (arg);
2971 break;
2972
2973 case CONJ_EXPR:
2974 /* Conjugating a real value is a no-op, but allow it anyway. */
2975 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2976 || typecode == COMPLEX_TYPE))
2977 {
2978 error ("wrong type argument to conjugation");
2979 return error_mark_node;
2980 }
2981 else if (!noconvert)
2982 arg = default_conversion (arg);
2983 break;
2984
2985 case TRUTH_NOT_EXPR:
2986 if (typecode != INTEGER_TYPE && typecode != FIXED_POINT_TYPE
2987 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2988 && typecode != COMPLEX_TYPE)
2989 {
2990 error ("wrong type argument to unary exclamation mark");
2991 return error_mark_node;
2992 }
2993 arg = c_objc_common_truthvalue_conversion (arg);
2994 return invert_truthvalue (arg);
2995
2996 case REALPART_EXPR:
2997 if (TREE_CODE (arg) == COMPLEX_CST)
2998 return TREE_REALPART (arg);
2999 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
3000 return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
3001 else
3002 return arg;
3003
3004 case IMAGPART_EXPR:
3005 if (TREE_CODE (arg) == COMPLEX_CST)
3006 return TREE_IMAGPART (arg);
3007 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
3008 return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
3009 else
3010 return convert (TREE_TYPE (arg), integer_zero_node);
3011
3012 case PREINCREMENT_EXPR:
3013 case POSTINCREMENT_EXPR:
3014 case PREDECREMENT_EXPR:
3015 case POSTDECREMENT_EXPR:
3016
3017 /* Increment or decrement the real part of the value,
3018 and don't change the imaginary part. */
3019 if (typecode == COMPLEX_TYPE)
3020 {
3021 tree real, imag;
3022
3023 if (pedantic)
3024 pedwarn ("ISO C does not support %<++%> and %<--%>"
3025 " on complex types");
3026
3027 arg = stabilize_reference (arg);
3028 real = build_unary_op (REALPART_EXPR, arg, 1);
3029 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
3030 real = build_unary_op (code, real, 1);
3031 if (real == error_mark_node || imag == error_mark_node)
3032 return error_mark_node;
3033 return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
3034 real, imag);
3035 }
3036
3037 /* Report invalid types. */
3038
3039 if (typecode != POINTER_TYPE && typecode != FIXED_POINT_TYPE
3040 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
3041 {
3042 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3043 error ("wrong type argument to increment");
3044 else
3045 error ("wrong type argument to decrement");
3046
3047 return error_mark_node;
3048 }
3049
3050 {
3051 tree inc;
3052 tree result_type = TREE_TYPE (arg);
3053
3054 arg = get_unwidened (arg, 0);
3055 argtype = TREE_TYPE (arg);
3056
3057 /* Compute the increment. */
3058
3059 if (typecode == POINTER_TYPE)
3060 {
3061 /* If pointer target is an undefined struct,
3062 we just cannot know how to do the arithmetic. */
3063 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
3064 {
3065 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3066 error ("increment of pointer to unknown structure");
3067 else
3068 error ("decrement of pointer to unknown structure");
3069 }
3070 else if ((pedantic || warn_pointer_arith)
3071 && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
3072 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
3073 {
3074 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3075 pedwarn ("wrong type argument to increment");
3076 else
3077 pedwarn ("wrong type argument to decrement");
3078 }
3079
3080 inc = c_size_in_bytes (TREE_TYPE (result_type));
3081 inc = fold_convert (sizetype, inc);
3082 }
3083 else if (FRACT_MODE_P (TYPE_MODE (result_type)))
3084 {
3085 /* For signed fract types, we invert ++ to -- or
3086 -- to ++, and change inc from 1 to -1, because
3087 it is not possible to represent 1 in signed fract constants.
3088 For unsigned fract types, the result always overflows and
3089 we get an undefined (original) or the maximum value. */
3090 if (code == PREINCREMENT_EXPR)
3091 code = PREDECREMENT_EXPR;
3092 else if (code == PREDECREMENT_EXPR)
3093 code = PREINCREMENT_EXPR;
3094 else if (code == POSTINCREMENT_EXPR)
3095 code = POSTDECREMENT_EXPR;
3096 else /* code == POSTDECREMENT_EXPR */
3097 code = POSTINCREMENT_EXPR;
3098
3099 inc = integer_minus_one_node;
3100 inc = convert (argtype, inc);
3101 }
3102 else
3103 {
3104 inc = integer_one_node;
3105 inc = convert (argtype, inc);
3106 }
3107
3108 /* Complain about anything else that is not a true lvalue. */
3109 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
3110 || code == POSTINCREMENT_EXPR)
3111 ? lv_increment
3112 : lv_decrement)))
3113 return error_mark_node;
3114
3115 /* Report a read-only lvalue. */
3116 if (TREE_READONLY (arg))
3117 {
3118 readonly_error (arg,
3119 ((code == PREINCREMENT_EXPR
3120 || code == POSTINCREMENT_EXPR)
3121 ? lv_increment : lv_decrement));
3122 return error_mark_node;
3123 }
3124
3125 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3126 val = boolean_increment (code, arg);
3127 else
3128 val = build2 (code, TREE_TYPE (arg), arg, inc);
3129 TREE_SIDE_EFFECTS (val) = 1;
3130 val = convert (result_type, val);
3131 if (TREE_CODE (val) != code)
3132 TREE_NO_WARNING (val) = 1;
3133 return val;
3134 }
3135
3136 case ADDR_EXPR:
3137 /* Note that this operation never does default_conversion. */
3138
3139 /* Let &* cancel out to simplify resulting code. */
3140 if (TREE_CODE (arg) == INDIRECT_REF)
3141 {
3142 /* Don't let this be an lvalue. */
3143 if (lvalue_p (TREE_OPERAND (arg, 0)))
3144 return non_lvalue (TREE_OPERAND (arg, 0));
3145 return TREE_OPERAND (arg, 0);
3146 }
3147
3148 /* For &x[y], return x+y */
3149 if (TREE_CODE (arg) == ARRAY_REF)
3150 {
3151 tree op0 = TREE_OPERAND (arg, 0);
3152 if (!c_mark_addressable (op0))
3153 return error_mark_node;
3154 return build_binary_op (PLUS_EXPR,
3155 (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3156 ? array_to_pointer_conversion (op0)
3157 : op0),
3158 TREE_OPERAND (arg, 1), 1);
3159 }
3160
3161 /* Anything not already handled and not a true memory reference
3162 or a non-lvalue array is an error. */
3163 else if (typecode != FUNCTION_TYPE && !flag
3164 && !lvalue_or_else (arg, lv_addressof))
3165 return error_mark_node;
3166
3167 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3168 argtype = TREE_TYPE (arg);
3169
3170 /* If the lvalue is const or volatile, merge that into the type
3171 to which the address will point. Note that you can't get a
3172 restricted pointer by taking the address of something, so we
3173 only have to deal with `const' and `volatile' here. */
3174 if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3175 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3176 argtype = c_build_type_variant (argtype,
3177 TREE_READONLY (arg),
3178 TREE_THIS_VOLATILE (arg));
3179
3180 if (!c_mark_addressable (arg))
3181 return error_mark_node;
3182
3183 gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3184 || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3185
3186 argtype = build_pointer_type (argtype);
3187
3188 /* ??? Cope with user tricks that amount to offsetof. Delete this
3189 when we have proper support for integer constant expressions. */
3190 val = get_base_address (arg);
3191 if (val && TREE_CODE (val) == INDIRECT_REF
3192 && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3193 {
3194 tree op0 = fold_convert (sizetype, fold_offsetof (arg, val)), op1;
3195
3196 op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3197 return fold_build2 (POINTER_PLUS_EXPR, argtype, op1, op0);
3198 }
3199
3200 val = build1 (ADDR_EXPR, argtype, arg);
3201
3202 return val;
3203
3204 default:
3205 gcc_unreachable ();
3206 }
3207
3208 if (argtype == 0)
3209 argtype = TREE_TYPE (arg);
3210 return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3211 : fold_build1 (code, argtype, arg);
3212 }
3213
3214 /* Return nonzero if REF is an lvalue valid for this language.
3215 Lvalues can be assigned, unless their type has TYPE_READONLY.
3216 Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
3217
3218 static int
3219 lvalue_p (const_tree ref)
3220 {
3221 const enum tree_code code = TREE_CODE (ref);
3222
3223 switch (code)
3224 {
3225 case REALPART_EXPR:
3226 case IMAGPART_EXPR:
3227 case COMPONENT_REF:
3228 return lvalue_p (TREE_OPERAND (ref, 0));
3229
3230 case COMPOUND_LITERAL_EXPR:
3231 case STRING_CST:
3232 return 1;
3233
3234 case INDIRECT_REF:
3235 case ARRAY_REF:
3236 case VAR_DECL:
3237 case PARM_DECL:
3238 case RESULT_DECL:
3239 case ERROR_MARK:
3240 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3241 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3242
3243 case BIND_EXPR:
3244 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3245
3246 default:
3247 return 0;
3248 }
3249 }
3250 \f
3251 /* Give an error for storing in something that is 'const'. */
3252
3253 static void
3254 readonly_error (tree arg, enum lvalue_use use)
3255 {
3256 gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3257 || use == lv_asm);
3258 /* Using this macro rather than (for example) arrays of messages
3259 ensures that all the format strings are checked at compile
3260 time. */
3261 #define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A) \
3262 : (use == lv_increment ? (I) \
3263 : (use == lv_decrement ? (D) : (AS))))
3264 if (TREE_CODE (arg) == COMPONENT_REF)
3265 {
3266 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3267 readonly_error (TREE_OPERAND (arg, 0), use);
3268 else
3269 error (READONLY_MSG (G_("assignment of read-only member %qD"),
3270 G_("increment of read-only member %qD"),
3271 G_("decrement of read-only member %qD"),
3272 G_("read-only member %qD used as %<asm%> output")),
3273 TREE_OPERAND (arg, 1));
3274 }
3275 else if (TREE_CODE (arg) == VAR_DECL)
3276 error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3277 G_("increment of read-only variable %qD"),
3278 G_("decrement of read-only variable %qD"),
3279 G_("read-only variable %qD used as %<asm%> output")),
3280 arg);
3281 else
3282 error (READONLY_MSG (G_("assignment of read-only location %qE"),
3283 G_("increment of read-only location %qE"),
3284 G_("decrement of read-only location %qE"),
3285 G_("read-only location %qE used as %<asm%> output")),
3286 arg);
3287 }
3288
3289
3290 /* Return nonzero if REF is an lvalue valid for this language;
3291 otherwise, print an error message and return zero. USE says
3292 how the lvalue is being used and so selects the error message. */
3293
3294 static int
3295 lvalue_or_else (const_tree ref, enum lvalue_use use)
3296 {
3297 int win = lvalue_p (ref);
3298
3299 if (!win)
3300 lvalue_error (use);
3301
3302 return win;
3303 }
3304 \f
3305 /* Mark EXP saying that we need to be able to take the
3306 address of it; it should not be allocated in a register.
3307 Returns true if successful. */
3308
3309 bool
3310 c_mark_addressable (tree exp)
3311 {
3312 tree x = exp;
3313
3314 while (1)
3315 switch (TREE_CODE (x))
3316 {
3317 case COMPONENT_REF:
3318 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3319 {
3320 error
3321 ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3322 return false;
3323 }
3324
3325 /* ... fall through ... */
3326
3327 case ADDR_EXPR:
3328 case ARRAY_REF:
3329 case REALPART_EXPR:
3330 case IMAGPART_EXPR:
3331 x = TREE_OPERAND (x, 0);
3332 break;
3333
3334 case COMPOUND_LITERAL_EXPR:
3335 case CONSTRUCTOR:
3336 TREE_ADDRESSABLE (x) = 1;
3337 return true;
3338
3339 case VAR_DECL:
3340 case CONST_DECL:
3341 case PARM_DECL:
3342 case RESULT_DECL:
3343 if (C_DECL_REGISTER (x)
3344 && DECL_NONLOCAL (x))
3345 {
3346 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3347 {
3348 error
3349 ("global register variable %qD used in nested function", x);
3350 return false;
3351 }
3352 pedwarn ("register variable %qD used in nested function", x);
3353 }
3354 else if (C_DECL_REGISTER (x))
3355 {
3356 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3357 error ("address of global register variable %qD requested", x);
3358 else
3359 error ("address of register variable %qD requested", x);
3360 return false;
3361 }
3362
3363 /* drops in */
3364 case FUNCTION_DECL:
3365 TREE_ADDRESSABLE (x) = 1;
3366 /* drops out */
3367 default:
3368 return true;
3369 }
3370 }
3371 \f
3372 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3373
3374 tree
3375 build_conditional_expr (tree ifexp, tree op1, tree op2)
3376 {
3377 tree type1;
3378 tree type2;
3379 enum tree_code code1;
3380 enum tree_code code2;
3381 tree result_type = NULL;
3382 tree orig_op1 = op1, orig_op2 = op2;
3383
3384 /* Promote both alternatives. */
3385
3386 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3387 op1 = default_conversion (op1);
3388 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3389 op2 = default_conversion (op2);
3390
3391 if (TREE_CODE (ifexp) == ERROR_MARK
3392 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3393 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3394 return error_mark_node;
3395
3396 type1 = TREE_TYPE (op1);
3397 code1 = TREE_CODE (type1);
3398 type2 = TREE_TYPE (op2);
3399 code2 = TREE_CODE (type2);
3400
3401 /* C90 does not permit non-lvalue arrays in conditional expressions.
3402 In C99 they will be pointers by now. */
3403 if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3404 {
3405 error ("non-lvalue array in conditional expression");
3406 return error_mark_node;
3407 }
3408
3409 /* Quickly detect the usual case where op1 and op2 have the same type
3410 after promotion. */
3411 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3412 {
3413 if (type1 == type2)
3414 result_type = type1;
3415 else
3416 result_type = TYPE_MAIN_VARIANT (type1);
3417 }
3418 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3419 || code1 == COMPLEX_TYPE)
3420 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3421 || code2 == COMPLEX_TYPE))
3422 {
3423 result_type = c_common_type (type1, type2);
3424
3425 /* If -Wsign-compare, warn here if type1 and type2 have
3426 different signedness. We'll promote the signed to unsigned
3427 and later code won't know it used to be different.
3428 Do this check on the original types, so that explicit casts
3429 will be considered, but default promotions won't. */
3430 if (warn_sign_compare && !skip_evaluation)
3431 {
3432 int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3433 int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3434
3435 if (unsigned_op1 ^ unsigned_op2)
3436 {
3437 bool ovf;
3438
3439 /* Do not warn if the result type is signed, since the
3440 signed type will only be chosen if it can represent
3441 all the values of the unsigned type. */
3442 if (!TYPE_UNSIGNED (result_type))
3443 /* OK */;
3444 /* Do not warn if the signed quantity is an unsuffixed
3445 integer literal (or some static constant expression
3446 involving such literals) and it is non-negative. */
3447 else if ((unsigned_op2
3448 && tree_expr_nonnegative_warnv_p (op1, &ovf))
3449 || (unsigned_op1
3450 && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3451 /* OK */;
3452 else
3453 warning (OPT_Wsign_compare, "signed and unsigned type in conditional expression");
3454 }
3455 }
3456 }
3457 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3458 {
3459 if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3460 pedwarn ("ISO C forbids conditional expr with only one void side");
3461 result_type = void_type_node;
3462 }
3463 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3464 {
3465 if (comp_target_types (type1, type2))
3466 result_type = common_pointer_type (type1, type2);
3467 else if (null_pointer_constant_p (orig_op1))
3468 result_type = qualify_type (type2, type1);
3469 else if (null_pointer_constant_p (orig_op2))
3470 result_type = qualify_type (type1, type2);
3471 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3472 {
3473 if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3474 pedwarn ("ISO C forbids conditional expr between "
3475 "%<void *%> and function pointer");
3476 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3477 TREE_TYPE (type2)));
3478 }
3479 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3480 {
3481 if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3482 pedwarn ("ISO C forbids conditional expr between "
3483 "%<void *%> and function pointer");
3484 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3485 TREE_TYPE (type1)));
3486 }
3487 else
3488 {
3489 pedwarn ("pointer type mismatch in conditional expression");
3490 result_type = build_pointer_type (void_type_node);
3491 }
3492 }
3493 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3494 {
3495 if (!null_pointer_constant_p (orig_op2))
3496 pedwarn ("pointer/integer type mismatch in conditional expression");
3497 else
3498 {
3499 op2 = null_pointer_node;
3500 }
3501 result_type = type1;
3502 }
3503 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3504 {
3505 if (!null_pointer_constant_p (orig_op1))
3506 pedwarn ("pointer/integer type mismatch in conditional expression");
3507 else
3508 {
3509 op1 = null_pointer_node;
3510 }
3511 result_type = type2;
3512 }
3513
3514 if (!result_type)
3515 {
3516 if (flag_cond_mismatch)
3517 result_type = void_type_node;
3518 else
3519 {
3520 error ("type mismatch in conditional expression");
3521 return error_mark_node;
3522 }
3523 }
3524
3525 /* Merge const and volatile flags of the incoming types. */
3526 result_type
3527 = build_type_variant (result_type,
3528 TREE_READONLY (op1) || TREE_READONLY (op2),
3529 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3530
3531 if (result_type != TREE_TYPE (op1))
3532 op1 = convert_and_check (result_type, op1);
3533 if (result_type != TREE_TYPE (op2))
3534 op2 = convert_and_check (result_type, op2);
3535
3536 return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3537 }
3538 \f
3539 /* Return a compound expression that performs two expressions and
3540 returns the value of the second of them. */
3541
3542 tree
3543 build_compound_expr (tree expr1, tree expr2)
3544 {
3545 if (!TREE_SIDE_EFFECTS (expr1))
3546 {
3547 /* The left-hand operand of a comma expression is like an expression
3548 statement: with -Wunused, we should warn if it doesn't have
3549 any side-effects, unless it was explicitly cast to (void). */
3550 if (warn_unused_value)
3551 {
3552 if (VOID_TYPE_P (TREE_TYPE (expr1))
3553 && (TREE_CODE (expr1) == NOP_EXPR
3554 || TREE_CODE (expr1) == CONVERT_EXPR))
3555 ; /* (void) a, b */
3556 else if (VOID_TYPE_P (TREE_TYPE (expr1))
3557 && TREE_CODE (expr1) == COMPOUND_EXPR
3558 && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3559 || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3560 ; /* (void) a, (void) b, c */
3561 else
3562 warning (OPT_Wunused_value,
3563 "left-hand operand of comma expression has no effect");
3564 }
3565 }
3566
3567 /* With -Wunused, we should also warn if the left-hand operand does have
3568 side-effects, but computes a value which is not used. For example, in
3569 `foo() + bar(), baz()' the result of the `+' operator is not used,
3570 so we should issue a warning. */
3571 else if (warn_unused_value)
3572 warn_if_unused_value (expr1, input_location);
3573
3574 if (expr2 == error_mark_node)
3575 return error_mark_node;
3576
3577 return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3578 }
3579
3580 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3581
3582 tree
3583 build_c_cast (tree type, tree expr)
3584 {
3585 tree value = expr;
3586
3587 if (type == error_mark_node || expr == error_mark_node)
3588 return error_mark_node;
3589
3590 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3591 only in <protocol> qualifications. But when constructing cast expressions,
3592 the protocols do matter and must be kept around. */
3593 if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3594 return build1 (NOP_EXPR, type, expr);
3595
3596 type = TYPE_MAIN_VARIANT (type);
3597
3598 if (TREE_CODE (type) == ARRAY_TYPE)
3599 {
3600 error ("cast specifies array type");
3601 return error_mark_node;
3602 }
3603
3604 if (TREE_CODE (type) == FUNCTION_TYPE)
3605 {
3606 error ("cast specifies function type");
3607 return error_mark_node;
3608 }
3609
3610 if (!VOID_TYPE_P (type))
3611 {
3612 value = require_complete_type (value);
3613 if (value == error_mark_node)
3614 return error_mark_node;
3615 }
3616
3617 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3618 {
3619 if (pedantic)
3620 {
3621 if (TREE_CODE (type) == RECORD_TYPE
3622 || TREE_CODE (type) == UNION_TYPE)
3623 pedwarn ("ISO C forbids casting nonscalar to the same type");
3624 }
3625 }
3626 else if (TREE_CODE (type) == UNION_TYPE)
3627 {
3628 tree field;
3629
3630 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3631 if (TREE_TYPE (field) != error_mark_node
3632 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3633 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3634 break;
3635
3636 if (field)
3637 {
3638 tree t;
3639
3640 if (pedantic)
3641 pedwarn ("ISO C forbids casts to union type");
3642 t = digest_init (type,
3643 build_constructor_single (type, field, value),
3644 true, 0);
3645 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3646 TREE_INVARIANT (t) = TREE_INVARIANT (value);
3647 return t;
3648 }
3649 error ("cast to union type from type not present in union");
3650 return error_mark_node;
3651 }
3652 else
3653 {
3654 tree otype, ovalue;
3655
3656 if (type == void_type_node)
3657 return build1 (CONVERT_EXPR, type, value);
3658
3659 otype = TREE_TYPE (value);
3660
3661 /* Optionally warn about potentially worrisome casts. */
3662
3663 if (warn_cast_qual
3664 && TREE_CODE (type) == POINTER_TYPE
3665 && TREE_CODE (otype) == POINTER_TYPE)
3666 {
3667 tree in_type = type;
3668 tree in_otype = otype;
3669 int added = 0;
3670 int discarded = 0;
3671
3672 /* Check that the qualifiers on IN_TYPE are a superset of
3673 the qualifiers of IN_OTYPE. The outermost level of
3674 POINTER_TYPE nodes is uninteresting and we stop as soon
3675 as we hit a non-POINTER_TYPE node on either type. */
3676 do
3677 {
3678 in_otype = TREE_TYPE (in_otype);
3679 in_type = TREE_TYPE (in_type);
3680
3681 /* GNU C allows cv-qualified function types. 'const'
3682 means the function is very pure, 'volatile' means it
3683 can't return. We need to warn when such qualifiers
3684 are added, not when they're taken away. */
3685 if (TREE_CODE (in_otype) == FUNCTION_TYPE
3686 && TREE_CODE (in_type) == FUNCTION_TYPE)
3687 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3688 else
3689 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3690 }
3691 while (TREE_CODE (in_type) == POINTER_TYPE
3692 && TREE_CODE (in_otype) == POINTER_TYPE);
3693
3694 if (added)
3695 warning (OPT_Wcast_qual, "cast adds new qualifiers to function type");
3696
3697 if (discarded)
3698 /* There are qualifiers present in IN_OTYPE that are not
3699 present in IN_TYPE. */
3700 warning (OPT_Wcast_qual, "cast discards qualifiers from pointer target type");
3701 }
3702
3703 /* Warn about possible alignment problems. */
3704 if (STRICT_ALIGNMENT
3705 && TREE_CODE (type) == POINTER_TYPE
3706 && TREE_CODE (otype) == POINTER_TYPE
3707 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3708 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3709 /* Don't warn about opaque types, where the actual alignment
3710 restriction is unknown. */
3711 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3712 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3713 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3714 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3715 warning (OPT_Wcast_align,
3716 "cast increases required alignment of target type");
3717
3718 if (TREE_CODE (type) == INTEGER_TYPE
3719 && TREE_CODE (otype) == POINTER_TYPE
3720 && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3721 /* Unlike conversion of integers to pointers, where the
3722 warning is disabled for converting constants because
3723 of cases such as SIG_*, warn about converting constant
3724 pointers to integers. In some cases it may cause unwanted
3725 sign extension, and a warning is appropriate. */
3726 warning (OPT_Wpointer_to_int_cast,
3727 "cast from pointer to integer of different size");
3728
3729 if (TREE_CODE (value) == CALL_EXPR
3730 && TREE_CODE (type) != TREE_CODE (otype))
3731 warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3732 "to non-matching type %qT", otype, type);
3733
3734 if (TREE_CODE (type) == POINTER_TYPE
3735 && TREE_CODE (otype) == INTEGER_TYPE
3736 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3737 /* Don't warn about converting any constant. */
3738 && !TREE_CONSTANT (value))
3739 warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3740 "of different size");
3741
3742 if (warn_strict_aliasing <= 2)
3743 strict_aliasing_warning (otype, type, expr);
3744
3745 /* If pedantic, warn for conversions between function and object
3746 pointer types, except for converting a null pointer constant
3747 to function pointer type. */
3748 if (pedantic
3749 && TREE_CODE (type) == POINTER_TYPE
3750 && TREE_CODE (otype) == POINTER_TYPE
3751 && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3752 && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3753 pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3754
3755 if (pedantic
3756 && TREE_CODE (type) == POINTER_TYPE
3757 && TREE_CODE (otype) == POINTER_TYPE
3758 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3759 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3760 && !null_pointer_constant_p (value))
3761 pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3762
3763 ovalue = value;
3764 value = convert (type, value);
3765
3766 /* Ignore any integer overflow caused by the cast. */
3767 if (TREE_CODE (value) == INTEGER_CST)
3768 {
3769 if (CONSTANT_CLASS_P (ovalue) && TREE_OVERFLOW (ovalue))
3770 {
3771 if (!TREE_OVERFLOW (value))
3772 {
3773 /* Avoid clobbering a shared constant. */
3774 value = copy_node (value);
3775 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3776 }
3777 }
3778 else if (TREE_OVERFLOW (value))
3779 /* Reset VALUE's overflow flags, ensuring constant sharing. */
3780 value = build_int_cst_wide (TREE_TYPE (value),
3781 TREE_INT_CST_LOW (value),
3782 TREE_INT_CST_HIGH (value));
3783 }
3784 }
3785
3786 /* Don't let a cast be an lvalue. */
3787 if (value == expr)
3788 value = non_lvalue (value);
3789
3790 return value;
3791 }
3792
3793 /* Interpret a cast of expression EXPR to type TYPE. */
3794 tree
3795 c_cast_expr (struct c_type_name *type_name, tree expr)
3796 {
3797 tree type;
3798 int saved_wsp = warn_strict_prototypes;
3799
3800 /* This avoids warnings about unprototyped casts on
3801 integers. E.g. "#define SIG_DFL (void(*)())0". */
3802 if (TREE_CODE (expr) == INTEGER_CST)
3803 warn_strict_prototypes = 0;
3804 type = groktypename (type_name);
3805 warn_strict_prototypes = saved_wsp;
3806
3807 return build_c_cast (type, expr);
3808 }
3809 \f
3810 /* Build an assignment expression of lvalue LHS from value RHS.
3811 MODIFYCODE is the code for a binary operator that we use
3812 to combine the old value of LHS with RHS to get the new value.
3813 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3814
3815 tree
3816 build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3817 {
3818 tree result;
3819 tree newrhs;
3820 tree lhstype = TREE_TYPE (lhs);
3821 tree olhstype = lhstype;
3822
3823 /* Types that aren't fully specified cannot be used in assignments. */
3824 lhs = require_complete_type (lhs);
3825
3826 /* Avoid duplicate error messages from operands that had errors. */
3827 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3828 return error_mark_node;
3829
3830 if (!lvalue_or_else (lhs, lv_assign))
3831 return error_mark_node;
3832
3833 STRIP_TYPE_NOPS (rhs);
3834
3835 newrhs = rhs;
3836
3837 /* If a binary op has been requested, combine the old LHS value with the RHS
3838 producing the value we should actually store into the LHS. */
3839
3840 if (modifycode != NOP_EXPR)
3841 {
3842 lhs = stabilize_reference (lhs);
3843 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3844 }
3845
3846 /* Give an error for storing in something that is 'const'. */
3847
3848 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3849 || ((TREE_CODE (lhstype) == RECORD_TYPE
3850 || TREE_CODE (lhstype) == UNION_TYPE)
3851 && C_TYPE_FIELDS_READONLY (lhstype)))
3852 {
3853 readonly_error (lhs, lv_assign);
3854 return error_mark_node;
3855 }
3856
3857 /* If storing into a structure or union member,
3858 it has probably been given type `int'.
3859 Compute the type that would go with
3860 the actual amount of storage the member occupies. */
3861
3862 if (TREE_CODE (lhs) == COMPONENT_REF
3863 && (TREE_CODE (lhstype) == INTEGER_TYPE
3864 || TREE_CODE (lhstype) == BOOLEAN_TYPE
3865 || TREE_CODE (lhstype) == REAL_TYPE
3866 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3867 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3868
3869 /* If storing in a field that is in actuality a short or narrower than one,
3870 we must store in the field in its actual type. */
3871
3872 if (lhstype != TREE_TYPE (lhs))
3873 {
3874 lhs = copy_node (lhs);
3875 TREE_TYPE (lhs) = lhstype;
3876 }
3877
3878 /* Convert new value to destination type. */
3879
3880 newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3881 NULL_TREE, NULL_TREE, 0);
3882 if (TREE_CODE (newrhs) == ERROR_MARK)
3883 return error_mark_node;
3884
3885 /* Emit ObjC write barrier, if necessary. */
3886 if (c_dialect_objc () && flag_objc_gc)
3887 {
3888 result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3889 if (result)
3890 return result;
3891 }
3892
3893 /* Scan operands. */
3894
3895 result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3896 TREE_SIDE_EFFECTS (result) = 1;
3897
3898 /* If we got the LHS in a different type for storing in,
3899 convert the result back to the nominal type of LHS
3900 so that the value we return always has the same type
3901 as the LHS argument. */
3902
3903 if (olhstype == TREE_TYPE (result))
3904 return result;
3905 return convert_for_assignment (olhstype, result, ic_assign,
3906 NULL_TREE, NULL_TREE, 0);
3907 }
3908 \f
3909 /* Convert value RHS to type TYPE as preparation for an assignment
3910 to an lvalue of type TYPE.
3911 The real work of conversion is done by `convert'.
3912 The purpose of this function is to generate error messages
3913 for assignments that are not allowed in C.
3914 ERRTYPE says whether it is argument passing, assignment,
3915 initialization or return.
3916
3917 FUNCTION is a tree for the function being called.
3918 PARMNUM is the number of the argument, for printing in error messages. */
3919
3920 static tree
3921 convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3922 tree fundecl, tree function, int parmnum)
3923 {
3924 enum tree_code codel = TREE_CODE (type);
3925 tree rhstype;
3926 enum tree_code coder;
3927 tree rname = NULL_TREE;
3928 bool objc_ok = false;
3929
3930 if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3931 {
3932 tree selector;
3933 /* Change pointer to function to the function itself for
3934 diagnostics. */
3935 if (TREE_CODE (function) == ADDR_EXPR
3936 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3937 function = TREE_OPERAND (function, 0);
3938
3939 /* Handle an ObjC selector specially for diagnostics. */
3940 selector = objc_message_selector ();
3941 rname = function;
3942 if (selector && parmnum > 2)
3943 {
3944 rname = selector;
3945 parmnum -= 2;
3946 }
3947 }
3948
3949 /* This macro is used to emit diagnostics to ensure that all format
3950 strings are complete sentences, visible to gettext and checked at
3951 compile time. */
3952 #define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE) \
3953 do { \
3954 switch (errtype) \
3955 { \
3956 case ic_argpass: \
3957 pedwarn (AR, parmnum, rname); \
3958 break; \
3959 case ic_argpass_nonproto: \
3960 warning (0, AR, parmnum, rname); \
3961 break; \
3962 case ic_assign: \
3963 pedwarn (AS); \
3964 break; \
3965 case ic_init: \
3966 pedwarn (IN); \
3967 break; \
3968 case ic_return: \
3969 pedwarn (RE); \
3970 break; \
3971 default: \
3972 gcc_unreachable (); \
3973 } \
3974 } while (0)
3975
3976 STRIP_TYPE_NOPS (rhs);
3977
3978 if (optimize && TREE_CODE (rhs) == VAR_DECL
3979 && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3980 rhs = decl_constant_value_for_broken_optimization (rhs);
3981
3982 rhstype = TREE_TYPE (rhs);
3983 coder = TREE_CODE (rhstype);
3984
3985 if (coder == ERROR_MARK)
3986 return error_mark_node;
3987
3988 if (c_dialect_objc ())
3989 {
3990 int parmno;
3991
3992 switch (errtype)
3993 {
3994 case ic_return:
3995 parmno = 0;
3996 break;
3997
3998 case ic_assign:
3999 parmno = -1;
4000 break;
4001
4002 case ic_init:
4003 parmno = -2;
4004 break;
4005
4006 default:
4007 parmno = parmnum;
4008 break;
4009 }
4010
4011 objc_ok = objc_compare_types (type, rhstype, parmno, rname);
4012 }
4013
4014 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
4015 return rhs;
4016
4017 if (coder == VOID_TYPE)
4018 {
4019 /* Except for passing an argument to an unprototyped function,
4020 this is a constraint violation. When passing an argument to
4021 an unprototyped function, it is compile-time undefined;
4022 making it a constraint in that case was rejected in
4023 DR#252. */
4024 error ("void value not ignored as it ought to be");
4025 return error_mark_node;
4026 }
4027 rhs = require_complete_type (rhs);
4028 if (rhs == error_mark_node)
4029 return error_mark_node;
4030 /* A type converts to a reference to it.
4031 This code doesn't fully support references, it's just for the
4032 special case of va_start and va_copy. */
4033 if (codel == REFERENCE_TYPE
4034 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
4035 {
4036 if (!lvalue_p (rhs))
4037 {
4038 error ("cannot pass rvalue to reference parameter");
4039 return error_mark_node;
4040 }
4041 if (!c_mark_addressable (rhs))
4042 return error_mark_node;
4043 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
4044
4045 /* We already know that these two types are compatible, but they
4046 may not be exactly identical. In fact, `TREE_TYPE (type)' is
4047 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
4048 likely to be va_list, a typedef to __builtin_va_list, which
4049 is different enough that it will cause problems later. */
4050 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
4051 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
4052
4053 rhs = build1 (NOP_EXPR, type, rhs);
4054 return rhs;
4055 }
4056 /* Some types can interconvert without explicit casts. */
4057 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
4058 && vector_types_convertible_p (type, TREE_TYPE (rhs), true))
4059 return convert (type, rhs);
4060 /* Arithmetic types all interconvert, and enum is treated like int. */
4061 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
4062 || codel == FIXED_POINT_TYPE
4063 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
4064 || codel == BOOLEAN_TYPE)
4065 && (coder == INTEGER_TYPE || coder == REAL_TYPE
4066 || coder == FIXED_POINT_TYPE
4067 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
4068 || coder == BOOLEAN_TYPE))
4069 return convert_and_check (type, rhs);
4070
4071 /* Aggregates in different TUs might need conversion. */
4072 if ((codel == RECORD_TYPE || codel == UNION_TYPE)
4073 && codel == coder
4074 && comptypes (type, rhstype))
4075 return convert_and_check (type, rhs);
4076
4077 /* Conversion to a transparent union from its member types.
4078 This applies only to function arguments. */
4079 if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
4080 && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
4081 {
4082 tree memb, marginal_memb = NULL_TREE;
4083
4084 for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
4085 {
4086 tree memb_type = TREE_TYPE (memb);
4087
4088 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
4089 TYPE_MAIN_VARIANT (rhstype)))
4090 break;
4091
4092 if (TREE_CODE (memb_type) != POINTER_TYPE)
4093 continue;
4094
4095 if (coder == POINTER_TYPE)
4096 {
4097 tree ttl = TREE_TYPE (memb_type);
4098 tree ttr = TREE_TYPE (rhstype);
4099
4100 /* Any non-function converts to a [const][volatile] void *
4101 and vice versa; otherwise, targets must be the same.
4102 Meanwhile, the lhs target must have all the qualifiers of
4103 the rhs. */
4104 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4105 || comp_target_types (memb_type, rhstype))
4106 {
4107 /* If this type won't generate any warnings, use it. */
4108 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
4109 || ((TREE_CODE (ttr) == FUNCTION_TYPE
4110 && TREE_CODE (ttl) == FUNCTION_TYPE)
4111 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4112 == TYPE_QUALS (ttr))
4113 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4114 == TYPE_QUALS (ttl))))
4115 break;
4116
4117 /* Keep looking for a better type, but remember this one. */
4118 if (!marginal_memb)
4119 marginal_memb = memb;
4120 }
4121 }
4122
4123 /* Can convert integer zero to any pointer type. */
4124 if (null_pointer_constant_p (rhs))
4125 {
4126 rhs = null_pointer_node;
4127 break;
4128 }
4129 }
4130
4131 if (memb || marginal_memb)
4132 {
4133 if (!memb)
4134 {
4135 /* We have only a marginally acceptable member type;
4136 it needs a warning. */
4137 tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
4138 tree ttr = TREE_TYPE (rhstype);
4139
4140 /* Const and volatile mean something different for function
4141 types, so the usual warnings are not appropriate. */
4142 if (TREE_CODE (ttr) == FUNCTION_TYPE
4143 && TREE_CODE (ttl) == FUNCTION_TYPE)
4144 {
4145 /* Because const and volatile on functions are
4146 restrictions that say the function will not do
4147 certain things, it is okay to use a const or volatile
4148 function where an ordinary one is wanted, but not
4149 vice-versa. */
4150 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4151 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
4152 "makes qualified function "
4153 "pointer from unqualified"),
4154 G_("assignment makes qualified "
4155 "function pointer from "
4156 "unqualified"),
4157 G_("initialization makes qualified "
4158 "function pointer from "
4159 "unqualified"),
4160 G_("return makes qualified function "
4161 "pointer from unqualified"));
4162 }
4163 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4164 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4165 "qualifiers from pointer target type"),
4166 G_("assignment discards qualifiers "
4167 "from pointer target type"),
4168 G_("initialization discards qualifiers "
4169 "from pointer target type"),
4170 G_("return discards qualifiers from "
4171 "pointer target type"));
4172
4173 memb = marginal_memb;
4174 }
4175
4176 if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
4177 pedwarn ("ISO C prohibits argument conversion to union type");
4178
4179 rhs = fold_convert (TREE_TYPE (memb), rhs);
4180 return build_constructor_single (type, memb, rhs);
4181 }
4182 }
4183
4184 /* Conversions among pointers */
4185 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4186 && (coder == codel))
4187 {
4188 tree ttl = TREE_TYPE (type);
4189 tree ttr = TREE_TYPE (rhstype);
4190 tree mvl = ttl;
4191 tree mvr = ttr;
4192 bool is_opaque_pointer;
4193 int target_cmp = 0; /* Cache comp_target_types () result. */
4194
4195 if (TREE_CODE (mvl) != ARRAY_TYPE)
4196 mvl = TYPE_MAIN_VARIANT (mvl);
4197 if (TREE_CODE (mvr) != ARRAY_TYPE)
4198 mvr = TYPE_MAIN_VARIANT (mvr);
4199 /* Opaque pointers are treated like void pointers. */
4200 is_opaque_pointer = (targetm.vector_opaque_p (type)
4201 || targetm.vector_opaque_p (rhstype))
4202 && TREE_CODE (ttl) == VECTOR_TYPE
4203 && TREE_CODE (ttr) == VECTOR_TYPE;
4204
4205 /* C++ does not allow the implicit conversion void* -> T*. However,
4206 for the purpose of reducing the number of false positives, we
4207 tolerate the special case of
4208
4209 int *p = NULL;
4210
4211 where NULL is typically defined in C to be '(void *) 0'. */
4212 if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4213 warning (OPT_Wc___compat, "request for implicit conversion from "
4214 "%qT to %qT not permitted in C++", rhstype, type);
4215
4216 /* Check if the right-hand side has a format attribute but the
4217 left-hand side doesn't. */
4218 if (warn_missing_format_attribute
4219 && check_missing_format_attribute (type, rhstype))
4220 {
4221 switch (errtype)
4222 {
4223 case ic_argpass:
4224 case ic_argpass_nonproto:
4225 warning (OPT_Wmissing_format_attribute,
4226 "argument %d of %qE might be "
4227 "a candidate for a format attribute",
4228 parmnum, rname);
4229 break;
4230 case ic_assign:
4231 warning (OPT_Wmissing_format_attribute,
4232 "assignment left-hand side might be "
4233 "a candidate for a format attribute");
4234 break;
4235 case ic_init:
4236 warning (OPT_Wmissing_format_attribute,
4237 "initialization left-hand side might be "
4238 "a candidate for a format attribute");
4239 break;
4240 case ic_return:
4241 warning (OPT_Wmissing_format_attribute,
4242 "return type might be "
4243 "a candidate for a format attribute");
4244 break;
4245 default:
4246 gcc_unreachable ();
4247 }
4248 }
4249
4250 /* Any non-function converts to a [const][volatile] void *
4251 and vice versa; otherwise, targets must be the same.
4252 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4253 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4254 || (target_cmp = comp_target_types (type, rhstype))
4255 || is_opaque_pointer
4256 || (c_common_unsigned_type (mvl)
4257 == c_common_unsigned_type (mvr)))
4258 {
4259 if (pedantic
4260 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4261 ||
4262 (VOID_TYPE_P (ttr)
4263 && !null_pointer_constant_p (rhs)
4264 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4265 WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4266 "%qE between function pointer "
4267 "and %<void *%>"),
4268 G_("ISO C forbids assignment between "
4269 "function pointer and %<void *%>"),
4270 G_("ISO C forbids initialization between "
4271 "function pointer and %<void *%>"),
4272 G_("ISO C forbids return between function "
4273 "pointer and %<void *%>"));
4274 /* Const and volatile mean something different for function types,
4275 so the usual warnings are not appropriate. */
4276 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4277 && TREE_CODE (ttl) != FUNCTION_TYPE)
4278 {
4279 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4280 {
4281 /* Types differing only by the presence of the 'volatile'
4282 qualifier are acceptable if the 'volatile' has been added
4283 in by the Objective-C EH machinery. */
4284 if (!objc_type_quals_match (ttl, ttr))
4285 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4286 "qualifiers from pointer target type"),
4287 G_("assignment discards qualifiers "
4288 "from pointer target type"),
4289 G_("initialization discards qualifiers "
4290 "from pointer target type"),
4291 G_("return discards qualifiers from "
4292 "pointer target type"));
4293 }
4294 /* If this is not a case of ignoring a mismatch in signedness,
4295 no warning. */
4296 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4297 || target_cmp)
4298 ;
4299 /* If there is a mismatch, do warn. */
4300 else if (warn_pointer_sign)
4301 WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4302 "%d of %qE differ in signedness"),
4303 G_("pointer targets in assignment "
4304 "differ in signedness"),
4305 G_("pointer targets in initialization "
4306 "differ in signedness"),
4307 G_("pointer targets in return differ "
4308 "in signedness"));
4309 }
4310 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4311 && TREE_CODE (ttr) == FUNCTION_TYPE)
4312 {
4313 /* Because const and volatile on functions are restrictions
4314 that say the function will not do certain things,
4315 it is okay to use a const or volatile function
4316 where an ordinary one is wanted, but not vice-versa. */
4317 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4318 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4319 "qualified function pointer "
4320 "from unqualified"),
4321 G_("assignment makes qualified function "
4322 "pointer from unqualified"),
4323 G_("initialization makes qualified "
4324 "function pointer from unqualified"),
4325 G_("return makes qualified function "
4326 "pointer from unqualified"));
4327 }
4328 }
4329 else
4330 /* Avoid warning about the volatile ObjC EH puts on decls. */
4331 if (!objc_ok)
4332 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4333 "incompatible pointer type"),
4334 G_("assignment from incompatible pointer type"),
4335 G_("initialization from incompatible "
4336 "pointer type"),
4337 G_("return from incompatible pointer type"));
4338
4339 return convert (type, rhs);
4340 }
4341 else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4342 {
4343 /* ??? This should not be an error when inlining calls to
4344 unprototyped functions. */
4345 error ("invalid use of non-lvalue array");
4346 return error_mark_node;
4347 }
4348 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4349 {
4350 /* An explicit constant 0 can convert to a pointer,
4351 or one that results from arithmetic, even including
4352 a cast to integer type. */
4353 if (!null_pointer_constant_p (rhs))
4354 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4355 "pointer from integer without a cast"),
4356 G_("assignment makes pointer from integer "
4357 "without a cast"),
4358 G_("initialization makes pointer from "
4359 "integer without a cast"),
4360 G_("return makes pointer from integer "
4361 "without a cast"));
4362
4363 return convert (type, rhs);
4364 }
4365 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4366 {
4367 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4368 "from pointer without a cast"),
4369 G_("assignment makes integer from pointer "
4370 "without a cast"),
4371 G_("initialization makes integer from pointer "
4372 "without a cast"),
4373 G_("return makes integer from pointer "
4374 "without a cast"));
4375 return convert (type, rhs);
4376 }
4377 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4378 return convert (type, rhs);
4379
4380 switch (errtype)
4381 {
4382 case ic_argpass:
4383 case ic_argpass_nonproto:
4384 /* ??? This should not be an error when inlining calls to
4385 unprototyped functions. */
4386 error ("incompatible type for argument %d of %qE", parmnum, rname);
4387 break;
4388 case ic_assign:
4389 error ("incompatible types in assignment");
4390 break;
4391 case ic_init:
4392 error ("incompatible types in initialization");
4393 break;
4394 case ic_return:
4395 error ("incompatible types in return");
4396 break;
4397 default:
4398 gcc_unreachable ();
4399 }
4400
4401 return error_mark_node;
4402 }
4403 \f
4404 /* If VALUE is a compound expr all of whose expressions are constant, then
4405 return its value. Otherwise, return error_mark_node.
4406
4407 This is for handling COMPOUND_EXPRs as initializer elements
4408 which is allowed with a warning when -pedantic is specified. */
4409
4410 static tree
4411 valid_compound_expr_initializer (tree value, tree endtype)
4412 {
4413 if (TREE_CODE (value) == COMPOUND_EXPR)
4414 {
4415 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4416 == error_mark_node)
4417 return error_mark_node;
4418 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4419 endtype);
4420 }
4421 else if (!initializer_constant_valid_p (value, endtype))
4422 return error_mark_node;
4423 else
4424 return value;
4425 }
4426 \f
4427 /* Perform appropriate conversions on the initial value of a variable,
4428 store it in the declaration DECL,
4429 and print any error messages that are appropriate.
4430 If the init is invalid, store an ERROR_MARK. */
4431
4432 void
4433 store_init_value (tree decl, tree init)
4434 {
4435 tree value, type;
4436
4437 /* If variable's type was invalidly declared, just ignore it. */
4438
4439 type = TREE_TYPE (decl);
4440 if (TREE_CODE (type) == ERROR_MARK)
4441 return;
4442
4443 /* Digest the specified initializer into an expression. */
4444
4445 value = digest_init (type, init, true, TREE_STATIC (decl));
4446
4447 /* Store the expression if valid; else report error. */
4448
4449 if (!in_system_header
4450 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4451 warning (OPT_Wtraditional, "traditional C rejects automatic "
4452 "aggregate initialization");
4453
4454 DECL_INITIAL (decl) = value;
4455
4456 /* ANSI wants warnings about out-of-range constant initializers. */
4457 STRIP_TYPE_NOPS (value);
4458 if (TREE_STATIC (decl))
4459 constant_expression_warning (value);
4460
4461 /* Check if we need to set array size from compound literal size. */
4462 if (TREE_CODE (type) == ARRAY_TYPE
4463 && TYPE_DOMAIN (type) == 0
4464 && value != error_mark_node)
4465 {
4466 tree inside_init = init;
4467
4468 STRIP_TYPE_NOPS (inside_init);
4469 inside_init = fold (inside_init);
4470
4471 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4472 {
4473 tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4474
4475 if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4476 {
4477 /* For int foo[] = (int [3]){1}; we need to set array size
4478 now since later on array initializer will be just the
4479 brace enclosed list of the compound literal. */
4480 type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4481 TREE_TYPE (decl) = type;
4482 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4483 layout_type (type);
4484 layout_decl (cldecl, 0);
4485 }
4486 }
4487 }
4488 }
4489 \f
4490 /* Methods for storing and printing names for error messages. */
4491
4492 /* Implement a spelling stack that allows components of a name to be pushed
4493 and popped. Each element on the stack is this structure. */
4494
4495 struct spelling
4496 {
4497 int kind;
4498 union
4499 {
4500 unsigned HOST_WIDE_INT i;
4501 const char *s;
4502 } u;
4503 };
4504
4505 #define SPELLING_STRING 1
4506 #define SPELLING_MEMBER 2
4507 #define SPELLING_BOUNDS 3
4508
4509 static struct spelling *spelling; /* Next stack element (unused). */
4510 static struct spelling *spelling_base; /* Spelling stack base. */
4511 static int spelling_size; /* Size of the spelling stack. */
4512
4513 /* Macros to save and restore the spelling stack around push_... functions.
4514 Alternative to SAVE_SPELLING_STACK. */
4515
4516 #define SPELLING_DEPTH() (spelling - spelling_base)
4517 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4518
4519 /* Push an element on the spelling stack with type KIND and assign VALUE
4520 to MEMBER. */
4521
4522 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4523 { \
4524 int depth = SPELLING_DEPTH (); \
4525 \
4526 if (depth >= spelling_size) \
4527 { \
4528 spelling_size += 10; \
4529 spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
4530 spelling_size); \
4531 RESTORE_SPELLING_DEPTH (depth); \
4532 } \
4533 \
4534 spelling->kind = (KIND); \
4535 spelling->MEMBER = (VALUE); \
4536 spelling++; \
4537 }
4538
4539 /* Push STRING on the stack. Printed literally. */
4540
4541 static void
4542 push_string (const char *string)
4543 {
4544 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4545 }
4546
4547 /* Push a member name on the stack. Printed as '.' STRING. */
4548
4549 static void
4550 push_member_name (tree decl)
4551 {
4552 const char *const string
4553 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4554 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4555 }
4556
4557 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4558
4559 static void
4560 push_array_bounds (unsigned HOST_WIDE_INT bounds)
4561 {
4562 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4563 }
4564
4565 /* Compute the maximum size in bytes of the printed spelling. */
4566
4567 static int
4568 spelling_length (void)
4569 {
4570 int size = 0;
4571 struct spelling *p;
4572
4573 for (p = spelling_base; p < spelling; p++)
4574 {
4575 if (p->kind == SPELLING_BOUNDS)
4576 size += 25;
4577 else
4578 size += strlen (p->u.s) + 1;
4579 }
4580
4581 return size;
4582 }
4583
4584 /* Print the spelling to BUFFER and return it. */
4585
4586 static char *
4587 print_spelling (char *buffer)
4588 {
4589 char *d = buffer;
4590 struct spelling *p;
4591
4592 for (p = spelling_base; p < spelling; p++)
4593 if (p->kind == SPELLING_BOUNDS)
4594 {
4595 sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4596 d += strlen (d);
4597 }
4598 else
4599 {
4600 const char *s;
4601 if (p->kind == SPELLING_MEMBER)
4602 *d++ = '.';
4603 for (s = p->u.s; (*d = *s++); d++)
4604 ;
4605 }
4606 *d++ = '\0';
4607 return buffer;
4608 }
4609
4610 /* Issue an error message for a bad initializer component.
4611 MSGID identifies the message.
4612 The component name is taken from the spelling stack. */
4613
4614 void
4615 error_init (const char *msgid)
4616 {
4617 char *ofwhat;
4618
4619 error ("%s", _(msgid));
4620 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4621 if (*ofwhat)
4622 error ("(near initialization for %qs)", ofwhat);
4623 }
4624
4625 /* Issue a pedantic warning for a bad initializer component.
4626 MSGID identifies the message.
4627 The component name is taken from the spelling stack. */
4628
4629 void
4630 pedwarn_init (const char *msgid)
4631 {
4632 char *ofwhat;
4633
4634 pedwarn ("%s", _(msgid));
4635 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4636 if (*ofwhat)
4637 pedwarn ("(near initialization for %qs)", ofwhat);
4638 }
4639
4640 /* Issue a warning for a bad initializer component.
4641
4642 OPT is the OPT_W* value corresponding to the warning option that
4643 controls this warning. MSGID identifies the message. The
4644 component name is taken from the spelling stack. */
4645
4646 static void
4647 warning_init (int opt, const char *msgid)
4648 {
4649 char *ofwhat;
4650
4651 warning (opt, "%s", _(msgid));
4652 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4653 if (*ofwhat)
4654 warning (opt, "(near initialization for %qs)", ofwhat);
4655 }
4656 \f
4657 /* If TYPE is an array type and EXPR is a parenthesized string
4658 constant, warn if pedantic that EXPR is being used to initialize an
4659 object of type TYPE. */
4660
4661 void
4662 maybe_warn_string_init (tree type, struct c_expr expr)
4663 {
4664 if (pedantic
4665 && TREE_CODE (type) == ARRAY_TYPE
4666 && TREE_CODE (expr.value) == STRING_CST
4667 && expr.original_code != STRING_CST)
4668 pedwarn_init ("array initialized from parenthesized string constant");
4669 }
4670
4671 /* Digest the parser output INIT as an initializer for type TYPE.
4672 Return a C expression of type TYPE to represent the initial value.
4673
4674 If INIT is a string constant, STRICT_STRING is true if it is
4675 unparenthesized or we should not warn here for it being parenthesized.
4676 For other types of INIT, STRICT_STRING is not used.
4677
4678 REQUIRE_CONSTANT requests an error if non-constant initializers or
4679 elements are seen. */
4680
4681 static tree
4682 digest_init (tree type, tree init, bool strict_string, int require_constant)
4683 {
4684 enum tree_code code = TREE_CODE (type);
4685 tree inside_init = init;
4686
4687 if (type == error_mark_node
4688 || !init
4689 || init == error_mark_node
4690 || TREE_TYPE (init) == error_mark_node)
4691 return error_mark_node;
4692
4693 STRIP_TYPE_NOPS (inside_init);
4694
4695 inside_init = fold (inside_init);
4696
4697 /* Initialization of an array of chars from a string constant
4698 optionally enclosed in braces. */
4699
4700 if (code == ARRAY_TYPE && inside_init
4701 && TREE_CODE (inside_init) == STRING_CST)
4702 {
4703 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4704 /* Note that an array could be both an array of character type
4705 and an array of wchar_t if wchar_t is signed char or unsigned
4706 char. */
4707 bool char_array = (typ1 == char_type_node
4708 || typ1 == signed_char_type_node
4709 || typ1 == unsigned_char_type_node);
4710 bool wchar_array = !!comptypes (typ1, wchar_type_node);
4711 if (char_array || wchar_array)
4712 {
4713 struct c_expr expr;
4714 bool char_string;
4715 expr.value = inside_init;
4716 expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4717 maybe_warn_string_init (type, expr);
4718
4719 char_string
4720 = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4721 == char_type_node);
4722
4723 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4724 TYPE_MAIN_VARIANT (type)))
4725 return inside_init;
4726
4727 if (!wchar_array && !char_string)
4728 {
4729 error_init ("char-array initialized from wide string");
4730 return error_mark_node;
4731 }
4732 if (char_string && !char_array)
4733 {
4734 error_init ("wchar_t-array initialized from non-wide string");
4735 return error_mark_node;
4736 }
4737
4738 TREE_TYPE (inside_init) = type;
4739 if (TYPE_DOMAIN (type) != 0
4740 && TYPE_SIZE (type) != 0
4741 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4742 /* Subtract 1 (or sizeof (wchar_t))
4743 because it's ok to ignore the terminating null char
4744 that is counted in the length of the constant. */
4745 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4746 TREE_STRING_LENGTH (inside_init)
4747 - ((TYPE_PRECISION (typ1)
4748 != TYPE_PRECISION (char_type_node))
4749 ? (TYPE_PRECISION (wchar_type_node)
4750 / BITS_PER_UNIT)
4751 : 1)))
4752 pedwarn_init ("initializer-string for array of chars is too long");
4753
4754 return inside_init;
4755 }
4756 else if (INTEGRAL_TYPE_P (typ1))
4757 {
4758 error_init ("array of inappropriate type initialized "
4759 "from string constant");
4760 return error_mark_node;
4761 }
4762 }
4763
4764 /* Build a VECTOR_CST from a *constant* vector constructor. If the
4765 vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4766 below and handle as a constructor. */
4767 if (code == VECTOR_TYPE
4768 && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4769 && vector_types_convertible_p (TREE_TYPE (inside_init), type, true)
4770 && TREE_CONSTANT (inside_init))
4771 {
4772 if (TREE_CODE (inside_init) == VECTOR_CST
4773 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4774 TYPE_MAIN_VARIANT (type)))
4775 return inside_init;
4776
4777 if (TREE_CODE (inside_init) == CONSTRUCTOR)
4778 {
4779 unsigned HOST_WIDE_INT ix;
4780 tree value;
4781 bool constant_p = true;
4782
4783 /* Iterate through elements and check if all constructor
4784 elements are *_CSTs. */
4785 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4786 if (!CONSTANT_CLASS_P (value))
4787 {
4788 constant_p = false;
4789 break;
4790 }
4791
4792 if (constant_p)
4793 return build_vector_from_ctor (type,
4794 CONSTRUCTOR_ELTS (inside_init));
4795 }
4796 }
4797
4798 /* Any type can be initialized
4799 from an expression of the same type, optionally with braces. */
4800
4801 if (inside_init && TREE_TYPE (inside_init) != 0
4802 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4803 TYPE_MAIN_VARIANT (type))
4804 || (code == ARRAY_TYPE
4805 && comptypes (TREE_TYPE (inside_init), type))
4806 || (code == VECTOR_TYPE
4807 && comptypes (TREE_TYPE (inside_init), type))
4808 || (code == POINTER_TYPE
4809 && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4810 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4811 TREE_TYPE (type)))))
4812 {
4813 if (code == POINTER_TYPE)
4814 {
4815 if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4816 {
4817 if (TREE_CODE (inside_init) == STRING_CST
4818 || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4819 inside_init = array_to_pointer_conversion (inside_init);
4820 else
4821 {
4822 error_init ("invalid use of non-lvalue array");
4823 return error_mark_node;
4824 }
4825 }
4826 }
4827
4828 if (code == VECTOR_TYPE)
4829 /* Although the types are compatible, we may require a
4830 conversion. */
4831 inside_init = convert (type, inside_init);
4832
4833 if (require_constant
4834 && (code == VECTOR_TYPE || !flag_isoc99)
4835 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4836 {
4837 /* As an extension, allow initializing objects with static storage
4838 duration with compound literals (which are then treated just as
4839 the brace enclosed list they contain). Also allow this for
4840 vectors, as we can only assign them with compound literals. */
4841 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4842 inside_init = DECL_INITIAL (decl);
4843 }
4844
4845 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4846 && TREE_CODE (inside_init) != CONSTRUCTOR)
4847 {
4848 error_init ("array initialized from non-constant array expression");
4849 return error_mark_node;
4850 }
4851
4852 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4853 inside_init = decl_constant_value_for_broken_optimization (inside_init);
4854
4855 /* Compound expressions can only occur here if -pedantic or
4856 -pedantic-errors is specified. In the later case, we always want
4857 an error. In the former case, we simply want a warning. */
4858 if (require_constant && pedantic
4859 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4860 {
4861 inside_init
4862 = valid_compound_expr_initializer (inside_init,
4863 TREE_TYPE (inside_init));
4864 if (inside_init == error_mark_node)
4865 error_init ("initializer element is not constant");
4866 else
4867 pedwarn_init ("initializer element is not constant");
4868 if (flag_pedantic_errors)
4869 inside_init = error_mark_node;
4870 }
4871 else if (require_constant
4872 && !initializer_constant_valid_p (inside_init,
4873 TREE_TYPE (inside_init)))
4874 {
4875 error_init ("initializer element is not constant");
4876 inside_init = error_mark_node;
4877 }
4878
4879 /* Added to enable additional -Wmissing-format-attribute warnings. */
4880 if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4881 inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4882 NULL_TREE, 0);
4883 return inside_init;
4884 }
4885
4886 /* Handle scalar types, including conversions. */
4887
4888 if (code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE
4889 || code == POINTER_TYPE || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
4890 || code == COMPLEX_TYPE || code == VECTOR_TYPE)
4891 {
4892 if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4893 && (TREE_CODE (init) == STRING_CST
4894 || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4895 init = array_to_pointer_conversion (init);
4896 inside_init
4897 = convert_for_assignment (type, init, ic_init,
4898 NULL_TREE, NULL_TREE, 0);
4899
4900 /* Check to see if we have already given an error message. */
4901 if (inside_init == error_mark_node)
4902 ;
4903 else if (require_constant && !TREE_CONSTANT (inside_init))
4904 {
4905 error_init ("initializer element is not constant");
4906 inside_init = error_mark_node;
4907 }
4908 else if (require_constant
4909 && !initializer_constant_valid_p (inside_init,
4910 TREE_TYPE (inside_init)))
4911 {
4912 error_init ("initializer element is not computable at load time");
4913 inside_init = error_mark_node;
4914 }
4915
4916 return inside_init;
4917 }
4918
4919 /* Come here only for records and arrays. */
4920
4921 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4922 {
4923 error_init ("variable-sized object may not be initialized");
4924 return error_mark_node;
4925 }
4926
4927 error_init ("invalid initializer");
4928 return error_mark_node;
4929 }
4930 \f
4931 /* Handle initializers that use braces. */
4932
4933 /* Type of object we are accumulating a constructor for.
4934 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4935 static tree constructor_type;
4936
4937 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4938 left to fill. */
4939 static tree constructor_fields;
4940
4941 /* For an ARRAY_TYPE, this is the specified index
4942 at which to store the next element we get. */
4943 static tree constructor_index;
4944
4945 /* For an ARRAY_TYPE, this is the maximum index. */
4946 static tree constructor_max_index;
4947
4948 /* For a RECORD_TYPE, this is the first field not yet written out. */
4949 static tree constructor_unfilled_fields;
4950
4951 /* For an ARRAY_TYPE, this is the index of the first element
4952 not yet written out. */
4953 static tree constructor_unfilled_index;
4954
4955 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4956 This is so we can generate gaps between fields, when appropriate. */
4957 static tree constructor_bit_index;
4958
4959 /* If we are saving up the elements rather than allocating them,
4960 this is the list of elements so far (in reverse order,
4961 most recent first). */
4962 static VEC(constructor_elt,gc) *constructor_elements;
4963
4964 /* 1 if constructor should be incrementally stored into a constructor chain,
4965 0 if all the elements should be kept in AVL tree. */
4966 static int constructor_incremental;
4967
4968 /* 1 if so far this constructor's elements are all compile-time constants. */
4969 static int constructor_constant;
4970
4971 /* 1 if so far this constructor's elements are all valid address constants. */
4972 static int constructor_simple;
4973
4974 /* 1 if this constructor is erroneous so far. */
4975 static int constructor_erroneous;
4976
4977 /* Structure for managing pending initializer elements, organized as an
4978 AVL tree. */
4979
4980 struct init_node
4981 {
4982 struct init_node *left, *right;
4983 struct init_node *parent;
4984 int balance;
4985 tree purpose;
4986 tree value;
4987 };
4988
4989 /* Tree of pending elements at this constructor level.
4990 These are elements encountered out of order
4991 which belong at places we haven't reached yet in actually
4992 writing the output.
4993 Will never hold tree nodes across GC runs. */
4994 static struct init_node *constructor_pending_elts;
4995
4996 /* The SPELLING_DEPTH of this constructor. */
4997 static int constructor_depth;
4998
4999 /* DECL node for which an initializer is being read.
5000 0 means we are reading a constructor expression
5001 such as (struct foo) {...}. */
5002 static tree constructor_decl;
5003
5004 /* Nonzero if this is an initializer for a top-level decl. */
5005 static int constructor_top_level;
5006
5007 /* Nonzero if there were any member designators in this initializer. */
5008 static int constructor_designated;
5009
5010 /* Nesting depth of designator list. */
5011 static int designator_depth;
5012
5013 /* Nonzero if there were diagnosed errors in this designator list. */
5014 static int designator_erroneous;
5015
5016 \f
5017 /* This stack has a level for each implicit or explicit level of
5018 structuring in the initializer, including the outermost one. It
5019 saves the values of most of the variables above. */
5020
5021 struct constructor_range_stack;
5022
5023 struct constructor_stack
5024 {
5025 struct constructor_stack *next;
5026 tree type;
5027 tree fields;
5028 tree index;
5029 tree max_index;
5030 tree unfilled_index;
5031 tree unfilled_fields;
5032 tree bit_index;
5033 VEC(constructor_elt,gc) *elements;
5034 struct init_node *pending_elts;
5035 int offset;
5036 int depth;
5037 /* If value nonzero, this value should replace the entire
5038 constructor at this level. */
5039 struct c_expr replacement_value;
5040 struct constructor_range_stack *range_stack;
5041 char constant;
5042 char simple;
5043 char implicit;
5044 char erroneous;
5045 char outer;
5046 char incremental;
5047 char designated;
5048 };
5049
5050 static struct constructor_stack *constructor_stack;
5051
5052 /* This stack represents designators from some range designator up to
5053 the last designator in the list. */
5054
5055 struct constructor_range_stack
5056 {
5057 struct constructor_range_stack *next, *prev;
5058 struct constructor_stack *stack;
5059 tree range_start;
5060 tree index;
5061 tree range_end;
5062 tree fields;
5063 };
5064
5065 static struct constructor_range_stack *constructor_range_stack;
5066
5067 /* This stack records separate initializers that are nested.
5068 Nested initializers can't happen in ANSI C, but GNU C allows them
5069 in cases like { ... (struct foo) { ... } ... }. */
5070
5071 struct initializer_stack
5072 {
5073 struct initializer_stack *next;
5074 tree decl;
5075 struct constructor_stack *constructor_stack;
5076 struct constructor_range_stack *constructor_range_stack;
5077 VEC(constructor_elt,gc) *elements;
5078 struct spelling *spelling;
5079 struct spelling *spelling_base;
5080 int spelling_size;
5081 char top_level;
5082 char require_constant_value;
5083 char require_constant_elements;
5084 };
5085
5086 static struct initializer_stack *initializer_stack;
5087 \f
5088 /* Prepare to parse and output the initializer for variable DECL. */
5089
5090 void
5091 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
5092 {
5093 const char *locus;
5094 struct initializer_stack *p = XNEW (struct initializer_stack);
5095
5096 p->decl = constructor_decl;
5097 p->require_constant_value = require_constant_value;
5098 p->require_constant_elements = require_constant_elements;
5099 p->constructor_stack = constructor_stack;
5100 p->constructor_range_stack = constructor_range_stack;
5101 p->elements = constructor_elements;
5102 p->spelling = spelling;
5103 p->spelling_base = spelling_base;
5104 p->spelling_size = spelling_size;
5105 p->top_level = constructor_top_level;
5106 p->next = initializer_stack;
5107 initializer_stack = p;
5108
5109 constructor_decl = decl;
5110 constructor_designated = 0;
5111 constructor_top_level = top_level;
5112
5113 if (decl != 0 && decl != error_mark_node)
5114 {
5115 require_constant_value = TREE_STATIC (decl);
5116 require_constant_elements
5117 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
5118 /* For a scalar, you can always use any value to initialize,
5119 even within braces. */
5120 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
5121 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5122 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
5123 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5124 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
5125 }
5126 else
5127 {
5128 require_constant_value = 0;
5129 require_constant_elements = 0;
5130 locus = "(anonymous)";
5131 }
5132
5133 constructor_stack = 0;
5134 constructor_range_stack = 0;
5135
5136 missing_braces_mentioned = 0;
5137
5138 spelling_base = 0;
5139 spelling_size = 0;
5140 RESTORE_SPELLING_DEPTH (0);
5141
5142 if (locus)
5143 push_string (locus);
5144 }
5145
5146 void
5147 finish_init (void)
5148 {
5149 struct initializer_stack *p = initializer_stack;
5150
5151 /* Free the whole constructor stack of this initializer. */
5152 while (constructor_stack)
5153 {
5154 struct constructor_stack *q = constructor_stack;
5155 constructor_stack = q->next;
5156 free (q);
5157 }
5158
5159 gcc_assert (!constructor_range_stack);
5160
5161 /* Pop back to the data of the outer initializer (if any). */
5162 free (spelling_base);
5163
5164 constructor_decl = p->decl;
5165 require_constant_value = p->require_constant_value;
5166 require_constant_elements = p->require_constant_elements;
5167 constructor_stack = p->constructor_stack;
5168 constructor_range_stack = p->constructor_range_stack;
5169 constructor_elements = p->elements;
5170 spelling = p->spelling;
5171 spelling_base = p->spelling_base;
5172 spelling_size = p->spelling_size;
5173 constructor_top_level = p->top_level;
5174 initializer_stack = p->next;
5175 free (p);
5176 }
5177 \f
5178 /* Call here when we see the initializer is surrounded by braces.
5179 This is instead of a call to push_init_level;
5180 it is matched by a call to pop_init_level.
5181
5182 TYPE is the type to initialize, for a constructor expression.
5183 For an initializer for a decl, TYPE is zero. */
5184
5185 void
5186 really_start_incremental_init (tree type)
5187 {
5188 struct constructor_stack *p = XNEW (struct constructor_stack);
5189
5190 if (type == 0)
5191 type = TREE_TYPE (constructor_decl);
5192
5193 if (targetm.vector_opaque_p (type))
5194 error ("opaque vector types cannot be initialized");
5195
5196 p->type = constructor_type;
5197 p->fields = constructor_fields;
5198 p->index = constructor_index;
5199 p->max_index = constructor_max_index;
5200 p->unfilled_index = constructor_unfilled_index;
5201 p->unfilled_fields = constructor_unfilled_fields;
5202 p->bit_index = constructor_bit_index;
5203 p->elements = constructor_elements;
5204 p->constant = constructor_constant;
5205 p->simple = constructor_simple;
5206 p->erroneous = constructor_erroneous;
5207 p->pending_elts = constructor_pending_elts;
5208 p->depth = constructor_depth;
5209 p->replacement_value.value = 0;
5210 p->replacement_value.original_code = ERROR_MARK;
5211 p->implicit = 0;
5212 p->range_stack = 0;
5213 p->outer = 0;
5214 p->incremental = constructor_incremental;
5215 p->designated = constructor_designated;
5216 p->next = 0;
5217 constructor_stack = p;
5218
5219 constructor_constant = 1;
5220 constructor_simple = 1;
5221 constructor_depth = SPELLING_DEPTH ();
5222 constructor_elements = 0;
5223 constructor_pending_elts = 0;
5224 constructor_type = type;
5225 constructor_incremental = 1;
5226 constructor_designated = 0;
5227 designator_depth = 0;
5228 designator_erroneous = 0;
5229
5230 if (TREE_CODE (constructor_type) == RECORD_TYPE
5231 || TREE_CODE (constructor_type) == UNION_TYPE)
5232 {
5233 constructor_fields = TYPE_FIELDS (constructor_type);
5234 /* Skip any nameless bit fields at the beginning. */
5235 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5236 && DECL_NAME (constructor_fields) == 0)
5237 constructor_fields = TREE_CHAIN (constructor_fields);
5238
5239 constructor_unfilled_fields = constructor_fields;
5240 constructor_bit_index = bitsize_zero_node;
5241 }
5242 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5243 {
5244 if (TYPE_DOMAIN (constructor_type))
5245 {
5246 constructor_max_index
5247 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5248
5249 /* Detect non-empty initializations of zero-length arrays. */
5250 if (constructor_max_index == NULL_TREE
5251 && TYPE_SIZE (constructor_type))
5252 constructor_max_index = build_int_cst (NULL_TREE, -1);
5253
5254 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5255 to initialize VLAs will cause a proper error; avoid tree
5256 checking errors as well by setting a safe value. */
5257 if (constructor_max_index
5258 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5259 constructor_max_index = build_int_cst (NULL_TREE, -1);
5260
5261 constructor_index
5262 = convert (bitsizetype,
5263 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5264 }
5265 else
5266 {
5267 constructor_index = bitsize_zero_node;
5268 constructor_max_index = NULL_TREE;
5269 }
5270
5271 constructor_unfilled_index = constructor_index;
5272 }
5273 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5274 {
5275 /* Vectors are like simple fixed-size arrays. */
5276 constructor_max_index =
5277 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5278 constructor_index = bitsize_zero_node;
5279 constructor_unfilled_index = constructor_index;
5280 }
5281 else
5282 {
5283 /* Handle the case of int x = {5}; */
5284 constructor_fields = constructor_type;
5285 constructor_unfilled_fields = constructor_type;
5286 }
5287 }
5288 \f
5289 /* Push down into a subobject, for initialization.
5290 If this is for an explicit set of braces, IMPLICIT is 0.
5291 If it is because the next element belongs at a lower level,
5292 IMPLICIT is 1 (or 2 if the push is because of designator list). */
5293
5294 void
5295 push_init_level (int implicit)
5296 {
5297 struct constructor_stack *p;
5298 tree value = NULL_TREE;
5299
5300 /* If we've exhausted any levels that didn't have braces,
5301 pop them now. If implicit == 1, this will have been done in
5302 process_init_element; do not repeat it here because in the case
5303 of excess initializers for an empty aggregate this leads to an
5304 infinite cycle of popping a level and immediately recreating
5305 it. */
5306 if (implicit != 1)
5307 {
5308 while (constructor_stack->implicit)
5309 {
5310 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5311 || TREE_CODE (constructor_type) == UNION_TYPE)
5312 && constructor_fields == 0)
5313 process_init_element (pop_init_level (1));
5314 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5315 && constructor_max_index
5316 && tree_int_cst_lt (constructor_max_index,
5317 constructor_index))
5318 process_init_element (pop_init_level (1));
5319 else
5320 break;
5321 }
5322 }
5323
5324 /* Unless this is an explicit brace, we need to preserve previous
5325 content if any. */
5326 if (implicit)
5327 {
5328 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5329 || TREE_CODE (constructor_type) == UNION_TYPE)
5330 && constructor_fields)
5331 value = find_init_member (constructor_fields);
5332 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5333 value = find_init_member (constructor_index);
5334 }
5335
5336 p = XNEW (struct constructor_stack);
5337 p->type = constructor_type;
5338 p->fields = constructor_fields;
5339 p->index = constructor_index;
5340 p->max_index = constructor_max_index;
5341 p->unfilled_index = constructor_unfilled_index;
5342 p->unfilled_fields = constructor_unfilled_fields;
5343 p->bit_index = constructor_bit_index;
5344 p->elements = constructor_elements;
5345 p->constant = constructor_constant;
5346 p->simple = constructor_simple;
5347 p->erroneous = constructor_erroneous;
5348 p->pending_elts = constructor_pending_elts;
5349 p->depth = constructor_depth;
5350 p->replacement_value.value = 0;
5351 p->replacement_value.original_code = ERROR_MARK;
5352 p->implicit = implicit;
5353 p->outer = 0;
5354 p->incremental = constructor_incremental;
5355 p->designated = constructor_designated;
5356 p->next = constructor_stack;
5357 p->range_stack = 0;
5358 constructor_stack = p;
5359
5360 constructor_constant = 1;
5361 constructor_simple = 1;
5362 constructor_depth = SPELLING_DEPTH ();
5363 constructor_elements = 0;
5364 constructor_incremental = 1;
5365 constructor_designated = 0;
5366 constructor_pending_elts = 0;
5367 if (!implicit)
5368 {
5369 p->range_stack = constructor_range_stack;
5370 constructor_range_stack = 0;
5371 designator_depth = 0;
5372 designator_erroneous = 0;
5373 }
5374
5375 /* Don't die if an entire brace-pair level is superfluous
5376 in the containing level. */
5377 if (constructor_type == 0)
5378 ;
5379 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5380 || TREE_CODE (constructor_type) == UNION_TYPE)
5381 {
5382 /* Don't die if there are extra init elts at the end. */
5383 if (constructor_fields == 0)
5384 constructor_type = 0;
5385 else
5386 {
5387 constructor_type = TREE_TYPE (constructor_fields);
5388 push_member_name (constructor_fields);
5389 constructor_depth++;
5390 }
5391 }
5392 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5393 {
5394 constructor_type = TREE_TYPE (constructor_type);
5395 push_array_bounds (tree_low_cst (constructor_index, 1));
5396 constructor_depth++;
5397 }
5398
5399 if (constructor_type == 0)
5400 {
5401 error_init ("extra brace group at end of initializer");
5402 constructor_fields = 0;
5403 constructor_unfilled_fields = 0;
5404 return;
5405 }
5406
5407 if (value && TREE_CODE (value) == CONSTRUCTOR)
5408 {
5409 constructor_constant = TREE_CONSTANT (value);
5410 constructor_simple = TREE_STATIC (value);
5411 constructor_elements = CONSTRUCTOR_ELTS (value);
5412 if (!VEC_empty (constructor_elt, constructor_elements)
5413 && (TREE_CODE (constructor_type) == RECORD_TYPE
5414 || TREE_CODE (constructor_type) == ARRAY_TYPE))
5415 set_nonincremental_init ();
5416 }
5417
5418 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5419 {
5420 missing_braces_mentioned = 1;
5421 warning_init (OPT_Wmissing_braces, "missing braces around initializer");
5422 }
5423
5424 if (TREE_CODE (constructor_type) == RECORD_TYPE
5425 || TREE_CODE (constructor_type) == UNION_TYPE)
5426 {
5427 constructor_fields = TYPE_FIELDS (constructor_type);
5428 /* Skip any nameless bit fields at the beginning. */
5429 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5430 && DECL_NAME (constructor_fields) == 0)
5431 constructor_fields = TREE_CHAIN (constructor_fields);
5432
5433 constructor_unfilled_fields = constructor_fields;
5434 constructor_bit_index = bitsize_zero_node;
5435 }
5436 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5437 {
5438 /* Vectors are like simple fixed-size arrays. */
5439 constructor_max_index =
5440 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5441 constructor_index = convert (bitsizetype, integer_zero_node);
5442 constructor_unfilled_index = constructor_index;
5443 }
5444 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5445 {
5446 if (TYPE_DOMAIN (constructor_type))
5447 {
5448 constructor_max_index
5449 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5450
5451 /* Detect non-empty initializations of zero-length arrays. */
5452 if (constructor_max_index == NULL_TREE
5453 && TYPE_SIZE (constructor_type))
5454 constructor_max_index = build_int_cst (NULL_TREE, -1);
5455
5456 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5457 to initialize VLAs will cause a proper error; avoid tree
5458 checking errors as well by setting a safe value. */
5459 if (constructor_max_index
5460 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5461 constructor_max_index = build_int_cst (NULL_TREE, -1);
5462
5463 constructor_index
5464 = convert (bitsizetype,
5465 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5466 }
5467 else
5468 constructor_index = bitsize_zero_node;
5469
5470 constructor_unfilled_index = constructor_index;
5471 if (value && TREE_CODE (value) == STRING_CST)
5472 {
5473 /* We need to split the char/wchar array into individual
5474 characters, so that we don't have to special case it
5475 everywhere. */
5476 set_nonincremental_init_from_string (value);
5477 }
5478 }
5479 else
5480 {
5481 if (constructor_type != error_mark_node)
5482 warning_init (0, "braces around scalar initializer");
5483 constructor_fields = constructor_type;
5484 constructor_unfilled_fields = constructor_type;
5485 }
5486 }
5487
5488 /* At the end of an implicit or explicit brace level,
5489 finish up that level of constructor. If a single expression
5490 with redundant braces initialized that level, return the
5491 c_expr structure for that expression. Otherwise, the original_code
5492 element is set to ERROR_MARK.
5493 If we were outputting the elements as they are read, return 0 as the value
5494 from inner levels (process_init_element ignores that),
5495 but return error_mark_node as the value from the outermost level
5496 (that's what we want to put in DECL_INITIAL).
5497 Otherwise, return a CONSTRUCTOR expression as the value. */
5498
5499 struct c_expr
5500 pop_init_level (int implicit)
5501 {
5502 struct constructor_stack *p;
5503 struct c_expr ret;
5504 ret.value = 0;
5505 ret.original_code = ERROR_MARK;
5506
5507 if (implicit == 0)
5508 {
5509 /* When we come to an explicit close brace,
5510 pop any inner levels that didn't have explicit braces. */
5511 while (constructor_stack->implicit)
5512 process_init_element (pop_init_level (1));
5513
5514 gcc_assert (!constructor_range_stack);
5515 }
5516
5517 /* Now output all pending elements. */
5518 constructor_incremental = 1;
5519 output_pending_init_elements (1);
5520
5521 p = constructor_stack;
5522
5523 /* Error for initializing a flexible array member, or a zero-length
5524 array member in an inappropriate context. */
5525 if (constructor_type && constructor_fields
5526 && TREE_CODE (constructor_type) == ARRAY_TYPE
5527 && TYPE_DOMAIN (constructor_type)
5528 && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5529 {
5530 /* Silently discard empty initializations. The parser will
5531 already have pedwarned for empty brackets. */
5532 if (integer_zerop (constructor_unfilled_index))
5533 constructor_type = NULL_TREE;
5534 else
5535 {
5536 gcc_assert (!TYPE_SIZE (constructor_type));
5537
5538 if (constructor_depth > 2)
5539 error_init ("initialization of flexible array member in a nested context");
5540 else if (pedantic)
5541 pedwarn_init ("initialization of a flexible array member");
5542
5543 /* We have already issued an error message for the existence
5544 of a flexible array member not at the end of the structure.
5545 Discard the initializer so that we do not die later. */
5546 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5547 constructor_type = NULL_TREE;
5548 }
5549 }
5550
5551 /* Warn when some struct elements are implicitly initialized to zero. */
5552 if (warn_missing_field_initializers
5553 && constructor_type
5554 && TREE_CODE (constructor_type) == RECORD_TYPE
5555 && constructor_unfilled_fields)
5556 {
5557 /* Do not warn for flexible array members or zero-length arrays. */
5558 while (constructor_unfilled_fields
5559 && (!DECL_SIZE (constructor_unfilled_fields)
5560 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5561 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5562
5563 /* Do not warn if this level of the initializer uses member
5564 designators; it is likely to be deliberate. */
5565 if (constructor_unfilled_fields && !constructor_designated)
5566 {
5567 push_member_name (constructor_unfilled_fields);
5568 warning_init (OPT_Wmissing_field_initializers,
5569 "missing initializer");
5570 RESTORE_SPELLING_DEPTH (constructor_depth);
5571 }
5572 }
5573
5574 /* Pad out the end of the structure. */
5575 if (p->replacement_value.value)
5576 /* If this closes a superfluous brace pair,
5577 just pass out the element between them. */
5578 ret = p->replacement_value;
5579 else if (constructor_type == 0)
5580 ;
5581 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5582 && TREE_CODE (constructor_type) != UNION_TYPE
5583 && TREE_CODE (constructor_type) != ARRAY_TYPE
5584 && TREE_CODE (constructor_type) != VECTOR_TYPE)
5585 {
5586 /* A nonincremental scalar initializer--just return
5587 the element, after verifying there is just one. */
5588 if (VEC_empty (constructor_elt,constructor_elements))
5589 {
5590 if (!constructor_erroneous)
5591 error_init ("empty scalar initializer");
5592 ret.value = error_mark_node;
5593 }
5594 else if (VEC_length (constructor_elt,constructor_elements) != 1)
5595 {
5596 error_init ("extra elements in scalar initializer");
5597 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5598 }
5599 else
5600 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5601 }
5602 else
5603 {
5604 if (constructor_erroneous)
5605 ret.value = error_mark_node;
5606 else
5607 {
5608 ret.value = build_constructor (constructor_type,
5609 constructor_elements);
5610 if (constructor_constant)
5611 TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5612 if (constructor_constant && constructor_simple)
5613 TREE_STATIC (ret.value) = 1;
5614 }
5615 }
5616
5617 constructor_type = p->type;
5618 constructor_fields = p->fields;
5619 constructor_index = p->index;
5620 constructor_max_index = p->max_index;
5621 constructor_unfilled_index = p->unfilled_index;
5622 constructor_unfilled_fields = p->unfilled_fields;
5623 constructor_bit_index = p->bit_index;
5624 constructor_elements = p->elements;
5625 constructor_constant = p->constant;
5626 constructor_simple = p->simple;
5627 constructor_erroneous = p->erroneous;
5628 constructor_incremental = p->incremental;
5629 constructor_designated = p->designated;
5630 constructor_pending_elts = p->pending_elts;
5631 constructor_depth = p->depth;
5632 if (!p->implicit)
5633 constructor_range_stack = p->range_stack;
5634 RESTORE_SPELLING_DEPTH (constructor_depth);
5635
5636 constructor_stack = p->next;
5637 free (p);
5638
5639 if (ret.value == 0 && constructor_stack == 0)
5640 ret.value = error_mark_node;
5641 return ret;
5642 }
5643
5644 /* Common handling for both array range and field name designators.
5645 ARRAY argument is nonzero for array ranges. Returns zero for success. */
5646
5647 static int
5648 set_designator (int array)
5649 {
5650 tree subtype;
5651 enum tree_code subcode;
5652
5653 /* Don't die if an entire brace-pair level is superfluous
5654 in the containing level. */
5655 if (constructor_type == 0)
5656 return 1;
5657
5658 /* If there were errors in this designator list already, bail out
5659 silently. */
5660 if (designator_erroneous)
5661 return 1;
5662
5663 if (!designator_depth)
5664 {
5665 gcc_assert (!constructor_range_stack);
5666
5667 /* Designator list starts at the level of closest explicit
5668 braces. */
5669 while (constructor_stack->implicit)
5670 process_init_element (pop_init_level (1));
5671 constructor_designated = 1;
5672 return 0;
5673 }
5674
5675 switch (TREE_CODE (constructor_type))
5676 {
5677 case RECORD_TYPE:
5678 case UNION_TYPE:
5679 subtype = TREE_TYPE (constructor_fields);
5680 if (subtype != error_mark_node)
5681 subtype = TYPE_MAIN_VARIANT (subtype);
5682 break;
5683 case ARRAY_TYPE:
5684 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5685 break;
5686 default:
5687 gcc_unreachable ();
5688 }
5689
5690 subcode = TREE_CODE (subtype);
5691 if (array && subcode != ARRAY_TYPE)
5692 {
5693 error_init ("array index in non-array initializer");
5694 return 1;
5695 }
5696 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5697 {
5698 error_init ("field name not in record or union initializer");
5699 return 1;
5700 }
5701
5702 constructor_designated = 1;
5703 push_init_level (2);
5704 return 0;
5705 }
5706
5707 /* If there are range designators in designator list, push a new designator
5708 to constructor_range_stack. RANGE_END is end of such stack range or
5709 NULL_TREE if there is no range designator at this level. */
5710
5711 static void
5712 push_range_stack (tree range_end)
5713 {
5714 struct constructor_range_stack *p;
5715
5716 p = GGC_NEW (struct constructor_range_stack);
5717 p->prev = constructor_range_stack;
5718 p->next = 0;
5719 p->fields = constructor_fields;
5720 p->range_start = constructor_index;
5721 p->index = constructor_index;
5722 p->stack = constructor_stack;
5723 p->range_end = range_end;
5724 if (constructor_range_stack)
5725 constructor_range_stack->next = p;
5726 constructor_range_stack = p;
5727 }
5728
5729 /* Within an array initializer, specify the next index to be initialized.
5730 FIRST is that index. If LAST is nonzero, then initialize a range
5731 of indices, running from FIRST through LAST. */
5732
5733 void
5734 set_init_index (tree first, tree last)
5735 {
5736 if (set_designator (1))
5737 return;
5738
5739 designator_erroneous = 1;
5740
5741 if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5742 || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5743 {
5744 error_init ("array index in initializer not of integer type");
5745 return;
5746 }
5747
5748 if (TREE_CODE (first) != INTEGER_CST)
5749 error_init ("nonconstant array index in initializer");
5750 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5751 error_init ("nonconstant array index in initializer");
5752 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5753 error_init ("array index in non-array initializer");
5754 else if (tree_int_cst_sgn (first) == -1)
5755 error_init ("array index in initializer exceeds array bounds");
5756 else if (constructor_max_index
5757 && tree_int_cst_lt (constructor_max_index, first))
5758 error_init ("array index in initializer exceeds array bounds");
5759 else
5760 {
5761 constructor_index = convert (bitsizetype, first);
5762
5763 if (last)
5764 {
5765 if (tree_int_cst_equal (first, last))
5766 last = 0;
5767 else if (tree_int_cst_lt (last, first))
5768 {
5769 error_init ("empty index range in initializer");
5770 last = 0;
5771 }
5772 else
5773 {
5774 last = convert (bitsizetype, last);
5775 if (constructor_max_index != 0
5776 && tree_int_cst_lt (constructor_max_index, last))
5777 {
5778 error_init ("array index range in initializer exceeds array bounds");
5779 last = 0;
5780 }
5781 }
5782 }
5783
5784 designator_depth++;
5785 designator_erroneous = 0;
5786 if (constructor_range_stack || last)
5787 push_range_stack (last);
5788 }
5789 }
5790
5791 /* Within a struct initializer, specify the next field to be initialized. */
5792
5793 void
5794 set_init_label (tree fieldname)
5795 {
5796 tree tail;
5797
5798 if (set_designator (0))
5799 return;
5800
5801 designator_erroneous = 1;
5802
5803 if (TREE_CODE (constructor_type) != RECORD_TYPE
5804 && TREE_CODE (constructor_type) != UNION_TYPE)
5805 {
5806 error_init ("field name not in record or union initializer");
5807 return;
5808 }
5809
5810 for (tail = TYPE_FIELDS (constructor_type); tail;
5811 tail = TREE_CHAIN (tail))
5812 {
5813 if (DECL_NAME (tail) == fieldname)
5814 break;
5815 }
5816
5817 if (tail == 0)
5818 error ("unknown field %qE specified in initializer", fieldname);
5819 else
5820 {
5821 constructor_fields = tail;
5822 designator_depth++;
5823 designator_erroneous = 0;
5824 if (constructor_range_stack)
5825 push_range_stack (NULL_TREE);
5826 }
5827 }
5828 \f
5829 /* Add a new initializer to the tree of pending initializers. PURPOSE
5830 identifies the initializer, either array index or field in a structure.
5831 VALUE is the value of that index or field. */
5832
5833 static void
5834 add_pending_init (tree purpose, tree value)
5835 {
5836 struct init_node *p, **q, *r;
5837
5838 q = &constructor_pending_elts;
5839 p = 0;
5840
5841 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5842 {
5843 while (*q != 0)
5844 {
5845 p = *q;
5846 if (tree_int_cst_lt (purpose, p->purpose))
5847 q = &p->left;
5848 else if (tree_int_cst_lt (p->purpose, purpose))
5849 q = &p->right;
5850 else
5851 {
5852 if (TREE_SIDE_EFFECTS (p->value))
5853 warning_init (0, "initialized field with side-effects overwritten");
5854 else if (warn_override_init)
5855 warning_init (OPT_Woverride_init, "initialized field overwritten");
5856 p->value = value;
5857 return;
5858 }
5859 }
5860 }
5861 else
5862 {
5863 tree bitpos;
5864
5865 bitpos = bit_position (purpose);
5866 while (*q != NULL)
5867 {
5868 p = *q;
5869 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5870 q = &p->left;
5871 else if (p->purpose != purpose)
5872 q = &p->right;
5873 else
5874 {
5875 if (TREE_SIDE_EFFECTS (p->value))
5876 warning_init (0, "initialized field with side-effects overwritten");
5877 else if (warn_override_init)
5878 warning_init (OPT_Woverride_init, "initialized field overwritten");
5879 p->value = value;
5880 return;
5881 }
5882 }
5883 }
5884
5885 r = GGC_NEW (struct init_node);
5886 r->purpose = purpose;
5887 r->value = value;
5888
5889 *q = r;
5890 r->parent = p;
5891 r->left = 0;
5892 r->right = 0;
5893 r->balance = 0;
5894
5895 while (p)
5896 {
5897 struct init_node *s;
5898
5899 if (r == p->left)
5900 {
5901 if (p->balance == 0)
5902 p->balance = -1;
5903 else if (p->balance < 0)
5904 {
5905 if (r->balance < 0)
5906 {
5907 /* L rotation. */
5908 p->left = r->right;
5909 if (p->left)
5910 p->left->parent = p;
5911 r->right = p;
5912
5913 p->balance = 0;
5914 r->balance = 0;
5915
5916 s = p->parent;
5917 p->parent = r;
5918 r->parent = s;
5919 if (s)
5920 {
5921 if (s->left == p)
5922 s->left = r;
5923 else
5924 s->right = r;
5925 }
5926 else
5927 constructor_pending_elts = r;
5928 }
5929 else
5930 {
5931 /* LR rotation. */
5932 struct init_node *t = r->right;
5933
5934 r->right = t->left;
5935 if (r->right)
5936 r->right->parent = r;
5937 t->left = r;
5938
5939 p->left = t->right;
5940 if (p->left)
5941 p->left->parent = p;
5942 t->right = p;
5943
5944 p->balance = t->balance < 0;
5945 r->balance = -(t->balance > 0);
5946 t->balance = 0;
5947
5948 s = p->parent;
5949 p->parent = t;
5950 r->parent = t;
5951 t->parent = s;
5952 if (s)
5953 {
5954 if (s->left == p)
5955 s->left = t;
5956 else
5957 s->right = t;
5958 }
5959 else
5960 constructor_pending_elts = t;
5961 }
5962 break;
5963 }
5964 else
5965 {
5966 /* p->balance == +1; growth of left side balances the node. */
5967 p->balance = 0;
5968 break;
5969 }
5970 }
5971 else /* r == p->right */
5972 {
5973 if (p->balance == 0)
5974 /* Growth propagation from right side. */
5975 p->balance++;
5976 else if (p->balance > 0)
5977 {
5978 if (r->balance > 0)
5979 {
5980 /* R rotation. */
5981 p->right = r->left;
5982 if (p->right)
5983 p->right->parent = p;
5984 r->left = p;
5985
5986 p->balance = 0;
5987 r->balance = 0;
5988
5989 s = p->parent;
5990 p->parent = r;
5991 r->parent = s;
5992 if (s)
5993 {
5994 if (s->left == p)
5995 s->left = r;
5996 else
5997 s->right = r;
5998 }
5999 else
6000 constructor_pending_elts = r;
6001 }
6002 else /* r->balance == -1 */
6003 {
6004 /* RL rotation */
6005 struct init_node *t = r->left;
6006
6007 r->left = t->right;
6008 if (r->left)
6009 r->left->parent = r;
6010 t->right = r;
6011
6012 p->right = t->left;
6013 if (p->right)
6014 p->right->parent = p;
6015 t->left = p;
6016
6017 r->balance = (t->balance < 0);
6018 p->balance = -(t->balance > 0);
6019 t->balance = 0;
6020
6021 s = p->parent;
6022 p->parent = t;
6023 r->parent = t;
6024 t->parent = s;
6025 if (s)
6026 {
6027 if (s->left == p)
6028 s->left = t;
6029 else
6030 s->right = t;
6031 }
6032 else
6033 constructor_pending_elts = t;
6034 }
6035 break;
6036 }
6037 else
6038 {
6039 /* p->balance == -1; growth of right side balances the node. */
6040 p->balance = 0;
6041 break;
6042 }
6043 }
6044
6045 r = p;
6046 p = p->parent;
6047 }
6048 }
6049
6050 /* Build AVL tree from a sorted chain. */
6051
6052 static void
6053 set_nonincremental_init (void)
6054 {
6055 unsigned HOST_WIDE_INT ix;
6056 tree index, value;
6057
6058 if (TREE_CODE (constructor_type) != RECORD_TYPE
6059 && TREE_CODE (constructor_type) != ARRAY_TYPE)
6060 return;
6061
6062 FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
6063 add_pending_init (index, value);
6064 constructor_elements = 0;
6065 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6066 {
6067 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
6068 /* Skip any nameless bit fields at the beginning. */
6069 while (constructor_unfilled_fields != 0
6070 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6071 && DECL_NAME (constructor_unfilled_fields) == 0)
6072 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
6073
6074 }
6075 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6076 {
6077 if (TYPE_DOMAIN (constructor_type))
6078 constructor_unfilled_index
6079 = convert (bitsizetype,
6080 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6081 else
6082 constructor_unfilled_index = bitsize_zero_node;
6083 }
6084 constructor_incremental = 0;
6085 }
6086
6087 /* Build AVL tree from a string constant. */
6088
6089 static void
6090 set_nonincremental_init_from_string (tree str)
6091 {
6092 tree value, purpose, type;
6093 HOST_WIDE_INT val[2];
6094 const char *p, *end;
6095 int byte, wchar_bytes, charwidth, bitpos;
6096
6097 gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
6098
6099 if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6100 == TYPE_PRECISION (char_type_node))
6101 wchar_bytes = 1;
6102 else
6103 {
6104 gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6105 == TYPE_PRECISION (wchar_type_node));
6106 wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
6107 }
6108 charwidth = TYPE_PRECISION (char_type_node);
6109 type = TREE_TYPE (constructor_type);
6110 p = TREE_STRING_POINTER (str);
6111 end = p + TREE_STRING_LENGTH (str);
6112
6113 for (purpose = bitsize_zero_node;
6114 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
6115 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
6116 {
6117 if (wchar_bytes == 1)
6118 {
6119 val[1] = (unsigned char) *p++;
6120 val[0] = 0;
6121 }
6122 else
6123 {
6124 val[0] = 0;
6125 val[1] = 0;
6126 for (byte = 0; byte < wchar_bytes; byte++)
6127 {
6128 if (BYTES_BIG_ENDIAN)
6129 bitpos = (wchar_bytes - byte - 1) * charwidth;
6130 else
6131 bitpos = byte * charwidth;
6132 val[bitpos < HOST_BITS_PER_WIDE_INT]
6133 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
6134 << (bitpos % HOST_BITS_PER_WIDE_INT);
6135 }
6136 }
6137
6138 if (!TYPE_UNSIGNED (type))
6139 {
6140 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6141 if (bitpos < HOST_BITS_PER_WIDE_INT)
6142 {
6143 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6144 {
6145 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6146 val[0] = -1;
6147 }
6148 }
6149 else if (bitpos == HOST_BITS_PER_WIDE_INT)
6150 {
6151 if (val[1] < 0)
6152 val[0] = -1;
6153 }
6154 else if (val[0] & (((HOST_WIDE_INT) 1)
6155 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6156 val[0] |= ((HOST_WIDE_INT) -1)
6157 << (bitpos - HOST_BITS_PER_WIDE_INT);
6158 }
6159
6160 value = build_int_cst_wide (type, val[1], val[0]);
6161 add_pending_init (purpose, value);
6162 }
6163
6164 constructor_incremental = 0;
6165 }
6166
6167 /* Return value of FIELD in pending initializer or zero if the field was
6168 not initialized yet. */
6169
6170 static tree
6171 find_init_member (tree field)
6172 {
6173 struct init_node *p;
6174
6175 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6176 {
6177 if (constructor_incremental
6178 && tree_int_cst_lt (field, constructor_unfilled_index))
6179 set_nonincremental_init ();
6180
6181 p = constructor_pending_elts;
6182 while (p)
6183 {
6184 if (tree_int_cst_lt (field, p->purpose))
6185 p = p->left;
6186 else if (tree_int_cst_lt (p->purpose, field))
6187 p = p->right;
6188 else
6189 return p->value;
6190 }
6191 }
6192 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6193 {
6194 tree bitpos = bit_position (field);
6195
6196 if (constructor_incremental
6197 && (!constructor_unfilled_fields
6198 || tree_int_cst_lt (bitpos,
6199 bit_position (constructor_unfilled_fields))))
6200 set_nonincremental_init ();
6201
6202 p = constructor_pending_elts;
6203 while (p)
6204 {
6205 if (field == p->purpose)
6206 return p->value;
6207 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6208 p = p->left;
6209 else
6210 p = p->right;
6211 }
6212 }
6213 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6214 {
6215 if (!VEC_empty (constructor_elt, constructor_elements)
6216 && (VEC_last (constructor_elt, constructor_elements)->index
6217 == field))
6218 return VEC_last (constructor_elt, constructor_elements)->value;
6219 }
6220 return 0;
6221 }
6222
6223 /* "Output" the next constructor element.
6224 At top level, really output it to assembler code now.
6225 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6226 TYPE is the data type that the containing data type wants here.
6227 FIELD is the field (a FIELD_DECL) or the index that this element fills.
6228 If VALUE is a string constant, STRICT_STRING is true if it is
6229 unparenthesized or we should not warn here for it being parenthesized.
6230 For other types of VALUE, STRICT_STRING is not used.
6231
6232 PENDING if non-nil means output pending elements that belong
6233 right after this element. (PENDING is normally 1;
6234 it is 0 while outputting pending elements, to avoid recursion.) */
6235
6236 static void
6237 output_init_element (tree value, bool strict_string, tree type, tree field,
6238 int pending)
6239 {
6240 constructor_elt *celt;
6241
6242 if (type == error_mark_node || value == error_mark_node)
6243 {
6244 constructor_erroneous = 1;
6245 return;
6246 }
6247 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6248 && (TREE_CODE (value) == STRING_CST
6249 || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6250 && !(TREE_CODE (value) == STRING_CST
6251 && TREE_CODE (type) == ARRAY_TYPE
6252 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6253 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6254 TYPE_MAIN_VARIANT (type)))
6255 value = array_to_pointer_conversion (value);
6256
6257 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6258 && require_constant_value && !flag_isoc99 && pending)
6259 {
6260 /* As an extension, allow initializing objects with static storage
6261 duration with compound literals (which are then treated just as
6262 the brace enclosed list they contain). */
6263 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6264 value = DECL_INITIAL (decl);
6265 }
6266
6267 if (value == error_mark_node)
6268 constructor_erroneous = 1;
6269 else if (!TREE_CONSTANT (value))
6270 constructor_constant = 0;
6271 else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6272 || ((TREE_CODE (constructor_type) == RECORD_TYPE
6273 || TREE_CODE (constructor_type) == UNION_TYPE)
6274 && DECL_C_BIT_FIELD (field)
6275 && TREE_CODE (value) != INTEGER_CST))
6276 constructor_simple = 0;
6277
6278 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6279 {
6280 if (require_constant_value)
6281 {
6282 error_init ("initializer element is not constant");
6283 value = error_mark_node;
6284 }
6285 else if (require_constant_elements)
6286 pedwarn ("initializer element is not computable at load time");
6287 }
6288
6289 /* If this field is empty (and not at the end of structure),
6290 don't do anything other than checking the initializer. */
6291 if (field
6292 && (TREE_TYPE (field) == error_mark_node
6293 || (COMPLETE_TYPE_P (TREE_TYPE (field))
6294 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6295 && (TREE_CODE (constructor_type) == ARRAY_TYPE
6296 || TREE_CHAIN (field)))))
6297 return;
6298
6299 value = digest_init (type, value, strict_string, require_constant_value);
6300 if (value == error_mark_node)
6301 {
6302 constructor_erroneous = 1;
6303 return;
6304 }
6305
6306 /* If this element doesn't come next in sequence,
6307 put it on constructor_pending_elts. */
6308 if (TREE_CODE (constructor_type) == ARRAY_TYPE
6309 && (!constructor_incremental
6310 || !tree_int_cst_equal (field, constructor_unfilled_index)))
6311 {
6312 if (constructor_incremental
6313 && tree_int_cst_lt (field, constructor_unfilled_index))
6314 set_nonincremental_init ();
6315
6316 add_pending_init (field, value);
6317 return;
6318 }
6319 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6320 && (!constructor_incremental
6321 || field != constructor_unfilled_fields))
6322 {
6323 /* We do this for records but not for unions. In a union,
6324 no matter which field is specified, it can be initialized
6325 right away since it starts at the beginning of the union. */
6326 if (constructor_incremental)
6327 {
6328 if (!constructor_unfilled_fields)
6329 set_nonincremental_init ();
6330 else
6331 {
6332 tree bitpos, unfillpos;
6333
6334 bitpos = bit_position (field);
6335 unfillpos = bit_position (constructor_unfilled_fields);
6336
6337 if (tree_int_cst_lt (bitpos, unfillpos))
6338 set_nonincremental_init ();
6339 }
6340 }
6341
6342 add_pending_init (field, value);
6343 return;
6344 }
6345 else if (TREE_CODE (constructor_type) == UNION_TYPE
6346 && !VEC_empty (constructor_elt, constructor_elements))
6347 {
6348 if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6349 constructor_elements)->value))
6350 warning_init (0, "initialized field with side-effects overwritten");
6351 else if (warn_override_init)
6352 warning_init (OPT_Woverride_init, "initialized field overwritten");
6353
6354 /* We can have just one union field set. */
6355 constructor_elements = 0;
6356 }
6357
6358 /* Otherwise, output this element either to
6359 constructor_elements or to the assembler file. */
6360
6361 celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6362 celt->index = field;
6363 celt->value = value;
6364
6365 /* Advance the variable that indicates sequential elements output. */
6366 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6367 constructor_unfilled_index
6368 = size_binop (PLUS_EXPR, constructor_unfilled_index,
6369 bitsize_one_node);
6370 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6371 {
6372 constructor_unfilled_fields
6373 = TREE_CHAIN (constructor_unfilled_fields);
6374
6375 /* Skip any nameless bit fields. */
6376 while (constructor_unfilled_fields != 0
6377 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6378 && DECL_NAME (constructor_unfilled_fields) == 0)
6379 constructor_unfilled_fields =
6380 TREE_CHAIN (constructor_unfilled_fields);
6381 }
6382 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6383 constructor_unfilled_fields = 0;
6384
6385 /* Now output any pending elements which have become next. */
6386 if (pending)
6387 output_pending_init_elements (0);
6388 }
6389
6390 /* Output any pending elements which have become next.
6391 As we output elements, constructor_unfilled_{fields,index}
6392 advances, which may cause other elements to become next;
6393 if so, they too are output.
6394
6395 If ALL is 0, we return when there are
6396 no more pending elements to output now.
6397
6398 If ALL is 1, we output space as necessary so that
6399 we can output all the pending elements. */
6400
6401 static void
6402 output_pending_init_elements (int all)
6403 {
6404 struct init_node *elt = constructor_pending_elts;
6405 tree next;
6406
6407 retry:
6408
6409 /* Look through the whole pending tree.
6410 If we find an element that should be output now,
6411 output it. Otherwise, set NEXT to the element
6412 that comes first among those still pending. */
6413
6414 next = 0;
6415 while (elt)
6416 {
6417 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6418 {
6419 if (tree_int_cst_equal (elt->purpose,
6420 constructor_unfilled_index))
6421 output_init_element (elt->value, true,
6422 TREE_TYPE (constructor_type),
6423 constructor_unfilled_index, 0);
6424 else if (tree_int_cst_lt (constructor_unfilled_index,
6425 elt->purpose))
6426 {
6427 /* Advance to the next smaller node. */
6428 if (elt->left)
6429 elt = elt->left;
6430 else
6431 {
6432 /* We have reached the smallest node bigger than the
6433 current unfilled index. Fill the space first. */
6434 next = elt->purpose;
6435 break;
6436 }
6437 }
6438 else
6439 {
6440 /* Advance to the next bigger node. */
6441 if (elt->right)
6442 elt = elt->right;
6443 else
6444 {
6445 /* We have reached the biggest node in a subtree. Find
6446 the parent of it, which is the next bigger node. */
6447 while (elt->parent && elt->parent->right == elt)
6448 elt = elt->parent;
6449 elt = elt->parent;
6450 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6451 elt->purpose))
6452 {
6453 next = elt->purpose;
6454 break;
6455 }
6456 }
6457 }
6458 }
6459 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6460 || TREE_CODE (constructor_type) == UNION_TYPE)
6461 {
6462 tree ctor_unfilled_bitpos, elt_bitpos;
6463
6464 /* If the current record is complete we are done. */
6465 if (constructor_unfilled_fields == 0)
6466 break;
6467
6468 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6469 elt_bitpos = bit_position (elt->purpose);
6470 /* We can't compare fields here because there might be empty
6471 fields in between. */
6472 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6473 {
6474 constructor_unfilled_fields = elt->purpose;
6475 output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6476 elt->purpose, 0);
6477 }
6478 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6479 {
6480 /* Advance to the next smaller node. */
6481 if (elt->left)
6482 elt = elt->left;
6483 else
6484 {
6485 /* We have reached the smallest node bigger than the
6486 current unfilled field. Fill the space first. */
6487 next = elt->purpose;
6488 break;
6489 }
6490 }
6491 else
6492 {
6493 /* Advance to the next bigger node. */
6494 if (elt->right)
6495 elt = elt->right;
6496 else
6497 {
6498 /* We have reached the biggest node in a subtree. Find
6499 the parent of it, which is the next bigger node. */
6500 while (elt->parent && elt->parent->right == elt)
6501 elt = elt->parent;
6502 elt = elt->parent;
6503 if (elt
6504 && (tree_int_cst_lt (ctor_unfilled_bitpos,
6505 bit_position (elt->purpose))))
6506 {
6507 next = elt->purpose;
6508 break;
6509 }
6510 }
6511 }
6512 }
6513 }
6514
6515 /* Ordinarily return, but not if we want to output all
6516 and there are elements left. */
6517 if (!(all && next != 0))
6518 return;
6519
6520 /* If it's not incremental, just skip over the gap, so that after
6521 jumping to retry we will output the next successive element. */
6522 if (TREE_CODE (constructor_type) == RECORD_TYPE
6523 || TREE_CODE (constructor_type) == UNION_TYPE)
6524 constructor_unfilled_fields = next;
6525 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6526 constructor_unfilled_index = next;
6527
6528 /* ELT now points to the node in the pending tree with the next
6529 initializer to output. */
6530 goto retry;
6531 }
6532 \f
6533 /* Add one non-braced element to the current constructor level.
6534 This adjusts the current position within the constructor's type.
6535 This may also start or terminate implicit levels
6536 to handle a partly-braced initializer.
6537
6538 Once this has found the correct level for the new element,
6539 it calls output_init_element. */
6540
6541 void
6542 process_init_element (struct c_expr value)
6543 {
6544 tree orig_value = value.value;
6545 int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6546 bool strict_string = value.original_code == STRING_CST;
6547
6548 designator_depth = 0;
6549 designator_erroneous = 0;
6550
6551 /* Handle superfluous braces around string cst as in
6552 char x[] = {"foo"}; */
6553 if (string_flag
6554 && constructor_type
6555 && TREE_CODE (constructor_type) == ARRAY_TYPE
6556 && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6557 && integer_zerop (constructor_unfilled_index))
6558 {
6559 if (constructor_stack->replacement_value.value)
6560 error_init ("excess elements in char array initializer");
6561 constructor_stack->replacement_value = value;
6562 return;
6563 }
6564
6565 if (constructor_stack->replacement_value.value != 0)
6566 {
6567 error_init ("excess elements in struct initializer");
6568 return;
6569 }
6570
6571 /* Ignore elements of a brace group if it is entirely superfluous
6572 and has already been diagnosed. */
6573 if (constructor_type == 0)
6574 return;
6575
6576 /* If we've exhausted any levels that didn't have braces,
6577 pop them now. */
6578 while (constructor_stack->implicit)
6579 {
6580 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6581 || TREE_CODE (constructor_type) == UNION_TYPE)
6582 && constructor_fields == 0)
6583 process_init_element (pop_init_level (1));
6584 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6585 && (constructor_max_index == 0
6586 || tree_int_cst_lt (constructor_max_index,
6587 constructor_index)))
6588 process_init_element (pop_init_level (1));
6589 else
6590 break;
6591 }
6592
6593 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
6594 if (constructor_range_stack)
6595 {
6596 /* If value is a compound literal and we'll be just using its
6597 content, don't put it into a SAVE_EXPR. */
6598 if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6599 || !require_constant_value
6600 || flag_isoc99)
6601 value.value = save_expr (value.value);
6602 }
6603
6604 while (1)
6605 {
6606 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6607 {
6608 tree fieldtype;
6609 enum tree_code fieldcode;
6610
6611 if (constructor_fields == 0)
6612 {
6613 pedwarn_init ("excess elements in struct initializer");
6614 break;
6615 }
6616
6617 fieldtype = TREE_TYPE (constructor_fields);
6618 if (fieldtype != error_mark_node)
6619 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6620 fieldcode = TREE_CODE (fieldtype);
6621
6622 /* Error for non-static initialization of a flexible array member. */
6623 if (fieldcode == ARRAY_TYPE
6624 && !require_constant_value
6625 && TYPE_SIZE (fieldtype) == NULL_TREE
6626 && TREE_CHAIN (constructor_fields) == NULL_TREE)
6627 {
6628 error_init ("non-static initialization of a flexible array member");
6629 break;
6630 }
6631
6632 /* Accept a string constant to initialize a subarray. */
6633 if (value.value != 0
6634 && fieldcode == ARRAY_TYPE
6635 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6636 && string_flag)
6637 value.value = orig_value;
6638 /* Otherwise, if we have come to a subaggregate,
6639 and we don't have an element of its type, push into it. */
6640 else if (value.value != 0
6641 && value.value != error_mark_node
6642 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6643 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6644 || fieldcode == UNION_TYPE))
6645 {
6646 push_init_level (1);
6647 continue;
6648 }
6649
6650 if (value.value)
6651 {
6652 push_member_name (constructor_fields);
6653 output_init_element (value.value, strict_string,
6654 fieldtype, constructor_fields, 1);
6655 RESTORE_SPELLING_DEPTH (constructor_depth);
6656 }
6657 else
6658 /* Do the bookkeeping for an element that was
6659 directly output as a constructor. */
6660 {
6661 /* For a record, keep track of end position of last field. */
6662 if (DECL_SIZE (constructor_fields))
6663 constructor_bit_index
6664 = size_binop (PLUS_EXPR,
6665 bit_position (constructor_fields),
6666 DECL_SIZE (constructor_fields));
6667
6668 /* If the current field was the first one not yet written out,
6669 it isn't now, so update. */
6670 if (constructor_unfilled_fields == constructor_fields)
6671 {
6672 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6673 /* Skip any nameless bit fields. */
6674 while (constructor_unfilled_fields != 0
6675 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6676 && DECL_NAME (constructor_unfilled_fields) == 0)
6677 constructor_unfilled_fields =
6678 TREE_CHAIN (constructor_unfilled_fields);
6679 }
6680 }
6681
6682 constructor_fields = TREE_CHAIN (constructor_fields);
6683 /* Skip any nameless bit fields at the beginning. */
6684 while (constructor_fields != 0
6685 && DECL_C_BIT_FIELD (constructor_fields)
6686 && DECL_NAME (constructor_fields) == 0)
6687 constructor_fields = TREE_CHAIN (constructor_fields);
6688 }
6689 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6690 {
6691 tree fieldtype;
6692 enum tree_code fieldcode;
6693
6694 if (constructor_fields == 0)
6695 {
6696 pedwarn_init ("excess elements in union initializer");
6697 break;
6698 }
6699
6700 fieldtype = TREE_TYPE (constructor_fields);
6701 if (fieldtype != error_mark_node)
6702 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6703 fieldcode = TREE_CODE (fieldtype);
6704
6705 /* Warn that traditional C rejects initialization of unions.
6706 We skip the warning if the value is zero. This is done
6707 under the assumption that the zero initializer in user
6708 code appears conditioned on e.g. __STDC__ to avoid
6709 "missing initializer" warnings and relies on default
6710 initialization to zero in the traditional C case.
6711 We also skip the warning if the initializer is designated,
6712 again on the assumption that this must be conditional on
6713 __STDC__ anyway (and we've already complained about the
6714 member-designator already). */
6715 if (!in_system_header && !constructor_designated
6716 && !(value.value && (integer_zerop (value.value)
6717 || real_zerop (value.value))))
6718 warning (OPT_Wtraditional, "traditional C rejects initialization "
6719 "of unions");
6720
6721 /* Accept a string constant to initialize a subarray. */
6722 if (value.value != 0
6723 && fieldcode == ARRAY_TYPE
6724 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6725 && string_flag)
6726 value.value = orig_value;
6727 /* Otherwise, if we have come to a subaggregate,
6728 and we don't have an element of its type, push into it. */
6729 else if (value.value != 0
6730 && value.value != error_mark_node
6731 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6732 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6733 || fieldcode == UNION_TYPE))
6734 {
6735 push_init_level (1);
6736 continue;
6737 }
6738
6739 if (value.value)
6740 {
6741 push_member_name (constructor_fields);
6742 output_init_element (value.value, strict_string,
6743 fieldtype, constructor_fields, 1);
6744 RESTORE_SPELLING_DEPTH (constructor_depth);
6745 }
6746 else
6747 /* Do the bookkeeping for an element that was
6748 directly output as a constructor. */
6749 {
6750 constructor_bit_index = DECL_SIZE (constructor_fields);
6751 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6752 }
6753
6754 constructor_fields = 0;
6755 }
6756 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6757 {
6758 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6759 enum tree_code eltcode = TREE_CODE (elttype);
6760
6761 /* Accept a string constant to initialize a subarray. */
6762 if (value.value != 0
6763 && eltcode == ARRAY_TYPE
6764 && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6765 && string_flag)
6766 value.value = orig_value;
6767 /* Otherwise, if we have come to a subaggregate,
6768 and we don't have an element of its type, push into it. */
6769 else if (value.value != 0
6770 && value.value != error_mark_node
6771 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6772 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6773 || eltcode == UNION_TYPE))
6774 {
6775 push_init_level (1);
6776 continue;
6777 }
6778
6779 if (constructor_max_index != 0
6780 && (tree_int_cst_lt (constructor_max_index, constructor_index)
6781 || integer_all_onesp (constructor_max_index)))
6782 {
6783 pedwarn_init ("excess elements in array initializer");
6784 break;
6785 }
6786
6787 /* Now output the actual element. */
6788 if (value.value)
6789 {
6790 push_array_bounds (tree_low_cst (constructor_index, 1));
6791 output_init_element (value.value, strict_string,
6792 elttype, constructor_index, 1);
6793 RESTORE_SPELLING_DEPTH (constructor_depth);
6794 }
6795
6796 constructor_index
6797 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6798
6799 if (!value.value)
6800 /* If we are doing the bookkeeping for an element that was
6801 directly output as a constructor, we must update
6802 constructor_unfilled_index. */
6803 constructor_unfilled_index = constructor_index;
6804 }
6805 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6806 {
6807 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6808
6809 /* Do a basic check of initializer size. Note that vectors
6810 always have a fixed size derived from their type. */
6811 if (tree_int_cst_lt (constructor_max_index, constructor_index))
6812 {
6813 pedwarn_init ("excess elements in vector initializer");
6814 break;
6815 }
6816
6817 /* Now output the actual element. */
6818 if (value.value)
6819 output_init_element (value.value, strict_string,
6820 elttype, constructor_index, 1);
6821
6822 constructor_index
6823 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6824
6825 if (!value.value)
6826 /* If we are doing the bookkeeping for an element that was
6827 directly output as a constructor, we must update
6828 constructor_unfilled_index. */
6829 constructor_unfilled_index = constructor_index;
6830 }
6831
6832 /* Handle the sole element allowed in a braced initializer
6833 for a scalar variable. */
6834 else if (constructor_type != error_mark_node
6835 && constructor_fields == 0)
6836 {
6837 pedwarn_init ("excess elements in scalar initializer");
6838 break;
6839 }
6840 else
6841 {
6842 if (value.value)
6843 output_init_element (value.value, strict_string,
6844 constructor_type, NULL_TREE, 1);
6845 constructor_fields = 0;
6846 }
6847
6848 /* Handle range initializers either at this level or anywhere higher
6849 in the designator stack. */
6850 if (constructor_range_stack)
6851 {
6852 struct constructor_range_stack *p, *range_stack;
6853 int finish = 0;
6854
6855 range_stack = constructor_range_stack;
6856 constructor_range_stack = 0;
6857 while (constructor_stack != range_stack->stack)
6858 {
6859 gcc_assert (constructor_stack->implicit);
6860 process_init_element (pop_init_level (1));
6861 }
6862 for (p = range_stack;
6863 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6864 p = p->prev)
6865 {
6866 gcc_assert (constructor_stack->implicit);
6867 process_init_element (pop_init_level (1));
6868 }
6869
6870 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6871 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6872 finish = 1;
6873
6874 while (1)
6875 {
6876 constructor_index = p->index;
6877 constructor_fields = p->fields;
6878 if (finish && p->range_end && p->index == p->range_start)
6879 {
6880 finish = 0;
6881 p->prev = 0;
6882 }
6883 p = p->next;
6884 if (!p)
6885 break;
6886 push_init_level (2);
6887 p->stack = constructor_stack;
6888 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6889 p->index = p->range_start;
6890 }
6891
6892 if (!finish)
6893 constructor_range_stack = range_stack;
6894 continue;
6895 }
6896
6897 break;
6898 }
6899
6900 constructor_range_stack = 0;
6901 }
6902 \f
6903 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
6904 (guaranteed to be 'volatile' or null) and ARGS (represented using
6905 an ASM_EXPR node). */
6906 tree
6907 build_asm_stmt (tree cv_qualifier, tree args)
6908 {
6909 if (!ASM_VOLATILE_P (args) && cv_qualifier)
6910 ASM_VOLATILE_P (args) = 1;
6911 return add_stmt (args);
6912 }
6913
6914 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6915 some INPUTS, and some CLOBBERS. The latter three may be NULL.
6916 SIMPLE indicates whether there was anything at all after the
6917 string in the asm expression -- asm("blah") and asm("blah" : )
6918 are subtly different. We use a ASM_EXPR node to represent this. */
6919 tree
6920 build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6921 bool simple)
6922 {
6923 tree tail;
6924 tree args;
6925 int i;
6926 const char *constraint;
6927 const char **oconstraints;
6928 bool allows_mem, allows_reg, is_inout;
6929 int ninputs, noutputs;
6930
6931 ninputs = list_length (inputs);
6932 noutputs = list_length (outputs);
6933 oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6934
6935 string = resolve_asm_operand_names (string, outputs, inputs);
6936
6937 /* Remove output conversions that change the type but not the mode. */
6938 for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6939 {
6940 tree output = TREE_VALUE (tail);
6941
6942 /* ??? Really, this should not be here. Users should be using a
6943 proper lvalue, dammit. But there's a long history of using casts
6944 in the output operands. In cases like longlong.h, this becomes a
6945 primitive form of typechecking -- if the cast can be removed, then
6946 the output operand had a type of the proper width; otherwise we'll
6947 get an error. Gross, but ... */
6948 STRIP_NOPS (output);
6949
6950 if (!lvalue_or_else (output, lv_asm))
6951 output = error_mark_node;
6952
6953 if (output != error_mark_node
6954 && (TREE_READONLY (output)
6955 || TYPE_READONLY (TREE_TYPE (output))
6956 || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6957 || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6958 && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6959 readonly_error (output, lv_asm);
6960
6961 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6962 oconstraints[i] = constraint;
6963
6964 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6965 &allows_mem, &allows_reg, &is_inout))
6966 {
6967 /* If the operand is going to end up in memory,
6968 mark it addressable. */
6969 if (!allows_reg && !c_mark_addressable (output))
6970 output = error_mark_node;
6971 }
6972 else
6973 output = error_mark_node;
6974
6975 TREE_VALUE (tail) = output;
6976 }
6977
6978 for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6979 {
6980 tree input;
6981
6982 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6983 input = TREE_VALUE (tail);
6984
6985 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6986 oconstraints, &allows_mem, &allows_reg))
6987 {
6988 /* If the operand is going to end up in memory,
6989 mark it addressable. */
6990 if (!allows_reg && allows_mem)
6991 {
6992 /* Strip the nops as we allow this case. FIXME, this really
6993 should be rejected or made deprecated. */
6994 STRIP_NOPS (input);
6995 if (!c_mark_addressable (input))
6996 input = error_mark_node;
6997 }
6998 }
6999 else
7000 input = error_mark_node;
7001
7002 TREE_VALUE (tail) = input;
7003 }
7004
7005 args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
7006
7007 /* asm statements without outputs, including simple ones, are treated
7008 as volatile. */
7009 ASM_INPUT_P (args) = simple;
7010 ASM_VOLATILE_P (args) = (noutputs == 0);
7011
7012 return args;
7013 }
7014 \f
7015 /* Generate a goto statement to LABEL. */
7016
7017 tree
7018 c_finish_goto_label (tree label)
7019 {
7020 tree decl = lookup_label (label);
7021 if (!decl)
7022 return NULL_TREE;
7023
7024 if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
7025 {
7026 error ("jump into statement expression");
7027 return NULL_TREE;
7028 }
7029
7030 if (C_DECL_UNJUMPABLE_VM (decl))
7031 {
7032 error ("jump into scope of identifier with variably modified type");
7033 return NULL_TREE;
7034 }
7035
7036 if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
7037 {
7038 /* No jump from outside this statement expression context, so
7039 record that there is a jump from within this context. */
7040 struct c_label_list *nlist;
7041 nlist = XOBNEW (&parser_obstack, struct c_label_list);
7042 nlist->next = label_context_stack_se->labels_used;
7043 nlist->label = decl;
7044 label_context_stack_se->labels_used = nlist;
7045 }
7046
7047 if (!C_DECL_UNDEFINABLE_VM (decl))
7048 {
7049 /* No jump from outside this context context of identifiers with
7050 variably modified type, so record that there is a jump from
7051 within this context. */
7052 struct c_label_list *nlist;
7053 nlist = XOBNEW (&parser_obstack, struct c_label_list);
7054 nlist->next = label_context_stack_vm->labels_used;
7055 nlist->label = decl;
7056 label_context_stack_vm->labels_used = nlist;
7057 }
7058
7059 TREE_USED (decl) = 1;
7060 return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
7061 }
7062
7063 /* Generate a computed goto statement to EXPR. */
7064
7065 tree
7066 c_finish_goto_ptr (tree expr)
7067 {
7068 if (pedantic)
7069 pedwarn ("ISO C forbids %<goto *expr;%>");
7070 expr = convert (ptr_type_node, expr);
7071 return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
7072 }
7073
7074 /* Generate a C `return' statement. RETVAL is the expression for what
7075 to return, or a null pointer for `return;' with no value. */
7076
7077 tree
7078 c_finish_return (tree retval)
7079 {
7080 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
7081 bool no_warning = false;
7082
7083 if (TREE_THIS_VOLATILE (current_function_decl))
7084 warning (0, "function declared %<noreturn%> has a %<return%> statement");
7085
7086 if (!retval)
7087 {
7088 current_function_returns_null = 1;
7089 if ((warn_return_type || flag_isoc99)
7090 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
7091 {
7092 pedwarn_c99 ("%<return%> with no value, in "
7093 "function returning non-void");
7094 no_warning = true;
7095 }
7096 }
7097 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
7098 {
7099 current_function_returns_null = 1;
7100 if (TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
7101 pedwarn ("%<return%> with a value, in function returning void");
7102 else if (pedantic)
7103 pedwarn ("ISO C forbids %<return%> with expression, in function returning void");
7104 }
7105 else
7106 {
7107 tree t = convert_for_assignment (valtype, retval, ic_return,
7108 NULL_TREE, NULL_TREE, 0);
7109 tree res = DECL_RESULT (current_function_decl);
7110 tree inner;
7111
7112 current_function_returns_value = 1;
7113 if (t == error_mark_node)
7114 return NULL_TREE;
7115
7116 inner = t = convert (TREE_TYPE (res), t);
7117
7118 /* Strip any conversions, additions, and subtractions, and see if
7119 we are returning the address of a local variable. Warn if so. */
7120 while (1)
7121 {
7122 switch (TREE_CODE (inner))
7123 {
7124 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
7125 case PLUS_EXPR:
7126 inner = TREE_OPERAND (inner, 0);
7127 continue;
7128
7129 case MINUS_EXPR:
7130 /* If the second operand of the MINUS_EXPR has a pointer
7131 type (or is converted from it), this may be valid, so
7132 don't give a warning. */
7133 {
7134 tree op1 = TREE_OPERAND (inner, 1);
7135
7136 while (!POINTER_TYPE_P (TREE_TYPE (op1))
7137 && (TREE_CODE (op1) == NOP_EXPR
7138 || TREE_CODE (op1) == NON_LVALUE_EXPR
7139 || TREE_CODE (op1) == CONVERT_EXPR))
7140 op1 = TREE_OPERAND (op1, 0);
7141
7142 if (POINTER_TYPE_P (TREE_TYPE (op1)))
7143 break;
7144
7145 inner = TREE_OPERAND (inner, 0);
7146 continue;
7147 }
7148
7149 case ADDR_EXPR:
7150 inner = TREE_OPERAND (inner, 0);
7151
7152 while (REFERENCE_CLASS_P (inner)
7153 && TREE_CODE (inner) != INDIRECT_REF)
7154 inner = TREE_OPERAND (inner, 0);
7155
7156 if (DECL_P (inner)
7157 && !DECL_EXTERNAL (inner)
7158 && !TREE_STATIC (inner)
7159 && DECL_CONTEXT (inner) == current_function_decl)
7160 warning (0, "function returns address of local variable");
7161 break;
7162
7163 default:
7164 break;
7165 }
7166
7167 break;
7168 }
7169
7170 retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7171 }
7172
7173 ret_stmt = build_stmt (RETURN_EXPR, retval);
7174 TREE_NO_WARNING (ret_stmt) |= no_warning;
7175 return add_stmt (ret_stmt);
7176 }
7177 \f
7178 struct c_switch {
7179 /* The SWITCH_EXPR being built. */
7180 tree switch_expr;
7181
7182 /* The original type of the testing expression, i.e. before the
7183 default conversion is applied. */
7184 tree orig_type;
7185
7186 /* A splay-tree mapping the low element of a case range to the high
7187 element, or NULL_TREE if there is no high element. Used to
7188 determine whether or not a new case label duplicates an old case
7189 label. We need a tree, rather than simply a hash table, because
7190 of the GNU case range extension. */
7191 splay_tree cases;
7192
7193 /* Number of nested statement expressions within this switch
7194 statement; if nonzero, case and default labels may not
7195 appear. */
7196 unsigned int blocked_stmt_expr;
7197
7198 /* Scope of outermost declarations of identifiers with variably
7199 modified type within this switch statement; if nonzero, case and
7200 default labels may not appear. */
7201 unsigned int blocked_vm;
7202
7203 /* The next node on the stack. */
7204 struct c_switch *next;
7205 };
7206
7207 /* A stack of the currently active switch statements. The innermost
7208 switch statement is on the top of the stack. There is no need to
7209 mark the stack for garbage collection because it is only active
7210 during the processing of the body of a function, and we never
7211 collect at that point. */
7212
7213 struct c_switch *c_switch_stack;
7214
7215 /* Start a C switch statement, testing expression EXP. Return the new
7216 SWITCH_EXPR. */
7217
7218 tree
7219 c_start_case (tree exp)
7220 {
7221 tree orig_type = error_mark_node;
7222 struct c_switch *cs;
7223
7224 if (exp != error_mark_node)
7225 {
7226 orig_type = TREE_TYPE (exp);
7227
7228 if (!INTEGRAL_TYPE_P (orig_type))
7229 {
7230 if (orig_type != error_mark_node)
7231 {
7232 error ("switch quantity not an integer");
7233 orig_type = error_mark_node;
7234 }
7235 exp = integer_zero_node;
7236 }
7237 else
7238 {
7239 tree type = TYPE_MAIN_VARIANT (orig_type);
7240
7241 if (!in_system_header
7242 && (type == long_integer_type_node
7243 || type == long_unsigned_type_node))
7244 warning (OPT_Wtraditional, "%<long%> switch expression not "
7245 "converted to %<int%> in ISO C");
7246
7247 exp = default_conversion (exp);
7248 }
7249 }
7250
7251 /* Add this new SWITCH_EXPR to the stack. */
7252 cs = XNEW (struct c_switch);
7253 cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7254 cs->orig_type = orig_type;
7255 cs->cases = splay_tree_new (case_compare, NULL, NULL);
7256 cs->blocked_stmt_expr = 0;
7257 cs->blocked_vm = 0;
7258 cs->next = c_switch_stack;
7259 c_switch_stack = cs;
7260
7261 return add_stmt (cs->switch_expr);
7262 }
7263
7264 /* Process a case label. */
7265
7266 tree
7267 do_case (tree low_value, tree high_value)
7268 {
7269 tree label = NULL_TREE;
7270
7271 if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7272 && !c_switch_stack->blocked_vm)
7273 {
7274 label = c_add_case_label (c_switch_stack->cases,
7275 SWITCH_COND (c_switch_stack->switch_expr),
7276 c_switch_stack->orig_type,
7277 low_value, high_value);
7278 if (label == error_mark_node)
7279 label = NULL_TREE;
7280 }
7281 else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7282 {
7283 if (low_value)
7284 error ("case label in statement expression not containing "
7285 "enclosing switch statement");
7286 else
7287 error ("%<default%> label in statement expression not containing "
7288 "enclosing switch statement");
7289 }
7290 else if (c_switch_stack && c_switch_stack->blocked_vm)
7291 {
7292 if (low_value)
7293 error ("case label in scope of identifier with variably modified "
7294 "type not containing enclosing switch statement");
7295 else
7296 error ("%<default%> label in scope of identifier with variably "
7297 "modified type not containing enclosing switch statement");
7298 }
7299 else if (low_value)
7300 error ("case label not within a switch statement");
7301 else
7302 error ("%<default%> label not within a switch statement");
7303
7304 return label;
7305 }
7306
7307 /* Finish the switch statement. */
7308
7309 void
7310 c_finish_case (tree body)
7311 {
7312 struct c_switch *cs = c_switch_stack;
7313 location_t switch_location;
7314
7315 SWITCH_BODY (cs->switch_expr) = body;
7316
7317 /* We must not be within a statement expression nested in the switch
7318 at this point; we might, however, be within the scope of an
7319 identifier with variably modified type nested in the switch. */
7320 gcc_assert (!cs->blocked_stmt_expr);
7321
7322 /* Emit warnings as needed. */
7323 if (EXPR_HAS_LOCATION (cs->switch_expr))
7324 switch_location = EXPR_LOCATION (cs->switch_expr);
7325 else
7326 switch_location = input_location;
7327 c_do_switch_warnings (cs->cases, switch_location,
7328 TREE_TYPE (cs->switch_expr),
7329 SWITCH_COND (cs->switch_expr));
7330
7331 /* Pop the stack. */
7332 c_switch_stack = cs->next;
7333 splay_tree_delete (cs->cases);
7334 XDELETE (cs);
7335 }
7336 \f
7337 /* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
7338 THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7339 may be null. NESTED_IF is true if THEN_BLOCK contains another IF
7340 statement, and was not surrounded with parenthesis. */
7341
7342 void
7343 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7344 tree else_block, bool nested_if)
7345 {
7346 tree stmt;
7347
7348 /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
7349 if (warn_parentheses && nested_if && else_block == NULL)
7350 {
7351 tree inner_if = then_block;
7352
7353 /* We know from the grammar productions that there is an IF nested
7354 within THEN_BLOCK. Due to labels and c99 conditional declarations,
7355 it might not be exactly THEN_BLOCK, but should be the last
7356 non-container statement within. */
7357 while (1)
7358 switch (TREE_CODE (inner_if))
7359 {
7360 case COND_EXPR:
7361 goto found;
7362 case BIND_EXPR:
7363 inner_if = BIND_EXPR_BODY (inner_if);
7364 break;
7365 case STATEMENT_LIST:
7366 inner_if = expr_last (then_block);
7367 break;
7368 case TRY_FINALLY_EXPR:
7369 case TRY_CATCH_EXPR:
7370 inner_if = TREE_OPERAND (inner_if, 0);
7371 break;
7372 default:
7373 gcc_unreachable ();
7374 }
7375 found:
7376
7377 if (COND_EXPR_ELSE (inner_if))
7378 warning (OPT_Wparentheses,
7379 "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7380 &if_locus);
7381 }
7382
7383 empty_if_body_warning (then_block, else_block);
7384
7385 stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7386 SET_EXPR_LOCATION (stmt, if_locus);
7387 add_stmt (stmt);
7388 }
7389
7390 /* Emit a general-purpose loop construct. START_LOCUS is the location of
7391 the beginning of the loop. COND is the loop condition. COND_IS_FIRST
7392 is false for DO loops. INCR is the FOR increment expression. BODY is
7393 the statement controlled by the loop. BLAB is the break label. CLAB is
7394 the continue label. Everything is allowed to be NULL. */
7395
7396 void
7397 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7398 tree blab, tree clab, bool cond_is_first)
7399 {
7400 tree entry = NULL, exit = NULL, t;
7401
7402 /* If the condition is zero don't generate a loop construct. */
7403 if (cond && integer_zerop (cond))
7404 {
7405 if (cond_is_first)
7406 {
7407 t = build_and_jump (&blab);
7408 SET_EXPR_LOCATION (t, start_locus);
7409 add_stmt (t);
7410 }
7411 }
7412 else
7413 {
7414 tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7415
7416 /* If we have an exit condition, then we build an IF with gotos either
7417 out of the loop, or to the top of it. If there's no exit condition,
7418 then we just build a jump back to the top. */
7419 exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7420
7421 if (cond && !integer_nonzerop (cond))
7422 {
7423 /* Canonicalize the loop condition to the end. This means
7424 generating a branch to the loop condition. Reuse the
7425 continue label, if possible. */
7426 if (cond_is_first)
7427 {
7428 if (incr || !clab)
7429 {
7430 entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7431 t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7432 }
7433 else
7434 t = build1 (GOTO_EXPR, void_type_node, clab);
7435 SET_EXPR_LOCATION (t, start_locus);
7436 add_stmt (t);
7437 }
7438
7439 t = build_and_jump (&blab);
7440 exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7441 if (cond_is_first)
7442 SET_EXPR_LOCATION (exit, start_locus);
7443 else
7444 SET_EXPR_LOCATION (exit, input_location);
7445 }
7446
7447 add_stmt (top);
7448 }
7449
7450 if (body)
7451 add_stmt (body);
7452 if (clab)
7453 add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7454 if (incr)
7455 add_stmt (incr);
7456 if (entry)
7457 add_stmt (entry);
7458 if (exit)
7459 add_stmt (exit);
7460 if (blab)
7461 add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7462 }
7463
7464 tree
7465 c_finish_bc_stmt (tree *label_p, bool is_break)
7466 {
7467 bool skip;
7468 tree label = *label_p;
7469
7470 /* In switch statements break is sometimes stylistically used after
7471 a return statement. This can lead to spurious warnings about
7472 control reaching the end of a non-void function when it is
7473 inlined. Note that we are calling block_may_fallthru with
7474 language specific tree nodes; this works because
7475 block_may_fallthru returns true when given something it does not
7476 understand. */
7477 skip = !block_may_fallthru (cur_stmt_list);
7478
7479 if (!label)
7480 {
7481 if (!skip)
7482 *label_p = label = create_artificial_label ();
7483 }
7484 else if (TREE_CODE (label) == LABEL_DECL)
7485 ;
7486 else switch (TREE_INT_CST_LOW (label))
7487 {
7488 case 0:
7489 if (is_break)
7490 error ("break statement not within loop or switch");
7491 else
7492 error ("continue statement not within a loop");
7493 return NULL_TREE;
7494
7495 case 1:
7496 gcc_assert (is_break);
7497 error ("break statement used with OpenMP for loop");
7498 return NULL_TREE;
7499
7500 default:
7501 gcc_unreachable ();
7502 }
7503
7504 if (skip)
7505 return NULL_TREE;
7506
7507 if (!is_break)
7508 add_stmt (build_predict_expr (PRED_CONTINUE, NOT_TAKEN));
7509
7510 return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7511 }
7512
7513 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
7514
7515 static void
7516 emit_side_effect_warnings (tree expr)
7517 {
7518 if (expr == error_mark_node)
7519 ;
7520 else if (!TREE_SIDE_EFFECTS (expr))
7521 {
7522 if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7523 warning (OPT_Wunused_value, "%Hstatement with no effect",
7524 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7525 }
7526 else
7527 warn_if_unused_value (expr, input_location);
7528 }
7529
7530 /* Process an expression as if it were a complete statement. Emit
7531 diagnostics, but do not call ADD_STMT. */
7532
7533 tree
7534 c_process_expr_stmt (tree expr)
7535 {
7536 if (!expr)
7537 return NULL_TREE;
7538
7539 if (warn_sequence_point)
7540 verify_sequence_points (expr);
7541
7542 if (TREE_TYPE (expr) != error_mark_node
7543 && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7544 && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7545 error ("expression statement has incomplete type");
7546
7547 /* If we're not processing a statement expression, warn about unused values.
7548 Warnings for statement expressions will be emitted later, once we figure
7549 out which is the result. */
7550 if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7551 && warn_unused_value)
7552 emit_side_effect_warnings (expr);
7553
7554 /* If the expression is not of a type to which we cannot assign a line
7555 number, wrap the thing in a no-op NOP_EXPR. */
7556 if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7557 expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7558
7559 if (CAN_HAVE_LOCATION_P (expr))
7560 SET_EXPR_LOCATION (expr, input_location);
7561
7562 return expr;
7563 }
7564
7565 /* Emit an expression as a statement. */
7566
7567 tree
7568 c_finish_expr_stmt (tree expr)
7569 {
7570 if (expr)
7571 return add_stmt (c_process_expr_stmt (expr));
7572 else
7573 return NULL;
7574 }
7575
7576 /* Do the opposite and emit a statement as an expression. To begin,
7577 create a new binding level and return it. */
7578
7579 tree
7580 c_begin_stmt_expr (void)
7581 {
7582 tree ret;
7583 struct c_label_context_se *nstack;
7584 struct c_label_list *glist;
7585
7586 /* We must force a BLOCK for this level so that, if it is not expanded
7587 later, there is a way to turn off the entire subtree of blocks that
7588 are contained in it. */
7589 keep_next_level ();
7590 ret = c_begin_compound_stmt (true);
7591 if (c_switch_stack)
7592 {
7593 c_switch_stack->blocked_stmt_expr++;
7594 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7595 }
7596 for (glist = label_context_stack_se->labels_used;
7597 glist != NULL;
7598 glist = glist->next)
7599 {
7600 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7601 }
7602 nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7603 nstack->labels_def = NULL;
7604 nstack->labels_used = NULL;
7605 nstack->next = label_context_stack_se;
7606 label_context_stack_se = nstack;
7607
7608 /* Mark the current statement list as belonging to a statement list. */
7609 STATEMENT_LIST_STMT_EXPR (ret) = 1;
7610
7611 return ret;
7612 }
7613
7614 tree
7615 c_finish_stmt_expr (tree body)
7616 {
7617 tree last, type, tmp, val;
7618 tree *last_p;
7619 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7620
7621 body = c_end_compound_stmt (body, true);
7622 if (c_switch_stack)
7623 {
7624 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7625 c_switch_stack->blocked_stmt_expr--;
7626 }
7627 /* It is no longer possible to jump to labels defined within this
7628 statement expression. */
7629 for (dlist = label_context_stack_se->labels_def;
7630 dlist != NULL;
7631 dlist = dlist->next)
7632 {
7633 C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7634 }
7635 /* It is again possible to define labels with a goto just outside
7636 this statement expression. */
7637 for (glist = label_context_stack_se->next->labels_used;
7638 glist != NULL;
7639 glist = glist->next)
7640 {
7641 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7642 glist_prev = glist;
7643 }
7644 if (glist_prev != NULL)
7645 glist_prev->next = label_context_stack_se->labels_used;
7646 else
7647 label_context_stack_se->next->labels_used
7648 = label_context_stack_se->labels_used;
7649 label_context_stack_se = label_context_stack_se->next;
7650
7651 /* Locate the last statement in BODY. See c_end_compound_stmt
7652 about always returning a BIND_EXPR. */
7653 last_p = &BIND_EXPR_BODY (body);
7654 last = BIND_EXPR_BODY (body);
7655
7656 continue_searching:
7657 if (TREE_CODE (last) == STATEMENT_LIST)
7658 {
7659 tree_stmt_iterator i;
7660
7661 /* This can happen with degenerate cases like ({ }). No value. */
7662 if (!TREE_SIDE_EFFECTS (last))
7663 return body;
7664
7665 /* If we're supposed to generate side effects warnings, process
7666 all of the statements except the last. */
7667 if (warn_unused_value)
7668 {
7669 for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7670 emit_side_effect_warnings (tsi_stmt (i));
7671 }
7672 else
7673 i = tsi_last (last);
7674 last_p = tsi_stmt_ptr (i);
7675 last = *last_p;
7676 }
7677
7678 /* If the end of the list is exception related, then the list was split
7679 by a call to push_cleanup. Continue searching. */
7680 if (TREE_CODE (last) == TRY_FINALLY_EXPR
7681 || TREE_CODE (last) == TRY_CATCH_EXPR)
7682 {
7683 last_p = &TREE_OPERAND (last, 0);
7684 last = *last_p;
7685 goto continue_searching;
7686 }
7687
7688 /* In the case that the BIND_EXPR is not necessary, return the
7689 expression out from inside it. */
7690 if (last == error_mark_node
7691 || (last == BIND_EXPR_BODY (body)
7692 && BIND_EXPR_VARS (body) == NULL))
7693 {
7694 /* Do not warn if the return value of a statement expression is
7695 unused. */
7696 if (CAN_HAVE_LOCATION_P (last))
7697 TREE_NO_WARNING (last) = 1;
7698 return last;
7699 }
7700
7701 /* Extract the type of said expression. */
7702 type = TREE_TYPE (last);
7703
7704 /* If we're not returning a value at all, then the BIND_EXPR that
7705 we already have is a fine expression to return. */
7706 if (!type || VOID_TYPE_P (type))
7707 return body;
7708
7709 /* Now that we've located the expression containing the value, it seems
7710 silly to make voidify_wrapper_expr repeat the process. Create a
7711 temporary of the appropriate type and stick it in a TARGET_EXPR. */
7712 tmp = create_tmp_var_raw (type, NULL);
7713
7714 /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
7715 tree_expr_nonnegative_p giving up immediately. */
7716 val = last;
7717 if (TREE_CODE (val) == NOP_EXPR
7718 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7719 val = TREE_OPERAND (val, 0);
7720
7721 *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7722 SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7723
7724 return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7725 }
7726
7727 /* Begin the scope of an identifier of variably modified type, scope
7728 number SCOPE. Jumping from outside this scope to inside it is not
7729 permitted. */
7730
7731 void
7732 c_begin_vm_scope (unsigned int scope)
7733 {
7734 struct c_label_context_vm *nstack;
7735 struct c_label_list *glist;
7736
7737 gcc_assert (scope > 0);
7738
7739 /* At file_scope, we don't have to do any processing. */
7740 if (label_context_stack_vm == NULL)
7741 return;
7742
7743 if (c_switch_stack && !c_switch_stack->blocked_vm)
7744 c_switch_stack->blocked_vm = scope;
7745 for (glist = label_context_stack_vm->labels_used;
7746 glist != NULL;
7747 glist = glist->next)
7748 {
7749 C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7750 }
7751 nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7752 nstack->labels_def = NULL;
7753 nstack->labels_used = NULL;
7754 nstack->scope = scope;
7755 nstack->next = label_context_stack_vm;
7756 label_context_stack_vm = nstack;
7757 }
7758
7759 /* End a scope which may contain identifiers of variably modified
7760 type, scope number SCOPE. */
7761
7762 void
7763 c_end_vm_scope (unsigned int scope)
7764 {
7765 if (label_context_stack_vm == NULL)
7766 return;
7767 if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7768 c_switch_stack->blocked_vm = 0;
7769 /* We may have a number of nested scopes of identifiers with
7770 variably modified type, all at this depth. Pop each in turn. */
7771 while (label_context_stack_vm->scope == scope)
7772 {
7773 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7774
7775 /* It is no longer possible to jump to labels defined within this
7776 scope. */
7777 for (dlist = label_context_stack_vm->labels_def;
7778 dlist != NULL;
7779 dlist = dlist->next)
7780 {
7781 C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7782 }
7783 /* It is again possible to define labels with a goto just outside
7784 this scope. */
7785 for (glist = label_context_stack_vm->next->labels_used;
7786 glist != NULL;
7787 glist = glist->next)
7788 {
7789 C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7790 glist_prev = glist;
7791 }
7792 if (glist_prev != NULL)
7793 glist_prev->next = label_context_stack_vm->labels_used;
7794 else
7795 label_context_stack_vm->next->labels_used
7796 = label_context_stack_vm->labels_used;
7797 label_context_stack_vm = label_context_stack_vm->next;
7798 }
7799 }
7800 \f
7801 /* Begin and end compound statements. This is as simple as pushing
7802 and popping new statement lists from the tree. */
7803
7804 tree
7805 c_begin_compound_stmt (bool do_scope)
7806 {
7807 tree stmt = push_stmt_list ();
7808 if (do_scope)
7809 push_scope ();
7810 return stmt;
7811 }
7812
7813 tree
7814 c_end_compound_stmt (tree stmt, bool do_scope)
7815 {
7816 tree block = NULL;
7817
7818 if (do_scope)
7819 {
7820 if (c_dialect_objc ())
7821 objc_clear_super_receiver ();
7822 block = pop_scope ();
7823 }
7824
7825 stmt = pop_stmt_list (stmt);
7826 stmt = c_build_bind_expr (block, stmt);
7827
7828 /* If this compound statement is nested immediately inside a statement
7829 expression, then force a BIND_EXPR to be created. Otherwise we'll
7830 do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
7831 STATEMENT_LISTs merge, and thus we can lose track of what statement
7832 was really last. */
7833 if (cur_stmt_list
7834 && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7835 && TREE_CODE (stmt) != BIND_EXPR)
7836 {
7837 stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7838 TREE_SIDE_EFFECTS (stmt) = 1;
7839 }
7840
7841 return stmt;
7842 }
7843
7844 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
7845 when the current scope is exited. EH_ONLY is true when this is not
7846 meant to apply to normal control flow transfer. */
7847
7848 void
7849 push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7850 {
7851 enum tree_code code;
7852 tree stmt, list;
7853 bool stmt_expr;
7854
7855 code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7856 stmt = build_stmt (code, NULL, cleanup);
7857 add_stmt (stmt);
7858 stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7859 list = push_stmt_list ();
7860 TREE_OPERAND (stmt, 0) = list;
7861 STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7862 }
7863 \f
7864 /* Build a binary-operation expression without default conversions.
7865 CODE is the kind of expression to build.
7866 This function differs from `build' in several ways:
7867 the data type of the result is computed and recorded in it,
7868 warnings are generated if arg data types are invalid,
7869 special handling for addition and subtraction of pointers is known,
7870 and some optimization is done (operations on narrow ints
7871 are done in the narrower type when that gives the same result).
7872 Constant folding is also done before the result is returned.
7873
7874 Note that the operands will never have enumeral types, or function
7875 or array types, because either they will have the default conversions
7876 performed or they have both just been converted to some other type in which
7877 the arithmetic is to be done. */
7878
7879 tree
7880 build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7881 int convert_p)
7882 {
7883 tree type0, type1;
7884 enum tree_code code0, code1;
7885 tree op0, op1;
7886 const char *invalid_op_diag;
7887
7888 /* Expression code to give to the expression when it is built.
7889 Normally this is CODE, which is what the caller asked for,
7890 but in some special cases we change it. */
7891 enum tree_code resultcode = code;
7892
7893 /* Data type in which the computation is to be performed.
7894 In the simplest cases this is the common type of the arguments. */
7895 tree result_type = NULL;
7896
7897 /* Nonzero means operands have already been type-converted
7898 in whatever way is necessary.
7899 Zero means they need to be converted to RESULT_TYPE. */
7900 int converted = 0;
7901
7902 /* Nonzero means create the expression with this type, rather than
7903 RESULT_TYPE. */
7904 tree build_type = 0;
7905
7906 /* Nonzero means after finally constructing the expression
7907 convert it to this type. */
7908 tree final_type = 0;
7909
7910 /* Nonzero if this is an operation like MIN or MAX which can
7911 safely be computed in short if both args are promoted shorts.
7912 Also implies COMMON.
7913 -1 indicates a bitwise operation; this makes a difference
7914 in the exact conditions for when it is safe to do the operation
7915 in a narrower mode. */
7916 int shorten = 0;
7917
7918 /* Nonzero if this is a comparison operation;
7919 if both args are promoted shorts, compare the original shorts.
7920 Also implies COMMON. */
7921 int short_compare = 0;
7922
7923 /* Nonzero if this is a right-shift operation, which can be computed on the
7924 original short and then promoted if the operand is a promoted short. */
7925 int short_shift = 0;
7926
7927 /* Nonzero means set RESULT_TYPE to the common type of the args. */
7928 int common = 0;
7929
7930 /* True means types are compatible as far as ObjC is concerned. */
7931 bool objc_ok;
7932
7933 if (convert_p)
7934 {
7935 op0 = default_conversion (orig_op0);
7936 op1 = default_conversion (orig_op1);
7937 }
7938 else
7939 {
7940 op0 = orig_op0;
7941 op1 = orig_op1;
7942 }
7943
7944 type0 = TREE_TYPE (op0);
7945 type1 = TREE_TYPE (op1);
7946
7947 /* The expression codes of the data types of the arguments tell us
7948 whether the arguments are integers, floating, pointers, etc. */
7949 code0 = TREE_CODE (type0);
7950 code1 = TREE_CODE (type1);
7951
7952 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
7953 STRIP_TYPE_NOPS (op0);
7954 STRIP_TYPE_NOPS (op1);
7955
7956 /* If an error was already reported for one of the arguments,
7957 avoid reporting another error. */
7958
7959 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7960 return error_mark_node;
7961
7962 if ((invalid_op_diag
7963 = targetm.invalid_binary_op (code, type0, type1)))
7964 {
7965 error (invalid_op_diag);
7966 return error_mark_node;
7967 }
7968
7969 objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7970
7971 switch (code)
7972 {
7973 case PLUS_EXPR:
7974 /* Handle the pointer + int case. */
7975 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7976 return pointer_int_sum (PLUS_EXPR, op0, op1);
7977 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7978 return pointer_int_sum (PLUS_EXPR, op1, op0);
7979 else
7980 common = 1;
7981 break;
7982
7983 case MINUS_EXPR:
7984 /* Subtraction of two similar pointers.
7985 We must subtract them as integers, then divide by object size. */
7986 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7987 && comp_target_types (type0, type1))
7988 return pointer_diff (op0, op1);
7989 /* Handle pointer minus int. Just like pointer plus int. */
7990 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7991 return pointer_int_sum (MINUS_EXPR, op0, op1);
7992 else
7993 common = 1;
7994 break;
7995
7996 case MULT_EXPR:
7997 common = 1;
7998 break;
7999
8000 case TRUNC_DIV_EXPR:
8001 case CEIL_DIV_EXPR:
8002 case FLOOR_DIV_EXPR:
8003 case ROUND_DIV_EXPR:
8004 case EXACT_DIV_EXPR:
8005 warn_for_div_by_zero (op1);
8006
8007 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8008 || code0 == FIXED_POINT_TYPE
8009 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
8010 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8011 || code1 == FIXED_POINT_TYPE
8012 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
8013 {
8014 enum tree_code tcode0 = code0, tcode1 = code1;
8015
8016 if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
8017 tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
8018 if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
8019 tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
8020
8021 if (!((tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE)
8022 || (tcode0 == FIXED_POINT_TYPE && tcode1 == FIXED_POINT_TYPE)))
8023 resultcode = RDIV_EXPR;
8024 else
8025 /* Although it would be tempting to shorten always here, that
8026 loses on some targets, since the modulo instruction is
8027 undefined if the quotient can't be represented in the
8028 computation mode. We shorten only if unsigned or if
8029 dividing by something we know != -1. */
8030 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
8031 || (TREE_CODE (op1) == INTEGER_CST
8032 && !integer_all_onesp (op1)));
8033 common = 1;
8034 }
8035 break;
8036
8037 case BIT_AND_EXPR:
8038 case BIT_IOR_EXPR:
8039 case BIT_XOR_EXPR:
8040 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8041 shorten = -1;
8042 /* Allow vector types which are not floating point types. */
8043 else if (code0 == VECTOR_TYPE
8044 && code1 == VECTOR_TYPE
8045 && !VECTOR_FLOAT_TYPE_P (type0)
8046 && !VECTOR_FLOAT_TYPE_P (type1))
8047 common = 1;
8048 break;
8049
8050 case TRUNC_MOD_EXPR:
8051 case FLOOR_MOD_EXPR:
8052 warn_for_div_by_zero (op1);
8053
8054 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8055 {
8056 /* Although it would be tempting to shorten always here, that loses
8057 on some targets, since the modulo instruction is undefined if the
8058 quotient can't be represented in the computation mode. We shorten
8059 only if unsigned or if dividing by something we know != -1. */
8060 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
8061 || (TREE_CODE (op1) == INTEGER_CST
8062 && !integer_all_onesp (op1)));
8063 common = 1;
8064 }
8065 break;
8066
8067 case TRUTH_ANDIF_EXPR:
8068 case TRUTH_ORIF_EXPR:
8069 case TRUTH_AND_EXPR:
8070 case TRUTH_OR_EXPR:
8071 case TRUTH_XOR_EXPR:
8072 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
8073 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8074 || code0 == FIXED_POINT_TYPE)
8075 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
8076 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8077 || code1 == FIXED_POINT_TYPE))
8078 {
8079 /* Result of these operations is always an int,
8080 but that does not mean the operands should be
8081 converted to ints! */
8082 result_type = integer_type_node;
8083 op0 = c_common_truthvalue_conversion (op0);
8084 op1 = c_common_truthvalue_conversion (op1);
8085 converted = 1;
8086 }
8087 break;
8088
8089 /* Shift operations: result has same type as first operand;
8090 always convert second operand to int.
8091 Also set SHORT_SHIFT if shifting rightward. */
8092
8093 case RSHIFT_EXPR:
8094 if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE)
8095 && code1 == INTEGER_TYPE)
8096 {
8097 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8098 {
8099 if (tree_int_cst_sgn (op1) < 0)
8100 warning (0, "right shift count is negative");
8101 else
8102 {
8103 if (!integer_zerop (op1))
8104 short_shift = 1;
8105
8106 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8107 warning (0, "right shift count >= width of type");
8108 }
8109 }
8110
8111 /* Use the type of the value to be shifted. */
8112 result_type = type0;
8113 /* Convert the shift-count to an integer, regardless of size
8114 of value being shifted. */
8115 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8116 op1 = convert (integer_type_node, op1);
8117 /* Avoid converting op1 to result_type later. */
8118 converted = 1;
8119 }
8120 break;
8121
8122 case LSHIFT_EXPR:
8123 if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE)
8124 && code1 == INTEGER_TYPE)
8125 {
8126 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8127 {
8128 if (tree_int_cst_sgn (op1) < 0)
8129 warning (0, "left shift count is negative");
8130
8131 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8132 warning (0, "left shift count >= width of type");
8133 }
8134
8135 /* Use the type of the value to be shifted. */
8136 result_type = type0;
8137 /* Convert the shift-count to an integer, regardless of size
8138 of value being shifted. */
8139 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8140 op1 = convert (integer_type_node, op1);
8141 /* Avoid converting op1 to result_type later. */
8142 converted = 1;
8143 }
8144 break;
8145
8146 case EQ_EXPR:
8147 case NE_EXPR:
8148 if (FLOAT_TYPE_P (type0) || FLOAT_TYPE_P (type1))
8149 warning (OPT_Wfloat_equal,
8150 "comparing floating point with == or != is unsafe");
8151 /* Result of comparison is always int,
8152 but don't convert the args to int! */
8153 build_type = integer_type_node;
8154 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8155 || code0 == FIXED_POINT_TYPE || code0 == COMPLEX_TYPE)
8156 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8157 || code1 == FIXED_POINT_TYPE || code1 == COMPLEX_TYPE))
8158 short_compare = 1;
8159 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8160 {
8161 tree tt0 = TREE_TYPE (type0);
8162 tree tt1 = TREE_TYPE (type1);
8163 /* Anything compares with void *. void * compares with anything.
8164 Otherwise, the targets must be compatible
8165 and both must be object or both incomplete. */
8166 if (comp_target_types (type0, type1))
8167 result_type = common_pointer_type (type0, type1);
8168 else if (VOID_TYPE_P (tt0))
8169 {
8170 /* op0 != orig_op0 detects the case of something
8171 whose value is 0 but which isn't a valid null ptr const. */
8172 if (pedantic && !null_pointer_constant_p (orig_op0)
8173 && TREE_CODE (tt1) == FUNCTION_TYPE)
8174 pedwarn ("ISO C forbids comparison of %<void *%>"
8175 " with function pointer");
8176 }
8177 else if (VOID_TYPE_P (tt1))
8178 {
8179 if (pedantic && !null_pointer_constant_p (orig_op1)
8180 && TREE_CODE (tt0) == FUNCTION_TYPE)
8181 pedwarn ("ISO C forbids comparison of %<void *%>"
8182 " with function pointer");
8183 }
8184 else
8185 /* Avoid warning about the volatile ObjC EH puts on decls. */
8186 if (!objc_ok)
8187 pedwarn ("comparison of distinct pointer types lacks a cast");
8188
8189 if (result_type == NULL_TREE)
8190 result_type = ptr_type_node;
8191 }
8192 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8193 {
8194 if (TREE_CODE (op0) == ADDR_EXPR
8195 && decl_with_nonnull_addr_p (TREE_OPERAND (op0, 0)))
8196 warning (OPT_Waddress, "the address of %qD will never be NULL",
8197 TREE_OPERAND (op0, 0));
8198 result_type = type0;
8199 }
8200 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8201 {
8202 if (TREE_CODE (op1) == ADDR_EXPR
8203 && decl_with_nonnull_addr_p (TREE_OPERAND (op1, 0)))
8204 warning (OPT_Waddress, "the address of %qD will never be NULL",
8205 TREE_OPERAND (op1, 0));
8206 result_type = type1;
8207 }
8208 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8209 {
8210 result_type = type0;
8211 pedwarn ("comparison between pointer and integer");
8212 }
8213 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8214 {
8215 result_type = type1;
8216 pedwarn ("comparison between pointer and integer");
8217 }
8218 break;
8219
8220 case LE_EXPR:
8221 case GE_EXPR:
8222 case LT_EXPR:
8223 case GT_EXPR:
8224 build_type = integer_type_node;
8225 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8226 || code0 == FIXED_POINT_TYPE)
8227 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8228 || code1 == FIXED_POINT_TYPE))
8229 short_compare = 1;
8230 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8231 {
8232 if (comp_target_types (type0, type1))
8233 {
8234 result_type = common_pointer_type (type0, type1);
8235 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8236 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8237 pedwarn ("comparison of complete and incomplete pointers");
8238 else if (pedantic
8239 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8240 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8241 }
8242 else
8243 {
8244 result_type = ptr_type_node;
8245 pedwarn ("comparison of distinct pointer types lacks a cast");
8246 }
8247 }
8248 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8249 {
8250 result_type = type0;
8251 if (pedantic || extra_warnings)
8252 pedwarn ("ordered comparison of pointer with integer zero");
8253 }
8254 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8255 {
8256 result_type = type1;
8257 if (pedantic)
8258 pedwarn ("ordered comparison of pointer with integer zero");
8259 }
8260 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8261 {
8262 result_type = type0;
8263 pedwarn ("comparison between pointer and integer");
8264 }
8265 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8266 {
8267 result_type = type1;
8268 pedwarn ("comparison between pointer and integer");
8269 }
8270 break;
8271
8272 default:
8273 gcc_unreachable ();
8274 }
8275
8276 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8277 return error_mark_node;
8278
8279 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8280 && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8281 || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8282 TREE_TYPE (type1))))
8283 {
8284 binary_op_error (code, type0, type1);
8285 return error_mark_node;
8286 }
8287
8288 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8289 || code0 == FIXED_POINT_TYPE || code0 == VECTOR_TYPE)
8290 &&
8291 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8292 || code1 == FIXED_POINT_TYPE || code1 == VECTOR_TYPE))
8293 {
8294 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8295
8296 if (shorten || common || short_compare)
8297 {
8298 result_type = c_common_type (type0, type1);
8299 if (result_type == error_mark_node)
8300 return error_mark_node;
8301 }
8302
8303 /* For certain operations (which identify themselves by shorten != 0)
8304 if both args were extended from the same smaller type,
8305 do the arithmetic in that type and then extend.
8306
8307 shorten !=0 and !=1 indicates a bitwise operation.
8308 For them, this optimization is safe only if
8309 both args are zero-extended or both are sign-extended.
8310 Otherwise, we might change the result.
8311 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8312 but calculated in (unsigned short) it would be (unsigned short)-1. */
8313
8314 if (shorten && none_complex)
8315 {
8316 int unsigned0, unsigned1;
8317 tree arg0, arg1;
8318 int uns;
8319 tree type;
8320
8321 /* Cast OP0 and OP1 to RESULT_TYPE. Doing so prevents
8322 excessive narrowing when we call get_narrower below. For
8323 example, suppose that OP0 is of unsigned int extended
8324 from signed char and that RESULT_TYPE is long long int.
8325 If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
8326 like
8327
8328 (long long int) (unsigned int) signed_char
8329
8330 which get_narrower would narrow down to
8331
8332 (unsigned int) signed char
8333
8334 If we do not cast OP0 first, get_narrower would return
8335 signed_char, which is inconsistent with the case of the
8336 explicit cast. */
8337 op0 = convert (result_type, op0);
8338 op1 = convert (result_type, op1);
8339
8340 arg0 = get_narrower (op0, &unsigned0);
8341 arg1 = get_narrower (op1, &unsigned1);
8342
8343 /* UNS is 1 if the operation to be done is an unsigned one. */
8344 uns = TYPE_UNSIGNED (result_type);
8345
8346 final_type = result_type;
8347
8348 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8349 but it *requires* conversion to FINAL_TYPE. */
8350
8351 if ((TYPE_PRECISION (TREE_TYPE (op0))
8352 == TYPE_PRECISION (TREE_TYPE (arg0)))
8353 && TREE_TYPE (op0) != final_type)
8354 unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8355 if ((TYPE_PRECISION (TREE_TYPE (op1))
8356 == TYPE_PRECISION (TREE_TYPE (arg1)))
8357 && TREE_TYPE (op1) != final_type)
8358 unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8359
8360 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
8361
8362 /* For bitwise operations, signedness of nominal type
8363 does not matter. Consider only how operands were extended. */
8364 if (shorten == -1)
8365 uns = unsigned0;
8366
8367 /* Note that in all three cases below we refrain from optimizing
8368 an unsigned operation on sign-extended args.
8369 That would not be valid. */
8370
8371 /* Both args variable: if both extended in same way
8372 from same width, do it in that width.
8373 Do it unsigned if args were zero-extended. */
8374 if ((TYPE_PRECISION (TREE_TYPE (arg0))
8375 < TYPE_PRECISION (result_type))
8376 && (TYPE_PRECISION (TREE_TYPE (arg1))
8377 == TYPE_PRECISION (TREE_TYPE (arg0)))
8378 && unsigned0 == unsigned1
8379 && (unsigned0 || !uns))
8380 result_type
8381 = c_common_signed_or_unsigned_type
8382 (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8383 else if (TREE_CODE (arg0) == INTEGER_CST
8384 && (unsigned1 || !uns)
8385 && (TYPE_PRECISION (TREE_TYPE (arg1))
8386 < TYPE_PRECISION (result_type))
8387 && (type
8388 = c_common_signed_or_unsigned_type (unsigned1,
8389 TREE_TYPE (arg1)))
8390 && !POINTER_TYPE_P (type)
8391 && int_fits_type_p (arg0, type))
8392 result_type = type;
8393 else if (TREE_CODE (arg1) == INTEGER_CST
8394 && (unsigned0 || !uns)
8395 && (TYPE_PRECISION (TREE_TYPE (arg0))
8396 < TYPE_PRECISION (result_type))
8397 && (type
8398 = c_common_signed_or_unsigned_type (unsigned0,
8399 TREE_TYPE (arg0)))
8400 && !POINTER_TYPE_P (type)
8401 && int_fits_type_p (arg1, type))
8402 result_type = type;
8403 }
8404
8405 /* Shifts can be shortened if shifting right. */
8406
8407 if (short_shift)
8408 {
8409 int unsigned_arg;
8410 tree arg0 = get_narrower (op0, &unsigned_arg);
8411
8412 final_type = result_type;
8413
8414 if (arg0 == op0 && final_type == TREE_TYPE (op0))
8415 unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8416
8417 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8418 /* We can shorten only if the shift count is less than the
8419 number of bits in the smaller type size. */
8420 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8421 /* We cannot drop an unsigned shift after sign-extension. */
8422 && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8423 {
8424 /* Do an unsigned shift if the operand was zero-extended. */
8425 result_type
8426 = c_common_signed_or_unsigned_type (unsigned_arg,
8427 TREE_TYPE (arg0));
8428 /* Convert value-to-be-shifted to that type. */
8429 if (TREE_TYPE (op0) != result_type)
8430 op0 = convert (result_type, op0);
8431 converted = 1;
8432 }
8433 }
8434
8435 /* Comparison operations are shortened too but differently.
8436 They identify themselves by setting short_compare = 1. */
8437
8438 if (short_compare)
8439 {
8440 /* Don't write &op0, etc., because that would prevent op0
8441 from being kept in a register.
8442 Instead, make copies of the our local variables and
8443 pass the copies by reference, then copy them back afterward. */
8444 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8445 enum tree_code xresultcode = resultcode;
8446 tree val
8447 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8448
8449 if (val != 0)
8450 return val;
8451
8452 op0 = xop0, op1 = xop1;
8453 converted = 1;
8454 resultcode = xresultcode;
8455
8456 if (warn_sign_compare && skip_evaluation == 0)
8457 {
8458 int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8459 int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8460 int unsignedp0, unsignedp1;
8461 tree primop0 = get_narrower (op0, &unsignedp0);
8462 tree primop1 = get_narrower (op1, &unsignedp1);
8463
8464 xop0 = orig_op0;
8465 xop1 = orig_op1;
8466 STRIP_TYPE_NOPS (xop0);
8467 STRIP_TYPE_NOPS (xop1);
8468
8469 /* Give warnings for comparisons between signed and unsigned
8470 quantities that may fail.
8471
8472 Do the checking based on the original operand trees, so that
8473 casts will be considered, but default promotions won't be.
8474
8475 Do not warn if the comparison is being done in a signed type,
8476 since the signed type will only be chosen if it can represent
8477 all the values of the unsigned type. */
8478 if (!TYPE_UNSIGNED (result_type))
8479 /* OK */;
8480 /* Do not warn if both operands are the same signedness. */
8481 else if (op0_signed == op1_signed)
8482 /* OK */;
8483 else
8484 {
8485 tree sop, uop;
8486 bool ovf;
8487
8488 if (op0_signed)
8489 sop = xop0, uop = xop1;
8490 else
8491 sop = xop1, uop = xop0;
8492
8493 /* Do not warn if the signed quantity is an
8494 unsuffixed integer literal (or some static
8495 constant expression involving such literals or a
8496 conditional expression involving such literals)
8497 and it is non-negative. */
8498 if (tree_expr_nonnegative_warnv_p (sop, &ovf))
8499 /* OK */;
8500 /* Do not warn if the comparison is an equality operation,
8501 the unsigned quantity is an integral constant, and it
8502 would fit in the result if the result were signed. */
8503 else if (TREE_CODE (uop) == INTEGER_CST
8504 && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8505 && int_fits_type_p
8506 (uop, c_common_signed_type (result_type)))
8507 /* OK */;
8508 /* Do not warn if the unsigned quantity is an enumeration
8509 constant and its maximum value would fit in the result
8510 if the result were signed. */
8511 else if (TREE_CODE (uop) == INTEGER_CST
8512 && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8513 && int_fits_type_p
8514 (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8515 c_common_signed_type (result_type)))
8516 /* OK */;
8517 else
8518 warning (OPT_Wsign_compare, "comparison between signed and unsigned");
8519 }
8520
8521 /* Warn if two unsigned values are being compared in a size
8522 larger than their original size, and one (and only one) is the
8523 result of a `~' operator. This comparison will always fail.
8524
8525 Also warn if one operand is a constant, and the constant
8526 does not have all bits set that are set in the ~ operand
8527 when it is extended. */
8528
8529 if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8530 != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8531 {
8532 if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8533 primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8534 &unsignedp0);
8535 else
8536 primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8537 &unsignedp1);
8538
8539 if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8540 {
8541 tree primop;
8542 HOST_WIDE_INT constant, mask;
8543 int unsignedp, bits;
8544
8545 if (host_integerp (primop0, 0))
8546 {
8547 primop = primop1;
8548 unsignedp = unsignedp1;
8549 constant = tree_low_cst (primop0, 0);
8550 }
8551 else
8552 {
8553 primop = primop0;
8554 unsignedp = unsignedp0;
8555 constant = tree_low_cst (primop1, 0);
8556 }
8557
8558 bits = TYPE_PRECISION (TREE_TYPE (primop));
8559 if (bits < TYPE_PRECISION (result_type)
8560 && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8561 {
8562 mask = (~(HOST_WIDE_INT) 0) << bits;
8563 if ((mask & constant) != mask)
8564 warning (OPT_Wsign_compare, "comparison of promoted ~unsigned with constant");
8565 }
8566 }
8567 else if (unsignedp0 && unsignedp1
8568 && (TYPE_PRECISION (TREE_TYPE (primop0))
8569 < TYPE_PRECISION (result_type))
8570 && (TYPE_PRECISION (TREE_TYPE (primop1))
8571 < TYPE_PRECISION (result_type)))
8572 warning (OPT_Wsign_compare, "comparison of promoted ~unsigned with unsigned");
8573 }
8574 }
8575 }
8576 }
8577
8578 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8579 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8580 Then the expression will be built.
8581 It will be given type FINAL_TYPE if that is nonzero;
8582 otherwise, it will be given type RESULT_TYPE. */
8583
8584 if (!result_type)
8585 {
8586 binary_op_error (code, TREE_TYPE (op0), TREE_TYPE (op1));
8587 return error_mark_node;
8588 }
8589
8590 if (!converted)
8591 {
8592 if (TREE_TYPE (op0) != result_type)
8593 op0 = convert_and_check (result_type, op0);
8594 if (TREE_TYPE (op1) != result_type)
8595 op1 = convert_and_check (result_type, op1);
8596
8597 /* This can happen if one operand has a vector type, and the other
8598 has a different type. */
8599 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8600 return error_mark_node;
8601 }
8602
8603 if (build_type == NULL_TREE)
8604 build_type = result_type;
8605
8606 {
8607 /* Treat expressions in initializers specially as they can't trap. */
8608 tree result = require_constant_value ? fold_build2_initializer (resultcode,
8609 build_type,
8610 op0, op1)
8611 : fold_build2 (resultcode, build_type,
8612 op0, op1);
8613
8614 if (final_type != 0)
8615 result = convert (final_type, result);
8616 return result;
8617 }
8618 }
8619
8620
8621 /* Convert EXPR to be a truth-value, validating its type for this
8622 purpose. */
8623
8624 tree
8625 c_objc_common_truthvalue_conversion (tree expr)
8626 {
8627 switch (TREE_CODE (TREE_TYPE (expr)))
8628 {
8629 case ARRAY_TYPE:
8630 error ("used array that cannot be converted to pointer where scalar is required");
8631 return error_mark_node;
8632
8633 case RECORD_TYPE:
8634 error ("used struct type value where scalar is required");
8635 return error_mark_node;
8636
8637 case UNION_TYPE:
8638 error ("used union type value where scalar is required");
8639 return error_mark_node;
8640
8641 case FUNCTION_TYPE:
8642 gcc_unreachable ();
8643
8644 default:
8645 break;
8646 }
8647
8648 /* ??? Should we also give an error for void and vectors rather than
8649 leaving those to give errors later? */
8650 return c_common_truthvalue_conversion (expr);
8651 }
8652 \f
8653
8654 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8655 required. */
8656
8657 tree
8658 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8659 bool *ti ATTRIBUTE_UNUSED, bool *se)
8660 {
8661 if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8662 {
8663 tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8664 /* Executing a compound literal inside a function reinitializes
8665 it. */
8666 if (!TREE_STATIC (decl))
8667 *se = true;
8668 return decl;
8669 }
8670 else
8671 return expr;
8672 }
8673 \f
8674 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
8675
8676 tree
8677 c_begin_omp_parallel (void)
8678 {
8679 tree block;
8680
8681 keep_next_level ();
8682 block = c_begin_compound_stmt (true);
8683
8684 return block;
8685 }
8686
8687 tree
8688 c_finish_omp_parallel (tree clauses, tree block)
8689 {
8690 tree stmt;
8691
8692 block = c_end_compound_stmt (block, true);
8693
8694 stmt = make_node (OMP_PARALLEL);
8695 TREE_TYPE (stmt) = void_type_node;
8696 OMP_PARALLEL_CLAUSES (stmt) = clauses;
8697 OMP_PARALLEL_BODY (stmt) = block;
8698
8699 return add_stmt (stmt);
8700 }
8701
8702 /* For all elements of CLAUSES, validate them vs OpenMP constraints.
8703 Remove any elements from the list that are invalid. */
8704
8705 tree
8706 c_finish_omp_clauses (tree clauses)
8707 {
8708 bitmap_head generic_head, firstprivate_head, lastprivate_head;
8709 tree c, t, *pc = &clauses;
8710 const char *name;
8711
8712 bitmap_obstack_initialize (NULL);
8713 bitmap_initialize (&generic_head, &bitmap_default_obstack);
8714 bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8715 bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8716
8717 for (pc = &clauses, c = clauses; c ; c = *pc)
8718 {
8719 bool remove = false;
8720 bool need_complete = false;
8721 bool need_implicitly_determined = false;
8722
8723 switch (OMP_CLAUSE_CODE (c))
8724 {
8725 case OMP_CLAUSE_SHARED:
8726 name = "shared";
8727 need_implicitly_determined = true;
8728 goto check_dup_generic;
8729
8730 case OMP_CLAUSE_PRIVATE:
8731 name = "private";
8732 need_complete = true;
8733 need_implicitly_determined = true;
8734 goto check_dup_generic;
8735
8736 case OMP_CLAUSE_REDUCTION:
8737 name = "reduction";
8738 need_implicitly_determined = true;
8739 t = OMP_CLAUSE_DECL (c);
8740 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8741 || POINTER_TYPE_P (TREE_TYPE (t)))
8742 {
8743 error ("%qE has invalid type for %<reduction%>", t);
8744 remove = true;
8745 }
8746 else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8747 {
8748 enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8749 const char *r_name = NULL;
8750
8751 switch (r_code)
8752 {
8753 case PLUS_EXPR:
8754 case MULT_EXPR:
8755 case MINUS_EXPR:
8756 break;
8757 case BIT_AND_EXPR:
8758 r_name = "&";
8759 break;
8760 case BIT_XOR_EXPR:
8761 r_name = "^";
8762 break;
8763 case BIT_IOR_EXPR:
8764 r_name = "|";
8765 break;
8766 case TRUTH_ANDIF_EXPR:
8767 r_name = "&&";
8768 break;
8769 case TRUTH_ORIF_EXPR:
8770 r_name = "||";
8771 break;
8772 default:
8773 gcc_unreachable ();
8774 }
8775 if (r_name)
8776 {
8777 error ("%qE has invalid type for %<reduction(%s)%>",
8778 t, r_name);
8779 remove = true;
8780 }
8781 }
8782 goto check_dup_generic;
8783
8784 case OMP_CLAUSE_COPYPRIVATE:
8785 name = "copyprivate";
8786 goto check_dup_generic;
8787
8788 case OMP_CLAUSE_COPYIN:
8789 name = "copyin";
8790 t = OMP_CLAUSE_DECL (c);
8791 if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8792 {
8793 error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8794 remove = true;
8795 }
8796 goto check_dup_generic;
8797
8798 check_dup_generic:
8799 t = OMP_CLAUSE_DECL (c);
8800 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8801 {
8802 error ("%qE is not a variable in clause %qs", t, name);
8803 remove = true;
8804 }
8805 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8806 || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8807 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8808 {
8809 error ("%qE appears more than once in data clauses", t);
8810 remove = true;
8811 }
8812 else
8813 bitmap_set_bit (&generic_head, DECL_UID (t));
8814 break;
8815
8816 case OMP_CLAUSE_FIRSTPRIVATE:
8817 name = "firstprivate";
8818 t = OMP_CLAUSE_DECL (c);
8819 need_complete = true;
8820 need_implicitly_determined = true;
8821 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8822 {
8823 error ("%qE is not a variable in clause %<firstprivate%>", t);
8824 remove = true;
8825 }
8826 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8827 || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8828 {
8829 error ("%qE appears more than once in data clauses", t);
8830 remove = true;
8831 }
8832 else
8833 bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8834 break;
8835
8836 case OMP_CLAUSE_LASTPRIVATE:
8837 name = "lastprivate";
8838 t = OMP_CLAUSE_DECL (c);
8839 need_complete = true;
8840 need_implicitly_determined = true;
8841 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8842 {
8843 error ("%qE is not a variable in clause %<lastprivate%>", t);
8844 remove = true;
8845 }
8846 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8847 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8848 {
8849 error ("%qE appears more than once in data clauses", t);
8850 remove = true;
8851 }
8852 else
8853 bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8854 break;
8855
8856 case OMP_CLAUSE_IF:
8857 case OMP_CLAUSE_NUM_THREADS:
8858 case OMP_CLAUSE_SCHEDULE:
8859 case OMP_CLAUSE_NOWAIT:
8860 case OMP_CLAUSE_ORDERED:
8861 case OMP_CLAUSE_DEFAULT:
8862 pc = &OMP_CLAUSE_CHAIN (c);
8863 continue;
8864
8865 default:
8866 gcc_unreachable ();
8867 }
8868
8869 if (!remove)
8870 {
8871 t = OMP_CLAUSE_DECL (c);
8872
8873 if (need_complete)
8874 {
8875 t = require_complete_type (t);
8876 if (t == error_mark_node)
8877 remove = true;
8878 }
8879
8880 if (need_implicitly_determined)
8881 {
8882 const char *share_name = NULL;
8883
8884 if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8885 share_name = "threadprivate";
8886 else switch (c_omp_predetermined_sharing (t))
8887 {
8888 case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8889 break;
8890 case OMP_CLAUSE_DEFAULT_SHARED:
8891 share_name = "shared";
8892 break;
8893 case OMP_CLAUSE_DEFAULT_PRIVATE:
8894 share_name = "private";
8895 break;
8896 default:
8897 gcc_unreachable ();
8898 }
8899 if (share_name)
8900 {
8901 error ("%qE is predetermined %qs for %qs",
8902 t, share_name, name);
8903 remove = true;
8904 }
8905 }
8906 }
8907
8908 if (remove)
8909 *pc = OMP_CLAUSE_CHAIN (c);
8910 else
8911 pc = &OMP_CLAUSE_CHAIN (c);
8912 }
8913
8914 bitmap_obstack_release (NULL);
8915 return clauses;
8916 }
8917
8918 /* Make a variant type in the proper way for C/C++, propagating qualifiers
8919 down to the element type of an array. */
8920
8921 tree
8922 c_build_qualified_type (tree type, int type_quals)
8923 {
8924 if (type == error_mark_node)
8925 return type;
8926
8927 if (TREE_CODE (type) == ARRAY_TYPE)
8928 {
8929 tree t;
8930 tree element_type = c_build_qualified_type (TREE_TYPE (type),
8931 type_quals);
8932
8933 /* See if we already have an identically qualified type. */
8934 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
8935 {
8936 if (TYPE_QUALS (strip_array_types (t)) == type_quals
8937 && TYPE_NAME (t) == TYPE_NAME (type)
8938 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
8939 && attribute_list_equal (TYPE_ATTRIBUTES (t),
8940 TYPE_ATTRIBUTES (type)))
8941 break;
8942 }
8943 if (!t)
8944 {
8945 tree domain = TYPE_DOMAIN (type);
8946
8947 t = build_variant_type_copy (type);
8948 TREE_TYPE (t) = element_type;
8949
8950 if (TYPE_STRUCTURAL_EQUALITY_P (element_type)
8951 || (domain && TYPE_STRUCTURAL_EQUALITY_P (domain)))
8952 SET_TYPE_STRUCTURAL_EQUALITY (t);
8953 else if (TYPE_CANONICAL (element_type) != element_type
8954 || (domain && TYPE_CANONICAL (domain) != domain))
8955 {
8956 tree unqualified_canon
8957 = build_array_type (TYPE_CANONICAL (element_type),
8958 domain? TYPE_CANONICAL (domain)
8959 : NULL_TREE);
8960 TYPE_CANONICAL (t)
8961 = c_build_qualified_type (unqualified_canon, type_quals);
8962 }
8963 else
8964 TYPE_CANONICAL (t) = t;
8965 }
8966 return t;
8967 }
8968
8969 /* A restrict-qualified pointer type must be a pointer to object or
8970 incomplete type. Note that the use of POINTER_TYPE_P also allows
8971 REFERENCE_TYPEs, which is appropriate for C++. */
8972 if ((type_quals & TYPE_QUAL_RESTRICT)
8973 && (!POINTER_TYPE_P (type)
8974 || !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type))))
8975 {
8976 error ("invalid use of %<restrict%>");
8977 type_quals &= ~TYPE_QUAL_RESTRICT;
8978 }
8979
8980 return build_qualified_type (type, type_quals);
8981 }