tree-cfg.c (verify_expr): Check with is_gimple_address.
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* This file is part of the C front end.
24 It contains routines to build C expressions given their operands,
25 including computing the types of the result, C-specific error checks,
26 and some optimization. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "langhooks.h"
35 #include "c-tree.h"
36 #include "tm_p.h"
37 #include "flags.h"
38 #include "output.h"
39 #include "expr.h"
40 #include "toplev.h"
41 #include "intl.h"
42 #include "ggc.h"
43 #include "target.h"
44 #include "tree-iterator.h"
45 #include "tree-gimple.h"
46 #include "tree-flow.h"
47
48 /* Possible cases of implicit bad conversions. Used to select
49 diagnostic messages in convert_for_assignment. */
50 enum impl_conv {
51 ic_argpass,
52 ic_argpass_nonproto,
53 ic_assign,
54 ic_init,
55 ic_return
56 };
57
58 /* The level of nesting inside "__alignof__". */
59 int in_alignof;
60
61 /* The level of nesting inside "sizeof". */
62 int in_sizeof;
63
64 /* The level of nesting inside "typeof". */
65 int in_typeof;
66
67 struct c_label_context_se *label_context_stack_se;
68 struct c_label_context_vm *label_context_stack_vm;
69
70 /* Nonzero if we've already printed a "missing braces around initializer"
71 message within this initializer. */
72 static int missing_braces_mentioned;
73
74 static int require_constant_value;
75 static int require_constant_elements;
76
77 static bool null_pointer_constant_p (const_tree);
78 static tree qualify_type (tree, tree);
79 static int tagged_types_tu_compatible_p (const_tree, const_tree);
80 static int comp_target_types (tree, tree);
81 static int function_types_compatible_p (const_tree, const_tree);
82 static int type_lists_compatible_p (const_tree, const_tree);
83 static tree decl_constant_value_for_broken_optimization (tree);
84 static tree lookup_field (tree, tree);
85 static int convert_arguments (int, tree *, tree, tree, tree, tree);
86 static tree pointer_diff (tree, tree);
87 static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
88 int);
89 static tree valid_compound_expr_initializer (tree, tree);
90 static void push_string (const char *);
91 static void push_member_name (tree);
92 static int spelling_length (void);
93 static char *print_spelling (char *);
94 static void warning_init (int, const char *);
95 static tree digest_init (tree, tree, bool, int);
96 static void output_init_element (tree, bool, tree, tree, int);
97 static void output_pending_init_elements (int);
98 static int set_designator (int);
99 static void push_range_stack (tree);
100 static void add_pending_init (tree, tree);
101 static void set_nonincremental_init (void);
102 static void set_nonincremental_init_from_string (tree);
103 static tree find_init_member (tree);
104 static void readonly_error (tree, enum lvalue_use);
105 static int lvalue_or_else (const_tree, enum lvalue_use);
106 static int lvalue_p (const_tree);
107 static void record_maybe_used_decl (tree);
108 static int comptypes_internal (const_tree, const_tree);
109 \f
110 /* Return true if EXP is a null pointer constant, false otherwise. */
111
112 static bool
113 null_pointer_constant_p (const_tree expr)
114 {
115 /* This should really operate on c_expr structures, but they aren't
116 yet available everywhere required. */
117 tree type = TREE_TYPE (expr);
118 return (TREE_CODE (expr) == INTEGER_CST
119 && !TREE_OVERFLOW (expr)
120 && integer_zerop (expr)
121 && (INTEGRAL_TYPE_P (type)
122 || (TREE_CODE (type) == POINTER_TYPE
123 && VOID_TYPE_P (TREE_TYPE (type))
124 && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
125 }
126 \f/* This is a cache to hold if two types are compatible or not. */
127
128 struct tagged_tu_seen_cache {
129 const struct tagged_tu_seen_cache * next;
130 const_tree t1;
131 const_tree t2;
132 /* The return value of tagged_types_tu_compatible_p if we had seen
133 these two types already. */
134 int val;
135 };
136
137 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
138 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
139
140 /* Do `exp = require_complete_type (exp);' to make sure exp
141 does not have an incomplete type. (That includes void types.) */
142
143 tree
144 require_complete_type (tree value)
145 {
146 tree type = TREE_TYPE (value);
147
148 if (value == error_mark_node || type == error_mark_node)
149 return error_mark_node;
150
151 /* First, detect a valid value with a complete type. */
152 if (COMPLETE_TYPE_P (type))
153 return value;
154
155 c_incomplete_type_error (value, type);
156 return error_mark_node;
157 }
158
159 /* Print an error message for invalid use of an incomplete type.
160 VALUE is the expression that was used (or 0 if that isn't known)
161 and TYPE is the type that was invalid. */
162
163 void
164 c_incomplete_type_error (const_tree value, const_tree type)
165 {
166 const char *type_code_string;
167
168 /* Avoid duplicate error message. */
169 if (TREE_CODE (type) == ERROR_MARK)
170 return;
171
172 if (value != 0 && (TREE_CODE (value) == VAR_DECL
173 || TREE_CODE (value) == PARM_DECL))
174 error ("%qD has an incomplete type", value);
175 else
176 {
177 retry:
178 /* We must print an error message. Be clever about what it says. */
179
180 switch (TREE_CODE (type))
181 {
182 case RECORD_TYPE:
183 type_code_string = "struct";
184 break;
185
186 case UNION_TYPE:
187 type_code_string = "union";
188 break;
189
190 case ENUMERAL_TYPE:
191 type_code_string = "enum";
192 break;
193
194 case VOID_TYPE:
195 error ("invalid use of void expression");
196 return;
197
198 case ARRAY_TYPE:
199 if (TYPE_DOMAIN (type))
200 {
201 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
202 {
203 error ("invalid use of flexible array member");
204 return;
205 }
206 type = TREE_TYPE (type);
207 goto retry;
208 }
209 error ("invalid use of array with unspecified bounds");
210 return;
211
212 default:
213 gcc_unreachable ();
214 }
215
216 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
217 error ("invalid use of undefined type %<%s %E%>",
218 type_code_string, TYPE_NAME (type));
219 else
220 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
221 error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
222 }
223 }
224
225 /* Given a type, apply default promotions wrt unnamed function
226 arguments and return the new type. */
227
228 tree
229 c_type_promotes_to (tree type)
230 {
231 if (TYPE_MAIN_VARIANT (type) == float_type_node)
232 return double_type_node;
233
234 if (c_promoting_integer_type_p (type))
235 {
236 /* Preserve unsignedness if not really getting any wider. */
237 if (TYPE_UNSIGNED (type)
238 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
239 return unsigned_type_node;
240 return integer_type_node;
241 }
242
243 return type;
244 }
245
246 /* Return a variant of TYPE which has all the type qualifiers of LIKE
247 as well as those of TYPE. */
248
249 static tree
250 qualify_type (tree type, tree like)
251 {
252 return c_build_qualified_type (type,
253 TYPE_QUALS (type) | TYPE_QUALS (like));
254 }
255
256 /* Return true iff the given tree T is a variable length array. */
257
258 bool
259 c_vla_type_p (const_tree t)
260 {
261 if (TREE_CODE (t) == ARRAY_TYPE
262 && C_TYPE_VARIABLE_SIZE (t))
263 return true;
264 return false;
265 }
266 \f
267 /* Return the composite type of two compatible types.
268
269 We assume that comptypes has already been done and returned
270 nonzero; if that isn't so, this may crash. In particular, we
271 assume that qualifiers match. */
272
273 tree
274 composite_type (tree t1, tree t2)
275 {
276 enum tree_code code1;
277 enum tree_code code2;
278 tree attributes;
279
280 /* Save time if the two types are the same. */
281
282 if (t1 == t2) return t1;
283
284 /* If one type is nonsense, use the other. */
285 if (t1 == error_mark_node)
286 return t2;
287 if (t2 == error_mark_node)
288 return t1;
289
290 code1 = TREE_CODE (t1);
291 code2 = TREE_CODE (t2);
292
293 /* Merge the attributes. */
294 attributes = targetm.merge_type_attributes (t1, t2);
295
296 /* If one is an enumerated type and the other is the compatible
297 integer type, the composite type might be either of the two
298 (DR#013 question 3). For consistency, use the enumerated type as
299 the composite type. */
300
301 if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
302 return t1;
303 if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
304 return t2;
305
306 gcc_assert (code1 == code2);
307
308 switch (code1)
309 {
310 case POINTER_TYPE:
311 /* For two pointers, do this recursively on the target type. */
312 {
313 tree pointed_to_1 = TREE_TYPE (t1);
314 tree pointed_to_2 = TREE_TYPE (t2);
315 tree target = composite_type (pointed_to_1, pointed_to_2);
316 t1 = build_pointer_type (target);
317 t1 = build_type_attribute_variant (t1, attributes);
318 return qualify_type (t1, t2);
319 }
320
321 case ARRAY_TYPE:
322 {
323 tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
324 int quals;
325 tree unqual_elt;
326 tree d1 = TYPE_DOMAIN (t1);
327 tree d2 = TYPE_DOMAIN (t2);
328 bool d1_variable, d2_variable;
329 bool d1_zero, d2_zero;
330
331 /* We should not have any type quals on arrays at all. */
332 gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
333
334 d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
335 d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
336
337 d1_variable = (!d1_zero
338 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
339 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
340 d2_variable = (!d2_zero
341 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
342 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
343 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
344 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
345
346 /* Save space: see if the result is identical to one of the args. */
347 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
348 && (d2_variable || d2_zero || !d1_variable))
349 return build_type_attribute_variant (t1, attributes);
350 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
351 && (d1_variable || d1_zero || !d2_variable))
352 return build_type_attribute_variant (t2, attributes);
353
354 if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
355 return build_type_attribute_variant (t1, attributes);
356 if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
357 return build_type_attribute_variant (t2, attributes);
358
359 /* Merge the element types, and have a size if either arg has
360 one. We may have qualifiers on the element types. To set
361 up TYPE_MAIN_VARIANT correctly, we need to form the
362 composite of the unqualified types and add the qualifiers
363 back at the end. */
364 quals = TYPE_QUALS (strip_array_types (elt));
365 unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
366 t1 = build_array_type (unqual_elt,
367 TYPE_DOMAIN ((TYPE_DOMAIN (t1)
368 && (d2_variable
369 || d2_zero
370 || !d1_variable))
371 ? t1
372 : t2));
373 t1 = c_build_qualified_type (t1, quals);
374 return build_type_attribute_variant (t1, attributes);
375 }
376
377 case ENUMERAL_TYPE:
378 case RECORD_TYPE:
379 case UNION_TYPE:
380 if (attributes != NULL)
381 {
382 /* Try harder not to create a new aggregate type. */
383 if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
384 return t1;
385 if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
386 return t2;
387 }
388 return build_type_attribute_variant (t1, attributes);
389
390 case FUNCTION_TYPE:
391 /* Function types: prefer the one that specified arg types.
392 If both do, merge the arg types. Also merge the return types. */
393 {
394 tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
395 tree p1 = TYPE_ARG_TYPES (t1);
396 tree p2 = TYPE_ARG_TYPES (t2);
397 int len;
398 tree newargs, n;
399 int i;
400
401 /* Save space: see if the result is identical to one of the args. */
402 if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
403 return build_type_attribute_variant (t1, attributes);
404 if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
405 return build_type_attribute_variant (t2, attributes);
406
407 /* Simple way if one arg fails to specify argument types. */
408 if (TYPE_ARG_TYPES (t1) == 0)
409 {
410 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
411 t1 = build_type_attribute_variant (t1, attributes);
412 return qualify_type (t1, t2);
413 }
414 if (TYPE_ARG_TYPES (t2) == 0)
415 {
416 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
417 t1 = build_type_attribute_variant (t1, attributes);
418 return qualify_type (t1, t2);
419 }
420
421 /* If both args specify argument types, we must merge the two
422 lists, argument by argument. */
423 /* Tell global_bindings_p to return false so that variable_size
424 doesn't die on VLAs in parameter types. */
425 c_override_global_bindings_to_false = true;
426
427 len = list_length (p1);
428 newargs = 0;
429
430 for (i = 0; i < len; i++)
431 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
432
433 n = newargs;
434
435 for (; p1;
436 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
437 {
438 /* A null type means arg type is not specified.
439 Take whatever the other function type has. */
440 if (TREE_VALUE (p1) == 0)
441 {
442 TREE_VALUE (n) = TREE_VALUE (p2);
443 goto parm_done;
444 }
445 if (TREE_VALUE (p2) == 0)
446 {
447 TREE_VALUE (n) = TREE_VALUE (p1);
448 goto parm_done;
449 }
450
451 /* Given wait (union {union wait *u; int *i} *)
452 and wait (union wait *),
453 prefer union wait * as type of parm. */
454 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
455 && TREE_VALUE (p1) != TREE_VALUE (p2))
456 {
457 tree memb;
458 tree mv2 = TREE_VALUE (p2);
459 if (mv2 && mv2 != error_mark_node
460 && TREE_CODE (mv2) != ARRAY_TYPE)
461 mv2 = TYPE_MAIN_VARIANT (mv2);
462 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
463 memb; memb = TREE_CHAIN (memb))
464 {
465 tree mv3 = TREE_TYPE (memb);
466 if (mv3 && mv3 != error_mark_node
467 && TREE_CODE (mv3) != ARRAY_TYPE)
468 mv3 = TYPE_MAIN_VARIANT (mv3);
469 if (comptypes (mv3, mv2))
470 {
471 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
472 TREE_VALUE (p2));
473 if (pedantic)
474 pedwarn ("function types not truly compatible in ISO C");
475 goto parm_done;
476 }
477 }
478 }
479 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
480 && TREE_VALUE (p2) != TREE_VALUE (p1))
481 {
482 tree memb;
483 tree mv1 = TREE_VALUE (p1);
484 if (mv1 && mv1 != error_mark_node
485 && TREE_CODE (mv1) != ARRAY_TYPE)
486 mv1 = TYPE_MAIN_VARIANT (mv1);
487 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
488 memb; memb = TREE_CHAIN (memb))
489 {
490 tree mv3 = TREE_TYPE (memb);
491 if (mv3 && mv3 != error_mark_node
492 && TREE_CODE (mv3) != ARRAY_TYPE)
493 mv3 = TYPE_MAIN_VARIANT (mv3);
494 if (comptypes (mv3, mv1))
495 {
496 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
497 TREE_VALUE (p1));
498 if (pedantic)
499 pedwarn ("function types not truly compatible in ISO C");
500 goto parm_done;
501 }
502 }
503 }
504 TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
505 parm_done: ;
506 }
507
508 c_override_global_bindings_to_false = false;
509 t1 = build_function_type (valtype, newargs);
510 t1 = qualify_type (t1, t2);
511 /* ... falls through ... */
512 }
513
514 default:
515 return build_type_attribute_variant (t1, attributes);
516 }
517
518 }
519
520 /* Return the type of a conditional expression between pointers to
521 possibly differently qualified versions of compatible types.
522
523 We assume that comp_target_types has already been done and returned
524 nonzero; if that isn't so, this may crash. */
525
526 static tree
527 common_pointer_type (tree t1, tree t2)
528 {
529 tree attributes;
530 tree pointed_to_1, mv1;
531 tree pointed_to_2, mv2;
532 tree target;
533 unsigned target_quals;
534
535 /* Save time if the two types are the same. */
536
537 if (t1 == t2) return t1;
538
539 /* If one type is nonsense, use the other. */
540 if (t1 == error_mark_node)
541 return t2;
542 if (t2 == error_mark_node)
543 return t1;
544
545 gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546 && TREE_CODE (t2) == POINTER_TYPE);
547
548 /* Merge the attributes. */
549 attributes = targetm.merge_type_attributes (t1, t2);
550
551 /* Find the composite type of the target types, and combine the
552 qualifiers of the two types' targets. Do not lose qualifiers on
553 array element types by taking the TYPE_MAIN_VARIANT. */
554 mv1 = pointed_to_1 = TREE_TYPE (t1);
555 mv2 = pointed_to_2 = TREE_TYPE (t2);
556 if (TREE_CODE (mv1) != ARRAY_TYPE)
557 mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558 if (TREE_CODE (mv2) != ARRAY_TYPE)
559 mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560 target = composite_type (mv1, mv2);
561
562 /* For function types do not merge const qualifiers, but drop them
563 if used inconsistently. The middle-end uses these to mark const
564 and noreturn functions. */
565 if (TREE_CODE (pointed_to_1) == FUNCTION_TYPE)
566 target_quals = TYPE_QUALS (pointed_to_1) & TYPE_QUALS (pointed_to_2);
567 else
568 target_quals = TYPE_QUALS (pointed_to_1) | TYPE_QUALS (pointed_to_2);
569 t1 = build_pointer_type (c_build_qualified_type (target, target_quals));
570 return build_type_attribute_variant (t1, attributes);
571 }
572
573 /* Return the common type for two arithmetic types under the usual
574 arithmetic conversions. The default conversions have already been
575 applied, and enumerated types converted to their compatible integer
576 types. The resulting type is unqualified and has no attributes.
577
578 This is the type for the result of most arithmetic operations
579 if the operands have the given two types. */
580
581 static tree
582 c_common_type (tree t1, tree t2)
583 {
584 enum tree_code code1;
585 enum tree_code code2;
586
587 /* If one type is nonsense, use the other. */
588 if (t1 == error_mark_node)
589 return t2;
590 if (t2 == error_mark_node)
591 return t1;
592
593 if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
594 t1 = TYPE_MAIN_VARIANT (t1);
595
596 if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
597 t2 = TYPE_MAIN_VARIANT (t2);
598
599 if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
600 t1 = build_type_attribute_variant (t1, NULL_TREE);
601
602 if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
603 t2 = build_type_attribute_variant (t2, NULL_TREE);
604
605 /* Save time if the two types are the same. */
606
607 if (t1 == t2) return t1;
608
609 code1 = TREE_CODE (t1);
610 code2 = TREE_CODE (t2);
611
612 gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
613 || code1 == FIXED_POINT_TYPE || code1 == REAL_TYPE
614 || code1 == INTEGER_TYPE);
615 gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
616 || code2 == FIXED_POINT_TYPE || code2 == REAL_TYPE
617 || code2 == INTEGER_TYPE);
618
619 /* When one operand is a decimal float type, the other operand cannot be
620 a generic float type or a complex type. We also disallow vector types
621 here. */
622 if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
623 && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
624 {
625 if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
626 {
627 error ("can%'t mix operands of decimal float and vector types");
628 return error_mark_node;
629 }
630 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
631 {
632 error ("can%'t mix operands of decimal float and complex types");
633 return error_mark_node;
634 }
635 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
636 {
637 error ("can%'t mix operands of decimal float and other float types");
638 return error_mark_node;
639 }
640 }
641
642 /* If one type is a vector type, return that type. (How the usual
643 arithmetic conversions apply to the vector types extension is not
644 precisely specified.) */
645 if (code1 == VECTOR_TYPE)
646 return t1;
647
648 if (code2 == VECTOR_TYPE)
649 return t2;
650
651 /* If one type is complex, form the common type of the non-complex
652 components, then make that complex. Use T1 or T2 if it is the
653 required type. */
654 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
655 {
656 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
657 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
658 tree subtype = c_common_type (subtype1, subtype2);
659
660 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
661 return t1;
662 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
663 return t2;
664 else
665 return build_complex_type (subtype);
666 }
667
668 /* If only one is real, use it as the result. */
669
670 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
671 return t1;
672
673 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
674 return t2;
675
676 /* If both are real and either are decimal floating point types, use
677 the decimal floating point type with the greater precision. */
678
679 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
680 {
681 if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
682 || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
683 return dfloat128_type_node;
684 else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
685 || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
686 return dfloat64_type_node;
687 else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
688 || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
689 return dfloat32_type_node;
690 }
691
692 /* Deal with fixed-point types. */
693 if (code1 == FIXED_POINT_TYPE || code2 == FIXED_POINT_TYPE)
694 {
695 unsigned int unsignedp = 0, satp = 0;
696 enum machine_mode m1, m2;
697 unsigned int fbit1, ibit1, fbit2, ibit2, max_fbit, max_ibit;
698
699 m1 = TYPE_MODE (t1);
700 m2 = TYPE_MODE (t2);
701
702 /* If one input type is saturating, the result type is saturating. */
703 if (TYPE_SATURATING (t1) || TYPE_SATURATING (t2))
704 satp = 1;
705
706 /* If both fixed-point types are unsigned, the result type is unsigned.
707 When mixing fixed-point and integer types, follow the sign of the
708 fixed-point type.
709 Otherwise, the result type is signed. */
710 if ((TYPE_UNSIGNED (t1) && TYPE_UNSIGNED (t2)
711 && code1 == FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE)
712 || (code1 == FIXED_POINT_TYPE && code2 != FIXED_POINT_TYPE
713 && TYPE_UNSIGNED (t1))
714 || (code1 != FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE
715 && TYPE_UNSIGNED (t2)))
716 unsignedp = 1;
717
718 /* The result type is signed. */
719 if (unsignedp == 0)
720 {
721 /* If the input type is unsigned, we need to convert to the
722 signed type. */
723 if (code1 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t1))
724 {
725 unsigned char mclass = 0;
726 if (GET_MODE_CLASS (m1) == MODE_UFRACT)
727 mclass = MODE_FRACT;
728 else if (GET_MODE_CLASS (m1) == MODE_UACCUM)
729 mclass = MODE_ACCUM;
730 else
731 gcc_unreachable ();
732 m1 = mode_for_size (GET_MODE_PRECISION (m1), mclass, 0);
733 }
734 if (code2 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t2))
735 {
736 unsigned char mclass = 0;
737 if (GET_MODE_CLASS (m2) == MODE_UFRACT)
738 mclass = MODE_FRACT;
739 else if (GET_MODE_CLASS (m2) == MODE_UACCUM)
740 mclass = MODE_ACCUM;
741 else
742 gcc_unreachable ();
743 m2 = mode_for_size (GET_MODE_PRECISION (m2), mclass, 0);
744 }
745 }
746
747 if (code1 == FIXED_POINT_TYPE)
748 {
749 fbit1 = GET_MODE_FBIT (m1);
750 ibit1 = GET_MODE_IBIT (m1);
751 }
752 else
753 {
754 fbit1 = 0;
755 /* Signed integers need to subtract one sign bit. */
756 ibit1 = TYPE_PRECISION (t1) - (!TYPE_UNSIGNED (t1));
757 }
758
759 if (code2 == FIXED_POINT_TYPE)
760 {
761 fbit2 = GET_MODE_FBIT (m2);
762 ibit2 = GET_MODE_IBIT (m2);
763 }
764 else
765 {
766 fbit2 = 0;
767 /* Signed integers need to subtract one sign bit. */
768 ibit2 = TYPE_PRECISION (t2) - (!TYPE_UNSIGNED (t2));
769 }
770
771 max_ibit = ibit1 >= ibit2 ? ibit1 : ibit2;
772 max_fbit = fbit1 >= fbit2 ? fbit1 : fbit2;
773 return c_common_fixed_point_type_for_size (max_ibit, max_fbit, unsignedp,
774 satp);
775 }
776
777 /* Both real or both integers; use the one with greater precision. */
778
779 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
780 return t1;
781 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
782 return t2;
783
784 /* Same precision. Prefer long longs to longs to ints when the
785 same precision, following the C99 rules on integer type rank
786 (which are equivalent to the C90 rules for C90 types). */
787
788 if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
789 || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
790 return long_long_unsigned_type_node;
791
792 if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
793 || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
794 {
795 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
796 return long_long_unsigned_type_node;
797 else
798 return long_long_integer_type_node;
799 }
800
801 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
802 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
803 return long_unsigned_type_node;
804
805 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
806 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
807 {
808 /* But preserve unsignedness from the other type,
809 since long cannot hold all the values of an unsigned int. */
810 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
811 return long_unsigned_type_node;
812 else
813 return long_integer_type_node;
814 }
815
816 /* Likewise, prefer long double to double even if same size. */
817 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
818 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
819 return long_double_type_node;
820
821 /* Otherwise prefer the unsigned one. */
822
823 if (TYPE_UNSIGNED (t1))
824 return t1;
825 else
826 return t2;
827 }
828 \f
829 /* Wrapper around c_common_type that is used by c-common.c and other
830 front end optimizations that remove promotions. ENUMERAL_TYPEs
831 are allowed here and are converted to their compatible integer types.
832 BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
833 preferably a non-Boolean type as the common type. */
834 tree
835 common_type (tree t1, tree t2)
836 {
837 if (TREE_CODE (t1) == ENUMERAL_TYPE)
838 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
839 if (TREE_CODE (t2) == ENUMERAL_TYPE)
840 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
841
842 /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */
843 if (TREE_CODE (t1) == BOOLEAN_TYPE
844 && TREE_CODE (t2) == BOOLEAN_TYPE)
845 return boolean_type_node;
846
847 /* If either type is BOOLEAN_TYPE, then return the other. */
848 if (TREE_CODE (t1) == BOOLEAN_TYPE)
849 return t2;
850 if (TREE_CODE (t2) == BOOLEAN_TYPE)
851 return t1;
852
853 return c_common_type (t1, t2);
854 }
855
856 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
857 or various other operations. Return 2 if they are compatible
858 but a warning may be needed if you use them together. */
859
860 int
861 comptypes (tree type1, tree type2)
862 {
863 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
864 int val;
865
866 val = comptypes_internal (type1, type2);
867 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
868
869 return val;
870 }
871 \f
872 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
873 or various other operations. Return 2 if they are compatible
874 but a warning may be needed if you use them together. This
875 differs from comptypes, in that we don't free the seen types. */
876
877 static int
878 comptypes_internal (const_tree type1, const_tree type2)
879 {
880 const_tree t1 = type1;
881 const_tree t2 = type2;
882 int attrval, val;
883
884 /* Suppress errors caused by previously reported errors. */
885
886 if (t1 == t2 || !t1 || !t2
887 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
888 return 1;
889
890 /* If either type is the internal version of sizetype, return the
891 language version. */
892 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
893 && TYPE_ORIG_SIZE_TYPE (t1))
894 t1 = TYPE_ORIG_SIZE_TYPE (t1);
895
896 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
897 && TYPE_ORIG_SIZE_TYPE (t2))
898 t2 = TYPE_ORIG_SIZE_TYPE (t2);
899
900
901 /* Enumerated types are compatible with integer types, but this is
902 not transitive: two enumerated types in the same translation unit
903 are compatible with each other only if they are the same type. */
904
905 if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
906 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
907 else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
908 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
909
910 if (t1 == t2)
911 return 1;
912
913 /* Different classes of types can't be compatible. */
914
915 if (TREE_CODE (t1) != TREE_CODE (t2))
916 return 0;
917
918 /* Qualifiers must match. C99 6.7.3p9 */
919
920 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
921 return 0;
922
923 /* Allow for two different type nodes which have essentially the same
924 definition. Note that we already checked for equality of the type
925 qualifiers (just above). */
926
927 if (TREE_CODE (t1) != ARRAY_TYPE
928 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
929 return 1;
930
931 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
932 if (!(attrval = targetm.comp_type_attributes (t1, t2)))
933 return 0;
934
935 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
936 val = 0;
937
938 switch (TREE_CODE (t1))
939 {
940 case POINTER_TYPE:
941 /* Do not remove mode or aliasing information. */
942 if (TYPE_MODE (t1) != TYPE_MODE (t2)
943 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
944 break;
945 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
946 ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
947 break;
948
949 case FUNCTION_TYPE:
950 val = function_types_compatible_p (t1, t2);
951 break;
952
953 case ARRAY_TYPE:
954 {
955 tree d1 = TYPE_DOMAIN (t1);
956 tree d2 = TYPE_DOMAIN (t2);
957 bool d1_variable, d2_variable;
958 bool d1_zero, d2_zero;
959 val = 1;
960
961 /* Target types must match incl. qualifiers. */
962 if (TREE_TYPE (t1) != TREE_TYPE (t2)
963 && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
964 return 0;
965
966 /* Sizes must match unless one is missing or variable. */
967 if (d1 == 0 || d2 == 0 || d1 == d2)
968 break;
969
970 d1_zero = !TYPE_MAX_VALUE (d1);
971 d2_zero = !TYPE_MAX_VALUE (d2);
972
973 d1_variable = (!d1_zero
974 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
975 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
976 d2_variable = (!d2_zero
977 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
978 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
979 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
980 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
981
982 if (d1_variable || d2_variable)
983 break;
984 if (d1_zero && d2_zero)
985 break;
986 if (d1_zero || d2_zero
987 || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
988 || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
989 val = 0;
990
991 break;
992 }
993
994 case ENUMERAL_TYPE:
995 case RECORD_TYPE:
996 case UNION_TYPE:
997 if (val != 1 && !same_translation_unit_p (t1, t2))
998 {
999 tree a1 = TYPE_ATTRIBUTES (t1);
1000 tree a2 = TYPE_ATTRIBUTES (t2);
1001
1002 if (! attribute_list_contained (a1, a2)
1003 && ! attribute_list_contained (a2, a1))
1004 break;
1005
1006 if (attrval != 2)
1007 return tagged_types_tu_compatible_p (t1, t2);
1008 val = tagged_types_tu_compatible_p (t1, t2);
1009 }
1010 break;
1011
1012 case VECTOR_TYPE:
1013 val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
1014 && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
1015 break;
1016
1017 default:
1018 break;
1019 }
1020 return attrval == 2 && val == 1 ? 2 : val;
1021 }
1022
1023 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
1024 ignoring their qualifiers. */
1025
1026 static int
1027 comp_target_types (tree ttl, tree ttr)
1028 {
1029 int val;
1030 tree mvl, mvr;
1031
1032 /* Do not lose qualifiers on element types of array types that are
1033 pointer targets by taking their TYPE_MAIN_VARIANT. */
1034 mvl = TREE_TYPE (ttl);
1035 mvr = TREE_TYPE (ttr);
1036 if (TREE_CODE (mvl) != ARRAY_TYPE)
1037 mvl = TYPE_MAIN_VARIANT (mvl);
1038 if (TREE_CODE (mvr) != ARRAY_TYPE)
1039 mvr = TYPE_MAIN_VARIANT (mvr);
1040 val = comptypes (mvl, mvr);
1041
1042 if (val == 2 && pedantic)
1043 pedwarn ("types are not quite compatible");
1044 return val;
1045 }
1046 \f
1047 /* Subroutines of `comptypes'. */
1048
1049 /* Determine whether two trees derive from the same translation unit.
1050 If the CONTEXT chain ends in a null, that tree's context is still
1051 being parsed, so if two trees have context chains ending in null,
1052 they're in the same translation unit. */
1053 int
1054 same_translation_unit_p (const_tree t1, const_tree t2)
1055 {
1056 while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
1057 switch (TREE_CODE_CLASS (TREE_CODE (t1)))
1058 {
1059 case tcc_declaration:
1060 t1 = DECL_CONTEXT (t1); break;
1061 case tcc_type:
1062 t1 = TYPE_CONTEXT (t1); break;
1063 case tcc_exceptional:
1064 t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
1065 default: gcc_unreachable ();
1066 }
1067
1068 while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
1069 switch (TREE_CODE_CLASS (TREE_CODE (t2)))
1070 {
1071 case tcc_declaration:
1072 t2 = DECL_CONTEXT (t2); break;
1073 case tcc_type:
1074 t2 = TYPE_CONTEXT (t2); break;
1075 case tcc_exceptional:
1076 t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
1077 default: gcc_unreachable ();
1078 }
1079
1080 return t1 == t2;
1081 }
1082
1083 /* Allocate the seen two types, assuming that they are compatible. */
1084
1085 static struct tagged_tu_seen_cache *
1086 alloc_tagged_tu_seen_cache (const_tree t1, const_tree t2)
1087 {
1088 struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
1089 tu->next = tagged_tu_seen_base;
1090 tu->t1 = t1;
1091 tu->t2 = t2;
1092
1093 tagged_tu_seen_base = tu;
1094
1095 /* The C standard says that two structures in different translation
1096 units are compatible with each other only if the types of their
1097 fields are compatible (among other things). We assume that they
1098 are compatible until proven otherwise when building the cache.
1099 An example where this can occur is:
1100 struct a
1101 {
1102 struct a *next;
1103 };
1104 If we are comparing this against a similar struct in another TU,
1105 and did not assume they were compatible, we end up with an infinite
1106 loop. */
1107 tu->val = 1;
1108 return tu;
1109 }
1110
1111 /* Free the seen types until we get to TU_TIL. */
1112
1113 static void
1114 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1115 {
1116 const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1117 while (tu != tu_til)
1118 {
1119 const struct tagged_tu_seen_cache *const tu1
1120 = (const struct tagged_tu_seen_cache *) tu;
1121 tu = tu1->next;
1122 free (CONST_CAST (struct tagged_tu_seen_cache *, tu1));
1123 }
1124 tagged_tu_seen_base = tu_til;
1125 }
1126
1127 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1128 compatible. If the two types are not the same (which has been
1129 checked earlier), this can only happen when multiple translation
1130 units are being compiled. See C99 6.2.7 paragraph 1 for the exact
1131 rules. */
1132
1133 static int
1134 tagged_types_tu_compatible_p (const_tree t1, const_tree t2)
1135 {
1136 tree s1, s2;
1137 bool needs_warning = false;
1138
1139 /* We have to verify that the tags of the types are the same. This
1140 is harder than it looks because this may be a typedef, so we have
1141 to go look at the original type. It may even be a typedef of a
1142 typedef...
1143 In the case of compiler-created builtin structs the TYPE_DECL
1144 may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
1145 while (TYPE_NAME (t1)
1146 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1147 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1148 t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1149
1150 while (TYPE_NAME (t2)
1151 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1152 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1153 t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1154
1155 /* C90 didn't have the requirement that the two tags be the same. */
1156 if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1157 return 0;
1158
1159 /* C90 didn't say what happened if one or both of the types were
1160 incomplete; we choose to follow C99 rules here, which is that they
1161 are compatible. */
1162 if (TYPE_SIZE (t1) == NULL
1163 || TYPE_SIZE (t2) == NULL)
1164 return 1;
1165
1166 {
1167 const struct tagged_tu_seen_cache * tts_i;
1168 for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1169 if (tts_i->t1 == t1 && tts_i->t2 == t2)
1170 return tts_i->val;
1171 }
1172
1173 switch (TREE_CODE (t1))
1174 {
1175 case ENUMERAL_TYPE:
1176 {
1177 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1178 /* Speed up the case where the type values are in the same order. */
1179 tree tv1 = TYPE_VALUES (t1);
1180 tree tv2 = TYPE_VALUES (t2);
1181
1182 if (tv1 == tv2)
1183 {
1184 return 1;
1185 }
1186
1187 for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1188 {
1189 if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1190 break;
1191 if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1192 {
1193 tu->val = 0;
1194 return 0;
1195 }
1196 }
1197
1198 if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1199 {
1200 return 1;
1201 }
1202 if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1203 {
1204 tu->val = 0;
1205 return 0;
1206 }
1207
1208 if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1209 {
1210 tu->val = 0;
1211 return 0;
1212 }
1213
1214 for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1215 {
1216 s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1217 if (s2 == NULL
1218 || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1219 {
1220 tu->val = 0;
1221 return 0;
1222 }
1223 }
1224 return 1;
1225 }
1226
1227 case UNION_TYPE:
1228 {
1229 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1230 if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1231 {
1232 tu->val = 0;
1233 return 0;
1234 }
1235
1236 /* Speed up the common case where the fields are in the same order. */
1237 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1238 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1239 {
1240 int result;
1241
1242 if (DECL_NAME (s1) != DECL_NAME (s2))
1243 break;
1244 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1245
1246 if (result != 1 && !DECL_NAME (s1))
1247 break;
1248 if (result == 0)
1249 {
1250 tu->val = 0;
1251 return 0;
1252 }
1253 if (result == 2)
1254 needs_warning = true;
1255
1256 if (TREE_CODE (s1) == FIELD_DECL
1257 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1258 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1259 {
1260 tu->val = 0;
1261 return 0;
1262 }
1263 }
1264 if (!s1 && !s2)
1265 {
1266 tu->val = needs_warning ? 2 : 1;
1267 return tu->val;
1268 }
1269
1270 for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1271 {
1272 bool ok = false;
1273
1274 for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1275 if (DECL_NAME (s1) == DECL_NAME (s2))
1276 {
1277 int result;
1278
1279 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1280
1281 if (result != 1 && !DECL_NAME (s1))
1282 continue;
1283 if (result == 0)
1284 {
1285 tu->val = 0;
1286 return 0;
1287 }
1288 if (result == 2)
1289 needs_warning = true;
1290
1291 if (TREE_CODE (s1) == FIELD_DECL
1292 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1293 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1294 break;
1295
1296 ok = true;
1297 break;
1298 }
1299 if (!ok)
1300 {
1301 tu->val = 0;
1302 return 0;
1303 }
1304 }
1305 tu->val = needs_warning ? 2 : 10;
1306 return tu->val;
1307 }
1308
1309 case RECORD_TYPE:
1310 {
1311 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1312
1313 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1314 s1 && s2;
1315 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1316 {
1317 int result;
1318 if (TREE_CODE (s1) != TREE_CODE (s2)
1319 || DECL_NAME (s1) != DECL_NAME (s2))
1320 break;
1321 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1322 if (result == 0)
1323 break;
1324 if (result == 2)
1325 needs_warning = true;
1326
1327 if (TREE_CODE (s1) == FIELD_DECL
1328 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1329 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1330 break;
1331 }
1332 if (s1 && s2)
1333 tu->val = 0;
1334 else
1335 tu->val = needs_warning ? 2 : 1;
1336 return tu->val;
1337 }
1338
1339 default:
1340 gcc_unreachable ();
1341 }
1342 }
1343
1344 /* Return 1 if two function types F1 and F2 are compatible.
1345 If either type specifies no argument types,
1346 the other must specify a fixed number of self-promoting arg types.
1347 Otherwise, if one type specifies only the number of arguments,
1348 the other must specify that number of self-promoting arg types.
1349 Otherwise, the argument types must match. */
1350
1351 static int
1352 function_types_compatible_p (const_tree f1, const_tree f2)
1353 {
1354 tree args1, args2;
1355 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1356 int val = 1;
1357 int val1;
1358 tree ret1, ret2;
1359
1360 ret1 = TREE_TYPE (f1);
1361 ret2 = TREE_TYPE (f2);
1362
1363 /* 'volatile' qualifiers on a function's return type used to mean
1364 the function is noreturn. */
1365 if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1366 pedwarn ("function return types not compatible due to %<volatile%>");
1367 if (TYPE_VOLATILE (ret1))
1368 ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1369 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1370 if (TYPE_VOLATILE (ret2))
1371 ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1372 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1373 val = comptypes_internal (ret1, ret2);
1374 if (val == 0)
1375 return 0;
1376
1377 args1 = TYPE_ARG_TYPES (f1);
1378 args2 = TYPE_ARG_TYPES (f2);
1379
1380 /* An unspecified parmlist matches any specified parmlist
1381 whose argument types don't need default promotions. */
1382
1383 if (args1 == 0)
1384 {
1385 if (!self_promoting_args_p (args2))
1386 return 0;
1387 /* If one of these types comes from a non-prototype fn definition,
1388 compare that with the other type's arglist.
1389 If they don't match, ask for a warning (but no error). */
1390 if (TYPE_ACTUAL_ARG_TYPES (f1)
1391 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1392 val = 2;
1393 return val;
1394 }
1395 if (args2 == 0)
1396 {
1397 if (!self_promoting_args_p (args1))
1398 return 0;
1399 if (TYPE_ACTUAL_ARG_TYPES (f2)
1400 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1401 val = 2;
1402 return val;
1403 }
1404
1405 /* Both types have argument lists: compare them and propagate results. */
1406 val1 = type_lists_compatible_p (args1, args2);
1407 return val1 != 1 ? val1 : val;
1408 }
1409
1410 /* Check two lists of types for compatibility,
1411 returning 0 for incompatible, 1 for compatible,
1412 or 2 for compatible with warning. */
1413
1414 static int
1415 type_lists_compatible_p (const_tree args1, const_tree args2)
1416 {
1417 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1418 int val = 1;
1419 int newval = 0;
1420
1421 while (1)
1422 {
1423 tree a1, mv1, a2, mv2;
1424 if (args1 == 0 && args2 == 0)
1425 return val;
1426 /* If one list is shorter than the other,
1427 they fail to match. */
1428 if (args1 == 0 || args2 == 0)
1429 return 0;
1430 mv1 = a1 = TREE_VALUE (args1);
1431 mv2 = a2 = TREE_VALUE (args2);
1432 if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1433 mv1 = TYPE_MAIN_VARIANT (mv1);
1434 if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1435 mv2 = TYPE_MAIN_VARIANT (mv2);
1436 /* A null pointer instead of a type
1437 means there is supposed to be an argument
1438 but nothing is specified about what type it has.
1439 So match anything that self-promotes. */
1440 if (a1 == 0)
1441 {
1442 if (c_type_promotes_to (a2) != a2)
1443 return 0;
1444 }
1445 else if (a2 == 0)
1446 {
1447 if (c_type_promotes_to (a1) != a1)
1448 return 0;
1449 }
1450 /* If one of the lists has an error marker, ignore this arg. */
1451 else if (TREE_CODE (a1) == ERROR_MARK
1452 || TREE_CODE (a2) == ERROR_MARK)
1453 ;
1454 else if (!(newval = comptypes_internal (mv1, mv2)))
1455 {
1456 /* Allow wait (union {union wait *u; int *i} *)
1457 and wait (union wait *) to be compatible. */
1458 if (TREE_CODE (a1) == UNION_TYPE
1459 && (TYPE_NAME (a1) == 0
1460 || TYPE_TRANSPARENT_UNION (a1))
1461 && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1462 && tree_int_cst_equal (TYPE_SIZE (a1),
1463 TYPE_SIZE (a2)))
1464 {
1465 tree memb;
1466 for (memb = TYPE_FIELDS (a1);
1467 memb; memb = TREE_CHAIN (memb))
1468 {
1469 tree mv3 = TREE_TYPE (memb);
1470 if (mv3 && mv3 != error_mark_node
1471 && TREE_CODE (mv3) != ARRAY_TYPE)
1472 mv3 = TYPE_MAIN_VARIANT (mv3);
1473 if (comptypes_internal (mv3, mv2))
1474 break;
1475 }
1476 if (memb == 0)
1477 return 0;
1478 }
1479 else if (TREE_CODE (a2) == UNION_TYPE
1480 && (TYPE_NAME (a2) == 0
1481 || TYPE_TRANSPARENT_UNION (a2))
1482 && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1483 && tree_int_cst_equal (TYPE_SIZE (a2),
1484 TYPE_SIZE (a1)))
1485 {
1486 tree memb;
1487 for (memb = TYPE_FIELDS (a2);
1488 memb; memb = TREE_CHAIN (memb))
1489 {
1490 tree mv3 = TREE_TYPE (memb);
1491 if (mv3 && mv3 != error_mark_node
1492 && TREE_CODE (mv3) != ARRAY_TYPE)
1493 mv3 = TYPE_MAIN_VARIANT (mv3);
1494 if (comptypes_internal (mv3, mv1))
1495 break;
1496 }
1497 if (memb == 0)
1498 return 0;
1499 }
1500 else
1501 return 0;
1502 }
1503
1504 /* comptypes said ok, but record if it said to warn. */
1505 if (newval > val)
1506 val = newval;
1507
1508 args1 = TREE_CHAIN (args1);
1509 args2 = TREE_CHAIN (args2);
1510 }
1511 }
1512 \f
1513 /* Compute the size to increment a pointer by. */
1514
1515 static tree
1516 c_size_in_bytes (const_tree type)
1517 {
1518 enum tree_code code = TREE_CODE (type);
1519
1520 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1521 return size_one_node;
1522
1523 if (!COMPLETE_OR_VOID_TYPE_P (type))
1524 {
1525 error ("arithmetic on pointer to an incomplete type");
1526 return size_one_node;
1527 }
1528
1529 /* Convert in case a char is more than one unit. */
1530 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1531 size_int (TYPE_PRECISION (char_type_node)
1532 / BITS_PER_UNIT));
1533 }
1534 \f
1535 /* Return either DECL or its known constant value (if it has one). */
1536
1537 tree
1538 decl_constant_value (tree decl)
1539 {
1540 if (/* Don't change a variable array bound or initial value to a constant
1541 in a place where a variable is invalid. Note that DECL_INITIAL
1542 isn't valid for a PARM_DECL. */
1543 current_function_decl != 0
1544 && TREE_CODE (decl) != PARM_DECL
1545 && !TREE_THIS_VOLATILE (decl)
1546 && TREE_READONLY (decl)
1547 && DECL_INITIAL (decl) != 0
1548 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1549 /* This is invalid if initial value is not constant.
1550 If it has either a function call, a memory reference,
1551 or a variable, then re-evaluating it could give different results. */
1552 && TREE_CONSTANT (DECL_INITIAL (decl))
1553 /* Check for cases where this is sub-optimal, even though valid. */
1554 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1555 return DECL_INITIAL (decl);
1556 return decl;
1557 }
1558
1559 /* Return either DECL or its known constant value (if it has one), but
1560 return DECL if pedantic or DECL has mode BLKmode. This is for
1561 bug-compatibility with the old behavior of decl_constant_value
1562 (before GCC 3.0); every use of this function is a bug and it should
1563 be removed before GCC 3.1. It is not appropriate to use pedantic
1564 in a way that affects optimization, and BLKmode is probably not the
1565 right test for avoiding misoptimizations either. */
1566
1567 static tree
1568 decl_constant_value_for_broken_optimization (tree decl)
1569 {
1570 tree ret;
1571
1572 if (pedantic || DECL_MODE (decl) == BLKmode)
1573 return decl;
1574
1575 ret = decl_constant_value (decl);
1576 /* Avoid unwanted tree sharing between the initializer and current
1577 function's body where the tree can be modified e.g. by the
1578 gimplifier. */
1579 if (ret != decl && TREE_STATIC (decl))
1580 ret = unshare_expr (ret);
1581 return ret;
1582 }
1583
1584 /* Convert the array expression EXP to a pointer. */
1585 static tree
1586 array_to_pointer_conversion (tree exp)
1587 {
1588 tree orig_exp = exp;
1589 tree type = TREE_TYPE (exp);
1590 tree adr;
1591 tree restype = TREE_TYPE (type);
1592 tree ptrtype;
1593
1594 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1595
1596 STRIP_TYPE_NOPS (exp);
1597
1598 if (TREE_NO_WARNING (orig_exp))
1599 TREE_NO_WARNING (exp) = 1;
1600
1601 ptrtype = build_pointer_type (restype);
1602
1603 if (TREE_CODE (exp) == INDIRECT_REF)
1604 return convert (ptrtype, TREE_OPERAND (exp, 0));
1605
1606 if (TREE_CODE (exp) == VAR_DECL)
1607 {
1608 /* We are making an ADDR_EXPR of ptrtype. This is a valid
1609 ADDR_EXPR because it's the best way of representing what
1610 happens in C when we take the address of an array and place
1611 it in a pointer to the element type. */
1612 adr = build1 (ADDR_EXPR, ptrtype, exp);
1613 if (!c_mark_addressable (exp))
1614 return error_mark_node;
1615 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
1616 return adr;
1617 }
1618
1619 /* This way is better for a COMPONENT_REF since it can
1620 simplify the offset for a component. */
1621 adr = build_unary_op (ADDR_EXPR, exp, 1);
1622 return convert (ptrtype, adr);
1623 }
1624
1625 /* Convert the function expression EXP to a pointer. */
1626 static tree
1627 function_to_pointer_conversion (tree exp)
1628 {
1629 tree orig_exp = exp;
1630
1631 gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1632
1633 STRIP_TYPE_NOPS (exp);
1634
1635 if (TREE_NO_WARNING (orig_exp))
1636 TREE_NO_WARNING (exp) = 1;
1637
1638 return build_unary_op (ADDR_EXPR, exp, 0);
1639 }
1640
1641 /* Perform the default conversion of arrays and functions to pointers.
1642 Return the result of converting EXP. For any other expression, just
1643 return EXP after removing NOPs. */
1644
1645 struct c_expr
1646 default_function_array_conversion (struct c_expr exp)
1647 {
1648 tree orig_exp = exp.value;
1649 tree type = TREE_TYPE (exp.value);
1650 enum tree_code code = TREE_CODE (type);
1651
1652 switch (code)
1653 {
1654 case ARRAY_TYPE:
1655 {
1656 bool not_lvalue = false;
1657 bool lvalue_array_p;
1658
1659 while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1660 || TREE_CODE (exp.value) == NOP_EXPR
1661 || TREE_CODE (exp.value) == CONVERT_EXPR)
1662 && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1663 {
1664 if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1665 not_lvalue = true;
1666 exp.value = TREE_OPERAND (exp.value, 0);
1667 }
1668
1669 if (TREE_NO_WARNING (orig_exp))
1670 TREE_NO_WARNING (exp.value) = 1;
1671
1672 lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1673 if (!flag_isoc99 && !lvalue_array_p)
1674 {
1675 /* Before C99, non-lvalue arrays do not decay to pointers.
1676 Normally, using such an array would be invalid; but it can
1677 be used correctly inside sizeof or as a statement expression.
1678 Thus, do not give an error here; an error will result later. */
1679 return exp;
1680 }
1681
1682 exp.value = array_to_pointer_conversion (exp.value);
1683 }
1684 break;
1685 case FUNCTION_TYPE:
1686 exp.value = function_to_pointer_conversion (exp.value);
1687 break;
1688 default:
1689 STRIP_TYPE_NOPS (exp.value);
1690 if (TREE_NO_WARNING (orig_exp))
1691 TREE_NO_WARNING (exp.value) = 1;
1692 break;
1693 }
1694
1695 return exp;
1696 }
1697
1698
1699 /* EXP is an expression of integer type. Apply the integer promotions
1700 to it and return the promoted value. */
1701
1702 tree
1703 perform_integral_promotions (tree exp)
1704 {
1705 tree type = TREE_TYPE (exp);
1706 enum tree_code code = TREE_CODE (type);
1707
1708 gcc_assert (INTEGRAL_TYPE_P (type));
1709
1710 /* Normally convert enums to int,
1711 but convert wide enums to something wider. */
1712 if (code == ENUMERAL_TYPE)
1713 {
1714 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1715 TYPE_PRECISION (integer_type_node)),
1716 ((TYPE_PRECISION (type)
1717 >= TYPE_PRECISION (integer_type_node))
1718 && TYPE_UNSIGNED (type)));
1719
1720 return convert (type, exp);
1721 }
1722
1723 /* ??? This should no longer be needed now bit-fields have their
1724 proper types. */
1725 if (TREE_CODE (exp) == COMPONENT_REF
1726 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1727 /* If it's thinner than an int, promote it like a
1728 c_promoting_integer_type_p, otherwise leave it alone. */
1729 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1730 TYPE_PRECISION (integer_type_node)))
1731 return convert (integer_type_node, exp);
1732
1733 if (c_promoting_integer_type_p (type))
1734 {
1735 /* Preserve unsignedness if not really getting any wider. */
1736 if (TYPE_UNSIGNED (type)
1737 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1738 return convert (unsigned_type_node, exp);
1739
1740 return convert (integer_type_node, exp);
1741 }
1742
1743 return exp;
1744 }
1745
1746
1747 /* Perform default promotions for C data used in expressions.
1748 Enumeral types or short or char are converted to int.
1749 In addition, manifest constants symbols are replaced by their values. */
1750
1751 tree
1752 default_conversion (tree exp)
1753 {
1754 tree orig_exp;
1755 tree type = TREE_TYPE (exp);
1756 enum tree_code code = TREE_CODE (type);
1757
1758 /* Functions and arrays have been converted during parsing. */
1759 gcc_assert (code != FUNCTION_TYPE);
1760 if (code == ARRAY_TYPE)
1761 return exp;
1762
1763 /* Constants can be used directly unless they're not loadable. */
1764 if (TREE_CODE (exp) == CONST_DECL)
1765 exp = DECL_INITIAL (exp);
1766
1767 /* Replace a nonvolatile const static variable with its value unless
1768 it is an array, in which case we must be sure that taking the
1769 address of the array produces consistent results. */
1770 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1771 {
1772 exp = decl_constant_value_for_broken_optimization (exp);
1773 type = TREE_TYPE (exp);
1774 }
1775
1776 /* Strip no-op conversions. */
1777 orig_exp = exp;
1778 STRIP_TYPE_NOPS (exp);
1779
1780 if (TREE_NO_WARNING (orig_exp))
1781 TREE_NO_WARNING (exp) = 1;
1782
1783 if (code == VOID_TYPE)
1784 {
1785 error ("void value not ignored as it ought to be");
1786 return error_mark_node;
1787 }
1788
1789 exp = require_complete_type (exp);
1790 if (exp == error_mark_node)
1791 return error_mark_node;
1792
1793 if (INTEGRAL_TYPE_P (type))
1794 return perform_integral_promotions (exp);
1795
1796 return exp;
1797 }
1798 \f
1799 /* Look up COMPONENT in a structure or union DECL.
1800
1801 If the component name is not found, returns NULL_TREE. Otherwise,
1802 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1803 stepping down the chain to the component, which is in the last
1804 TREE_VALUE of the list. Normally the list is of length one, but if
1805 the component is embedded within (nested) anonymous structures or
1806 unions, the list steps down the chain to the component. */
1807
1808 static tree
1809 lookup_field (tree decl, tree component)
1810 {
1811 tree type = TREE_TYPE (decl);
1812 tree field;
1813
1814 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1815 to the field elements. Use a binary search on this array to quickly
1816 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1817 will always be set for structures which have many elements. */
1818
1819 if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1820 {
1821 int bot, top, half;
1822 tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1823
1824 field = TYPE_FIELDS (type);
1825 bot = 0;
1826 top = TYPE_LANG_SPECIFIC (type)->s->len;
1827 while (top - bot > 1)
1828 {
1829 half = (top - bot + 1) >> 1;
1830 field = field_array[bot+half];
1831
1832 if (DECL_NAME (field) == NULL_TREE)
1833 {
1834 /* Step through all anon unions in linear fashion. */
1835 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1836 {
1837 field = field_array[bot++];
1838 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1839 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1840 {
1841 tree anon = lookup_field (field, component);
1842
1843 if (anon)
1844 return tree_cons (NULL_TREE, field, anon);
1845 }
1846 }
1847
1848 /* Entire record is only anon unions. */
1849 if (bot > top)
1850 return NULL_TREE;
1851
1852 /* Restart the binary search, with new lower bound. */
1853 continue;
1854 }
1855
1856 if (DECL_NAME (field) == component)
1857 break;
1858 if (DECL_NAME (field) < component)
1859 bot += half;
1860 else
1861 top = bot + half;
1862 }
1863
1864 if (DECL_NAME (field_array[bot]) == component)
1865 field = field_array[bot];
1866 else if (DECL_NAME (field) != component)
1867 return NULL_TREE;
1868 }
1869 else
1870 {
1871 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1872 {
1873 if (DECL_NAME (field) == NULL_TREE
1874 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1875 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1876 {
1877 tree anon = lookup_field (field, component);
1878
1879 if (anon)
1880 return tree_cons (NULL_TREE, field, anon);
1881 }
1882
1883 if (DECL_NAME (field) == component)
1884 break;
1885 }
1886
1887 if (field == NULL_TREE)
1888 return NULL_TREE;
1889 }
1890
1891 return tree_cons (NULL_TREE, field, NULL_TREE);
1892 }
1893
1894 /* Make an expression to refer to the COMPONENT field of
1895 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1896
1897 tree
1898 build_component_ref (tree datum, tree component)
1899 {
1900 tree type = TREE_TYPE (datum);
1901 enum tree_code code = TREE_CODE (type);
1902 tree field = NULL;
1903 tree ref;
1904
1905 if (!objc_is_public (datum, component))
1906 return error_mark_node;
1907
1908 /* See if there is a field or component with name COMPONENT. */
1909
1910 if (code == RECORD_TYPE || code == UNION_TYPE)
1911 {
1912 if (!COMPLETE_TYPE_P (type))
1913 {
1914 c_incomplete_type_error (NULL_TREE, type);
1915 return error_mark_node;
1916 }
1917
1918 field = lookup_field (datum, component);
1919
1920 if (!field)
1921 {
1922 error ("%qT has no member named %qE", type, component);
1923 return error_mark_node;
1924 }
1925
1926 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1927 This might be better solved in future the way the C++ front
1928 end does it - by giving the anonymous entities each a
1929 separate name and type, and then have build_component_ref
1930 recursively call itself. We can't do that here. */
1931 do
1932 {
1933 tree subdatum = TREE_VALUE (field);
1934 int quals;
1935 tree subtype;
1936
1937 if (TREE_TYPE (subdatum) == error_mark_node)
1938 return error_mark_node;
1939
1940 quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1941 quals |= TYPE_QUALS (TREE_TYPE (datum));
1942 subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1943
1944 ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1945 NULL_TREE);
1946 if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1947 TREE_READONLY (ref) = 1;
1948 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1949 TREE_THIS_VOLATILE (ref) = 1;
1950
1951 if (TREE_DEPRECATED (subdatum))
1952 warn_deprecated_use (subdatum);
1953
1954 datum = ref;
1955
1956 field = TREE_CHAIN (field);
1957 }
1958 while (field);
1959
1960 return ref;
1961 }
1962 else if (code != ERROR_MARK)
1963 error ("request for member %qE in something not a structure or union",
1964 component);
1965
1966 return error_mark_node;
1967 }
1968 \f
1969 /* Given an expression PTR for a pointer, return an expression
1970 for the value pointed to.
1971 ERRORSTRING is the name of the operator to appear in error messages. */
1972
1973 tree
1974 build_indirect_ref (tree ptr, const char *errorstring)
1975 {
1976 tree pointer = default_conversion (ptr);
1977 tree type = TREE_TYPE (pointer);
1978
1979 if (TREE_CODE (type) == POINTER_TYPE)
1980 {
1981 if (TREE_CODE (pointer) == CONVERT_EXPR
1982 || TREE_CODE (pointer) == NOP_EXPR
1983 || TREE_CODE (pointer) == VIEW_CONVERT_EXPR)
1984 {
1985 /* If a warning is issued, mark it to avoid duplicates from
1986 the backend. This only needs to be done at
1987 warn_strict_aliasing > 2. */
1988 if (warn_strict_aliasing > 2)
1989 if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (pointer, 0)),
1990 type, TREE_OPERAND (pointer, 0)))
1991 TREE_NO_WARNING (pointer) = 1;
1992 }
1993
1994 if (TREE_CODE (pointer) == ADDR_EXPR
1995 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1996 == TREE_TYPE (type)))
1997 return TREE_OPERAND (pointer, 0);
1998 else
1999 {
2000 tree t = TREE_TYPE (type);
2001 tree ref;
2002
2003 ref = build1 (INDIRECT_REF, t, pointer);
2004
2005 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
2006 {
2007 error ("dereferencing pointer to incomplete type");
2008 return error_mark_node;
2009 }
2010 if (VOID_TYPE_P (t) && skip_evaluation == 0)
2011 warning (0, "dereferencing %<void *%> pointer");
2012
2013 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
2014 so that we get the proper error message if the result is used
2015 to assign to. Also, &* is supposed to be a no-op.
2016 And ANSI C seems to specify that the type of the result
2017 should be the const type. */
2018 /* A de-reference of a pointer to const is not a const. It is valid
2019 to change it via some other pointer. */
2020 TREE_READONLY (ref) = TYPE_READONLY (t);
2021 TREE_SIDE_EFFECTS (ref)
2022 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
2023 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
2024 return ref;
2025 }
2026 }
2027 else if (TREE_CODE (pointer) != ERROR_MARK)
2028 error ("invalid type argument of %qs (have %qT)", errorstring, type);
2029 return error_mark_node;
2030 }
2031
2032 /* This handles expressions of the form "a[i]", which denotes
2033 an array reference.
2034
2035 This is logically equivalent in C to *(a+i), but we may do it differently.
2036 If A is a variable or a member, we generate a primitive ARRAY_REF.
2037 This avoids forcing the array out of registers, and can work on
2038 arrays that are not lvalues (for example, members of structures returned
2039 by functions). */
2040
2041 tree
2042 build_array_ref (tree array, tree index)
2043 {
2044 bool swapped = false;
2045 if (TREE_TYPE (array) == error_mark_node
2046 || TREE_TYPE (index) == error_mark_node)
2047 return error_mark_node;
2048
2049 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
2050 && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
2051 {
2052 tree temp;
2053 if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
2054 && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
2055 {
2056 error ("subscripted value is neither array nor pointer");
2057 return error_mark_node;
2058 }
2059 temp = array;
2060 array = index;
2061 index = temp;
2062 swapped = true;
2063 }
2064
2065 if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
2066 {
2067 error ("array subscript is not an integer");
2068 return error_mark_node;
2069 }
2070
2071 if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
2072 {
2073 error ("subscripted value is pointer to function");
2074 return error_mark_node;
2075 }
2076
2077 /* ??? Existing practice has been to warn only when the char
2078 index is syntactically the index, not for char[array]. */
2079 if (!swapped)
2080 warn_array_subscript_with_type_char (index);
2081
2082 /* Apply default promotions *after* noticing character types. */
2083 index = default_conversion (index);
2084
2085 gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
2086
2087 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
2088 {
2089 tree rval, type;
2090
2091 /* An array that is indexed by a non-constant
2092 cannot be stored in a register; we must be able to do
2093 address arithmetic on its address.
2094 Likewise an array of elements of variable size. */
2095 if (TREE_CODE (index) != INTEGER_CST
2096 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
2097 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
2098 {
2099 if (!c_mark_addressable (array))
2100 return error_mark_node;
2101 }
2102 /* An array that is indexed by a constant value which is not within
2103 the array bounds cannot be stored in a register either; because we
2104 would get a crash in store_bit_field/extract_bit_field when trying
2105 to access a non-existent part of the register. */
2106 if (TREE_CODE (index) == INTEGER_CST
2107 && TYPE_DOMAIN (TREE_TYPE (array))
2108 && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
2109 {
2110 if (!c_mark_addressable (array))
2111 return error_mark_node;
2112 }
2113
2114 if (pedantic)
2115 {
2116 tree foo = array;
2117 while (TREE_CODE (foo) == COMPONENT_REF)
2118 foo = TREE_OPERAND (foo, 0);
2119 if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2120 pedwarn ("ISO C forbids subscripting %<register%> array");
2121 else if (!flag_isoc99 && !lvalue_p (foo))
2122 pedwarn ("ISO C90 forbids subscripting non-lvalue array");
2123 }
2124
2125 type = TREE_TYPE (TREE_TYPE (array));
2126 rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2127 /* Array ref is const/volatile if the array elements are
2128 or if the array is. */
2129 TREE_READONLY (rval)
2130 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2131 | TREE_READONLY (array));
2132 TREE_SIDE_EFFECTS (rval)
2133 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2134 | TREE_SIDE_EFFECTS (array));
2135 TREE_THIS_VOLATILE (rval)
2136 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2137 /* This was added by rms on 16 Nov 91.
2138 It fixes vol struct foo *a; a->elts[1]
2139 in an inline function.
2140 Hope it doesn't break something else. */
2141 | TREE_THIS_VOLATILE (array));
2142 return require_complete_type (fold (rval));
2143 }
2144 else
2145 {
2146 tree ar = default_conversion (array);
2147
2148 if (ar == error_mark_node)
2149 return ar;
2150
2151 gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2152 gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2153
2154 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2155 "array indexing");
2156 }
2157 }
2158 \f
2159 /* Build an external reference to identifier ID. FUN indicates
2160 whether this will be used for a function call. LOC is the source
2161 location of the identifier. */
2162 tree
2163 build_external_ref (tree id, int fun, location_t loc)
2164 {
2165 tree ref;
2166 tree decl = lookup_name (id);
2167
2168 /* In Objective-C, an instance variable (ivar) may be preferred to
2169 whatever lookup_name() found. */
2170 decl = objc_lookup_ivar (decl, id);
2171
2172 if (decl && decl != error_mark_node)
2173 ref = decl;
2174 else if (fun)
2175 /* Implicit function declaration. */
2176 ref = implicitly_declare (id);
2177 else if (decl == error_mark_node)
2178 /* Don't complain about something that's already been
2179 complained about. */
2180 return error_mark_node;
2181 else
2182 {
2183 undeclared_variable (id, loc);
2184 return error_mark_node;
2185 }
2186
2187 if (TREE_TYPE (ref) == error_mark_node)
2188 return error_mark_node;
2189
2190 if (TREE_DEPRECATED (ref))
2191 warn_deprecated_use (ref);
2192
2193 /* Recursive call does not count as usage. */
2194 if (ref != current_function_decl)
2195 {
2196 if (!skip_evaluation)
2197 assemble_external (ref);
2198 TREE_USED (ref) = 1;
2199 }
2200
2201 if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2202 {
2203 if (!in_sizeof && !in_typeof)
2204 C_DECL_USED (ref) = 1;
2205 else if (DECL_INITIAL (ref) == 0
2206 && DECL_EXTERNAL (ref)
2207 && !TREE_PUBLIC (ref))
2208 record_maybe_used_decl (ref);
2209 }
2210
2211 if (TREE_CODE (ref) == CONST_DECL)
2212 {
2213 used_types_insert (TREE_TYPE (ref));
2214 ref = DECL_INITIAL (ref);
2215 TREE_CONSTANT (ref) = 1;
2216 }
2217 else if (current_function_decl != 0
2218 && !DECL_FILE_SCOPE_P (current_function_decl)
2219 && (TREE_CODE (ref) == VAR_DECL
2220 || TREE_CODE (ref) == PARM_DECL
2221 || TREE_CODE (ref) == FUNCTION_DECL))
2222 {
2223 tree context = decl_function_context (ref);
2224
2225 if (context != 0 && context != current_function_decl)
2226 DECL_NONLOCAL (ref) = 1;
2227 }
2228 /* C99 6.7.4p3: An inline definition of a function with external
2229 linkage ... shall not contain a reference to an identifier with
2230 internal linkage. */
2231 else if (current_function_decl != 0
2232 && DECL_DECLARED_INLINE_P (current_function_decl)
2233 && DECL_EXTERNAL (current_function_decl)
2234 && VAR_OR_FUNCTION_DECL_P (ref)
2235 && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2236 && ! TREE_PUBLIC (ref)
2237 && DECL_CONTEXT (ref) != current_function_decl)
2238 pedwarn ("%H%qD is static but used in inline function %qD "
2239 "which is not static", &loc, ref, current_function_decl);
2240
2241 return ref;
2242 }
2243
2244 /* Record details of decls possibly used inside sizeof or typeof. */
2245 struct maybe_used_decl
2246 {
2247 /* The decl. */
2248 tree decl;
2249 /* The level seen at (in_sizeof + in_typeof). */
2250 int level;
2251 /* The next one at this level or above, or NULL. */
2252 struct maybe_used_decl *next;
2253 };
2254
2255 static struct maybe_used_decl *maybe_used_decls;
2256
2257 /* Record that DECL, an undefined static function reference seen
2258 inside sizeof or typeof, might be used if the operand of sizeof is
2259 a VLA type or the operand of typeof is a variably modified
2260 type. */
2261
2262 static void
2263 record_maybe_used_decl (tree decl)
2264 {
2265 struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2266 t->decl = decl;
2267 t->level = in_sizeof + in_typeof;
2268 t->next = maybe_used_decls;
2269 maybe_used_decls = t;
2270 }
2271
2272 /* Pop the stack of decls possibly used inside sizeof or typeof. If
2273 USED is false, just discard them. If it is true, mark them used
2274 (if no longer inside sizeof or typeof) or move them to the next
2275 level up (if still inside sizeof or typeof). */
2276
2277 void
2278 pop_maybe_used (bool used)
2279 {
2280 struct maybe_used_decl *p = maybe_used_decls;
2281 int cur_level = in_sizeof + in_typeof;
2282 while (p && p->level > cur_level)
2283 {
2284 if (used)
2285 {
2286 if (cur_level == 0)
2287 C_DECL_USED (p->decl) = 1;
2288 else
2289 p->level = cur_level;
2290 }
2291 p = p->next;
2292 }
2293 if (!used || cur_level == 0)
2294 maybe_used_decls = p;
2295 }
2296
2297 /* Return the result of sizeof applied to EXPR. */
2298
2299 struct c_expr
2300 c_expr_sizeof_expr (struct c_expr expr)
2301 {
2302 struct c_expr ret;
2303 if (expr.value == error_mark_node)
2304 {
2305 ret.value = error_mark_node;
2306 ret.original_code = ERROR_MARK;
2307 pop_maybe_used (false);
2308 }
2309 else
2310 {
2311 ret.value = c_sizeof (TREE_TYPE (expr.value));
2312 ret.original_code = ERROR_MARK;
2313 if (c_vla_type_p (TREE_TYPE (expr.value)))
2314 {
2315 /* sizeof is evaluated when given a vla (C99 6.5.3.4p2). */
2316 ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2317 }
2318 pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2319 }
2320 return ret;
2321 }
2322
2323 /* Return the result of sizeof applied to T, a structure for the type
2324 name passed to sizeof (rather than the type itself). */
2325
2326 struct c_expr
2327 c_expr_sizeof_type (struct c_type_name *t)
2328 {
2329 tree type;
2330 struct c_expr ret;
2331 type = groktypename (t);
2332 ret.value = c_sizeof (type);
2333 ret.original_code = ERROR_MARK;
2334 pop_maybe_used (type != error_mark_node
2335 ? C_TYPE_VARIABLE_SIZE (type) : false);
2336 return ret;
2337 }
2338
2339 /* Build a function call to function FUNCTION with parameters PARAMS.
2340 PARAMS is a list--a chain of TREE_LIST nodes--in which the
2341 TREE_VALUE of each node is a parameter-expression.
2342 FUNCTION's data type may be a function type or a pointer-to-function. */
2343
2344 tree
2345 build_function_call (tree function, tree params)
2346 {
2347 tree fntype, fundecl = 0;
2348 tree name = NULL_TREE, result;
2349 tree tem;
2350 int nargs;
2351 tree *argarray;
2352
2353
2354 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
2355 STRIP_TYPE_NOPS (function);
2356
2357 /* Convert anything with function type to a pointer-to-function. */
2358 if (TREE_CODE (function) == FUNCTION_DECL)
2359 {
2360 /* Implement type-directed function overloading for builtins.
2361 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2362 handle all the type checking. The result is a complete expression
2363 that implements this function call. */
2364 tem = resolve_overloaded_builtin (function, params);
2365 if (tem)
2366 return tem;
2367
2368 name = DECL_NAME (function);
2369 fundecl = function;
2370 }
2371 if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2372 function = function_to_pointer_conversion (function);
2373
2374 /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2375 expressions, like those used for ObjC messenger dispatches. */
2376 function = objc_rewrite_function_call (function, params);
2377
2378 fntype = TREE_TYPE (function);
2379
2380 if (TREE_CODE (fntype) == ERROR_MARK)
2381 return error_mark_node;
2382
2383 if (!(TREE_CODE (fntype) == POINTER_TYPE
2384 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2385 {
2386 error ("called object %qE is not a function", function);
2387 return error_mark_node;
2388 }
2389
2390 if (fundecl && TREE_THIS_VOLATILE (fundecl))
2391 current_function_returns_abnormally = 1;
2392
2393 /* fntype now gets the type of function pointed to. */
2394 fntype = TREE_TYPE (fntype);
2395
2396 /* Check that the function is called through a compatible prototype.
2397 If it is not, replace the call by a trap, wrapped up in a compound
2398 expression if necessary. This has the nice side-effect to prevent
2399 the tree-inliner from generating invalid assignment trees which may
2400 blow up in the RTL expander later. */
2401 if ((TREE_CODE (function) == NOP_EXPR
2402 || TREE_CODE (function) == CONVERT_EXPR)
2403 && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2404 && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2405 && !comptypes (fntype, TREE_TYPE (tem)))
2406 {
2407 tree return_type = TREE_TYPE (fntype);
2408 tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2409 NULL_TREE);
2410
2411 /* This situation leads to run-time undefined behavior. We can't,
2412 therefore, simply error unless we can prove that all possible
2413 executions of the program must execute the code. */
2414 warning (0, "function called through a non-compatible type");
2415
2416 /* We can, however, treat "undefined" any way we please.
2417 Call abort to encourage the user to fix the program. */
2418 inform ("if this code is reached, the program will abort");
2419
2420 if (VOID_TYPE_P (return_type))
2421 return trap;
2422 else
2423 {
2424 tree rhs;
2425
2426 if (AGGREGATE_TYPE_P (return_type))
2427 rhs = build_compound_literal (return_type,
2428 build_constructor (return_type, 0));
2429 else
2430 rhs = fold_convert (return_type, integer_zero_node);
2431
2432 return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2433 }
2434 }
2435
2436 /* Convert the parameters to the types declared in the
2437 function prototype, or apply default promotions. */
2438
2439 nargs = list_length (params);
2440 argarray = (tree *) alloca (nargs * sizeof (tree));
2441 nargs = convert_arguments (nargs, argarray, TYPE_ARG_TYPES (fntype),
2442 params, function, fundecl);
2443 if (nargs < 0)
2444 return error_mark_node;
2445
2446 /* Check that the arguments to the function are valid. */
2447
2448 check_function_arguments (TYPE_ATTRIBUTES (fntype), nargs, argarray,
2449 TYPE_ARG_TYPES (fntype));
2450
2451 if (require_constant_value)
2452 {
2453 result = fold_build_call_array_initializer (TREE_TYPE (fntype),
2454 function, nargs, argarray);
2455 if (TREE_CONSTANT (result)
2456 && (name == NULL_TREE
2457 || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2458 pedwarn_init ("initializer element is not constant");
2459 }
2460 else
2461 result = fold_build_call_array (TREE_TYPE (fntype),
2462 function, nargs, argarray);
2463
2464 if (VOID_TYPE_P (TREE_TYPE (result)))
2465 return result;
2466 return require_complete_type (result);
2467 }
2468 \f
2469 /* Convert the argument expressions in the list VALUES
2470 to the types in the list TYPELIST. The resulting arguments are
2471 stored in the array ARGARRAY which has size NARGS.
2472
2473 If TYPELIST is exhausted, or when an element has NULL as its type,
2474 perform the default conversions.
2475
2476 PARMLIST is the chain of parm decls for the function being called.
2477 It may be 0, if that info is not available.
2478 It is used only for generating error messages.
2479
2480 FUNCTION is a tree for the called function. It is used only for
2481 error messages, where it is formatted with %qE.
2482
2483 This is also where warnings about wrong number of args are generated.
2484
2485 VALUES is a chain of TREE_LIST nodes with the elements of the list
2486 in the TREE_VALUE slots of those nodes.
2487
2488 Returns the actual number of arguments processed (which may be less
2489 than NARGS in some error situations), or -1 on failure. */
2490
2491 static int
2492 convert_arguments (int nargs, tree *argarray,
2493 tree typelist, tree values, tree function, tree fundecl)
2494 {
2495 tree typetail, valtail;
2496 int parmnum;
2497 const bool type_generic = fundecl
2498 && lookup_attribute ("type generic", TYPE_ATTRIBUTES(TREE_TYPE (fundecl)));
2499 tree selector;
2500
2501 /* Change pointer to function to the function itself for
2502 diagnostics. */
2503 if (TREE_CODE (function) == ADDR_EXPR
2504 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2505 function = TREE_OPERAND (function, 0);
2506
2507 /* Handle an ObjC selector specially for diagnostics. */
2508 selector = objc_message_selector ();
2509
2510 /* Scan the given expressions and types, producing individual
2511 converted arguments and storing them in ARGARRAY. */
2512
2513 for (valtail = values, typetail = typelist, parmnum = 0;
2514 valtail;
2515 valtail = TREE_CHAIN (valtail), parmnum++)
2516 {
2517 tree type = typetail ? TREE_VALUE (typetail) : 0;
2518 tree val = TREE_VALUE (valtail);
2519 tree rname = function;
2520 int argnum = parmnum + 1;
2521 const char *invalid_func_diag;
2522
2523 if (type == void_type_node)
2524 {
2525 error ("too many arguments to function %qE", function);
2526 return parmnum;
2527 }
2528
2529 if (selector && argnum > 2)
2530 {
2531 rname = selector;
2532 argnum -= 2;
2533 }
2534
2535 STRIP_TYPE_NOPS (val);
2536
2537 val = require_complete_type (val);
2538
2539 if (type != 0)
2540 {
2541 /* Formal parm type is specified by a function prototype. */
2542 tree parmval;
2543
2544 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2545 {
2546 error ("type of formal parameter %d is incomplete", parmnum + 1);
2547 parmval = val;
2548 }
2549 else
2550 {
2551 /* Optionally warn about conversions that
2552 differ from the default conversions. */
2553 if (warn_traditional_conversion || warn_traditional)
2554 {
2555 unsigned int formal_prec = TYPE_PRECISION (type);
2556
2557 if (INTEGRAL_TYPE_P (type)
2558 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2559 warning (0, "passing argument %d of %qE as integer "
2560 "rather than floating due to prototype",
2561 argnum, rname);
2562 if (INTEGRAL_TYPE_P (type)
2563 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2564 warning (0, "passing argument %d of %qE as integer "
2565 "rather than complex due to prototype",
2566 argnum, rname);
2567 else if (TREE_CODE (type) == COMPLEX_TYPE
2568 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2569 warning (0, "passing argument %d of %qE as complex "
2570 "rather than floating due to prototype",
2571 argnum, rname);
2572 else if (TREE_CODE (type) == REAL_TYPE
2573 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2574 warning (0, "passing argument %d of %qE as floating "
2575 "rather than integer due to prototype",
2576 argnum, rname);
2577 else if (TREE_CODE (type) == COMPLEX_TYPE
2578 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2579 warning (0, "passing argument %d of %qE as complex "
2580 "rather than integer due to prototype",
2581 argnum, rname);
2582 else if (TREE_CODE (type) == REAL_TYPE
2583 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2584 warning (0, "passing argument %d of %qE as floating "
2585 "rather than complex due to prototype",
2586 argnum, rname);
2587 /* ??? At some point, messages should be written about
2588 conversions between complex types, but that's too messy
2589 to do now. */
2590 else if (TREE_CODE (type) == REAL_TYPE
2591 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2592 {
2593 /* Warn if any argument is passed as `float',
2594 since without a prototype it would be `double'. */
2595 if (formal_prec == TYPE_PRECISION (float_type_node)
2596 && type != dfloat32_type_node)
2597 warning (0, "passing argument %d of %qE as %<float%> "
2598 "rather than %<double%> due to prototype",
2599 argnum, rname);
2600
2601 /* Warn if mismatch between argument and prototype
2602 for decimal float types. Warn of conversions with
2603 binary float types and of precision narrowing due to
2604 prototype. */
2605 else if (type != TREE_TYPE (val)
2606 && (type == dfloat32_type_node
2607 || type == dfloat64_type_node
2608 || type == dfloat128_type_node
2609 || TREE_TYPE (val) == dfloat32_type_node
2610 || TREE_TYPE (val) == dfloat64_type_node
2611 || TREE_TYPE (val) == dfloat128_type_node)
2612 && (formal_prec
2613 <= TYPE_PRECISION (TREE_TYPE (val))
2614 || (type == dfloat128_type_node
2615 && (TREE_TYPE (val)
2616 != dfloat64_type_node
2617 && (TREE_TYPE (val)
2618 != dfloat32_type_node)))
2619 || (type == dfloat64_type_node
2620 && (TREE_TYPE (val)
2621 != dfloat32_type_node))))
2622 warning (0, "passing argument %d of %qE as %qT "
2623 "rather than %qT due to prototype",
2624 argnum, rname, type, TREE_TYPE (val));
2625
2626 }
2627 /* Detect integer changing in width or signedness.
2628 These warnings are only activated with
2629 -Wtraditional-conversion, not with -Wtraditional. */
2630 else if (warn_traditional_conversion && INTEGRAL_TYPE_P (type)
2631 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2632 {
2633 tree would_have_been = default_conversion (val);
2634 tree type1 = TREE_TYPE (would_have_been);
2635
2636 if (TREE_CODE (type) == ENUMERAL_TYPE
2637 && (TYPE_MAIN_VARIANT (type)
2638 == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2639 /* No warning if function asks for enum
2640 and the actual arg is that enum type. */
2641 ;
2642 else if (formal_prec != TYPE_PRECISION (type1))
2643 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2644 "with different width due to prototype",
2645 argnum, rname);
2646 else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2647 ;
2648 /* Don't complain if the formal parameter type
2649 is an enum, because we can't tell now whether
2650 the value was an enum--even the same enum. */
2651 else if (TREE_CODE (type) == ENUMERAL_TYPE)
2652 ;
2653 else if (TREE_CODE (val) == INTEGER_CST
2654 && int_fits_type_p (val, type))
2655 /* Change in signedness doesn't matter
2656 if a constant value is unaffected. */
2657 ;
2658 /* If the value is extended from a narrower
2659 unsigned type, it doesn't matter whether we
2660 pass it as signed or unsigned; the value
2661 certainly is the same either way. */
2662 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2663 && TYPE_UNSIGNED (TREE_TYPE (val)))
2664 ;
2665 else if (TYPE_UNSIGNED (type))
2666 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2667 "as unsigned due to prototype",
2668 argnum, rname);
2669 else
2670 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2671 "as signed due to prototype", argnum, rname);
2672 }
2673 }
2674
2675 parmval = convert_for_assignment (type, val, ic_argpass,
2676 fundecl, function,
2677 parmnum + 1);
2678
2679 if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2680 && INTEGRAL_TYPE_P (type)
2681 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2682 parmval = default_conversion (parmval);
2683 }
2684 argarray[parmnum] = parmval;
2685 }
2686 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2687 && (TYPE_PRECISION (TREE_TYPE (val))
2688 < TYPE_PRECISION (double_type_node))
2689 && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2690 {
2691 if (type_generic)
2692 argarray[parmnum] = val;
2693 else
2694 /* Convert `float' to `double'. */
2695 argarray[parmnum] = convert (double_type_node, val);
2696 }
2697 else if ((invalid_func_diag =
2698 targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2699 {
2700 error (invalid_func_diag);
2701 return -1;
2702 }
2703 else
2704 /* Convert `short' and `char' to full-size `int'. */
2705 argarray[parmnum] = default_conversion (val);
2706
2707 if (typetail)
2708 typetail = TREE_CHAIN (typetail);
2709 }
2710
2711 gcc_assert (parmnum == nargs);
2712
2713 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2714 {
2715 error ("too few arguments to function %qE", function);
2716 return -1;
2717 }
2718
2719 return parmnum;
2720 }
2721 \f
2722 /* This is the entry point used by the parser to build unary operators
2723 in the input. CODE, a tree_code, specifies the unary operator, and
2724 ARG is the operand. For unary plus, the C parser currently uses
2725 CONVERT_EXPR for code. */
2726
2727 struct c_expr
2728 parser_build_unary_op (enum tree_code code, struct c_expr arg)
2729 {
2730 struct c_expr result;
2731
2732 result.original_code = ERROR_MARK;
2733 result.value = build_unary_op (code, arg.value, 0);
2734
2735 if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value))
2736 overflow_warning (result.value);
2737
2738 return result;
2739 }
2740
2741 /* This is the entry point used by the parser to build binary operators
2742 in the input. CODE, a tree_code, specifies the binary operator, and
2743 ARG1 and ARG2 are the operands. In addition to constructing the
2744 expression, we check for operands that were written with other binary
2745 operators in a way that is likely to confuse the user. */
2746
2747 struct c_expr
2748 parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2749 struct c_expr arg2)
2750 {
2751 struct c_expr result;
2752
2753 enum tree_code code1 = arg1.original_code;
2754 enum tree_code code2 = arg2.original_code;
2755
2756 result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2757 result.original_code = code;
2758
2759 if (TREE_CODE (result.value) == ERROR_MARK)
2760 return result;
2761
2762 /* Check for cases such as x+y<<z which users are likely
2763 to misinterpret. */
2764 if (warn_parentheses)
2765 warn_about_parentheses (code, code1, code2);
2766
2767 if (code1 != tcc_comparison)
2768 warn_logical_operator (code, arg1.value, arg2.value);
2769
2770 /* Warn about comparisons against string literals, with the exception
2771 of testing for equality or inequality of a string literal with NULL. */
2772 if (code == EQ_EXPR || code == NE_EXPR)
2773 {
2774 if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2775 || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2776 warning (OPT_Waddress, "comparison with string literal results in unspecified behavior");
2777 }
2778 else if (TREE_CODE_CLASS (code) == tcc_comparison
2779 && (code1 == STRING_CST || code2 == STRING_CST))
2780 warning (OPT_Waddress, "comparison with string literal results in unspecified behavior");
2781
2782 if (TREE_OVERFLOW_P (result.value)
2783 && !TREE_OVERFLOW_P (arg1.value)
2784 && !TREE_OVERFLOW_P (arg2.value))
2785 overflow_warning (result.value);
2786
2787 return result;
2788 }
2789 \f
2790 /* Return a tree for the difference of pointers OP0 and OP1.
2791 The resulting tree has type int. */
2792
2793 static tree
2794 pointer_diff (tree op0, tree op1)
2795 {
2796 tree restype = ptrdiff_type_node;
2797
2798 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2799 tree con0, con1, lit0, lit1;
2800 tree orig_op1 = op1;
2801
2802 if (pedantic || warn_pointer_arith)
2803 {
2804 if (TREE_CODE (target_type) == VOID_TYPE)
2805 pedwarn ("pointer of type %<void *%> used in subtraction");
2806 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2807 pedwarn ("pointer to a function used in subtraction");
2808 }
2809
2810 /* If the conversion to ptrdiff_type does anything like widening or
2811 converting a partial to an integral mode, we get a convert_expression
2812 that is in the way to do any simplifications.
2813 (fold-const.c doesn't know that the extra bits won't be needed.
2814 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2815 different mode in place.)
2816 So first try to find a common term here 'by hand'; we want to cover
2817 at least the cases that occur in legal static initializers. */
2818 if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2819 && (TYPE_PRECISION (TREE_TYPE (op0))
2820 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2821 con0 = TREE_OPERAND (op0, 0);
2822 else
2823 con0 = op0;
2824 if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2825 && (TYPE_PRECISION (TREE_TYPE (op1))
2826 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2827 con1 = TREE_OPERAND (op1, 0);
2828 else
2829 con1 = op1;
2830
2831 if (TREE_CODE (con0) == PLUS_EXPR)
2832 {
2833 lit0 = TREE_OPERAND (con0, 1);
2834 con0 = TREE_OPERAND (con0, 0);
2835 }
2836 else
2837 lit0 = integer_zero_node;
2838
2839 if (TREE_CODE (con1) == PLUS_EXPR)
2840 {
2841 lit1 = TREE_OPERAND (con1, 1);
2842 con1 = TREE_OPERAND (con1, 0);
2843 }
2844 else
2845 lit1 = integer_zero_node;
2846
2847 if (operand_equal_p (con0, con1, 0))
2848 {
2849 op0 = lit0;
2850 op1 = lit1;
2851 }
2852
2853
2854 /* First do the subtraction as integers;
2855 then drop through to build the divide operator.
2856 Do not do default conversions on the minus operator
2857 in case restype is a short type. */
2858
2859 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2860 convert (restype, op1), 0);
2861 /* This generates an error if op1 is pointer to incomplete type. */
2862 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2863 error ("arithmetic on pointer to an incomplete type");
2864
2865 /* This generates an error if op0 is pointer to incomplete type. */
2866 op1 = c_size_in_bytes (target_type);
2867
2868 /* Divide by the size, in easiest possible way. */
2869 return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2870 }
2871 \f
2872 /* Construct and perhaps optimize a tree representation
2873 for a unary operation. CODE, a tree_code, specifies the operation
2874 and XARG is the operand.
2875 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2876 the default promotions (such as from short to int).
2877 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2878 allows non-lvalues; this is only used to handle conversion of non-lvalue
2879 arrays to pointers in C99. */
2880
2881 tree
2882 build_unary_op (enum tree_code code, tree xarg, int flag)
2883 {
2884 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2885 tree arg = xarg;
2886 tree argtype = 0;
2887 enum tree_code typecode;
2888 tree val;
2889 int noconvert = flag;
2890 const char *invalid_op_diag;
2891
2892 if (code != ADDR_EXPR)
2893 arg = require_complete_type (arg);
2894
2895 typecode = TREE_CODE (TREE_TYPE (arg));
2896 if (typecode == ERROR_MARK)
2897 return error_mark_node;
2898 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2899 typecode = INTEGER_TYPE;
2900
2901 if ((invalid_op_diag
2902 = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2903 {
2904 error (invalid_op_diag);
2905 return error_mark_node;
2906 }
2907
2908 switch (code)
2909 {
2910 case CONVERT_EXPR:
2911 /* This is used for unary plus, because a CONVERT_EXPR
2912 is enough to prevent anybody from looking inside for
2913 associativity, but won't generate any code. */
2914 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2915 || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE
2916 || typecode == VECTOR_TYPE))
2917 {
2918 error ("wrong type argument to unary plus");
2919 return error_mark_node;
2920 }
2921 else if (!noconvert)
2922 arg = default_conversion (arg);
2923 arg = non_lvalue (arg);
2924 break;
2925
2926 case NEGATE_EXPR:
2927 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2928 || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE
2929 || typecode == VECTOR_TYPE))
2930 {
2931 error ("wrong type argument to unary minus");
2932 return error_mark_node;
2933 }
2934 else if (!noconvert)
2935 arg = default_conversion (arg);
2936 break;
2937
2938 case BIT_NOT_EXPR:
2939 /* ~ works on integer types and non float vectors. */
2940 if (typecode == INTEGER_TYPE
2941 || (typecode == VECTOR_TYPE
2942 && !VECTOR_FLOAT_TYPE_P (TREE_TYPE (arg))))
2943 {
2944 if (!noconvert)
2945 arg = default_conversion (arg);
2946 }
2947 else if (typecode == COMPLEX_TYPE)
2948 {
2949 code = CONJ_EXPR;
2950 if (pedantic)
2951 pedwarn ("ISO C does not support %<~%> for complex conjugation");
2952 if (!noconvert)
2953 arg = default_conversion (arg);
2954 }
2955 else
2956 {
2957 error ("wrong type argument to bit-complement");
2958 return error_mark_node;
2959 }
2960 break;
2961
2962 case ABS_EXPR:
2963 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2964 {
2965 error ("wrong type argument to abs");
2966 return error_mark_node;
2967 }
2968 else if (!noconvert)
2969 arg = default_conversion (arg);
2970 break;
2971
2972 case CONJ_EXPR:
2973 /* Conjugating a real value is a no-op, but allow it anyway. */
2974 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2975 || typecode == COMPLEX_TYPE))
2976 {
2977 error ("wrong type argument to conjugation");
2978 return error_mark_node;
2979 }
2980 else if (!noconvert)
2981 arg = default_conversion (arg);
2982 break;
2983
2984 case TRUTH_NOT_EXPR:
2985 if (typecode != INTEGER_TYPE && typecode != FIXED_POINT_TYPE
2986 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2987 && typecode != COMPLEX_TYPE)
2988 {
2989 error ("wrong type argument to unary exclamation mark");
2990 return error_mark_node;
2991 }
2992 arg = c_objc_common_truthvalue_conversion (arg);
2993 return invert_truthvalue (arg);
2994
2995 case REALPART_EXPR:
2996 if (TREE_CODE (arg) == COMPLEX_CST)
2997 return TREE_REALPART (arg);
2998 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2999 return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
3000 else
3001 return arg;
3002
3003 case IMAGPART_EXPR:
3004 if (TREE_CODE (arg) == COMPLEX_CST)
3005 return TREE_IMAGPART (arg);
3006 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
3007 return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
3008 else
3009 return convert (TREE_TYPE (arg), integer_zero_node);
3010
3011 case PREINCREMENT_EXPR:
3012 case POSTINCREMENT_EXPR:
3013 case PREDECREMENT_EXPR:
3014 case POSTDECREMENT_EXPR:
3015
3016 /* Increment or decrement the real part of the value,
3017 and don't change the imaginary part. */
3018 if (typecode == COMPLEX_TYPE)
3019 {
3020 tree real, imag;
3021
3022 if (pedantic)
3023 pedwarn ("ISO C does not support %<++%> and %<--%>"
3024 " on complex types");
3025
3026 arg = stabilize_reference (arg);
3027 real = build_unary_op (REALPART_EXPR, arg, 1);
3028 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
3029 real = build_unary_op (code, real, 1);
3030 if (real == error_mark_node || imag == error_mark_node)
3031 return error_mark_node;
3032 return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
3033 real, imag);
3034 }
3035
3036 /* Report invalid types. */
3037
3038 if (typecode != POINTER_TYPE && typecode != FIXED_POINT_TYPE
3039 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
3040 {
3041 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3042 error ("wrong type argument to increment");
3043 else
3044 error ("wrong type argument to decrement");
3045
3046 return error_mark_node;
3047 }
3048
3049 {
3050 tree inc;
3051 tree result_type = TREE_TYPE (arg);
3052
3053 arg = get_unwidened (arg, 0);
3054 argtype = TREE_TYPE (arg);
3055
3056 /* Compute the increment. */
3057
3058 if (typecode == POINTER_TYPE)
3059 {
3060 /* If pointer target is an undefined struct,
3061 we just cannot know how to do the arithmetic. */
3062 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
3063 {
3064 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3065 error ("increment of pointer to unknown structure");
3066 else
3067 error ("decrement of pointer to unknown structure");
3068 }
3069 else if ((pedantic || warn_pointer_arith)
3070 && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
3071 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
3072 {
3073 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3074 pedwarn ("wrong type argument to increment");
3075 else
3076 pedwarn ("wrong type argument to decrement");
3077 }
3078
3079 inc = c_size_in_bytes (TREE_TYPE (result_type));
3080 inc = fold_convert (sizetype, inc);
3081 }
3082 else if (FRACT_MODE_P (TYPE_MODE (result_type)))
3083 {
3084 /* For signed fract types, we invert ++ to -- or
3085 -- to ++, and change inc from 1 to -1, because
3086 it is not possible to represent 1 in signed fract constants.
3087 For unsigned fract types, the result always overflows and
3088 we get an undefined (original) or the maximum value. */
3089 if (code == PREINCREMENT_EXPR)
3090 code = PREDECREMENT_EXPR;
3091 else if (code == PREDECREMENT_EXPR)
3092 code = PREINCREMENT_EXPR;
3093 else if (code == POSTINCREMENT_EXPR)
3094 code = POSTDECREMENT_EXPR;
3095 else /* code == POSTDECREMENT_EXPR */
3096 code = POSTINCREMENT_EXPR;
3097
3098 inc = integer_minus_one_node;
3099 inc = convert (argtype, inc);
3100 }
3101 else
3102 {
3103 inc = integer_one_node;
3104 inc = convert (argtype, inc);
3105 }
3106
3107 /* Complain about anything else that is not a true lvalue. */
3108 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
3109 || code == POSTINCREMENT_EXPR)
3110 ? lv_increment
3111 : lv_decrement)))
3112 return error_mark_node;
3113
3114 /* Report a read-only lvalue. */
3115 if (TREE_READONLY (arg))
3116 {
3117 readonly_error (arg,
3118 ((code == PREINCREMENT_EXPR
3119 || code == POSTINCREMENT_EXPR)
3120 ? lv_increment : lv_decrement));
3121 return error_mark_node;
3122 }
3123
3124 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3125 val = boolean_increment (code, arg);
3126 else
3127 val = build2 (code, TREE_TYPE (arg), arg, inc);
3128 TREE_SIDE_EFFECTS (val) = 1;
3129 val = convert (result_type, val);
3130 if (TREE_CODE (val) != code)
3131 TREE_NO_WARNING (val) = 1;
3132 return val;
3133 }
3134
3135 case ADDR_EXPR:
3136 /* Note that this operation never does default_conversion. */
3137
3138 /* Let &* cancel out to simplify resulting code. */
3139 if (TREE_CODE (arg) == INDIRECT_REF)
3140 {
3141 /* Don't let this be an lvalue. */
3142 if (lvalue_p (TREE_OPERAND (arg, 0)))
3143 return non_lvalue (TREE_OPERAND (arg, 0));
3144 return TREE_OPERAND (arg, 0);
3145 }
3146
3147 /* For &x[y], return x+y */
3148 if (TREE_CODE (arg) == ARRAY_REF)
3149 {
3150 tree op0 = TREE_OPERAND (arg, 0);
3151 if (!c_mark_addressable (op0))
3152 return error_mark_node;
3153 return build_binary_op (PLUS_EXPR,
3154 (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3155 ? array_to_pointer_conversion (op0)
3156 : op0),
3157 TREE_OPERAND (arg, 1), 1);
3158 }
3159
3160 /* Anything not already handled and not a true memory reference
3161 or a non-lvalue array is an error. */
3162 else if (typecode != FUNCTION_TYPE && !flag
3163 && !lvalue_or_else (arg, lv_addressof))
3164 return error_mark_node;
3165
3166 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3167 argtype = TREE_TYPE (arg);
3168
3169 /* If the lvalue is const or volatile, merge that into the type
3170 to which the address will point. Note that you can't get a
3171 restricted pointer by taking the address of something, so we
3172 only have to deal with `const' and `volatile' here. */
3173 if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3174 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3175 argtype = c_build_type_variant (argtype,
3176 TREE_READONLY (arg),
3177 TREE_THIS_VOLATILE (arg));
3178
3179 if (!c_mark_addressable (arg))
3180 return error_mark_node;
3181
3182 gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3183 || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3184
3185 argtype = build_pointer_type (argtype);
3186
3187 /* ??? Cope with user tricks that amount to offsetof. Delete this
3188 when we have proper support for integer constant expressions. */
3189 val = get_base_address (arg);
3190 if (val && TREE_CODE (val) == INDIRECT_REF
3191 && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3192 {
3193 tree op0 = fold_convert (sizetype, fold_offsetof (arg, val)), op1;
3194
3195 op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3196 return fold_build2 (POINTER_PLUS_EXPR, argtype, op1, op0);
3197 }
3198
3199 val = build1 (ADDR_EXPR, argtype, arg);
3200
3201 return val;
3202
3203 default:
3204 gcc_unreachable ();
3205 }
3206
3207 if (argtype == 0)
3208 argtype = TREE_TYPE (arg);
3209 return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3210 : fold_build1 (code, argtype, arg);
3211 }
3212
3213 /* Return nonzero if REF is an lvalue valid for this language.
3214 Lvalues can be assigned, unless their type has TYPE_READONLY.
3215 Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
3216
3217 static int
3218 lvalue_p (const_tree ref)
3219 {
3220 const enum tree_code code = TREE_CODE (ref);
3221
3222 switch (code)
3223 {
3224 case REALPART_EXPR:
3225 case IMAGPART_EXPR:
3226 case COMPONENT_REF:
3227 return lvalue_p (TREE_OPERAND (ref, 0));
3228
3229 case COMPOUND_LITERAL_EXPR:
3230 case STRING_CST:
3231 return 1;
3232
3233 case INDIRECT_REF:
3234 case ARRAY_REF:
3235 case VAR_DECL:
3236 case PARM_DECL:
3237 case RESULT_DECL:
3238 case ERROR_MARK:
3239 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3240 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3241
3242 case BIND_EXPR:
3243 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3244
3245 default:
3246 return 0;
3247 }
3248 }
3249 \f
3250 /* Give an error for storing in something that is 'const'. */
3251
3252 static void
3253 readonly_error (tree arg, enum lvalue_use use)
3254 {
3255 gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3256 || use == lv_asm);
3257 /* Using this macro rather than (for example) arrays of messages
3258 ensures that all the format strings are checked at compile
3259 time. */
3260 #define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A) \
3261 : (use == lv_increment ? (I) \
3262 : (use == lv_decrement ? (D) : (AS))))
3263 if (TREE_CODE (arg) == COMPONENT_REF)
3264 {
3265 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3266 readonly_error (TREE_OPERAND (arg, 0), use);
3267 else
3268 error (READONLY_MSG (G_("assignment of read-only member %qD"),
3269 G_("increment of read-only member %qD"),
3270 G_("decrement of read-only member %qD"),
3271 G_("read-only member %qD used as %<asm%> output")),
3272 TREE_OPERAND (arg, 1));
3273 }
3274 else if (TREE_CODE (arg) == VAR_DECL)
3275 error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3276 G_("increment of read-only variable %qD"),
3277 G_("decrement of read-only variable %qD"),
3278 G_("read-only variable %qD used as %<asm%> output")),
3279 arg);
3280 else
3281 error (READONLY_MSG (G_("assignment of read-only location %qE"),
3282 G_("increment of read-only location %qE"),
3283 G_("decrement of read-only location %qE"),
3284 G_("read-only location %qE used as %<asm%> output")),
3285 arg);
3286 }
3287
3288
3289 /* Return nonzero if REF is an lvalue valid for this language;
3290 otherwise, print an error message and return zero. USE says
3291 how the lvalue is being used and so selects the error message. */
3292
3293 static int
3294 lvalue_or_else (const_tree ref, enum lvalue_use use)
3295 {
3296 int win = lvalue_p (ref);
3297
3298 if (!win)
3299 lvalue_error (use);
3300
3301 return win;
3302 }
3303 \f
3304 /* Mark EXP saying that we need to be able to take the
3305 address of it; it should not be allocated in a register.
3306 Returns true if successful. */
3307
3308 bool
3309 c_mark_addressable (tree exp)
3310 {
3311 tree x = exp;
3312
3313 while (1)
3314 switch (TREE_CODE (x))
3315 {
3316 case COMPONENT_REF:
3317 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3318 {
3319 error
3320 ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3321 return false;
3322 }
3323
3324 /* ... fall through ... */
3325
3326 case ADDR_EXPR:
3327 case ARRAY_REF:
3328 case REALPART_EXPR:
3329 case IMAGPART_EXPR:
3330 x = TREE_OPERAND (x, 0);
3331 break;
3332
3333 case COMPOUND_LITERAL_EXPR:
3334 case CONSTRUCTOR:
3335 TREE_ADDRESSABLE (x) = 1;
3336 return true;
3337
3338 case VAR_DECL:
3339 case CONST_DECL:
3340 case PARM_DECL:
3341 case RESULT_DECL:
3342 if (C_DECL_REGISTER (x)
3343 && DECL_NONLOCAL (x))
3344 {
3345 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3346 {
3347 error
3348 ("global register variable %qD used in nested function", x);
3349 return false;
3350 }
3351 pedwarn ("register variable %qD used in nested function", x);
3352 }
3353 else if (C_DECL_REGISTER (x))
3354 {
3355 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3356 error ("address of global register variable %qD requested", x);
3357 else
3358 error ("address of register variable %qD requested", x);
3359 return false;
3360 }
3361
3362 /* drops in */
3363 case FUNCTION_DECL:
3364 TREE_ADDRESSABLE (x) = 1;
3365 /* drops out */
3366 default:
3367 return true;
3368 }
3369 }
3370 \f
3371 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3372
3373 tree
3374 build_conditional_expr (tree ifexp, tree op1, tree op2)
3375 {
3376 tree type1;
3377 tree type2;
3378 enum tree_code code1;
3379 enum tree_code code2;
3380 tree result_type = NULL;
3381 tree orig_op1 = op1, orig_op2 = op2;
3382
3383 /* Promote both alternatives. */
3384
3385 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3386 op1 = default_conversion (op1);
3387 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3388 op2 = default_conversion (op2);
3389
3390 if (TREE_CODE (ifexp) == ERROR_MARK
3391 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3392 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3393 return error_mark_node;
3394
3395 type1 = TREE_TYPE (op1);
3396 code1 = TREE_CODE (type1);
3397 type2 = TREE_TYPE (op2);
3398 code2 = TREE_CODE (type2);
3399
3400 /* C90 does not permit non-lvalue arrays in conditional expressions.
3401 In C99 they will be pointers by now. */
3402 if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3403 {
3404 error ("non-lvalue array in conditional expression");
3405 return error_mark_node;
3406 }
3407
3408 /* Quickly detect the usual case where op1 and op2 have the same type
3409 after promotion. */
3410 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3411 {
3412 if (type1 == type2)
3413 result_type = type1;
3414 else
3415 result_type = TYPE_MAIN_VARIANT (type1);
3416 }
3417 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3418 || code1 == COMPLEX_TYPE)
3419 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3420 || code2 == COMPLEX_TYPE))
3421 {
3422 result_type = c_common_type (type1, type2);
3423
3424 /* If -Wsign-compare, warn here if type1 and type2 have
3425 different signedness. We'll promote the signed to unsigned
3426 and later code won't know it used to be different.
3427 Do this check on the original types, so that explicit casts
3428 will be considered, but default promotions won't. */
3429 if (warn_sign_compare && !skip_evaluation)
3430 {
3431 int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3432 int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3433
3434 if (unsigned_op1 ^ unsigned_op2)
3435 {
3436 bool ovf;
3437
3438 /* Do not warn if the result type is signed, since the
3439 signed type will only be chosen if it can represent
3440 all the values of the unsigned type. */
3441 if (!TYPE_UNSIGNED (result_type))
3442 /* OK */;
3443 /* Do not warn if the signed quantity is an unsuffixed
3444 integer literal (or some static constant expression
3445 involving such literals) and it is non-negative. */
3446 else if ((unsigned_op2
3447 && tree_expr_nonnegative_warnv_p (op1, &ovf))
3448 || (unsigned_op1
3449 && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3450 /* OK */;
3451 else
3452 warning (OPT_Wsign_compare, "signed and unsigned type in conditional expression");
3453 }
3454 }
3455 }
3456 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3457 {
3458 if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3459 pedwarn ("ISO C forbids conditional expr with only one void side");
3460 result_type = void_type_node;
3461 }
3462 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3463 {
3464 if (comp_target_types (type1, type2))
3465 result_type = common_pointer_type (type1, type2);
3466 else if (null_pointer_constant_p (orig_op1))
3467 result_type = qualify_type (type2, type1);
3468 else if (null_pointer_constant_p (orig_op2))
3469 result_type = qualify_type (type1, type2);
3470 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3471 {
3472 if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3473 pedwarn ("ISO C forbids conditional expr between "
3474 "%<void *%> and function pointer");
3475 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3476 TREE_TYPE (type2)));
3477 }
3478 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3479 {
3480 if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3481 pedwarn ("ISO C forbids conditional expr between "
3482 "%<void *%> and function pointer");
3483 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3484 TREE_TYPE (type1)));
3485 }
3486 else
3487 {
3488 pedwarn ("pointer type mismatch in conditional expression");
3489 result_type = build_pointer_type (void_type_node);
3490 }
3491 }
3492 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3493 {
3494 if (!null_pointer_constant_p (orig_op2))
3495 pedwarn ("pointer/integer type mismatch in conditional expression");
3496 else
3497 {
3498 op2 = null_pointer_node;
3499 }
3500 result_type = type1;
3501 }
3502 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3503 {
3504 if (!null_pointer_constant_p (orig_op1))
3505 pedwarn ("pointer/integer type mismatch in conditional expression");
3506 else
3507 {
3508 op1 = null_pointer_node;
3509 }
3510 result_type = type2;
3511 }
3512
3513 if (!result_type)
3514 {
3515 if (flag_cond_mismatch)
3516 result_type = void_type_node;
3517 else
3518 {
3519 error ("type mismatch in conditional expression");
3520 return error_mark_node;
3521 }
3522 }
3523
3524 /* Merge const and volatile flags of the incoming types. */
3525 result_type
3526 = build_type_variant (result_type,
3527 TREE_READONLY (op1) || TREE_READONLY (op2),
3528 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3529
3530 if (result_type != TREE_TYPE (op1))
3531 op1 = convert_and_check (result_type, op1);
3532 if (result_type != TREE_TYPE (op2))
3533 op2 = convert_and_check (result_type, op2);
3534
3535 return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3536 }
3537 \f
3538 /* Return a compound expression that performs two expressions and
3539 returns the value of the second of them. */
3540
3541 tree
3542 build_compound_expr (tree expr1, tree expr2)
3543 {
3544 if (!TREE_SIDE_EFFECTS (expr1))
3545 {
3546 /* The left-hand operand of a comma expression is like an expression
3547 statement: with -Wunused, we should warn if it doesn't have
3548 any side-effects, unless it was explicitly cast to (void). */
3549 if (warn_unused_value)
3550 {
3551 if (VOID_TYPE_P (TREE_TYPE (expr1))
3552 && (TREE_CODE (expr1) == NOP_EXPR
3553 || TREE_CODE (expr1) == CONVERT_EXPR))
3554 ; /* (void) a, b */
3555 else if (VOID_TYPE_P (TREE_TYPE (expr1))
3556 && TREE_CODE (expr1) == COMPOUND_EXPR
3557 && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3558 || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3559 ; /* (void) a, (void) b, c */
3560 else
3561 warning (OPT_Wunused_value,
3562 "left-hand operand of comma expression has no effect");
3563 }
3564 }
3565
3566 /* With -Wunused, we should also warn if the left-hand operand does have
3567 side-effects, but computes a value which is not used. For example, in
3568 `foo() + bar(), baz()' the result of the `+' operator is not used,
3569 so we should issue a warning. */
3570 else if (warn_unused_value)
3571 warn_if_unused_value (expr1, input_location);
3572
3573 if (expr2 == error_mark_node)
3574 return error_mark_node;
3575
3576 return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3577 }
3578
3579 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3580
3581 tree
3582 build_c_cast (tree type, tree expr)
3583 {
3584 tree value = expr;
3585
3586 if (type == error_mark_node || expr == error_mark_node)
3587 return error_mark_node;
3588
3589 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3590 only in <protocol> qualifications. But when constructing cast expressions,
3591 the protocols do matter and must be kept around. */
3592 if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3593 return build1 (NOP_EXPR, type, expr);
3594
3595 type = TYPE_MAIN_VARIANT (type);
3596
3597 if (TREE_CODE (type) == ARRAY_TYPE)
3598 {
3599 error ("cast specifies array type");
3600 return error_mark_node;
3601 }
3602
3603 if (TREE_CODE (type) == FUNCTION_TYPE)
3604 {
3605 error ("cast specifies function type");
3606 return error_mark_node;
3607 }
3608
3609 if (!VOID_TYPE_P (type))
3610 {
3611 value = require_complete_type (value);
3612 if (value == error_mark_node)
3613 return error_mark_node;
3614 }
3615
3616 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3617 {
3618 if (pedantic)
3619 {
3620 if (TREE_CODE (type) == RECORD_TYPE
3621 || TREE_CODE (type) == UNION_TYPE)
3622 pedwarn ("ISO C forbids casting nonscalar to the same type");
3623 }
3624 }
3625 else if (TREE_CODE (type) == UNION_TYPE)
3626 {
3627 tree field;
3628
3629 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3630 if (TREE_TYPE (field) != error_mark_node
3631 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3632 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3633 break;
3634
3635 if (field)
3636 {
3637 tree t;
3638
3639 if (pedantic)
3640 pedwarn ("ISO C forbids casts to union type");
3641 t = digest_init (type,
3642 build_constructor_single (type, field, value),
3643 true, 0);
3644 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3645 return t;
3646 }
3647 error ("cast to union type from type not present in union");
3648 return error_mark_node;
3649 }
3650 else
3651 {
3652 tree otype, ovalue;
3653
3654 if (type == void_type_node)
3655 return build1 (CONVERT_EXPR, type, value);
3656
3657 otype = TREE_TYPE (value);
3658
3659 /* Optionally warn about potentially worrisome casts. */
3660
3661 if (warn_cast_qual
3662 && TREE_CODE (type) == POINTER_TYPE
3663 && TREE_CODE (otype) == POINTER_TYPE)
3664 {
3665 tree in_type = type;
3666 tree in_otype = otype;
3667 int added = 0;
3668 int discarded = 0;
3669
3670 /* Check that the qualifiers on IN_TYPE are a superset of
3671 the qualifiers of IN_OTYPE. The outermost level of
3672 POINTER_TYPE nodes is uninteresting and we stop as soon
3673 as we hit a non-POINTER_TYPE node on either type. */
3674 do
3675 {
3676 in_otype = TREE_TYPE (in_otype);
3677 in_type = TREE_TYPE (in_type);
3678
3679 /* GNU C allows cv-qualified function types. 'const'
3680 means the function is very pure, 'volatile' means it
3681 can't return. We need to warn when such qualifiers
3682 are added, not when they're taken away. */
3683 if (TREE_CODE (in_otype) == FUNCTION_TYPE
3684 && TREE_CODE (in_type) == FUNCTION_TYPE)
3685 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3686 else
3687 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3688 }
3689 while (TREE_CODE (in_type) == POINTER_TYPE
3690 && TREE_CODE (in_otype) == POINTER_TYPE);
3691
3692 if (added)
3693 warning (OPT_Wcast_qual, "cast adds new qualifiers to function type");
3694
3695 if (discarded)
3696 /* There are qualifiers present in IN_OTYPE that are not
3697 present in IN_TYPE. */
3698 warning (OPT_Wcast_qual, "cast discards qualifiers from pointer target type");
3699 }
3700
3701 /* Warn about possible alignment problems. */
3702 if (STRICT_ALIGNMENT
3703 && TREE_CODE (type) == POINTER_TYPE
3704 && TREE_CODE (otype) == POINTER_TYPE
3705 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3706 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3707 /* Don't warn about opaque types, where the actual alignment
3708 restriction is unknown. */
3709 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3710 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3711 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3712 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3713 warning (OPT_Wcast_align,
3714 "cast increases required alignment of target type");
3715
3716 if (TREE_CODE (type) == INTEGER_TYPE
3717 && TREE_CODE (otype) == POINTER_TYPE
3718 && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3719 /* Unlike conversion of integers to pointers, where the
3720 warning is disabled for converting constants because
3721 of cases such as SIG_*, warn about converting constant
3722 pointers to integers. In some cases it may cause unwanted
3723 sign extension, and a warning is appropriate. */
3724 warning (OPT_Wpointer_to_int_cast,
3725 "cast from pointer to integer of different size");
3726
3727 if (TREE_CODE (value) == CALL_EXPR
3728 && TREE_CODE (type) != TREE_CODE (otype))
3729 warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3730 "to non-matching type %qT", otype, type);
3731
3732 if (TREE_CODE (type) == POINTER_TYPE
3733 && TREE_CODE (otype) == INTEGER_TYPE
3734 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3735 /* Don't warn about converting any constant. */
3736 && !TREE_CONSTANT (value))
3737 warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3738 "of different size");
3739
3740 if (warn_strict_aliasing <= 2)
3741 strict_aliasing_warning (otype, type, expr);
3742
3743 /* If pedantic, warn for conversions between function and object
3744 pointer types, except for converting a null pointer constant
3745 to function pointer type. */
3746 if (pedantic
3747 && TREE_CODE (type) == POINTER_TYPE
3748 && TREE_CODE (otype) == POINTER_TYPE
3749 && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3750 && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3751 pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3752
3753 if (pedantic
3754 && TREE_CODE (type) == POINTER_TYPE
3755 && TREE_CODE (otype) == POINTER_TYPE
3756 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3757 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3758 && !null_pointer_constant_p (value))
3759 pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3760
3761 ovalue = value;
3762 value = convert (type, value);
3763
3764 /* Ignore any integer overflow caused by the cast. */
3765 if (TREE_CODE (value) == INTEGER_CST)
3766 {
3767 if (CONSTANT_CLASS_P (ovalue) && TREE_OVERFLOW (ovalue))
3768 {
3769 if (!TREE_OVERFLOW (value))
3770 {
3771 /* Avoid clobbering a shared constant. */
3772 value = copy_node (value);
3773 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3774 }
3775 }
3776 else if (TREE_OVERFLOW (value))
3777 /* Reset VALUE's overflow flags, ensuring constant sharing. */
3778 value = build_int_cst_wide (TREE_TYPE (value),
3779 TREE_INT_CST_LOW (value),
3780 TREE_INT_CST_HIGH (value));
3781 }
3782 }
3783
3784 /* Don't let a cast be an lvalue. */
3785 if (value == expr)
3786 value = non_lvalue (value);
3787
3788 return value;
3789 }
3790
3791 /* Interpret a cast of expression EXPR to type TYPE. */
3792 tree
3793 c_cast_expr (struct c_type_name *type_name, tree expr)
3794 {
3795 tree type;
3796 int saved_wsp = warn_strict_prototypes;
3797
3798 /* This avoids warnings about unprototyped casts on
3799 integers. E.g. "#define SIG_DFL (void(*)())0". */
3800 if (TREE_CODE (expr) == INTEGER_CST)
3801 warn_strict_prototypes = 0;
3802 type = groktypename (type_name);
3803 warn_strict_prototypes = saved_wsp;
3804
3805 return build_c_cast (type, expr);
3806 }
3807 \f
3808 /* Build an assignment expression of lvalue LHS from value RHS.
3809 MODIFYCODE is the code for a binary operator that we use
3810 to combine the old value of LHS with RHS to get the new value.
3811 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3812
3813 tree
3814 build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3815 {
3816 tree result;
3817 tree newrhs;
3818 tree lhstype = TREE_TYPE (lhs);
3819 tree olhstype = lhstype;
3820
3821 /* Types that aren't fully specified cannot be used in assignments. */
3822 lhs = require_complete_type (lhs);
3823
3824 /* Avoid duplicate error messages from operands that had errors. */
3825 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3826 return error_mark_node;
3827
3828 if (!lvalue_or_else (lhs, lv_assign))
3829 return error_mark_node;
3830
3831 STRIP_TYPE_NOPS (rhs);
3832
3833 newrhs = rhs;
3834
3835 /* If a binary op has been requested, combine the old LHS value with the RHS
3836 producing the value we should actually store into the LHS. */
3837
3838 if (modifycode != NOP_EXPR)
3839 {
3840 lhs = stabilize_reference (lhs);
3841 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3842 }
3843
3844 /* Give an error for storing in something that is 'const'. */
3845
3846 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3847 || ((TREE_CODE (lhstype) == RECORD_TYPE
3848 || TREE_CODE (lhstype) == UNION_TYPE)
3849 && C_TYPE_FIELDS_READONLY (lhstype)))
3850 {
3851 readonly_error (lhs, lv_assign);
3852 return error_mark_node;
3853 }
3854
3855 /* If storing into a structure or union member,
3856 it has probably been given type `int'.
3857 Compute the type that would go with
3858 the actual amount of storage the member occupies. */
3859
3860 if (TREE_CODE (lhs) == COMPONENT_REF
3861 && (TREE_CODE (lhstype) == INTEGER_TYPE
3862 || TREE_CODE (lhstype) == BOOLEAN_TYPE
3863 || TREE_CODE (lhstype) == REAL_TYPE
3864 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3865 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3866
3867 /* If storing in a field that is in actuality a short or narrower than one,
3868 we must store in the field in its actual type. */
3869
3870 if (lhstype != TREE_TYPE (lhs))
3871 {
3872 lhs = copy_node (lhs);
3873 TREE_TYPE (lhs) = lhstype;
3874 }
3875
3876 /* Convert new value to destination type. */
3877
3878 newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3879 NULL_TREE, NULL_TREE, 0);
3880 if (TREE_CODE (newrhs) == ERROR_MARK)
3881 return error_mark_node;
3882
3883 /* Emit ObjC write barrier, if necessary. */
3884 if (c_dialect_objc () && flag_objc_gc)
3885 {
3886 result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3887 if (result)
3888 return result;
3889 }
3890
3891 /* Scan operands. */
3892
3893 result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3894 TREE_SIDE_EFFECTS (result) = 1;
3895
3896 /* If we got the LHS in a different type for storing in,
3897 convert the result back to the nominal type of LHS
3898 so that the value we return always has the same type
3899 as the LHS argument. */
3900
3901 if (olhstype == TREE_TYPE (result))
3902 return result;
3903 return convert_for_assignment (olhstype, result, ic_assign,
3904 NULL_TREE, NULL_TREE, 0);
3905 }
3906 \f
3907 /* Convert value RHS to type TYPE as preparation for an assignment
3908 to an lvalue of type TYPE.
3909 The real work of conversion is done by `convert'.
3910 The purpose of this function is to generate error messages
3911 for assignments that are not allowed in C.
3912 ERRTYPE says whether it is argument passing, assignment,
3913 initialization or return.
3914
3915 FUNCTION is a tree for the function being called.
3916 PARMNUM is the number of the argument, for printing in error messages. */
3917
3918 static tree
3919 convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3920 tree fundecl, tree function, int parmnum)
3921 {
3922 enum tree_code codel = TREE_CODE (type);
3923 tree rhstype;
3924 enum tree_code coder;
3925 tree rname = NULL_TREE;
3926 bool objc_ok = false;
3927
3928 if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3929 {
3930 tree selector;
3931 /* Change pointer to function to the function itself for
3932 diagnostics. */
3933 if (TREE_CODE (function) == ADDR_EXPR
3934 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3935 function = TREE_OPERAND (function, 0);
3936
3937 /* Handle an ObjC selector specially for diagnostics. */
3938 selector = objc_message_selector ();
3939 rname = function;
3940 if (selector && parmnum > 2)
3941 {
3942 rname = selector;
3943 parmnum -= 2;
3944 }
3945 }
3946
3947 /* This macro is used to emit diagnostics to ensure that all format
3948 strings are complete sentences, visible to gettext and checked at
3949 compile time. */
3950 #define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE) \
3951 do { \
3952 switch (errtype) \
3953 { \
3954 case ic_argpass: \
3955 pedwarn (AR, parmnum, rname); \
3956 break; \
3957 case ic_argpass_nonproto: \
3958 warning (0, AR, parmnum, rname); \
3959 break; \
3960 case ic_assign: \
3961 pedwarn (AS); \
3962 break; \
3963 case ic_init: \
3964 pedwarn (IN); \
3965 break; \
3966 case ic_return: \
3967 pedwarn (RE); \
3968 break; \
3969 default: \
3970 gcc_unreachable (); \
3971 } \
3972 } while (0)
3973
3974 STRIP_TYPE_NOPS (rhs);
3975
3976 if (optimize && TREE_CODE (rhs) == VAR_DECL
3977 && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3978 rhs = decl_constant_value_for_broken_optimization (rhs);
3979
3980 rhstype = TREE_TYPE (rhs);
3981 coder = TREE_CODE (rhstype);
3982
3983 if (coder == ERROR_MARK)
3984 return error_mark_node;
3985
3986 if (c_dialect_objc ())
3987 {
3988 int parmno;
3989
3990 switch (errtype)
3991 {
3992 case ic_return:
3993 parmno = 0;
3994 break;
3995
3996 case ic_assign:
3997 parmno = -1;
3998 break;
3999
4000 case ic_init:
4001 parmno = -2;
4002 break;
4003
4004 default:
4005 parmno = parmnum;
4006 break;
4007 }
4008
4009 objc_ok = objc_compare_types (type, rhstype, parmno, rname);
4010 }
4011
4012 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
4013 return rhs;
4014
4015 if (coder == VOID_TYPE)
4016 {
4017 /* Except for passing an argument to an unprototyped function,
4018 this is a constraint violation. When passing an argument to
4019 an unprototyped function, it is compile-time undefined;
4020 making it a constraint in that case was rejected in
4021 DR#252. */
4022 error ("void value not ignored as it ought to be");
4023 return error_mark_node;
4024 }
4025 rhs = require_complete_type (rhs);
4026 if (rhs == error_mark_node)
4027 return error_mark_node;
4028 /* A type converts to a reference to it.
4029 This code doesn't fully support references, it's just for the
4030 special case of va_start and va_copy. */
4031 if (codel == REFERENCE_TYPE
4032 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
4033 {
4034 if (!lvalue_p (rhs))
4035 {
4036 error ("cannot pass rvalue to reference parameter");
4037 return error_mark_node;
4038 }
4039 if (!c_mark_addressable (rhs))
4040 return error_mark_node;
4041 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
4042
4043 /* We already know that these two types are compatible, but they
4044 may not be exactly identical. In fact, `TREE_TYPE (type)' is
4045 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
4046 likely to be va_list, a typedef to __builtin_va_list, which
4047 is different enough that it will cause problems later. */
4048 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
4049 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
4050
4051 rhs = build1 (NOP_EXPR, type, rhs);
4052 return rhs;
4053 }
4054 /* Some types can interconvert without explicit casts. */
4055 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
4056 && vector_types_convertible_p (type, TREE_TYPE (rhs), true))
4057 return convert (type, rhs);
4058 /* Arithmetic types all interconvert, and enum is treated like int. */
4059 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
4060 || codel == FIXED_POINT_TYPE
4061 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
4062 || codel == BOOLEAN_TYPE)
4063 && (coder == INTEGER_TYPE || coder == REAL_TYPE
4064 || coder == FIXED_POINT_TYPE
4065 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
4066 || coder == BOOLEAN_TYPE))
4067 return convert_and_check (type, rhs);
4068
4069 /* Aggregates in different TUs might need conversion. */
4070 if ((codel == RECORD_TYPE || codel == UNION_TYPE)
4071 && codel == coder
4072 && comptypes (type, rhstype))
4073 return convert_and_check (type, rhs);
4074
4075 /* Conversion to a transparent union from its member types.
4076 This applies only to function arguments. */
4077 if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
4078 && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
4079 {
4080 tree memb, marginal_memb = NULL_TREE;
4081
4082 for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
4083 {
4084 tree memb_type = TREE_TYPE (memb);
4085
4086 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
4087 TYPE_MAIN_VARIANT (rhstype)))
4088 break;
4089
4090 if (TREE_CODE (memb_type) != POINTER_TYPE)
4091 continue;
4092
4093 if (coder == POINTER_TYPE)
4094 {
4095 tree ttl = TREE_TYPE (memb_type);
4096 tree ttr = TREE_TYPE (rhstype);
4097
4098 /* Any non-function converts to a [const][volatile] void *
4099 and vice versa; otherwise, targets must be the same.
4100 Meanwhile, the lhs target must have all the qualifiers of
4101 the rhs. */
4102 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4103 || comp_target_types (memb_type, rhstype))
4104 {
4105 /* If this type won't generate any warnings, use it. */
4106 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
4107 || ((TREE_CODE (ttr) == FUNCTION_TYPE
4108 && TREE_CODE (ttl) == FUNCTION_TYPE)
4109 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4110 == TYPE_QUALS (ttr))
4111 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4112 == TYPE_QUALS (ttl))))
4113 break;
4114
4115 /* Keep looking for a better type, but remember this one. */
4116 if (!marginal_memb)
4117 marginal_memb = memb;
4118 }
4119 }
4120
4121 /* Can convert integer zero to any pointer type. */
4122 if (null_pointer_constant_p (rhs))
4123 {
4124 rhs = null_pointer_node;
4125 break;
4126 }
4127 }
4128
4129 if (memb || marginal_memb)
4130 {
4131 if (!memb)
4132 {
4133 /* We have only a marginally acceptable member type;
4134 it needs a warning. */
4135 tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
4136 tree ttr = TREE_TYPE (rhstype);
4137
4138 /* Const and volatile mean something different for function
4139 types, so the usual warnings are not appropriate. */
4140 if (TREE_CODE (ttr) == FUNCTION_TYPE
4141 && TREE_CODE (ttl) == FUNCTION_TYPE)
4142 {
4143 /* Because const and volatile on functions are
4144 restrictions that say the function will not do
4145 certain things, it is okay to use a const or volatile
4146 function where an ordinary one is wanted, but not
4147 vice-versa. */
4148 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4149 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
4150 "makes qualified function "
4151 "pointer from unqualified"),
4152 G_("assignment makes qualified "
4153 "function pointer from "
4154 "unqualified"),
4155 G_("initialization makes qualified "
4156 "function pointer from "
4157 "unqualified"),
4158 G_("return makes qualified function "
4159 "pointer from unqualified"));
4160 }
4161 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4162 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4163 "qualifiers from pointer target type"),
4164 G_("assignment discards qualifiers "
4165 "from pointer target type"),
4166 G_("initialization discards qualifiers "
4167 "from pointer target type"),
4168 G_("return discards qualifiers from "
4169 "pointer target type"));
4170
4171 memb = marginal_memb;
4172 }
4173
4174 if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
4175 pedwarn ("ISO C prohibits argument conversion to union type");
4176
4177 rhs = fold_convert (TREE_TYPE (memb), rhs);
4178 return build_constructor_single (type, memb, rhs);
4179 }
4180 }
4181
4182 /* Conversions among pointers */
4183 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4184 && (coder == codel))
4185 {
4186 tree ttl = TREE_TYPE (type);
4187 tree ttr = TREE_TYPE (rhstype);
4188 tree mvl = ttl;
4189 tree mvr = ttr;
4190 bool is_opaque_pointer;
4191 int target_cmp = 0; /* Cache comp_target_types () result. */
4192
4193 if (TREE_CODE (mvl) != ARRAY_TYPE)
4194 mvl = TYPE_MAIN_VARIANT (mvl);
4195 if (TREE_CODE (mvr) != ARRAY_TYPE)
4196 mvr = TYPE_MAIN_VARIANT (mvr);
4197 /* Opaque pointers are treated like void pointers. */
4198 is_opaque_pointer = (targetm.vector_opaque_p (type)
4199 || targetm.vector_opaque_p (rhstype))
4200 && TREE_CODE (ttl) == VECTOR_TYPE
4201 && TREE_CODE (ttr) == VECTOR_TYPE;
4202
4203 /* C++ does not allow the implicit conversion void* -> T*. However,
4204 for the purpose of reducing the number of false positives, we
4205 tolerate the special case of
4206
4207 int *p = NULL;
4208
4209 where NULL is typically defined in C to be '(void *) 0'. */
4210 if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4211 warning (OPT_Wc___compat, "request for implicit conversion from "
4212 "%qT to %qT not permitted in C++", rhstype, type);
4213
4214 /* Check if the right-hand side has a format attribute but the
4215 left-hand side doesn't. */
4216 if (warn_missing_format_attribute
4217 && check_missing_format_attribute (type, rhstype))
4218 {
4219 switch (errtype)
4220 {
4221 case ic_argpass:
4222 case ic_argpass_nonproto:
4223 warning (OPT_Wmissing_format_attribute,
4224 "argument %d of %qE might be "
4225 "a candidate for a format attribute",
4226 parmnum, rname);
4227 break;
4228 case ic_assign:
4229 warning (OPT_Wmissing_format_attribute,
4230 "assignment left-hand side might be "
4231 "a candidate for a format attribute");
4232 break;
4233 case ic_init:
4234 warning (OPT_Wmissing_format_attribute,
4235 "initialization left-hand side might be "
4236 "a candidate for a format attribute");
4237 break;
4238 case ic_return:
4239 warning (OPT_Wmissing_format_attribute,
4240 "return type might be "
4241 "a candidate for a format attribute");
4242 break;
4243 default:
4244 gcc_unreachable ();
4245 }
4246 }
4247
4248 /* Any non-function converts to a [const][volatile] void *
4249 and vice versa; otherwise, targets must be the same.
4250 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4251 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4252 || (target_cmp = comp_target_types (type, rhstype))
4253 || is_opaque_pointer
4254 || (c_common_unsigned_type (mvl)
4255 == c_common_unsigned_type (mvr)))
4256 {
4257 if (pedantic
4258 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4259 ||
4260 (VOID_TYPE_P (ttr)
4261 && !null_pointer_constant_p (rhs)
4262 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4263 WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4264 "%qE between function pointer "
4265 "and %<void *%>"),
4266 G_("ISO C forbids assignment between "
4267 "function pointer and %<void *%>"),
4268 G_("ISO C forbids initialization between "
4269 "function pointer and %<void *%>"),
4270 G_("ISO C forbids return between function "
4271 "pointer and %<void *%>"));
4272 /* Const and volatile mean something different for function types,
4273 so the usual warnings are not appropriate. */
4274 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4275 && TREE_CODE (ttl) != FUNCTION_TYPE)
4276 {
4277 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4278 {
4279 /* Types differing only by the presence of the 'volatile'
4280 qualifier are acceptable if the 'volatile' has been added
4281 in by the Objective-C EH machinery. */
4282 if (!objc_type_quals_match (ttl, ttr))
4283 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4284 "qualifiers from pointer target type"),
4285 G_("assignment discards qualifiers "
4286 "from pointer target type"),
4287 G_("initialization discards qualifiers "
4288 "from pointer target type"),
4289 G_("return discards qualifiers from "
4290 "pointer target type"));
4291 }
4292 /* If this is not a case of ignoring a mismatch in signedness,
4293 no warning. */
4294 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4295 || target_cmp)
4296 ;
4297 /* If there is a mismatch, do warn. */
4298 else if (warn_pointer_sign)
4299 WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4300 "%d of %qE differ in signedness"),
4301 G_("pointer targets in assignment "
4302 "differ in signedness"),
4303 G_("pointer targets in initialization "
4304 "differ in signedness"),
4305 G_("pointer targets in return differ "
4306 "in signedness"));
4307 }
4308 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4309 && TREE_CODE (ttr) == FUNCTION_TYPE)
4310 {
4311 /* Because const and volatile on functions are restrictions
4312 that say the function will not do certain things,
4313 it is okay to use a const or volatile function
4314 where an ordinary one is wanted, but not vice-versa. */
4315 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4316 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4317 "qualified function pointer "
4318 "from unqualified"),
4319 G_("assignment makes qualified function "
4320 "pointer from unqualified"),
4321 G_("initialization makes qualified "
4322 "function pointer from unqualified"),
4323 G_("return makes qualified function "
4324 "pointer from unqualified"));
4325 }
4326 }
4327 else
4328 /* Avoid warning about the volatile ObjC EH puts on decls. */
4329 if (!objc_ok)
4330 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4331 "incompatible pointer type"),
4332 G_("assignment from incompatible pointer type"),
4333 G_("initialization from incompatible "
4334 "pointer type"),
4335 G_("return from incompatible pointer type"));
4336
4337 return convert (type, rhs);
4338 }
4339 else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4340 {
4341 /* ??? This should not be an error when inlining calls to
4342 unprototyped functions. */
4343 error ("invalid use of non-lvalue array");
4344 return error_mark_node;
4345 }
4346 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4347 {
4348 /* An explicit constant 0 can convert to a pointer,
4349 or one that results from arithmetic, even including
4350 a cast to integer type. */
4351 if (!null_pointer_constant_p (rhs))
4352 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4353 "pointer from integer without a cast"),
4354 G_("assignment makes pointer from integer "
4355 "without a cast"),
4356 G_("initialization makes pointer from "
4357 "integer without a cast"),
4358 G_("return makes pointer from integer "
4359 "without a cast"));
4360
4361 return convert (type, rhs);
4362 }
4363 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4364 {
4365 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4366 "from pointer without a cast"),
4367 G_("assignment makes integer from pointer "
4368 "without a cast"),
4369 G_("initialization makes integer from pointer "
4370 "without a cast"),
4371 G_("return makes integer from pointer "
4372 "without a cast"));
4373 return convert (type, rhs);
4374 }
4375 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4376 return convert (type, rhs);
4377
4378 switch (errtype)
4379 {
4380 case ic_argpass:
4381 case ic_argpass_nonproto:
4382 /* ??? This should not be an error when inlining calls to
4383 unprototyped functions. */
4384 error ("incompatible type for argument %d of %qE", parmnum, rname);
4385 break;
4386 case ic_assign:
4387 error ("incompatible types in assignment");
4388 break;
4389 case ic_init:
4390 error ("incompatible types in initialization");
4391 break;
4392 case ic_return:
4393 error ("incompatible types in return");
4394 break;
4395 default:
4396 gcc_unreachable ();
4397 }
4398
4399 return error_mark_node;
4400 }
4401 \f
4402 /* If VALUE is a compound expr all of whose expressions are constant, then
4403 return its value. Otherwise, return error_mark_node.
4404
4405 This is for handling COMPOUND_EXPRs as initializer elements
4406 which is allowed with a warning when -pedantic is specified. */
4407
4408 static tree
4409 valid_compound_expr_initializer (tree value, tree endtype)
4410 {
4411 if (TREE_CODE (value) == COMPOUND_EXPR)
4412 {
4413 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4414 == error_mark_node)
4415 return error_mark_node;
4416 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4417 endtype);
4418 }
4419 else if (!initializer_constant_valid_p (value, endtype))
4420 return error_mark_node;
4421 else
4422 return value;
4423 }
4424 \f
4425 /* Perform appropriate conversions on the initial value of a variable,
4426 store it in the declaration DECL,
4427 and print any error messages that are appropriate.
4428 If the init is invalid, store an ERROR_MARK. */
4429
4430 void
4431 store_init_value (tree decl, tree init)
4432 {
4433 tree value, type;
4434
4435 /* If variable's type was invalidly declared, just ignore it. */
4436
4437 type = TREE_TYPE (decl);
4438 if (TREE_CODE (type) == ERROR_MARK)
4439 return;
4440
4441 /* Digest the specified initializer into an expression. */
4442
4443 value = digest_init (type, init, true, TREE_STATIC (decl));
4444
4445 /* Store the expression if valid; else report error. */
4446
4447 if (!in_system_header
4448 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4449 warning (OPT_Wtraditional, "traditional C rejects automatic "
4450 "aggregate initialization");
4451
4452 DECL_INITIAL (decl) = value;
4453
4454 /* ANSI wants warnings about out-of-range constant initializers. */
4455 STRIP_TYPE_NOPS (value);
4456 if (TREE_STATIC (decl))
4457 constant_expression_warning (value);
4458
4459 /* Check if we need to set array size from compound literal size. */
4460 if (TREE_CODE (type) == ARRAY_TYPE
4461 && TYPE_DOMAIN (type) == 0
4462 && value != error_mark_node)
4463 {
4464 tree inside_init = init;
4465
4466 STRIP_TYPE_NOPS (inside_init);
4467 inside_init = fold (inside_init);
4468
4469 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4470 {
4471 tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4472
4473 if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4474 {
4475 /* For int foo[] = (int [3]){1}; we need to set array size
4476 now since later on array initializer will be just the
4477 brace enclosed list of the compound literal. */
4478 type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4479 TREE_TYPE (decl) = type;
4480 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4481 layout_type (type);
4482 layout_decl (cldecl, 0);
4483 }
4484 }
4485 }
4486 }
4487 \f
4488 /* Methods for storing and printing names for error messages. */
4489
4490 /* Implement a spelling stack that allows components of a name to be pushed
4491 and popped. Each element on the stack is this structure. */
4492
4493 struct spelling
4494 {
4495 int kind;
4496 union
4497 {
4498 unsigned HOST_WIDE_INT i;
4499 const char *s;
4500 } u;
4501 };
4502
4503 #define SPELLING_STRING 1
4504 #define SPELLING_MEMBER 2
4505 #define SPELLING_BOUNDS 3
4506
4507 static struct spelling *spelling; /* Next stack element (unused). */
4508 static struct spelling *spelling_base; /* Spelling stack base. */
4509 static int spelling_size; /* Size of the spelling stack. */
4510
4511 /* Macros to save and restore the spelling stack around push_... functions.
4512 Alternative to SAVE_SPELLING_STACK. */
4513
4514 #define SPELLING_DEPTH() (spelling - spelling_base)
4515 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4516
4517 /* Push an element on the spelling stack with type KIND and assign VALUE
4518 to MEMBER. */
4519
4520 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4521 { \
4522 int depth = SPELLING_DEPTH (); \
4523 \
4524 if (depth >= spelling_size) \
4525 { \
4526 spelling_size += 10; \
4527 spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
4528 spelling_size); \
4529 RESTORE_SPELLING_DEPTH (depth); \
4530 } \
4531 \
4532 spelling->kind = (KIND); \
4533 spelling->MEMBER = (VALUE); \
4534 spelling++; \
4535 }
4536
4537 /* Push STRING on the stack. Printed literally. */
4538
4539 static void
4540 push_string (const char *string)
4541 {
4542 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4543 }
4544
4545 /* Push a member name on the stack. Printed as '.' STRING. */
4546
4547 static void
4548 push_member_name (tree decl)
4549 {
4550 const char *const string
4551 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4552 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4553 }
4554
4555 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4556
4557 static void
4558 push_array_bounds (unsigned HOST_WIDE_INT bounds)
4559 {
4560 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4561 }
4562
4563 /* Compute the maximum size in bytes of the printed spelling. */
4564
4565 static int
4566 spelling_length (void)
4567 {
4568 int size = 0;
4569 struct spelling *p;
4570
4571 for (p = spelling_base; p < spelling; p++)
4572 {
4573 if (p->kind == SPELLING_BOUNDS)
4574 size += 25;
4575 else
4576 size += strlen (p->u.s) + 1;
4577 }
4578
4579 return size;
4580 }
4581
4582 /* Print the spelling to BUFFER and return it. */
4583
4584 static char *
4585 print_spelling (char *buffer)
4586 {
4587 char *d = buffer;
4588 struct spelling *p;
4589
4590 for (p = spelling_base; p < spelling; p++)
4591 if (p->kind == SPELLING_BOUNDS)
4592 {
4593 sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4594 d += strlen (d);
4595 }
4596 else
4597 {
4598 const char *s;
4599 if (p->kind == SPELLING_MEMBER)
4600 *d++ = '.';
4601 for (s = p->u.s; (*d = *s++); d++)
4602 ;
4603 }
4604 *d++ = '\0';
4605 return buffer;
4606 }
4607
4608 /* Issue an error message for a bad initializer component.
4609 MSGID identifies the message.
4610 The component name is taken from the spelling stack. */
4611
4612 void
4613 error_init (const char *msgid)
4614 {
4615 char *ofwhat;
4616
4617 error ("%s", _(msgid));
4618 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4619 if (*ofwhat)
4620 error ("(near initialization for %qs)", ofwhat);
4621 }
4622
4623 /* Issue a pedantic warning for a bad initializer component.
4624 MSGID identifies the message.
4625 The component name is taken from the spelling stack. */
4626
4627 void
4628 pedwarn_init (const char *msgid)
4629 {
4630 char *ofwhat;
4631
4632 pedwarn ("%s", _(msgid));
4633 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4634 if (*ofwhat)
4635 pedwarn ("(near initialization for %qs)", ofwhat);
4636 }
4637
4638 /* Issue a warning for a bad initializer component.
4639
4640 OPT is the OPT_W* value corresponding to the warning option that
4641 controls this warning. MSGID identifies the message. The
4642 component name is taken from the spelling stack. */
4643
4644 static void
4645 warning_init (int opt, const char *msgid)
4646 {
4647 char *ofwhat;
4648
4649 warning (opt, "%s", _(msgid));
4650 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4651 if (*ofwhat)
4652 warning (opt, "(near initialization for %qs)", ofwhat);
4653 }
4654 \f
4655 /* If TYPE is an array type and EXPR is a parenthesized string
4656 constant, warn if pedantic that EXPR is being used to initialize an
4657 object of type TYPE. */
4658
4659 void
4660 maybe_warn_string_init (tree type, struct c_expr expr)
4661 {
4662 if (pedantic
4663 && TREE_CODE (type) == ARRAY_TYPE
4664 && TREE_CODE (expr.value) == STRING_CST
4665 && expr.original_code != STRING_CST)
4666 pedwarn_init ("array initialized from parenthesized string constant");
4667 }
4668
4669 /* Digest the parser output INIT as an initializer for type TYPE.
4670 Return a C expression of type TYPE to represent the initial value.
4671
4672 If INIT is a string constant, STRICT_STRING is true if it is
4673 unparenthesized or we should not warn here for it being parenthesized.
4674 For other types of INIT, STRICT_STRING is not used.
4675
4676 REQUIRE_CONSTANT requests an error if non-constant initializers or
4677 elements are seen. */
4678
4679 static tree
4680 digest_init (tree type, tree init, bool strict_string, int require_constant)
4681 {
4682 enum tree_code code = TREE_CODE (type);
4683 tree inside_init = init;
4684
4685 if (type == error_mark_node
4686 || !init
4687 || init == error_mark_node
4688 || TREE_TYPE (init) == error_mark_node)
4689 return error_mark_node;
4690
4691 STRIP_TYPE_NOPS (inside_init);
4692
4693 inside_init = fold (inside_init);
4694
4695 /* Initialization of an array of chars from a string constant
4696 optionally enclosed in braces. */
4697
4698 if (code == ARRAY_TYPE && inside_init
4699 && TREE_CODE (inside_init) == STRING_CST)
4700 {
4701 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4702 /* Note that an array could be both an array of character type
4703 and an array of wchar_t if wchar_t is signed char or unsigned
4704 char. */
4705 bool char_array = (typ1 == char_type_node
4706 || typ1 == signed_char_type_node
4707 || typ1 == unsigned_char_type_node);
4708 bool wchar_array = !!comptypes (typ1, wchar_type_node);
4709 if (char_array || wchar_array)
4710 {
4711 struct c_expr expr;
4712 bool char_string;
4713 expr.value = inside_init;
4714 expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4715 maybe_warn_string_init (type, expr);
4716
4717 char_string
4718 = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4719 == char_type_node);
4720
4721 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4722 TYPE_MAIN_VARIANT (type)))
4723 return inside_init;
4724
4725 if (!wchar_array && !char_string)
4726 {
4727 error_init ("char-array initialized from wide string");
4728 return error_mark_node;
4729 }
4730 if (char_string && !char_array)
4731 {
4732 error_init ("wchar_t-array initialized from non-wide string");
4733 return error_mark_node;
4734 }
4735
4736 TREE_TYPE (inside_init) = type;
4737 if (TYPE_DOMAIN (type) != 0
4738 && TYPE_SIZE (type) != 0
4739 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4740 /* Subtract 1 (or sizeof (wchar_t))
4741 because it's ok to ignore the terminating null char
4742 that is counted in the length of the constant. */
4743 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4744 TREE_STRING_LENGTH (inside_init)
4745 - ((TYPE_PRECISION (typ1)
4746 != TYPE_PRECISION (char_type_node))
4747 ? (TYPE_PRECISION (wchar_type_node)
4748 / BITS_PER_UNIT)
4749 : 1)))
4750 pedwarn_init ("initializer-string for array of chars is too long");
4751
4752 return inside_init;
4753 }
4754 else if (INTEGRAL_TYPE_P (typ1))
4755 {
4756 error_init ("array of inappropriate type initialized "
4757 "from string constant");
4758 return error_mark_node;
4759 }
4760 }
4761
4762 /* Build a VECTOR_CST from a *constant* vector constructor. If the
4763 vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4764 below and handle as a constructor. */
4765 if (code == VECTOR_TYPE
4766 && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4767 && vector_types_convertible_p (TREE_TYPE (inside_init), type, true)
4768 && TREE_CONSTANT (inside_init))
4769 {
4770 if (TREE_CODE (inside_init) == VECTOR_CST
4771 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4772 TYPE_MAIN_VARIANT (type)))
4773 return inside_init;
4774
4775 if (TREE_CODE (inside_init) == CONSTRUCTOR)
4776 {
4777 unsigned HOST_WIDE_INT ix;
4778 tree value;
4779 bool constant_p = true;
4780
4781 /* Iterate through elements and check if all constructor
4782 elements are *_CSTs. */
4783 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4784 if (!CONSTANT_CLASS_P (value))
4785 {
4786 constant_p = false;
4787 break;
4788 }
4789
4790 if (constant_p)
4791 return build_vector_from_ctor (type,
4792 CONSTRUCTOR_ELTS (inside_init));
4793 }
4794 }
4795
4796 /* Any type can be initialized
4797 from an expression of the same type, optionally with braces. */
4798
4799 if (inside_init && TREE_TYPE (inside_init) != 0
4800 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4801 TYPE_MAIN_VARIANT (type))
4802 || (code == ARRAY_TYPE
4803 && comptypes (TREE_TYPE (inside_init), type))
4804 || (code == VECTOR_TYPE
4805 && comptypes (TREE_TYPE (inside_init), type))
4806 || (code == POINTER_TYPE
4807 && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4808 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4809 TREE_TYPE (type)))))
4810 {
4811 if (code == POINTER_TYPE)
4812 {
4813 if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4814 {
4815 if (TREE_CODE (inside_init) == STRING_CST
4816 || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4817 inside_init = array_to_pointer_conversion (inside_init);
4818 else
4819 {
4820 error_init ("invalid use of non-lvalue array");
4821 return error_mark_node;
4822 }
4823 }
4824 }
4825
4826 if (code == VECTOR_TYPE)
4827 /* Although the types are compatible, we may require a
4828 conversion. */
4829 inside_init = convert (type, inside_init);
4830
4831 if (require_constant
4832 && (code == VECTOR_TYPE || !flag_isoc99)
4833 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4834 {
4835 /* As an extension, allow initializing objects with static storage
4836 duration with compound literals (which are then treated just as
4837 the brace enclosed list they contain). Also allow this for
4838 vectors, as we can only assign them with compound literals. */
4839 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4840 inside_init = DECL_INITIAL (decl);
4841 }
4842
4843 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4844 && TREE_CODE (inside_init) != CONSTRUCTOR)
4845 {
4846 error_init ("array initialized from non-constant array expression");
4847 return error_mark_node;
4848 }
4849
4850 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4851 inside_init = decl_constant_value_for_broken_optimization (inside_init);
4852
4853 /* Compound expressions can only occur here if -pedantic or
4854 -pedantic-errors is specified. In the later case, we always want
4855 an error. In the former case, we simply want a warning. */
4856 if (require_constant && pedantic
4857 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4858 {
4859 inside_init
4860 = valid_compound_expr_initializer (inside_init,
4861 TREE_TYPE (inside_init));
4862 if (inside_init == error_mark_node)
4863 error_init ("initializer element is not constant");
4864 else
4865 pedwarn_init ("initializer element is not constant");
4866 if (flag_pedantic_errors)
4867 inside_init = error_mark_node;
4868 }
4869 else if (require_constant
4870 && !initializer_constant_valid_p (inside_init,
4871 TREE_TYPE (inside_init)))
4872 {
4873 error_init ("initializer element is not constant");
4874 inside_init = error_mark_node;
4875 }
4876
4877 /* Added to enable additional -Wmissing-format-attribute warnings. */
4878 if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4879 inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4880 NULL_TREE, 0);
4881 return inside_init;
4882 }
4883
4884 /* Handle scalar types, including conversions. */
4885
4886 if (code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE
4887 || code == POINTER_TYPE || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
4888 || code == COMPLEX_TYPE || code == VECTOR_TYPE)
4889 {
4890 if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4891 && (TREE_CODE (init) == STRING_CST
4892 || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4893 init = array_to_pointer_conversion (init);
4894 inside_init
4895 = convert_for_assignment (type, init, ic_init,
4896 NULL_TREE, NULL_TREE, 0);
4897
4898 /* Check to see if we have already given an error message. */
4899 if (inside_init == error_mark_node)
4900 ;
4901 else if (require_constant && !TREE_CONSTANT (inside_init))
4902 {
4903 error_init ("initializer element is not constant");
4904 inside_init = error_mark_node;
4905 }
4906 else if (require_constant
4907 && !initializer_constant_valid_p (inside_init,
4908 TREE_TYPE (inside_init)))
4909 {
4910 error_init ("initializer element is not computable at load time");
4911 inside_init = error_mark_node;
4912 }
4913
4914 return inside_init;
4915 }
4916
4917 /* Come here only for records and arrays. */
4918
4919 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4920 {
4921 error_init ("variable-sized object may not be initialized");
4922 return error_mark_node;
4923 }
4924
4925 error_init ("invalid initializer");
4926 return error_mark_node;
4927 }
4928 \f
4929 /* Handle initializers that use braces. */
4930
4931 /* Type of object we are accumulating a constructor for.
4932 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4933 static tree constructor_type;
4934
4935 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4936 left to fill. */
4937 static tree constructor_fields;
4938
4939 /* For an ARRAY_TYPE, this is the specified index
4940 at which to store the next element we get. */
4941 static tree constructor_index;
4942
4943 /* For an ARRAY_TYPE, this is the maximum index. */
4944 static tree constructor_max_index;
4945
4946 /* For a RECORD_TYPE, this is the first field not yet written out. */
4947 static tree constructor_unfilled_fields;
4948
4949 /* For an ARRAY_TYPE, this is the index of the first element
4950 not yet written out. */
4951 static tree constructor_unfilled_index;
4952
4953 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4954 This is so we can generate gaps between fields, when appropriate. */
4955 static tree constructor_bit_index;
4956
4957 /* If we are saving up the elements rather than allocating them,
4958 this is the list of elements so far (in reverse order,
4959 most recent first). */
4960 static VEC(constructor_elt,gc) *constructor_elements;
4961
4962 /* 1 if constructor should be incrementally stored into a constructor chain,
4963 0 if all the elements should be kept in AVL tree. */
4964 static int constructor_incremental;
4965
4966 /* 1 if so far this constructor's elements are all compile-time constants. */
4967 static int constructor_constant;
4968
4969 /* 1 if so far this constructor's elements are all valid address constants. */
4970 static int constructor_simple;
4971
4972 /* 1 if this constructor is erroneous so far. */
4973 static int constructor_erroneous;
4974
4975 /* Structure for managing pending initializer elements, organized as an
4976 AVL tree. */
4977
4978 struct init_node
4979 {
4980 struct init_node *left, *right;
4981 struct init_node *parent;
4982 int balance;
4983 tree purpose;
4984 tree value;
4985 };
4986
4987 /* Tree of pending elements at this constructor level.
4988 These are elements encountered out of order
4989 which belong at places we haven't reached yet in actually
4990 writing the output.
4991 Will never hold tree nodes across GC runs. */
4992 static struct init_node *constructor_pending_elts;
4993
4994 /* The SPELLING_DEPTH of this constructor. */
4995 static int constructor_depth;
4996
4997 /* DECL node for which an initializer is being read.
4998 0 means we are reading a constructor expression
4999 such as (struct foo) {...}. */
5000 static tree constructor_decl;
5001
5002 /* Nonzero if this is an initializer for a top-level decl. */
5003 static int constructor_top_level;
5004
5005 /* Nonzero if there were any member designators in this initializer. */
5006 static int constructor_designated;
5007
5008 /* Nesting depth of designator list. */
5009 static int designator_depth;
5010
5011 /* Nonzero if there were diagnosed errors in this designator list. */
5012 static int designator_erroneous;
5013
5014 \f
5015 /* This stack has a level for each implicit or explicit level of
5016 structuring in the initializer, including the outermost one. It
5017 saves the values of most of the variables above. */
5018
5019 struct constructor_range_stack;
5020
5021 struct constructor_stack
5022 {
5023 struct constructor_stack *next;
5024 tree type;
5025 tree fields;
5026 tree index;
5027 tree max_index;
5028 tree unfilled_index;
5029 tree unfilled_fields;
5030 tree bit_index;
5031 VEC(constructor_elt,gc) *elements;
5032 struct init_node *pending_elts;
5033 int offset;
5034 int depth;
5035 /* If value nonzero, this value should replace the entire
5036 constructor at this level. */
5037 struct c_expr replacement_value;
5038 struct constructor_range_stack *range_stack;
5039 char constant;
5040 char simple;
5041 char implicit;
5042 char erroneous;
5043 char outer;
5044 char incremental;
5045 char designated;
5046 };
5047
5048 static struct constructor_stack *constructor_stack;
5049
5050 /* This stack represents designators from some range designator up to
5051 the last designator in the list. */
5052
5053 struct constructor_range_stack
5054 {
5055 struct constructor_range_stack *next, *prev;
5056 struct constructor_stack *stack;
5057 tree range_start;
5058 tree index;
5059 tree range_end;
5060 tree fields;
5061 };
5062
5063 static struct constructor_range_stack *constructor_range_stack;
5064
5065 /* This stack records separate initializers that are nested.
5066 Nested initializers can't happen in ANSI C, but GNU C allows them
5067 in cases like { ... (struct foo) { ... } ... }. */
5068
5069 struct initializer_stack
5070 {
5071 struct initializer_stack *next;
5072 tree decl;
5073 struct constructor_stack *constructor_stack;
5074 struct constructor_range_stack *constructor_range_stack;
5075 VEC(constructor_elt,gc) *elements;
5076 struct spelling *spelling;
5077 struct spelling *spelling_base;
5078 int spelling_size;
5079 char top_level;
5080 char require_constant_value;
5081 char require_constant_elements;
5082 };
5083
5084 static struct initializer_stack *initializer_stack;
5085 \f
5086 /* Prepare to parse and output the initializer for variable DECL. */
5087
5088 void
5089 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
5090 {
5091 const char *locus;
5092 struct initializer_stack *p = XNEW (struct initializer_stack);
5093
5094 p->decl = constructor_decl;
5095 p->require_constant_value = require_constant_value;
5096 p->require_constant_elements = require_constant_elements;
5097 p->constructor_stack = constructor_stack;
5098 p->constructor_range_stack = constructor_range_stack;
5099 p->elements = constructor_elements;
5100 p->spelling = spelling;
5101 p->spelling_base = spelling_base;
5102 p->spelling_size = spelling_size;
5103 p->top_level = constructor_top_level;
5104 p->next = initializer_stack;
5105 initializer_stack = p;
5106
5107 constructor_decl = decl;
5108 constructor_designated = 0;
5109 constructor_top_level = top_level;
5110
5111 if (decl != 0 && decl != error_mark_node)
5112 {
5113 require_constant_value = TREE_STATIC (decl);
5114 require_constant_elements
5115 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
5116 /* For a scalar, you can always use any value to initialize,
5117 even within braces. */
5118 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
5119 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5120 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
5121 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5122 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
5123 }
5124 else
5125 {
5126 require_constant_value = 0;
5127 require_constant_elements = 0;
5128 locus = "(anonymous)";
5129 }
5130
5131 constructor_stack = 0;
5132 constructor_range_stack = 0;
5133
5134 missing_braces_mentioned = 0;
5135
5136 spelling_base = 0;
5137 spelling_size = 0;
5138 RESTORE_SPELLING_DEPTH (0);
5139
5140 if (locus)
5141 push_string (locus);
5142 }
5143
5144 void
5145 finish_init (void)
5146 {
5147 struct initializer_stack *p = initializer_stack;
5148
5149 /* Free the whole constructor stack of this initializer. */
5150 while (constructor_stack)
5151 {
5152 struct constructor_stack *q = constructor_stack;
5153 constructor_stack = q->next;
5154 free (q);
5155 }
5156
5157 gcc_assert (!constructor_range_stack);
5158
5159 /* Pop back to the data of the outer initializer (if any). */
5160 free (spelling_base);
5161
5162 constructor_decl = p->decl;
5163 require_constant_value = p->require_constant_value;
5164 require_constant_elements = p->require_constant_elements;
5165 constructor_stack = p->constructor_stack;
5166 constructor_range_stack = p->constructor_range_stack;
5167 constructor_elements = p->elements;
5168 spelling = p->spelling;
5169 spelling_base = p->spelling_base;
5170 spelling_size = p->spelling_size;
5171 constructor_top_level = p->top_level;
5172 initializer_stack = p->next;
5173 free (p);
5174 }
5175 \f
5176 /* Call here when we see the initializer is surrounded by braces.
5177 This is instead of a call to push_init_level;
5178 it is matched by a call to pop_init_level.
5179
5180 TYPE is the type to initialize, for a constructor expression.
5181 For an initializer for a decl, TYPE is zero. */
5182
5183 void
5184 really_start_incremental_init (tree type)
5185 {
5186 struct constructor_stack *p = XNEW (struct constructor_stack);
5187
5188 if (type == 0)
5189 type = TREE_TYPE (constructor_decl);
5190
5191 if (targetm.vector_opaque_p (type))
5192 error ("opaque vector types cannot be initialized");
5193
5194 p->type = constructor_type;
5195 p->fields = constructor_fields;
5196 p->index = constructor_index;
5197 p->max_index = constructor_max_index;
5198 p->unfilled_index = constructor_unfilled_index;
5199 p->unfilled_fields = constructor_unfilled_fields;
5200 p->bit_index = constructor_bit_index;
5201 p->elements = constructor_elements;
5202 p->constant = constructor_constant;
5203 p->simple = constructor_simple;
5204 p->erroneous = constructor_erroneous;
5205 p->pending_elts = constructor_pending_elts;
5206 p->depth = constructor_depth;
5207 p->replacement_value.value = 0;
5208 p->replacement_value.original_code = ERROR_MARK;
5209 p->implicit = 0;
5210 p->range_stack = 0;
5211 p->outer = 0;
5212 p->incremental = constructor_incremental;
5213 p->designated = constructor_designated;
5214 p->next = 0;
5215 constructor_stack = p;
5216
5217 constructor_constant = 1;
5218 constructor_simple = 1;
5219 constructor_depth = SPELLING_DEPTH ();
5220 constructor_elements = 0;
5221 constructor_pending_elts = 0;
5222 constructor_type = type;
5223 constructor_incremental = 1;
5224 constructor_designated = 0;
5225 designator_depth = 0;
5226 designator_erroneous = 0;
5227
5228 if (TREE_CODE (constructor_type) == RECORD_TYPE
5229 || TREE_CODE (constructor_type) == UNION_TYPE)
5230 {
5231 constructor_fields = TYPE_FIELDS (constructor_type);
5232 /* Skip any nameless bit fields at the beginning. */
5233 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5234 && DECL_NAME (constructor_fields) == 0)
5235 constructor_fields = TREE_CHAIN (constructor_fields);
5236
5237 constructor_unfilled_fields = constructor_fields;
5238 constructor_bit_index = bitsize_zero_node;
5239 }
5240 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5241 {
5242 if (TYPE_DOMAIN (constructor_type))
5243 {
5244 constructor_max_index
5245 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5246
5247 /* Detect non-empty initializations of zero-length arrays. */
5248 if (constructor_max_index == NULL_TREE
5249 && TYPE_SIZE (constructor_type))
5250 constructor_max_index = build_int_cst (NULL_TREE, -1);
5251
5252 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5253 to initialize VLAs will cause a proper error; avoid tree
5254 checking errors as well by setting a safe value. */
5255 if (constructor_max_index
5256 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5257 constructor_max_index = build_int_cst (NULL_TREE, -1);
5258
5259 constructor_index
5260 = convert (bitsizetype,
5261 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5262 }
5263 else
5264 {
5265 constructor_index = bitsize_zero_node;
5266 constructor_max_index = NULL_TREE;
5267 }
5268
5269 constructor_unfilled_index = constructor_index;
5270 }
5271 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5272 {
5273 /* Vectors are like simple fixed-size arrays. */
5274 constructor_max_index =
5275 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5276 constructor_index = bitsize_zero_node;
5277 constructor_unfilled_index = constructor_index;
5278 }
5279 else
5280 {
5281 /* Handle the case of int x = {5}; */
5282 constructor_fields = constructor_type;
5283 constructor_unfilled_fields = constructor_type;
5284 }
5285 }
5286 \f
5287 /* Push down into a subobject, for initialization.
5288 If this is for an explicit set of braces, IMPLICIT is 0.
5289 If it is because the next element belongs at a lower level,
5290 IMPLICIT is 1 (or 2 if the push is because of designator list). */
5291
5292 void
5293 push_init_level (int implicit)
5294 {
5295 struct constructor_stack *p;
5296 tree value = NULL_TREE;
5297
5298 /* If we've exhausted any levels that didn't have braces,
5299 pop them now. If implicit == 1, this will have been done in
5300 process_init_element; do not repeat it here because in the case
5301 of excess initializers for an empty aggregate this leads to an
5302 infinite cycle of popping a level and immediately recreating
5303 it. */
5304 if (implicit != 1)
5305 {
5306 while (constructor_stack->implicit)
5307 {
5308 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5309 || TREE_CODE (constructor_type) == UNION_TYPE)
5310 && constructor_fields == 0)
5311 process_init_element (pop_init_level (1));
5312 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5313 && constructor_max_index
5314 && tree_int_cst_lt (constructor_max_index,
5315 constructor_index))
5316 process_init_element (pop_init_level (1));
5317 else
5318 break;
5319 }
5320 }
5321
5322 /* Unless this is an explicit brace, we need to preserve previous
5323 content if any. */
5324 if (implicit)
5325 {
5326 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5327 || TREE_CODE (constructor_type) == UNION_TYPE)
5328 && constructor_fields)
5329 value = find_init_member (constructor_fields);
5330 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5331 value = find_init_member (constructor_index);
5332 }
5333
5334 p = XNEW (struct constructor_stack);
5335 p->type = constructor_type;
5336 p->fields = constructor_fields;
5337 p->index = constructor_index;
5338 p->max_index = constructor_max_index;
5339 p->unfilled_index = constructor_unfilled_index;
5340 p->unfilled_fields = constructor_unfilled_fields;
5341 p->bit_index = constructor_bit_index;
5342 p->elements = constructor_elements;
5343 p->constant = constructor_constant;
5344 p->simple = constructor_simple;
5345 p->erroneous = constructor_erroneous;
5346 p->pending_elts = constructor_pending_elts;
5347 p->depth = constructor_depth;
5348 p->replacement_value.value = 0;
5349 p->replacement_value.original_code = ERROR_MARK;
5350 p->implicit = implicit;
5351 p->outer = 0;
5352 p->incremental = constructor_incremental;
5353 p->designated = constructor_designated;
5354 p->next = constructor_stack;
5355 p->range_stack = 0;
5356 constructor_stack = p;
5357
5358 constructor_constant = 1;
5359 constructor_simple = 1;
5360 constructor_depth = SPELLING_DEPTH ();
5361 constructor_elements = 0;
5362 constructor_incremental = 1;
5363 constructor_designated = 0;
5364 constructor_pending_elts = 0;
5365 if (!implicit)
5366 {
5367 p->range_stack = constructor_range_stack;
5368 constructor_range_stack = 0;
5369 designator_depth = 0;
5370 designator_erroneous = 0;
5371 }
5372
5373 /* Don't die if an entire brace-pair level is superfluous
5374 in the containing level. */
5375 if (constructor_type == 0)
5376 ;
5377 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5378 || TREE_CODE (constructor_type) == UNION_TYPE)
5379 {
5380 /* Don't die if there are extra init elts at the end. */
5381 if (constructor_fields == 0)
5382 constructor_type = 0;
5383 else
5384 {
5385 constructor_type = TREE_TYPE (constructor_fields);
5386 push_member_name (constructor_fields);
5387 constructor_depth++;
5388 }
5389 }
5390 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5391 {
5392 constructor_type = TREE_TYPE (constructor_type);
5393 push_array_bounds (tree_low_cst (constructor_index, 1));
5394 constructor_depth++;
5395 }
5396
5397 if (constructor_type == 0)
5398 {
5399 error_init ("extra brace group at end of initializer");
5400 constructor_fields = 0;
5401 constructor_unfilled_fields = 0;
5402 return;
5403 }
5404
5405 if (value && TREE_CODE (value) == CONSTRUCTOR)
5406 {
5407 constructor_constant = TREE_CONSTANT (value);
5408 constructor_simple = TREE_STATIC (value);
5409 constructor_elements = CONSTRUCTOR_ELTS (value);
5410 if (!VEC_empty (constructor_elt, constructor_elements)
5411 && (TREE_CODE (constructor_type) == RECORD_TYPE
5412 || TREE_CODE (constructor_type) == ARRAY_TYPE))
5413 set_nonincremental_init ();
5414 }
5415
5416 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5417 {
5418 missing_braces_mentioned = 1;
5419 warning_init (OPT_Wmissing_braces, "missing braces around initializer");
5420 }
5421
5422 if (TREE_CODE (constructor_type) == RECORD_TYPE
5423 || TREE_CODE (constructor_type) == UNION_TYPE)
5424 {
5425 constructor_fields = TYPE_FIELDS (constructor_type);
5426 /* Skip any nameless bit fields at the beginning. */
5427 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5428 && DECL_NAME (constructor_fields) == 0)
5429 constructor_fields = TREE_CHAIN (constructor_fields);
5430
5431 constructor_unfilled_fields = constructor_fields;
5432 constructor_bit_index = bitsize_zero_node;
5433 }
5434 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5435 {
5436 /* Vectors are like simple fixed-size arrays. */
5437 constructor_max_index =
5438 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5439 constructor_index = convert (bitsizetype, integer_zero_node);
5440 constructor_unfilled_index = constructor_index;
5441 }
5442 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5443 {
5444 if (TYPE_DOMAIN (constructor_type))
5445 {
5446 constructor_max_index
5447 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5448
5449 /* Detect non-empty initializations of zero-length arrays. */
5450 if (constructor_max_index == NULL_TREE
5451 && TYPE_SIZE (constructor_type))
5452 constructor_max_index = build_int_cst (NULL_TREE, -1);
5453
5454 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5455 to initialize VLAs will cause a proper error; avoid tree
5456 checking errors as well by setting a safe value. */
5457 if (constructor_max_index
5458 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5459 constructor_max_index = build_int_cst (NULL_TREE, -1);
5460
5461 constructor_index
5462 = convert (bitsizetype,
5463 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5464 }
5465 else
5466 constructor_index = bitsize_zero_node;
5467
5468 constructor_unfilled_index = constructor_index;
5469 if (value && TREE_CODE (value) == STRING_CST)
5470 {
5471 /* We need to split the char/wchar array into individual
5472 characters, so that we don't have to special case it
5473 everywhere. */
5474 set_nonincremental_init_from_string (value);
5475 }
5476 }
5477 else
5478 {
5479 if (constructor_type != error_mark_node)
5480 warning_init (0, "braces around scalar initializer");
5481 constructor_fields = constructor_type;
5482 constructor_unfilled_fields = constructor_type;
5483 }
5484 }
5485
5486 /* At the end of an implicit or explicit brace level,
5487 finish up that level of constructor. If a single expression
5488 with redundant braces initialized that level, return the
5489 c_expr structure for that expression. Otherwise, the original_code
5490 element is set to ERROR_MARK.
5491 If we were outputting the elements as they are read, return 0 as the value
5492 from inner levels (process_init_element ignores that),
5493 but return error_mark_node as the value from the outermost level
5494 (that's what we want to put in DECL_INITIAL).
5495 Otherwise, return a CONSTRUCTOR expression as the value. */
5496
5497 struct c_expr
5498 pop_init_level (int implicit)
5499 {
5500 struct constructor_stack *p;
5501 struct c_expr ret;
5502 ret.value = 0;
5503 ret.original_code = ERROR_MARK;
5504
5505 if (implicit == 0)
5506 {
5507 /* When we come to an explicit close brace,
5508 pop any inner levels that didn't have explicit braces. */
5509 while (constructor_stack->implicit)
5510 process_init_element (pop_init_level (1));
5511
5512 gcc_assert (!constructor_range_stack);
5513 }
5514
5515 /* Now output all pending elements. */
5516 constructor_incremental = 1;
5517 output_pending_init_elements (1);
5518
5519 p = constructor_stack;
5520
5521 /* Error for initializing a flexible array member, or a zero-length
5522 array member in an inappropriate context. */
5523 if (constructor_type && constructor_fields
5524 && TREE_CODE (constructor_type) == ARRAY_TYPE
5525 && TYPE_DOMAIN (constructor_type)
5526 && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5527 {
5528 /* Silently discard empty initializations. The parser will
5529 already have pedwarned for empty brackets. */
5530 if (integer_zerop (constructor_unfilled_index))
5531 constructor_type = NULL_TREE;
5532 else
5533 {
5534 gcc_assert (!TYPE_SIZE (constructor_type));
5535
5536 if (constructor_depth > 2)
5537 error_init ("initialization of flexible array member in a nested context");
5538 else if (pedantic)
5539 pedwarn_init ("initialization of a flexible array member");
5540
5541 /* We have already issued an error message for the existence
5542 of a flexible array member not at the end of the structure.
5543 Discard the initializer so that we do not die later. */
5544 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5545 constructor_type = NULL_TREE;
5546 }
5547 }
5548
5549 /* Warn when some struct elements are implicitly initialized to zero. */
5550 if (warn_missing_field_initializers
5551 && constructor_type
5552 && TREE_CODE (constructor_type) == RECORD_TYPE
5553 && constructor_unfilled_fields)
5554 {
5555 /* Do not warn for flexible array members or zero-length arrays. */
5556 while (constructor_unfilled_fields
5557 && (!DECL_SIZE (constructor_unfilled_fields)
5558 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5559 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5560
5561 /* Do not warn if this level of the initializer uses member
5562 designators; it is likely to be deliberate. */
5563 if (constructor_unfilled_fields && !constructor_designated)
5564 {
5565 push_member_name (constructor_unfilled_fields);
5566 warning_init (OPT_Wmissing_field_initializers,
5567 "missing initializer");
5568 RESTORE_SPELLING_DEPTH (constructor_depth);
5569 }
5570 }
5571
5572 /* Pad out the end of the structure. */
5573 if (p->replacement_value.value)
5574 /* If this closes a superfluous brace pair,
5575 just pass out the element between them. */
5576 ret = p->replacement_value;
5577 else if (constructor_type == 0)
5578 ;
5579 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5580 && TREE_CODE (constructor_type) != UNION_TYPE
5581 && TREE_CODE (constructor_type) != ARRAY_TYPE
5582 && TREE_CODE (constructor_type) != VECTOR_TYPE)
5583 {
5584 /* A nonincremental scalar initializer--just return
5585 the element, after verifying there is just one. */
5586 if (VEC_empty (constructor_elt,constructor_elements))
5587 {
5588 if (!constructor_erroneous)
5589 error_init ("empty scalar initializer");
5590 ret.value = error_mark_node;
5591 }
5592 else if (VEC_length (constructor_elt,constructor_elements) != 1)
5593 {
5594 error_init ("extra elements in scalar initializer");
5595 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5596 }
5597 else
5598 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5599 }
5600 else
5601 {
5602 if (constructor_erroneous)
5603 ret.value = error_mark_node;
5604 else
5605 {
5606 ret.value = build_constructor (constructor_type,
5607 constructor_elements);
5608 if (constructor_constant)
5609 TREE_CONSTANT (ret.value) = 1;
5610 if (constructor_constant && constructor_simple)
5611 TREE_STATIC (ret.value) = 1;
5612 }
5613 }
5614
5615 constructor_type = p->type;
5616 constructor_fields = p->fields;
5617 constructor_index = p->index;
5618 constructor_max_index = p->max_index;
5619 constructor_unfilled_index = p->unfilled_index;
5620 constructor_unfilled_fields = p->unfilled_fields;
5621 constructor_bit_index = p->bit_index;
5622 constructor_elements = p->elements;
5623 constructor_constant = p->constant;
5624 constructor_simple = p->simple;
5625 constructor_erroneous = p->erroneous;
5626 constructor_incremental = p->incremental;
5627 constructor_designated = p->designated;
5628 constructor_pending_elts = p->pending_elts;
5629 constructor_depth = p->depth;
5630 if (!p->implicit)
5631 constructor_range_stack = p->range_stack;
5632 RESTORE_SPELLING_DEPTH (constructor_depth);
5633
5634 constructor_stack = p->next;
5635 free (p);
5636
5637 if (ret.value == 0 && constructor_stack == 0)
5638 ret.value = error_mark_node;
5639 return ret;
5640 }
5641
5642 /* Common handling for both array range and field name designators.
5643 ARRAY argument is nonzero for array ranges. Returns zero for success. */
5644
5645 static int
5646 set_designator (int array)
5647 {
5648 tree subtype;
5649 enum tree_code subcode;
5650
5651 /* Don't die if an entire brace-pair level is superfluous
5652 in the containing level. */
5653 if (constructor_type == 0)
5654 return 1;
5655
5656 /* If there were errors in this designator list already, bail out
5657 silently. */
5658 if (designator_erroneous)
5659 return 1;
5660
5661 if (!designator_depth)
5662 {
5663 gcc_assert (!constructor_range_stack);
5664
5665 /* Designator list starts at the level of closest explicit
5666 braces. */
5667 while (constructor_stack->implicit)
5668 process_init_element (pop_init_level (1));
5669 constructor_designated = 1;
5670 return 0;
5671 }
5672
5673 switch (TREE_CODE (constructor_type))
5674 {
5675 case RECORD_TYPE:
5676 case UNION_TYPE:
5677 subtype = TREE_TYPE (constructor_fields);
5678 if (subtype != error_mark_node)
5679 subtype = TYPE_MAIN_VARIANT (subtype);
5680 break;
5681 case ARRAY_TYPE:
5682 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5683 break;
5684 default:
5685 gcc_unreachable ();
5686 }
5687
5688 subcode = TREE_CODE (subtype);
5689 if (array && subcode != ARRAY_TYPE)
5690 {
5691 error_init ("array index in non-array initializer");
5692 return 1;
5693 }
5694 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5695 {
5696 error_init ("field name not in record or union initializer");
5697 return 1;
5698 }
5699
5700 constructor_designated = 1;
5701 push_init_level (2);
5702 return 0;
5703 }
5704
5705 /* If there are range designators in designator list, push a new designator
5706 to constructor_range_stack. RANGE_END is end of such stack range or
5707 NULL_TREE if there is no range designator at this level. */
5708
5709 static void
5710 push_range_stack (tree range_end)
5711 {
5712 struct constructor_range_stack *p;
5713
5714 p = GGC_NEW (struct constructor_range_stack);
5715 p->prev = constructor_range_stack;
5716 p->next = 0;
5717 p->fields = constructor_fields;
5718 p->range_start = constructor_index;
5719 p->index = constructor_index;
5720 p->stack = constructor_stack;
5721 p->range_end = range_end;
5722 if (constructor_range_stack)
5723 constructor_range_stack->next = p;
5724 constructor_range_stack = p;
5725 }
5726
5727 /* Within an array initializer, specify the next index to be initialized.
5728 FIRST is that index. If LAST is nonzero, then initialize a range
5729 of indices, running from FIRST through LAST. */
5730
5731 void
5732 set_init_index (tree first, tree last)
5733 {
5734 if (set_designator (1))
5735 return;
5736
5737 designator_erroneous = 1;
5738
5739 if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5740 || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5741 {
5742 error_init ("array index in initializer not of integer type");
5743 return;
5744 }
5745
5746 if (TREE_CODE (first) != INTEGER_CST)
5747 error_init ("nonconstant array index in initializer");
5748 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5749 error_init ("nonconstant array index in initializer");
5750 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5751 error_init ("array index in non-array initializer");
5752 else if (tree_int_cst_sgn (first) == -1)
5753 error_init ("array index in initializer exceeds array bounds");
5754 else if (constructor_max_index
5755 && tree_int_cst_lt (constructor_max_index, first))
5756 error_init ("array index in initializer exceeds array bounds");
5757 else
5758 {
5759 constructor_index = convert (bitsizetype, first);
5760
5761 if (last)
5762 {
5763 if (tree_int_cst_equal (first, last))
5764 last = 0;
5765 else if (tree_int_cst_lt (last, first))
5766 {
5767 error_init ("empty index range in initializer");
5768 last = 0;
5769 }
5770 else
5771 {
5772 last = convert (bitsizetype, last);
5773 if (constructor_max_index != 0
5774 && tree_int_cst_lt (constructor_max_index, last))
5775 {
5776 error_init ("array index range in initializer exceeds array bounds");
5777 last = 0;
5778 }
5779 }
5780 }
5781
5782 designator_depth++;
5783 designator_erroneous = 0;
5784 if (constructor_range_stack || last)
5785 push_range_stack (last);
5786 }
5787 }
5788
5789 /* Within a struct initializer, specify the next field to be initialized. */
5790
5791 void
5792 set_init_label (tree fieldname)
5793 {
5794 tree tail;
5795
5796 if (set_designator (0))
5797 return;
5798
5799 designator_erroneous = 1;
5800
5801 if (TREE_CODE (constructor_type) != RECORD_TYPE
5802 && TREE_CODE (constructor_type) != UNION_TYPE)
5803 {
5804 error_init ("field name not in record or union initializer");
5805 return;
5806 }
5807
5808 for (tail = TYPE_FIELDS (constructor_type); tail;
5809 tail = TREE_CHAIN (tail))
5810 {
5811 if (DECL_NAME (tail) == fieldname)
5812 break;
5813 }
5814
5815 if (tail == 0)
5816 error ("unknown field %qE specified in initializer", fieldname);
5817 else
5818 {
5819 constructor_fields = tail;
5820 designator_depth++;
5821 designator_erroneous = 0;
5822 if (constructor_range_stack)
5823 push_range_stack (NULL_TREE);
5824 }
5825 }
5826 \f
5827 /* Add a new initializer to the tree of pending initializers. PURPOSE
5828 identifies the initializer, either array index or field in a structure.
5829 VALUE is the value of that index or field. */
5830
5831 static void
5832 add_pending_init (tree purpose, tree value)
5833 {
5834 struct init_node *p, **q, *r;
5835
5836 q = &constructor_pending_elts;
5837 p = 0;
5838
5839 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5840 {
5841 while (*q != 0)
5842 {
5843 p = *q;
5844 if (tree_int_cst_lt (purpose, p->purpose))
5845 q = &p->left;
5846 else if (tree_int_cst_lt (p->purpose, purpose))
5847 q = &p->right;
5848 else
5849 {
5850 if (TREE_SIDE_EFFECTS (p->value))
5851 warning_init (0, "initialized field with side-effects overwritten");
5852 else if (warn_override_init)
5853 warning_init (OPT_Woverride_init, "initialized field overwritten");
5854 p->value = value;
5855 return;
5856 }
5857 }
5858 }
5859 else
5860 {
5861 tree bitpos;
5862
5863 bitpos = bit_position (purpose);
5864 while (*q != NULL)
5865 {
5866 p = *q;
5867 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5868 q = &p->left;
5869 else if (p->purpose != purpose)
5870 q = &p->right;
5871 else
5872 {
5873 if (TREE_SIDE_EFFECTS (p->value))
5874 warning_init (0, "initialized field with side-effects overwritten");
5875 else if (warn_override_init)
5876 warning_init (OPT_Woverride_init, "initialized field overwritten");
5877 p->value = value;
5878 return;
5879 }
5880 }
5881 }
5882
5883 r = GGC_NEW (struct init_node);
5884 r->purpose = purpose;
5885 r->value = value;
5886
5887 *q = r;
5888 r->parent = p;
5889 r->left = 0;
5890 r->right = 0;
5891 r->balance = 0;
5892
5893 while (p)
5894 {
5895 struct init_node *s;
5896
5897 if (r == p->left)
5898 {
5899 if (p->balance == 0)
5900 p->balance = -1;
5901 else if (p->balance < 0)
5902 {
5903 if (r->balance < 0)
5904 {
5905 /* L rotation. */
5906 p->left = r->right;
5907 if (p->left)
5908 p->left->parent = p;
5909 r->right = p;
5910
5911 p->balance = 0;
5912 r->balance = 0;
5913
5914 s = p->parent;
5915 p->parent = r;
5916 r->parent = s;
5917 if (s)
5918 {
5919 if (s->left == p)
5920 s->left = r;
5921 else
5922 s->right = r;
5923 }
5924 else
5925 constructor_pending_elts = r;
5926 }
5927 else
5928 {
5929 /* LR rotation. */
5930 struct init_node *t = r->right;
5931
5932 r->right = t->left;
5933 if (r->right)
5934 r->right->parent = r;
5935 t->left = r;
5936
5937 p->left = t->right;
5938 if (p->left)
5939 p->left->parent = p;
5940 t->right = p;
5941
5942 p->balance = t->balance < 0;
5943 r->balance = -(t->balance > 0);
5944 t->balance = 0;
5945
5946 s = p->parent;
5947 p->parent = t;
5948 r->parent = t;
5949 t->parent = s;
5950 if (s)
5951 {
5952 if (s->left == p)
5953 s->left = t;
5954 else
5955 s->right = t;
5956 }
5957 else
5958 constructor_pending_elts = t;
5959 }
5960 break;
5961 }
5962 else
5963 {
5964 /* p->balance == +1; growth of left side balances the node. */
5965 p->balance = 0;
5966 break;
5967 }
5968 }
5969 else /* r == p->right */
5970 {
5971 if (p->balance == 0)
5972 /* Growth propagation from right side. */
5973 p->balance++;
5974 else if (p->balance > 0)
5975 {
5976 if (r->balance > 0)
5977 {
5978 /* R rotation. */
5979 p->right = r->left;
5980 if (p->right)
5981 p->right->parent = p;
5982 r->left = p;
5983
5984 p->balance = 0;
5985 r->balance = 0;
5986
5987 s = p->parent;
5988 p->parent = r;
5989 r->parent = s;
5990 if (s)
5991 {
5992 if (s->left == p)
5993 s->left = r;
5994 else
5995 s->right = r;
5996 }
5997 else
5998 constructor_pending_elts = r;
5999 }
6000 else /* r->balance == -1 */
6001 {
6002 /* RL rotation */
6003 struct init_node *t = r->left;
6004
6005 r->left = t->right;
6006 if (r->left)
6007 r->left->parent = r;
6008 t->right = r;
6009
6010 p->right = t->left;
6011 if (p->right)
6012 p->right->parent = p;
6013 t->left = p;
6014
6015 r->balance = (t->balance < 0);
6016 p->balance = -(t->balance > 0);
6017 t->balance = 0;
6018
6019 s = p->parent;
6020 p->parent = t;
6021 r->parent = t;
6022 t->parent = s;
6023 if (s)
6024 {
6025 if (s->left == p)
6026 s->left = t;
6027 else
6028 s->right = t;
6029 }
6030 else
6031 constructor_pending_elts = t;
6032 }
6033 break;
6034 }
6035 else
6036 {
6037 /* p->balance == -1; growth of right side balances the node. */
6038 p->balance = 0;
6039 break;
6040 }
6041 }
6042
6043 r = p;
6044 p = p->parent;
6045 }
6046 }
6047
6048 /* Build AVL tree from a sorted chain. */
6049
6050 static void
6051 set_nonincremental_init (void)
6052 {
6053 unsigned HOST_WIDE_INT ix;
6054 tree index, value;
6055
6056 if (TREE_CODE (constructor_type) != RECORD_TYPE
6057 && TREE_CODE (constructor_type) != ARRAY_TYPE)
6058 return;
6059
6060 FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
6061 add_pending_init (index, value);
6062 constructor_elements = 0;
6063 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6064 {
6065 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
6066 /* Skip any nameless bit fields at the beginning. */
6067 while (constructor_unfilled_fields != 0
6068 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6069 && DECL_NAME (constructor_unfilled_fields) == 0)
6070 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
6071
6072 }
6073 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6074 {
6075 if (TYPE_DOMAIN (constructor_type))
6076 constructor_unfilled_index
6077 = convert (bitsizetype,
6078 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6079 else
6080 constructor_unfilled_index = bitsize_zero_node;
6081 }
6082 constructor_incremental = 0;
6083 }
6084
6085 /* Build AVL tree from a string constant. */
6086
6087 static void
6088 set_nonincremental_init_from_string (tree str)
6089 {
6090 tree value, purpose, type;
6091 HOST_WIDE_INT val[2];
6092 const char *p, *end;
6093 int byte, wchar_bytes, charwidth, bitpos;
6094
6095 gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
6096
6097 if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6098 == TYPE_PRECISION (char_type_node))
6099 wchar_bytes = 1;
6100 else
6101 {
6102 gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6103 == TYPE_PRECISION (wchar_type_node));
6104 wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
6105 }
6106 charwidth = TYPE_PRECISION (char_type_node);
6107 type = TREE_TYPE (constructor_type);
6108 p = TREE_STRING_POINTER (str);
6109 end = p + TREE_STRING_LENGTH (str);
6110
6111 for (purpose = bitsize_zero_node;
6112 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
6113 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
6114 {
6115 if (wchar_bytes == 1)
6116 {
6117 val[1] = (unsigned char) *p++;
6118 val[0] = 0;
6119 }
6120 else
6121 {
6122 val[0] = 0;
6123 val[1] = 0;
6124 for (byte = 0; byte < wchar_bytes; byte++)
6125 {
6126 if (BYTES_BIG_ENDIAN)
6127 bitpos = (wchar_bytes - byte - 1) * charwidth;
6128 else
6129 bitpos = byte * charwidth;
6130 val[bitpos < HOST_BITS_PER_WIDE_INT]
6131 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
6132 << (bitpos % HOST_BITS_PER_WIDE_INT);
6133 }
6134 }
6135
6136 if (!TYPE_UNSIGNED (type))
6137 {
6138 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6139 if (bitpos < HOST_BITS_PER_WIDE_INT)
6140 {
6141 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6142 {
6143 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6144 val[0] = -1;
6145 }
6146 }
6147 else if (bitpos == HOST_BITS_PER_WIDE_INT)
6148 {
6149 if (val[1] < 0)
6150 val[0] = -1;
6151 }
6152 else if (val[0] & (((HOST_WIDE_INT) 1)
6153 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6154 val[0] |= ((HOST_WIDE_INT) -1)
6155 << (bitpos - HOST_BITS_PER_WIDE_INT);
6156 }
6157
6158 value = build_int_cst_wide (type, val[1], val[0]);
6159 add_pending_init (purpose, value);
6160 }
6161
6162 constructor_incremental = 0;
6163 }
6164
6165 /* Return value of FIELD in pending initializer or zero if the field was
6166 not initialized yet. */
6167
6168 static tree
6169 find_init_member (tree field)
6170 {
6171 struct init_node *p;
6172
6173 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6174 {
6175 if (constructor_incremental
6176 && tree_int_cst_lt (field, constructor_unfilled_index))
6177 set_nonincremental_init ();
6178
6179 p = constructor_pending_elts;
6180 while (p)
6181 {
6182 if (tree_int_cst_lt (field, p->purpose))
6183 p = p->left;
6184 else if (tree_int_cst_lt (p->purpose, field))
6185 p = p->right;
6186 else
6187 return p->value;
6188 }
6189 }
6190 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6191 {
6192 tree bitpos = bit_position (field);
6193
6194 if (constructor_incremental
6195 && (!constructor_unfilled_fields
6196 || tree_int_cst_lt (bitpos,
6197 bit_position (constructor_unfilled_fields))))
6198 set_nonincremental_init ();
6199
6200 p = constructor_pending_elts;
6201 while (p)
6202 {
6203 if (field == p->purpose)
6204 return p->value;
6205 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6206 p = p->left;
6207 else
6208 p = p->right;
6209 }
6210 }
6211 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6212 {
6213 if (!VEC_empty (constructor_elt, constructor_elements)
6214 && (VEC_last (constructor_elt, constructor_elements)->index
6215 == field))
6216 return VEC_last (constructor_elt, constructor_elements)->value;
6217 }
6218 return 0;
6219 }
6220
6221 /* "Output" the next constructor element.
6222 At top level, really output it to assembler code now.
6223 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6224 TYPE is the data type that the containing data type wants here.
6225 FIELD is the field (a FIELD_DECL) or the index that this element fills.
6226 If VALUE is a string constant, STRICT_STRING is true if it is
6227 unparenthesized or we should not warn here for it being parenthesized.
6228 For other types of VALUE, STRICT_STRING is not used.
6229
6230 PENDING if non-nil means output pending elements that belong
6231 right after this element. (PENDING is normally 1;
6232 it is 0 while outputting pending elements, to avoid recursion.) */
6233
6234 static void
6235 output_init_element (tree value, bool strict_string, tree type, tree field,
6236 int pending)
6237 {
6238 constructor_elt *celt;
6239
6240 if (type == error_mark_node || value == error_mark_node)
6241 {
6242 constructor_erroneous = 1;
6243 return;
6244 }
6245 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6246 && (TREE_CODE (value) == STRING_CST
6247 || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6248 && !(TREE_CODE (value) == STRING_CST
6249 && TREE_CODE (type) == ARRAY_TYPE
6250 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6251 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6252 TYPE_MAIN_VARIANT (type)))
6253 value = array_to_pointer_conversion (value);
6254
6255 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6256 && require_constant_value && !flag_isoc99 && pending)
6257 {
6258 /* As an extension, allow initializing objects with static storage
6259 duration with compound literals (which are then treated just as
6260 the brace enclosed list they contain). */
6261 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6262 value = DECL_INITIAL (decl);
6263 }
6264
6265 if (value == error_mark_node)
6266 constructor_erroneous = 1;
6267 else if (!TREE_CONSTANT (value))
6268 constructor_constant = 0;
6269 else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6270 || ((TREE_CODE (constructor_type) == RECORD_TYPE
6271 || TREE_CODE (constructor_type) == UNION_TYPE)
6272 && DECL_C_BIT_FIELD (field)
6273 && TREE_CODE (value) != INTEGER_CST))
6274 constructor_simple = 0;
6275
6276 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6277 {
6278 if (require_constant_value)
6279 {
6280 error_init ("initializer element is not constant");
6281 value = error_mark_node;
6282 }
6283 else if (require_constant_elements)
6284 pedwarn ("initializer element is not computable at load time");
6285 }
6286
6287 /* If this field is empty (and not at the end of structure),
6288 don't do anything other than checking the initializer. */
6289 if (field
6290 && (TREE_TYPE (field) == error_mark_node
6291 || (COMPLETE_TYPE_P (TREE_TYPE (field))
6292 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6293 && (TREE_CODE (constructor_type) == ARRAY_TYPE
6294 || TREE_CHAIN (field)))))
6295 return;
6296
6297 value = digest_init (type, value, strict_string, require_constant_value);
6298 if (value == error_mark_node)
6299 {
6300 constructor_erroneous = 1;
6301 return;
6302 }
6303
6304 /* If this element doesn't come next in sequence,
6305 put it on constructor_pending_elts. */
6306 if (TREE_CODE (constructor_type) == ARRAY_TYPE
6307 && (!constructor_incremental
6308 || !tree_int_cst_equal (field, constructor_unfilled_index)))
6309 {
6310 if (constructor_incremental
6311 && tree_int_cst_lt (field, constructor_unfilled_index))
6312 set_nonincremental_init ();
6313
6314 add_pending_init (field, value);
6315 return;
6316 }
6317 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6318 && (!constructor_incremental
6319 || field != constructor_unfilled_fields))
6320 {
6321 /* We do this for records but not for unions. In a union,
6322 no matter which field is specified, it can be initialized
6323 right away since it starts at the beginning of the union. */
6324 if (constructor_incremental)
6325 {
6326 if (!constructor_unfilled_fields)
6327 set_nonincremental_init ();
6328 else
6329 {
6330 tree bitpos, unfillpos;
6331
6332 bitpos = bit_position (field);
6333 unfillpos = bit_position (constructor_unfilled_fields);
6334
6335 if (tree_int_cst_lt (bitpos, unfillpos))
6336 set_nonincremental_init ();
6337 }
6338 }
6339
6340 add_pending_init (field, value);
6341 return;
6342 }
6343 else if (TREE_CODE (constructor_type) == UNION_TYPE
6344 && !VEC_empty (constructor_elt, constructor_elements))
6345 {
6346 if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6347 constructor_elements)->value))
6348 warning_init (0, "initialized field with side-effects overwritten");
6349 else if (warn_override_init)
6350 warning_init (OPT_Woverride_init, "initialized field overwritten");
6351
6352 /* We can have just one union field set. */
6353 constructor_elements = 0;
6354 }
6355
6356 /* Otherwise, output this element either to
6357 constructor_elements or to the assembler file. */
6358
6359 celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6360 celt->index = field;
6361 celt->value = value;
6362
6363 /* Advance the variable that indicates sequential elements output. */
6364 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6365 constructor_unfilled_index
6366 = size_binop (PLUS_EXPR, constructor_unfilled_index,
6367 bitsize_one_node);
6368 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6369 {
6370 constructor_unfilled_fields
6371 = TREE_CHAIN (constructor_unfilled_fields);
6372
6373 /* Skip any nameless bit fields. */
6374 while (constructor_unfilled_fields != 0
6375 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6376 && DECL_NAME (constructor_unfilled_fields) == 0)
6377 constructor_unfilled_fields =
6378 TREE_CHAIN (constructor_unfilled_fields);
6379 }
6380 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6381 constructor_unfilled_fields = 0;
6382
6383 /* Now output any pending elements which have become next. */
6384 if (pending)
6385 output_pending_init_elements (0);
6386 }
6387
6388 /* Output any pending elements which have become next.
6389 As we output elements, constructor_unfilled_{fields,index}
6390 advances, which may cause other elements to become next;
6391 if so, they too are output.
6392
6393 If ALL is 0, we return when there are
6394 no more pending elements to output now.
6395
6396 If ALL is 1, we output space as necessary so that
6397 we can output all the pending elements. */
6398
6399 static void
6400 output_pending_init_elements (int all)
6401 {
6402 struct init_node *elt = constructor_pending_elts;
6403 tree next;
6404
6405 retry:
6406
6407 /* Look through the whole pending tree.
6408 If we find an element that should be output now,
6409 output it. Otherwise, set NEXT to the element
6410 that comes first among those still pending. */
6411
6412 next = 0;
6413 while (elt)
6414 {
6415 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6416 {
6417 if (tree_int_cst_equal (elt->purpose,
6418 constructor_unfilled_index))
6419 output_init_element (elt->value, true,
6420 TREE_TYPE (constructor_type),
6421 constructor_unfilled_index, 0);
6422 else if (tree_int_cst_lt (constructor_unfilled_index,
6423 elt->purpose))
6424 {
6425 /* Advance to the next smaller node. */
6426 if (elt->left)
6427 elt = elt->left;
6428 else
6429 {
6430 /* We have reached the smallest node bigger than the
6431 current unfilled index. Fill the space first. */
6432 next = elt->purpose;
6433 break;
6434 }
6435 }
6436 else
6437 {
6438 /* Advance to the next bigger node. */
6439 if (elt->right)
6440 elt = elt->right;
6441 else
6442 {
6443 /* We have reached the biggest node in a subtree. Find
6444 the parent of it, which is the next bigger node. */
6445 while (elt->parent && elt->parent->right == elt)
6446 elt = elt->parent;
6447 elt = elt->parent;
6448 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6449 elt->purpose))
6450 {
6451 next = elt->purpose;
6452 break;
6453 }
6454 }
6455 }
6456 }
6457 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6458 || TREE_CODE (constructor_type) == UNION_TYPE)
6459 {
6460 tree ctor_unfilled_bitpos, elt_bitpos;
6461
6462 /* If the current record is complete we are done. */
6463 if (constructor_unfilled_fields == 0)
6464 break;
6465
6466 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6467 elt_bitpos = bit_position (elt->purpose);
6468 /* We can't compare fields here because there might be empty
6469 fields in between. */
6470 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6471 {
6472 constructor_unfilled_fields = elt->purpose;
6473 output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6474 elt->purpose, 0);
6475 }
6476 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6477 {
6478 /* Advance to the next smaller node. */
6479 if (elt->left)
6480 elt = elt->left;
6481 else
6482 {
6483 /* We have reached the smallest node bigger than the
6484 current unfilled field. Fill the space first. */
6485 next = elt->purpose;
6486 break;
6487 }
6488 }
6489 else
6490 {
6491 /* Advance to the next bigger node. */
6492 if (elt->right)
6493 elt = elt->right;
6494 else
6495 {
6496 /* We have reached the biggest node in a subtree. Find
6497 the parent of it, which is the next bigger node. */
6498 while (elt->parent && elt->parent->right == elt)
6499 elt = elt->parent;
6500 elt = elt->parent;
6501 if (elt
6502 && (tree_int_cst_lt (ctor_unfilled_bitpos,
6503 bit_position (elt->purpose))))
6504 {
6505 next = elt->purpose;
6506 break;
6507 }
6508 }
6509 }
6510 }
6511 }
6512
6513 /* Ordinarily return, but not if we want to output all
6514 and there are elements left. */
6515 if (!(all && next != 0))
6516 return;
6517
6518 /* If it's not incremental, just skip over the gap, so that after
6519 jumping to retry we will output the next successive element. */
6520 if (TREE_CODE (constructor_type) == RECORD_TYPE
6521 || TREE_CODE (constructor_type) == UNION_TYPE)
6522 constructor_unfilled_fields = next;
6523 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6524 constructor_unfilled_index = next;
6525
6526 /* ELT now points to the node in the pending tree with the next
6527 initializer to output. */
6528 goto retry;
6529 }
6530 \f
6531 /* Add one non-braced element to the current constructor level.
6532 This adjusts the current position within the constructor's type.
6533 This may also start or terminate implicit levels
6534 to handle a partly-braced initializer.
6535
6536 Once this has found the correct level for the new element,
6537 it calls output_init_element. */
6538
6539 void
6540 process_init_element (struct c_expr value)
6541 {
6542 tree orig_value = value.value;
6543 int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6544 bool strict_string = value.original_code == STRING_CST;
6545
6546 designator_depth = 0;
6547 designator_erroneous = 0;
6548
6549 /* Handle superfluous braces around string cst as in
6550 char x[] = {"foo"}; */
6551 if (string_flag
6552 && constructor_type
6553 && TREE_CODE (constructor_type) == ARRAY_TYPE
6554 && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6555 && integer_zerop (constructor_unfilled_index))
6556 {
6557 if (constructor_stack->replacement_value.value)
6558 error_init ("excess elements in char array initializer");
6559 constructor_stack->replacement_value = value;
6560 return;
6561 }
6562
6563 if (constructor_stack->replacement_value.value != 0)
6564 {
6565 error_init ("excess elements in struct initializer");
6566 return;
6567 }
6568
6569 /* Ignore elements of a brace group if it is entirely superfluous
6570 and has already been diagnosed. */
6571 if (constructor_type == 0)
6572 return;
6573
6574 /* If we've exhausted any levels that didn't have braces,
6575 pop them now. */
6576 while (constructor_stack->implicit)
6577 {
6578 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6579 || TREE_CODE (constructor_type) == UNION_TYPE)
6580 && constructor_fields == 0)
6581 process_init_element (pop_init_level (1));
6582 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6583 && (constructor_max_index == 0
6584 || tree_int_cst_lt (constructor_max_index,
6585 constructor_index)))
6586 process_init_element (pop_init_level (1));
6587 else
6588 break;
6589 }
6590
6591 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
6592 if (constructor_range_stack)
6593 {
6594 /* If value is a compound literal and we'll be just using its
6595 content, don't put it into a SAVE_EXPR. */
6596 if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6597 || !require_constant_value
6598 || flag_isoc99)
6599 value.value = save_expr (value.value);
6600 }
6601
6602 while (1)
6603 {
6604 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6605 {
6606 tree fieldtype;
6607 enum tree_code fieldcode;
6608
6609 if (constructor_fields == 0)
6610 {
6611 pedwarn_init ("excess elements in struct initializer");
6612 break;
6613 }
6614
6615 fieldtype = TREE_TYPE (constructor_fields);
6616 if (fieldtype != error_mark_node)
6617 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6618 fieldcode = TREE_CODE (fieldtype);
6619
6620 /* Error for non-static initialization of a flexible array member. */
6621 if (fieldcode == ARRAY_TYPE
6622 && !require_constant_value
6623 && TYPE_SIZE (fieldtype) == NULL_TREE
6624 && TREE_CHAIN (constructor_fields) == NULL_TREE)
6625 {
6626 error_init ("non-static initialization of a flexible array member");
6627 break;
6628 }
6629
6630 /* Accept a string constant to initialize a subarray. */
6631 if (value.value != 0
6632 && fieldcode == ARRAY_TYPE
6633 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6634 && string_flag)
6635 value.value = orig_value;
6636 /* Otherwise, if we have come to a subaggregate,
6637 and we don't have an element of its type, push into it. */
6638 else if (value.value != 0
6639 && value.value != error_mark_node
6640 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6641 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6642 || fieldcode == UNION_TYPE))
6643 {
6644 push_init_level (1);
6645 continue;
6646 }
6647
6648 if (value.value)
6649 {
6650 push_member_name (constructor_fields);
6651 output_init_element (value.value, strict_string,
6652 fieldtype, constructor_fields, 1);
6653 RESTORE_SPELLING_DEPTH (constructor_depth);
6654 }
6655 else
6656 /* Do the bookkeeping for an element that was
6657 directly output as a constructor. */
6658 {
6659 /* For a record, keep track of end position of last field. */
6660 if (DECL_SIZE (constructor_fields))
6661 constructor_bit_index
6662 = size_binop (PLUS_EXPR,
6663 bit_position (constructor_fields),
6664 DECL_SIZE (constructor_fields));
6665
6666 /* If the current field was the first one not yet written out,
6667 it isn't now, so update. */
6668 if (constructor_unfilled_fields == constructor_fields)
6669 {
6670 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6671 /* Skip any nameless bit fields. */
6672 while (constructor_unfilled_fields != 0
6673 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6674 && DECL_NAME (constructor_unfilled_fields) == 0)
6675 constructor_unfilled_fields =
6676 TREE_CHAIN (constructor_unfilled_fields);
6677 }
6678 }
6679
6680 constructor_fields = TREE_CHAIN (constructor_fields);
6681 /* Skip any nameless bit fields at the beginning. */
6682 while (constructor_fields != 0
6683 && DECL_C_BIT_FIELD (constructor_fields)
6684 && DECL_NAME (constructor_fields) == 0)
6685 constructor_fields = TREE_CHAIN (constructor_fields);
6686 }
6687 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6688 {
6689 tree fieldtype;
6690 enum tree_code fieldcode;
6691
6692 if (constructor_fields == 0)
6693 {
6694 pedwarn_init ("excess elements in union initializer");
6695 break;
6696 }
6697
6698 fieldtype = TREE_TYPE (constructor_fields);
6699 if (fieldtype != error_mark_node)
6700 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6701 fieldcode = TREE_CODE (fieldtype);
6702
6703 /* Warn that traditional C rejects initialization of unions.
6704 We skip the warning if the value is zero. This is done
6705 under the assumption that the zero initializer in user
6706 code appears conditioned on e.g. __STDC__ to avoid
6707 "missing initializer" warnings and relies on default
6708 initialization to zero in the traditional C case.
6709 We also skip the warning if the initializer is designated,
6710 again on the assumption that this must be conditional on
6711 __STDC__ anyway (and we've already complained about the
6712 member-designator already). */
6713 if (!in_system_header && !constructor_designated
6714 && !(value.value && (integer_zerop (value.value)
6715 || real_zerop (value.value))))
6716 warning (OPT_Wtraditional, "traditional C rejects initialization "
6717 "of unions");
6718
6719 /* Accept a string constant to initialize a subarray. */
6720 if (value.value != 0
6721 && fieldcode == ARRAY_TYPE
6722 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6723 && string_flag)
6724 value.value = orig_value;
6725 /* Otherwise, if we have come to a subaggregate,
6726 and we don't have an element of its type, push into it. */
6727 else if (value.value != 0
6728 && value.value != error_mark_node
6729 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6730 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6731 || fieldcode == UNION_TYPE))
6732 {
6733 push_init_level (1);
6734 continue;
6735 }
6736
6737 if (value.value)
6738 {
6739 push_member_name (constructor_fields);
6740 output_init_element (value.value, strict_string,
6741 fieldtype, constructor_fields, 1);
6742 RESTORE_SPELLING_DEPTH (constructor_depth);
6743 }
6744 else
6745 /* Do the bookkeeping for an element that was
6746 directly output as a constructor. */
6747 {
6748 constructor_bit_index = DECL_SIZE (constructor_fields);
6749 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6750 }
6751
6752 constructor_fields = 0;
6753 }
6754 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6755 {
6756 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6757 enum tree_code eltcode = TREE_CODE (elttype);
6758
6759 /* Accept a string constant to initialize a subarray. */
6760 if (value.value != 0
6761 && eltcode == ARRAY_TYPE
6762 && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6763 && string_flag)
6764 value.value = orig_value;
6765 /* Otherwise, if we have come to a subaggregate,
6766 and we don't have an element of its type, push into it. */
6767 else if (value.value != 0
6768 && value.value != error_mark_node
6769 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6770 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6771 || eltcode == UNION_TYPE))
6772 {
6773 push_init_level (1);
6774 continue;
6775 }
6776
6777 if (constructor_max_index != 0
6778 && (tree_int_cst_lt (constructor_max_index, constructor_index)
6779 || integer_all_onesp (constructor_max_index)))
6780 {
6781 pedwarn_init ("excess elements in array initializer");
6782 break;
6783 }
6784
6785 /* Now output the actual element. */
6786 if (value.value)
6787 {
6788 push_array_bounds (tree_low_cst (constructor_index, 1));
6789 output_init_element (value.value, strict_string,
6790 elttype, constructor_index, 1);
6791 RESTORE_SPELLING_DEPTH (constructor_depth);
6792 }
6793
6794 constructor_index
6795 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6796
6797 if (!value.value)
6798 /* If we are doing the bookkeeping for an element that was
6799 directly output as a constructor, we must update
6800 constructor_unfilled_index. */
6801 constructor_unfilled_index = constructor_index;
6802 }
6803 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6804 {
6805 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6806
6807 /* Do a basic check of initializer size. Note that vectors
6808 always have a fixed size derived from their type. */
6809 if (tree_int_cst_lt (constructor_max_index, constructor_index))
6810 {
6811 pedwarn_init ("excess elements in vector initializer");
6812 break;
6813 }
6814
6815 /* Now output the actual element. */
6816 if (value.value)
6817 output_init_element (value.value, strict_string,
6818 elttype, constructor_index, 1);
6819
6820 constructor_index
6821 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6822
6823 if (!value.value)
6824 /* If we are doing the bookkeeping for an element that was
6825 directly output as a constructor, we must update
6826 constructor_unfilled_index. */
6827 constructor_unfilled_index = constructor_index;
6828 }
6829
6830 /* Handle the sole element allowed in a braced initializer
6831 for a scalar variable. */
6832 else if (constructor_type != error_mark_node
6833 && constructor_fields == 0)
6834 {
6835 pedwarn_init ("excess elements in scalar initializer");
6836 break;
6837 }
6838 else
6839 {
6840 if (value.value)
6841 output_init_element (value.value, strict_string,
6842 constructor_type, NULL_TREE, 1);
6843 constructor_fields = 0;
6844 }
6845
6846 /* Handle range initializers either at this level or anywhere higher
6847 in the designator stack. */
6848 if (constructor_range_stack)
6849 {
6850 struct constructor_range_stack *p, *range_stack;
6851 int finish = 0;
6852
6853 range_stack = constructor_range_stack;
6854 constructor_range_stack = 0;
6855 while (constructor_stack != range_stack->stack)
6856 {
6857 gcc_assert (constructor_stack->implicit);
6858 process_init_element (pop_init_level (1));
6859 }
6860 for (p = range_stack;
6861 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6862 p = p->prev)
6863 {
6864 gcc_assert (constructor_stack->implicit);
6865 process_init_element (pop_init_level (1));
6866 }
6867
6868 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6869 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6870 finish = 1;
6871
6872 while (1)
6873 {
6874 constructor_index = p->index;
6875 constructor_fields = p->fields;
6876 if (finish && p->range_end && p->index == p->range_start)
6877 {
6878 finish = 0;
6879 p->prev = 0;
6880 }
6881 p = p->next;
6882 if (!p)
6883 break;
6884 push_init_level (2);
6885 p->stack = constructor_stack;
6886 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6887 p->index = p->range_start;
6888 }
6889
6890 if (!finish)
6891 constructor_range_stack = range_stack;
6892 continue;
6893 }
6894
6895 break;
6896 }
6897
6898 constructor_range_stack = 0;
6899 }
6900 \f
6901 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
6902 (guaranteed to be 'volatile' or null) and ARGS (represented using
6903 an ASM_EXPR node). */
6904 tree
6905 build_asm_stmt (tree cv_qualifier, tree args)
6906 {
6907 if (!ASM_VOLATILE_P (args) && cv_qualifier)
6908 ASM_VOLATILE_P (args) = 1;
6909 return add_stmt (args);
6910 }
6911
6912 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6913 some INPUTS, and some CLOBBERS. The latter three may be NULL.
6914 SIMPLE indicates whether there was anything at all after the
6915 string in the asm expression -- asm("blah") and asm("blah" : )
6916 are subtly different. We use a ASM_EXPR node to represent this. */
6917 tree
6918 build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6919 bool simple)
6920 {
6921 tree tail;
6922 tree args;
6923 int i;
6924 const char *constraint;
6925 const char **oconstraints;
6926 bool allows_mem, allows_reg, is_inout;
6927 int ninputs, noutputs;
6928
6929 ninputs = list_length (inputs);
6930 noutputs = list_length (outputs);
6931 oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6932
6933 string = resolve_asm_operand_names (string, outputs, inputs);
6934
6935 /* Remove output conversions that change the type but not the mode. */
6936 for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6937 {
6938 tree output = TREE_VALUE (tail);
6939
6940 /* ??? Really, this should not be here. Users should be using a
6941 proper lvalue, dammit. But there's a long history of using casts
6942 in the output operands. In cases like longlong.h, this becomes a
6943 primitive form of typechecking -- if the cast can be removed, then
6944 the output operand had a type of the proper width; otherwise we'll
6945 get an error. Gross, but ... */
6946 STRIP_NOPS (output);
6947
6948 if (!lvalue_or_else (output, lv_asm))
6949 output = error_mark_node;
6950
6951 if (output != error_mark_node
6952 && (TREE_READONLY (output)
6953 || TYPE_READONLY (TREE_TYPE (output))
6954 || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6955 || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6956 && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6957 readonly_error (output, lv_asm);
6958
6959 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6960 oconstraints[i] = constraint;
6961
6962 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6963 &allows_mem, &allows_reg, &is_inout))
6964 {
6965 /* If the operand is going to end up in memory,
6966 mark it addressable. */
6967 if (!allows_reg && !c_mark_addressable (output))
6968 output = error_mark_node;
6969 }
6970 else
6971 output = error_mark_node;
6972
6973 TREE_VALUE (tail) = output;
6974 }
6975
6976 for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6977 {
6978 tree input;
6979
6980 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6981 input = TREE_VALUE (tail);
6982
6983 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6984 oconstraints, &allows_mem, &allows_reg))
6985 {
6986 /* If the operand is going to end up in memory,
6987 mark it addressable. */
6988 if (!allows_reg && allows_mem)
6989 {
6990 /* Strip the nops as we allow this case. FIXME, this really
6991 should be rejected or made deprecated. */
6992 STRIP_NOPS (input);
6993 if (!c_mark_addressable (input))
6994 input = error_mark_node;
6995 }
6996 }
6997 else
6998 input = error_mark_node;
6999
7000 TREE_VALUE (tail) = input;
7001 }
7002
7003 args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
7004
7005 /* asm statements without outputs, including simple ones, are treated
7006 as volatile. */
7007 ASM_INPUT_P (args) = simple;
7008 ASM_VOLATILE_P (args) = (noutputs == 0);
7009
7010 return args;
7011 }
7012 \f
7013 /* Generate a goto statement to LABEL. */
7014
7015 tree
7016 c_finish_goto_label (tree label)
7017 {
7018 tree decl = lookup_label (label);
7019 if (!decl)
7020 return NULL_TREE;
7021
7022 if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
7023 {
7024 error ("jump into statement expression");
7025 return NULL_TREE;
7026 }
7027
7028 if (C_DECL_UNJUMPABLE_VM (decl))
7029 {
7030 error ("jump into scope of identifier with variably modified type");
7031 return NULL_TREE;
7032 }
7033
7034 if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
7035 {
7036 /* No jump from outside this statement expression context, so
7037 record that there is a jump from within this context. */
7038 struct c_label_list *nlist;
7039 nlist = XOBNEW (&parser_obstack, struct c_label_list);
7040 nlist->next = label_context_stack_se->labels_used;
7041 nlist->label = decl;
7042 label_context_stack_se->labels_used = nlist;
7043 }
7044
7045 if (!C_DECL_UNDEFINABLE_VM (decl))
7046 {
7047 /* No jump from outside this context context of identifiers with
7048 variably modified type, so record that there is a jump from
7049 within this context. */
7050 struct c_label_list *nlist;
7051 nlist = XOBNEW (&parser_obstack, struct c_label_list);
7052 nlist->next = label_context_stack_vm->labels_used;
7053 nlist->label = decl;
7054 label_context_stack_vm->labels_used = nlist;
7055 }
7056
7057 TREE_USED (decl) = 1;
7058 return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
7059 }
7060
7061 /* Generate a computed goto statement to EXPR. */
7062
7063 tree
7064 c_finish_goto_ptr (tree expr)
7065 {
7066 if (pedantic)
7067 pedwarn ("ISO C forbids %<goto *expr;%>");
7068 expr = convert (ptr_type_node, expr);
7069 return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
7070 }
7071
7072 /* Generate a C `return' statement. RETVAL is the expression for what
7073 to return, or a null pointer for `return;' with no value. */
7074
7075 tree
7076 c_finish_return (tree retval)
7077 {
7078 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
7079 bool no_warning = false;
7080
7081 if (TREE_THIS_VOLATILE (current_function_decl))
7082 warning (0, "function declared %<noreturn%> has a %<return%> statement");
7083
7084 if (!retval)
7085 {
7086 current_function_returns_null = 1;
7087 if ((warn_return_type || flag_isoc99)
7088 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
7089 {
7090 pedwarn_c99 ("%<return%> with no value, in "
7091 "function returning non-void");
7092 no_warning = true;
7093 }
7094 }
7095 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
7096 {
7097 current_function_returns_null = 1;
7098 if (TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
7099 pedwarn ("%<return%> with a value, in function returning void");
7100 else if (pedantic)
7101 pedwarn ("ISO C forbids %<return%> with expression, in function returning void");
7102 }
7103 else
7104 {
7105 tree t = convert_for_assignment (valtype, retval, ic_return,
7106 NULL_TREE, NULL_TREE, 0);
7107 tree res = DECL_RESULT (current_function_decl);
7108 tree inner;
7109
7110 current_function_returns_value = 1;
7111 if (t == error_mark_node)
7112 return NULL_TREE;
7113
7114 inner = t = convert (TREE_TYPE (res), t);
7115
7116 /* Strip any conversions, additions, and subtractions, and see if
7117 we are returning the address of a local variable. Warn if so. */
7118 while (1)
7119 {
7120 switch (TREE_CODE (inner))
7121 {
7122 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
7123 case PLUS_EXPR:
7124 inner = TREE_OPERAND (inner, 0);
7125 continue;
7126
7127 case MINUS_EXPR:
7128 /* If the second operand of the MINUS_EXPR has a pointer
7129 type (or is converted from it), this may be valid, so
7130 don't give a warning. */
7131 {
7132 tree op1 = TREE_OPERAND (inner, 1);
7133
7134 while (!POINTER_TYPE_P (TREE_TYPE (op1))
7135 && (TREE_CODE (op1) == NOP_EXPR
7136 || TREE_CODE (op1) == NON_LVALUE_EXPR
7137 || TREE_CODE (op1) == CONVERT_EXPR))
7138 op1 = TREE_OPERAND (op1, 0);
7139
7140 if (POINTER_TYPE_P (TREE_TYPE (op1)))
7141 break;
7142
7143 inner = TREE_OPERAND (inner, 0);
7144 continue;
7145 }
7146
7147 case ADDR_EXPR:
7148 inner = TREE_OPERAND (inner, 0);
7149
7150 while (REFERENCE_CLASS_P (inner)
7151 && TREE_CODE (inner) != INDIRECT_REF)
7152 inner = TREE_OPERAND (inner, 0);
7153
7154 if (DECL_P (inner)
7155 && !DECL_EXTERNAL (inner)
7156 && !TREE_STATIC (inner)
7157 && DECL_CONTEXT (inner) == current_function_decl)
7158 warning (0, "function returns address of local variable");
7159 break;
7160
7161 default:
7162 break;
7163 }
7164
7165 break;
7166 }
7167
7168 retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7169 }
7170
7171 ret_stmt = build_stmt (RETURN_EXPR, retval);
7172 TREE_NO_WARNING (ret_stmt) |= no_warning;
7173 return add_stmt (ret_stmt);
7174 }
7175 \f
7176 struct c_switch {
7177 /* The SWITCH_EXPR being built. */
7178 tree switch_expr;
7179
7180 /* The original type of the testing expression, i.e. before the
7181 default conversion is applied. */
7182 tree orig_type;
7183
7184 /* A splay-tree mapping the low element of a case range to the high
7185 element, or NULL_TREE if there is no high element. Used to
7186 determine whether or not a new case label duplicates an old case
7187 label. We need a tree, rather than simply a hash table, because
7188 of the GNU case range extension. */
7189 splay_tree cases;
7190
7191 /* Number of nested statement expressions within this switch
7192 statement; if nonzero, case and default labels may not
7193 appear. */
7194 unsigned int blocked_stmt_expr;
7195
7196 /* Scope of outermost declarations of identifiers with variably
7197 modified type within this switch statement; if nonzero, case and
7198 default labels may not appear. */
7199 unsigned int blocked_vm;
7200
7201 /* The next node on the stack. */
7202 struct c_switch *next;
7203 };
7204
7205 /* A stack of the currently active switch statements. The innermost
7206 switch statement is on the top of the stack. There is no need to
7207 mark the stack for garbage collection because it is only active
7208 during the processing of the body of a function, and we never
7209 collect at that point. */
7210
7211 struct c_switch *c_switch_stack;
7212
7213 /* Start a C switch statement, testing expression EXP. Return the new
7214 SWITCH_EXPR. */
7215
7216 tree
7217 c_start_case (tree exp)
7218 {
7219 tree orig_type = error_mark_node;
7220 struct c_switch *cs;
7221
7222 if (exp != error_mark_node)
7223 {
7224 orig_type = TREE_TYPE (exp);
7225
7226 if (!INTEGRAL_TYPE_P (orig_type))
7227 {
7228 if (orig_type != error_mark_node)
7229 {
7230 error ("switch quantity not an integer");
7231 orig_type = error_mark_node;
7232 }
7233 exp = integer_zero_node;
7234 }
7235 else
7236 {
7237 tree type = TYPE_MAIN_VARIANT (orig_type);
7238
7239 if (!in_system_header
7240 && (type == long_integer_type_node
7241 || type == long_unsigned_type_node))
7242 warning (OPT_Wtraditional, "%<long%> switch expression not "
7243 "converted to %<int%> in ISO C");
7244
7245 exp = default_conversion (exp);
7246 }
7247 }
7248
7249 /* Add this new SWITCH_EXPR to the stack. */
7250 cs = XNEW (struct c_switch);
7251 cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7252 cs->orig_type = orig_type;
7253 cs->cases = splay_tree_new (case_compare, NULL, NULL);
7254 cs->blocked_stmt_expr = 0;
7255 cs->blocked_vm = 0;
7256 cs->next = c_switch_stack;
7257 c_switch_stack = cs;
7258
7259 return add_stmt (cs->switch_expr);
7260 }
7261
7262 /* Process a case label. */
7263
7264 tree
7265 do_case (tree low_value, tree high_value)
7266 {
7267 tree label = NULL_TREE;
7268
7269 if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7270 && !c_switch_stack->blocked_vm)
7271 {
7272 label = c_add_case_label (c_switch_stack->cases,
7273 SWITCH_COND (c_switch_stack->switch_expr),
7274 c_switch_stack->orig_type,
7275 low_value, high_value);
7276 if (label == error_mark_node)
7277 label = NULL_TREE;
7278 }
7279 else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7280 {
7281 if (low_value)
7282 error ("case label in statement expression not containing "
7283 "enclosing switch statement");
7284 else
7285 error ("%<default%> label in statement expression not containing "
7286 "enclosing switch statement");
7287 }
7288 else if (c_switch_stack && c_switch_stack->blocked_vm)
7289 {
7290 if (low_value)
7291 error ("case label in scope of identifier with variably modified "
7292 "type not containing enclosing switch statement");
7293 else
7294 error ("%<default%> label in scope of identifier with variably "
7295 "modified type not containing enclosing switch statement");
7296 }
7297 else if (low_value)
7298 error ("case label not within a switch statement");
7299 else
7300 error ("%<default%> label not within a switch statement");
7301
7302 return label;
7303 }
7304
7305 /* Finish the switch statement. */
7306
7307 void
7308 c_finish_case (tree body)
7309 {
7310 struct c_switch *cs = c_switch_stack;
7311 location_t switch_location;
7312
7313 SWITCH_BODY (cs->switch_expr) = body;
7314
7315 /* We must not be within a statement expression nested in the switch
7316 at this point; we might, however, be within the scope of an
7317 identifier with variably modified type nested in the switch. */
7318 gcc_assert (!cs->blocked_stmt_expr);
7319
7320 /* Emit warnings as needed. */
7321 if (EXPR_HAS_LOCATION (cs->switch_expr))
7322 switch_location = EXPR_LOCATION (cs->switch_expr);
7323 else
7324 switch_location = input_location;
7325 c_do_switch_warnings (cs->cases, switch_location,
7326 TREE_TYPE (cs->switch_expr),
7327 SWITCH_COND (cs->switch_expr));
7328
7329 /* Pop the stack. */
7330 c_switch_stack = cs->next;
7331 splay_tree_delete (cs->cases);
7332 XDELETE (cs);
7333 }
7334 \f
7335 /* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
7336 THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7337 may be null. NESTED_IF is true if THEN_BLOCK contains another IF
7338 statement, and was not surrounded with parenthesis. */
7339
7340 void
7341 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7342 tree else_block, bool nested_if)
7343 {
7344 tree stmt;
7345
7346 /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
7347 if (warn_parentheses && nested_if && else_block == NULL)
7348 {
7349 tree inner_if = then_block;
7350
7351 /* We know from the grammar productions that there is an IF nested
7352 within THEN_BLOCK. Due to labels and c99 conditional declarations,
7353 it might not be exactly THEN_BLOCK, but should be the last
7354 non-container statement within. */
7355 while (1)
7356 switch (TREE_CODE (inner_if))
7357 {
7358 case COND_EXPR:
7359 goto found;
7360 case BIND_EXPR:
7361 inner_if = BIND_EXPR_BODY (inner_if);
7362 break;
7363 case STATEMENT_LIST:
7364 inner_if = expr_last (then_block);
7365 break;
7366 case TRY_FINALLY_EXPR:
7367 case TRY_CATCH_EXPR:
7368 inner_if = TREE_OPERAND (inner_if, 0);
7369 break;
7370 default:
7371 gcc_unreachable ();
7372 }
7373 found:
7374
7375 if (COND_EXPR_ELSE (inner_if))
7376 warning (OPT_Wparentheses,
7377 "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7378 &if_locus);
7379 }
7380
7381 empty_if_body_warning (then_block, else_block);
7382
7383 stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7384 SET_EXPR_LOCATION (stmt, if_locus);
7385 add_stmt (stmt);
7386 }
7387
7388 /* Emit a general-purpose loop construct. START_LOCUS is the location of
7389 the beginning of the loop. COND is the loop condition. COND_IS_FIRST
7390 is false for DO loops. INCR is the FOR increment expression. BODY is
7391 the statement controlled by the loop. BLAB is the break label. CLAB is
7392 the continue label. Everything is allowed to be NULL. */
7393
7394 void
7395 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7396 tree blab, tree clab, bool cond_is_first)
7397 {
7398 tree entry = NULL, exit = NULL, t;
7399
7400 /* If the condition is zero don't generate a loop construct. */
7401 if (cond && integer_zerop (cond))
7402 {
7403 if (cond_is_first)
7404 {
7405 t = build_and_jump (&blab);
7406 SET_EXPR_LOCATION (t, start_locus);
7407 add_stmt (t);
7408 }
7409 }
7410 else
7411 {
7412 tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7413
7414 /* If we have an exit condition, then we build an IF with gotos either
7415 out of the loop, or to the top of it. If there's no exit condition,
7416 then we just build a jump back to the top. */
7417 exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7418
7419 if (cond && !integer_nonzerop (cond))
7420 {
7421 /* Canonicalize the loop condition to the end. This means
7422 generating a branch to the loop condition. Reuse the
7423 continue label, if possible. */
7424 if (cond_is_first)
7425 {
7426 if (incr || !clab)
7427 {
7428 entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7429 t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7430 }
7431 else
7432 t = build1 (GOTO_EXPR, void_type_node, clab);
7433 SET_EXPR_LOCATION (t, start_locus);
7434 add_stmt (t);
7435 }
7436
7437 t = build_and_jump (&blab);
7438 exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7439 if (cond_is_first)
7440 SET_EXPR_LOCATION (exit, start_locus);
7441 else
7442 SET_EXPR_LOCATION (exit, input_location);
7443 }
7444
7445 add_stmt (top);
7446 }
7447
7448 if (body)
7449 add_stmt (body);
7450 if (clab)
7451 add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7452 if (incr)
7453 add_stmt (incr);
7454 if (entry)
7455 add_stmt (entry);
7456 if (exit)
7457 add_stmt (exit);
7458 if (blab)
7459 add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7460 }
7461
7462 tree
7463 c_finish_bc_stmt (tree *label_p, bool is_break)
7464 {
7465 bool skip;
7466 tree label = *label_p;
7467
7468 /* In switch statements break is sometimes stylistically used after
7469 a return statement. This can lead to spurious warnings about
7470 control reaching the end of a non-void function when it is
7471 inlined. Note that we are calling block_may_fallthru with
7472 language specific tree nodes; this works because
7473 block_may_fallthru returns true when given something it does not
7474 understand. */
7475 skip = !block_may_fallthru (cur_stmt_list);
7476
7477 if (!label)
7478 {
7479 if (!skip)
7480 *label_p = label = create_artificial_label ();
7481 }
7482 else if (TREE_CODE (label) == LABEL_DECL)
7483 ;
7484 else switch (TREE_INT_CST_LOW (label))
7485 {
7486 case 0:
7487 if (is_break)
7488 error ("break statement not within loop or switch");
7489 else
7490 error ("continue statement not within a loop");
7491 return NULL_TREE;
7492
7493 case 1:
7494 gcc_assert (is_break);
7495 error ("break statement used with OpenMP for loop");
7496 return NULL_TREE;
7497
7498 default:
7499 gcc_unreachable ();
7500 }
7501
7502 if (skip)
7503 return NULL_TREE;
7504
7505 if (!is_break)
7506 add_stmt (build_predict_expr (PRED_CONTINUE, NOT_TAKEN));
7507
7508 return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7509 }
7510
7511 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
7512
7513 static void
7514 emit_side_effect_warnings (tree expr)
7515 {
7516 if (expr == error_mark_node)
7517 ;
7518 else if (!TREE_SIDE_EFFECTS (expr))
7519 {
7520 if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7521 warning (OPT_Wunused_value, "%Hstatement with no effect",
7522 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7523 }
7524 else
7525 warn_if_unused_value (expr, input_location);
7526 }
7527
7528 /* Process an expression as if it were a complete statement. Emit
7529 diagnostics, but do not call ADD_STMT. */
7530
7531 tree
7532 c_process_expr_stmt (tree expr)
7533 {
7534 if (!expr)
7535 return NULL_TREE;
7536
7537 if (warn_sequence_point)
7538 verify_sequence_points (expr);
7539
7540 if (TREE_TYPE (expr) != error_mark_node
7541 && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7542 && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7543 error ("expression statement has incomplete type");
7544
7545 /* If we're not processing a statement expression, warn about unused values.
7546 Warnings for statement expressions will be emitted later, once we figure
7547 out which is the result. */
7548 if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7549 && warn_unused_value)
7550 emit_side_effect_warnings (expr);
7551
7552 /* If the expression is not of a type to which we cannot assign a line
7553 number, wrap the thing in a no-op NOP_EXPR. */
7554 if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7555 expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7556
7557 if (CAN_HAVE_LOCATION_P (expr))
7558 SET_EXPR_LOCATION (expr, input_location);
7559
7560 return expr;
7561 }
7562
7563 /* Emit an expression as a statement. */
7564
7565 tree
7566 c_finish_expr_stmt (tree expr)
7567 {
7568 if (expr)
7569 return add_stmt (c_process_expr_stmt (expr));
7570 else
7571 return NULL;
7572 }
7573
7574 /* Do the opposite and emit a statement as an expression. To begin,
7575 create a new binding level and return it. */
7576
7577 tree
7578 c_begin_stmt_expr (void)
7579 {
7580 tree ret;
7581 struct c_label_context_se *nstack;
7582 struct c_label_list *glist;
7583
7584 /* We must force a BLOCK for this level so that, if it is not expanded
7585 later, there is a way to turn off the entire subtree of blocks that
7586 are contained in it. */
7587 keep_next_level ();
7588 ret = c_begin_compound_stmt (true);
7589 if (c_switch_stack)
7590 {
7591 c_switch_stack->blocked_stmt_expr++;
7592 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7593 }
7594 for (glist = label_context_stack_se->labels_used;
7595 glist != NULL;
7596 glist = glist->next)
7597 {
7598 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7599 }
7600 nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7601 nstack->labels_def = NULL;
7602 nstack->labels_used = NULL;
7603 nstack->next = label_context_stack_se;
7604 label_context_stack_se = nstack;
7605
7606 /* Mark the current statement list as belonging to a statement list. */
7607 STATEMENT_LIST_STMT_EXPR (ret) = 1;
7608
7609 return ret;
7610 }
7611
7612 tree
7613 c_finish_stmt_expr (tree body)
7614 {
7615 tree last, type, tmp, val;
7616 tree *last_p;
7617 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7618
7619 body = c_end_compound_stmt (body, true);
7620 if (c_switch_stack)
7621 {
7622 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7623 c_switch_stack->blocked_stmt_expr--;
7624 }
7625 /* It is no longer possible to jump to labels defined within this
7626 statement expression. */
7627 for (dlist = label_context_stack_se->labels_def;
7628 dlist != NULL;
7629 dlist = dlist->next)
7630 {
7631 C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7632 }
7633 /* It is again possible to define labels with a goto just outside
7634 this statement expression. */
7635 for (glist = label_context_stack_se->next->labels_used;
7636 glist != NULL;
7637 glist = glist->next)
7638 {
7639 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7640 glist_prev = glist;
7641 }
7642 if (glist_prev != NULL)
7643 glist_prev->next = label_context_stack_se->labels_used;
7644 else
7645 label_context_stack_se->next->labels_used
7646 = label_context_stack_se->labels_used;
7647 label_context_stack_se = label_context_stack_se->next;
7648
7649 /* Locate the last statement in BODY. See c_end_compound_stmt
7650 about always returning a BIND_EXPR. */
7651 last_p = &BIND_EXPR_BODY (body);
7652 last = BIND_EXPR_BODY (body);
7653
7654 continue_searching:
7655 if (TREE_CODE (last) == STATEMENT_LIST)
7656 {
7657 tree_stmt_iterator i;
7658
7659 /* This can happen with degenerate cases like ({ }). No value. */
7660 if (!TREE_SIDE_EFFECTS (last))
7661 return body;
7662
7663 /* If we're supposed to generate side effects warnings, process
7664 all of the statements except the last. */
7665 if (warn_unused_value)
7666 {
7667 for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7668 emit_side_effect_warnings (tsi_stmt (i));
7669 }
7670 else
7671 i = tsi_last (last);
7672 last_p = tsi_stmt_ptr (i);
7673 last = *last_p;
7674 }
7675
7676 /* If the end of the list is exception related, then the list was split
7677 by a call to push_cleanup. Continue searching. */
7678 if (TREE_CODE (last) == TRY_FINALLY_EXPR
7679 || TREE_CODE (last) == TRY_CATCH_EXPR)
7680 {
7681 last_p = &TREE_OPERAND (last, 0);
7682 last = *last_p;
7683 goto continue_searching;
7684 }
7685
7686 /* In the case that the BIND_EXPR is not necessary, return the
7687 expression out from inside it. */
7688 if (last == error_mark_node
7689 || (last == BIND_EXPR_BODY (body)
7690 && BIND_EXPR_VARS (body) == NULL))
7691 {
7692 /* Do not warn if the return value of a statement expression is
7693 unused. */
7694 if (CAN_HAVE_LOCATION_P (last))
7695 TREE_NO_WARNING (last) = 1;
7696 return last;
7697 }
7698
7699 /* Extract the type of said expression. */
7700 type = TREE_TYPE (last);
7701
7702 /* If we're not returning a value at all, then the BIND_EXPR that
7703 we already have is a fine expression to return. */
7704 if (!type || VOID_TYPE_P (type))
7705 return body;
7706
7707 /* Now that we've located the expression containing the value, it seems
7708 silly to make voidify_wrapper_expr repeat the process. Create a
7709 temporary of the appropriate type and stick it in a TARGET_EXPR. */
7710 tmp = create_tmp_var_raw (type, NULL);
7711
7712 /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
7713 tree_expr_nonnegative_p giving up immediately. */
7714 val = last;
7715 if (TREE_CODE (val) == NOP_EXPR
7716 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7717 val = TREE_OPERAND (val, 0);
7718
7719 *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7720 SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7721
7722 return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7723 }
7724
7725 /* Begin the scope of an identifier of variably modified type, scope
7726 number SCOPE. Jumping from outside this scope to inside it is not
7727 permitted. */
7728
7729 void
7730 c_begin_vm_scope (unsigned int scope)
7731 {
7732 struct c_label_context_vm *nstack;
7733 struct c_label_list *glist;
7734
7735 gcc_assert (scope > 0);
7736
7737 /* At file_scope, we don't have to do any processing. */
7738 if (label_context_stack_vm == NULL)
7739 return;
7740
7741 if (c_switch_stack && !c_switch_stack->blocked_vm)
7742 c_switch_stack->blocked_vm = scope;
7743 for (glist = label_context_stack_vm->labels_used;
7744 glist != NULL;
7745 glist = glist->next)
7746 {
7747 C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7748 }
7749 nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7750 nstack->labels_def = NULL;
7751 nstack->labels_used = NULL;
7752 nstack->scope = scope;
7753 nstack->next = label_context_stack_vm;
7754 label_context_stack_vm = nstack;
7755 }
7756
7757 /* End a scope which may contain identifiers of variably modified
7758 type, scope number SCOPE. */
7759
7760 void
7761 c_end_vm_scope (unsigned int scope)
7762 {
7763 if (label_context_stack_vm == NULL)
7764 return;
7765 if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7766 c_switch_stack->blocked_vm = 0;
7767 /* We may have a number of nested scopes of identifiers with
7768 variably modified type, all at this depth. Pop each in turn. */
7769 while (label_context_stack_vm->scope == scope)
7770 {
7771 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7772
7773 /* It is no longer possible to jump to labels defined within this
7774 scope. */
7775 for (dlist = label_context_stack_vm->labels_def;
7776 dlist != NULL;
7777 dlist = dlist->next)
7778 {
7779 C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7780 }
7781 /* It is again possible to define labels with a goto just outside
7782 this scope. */
7783 for (glist = label_context_stack_vm->next->labels_used;
7784 glist != NULL;
7785 glist = glist->next)
7786 {
7787 C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7788 glist_prev = glist;
7789 }
7790 if (glist_prev != NULL)
7791 glist_prev->next = label_context_stack_vm->labels_used;
7792 else
7793 label_context_stack_vm->next->labels_used
7794 = label_context_stack_vm->labels_used;
7795 label_context_stack_vm = label_context_stack_vm->next;
7796 }
7797 }
7798 \f
7799 /* Begin and end compound statements. This is as simple as pushing
7800 and popping new statement lists from the tree. */
7801
7802 tree
7803 c_begin_compound_stmt (bool do_scope)
7804 {
7805 tree stmt = push_stmt_list ();
7806 if (do_scope)
7807 push_scope ();
7808 return stmt;
7809 }
7810
7811 tree
7812 c_end_compound_stmt (tree stmt, bool do_scope)
7813 {
7814 tree block = NULL;
7815
7816 if (do_scope)
7817 {
7818 if (c_dialect_objc ())
7819 objc_clear_super_receiver ();
7820 block = pop_scope ();
7821 }
7822
7823 stmt = pop_stmt_list (stmt);
7824 stmt = c_build_bind_expr (block, stmt);
7825
7826 /* If this compound statement is nested immediately inside a statement
7827 expression, then force a BIND_EXPR to be created. Otherwise we'll
7828 do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
7829 STATEMENT_LISTs merge, and thus we can lose track of what statement
7830 was really last. */
7831 if (cur_stmt_list
7832 && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7833 && TREE_CODE (stmt) != BIND_EXPR)
7834 {
7835 stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7836 TREE_SIDE_EFFECTS (stmt) = 1;
7837 }
7838
7839 return stmt;
7840 }
7841
7842 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
7843 when the current scope is exited. EH_ONLY is true when this is not
7844 meant to apply to normal control flow transfer. */
7845
7846 void
7847 push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7848 {
7849 enum tree_code code;
7850 tree stmt, list;
7851 bool stmt_expr;
7852
7853 code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7854 stmt = build_stmt (code, NULL, cleanup);
7855 add_stmt (stmt);
7856 stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7857 list = push_stmt_list ();
7858 TREE_OPERAND (stmt, 0) = list;
7859 STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7860 }
7861 \f
7862 /* Build a binary-operation expression without default conversions.
7863 CODE is the kind of expression to build.
7864 This function differs from `build' in several ways:
7865 the data type of the result is computed and recorded in it,
7866 warnings are generated if arg data types are invalid,
7867 special handling for addition and subtraction of pointers is known,
7868 and some optimization is done (operations on narrow ints
7869 are done in the narrower type when that gives the same result).
7870 Constant folding is also done before the result is returned.
7871
7872 Note that the operands will never have enumeral types, or function
7873 or array types, because either they will have the default conversions
7874 performed or they have both just been converted to some other type in which
7875 the arithmetic is to be done. */
7876
7877 tree
7878 build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7879 int convert_p)
7880 {
7881 tree type0, type1;
7882 enum tree_code code0, code1;
7883 tree op0, op1;
7884 const char *invalid_op_diag;
7885
7886 /* Expression code to give to the expression when it is built.
7887 Normally this is CODE, which is what the caller asked for,
7888 but in some special cases we change it. */
7889 enum tree_code resultcode = code;
7890
7891 /* Data type in which the computation is to be performed.
7892 In the simplest cases this is the common type of the arguments. */
7893 tree result_type = NULL;
7894
7895 /* Nonzero means operands have already been type-converted
7896 in whatever way is necessary.
7897 Zero means they need to be converted to RESULT_TYPE. */
7898 int converted = 0;
7899
7900 /* Nonzero means create the expression with this type, rather than
7901 RESULT_TYPE. */
7902 tree build_type = 0;
7903
7904 /* Nonzero means after finally constructing the expression
7905 convert it to this type. */
7906 tree final_type = 0;
7907
7908 /* Nonzero if this is an operation like MIN or MAX which can
7909 safely be computed in short if both args are promoted shorts.
7910 Also implies COMMON.
7911 -1 indicates a bitwise operation; this makes a difference
7912 in the exact conditions for when it is safe to do the operation
7913 in a narrower mode. */
7914 int shorten = 0;
7915
7916 /* Nonzero if this is a comparison operation;
7917 if both args are promoted shorts, compare the original shorts.
7918 Also implies COMMON. */
7919 int short_compare = 0;
7920
7921 /* Nonzero if this is a right-shift operation, which can be computed on the
7922 original short and then promoted if the operand is a promoted short. */
7923 int short_shift = 0;
7924
7925 /* Nonzero means set RESULT_TYPE to the common type of the args. */
7926 int common = 0;
7927
7928 /* True means types are compatible as far as ObjC is concerned. */
7929 bool objc_ok;
7930
7931 if (convert_p)
7932 {
7933 op0 = default_conversion (orig_op0);
7934 op1 = default_conversion (orig_op1);
7935 }
7936 else
7937 {
7938 op0 = orig_op0;
7939 op1 = orig_op1;
7940 }
7941
7942 type0 = TREE_TYPE (op0);
7943 type1 = TREE_TYPE (op1);
7944
7945 /* The expression codes of the data types of the arguments tell us
7946 whether the arguments are integers, floating, pointers, etc. */
7947 code0 = TREE_CODE (type0);
7948 code1 = TREE_CODE (type1);
7949
7950 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
7951 STRIP_TYPE_NOPS (op0);
7952 STRIP_TYPE_NOPS (op1);
7953
7954 /* If an error was already reported for one of the arguments,
7955 avoid reporting another error. */
7956
7957 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7958 return error_mark_node;
7959
7960 if ((invalid_op_diag
7961 = targetm.invalid_binary_op (code, type0, type1)))
7962 {
7963 error (invalid_op_diag);
7964 return error_mark_node;
7965 }
7966
7967 objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7968
7969 switch (code)
7970 {
7971 case PLUS_EXPR:
7972 /* Handle the pointer + int case. */
7973 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7974 return pointer_int_sum (PLUS_EXPR, op0, op1);
7975 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7976 return pointer_int_sum (PLUS_EXPR, op1, op0);
7977 else
7978 common = 1;
7979 break;
7980
7981 case MINUS_EXPR:
7982 /* Subtraction of two similar pointers.
7983 We must subtract them as integers, then divide by object size. */
7984 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7985 && comp_target_types (type0, type1))
7986 return pointer_diff (op0, op1);
7987 /* Handle pointer minus int. Just like pointer plus int. */
7988 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7989 return pointer_int_sum (MINUS_EXPR, op0, op1);
7990 else
7991 common = 1;
7992 break;
7993
7994 case MULT_EXPR:
7995 common = 1;
7996 break;
7997
7998 case TRUNC_DIV_EXPR:
7999 case CEIL_DIV_EXPR:
8000 case FLOOR_DIV_EXPR:
8001 case ROUND_DIV_EXPR:
8002 case EXACT_DIV_EXPR:
8003 warn_for_div_by_zero (op1);
8004
8005 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8006 || code0 == FIXED_POINT_TYPE
8007 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
8008 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8009 || code1 == FIXED_POINT_TYPE
8010 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
8011 {
8012 enum tree_code tcode0 = code0, tcode1 = code1;
8013
8014 if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
8015 tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
8016 if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
8017 tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
8018
8019 if (!((tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE)
8020 || (tcode0 == FIXED_POINT_TYPE && tcode1 == FIXED_POINT_TYPE)))
8021 resultcode = RDIV_EXPR;
8022 else
8023 /* Although it would be tempting to shorten always here, that
8024 loses on some targets, since the modulo instruction is
8025 undefined if the quotient can't be represented in the
8026 computation mode. We shorten only if unsigned or if
8027 dividing by something we know != -1. */
8028 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
8029 || (TREE_CODE (op1) == INTEGER_CST
8030 && !integer_all_onesp (op1)));
8031 common = 1;
8032 }
8033 break;
8034
8035 case BIT_AND_EXPR:
8036 case BIT_IOR_EXPR:
8037 case BIT_XOR_EXPR:
8038 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8039 shorten = -1;
8040 /* Allow vector types which are not floating point types. */
8041 else if (code0 == VECTOR_TYPE
8042 && code1 == VECTOR_TYPE
8043 && !VECTOR_FLOAT_TYPE_P (type0)
8044 && !VECTOR_FLOAT_TYPE_P (type1))
8045 common = 1;
8046 break;
8047
8048 case TRUNC_MOD_EXPR:
8049 case FLOOR_MOD_EXPR:
8050 warn_for_div_by_zero (op1);
8051
8052 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8053 {
8054 /* Although it would be tempting to shorten always here, that loses
8055 on some targets, since the modulo instruction is undefined if the
8056 quotient can't be represented in the computation mode. We shorten
8057 only if unsigned or if dividing by something we know != -1. */
8058 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
8059 || (TREE_CODE (op1) == INTEGER_CST
8060 && !integer_all_onesp (op1)));
8061 common = 1;
8062 }
8063 break;
8064
8065 case TRUTH_ANDIF_EXPR:
8066 case TRUTH_ORIF_EXPR:
8067 case TRUTH_AND_EXPR:
8068 case TRUTH_OR_EXPR:
8069 case TRUTH_XOR_EXPR:
8070 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
8071 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8072 || code0 == FIXED_POINT_TYPE)
8073 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
8074 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8075 || code1 == FIXED_POINT_TYPE))
8076 {
8077 /* Result of these operations is always an int,
8078 but that does not mean the operands should be
8079 converted to ints! */
8080 result_type = integer_type_node;
8081 op0 = c_common_truthvalue_conversion (op0);
8082 op1 = c_common_truthvalue_conversion (op1);
8083 converted = 1;
8084 }
8085 break;
8086
8087 /* Shift operations: result has same type as first operand;
8088 always convert second operand to int.
8089 Also set SHORT_SHIFT if shifting rightward. */
8090
8091 case RSHIFT_EXPR:
8092 if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE)
8093 && code1 == INTEGER_TYPE)
8094 {
8095 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8096 {
8097 if (tree_int_cst_sgn (op1) < 0)
8098 warning (0, "right shift count is negative");
8099 else
8100 {
8101 if (!integer_zerop (op1))
8102 short_shift = 1;
8103
8104 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8105 warning (0, "right shift count >= width of type");
8106 }
8107 }
8108
8109 /* Use the type of the value to be shifted. */
8110 result_type = type0;
8111 /* Convert the shift-count to an integer, regardless of size
8112 of value being shifted. */
8113 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8114 op1 = convert (integer_type_node, op1);
8115 /* Avoid converting op1 to result_type later. */
8116 converted = 1;
8117 }
8118 break;
8119
8120 case LSHIFT_EXPR:
8121 if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE)
8122 && code1 == INTEGER_TYPE)
8123 {
8124 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8125 {
8126 if (tree_int_cst_sgn (op1) < 0)
8127 warning (0, "left shift count is negative");
8128
8129 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8130 warning (0, "left shift count >= width of type");
8131 }
8132
8133 /* Use the type of the value to be shifted. */
8134 result_type = type0;
8135 /* Convert the shift-count to an integer, regardless of size
8136 of value being shifted. */
8137 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8138 op1 = convert (integer_type_node, op1);
8139 /* Avoid converting op1 to result_type later. */
8140 converted = 1;
8141 }
8142 break;
8143
8144 case EQ_EXPR:
8145 case NE_EXPR:
8146 if (FLOAT_TYPE_P (type0) || FLOAT_TYPE_P (type1))
8147 warning (OPT_Wfloat_equal,
8148 "comparing floating point with == or != is unsafe");
8149 /* Result of comparison is always int,
8150 but don't convert the args to int! */
8151 build_type = integer_type_node;
8152 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8153 || code0 == FIXED_POINT_TYPE || code0 == COMPLEX_TYPE)
8154 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8155 || code1 == FIXED_POINT_TYPE || code1 == COMPLEX_TYPE))
8156 short_compare = 1;
8157 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8158 {
8159 tree tt0 = TREE_TYPE (type0);
8160 tree tt1 = TREE_TYPE (type1);
8161 /* Anything compares with void *. void * compares with anything.
8162 Otherwise, the targets must be compatible
8163 and both must be object or both incomplete. */
8164 if (comp_target_types (type0, type1))
8165 result_type = common_pointer_type (type0, type1);
8166 else if (VOID_TYPE_P (tt0))
8167 {
8168 /* op0 != orig_op0 detects the case of something
8169 whose value is 0 but which isn't a valid null ptr const. */
8170 if (pedantic && !null_pointer_constant_p (orig_op0)
8171 && TREE_CODE (tt1) == FUNCTION_TYPE)
8172 pedwarn ("ISO C forbids comparison of %<void *%>"
8173 " with function pointer");
8174 }
8175 else if (VOID_TYPE_P (tt1))
8176 {
8177 if (pedantic && !null_pointer_constant_p (orig_op1)
8178 && TREE_CODE (tt0) == FUNCTION_TYPE)
8179 pedwarn ("ISO C forbids comparison of %<void *%>"
8180 " with function pointer");
8181 }
8182 else
8183 /* Avoid warning about the volatile ObjC EH puts on decls. */
8184 if (!objc_ok)
8185 pedwarn ("comparison of distinct pointer types lacks a cast");
8186
8187 if (result_type == NULL_TREE)
8188 result_type = ptr_type_node;
8189 }
8190 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8191 {
8192 if (TREE_CODE (op0) == ADDR_EXPR
8193 && decl_with_nonnull_addr_p (TREE_OPERAND (op0, 0)))
8194 warning (OPT_Waddress, "the address of %qD will never be NULL",
8195 TREE_OPERAND (op0, 0));
8196 result_type = type0;
8197 }
8198 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8199 {
8200 if (TREE_CODE (op1) == ADDR_EXPR
8201 && decl_with_nonnull_addr_p (TREE_OPERAND (op1, 0)))
8202 warning (OPT_Waddress, "the address of %qD will never be NULL",
8203 TREE_OPERAND (op1, 0));
8204 result_type = type1;
8205 }
8206 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8207 {
8208 result_type = type0;
8209 pedwarn ("comparison between pointer and integer");
8210 }
8211 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8212 {
8213 result_type = type1;
8214 pedwarn ("comparison between pointer and integer");
8215 }
8216 break;
8217
8218 case LE_EXPR:
8219 case GE_EXPR:
8220 case LT_EXPR:
8221 case GT_EXPR:
8222 build_type = integer_type_node;
8223 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8224 || code0 == FIXED_POINT_TYPE)
8225 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8226 || code1 == FIXED_POINT_TYPE))
8227 short_compare = 1;
8228 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8229 {
8230 if (comp_target_types (type0, type1))
8231 {
8232 result_type = common_pointer_type (type0, type1);
8233 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8234 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8235 pedwarn ("comparison of complete and incomplete pointers");
8236 else if (pedantic
8237 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8238 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8239 }
8240 else
8241 {
8242 result_type = ptr_type_node;
8243 pedwarn ("comparison of distinct pointer types lacks a cast");
8244 }
8245 }
8246 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8247 {
8248 result_type = type0;
8249 if (pedantic || extra_warnings)
8250 pedwarn ("ordered comparison of pointer with integer zero");
8251 }
8252 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8253 {
8254 result_type = type1;
8255 if (pedantic)
8256 pedwarn ("ordered comparison of pointer with integer zero");
8257 }
8258 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8259 {
8260 result_type = type0;
8261 pedwarn ("comparison between pointer and integer");
8262 }
8263 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8264 {
8265 result_type = type1;
8266 pedwarn ("comparison between pointer and integer");
8267 }
8268 break;
8269
8270 default:
8271 gcc_unreachable ();
8272 }
8273
8274 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8275 return error_mark_node;
8276
8277 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8278 && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8279 || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8280 TREE_TYPE (type1))))
8281 {
8282 binary_op_error (code, type0, type1);
8283 return error_mark_node;
8284 }
8285
8286 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8287 || code0 == FIXED_POINT_TYPE || code0 == VECTOR_TYPE)
8288 &&
8289 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8290 || code1 == FIXED_POINT_TYPE || code1 == VECTOR_TYPE))
8291 {
8292 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8293
8294 if (shorten || common || short_compare)
8295 {
8296 result_type = c_common_type (type0, type1);
8297 if (result_type == error_mark_node)
8298 return error_mark_node;
8299 }
8300
8301 /* For certain operations (which identify themselves by shorten != 0)
8302 if both args were extended from the same smaller type,
8303 do the arithmetic in that type and then extend.
8304
8305 shorten !=0 and !=1 indicates a bitwise operation.
8306 For them, this optimization is safe only if
8307 both args are zero-extended or both are sign-extended.
8308 Otherwise, we might change the result.
8309 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8310 but calculated in (unsigned short) it would be (unsigned short)-1. */
8311
8312 if (shorten && none_complex)
8313 {
8314 int unsigned0, unsigned1;
8315 tree arg0, arg1;
8316 int uns;
8317 tree type;
8318
8319 /* Cast OP0 and OP1 to RESULT_TYPE. Doing so prevents
8320 excessive narrowing when we call get_narrower below. For
8321 example, suppose that OP0 is of unsigned int extended
8322 from signed char and that RESULT_TYPE is long long int.
8323 If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
8324 like
8325
8326 (long long int) (unsigned int) signed_char
8327
8328 which get_narrower would narrow down to
8329
8330 (unsigned int) signed char
8331
8332 If we do not cast OP0 first, get_narrower would return
8333 signed_char, which is inconsistent with the case of the
8334 explicit cast. */
8335 op0 = convert (result_type, op0);
8336 op1 = convert (result_type, op1);
8337
8338 arg0 = get_narrower (op0, &unsigned0);
8339 arg1 = get_narrower (op1, &unsigned1);
8340
8341 /* UNS is 1 if the operation to be done is an unsigned one. */
8342 uns = TYPE_UNSIGNED (result_type);
8343
8344 final_type = result_type;
8345
8346 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8347 but it *requires* conversion to FINAL_TYPE. */
8348
8349 if ((TYPE_PRECISION (TREE_TYPE (op0))
8350 == TYPE_PRECISION (TREE_TYPE (arg0)))
8351 && TREE_TYPE (op0) != final_type)
8352 unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8353 if ((TYPE_PRECISION (TREE_TYPE (op1))
8354 == TYPE_PRECISION (TREE_TYPE (arg1)))
8355 && TREE_TYPE (op1) != final_type)
8356 unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8357
8358 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
8359
8360 /* For bitwise operations, signedness of nominal type
8361 does not matter. Consider only how operands were extended. */
8362 if (shorten == -1)
8363 uns = unsigned0;
8364
8365 /* Note that in all three cases below we refrain from optimizing
8366 an unsigned operation on sign-extended args.
8367 That would not be valid. */
8368
8369 /* Both args variable: if both extended in same way
8370 from same width, do it in that width.
8371 Do it unsigned if args were zero-extended. */
8372 if ((TYPE_PRECISION (TREE_TYPE (arg0))
8373 < TYPE_PRECISION (result_type))
8374 && (TYPE_PRECISION (TREE_TYPE (arg1))
8375 == TYPE_PRECISION (TREE_TYPE (arg0)))
8376 && unsigned0 == unsigned1
8377 && (unsigned0 || !uns))
8378 result_type
8379 = c_common_signed_or_unsigned_type
8380 (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8381 else if (TREE_CODE (arg0) == INTEGER_CST
8382 && (unsigned1 || !uns)
8383 && (TYPE_PRECISION (TREE_TYPE (arg1))
8384 < TYPE_PRECISION (result_type))
8385 && (type
8386 = c_common_signed_or_unsigned_type (unsigned1,
8387 TREE_TYPE (arg1)))
8388 && !POINTER_TYPE_P (type)
8389 && int_fits_type_p (arg0, type))
8390 result_type = type;
8391 else if (TREE_CODE (arg1) == INTEGER_CST
8392 && (unsigned0 || !uns)
8393 && (TYPE_PRECISION (TREE_TYPE (arg0))
8394 < TYPE_PRECISION (result_type))
8395 && (type
8396 = c_common_signed_or_unsigned_type (unsigned0,
8397 TREE_TYPE (arg0)))
8398 && !POINTER_TYPE_P (type)
8399 && int_fits_type_p (arg1, type))
8400 result_type = type;
8401 }
8402
8403 /* Shifts can be shortened if shifting right. */
8404
8405 if (short_shift)
8406 {
8407 int unsigned_arg;
8408 tree arg0 = get_narrower (op0, &unsigned_arg);
8409
8410 final_type = result_type;
8411
8412 if (arg0 == op0 && final_type == TREE_TYPE (op0))
8413 unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8414
8415 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8416 /* We can shorten only if the shift count is less than the
8417 number of bits in the smaller type size. */
8418 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8419 /* We cannot drop an unsigned shift after sign-extension. */
8420 && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8421 {
8422 /* Do an unsigned shift if the operand was zero-extended. */
8423 result_type
8424 = c_common_signed_or_unsigned_type (unsigned_arg,
8425 TREE_TYPE (arg0));
8426 /* Convert value-to-be-shifted to that type. */
8427 if (TREE_TYPE (op0) != result_type)
8428 op0 = convert (result_type, op0);
8429 converted = 1;
8430 }
8431 }
8432
8433 /* Comparison operations are shortened too but differently.
8434 They identify themselves by setting short_compare = 1. */
8435
8436 if (short_compare)
8437 {
8438 /* Don't write &op0, etc., because that would prevent op0
8439 from being kept in a register.
8440 Instead, make copies of the our local variables and
8441 pass the copies by reference, then copy them back afterward. */
8442 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8443 enum tree_code xresultcode = resultcode;
8444 tree val
8445 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8446
8447 if (val != 0)
8448 return val;
8449
8450 op0 = xop0, op1 = xop1;
8451 converted = 1;
8452 resultcode = xresultcode;
8453
8454 if (warn_sign_compare && skip_evaluation == 0)
8455 {
8456 int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8457 int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8458 int unsignedp0, unsignedp1;
8459 tree primop0 = get_narrower (op0, &unsignedp0);
8460 tree primop1 = get_narrower (op1, &unsignedp1);
8461
8462 xop0 = orig_op0;
8463 xop1 = orig_op1;
8464 STRIP_TYPE_NOPS (xop0);
8465 STRIP_TYPE_NOPS (xop1);
8466
8467 /* Give warnings for comparisons between signed and unsigned
8468 quantities that may fail.
8469
8470 Do the checking based on the original operand trees, so that
8471 casts will be considered, but default promotions won't be.
8472
8473 Do not warn if the comparison is being done in a signed type,
8474 since the signed type will only be chosen if it can represent
8475 all the values of the unsigned type. */
8476 if (!TYPE_UNSIGNED (result_type))
8477 /* OK */;
8478 /* Do not warn if both operands are the same signedness. */
8479 else if (op0_signed == op1_signed)
8480 /* OK */;
8481 else
8482 {
8483 tree sop, uop;
8484 bool ovf;
8485
8486 if (op0_signed)
8487 sop = xop0, uop = xop1;
8488 else
8489 sop = xop1, uop = xop0;
8490
8491 /* Do not warn if the signed quantity is an
8492 unsuffixed integer literal (or some static
8493 constant expression involving such literals or a
8494 conditional expression involving such literals)
8495 and it is non-negative. */
8496 if (tree_expr_nonnegative_warnv_p (sop, &ovf))
8497 /* OK */;
8498 /* Do not warn if the comparison is an equality operation,
8499 the unsigned quantity is an integral constant, and it
8500 would fit in the result if the result were signed. */
8501 else if (TREE_CODE (uop) == INTEGER_CST
8502 && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8503 && int_fits_type_p
8504 (uop, c_common_signed_type (result_type)))
8505 /* OK */;
8506 /* Do not warn if the unsigned quantity is an enumeration
8507 constant and its maximum value would fit in the result
8508 if the result were signed. */
8509 else if (TREE_CODE (uop) == INTEGER_CST
8510 && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8511 && int_fits_type_p
8512 (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8513 c_common_signed_type (result_type)))
8514 /* OK */;
8515 else
8516 warning (OPT_Wsign_compare, "comparison between signed and unsigned");
8517 }
8518
8519 /* Warn if two unsigned values are being compared in a size
8520 larger than their original size, and one (and only one) is the
8521 result of a `~' operator. This comparison will always fail.
8522
8523 Also warn if one operand is a constant, and the constant
8524 does not have all bits set that are set in the ~ operand
8525 when it is extended. */
8526
8527 if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8528 != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8529 {
8530 if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8531 primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8532 &unsignedp0);
8533 else
8534 primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8535 &unsignedp1);
8536
8537 if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8538 {
8539 tree primop;
8540 HOST_WIDE_INT constant, mask;
8541 int unsignedp, bits;
8542
8543 if (host_integerp (primop0, 0))
8544 {
8545 primop = primop1;
8546 unsignedp = unsignedp1;
8547 constant = tree_low_cst (primop0, 0);
8548 }
8549 else
8550 {
8551 primop = primop0;
8552 unsignedp = unsignedp0;
8553 constant = tree_low_cst (primop1, 0);
8554 }
8555
8556 bits = TYPE_PRECISION (TREE_TYPE (primop));
8557 if (bits < TYPE_PRECISION (result_type)
8558 && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8559 {
8560 mask = (~(HOST_WIDE_INT) 0) << bits;
8561 if ((mask & constant) != mask)
8562 warning (OPT_Wsign_compare, "comparison of promoted ~unsigned with constant");
8563 }
8564 }
8565 else if (unsignedp0 && unsignedp1
8566 && (TYPE_PRECISION (TREE_TYPE (primop0))
8567 < TYPE_PRECISION (result_type))
8568 && (TYPE_PRECISION (TREE_TYPE (primop1))
8569 < TYPE_PRECISION (result_type)))
8570 warning (OPT_Wsign_compare, "comparison of promoted ~unsigned with unsigned");
8571 }
8572 }
8573 }
8574 }
8575
8576 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8577 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8578 Then the expression will be built.
8579 It will be given type FINAL_TYPE if that is nonzero;
8580 otherwise, it will be given type RESULT_TYPE. */
8581
8582 if (!result_type)
8583 {
8584 binary_op_error (code, TREE_TYPE (op0), TREE_TYPE (op1));
8585 return error_mark_node;
8586 }
8587
8588 if (!converted)
8589 {
8590 if (TREE_TYPE (op0) != result_type)
8591 op0 = convert_and_check (result_type, op0);
8592 if (TREE_TYPE (op1) != result_type)
8593 op1 = convert_and_check (result_type, op1);
8594
8595 /* This can happen if one operand has a vector type, and the other
8596 has a different type. */
8597 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8598 return error_mark_node;
8599 }
8600
8601 if (build_type == NULL_TREE)
8602 build_type = result_type;
8603
8604 {
8605 /* Treat expressions in initializers specially as they can't trap. */
8606 tree result = require_constant_value ? fold_build2_initializer (resultcode,
8607 build_type,
8608 op0, op1)
8609 : fold_build2 (resultcode, build_type,
8610 op0, op1);
8611
8612 if (final_type != 0)
8613 result = convert (final_type, result);
8614 return result;
8615 }
8616 }
8617
8618
8619 /* Convert EXPR to be a truth-value, validating its type for this
8620 purpose. */
8621
8622 tree
8623 c_objc_common_truthvalue_conversion (tree expr)
8624 {
8625 switch (TREE_CODE (TREE_TYPE (expr)))
8626 {
8627 case ARRAY_TYPE:
8628 error ("used array that cannot be converted to pointer where scalar is required");
8629 return error_mark_node;
8630
8631 case RECORD_TYPE:
8632 error ("used struct type value where scalar is required");
8633 return error_mark_node;
8634
8635 case UNION_TYPE:
8636 error ("used union type value where scalar is required");
8637 return error_mark_node;
8638
8639 case FUNCTION_TYPE:
8640 gcc_unreachable ();
8641
8642 default:
8643 break;
8644 }
8645
8646 /* ??? Should we also give an error for void and vectors rather than
8647 leaving those to give errors later? */
8648 return c_common_truthvalue_conversion (expr);
8649 }
8650 \f
8651
8652 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8653 required. */
8654
8655 tree
8656 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED, bool *se)
8657 {
8658 if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8659 {
8660 tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8661 /* Executing a compound literal inside a function reinitializes
8662 it. */
8663 if (!TREE_STATIC (decl))
8664 *se = true;
8665 return decl;
8666 }
8667 else
8668 return expr;
8669 }
8670 \f
8671 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
8672
8673 tree
8674 c_begin_omp_parallel (void)
8675 {
8676 tree block;
8677
8678 keep_next_level ();
8679 block = c_begin_compound_stmt (true);
8680
8681 return block;
8682 }
8683
8684 tree
8685 c_finish_omp_parallel (tree clauses, tree block)
8686 {
8687 tree stmt;
8688
8689 block = c_end_compound_stmt (block, true);
8690
8691 stmt = make_node (OMP_PARALLEL);
8692 TREE_TYPE (stmt) = void_type_node;
8693 OMP_PARALLEL_CLAUSES (stmt) = clauses;
8694 OMP_PARALLEL_BODY (stmt) = block;
8695
8696 return add_stmt (stmt);
8697 }
8698
8699 /* For all elements of CLAUSES, validate them vs OpenMP constraints.
8700 Remove any elements from the list that are invalid. */
8701
8702 tree
8703 c_finish_omp_clauses (tree clauses)
8704 {
8705 bitmap_head generic_head, firstprivate_head, lastprivate_head;
8706 tree c, t, *pc = &clauses;
8707 const char *name;
8708
8709 bitmap_obstack_initialize (NULL);
8710 bitmap_initialize (&generic_head, &bitmap_default_obstack);
8711 bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8712 bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8713
8714 for (pc = &clauses, c = clauses; c ; c = *pc)
8715 {
8716 bool remove = false;
8717 bool need_complete = false;
8718 bool need_implicitly_determined = false;
8719
8720 switch (OMP_CLAUSE_CODE (c))
8721 {
8722 case OMP_CLAUSE_SHARED:
8723 name = "shared";
8724 need_implicitly_determined = true;
8725 goto check_dup_generic;
8726
8727 case OMP_CLAUSE_PRIVATE:
8728 name = "private";
8729 need_complete = true;
8730 need_implicitly_determined = true;
8731 goto check_dup_generic;
8732
8733 case OMP_CLAUSE_REDUCTION:
8734 name = "reduction";
8735 need_implicitly_determined = true;
8736 t = OMP_CLAUSE_DECL (c);
8737 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8738 || POINTER_TYPE_P (TREE_TYPE (t)))
8739 {
8740 error ("%qE has invalid type for %<reduction%>", t);
8741 remove = true;
8742 }
8743 else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8744 {
8745 enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8746 const char *r_name = NULL;
8747
8748 switch (r_code)
8749 {
8750 case PLUS_EXPR:
8751 case MULT_EXPR:
8752 case MINUS_EXPR:
8753 break;
8754 case BIT_AND_EXPR:
8755 r_name = "&";
8756 break;
8757 case BIT_XOR_EXPR:
8758 r_name = "^";
8759 break;
8760 case BIT_IOR_EXPR:
8761 r_name = "|";
8762 break;
8763 case TRUTH_ANDIF_EXPR:
8764 r_name = "&&";
8765 break;
8766 case TRUTH_ORIF_EXPR:
8767 r_name = "||";
8768 break;
8769 default:
8770 gcc_unreachable ();
8771 }
8772 if (r_name)
8773 {
8774 error ("%qE has invalid type for %<reduction(%s)%>",
8775 t, r_name);
8776 remove = true;
8777 }
8778 }
8779 goto check_dup_generic;
8780
8781 case OMP_CLAUSE_COPYPRIVATE:
8782 name = "copyprivate";
8783 goto check_dup_generic;
8784
8785 case OMP_CLAUSE_COPYIN:
8786 name = "copyin";
8787 t = OMP_CLAUSE_DECL (c);
8788 if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8789 {
8790 error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8791 remove = true;
8792 }
8793 goto check_dup_generic;
8794
8795 check_dup_generic:
8796 t = OMP_CLAUSE_DECL (c);
8797 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8798 {
8799 error ("%qE is not a variable in clause %qs", t, name);
8800 remove = true;
8801 }
8802 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8803 || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8804 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8805 {
8806 error ("%qE appears more than once in data clauses", t);
8807 remove = true;
8808 }
8809 else
8810 bitmap_set_bit (&generic_head, DECL_UID (t));
8811 break;
8812
8813 case OMP_CLAUSE_FIRSTPRIVATE:
8814 name = "firstprivate";
8815 t = OMP_CLAUSE_DECL (c);
8816 need_complete = true;
8817 need_implicitly_determined = true;
8818 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8819 {
8820 error ("%qE is not a variable in clause %<firstprivate%>", t);
8821 remove = true;
8822 }
8823 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8824 || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8825 {
8826 error ("%qE appears more than once in data clauses", t);
8827 remove = true;
8828 }
8829 else
8830 bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8831 break;
8832
8833 case OMP_CLAUSE_LASTPRIVATE:
8834 name = "lastprivate";
8835 t = OMP_CLAUSE_DECL (c);
8836 need_complete = true;
8837 need_implicitly_determined = true;
8838 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8839 {
8840 error ("%qE is not a variable in clause %<lastprivate%>", t);
8841 remove = true;
8842 }
8843 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8844 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8845 {
8846 error ("%qE appears more than once in data clauses", t);
8847 remove = true;
8848 }
8849 else
8850 bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8851 break;
8852
8853 case OMP_CLAUSE_IF:
8854 case OMP_CLAUSE_NUM_THREADS:
8855 case OMP_CLAUSE_SCHEDULE:
8856 case OMP_CLAUSE_NOWAIT:
8857 case OMP_CLAUSE_ORDERED:
8858 case OMP_CLAUSE_DEFAULT:
8859 pc = &OMP_CLAUSE_CHAIN (c);
8860 continue;
8861
8862 default:
8863 gcc_unreachable ();
8864 }
8865
8866 if (!remove)
8867 {
8868 t = OMP_CLAUSE_DECL (c);
8869
8870 if (need_complete)
8871 {
8872 t = require_complete_type (t);
8873 if (t == error_mark_node)
8874 remove = true;
8875 }
8876
8877 if (need_implicitly_determined)
8878 {
8879 const char *share_name = NULL;
8880
8881 if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8882 share_name = "threadprivate";
8883 else switch (c_omp_predetermined_sharing (t))
8884 {
8885 case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8886 break;
8887 case OMP_CLAUSE_DEFAULT_SHARED:
8888 share_name = "shared";
8889 break;
8890 case OMP_CLAUSE_DEFAULT_PRIVATE:
8891 share_name = "private";
8892 break;
8893 default:
8894 gcc_unreachable ();
8895 }
8896 if (share_name)
8897 {
8898 error ("%qE is predetermined %qs for %qs",
8899 t, share_name, name);
8900 remove = true;
8901 }
8902 }
8903 }
8904
8905 if (remove)
8906 *pc = OMP_CLAUSE_CHAIN (c);
8907 else
8908 pc = &OMP_CLAUSE_CHAIN (c);
8909 }
8910
8911 bitmap_obstack_release (NULL);
8912 return clauses;
8913 }
8914
8915 /* Make a variant type in the proper way for C/C++, propagating qualifiers
8916 down to the element type of an array. */
8917
8918 tree
8919 c_build_qualified_type (tree type, int type_quals)
8920 {
8921 if (type == error_mark_node)
8922 return type;
8923
8924 if (TREE_CODE (type) == ARRAY_TYPE)
8925 {
8926 tree t;
8927 tree element_type = c_build_qualified_type (TREE_TYPE (type),
8928 type_quals);
8929
8930 /* See if we already have an identically qualified type. */
8931 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
8932 {
8933 if (TYPE_QUALS (strip_array_types (t)) == type_quals
8934 && TYPE_NAME (t) == TYPE_NAME (type)
8935 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
8936 && attribute_list_equal (TYPE_ATTRIBUTES (t),
8937 TYPE_ATTRIBUTES (type)))
8938 break;
8939 }
8940 if (!t)
8941 {
8942 tree domain = TYPE_DOMAIN (type);
8943
8944 t = build_variant_type_copy (type);
8945 TREE_TYPE (t) = element_type;
8946
8947 if (TYPE_STRUCTURAL_EQUALITY_P (element_type)
8948 || (domain && TYPE_STRUCTURAL_EQUALITY_P (domain)))
8949 SET_TYPE_STRUCTURAL_EQUALITY (t);
8950 else if (TYPE_CANONICAL (element_type) != element_type
8951 || (domain && TYPE_CANONICAL (domain) != domain))
8952 {
8953 tree unqualified_canon
8954 = build_array_type (TYPE_CANONICAL (element_type),
8955 domain? TYPE_CANONICAL (domain)
8956 : NULL_TREE);
8957 TYPE_CANONICAL (t)
8958 = c_build_qualified_type (unqualified_canon, type_quals);
8959 }
8960 else
8961 TYPE_CANONICAL (t) = t;
8962 }
8963 return t;
8964 }
8965
8966 /* A restrict-qualified pointer type must be a pointer to object or
8967 incomplete type. Note that the use of POINTER_TYPE_P also allows
8968 REFERENCE_TYPEs, which is appropriate for C++. */
8969 if ((type_quals & TYPE_QUAL_RESTRICT)
8970 && (!POINTER_TYPE_P (type)
8971 || !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type))))
8972 {
8973 error ("invalid use of %<restrict%>");
8974 type_quals &= ~TYPE_QUAL_RESTRICT;
8975 }
8976
8977 return build_qualified_type (type, type_quals);
8978 }