c-common.h (empty_body_warning): Rename to empty_if_body_warning.
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 /* This file is part of the C front end.
25 It contains routines to build C expressions given their operands,
26 including computing the types of the result, C-specific error checks,
27 and some optimization. */
28
29 #include "config.h"
30 #include "system.h"
31 #include "coretypes.h"
32 #include "tm.h"
33 #include "rtl.h"
34 #include "tree.h"
35 #include "langhooks.h"
36 #include "c-tree.h"
37 #include "tm_p.h"
38 #include "flags.h"
39 #include "output.h"
40 #include "expr.h"
41 #include "toplev.h"
42 #include "intl.h"
43 #include "ggc.h"
44 #include "target.h"
45 #include "tree-iterator.h"
46 #include "tree-gimple.h"
47 #include "tree-flow.h"
48
49 /* Possible cases of implicit bad conversions. Used to select
50 diagnostic messages in convert_for_assignment. */
51 enum impl_conv {
52 ic_argpass,
53 ic_argpass_nonproto,
54 ic_assign,
55 ic_init,
56 ic_return
57 };
58
59 /* The level of nesting inside "__alignof__". */
60 int in_alignof;
61
62 /* The level of nesting inside "sizeof". */
63 int in_sizeof;
64
65 /* The level of nesting inside "typeof". */
66 int in_typeof;
67
68 struct c_label_context_se *label_context_stack_se;
69 struct c_label_context_vm *label_context_stack_vm;
70
71 /* Nonzero if we've already printed a "missing braces around initializer"
72 message within this initializer. */
73 static int missing_braces_mentioned;
74
75 static int require_constant_value;
76 static int require_constant_elements;
77
78 static bool null_pointer_constant_p (tree);
79 static tree qualify_type (tree, tree);
80 static int tagged_types_tu_compatible_p (tree, tree);
81 static int comp_target_types (tree, tree);
82 static int function_types_compatible_p (tree, tree);
83 static int type_lists_compatible_p (tree, tree);
84 static tree decl_constant_value_for_broken_optimization (tree);
85 static tree lookup_field (tree, tree);
86 static int convert_arguments (int, tree *, tree, tree, tree, tree);
87 static tree pointer_diff (tree, tree);
88 static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
89 int);
90 static tree valid_compound_expr_initializer (tree, tree);
91 static void push_string (const char *);
92 static void push_member_name (tree);
93 static int spelling_length (void);
94 static char *print_spelling (char *);
95 static void warning_init (const char *);
96 static tree digest_init (tree, tree, bool, int);
97 static void output_init_element (tree, bool, tree, tree, int);
98 static void output_pending_init_elements (int);
99 static int set_designator (int);
100 static void push_range_stack (tree);
101 static void add_pending_init (tree, tree);
102 static void set_nonincremental_init (void);
103 static void set_nonincremental_init_from_string (tree);
104 static tree find_init_member (tree);
105 static void readonly_error (tree, enum lvalue_use);
106 static int lvalue_or_else (tree, enum lvalue_use);
107 static int lvalue_p (tree);
108 static void record_maybe_used_decl (tree);
109 static int comptypes_internal (tree, tree);
110 \f
111 /* Return true if EXP is a null pointer constant, false otherwise. */
112
113 static bool
114 null_pointer_constant_p (tree expr)
115 {
116 /* This should really operate on c_expr structures, but they aren't
117 yet available everywhere required. */
118 tree type = TREE_TYPE (expr);
119 return (TREE_CODE (expr) == INTEGER_CST
120 && !TREE_OVERFLOW (expr)
121 && integer_zerop (expr)
122 && (INTEGRAL_TYPE_P (type)
123 || (TREE_CODE (type) == POINTER_TYPE
124 && VOID_TYPE_P (TREE_TYPE (type))
125 && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
126 }
127 \f/* This is a cache to hold if two types are compatible or not. */
128
129 struct tagged_tu_seen_cache {
130 const struct tagged_tu_seen_cache * next;
131 tree t1;
132 tree t2;
133 /* The return value of tagged_types_tu_compatible_p if we had seen
134 these two types already. */
135 int val;
136 };
137
138 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
139 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
140
141 /* Do `exp = require_complete_type (exp);' to make sure exp
142 does not have an incomplete type. (That includes void types.) */
143
144 tree
145 require_complete_type (tree value)
146 {
147 tree type = TREE_TYPE (value);
148
149 if (value == error_mark_node || type == error_mark_node)
150 return error_mark_node;
151
152 /* First, detect a valid value with a complete type. */
153 if (COMPLETE_TYPE_P (type))
154 return value;
155
156 c_incomplete_type_error (value, type);
157 return error_mark_node;
158 }
159
160 /* Print an error message for invalid use of an incomplete type.
161 VALUE is the expression that was used (or 0 if that isn't known)
162 and TYPE is the type that was invalid. */
163
164 void
165 c_incomplete_type_error (tree value, tree type)
166 {
167 const char *type_code_string;
168
169 /* Avoid duplicate error message. */
170 if (TREE_CODE (type) == ERROR_MARK)
171 return;
172
173 if (value != 0 && (TREE_CODE (value) == VAR_DECL
174 || TREE_CODE (value) == PARM_DECL))
175 error ("%qD has an incomplete type", value);
176 else
177 {
178 retry:
179 /* We must print an error message. Be clever about what it says. */
180
181 switch (TREE_CODE (type))
182 {
183 case RECORD_TYPE:
184 type_code_string = "struct";
185 break;
186
187 case UNION_TYPE:
188 type_code_string = "union";
189 break;
190
191 case ENUMERAL_TYPE:
192 type_code_string = "enum";
193 break;
194
195 case VOID_TYPE:
196 error ("invalid use of void expression");
197 return;
198
199 case ARRAY_TYPE:
200 if (TYPE_DOMAIN (type))
201 {
202 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
203 {
204 error ("invalid use of flexible array member");
205 return;
206 }
207 type = TREE_TYPE (type);
208 goto retry;
209 }
210 error ("invalid use of array with unspecified bounds");
211 return;
212
213 default:
214 gcc_unreachable ();
215 }
216
217 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
218 error ("invalid use of undefined type %<%s %E%>",
219 type_code_string, TYPE_NAME (type));
220 else
221 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
222 error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
223 }
224 }
225
226 /* Given a type, apply default promotions wrt unnamed function
227 arguments and return the new type. */
228
229 tree
230 c_type_promotes_to (tree type)
231 {
232 if (TYPE_MAIN_VARIANT (type) == float_type_node)
233 return double_type_node;
234
235 if (c_promoting_integer_type_p (type))
236 {
237 /* Preserve unsignedness if not really getting any wider. */
238 if (TYPE_UNSIGNED (type)
239 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
240 return unsigned_type_node;
241 return integer_type_node;
242 }
243
244 return type;
245 }
246
247 /* Return a variant of TYPE which has all the type qualifiers of LIKE
248 as well as those of TYPE. */
249
250 static tree
251 qualify_type (tree type, tree like)
252 {
253 return c_build_qualified_type (type,
254 TYPE_QUALS (type) | TYPE_QUALS (like));
255 }
256
257 /* Return true iff the given tree T is a variable length array. */
258
259 bool
260 c_vla_type_p (tree t)
261 {
262 if (TREE_CODE (t) == ARRAY_TYPE
263 && C_TYPE_VARIABLE_SIZE (t))
264 return true;
265 return false;
266 }
267 \f
268 /* Return the composite type of two compatible types.
269
270 We assume that comptypes has already been done and returned
271 nonzero; if that isn't so, this may crash. In particular, we
272 assume that qualifiers match. */
273
274 tree
275 composite_type (tree t1, tree t2)
276 {
277 enum tree_code code1;
278 enum tree_code code2;
279 tree attributes;
280
281 /* Save time if the two types are the same. */
282
283 if (t1 == t2) return t1;
284
285 /* If one type is nonsense, use the other. */
286 if (t1 == error_mark_node)
287 return t2;
288 if (t2 == error_mark_node)
289 return t1;
290
291 code1 = TREE_CODE (t1);
292 code2 = TREE_CODE (t2);
293
294 /* Merge the attributes. */
295 attributes = targetm.merge_type_attributes (t1, t2);
296
297 /* If one is an enumerated type and the other is the compatible
298 integer type, the composite type might be either of the two
299 (DR#013 question 3). For consistency, use the enumerated type as
300 the composite type. */
301
302 if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
303 return t1;
304 if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
305 return t2;
306
307 gcc_assert (code1 == code2);
308
309 switch (code1)
310 {
311 case POINTER_TYPE:
312 /* For two pointers, do this recursively on the target type. */
313 {
314 tree pointed_to_1 = TREE_TYPE (t1);
315 tree pointed_to_2 = TREE_TYPE (t2);
316 tree target = composite_type (pointed_to_1, pointed_to_2);
317 t1 = build_pointer_type (target);
318 t1 = build_type_attribute_variant (t1, attributes);
319 return qualify_type (t1, t2);
320 }
321
322 case ARRAY_TYPE:
323 {
324 tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
325 int quals;
326 tree unqual_elt;
327 tree d1 = TYPE_DOMAIN (t1);
328 tree d2 = TYPE_DOMAIN (t2);
329 bool d1_variable, d2_variable;
330 bool d1_zero, d2_zero;
331
332 /* We should not have any type quals on arrays at all. */
333 gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
334
335 d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
336 d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
337
338 d1_variable = (!d1_zero
339 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
340 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
341 d2_variable = (!d2_zero
342 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
343 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
344 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
345 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
346
347 /* Save space: see if the result is identical to one of the args. */
348 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
349 && (d2_variable || d2_zero || !d1_variable))
350 return build_type_attribute_variant (t1, attributes);
351 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
352 && (d1_variable || d1_zero || !d2_variable))
353 return build_type_attribute_variant (t2, attributes);
354
355 if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
356 return build_type_attribute_variant (t1, attributes);
357 if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
358 return build_type_attribute_variant (t2, attributes);
359
360 /* Merge the element types, and have a size if either arg has
361 one. We may have qualifiers on the element types. To set
362 up TYPE_MAIN_VARIANT correctly, we need to form the
363 composite of the unqualified types and add the qualifiers
364 back at the end. */
365 quals = TYPE_QUALS (strip_array_types (elt));
366 unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
367 t1 = build_array_type (unqual_elt,
368 TYPE_DOMAIN ((TYPE_DOMAIN (t1)
369 && (d2_variable
370 || d2_zero
371 || !d1_variable))
372 ? t1
373 : t2));
374 t1 = c_build_qualified_type (t1, quals);
375 return build_type_attribute_variant (t1, attributes);
376 }
377
378 case ENUMERAL_TYPE:
379 case RECORD_TYPE:
380 case UNION_TYPE:
381 if (attributes != NULL)
382 {
383 /* Try harder not to create a new aggregate type. */
384 if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
385 return t1;
386 if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
387 return t2;
388 }
389 return build_type_attribute_variant (t1, attributes);
390
391 case FUNCTION_TYPE:
392 /* Function types: prefer the one that specified arg types.
393 If both do, merge the arg types. Also merge the return types. */
394 {
395 tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
396 tree p1 = TYPE_ARG_TYPES (t1);
397 tree p2 = TYPE_ARG_TYPES (t2);
398 int len;
399 tree newargs, n;
400 int i;
401
402 /* Save space: see if the result is identical to one of the args. */
403 if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
404 return build_type_attribute_variant (t1, attributes);
405 if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
406 return build_type_attribute_variant (t2, attributes);
407
408 /* Simple way if one arg fails to specify argument types. */
409 if (TYPE_ARG_TYPES (t1) == 0)
410 {
411 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
412 t1 = build_type_attribute_variant (t1, attributes);
413 return qualify_type (t1, t2);
414 }
415 if (TYPE_ARG_TYPES (t2) == 0)
416 {
417 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
418 t1 = build_type_attribute_variant (t1, attributes);
419 return qualify_type (t1, t2);
420 }
421
422 /* If both args specify argument types, we must merge the two
423 lists, argument by argument. */
424 /* Tell global_bindings_p to return false so that variable_size
425 doesn't die on VLAs in parameter types. */
426 c_override_global_bindings_to_false = true;
427
428 len = list_length (p1);
429 newargs = 0;
430
431 for (i = 0; i < len; i++)
432 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
433
434 n = newargs;
435
436 for (; p1;
437 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
438 {
439 /* A null type means arg type is not specified.
440 Take whatever the other function type has. */
441 if (TREE_VALUE (p1) == 0)
442 {
443 TREE_VALUE (n) = TREE_VALUE (p2);
444 goto parm_done;
445 }
446 if (TREE_VALUE (p2) == 0)
447 {
448 TREE_VALUE (n) = TREE_VALUE (p1);
449 goto parm_done;
450 }
451
452 /* Given wait (union {union wait *u; int *i} *)
453 and wait (union wait *),
454 prefer union wait * as type of parm. */
455 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
456 && TREE_VALUE (p1) != TREE_VALUE (p2))
457 {
458 tree memb;
459 tree mv2 = TREE_VALUE (p2);
460 if (mv2 && mv2 != error_mark_node
461 && TREE_CODE (mv2) != ARRAY_TYPE)
462 mv2 = TYPE_MAIN_VARIANT (mv2);
463 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
464 memb; memb = TREE_CHAIN (memb))
465 {
466 tree mv3 = TREE_TYPE (memb);
467 if (mv3 && mv3 != error_mark_node
468 && TREE_CODE (mv3) != ARRAY_TYPE)
469 mv3 = TYPE_MAIN_VARIANT (mv3);
470 if (comptypes (mv3, mv2))
471 {
472 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
473 TREE_VALUE (p2));
474 if (pedantic)
475 pedwarn ("function types not truly compatible in ISO C");
476 goto parm_done;
477 }
478 }
479 }
480 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
481 && TREE_VALUE (p2) != TREE_VALUE (p1))
482 {
483 tree memb;
484 tree mv1 = TREE_VALUE (p1);
485 if (mv1 && mv1 != error_mark_node
486 && TREE_CODE (mv1) != ARRAY_TYPE)
487 mv1 = TYPE_MAIN_VARIANT (mv1);
488 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
489 memb; memb = TREE_CHAIN (memb))
490 {
491 tree mv3 = TREE_TYPE (memb);
492 if (mv3 && mv3 != error_mark_node
493 && TREE_CODE (mv3) != ARRAY_TYPE)
494 mv3 = TYPE_MAIN_VARIANT (mv3);
495 if (comptypes (mv3, mv1))
496 {
497 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
498 TREE_VALUE (p1));
499 if (pedantic)
500 pedwarn ("function types not truly compatible in ISO C");
501 goto parm_done;
502 }
503 }
504 }
505 TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
506 parm_done: ;
507 }
508
509 c_override_global_bindings_to_false = false;
510 t1 = build_function_type (valtype, newargs);
511 t1 = qualify_type (t1, t2);
512 /* ... falls through ... */
513 }
514
515 default:
516 return build_type_attribute_variant (t1, attributes);
517 }
518
519 }
520
521 /* Return the type of a conditional expression between pointers to
522 possibly differently qualified versions of compatible types.
523
524 We assume that comp_target_types has already been done and returned
525 nonzero; if that isn't so, this may crash. */
526
527 static tree
528 common_pointer_type (tree t1, tree t2)
529 {
530 tree attributes;
531 tree pointed_to_1, mv1;
532 tree pointed_to_2, mv2;
533 tree target;
534
535 /* Save time if the two types are the same. */
536
537 if (t1 == t2) return t1;
538
539 /* If one type is nonsense, use the other. */
540 if (t1 == error_mark_node)
541 return t2;
542 if (t2 == error_mark_node)
543 return t1;
544
545 gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546 && TREE_CODE (t2) == POINTER_TYPE);
547
548 /* Merge the attributes. */
549 attributes = targetm.merge_type_attributes (t1, t2);
550
551 /* Find the composite type of the target types, and combine the
552 qualifiers of the two types' targets. Do not lose qualifiers on
553 array element types by taking the TYPE_MAIN_VARIANT. */
554 mv1 = pointed_to_1 = TREE_TYPE (t1);
555 mv2 = pointed_to_2 = TREE_TYPE (t2);
556 if (TREE_CODE (mv1) != ARRAY_TYPE)
557 mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558 if (TREE_CODE (mv2) != ARRAY_TYPE)
559 mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560 target = composite_type (mv1, mv2);
561 t1 = build_pointer_type (c_build_qualified_type
562 (target,
563 TYPE_QUALS (pointed_to_1) |
564 TYPE_QUALS (pointed_to_2)));
565 return build_type_attribute_variant (t1, attributes);
566 }
567
568 /* Return the common type for two arithmetic types under the usual
569 arithmetic conversions. The default conversions have already been
570 applied, and enumerated types converted to their compatible integer
571 types. The resulting type is unqualified and has no attributes.
572
573 This is the type for the result of most arithmetic operations
574 if the operands have the given two types. */
575
576 static tree
577 c_common_type (tree t1, tree t2)
578 {
579 enum tree_code code1;
580 enum tree_code code2;
581
582 /* If one type is nonsense, use the other. */
583 if (t1 == error_mark_node)
584 return t2;
585 if (t2 == error_mark_node)
586 return t1;
587
588 if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
589 t1 = TYPE_MAIN_VARIANT (t1);
590
591 if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
592 t2 = TYPE_MAIN_VARIANT (t2);
593
594 if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
595 t1 = build_type_attribute_variant (t1, NULL_TREE);
596
597 if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
598 t2 = build_type_attribute_variant (t2, NULL_TREE);
599
600 /* Save time if the two types are the same. */
601
602 if (t1 == t2) return t1;
603
604 code1 = TREE_CODE (t1);
605 code2 = TREE_CODE (t2);
606
607 gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
608 || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
609 gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
610 || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
611
612 /* When one operand is a decimal float type, the other operand cannot be
613 a generic float type or a complex type. We also disallow vector types
614 here. */
615 if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
616 && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
617 {
618 if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
619 {
620 error ("can%'t mix operands of decimal float and vector types");
621 return error_mark_node;
622 }
623 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
624 {
625 error ("can%'t mix operands of decimal float and complex types");
626 return error_mark_node;
627 }
628 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
629 {
630 error ("can%'t mix operands of decimal float and other float types");
631 return error_mark_node;
632 }
633 }
634
635 /* If one type is a vector type, return that type. (How the usual
636 arithmetic conversions apply to the vector types extension is not
637 precisely specified.) */
638 if (code1 == VECTOR_TYPE)
639 return t1;
640
641 if (code2 == VECTOR_TYPE)
642 return t2;
643
644 /* If one type is complex, form the common type of the non-complex
645 components, then make that complex. Use T1 or T2 if it is the
646 required type. */
647 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
648 {
649 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
650 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
651 tree subtype = c_common_type (subtype1, subtype2);
652
653 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
654 return t1;
655 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
656 return t2;
657 else
658 return build_complex_type (subtype);
659 }
660
661 /* If only one is real, use it as the result. */
662
663 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
664 return t1;
665
666 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
667 return t2;
668
669 /* If both are real and either are decimal floating point types, use
670 the decimal floating point type with the greater precision. */
671
672 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
673 {
674 if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
675 || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
676 return dfloat128_type_node;
677 else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
678 || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
679 return dfloat64_type_node;
680 else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
681 || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
682 return dfloat32_type_node;
683 }
684
685 /* Both real or both integers; use the one with greater precision. */
686
687 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
688 return t1;
689 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
690 return t2;
691
692 /* Same precision. Prefer long longs to longs to ints when the
693 same precision, following the C99 rules on integer type rank
694 (which are equivalent to the C90 rules for C90 types). */
695
696 if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
697 || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
698 return long_long_unsigned_type_node;
699
700 if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
701 || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
702 {
703 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
704 return long_long_unsigned_type_node;
705 else
706 return long_long_integer_type_node;
707 }
708
709 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
710 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
711 return long_unsigned_type_node;
712
713 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
714 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
715 {
716 /* But preserve unsignedness from the other type,
717 since long cannot hold all the values of an unsigned int. */
718 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
719 return long_unsigned_type_node;
720 else
721 return long_integer_type_node;
722 }
723
724 /* Likewise, prefer long double to double even if same size. */
725 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
726 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
727 return long_double_type_node;
728
729 /* Otherwise prefer the unsigned one. */
730
731 if (TYPE_UNSIGNED (t1))
732 return t1;
733 else
734 return t2;
735 }
736 \f
737 /* Wrapper around c_common_type that is used by c-common.c and other
738 front end optimizations that remove promotions. ENUMERAL_TYPEs
739 are allowed here and are converted to their compatible integer types.
740 BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
741 preferably a non-Boolean type as the common type. */
742 tree
743 common_type (tree t1, tree t2)
744 {
745 if (TREE_CODE (t1) == ENUMERAL_TYPE)
746 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
747 if (TREE_CODE (t2) == ENUMERAL_TYPE)
748 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
749
750 /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */
751 if (TREE_CODE (t1) == BOOLEAN_TYPE
752 && TREE_CODE (t2) == BOOLEAN_TYPE)
753 return boolean_type_node;
754
755 /* If either type is BOOLEAN_TYPE, then return the other. */
756 if (TREE_CODE (t1) == BOOLEAN_TYPE)
757 return t2;
758 if (TREE_CODE (t2) == BOOLEAN_TYPE)
759 return t1;
760
761 return c_common_type (t1, t2);
762 }
763
764 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
765 or various other operations. Return 2 if they are compatible
766 but a warning may be needed if you use them together. */
767
768 int
769 comptypes (tree type1, tree type2)
770 {
771 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
772 int val;
773
774 val = comptypes_internal (type1, type2);
775 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
776
777 return val;
778 }
779 \f
780 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
781 or various other operations. Return 2 if they are compatible
782 but a warning may be needed if you use them together. This
783 differs from comptypes, in that we don't free the seen types. */
784
785 static int
786 comptypes_internal (tree type1, tree type2)
787 {
788 tree t1 = type1;
789 tree t2 = type2;
790 int attrval, val;
791
792 /* Suppress errors caused by previously reported errors. */
793
794 if (t1 == t2 || !t1 || !t2
795 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
796 return 1;
797
798 /* If either type is the internal version of sizetype, return the
799 language version. */
800 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
801 && TYPE_ORIG_SIZE_TYPE (t1))
802 t1 = TYPE_ORIG_SIZE_TYPE (t1);
803
804 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
805 && TYPE_ORIG_SIZE_TYPE (t2))
806 t2 = TYPE_ORIG_SIZE_TYPE (t2);
807
808
809 /* Enumerated types are compatible with integer types, but this is
810 not transitive: two enumerated types in the same translation unit
811 are compatible with each other only if they are the same type. */
812
813 if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
814 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
815 else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
816 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
817
818 if (t1 == t2)
819 return 1;
820
821 /* Different classes of types can't be compatible. */
822
823 if (TREE_CODE (t1) != TREE_CODE (t2))
824 return 0;
825
826 /* Qualifiers must match. C99 6.7.3p9 */
827
828 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
829 return 0;
830
831 /* Allow for two different type nodes which have essentially the same
832 definition. Note that we already checked for equality of the type
833 qualifiers (just above). */
834
835 if (TREE_CODE (t1) != ARRAY_TYPE
836 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
837 return 1;
838
839 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
840 if (!(attrval = targetm.comp_type_attributes (t1, t2)))
841 return 0;
842
843 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
844 val = 0;
845
846 switch (TREE_CODE (t1))
847 {
848 case POINTER_TYPE:
849 /* Do not remove mode or aliasing information. */
850 if (TYPE_MODE (t1) != TYPE_MODE (t2)
851 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
852 break;
853 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
854 ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
855 break;
856
857 case FUNCTION_TYPE:
858 val = function_types_compatible_p (t1, t2);
859 break;
860
861 case ARRAY_TYPE:
862 {
863 tree d1 = TYPE_DOMAIN (t1);
864 tree d2 = TYPE_DOMAIN (t2);
865 bool d1_variable, d2_variable;
866 bool d1_zero, d2_zero;
867 val = 1;
868
869 /* Target types must match incl. qualifiers. */
870 if (TREE_TYPE (t1) != TREE_TYPE (t2)
871 && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
872 return 0;
873
874 /* Sizes must match unless one is missing or variable. */
875 if (d1 == 0 || d2 == 0 || d1 == d2)
876 break;
877
878 d1_zero = !TYPE_MAX_VALUE (d1);
879 d2_zero = !TYPE_MAX_VALUE (d2);
880
881 d1_variable = (!d1_zero
882 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
883 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
884 d2_variable = (!d2_zero
885 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
886 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
887 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
888 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
889
890 if (d1_variable || d2_variable)
891 break;
892 if (d1_zero && d2_zero)
893 break;
894 if (d1_zero || d2_zero
895 || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
896 || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
897 val = 0;
898
899 break;
900 }
901
902 case ENUMERAL_TYPE:
903 case RECORD_TYPE:
904 case UNION_TYPE:
905 if (val != 1 && !same_translation_unit_p (t1, t2))
906 {
907 tree a1 = TYPE_ATTRIBUTES (t1);
908 tree a2 = TYPE_ATTRIBUTES (t2);
909
910 if (! attribute_list_contained (a1, a2)
911 && ! attribute_list_contained (a2, a1))
912 break;
913
914 if (attrval != 2)
915 return tagged_types_tu_compatible_p (t1, t2);
916 val = tagged_types_tu_compatible_p (t1, t2);
917 }
918 break;
919
920 case VECTOR_TYPE:
921 val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
922 && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
923 break;
924
925 default:
926 break;
927 }
928 return attrval == 2 && val == 1 ? 2 : val;
929 }
930
931 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
932 ignoring their qualifiers. */
933
934 static int
935 comp_target_types (tree ttl, tree ttr)
936 {
937 int val;
938 tree mvl, mvr;
939
940 /* Do not lose qualifiers on element types of array types that are
941 pointer targets by taking their TYPE_MAIN_VARIANT. */
942 mvl = TREE_TYPE (ttl);
943 mvr = TREE_TYPE (ttr);
944 if (TREE_CODE (mvl) != ARRAY_TYPE)
945 mvl = TYPE_MAIN_VARIANT (mvl);
946 if (TREE_CODE (mvr) != ARRAY_TYPE)
947 mvr = TYPE_MAIN_VARIANT (mvr);
948 val = comptypes (mvl, mvr);
949
950 if (val == 2 && pedantic)
951 pedwarn ("types are not quite compatible");
952 return val;
953 }
954 \f
955 /* Subroutines of `comptypes'. */
956
957 /* Determine whether two trees derive from the same translation unit.
958 If the CONTEXT chain ends in a null, that tree's context is still
959 being parsed, so if two trees have context chains ending in null,
960 they're in the same translation unit. */
961 int
962 same_translation_unit_p (tree t1, tree t2)
963 {
964 while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
965 switch (TREE_CODE_CLASS (TREE_CODE (t1)))
966 {
967 case tcc_declaration:
968 t1 = DECL_CONTEXT (t1); break;
969 case tcc_type:
970 t1 = TYPE_CONTEXT (t1); break;
971 case tcc_exceptional:
972 t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
973 default: gcc_unreachable ();
974 }
975
976 while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
977 switch (TREE_CODE_CLASS (TREE_CODE (t2)))
978 {
979 case tcc_declaration:
980 t2 = DECL_CONTEXT (t2); break;
981 case tcc_type:
982 t2 = TYPE_CONTEXT (t2); break;
983 case tcc_exceptional:
984 t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
985 default: gcc_unreachable ();
986 }
987
988 return t1 == t2;
989 }
990
991 /* Allocate the seen two types, assuming that they are compatible. */
992
993 static struct tagged_tu_seen_cache *
994 alloc_tagged_tu_seen_cache (tree t1, tree t2)
995 {
996 struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
997 tu->next = tagged_tu_seen_base;
998 tu->t1 = t1;
999 tu->t2 = t2;
1000
1001 tagged_tu_seen_base = tu;
1002
1003 /* The C standard says that two structures in different translation
1004 units are compatible with each other only if the types of their
1005 fields are compatible (among other things). We assume that they
1006 are compatible until proven otherwise when building the cache.
1007 An example where this can occur is:
1008 struct a
1009 {
1010 struct a *next;
1011 };
1012 If we are comparing this against a similar struct in another TU,
1013 and did not assume they were compatible, we end up with an infinite
1014 loop. */
1015 tu->val = 1;
1016 return tu;
1017 }
1018
1019 /* Free the seen types until we get to TU_TIL. */
1020
1021 static void
1022 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1023 {
1024 const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1025 while (tu != tu_til)
1026 {
1027 struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
1028 tu = tu1->next;
1029 free (tu1);
1030 }
1031 tagged_tu_seen_base = tu_til;
1032 }
1033
1034 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1035 compatible. If the two types are not the same (which has been
1036 checked earlier), this can only happen when multiple translation
1037 units are being compiled. See C99 6.2.7 paragraph 1 for the exact
1038 rules. */
1039
1040 static int
1041 tagged_types_tu_compatible_p (tree t1, tree t2)
1042 {
1043 tree s1, s2;
1044 bool needs_warning = false;
1045
1046 /* We have to verify that the tags of the types are the same. This
1047 is harder than it looks because this may be a typedef, so we have
1048 to go look at the original type. It may even be a typedef of a
1049 typedef...
1050 In the case of compiler-created builtin structs the TYPE_DECL
1051 may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
1052 while (TYPE_NAME (t1)
1053 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1054 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1055 t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1056
1057 while (TYPE_NAME (t2)
1058 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1059 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1060 t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1061
1062 /* C90 didn't have the requirement that the two tags be the same. */
1063 if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1064 return 0;
1065
1066 /* C90 didn't say what happened if one or both of the types were
1067 incomplete; we choose to follow C99 rules here, which is that they
1068 are compatible. */
1069 if (TYPE_SIZE (t1) == NULL
1070 || TYPE_SIZE (t2) == NULL)
1071 return 1;
1072
1073 {
1074 const struct tagged_tu_seen_cache * tts_i;
1075 for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1076 if (tts_i->t1 == t1 && tts_i->t2 == t2)
1077 return tts_i->val;
1078 }
1079
1080 switch (TREE_CODE (t1))
1081 {
1082 case ENUMERAL_TYPE:
1083 {
1084 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1085 /* Speed up the case where the type values are in the same order. */
1086 tree tv1 = TYPE_VALUES (t1);
1087 tree tv2 = TYPE_VALUES (t2);
1088
1089 if (tv1 == tv2)
1090 {
1091 return 1;
1092 }
1093
1094 for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1095 {
1096 if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1097 break;
1098 if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1099 {
1100 tu->val = 0;
1101 return 0;
1102 }
1103 }
1104
1105 if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1106 {
1107 return 1;
1108 }
1109 if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1110 {
1111 tu->val = 0;
1112 return 0;
1113 }
1114
1115 if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1116 {
1117 tu->val = 0;
1118 return 0;
1119 }
1120
1121 for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1122 {
1123 s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1124 if (s2 == NULL
1125 || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1126 {
1127 tu->val = 0;
1128 return 0;
1129 }
1130 }
1131 return 1;
1132 }
1133
1134 case UNION_TYPE:
1135 {
1136 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1137 if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1138 {
1139 tu->val = 0;
1140 return 0;
1141 }
1142
1143 /* Speed up the common case where the fields are in the same order. */
1144 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1145 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1146 {
1147 int result;
1148
1149
1150 if (DECL_NAME (s1) == NULL
1151 || DECL_NAME (s1) != DECL_NAME (s2))
1152 break;
1153 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1154 if (result == 0)
1155 {
1156 tu->val = 0;
1157 return 0;
1158 }
1159 if (result == 2)
1160 needs_warning = true;
1161
1162 if (TREE_CODE (s1) == FIELD_DECL
1163 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1164 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1165 {
1166 tu->val = 0;
1167 return 0;
1168 }
1169 }
1170 if (!s1 && !s2)
1171 {
1172 tu->val = needs_warning ? 2 : 1;
1173 return tu->val;
1174 }
1175
1176 for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1177 {
1178 bool ok = false;
1179
1180 if (DECL_NAME (s1) != NULL)
1181 for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1182 if (DECL_NAME (s1) == DECL_NAME (s2))
1183 {
1184 int result;
1185 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1186 if (result == 0)
1187 {
1188 tu->val = 0;
1189 return 0;
1190 }
1191 if (result == 2)
1192 needs_warning = true;
1193
1194 if (TREE_CODE (s1) == FIELD_DECL
1195 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1196 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1197 break;
1198
1199 ok = true;
1200 break;
1201 }
1202 if (!ok)
1203 {
1204 tu->val = 0;
1205 return 0;
1206 }
1207 }
1208 tu->val = needs_warning ? 2 : 10;
1209 return tu->val;
1210 }
1211
1212 case RECORD_TYPE:
1213 {
1214 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1215
1216 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1217 s1 && s2;
1218 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1219 {
1220 int result;
1221 if (TREE_CODE (s1) != TREE_CODE (s2)
1222 || DECL_NAME (s1) != DECL_NAME (s2))
1223 break;
1224 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1225 if (result == 0)
1226 break;
1227 if (result == 2)
1228 needs_warning = true;
1229
1230 if (TREE_CODE (s1) == FIELD_DECL
1231 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1232 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1233 break;
1234 }
1235 if (s1 && s2)
1236 tu->val = 0;
1237 else
1238 tu->val = needs_warning ? 2 : 1;
1239 return tu->val;
1240 }
1241
1242 default:
1243 gcc_unreachable ();
1244 }
1245 }
1246
1247 /* Return 1 if two function types F1 and F2 are compatible.
1248 If either type specifies no argument types,
1249 the other must specify a fixed number of self-promoting arg types.
1250 Otherwise, if one type specifies only the number of arguments,
1251 the other must specify that number of self-promoting arg types.
1252 Otherwise, the argument types must match. */
1253
1254 static int
1255 function_types_compatible_p (tree f1, tree f2)
1256 {
1257 tree args1, args2;
1258 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1259 int val = 1;
1260 int val1;
1261 tree ret1, ret2;
1262
1263 ret1 = TREE_TYPE (f1);
1264 ret2 = TREE_TYPE (f2);
1265
1266 /* 'volatile' qualifiers on a function's return type used to mean
1267 the function is noreturn. */
1268 if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1269 pedwarn ("function return types not compatible due to %<volatile%>");
1270 if (TYPE_VOLATILE (ret1))
1271 ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1272 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1273 if (TYPE_VOLATILE (ret2))
1274 ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1275 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1276 val = comptypes_internal (ret1, ret2);
1277 if (val == 0)
1278 return 0;
1279
1280 args1 = TYPE_ARG_TYPES (f1);
1281 args2 = TYPE_ARG_TYPES (f2);
1282
1283 /* An unspecified parmlist matches any specified parmlist
1284 whose argument types don't need default promotions. */
1285
1286 if (args1 == 0)
1287 {
1288 if (!self_promoting_args_p (args2))
1289 return 0;
1290 /* If one of these types comes from a non-prototype fn definition,
1291 compare that with the other type's arglist.
1292 If they don't match, ask for a warning (but no error). */
1293 if (TYPE_ACTUAL_ARG_TYPES (f1)
1294 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1295 val = 2;
1296 return val;
1297 }
1298 if (args2 == 0)
1299 {
1300 if (!self_promoting_args_p (args1))
1301 return 0;
1302 if (TYPE_ACTUAL_ARG_TYPES (f2)
1303 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1304 val = 2;
1305 return val;
1306 }
1307
1308 /* Both types have argument lists: compare them and propagate results. */
1309 val1 = type_lists_compatible_p (args1, args2);
1310 return val1 != 1 ? val1 : val;
1311 }
1312
1313 /* Check two lists of types for compatibility,
1314 returning 0 for incompatible, 1 for compatible,
1315 or 2 for compatible with warning. */
1316
1317 static int
1318 type_lists_compatible_p (tree args1, tree args2)
1319 {
1320 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1321 int val = 1;
1322 int newval = 0;
1323
1324 while (1)
1325 {
1326 tree a1, mv1, a2, mv2;
1327 if (args1 == 0 && args2 == 0)
1328 return val;
1329 /* If one list is shorter than the other,
1330 they fail to match. */
1331 if (args1 == 0 || args2 == 0)
1332 return 0;
1333 mv1 = a1 = TREE_VALUE (args1);
1334 mv2 = a2 = TREE_VALUE (args2);
1335 if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1336 mv1 = TYPE_MAIN_VARIANT (mv1);
1337 if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1338 mv2 = TYPE_MAIN_VARIANT (mv2);
1339 /* A null pointer instead of a type
1340 means there is supposed to be an argument
1341 but nothing is specified about what type it has.
1342 So match anything that self-promotes. */
1343 if (a1 == 0)
1344 {
1345 if (c_type_promotes_to (a2) != a2)
1346 return 0;
1347 }
1348 else if (a2 == 0)
1349 {
1350 if (c_type_promotes_to (a1) != a1)
1351 return 0;
1352 }
1353 /* If one of the lists has an error marker, ignore this arg. */
1354 else if (TREE_CODE (a1) == ERROR_MARK
1355 || TREE_CODE (a2) == ERROR_MARK)
1356 ;
1357 else if (!(newval = comptypes_internal (mv1, mv2)))
1358 {
1359 /* Allow wait (union {union wait *u; int *i} *)
1360 and wait (union wait *) to be compatible. */
1361 if (TREE_CODE (a1) == UNION_TYPE
1362 && (TYPE_NAME (a1) == 0
1363 || TYPE_TRANSPARENT_UNION (a1))
1364 && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1365 && tree_int_cst_equal (TYPE_SIZE (a1),
1366 TYPE_SIZE (a2)))
1367 {
1368 tree memb;
1369 for (memb = TYPE_FIELDS (a1);
1370 memb; memb = TREE_CHAIN (memb))
1371 {
1372 tree mv3 = TREE_TYPE (memb);
1373 if (mv3 && mv3 != error_mark_node
1374 && TREE_CODE (mv3) != ARRAY_TYPE)
1375 mv3 = TYPE_MAIN_VARIANT (mv3);
1376 if (comptypes_internal (mv3, mv2))
1377 break;
1378 }
1379 if (memb == 0)
1380 return 0;
1381 }
1382 else if (TREE_CODE (a2) == UNION_TYPE
1383 && (TYPE_NAME (a2) == 0
1384 || TYPE_TRANSPARENT_UNION (a2))
1385 && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1386 && tree_int_cst_equal (TYPE_SIZE (a2),
1387 TYPE_SIZE (a1)))
1388 {
1389 tree memb;
1390 for (memb = TYPE_FIELDS (a2);
1391 memb; memb = TREE_CHAIN (memb))
1392 {
1393 tree mv3 = TREE_TYPE (memb);
1394 if (mv3 && mv3 != error_mark_node
1395 && TREE_CODE (mv3) != ARRAY_TYPE)
1396 mv3 = TYPE_MAIN_VARIANT (mv3);
1397 if (comptypes_internal (mv3, mv1))
1398 break;
1399 }
1400 if (memb == 0)
1401 return 0;
1402 }
1403 else
1404 return 0;
1405 }
1406
1407 /* comptypes said ok, but record if it said to warn. */
1408 if (newval > val)
1409 val = newval;
1410
1411 args1 = TREE_CHAIN (args1);
1412 args2 = TREE_CHAIN (args2);
1413 }
1414 }
1415 \f
1416 /* Compute the size to increment a pointer by. */
1417
1418 static tree
1419 c_size_in_bytes (tree type)
1420 {
1421 enum tree_code code = TREE_CODE (type);
1422
1423 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1424 return size_one_node;
1425
1426 if (!COMPLETE_OR_VOID_TYPE_P (type))
1427 {
1428 error ("arithmetic on pointer to an incomplete type");
1429 return size_one_node;
1430 }
1431
1432 /* Convert in case a char is more than one unit. */
1433 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1434 size_int (TYPE_PRECISION (char_type_node)
1435 / BITS_PER_UNIT));
1436 }
1437 \f
1438 /* Return either DECL or its known constant value (if it has one). */
1439
1440 tree
1441 decl_constant_value (tree decl)
1442 {
1443 if (/* Don't change a variable array bound or initial value to a constant
1444 in a place where a variable is invalid. Note that DECL_INITIAL
1445 isn't valid for a PARM_DECL. */
1446 current_function_decl != 0
1447 && TREE_CODE (decl) != PARM_DECL
1448 && !TREE_THIS_VOLATILE (decl)
1449 && TREE_READONLY (decl)
1450 && DECL_INITIAL (decl) != 0
1451 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1452 /* This is invalid if initial value is not constant.
1453 If it has either a function call, a memory reference,
1454 or a variable, then re-evaluating it could give different results. */
1455 && TREE_CONSTANT (DECL_INITIAL (decl))
1456 /* Check for cases where this is sub-optimal, even though valid. */
1457 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1458 return DECL_INITIAL (decl);
1459 return decl;
1460 }
1461
1462 /* Return either DECL or its known constant value (if it has one), but
1463 return DECL if pedantic or DECL has mode BLKmode. This is for
1464 bug-compatibility with the old behavior of decl_constant_value
1465 (before GCC 3.0); every use of this function is a bug and it should
1466 be removed before GCC 3.1. It is not appropriate to use pedantic
1467 in a way that affects optimization, and BLKmode is probably not the
1468 right test for avoiding misoptimizations either. */
1469
1470 static tree
1471 decl_constant_value_for_broken_optimization (tree decl)
1472 {
1473 tree ret;
1474
1475 if (pedantic || DECL_MODE (decl) == BLKmode)
1476 return decl;
1477
1478 ret = decl_constant_value (decl);
1479 /* Avoid unwanted tree sharing between the initializer and current
1480 function's body where the tree can be modified e.g. by the
1481 gimplifier. */
1482 if (ret != decl && TREE_STATIC (decl))
1483 ret = unshare_expr (ret);
1484 return ret;
1485 }
1486
1487 /* Convert the array expression EXP to a pointer. */
1488 static tree
1489 array_to_pointer_conversion (tree exp)
1490 {
1491 tree orig_exp = exp;
1492 tree type = TREE_TYPE (exp);
1493 tree adr;
1494 tree restype = TREE_TYPE (type);
1495 tree ptrtype;
1496
1497 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1498
1499 STRIP_TYPE_NOPS (exp);
1500
1501 if (TREE_NO_WARNING (orig_exp))
1502 TREE_NO_WARNING (exp) = 1;
1503
1504 ptrtype = build_pointer_type (restype);
1505
1506 if (TREE_CODE (exp) == INDIRECT_REF)
1507 return convert (ptrtype, TREE_OPERAND (exp, 0));
1508
1509 if (TREE_CODE (exp) == VAR_DECL)
1510 {
1511 /* We are making an ADDR_EXPR of ptrtype. This is a valid
1512 ADDR_EXPR because it's the best way of representing what
1513 happens in C when we take the address of an array and place
1514 it in a pointer to the element type. */
1515 adr = build1 (ADDR_EXPR, ptrtype, exp);
1516 if (!c_mark_addressable (exp))
1517 return error_mark_node;
1518 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
1519 return adr;
1520 }
1521
1522 /* This way is better for a COMPONENT_REF since it can
1523 simplify the offset for a component. */
1524 adr = build_unary_op (ADDR_EXPR, exp, 1);
1525 return convert (ptrtype, adr);
1526 }
1527
1528 /* Convert the function expression EXP to a pointer. */
1529 static tree
1530 function_to_pointer_conversion (tree exp)
1531 {
1532 tree orig_exp = exp;
1533
1534 gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1535
1536 STRIP_TYPE_NOPS (exp);
1537
1538 if (TREE_NO_WARNING (orig_exp))
1539 TREE_NO_WARNING (exp) = 1;
1540
1541 return build_unary_op (ADDR_EXPR, exp, 0);
1542 }
1543
1544 /* Perform the default conversion of arrays and functions to pointers.
1545 Return the result of converting EXP. For any other expression, just
1546 return EXP after removing NOPs. */
1547
1548 struct c_expr
1549 default_function_array_conversion (struct c_expr exp)
1550 {
1551 tree orig_exp = exp.value;
1552 tree type = TREE_TYPE (exp.value);
1553 enum tree_code code = TREE_CODE (type);
1554
1555 switch (code)
1556 {
1557 case ARRAY_TYPE:
1558 {
1559 bool not_lvalue = false;
1560 bool lvalue_array_p;
1561
1562 while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1563 || TREE_CODE (exp.value) == NOP_EXPR
1564 || TREE_CODE (exp.value) == CONVERT_EXPR)
1565 && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1566 {
1567 if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1568 not_lvalue = true;
1569 exp.value = TREE_OPERAND (exp.value, 0);
1570 }
1571
1572 if (TREE_NO_WARNING (orig_exp))
1573 TREE_NO_WARNING (exp.value) = 1;
1574
1575 lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1576 if (!flag_isoc99 && !lvalue_array_p)
1577 {
1578 /* Before C99, non-lvalue arrays do not decay to pointers.
1579 Normally, using such an array would be invalid; but it can
1580 be used correctly inside sizeof or as a statement expression.
1581 Thus, do not give an error here; an error will result later. */
1582 return exp;
1583 }
1584
1585 exp.value = array_to_pointer_conversion (exp.value);
1586 }
1587 break;
1588 case FUNCTION_TYPE:
1589 exp.value = function_to_pointer_conversion (exp.value);
1590 break;
1591 default:
1592 STRIP_TYPE_NOPS (exp.value);
1593 if (TREE_NO_WARNING (orig_exp))
1594 TREE_NO_WARNING (exp.value) = 1;
1595 break;
1596 }
1597
1598 return exp;
1599 }
1600
1601
1602 /* EXP is an expression of integer type. Apply the integer promotions
1603 to it and return the promoted value. */
1604
1605 tree
1606 perform_integral_promotions (tree exp)
1607 {
1608 tree type = TREE_TYPE (exp);
1609 enum tree_code code = TREE_CODE (type);
1610
1611 gcc_assert (INTEGRAL_TYPE_P (type));
1612
1613 /* Normally convert enums to int,
1614 but convert wide enums to something wider. */
1615 if (code == ENUMERAL_TYPE)
1616 {
1617 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1618 TYPE_PRECISION (integer_type_node)),
1619 ((TYPE_PRECISION (type)
1620 >= TYPE_PRECISION (integer_type_node))
1621 && TYPE_UNSIGNED (type)));
1622
1623 return convert (type, exp);
1624 }
1625
1626 /* ??? This should no longer be needed now bit-fields have their
1627 proper types. */
1628 if (TREE_CODE (exp) == COMPONENT_REF
1629 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1630 /* If it's thinner than an int, promote it like a
1631 c_promoting_integer_type_p, otherwise leave it alone. */
1632 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1633 TYPE_PRECISION (integer_type_node)))
1634 return convert (integer_type_node, exp);
1635
1636 if (c_promoting_integer_type_p (type))
1637 {
1638 /* Preserve unsignedness if not really getting any wider. */
1639 if (TYPE_UNSIGNED (type)
1640 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1641 return convert (unsigned_type_node, exp);
1642
1643 return convert (integer_type_node, exp);
1644 }
1645
1646 return exp;
1647 }
1648
1649
1650 /* Perform default promotions for C data used in expressions.
1651 Enumeral types or short or char are converted to int.
1652 In addition, manifest constants symbols are replaced by their values. */
1653
1654 tree
1655 default_conversion (tree exp)
1656 {
1657 tree orig_exp;
1658 tree type = TREE_TYPE (exp);
1659 enum tree_code code = TREE_CODE (type);
1660
1661 /* Functions and arrays have been converted during parsing. */
1662 gcc_assert (code != FUNCTION_TYPE);
1663 if (code == ARRAY_TYPE)
1664 return exp;
1665
1666 /* Constants can be used directly unless they're not loadable. */
1667 if (TREE_CODE (exp) == CONST_DECL)
1668 exp = DECL_INITIAL (exp);
1669
1670 /* Replace a nonvolatile const static variable with its value unless
1671 it is an array, in which case we must be sure that taking the
1672 address of the array produces consistent results. */
1673 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1674 {
1675 exp = decl_constant_value_for_broken_optimization (exp);
1676 type = TREE_TYPE (exp);
1677 }
1678
1679 /* Strip no-op conversions. */
1680 orig_exp = exp;
1681 STRIP_TYPE_NOPS (exp);
1682
1683 if (TREE_NO_WARNING (orig_exp))
1684 TREE_NO_WARNING (exp) = 1;
1685
1686 if (INTEGRAL_TYPE_P (type))
1687 return perform_integral_promotions (exp);
1688
1689 if (code == VOID_TYPE)
1690 {
1691 error ("void value not ignored as it ought to be");
1692 return error_mark_node;
1693 }
1694 return exp;
1695 }
1696 \f
1697 /* Look up COMPONENT in a structure or union DECL.
1698
1699 If the component name is not found, returns NULL_TREE. Otherwise,
1700 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1701 stepping down the chain to the component, which is in the last
1702 TREE_VALUE of the list. Normally the list is of length one, but if
1703 the component is embedded within (nested) anonymous structures or
1704 unions, the list steps down the chain to the component. */
1705
1706 static tree
1707 lookup_field (tree decl, tree component)
1708 {
1709 tree type = TREE_TYPE (decl);
1710 tree field;
1711
1712 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1713 to the field elements. Use a binary search on this array to quickly
1714 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1715 will always be set for structures which have many elements. */
1716
1717 if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1718 {
1719 int bot, top, half;
1720 tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1721
1722 field = TYPE_FIELDS (type);
1723 bot = 0;
1724 top = TYPE_LANG_SPECIFIC (type)->s->len;
1725 while (top - bot > 1)
1726 {
1727 half = (top - bot + 1) >> 1;
1728 field = field_array[bot+half];
1729
1730 if (DECL_NAME (field) == NULL_TREE)
1731 {
1732 /* Step through all anon unions in linear fashion. */
1733 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1734 {
1735 field = field_array[bot++];
1736 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1737 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1738 {
1739 tree anon = lookup_field (field, component);
1740
1741 if (anon)
1742 return tree_cons (NULL_TREE, field, anon);
1743 }
1744 }
1745
1746 /* Entire record is only anon unions. */
1747 if (bot > top)
1748 return NULL_TREE;
1749
1750 /* Restart the binary search, with new lower bound. */
1751 continue;
1752 }
1753
1754 if (DECL_NAME (field) == component)
1755 break;
1756 if (DECL_NAME (field) < component)
1757 bot += half;
1758 else
1759 top = bot + half;
1760 }
1761
1762 if (DECL_NAME (field_array[bot]) == component)
1763 field = field_array[bot];
1764 else if (DECL_NAME (field) != component)
1765 return NULL_TREE;
1766 }
1767 else
1768 {
1769 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1770 {
1771 if (DECL_NAME (field) == NULL_TREE
1772 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1773 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1774 {
1775 tree anon = lookup_field (field, component);
1776
1777 if (anon)
1778 return tree_cons (NULL_TREE, field, anon);
1779 }
1780
1781 if (DECL_NAME (field) == component)
1782 break;
1783 }
1784
1785 if (field == NULL_TREE)
1786 return NULL_TREE;
1787 }
1788
1789 return tree_cons (NULL_TREE, field, NULL_TREE);
1790 }
1791
1792 /* Make an expression to refer to the COMPONENT field of
1793 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1794
1795 tree
1796 build_component_ref (tree datum, tree component)
1797 {
1798 tree type = TREE_TYPE (datum);
1799 enum tree_code code = TREE_CODE (type);
1800 tree field = NULL;
1801 tree ref;
1802
1803 if (!objc_is_public (datum, component))
1804 return error_mark_node;
1805
1806 /* See if there is a field or component with name COMPONENT. */
1807
1808 if (code == RECORD_TYPE || code == UNION_TYPE)
1809 {
1810 if (!COMPLETE_TYPE_P (type))
1811 {
1812 c_incomplete_type_error (NULL_TREE, type);
1813 return error_mark_node;
1814 }
1815
1816 field = lookup_field (datum, component);
1817
1818 if (!field)
1819 {
1820 error ("%qT has no member named %qE", type, component);
1821 return error_mark_node;
1822 }
1823
1824 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1825 This might be better solved in future the way the C++ front
1826 end does it - by giving the anonymous entities each a
1827 separate name and type, and then have build_component_ref
1828 recursively call itself. We can't do that here. */
1829 do
1830 {
1831 tree subdatum = TREE_VALUE (field);
1832 int quals;
1833 tree subtype;
1834
1835 if (TREE_TYPE (subdatum) == error_mark_node)
1836 return error_mark_node;
1837
1838 quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1839 quals |= TYPE_QUALS (TREE_TYPE (datum));
1840 subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1841
1842 ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1843 NULL_TREE);
1844 if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1845 TREE_READONLY (ref) = 1;
1846 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1847 TREE_THIS_VOLATILE (ref) = 1;
1848
1849 if (TREE_DEPRECATED (subdatum))
1850 warn_deprecated_use (subdatum);
1851
1852 datum = ref;
1853
1854 field = TREE_CHAIN (field);
1855 }
1856 while (field);
1857
1858 return ref;
1859 }
1860 else if (code != ERROR_MARK)
1861 error ("request for member %qE in something not a structure or union",
1862 component);
1863
1864 return error_mark_node;
1865 }
1866 \f
1867 /* Given an expression PTR for a pointer, return an expression
1868 for the value pointed to.
1869 ERRORSTRING is the name of the operator to appear in error messages. */
1870
1871 tree
1872 build_indirect_ref (tree ptr, const char *errorstring)
1873 {
1874 tree pointer = default_conversion (ptr);
1875 tree type = TREE_TYPE (pointer);
1876
1877 if (TREE_CODE (type) == POINTER_TYPE)
1878 {
1879 if (TREE_CODE (pointer) == ADDR_EXPR
1880 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1881 == TREE_TYPE (type)))
1882 return TREE_OPERAND (pointer, 0);
1883 else
1884 {
1885 tree t = TREE_TYPE (type);
1886 tree ref;
1887
1888 ref = build1 (INDIRECT_REF, t, pointer);
1889
1890 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1891 {
1892 error ("dereferencing pointer to incomplete type");
1893 return error_mark_node;
1894 }
1895 if (VOID_TYPE_P (t) && skip_evaluation == 0)
1896 warning (0, "dereferencing %<void *%> pointer");
1897
1898 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1899 so that we get the proper error message if the result is used
1900 to assign to. Also, &* is supposed to be a no-op.
1901 And ANSI C seems to specify that the type of the result
1902 should be the const type. */
1903 /* A de-reference of a pointer to const is not a const. It is valid
1904 to change it via some other pointer. */
1905 TREE_READONLY (ref) = TYPE_READONLY (t);
1906 TREE_SIDE_EFFECTS (ref)
1907 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1908 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1909 return ref;
1910 }
1911 }
1912 else if (TREE_CODE (pointer) != ERROR_MARK)
1913 error ("invalid type argument of %qs", errorstring);
1914 return error_mark_node;
1915 }
1916
1917 /* This handles expressions of the form "a[i]", which denotes
1918 an array reference.
1919
1920 This is logically equivalent in C to *(a+i), but we may do it differently.
1921 If A is a variable or a member, we generate a primitive ARRAY_REF.
1922 This avoids forcing the array out of registers, and can work on
1923 arrays that are not lvalues (for example, members of structures returned
1924 by functions). */
1925
1926 tree
1927 build_array_ref (tree array, tree index)
1928 {
1929 bool swapped = false;
1930 if (TREE_TYPE (array) == error_mark_node
1931 || TREE_TYPE (index) == error_mark_node)
1932 return error_mark_node;
1933
1934 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1935 && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1936 {
1937 tree temp;
1938 if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1939 && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1940 {
1941 error ("subscripted value is neither array nor pointer");
1942 return error_mark_node;
1943 }
1944 temp = array;
1945 array = index;
1946 index = temp;
1947 swapped = true;
1948 }
1949
1950 if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1951 {
1952 error ("array subscript is not an integer");
1953 return error_mark_node;
1954 }
1955
1956 if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1957 {
1958 error ("subscripted value is pointer to function");
1959 return error_mark_node;
1960 }
1961
1962 /* ??? Existing practice has been to warn only when the char
1963 index is syntactically the index, not for char[array]. */
1964 if (!swapped)
1965 warn_array_subscript_with_type_char (index);
1966
1967 /* Apply default promotions *after* noticing character types. */
1968 index = default_conversion (index);
1969
1970 gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1971
1972 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1973 {
1974 tree rval, type;
1975
1976 /* An array that is indexed by a non-constant
1977 cannot be stored in a register; we must be able to do
1978 address arithmetic on its address.
1979 Likewise an array of elements of variable size. */
1980 if (TREE_CODE (index) != INTEGER_CST
1981 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1982 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1983 {
1984 if (!c_mark_addressable (array))
1985 return error_mark_node;
1986 }
1987 /* An array that is indexed by a constant value which is not within
1988 the array bounds cannot be stored in a register either; because we
1989 would get a crash in store_bit_field/extract_bit_field when trying
1990 to access a non-existent part of the register. */
1991 if (TREE_CODE (index) == INTEGER_CST
1992 && TYPE_DOMAIN (TREE_TYPE (array))
1993 && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
1994 {
1995 if (!c_mark_addressable (array))
1996 return error_mark_node;
1997 }
1998
1999 if (pedantic)
2000 {
2001 tree foo = array;
2002 while (TREE_CODE (foo) == COMPONENT_REF)
2003 foo = TREE_OPERAND (foo, 0);
2004 if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2005 pedwarn ("ISO C forbids subscripting %<register%> array");
2006 else if (!flag_isoc99 && !lvalue_p (foo))
2007 pedwarn ("ISO C90 forbids subscripting non-lvalue array");
2008 }
2009
2010 type = TREE_TYPE (TREE_TYPE (array));
2011 if (TREE_CODE (type) != ARRAY_TYPE)
2012 type = TYPE_MAIN_VARIANT (type);
2013 rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2014 /* Array ref is const/volatile if the array elements are
2015 or if the array is. */
2016 TREE_READONLY (rval)
2017 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2018 | TREE_READONLY (array));
2019 TREE_SIDE_EFFECTS (rval)
2020 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2021 | TREE_SIDE_EFFECTS (array));
2022 TREE_THIS_VOLATILE (rval)
2023 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2024 /* This was added by rms on 16 Nov 91.
2025 It fixes vol struct foo *a; a->elts[1]
2026 in an inline function.
2027 Hope it doesn't break something else. */
2028 | TREE_THIS_VOLATILE (array));
2029 return require_complete_type (fold (rval));
2030 }
2031 else
2032 {
2033 tree ar = default_conversion (array);
2034
2035 if (ar == error_mark_node)
2036 return ar;
2037
2038 gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2039 gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2040
2041 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2042 "array indexing");
2043 }
2044 }
2045 \f
2046 /* Build an external reference to identifier ID. FUN indicates
2047 whether this will be used for a function call. LOC is the source
2048 location of the identifier. */
2049 tree
2050 build_external_ref (tree id, int fun, location_t loc)
2051 {
2052 tree ref;
2053 tree decl = lookup_name (id);
2054
2055 /* In Objective-C, an instance variable (ivar) may be preferred to
2056 whatever lookup_name() found. */
2057 decl = objc_lookup_ivar (decl, id);
2058
2059 if (decl && decl != error_mark_node)
2060 ref = decl;
2061 else if (fun)
2062 /* Implicit function declaration. */
2063 ref = implicitly_declare (id);
2064 else if (decl == error_mark_node)
2065 /* Don't complain about something that's already been
2066 complained about. */
2067 return error_mark_node;
2068 else
2069 {
2070 undeclared_variable (id, loc);
2071 return error_mark_node;
2072 }
2073
2074 if (TREE_TYPE (ref) == error_mark_node)
2075 return error_mark_node;
2076
2077 if (TREE_DEPRECATED (ref))
2078 warn_deprecated_use (ref);
2079
2080 if (!skip_evaluation)
2081 assemble_external (ref);
2082 TREE_USED (ref) = 1;
2083
2084 if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2085 {
2086 if (!in_sizeof && !in_typeof)
2087 C_DECL_USED (ref) = 1;
2088 else if (DECL_INITIAL (ref) == 0
2089 && DECL_EXTERNAL (ref)
2090 && !TREE_PUBLIC (ref))
2091 record_maybe_used_decl (ref);
2092 }
2093
2094 if (TREE_CODE (ref) == CONST_DECL)
2095 {
2096 used_types_insert (TREE_TYPE (ref));
2097 ref = DECL_INITIAL (ref);
2098 TREE_CONSTANT (ref) = 1;
2099 TREE_INVARIANT (ref) = 1;
2100 }
2101 else if (current_function_decl != 0
2102 && !DECL_FILE_SCOPE_P (current_function_decl)
2103 && (TREE_CODE (ref) == VAR_DECL
2104 || TREE_CODE (ref) == PARM_DECL
2105 || TREE_CODE (ref) == FUNCTION_DECL))
2106 {
2107 tree context = decl_function_context (ref);
2108
2109 if (context != 0 && context != current_function_decl)
2110 DECL_NONLOCAL (ref) = 1;
2111 }
2112 /* C99 6.7.4p3: An inline definition of a function with external
2113 linkage ... shall not contain a reference to an identifier with
2114 internal linkage. */
2115 else if (current_function_decl != 0
2116 && DECL_DECLARED_INLINE_P (current_function_decl)
2117 && DECL_EXTERNAL (current_function_decl)
2118 && VAR_OR_FUNCTION_DECL_P (ref)
2119 && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2120 && ! TREE_PUBLIC (ref))
2121 pedwarn ("%H%qD is static but used in inline function %qD "
2122 "which is not static", &loc, ref, current_function_decl);
2123
2124 return ref;
2125 }
2126
2127 /* Record details of decls possibly used inside sizeof or typeof. */
2128 struct maybe_used_decl
2129 {
2130 /* The decl. */
2131 tree decl;
2132 /* The level seen at (in_sizeof + in_typeof). */
2133 int level;
2134 /* The next one at this level or above, or NULL. */
2135 struct maybe_used_decl *next;
2136 };
2137
2138 static struct maybe_used_decl *maybe_used_decls;
2139
2140 /* Record that DECL, an undefined static function reference seen
2141 inside sizeof or typeof, might be used if the operand of sizeof is
2142 a VLA type or the operand of typeof is a variably modified
2143 type. */
2144
2145 static void
2146 record_maybe_used_decl (tree decl)
2147 {
2148 struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2149 t->decl = decl;
2150 t->level = in_sizeof + in_typeof;
2151 t->next = maybe_used_decls;
2152 maybe_used_decls = t;
2153 }
2154
2155 /* Pop the stack of decls possibly used inside sizeof or typeof. If
2156 USED is false, just discard them. If it is true, mark them used
2157 (if no longer inside sizeof or typeof) or move them to the next
2158 level up (if still inside sizeof or typeof). */
2159
2160 void
2161 pop_maybe_used (bool used)
2162 {
2163 struct maybe_used_decl *p = maybe_used_decls;
2164 int cur_level = in_sizeof + in_typeof;
2165 while (p && p->level > cur_level)
2166 {
2167 if (used)
2168 {
2169 if (cur_level == 0)
2170 C_DECL_USED (p->decl) = 1;
2171 else
2172 p->level = cur_level;
2173 }
2174 p = p->next;
2175 }
2176 if (!used || cur_level == 0)
2177 maybe_used_decls = p;
2178 }
2179
2180 /* Return the result of sizeof applied to EXPR. */
2181
2182 struct c_expr
2183 c_expr_sizeof_expr (struct c_expr expr)
2184 {
2185 struct c_expr ret;
2186 if (expr.value == error_mark_node)
2187 {
2188 ret.value = error_mark_node;
2189 ret.original_code = ERROR_MARK;
2190 pop_maybe_used (false);
2191 }
2192 else
2193 {
2194 ret.value = c_sizeof (TREE_TYPE (expr.value));
2195 ret.original_code = ERROR_MARK;
2196 if (c_vla_type_p (TREE_TYPE (expr.value)))
2197 {
2198 /* sizeof is evaluated when given a vla (C99 6.5.3.4p2). */
2199 ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2200 }
2201 pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2202 }
2203 return ret;
2204 }
2205
2206 /* Return the result of sizeof applied to T, a structure for the type
2207 name passed to sizeof (rather than the type itself). */
2208
2209 struct c_expr
2210 c_expr_sizeof_type (struct c_type_name *t)
2211 {
2212 tree type;
2213 struct c_expr ret;
2214 type = groktypename (t);
2215 ret.value = c_sizeof (type);
2216 ret.original_code = ERROR_MARK;
2217 pop_maybe_used (type != error_mark_node
2218 ? C_TYPE_VARIABLE_SIZE (type) : false);
2219 return ret;
2220 }
2221
2222 /* Build a function call to function FUNCTION with parameters PARAMS.
2223 PARAMS is a list--a chain of TREE_LIST nodes--in which the
2224 TREE_VALUE of each node is a parameter-expression.
2225 FUNCTION's data type may be a function type or a pointer-to-function. */
2226
2227 tree
2228 build_function_call (tree function, tree params)
2229 {
2230 tree fntype, fundecl = 0;
2231 tree name = NULL_TREE, result;
2232 tree tem;
2233 int nargs;
2234 tree *argarray;
2235
2236
2237 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
2238 STRIP_TYPE_NOPS (function);
2239
2240 /* Convert anything with function type to a pointer-to-function. */
2241 if (TREE_CODE (function) == FUNCTION_DECL)
2242 {
2243 /* Implement type-directed function overloading for builtins.
2244 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2245 handle all the type checking. The result is a complete expression
2246 that implements this function call. */
2247 tem = resolve_overloaded_builtin (function, params);
2248 if (tem)
2249 return tem;
2250
2251 name = DECL_NAME (function);
2252 fundecl = function;
2253 }
2254 if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2255 function = function_to_pointer_conversion (function);
2256
2257 /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2258 expressions, like those used for ObjC messenger dispatches. */
2259 function = objc_rewrite_function_call (function, params);
2260
2261 fntype = TREE_TYPE (function);
2262
2263 if (TREE_CODE (fntype) == ERROR_MARK)
2264 return error_mark_node;
2265
2266 if (!(TREE_CODE (fntype) == POINTER_TYPE
2267 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2268 {
2269 error ("called object %qE is not a function", function);
2270 return error_mark_node;
2271 }
2272
2273 if (fundecl && TREE_THIS_VOLATILE (fundecl))
2274 current_function_returns_abnormally = 1;
2275
2276 /* fntype now gets the type of function pointed to. */
2277 fntype = TREE_TYPE (fntype);
2278
2279 /* Check that the function is called through a compatible prototype.
2280 If it is not, replace the call by a trap, wrapped up in a compound
2281 expression if necessary. This has the nice side-effect to prevent
2282 the tree-inliner from generating invalid assignment trees which may
2283 blow up in the RTL expander later. */
2284 if ((TREE_CODE (function) == NOP_EXPR
2285 || TREE_CODE (function) == CONVERT_EXPR)
2286 && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2287 && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2288 && !comptypes (fntype, TREE_TYPE (tem)))
2289 {
2290 tree return_type = TREE_TYPE (fntype);
2291 tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2292 NULL_TREE);
2293
2294 /* This situation leads to run-time undefined behavior. We can't,
2295 therefore, simply error unless we can prove that all possible
2296 executions of the program must execute the code. */
2297 warning (0, "function called through a non-compatible type");
2298
2299 /* We can, however, treat "undefined" any way we please.
2300 Call abort to encourage the user to fix the program. */
2301 inform ("if this code is reached, the program will abort");
2302
2303 if (VOID_TYPE_P (return_type))
2304 return trap;
2305 else
2306 {
2307 tree rhs;
2308
2309 if (AGGREGATE_TYPE_P (return_type))
2310 rhs = build_compound_literal (return_type,
2311 build_constructor (return_type, 0));
2312 else
2313 rhs = fold_convert (return_type, integer_zero_node);
2314
2315 return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2316 }
2317 }
2318
2319 /* Convert the parameters to the types declared in the
2320 function prototype, or apply default promotions. */
2321
2322 nargs = list_length (params);
2323 argarray = (tree *) alloca (nargs * sizeof (tree));
2324 nargs = convert_arguments (nargs, argarray, TYPE_ARG_TYPES (fntype),
2325 params, function, fundecl);
2326 if (nargs < 0)
2327 return error_mark_node;
2328
2329 /* Check that the arguments to the function are valid. */
2330
2331 check_function_arguments (TYPE_ATTRIBUTES (fntype), nargs, argarray,
2332 TYPE_ARG_TYPES (fntype));
2333
2334 if (require_constant_value)
2335 {
2336 result = fold_build_call_array_initializer (TREE_TYPE (fntype),
2337 function, nargs, argarray);
2338 if (TREE_CONSTANT (result)
2339 && (name == NULL_TREE
2340 || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2341 pedwarn_init ("initializer element is not constant");
2342 }
2343 else
2344 result = fold_build_call_array (TREE_TYPE (fntype),
2345 function, nargs, argarray);
2346
2347 if (VOID_TYPE_P (TREE_TYPE (result)))
2348 return result;
2349 return require_complete_type (result);
2350 }
2351 \f
2352 /* Convert the argument expressions in the list VALUES
2353 to the types in the list TYPELIST. The resulting arguments are
2354 stored in the array ARGARRAY which has size NARGS.
2355
2356 If TYPELIST is exhausted, or when an element has NULL as its type,
2357 perform the default conversions.
2358
2359 PARMLIST is the chain of parm decls for the function being called.
2360 It may be 0, if that info is not available.
2361 It is used only for generating error messages.
2362
2363 FUNCTION is a tree for the called function. It is used only for
2364 error messages, where it is formatted with %qE.
2365
2366 This is also where warnings about wrong number of args are generated.
2367
2368 VALUES is a chain of TREE_LIST nodes with the elements of the list
2369 in the TREE_VALUE slots of those nodes.
2370
2371 Returns the actual number of arguments processed (which may be less
2372 than NARGS in some error situations), or -1 on failure. */
2373
2374 static int
2375 convert_arguments (int nargs, tree *argarray,
2376 tree typelist, tree values, tree function, tree fundecl)
2377 {
2378 tree typetail, valtail;
2379 int parmnum;
2380 tree selector;
2381
2382 /* Change pointer to function to the function itself for
2383 diagnostics. */
2384 if (TREE_CODE (function) == ADDR_EXPR
2385 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2386 function = TREE_OPERAND (function, 0);
2387
2388 /* Handle an ObjC selector specially for diagnostics. */
2389 selector = objc_message_selector ();
2390
2391 /* Scan the given expressions and types, producing individual
2392 converted arguments and storing them in ARGARRAY. */
2393
2394 for (valtail = values, typetail = typelist, parmnum = 0;
2395 valtail;
2396 valtail = TREE_CHAIN (valtail), parmnum++)
2397 {
2398 tree type = typetail ? TREE_VALUE (typetail) : 0;
2399 tree val = TREE_VALUE (valtail);
2400 tree rname = function;
2401 int argnum = parmnum + 1;
2402 const char *invalid_func_diag;
2403
2404 if (type == void_type_node)
2405 {
2406 error ("too many arguments to function %qE", function);
2407 return parmnum;
2408 }
2409
2410 if (selector && argnum > 2)
2411 {
2412 rname = selector;
2413 argnum -= 2;
2414 }
2415
2416 STRIP_TYPE_NOPS (val);
2417
2418 val = require_complete_type (val);
2419
2420 if (type != 0)
2421 {
2422 /* Formal parm type is specified by a function prototype. */
2423 tree parmval;
2424
2425 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2426 {
2427 error ("type of formal parameter %d is incomplete", parmnum + 1);
2428 parmval = val;
2429 }
2430 else
2431 {
2432 /* Optionally warn about conversions that
2433 differ from the default conversions. */
2434 if (warn_traditional_conversion || warn_traditional)
2435 {
2436 unsigned int formal_prec = TYPE_PRECISION (type);
2437
2438 if (INTEGRAL_TYPE_P (type)
2439 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2440 warning (0, "passing argument %d of %qE as integer "
2441 "rather than floating due to prototype",
2442 argnum, rname);
2443 if (INTEGRAL_TYPE_P (type)
2444 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2445 warning (0, "passing argument %d of %qE as integer "
2446 "rather than complex due to prototype",
2447 argnum, rname);
2448 else if (TREE_CODE (type) == COMPLEX_TYPE
2449 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2450 warning (0, "passing argument %d of %qE as complex "
2451 "rather than floating due to prototype",
2452 argnum, rname);
2453 else if (TREE_CODE (type) == REAL_TYPE
2454 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2455 warning (0, "passing argument %d of %qE as floating "
2456 "rather than integer due to prototype",
2457 argnum, rname);
2458 else if (TREE_CODE (type) == COMPLEX_TYPE
2459 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2460 warning (0, "passing argument %d of %qE as complex "
2461 "rather than integer due to prototype",
2462 argnum, rname);
2463 else if (TREE_CODE (type) == REAL_TYPE
2464 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2465 warning (0, "passing argument %d of %qE as floating "
2466 "rather than complex due to prototype",
2467 argnum, rname);
2468 /* ??? At some point, messages should be written about
2469 conversions between complex types, but that's too messy
2470 to do now. */
2471 else if (TREE_CODE (type) == REAL_TYPE
2472 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2473 {
2474 /* Warn if any argument is passed as `float',
2475 since without a prototype it would be `double'. */
2476 if (formal_prec == TYPE_PRECISION (float_type_node)
2477 && type != dfloat32_type_node)
2478 warning (0, "passing argument %d of %qE as %<float%> "
2479 "rather than %<double%> due to prototype",
2480 argnum, rname);
2481
2482 /* Warn if mismatch between argument and prototype
2483 for decimal float types. Warn of conversions with
2484 binary float types and of precision narrowing due to
2485 prototype. */
2486 else if (type != TREE_TYPE (val)
2487 && (type == dfloat32_type_node
2488 || type == dfloat64_type_node
2489 || type == dfloat128_type_node
2490 || TREE_TYPE (val) == dfloat32_type_node
2491 || TREE_TYPE (val) == dfloat64_type_node
2492 || TREE_TYPE (val) == dfloat128_type_node)
2493 && (formal_prec
2494 <= TYPE_PRECISION (TREE_TYPE (val))
2495 || (type == dfloat128_type_node
2496 && (TREE_TYPE (val)
2497 != dfloat64_type_node
2498 && (TREE_TYPE (val)
2499 != dfloat32_type_node)))
2500 || (type == dfloat64_type_node
2501 && (TREE_TYPE (val)
2502 != dfloat32_type_node))))
2503 warning (0, "passing argument %d of %qE as %qT "
2504 "rather than %qT due to prototype",
2505 argnum, rname, type, TREE_TYPE (val));
2506
2507 }
2508 /* Detect integer changing in width or signedness.
2509 These warnings are only activated with
2510 -Wtraditional-conversion, not with -Wtraditional. */
2511 else if (warn_traditional_conversion && INTEGRAL_TYPE_P (type)
2512 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2513 {
2514 tree would_have_been = default_conversion (val);
2515 tree type1 = TREE_TYPE (would_have_been);
2516
2517 if (TREE_CODE (type) == ENUMERAL_TYPE
2518 && (TYPE_MAIN_VARIANT (type)
2519 == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2520 /* No warning if function asks for enum
2521 and the actual arg is that enum type. */
2522 ;
2523 else if (formal_prec != TYPE_PRECISION (type1))
2524 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2525 "with different width due to prototype",
2526 argnum, rname);
2527 else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2528 ;
2529 /* Don't complain if the formal parameter type
2530 is an enum, because we can't tell now whether
2531 the value was an enum--even the same enum. */
2532 else if (TREE_CODE (type) == ENUMERAL_TYPE)
2533 ;
2534 else if (TREE_CODE (val) == INTEGER_CST
2535 && int_fits_type_p (val, type))
2536 /* Change in signedness doesn't matter
2537 if a constant value is unaffected. */
2538 ;
2539 /* If the value is extended from a narrower
2540 unsigned type, it doesn't matter whether we
2541 pass it as signed or unsigned; the value
2542 certainly is the same either way. */
2543 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2544 && TYPE_UNSIGNED (TREE_TYPE (val)))
2545 ;
2546 else if (TYPE_UNSIGNED (type))
2547 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2548 "as unsigned due to prototype",
2549 argnum, rname);
2550 else
2551 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2552 "as signed due to prototype", argnum, rname);
2553 }
2554 }
2555
2556 parmval = convert_for_assignment (type, val, ic_argpass,
2557 fundecl, function,
2558 parmnum + 1);
2559
2560 if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2561 && INTEGRAL_TYPE_P (type)
2562 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2563 parmval = default_conversion (parmval);
2564 }
2565 argarray[parmnum] = parmval;
2566 }
2567 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2568 && (TYPE_PRECISION (TREE_TYPE (val))
2569 < TYPE_PRECISION (double_type_node))
2570 && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2571 /* Convert `float' to `double'. */
2572 argarray[parmnum] = convert (double_type_node, val);
2573 else if ((invalid_func_diag =
2574 targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2575 {
2576 error (invalid_func_diag);
2577 return -1;
2578 }
2579 else
2580 /* Convert `short' and `char' to full-size `int'. */
2581 argarray[parmnum] = default_conversion (val);
2582
2583 if (typetail)
2584 typetail = TREE_CHAIN (typetail);
2585 }
2586
2587 gcc_assert (parmnum == nargs);
2588
2589 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2590 {
2591 error ("too few arguments to function %qE", function);
2592 return -1;
2593 }
2594
2595 return parmnum;
2596 }
2597 \f
2598 /* This is the entry point used by the parser to build unary operators
2599 in the input. CODE, a tree_code, specifies the unary operator, and
2600 ARG is the operand. For unary plus, the C parser currently uses
2601 CONVERT_EXPR for code. */
2602
2603 struct c_expr
2604 parser_build_unary_op (enum tree_code code, struct c_expr arg)
2605 {
2606 struct c_expr result;
2607
2608 result.original_code = ERROR_MARK;
2609 result.value = build_unary_op (code, arg.value, 0);
2610
2611 if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value))
2612 overflow_warning (result.value);
2613
2614 return result;
2615 }
2616
2617 /* This is the entry point used by the parser to build binary operators
2618 in the input. CODE, a tree_code, specifies the binary operator, and
2619 ARG1 and ARG2 are the operands. In addition to constructing the
2620 expression, we check for operands that were written with other binary
2621 operators in a way that is likely to confuse the user. */
2622
2623 struct c_expr
2624 parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2625 struct c_expr arg2)
2626 {
2627 struct c_expr result;
2628
2629 enum tree_code code1 = arg1.original_code;
2630 enum tree_code code2 = arg2.original_code;
2631
2632 result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2633 result.original_code = code;
2634
2635 if (TREE_CODE (result.value) == ERROR_MARK)
2636 return result;
2637
2638 /* Check for cases such as x+y<<z which users are likely
2639 to misinterpret. */
2640 if (warn_parentheses)
2641 warn_about_parentheses (code, code1, code2);
2642
2643 if (code1 != tcc_comparison)
2644 warn_logical_operator (code, arg1.value, arg2.value);
2645
2646 /* Warn about comparisons against string literals, with the exception
2647 of testing for equality or inequality of a string literal with NULL. */
2648 if (code == EQ_EXPR || code == NE_EXPR)
2649 {
2650 if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2651 || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2652 warning (OPT_Waddress, "comparison with string literal results in unspecified behaviour");
2653 }
2654 else if (TREE_CODE_CLASS (code) == tcc_comparison
2655 && (code1 == STRING_CST || code2 == STRING_CST))
2656 warning (OPT_Waddress, "comparison with string literal results in unspecified behaviour");
2657
2658 if (TREE_OVERFLOW_P (result.value)
2659 && !TREE_OVERFLOW_P (arg1.value)
2660 && !TREE_OVERFLOW_P (arg2.value))
2661 overflow_warning (result.value);
2662
2663 return result;
2664 }
2665 \f
2666 /* Return a tree for the difference of pointers OP0 and OP1.
2667 The resulting tree has type int. */
2668
2669 static tree
2670 pointer_diff (tree op0, tree op1)
2671 {
2672 tree restype = ptrdiff_type_node;
2673
2674 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2675 tree con0, con1, lit0, lit1;
2676 tree orig_op1 = op1;
2677
2678 if (pedantic || warn_pointer_arith)
2679 {
2680 if (TREE_CODE (target_type) == VOID_TYPE)
2681 pedwarn ("pointer of type %<void *%> used in subtraction");
2682 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2683 pedwarn ("pointer to a function used in subtraction");
2684 }
2685
2686 /* If the conversion to ptrdiff_type does anything like widening or
2687 converting a partial to an integral mode, we get a convert_expression
2688 that is in the way to do any simplifications.
2689 (fold-const.c doesn't know that the extra bits won't be needed.
2690 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2691 different mode in place.)
2692 So first try to find a common term here 'by hand'; we want to cover
2693 at least the cases that occur in legal static initializers. */
2694 if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2695 && (TYPE_PRECISION (TREE_TYPE (op0))
2696 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2697 con0 = TREE_OPERAND (op0, 0);
2698 else
2699 con0 = op0;
2700 if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2701 && (TYPE_PRECISION (TREE_TYPE (op1))
2702 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2703 con1 = TREE_OPERAND (op1, 0);
2704 else
2705 con1 = op1;
2706
2707 if (TREE_CODE (con0) == PLUS_EXPR)
2708 {
2709 lit0 = TREE_OPERAND (con0, 1);
2710 con0 = TREE_OPERAND (con0, 0);
2711 }
2712 else
2713 lit0 = integer_zero_node;
2714
2715 if (TREE_CODE (con1) == PLUS_EXPR)
2716 {
2717 lit1 = TREE_OPERAND (con1, 1);
2718 con1 = TREE_OPERAND (con1, 0);
2719 }
2720 else
2721 lit1 = integer_zero_node;
2722
2723 if (operand_equal_p (con0, con1, 0))
2724 {
2725 op0 = lit0;
2726 op1 = lit1;
2727 }
2728
2729
2730 /* First do the subtraction as integers;
2731 then drop through to build the divide operator.
2732 Do not do default conversions on the minus operator
2733 in case restype is a short type. */
2734
2735 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2736 convert (restype, op1), 0);
2737 /* This generates an error if op1 is pointer to incomplete type. */
2738 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2739 error ("arithmetic on pointer to an incomplete type");
2740
2741 /* This generates an error if op0 is pointer to incomplete type. */
2742 op1 = c_size_in_bytes (target_type);
2743
2744 /* Divide by the size, in easiest possible way. */
2745 return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2746 }
2747 \f
2748 /* Construct and perhaps optimize a tree representation
2749 for a unary operation. CODE, a tree_code, specifies the operation
2750 and XARG is the operand.
2751 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2752 the default promotions (such as from short to int).
2753 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2754 allows non-lvalues; this is only used to handle conversion of non-lvalue
2755 arrays to pointers in C99. */
2756
2757 tree
2758 build_unary_op (enum tree_code code, tree xarg, int flag)
2759 {
2760 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2761 tree arg = xarg;
2762 tree argtype = 0;
2763 enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2764 tree val;
2765 int noconvert = flag;
2766 const char *invalid_op_diag;
2767
2768 if (typecode == ERROR_MARK)
2769 return error_mark_node;
2770 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2771 typecode = INTEGER_TYPE;
2772
2773 if ((invalid_op_diag
2774 = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2775 {
2776 error (invalid_op_diag);
2777 return error_mark_node;
2778 }
2779
2780 switch (code)
2781 {
2782 case CONVERT_EXPR:
2783 /* This is used for unary plus, because a CONVERT_EXPR
2784 is enough to prevent anybody from looking inside for
2785 associativity, but won't generate any code. */
2786 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2787 || typecode == COMPLEX_TYPE
2788 || typecode == VECTOR_TYPE))
2789 {
2790 error ("wrong type argument to unary plus");
2791 return error_mark_node;
2792 }
2793 else if (!noconvert)
2794 arg = default_conversion (arg);
2795 arg = non_lvalue (arg);
2796 break;
2797
2798 case NEGATE_EXPR:
2799 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2800 || typecode == COMPLEX_TYPE
2801 || typecode == VECTOR_TYPE))
2802 {
2803 error ("wrong type argument to unary minus");
2804 return error_mark_node;
2805 }
2806 else if (!noconvert)
2807 arg = default_conversion (arg);
2808 break;
2809
2810 case BIT_NOT_EXPR:
2811 if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2812 {
2813 if (!noconvert)
2814 arg = default_conversion (arg);
2815 }
2816 else if (typecode == COMPLEX_TYPE)
2817 {
2818 code = CONJ_EXPR;
2819 if (pedantic)
2820 pedwarn ("ISO C does not support %<~%> for complex conjugation");
2821 if (!noconvert)
2822 arg = default_conversion (arg);
2823 }
2824 else
2825 {
2826 error ("wrong type argument to bit-complement");
2827 return error_mark_node;
2828 }
2829 break;
2830
2831 case ABS_EXPR:
2832 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2833 {
2834 error ("wrong type argument to abs");
2835 return error_mark_node;
2836 }
2837 else if (!noconvert)
2838 arg = default_conversion (arg);
2839 break;
2840
2841 case CONJ_EXPR:
2842 /* Conjugating a real value is a no-op, but allow it anyway. */
2843 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2844 || typecode == COMPLEX_TYPE))
2845 {
2846 error ("wrong type argument to conjugation");
2847 return error_mark_node;
2848 }
2849 else if (!noconvert)
2850 arg = default_conversion (arg);
2851 break;
2852
2853 case TRUTH_NOT_EXPR:
2854 if (typecode != INTEGER_TYPE
2855 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2856 && typecode != COMPLEX_TYPE)
2857 {
2858 error ("wrong type argument to unary exclamation mark");
2859 return error_mark_node;
2860 }
2861 arg = c_objc_common_truthvalue_conversion (arg);
2862 return invert_truthvalue (arg);
2863
2864 case REALPART_EXPR:
2865 if (TREE_CODE (arg) == COMPLEX_CST)
2866 return TREE_REALPART (arg);
2867 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2868 return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2869 else
2870 return arg;
2871
2872 case IMAGPART_EXPR:
2873 if (TREE_CODE (arg) == COMPLEX_CST)
2874 return TREE_IMAGPART (arg);
2875 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2876 return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2877 else
2878 return convert (TREE_TYPE (arg), integer_zero_node);
2879
2880 case PREINCREMENT_EXPR:
2881 case POSTINCREMENT_EXPR:
2882 case PREDECREMENT_EXPR:
2883 case POSTDECREMENT_EXPR:
2884
2885 /* Increment or decrement the real part of the value,
2886 and don't change the imaginary part. */
2887 if (typecode == COMPLEX_TYPE)
2888 {
2889 tree real, imag;
2890
2891 if (pedantic)
2892 pedwarn ("ISO C does not support %<++%> and %<--%>"
2893 " on complex types");
2894
2895 arg = stabilize_reference (arg);
2896 real = build_unary_op (REALPART_EXPR, arg, 1);
2897 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2898 return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2899 build_unary_op (code, real, 1), imag);
2900 }
2901
2902 /* Report invalid types. */
2903
2904 if (typecode != POINTER_TYPE
2905 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2906 {
2907 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2908 error ("wrong type argument to increment");
2909 else
2910 error ("wrong type argument to decrement");
2911
2912 return error_mark_node;
2913 }
2914
2915 {
2916 tree inc;
2917 tree result_type = TREE_TYPE (arg);
2918
2919 arg = get_unwidened (arg, 0);
2920 argtype = TREE_TYPE (arg);
2921
2922 /* Compute the increment. */
2923
2924 if (typecode == POINTER_TYPE)
2925 {
2926 /* If pointer target is an undefined struct,
2927 we just cannot know how to do the arithmetic. */
2928 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2929 {
2930 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2931 error ("increment of pointer to unknown structure");
2932 else
2933 error ("decrement of pointer to unknown structure");
2934 }
2935 else if ((pedantic || warn_pointer_arith)
2936 && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2937 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2938 {
2939 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2940 pedwarn ("wrong type argument to increment");
2941 else
2942 pedwarn ("wrong type argument to decrement");
2943 }
2944
2945 inc = c_size_in_bytes (TREE_TYPE (result_type));
2946 }
2947 else
2948 inc = integer_one_node;
2949
2950 inc = convert (argtype, inc);
2951
2952 /* Complain about anything else that is not a true lvalue. */
2953 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2954 || code == POSTINCREMENT_EXPR)
2955 ? lv_increment
2956 : lv_decrement)))
2957 return error_mark_node;
2958
2959 /* Report a read-only lvalue. */
2960 if (TREE_READONLY (arg))
2961 {
2962 readonly_error (arg,
2963 ((code == PREINCREMENT_EXPR
2964 || code == POSTINCREMENT_EXPR)
2965 ? lv_increment : lv_decrement));
2966 return error_mark_node;
2967 }
2968
2969 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2970 val = boolean_increment (code, arg);
2971 else
2972 val = build2 (code, TREE_TYPE (arg), arg, inc);
2973 TREE_SIDE_EFFECTS (val) = 1;
2974 val = convert (result_type, val);
2975 if (TREE_CODE (val) != code)
2976 TREE_NO_WARNING (val) = 1;
2977 return val;
2978 }
2979
2980 case ADDR_EXPR:
2981 /* Note that this operation never does default_conversion. */
2982
2983 /* Let &* cancel out to simplify resulting code. */
2984 if (TREE_CODE (arg) == INDIRECT_REF)
2985 {
2986 /* Don't let this be an lvalue. */
2987 if (lvalue_p (TREE_OPERAND (arg, 0)))
2988 return non_lvalue (TREE_OPERAND (arg, 0));
2989 return TREE_OPERAND (arg, 0);
2990 }
2991
2992 /* For &x[y], return x+y */
2993 if (TREE_CODE (arg) == ARRAY_REF)
2994 {
2995 tree op0 = TREE_OPERAND (arg, 0);
2996 if (!c_mark_addressable (op0))
2997 return error_mark_node;
2998 return build_binary_op (PLUS_EXPR,
2999 (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3000 ? array_to_pointer_conversion (op0)
3001 : op0),
3002 TREE_OPERAND (arg, 1), 1);
3003 }
3004
3005 /* Anything not already handled and not a true memory reference
3006 or a non-lvalue array is an error. */
3007 else if (typecode != FUNCTION_TYPE && !flag
3008 && !lvalue_or_else (arg, lv_addressof))
3009 return error_mark_node;
3010
3011 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3012 argtype = TREE_TYPE (arg);
3013
3014 /* If the lvalue is const or volatile, merge that into the type
3015 to which the address will point. Note that you can't get a
3016 restricted pointer by taking the address of something, so we
3017 only have to deal with `const' and `volatile' here. */
3018 if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3019 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3020 argtype = c_build_type_variant (argtype,
3021 TREE_READONLY (arg),
3022 TREE_THIS_VOLATILE (arg));
3023
3024 if (!c_mark_addressable (arg))
3025 return error_mark_node;
3026
3027 gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3028 || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3029
3030 argtype = build_pointer_type (argtype);
3031
3032 /* ??? Cope with user tricks that amount to offsetof. Delete this
3033 when we have proper support for integer constant expressions. */
3034 val = get_base_address (arg);
3035 if (val && TREE_CODE (val) == INDIRECT_REF
3036 && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3037 {
3038 tree op0 = fold_convert (argtype, fold_offsetof (arg, val)), op1;
3039
3040 op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3041 return fold_build2 (PLUS_EXPR, argtype, op0, op1);
3042 }
3043
3044 val = build1 (ADDR_EXPR, argtype, arg);
3045
3046 return val;
3047
3048 default:
3049 gcc_unreachable ();
3050 }
3051
3052 if (argtype == 0)
3053 argtype = TREE_TYPE (arg);
3054 return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3055 : fold_build1 (code, argtype, arg);
3056 }
3057
3058 /* Return nonzero if REF is an lvalue valid for this language.
3059 Lvalues can be assigned, unless their type has TYPE_READONLY.
3060 Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
3061
3062 static int
3063 lvalue_p (tree ref)
3064 {
3065 enum tree_code code = TREE_CODE (ref);
3066
3067 switch (code)
3068 {
3069 case REALPART_EXPR:
3070 case IMAGPART_EXPR:
3071 case COMPONENT_REF:
3072 return lvalue_p (TREE_OPERAND (ref, 0));
3073
3074 case COMPOUND_LITERAL_EXPR:
3075 case STRING_CST:
3076 return 1;
3077
3078 case INDIRECT_REF:
3079 case ARRAY_REF:
3080 case VAR_DECL:
3081 case PARM_DECL:
3082 case RESULT_DECL:
3083 case ERROR_MARK:
3084 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3085 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3086
3087 case BIND_EXPR:
3088 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3089
3090 default:
3091 return 0;
3092 }
3093 }
3094 \f
3095 /* Give an error for storing in something that is 'const'. */
3096
3097 static void
3098 readonly_error (tree arg, enum lvalue_use use)
3099 {
3100 gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3101 || use == lv_asm);
3102 /* Using this macro rather than (for example) arrays of messages
3103 ensures that all the format strings are checked at compile
3104 time. */
3105 #define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A) \
3106 : (use == lv_increment ? (I) \
3107 : (use == lv_decrement ? (D) : (AS))))
3108 if (TREE_CODE (arg) == COMPONENT_REF)
3109 {
3110 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3111 readonly_error (TREE_OPERAND (arg, 0), use);
3112 else
3113 error (READONLY_MSG (G_("assignment of read-only member %qD"),
3114 G_("increment of read-only member %qD"),
3115 G_("decrement of read-only member %qD"),
3116 G_("read-only member %qD used as %<asm%> output")),
3117 TREE_OPERAND (arg, 1));
3118 }
3119 else if (TREE_CODE (arg) == VAR_DECL)
3120 error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3121 G_("increment of read-only variable %qD"),
3122 G_("decrement of read-only variable %qD"),
3123 G_("read-only variable %qD used as %<asm%> output")),
3124 arg);
3125 else
3126 error (READONLY_MSG (G_("assignment of read-only location"),
3127 G_("increment of read-only location"),
3128 G_("decrement of read-only location"),
3129 G_("read-only location used as %<asm%> output")));
3130 }
3131
3132
3133 /* Return nonzero if REF is an lvalue valid for this language;
3134 otherwise, print an error message and return zero. USE says
3135 how the lvalue is being used and so selects the error message. */
3136
3137 static int
3138 lvalue_or_else (tree ref, enum lvalue_use use)
3139 {
3140 int win = lvalue_p (ref);
3141
3142 if (!win)
3143 lvalue_error (use);
3144
3145 return win;
3146 }
3147 \f
3148 /* Mark EXP saying that we need to be able to take the
3149 address of it; it should not be allocated in a register.
3150 Returns true if successful. */
3151
3152 bool
3153 c_mark_addressable (tree exp)
3154 {
3155 tree x = exp;
3156
3157 while (1)
3158 switch (TREE_CODE (x))
3159 {
3160 case COMPONENT_REF:
3161 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3162 {
3163 error
3164 ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3165 return false;
3166 }
3167
3168 /* ... fall through ... */
3169
3170 case ADDR_EXPR:
3171 case ARRAY_REF:
3172 case REALPART_EXPR:
3173 case IMAGPART_EXPR:
3174 x = TREE_OPERAND (x, 0);
3175 break;
3176
3177 case COMPOUND_LITERAL_EXPR:
3178 case CONSTRUCTOR:
3179 TREE_ADDRESSABLE (x) = 1;
3180 return true;
3181
3182 case VAR_DECL:
3183 case CONST_DECL:
3184 case PARM_DECL:
3185 case RESULT_DECL:
3186 if (C_DECL_REGISTER (x)
3187 && DECL_NONLOCAL (x))
3188 {
3189 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3190 {
3191 error
3192 ("global register variable %qD used in nested function", x);
3193 return false;
3194 }
3195 pedwarn ("register variable %qD used in nested function", x);
3196 }
3197 else if (C_DECL_REGISTER (x))
3198 {
3199 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3200 error ("address of global register variable %qD requested", x);
3201 else
3202 error ("address of register variable %qD requested", x);
3203 return false;
3204 }
3205
3206 /* drops in */
3207 case FUNCTION_DECL:
3208 TREE_ADDRESSABLE (x) = 1;
3209 /* drops out */
3210 default:
3211 return true;
3212 }
3213 }
3214 \f
3215 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3216
3217 tree
3218 build_conditional_expr (tree ifexp, tree op1, tree op2)
3219 {
3220 tree type1;
3221 tree type2;
3222 enum tree_code code1;
3223 enum tree_code code2;
3224 tree result_type = NULL;
3225 tree orig_op1 = op1, orig_op2 = op2;
3226
3227 /* Promote both alternatives. */
3228
3229 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3230 op1 = default_conversion (op1);
3231 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3232 op2 = default_conversion (op2);
3233
3234 if (TREE_CODE (ifexp) == ERROR_MARK
3235 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3236 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3237 return error_mark_node;
3238
3239 type1 = TREE_TYPE (op1);
3240 code1 = TREE_CODE (type1);
3241 type2 = TREE_TYPE (op2);
3242 code2 = TREE_CODE (type2);
3243
3244 /* C90 does not permit non-lvalue arrays in conditional expressions.
3245 In C99 they will be pointers by now. */
3246 if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3247 {
3248 error ("non-lvalue array in conditional expression");
3249 return error_mark_node;
3250 }
3251
3252 /* Quickly detect the usual case where op1 and op2 have the same type
3253 after promotion. */
3254 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3255 {
3256 if (type1 == type2)
3257 result_type = type1;
3258 else
3259 result_type = TYPE_MAIN_VARIANT (type1);
3260 }
3261 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3262 || code1 == COMPLEX_TYPE)
3263 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3264 || code2 == COMPLEX_TYPE))
3265 {
3266 result_type = c_common_type (type1, type2);
3267
3268 /* If -Wsign-compare, warn here if type1 and type2 have
3269 different signedness. We'll promote the signed to unsigned
3270 and later code won't know it used to be different.
3271 Do this check on the original types, so that explicit casts
3272 will be considered, but default promotions won't. */
3273 if (warn_sign_compare && !skip_evaluation)
3274 {
3275 int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3276 int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3277
3278 if (unsigned_op1 ^ unsigned_op2)
3279 {
3280 bool ovf;
3281
3282 /* Do not warn if the result type is signed, since the
3283 signed type will only be chosen if it can represent
3284 all the values of the unsigned type. */
3285 if (!TYPE_UNSIGNED (result_type))
3286 /* OK */;
3287 /* Do not warn if the signed quantity is an unsuffixed
3288 integer literal (or some static constant expression
3289 involving such literals) and it is non-negative. */
3290 else if ((unsigned_op2
3291 && tree_expr_nonnegative_warnv_p (op1, &ovf))
3292 || (unsigned_op1
3293 && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3294 /* OK */;
3295 else
3296 warning (0, "signed and unsigned type in conditional expression");
3297 }
3298 }
3299 }
3300 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3301 {
3302 if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3303 pedwarn ("ISO C forbids conditional expr with only one void side");
3304 result_type = void_type_node;
3305 }
3306 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3307 {
3308 if (comp_target_types (type1, type2))
3309 result_type = common_pointer_type (type1, type2);
3310 else if (null_pointer_constant_p (orig_op1))
3311 result_type = qualify_type (type2, type1);
3312 else if (null_pointer_constant_p (orig_op2))
3313 result_type = qualify_type (type1, type2);
3314 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3315 {
3316 if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3317 pedwarn ("ISO C forbids conditional expr between "
3318 "%<void *%> and function pointer");
3319 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3320 TREE_TYPE (type2)));
3321 }
3322 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3323 {
3324 if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3325 pedwarn ("ISO C forbids conditional expr between "
3326 "%<void *%> and function pointer");
3327 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3328 TREE_TYPE (type1)));
3329 }
3330 else
3331 {
3332 pedwarn ("pointer type mismatch in conditional expression");
3333 result_type = build_pointer_type (void_type_node);
3334 }
3335 }
3336 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3337 {
3338 if (!null_pointer_constant_p (orig_op2))
3339 pedwarn ("pointer/integer type mismatch in conditional expression");
3340 else
3341 {
3342 op2 = null_pointer_node;
3343 }
3344 result_type = type1;
3345 }
3346 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3347 {
3348 if (!null_pointer_constant_p (orig_op1))
3349 pedwarn ("pointer/integer type mismatch in conditional expression");
3350 else
3351 {
3352 op1 = null_pointer_node;
3353 }
3354 result_type = type2;
3355 }
3356
3357 if (!result_type)
3358 {
3359 if (flag_cond_mismatch)
3360 result_type = void_type_node;
3361 else
3362 {
3363 error ("type mismatch in conditional expression");
3364 return error_mark_node;
3365 }
3366 }
3367
3368 /* Merge const and volatile flags of the incoming types. */
3369 result_type
3370 = build_type_variant (result_type,
3371 TREE_READONLY (op1) || TREE_READONLY (op2),
3372 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3373
3374 if (result_type != TREE_TYPE (op1))
3375 op1 = convert_and_check (result_type, op1);
3376 if (result_type != TREE_TYPE (op2))
3377 op2 = convert_and_check (result_type, op2);
3378
3379 return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3380 }
3381 \f
3382 /* Return a compound expression that performs two expressions and
3383 returns the value of the second of them. */
3384
3385 tree
3386 build_compound_expr (tree expr1, tree expr2)
3387 {
3388 if (!TREE_SIDE_EFFECTS (expr1))
3389 {
3390 /* The left-hand operand of a comma expression is like an expression
3391 statement: with -Wextra or -Wunused, we should warn if it doesn't have
3392 any side-effects, unless it was explicitly cast to (void). */
3393 if (warn_unused_value)
3394 {
3395 if (VOID_TYPE_P (TREE_TYPE (expr1))
3396 && (TREE_CODE (expr1) == NOP_EXPR
3397 || TREE_CODE (expr1) == CONVERT_EXPR))
3398 ; /* (void) a, b */
3399 else if (VOID_TYPE_P (TREE_TYPE (expr1))
3400 && TREE_CODE (expr1) == COMPOUND_EXPR
3401 && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3402 || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3403 ; /* (void) a, (void) b, c */
3404 else
3405 warning (0, "left-hand operand of comma expression has no effect");
3406 }
3407 }
3408
3409 /* With -Wunused, we should also warn if the left-hand operand does have
3410 side-effects, but computes a value which is not used. For example, in
3411 `foo() + bar(), baz()' the result of the `+' operator is not used,
3412 so we should issue a warning. */
3413 else if (warn_unused_value)
3414 warn_if_unused_value (expr1, input_location);
3415
3416 if (expr2 == error_mark_node)
3417 return error_mark_node;
3418
3419 return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3420 }
3421
3422 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3423
3424 tree
3425 build_c_cast (tree type, tree expr)
3426 {
3427 tree value = expr;
3428
3429 if (type == error_mark_node || expr == error_mark_node)
3430 return error_mark_node;
3431
3432 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3433 only in <protocol> qualifications. But when constructing cast expressions,
3434 the protocols do matter and must be kept around. */
3435 if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3436 return build1 (NOP_EXPR, type, expr);
3437
3438 type = TYPE_MAIN_VARIANT (type);
3439
3440 if (TREE_CODE (type) == ARRAY_TYPE)
3441 {
3442 error ("cast specifies array type");
3443 return error_mark_node;
3444 }
3445
3446 if (TREE_CODE (type) == FUNCTION_TYPE)
3447 {
3448 error ("cast specifies function type");
3449 return error_mark_node;
3450 }
3451
3452 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3453 {
3454 if (pedantic)
3455 {
3456 if (TREE_CODE (type) == RECORD_TYPE
3457 || TREE_CODE (type) == UNION_TYPE)
3458 pedwarn ("ISO C forbids casting nonscalar to the same type");
3459 }
3460 }
3461 else if (TREE_CODE (type) == UNION_TYPE)
3462 {
3463 tree field;
3464
3465 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3466 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3467 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3468 break;
3469
3470 if (field)
3471 {
3472 tree t;
3473
3474 if (pedantic)
3475 pedwarn ("ISO C forbids casts to union type");
3476 t = digest_init (type,
3477 build_constructor_single (type, field, value),
3478 true, 0);
3479 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3480 TREE_INVARIANT (t) = TREE_INVARIANT (value);
3481 return t;
3482 }
3483 error ("cast to union type from type not present in union");
3484 return error_mark_node;
3485 }
3486 else
3487 {
3488 tree otype, ovalue;
3489
3490 if (type == void_type_node)
3491 return build1 (CONVERT_EXPR, type, value);
3492
3493 otype = TREE_TYPE (value);
3494
3495 /* Optionally warn about potentially worrisome casts. */
3496
3497 if (warn_cast_qual
3498 && TREE_CODE (type) == POINTER_TYPE
3499 && TREE_CODE (otype) == POINTER_TYPE)
3500 {
3501 tree in_type = type;
3502 tree in_otype = otype;
3503 int added = 0;
3504 int discarded = 0;
3505
3506 /* Check that the qualifiers on IN_TYPE are a superset of
3507 the qualifiers of IN_OTYPE. The outermost level of
3508 POINTER_TYPE nodes is uninteresting and we stop as soon
3509 as we hit a non-POINTER_TYPE node on either type. */
3510 do
3511 {
3512 in_otype = TREE_TYPE (in_otype);
3513 in_type = TREE_TYPE (in_type);
3514
3515 /* GNU C allows cv-qualified function types. 'const'
3516 means the function is very pure, 'volatile' means it
3517 can't return. We need to warn when such qualifiers
3518 are added, not when they're taken away. */
3519 if (TREE_CODE (in_otype) == FUNCTION_TYPE
3520 && TREE_CODE (in_type) == FUNCTION_TYPE)
3521 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3522 else
3523 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3524 }
3525 while (TREE_CODE (in_type) == POINTER_TYPE
3526 && TREE_CODE (in_otype) == POINTER_TYPE);
3527
3528 if (added)
3529 warning (0, "cast adds new qualifiers to function type");
3530
3531 if (discarded)
3532 /* There are qualifiers present in IN_OTYPE that are not
3533 present in IN_TYPE. */
3534 warning (0, "cast discards qualifiers from pointer target type");
3535 }
3536
3537 /* Warn about possible alignment problems. */
3538 if (STRICT_ALIGNMENT
3539 && TREE_CODE (type) == POINTER_TYPE
3540 && TREE_CODE (otype) == POINTER_TYPE
3541 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3542 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3543 /* Don't warn about opaque types, where the actual alignment
3544 restriction is unknown. */
3545 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3546 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3547 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3548 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3549 warning (OPT_Wcast_align,
3550 "cast increases required alignment of target type");
3551
3552 if (TREE_CODE (type) == INTEGER_TYPE
3553 && TREE_CODE (otype) == POINTER_TYPE
3554 && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3555 /* Unlike conversion of integers to pointers, where the
3556 warning is disabled for converting constants because
3557 of cases such as SIG_*, warn about converting constant
3558 pointers to integers. In some cases it may cause unwanted
3559 sign extension, and a warning is appropriate. */
3560 warning (OPT_Wpointer_to_int_cast,
3561 "cast from pointer to integer of different size");
3562
3563 if (TREE_CODE (value) == CALL_EXPR
3564 && TREE_CODE (type) != TREE_CODE (otype))
3565 warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3566 "to non-matching type %qT", otype, type);
3567
3568 if (TREE_CODE (type) == POINTER_TYPE
3569 && TREE_CODE (otype) == INTEGER_TYPE
3570 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3571 /* Don't warn about converting any constant. */
3572 && !TREE_CONSTANT (value))
3573 warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3574 "of different size");
3575
3576 strict_aliasing_warning (otype, type, expr);
3577
3578 /* If pedantic, warn for conversions between function and object
3579 pointer types, except for converting a null pointer constant
3580 to function pointer type. */
3581 if (pedantic
3582 && TREE_CODE (type) == POINTER_TYPE
3583 && TREE_CODE (otype) == POINTER_TYPE
3584 && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3585 && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3586 pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3587
3588 if (pedantic
3589 && TREE_CODE (type) == POINTER_TYPE
3590 && TREE_CODE (otype) == POINTER_TYPE
3591 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3592 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3593 && !null_pointer_constant_p (value))
3594 pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3595
3596 ovalue = value;
3597 value = convert (type, value);
3598
3599 /* Ignore any integer overflow caused by the cast. */
3600 if (TREE_CODE (value) == INTEGER_CST)
3601 {
3602 if (CONSTANT_CLASS_P (ovalue) && TREE_OVERFLOW (ovalue))
3603 {
3604 if (!TREE_OVERFLOW (value))
3605 {
3606 /* Avoid clobbering a shared constant. */
3607 value = copy_node (value);
3608 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3609 }
3610 }
3611 else if (TREE_OVERFLOW (value))
3612 /* Reset VALUE's overflow flags, ensuring constant sharing. */
3613 value = build_int_cst_wide (TREE_TYPE (value),
3614 TREE_INT_CST_LOW (value),
3615 TREE_INT_CST_HIGH (value));
3616 }
3617 }
3618
3619 /* Don't let a cast be an lvalue. */
3620 if (value == expr)
3621 value = non_lvalue (value);
3622
3623 return value;
3624 }
3625
3626 /* Interpret a cast of expression EXPR to type TYPE. */
3627 tree
3628 c_cast_expr (struct c_type_name *type_name, tree expr)
3629 {
3630 tree type;
3631 int saved_wsp = warn_strict_prototypes;
3632
3633 /* This avoids warnings about unprototyped casts on
3634 integers. E.g. "#define SIG_DFL (void(*)())0". */
3635 if (TREE_CODE (expr) == INTEGER_CST)
3636 warn_strict_prototypes = 0;
3637 type = groktypename (type_name);
3638 warn_strict_prototypes = saved_wsp;
3639
3640 return build_c_cast (type, expr);
3641 }
3642 \f
3643 /* Build an assignment expression of lvalue LHS from value RHS.
3644 MODIFYCODE is the code for a binary operator that we use
3645 to combine the old value of LHS with RHS to get the new value.
3646 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3647
3648 tree
3649 build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3650 {
3651 tree result;
3652 tree newrhs;
3653 tree lhstype = TREE_TYPE (lhs);
3654 tree olhstype = lhstype;
3655
3656 /* Types that aren't fully specified cannot be used in assignments. */
3657 lhs = require_complete_type (lhs);
3658
3659 /* Avoid duplicate error messages from operands that had errors. */
3660 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3661 return error_mark_node;
3662
3663 if (!lvalue_or_else (lhs, lv_assign))
3664 return error_mark_node;
3665
3666 STRIP_TYPE_NOPS (rhs);
3667
3668 newrhs = rhs;
3669
3670 /* If a binary op has been requested, combine the old LHS value with the RHS
3671 producing the value we should actually store into the LHS. */
3672
3673 if (modifycode != NOP_EXPR)
3674 {
3675 lhs = stabilize_reference (lhs);
3676 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3677 }
3678
3679 /* Give an error for storing in something that is 'const'. */
3680
3681 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3682 || ((TREE_CODE (lhstype) == RECORD_TYPE
3683 || TREE_CODE (lhstype) == UNION_TYPE)
3684 && C_TYPE_FIELDS_READONLY (lhstype)))
3685 {
3686 readonly_error (lhs, lv_assign);
3687 return error_mark_node;
3688 }
3689
3690 /* If storing into a structure or union member,
3691 it has probably been given type `int'.
3692 Compute the type that would go with
3693 the actual amount of storage the member occupies. */
3694
3695 if (TREE_CODE (lhs) == COMPONENT_REF
3696 && (TREE_CODE (lhstype) == INTEGER_TYPE
3697 || TREE_CODE (lhstype) == BOOLEAN_TYPE
3698 || TREE_CODE (lhstype) == REAL_TYPE
3699 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3700 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3701
3702 /* If storing in a field that is in actuality a short or narrower than one,
3703 we must store in the field in its actual type. */
3704
3705 if (lhstype != TREE_TYPE (lhs))
3706 {
3707 lhs = copy_node (lhs);
3708 TREE_TYPE (lhs) = lhstype;
3709 }
3710
3711 /* Convert new value to destination type. */
3712
3713 newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3714 NULL_TREE, NULL_TREE, 0);
3715 if (TREE_CODE (newrhs) == ERROR_MARK)
3716 return error_mark_node;
3717
3718 /* Emit ObjC write barrier, if necessary. */
3719 if (c_dialect_objc () && flag_objc_gc)
3720 {
3721 result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3722 if (result)
3723 return result;
3724 }
3725
3726 /* Scan operands. */
3727
3728 result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3729 TREE_SIDE_EFFECTS (result) = 1;
3730
3731 /* If we got the LHS in a different type for storing in,
3732 convert the result back to the nominal type of LHS
3733 so that the value we return always has the same type
3734 as the LHS argument. */
3735
3736 if (olhstype == TREE_TYPE (result))
3737 return result;
3738 return convert_for_assignment (olhstype, result, ic_assign,
3739 NULL_TREE, NULL_TREE, 0);
3740 }
3741 \f
3742 /* Convert value RHS to type TYPE as preparation for an assignment
3743 to an lvalue of type TYPE.
3744 The real work of conversion is done by `convert'.
3745 The purpose of this function is to generate error messages
3746 for assignments that are not allowed in C.
3747 ERRTYPE says whether it is argument passing, assignment,
3748 initialization or return.
3749
3750 FUNCTION is a tree for the function being called.
3751 PARMNUM is the number of the argument, for printing in error messages. */
3752
3753 static tree
3754 convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3755 tree fundecl, tree function, int parmnum)
3756 {
3757 enum tree_code codel = TREE_CODE (type);
3758 tree rhstype;
3759 enum tree_code coder;
3760 tree rname = NULL_TREE;
3761 bool objc_ok = false;
3762
3763 if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3764 {
3765 tree selector;
3766 /* Change pointer to function to the function itself for
3767 diagnostics. */
3768 if (TREE_CODE (function) == ADDR_EXPR
3769 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3770 function = TREE_OPERAND (function, 0);
3771
3772 /* Handle an ObjC selector specially for diagnostics. */
3773 selector = objc_message_selector ();
3774 rname = function;
3775 if (selector && parmnum > 2)
3776 {
3777 rname = selector;
3778 parmnum -= 2;
3779 }
3780 }
3781
3782 /* This macro is used to emit diagnostics to ensure that all format
3783 strings are complete sentences, visible to gettext and checked at
3784 compile time. */
3785 #define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE) \
3786 do { \
3787 switch (errtype) \
3788 { \
3789 case ic_argpass: \
3790 pedwarn (AR, parmnum, rname); \
3791 break; \
3792 case ic_argpass_nonproto: \
3793 warning (0, AR, parmnum, rname); \
3794 break; \
3795 case ic_assign: \
3796 pedwarn (AS); \
3797 break; \
3798 case ic_init: \
3799 pedwarn (IN); \
3800 break; \
3801 case ic_return: \
3802 pedwarn (RE); \
3803 break; \
3804 default: \
3805 gcc_unreachable (); \
3806 } \
3807 } while (0)
3808
3809 STRIP_TYPE_NOPS (rhs);
3810
3811 if (optimize && TREE_CODE (rhs) == VAR_DECL
3812 && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3813 rhs = decl_constant_value_for_broken_optimization (rhs);
3814
3815 rhstype = TREE_TYPE (rhs);
3816 coder = TREE_CODE (rhstype);
3817
3818 if (coder == ERROR_MARK)
3819 return error_mark_node;
3820
3821 if (c_dialect_objc ())
3822 {
3823 int parmno;
3824
3825 switch (errtype)
3826 {
3827 case ic_return:
3828 parmno = 0;
3829 break;
3830
3831 case ic_assign:
3832 parmno = -1;
3833 break;
3834
3835 case ic_init:
3836 parmno = -2;
3837 break;
3838
3839 default:
3840 parmno = parmnum;
3841 break;
3842 }
3843
3844 objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3845 }
3846
3847 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3848 return rhs;
3849
3850 if (coder == VOID_TYPE)
3851 {
3852 /* Except for passing an argument to an unprototyped function,
3853 this is a constraint violation. When passing an argument to
3854 an unprototyped function, it is compile-time undefined;
3855 making it a constraint in that case was rejected in
3856 DR#252. */
3857 error ("void value not ignored as it ought to be");
3858 return error_mark_node;
3859 }
3860 /* A type converts to a reference to it.
3861 This code doesn't fully support references, it's just for the
3862 special case of va_start and va_copy. */
3863 if (codel == REFERENCE_TYPE
3864 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3865 {
3866 if (!lvalue_p (rhs))
3867 {
3868 error ("cannot pass rvalue to reference parameter");
3869 return error_mark_node;
3870 }
3871 if (!c_mark_addressable (rhs))
3872 return error_mark_node;
3873 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3874
3875 /* We already know that these two types are compatible, but they
3876 may not be exactly identical. In fact, `TREE_TYPE (type)' is
3877 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3878 likely to be va_list, a typedef to __builtin_va_list, which
3879 is different enough that it will cause problems later. */
3880 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3881 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3882
3883 rhs = build1 (NOP_EXPR, type, rhs);
3884 return rhs;
3885 }
3886 /* Some types can interconvert without explicit casts. */
3887 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3888 && vector_types_convertible_p (type, TREE_TYPE (rhs), true))
3889 return convert (type, rhs);
3890 /* Arithmetic types all interconvert, and enum is treated like int. */
3891 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3892 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3893 || codel == BOOLEAN_TYPE)
3894 && (coder == INTEGER_TYPE || coder == REAL_TYPE
3895 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3896 || coder == BOOLEAN_TYPE))
3897 return convert_and_check (type, rhs);
3898
3899 /* Conversion to a transparent union from its member types.
3900 This applies only to function arguments. */
3901 else if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3902 && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3903 {
3904 tree memb, marginal_memb = NULL_TREE;
3905
3906 for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3907 {
3908 tree memb_type = TREE_TYPE (memb);
3909
3910 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3911 TYPE_MAIN_VARIANT (rhstype)))
3912 break;
3913
3914 if (TREE_CODE (memb_type) != POINTER_TYPE)
3915 continue;
3916
3917 if (coder == POINTER_TYPE)
3918 {
3919 tree ttl = TREE_TYPE (memb_type);
3920 tree ttr = TREE_TYPE (rhstype);
3921
3922 /* Any non-function converts to a [const][volatile] void *
3923 and vice versa; otherwise, targets must be the same.
3924 Meanwhile, the lhs target must have all the qualifiers of
3925 the rhs. */
3926 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3927 || comp_target_types (memb_type, rhstype))
3928 {
3929 /* If this type won't generate any warnings, use it. */
3930 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3931 || ((TREE_CODE (ttr) == FUNCTION_TYPE
3932 && TREE_CODE (ttl) == FUNCTION_TYPE)
3933 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3934 == TYPE_QUALS (ttr))
3935 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3936 == TYPE_QUALS (ttl))))
3937 break;
3938
3939 /* Keep looking for a better type, but remember this one. */
3940 if (!marginal_memb)
3941 marginal_memb = memb;
3942 }
3943 }
3944
3945 /* Can convert integer zero to any pointer type. */
3946 if (null_pointer_constant_p (rhs))
3947 {
3948 rhs = null_pointer_node;
3949 break;
3950 }
3951 }
3952
3953 if (memb || marginal_memb)
3954 {
3955 if (!memb)
3956 {
3957 /* We have only a marginally acceptable member type;
3958 it needs a warning. */
3959 tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
3960 tree ttr = TREE_TYPE (rhstype);
3961
3962 /* Const and volatile mean something different for function
3963 types, so the usual warnings are not appropriate. */
3964 if (TREE_CODE (ttr) == FUNCTION_TYPE
3965 && TREE_CODE (ttl) == FUNCTION_TYPE)
3966 {
3967 /* Because const and volatile on functions are
3968 restrictions that say the function will not do
3969 certain things, it is okay to use a const or volatile
3970 function where an ordinary one is wanted, but not
3971 vice-versa. */
3972 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
3973 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
3974 "makes qualified function "
3975 "pointer from unqualified"),
3976 G_("assignment makes qualified "
3977 "function pointer from "
3978 "unqualified"),
3979 G_("initialization makes qualified "
3980 "function pointer from "
3981 "unqualified"),
3982 G_("return makes qualified function "
3983 "pointer from unqualified"));
3984 }
3985 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
3986 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
3987 "qualifiers from pointer target type"),
3988 G_("assignment discards qualifiers "
3989 "from pointer target type"),
3990 G_("initialization discards qualifiers "
3991 "from pointer target type"),
3992 G_("return discards qualifiers from "
3993 "pointer target type"));
3994
3995 memb = marginal_memb;
3996 }
3997
3998 if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
3999 pedwarn ("ISO C prohibits argument conversion to union type");
4000
4001 return build_constructor_single (type, memb, rhs);
4002 }
4003 }
4004
4005 /* Conversions among pointers */
4006 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4007 && (coder == codel))
4008 {
4009 tree ttl = TREE_TYPE (type);
4010 tree ttr = TREE_TYPE (rhstype);
4011 tree mvl = ttl;
4012 tree mvr = ttr;
4013 bool is_opaque_pointer;
4014 int target_cmp = 0; /* Cache comp_target_types () result. */
4015
4016 if (TREE_CODE (mvl) != ARRAY_TYPE)
4017 mvl = TYPE_MAIN_VARIANT (mvl);
4018 if (TREE_CODE (mvr) != ARRAY_TYPE)
4019 mvr = TYPE_MAIN_VARIANT (mvr);
4020 /* Opaque pointers are treated like void pointers. */
4021 is_opaque_pointer = (targetm.vector_opaque_p (type)
4022 || targetm.vector_opaque_p (rhstype))
4023 && TREE_CODE (ttl) == VECTOR_TYPE
4024 && TREE_CODE (ttr) == VECTOR_TYPE;
4025
4026 /* C++ does not allow the implicit conversion void* -> T*. However,
4027 for the purpose of reducing the number of false positives, we
4028 tolerate the special case of
4029
4030 int *p = NULL;
4031
4032 where NULL is typically defined in C to be '(void *) 0'. */
4033 if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4034 warning (OPT_Wc___compat, "request for implicit conversion from "
4035 "%qT to %qT not permitted in C++", rhstype, type);
4036
4037 /* Check if the right-hand side has a format attribute but the
4038 left-hand side doesn't. */
4039 if (warn_missing_format_attribute
4040 && check_missing_format_attribute (type, rhstype))
4041 {
4042 switch (errtype)
4043 {
4044 case ic_argpass:
4045 case ic_argpass_nonproto:
4046 warning (OPT_Wmissing_format_attribute,
4047 "argument %d of %qE might be "
4048 "a candidate for a format attribute",
4049 parmnum, rname);
4050 break;
4051 case ic_assign:
4052 warning (OPT_Wmissing_format_attribute,
4053 "assignment left-hand side might be "
4054 "a candidate for a format attribute");
4055 break;
4056 case ic_init:
4057 warning (OPT_Wmissing_format_attribute,
4058 "initialization left-hand side might be "
4059 "a candidate for a format attribute");
4060 break;
4061 case ic_return:
4062 warning (OPT_Wmissing_format_attribute,
4063 "return type might be "
4064 "a candidate for a format attribute");
4065 break;
4066 default:
4067 gcc_unreachable ();
4068 }
4069 }
4070
4071 /* Any non-function converts to a [const][volatile] void *
4072 and vice versa; otherwise, targets must be the same.
4073 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4074 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4075 || (target_cmp = comp_target_types (type, rhstype))
4076 || is_opaque_pointer
4077 || (c_common_unsigned_type (mvl)
4078 == c_common_unsigned_type (mvr)))
4079 {
4080 if (pedantic
4081 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4082 ||
4083 (VOID_TYPE_P (ttr)
4084 && !null_pointer_constant_p (rhs)
4085 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4086 WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4087 "%qE between function pointer "
4088 "and %<void *%>"),
4089 G_("ISO C forbids assignment between "
4090 "function pointer and %<void *%>"),
4091 G_("ISO C forbids initialization between "
4092 "function pointer and %<void *%>"),
4093 G_("ISO C forbids return between function "
4094 "pointer and %<void *%>"));
4095 /* Const and volatile mean something different for function types,
4096 so the usual warnings are not appropriate. */
4097 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4098 && TREE_CODE (ttl) != FUNCTION_TYPE)
4099 {
4100 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4101 {
4102 /* Types differing only by the presence of the 'volatile'
4103 qualifier are acceptable if the 'volatile' has been added
4104 in by the Objective-C EH machinery. */
4105 if (!objc_type_quals_match (ttl, ttr))
4106 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4107 "qualifiers from pointer target type"),
4108 G_("assignment discards qualifiers "
4109 "from pointer target type"),
4110 G_("initialization discards qualifiers "
4111 "from pointer target type"),
4112 G_("return discards qualifiers from "
4113 "pointer target type"));
4114 }
4115 /* If this is not a case of ignoring a mismatch in signedness,
4116 no warning. */
4117 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4118 || target_cmp)
4119 ;
4120 /* If there is a mismatch, do warn. */
4121 else if (warn_pointer_sign)
4122 WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4123 "%d of %qE differ in signedness"),
4124 G_("pointer targets in assignment "
4125 "differ in signedness"),
4126 G_("pointer targets in initialization "
4127 "differ in signedness"),
4128 G_("pointer targets in return differ "
4129 "in signedness"));
4130 }
4131 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4132 && TREE_CODE (ttr) == FUNCTION_TYPE)
4133 {
4134 /* Because const and volatile on functions are restrictions
4135 that say the function will not do certain things,
4136 it is okay to use a const or volatile function
4137 where an ordinary one is wanted, but not vice-versa. */
4138 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4139 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4140 "qualified function pointer "
4141 "from unqualified"),
4142 G_("assignment makes qualified function "
4143 "pointer from unqualified"),
4144 G_("initialization makes qualified "
4145 "function pointer from unqualified"),
4146 G_("return makes qualified function "
4147 "pointer from unqualified"));
4148 }
4149 }
4150 else
4151 /* Avoid warning about the volatile ObjC EH puts on decls. */
4152 if (!objc_ok)
4153 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4154 "incompatible pointer type"),
4155 G_("assignment from incompatible pointer type"),
4156 G_("initialization from incompatible "
4157 "pointer type"),
4158 G_("return from incompatible pointer type"));
4159
4160 return convert (type, rhs);
4161 }
4162 else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4163 {
4164 /* ??? This should not be an error when inlining calls to
4165 unprototyped functions. */
4166 error ("invalid use of non-lvalue array");
4167 return error_mark_node;
4168 }
4169 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4170 {
4171 /* An explicit constant 0 can convert to a pointer,
4172 or one that results from arithmetic, even including
4173 a cast to integer type. */
4174 if (!null_pointer_constant_p (rhs))
4175 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4176 "pointer from integer without a cast"),
4177 G_("assignment makes pointer from integer "
4178 "without a cast"),
4179 G_("initialization makes pointer from "
4180 "integer without a cast"),
4181 G_("return makes pointer from integer "
4182 "without a cast"));
4183
4184 return convert (type, rhs);
4185 }
4186 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4187 {
4188 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4189 "from pointer without a cast"),
4190 G_("assignment makes integer from pointer "
4191 "without a cast"),
4192 G_("initialization makes integer from pointer "
4193 "without a cast"),
4194 G_("return makes integer from pointer "
4195 "without a cast"));
4196 return convert (type, rhs);
4197 }
4198 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4199 return convert (type, rhs);
4200
4201 switch (errtype)
4202 {
4203 case ic_argpass:
4204 case ic_argpass_nonproto:
4205 /* ??? This should not be an error when inlining calls to
4206 unprototyped functions. */
4207 error ("incompatible type for argument %d of %qE", parmnum, rname);
4208 break;
4209 case ic_assign:
4210 error ("incompatible types in assignment");
4211 break;
4212 case ic_init:
4213 error ("incompatible types in initialization");
4214 break;
4215 case ic_return:
4216 error ("incompatible types in return");
4217 break;
4218 default:
4219 gcc_unreachable ();
4220 }
4221
4222 return error_mark_node;
4223 }
4224
4225 /* Convert VALUE for assignment into inlined parameter PARM. ARGNUM
4226 is used for error and warning reporting and indicates which argument
4227 is being processed. */
4228
4229 tree
4230 c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
4231 {
4232 tree ret, type;
4233
4234 /* If FN was prototyped at the call site, the value has been converted
4235 already in convert_arguments.
4236 However, we might see a prototype now that was not in place when
4237 the function call was seen, so check that the VALUE actually matches
4238 PARM before taking an early exit. */
4239 if (!value
4240 || (TYPE_ARG_TYPES (TREE_TYPE (fn))
4241 && (TYPE_MAIN_VARIANT (TREE_TYPE (parm))
4242 == TYPE_MAIN_VARIANT (TREE_TYPE (value)))))
4243 return value;
4244
4245 type = TREE_TYPE (parm);
4246 ret = convert_for_assignment (type, value,
4247 ic_argpass_nonproto, fn,
4248 fn, argnum);
4249 if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
4250 && INTEGRAL_TYPE_P (type)
4251 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4252 ret = default_conversion (ret);
4253 return ret;
4254 }
4255 \f
4256 /* If VALUE is a compound expr all of whose expressions are constant, then
4257 return its value. Otherwise, return error_mark_node.
4258
4259 This is for handling COMPOUND_EXPRs as initializer elements
4260 which is allowed with a warning when -pedantic is specified. */
4261
4262 static tree
4263 valid_compound_expr_initializer (tree value, tree endtype)
4264 {
4265 if (TREE_CODE (value) == COMPOUND_EXPR)
4266 {
4267 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4268 == error_mark_node)
4269 return error_mark_node;
4270 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4271 endtype);
4272 }
4273 else if (!initializer_constant_valid_p (value, endtype))
4274 return error_mark_node;
4275 else
4276 return value;
4277 }
4278 \f
4279 /* Perform appropriate conversions on the initial value of a variable,
4280 store it in the declaration DECL,
4281 and print any error messages that are appropriate.
4282 If the init is invalid, store an ERROR_MARK. */
4283
4284 void
4285 store_init_value (tree decl, tree init)
4286 {
4287 tree value, type;
4288
4289 /* If variable's type was invalidly declared, just ignore it. */
4290
4291 type = TREE_TYPE (decl);
4292 if (TREE_CODE (type) == ERROR_MARK)
4293 return;
4294
4295 /* Digest the specified initializer into an expression. */
4296
4297 value = digest_init (type, init, true, TREE_STATIC (decl));
4298
4299 /* Store the expression if valid; else report error. */
4300
4301 if (!in_system_header
4302 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4303 warning (OPT_Wtraditional, "traditional C rejects automatic "
4304 "aggregate initialization");
4305
4306 DECL_INITIAL (decl) = value;
4307
4308 /* ANSI wants warnings about out-of-range constant initializers. */
4309 STRIP_TYPE_NOPS (value);
4310 if (TREE_STATIC (decl))
4311 constant_expression_warning (value);
4312
4313 /* Check if we need to set array size from compound literal size. */
4314 if (TREE_CODE (type) == ARRAY_TYPE
4315 && TYPE_DOMAIN (type) == 0
4316 && value != error_mark_node)
4317 {
4318 tree inside_init = init;
4319
4320 STRIP_TYPE_NOPS (inside_init);
4321 inside_init = fold (inside_init);
4322
4323 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4324 {
4325 tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4326
4327 if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4328 {
4329 /* For int foo[] = (int [3]){1}; we need to set array size
4330 now since later on array initializer will be just the
4331 brace enclosed list of the compound literal. */
4332 type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4333 TREE_TYPE (decl) = type;
4334 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4335 layout_type (type);
4336 layout_decl (cldecl, 0);
4337 }
4338 }
4339 }
4340 }
4341 \f
4342 /* Methods for storing and printing names for error messages. */
4343
4344 /* Implement a spelling stack that allows components of a name to be pushed
4345 and popped. Each element on the stack is this structure. */
4346
4347 struct spelling
4348 {
4349 int kind;
4350 union
4351 {
4352 unsigned HOST_WIDE_INT i;
4353 const char *s;
4354 } u;
4355 };
4356
4357 #define SPELLING_STRING 1
4358 #define SPELLING_MEMBER 2
4359 #define SPELLING_BOUNDS 3
4360
4361 static struct spelling *spelling; /* Next stack element (unused). */
4362 static struct spelling *spelling_base; /* Spelling stack base. */
4363 static int spelling_size; /* Size of the spelling stack. */
4364
4365 /* Macros to save and restore the spelling stack around push_... functions.
4366 Alternative to SAVE_SPELLING_STACK. */
4367
4368 #define SPELLING_DEPTH() (spelling - spelling_base)
4369 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4370
4371 /* Push an element on the spelling stack with type KIND and assign VALUE
4372 to MEMBER. */
4373
4374 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4375 { \
4376 int depth = SPELLING_DEPTH (); \
4377 \
4378 if (depth >= spelling_size) \
4379 { \
4380 spelling_size += 10; \
4381 spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
4382 spelling_size); \
4383 RESTORE_SPELLING_DEPTH (depth); \
4384 } \
4385 \
4386 spelling->kind = (KIND); \
4387 spelling->MEMBER = (VALUE); \
4388 spelling++; \
4389 }
4390
4391 /* Push STRING on the stack. Printed literally. */
4392
4393 static void
4394 push_string (const char *string)
4395 {
4396 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4397 }
4398
4399 /* Push a member name on the stack. Printed as '.' STRING. */
4400
4401 static void
4402 push_member_name (tree decl)
4403 {
4404 const char *const string
4405 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4406 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4407 }
4408
4409 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4410
4411 static void
4412 push_array_bounds (unsigned HOST_WIDE_INT bounds)
4413 {
4414 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4415 }
4416
4417 /* Compute the maximum size in bytes of the printed spelling. */
4418
4419 static int
4420 spelling_length (void)
4421 {
4422 int size = 0;
4423 struct spelling *p;
4424
4425 for (p = spelling_base; p < spelling; p++)
4426 {
4427 if (p->kind == SPELLING_BOUNDS)
4428 size += 25;
4429 else
4430 size += strlen (p->u.s) + 1;
4431 }
4432
4433 return size;
4434 }
4435
4436 /* Print the spelling to BUFFER and return it. */
4437
4438 static char *
4439 print_spelling (char *buffer)
4440 {
4441 char *d = buffer;
4442 struct spelling *p;
4443
4444 for (p = spelling_base; p < spelling; p++)
4445 if (p->kind == SPELLING_BOUNDS)
4446 {
4447 sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4448 d += strlen (d);
4449 }
4450 else
4451 {
4452 const char *s;
4453 if (p->kind == SPELLING_MEMBER)
4454 *d++ = '.';
4455 for (s = p->u.s; (*d = *s++); d++)
4456 ;
4457 }
4458 *d++ = '\0';
4459 return buffer;
4460 }
4461
4462 /* Issue an error message for a bad initializer component.
4463 MSGID identifies the message.
4464 The component name is taken from the spelling stack. */
4465
4466 void
4467 error_init (const char *msgid)
4468 {
4469 char *ofwhat;
4470
4471 error ("%s", _(msgid));
4472 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4473 if (*ofwhat)
4474 error ("(near initialization for %qs)", ofwhat);
4475 }
4476
4477 /* Issue a pedantic warning for a bad initializer component.
4478 MSGID identifies the message.
4479 The component name is taken from the spelling stack. */
4480
4481 void
4482 pedwarn_init (const char *msgid)
4483 {
4484 char *ofwhat;
4485
4486 pedwarn ("%s", _(msgid));
4487 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4488 if (*ofwhat)
4489 pedwarn ("(near initialization for %qs)", ofwhat);
4490 }
4491
4492 /* Issue a warning for a bad initializer component.
4493 MSGID identifies the message.
4494 The component name is taken from the spelling stack. */
4495
4496 static void
4497 warning_init (const char *msgid)
4498 {
4499 char *ofwhat;
4500
4501 warning (0, "%s", _(msgid));
4502 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4503 if (*ofwhat)
4504 warning (0, "(near initialization for %qs)", ofwhat);
4505 }
4506 \f
4507 /* If TYPE is an array type and EXPR is a parenthesized string
4508 constant, warn if pedantic that EXPR is being used to initialize an
4509 object of type TYPE. */
4510
4511 void
4512 maybe_warn_string_init (tree type, struct c_expr expr)
4513 {
4514 if (pedantic
4515 && TREE_CODE (type) == ARRAY_TYPE
4516 && TREE_CODE (expr.value) == STRING_CST
4517 && expr.original_code != STRING_CST)
4518 pedwarn_init ("array initialized from parenthesized string constant");
4519 }
4520
4521 /* Digest the parser output INIT as an initializer for type TYPE.
4522 Return a C expression of type TYPE to represent the initial value.
4523
4524 If INIT is a string constant, STRICT_STRING is true if it is
4525 unparenthesized or we should not warn here for it being parenthesized.
4526 For other types of INIT, STRICT_STRING is not used.
4527
4528 REQUIRE_CONSTANT requests an error if non-constant initializers or
4529 elements are seen. */
4530
4531 static tree
4532 digest_init (tree type, tree init, bool strict_string, int require_constant)
4533 {
4534 enum tree_code code = TREE_CODE (type);
4535 tree inside_init = init;
4536
4537 if (type == error_mark_node
4538 || !init
4539 || init == error_mark_node
4540 || TREE_TYPE (init) == error_mark_node)
4541 return error_mark_node;
4542
4543 STRIP_TYPE_NOPS (inside_init);
4544
4545 inside_init = fold (inside_init);
4546
4547 /* Initialization of an array of chars from a string constant
4548 optionally enclosed in braces. */
4549
4550 if (code == ARRAY_TYPE && inside_init
4551 && TREE_CODE (inside_init) == STRING_CST)
4552 {
4553 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4554 /* Note that an array could be both an array of character type
4555 and an array of wchar_t if wchar_t is signed char or unsigned
4556 char. */
4557 bool char_array = (typ1 == char_type_node
4558 || typ1 == signed_char_type_node
4559 || typ1 == unsigned_char_type_node);
4560 bool wchar_array = !!comptypes (typ1, wchar_type_node);
4561 if (char_array || wchar_array)
4562 {
4563 struct c_expr expr;
4564 bool char_string;
4565 expr.value = inside_init;
4566 expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4567 maybe_warn_string_init (type, expr);
4568
4569 char_string
4570 = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4571 == char_type_node);
4572
4573 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4574 TYPE_MAIN_VARIANT (type)))
4575 return inside_init;
4576
4577 if (!wchar_array && !char_string)
4578 {
4579 error_init ("char-array initialized from wide string");
4580 return error_mark_node;
4581 }
4582 if (char_string && !char_array)
4583 {
4584 error_init ("wchar_t-array initialized from non-wide string");
4585 return error_mark_node;
4586 }
4587
4588 TREE_TYPE (inside_init) = type;
4589 if (TYPE_DOMAIN (type) != 0
4590 && TYPE_SIZE (type) != 0
4591 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4592 /* Subtract 1 (or sizeof (wchar_t))
4593 because it's ok to ignore the terminating null char
4594 that is counted in the length of the constant. */
4595 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4596 TREE_STRING_LENGTH (inside_init)
4597 - ((TYPE_PRECISION (typ1)
4598 != TYPE_PRECISION (char_type_node))
4599 ? (TYPE_PRECISION (wchar_type_node)
4600 / BITS_PER_UNIT)
4601 : 1)))
4602 pedwarn_init ("initializer-string for array of chars is too long");
4603
4604 return inside_init;
4605 }
4606 else if (INTEGRAL_TYPE_P (typ1))
4607 {
4608 error_init ("array of inappropriate type initialized "
4609 "from string constant");
4610 return error_mark_node;
4611 }
4612 }
4613
4614 /* Build a VECTOR_CST from a *constant* vector constructor. If the
4615 vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4616 below and handle as a constructor. */
4617 if (code == VECTOR_TYPE
4618 && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4619 && vector_types_convertible_p (TREE_TYPE (inside_init), type, true)
4620 && TREE_CONSTANT (inside_init))
4621 {
4622 if (TREE_CODE (inside_init) == VECTOR_CST
4623 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4624 TYPE_MAIN_VARIANT (type)))
4625 return inside_init;
4626
4627 if (TREE_CODE (inside_init) == CONSTRUCTOR)
4628 {
4629 unsigned HOST_WIDE_INT ix;
4630 tree value;
4631 bool constant_p = true;
4632
4633 /* Iterate through elements and check if all constructor
4634 elements are *_CSTs. */
4635 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4636 if (!CONSTANT_CLASS_P (value))
4637 {
4638 constant_p = false;
4639 break;
4640 }
4641
4642 if (constant_p)
4643 return build_vector_from_ctor (type,
4644 CONSTRUCTOR_ELTS (inside_init));
4645 }
4646 }
4647
4648 /* Any type can be initialized
4649 from an expression of the same type, optionally with braces. */
4650
4651 if (inside_init && TREE_TYPE (inside_init) != 0
4652 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4653 TYPE_MAIN_VARIANT (type))
4654 || (code == ARRAY_TYPE
4655 && comptypes (TREE_TYPE (inside_init), type))
4656 || (code == VECTOR_TYPE
4657 && comptypes (TREE_TYPE (inside_init), type))
4658 || (code == POINTER_TYPE
4659 && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4660 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4661 TREE_TYPE (type)))))
4662 {
4663 if (code == POINTER_TYPE)
4664 {
4665 if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4666 {
4667 if (TREE_CODE (inside_init) == STRING_CST
4668 || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4669 inside_init = array_to_pointer_conversion (inside_init);
4670 else
4671 {
4672 error_init ("invalid use of non-lvalue array");
4673 return error_mark_node;
4674 }
4675 }
4676 }
4677
4678 if (code == VECTOR_TYPE)
4679 /* Although the types are compatible, we may require a
4680 conversion. */
4681 inside_init = convert (type, inside_init);
4682
4683 if (require_constant
4684 && (code == VECTOR_TYPE || !flag_isoc99)
4685 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4686 {
4687 /* As an extension, allow initializing objects with static storage
4688 duration with compound literals (which are then treated just as
4689 the brace enclosed list they contain). Also allow this for
4690 vectors, as we can only assign them with compound literals. */
4691 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4692 inside_init = DECL_INITIAL (decl);
4693 }
4694
4695 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4696 && TREE_CODE (inside_init) != CONSTRUCTOR)
4697 {
4698 error_init ("array initialized from non-constant array expression");
4699 return error_mark_node;
4700 }
4701
4702 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4703 inside_init = decl_constant_value_for_broken_optimization (inside_init);
4704
4705 /* Compound expressions can only occur here if -pedantic or
4706 -pedantic-errors is specified. In the later case, we always want
4707 an error. In the former case, we simply want a warning. */
4708 if (require_constant && pedantic
4709 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4710 {
4711 inside_init
4712 = valid_compound_expr_initializer (inside_init,
4713 TREE_TYPE (inside_init));
4714 if (inside_init == error_mark_node)
4715 error_init ("initializer element is not constant");
4716 else
4717 pedwarn_init ("initializer element is not constant");
4718 if (flag_pedantic_errors)
4719 inside_init = error_mark_node;
4720 }
4721 else if (require_constant
4722 && !initializer_constant_valid_p (inside_init,
4723 TREE_TYPE (inside_init)))
4724 {
4725 error_init ("initializer element is not constant");
4726 inside_init = error_mark_node;
4727 }
4728
4729 /* Added to enable additional -Wmissing-format-attribute warnings. */
4730 if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4731 inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4732 NULL_TREE, 0);
4733 return inside_init;
4734 }
4735
4736 /* Handle scalar types, including conversions. */
4737
4738 if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4739 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4740 || code == VECTOR_TYPE)
4741 {
4742 if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4743 && (TREE_CODE (init) == STRING_CST
4744 || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4745 init = array_to_pointer_conversion (init);
4746 inside_init
4747 = convert_for_assignment (type, init, ic_init,
4748 NULL_TREE, NULL_TREE, 0);
4749
4750 /* Check to see if we have already given an error message. */
4751 if (inside_init == error_mark_node)
4752 ;
4753 else if (require_constant && !TREE_CONSTANT (inside_init))
4754 {
4755 error_init ("initializer element is not constant");
4756 inside_init = error_mark_node;
4757 }
4758 else if (require_constant
4759 && !initializer_constant_valid_p (inside_init,
4760 TREE_TYPE (inside_init)))
4761 {
4762 error_init ("initializer element is not computable at load time");
4763 inside_init = error_mark_node;
4764 }
4765
4766 return inside_init;
4767 }
4768
4769 /* Come here only for records and arrays. */
4770
4771 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4772 {
4773 error_init ("variable-sized object may not be initialized");
4774 return error_mark_node;
4775 }
4776
4777 error_init ("invalid initializer");
4778 return error_mark_node;
4779 }
4780 \f
4781 /* Handle initializers that use braces. */
4782
4783 /* Type of object we are accumulating a constructor for.
4784 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4785 static tree constructor_type;
4786
4787 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4788 left to fill. */
4789 static tree constructor_fields;
4790
4791 /* For an ARRAY_TYPE, this is the specified index
4792 at which to store the next element we get. */
4793 static tree constructor_index;
4794
4795 /* For an ARRAY_TYPE, this is the maximum index. */
4796 static tree constructor_max_index;
4797
4798 /* For a RECORD_TYPE, this is the first field not yet written out. */
4799 static tree constructor_unfilled_fields;
4800
4801 /* For an ARRAY_TYPE, this is the index of the first element
4802 not yet written out. */
4803 static tree constructor_unfilled_index;
4804
4805 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4806 This is so we can generate gaps between fields, when appropriate. */
4807 static tree constructor_bit_index;
4808
4809 /* If we are saving up the elements rather than allocating them,
4810 this is the list of elements so far (in reverse order,
4811 most recent first). */
4812 static VEC(constructor_elt,gc) *constructor_elements;
4813
4814 /* 1 if constructor should be incrementally stored into a constructor chain,
4815 0 if all the elements should be kept in AVL tree. */
4816 static int constructor_incremental;
4817
4818 /* 1 if so far this constructor's elements are all compile-time constants. */
4819 static int constructor_constant;
4820
4821 /* 1 if so far this constructor's elements are all valid address constants. */
4822 static int constructor_simple;
4823
4824 /* 1 if this constructor is erroneous so far. */
4825 static int constructor_erroneous;
4826
4827 /* Structure for managing pending initializer elements, organized as an
4828 AVL tree. */
4829
4830 struct init_node
4831 {
4832 struct init_node *left, *right;
4833 struct init_node *parent;
4834 int balance;
4835 tree purpose;
4836 tree value;
4837 };
4838
4839 /* Tree of pending elements at this constructor level.
4840 These are elements encountered out of order
4841 which belong at places we haven't reached yet in actually
4842 writing the output.
4843 Will never hold tree nodes across GC runs. */
4844 static struct init_node *constructor_pending_elts;
4845
4846 /* The SPELLING_DEPTH of this constructor. */
4847 static int constructor_depth;
4848
4849 /* DECL node for which an initializer is being read.
4850 0 means we are reading a constructor expression
4851 such as (struct foo) {...}. */
4852 static tree constructor_decl;
4853
4854 /* Nonzero if this is an initializer for a top-level decl. */
4855 static int constructor_top_level;
4856
4857 /* Nonzero if there were any member designators in this initializer. */
4858 static int constructor_designated;
4859
4860 /* Nesting depth of designator list. */
4861 static int designator_depth;
4862
4863 /* Nonzero if there were diagnosed errors in this designator list. */
4864 static int designator_erroneous;
4865
4866 \f
4867 /* This stack has a level for each implicit or explicit level of
4868 structuring in the initializer, including the outermost one. It
4869 saves the values of most of the variables above. */
4870
4871 struct constructor_range_stack;
4872
4873 struct constructor_stack
4874 {
4875 struct constructor_stack *next;
4876 tree type;
4877 tree fields;
4878 tree index;
4879 tree max_index;
4880 tree unfilled_index;
4881 tree unfilled_fields;
4882 tree bit_index;
4883 VEC(constructor_elt,gc) *elements;
4884 struct init_node *pending_elts;
4885 int offset;
4886 int depth;
4887 /* If value nonzero, this value should replace the entire
4888 constructor at this level. */
4889 struct c_expr replacement_value;
4890 struct constructor_range_stack *range_stack;
4891 char constant;
4892 char simple;
4893 char implicit;
4894 char erroneous;
4895 char outer;
4896 char incremental;
4897 char designated;
4898 };
4899
4900 static struct constructor_stack *constructor_stack;
4901
4902 /* This stack represents designators from some range designator up to
4903 the last designator in the list. */
4904
4905 struct constructor_range_stack
4906 {
4907 struct constructor_range_stack *next, *prev;
4908 struct constructor_stack *stack;
4909 tree range_start;
4910 tree index;
4911 tree range_end;
4912 tree fields;
4913 };
4914
4915 static struct constructor_range_stack *constructor_range_stack;
4916
4917 /* This stack records separate initializers that are nested.
4918 Nested initializers can't happen in ANSI C, but GNU C allows them
4919 in cases like { ... (struct foo) { ... } ... }. */
4920
4921 struct initializer_stack
4922 {
4923 struct initializer_stack *next;
4924 tree decl;
4925 struct constructor_stack *constructor_stack;
4926 struct constructor_range_stack *constructor_range_stack;
4927 VEC(constructor_elt,gc) *elements;
4928 struct spelling *spelling;
4929 struct spelling *spelling_base;
4930 int spelling_size;
4931 char top_level;
4932 char require_constant_value;
4933 char require_constant_elements;
4934 };
4935
4936 static struct initializer_stack *initializer_stack;
4937 \f
4938 /* Prepare to parse and output the initializer for variable DECL. */
4939
4940 void
4941 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
4942 {
4943 const char *locus;
4944 struct initializer_stack *p = XNEW (struct initializer_stack);
4945
4946 p->decl = constructor_decl;
4947 p->require_constant_value = require_constant_value;
4948 p->require_constant_elements = require_constant_elements;
4949 p->constructor_stack = constructor_stack;
4950 p->constructor_range_stack = constructor_range_stack;
4951 p->elements = constructor_elements;
4952 p->spelling = spelling;
4953 p->spelling_base = spelling_base;
4954 p->spelling_size = spelling_size;
4955 p->top_level = constructor_top_level;
4956 p->next = initializer_stack;
4957 initializer_stack = p;
4958
4959 constructor_decl = decl;
4960 constructor_designated = 0;
4961 constructor_top_level = top_level;
4962
4963 if (decl != 0 && decl != error_mark_node)
4964 {
4965 require_constant_value = TREE_STATIC (decl);
4966 require_constant_elements
4967 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
4968 /* For a scalar, you can always use any value to initialize,
4969 even within braces. */
4970 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
4971 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4972 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
4973 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
4974 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
4975 }
4976 else
4977 {
4978 require_constant_value = 0;
4979 require_constant_elements = 0;
4980 locus = "(anonymous)";
4981 }
4982
4983 constructor_stack = 0;
4984 constructor_range_stack = 0;
4985
4986 missing_braces_mentioned = 0;
4987
4988 spelling_base = 0;
4989 spelling_size = 0;
4990 RESTORE_SPELLING_DEPTH (0);
4991
4992 if (locus)
4993 push_string (locus);
4994 }
4995
4996 void
4997 finish_init (void)
4998 {
4999 struct initializer_stack *p = initializer_stack;
5000
5001 /* Free the whole constructor stack of this initializer. */
5002 while (constructor_stack)
5003 {
5004 struct constructor_stack *q = constructor_stack;
5005 constructor_stack = q->next;
5006 free (q);
5007 }
5008
5009 gcc_assert (!constructor_range_stack);
5010
5011 /* Pop back to the data of the outer initializer (if any). */
5012 free (spelling_base);
5013
5014 constructor_decl = p->decl;
5015 require_constant_value = p->require_constant_value;
5016 require_constant_elements = p->require_constant_elements;
5017 constructor_stack = p->constructor_stack;
5018 constructor_range_stack = p->constructor_range_stack;
5019 constructor_elements = p->elements;
5020 spelling = p->spelling;
5021 spelling_base = p->spelling_base;
5022 spelling_size = p->spelling_size;
5023 constructor_top_level = p->top_level;
5024 initializer_stack = p->next;
5025 free (p);
5026 }
5027 \f
5028 /* Call here when we see the initializer is surrounded by braces.
5029 This is instead of a call to push_init_level;
5030 it is matched by a call to pop_init_level.
5031
5032 TYPE is the type to initialize, for a constructor expression.
5033 For an initializer for a decl, TYPE is zero. */
5034
5035 void
5036 really_start_incremental_init (tree type)
5037 {
5038 struct constructor_stack *p = XNEW (struct constructor_stack);
5039
5040 if (type == 0)
5041 type = TREE_TYPE (constructor_decl);
5042
5043 if (targetm.vector_opaque_p (type))
5044 error ("opaque vector types cannot be initialized");
5045
5046 p->type = constructor_type;
5047 p->fields = constructor_fields;
5048 p->index = constructor_index;
5049 p->max_index = constructor_max_index;
5050 p->unfilled_index = constructor_unfilled_index;
5051 p->unfilled_fields = constructor_unfilled_fields;
5052 p->bit_index = constructor_bit_index;
5053 p->elements = constructor_elements;
5054 p->constant = constructor_constant;
5055 p->simple = constructor_simple;
5056 p->erroneous = constructor_erroneous;
5057 p->pending_elts = constructor_pending_elts;
5058 p->depth = constructor_depth;
5059 p->replacement_value.value = 0;
5060 p->replacement_value.original_code = ERROR_MARK;
5061 p->implicit = 0;
5062 p->range_stack = 0;
5063 p->outer = 0;
5064 p->incremental = constructor_incremental;
5065 p->designated = constructor_designated;
5066 p->next = 0;
5067 constructor_stack = p;
5068
5069 constructor_constant = 1;
5070 constructor_simple = 1;
5071 constructor_depth = SPELLING_DEPTH ();
5072 constructor_elements = 0;
5073 constructor_pending_elts = 0;
5074 constructor_type = type;
5075 constructor_incremental = 1;
5076 constructor_designated = 0;
5077 designator_depth = 0;
5078 designator_erroneous = 0;
5079
5080 if (TREE_CODE (constructor_type) == RECORD_TYPE
5081 || TREE_CODE (constructor_type) == UNION_TYPE)
5082 {
5083 constructor_fields = TYPE_FIELDS (constructor_type);
5084 /* Skip any nameless bit fields at the beginning. */
5085 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5086 && DECL_NAME (constructor_fields) == 0)
5087 constructor_fields = TREE_CHAIN (constructor_fields);
5088
5089 constructor_unfilled_fields = constructor_fields;
5090 constructor_bit_index = bitsize_zero_node;
5091 }
5092 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5093 {
5094 if (TYPE_DOMAIN (constructor_type))
5095 {
5096 constructor_max_index
5097 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5098
5099 /* Detect non-empty initializations of zero-length arrays. */
5100 if (constructor_max_index == NULL_TREE
5101 && TYPE_SIZE (constructor_type))
5102 constructor_max_index = build_int_cst (NULL_TREE, -1);
5103
5104 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5105 to initialize VLAs will cause a proper error; avoid tree
5106 checking errors as well by setting a safe value. */
5107 if (constructor_max_index
5108 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5109 constructor_max_index = build_int_cst (NULL_TREE, -1);
5110
5111 constructor_index
5112 = convert (bitsizetype,
5113 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5114 }
5115 else
5116 {
5117 constructor_index = bitsize_zero_node;
5118 constructor_max_index = NULL_TREE;
5119 }
5120
5121 constructor_unfilled_index = constructor_index;
5122 }
5123 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5124 {
5125 /* Vectors are like simple fixed-size arrays. */
5126 constructor_max_index =
5127 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5128 constructor_index = bitsize_zero_node;
5129 constructor_unfilled_index = constructor_index;
5130 }
5131 else
5132 {
5133 /* Handle the case of int x = {5}; */
5134 constructor_fields = constructor_type;
5135 constructor_unfilled_fields = constructor_type;
5136 }
5137 }
5138 \f
5139 /* Push down into a subobject, for initialization.
5140 If this is for an explicit set of braces, IMPLICIT is 0.
5141 If it is because the next element belongs at a lower level,
5142 IMPLICIT is 1 (or 2 if the push is because of designator list). */
5143
5144 void
5145 push_init_level (int implicit)
5146 {
5147 struct constructor_stack *p;
5148 tree value = NULL_TREE;
5149
5150 /* If we've exhausted any levels that didn't have braces,
5151 pop them now. If implicit == 1, this will have been done in
5152 process_init_element; do not repeat it here because in the case
5153 of excess initializers for an empty aggregate this leads to an
5154 infinite cycle of popping a level and immediately recreating
5155 it. */
5156 if (implicit != 1)
5157 {
5158 while (constructor_stack->implicit)
5159 {
5160 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5161 || TREE_CODE (constructor_type) == UNION_TYPE)
5162 && constructor_fields == 0)
5163 process_init_element (pop_init_level (1));
5164 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5165 && constructor_max_index
5166 && tree_int_cst_lt (constructor_max_index,
5167 constructor_index))
5168 process_init_element (pop_init_level (1));
5169 else
5170 break;
5171 }
5172 }
5173
5174 /* Unless this is an explicit brace, we need to preserve previous
5175 content if any. */
5176 if (implicit)
5177 {
5178 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5179 || TREE_CODE (constructor_type) == UNION_TYPE)
5180 && constructor_fields)
5181 value = find_init_member (constructor_fields);
5182 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5183 value = find_init_member (constructor_index);
5184 }
5185
5186 p = XNEW (struct constructor_stack);
5187 p->type = constructor_type;
5188 p->fields = constructor_fields;
5189 p->index = constructor_index;
5190 p->max_index = constructor_max_index;
5191 p->unfilled_index = constructor_unfilled_index;
5192 p->unfilled_fields = constructor_unfilled_fields;
5193 p->bit_index = constructor_bit_index;
5194 p->elements = constructor_elements;
5195 p->constant = constructor_constant;
5196 p->simple = constructor_simple;
5197 p->erroneous = constructor_erroneous;
5198 p->pending_elts = constructor_pending_elts;
5199 p->depth = constructor_depth;
5200 p->replacement_value.value = 0;
5201 p->replacement_value.original_code = ERROR_MARK;
5202 p->implicit = implicit;
5203 p->outer = 0;
5204 p->incremental = constructor_incremental;
5205 p->designated = constructor_designated;
5206 p->next = constructor_stack;
5207 p->range_stack = 0;
5208 constructor_stack = p;
5209
5210 constructor_constant = 1;
5211 constructor_simple = 1;
5212 constructor_depth = SPELLING_DEPTH ();
5213 constructor_elements = 0;
5214 constructor_incremental = 1;
5215 constructor_designated = 0;
5216 constructor_pending_elts = 0;
5217 if (!implicit)
5218 {
5219 p->range_stack = constructor_range_stack;
5220 constructor_range_stack = 0;
5221 designator_depth = 0;
5222 designator_erroneous = 0;
5223 }
5224
5225 /* Don't die if an entire brace-pair level is superfluous
5226 in the containing level. */
5227 if (constructor_type == 0)
5228 ;
5229 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5230 || TREE_CODE (constructor_type) == UNION_TYPE)
5231 {
5232 /* Don't die if there are extra init elts at the end. */
5233 if (constructor_fields == 0)
5234 constructor_type = 0;
5235 else
5236 {
5237 constructor_type = TREE_TYPE (constructor_fields);
5238 push_member_name (constructor_fields);
5239 constructor_depth++;
5240 }
5241 }
5242 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5243 {
5244 constructor_type = TREE_TYPE (constructor_type);
5245 push_array_bounds (tree_low_cst (constructor_index, 1));
5246 constructor_depth++;
5247 }
5248
5249 if (constructor_type == 0)
5250 {
5251 error_init ("extra brace group at end of initializer");
5252 constructor_fields = 0;
5253 constructor_unfilled_fields = 0;
5254 return;
5255 }
5256
5257 if (value && TREE_CODE (value) == CONSTRUCTOR)
5258 {
5259 constructor_constant = TREE_CONSTANT (value);
5260 constructor_simple = TREE_STATIC (value);
5261 constructor_elements = CONSTRUCTOR_ELTS (value);
5262 if (!VEC_empty (constructor_elt, constructor_elements)
5263 && (TREE_CODE (constructor_type) == RECORD_TYPE
5264 || TREE_CODE (constructor_type) == ARRAY_TYPE))
5265 set_nonincremental_init ();
5266 }
5267
5268 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5269 {
5270 missing_braces_mentioned = 1;
5271 warning_init ("missing braces around initializer");
5272 }
5273
5274 if (TREE_CODE (constructor_type) == RECORD_TYPE
5275 || TREE_CODE (constructor_type) == UNION_TYPE)
5276 {
5277 constructor_fields = TYPE_FIELDS (constructor_type);
5278 /* Skip any nameless bit fields at the beginning. */
5279 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5280 && DECL_NAME (constructor_fields) == 0)
5281 constructor_fields = TREE_CHAIN (constructor_fields);
5282
5283 constructor_unfilled_fields = constructor_fields;
5284 constructor_bit_index = bitsize_zero_node;
5285 }
5286 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5287 {
5288 /* Vectors are like simple fixed-size arrays. */
5289 constructor_max_index =
5290 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5291 constructor_index = convert (bitsizetype, integer_zero_node);
5292 constructor_unfilled_index = constructor_index;
5293 }
5294 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5295 {
5296 if (TYPE_DOMAIN (constructor_type))
5297 {
5298 constructor_max_index
5299 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5300
5301 /* Detect non-empty initializations of zero-length arrays. */
5302 if (constructor_max_index == NULL_TREE
5303 && TYPE_SIZE (constructor_type))
5304 constructor_max_index = build_int_cst (NULL_TREE, -1);
5305
5306 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5307 to initialize VLAs will cause a proper error; avoid tree
5308 checking errors as well by setting a safe value. */
5309 if (constructor_max_index
5310 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5311 constructor_max_index = build_int_cst (NULL_TREE, -1);
5312
5313 constructor_index
5314 = convert (bitsizetype,
5315 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5316 }
5317 else
5318 constructor_index = bitsize_zero_node;
5319
5320 constructor_unfilled_index = constructor_index;
5321 if (value && TREE_CODE (value) == STRING_CST)
5322 {
5323 /* We need to split the char/wchar array into individual
5324 characters, so that we don't have to special case it
5325 everywhere. */
5326 set_nonincremental_init_from_string (value);
5327 }
5328 }
5329 else
5330 {
5331 if (constructor_type != error_mark_node)
5332 warning_init ("braces around scalar initializer");
5333 constructor_fields = constructor_type;
5334 constructor_unfilled_fields = constructor_type;
5335 }
5336 }
5337
5338 /* At the end of an implicit or explicit brace level,
5339 finish up that level of constructor. If a single expression
5340 with redundant braces initialized that level, return the
5341 c_expr structure for that expression. Otherwise, the original_code
5342 element is set to ERROR_MARK.
5343 If we were outputting the elements as they are read, return 0 as the value
5344 from inner levels (process_init_element ignores that),
5345 but return error_mark_node as the value from the outermost level
5346 (that's what we want to put in DECL_INITIAL).
5347 Otherwise, return a CONSTRUCTOR expression as the value. */
5348
5349 struct c_expr
5350 pop_init_level (int implicit)
5351 {
5352 struct constructor_stack *p;
5353 struct c_expr ret;
5354 ret.value = 0;
5355 ret.original_code = ERROR_MARK;
5356
5357 if (implicit == 0)
5358 {
5359 /* When we come to an explicit close brace,
5360 pop any inner levels that didn't have explicit braces. */
5361 while (constructor_stack->implicit)
5362 process_init_element (pop_init_level (1));
5363
5364 gcc_assert (!constructor_range_stack);
5365 }
5366
5367 /* Now output all pending elements. */
5368 constructor_incremental = 1;
5369 output_pending_init_elements (1);
5370
5371 p = constructor_stack;
5372
5373 /* Error for initializing a flexible array member, or a zero-length
5374 array member in an inappropriate context. */
5375 if (constructor_type && constructor_fields
5376 && TREE_CODE (constructor_type) == ARRAY_TYPE
5377 && TYPE_DOMAIN (constructor_type)
5378 && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5379 {
5380 /* Silently discard empty initializations. The parser will
5381 already have pedwarned for empty brackets. */
5382 if (integer_zerop (constructor_unfilled_index))
5383 constructor_type = NULL_TREE;
5384 else
5385 {
5386 gcc_assert (!TYPE_SIZE (constructor_type));
5387
5388 if (constructor_depth > 2)
5389 error_init ("initialization of flexible array member in a nested context");
5390 else if (pedantic)
5391 pedwarn_init ("initialization of a flexible array member");
5392
5393 /* We have already issued an error message for the existence
5394 of a flexible array member not at the end of the structure.
5395 Discard the initializer so that we do not die later. */
5396 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5397 constructor_type = NULL_TREE;
5398 }
5399 }
5400
5401 /* Warn when some struct elements are implicitly initialized to zero. */
5402 if (warn_missing_field_initializers
5403 && constructor_type
5404 && TREE_CODE (constructor_type) == RECORD_TYPE
5405 && constructor_unfilled_fields)
5406 {
5407 /* Do not warn for flexible array members or zero-length arrays. */
5408 while (constructor_unfilled_fields
5409 && (!DECL_SIZE (constructor_unfilled_fields)
5410 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5411 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5412
5413 /* Do not warn if this level of the initializer uses member
5414 designators; it is likely to be deliberate. */
5415 if (constructor_unfilled_fields && !constructor_designated)
5416 {
5417 push_member_name (constructor_unfilled_fields);
5418 warning_init ("missing initializer");
5419 RESTORE_SPELLING_DEPTH (constructor_depth);
5420 }
5421 }
5422
5423 /* Pad out the end of the structure. */
5424 if (p->replacement_value.value)
5425 /* If this closes a superfluous brace pair,
5426 just pass out the element between them. */
5427 ret = p->replacement_value;
5428 else if (constructor_type == 0)
5429 ;
5430 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5431 && TREE_CODE (constructor_type) != UNION_TYPE
5432 && TREE_CODE (constructor_type) != ARRAY_TYPE
5433 && TREE_CODE (constructor_type) != VECTOR_TYPE)
5434 {
5435 /* A nonincremental scalar initializer--just return
5436 the element, after verifying there is just one. */
5437 if (VEC_empty (constructor_elt,constructor_elements))
5438 {
5439 if (!constructor_erroneous)
5440 error_init ("empty scalar initializer");
5441 ret.value = error_mark_node;
5442 }
5443 else if (VEC_length (constructor_elt,constructor_elements) != 1)
5444 {
5445 error_init ("extra elements in scalar initializer");
5446 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5447 }
5448 else
5449 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5450 }
5451 else
5452 {
5453 if (constructor_erroneous)
5454 ret.value = error_mark_node;
5455 else
5456 {
5457 ret.value = build_constructor (constructor_type,
5458 constructor_elements);
5459 if (constructor_constant)
5460 TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5461 if (constructor_constant && constructor_simple)
5462 TREE_STATIC (ret.value) = 1;
5463 }
5464 }
5465
5466 constructor_type = p->type;
5467 constructor_fields = p->fields;
5468 constructor_index = p->index;
5469 constructor_max_index = p->max_index;
5470 constructor_unfilled_index = p->unfilled_index;
5471 constructor_unfilled_fields = p->unfilled_fields;
5472 constructor_bit_index = p->bit_index;
5473 constructor_elements = p->elements;
5474 constructor_constant = p->constant;
5475 constructor_simple = p->simple;
5476 constructor_erroneous = p->erroneous;
5477 constructor_incremental = p->incremental;
5478 constructor_designated = p->designated;
5479 constructor_pending_elts = p->pending_elts;
5480 constructor_depth = p->depth;
5481 if (!p->implicit)
5482 constructor_range_stack = p->range_stack;
5483 RESTORE_SPELLING_DEPTH (constructor_depth);
5484
5485 constructor_stack = p->next;
5486 free (p);
5487
5488 if (ret.value == 0 && constructor_stack == 0)
5489 ret.value = error_mark_node;
5490 return ret;
5491 }
5492
5493 /* Common handling for both array range and field name designators.
5494 ARRAY argument is nonzero for array ranges. Returns zero for success. */
5495
5496 static int
5497 set_designator (int array)
5498 {
5499 tree subtype;
5500 enum tree_code subcode;
5501
5502 /* Don't die if an entire brace-pair level is superfluous
5503 in the containing level. */
5504 if (constructor_type == 0)
5505 return 1;
5506
5507 /* If there were errors in this designator list already, bail out
5508 silently. */
5509 if (designator_erroneous)
5510 return 1;
5511
5512 if (!designator_depth)
5513 {
5514 gcc_assert (!constructor_range_stack);
5515
5516 /* Designator list starts at the level of closest explicit
5517 braces. */
5518 while (constructor_stack->implicit)
5519 process_init_element (pop_init_level (1));
5520 constructor_designated = 1;
5521 return 0;
5522 }
5523
5524 switch (TREE_CODE (constructor_type))
5525 {
5526 case RECORD_TYPE:
5527 case UNION_TYPE:
5528 subtype = TREE_TYPE (constructor_fields);
5529 if (subtype != error_mark_node)
5530 subtype = TYPE_MAIN_VARIANT (subtype);
5531 break;
5532 case ARRAY_TYPE:
5533 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5534 break;
5535 default:
5536 gcc_unreachable ();
5537 }
5538
5539 subcode = TREE_CODE (subtype);
5540 if (array && subcode != ARRAY_TYPE)
5541 {
5542 error_init ("array index in non-array initializer");
5543 return 1;
5544 }
5545 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5546 {
5547 error_init ("field name not in record or union initializer");
5548 return 1;
5549 }
5550
5551 constructor_designated = 1;
5552 push_init_level (2);
5553 return 0;
5554 }
5555
5556 /* If there are range designators in designator list, push a new designator
5557 to constructor_range_stack. RANGE_END is end of such stack range or
5558 NULL_TREE if there is no range designator at this level. */
5559
5560 static void
5561 push_range_stack (tree range_end)
5562 {
5563 struct constructor_range_stack *p;
5564
5565 p = GGC_NEW (struct constructor_range_stack);
5566 p->prev = constructor_range_stack;
5567 p->next = 0;
5568 p->fields = constructor_fields;
5569 p->range_start = constructor_index;
5570 p->index = constructor_index;
5571 p->stack = constructor_stack;
5572 p->range_end = range_end;
5573 if (constructor_range_stack)
5574 constructor_range_stack->next = p;
5575 constructor_range_stack = p;
5576 }
5577
5578 /* Within an array initializer, specify the next index to be initialized.
5579 FIRST is that index. If LAST is nonzero, then initialize a range
5580 of indices, running from FIRST through LAST. */
5581
5582 void
5583 set_init_index (tree first, tree last)
5584 {
5585 if (set_designator (1))
5586 return;
5587
5588 designator_erroneous = 1;
5589
5590 if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5591 || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5592 {
5593 error_init ("array index in initializer not of integer type");
5594 return;
5595 }
5596
5597 if (TREE_CODE (first) != INTEGER_CST)
5598 error_init ("nonconstant array index in initializer");
5599 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5600 error_init ("nonconstant array index in initializer");
5601 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5602 error_init ("array index in non-array initializer");
5603 else if (tree_int_cst_sgn (first) == -1)
5604 error_init ("array index in initializer exceeds array bounds");
5605 else if (constructor_max_index
5606 && tree_int_cst_lt (constructor_max_index, first))
5607 error_init ("array index in initializer exceeds array bounds");
5608 else
5609 {
5610 constructor_index = convert (bitsizetype, first);
5611
5612 if (last)
5613 {
5614 if (tree_int_cst_equal (first, last))
5615 last = 0;
5616 else if (tree_int_cst_lt (last, first))
5617 {
5618 error_init ("empty index range in initializer");
5619 last = 0;
5620 }
5621 else
5622 {
5623 last = convert (bitsizetype, last);
5624 if (constructor_max_index != 0
5625 && tree_int_cst_lt (constructor_max_index, last))
5626 {
5627 error_init ("array index range in initializer exceeds array bounds");
5628 last = 0;
5629 }
5630 }
5631 }
5632
5633 designator_depth++;
5634 designator_erroneous = 0;
5635 if (constructor_range_stack || last)
5636 push_range_stack (last);
5637 }
5638 }
5639
5640 /* Within a struct initializer, specify the next field to be initialized. */
5641
5642 void
5643 set_init_label (tree fieldname)
5644 {
5645 tree tail;
5646
5647 if (set_designator (0))
5648 return;
5649
5650 designator_erroneous = 1;
5651
5652 if (TREE_CODE (constructor_type) != RECORD_TYPE
5653 && TREE_CODE (constructor_type) != UNION_TYPE)
5654 {
5655 error_init ("field name not in record or union initializer");
5656 return;
5657 }
5658
5659 for (tail = TYPE_FIELDS (constructor_type); tail;
5660 tail = TREE_CHAIN (tail))
5661 {
5662 if (DECL_NAME (tail) == fieldname)
5663 break;
5664 }
5665
5666 if (tail == 0)
5667 error ("unknown field %qE specified in initializer", fieldname);
5668 else
5669 {
5670 constructor_fields = tail;
5671 designator_depth++;
5672 designator_erroneous = 0;
5673 if (constructor_range_stack)
5674 push_range_stack (NULL_TREE);
5675 }
5676 }
5677 \f
5678 /* Add a new initializer to the tree of pending initializers. PURPOSE
5679 identifies the initializer, either array index or field in a structure.
5680 VALUE is the value of that index or field. */
5681
5682 static void
5683 add_pending_init (tree purpose, tree value)
5684 {
5685 struct init_node *p, **q, *r;
5686
5687 q = &constructor_pending_elts;
5688 p = 0;
5689
5690 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5691 {
5692 while (*q != 0)
5693 {
5694 p = *q;
5695 if (tree_int_cst_lt (purpose, p->purpose))
5696 q = &p->left;
5697 else if (tree_int_cst_lt (p->purpose, purpose))
5698 q = &p->right;
5699 else
5700 {
5701 if (TREE_SIDE_EFFECTS (p->value))
5702 warning_init ("initialized field with side-effects overwritten");
5703 else if (warn_override_init)
5704 warning_init ("initialized field overwritten");
5705 p->value = value;
5706 return;
5707 }
5708 }
5709 }
5710 else
5711 {
5712 tree bitpos;
5713
5714 bitpos = bit_position (purpose);
5715 while (*q != NULL)
5716 {
5717 p = *q;
5718 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5719 q = &p->left;
5720 else if (p->purpose != purpose)
5721 q = &p->right;
5722 else
5723 {
5724 if (TREE_SIDE_EFFECTS (p->value))
5725 warning_init ("initialized field with side-effects overwritten");
5726 else if (warn_override_init)
5727 warning_init ("initialized field overwritten");
5728 p->value = value;
5729 return;
5730 }
5731 }
5732 }
5733
5734 r = GGC_NEW (struct init_node);
5735 r->purpose = purpose;
5736 r->value = value;
5737
5738 *q = r;
5739 r->parent = p;
5740 r->left = 0;
5741 r->right = 0;
5742 r->balance = 0;
5743
5744 while (p)
5745 {
5746 struct init_node *s;
5747
5748 if (r == p->left)
5749 {
5750 if (p->balance == 0)
5751 p->balance = -1;
5752 else if (p->balance < 0)
5753 {
5754 if (r->balance < 0)
5755 {
5756 /* L rotation. */
5757 p->left = r->right;
5758 if (p->left)
5759 p->left->parent = p;
5760 r->right = p;
5761
5762 p->balance = 0;
5763 r->balance = 0;
5764
5765 s = p->parent;
5766 p->parent = r;
5767 r->parent = s;
5768 if (s)
5769 {
5770 if (s->left == p)
5771 s->left = r;
5772 else
5773 s->right = r;
5774 }
5775 else
5776 constructor_pending_elts = r;
5777 }
5778 else
5779 {
5780 /* LR rotation. */
5781 struct init_node *t = r->right;
5782
5783 r->right = t->left;
5784 if (r->right)
5785 r->right->parent = r;
5786 t->left = r;
5787
5788 p->left = t->right;
5789 if (p->left)
5790 p->left->parent = p;
5791 t->right = p;
5792
5793 p->balance = t->balance < 0;
5794 r->balance = -(t->balance > 0);
5795 t->balance = 0;
5796
5797 s = p->parent;
5798 p->parent = t;
5799 r->parent = t;
5800 t->parent = s;
5801 if (s)
5802 {
5803 if (s->left == p)
5804 s->left = t;
5805 else
5806 s->right = t;
5807 }
5808 else
5809 constructor_pending_elts = t;
5810 }
5811 break;
5812 }
5813 else
5814 {
5815 /* p->balance == +1; growth of left side balances the node. */
5816 p->balance = 0;
5817 break;
5818 }
5819 }
5820 else /* r == p->right */
5821 {
5822 if (p->balance == 0)
5823 /* Growth propagation from right side. */
5824 p->balance++;
5825 else if (p->balance > 0)
5826 {
5827 if (r->balance > 0)
5828 {
5829 /* R rotation. */
5830 p->right = r->left;
5831 if (p->right)
5832 p->right->parent = p;
5833 r->left = p;
5834
5835 p->balance = 0;
5836 r->balance = 0;
5837
5838 s = p->parent;
5839 p->parent = r;
5840 r->parent = s;
5841 if (s)
5842 {
5843 if (s->left == p)
5844 s->left = r;
5845 else
5846 s->right = r;
5847 }
5848 else
5849 constructor_pending_elts = r;
5850 }
5851 else /* r->balance == -1 */
5852 {
5853 /* RL rotation */
5854 struct init_node *t = r->left;
5855
5856 r->left = t->right;
5857 if (r->left)
5858 r->left->parent = r;
5859 t->right = r;
5860
5861 p->right = t->left;
5862 if (p->right)
5863 p->right->parent = p;
5864 t->left = p;
5865
5866 r->balance = (t->balance < 0);
5867 p->balance = -(t->balance > 0);
5868 t->balance = 0;
5869
5870 s = p->parent;
5871 p->parent = t;
5872 r->parent = t;
5873 t->parent = s;
5874 if (s)
5875 {
5876 if (s->left == p)
5877 s->left = t;
5878 else
5879 s->right = t;
5880 }
5881 else
5882 constructor_pending_elts = t;
5883 }
5884 break;
5885 }
5886 else
5887 {
5888 /* p->balance == -1; growth of right side balances the node. */
5889 p->balance = 0;
5890 break;
5891 }
5892 }
5893
5894 r = p;
5895 p = p->parent;
5896 }
5897 }
5898
5899 /* Build AVL tree from a sorted chain. */
5900
5901 static void
5902 set_nonincremental_init (void)
5903 {
5904 unsigned HOST_WIDE_INT ix;
5905 tree index, value;
5906
5907 if (TREE_CODE (constructor_type) != RECORD_TYPE
5908 && TREE_CODE (constructor_type) != ARRAY_TYPE)
5909 return;
5910
5911 FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
5912 add_pending_init (index, value);
5913 constructor_elements = 0;
5914 if (TREE_CODE (constructor_type) == RECORD_TYPE)
5915 {
5916 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
5917 /* Skip any nameless bit fields at the beginning. */
5918 while (constructor_unfilled_fields != 0
5919 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5920 && DECL_NAME (constructor_unfilled_fields) == 0)
5921 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5922
5923 }
5924 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5925 {
5926 if (TYPE_DOMAIN (constructor_type))
5927 constructor_unfilled_index
5928 = convert (bitsizetype,
5929 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5930 else
5931 constructor_unfilled_index = bitsize_zero_node;
5932 }
5933 constructor_incremental = 0;
5934 }
5935
5936 /* Build AVL tree from a string constant. */
5937
5938 static void
5939 set_nonincremental_init_from_string (tree str)
5940 {
5941 tree value, purpose, type;
5942 HOST_WIDE_INT val[2];
5943 const char *p, *end;
5944 int byte, wchar_bytes, charwidth, bitpos;
5945
5946 gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
5947
5948 if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5949 == TYPE_PRECISION (char_type_node))
5950 wchar_bytes = 1;
5951 else
5952 {
5953 gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5954 == TYPE_PRECISION (wchar_type_node));
5955 wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
5956 }
5957 charwidth = TYPE_PRECISION (char_type_node);
5958 type = TREE_TYPE (constructor_type);
5959 p = TREE_STRING_POINTER (str);
5960 end = p + TREE_STRING_LENGTH (str);
5961
5962 for (purpose = bitsize_zero_node;
5963 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
5964 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
5965 {
5966 if (wchar_bytes == 1)
5967 {
5968 val[1] = (unsigned char) *p++;
5969 val[0] = 0;
5970 }
5971 else
5972 {
5973 val[0] = 0;
5974 val[1] = 0;
5975 for (byte = 0; byte < wchar_bytes; byte++)
5976 {
5977 if (BYTES_BIG_ENDIAN)
5978 bitpos = (wchar_bytes - byte - 1) * charwidth;
5979 else
5980 bitpos = byte * charwidth;
5981 val[bitpos < HOST_BITS_PER_WIDE_INT]
5982 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
5983 << (bitpos % HOST_BITS_PER_WIDE_INT);
5984 }
5985 }
5986
5987 if (!TYPE_UNSIGNED (type))
5988 {
5989 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
5990 if (bitpos < HOST_BITS_PER_WIDE_INT)
5991 {
5992 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
5993 {
5994 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
5995 val[0] = -1;
5996 }
5997 }
5998 else if (bitpos == HOST_BITS_PER_WIDE_INT)
5999 {
6000 if (val[1] < 0)
6001 val[0] = -1;
6002 }
6003 else if (val[0] & (((HOST_WIDE_INT) 1)
6004 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6005 val[0] |= ((HOST_WIDE_INT) -1)
6006 << (bitpos - HOST_BITS_PER_WIDE_INT);
6007 }
6008
6009 value = build_int_cst_wide (type, val[1], val[0]);
6010 add_pending_init (purpose, value);
6011 }
6012
6013 constructor_incremental = 0;
6014 }
6015
6016 /* Return value of FIELD in pending initializer or zero if the field was
6017 not initialized yet. */
6018
6019 static tree
6020 find_init_member (tree field)
6021 {
6022 struct init_node *p;
6023
6024 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6025 {
6026 if (constructor_incremental
6027 && tree_int_cst_lt (field, constructor_unfilled_index))
6028 set_nonincremental_init ();
6029
6030 p = constructor_pending_elts;
6031 while (p)
6032 {
6033 if (tree_int_cst_lt (field, p->purpose))
6034 p = p->left;
6035 else if (tree_int_cst_lt (p->purpose, field))
6036 p = p->right;
6037 else
6038 return p->value;
6039 }
6040 }
6041 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6042 {
6043 tree bitpos = bit_position (field);
6044
6045 if (constructor_incremental
6046 && (!constructor_unfilled_fields
6047 || tree_int_cst_lt (bitpos,
6048 bit_position (constructor_unfilled_fields))))
6049 set_nonincremental_init ();
6050
6051 p = constructor_pending_elts;
6052 while (p)
6053 {
6054 if (field == p->purpose)
6055 return p->value;
6056 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6057 p = p->left;
6058 else
6059 p = p->right;
6060 }
6061 }
6062 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6063 {
6064 if (!VEC_empty (constructor_elt, constructor_elements)
6065 && (VEC_last (constructor_elt, constructor_elements)->index
6066 == field))
6067 return VEC_last (constructor_elt, constructor_elements)->value;
6068 }
6069 return 0;
6070 }
6071
6072 /* "Output" the next constructor element.
6073 At top level, really output it to assembler code now.
6074 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6075 TYPE is the data type that the containing data type wants here.
6076 FIELD is the field (a FIELD_DECL) or the index that this element fills.
6077 If VALUE is a string constant, STRICT_STRING is true if it is
6078 unparenthesized or we should not warn here for it being parenthesized.
6079 For other types of VALUE, STRICT_STRING is not used.
6080
6081 PENDING if non-nil means output pending elements that belong
6082 right after this element. (PENDING is normally 1;
6083 it is 0 while outputting pending elements, to avoid recursion.) */
6084
6085 static void
6086 output_init_element (tree value, bool strict_string, tree type, tree field,
6087 int pending)
6088 {
6089 constructor_elt *celt;
6090
6091 if (type == error_mark_node || value == error_mark_node)
6092 {
6093 constructor_erroneous = 1;
6094 return;
6095 }
6096 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6097 && (TREE_CODE (value) == STRING_CST
6098 || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6099 && !(TREE_CODE (value) == STRING_CST
6100 && TREE_CODE (type) == ARRAY_TYPE
6101 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6102 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6103 TYPE_MAIN_VARIANT (type)))
6104 value = array_to_pointer_conversion (value);
6105
6106 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6107 && require_constant_value && !flag_isoc99 && pending)
6108 {
6109 /* As an extension, allow initializing objects with static storage
6110 duration with compound literals (which are then treated just as
6111 the brace enclosed list they contain). */
6112 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6113 value = DECL_INITIAL (decl);
6114 }
6115
6116 if (value == error_mark_node)
6117 constructor_erroneous = 1;
6118 else if (!TREE_CONSTANT (value))
6119 constructor_constant = 0;
6120 else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6121 || ((TREE_CODE (constructor_type) == RECORD_TYPE
6122 || TREE_CODE (constructor_type) == UNION_TYPE)
6123 && DECL_C_BIT_FIELD (field)
6124 && TREE_CODE (value) != INTEGER_CST))
6125 constructor_simple = 0;
6126
6127 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6128 {
6129 if (require_constant_value)
6130 {
6131 error_init ("initializer element is not constant");
6132 value = error_mark_node;
6133 }
6134 else if (require_constant_elements)
6135 pedwarn ("initializer element is not computable at load time");
6136 }
6137
6138 /* If this field is empty (and not at the end of structure),
6139 don't do anything other than checking the initializer. */
6140 if (field
6141 && (TREE_TYPE (field) == error_mark_node
6142 || (COMPLETE_TYPE_P (TREE_TYPE (field))
6143 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6144 && (TREE_CODE (constructor_type) == ARRAY_TYPE
6145 || TREE_CHAIN (field)))))
6146 return;
6147
6148 value = digest_init (type, value, strict_string, require_constant_value);
6149 if (value == error_mark_node)
6150 {
6151 constructor_erroneous = 1;
6152 return;
6153 }
6154
6155 /* If this element doesn't come next in sequence,
6156 put it on constructor_pending_elts. */
6157 if (TREE_CODE (constructor_type) == ARRAY_TYPE
6158 && (!constructor_incremental
6159 || !tree_int_cst_equal (field, constructor_unfilled_index)))
6160 {
6161 if (constructor_incremental
6162 && tree_int_cst_lt (field, constructor_unfilled_index))
6163 set_nonincremental_init ();
6164
6165 add_pending_init (field, value);
6166 return;
6167 }
6168 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6169 && (!constructor_incremental
6170 || field != constructor_unfilled_fields))
6171 {
6172 /* We do this for records but not for unions. In a union,
6173 no matter which field is specified, it can be initialized
6174 right away since it starts at the beginning of the union. */
6175 if (constructor_incremental)
6176 {
6177 if (!constructor_unfilled_fields)
6178 set_nonincremental_init ();
6179 else
6180 {
6181 tree bitpos, unfillpos;
6182
6183 bitpos = bit_position (field);
6184 unfillpos = bit_position (constructor_unfilled_fields);
6185
6186 if (tree_int_cst_lt (bitpos, unfillpos))
6187 set_nonincremental_init ();
6188 }
6189 }
6190
6191 add_pending_init (field, value);
6192 return;
6193 }
6194 else if (TREE_CODE (constructor_type) == UNION_TYPE
6195 && !VEC_empty (constructor_elt, constructor_elements))
6196 {
6197 if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6198 constructor_elements)->value))
6199 warning_init ("initialized field with side-effects overwritten");
6200 else if (warn_override_init)
6201 warning_init ("initialized field overwritten");
6202
6203 /* We can have just one union field set. */
6204 constructor_elements = 0;
6205 }
6206
6207 /* Otherwise, output this element either to
6208 constructor_elements or to the assembler file. */
6209
6210 celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6211 celt->index = field;
6212 celt->value = value;
6213
6214 /* Advance the variable that indicates sequential elements output. */
6215 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6216 constructor_unfilled_index
6217 = size_binop (PLUS_EXPR, constructor_unfilled_index,
6218 bitsize_one_node);
6219 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6220 {
6221 constructor_unfilled_fields
6222 = TREE_CHAIN (constructor_unfilled_fields);
6223
6224 /* Skip any nameless bit fields. */
6225 while (constructor_unfilled_fields != 0
6226 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6227 && DECL_NAME (constructor_unfilled_fields) == 0)
6228 constructor_unfilled_fields =
6229 TREE_CHAIN (constructor_unfilled_fields);
6230 }
6231 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6232 constructor_unfilled_fields = 0;
6233
6234 /* Now output any pending elements which have become next. */
6235 if (pending)
6236 output_pending_init_elements (0);
6237 }
6238
6239 /* Output any pending elements which have become next.
6240 As we output elements, constructor_unfilled_{fields,index}
6241 advances, which may cause other elements to become next;
6242 if so, they too are output.
6243
6244 If ALL is 0, we return when there are
6245 no more pending elements to output now.
6246
6247 If ALL is 1, we output space as necessary so that
6248 we can output all the pending elements. */
6249
6250 static void
6251 output_pending_init_elements (int all)
6252 {
6253 struct init_node *elt = constructor_pending_elts;
6254 tree next;
6255
6256 retry:
6257
6258 /* Look through the whole pending tree.
6259 If we find an element that should be output now,
6260 output it. Otherwise, set NEXT to the element
6261 that comes first among those still pending. */
6262
6263 next = 0;
6264 while (elt)
6265 {
6266 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6267 {
6268 if (tree_int_cst_equal (elt->purpose,
6269 constructor_unfilled_index))
6270 output_init_element (elt->value, true,
6271 TREE_TYPE (constructor_type),
6272 constructor_unfilled_index, 0);
6273 else if (tree_int_cst_lt (constructor_unfilled_index,
6274 elt->purpose))
6275 {
6276 /* Advance to the next smaller node. */
6277 if (elt->left)
6278 elt = elt->left;
6279 else
6280 {
6281 /* We have reached the smallest node bigger than the
6282 current unfilled index. Fill the space first. */
6283 next = elt->purpose;
6284 break;
6285 }
6286 }
6287 else
6288 {
6289 /* Advance to the next bigger node. */
6290 if (elt->right)
6291 elt = elt->right;
6292 else
6293 {
6294 /* We have reached the biggest node in a subtree. Find
6295 the parent of it, which is the next bigger node. */
6296 while (elt->parent && elt->parent->right == elt)
6297 elt = elt->parent;
6298 elt = elt->parent;
6299 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6300 elt->purpose))
6301 {
6302 next = elt->purpose;
6303 break;
6304 }
6305 }
6306 }
6307 }
6308 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6309 || TREE_CODE (constructor_type) == UNION_TYPE)
6310 {
6311 tree ctor_unfilled_bitpos, elt_bitpos;
6312
6313 /* If the current record is complete we are done. */
6314 if (constructor_unfilled_fields == 0)
6315 break;
6316
6317 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6318 elt_bitpos = bit_position (elt->purpose);
6319 /* We can't compare fields here because there might be empty
6320 fields in between. */
6321 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6322 {
6323 constructor_unfilled_fields = elt->purpose;
6324 output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6325 elt->purpose, 0);
6326 }
6327 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6328 {
6329 /* Advance to the next smaller node. */
6330 if (elt->left)
6331 elt = elt->left;
6332 else
6333 {
6334 /* We have reached the smallest node bigger than the
6335 current unfilled field. Fill the space first. */
6336 next = elt->purpose;
6337 break;
6338 }
6339 }
6340 else
6341 {
6342 /* Advance to the next bigger node. */
6343 if (elt->right)
6344 elt = elt->right;
6345 else
6346 {
6347 /* We have reached the biggest node in a subtree. Find
6348 the parent of it, which is the next bigger node. */
6349 while (elt->parent && elt->parent->right == elt)
6350 elt = elt->parent;
6351 elt = elt->parent;
6352 if (elt
6353 && (tree_int_cst_lt (ctor_unfilled_bitpos,
6354 bit_position (elt->purpose))))
6355 {
6356 next = elt->purpose;
6357 break;
6358 }
6359 }
6360 }
6361 }
6362 }
6363
6364 /* Ordinarily return, but not if we want to output all
6365 and there are elements left. */
6366 if (!(all && next != 0))
6367 return;
6368
6369 /* If it's not incremental, just skip over the gap, so that after
6370 jumping to retry we will output the next successive element. */
6371 if (TREE_CODE (constructor_type) == RECORD_TYPE
6372 || TREE_CODE (constructor_type) == UNION_TYPE)
6373 constructor_unfilled_fields = next;
6374 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6375 constructor_unfilled_index = next;
6376
6377 /* ELT now points to the node in the pending tree with the next
6378 initializer to output. */
6379 goto retry;
6380 }
6381 \f
6382 /* Add one non-braced element to the current constructor level.
6383 This adjusts the current position within the constructor's type.
6384 This may also start or terminate implicit levels
6385 to handle a partly-braced initializer.
6386
6387 Once this has found the correct level for the new element,
6388 it calls output_init_element. */
6389
6390 void
6391 process_init_element (struct c_expr value)
6392 {
6393 tree orig_value = value.value;
6394 int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6395 bool strict_string = value.original_code == STRING_CST;
6396
6397 designator_depth = 0;
6398 designator_erroneous = 0;
6399
6400 /* Handle superfluous braces around string cst as in
6401 char x[] = {"foo"}; */
6402 if (string_flag
6403 && constructor_type
6404 && TREE_CODE (constructor_type) == ARRAY_TYPE
6405 && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6406 && integer_zerop (constructor_unfilled_index))
6407 {
6408 if (constructor_stack->replacement_value.value)
6409 error_init ("excess elements in char array initializer");
6410 constructor_stack->replacement_value = value;
6411 return;
6412 }
6413
6414 if (constructor_stack->replacement_value.value != 0)
6415 {
6416 error_init ("excess elements in struct initializer");
6417 return;
6418 }
6419
6420 /* Ignore elements of a brace group if it is entirely superfluous
6421 and has already been diagnosed. */
6422 if (constructor_type == 0)
6423 return;
6424
6425 /* If we've exhausted any levels that didn't have braces,
6426 pop them now. */
6427 while (constructor_stack->implicit)
6428 {
6429 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6430 || TREE_CODE (constructor_type) == UNION_TYPE)
6431 && constructor_fields == 0)
6432 process_init_element (pop_init_level (1));
6433 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6434 && (constructor_max_index == 0
6435 || tree_int_cst_lt (constructor_max_index,
6436 constructor_index)))
6437 process_init_element (pop_init_level (1));
6438 else
6439 break;
6440 }
6441
6442 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
6443 if (constructor_range_stack)
6444 {
6445 /* If value is a compound literal and we'll be just using its
6446 content, don't put it into a SAVE_EXPR. */
6447 if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6448 || !require_constant_value
6449 || flag_isoc99)
6450 value.value = save_expr (value.value);
6451 }
6452
6453 while (1)
6454 {
6455 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6456 {
6457 tree fieldtype;
6458 enum tree_code fieldcode;
6459
6460 if (constructor_fields == 0)
6461 {
6462 pedwarn_init ("excess elements in struct initializer");
6463 break;
6464 }
6465
6466 fieldtype = TREE_TYPE (constructor_fields);
6467 if (fieldtype != error_mark_node)
6468 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6469 fieldcode = TREE_CODE (fieldtype);
6470
6471 /* Error for non-static initialization of a flexible array member. */
6472 if (fieldcode == ARRAY_TYPE
6473 && !require_constant_value
6474 && TYPE_SIZE (fieldtype) == NULL_TREE
6475 && TREE_CHAIN (constructor_fields) == NULL_TREE)
6476 {
6477 error_init ("non-static initialization of a flexible array member");
6478 break;
6479 }
6480
6481 /* Accept a string constant to initialize a subarray. */
6482 if (value.value != 0
6483 && fieldcode == ARRAY_TYPE
6484 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6485 && string_flag)
6486 value.value = orig_value;
6487 /* Otherwise, if we have come to a subaggregate,
6488 and we don't have an element of its type, push into it. */
6489 else if (value.value != 0
6490 && value.value != error_mark_node
6491 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6492 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6493 || fieldcode == UNION_TYPE))
6494 {
6495 push_init_level (1);
6496 continue;
6497 }
6498
6499 if (value.value)
6500 {
6501 push_member_name (constructor_fields);
6502 output_init_element (value.value, strict_string,
6503 fieldtype, constructor_fields, 1);
6504 RESTORE_SPELLING_DEPTH (constructor_depth);
6505 }
6506 else
6507 /* Do the bookkeeping for an element that was
6508 directly output as a constructor. */
6509 {
6510 /* For a record, keep track of end position of last field. */
6511 if (DECL_SIZE (constructor_fields))
6512 constructor_bit_index
6513 = size_binop (PLUS_EXPR,
6514 bit_position (constructor_fields),
6515 DECL_SIZE (constructor_fields));
6516
6517 /* If the current field was the first one not yet written out,
6518 it isn't now, so update. */
6519 if (constructor_unfilled_fields == constructor_fields)
6520 {
6521 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6522 /* Skip any nameless bit fields. */
6523 while (constructor_unfilled_fields != 0
6524 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6525 && DECL_NAME (constructor_unfilled_fields) == 0)
6526 constructor_unfilled_fields =
6527 TREE_CHAIN (constructor_unfilled_fields);
6528 }
6529 }
6530
6531 constructor_fields = TREE_CHAIN (constructor_fields);
6532 /* Skip any nameless bit fields at the beginning. */
6533 while (constructor_fields != 0
6534 && DECL_C_BIT_FIELD (constructor_fields)
6535 && DECL_NAME (constructor_fields) == 0)
6536 constructor_fields = TREE_CHAIN (constructor_fields);
6537 }
6538 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6539 {
6540 tree fieldtype;
6541 enum tree_code fieldcode;
6542
6543 if (constructor_fields == 0)
6544 {
6545 pedwarn_init ("excess elements in union initializer");
6546 break;
6547 }
6548
6549 fieldtype = TREE_TYPE (constructor_fields);
6550 if (fieldtype != error_mark_node)
6551 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6552 fieldcode = TREE_CODE (fieldtype);
6553
6554 /* Warn that traditional C rejects initialization of unions.
6555 We skip the warning if the value is zero. This is done
6556 under the assumption that the zero initializer in user
6557 code appears conditioned on e.g. __STDC__ to avoid
6558 "missing initializer" warnings and relies on default
6559 initialization to zero in the traditional C case.
6560 We also skip the warning if the initializer is designated,
6561 again on the assumption that this must be conditional on
6562 __STDC__ anyway (and we've already complained about the
6563 member-designator already). */
6564 if (!in_system_header && !constructor_designated
6565 && !(value.value && (integer_zerop (value.value)
6566 || real_zerop (value.value))))
6567 warning (OPT_Wtraditional, "traditional C rejects initialization "
6568 "of unions");
6569
6570 /* Accept a string constant to initialize a subarray. */
6571 if (value.value != 0
6572 && fieldcode == ARRAY_TYPE
6573 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6574 && string_flag)
6575 value.value = orig_value;
6576 /* Otherwise, if we have come to a subaggregate,
6577 and we don't have an element of its type, push into it. */
6578 else if (value.value != 0
6579 && value.value != error_mark_node
6580 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6581 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6582 || fieldcode == UNION_TYPE))
6583 {
6584 push_init_level (1);
6585 continue;
6586 }
6587
6588 if (value.value)
6589 {
6590 push_member_name (constructor_fields);
6591 output_init_element (value.value, strict_string,
6592 fieldtype, constructor_fields, 1);
6593 RESTORE_SPELLING_DEPTH (constructor_depth);
6594 }
6595 else
6596 /* Do the bookkeeping for an element that was
6597 directly output as a constructor. */
6598 {
6599 constructor_bit_index = DECL_SIZE (constructor_fields);
6600 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6601 }
6602
6603 constructor_fields = 0;
6604 }
6605 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6606 {
6607 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6608 enum tree_code eltcode = TREE_CODE (elttype);
6609
6610 /* Accept a string constant to initialize a subarray. */
6611 if (value.value != 0
6612 && eltcode == ARRAY_TYPE
6613 && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6614 && string_flag)
6615 value.value = orig_value;
6616 /* Otherwise, if we have come to a subaggregate,
6617 and we don't have an element of its type, push into it. */
6618 else if (value.value != 0
6619 && value.value != error_mark_node
6620 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6621 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6622 || eltcode == UNION_TYPE))
6623 {
6624 push_init_level (1);
6625 continue;
6626 }
6627
6628 if (constructor_max_index != 0
6629 && (tree_int_cst_lt (constructor_max_index, constructor_index)
6630 || integer_all_onesp (constructor_max_index)))
6631 {
6632 pedwarn_init ("excess elements in array initializer");
6633 break;
6634 }
6635
6636 /* Now output the actual element. */
6637 if (value.value)
6638 {
6639 push_array_bounds (tree_low_cst (constructor_index, 1));
6640 output_init_element (value.value, strict_string,
6641 elttype, constructor_index, 1);
6642 RESTORE_SPELLING_DEPTH (constructor_depth);
6643 }
6644
6645 constructor_index
6646 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6647
6648 if (!value.value)
6649 /* If we are doing the bookkeeping for an element that was
6650 directly output as a constructor, we must update
6651 constructor_unfilled_index. */
6652 constructor_unfilled_index = constructor_index;
6653 }
6654 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6655 {
6656 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6657
6658 /* Do a basic check of initializer size. Note that vectors
6659 always have a fixed size derived from their type. */
6660 if (tree_int_cst_lt (constructor_max_index, constructor_index))
6661 {
6662 pedwarn_init ("excess elements in vector initializer");
6663 break;
6664 }
6665
6666 /* Now output the actual element. */
6667 if (value.value)
6668 output_init_element (value.value, strict_string,
6669 elttype, constructor_index, 1);
6670
6671 constructor_index
6672 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6673
6674 if (!value.value)
6675 /* If we are doing the bookkeeping for an element that was
6676 directly output as a constructor, we must update
6677 constructor_unfilled_index. */
6678 constructor_unfilled_index = constructor_index;
6679 }
6680
6681 /* Handle the sole element allowed in a braced initializer
6682 for a scalar variable. */
6683 else if (constructor_type != error_mark_node
6684 && constructor_fields == 0)
6685 {
6686 pedwarn_init ("excess elements in scalar initializer");
6687 break;
6688 }
6689 else
6690 {
6691 if (value.value)
6692 output_init_element (value.value, strict_string,
6693 constructor_type, NULL_TREE, 1);
6694 constructor_fields = 0;
6695 }
6696
6697 /* Handle range initializers either at this level or anywhere higher
6698 in the designator stack. */
6699 if (constructor_range_stack)
6700 {
6701 struct constructor_range_stack *p, *range_stack;
6702 int finish = 0;
6703
6704 range_stack = constructor_range_stack;
6705 constructor_range_stack = 0;
6706 while (constructor_stack != range_stack->stack)
6707 {
6708 gcc_assert (constructor_stack->implicit);
6709 process_init_element (pop_init_level (1));
6710 }
6711 for (p = range_stack;
6712 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6713 p = p->prev)
6714 {
6715 gcc_assert (constructor_stack->implicit);
6716 process_init_element (pop_init_level (1));
6717 }
6718
6719 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6720 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6721 finish = 1;
6722
6723 while (1)
6724 {
6725 constructor_index = p->index;
6726 constructor_fields = p->fields;
6727 if (finish && p->range_end && p->index == p->range_start)
6728 {
6729 finish = 0;
6730 p->prev = 0;
6731 }
6732 p = p->next;
6733 if (!p)
6734 break;
6735 push_init_level (2);
6736 p->stack = constructor_stack;
6737 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6738 p->index = p->range_start;
6739 }
6740
6741 if (!finish)
6742 constructor_range_stack = range_stack;
6743 continue;
6744 }
6745
6746 break;
6747 }
6748
6749 constructor_range_stack = 0;
6750 }
6751 \f
6752 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
6753 (guaranteed to be 'volatile' or null) and ARGS (represented using
6754 an ASM_EXPR node). */
6755 tree
6756 build_asm_stmt (tree cv_qualifier, tree args)
6757 {
6758 if (!ASM_VOLATILE_P (args) && cv_qualifier)
6759 ASM_VOLATILE_P (args) = 1;
6760 return add_stmt (args);
6761 }
6762
6763 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6764 some INPUTS, and some CLOBBERS. The latter three may be NULL.
6765 SIMPLE indicates whether there was anything at all after the
6766 string in the asm expression -- asm("blah") and asm("blah" : )
6767 are subtly different. We use a ASM_EXPR node to represent this. */
6768 tree
6769 build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6770 bool simple)
6771 {
6772 tree tail;
6773 tree args;
6774 int i;
6775 const char *constraint;
6776 const char **oconstraints;
6777 bool allows_mem, allows_reg, is_inout;
6778 int ninputs, noutputs;
6779
6780 ninputs = list_length (inputs);
6781 noutputs = list_length (outputs);
6782 oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6783
6784 string = resolve_asm_operand_names (string, outputs, inputs);
6785
6786 /* Remove output conversions that change the type but not the mode. */
6787 for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6788 {
6789 tree output = TREE_VALUE (tail);
6790
6791 /* ??? Really, this should not be here. Users should be using a
6792 proper lvalue, dammit. But there's a long history of using casts
6793 in the output operands. In cases like longlong.h, this becomes a
6794 primitive form of typechecking -- if the cast can be removed, then
6795 the output operand had a type of the proper width; otherwise we'll
6796 get an error. Gross, but ... */
6797 STRIP_NOPS (output);
6798
6799 if (!lvalue_or_else (output, lv_asm))
6800 output = error_mark_node;
6801
6802 if (output != error_mark_node
6803 && (TREE_READONLY (output)
6804 || TYPE_READONLY (TREE_TYPE (output))
6805 || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6806 || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6807 && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6808 readonly_error (output, lv_asm);
6809
6810 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6811 oconstraints[i] = constraint;
6812
6813 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6814 &allows_mem, &allows_reg, &is_inout))
6815 {
6816 /* If the operand is going to end up in memory,
6817 mark it addressable. */
6818 if (!allows_reg && !c_mark_addressable (output))
6819 output = error_mark_node;
6820 }
6821 else
6822 output = error_mark_node;
6823
6824 TREE_VALUE (tail) = output;
6825 }
6826
6827 for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6828 {
6829 tree input;
6830
6831 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6832 input = TREE_VALUE (tail);
6833
6834 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6835 oconstraints, &allows_mem, &allows_reg))
6836 {
6837 /* If the operand is going to end up in memory,
6838 mark it addressable. */
6839 if (!allows_reg && allows_mem)
6840 {
6841 /* Strip the nops as we allow this case. FIXME, this really
6842 should be rejected or made deprecated. */
6843 STRIP_NOPS (input);
6844 if (!c_mark_addressable (input))
6845 input = error_mark_node;
6846 }
6847 }
6848 else
6849 input = error_mark_node;
6850
6851 TREE_VALUE (tail) = input;
6852 }
6853
6854 args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6855
6856 /* asm statements without outputs, including simple ones, are treated
6857 as volatile. */
6858 ASM_INPUT_P (args) = simple;
6859 ASM_VOLATILE_P (args) = (noutputs == 0);
6860
6861 return args;
6862 }
6863 \f
6864 /* Generate a goto statement to LABEL. */
6865
6866 tree
6867 c_finish_goto_label (tree label)
6868 {
6869 tree decl = lookup_label (label);
6870 if (!decl)
6871 return NULL_TREE;
6872
6873 if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6874 {
6875 error ("jump into statement expression");
6876 return NULL_TREE;
6877 }
6878
6879 if (C_DECL_UNJUMPABLE_VM (decl))
6880 {
6881 error ("jump into scope of identifier with variably modified type");
6882 return NULL_TREE;
6883 }
6884
6885 if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6886 {
6887 /* No jump from outside this statement expression context, so
6888 record that there is a jump from within this context. */
6889 struct c_label_list *nlist;
6890 nlist = XOBNEW (&parser_obstack, struct c_label_list);
6891 nlist->next = label_context_stack_se->labels_used;
6892 nlist->label = decl;
6893 label_context_stack_se->labels_used = nlist;
6894 }
6895
6896 if (!C_DECL_UNDEFINABLE_VM (decl))
6897 {
6898 /* No jump from outside this context context of identifiers with
6899 variably modified type, so record that there is a jump from
6900 within this context. */
6901 struct c_label_list *nlist;
6902 nlist = XOBNEW (&parser_obstack, struct c_label_list);
6903 nlist->next = label_context_stack_vm->labels_used;
6904 nlist->label = decl;
6905 label_context_stack_vm->labels_used = nlist;
6906 }
6907
6908 TREE_USED (decl) = 1;
6909 return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6910 }
6911
6912 /* Generate a computed goto statement to EXPR. */
6913
6914 tree
6915 c_finish_goto_ptr (tree expr)
6916 {
6917 if (pedantic)
6918 pedwarn ("ISO C forbids %<goto *expr;%>");
6919 expr = convert (ptr_type_node, expr);
6920 return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
6921 }
6922
6923 /* Generate a C `return' statement. RETVAL is the expression for what
6924 to return, or a null pointer for `return;' with no value. */
6925
6926 tree
6927 c_finish_return (tree retval)
6928 {
6929 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
6930 bool no_warning = false;
6931
6932 if (TREE_THIS_VOLATILE (current_function_decl))
6933 warning (0, "function declared %<noreturn%> has a %<return%> statement");
6934
6935 if (!retval)
6936 {
6937 current_function_returns_null = 1;
6938 if ((warn_return_type || flag_isoc99)
6939 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6940 {
6941 pedwarn_c99 ("%<return%> with no value, in "
6942 "function returning non-void");
6943 no_warning = true;
6944 }
6945 }
6946 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6947 {
6948 current_function_returns_null = 1;
6949 if (TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6950 pedwarn ("%<return%> with a value, in function returning void");
6951 else if (pedantic)
6952 pedwarn ("ISO C forbids %<return%> with expression, in function returning void");
6953 }
6954 else
6955 {
6956 tree t = convert_for_assignment (valtype, retval, ic_return,
6957 NULL_TREE, NULL_TREE, 0);
6958 tree res = DECL_RESULT (current_function_decl);
6959 tree inner;
6960
6961 current_function_returns_value = 1;
6962 if (t == error_mark_node)
6963 return NULL_TREE;
6964
6965 inner = t = convert (TREE_TYPE (res), t);
6966
6967 /* Strip any conversions, additions, and subtractions, and see if
6968 we are returning the address of a local variable. Warn if so. */
6969 while (1)
6970 {
6971 switch (TREE_CODE (inner))
6972 {
6973 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
6974 case PLUS_EXPR:
6975 inner = TREE_OPERAND (inner, 0);
6976 continue;
6977
6978 case MINUS_EXPR:
6979 /* If the second operand of the MINUS_EXPR has a pointer
6980 type (or is converted from it), this may be valid, so
6981 don't give a warning. */
6982 {
6983 tree op1 = TREE_OPERAND (inner, 1);
6984
6985 while (!POINTER_TYPE_P (TREE_TYPE (op1))
6986 && (TREE_CODE (op1) == NOP_EXPR
6987 || TREE_CODE (op1) == NON_LVALUE_EXPR
6988 || TREE_CODE (op1) == CONVERT_EXPR))
6989 op1 = TREE_OPERAND (op1, 0);
6990
6991 if (POINTER_TYPE_P (TREE_TYPE (op1)))
6992 break;
6993
6994 inner = TREE_OPERAND (inner, 0);
6995 continue;
6996 }
6997
6998 case ADDR_EXPR:
6999 inner = TREE_OPERAND (inner, 0);
7000
7001 while (REFERENCE_CLASS_P (inner)
7002 && TREE_CODE (inner) != INDIRECT_REF)
7003 inner = TREE_OPERAND (inner, 0);
7004
7005 if (DECL_P (inner)
7006 && !DECL_EXTERNAL (inner)
7007 && !TREE_STATIC (inner)
7008 && DECL_CONTEXT (inner) == current_function_decl)
7009 warning (0, "function returns address of local variable");
7010 break;
7011
7012 default:
7013 break;
7014 }
7015
7016 break;
7017 }
7018
7019 retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7020 }
7021
7022 ret_stmt = build_stmt (RETURN_EXPR, retval);
7023 TREE_NO_WARNING (ret_stmt) |= no_warning;
7024 return add_stmt (ret_stmt);
7025 }
7026 \f
7027 struct c_switch {
7028 /* The SWITCH_EXPR being built. */
7029 tree switch_expr;
7030
7031 /* The original type of the testing expression, i.e. before the
7032 default conversion is applied. */
7033 tree orig_type;
7034
7035 /* A splay-tree mapping the low element of a case range to the high
7036 element, or NULL_TREE if there is no high element. Used to
7037 determine whether or not a new case label duplicates an old case
7038 label. We need a tree, rather than simply a hash table, because
7039 of the GNU case range extension. */
7040 splay_tree cases;
7041
7042 /* Number of nested statement expressions within this switch
7043 statement; if nonzero, case and default labels may not
7044 appear. */
7045 unsigned int blocked_stmt_expr;
7046
7047 /* Scope of outermost declarations of identifiers with variably
7048 modified type within this switch statement; if nonzero, case and
7049 default labels may not appear. */
7050 unsigned int blocked_vm;
7051
7052 /* The next node on the stack. */
7053 struct c_switch *next;
7054 };
7055
7056 /* A stack of the currently active switch statements. The innermost
7057 switch statement is on the top of the stack. There is no need to
7058 mark the stack for garbage collection because it is only active
7059 during the processing of the body of a function, and we never
7060 collect at that point. */
7061
7062 struct c_switch *c_switch_stack;
7063
7064 /* Start a C switch statement, testing expression EXP. Return the new
7065 SWITCH_EXPR. */
7066
7067 tree
7068 c_start_case (tree exp)
7069 {
7070 tree orig_type = error_mark_node;
7071 struct c_switch *cs;
7072
7073 if (exp != error_mark_node)
7074 {
7075 orig_type = TREE_TYPE (exp);
7076
7077 if (!INTEGRAL_TYPE_P (orig_type))
7078 {
7079 if (orig_type != error_mark_node)
7080 {
7081 error ("switch quantity not an integer");
7082 orig_type = error_mark_node;
7083 }
7084 exp = integer_zero_node;
7085 }
7086 else
7087 {
7088 tree type = TYPE_MAIN_VARIANT (orig_type);
7089
7090 if (!in_system_header
7091 && (type == long_integer_type_node
7092 || type == long_unsigned_type_node))
7093 warning (OPT_Wtraditional, "%<long%> switch expression not "
7094 "converted to %<int%> in ISO C");
7095
7096 exp = default_conversion (exp);
7097 }
7098 }
7099
7100 /* Add this new SWITCH_EXPR to the stack. */
7101 cs = XNEW (struct c_switch);
7102 cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7103 cs->orig_type = orig_type;
7104 cs->cases = splay_tree_new (case_compare, NULL, NULL);
7105 cs->blocked_stmt_expr = 0;
7106 cs->blocked_vm = 0;
7107 cs->next = c_switch_stack;
7108 c_switch_stack = cs;
7109
7110 return add_stmt (cs->switch_expr);
7111 }
7112
7113 /* Process a case label. */
7114
7115 tree
7116 do_case (tree low_value, tree high_value)
7117 {
7118 tree label = NULL_TREE;
7119
7120 if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7121 && !c_switch_stack->blocked_vm)
7122 {
7123 label = c_add_case_label (c_switch_stack->cases,
7124 SWITCH_COND (c_switch_stack->switch_expr),
7125 c_switch_stack->orig_type,
7126 low_value, high_value);
7127 if (label == error_mark_node)
7128 label = NULL_TREE;
7129 }
7130 else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7131 {
7132 if (low_value)
7133 error ("case label in statement expression not containing "
7134 "enclosing switch statement");
7135 else
7136 error ("%<default%> label in statement expression not containing "
7137 "enclosing switch statement");
7138 }
7139 else if (c_switch_stack && c_switch_stack->blocked_vm)
7140 {
7141 if (low_value)
7142 error ("case label in scope of identifier with variably modified "
7143 "type not containing enclosing switch statement");
7144 else
7145 error ("%<default%> label in scope of identifier with variably "
7146 "modified type not containing enclosing switch statement");
7147 }
7148 else if (low_value)
7149 error ("case label not within a switch statement");
7150 else
7151 error ("%<default%> label not within a switch statement");
7152
7153 return label;
7154 }
7155
7156 /* Finish the switch statement. */
7157
7158 void
7159 c_finish_case (tree body)
7160 {
7161 struct c_switch *cs = c_switch_stack;
7162 location_t switch_location;
7163
7164 SWITCH_BODY (cs->switch_expr) = body;
7165
7166 /* We must not be within a statement expression nested in the switch
7167 at this point; we might, however, be within the scope of an
7168 identifier with variably modified type nested in the switch. */
7169 gcc_assert (!cs->blocked_stmt_expr);
7170
7171 /* Emit warnings as needed. */
7172 if (EXPR_HAS_LOCATION (cs->switch_expr))
7173 switch_location = EXPR_LOCATION (cs->switch_expr);
7174 else
7175 switch_location = input_location;
7176 c_do_switch_warnings (cs->cases, switch_location,
7177 TREE_TYPE (cs->switch_expr),
7178 SWITCH_COND (cs->switch_expr));
7179
7180 /* Pop the stack. */
7181 c_switch_stack = cs->next;
7182 splay_tree_delete (cs->cases);
7183 XDELETE (cs);
7184 }
7185 \f
7186 /* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
7187 THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7188 may be null. NESTED_IF is true if THEN_BLOCK contains another IF
7189 statement, and was not surrounded with parenthesis. */
7190
7191 void
7192 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7193 tree else_block, bool nested_if)
7194 {
7195 tree stmt;
7196
7197 /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
7198 if (warn_parentheses && nested_if && else_block == NULL)
7199 {
7200 tree inner_if = then_block;
7201
7202 /* We know from the grammar productions that there is an IF nested
7203 within THEN_BLOCK. Due to labels and c99 conditional declarations,
7204 it might not be exactly THEN_BLOCK, but should be the last
7205 non-container statement within. */
7206 while (1)
7207 switch (TREE_CODE (inner_if))
7208 {
7209 case COND_EXPR:
7210 goto found;
7211 case BIND_EXPR:
7212 inner_if = BIND_EXPR_BODY (inner_if);
7213 break;
7214 case STATEMENT_LIST:
7215 inner_if = expr_last (then_block);
7216 break;
7217 case TRY_FINALLY_EXPR:
7218 case TRY_CATCH_EXPR:
7219 inner_if = TREE_OPERAND (inner_if, 0);
7220 break;
7221 default:
7222 gcc_unreachable ();
7223 }
7224 found:
7225
7226 if (COND_EXPR_ELSE (inner_if))
7227 warning (OPT_Wparentheses,
7228 "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7229 &if_locus);
7230 }
7231
7232 empty_if_body_warning (then_block, else_block);
7233
7234 stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7235 SET_EXPR_LOCATION (stmt, if_locus);
7236 add_stmt (stmt);
7237 }
7238
7239 /* Emit a general-purpose loop construct. START_LOCUS is the location of
7240 the beginning of the loop. COND is the loop condition. COND_IS_FIRST
7241 is false for DO loops. INCR is the FOR increment expression. BODY is
7242 the statement controlled by the loop. BLAB is the break label. CLAB is
7243 the continue label. Everything is allowed to be NULL. */
7244
7245 void
7246 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7247 tree blab, tree clab, bool cond_is_first)
7248 {
7249 tree entry = NULL, exit = NULL, t;
7250
7251 /* If the condition is zero don't generate a loop construct. */
7252 if (cond && integer_zerop (cond))
7253 {
7254 if (cond_is_first)
7255 {
7256 t = build_and_jump (&blab);
7257 SET_EXPR_LOCATION (t, start_locus);
7258 add_stmt (t);
7259 }
7260 }
7261 else
7262 {
7263 tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7264
7265 /* If we have an exit condition, then we build an IF with gotos either
7266 out of the loop, or to the top of it. If there's no exit condition,
7267 then we just build a jump back to the top. */
7268 exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7269
7270 if (cond && !integer_nonzerop (cond))
7271 {
7272 /* Canonicalize the loop condition to the end. This means
7273 generating a branch to the loop condition. Reuse the
7274 continue label, if possible. */
7275 if (cond_is_first)
7276 {
7277 if (incr || !clab)
7278 {
7279 entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7280 t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7281 }
7282 else
7283 t = build1 (GOTO_EXPR, void_type_node, clab);
7284 SET_EXPR_LOCATION (t, start_locus);
7285 add_stmt (t);
7286 }
7287
7288 t = build_and_jump (&blab);
7289 exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7290 if (cond_is_first)
7291 SET_EXPR_LOCATION (exit, start_locus);
7292 else
7293 SET_EXPR_LOCATION (exit, input_location);
7294 }
7295
7296 add_stmt (top);
7297 }
7298
7299 if (body)
7300 add_stmt (body);
7301 if (clab)
7302 add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7303 if (incr)
7304 add_stmt (incr);
7305 if (entry)
7306 add_stmt (entry);
7307 if (exit)
7308 add_stmt (exit);
7309 if (blab)
7310 add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7311 }
7312
7313 tree
7314 c_finish_bc_stmt (tree *label_p, bool is_break)
7315 {
7316 bool skip;
7317 tree label = *label_p;
7318
7319 /* In switch statements break is sometimes stylistically used after
7320 a return statement. This can lead to spurious warnings about
7321 control reaching the end of a non-void function when it is
7322 inlined. Note that we are calling block_may_fallthru with
7323 language specific tree nodes; this works because
7324 block_may_fallthru returns true when given something it does not
7325 understand. */
7326 skip = !block_may_fallthru (cur_stmt_list);
7327
7328 if (!label)
7329 {
7330 if (!skip)
7331 *label_p = label = create_artificial_label ();
7332 }
7333 else if (TREE_CODE (label) == LABEL_DECL)
7334 ;
7335 else switch (TREE_INT_CST_LOW (label))
7336 {
7337 case 0:
7338 if (is_break)
7339 error ("break statement not within loop or switch");
7340 else
7341 error ("continue statement not within a loop");
7342 return NULL_TREE;
7343
7344 case 1:
7345 gcc_assert (is_break);
7346 error ("break statement used with OpenMP for loop");
7347 return NULL_TREE;
7348
7349 default:
7350 gcc_unreachable ();
7351 }
7352
7353 if (skip)
7354 return NULL_TREE;
7355
7356 return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7357 }
7358
7359 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
7360
7361 static void
7362 emit_side_effect_warnings (tree expr)
7363 {
7364 if (expr == error_mark_node)
7365 ;
7366 else if (!TREE_SIDE_EFFECTS (expr))
7367 {
7368 if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7369 warning (OPT_Wunused_value, "%Hstatement with no effect",
7370 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7371 }
7372 else
7373 warn_if_unused_value (expr, input_location);
7374 }
7375
7376 /* Process an expression as if it were a complete statement. Emit
7377 diagnostics, but do not call ADD_STMT. */
7378
7379 tree
7380 c_process_expr_stmt (tree expr)
7381 {
7382 if (!expr)
7383 return NULL_TREE;
7384
7385 if (warn_sequence_point)
7386 verify_sequence_points (expr);
7387
7388 if (TREE_TYPE (expr) != error_mark_node
7389 && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7390 && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7391 error ("expression statement has incomplete type");
7392
7393 /* If we're not processing a statement expression, warn about unused values.
7394 Warnings for statement expressions will be emitted later, once we figure
7395 out which is the result. */
7396 if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7397 && warn_unused_value)
7398 emit_side_effect_warnings (expr);
7399
7400 /* If the expression is not of a type to which we cannot assign a line
7401 number, wrap the thing in a no-op NOP_EXPR. */
7402 if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7403 expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7404
7405 if (CAN_HAVE_LOCATION_P (expr))
7406 SET_EXPR_LOCATION (expr, input_location);
7407
7408 return expr;
7409 }
7410
7411 /* Emit an expression as a statement. */
7412
7413 tree
7414 c_finish_expr_stmt (tree expr)
7415 {
7416 if (expr)
7417 return add_stmt (c_process_expr_stmt (expr));
7418 else
7419 return NULL;
7420 }
7421
7422 /* Do the opposite and emit a statement as an expression. To begin,
7423 create a new binding level and return it. */
7424
7425 tree
7426 c_begin_stmt_expr (void)
7427 {
7428 tree ret;
7429 struct c_label_context_se *nstack;
7430 struct c_label_list *glist;
7431
7432 /* We must force a BLOCK for this level so that, if it is not expanded
7433 later, there is a way to turn off the entire subtree of blocks that
7434 are contained in it. */
7435 keep_next_level ();
7436 ret = c_begin_compound_stmt (true);
7437 if (c_switch_stack)
7438 {
7439 c_switch_stack->blocked_stmt_expr++;
7440 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7441 }
7442 for (glist = label_context_stack_se->labels_used;
7443 glist != NULL;
7444 glist = glist->next)
7445 {
7446 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7447 }
7448 nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7449 nstack->labels_def = NULL;
7450 nstack->labels_used = NULL;
7451 nstack->next = label_context_stack_se;
7452 label_context_stack_se = nstack;
7453
7454 /* Mark the current statement list as belonging to a statement list. */
7455 STATEMENT_LIST_STMT_EXPR (ret) = 1;
7456
7457 return ret;
7458 }
7459
7460 tree
7461 c_finish_stmt_expr (tree body)
7462 {
7463 tree last, type, tmp, val;
7464 tree *last_p;
7465 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7466
7467 body = c_end_compound_stmt (body, true);
7468 if (c_switch_stack)
7469 {
7470 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7471 c_switch_stack->blocked_stmt_expr--;
7472 }
7473 /* It is no longer possible to jump to labels defined within this
7474 statement expression. */
7475 for (dlist = label_context_stack_se->labels_def;
7476 dlist != NULL;
7477 dlist = dlist->next)
7478 {
7479 C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7480 }
7481 /* It is again possible to define labels with a goto just outside
7482 this statement expression. */
7483 for (glist = label_context_stack_se->next->labels_used;
7484 glist != NULL;
7485 glist = glist->next)
7486 {
7487 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7488 glist_prev = glist;
7489 }
7490 if (glist_prev != NULL)
7491 glist_prev->next = label_context_stack_se->labels_used;
7492 else
7493 label_context_stack_se->next->labels_used
7494 = label_context_stack_se->labels_used;
7495 label_context_stack_se = label_context_stack_se->next;
7496
7497 /* Locate the last statement in BODY. See c_end_compound_stmt
7498 about always returning a BIND_EXPR. */
7499 last_p = &BIND_EXPR_BODY (body);
7500 last = BIND_EXPR_BODY (body);
7501
7502 continue_searching:
7503 if (TREE_CODE (last) == STATEMENT_LIST)
7504 {
7505 tree_stmt_iterator i;
7506
7507 /* This can happen with degenerate cases like ({ }). No value. */
7508 if (!TREE_SIDE_EFFECTS (last))
7509 return body;
7510
7511 /* If we're supposed to generate side effects warnings, process
7512 all of the statements except the last. */
7513 if (warn_unused_value)
7514 {
7515 for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7516 emit_side_effect_warnings (tsi_stmt (i));
7517 }
7518 else
7519 i = tsi_last (last);
7520 last_p = tsi_stmt_ptr (i);
7521 last = *last_p;
7522 }
7523
7524 /* If the end of the list is exception related, then the list was split
7525 by a call to push_cleanup. Continue searching. */
7526 if (TREE_CODE (last) == TRY_FINALLY_EXPR
7527 || TREE_CODE (last) == TRY_CATCH_EXPR)
7528 {
7529 last_p = &TREE_OPERAND (last, 0);
7530 last = *last_p;
7531 goto continue_searching;
7532 }
7533
7534 /* In the case that the BIND_EXPR is not necessary, return the
7535 expression out from inside it. */
7536 if (last == error_mark_node
7537 || (last == BIND_EXPR_BODY (body)
7538 && BIND_EXPR_VARS (body) == NULL))
7539 {
7540 /* Do not warn if the return value of a statement expression is
7541 unused. */
7542 if (CAN_HAVE_LOCATION_P (last))
7543 TREE_NO_WARNING (last) = 1;
7544 return last;
7545 }
7546
7547 /* Extract the type of said expression. */
7548 type = TREE_TYPE (last);
7549
7550 /* If we're not returning a value at all, then the BIND_EXPR that
7551 we already have is a fine expression to return. */
7552 if (!type || VOID_TYPE_P (type))
7553 return body;
7554
7555 /* Now that we've located the expression containing the value, it seems
7556 silly to make voidify_wrapper_expr repeat the process. Create a
7557 temporary of the appropriate type and stick it in a TARGET_EXPR. */
7558 tmp = create_tmp_var_raw (type, NULL);
7559
7560 /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
7561 tree_expr_nonnegative_p giving up immediately. */
7562 val = last;
7563 if (TREE_CODE (val) == NOP_EXPR
7564 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7565 val = TREE_OPERAND (val, 0);
7566
7567 *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7568 SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7569
7570 return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7571 }
7572
7573 /* Begin the scope of an identifier of variably modified type, scope
7574 number SCOPE. Jumping from outside this scope to inside it is not
7575 permitted. */
7576
7577 void
7578 c_begin_vm_scope (unsigned int scope)
7579 {
7580 struct c_label_context_vm *nstack;
7581 struct c_label_list *glist;
7582
7583 gcc_assert (scope > 0);
7584
7585 /* At file_scope, we don't have to do any processing. */
7586 if (label_context_stack_vm == NULL)
7587 return;
7588
7589 if (c_switch_stack && !c_switch_stack->blocked_vm)
7590 c_switch_stack->blocked_vm = scope;
7591 for (glist = label_context_stack_vm->labels_used;
7592 glist != NULL;
7593 glist = glist->next)
7594 {
7595 C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7596 }
7597 nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7598 nstack->labels_def = NULL;
7599 nstack->labels_used = NULL;
7600 nstack->scope = scope;
7601 nstack->next = label_context_stack_vm;
7602 label_context_stack_vm = nstack;
7603 }
7604
7605 /* End a scope which may contain identifiers of variably modified
7606 type, scope number SCOPE. */
7607
7608 void
7609 c_end_vm_scope (unsigned int scope)
7610 {
7611 if (label_context_stack_vm == NULL)
7612 return;
7613 if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7614 c_switch_stack->blocked_vm = 0;
7615 /* We may have a number of nested scopes of identifiers with
7616 variably modified type, all at this depth. Pop each in turn. */
7617 while (label_context_stack_vm->scope == scope)
7618 {
7619 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7620
7621 /* It is no longer possible to jump to labels defined within this
7622 scope. */
7623 for (dlist = label_context_stack_vm->labels_def;
7624 dlist != NULL;
7625 dlist = dlist->next)
7626 {
7627 C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7628 }
7629 /* It is again possible to define labels with a goto just outside
7630 this scope. */
7631 for (glist = label_context_stack_vm->next->labels_used;
7632 glist != NULL;
7633 glist = glist->next)
7634 {
7635 C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7636 glist_prev = glist;
7637 }
7638 if (glist_prev != NULL)
7639 glist_prev->next = label_context_stack_vm->labels_used;
7640 else
7641 label_context_stack_vm->next->labels_used
7642 = label_context_stack_vm->labels_used;
7643 label_context_stack_vm = label_context_stack_vm->next;
7644 }
7645 }
7646 \f
7647 /* Begin and end compound statements. This is as simple as pushing
7648 and popping new statement lists from the tree. */
7649
7650 tree
7651 c_begin_compound_stmt (bool do_scope)
7652 {
7653 tree stmt = push_stmt_list ();
7654 if (do_scope)
7655 push_scope ();
7656 return stmt;
7657 }
7658
7659 tree
7660 c_end_compound_stmt (tree stmt, bool do_scope)
7661 {
7662 tree block = NULL;
7663
7664 if (do_scope)
7665 {
7666 if (c_dialect_objc ())
7667 objc_clear_super_receiver ();
7668 block = pop_scope ();
7669 }
7670
7671 stmt = pop_stmt_list (stmt);
7672 stmt = c_build_bind_expr (block, stmt);
7673
7674 /* If this compound statement is nested immediately inside a statement
7675 expression, then force a BIND_EXPR to be created. Otherwise we'll
7676 do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
7677 STATEMENT_LISTs merge, and thus we can lose track of what statement
7678 was really last. */
7679 if (cur_stmt_list
7680 && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7681 && TREE_CODE (stmt) != BIND_EXPR)
7682 {
7683 stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7684 TREE_SIDE_EFFECTS (stmt) = 1;
7685 }
7686
7687 return stmt;
7688 }
7689
7690 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
7691 when the current scope is exited. EH_ONLY is true when this is not
7692 meant to apply to normal control flow transfer. */
7693
7694 void
7695 push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7696 {
7697 enum tree_code code;
7698 tree stmt, list;
7699 bool stmt_expr;
7700
7701 code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7702 stmt = build_stmt (code, NULL, cleanup);
7703 add_stmt (stmt);
7704 stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7705 list = push_stmt_list ();
7706 TREE_OPERAND (stmt, 0) = list;
7707 STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7708 }
7709 \f
7710 /* Build a binary-operation expression without default conversions.
7711 CODE is the kind of expression to build.
7712 This function differs from `build' in several ways:
7713 the data type of the result is computed and recorded in it,
7714 warnings are generated if arg data types are invalid,
7715 special handling for addition and subtraction of pointers is known,
7716 and some optimization is done (operations on narrow ints
7717 are done in the narrower type when that gives the same result).
7718 Constant folding is also done before the result is returned.
7719
7720 Note that the operands will never have enumeral types, or function
7721 or array types, because either they will have the default conversions
7722 performed or they have both just been converted to some other type in which
7723 the arithmetic is to be done. */
7724
7725 tree
7726 build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7727 int convert_p)
7728 {
7729 tree type0, type1;
7730 enum tree_code code0, code1;
7731 tree op0, op1;
7732 const char *invalid_op_diag;
7733
7734 /* Expression code to give to the expression when it is built.
7735 Normally this is CODE, which is what the caller asked for,
7736 but in some special cases we change it. */
7737 enum tree_code resultcode = code;
7738
7739 /* Data type in which the computation is to be performed.
7740 In the simplest cases this is the common type of the arguments. */
7741 tree result_type = NULL;
7742
7743 /* Nonzero means operands have already been type-converted
7744 in whatever way is necessary.
7745 Zero means they need to be converted to RESULT_TYPE. */
7746 int converted = 0;
7747
7748 /* Nonzero means create the expression with this type, rather than
7749 RESULT_TYPE. */
7750 tree build_type = 0;
7751
7752 /* Nonzero means after finally constructing the expression
7753 convert it to this type. */
7754 tree final_type = 0;
7755
7756 /* Nonzero if this is an operation like MIN or MAX which can
7757 safely be computed in short if both args are promoted shorts.
7758 Also implies COMMON.
7759 -1 indicates a bitwise operation; this makes a difference
7760 in the exact conditions for when it is safe to do the operation
7761 in a narrower mode. */
7762 int shorten = 0;
7763
7764 /* Nonzero if this is a comparison operation;
7765 if both args are promoted shorts, compare the original shorts.
7766 Also implies COMMON. */
7767 int short_compare = 0;
7768
7769 /* Nonzero if this is a right-shift operation, which can be computed on the
7770 original short and then promoted if the operand is a promoted short. */
7771 int short_shift = 0;
7772
7773 /* Nonzero means set RESULT_TYPE to the common type of the args. */
7774 int common = 0;
7775
7776 /* True means types are compatible as far as ObjC is concerned. */
7777 bool objc_ok;
7778
7779 if (convert_p)
7780 {
7781 op0 = default_conversion (orig_op0);
7782 op1 = default_conversion (orig_op1);
7783 }
7784 else
7785 {
7786 op0 = orig_op0;
7787 op1 = orig_op1;
7788 }
7789
7790 type0 = TREE_TYPE (op0);
7791 type1 = TREE_TYPE (op1);
7792
7793 /* The expression codes of the data types of the arguments tell us
7794 whether the arguments are integers, floating, pointers, etc. */
7795 code0 = TREE_CODE (type0);
7796 code1 = TREE_CODE (type1);
7797
7798 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
7799 STRIP_TYPE_NOPS (op0);
7800 STRIP_TYPE_NOPS (op1);
7801
7802 /* If an error was already reported for one of the arguments,
7803 avoid reporting another error. */
7804
7805 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7806 return error_mark_node;
7807
7808 if ((invalid_op_diag
7809 = targetm.invalid_binary_op (code, type0, type1)))
7810 {
7811 error (invalid_op_diag);
7812 return error_mark_node;
7813 }
7814
7815 objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7816
7817 switch (code)
7818 {
7819 case PLUS_EXPR:
7820 /* Handle the pointer + int case. */
7821 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7822 return pointer_int_sum (PLUS_EXPR, op0, op1);
7823 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7824 return pointer_int_sum (PLUS_EXPR, op1, op0);
7825 else
7826 common = 1;
7827 break;
7828
7829 case MINUS_EXPR:
7830 /* Subtraction of two similar pointers.
7831 We must subtract them as integers, then divide by object size. */
7832 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7833 && comp_target_types (type0, type1))
7834 return pointer_diff (op0, op1);
7835 /* Handle pointer minus int. Just like pointer plus int. */
7836 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7837 return pointer_int_sum (MINUS_EXPR, op0, op1);
7838 else
7839 common = 1;
7840 break;
7841
7842 case MULT_EXPR:
7843 common = 1;
7844 break;
7845
7846 case TRUNC_DIV_EXPR:
7847 case CEIL_DIV_EXPR:
7848 case FLOOR_DIV_EXPR:
7849 case ROUND_DIV_EXPR:
7850 case EXACT_DIV_EXPR:
7851 warn_for_div_by_zero (op1);
7852
7853 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7854 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7855 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7856 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7857 {
7858 enum tree_code tcode0 = code0, tcode1 = code1;
7859
7860 if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7861 tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7862 if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7863 tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7864
7865 if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7866 resultcode = RDIV_EXPR;
7867 else
7868 /* Although it would be tempting to shorten always here, that
7869 loses on some targets, since the modulo instruction is
7870 undefined if the quotient can't be represented in the
7871 computation mode. We shorten only if unsigned or if
7872 dividing by something we know != -1. */
7873 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7874 || (TREE_CODE (op1) == INTEGER_CST
7875 && !integer_all_onesp (op1)));
7876 common = 1;
7877 }
7878 break;
7879
7880 case BIT_AND_EXPR:
7881 case BIT_IOR_EXPR:
7882 case BIT_XOR_EXPR:
7883 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7884 shorten = -1;
7885 else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7886 common = 1;
7887 break;
7888
7889 case TRUNC_MOD_EXPR:
7890 case FLOOR_MOD_EXPR:
7891 warn_for_div_by_zero (op1);
7892
7893 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7894 {
7895 /* Although it would be tempting to shorten always here, that loses
7896 on some targets, since the modulo instruction is undefined if the
7897 quotient can't be represented in the computation mode. We shorten
7898 only if unsigned or if dividing by something we know != -1. */
7899 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7900 || (TREE_CODE (op1) == INTEGER_CST
7901 && !integer_all_onesp (op1)));
7902 common = 1;
7903 }
7904 break;
7905
7906 case TRUTH_ANDIF_EXPR:
7907 case TRUTH_ORIF_EXPR:
7908 case TRUTH_AND_EXPR:
7909 case TRUTH_OR_EXPR:
7910 case TRUTH_XOR_EXPR:
7911 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7912 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7913 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
7914 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
7915 {
7916 /* Result of these operations is always an int,
7917 but that does not mean the operands should be
7918 converted to ints! */
7919 result_type = integer_type_node;
7920 op0 = c_common_truthvalue_conversion (op0);
7921 op1 = c_common_truthvalue_conversion (op1);
7922 converted = 1;
7923 }
7924 break;
7925
7926 /* Shift operations: result has same type as first operand;
7927 always convert second operand to int.
7928 Also set SHORT_SHIFT if shifting rightward. */
7929
7930 case RSHIFT_EXPR:
7931 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7932 {
7933 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7934 {
7935 if (tree_int_cst_sgn (op1) < 0)
7936 warning (0, "right shift count is negative");
7937 else
7938 {
7939 if (!integer_zerop (op1))
7940 short_shift = 1;
7941
7942 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7943 warning (0, "right shift count >= width of type");
7944 }
7945 }
7946
7947 /* Use the type of the value to be shifted. */
7948 result_type = type0;
7949 /* Convert the shift-count to an integer, regardless of size
7950 of value being shifted. */
7951 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7952 op1 = convert (integer_type_node, op1);
7953 /* Avoid converting op1 to result_type later. */
7954 converted = 1;
7955 }
7956 break;
7957
7958 case LSHIFT_EXPR:
7959 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7960 {
7961 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7962 {
7963 if (tree_int_cst_sgn (op1) < 0)
7964 warning (0, "left shift count is negative");
7965
7966 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7967 warning (0, "left shift count >= width of type");
7968 }
7969
7970 /* Use the type of the value to be shifted. */
7971 result_type = type0;
7972 /* Convert the shift-count to an integer, regardless of size
7973 of value being shifted. */
7974 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7975 op1 = convert (integer_type_node, op1);
7976 /* Avoid converting op1 to result_type later. */
7977 converted = 1;
7978 }
7979 break;
7980
7981 case EQ_EXPR:
7982 case NE_EXPR:
7983 if (code0 == REAL_TYPE || code1 == REAL_TYPE)
7984 warning (OPT_Wfloat_equal,
7985 "comparing floating point with == or != is unsafe");
7986 /* Result of comparison is always int,
7987 but don't convert the args to int! */
7988 build_type = integer_type_node;
7989 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7990 || code0 == COMPLEX_TYPE)
7991 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7992 || code1 == COMPLEX_TYPE))
7993 short_compare = 1;
7994 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
7995 {
7996 tree tt0 = TREE_TYPE (type0);
7997 tree tt1 = TREE_TYPE (type1);
7998 /* Anything compares with void *. void * compares with anything.
7999 Otherwise, the targets must be compatible
8000 and both must be object or both incomplete. */
8001 if (comp_target_types (type0, type1))
8002 result_type = common_pointer_type (type0, type1);
8003 else if (VOID_TYPE_P (tt0))
8004 {
8005 /* op0 != orig_op0 detects the case of something
8006 whose value is 0 but which isn't a valid null ptr const. */
8007 if (pedantic && !null_pointer_constant_p (orig_op0)
8008 && TREE_CODE (tt1) == FUNCTION_TYPE)
8009 pedwarn ("ISO C forbids comparison of %<void *%>"
8010 " with function pointer");
8011 }
8012 else if (VOID_TYPE_P (tt1))
8013 {
8014 if (pedantic && !null_pointer_constant_p (orig_op1)
8015 && TREE_CODE (tt0) == FUNCTION_TYPE)
8016 pedwarn ("ISO C forbids comparison of %<void *%>"
8017 " with function pointer");
8018 }
8019 else
8020 /* Avoid warning about the volatile ObjC EH puts on decls. */
8021 if (!objc_ok)
8022 pedwarn ("comparison of distinct pointer types lacks a cast");
8023
8024 if (result_type == NULL_TREE)
8025 result_type = ptr_type_node;
8026 }
8027 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8028 {
8029 if (TREE_CODE (op0) == ADDR_EXPR
8030 && decl_with_nonnull_addr_p (TREE_OPERAND (op0, 0)))
8031 warning (OPT_Waddress, "the address of %qD will never be NULL",
8032 TREE_OPERAND (op0, 0));
8033 result_type = type0;
8034 }
8035 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8036 {
8037 if (TREE_CODE (op1) == ADDR_EXPR
8038 && decl_with_nonnull_addr_p (TREE_OPERAND (op1, 0)))
8039 warning (OPT_Waddress, "the address of %qD will never be NULL",
8040 TREE_OPERAND (op1, 0));
8041 result_type = type1;
8042 }
8043 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8044 {
8045 result_type = type0;
8046 pedwarn ("comparison between pointer and integer");
8047 }
8048 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8049 {
8050 result_type = type1;
8051 pedwarn ("comparison between pointer and integer");
8052 }
8053 break;
8054
8055 case LE_EXPR:
8056 case GE_EXPR:
8057 case LT_EXPR:
8058 case GT_EXPR:
8059 build_type = integer_type_node;
8060 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
8061 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
8062 short_compare = 1;
8063 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8064 {
8065 if (comp_target_types (type0, type1))
8066 {
8067 result_type = common_pointer_type (type0, type1);
8068 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8069 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8070 pedwarn ("comparison of complete and incomplete pointers");
8071 else if (pedantic
8072 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8073 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8074 }
8075 else
8076 {
8077 result_type = ptr_type_node;
8078 pedwarn ("comparison of distinct pointer types lacks a cast");
8079 }
8080 }
8081 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8082 {
8083 result_type = type0;
8084 if (pedantic || extra_warnings)
8085 pedwarn ("ordered comparison of pointer with integer zero");
8086 }
8087 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8088 {
8089 result_type = type1;
8090 if (pedantic)
8091 pedwarn ("ordered comparison of pointer with integer zero");
8092 }
8093 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8094 {
8095 result_type = type0;
8096 pedwarn ("comparison between pointer and integer");
8097 }
8098 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8099 {
8100 result_type = type1;
8101 pedwarn ("comparison between pointer and integer");
8102 }
8103 break;
8104
8105 default:
8106 gcc_unreachable ();
8107 }
8108
8109 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8110 return error_mark_node;
8111
8112 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8113 && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8114 || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8115 TREE_TYPE (type1))))
8116 {
8117 binary_op_error (code);
8118 return error_mark_node;
8119 }
8120
8121 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8122 || code0 == VECTOR_TYPE)
8123 &&
8124 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8125 || code1 == VECTOR_TYPE))
8126 {
8127 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8128
8129 if (shorten || common || short_compare)
8130 result_type = c_common_type (type0, type1);
8131
8132 /* For certain operations (which identify themselves by shorten != 0)
8133 if both args were extended from the same smaller type,
8134 do the arithmetic in that type and then extend.
8135
8136 shorten !=0 and !=1 indicates a bitwise operation.
8137 For them, this optimization is safe only if
8138 both args are zero-extended or both are sign-extended.
8139 Otherwise, we might change the result.
8140 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8141 but calculated in (unsigned short) it would be (unsigned short)-1. */
8142
8143 if (shorten && none_complex)
8144 {
8145 int unsigned0, unsigned1;
8146 tree arg0, arg1;
8147 int uns;
8148 tree type;
8149
8150 /* Cast OP0 and OP1 to RESULT_TYPE. Doing so prevents
8151 excessive narrowing when we call get_narrower below. For
8152 example, suppose that OP0 is of unsigned int extended
8153 from signed char and that RESULT_TYPE is long long int.
8154 If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
8155 like
8156
8157 (long long int) (unsigned int) signed_char
8158
8159 which get_narrower would narrow down to
8160
8161 (unsigned int) signed char
8162
8163 If we do not cast OP0 first, get_narrower would return
8164 signed_char, which is inconsistent with the case of the
8165 explicit cast. */
8166 op0 = convert (result_type, op0);
8167 op1 = convert (result_type, op1);
8168
8169 arg0 = get_narrower (op0, &unsigned0);
8170 arg1 = get_narrower (op1, &unsigned1);
8171
8172 /* UNS is 1 if the operation to be done is an unsigned one. */
8173 uns = TYPE_UNSIGNED (result_type);
8174
8175 final_type = result_type;
8176
8177 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8178 but it *requires* conversion to FINAL_TYPE. */
8179
8180 if ((TYPE_PRECISION (TREE_TYPE (op0))
8181 == TYPE_PRECISION (TREE_TYPE (arg0)))
8182 && TREE_TYPE (op0) != final_type)
8183 unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8184 if ((TYPE_PRECISION (TREE_TYPE (op1))
8185 == TYPE_PRECISION (TREE_TYPE (arg1)))
8186 && TREE_TYPE (op1) != final_type)
8187 unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8188
8189 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
8190
8191 /* For bitwise operations, signedness of nominal type
8192 does not matter. Consider only how operands were extended. */
8193 if (shorten == -1)
8194 uns = unsigned0;
8195
8196 /* Note that in all three cases below we refrain from optimizing
8197 an unsigned operation on sign-extended args.
8198 That would not be valid. */
8199
8200 /* Both args variable: if both extended in same way
8201 from same width, do it in that width.
8202 Do it unsigned if args were zero-extended. */
8203 if ((TYPE_PRECISION (TREE_TYPE (arg0))
8204 < TYPE_PRECISION (result_type))
8205 && (TYPE_PRECISION (TREE_TYPE (arg1))
8206 == TYPE_PRECISION (TREE_TYPE (arg0)))
8207 && unsigned0 == unsigned1
8208 && (unsigned0 || !uns))
8209 result_type
8210 = c_common_signed_or_unsigned_type
8211 (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8212 else if (TREE_CODE (arg0) == INTEGER_CST
8213 && (unsigned1 || !uns)
8214 && (TYPE_PRECISION (TREE_TYPE (arg1))
8215 < TYPE_PRECISION (result_type))
8216 && (type
8217 = c_common_signed_or_unsigned_type (unsigned1,
8218 TREE_TYPE (arg1)),
8219 int_fits_type_p (arg0, type)))
8220 result_type = type;
8221 else if (TREE_CODE (arg1) == INTEGER_CST
8222 && (unsigned0 || !uns)
8223 && (TYPE_PRECISION (TREE_TYPE (arg0))
8224 < TYPE_PRECISION (result_type))
8225 && (type
8226 = c_common_signed_or_unsigned_type (unsigned0,
8227 TREE_TYPE (arg0)),
8228 int_fits_type_p (arg1, type)))
8229 result_type = type;
8230 }
8231
8232 /* Shifts can be shortened if shifting right. */
8233
8234 if (short_shift)
8235 {
8236 int unsigned_arg;
8237 tree arg0 = get_narrower (op0, &unsigned_arg);
8238
8239 final_type = result_type;
8240
8241 if (arg0 == op0 && final_type == TREE_TYPE (op0))
8242 unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8243
8244 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8245 /* We can shorten only if the shift count is less than the
8246 number of bits in the smaller type size. */
8247 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8248 /* We cannot drop an unsigned shift after sign-extension. */
8249 && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8250 {
8251 /* Do an unsigned shift if the operand was zero-extended. */
8252 result_type
8253 = c_common_signed_or_unsigned_type (unsigned_arg,
8254 TREE_TYPE (arg0));
8255 /* Convert value-to-be-shifted to that type. */
8256 if (TREE_TYPE (op0) != result_type)
8257 op0 = convert (result_type, op0);
8258 converted = 1;
8259 }
8260 }
8261
8262 /* Comparison operations are shortened too but differently.
8263 They identify themselves by setting short_compare = 1. */
8264
8265 if (short_compare)
8266 {
8267 /* Don't write &op0, etc., because that would prevent op0
8268 from being kept in a register.
8269 Instead, make copies of the our local variables and
8270 pass the copies by reference, then copy them back afterward. */
8271 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8272 enum tree_code xresultcode = resultcode;
8273 tree val
8274 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8275
8276 if (val != 0)
8277 return val;
8278
8279 op0 = xop0, op1 = xop1;
8280 converted = 1;
8281 resultcode = xresultcode;
8282
8283 if (warn_sign_compare && skip_evaluation == 0)
8284 {
8285 int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8286 int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8287 int unsignedp0, unsignedp1;
8288 tree primop0 = get_narrower (op0, &unsignedp0);
8289 tree primop1 = get_narrower (op1, &unsignedp1);
8290
8291 xop0 = orig_op0;
8292 xop1 = orig_op1;
8293 STRIP_TYPE_NOPS (xop0);
8294 STRIP_TYPE_NOPS (xop1);
8295
8296 /* Give warnings for comparisons between signed and unsigned
8297 quantities that may fail.
8298
8299 Do the checking based on the original operand trees, so that
8300 casts will be considered, but default promotions won't be.
8301
8302 Do not warn if the comparison is being done in a signed type,
8303 since the signed type will only be chosen if it can represent
8304 all the values of the unsigned type. */
8305 if (!TYPE_UNSIGNED (result_type))
8306 /* OK */;
8307 /* Do not warn if both operands are the same signedness. */
8308 else if (op0_signed == op1_signed)
8309 /* OK */;
8310 else
8311 {
8312 tree sop, uop;
8313 bool ovf;
8314
8315 if (op0_signed)
8316 sop = xop0, uop = xop1;
8317 else
8318 sop = xop1, uop = xop0;
8319
8320 /* Do not warn if the signed quantity is an
8321 unsuffixed integer literal (or some static
8322 constant expression involving such literals or a
8323 conditional expression involving such literals)
8324 and it is non-negative. */
8325 if (tree_expr_nonnegative_warnv_p (sop, &ovf))
8326 /* OK */;
8327 /* Do not warn if the comparison is an equality operation,
8328 the unsigned quantity is an integral constant, and it
8329 would fit in the result if the result were signed. */
8330 else if (TREE_CODE (uop) == INTEGER_CST
8331 && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8332 && int_fits_type_p
8333 (uop, c_common_signed_type (result_type)))
8334 /* OK */;
8335 /* Do not warn if the unsigned quantity is an enumeration
8336 constant and its maximum value would fit in the result
8337 if the result were signed. */
8338 else if (TREE_CODE (uop) == INTEGER_CST
8339 && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8340 && int_fits_type_p
8341 (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8342 c_common_signed_type (result_type)))
8343 /* OK */;
8344 else
8345 warning (0, "comparison between signed and unsigned");
8346 }
8347
8348 /* Warn if two unsigned values are being compared in a size
8349 larger than their original size, and one (and only one) is the
8350 result of a `~' operator. This comparison will always fail.
8351
8352 Also warn if one operand is a constant, and the constant
8353 does not have all bits set that are set in the ~ operand
8354 when it is extended. */
8355
8356 if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8357 != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8358 {
8359 if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8360 primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8361 &unsignedp0);
8362 else
8363 primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8364 &unsignedp1);
8365
8366 if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8367 {
8368 tree primop;
8369 HOST_WIDE_INT constant, mask;
8370 int unsignedp, bits;
8371
8372 if (host_integerp (primop0, 0))
8373 {
8374 primop = primop1;
8375 unsignedp = unsignedp1;
8376 constant = tree_low_cst (primop0, 0);
8377 }
8378 else
8379 {
8380 primop = primop0;
8381 unsignedp = unsignedp0;
8382 constant = tree_low_cst (primop1, 0);
8383 }
8384
8385 bits = TYPE_PRECISION (TREE_TYPE (primop));
8386 if (bits < TYPE_PRECISION (result_type)
8387 && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8388 {
8389 mask = (~(HOST_WIDE_INT) 0) << bits;
8390 if ((mask & constant) != mask)
8391 warning (0, "comparison of promoted ~unsigned with constant");
8392 }
8393 }
8394 else if (unsignedp0 && unsignedp1
8395 && (TYPE_PRECISION (TREE_TYPE (primop0))
8396 < TYPE_PRECISION (result_type))
8397 && (TYPE_PRECISION (TREE_TYPE (primop1))
8398 < TYPE_PRECISION (result_type)))
8399 warning (0, "comparison of promoted ~unsigned with unsigned");
8400 }
8401 }
8402 }
8403 }
8404
8405 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8406 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8407 Then the expression will be built.
8408 It will be given type FINAL_TYPE if that is nonzero;
8409 otherwise, it will be given type RESULT_TYPE. */
8410
8411 if (!result_type)
8412 {
8413 binary_op_error (code);
8414 return error_mark_node;
8415 }
8416
8417 if (!converted)
8418 {
8419 if (TREE_TYPE (op0) != result_type)
8420 op0 = convert_and_check (result_type, op0);
8421 if (TREE_TYPE (op1) != result_type)
8422 op1 = convert_and_check (result_type, op1);
8423
8424 /* This can happen if one operand has a vector type, and the other
8425 has a different type. */
8426 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8427 return error_mark_node;
8428 }
8429
8430 if (build_type == NULL_TREE)
8431 build_type = result_type;
8432
8433 {
8434 /* Treat expressions in initializers specially as they can't trap. */
8435 tree result = require_constant_value ? fold_build2_initializer (resultcode,
8436 build_type,
8437 op0, op1)
8438 : fold_build2 (resultcode, build_type,
8439 op0, op1);
8440
8441 if (final_type != 0)
8442 result = convert (final_type, result);
8443 return result;
8444 }
8445 }
8446
8447
8448 /* Convert EXPR to be a truth-value, validating its type for this
8449 purpose. */
8450
8451 tree
8452 c_objc_common_truthvalue_conversion (tree expr)
8453 {
8454 switch (TREE_CODE (TREE_TYPE (expr)))
8455 {
8456 case ARRAY_TYPE:
8457 error ("used array that cannot be converted to pointer where scalar is required");
8458 return error_mark_node;
8459
8460 case RECORD_TYPE:
8461 error ("used struct type value where scalar is required");
8462 return error_mark_node;
8463
8464 case UNION_TYPE:
8465 error ("used union type value where scalar is required");
8466 return error_mark_node;
8467
8468 case FUNCTION_TYPE:
8469 gcc_unreachable ();
8470
8471 default:
8472 break;
8473 }
8474
8475 /* ??? Should we also give an error for void and vectors rather than
8476 leaving those to give errors later? */
8477 return c_common_truthvalue_conversion (expr);
8478 }
8479 \f
8480
8481 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8482 required. */
8483
8484 tree
8485 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8486 bool *ti ATTRIBUTE_UNUSED, bool *se)
8487 {
8488 if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8489 {
8490 tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8491 /* Executing a compound literal inside a function reinitializes
8492 it. */
8493 if (!TREE_STATIC (decl))
8494 *se = true;
8495 return decl;
8496 }
8497 else
8498 return expr;
8499 }
8500 \f
8501 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
8502
8503 tree
8504 c_begin_omp_parallel (void)
8505 {
8506 tree block;
8507
8508 keep_next_level ();
8509 block = c_begin_compound_stmt (true);
8510
8511 return block;
8512 }
8513
8514 tree
8515 c_finish_omp_parallel (tree clauses, tree block)
8516 {
8517 tree stmt;
8518
8519 block = c_end_compound_stmt (block, true);
8520
8521 stmt = make_node (OMP_PARALLEL);
8522 TREE_TYPE (stmt) = void_type_node;
8523 OMP_PARALLEL_CLAUSES (stmt) = clauses;
8524 OMP_PARALLEL_BODY (stmt) = block;
8525
8526 return add_stmt (stmt);
8527 }
8528
8529 /* For all elements of CLAUSES, validate them vs OpenMP constraints.
8530 Remove any elements from the list that are invalid. */
8531
8532 tree
8533 c_finish_omp_clauses (tree clauses)
8534 {
8535 bitmap_head generic_head, firstprivate_head, lastprivate_head;
8536 tree c, t, *pc = &clauses;
8537 const char *name;
8538
8539 bitmap_obstack_initialize (NULL);
8540 bitmap_initialize (&generic_head, &bitmap_default_obstack);
8541 bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8542 bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8543
8544 for (pc = &clauses, c = clauses; c ; c = *pc)
8545 {
8546 bool remove = false;
8547 bool need_complete = false;
8548 bool need_implicitly_determined = false;
8549
8550 switch (OMP_CLAUSE_CODE (c))
8551 {
8552 case OMP_CLAUSE_SHARED:
8553 name = "shared";
8554 need_implicitly_determined = true;
8555 goto check_dup_generic;
8556
8557 case OMP_CLAUSE_PRIVATE:
8558 name = "private";
8559 need_complete = true;
8560 need_implicitly_determined = true;
8561 goto check_dup_generic;
8562
8563 case OMP_CLAUSE_REDUCTION:
8564 name = "reduction";
8565 need_implicitly_determined = true;
8566 t = OMP_CLAUSE_DECL (c);
8567 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8568 || POINTER_TYPE_P (TREE_TYPE (t)))
8569 {
8570 error ("%qE has invalid type for %<reduction%>", t);
8571 remove = true;
8572 }
8573 else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8574 {
8575 enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8576 const char *r_name = NULL;
8577
8578 switch (r_code)
8579 {
8580 case PLUS_EXPR:
8581 case MULT_EXPR:
8582 case MINUS_EXPR:
8583 break;
8584 case BIT_AND_EXPR:
8585 r_name = "&";
8586 break;
8587 case BIT_XOR_EXPR:
8588 r_name = "^";
8589 break;
8590 case BIT_IOR_EXPR:
8591 r_name = "|";
8592 break;
8593 case TRUTH_ANDIF_EXPR:
8594 r_name = "&&";
8595 break;
8596 case TRUTH_ORIF_EXPR:
8597 r_name = "||";
8598 break;
8599 default:
8600 gcc_unreachable ();
8601 }
8602 if (r_name)
8603 {
8604 error ("%qE has invalid type for %<reduction(%s)%>",
8605 t, r_name);
8606 remove = true;
8607 }
8608 }
8609 goto check_dup_generic;
8610
8611 case OMP_CLAUSE_COPYPRIVATE:
8612 name = "copyprivate";
8613 goto check_dup_generic;
8614
8615 case OMP_CLAUSE_COPYIN:
8616 name = "copyin";
8617 t = OMP_CLAUSE_DECL (c);
8618 if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8619 {
8620 error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8621 remove = true;
8622 }
8623 goto check_dup_generic;
8624
8625 check_dup_generic:
8626 t = OMP_CLAUSE_DECL (c);
8627 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8628 {
8629 error ("%qE is not a variable in clause %qs", t, name);
8630 remove = true;
8631 }
8632 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8633 || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8634 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8635 {
8636 error ("%qE appears more than once in data clauses", t);
8637 remove = true;
8638 }
8639 else
8640 bitmap_set_bit (&generic_head, DECL_UID (t));
8641 break;
8642
8643 case OMP_CLAUSE_FIRSTPRIVATE:
8644 name = "firstprivate";
8645 t = OMP_CLAUSE_DECL (c);
8646 need_complete = true;
8647 need_implicitly_determined = true;
8648 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8649 {
8650 error ("%qE is not a variable in clause %<firstprivate%>", t);
8651 remove = true;
8652 }
8653 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8654 || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8655 {
8656 error ("%qE appears more than once in data clauses", t);
8657 remove = true;
8658 }
8659 else
8660 bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8661 break;
8662
8663 case OMP_CLAUSE_LASTPRIVATE:
8664 name = "lastprivate";
8665 t = OMP_CLAUSE_DECL (c);
8666 need_complete = true;
8667 need_implicitly_determined = true;
8668 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8669 {
8670 error ("%qE is not a variable in clause %<lastprivate%>", t);
8671 remove = true;
8672 }
8673 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8674 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8675 {
8676 error ("%qE appears more than once in data clauses", t);
8677 remove = true;
8678 }
8679 else
8680 bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8681 break;
8682
8683 case OMP_CLAUSE_IF:
8684 case OMP_CLAUSE_NUM_THREADS:
8685 case OMP_CLAUSE_SCHEDULE:
8686 case OMP_CLAUSE_NOWAIT:
8687 case OMP_CLAUSE_ORDERED:
8688 case OMP_CLAUSE_DEFAULT:
8689 pc = &OMP_CLAUSE_CHAIN (c);
8690 continue;
8691
8692 default:
8693 gcc_unreachable ();
8694 }
8695
8696 if (!remove)
8697 {
8698 t = OMP_CLAUSE_DECL (c);
8699
8700 if (need_complete)
8701 {
8702 t = require_complete_type (t);
8703 if (t == error_mark_node)
8704 remove = true;
8705 }
8706
8707 if (need_implicitly_determined)
8708 {
8709 const char *share_name = NULL;
8710
8711 if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8712 share_name = "threadprivate";
8713 else switch (c_omp_predetermined_sharing (t))
8714 {
8715 case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8716 break;
8717 case OMP_CLAUSE_DEFAULT_SHARED:
8718 share_name = "shared";
8719 break;
8720 case OMP_CLAUSE_DEFAULT_PRIVATE:
8721 share_name = "private";
8722 break;
8723 default:
8724 gcc_unreachable ();
8725 }
8726 if (share_name)
8727 {
8728 error ("%qE is predetermined %qs for %qs",
8729 t, share_name, name);
8730 remove = true;
8731 }
8732 }
8733 }
8734
8735 if (remove)
8736 *pc = OMP_CLAUSE_CHAIN (c);
8737 else
8738 pc = &OMP_CLAUSE_CHAIN (c);
8739 }
8740
8741 bitmap_obstack_release (NULL);
8742 return clauses;
8743 }