c-common.c (match_case_to_enum_1): Add appropriate OPT_W* parameter to warning.
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* This file is part of the C front end.
24 It contains routines to build C expressions given their operands,
25 including computing the types of the result, C-specific error checks,
26 and some optimization. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "langhooks.h"
35 #include "c-tree.h"
36 #include "tm_p.h"
37 #include "flags.h"
38 #include "output.h"
39 #include "expr.h"
40 #include "toplev.h"
41 #include "intl.h"
42 #include "ggc.h"
43 #include "target.h"
44 #include "tree-iterator.h"
45 #include "tree-gimple.h"
46 #include "tree-flow.h"
47
48 /* Possible cases of implicit bad conversions. Used to select
49 diagnostic messages in convert_for_assignment. */
50 enum impl_conv {
51 ic_argpass,
52 ic_argpass_nonproto,
53 ic_assign,
54 ic_init,
55 ic_return
56 };
57
58 /* The level of nesting inside "__alignof__". */
59 int in_alignof;
60
61 /* The level of nesting inside "sizeof". */
62 int in_sizeof;
63
64 /* The level of nesting inside "typeof". */
65 int in_typeof;
66
67 struct c_label_context_se *label_context_stack_se;
68 struct c_label_context_vm *label_context_stack_vm;
69
70 /* Nonzero if we've already printed a "missing braces around initializer"
71 message within this initializer. */
72 static int missing_braces_mentioned;
73
74 static int require_constant_value;
75 static int require_constant_elements;
76
77 static bool null_pointer_constant_p (const_tree);
78 static tree qualify_type (tree, tree);
79 static int tagged_types_tu_compatible_p (const_tree, const_tree);
80 static int comp_target_types (tree, tree);
81 static int function_types_compatible_p (const_tree, const_tree);
82 static int type_lists_compatible_p (const_tree, const_tree);
83 static tree decl_constant_value_for_broken_optimization (tree);
84 static tree lookup_field (tree, tree);
85 static int convert_arguments (int, tree *, tree, tree, tree, tree);
86 static tree pointer_diff (tree, tree);
87 static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
88 int);
89 static tree valid_compound_expr_initializer (tree, tree);
90 static void push_string (const char *);
91 static void push_member_name (tree);
92 static int spelling_length (void);
93 static char *print_spelling (char *);
94 static void warning_init (int, const char *);
95 static tree digest_init (tree, tree, bool, int);
96 static void output_init_element (tree, bool, tree, tree, int);
97 static void output_pending_init_elements (int);
98 static int set_designator (int);
99 static void push_range_stack (tree);
100 static void add_pending_init (tree, tree);
101 static void set_nonincremental_init (void);
102 static void set_nonincremental_init_from_string (tree);
103 static tree find_init_member (tree);
104 static void readonly_error (tree, enum lvalue_use);
105 static int lvalue_or_else (const_tree, enum lvalue_use);
106 static int lvalue_p (const_tree);
107 static void record_maybe_used_decl (tree);
108 static int comptypes_internal (const_tree, const_tree);
109 \f
110 /* Return true if EXP is a null pointer constant, false otherwise. */
111
112 static bool
113 null_pointer_constant_p (const_tree expr)
114 {
115 /* This should really operate on c_expr structures, but they aren't
116 yet available everywhere required. */
117 tree type = TREE_TYPE (expr);
118 return (TREE_CODE (expr) == INTEGER_CST
119 && !TREE_OVERFLOW (expr)
120 && integer_zerop (expr)
121 && (INTEGRAL_TYPE_P (type)
122 || (TREE_CODE (type) == POINTER_TYPE
123 && VOID_TYPE_P (TREE_TYPE (type))
124 && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
125 }
126 \f/* This is a cache to hold if two types are compatible or not. */
127
128 struct tagged_tu_seen_cache {
129 const struct tagged_tu_seen_cache * next;
130 const_tree t1;
131 const_tree t2;
132 /* The return value of tagged_types_tu_compatible_p if we had seen
133 these two types already. */
134 int val;
135 };
136
137 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
138 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
139
140 /* Do `exp = require_complete_type (exp);' to make sure exp
141 does not have an incomplete type. (That includes void types.) */
142
143 tree
144 require_complete_type (tree value)
145 {
146 tree type = TREE_TYPE (value);
147
148 if (value == error_mark_node || type == error_mark_node)
149 return error_mark_node;
150
151 /* First, detect a valid value with a complete type. */
152 if (COMPLETE_TYPE_P (type))
153 return value;
154
155 c_incomplete_type_error (value, type);
156 return error_mark_node;
157 }
158
159 /* Print an error message for invalid use of an incomplete type.
160 VALUE is the expression that was used (or 0 if that isn't known)
161 and TYPE is the type that was invalid. */
162
163 void
164 c_incomplete_type_error (const_tree value, const_tree type)
165 {
166 const char *type_code_string;
167
168 /* Avoid duplicate error message. */
169 if (TREE_CODE (type) == ERROR_MARK)
170 return;
171
172 if (value != 0 && (TREE_CODE (value) == VAR_DECL
173 || TREE_CODE (value) == PARM_DECL))
174 error ("%qD has an incomplete type", value);
175 else
176 {
177 retry:
178 /* We must print an error message. Be clever about what it says. */
179
180 switch (TREE_CODE (type))
181 {
182 case RECORD_TYPE:
183 type_code_string = "struct";
184 break;
185
186 case UNION_TYPE:
187 type_code_string = "union";
188 break;
189
190 case ENUMERAL_TYPE:
191 type_code_string = "enum";
192 break;
193
194 case VOID_TYPE:
195 error ("invalid use of void expression");
196 return;
197
198 case ARRAY_TYPE:
199 if (TYPE_DOMAIN (type))
200 {
201 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
202 {
203 error ("invalid use of flexible array member");
204 return;
205 }
206 type = TREE_TYPE (type);
207 goto retry;
208 }
209 error ("invalid use of array with unspecified bounds");
210 return;
211
212 default:
213 gcc_unreachable ();
214 }
215
216 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
217 error ("invalid use of undefined type %<%s %E%>",
218 type_code_string, TYPE_NAME (type));
219 else
220 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
221 error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
222 }
223 }
224
225 /* Given a type, apply default promotions wrt unnamed function
226 arguments and return the new type. */
227
228 tree
229 c_type_promotes_to (tree type)
230 {
231 if (TYPE_MAIN_VARIANT (type) == float_type_node)
232 return double_type_node;
233
234 if (c_promoting_integer_type_p (type))
235 {
236 /* Preserve unsignedness if not really getting any wider. */
237 if (TYPE_UNSIGNED (type)
238 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
239 return unsigned_type_node;
240 return integer_type_node;
241 }
242
243 return type;
244 }
245
246 /* Return a variant of TYPE which has all the type qualifiers of LIKE
247 as well as those of TYPE. */
248
249 static tree
250 qualify_type (tree type, tree like)
251 {
252 return c_build_qualified_type (type,
253 TYPE_QUALS (type) | TYPE_QUALS (like));
254 }
255
256 /* Return true iff the given tree T is a variable length array. */
257
258 bool
259 c_vla_type_p (const_tree t)
260 {
261 if (TREE_CODE (t) == ARRAY_TYPE
262 && C_TYPE_VARIABLE_SIZE (t))
263 return true;
264 return false;
265 }
266 \f
267 /* Return the composite type of two compatible types.
268
269 We assume that comptypes has already been done and returned
270 nonzero; if that isn't so, this may crash. In particular, we
271 assume that qualifiers match. */
272
273 tree
274 composite_type (tree t1, tree t2)
275 {
276 enum tree_code code1;
277 enum tree_code code2;
278 tree attributes;
279
280 /* Save time if the two types are the same. */
281
282 if (t1 == t2) return t1;
283
284 /* If one type is nonsense, use the other. */
285 if (t1 == error_mark_node)
286 return t2;
287 if (t2 == error_mark_node)
288 return t1;
289
290 code1 = TREE_CODE (t1);
291 code2 = TREE_CODE (t2);
292
293 /* Merge the attributes. */
294 attributes = targetm.merge_type_attributes (t1, t2);
295
296 /* If one is an enumerated type and the other is the compatible
297 integer type, the composite type might be either of the two
298 (DR#013 question 3). For consistency, use the enumerated type as
299 the composite type. */
300
301 if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
302 return t1;
303 if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
304 return t2;
305
306 gcc_assert (code1 == code2);
307
308 switch (code1)
309 {
310 case POINTER_TYPE:
311 /* For two pointers, do this recursively on the target type. */
312 {
313 tree pointed_to_1 = TREE_TYPE (t1);
314 tree pointed_to_2 = TREE_TYPE (t2);
315 tree target = composite_type (pointed_to_1, pointed_to_2);
316 t1 = build_pointer_type (target);
317 t1 = build_type_attribute_variant (t1, attributes);
318 return qualify_type (t1, t2);
319 }
320
321 case ARRAY_TYPE:
322 {
323 tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
324 int quals;
325 tree unqual_elt;
326 tree d1 = TYPE_DOMAIN (t1);
327 tree d2 = TYPE_DOMAIN (t2);
328 bool d1_variable, d2_variable;
329 bool d1_zero, d2_zero;
330
331 /* We should not have any type quals on arrays at all. */
332 gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
333
334 d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
335 d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
336
337 d1_variable = (!d1_zero
338 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
339 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
340 d2_variable = (!d2_zero
341 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
342 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
343 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
344 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
345
346 /* Save space: see if the result is identical to one of the args. */
347 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
348 && (d2_variable || d2_zero || !d1_variable))
349 return build_type_attribute_variant (t1, attributes);
350 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
351 && (d1_variable || d1_zero || !d2_variable))
352 return build_type_attribute_variant (t2, attributes);
353
354 if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
355 return build_type_attribute_variant (t1, attributes);
356 if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
357 return build_type_attribute_variant (t2, attributes);
358
359 /* Merge the element types, and have a size if either arg has
360 one. We may have qualifiers on the element types. To set
361 up TYPE_MAIN_VARIANT correctly, we need to form the
362 composite of the unqualified types and add the qualifiers
363 back at the end. */
364 quals = TYPE_QUALS (strip_array_types (elt));
365 unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
366 t1 = build_array_type (unqual_elt,
367 TYPE_DOMAIN ((TYPE_DOMAIN (t1)
368 && (d2_variable
369 || d2_zero
370 || !d1_variable))
371 ? t1
372 : t2));
373 t1 = c_build_qualified_type (t1, quals);
374 return build_type_attribute_variant (t1, attributes);
375 }
376
377 case ENUMERAL_TYPE:
378 case RECORD_TYPE:
379 case UNION_TYPE:
380 if (attributes != NULL)
381 {
382 /* Try harder not to create a new aggregate type. */
383 if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
384 return t1;
385 if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
386 return t2;
387 }
388 return build_type_attribute_variant (t1, attributes);
389
390 case FUNCTION_TYPE:
391 /* Function types: prefer the one that specified arg types.
392 If both do, merge the arg types. Also merge the return types. */
393 {
394 tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
395 tree p1 = TYPE_ARG_TYPES (t1);
396 tree p2 = TYPE_ARG_TYPES (t2);
397 int len;
398 tree newargs, n;
399 int i;
400
401 /* Save space: see if the result is identical to one of the args. */
402 if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
403 return build_type_attribute_variant (t1, attributes);
404 if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
405 return build_type_attribute_variant (t2, attributes);
406
407 /* Simple way if one arg fails to specify argument types. */
408 if (TYPE_ARG_TYPES (t1) == 0)
409 {
410 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
411 t1 = build_type_attribute_variant (t1, attributes);
412 return qualify_type (t1, t2);
413 }
414 if (TYPE_ARG_TYPES (t2) == 0)
415 {
416 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
417 t1 = build_type_attribute_variant (t1, attributes);
418 return qualify_type (t1, t2);
419 }
420
421 /* If both args specify argument types, we must merge the two
422 lists, argument by argument. */
423 /* Tell global_bindings_p to return false so that variable_size
424 doesn't die on VLAs in parameter types. */
425 c_override_global_bindings_to_false = true;
426
427 len = list_length (p1);
428 newargs = 0;
429
430 for (i = 0; i < len; i++)
431 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
432
433 n = newargs;
434
435 for (; p1;
436 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
437 {
438 /* A null type means arg type is not specified.
439 Take whatever the other function type has. */
440 if (TREE_VALUE (p1) == 0)
441 {
442 TREE_VALUE (n) = TREE_VALUE (p2);
443 goto parm_done;
444 }
445 if (TREE_VALUE (p2) == 0)
446 {
447 TREE_VALUE (n) = TREE_VALUE (p1);
448 goto parm_done;
449 }
450
451 /* Given wait (union {union wait *u; int *i} *)
452 and wait (union wait *),
453 prefer union wait * as type of parm. */
454 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
455 && TREE_VALUE (p1) != TREE_VALUE (p2))
456 {
457 tree memb;
458 tree mv2 = TREE_VALUE (p2);
459 if (mv2 && mv2 != error_mark_node
460 && TREE_CODE (mv2) != ARRAY_TYPE)
461 mv2 = TYPE_MAIN_VARIANT (mv2);
462 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
463 memb; memb = TREE_CHAIN (memb))
464 {
465 tree mv3 = TREE_TYPE (memb);
466 if (mv3 && mv3 != error_mark_node
467 && TREE_CODE (mv3) != ARRAY_TYPE)
468 mv3 = TYPE_MAIN_VARIANT (mv3);
469 if (comptypes (mv3, mv2))
470 {
471 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
472 TREE_VALUE (p2));
473 if (pedantic)
474 pedwarn ("function types not truly compatible in ISO C");
475 goto parm_done;
476 }
477 }
478 }
479 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
480 && TREE_VALUE (p2) != TREE_VALUE (p1))
481 {
482 tree memb;
483 tree mv1 = TREE_VALUE (p1);
484 if (mv1 && mv1 != error_mark_node
485 && TREE_CODE (mv1) != ARRAY_TYPE)
486 mv1 = TYPE_MAIN_VARIANT (mv1);
487 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
488 memb; memb = TREE_CHAIN (memb))
489 {
490 tree mv3 = TREE_TYPE (memb);
491 if (mv3 && mv3 != error_mark_node
492 && TREE_CODE (mv3) != ARRAY_TYPE)
493 mv3 = TYPE_MAIN_VARIANT (mv3);
494 if (comptypes (mv3, mv1))
495 {
496 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
497 TREE_VALUE (p1));
498 if (pedantic)
499 pedwarn ("function types not truly compatible in ISO C");
500 goto parm_done;
501 }
502 }
503 }
504 TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
505 parm_done: ;
506 }
507
508 c_override_global_bindings_to_false = false;
509 t1 = build_function_type (valtype, newargs);
510 t1 = qualify_type (t1, t2);
511 /* ... falls through ... */
512 }
513
514 default:
515 return build_type_attribute_variant (t1, attributes);
516 }
517
518 }
519
520 /* Return the type of a conditional expression between pointers to
521 possibly differently qualified versions of compatible types.
522
523 We assume that comp_target_types has already been done and returned
524 nonzero; if that isn't so, this may crash. */
525
526 static tree
527 common_pointer_type (tree t1, tree t2)
528 {
529 tree attributes;
530 tree pointed_to_1, mv1;
531 tree pointed_to_2, mv2;
532 tree target;
533 unsigned target_quals;
534
535 /* Save time if the two types are the same. */
536
537 if (t1 == t2) return t1;
538
539 /* If one type is nonsense, use the other. */
540 if (t1 == error_mark_node)
541 return t2;
542 if (t2 == error_mark_node)
543 return t1;
544
545 gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546 && TREE_CODE (t2) == POINTER_TYPE);
547
548 /* Merge the attributes. */
549 attributes = targetm.merge_type_attributes (t1, t2);
550
551 /* Find the composite type of the target types, and combine the
552 qualifiers of the two types' targets. Do not lose qualifiers on
553 array element types by taking the TYPE_MAIN_VARIANT. */
554 mv1 = pointed_to_1 = TREE_TYPE (t1);
555 mv2 = pointed_to_2 = TREE_TYPE (t2);
556 if (TREE_CODE (mv1) != ARRAY_TYPE)
557 mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558 if (TREE_CODE (mv2) != ARRAY_TYPE)
559 mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560 target = composite_type (mv1, mv2);
561
562 /* For function types do not merge const qualifiers, but drop them
563 if used inconsistently. The middle-end uses these to mark const
564 and noreturn functions. */
565 if (TREE_CODE (pointed_to_1) == FUNCTION_TYPE)
566 target_quals = TYPE_QUALS (pointed_to_1) & TYPE_QUALS (pointed_to_2);
567 else
568 target_quals = TYPE_QUALS (pointed_to_1) | TYPE_QUALS (pointed_to_2);
569 t1 = build_pointer_type (c_build_qualified_type (target, target_quals));
570 return build_type_attribute_variant (t1, attributes);
571 }
572
573 /* Return the common type for two arithmetic types under the usual
574 arithmetic conversions. The default conversions have already been
575 applied, and enumerated types converted to their compatible integer
576 types. The resulting type is unqualified and has no attributes.
577
578 This is the type for the result of most arithmetic operations
579 if the operands have the given two types. */
580
581 static tree
582 c_common_type (tree t1, tree t2)
583 {
584 enum tree_code code1;
585 enum tree_code code2;
586
587 /* If one type is nonsense, use the other. */
588 if (t1 == error_mark_node)
589 return t2;
590 if (t2 == error_mark_node)
591 return t1;
592
593 if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
594 t1 = TYPE_MAIN_VARIANT (t1);
595
596 if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
597 t2 = TYPE_MAIN_VARIANT (t2);
598
599 if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
600 t1 = build_type_attribute_variant (t1, NULL_TREE);
601
602 if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
603 t2 = build_type_attribute_variant (t2, NULL_TREE);
604
605 /* Save time if the two types are the same. */
606
607 if (t1 == t2) return t1;
608
609 code1 = TREE_CODE (t1);
610 code2 = TREE_CODE (t2);
611
612 gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
613 || code1 == FIXED_POINT_TYPE || code1 == REAL_TYPE
614 || code1 == INTEGER_TYPE);
615 gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
616 || code2 == FIXED_POINT_TYPE || code2 == REAL_TYPE
617 || code2 == INTEGER_TYPE);
618
619 /* When one operand is a decimal float type, the other operand cannot be
620 a generic float type or a complex type. We also disallow vector types
621 here. */
622 if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
623 && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
624 {
625 if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
626 {
627 error ("can%'t mix operands of decimal float and vector types");
628 return error_mark_node;
629 }
630 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
631 {
632 error ("can%'t mix operands of decimal float and complex types");
633 return error_mark_node;
634 }
635 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
636 {
637 error ("can%'t mix operands of decimal float and other float types");
638 return error_mark_node;
639 }
640 }
641
642 /* If one type is a vector type, return that type. (How the usual
643 arithmetic conversions apply to the vector types extension is not
644 precisely specified.) */
645 if (code1 == VECTOR_TYPE)
646 return t1;
647
648 if (code2 == VECTOR_TYPE)
649 return t2;
650
651 /* If one type is complex, form the common type of the non-complex
652 components, then make that complex. Use T1 or T2 if it is the
653 required type. */
654 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
655 {
656 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
657 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
658 tree subtype = c_common_type (subtype1, subtype2);
659
660 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
661 return t1;
662 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
663 return t2;
664 else
665 return build_complex_type (subtype);
666 }
667
668 /* If only one is real, use it as the result. */
669
670 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
671 return t1;
672
673 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
674 return t2;
675
676 /* If both are real and either are decimal floating point types, use
677 the decimal floating point type with the greater precision. */
678
679 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
680 {
681 if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
682 || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
683 return dfloat128_type_node;
684 else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
685 || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
686 return dfloat64_type_node;
687 else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
688 || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
689 return dfloat32_type_node;
690 }
691
692 /* Deal with fixed-point types. */
693 if (code1 == FIXED_POINT_TYPE || code2 == FIXED_POINT_TYPE)
694 {
695 unsigned int unsignedp = 0, satp = 0;
696 enum machine_mode m1, m2;
697 unsigned int fbit1, ibit1, fbit2, ibit2, max_fbit, max_ibit;
698
699 m1 = TYPE_MODE (t1);
700 m2 = TYPE_MODE (t2);
701
702 /* If one input type is saturating, the result type is saturating. */
703 if (TYPE_SATURATING (t1) || TYPE_SATURATING (t2))
704 satp = 1;
705
706 /* If both fixed-point types are unsigned, the result type is unsigned.
707 When mixing fixed-point and integer types, follow the sign of the
708 fixed-point type.
709 Otherwise, the result type is signed. */
710 if ((TYPE_UNSIGNED (t1) && TYPE_UNSIGNED (t2)
711 && code1 == FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE)
712 || (code1 == FIXED_POINT_TYPE && code2 != FIXED_POINT_TYPE
713 && TYPE_UNSIGNED (t1))
714 || (code1 != FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE
715 && TYPE_UNSIGNED (t2)))
716 unsignedp = 1;
717
718 /* The result type is signed. */
719 if (unsignedp == 0)
720 {
721 /* If the input type is unsigned, we need to convert to the
722 signed type. */
723 if (code1 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t1))
724 {
725 unsigned char mclass = 0;
726 if (GET_MODE_CLASS (m1) == MODE_UFRACT)
727 mclass = MODE_FRACT;
728 else if (GET_MODE_CLASS (m1) == MODE_UACCUM)
729 mclass = MODE_ACCUM;
730 else
731 gcc_unreachable ();
732 m1 = mode_for_size (GET_MODE_PRECISION (m1), mclass, 0);
733 }
734 if (code2 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t2))
735 {
736 unsigned char mclass = 0;
737 if (GET_MODE_CLASS (m2) == MODE_UFRACT)
738 mclass = MODE_FRACT;
739 else if (GET_MODE_CLASS (m2) == MODE_UACCUM)
740 mclass = MODE_ACCUM;
741 else
742 gcc_unreachable ();
743 m2 = mode_for_size (GET_MODE_PRECISION (m2), mclass, 0);
744 }
745 }
746
747 if (code1 == FIXED_POINT_TYPE)
748 {
749 fbit1 = GET_MODE_FBIT (m1);
750 ibit1 = GET_MODE_IBIT (m1);
751 }
752 else
753 {
754 fbit1 = 0;
755 /* Signed integers need to subtract one sign bit. */
756 ibit1 = TYPE_PRECISION (t1) - (!TYPE_UNSIGNED (t1));
757 }
758
759 if (code2 == FIXED_POINT_TYPE)
760 {
761 fbit2 = GET_MODE_FBIT (m2);
762 ibit2 = GET_MODE_IBIT (m2);
763 }
764 else
765 {
766 fbit2 = 0;
767 /* Signed integers need to subtract one sign bit. */
768 ibit2 = TYPE_PRECISION (t2) - (!TYPE_UNSIGNED (t2));
769 }
770
771 max_ibit = ibit1 >= ibit2 ? ibit1 : ibit2;
772 max_fbit = fbit1 >= fbit2 ? fbit1 : fbit2;
773 return c_common_fixed_point_type_for_size (max_ibit, max_fbit, unsignedp,
774 satp);
775 }
776
777 /* Both real or both integers; use the one with greater precision. */
778
779 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
780 return t1;
781 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
782 return t2;
783
784 /* Same precision. Prefer long longs to longs to ints when the
785 same precision, following the C99 rules on integer type rank
786 (which are equivalent to the C90 rules for C90 types). */
787
788 if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
789 || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
790 return long_long_unsigned_type_node;
791
792 if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
793 || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
794 {
795 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
796 return long_long_unsigned_type_node;
797 else
798 return long_long_integer_type_node;
799 }
800
801 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
802 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
803 return long_unsigned_type_node;
804
805 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
806 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
807 {
808 /* But preserve unsignedness from the other type,
809 since long cannot hold all the values of an unsigned int. */
810 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
811 return long_unsigned_type_node;
812 else
813 return long_integer_type_node;
814 }
815
816 /* Likewise, prefer long double to double even if same size. */
817 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
818 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
819 return long_double_type_node;
820
821 /* Otherwise prefer the unsigned one. */
822
823 if (TYPE_UNSIGNED (t1))
824 return t1;
825 else
826 return t2;
827 }
828 \f
829 /* Wrapper around c_common_type that is used by c-common.c and other
830 front end optimizations that remove promotions. ENUMERAL_TYPEs
831 are allowed here and are converted to their compatible integer types.
832 BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
833 preferably a non-Boolean type as the common type. */
834 tree
835 common_type (tree t1, tree t2)
836 {
837 if (TREE_CODE (t1) == ENUMERAL_TYPE)
838 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
839 if (TREE_CODE (t2) == ENUMERAL_TYPE)
840 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
841
842 /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */
843 if (TREE_CODE (t1) == BOOLEAN_TYPE
844 && TREE_CODE (t2) == BOOLEAN_TYPE)
845 return boolean_type_node;
846
847 /* If either type is BOOLEAN_TYPE, then return the other. */
848 if (TREE_CODE (t1) == BOOLEAN_TYPE)
849 return t2;
850 if (TREE_CODE (t2) == BOOLEAN_TYPE)
851 return t1;
852
853 return c_common_type (t1, t2);
854 }
855
856 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
857 or various other operations. Return 2 if they are compatible
858 but a warning may be needed if you use them together. */
859
860 int
861 comptypes (tree type1, tree type2)
862 {
863 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
864 int val;
865
866 val = comptypes_internal (type1, type2);
867 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
868
869 return val;
870 }
871 \f
872 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
873 or various other operations. Return 2 if they are compatible
874 but a warning may be needed if you use them together. This
875 differs from comptypes, in that we don't free the seen types. */
876
877 static int
878 comptypes_internal (const_tree type1, const_tree type2)
879 {
880 const_tree t1 = type1;
881 const_tree t2 = type2;
882 int attrval, val;
883
884 /* Suppress errors caused by previously reported errors. */
885
886 if (t1 == t2 || !t1 || !t2
887 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
888 return 1;
889
890 /* If either type is the internal version of sizetype, return the
891 language version. */
892 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
893 && TYPE_ORIG_SIZE_TYPE (t1))
894 t1 = TYPE_ORIG_SIZE_TYPE (t1);
895
896 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
897 && TYPE_ORIG_SIZE_TYPE (t2))
898 t2 = TYPE_ORIG_SIZE_TYPE (t2);
899
900
901 /* Enumerated types are compatible with integer types, but this is
902 not transitive: two enumerated types in the same translation unit
903 are compatible with each other only if they are the same type. */
904
905 if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
906 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
907 else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
908 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
909
910 if (t1 == t2)
911 return 1;
912
913 /* Different classes of types can't be compatible. */
914
915 if (TREE_CODE (t1) != TREE_CODE (t2))
916 return 0;
917
918 /* Qualifiers must match. C99 6.7.3p9 */
919
920 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
921 return 0;
922
923 /* Allow for two different type nodes which have essentially the same
924 definition. Note that we already checked for equality of the type
925 qualifiers (just above). */
926
927 if (TREE_CODE (t1) != ARRAY_TYPE
928 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
929 return 1;
930
931 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
932 if (!(attrval = targetm.comp_type_attributes (t1, t2)))
933 return 0;
934
935 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
936 val = 0;
937
938 switch (TREE_CODE (t1))
939 {
940 case POINTER_TYPE:
941 /* Do not remove mode or aliasing information. */
942 if (TYPE_MODE (t1) != TYPE_MODE (t2)
943 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
944 break;
945 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
946 ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
947 break;
948
949 case FUNCTION_TYPE:
950 val = function_types_compatible_p (t1, t2);
951 break;
952
953 case ARRAY_TYPE:
954 {
955 tree d1 = TYPE_DOMAIN (t1);
956 tree d2 = TYPE_DOMAIN (t2);
957 bool d1_variable, d2_variable;
958 bool d1_zero, d2_zero;
959 val = 1;
960
961 /* Target types must match incl. qualifiers. */
962 if (TREE_TYPE (t1) != TREE_TYPE (t2)
963 && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
964 return 0;
965
966 /* Sizes must match unless one is missing or variable. */
967 if (d1 == 0 || d2 == 0 || d1 == d2)
968 break;
969
970 d1_zero = !TYPE_MAX_VALUE (d1);
971 d2_zero = !TYPE_MAX_VALUE (d2);
972
973 d1_variable = (!d1_zero
974 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
975 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
976 d2_variable = (!d2_zero
977 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
978 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
979 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
980 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
981
982 if (d1_variable || d2_variable)
983 break;
984 if (d1_zero && d2_zero)
985 break;
986 if (d1_zero || d2_zero
987 || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
988 || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
989 val = 0;
990
991 break;
992 }
993
994 case ENUMERAL_TYPE:
995 case RECORD_TYPE:
996 case UNION_TYPE:
997 if (val != 1 && !same_translation_unit_p (t1, t2))
998 {
999 tree a1 = TYPE_ATTRIBUTES (t1);
1000 tree a2 = TYPE_ATTRIBUTES (t2);
1001
1002 if (! attribute_list_contained (a1, a2)
1003 && ! attribute_list_contained (a2, a1))
1004 break;
1005
1006 if (attrval != 2)
1007 return tagged_types_tu_compatible_p (t1, t2);
1008 val = tagged_types_tu_compatible_p (t1, t2);
1009 }
1010 break;
1011
1012 case VECTOR_TYPE:
1013 val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
1014 && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
1015 break;
1016
1017 default:
1018 break;
1019 }
1020 return attrval == 2 && val == 1 ? 2 : val;
1021 }
1022
1023 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
1024 ignoring their qualifiers. */
1025
1026 static int
1027 comp_target_types (tree ttl, tree ttr)
1028 {
1029 int val;
1030 tree mvl, mvr;
1031
1032 /* Do not lose qualifiers on element types of array types that are
1033 pointer targets by taking their TYPE_MAIN_VARIANT. */
1034 mvl = TREE_TYPE (ttl);
1035 mvr = TREE_TYPE (ttr);
1036 if (TREE_CODE (mvl) != ARRAY_TYPE)
1037 mvl = TYPE_MAIN_VARIANT (mvl);
1038 if (TREE_CODE (mvr) != ARRAY_TYPE)
1039 mvr = TYPE_MAIN_VARIANT (mvr);
1040 val = comptypes (mvl, mvr);
1041
1042 if (val == 2 && pedantic)
1043 pedwarn ("types are not quite compatible");
1044 return val;
1045 }
1046 \f
1047 /* Subroutines of `comptypes'. */
1048
1049 /* Determine whether two trees derive from the same translation unit.
1050 If the CONTEXT chain ends in a null, that tree's context is still
1051 being parsed, so if two trees have context chains ending in null,
1052 they're in the same translation unit. */
1053 int
1054 same_translation_unit_p (const_tree t1, const_tree t2)
1055 {
1056 while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
1057 switch (TREE_CODE_CLASS (TREE_CODE (t1)))
1058 {
1059 case tcc_declaration:
1060 t1 = DECL_CONTEXT (t1); break;
1061 case tcc_type:
1062 t1 = TYPE_CONTEXT (t1); break;
1063 case tcc_exceptional:
1064 t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
1065 default: gcc_unreachable ();
1066 }
1067
1068 while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
1069 switch (TREE_CODE_CLASS (TREE_CODE (t2)))
1070 {
1071 case tcc_declaration:
1072 t2 = DECL_CONTEXT (t2); break;
1073 case tcc_type:
1074 t2 = TYPE_CONTEXT (t2); break;
1075 case tcc_exceptional:
1076 t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
1077 default: gcc_unreachable ();
1078 }
1079
1080 return t1 == t2;
1081 }
1082
1083 /* Allocate the seen two types, assuming that they are compatible. */
1084
1085 static struct tagged_tu_seen_cache *
1086 alloc_tagged_tu_seen_cache (const_tree t1, const_tree t2)
1087 {
1088 struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
1089 tu->next = tagged_tu_seen_base;
1090 tu->t1 = t1;
1091 tu->t2 = t2;
1092
1093 tagged_tu_seen_base = tu;
1094
1095 /* The C standard says that two structures in different translation
1096 units are compatible with each other only if the types of their
1097 fields are compatible (among other things). We assume that they
1098 are compatible until proven otherwise when building the cache.
1099 An example where this can occur is:
1100 struct a
1101 {
1102 struct a *next;
1103 };
1104 If we are comparing this against a similar struct in another TU,
1105 and did not assume they were compatible, we end up with an infinite
1106 loop. */
1107 tu->val = 1;
1108 return tu;
1109 }
1110
1111 /* Free the seen types until we get to TU_TIL. */
1112
1113 static void
1114 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1115 {
1116 const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1117 while (tu != tu_til)
1118 {
1119 const struct tagged_tu_seen_cache *const tu1
1120 = (const struct tagged_tu_seen_cache *) tu;
1121 tu = tu1->next;
1122 free (CONST_CAST (struct tagged_tu_seen_cache *, tu1));
1123 }
1124 tagged_tu_seen_base = tu_til;
1125 }
1126
1127 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1128 compatible. If the two types are not the same (which has been
1129 checked earlier), this can only happen when multiple translation
1130 units are being compiled. See C99 6.2.7 paragraph 1 for the exact
1131 rules. */
1132
1133 static int
1134 tagged_types_tu_compatible_p (const_tree t1, const_tree t2)
1135 {
1136 tree s1, s2;
1137 bool needs_warning = false;
1138
1139 /* We have to verify that the tags of the types are the same. This
1140 is harder than it looks because this may be a typedef, so we have
1141 to go look at the original type. It may even be a typedef of a
1142 typedef...
1143 In the case of compiler-created builtin structs the TYPE_DECL
1144 may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
1145 while (TYPE_NAME (t1)
1146 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1147 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1148 t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1149
1150 while (TYPE_NAME (t2)
1151 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1152 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1153 t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1154
1155 /* C90 didn't have the requirement that the two tags be the same. */
1156 if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1157 return 0;
1158
1159 /* C90 didn't say what happened if one or both of the types were
1160 incomplete; we choose to follow C99 rules here, which is that they
1161 are compatible. */
1162 if (TYPE_SIZE (t1) == NULL
1163 || TYPE_SIZE (t2) == NULL)
1164 return 1;
1165
1166 {
1167 const struct tagged_tu_seen_cache * tts_i;
1168 for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1169 if (tts_i->t1 == t1 && tts_i->t2 == t2)
1170 return tts_i->val;
1171 }
1172
1173 switch (TREE_CODE (t1))
1174 {
1175 case ENUMERAL_TYPE:
1176 {
1177 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1178 /* Speed up the case where the type values are in the same order. */
1179 tree tv1 = TYPE_VALUES (t1);
1180 tree tv2 = TYPE_VALUES (t2);
1181
1182 if (tv1 == tv2)
1183 {
1184 return 1;
1185 }
1186
1187 for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1188 {
1189 if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1190 break;
1191 if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1192 {
1193 tu->val = 0;
1194 return 0;
1195 }
1196 }
1197
1198 if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1199 {
1200 return 1;
1201 }
1202 if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1203 {
1204 tu->val = 0;
1205 return 0;
1206 }
1207
1208 if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1209 {
1210 tu->val = 0;
1211 return 0;
1212 }
1213
1214 for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1215 {
1216 s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1217 if (s2 == NULL
1218 || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1219 {
1220 tu->val = 0;
1221 return 0;
1222 }
1223 }
1224 return 1;
1225 }
1226
1227 case UNION_TYPE:
1228 {
1229 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1230 if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1231 {
1232 tu->val = 0;
1233 return 0;
1234 }
1235
1236 /* Speed up the common case where the fields are in the same order. */
1237 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1238 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1239 {
1240 int result;
1241
1242 if (DECL_NAME (s1) != DECL_NAME (s2))
1243 break;
1244 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1245
1246 if (result != 1 && !DECL_NAME (s1))
1247 break;
1248 if (result == 0)
1249 {
1250 tu->val = 0;
1251 return 0;
1252 }
1253 if (result == 2)
1254 needs_warning = true;
1255
1256 if (TREE_CODE (s1) == FIELD_DECL
1257 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1258 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1259 {
1260 tu->val = 0;
1261 return 0;
1262 }
1263 }
1264 if (!s1 && !s2)
1265 {
1266 tu->val = needs_warning ? 2 : 1;
1267 return tu->val;
1268 }
1269
1270 for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1271 {
1272 bool ok = false;
1273
1274 for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1275 if (DECL_NAME (s1) == DECL_NAME (s2))
1276 {
1277 int result;
1278
1279 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1280
1281 if (result != 1 && !DECL_NAME (s1))
1282 continue;
1283 if (result == 0)
1284 {
1285 tu->val = 0;
1286 return 0;
1287 }
1288 if (result == 2)
1289 needs_warning = true;
1290
1291 if (TREE_CODE (s1) == FIELD_DECL
1292 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1293 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1294 break;
1295
1296 ok = true;
1297 break;
1298 }
1299 if (!ok)
1300 {
1301 tu->val = 0;
1302 return 0;
1303 }
1304 }
1305 tu->val = needs_warning ? 2 : 10;
1306 return tu->val;
1307 }
1308
1309 case RECORD_TYPE:
1310 {
1311 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1312
1313 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1314 s1 && s2;
1315 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1316 {
1317 int result;
1318 if (TREE_CODE (s1) != TREE_CODE (s2)
1319 || DECL_NAME (s1) != DECL_NAME (s2))
1320 break;
1321 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1322 if (result == 0)
1323 break;
1324 if (result == 2)
1325 needs_warning = true;
1326
1327 if (TREE_CODE (s1) == FIELD_DECL
1328 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1329 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1330 break;
1331 }
1332 if (s1 && s2)
1333 tu->val = 0;
1334 else
1335 tu->val = needs_warning ? 2 : 1;
1336 return tu->val;
1337 }
1338
1339 default:
1340 gcc_unreachable ();
1341 }
1342 }
1343
1344 /* Return 1 if two function types F1 and F2 are compatible.
1345 If either type specifies no argument types,
1346 the other must specify a fixed number of self-promoting arg types.
1347 Otherwise, if one type specifies only the number of arguments,
1348 the other must specify that number of self-promoting arg types.
1349 Otherwise, the argument types must match. */
1350
1351 static int
1352 function_types_compatible_p (const_tree f1, const_tree f2)
1353 {
1354 tree args1, args2;
1355 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1356 int val = 1;
1357 int val1;
1358 tree ret1, ret2;
1359
1360 ret1 = TREE_TYPE (f1);
1361 ret2 = TREE_TYPE (f2);
1362
1363 /* 'volatile' qualifiers on a function's return type used to mean
1364 the function is noreturn. */
1365 if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1366 pedwarn ("function return types not compatible due to %<volatile%>");
1367 if (TYPE_VOLATILE (ret1))
1368 ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1369 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1370 if (TYPE_VOLATILE (ret2))
1371 ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1372 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1373 val = comptypes_internal (ret1, ret2);
1374 if (val == 0)
1375 return 0;
1376
1377 args1 = TYPE_ARG_TYPES (f1);
1378 args2 = TYPE_ARG_TYPES (f2);
1379
1380 /* An unspecified parmlist matches any specified parmlist
1381 whose argument types don't need default promotions. */
1382
1383 if (args1 == 0)
1384 {
1385 if (!self_promoting_args_p (args2))
1386 return 0;
1387 /* If one of these types comes from a non-prototype fn definition,
1388 compare that with the other type's arglist.
1389 If they don't match, ask for a warning (but no error). */
1390 if (TYPE_ACTUAL_ARG_TYPES (f1)
1391 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1392 val = 2;
1393 return val;
1394 }
1395 if (args2 == 0)
1396 {
1397 if (!self_promoting_args_p (args1))
1398 return 0;
1399 if (TYPE_ACTUAL_ARG_TYPES (f2)
1400 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1401 val = 2;
1402 return val;
1403 }
1404
1405 /* Both types have argument lists: compare them and propagate results. */
1406 val1 = type_lists_compatible_p (args1, args2);
1407 return val1 != 1 ? val1 : val;
1408 }
1409
1410 /* Check two lists of types for compatibility,
1411 returning 0 for incompatible, 1 for compatible,
1412 or 2 for compatible with warning. */
1413
1414 static int
1415 type_lists_compatible_p (const_tree args1, const_tree args2)
1416 {
1417 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1418 int val = 1;
1419 int newval = 0;
1420
1421 while (1)
1422 {
1423 tree a1, mv1, a2, mv2;
1424 if (args1 == 0 && args2 == 0)
1425 return val;
1426 /* If one list is shorter than the other,
1427 they fail to match. */
1428 if (args1 == 0 || args2 == 0)
1429 return 0;
1430 mv1 = a1 = TREE_VALUE (args1);
1431 mv2 = a2 = TREE_VALUE (args2);
1432 if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1433 mv1 = TYPE_MAIN_VARIANT (mv1);
1434 if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1435 mv2 = TYPE_MAIN_VARIANT (mv2);
1436 /* A null pointer instead of a type
1437 means there is supposed to be an argument
1438 but nothing is specified about what type it has.
1439 So match anything that self-promotes. */
1440 if (a1 == 0)
1441 {
1442 if (c_type_promotes_to (a2) != a2)
1443 return 0;
1444 }
1445 else if (a2 == 0)
1446 {
1447 if (c_type_promotes_to (a1) != a1)
1448 return 0;
1449 }
1450 /* If one of the lists has an error marker, ignore this arg. */
1451 else if (TREE_CODE (a1) == ERROR_MARK
1452 || TREE_CODE (a2) == ERROR_MARK)
1453 ;
1454 else if (!(newval = comptypes_internal (mv1, mv2)))
1455 {
1456 /* Allow wait (union {union wait *u; int *i} *)
1457 and wait (union wait *) to be compatible. */
1458 if (TREE_CODE (a1) == UNION_TYPE
1459 && (TYPE_NAME (a1) == 0
1460 || TYPE_TRANSPARENT_UNION (a1))
1461 && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1462 && tree_int_cst_equal (TYPE_SIZE (a1),
1463 TYPE_SIZE (a2)))
1464 {
1465 tree memb;
1466 for (memb = TYPE_FIELDS (a1);
1467 memb; memb = TREE_CHAIN (memb))
1468 {
1469 tree mv3 = TREE_TYPE (memb);
1470 if (mv3 && mv3 != error_mark_node
1471 && TREE_CODE (mv3) != ARRAY_TYPE)
1472 mv3 = TYPE_MAIN_VARIANT (mv3);
1473 if (comptypes_internal (mv3, mv2))
1474 break;
1475 }
1476 if (memb == 0)
1477 return 0;
1478 }
1479 else if (TREE_CODE (a2) == UNION_TYPE
1480 && (TYPE_NAME (a2) == 0
1481 || TYPE_TRANSPARENT_UNION (a2))
1482 && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1483 && tree_int_cst_equal (TYPE_SIZE (a2),
1484 TYPE_SIZE (a1)))
1485 {
1486 tree memb;
1487 for (memb = TYPE_FIELDS (a2);
1488 memb; memb = TREE_CHAIN (memb))
1489 {
1490 tree mv3 = TREE_TYPE (memb);
1491 if (mv3 && mv3 != error_mark_node
1492 && TREE_CODE (mv3) != ARRAY_TYPE)
1493 mv3 = TYPE_MAIN_VARIANT (mv3);
1494 if (comptypes_internal (mv3, mv1))
1495 break;
1496 }
1497 if (memb == 0)
1498 return 0;
1499 }
1500 else
1501 return 0;
1502 }
1503
1504 /* comptypes said ok, but record if it said to warn. */
1505 if (newval > val)
1506 val = newval;
1507
1508 args1 = TREE_CHAIN (args1);
1509 args2 = TREE_CHAIN (args2);
1510 }
1511 }
1512 \f
1513 /* Compute the size to increment a pointer by. */
1514
1515 static tree
1516 c_size_in_bytes (const_tree type)
1517 {
1518 enum tree_code code = TREE_CODE (type);
1519
1520 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1521 return size_one_node;
1522
1523 if (!COMPLETE_OR_VOID_TYPE_P (type))
1524 {
1525 error ("arithmetic on pointer to an incomplete type");
1526 return size_one_node;
1527 }
1528
1529 /* Convert in case a char is more than one unit. */
1530 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1531 size_int (TYPE_PRECISION (char_type_node)
1532 / BITS_PER_UNIT));
1533 }
1534 \f
1535 /* Return either DECL or its known constant value (if it has one). */
1536
1537 tree
1538 decl_constant_value (tree decl)
1539 {
1540 if (/* Don't change a variable array bound or initial value to a constant
1541 in a place where a variable is invalid. Note that DECL_INITIAL
1542 isn't valid for a PARM_DECL. */
1543 current_function_decl != 0
1544 && TREE_CODE (decl) != PARM_DECL
1545 && !TREE_THIS_VOLATILE (decl)
1546 && TREE_READONLY (decl)
1547 && DECL_INITIAL (decl) != 0
1548 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1549 /* This is invalid if initial value is not constant.
1550 If it has either a function call, a memory reference,
1551 or a variable, then re-evaluating it could give different results. */
1552 && TREE_CONSTANT (DECL_INITIAL (decl))
1553 /* Check for cases where this is sub-optimal, even though valid. */
1554 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1555 return DECL_INITIAL (decl);
1556 return decl;
1557 }
1558
1559 /* Return either DECL or its known constant value (if it has one), but
1560 return DECL if pedantic or DECL has mode BLKmode. This is for
1561 bug-compatibility with the old behavior of decl_constant_value
1562 (before GCC 3.0); every use of this function is a bug and it should
1563 be removed before GCC 3.1. It is not appropriate to use pedantic
1564 in a way that affects optimization, and BLKmode is probably not the
1565 right test for avoiding misoptimizations either. */
1566
1567 static tree
1568 decl_constant_value_for_broken_optimization (tree decl)
1569 {
1570 tree ret;
1571
1572 if (pedantic || DECL_MODE (decl) == BLKmode)
1573 return decl;
1574
1575 ret = decl_constant_value (decl);
1576 /* Avoid unwanted tree sharing between the initializer and current
1577 function's body where the tree can be modified e.g. by the
1578 gimplifier. */
1579 if (ret != decl && TREE_STATIC (decl))
1580 ret = unshare_expr (ret);
1581 return ret;
1582 }
1583
1584 /* Convert the array expression EXP to a pointer. */
1585 static tree
1586 array_to_pointer_conversion (tree exp)
1587 {
1588 tree orig_exp = exp;
1589 tree type = TREE_TYPE (exp);
1590 tree adr;
1591 tree restype = TREE_TYPE (type);
1592 tree ptrtype;
1593
1594 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1595
1596 STRIP_TYPE_NOPS (exp);
1597
1598 if (TREE_NO_WARNING (orig_exp))
1599 TREE_NO_WARNING (exp) = 1;
1600
1601 ptrtype = build_pointer_type (restype);
1602
1603 if (TREE_CODE (exp) == INDIRECT_REF)
1604 return convert (ptrtype, TREE_OPERAND (exp, 0));
1605
1606 if (TREE_CODE (exp) == VAR_DECL)
1607 {
1608 /* We are making an ADDR_EXPR of ptrtype. This is a valid
1609 ADDR_EXPR because it's the best way of representing what
1610 happens in C when we take the address of an array and place
1611 it in a pointer to the element type. */
1612 adr = build1 (ADDR_EXPR, ptrtype, exp);
1613 if (!c_mark_addressable (exp))
1614 return error_mark_node;
1615 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
1616 return adr;
1617 }
1618
1619 /* This way is better for a COMPONENT_REF since it can
1620 simplify the offset for a component. */
1621 adr = build_unary_op (ADDR_EXPR, exp, 1);
1622 return convert (ptrtype, adr);
1623 }
1624
1625 /* Convert the function expression EXP to a pointer. */
1626 static tree
1627 function_to_pointer_conversion (tree exp)
1628 {
1629 tree orig_exp = exp;
1630
1631 gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1632
1633 STRIP_TYPE_NOPS (exp);
1634
1635 if (TREE_NO_WARNING (orig_exp))
1636 TREE_NO_WARNING (exp) = 1;
1637
1638 return build_unary_op (ADDR_EXPR, exp, 0);
1639 }
1640
1641 /* Perform the default conversion of arrays and functions to pointers.
1642 Return the result of converting EXP. For any other expression, just
1643 return EXP after removing NOPs. */
1644
1645 struct c_expr
1646 default_function_array_conversion (struct c_expr exp)
1647 {
1648 tree orig_exp = exp.value;
1649 tree type = TREE_TYPE (exp.value);
1650 enum tree_code code = TREE_CODE (type);
1651
1652 switch (code)
1653 {
1654 case ARRAY_TYPE:
1655 {
1656 bool not_lvalue = false;
1657 bool lvalue_array_p;
1658
1659 while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1660 || TREE_CODE (exp.value) == NOP_EXPR
1661 || TREE_CODE (exp.value) == CONVERT_EXPR)
1662 && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1663 {
1664 if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1665 not_lvalue = true;
1666 exp.value = TREE_OPERAND (exp.value, 0);
1667 }
1668
1669 if (TREE_NO_WARNING (orig_exp))
1670 TREE_NO_WARNING (exp.value) = 1;
1671
1672 lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1673 if (!flag_isoc99 && !lvalue_array_p)
1674 {
1675 /* Before C99, non-lvalue arrays do not decay to pointers.
1676 Normally, using such an array would be invalid; but it can
1677 be used correctly inside sizeof or as a statement expression.
1678 Thus, do not give an error here; an error will result later. */
1679 return exp;
1680 }
1681
1682 exp.value = array_to_pointer_conversion (exp.value);
1683 }
1684 break;
1685 case FUNCTION_TYPE:
1686 exp.value = function_to_pointer_conversion (exp.value);
1687 break;
1688 default:
1689 STRIP_TYPE_NOPS (exp.value);
1690 if (TREE_NO_WARNING (orig_exp))
1691 TREE_NO_WARNING (exp.value) = 1;
1692 break;
1693 }
1694
1695 return exp;
1696 }
1697
1698
1699 /* EXP is an expression of integer type. Apply the integer promotions
1700 to it and return the promoted value. */
1701
1702 tree
1703 perform_integral_promotions (tree exp)
1704 {
1705 tree type = TREE_TYPE (exp);
1706 enum tree_code code = TREE_CODE (type);
1707
1708 gcc_assert (INTEGRAL_TYPE_P (type));
1709
1710 /* Normally convert enums to int,
1711 but convert wide enums to something wider. */
1712 if (code == ENUMERAL_TYPE)
1713 {
1714 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1715 TYPE_PRECISION (integer_type_node)),
1716 ((TYPE_PRECISION (type)
1717 >= TYPE_PRECISION (integer_type_node))
1718 && TYPE_UNSIGNED (type)));
1719
1720 return convert (type, exp);
1721 }
1722
1723 /* ??? This should no longer be needed now bit-fields have their
1724 proper types. */
1725 if (TREE_CODE (exp) == COMPONENT_REF
1726 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1727 /* If it's thinner than an int, promote it like a
1728 c_promoting_integer_type_p, otherwise leave it alone. */
1729 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1730 TYPE_PRECISION (integer_type_node)))
1731 return convert (integer_type_node, exp);
1732
1733 if (c_promoting_integer_type_p (type))
1734 {
1735 /* Preserve unsignedness if not really getting any wider. */
1736 if (TYPE_UNSIGNED (type)
1737 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1738 return convert (unsigned_type_node, exp);
1739
1740 return convert (integer_type_node, exp);
1741 }
1742
1743 return exp;
1744 }
1745
1746
1747 /* Perform default promotions for C data used in expressions.
1748 Enumeral types or short or char are converted to int.
1749 In addition, manifest constants symbols are replaced by their values. */
1750
1751 tree
1752 default_conversion (tree exp)
1753 {
1754 tree orig_exp;
1755 tree type = TREE_TYPE (exp);
1756 enum tree_code code = TREE_CODE (type);
1757
1758 /* Functions and arrays have been converted during parsing. */
1759 gcc_assert (code != FUNCTION_TYPE);
1760 if (code == ARRAY_TYPE)
1761 return exp;
1762
1763 /* Constants can be used directly unless they're not loadable. */
1764 if (TREE_CODE (exp) == CONST_DECL)
1765 exp = DECL_INITIAL (exp);
1766
1767 /* Replace a nonvolatile const static variable with its value unless
1768 it is an array, in which case we must be sure that taking the
1769 address of the array produces consistent results. */
1770 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1771 {
1772 exp = decl_constant_value_for_broken_optimization (exp);
1773 type = TREE_TYPE (exp);
1774 }
1775
1776 /* Strip no-op conversions. */
1777 orig_exp = exp;
1778 STRIP_TYPE_NOPS (exp);
1779
1780 if (TREE_NO_WARNING (orig_exp))
1781 TREE_NO_WARNING (exp) = 1;
1782
1783 if (code == VOID_TYPE)
1784 {
1785 error ("void value not ignored as it ought to be");
1786 return error_mark_node;
1787 }
1788
1789 exp = require_complete_type (exp);
1790 if (exp == error_mark_node)
1791 return error_mark_node;
1792
1793 if (INTEGRAL_TYPE_P (type))
1794 return perform_integral_promotions (exp);
1795
1796 return exp;
1797 }
1798 \f
1799 /* Look up COMPONENT in a structure or union DECL.
1800
1801 If the component name is not found, returns NULL_TREE. Otherwise,
1802 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1803 stepping down the chain to the component, which is in the last
1804 TREE_VALUE of the list. Normally the list is of length one, but if
1805 the component is embedded within (nested) anonymous structures or
1806 unions, the list steps down the chain to the component. */
1807
1808 static tree
1809 lookup_field (tree decl, tree component)
1810 {
1811 tree type = TREE_TYPE (decl);
1812 tree field;
1813
1814 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1815 to the field elements. Use a binary search on this array to quickly
1816 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1817 will always be set for structures which have many elements. */
1818
1819 if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1820 {
1821 int bot, top, half;
1822 tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1823
1824 field = TYPE_FIELDS (type);
1825 bot = 0;
1826 top = TYPE_LANG_SPECIFIC (type)->s->len;
1827 while (top - bot > 1)
1828 {
1829 half = (top - bot + 1) >> 1;
1830 field = field_array[bot+half];
1831
1832 if (DECL_NAME (field) == NULL_TREE)
1833 {
1834 /* Step through all anon unions in linear fashion. */
1835 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1836 {
1837 field = field_array[bot++];
1838 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1839 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1840 {
1841 tree anon = lookup_field (field, component);
1842
1843 if (anon)
1844 return tree_cons (NULL_TREE, field, anon);
1845 }
1846 }
1847
1848 /* Entire record is only anon unions. */
1849 if (bot > top)
1850 return NULL_TREE;
1851
1852 /* Restart the binary search, with new lower bound. */
1853 continue;
1854 }
1855
1856 if (DECL_NAME (field) == component)
1857 break;
1858 if (DECL_NAME (field) < component)
1859 bot += half;
1860 else
1861 top = bot + half;
1862 }
1863
1864 if (DECL_NAME (field_array[bot]) == component)
1865 field = field_array[bot];
1866 else if (DECL_NAME (field) != component)
1867 return NULL_TREE;
1868 }
1869 else
1870 {
1871 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1872 {
1873 if (DECL_NAME (field) == NULL_TREE
1874 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1875 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1876 {
1877 tree anon = lookup_field (field, component);
1878
1879 if (anon)
1880 return tree_cons (NULL_TREE, field, anon);
1881 }
1882
1883 if (DECL_NAME (field) == component)
1884 break;
1885 }
1886
1887 if (field == NULL_TREE)
1888 return NULL_TREE;
1889 }
1890
1891 return tree_cons (NULL_TREE, field, NULL_TREE);
1892 }
1893
1894 /* Make an expression to refer to the COMPONENT field of
1895 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1896
1897 tree
1898 build_component_ref (tree datum, tree component)
1899 {
1900 tree type = TREE_TYPE (datum);
1901 enum tree_code code = TREE_CODE (type);
1902 tree field = NULL;
1903 tree ref;
1904
1905 if (!objc_is_public (datum, component))
1906 return error_mark_node;
1907
1908 /* See if there is a field or component with name COMPONENT. */
1909
1910 if (code == RECORD_TYPE || code == UNION_TYPE)
1911 {
1912 if (!COMPLETE_TYPE_P (type))
1913 {
1914 c_incomplete_type_error (NULL_TREE, type);
1915 return error_mark_node;
1916 }
1917
1918 field = lookup_field (datum, component);
1919
1920 if (!field)
1921 {
1922 error ("%qT has no member named %qE", type, component);
1923 return error_mark_node;
1924 }
1925
1926 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1927 This might be better solved in future the way the C++ front
1928 end does it - by giving the anonymous entities each a
1929 separate name and type, and then have build_component_ref
1930 recursively call itself. We can't do that here. */
1931 do
1932 {
1933 tree subdatum = TREE_VALUE (field);
1934 int quals;
1935 tree subtype;
1936
1937 if (TREE_TYPE (subdatum) == error_mark_node)
1938 return error_mark_node;
1939
1940 quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1941 quals |= TYPE_QUALS (TREE_TYPE (datum));
1942 subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1943
1944 ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1945 NULL_TREE);
1946 if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1947 TREE_READONLY (ref) = 1;
1948 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1949 TREE_THIS_VOLATILE (ref) = 1;
1950
1951 if (TREE_DEPRECATED (subdatum))
1952 warn_deprecated_use (subdatum);
1953
1954 datum = ref;
1955
1956 field = TREE_CHAIN (field);
1957 }
1958 while (field);
1959
1960 return ref;
1961 }
1962 else if (code != ERROR_MARK)
1963 error ("request for member %qE in something not a structure or union",
1964 component);
1965
1966 return error_mark_node;
1967 }
1968 \f
1969 /* Given an expression PTR for a pointer, return an expression
1970 for the value pointed to.
1971 ERRORSTRING is the name of the operator to appear in error messages. */
1972
1973 tree
1974 build_indirect_ref (tree ptr, const char *errorstring)
1975 {
1976 tree pointer = default_conversion (ptr);
1977 tree type = TREE_TYPE (pointer);
1978
1979 if (TREE_CODE (type) == POINTER_TYPE)
1980 {
1981 if (TREE_CODE (pointer) == CONVERT_EXPR
1982 || TREE_CODE (pointer) == NOP_EXPR
1983 || TREE_CODE (pointer) == VIEW_CONVERT_EXPR)
1984 {
1985 /* If a warning is issued, mark it to avoid duplicates from
1986 the backend. This only needs to be done at
1987 warn_strict_aliasing > 2. */
1988 if (warn_strict_aliasing > 2)
1989 if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (pointer, 0)),
1990 type, TREE_OPERAND (pointer, 0)))
1991 TREE_NO_WARNING (pointer) = 1;
1992 }
1993
1994 if (TREE_CODE (pointer) == ADDR_EXPR
1995 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1996 == TREE_TYPE (type)))
1997 return TREE_OPERAND (pointer, 0);
1998 else
1999 {
2000 tree t = TREE_TYPE (type);
2001 tree ref;
2002
2003 ref = build1 (INDIRECT_REF, t, pointer);
2004
2005 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
2006 {
2007 error ("dereferencing pointer to incomplete type");
2008 return error_mark_node;
2009 }
2010 if (VOID_TYPE_P (t) && skip_evaluation == 0)
2011 warning (0, "dereferencing %<void *%> pointer");
2012
2013 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
2014 so that we get the proper error message if the result is used
2015 to assign to. Also, &* is supposed to be a no-op.
2016 And ANSI C seems to specify that the type of the result
2017 should be the const type. */
2018 /* A de-reference of a pointer to const is not a const. It is valid
2019 to change it via some other pointer. */
2020 TREE_READONLY (ref) = TYPE_READONLY (t);
2021 TREE_SIDE_EFFECTS (ref)
2022 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
2023 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
2024 return ref;
2025 }
2026 }
2027 else if (TREE_CODE (pointer) != ERROR_MARK)
2028 error ("invalid type argument of %qs (have %qT)", errorstring, type);
2029 return error_mark_node;
2030 }
2031
2032 /* This handles expressions of the form "a[i]", which denotes
2033 an array reference.
2034
2035 This is logically equivalent in C to *(a+i), but we may do it differently.
2036 If A is a variable or a member, we generate a primitive ARRAY_REF.
2037 This avoids forcing the array out of registers, and can work on
2038 arrays that are not lvalues (for example, members of structures returned
2039 by functions). */
2040
2041 tree
2042 build_array_ref (tree array, tree index)
2043 {
2044 bool swapped = false;
2045 if (TREE_TYPE (array) == error_mark_node
2046 || TREE_TYPE (index) == error_mark_node)
2047 return error_mark_node;
2048
2049 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
2050 && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
2051 {
2052 tree temp;
2053 if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
2054 && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
2055 {
2056 error ("subscripted value is neither array nor pointer");
2057 return error_mark_node;
2058 }
2059 temp = array;
2060 array = index;
2061 index = temp;
2062 swapped = true;
2063 }
2064
2065 if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
2066 {
2067 error ("array subscript is not an integer");
2068 return error_mark_node;
2069 }
2070
2071 if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
2072 {
2073 error ("subscripted value is pointer to function");
2074 return error_mark_node;
2075 }
2076
2077 /* ??? Existing practice has been to warn only when the char
2078 index is syntactically the index, not for char[array]. */
2079 if (!swapped)
2080 warn_array_subscript_with_type_char (index);
2081
2082 /* Apply default promotions *after* noticing character types. */
2083 index = default_conversion (index);
2084
2085 gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
2086
2087 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
2088 {
2089 tree rval, type;
2090
2091 /* An array that is indexed by a non-constant
2092 cannot be stored in a register; we must be able to do
2093 address arithmetic on its address.
2094 Likewise an array of elements of variable size. */
2095 if (TREE_CODE (index) != INTEGER_CST
2096 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
2097 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
2098 {
2099 if (!c_mark_addressable (array))
2100 return error_mark_node;
2101 }
2102 /* An array that is indexed by a constant value which is not within
2103 the array bounds cannot be stored in a register either; because we
2104 would get a crash in store_bit_field/extract_bit_field when trying
2105 to access a non-existent part of the register. */
2106 if (TREE_CODE (index) == INTEGER_CST
2107 && TYPE_DOMAIN (TREE_TYPE (array))
2108 && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
2109 {
2110 if (!c_mark_addressable (array))
2111 return error_mark_node;
2112 }
2113
2114 if (pedantic)
2115 {
2116 tree foo = array;
2117 while (TREE_CODE (foo) == COMPONENT_REF)
2118 foo = TREE_OPERAND (foo, 0);
2119 if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2120 pedwarn ("ISO C forbids subscripting %<register%> array");
2121 else if (!flag_isoc99 && !lvalue_p (foo))
2122 pedwarn ("ISO C90 forbids subscripting non-lvalue array");
2123 }
2124
2125 type = TREE_TYPE (TREE_TYPE (array));
2126 rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2127 /* Array ref is const/volatile if the array elements are
2128 or if the array is. */
2129 TREE_READONLY (rval)
2130 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2131 | TREE_READONLY (array));
2132 TREE_SIDE_EFFECTS (rval)
2133 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2134 | TREE_SIDE_EFFECTS (array));
2135 TREE_THIS_VOLATILE (rval)
2136 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2137 /* This was added by rms on 16 Nov 91.
2138 It fixes vol struct foo *a; a->elts[1]
2139 in an inline function.
2140 Hope it doesn't break something else. */
2141 | TREE_THIS_VOLATILE (array));
2142 return require_complete_type (fold (rval));
2143 }
2144 else
2145 {
2146 tree ar = default_conversion (array);
2147
2148 if (ar == error_mark_node)
2149 return ar;
2150
2151 gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2152 gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2153
2154 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2155 "array indexing");
2156 }
2157 }
2158 \f
2159 /* Build an external reference to identifier ID. FUN indicates
2160 whether this will be used for a function call. LOC is the source
2161 location of the identifier. */
2162 tree
2163 build_external_ref (tree id, int fun, location_t loc)
2164 {
2165 tree ref;
2166 tree decl = lookup_name (id);
2167
2168 /* In Objective-C, an instance variable (ivar) may be preferred to
2169 whatever lookup_name() found. */
2170 decl = objc_lookup_ivar (decl, id);
2171
2172 if (decl && decl != error_mark_node)
2173 ref = decl;
2174 else if (fun)
2175 /* Implicit function declaration. */
2176 ref = implicitly_declare (id);
2177 else if (decl == error_mark_node)
2178 /* Don't complain about something that's already been
2179 complained about. */
2180 return error_mark_node;
2181 else
2182 {
2183 undeclared_variable (id, loc);
2184 return error_mark_node;
2185 }
2186
2187 if (TREE_TYPE (ref) == error_mark_node)
2188 return error_mark_node;
2189
2190 if (TREE_DEPRECATED (ref))
2191 warn_deprecated_use (ref);
2192
2193 /* Recursive call does not count as usage. */
2194 if (ref != current_function_decl)
2195 {
2196 if (!skip_evaluation)
2197 assemble_external (ref);
2198 TREE_USED (ref) = 1;
2199 }
2200
2201 if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2202 {
2203 if (!in_sizeof && !in_typeof)
2204 C_DECL_USED (ref) = 1;
2205 else if (DECL_INITIAL (ref) == 0
2206 && DECL_EXTERNAL (ref)
2207 && !TREE_PUBLIC (ref))
2208 record_maybe_used_decl (ref);
2209 }
2210
2211 if (TREE_CODE (ref) == CONST_DECL)
2212 {
2213 used_types_insert (TREE_TYPE (ref));
2214 ref = DECL_INITIAL (ref);
2215 TREE_CONSTANT (ref) = 1;
2216 TREE_INVARIANT (ref) = 1;
2217 }
2218 else if (current_function_decl != 0
2219 && !DECL_FILE_SCOPE_P (current_function_decl)
2220 && (TREE_CODE (ref) == VAR_DECL
2221 || TREE_CODE (ref) == PARM_DECL
2222 || TREE_CODE (ref) == FUNCTION_DECL))
2223 {
2224 tree context = decl_function_context (ref);
2225
2226 if (context != 0 && context != current_function_decl)
2227 DECL_NONLOCAL (ref) = 1;
2228 }
2229 /* C99 6.7.4p3: An inline definition of a function with external
2230 linkage ... shall not contain a reference to an identifier with
2231 internal linkage. */
2232 else if (current_function_decl != 0
2233 && DECL_DECLARED_INLINE_P (current_function_decl)
2234 && DECL_EXTERNAL (current_function_decl)
2235 && VAR_OR_FUNCTION_DECL_P (ref)
2236 && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2237 && ! TREE_PUBLIC (ref)
2238 && DECL_CONTEXT (ref) != current_function_decl)
2239 pedwarn ("%H%qD is static but used in inline function %qD "
2240 "which is not static", &loc, ref, current_function_decl);
2241
2242 return ref;
2243 }
2244
2245 /* Record details of decls possibly used inside sizeof or typeof. */
2246 struct maybe_used_decl
2247 {
2248 /* The decl. */
2249 tree decl;
2250 /* The level seen at (in_sizeof + in_typeof). */
2251 int level;
2252 /* The next one at this level or above, or NULL. */
2253 struct maybe_used_decl *next;
2254 };
2255
2256 static struct maybe_used_decl *maybe_used_decls;
2257
2258 /* Record that DECL, an undefined static function reference seen
2259 inside sizeof or typeof, might be used if the operand of sizeof is
2260 a VLA type or the operand of typeof is a variably modified
2261 type. */
2262
2263 static void
2264 record_maybe_used_decl (tree decl)
2265 {
2266 struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2267 t->decl = decl;
2268 t->level = in_sizeof + in_typeof;
2269 t->next = maybe_used_decls;
2270 maybe_used_decls = t;
2271 }
2272
2273 /* Pop the stack of decls possibly used inside sizeof or typeof. If
2274 USED is false, just discard them. If it is true, mark them used
2275 (if no longer inside sizeof or typeof) or move them to the next
2276 level up (if still inside sizeof or typeof). */
2277
2278 void
2279 pop_maybe_used (bool used)
2280 {
2281 struct maybe_used_decl *p = maybe_used_decls;
2282 int cur_level = in_sizeof + in_typeof;
2283 while (p && p->level > cur_level)
2284 {
2285 if (used)
2286 {
2287 if (cur_level == 0)
2288 C_DECL_USED (p->decl) = 1;
2289 else
2290 p->level = cur_level;
2291 }
2292 p = p->next;
2293 }
2294 if (!used || cur_level == 0)
2295 maybe_used_decls = p;
2296 }
2297
2298 /* Return the result of sizeof applied to EXPR. */
2299
2300 struct c_expr
2301 c_expr_sizeof_expr (struct c_expr expr)
2302 {
2303 struct c_expr ret;
2304 if (expr.value == error_mark_node)
2305 {
2306 ret.value = error_mark_node;
2307 ret.original_code = ERROR_MARK;
2308 pop_maybe_used (false);
2309 }
2310 else
2311 {
2312 ret.value = c_sizeof (TREE_TYPE (expr.value));
2313 ret.original_code = ERROR_MARK;
2314 if (c_vla_type_p (TREE_TYPE (expr.value)))
2315 {
2316 /* sizeof is evaluated when given a vla (C99 6.5.3.4p2). */
2317 ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2318 }
2319 pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2320 }
2321 return ret;
2322 }
2323
2324 /* Return the result of sizeof applied to T, a structure for the type
2325 name passed to sizeof (rather than the type itself). */
2326
2327 struct c_expr
2328 c_expr_sizeof_type (struct c_type_name *t)
2329 {
2330 tree type;
2331 struct c_expr ret;
2332 type = groktypename (t);
2333 ret.value = c_sizeof (type);
2334 ret.original_code = ERROR_MARK;
2335 pop_maybe_used (type != error_mark_node
2336 ? C_TYPE_VARIABLE_SIZE (type) : false);
2337 return ret;
2338 }
2339
2340 /* Build a function call to function FUNCTION with parameters PARAMS.
2341 PARAMS is a list--a chain of TREE_LIST nodes--in which the
2342 TREE_VALUE of each node is a parameter-expression.
2343 FUNCTION's data type may be a function type or a pointer-to-function. */
2344
2345 tree
2346 build_function_call (tree function, tree params)
2347 {
2348 tree fntype, fundecl = 0;
2349 tree name = NULL_TREE, result;
2350 tree tem;
2351 int nargs;
2352 tree *argarray;
2353
2354
2355 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
2356 STRIP_TYPE_NOPS (function);
2357
2358 /* Convert anything with function type to a pointer-to-function. */
2359 if (TREE_CODE (function) == FUNCTION_DECL)
2360 {
2361 /* Implement type-directed function overloading for builtins.
2362 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2363 handle all the type checking. The result is a complete expression
2364 that implements this function call. */
2365 tem = resolve_overloaded_builtin (function, params);
2366 if (tem)
2367 return tem;
2368
2369 name = DECL_NAME (function);
2370 fundecl = function;
2371 }
2372 if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2373 function = function_to_pointer_conversion (function);
2374
2375 /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2376 expressions, like those used for ObjC messenger dispatches. */
2377 function = objc_rewrite_function_call (function, params);
2378
2379 fntype = TREE_TYPE (function);
2380
2381 if (TREE_CODE (fntype) == ERROR_MARK)
2382 return error_mark_node;
2383
2384 if (!(TREE_CODE (fntype) == POINTER_TYPE
2385 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2386 {
2387 error ("called object %qE is not a function", function);
2388 return error_mark_node;
2389 }
2390
2391 if (fundecl && TREE_THIS_VOLATILE (fundecl))
2392 current_function_returns_abnormally = 1;
2393
2394 /* fntype now gets the type of function pointed to. */
2395 fntype = TREE_TYPE (fntype);
2396
2397 /* Check that the function is called through a compatible prototype.
2398 If it is not, replace the call by a trap, wrapped up in a compound
2399 expression if necessary. This has the nice side-effect to prevent
2400 the tree-inliner from generating invalid assignment trees which may
2401 blow up in the RTL expander later. */
2402 if ((TREE_CODE (function) == NOP_EXPR
2403 || TREE_CODE (function) == CONVERT_EXPR)
2404 && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2405 && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2406 && !comptypes (fntype, TREE_TYPE (tem)))
2407 {
2408 tree return_type = TREE_TYPE (fntype);
2409 tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2410 NULL_TREE);
2411
2412 /* This situation leads to run-time undefined behavior. We can't,
2413 therefore, simply error unless we can prove that all possible
2414 executions of the program must execute the code. */
2415 warning (0, "function called through a non-compatible type");
2416
2417 /* We can, however, treat "undefined" any way we please.
2418 Call abort to encourage the user to fix the program. */
2419 inform ("if this code is reached, the program will abort");
2420
2421 if (VOID_TYPE_P (return_type))
2422 return trap;
2423 else
2424 {
2425 tree rhs;
2426
2427 if (AGGREGATE_TYPE_P (return_type))
2428 rhs = build_compound_literal (return_type,
2429 build_constructor (return_type, 0));
2430 else
2431 rhs = fold_convert (return_type, integer_zero_node);
2432
2433 return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2434 }
2435 }
2436
2437 /* Convert the parameters to the types declared in the
2438 function prototype, or apply default promotions. */
2439
2440 nargs = list_length (params);
2441 argarray = (tree *) alloca (nargs * sizeof (tree));
2442 nargs = convert_arguments (nargs, argarray, TYPE_ARG_TYPES (fntype),
2443 params, function, fundecl);
2444 if (nargs < 0)
2445 return error_mark_node;
2446
2447 /* Check that the arguments to the function are valid. */
2448
2449 check_function_arguments (TYPE_ATTRIBUTES (fntype), nargs, argarray,
2450 TYPE_ARG_TYPES (fntype));
2451
2452 if (require_constant_value)
2453 {
2454 result = fold_build_call_array_initializer (TREE_TYPE (fntype),
2455 function, nargs, argarray);
2456 if (TREE_CONSTANT (result)
2457 && (name == NULL_TREE
2458 || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2459 pedwarn_init ("initializer element is not constant");
2460 }
2461 else
2462 result = fold_build_call_array (TREE_TYPE (fntype),
2463 function, nargs, argarray);
2464
2465 if (VOID_TYPE_P (TREE_TYPE (result)))
2466 return result;
2467 return require_complete_type (result);
2468 }
2469 \f
2470 /* Convert the argument expressions in the list VALUES
2471 to the types in the list TYPELIST. The resulting arguments are
2472 stored in the array ARGARRAY which has size NARGS.
2473
2474 If TYPELIST is exhausted, or when an element has NULL as its type,
2475 perform the default conversions.
2476
2477 PARMLIST is the chain of parm decls for the function being called.
2478 It may be 0, if that info is not available.
2479 It is used only for generating error messages.
2480
2481 FUNCTION is a tree for the called function. It is used only for
2482 error messages, where it is formatted with %qE.
2483
2484 This is also where warnings about wrong number of args are generated.
2485
2486 VALUES is a chain of TREE_LIST nodes with the elements of the list
2487 in the TREE_VALUE slots of those nodes.
2488
2489 Returns the actual number of arguments processed (which may be less
2490 than NARGS in some error situations), or -1 on failure. */
2491
2492 static int
2493 convert_arguments (int nargs, tree *argarray,
2494 tree typelist, tree values, tree function, tree fundecl)
2495 {
2496 tree typetail, valtail;
2497 int parmnum;
2498 const bool type_generic = fundecl
2499 && lookup_attribute ("type generic", TYPE_ATTRIBUTES(TREE_TYPE (fundecl)));
2500 tree selector;
2501
2502 /* Change pointer to function to the function itself for
2503 diagnostics. */
2504 if (TREE_CODE (function) == ADDR_EXPR
2505 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2506 function = TREE_OPERAND (function, 0);
2507
2508 /* Handle an ObjC selector specially for diagnostics. */
2509 selector = objc_message_selector ();
2510
2511 /* Scan the given expressions and types, producing individual
2512 converted arguments and storing them in ARGARRAY. */
2513
2514 for (valtail = values, typetail = typelist, parmnum = 0;
2515 valtail;
2516 valtail = TREE_CHAIN (valtail), parmnum++)
2517 {
2518 tree type = typetail ? TREE_VALUE (typetail) : 0;
2519 tree val = TREE_VALUE (valtail);
2520 tree rname = function;
2521 int argnum = parmnum + 1;
2522 const char *invalid_func_diag;
2523
2524 if (type == void_type_node)
2525 {
2526 error ("too many arguments to function %qE", function);
2527 return parmnum;
2528 }
2529
2530 if (selector && argnum > 2)
2531 {
2532 rname = selector;
2533 argnum -= 2;
2534 }
2535
2536 STRIP_TYPE_NOPS (val);
2537
2538 val = require_complete_type (val);
2539
2540 if (type != 0)
2541 {
2542 /* Formal parm type is specified by a function prototype. */
2543 tree parmval;
2544
2545 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2546 {
2547 error ("type of formal parameter %d is incomplete", parmnum + 1);
2548 parmval = val;
2549 }
2550 else
2551 {
2552 /* Optionally warn about conversions that
2553 differ from the default conversions. */
2554 if (warn_traditional_conversion || warn_traditional)
2555 {
2556 unsigned int formal_prec = TYPE_PRECISION (type);
2557
2558 if (INTEGRAL_TYPE_P (type)
2559 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2560 warning (0, "passing argument %d of %qE as integer "
2561 "rather than floating due to prototype",
2562 argnum, rname);
2563 if (INTEGRAL_TYPE_P (type)
2564 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2565 warning (0, "passing argument %d of %qE as integer "
2566 "rather than complex due to prototype",
2567 argnum, rname);
2568 else if (TREE_CODE (type) == COMPLEX_TYPE
2569 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2570 warning (0, "passing argument %d of %qE as complex "
2571 "rather than floating due to prototype",
2572 argnum, rname);
2573 else if (TREE_CODE (type) == REAL_TYPE
2574 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2575 warning (0, "passing argument %d of %qE as floating "
2576 "rather than integer due to prototype",
2577 argnum, rname);
2578 else if (TREE_CODE (type) == COMPLEX_TYPE
2579 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2580 warning (0, "passing argument %d of %qE as complex "
2581 "rather than integer due to prototype",
2582 argnum, rname);
2583 else if (TREE_CODE (type) == REAL_TYPE
2584 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2585 warning (0, "passing argument %d of %qE as floating "
2586 "rather than complex due to prototype",
2587 argnum, rname);
2588 /* ??? At some point, messages should be written about
2589 conversions between complex types, but that's too messy
2590 to do now. */
2591 else if (TREE_CODE (type) == REAL_TYPE
2592 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2593 {
2594 /* Warn if any argument is passed as `float',
2595 since without a prototype it would be `double'. */
2596 if (formal_prec == TYPE_PRECISION (float_type_node)
2597 && type != dfloat32_type_node)
2598 warning (0, "passing argument %d of %qE as %<float%> "
2599 "rather than %<double%> due to prototype",
2600 argnum, rname);
2601
2602 /* Warn if mismatch between argument and prototype
2603 for decimal float types. Warn of conversions with
2604 binary float types and of precision narrowing due to
2605 prototype. */
2606 else if (type != TREE_TYPE (val)
2607 && (type == dfloat32_type_node
2608 || type == dfloat64_type_node
2609 || type == dfloat128_type_node
2610 || TREE_TYPE (val) == dfloat32_type_node
2611 || TREE_TYPE (val) == dfloat64_type_node
2612 || TREE_TYPE (val) == dfloat128_type_node)
2613 && (formal_prec
2614 <= TYPE_PRECISION (TREE_TYPE (val))
2615 || (type == dfloat128_type_node
2616 && (TREE_TYPE (val)
2617 != dfloat64_type_node
2618 && (TREE_TYPE (val)
2619 != dfloat32_type_node)))
2620 || (type == dfloat64_type_node
2621 && (TREE_TYPE (val)
2622 != dfloat32_type_node))))
2623 warning (0, "passing argument %d of %qE as %qT "
2624 "rather than %qT due to prototype",
2625 argnum, rname, type, TREE_TYPE (val));
2626
2627 }
2628 /* Detect integer changing in width or signedness.
2629 These warnings are only activated with
2630 -Wtraditional-conversion, not with -Wtraditional. */
2631 else if (warn_traditional_conversion && INTEGRAL_TYPE_P (type)
2632 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2633 {
2634 tree would_have_been = default_conversion (val);
2635 tree type1 = TREE_TYPE (would_have_been);
2636
2637 if (TREE_CODE (type) == ENUMERAL_TYPE
2638 && (TYPE_MAIN_VARIANT (type)
2639 == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2640 /* No warning if function asks for enum
2641 and the actual arg is that enum type. */
2642 ;
2643 else if (formal_prec != TYPE_PRECISION (type1))
2644 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2645 "with different width due to prototype",
2646 argnum, rname);
2647 else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2648 ;
2649 /* Don't complain if the formal parameter type
2650 is an enum, because we can't tell now whether
2651 the value was an enum--even the same enum. */
2652 else if (TREE_CODE (type) == ENUMERAL_TYPE)
2653 ;
2654 else if (TREE_CODE (val) == INTEGER_CST
2655 && int_fits_type_p (val, type))
2656 /* Change in signedness doesn't matter
2657 if a constant value is unaffected. */
2658 ;
2659 /* If the value is extended from a narrower
2660 unsigned type, it doesn't matter whether we
2661 pass it as signed or unsigned; the value
2662 certainly is the same either way. */
2663 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2664 && TYPE_UNSIGNED (TREE_TYPE (val)))
2665 ;
2666 else if (TYPE_UNSIGNED (type))
2667 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2668 "as unsigned due to prototype",
2669 argnum, rname);
2670 else
2671 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2672 "as signed due to prototype", argnum, rname);
2673 }
2674 }
2675
2676 parmval = convert_for_assignment (type, val, ic_argpass,
2677 fundecl, function,
2678 parmnum + 1);
2679
2680 if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2681 && INTEGRAL_TYPE_P (type)
2682 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2683 parmval = default_conversion (parmval);
2684 }
2685 argarray[parmnum] = parmval;
2686 }
2687 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2688 && (TYPE_PRECISION (TREE_TYPE (val))
2689 < TYPE_PRECISION (double_type_node))
2690 && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2691 {
2692 if (type_generic)
2693 argarray[parmnum] = val;
2694 else
2695 /* Convert `float' to `double'. */
2696 argarray[parmnum] = convert (double_type_node, val);
2697 }
2698 else if ((invalid_func_diag =
2699 targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2700 {
2701 error (invalid_func_diag);
2702 return -1;
2703 }
2704 else
2705 /* Convert `short' and `char' to full-size `int'. */
2706 argarray[parmnum] = default_conversion (val);
2707
2708 if (typetail)
2709 typetail = TREE_CHAIN (typetail);
2710 }
2711
2712 gcc_assert (parmnum == nargs);
2713
2714 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2715 {
2716 error ("too few arguments to function %qE", function);
2717 return -1;
2718 }
2719
2720 return parmnum;
2721 }
2722 \f
2723 /* This is the entry point used by the parser to build unary operators
2724 in the input. CODE, a tree_code, specifies the unary operator, and
2725 ARG is the operand. For unary plus, the C parser currently uses
2726 CONVERT_EXPR for code. */
2727
2728 struct c_expr
2729 parser_build_unary_op (enum tree_code code, struct c_expr arg)
2730 {
2731 struct c_expr result;
2732
2733 result.original_code = ERROR_MARK;
2734 result.value = build_unary_op (code, arg.value, 0);
2735
2736 if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value))
2737 overflow_warning (result.value);
2738
2739 return result;
2740 }
2741
2742 /* This is the entry point used by the parser to build binary operators
2743 in the input. CODE, a tree_code, specifies the binary operator, and
2744 ARG1 and ARG2 are the operands. In addition to constructing the
2745 expression, we check for operands that were written with other binary
2746 operators in a way that is likely to confuse the user. */
2747
2748 struct c_expr
2749 parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2750 struct c_expr arg2)
2751 {
2752 struct c_expr result;
2753
2754 enum tree_code code1 = arg1.original_code;
2755 enum tree_code code2 = arg2.original_code;
2756
2757 result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2758 result.original_code = code;
2759
2760 if (TREE_CODE (result.value) == ERROR_MARK)
2761 return result;
2762
2763 /* Check for cases such as x+y<<z which users are likely
2764 to misinterpret. */
2765 if (warn_parentheses)
2766 warn_about_parentheses (code, code1, code2);
2767
2768 if (code1 != tcc_comparison)
2769 warn_logical_operator (code, arg1.value, arg2.value);
2770
2771 /* Warn about comparisons against string literals, with the exception
2772 of testing for equality or inequality of a string literal with NULL. */
2773 if (code == EQ_EXPR || code == NE_EXPR)
2774 {
2775 if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2776 || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2777 warning (OPT_Waddress, "comparison with string literal results in unspecified behavior");
2778 }
2779 else if (TREE_CODE_CLASS (code) == tcc_comparison
2780 && (code1 == STRING_CST || code2 == STRING_CST))
2781 warning (OPT_Waddress, "comparison with string literal results in unspecified behavior");
2782
2783 if (TREE_OVERFLOW_P (result.value)
2784 && !TREE_OVERFLOW_P (arg1.value)
2785 && !TREE_OVERFLOW_P (arg2.value))
2786 overflow_warning (result.value);
2787
2788 return result;
2789 }
2790 \f
2791 /* Return a tree for the difference of pointers OP0 and OP1.
2792 The resulting tree has type int. */
2793
2794 static tree
2795 pointer_diff (tree op0, tree op1)
2796 {
2797 tree restype = ptrdiff_type_node;
2798
2799 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2800 tree con0, con1, lit0, lit1;
2801 tree orig_op1 = op1;
2802
2803 if (pedantic || warn_pointer_arith)
2804 {
2805 if (TREE_CODE (target_type) == VOID_TYPE)
2806 pedwarn ("pointer of type %<void *%> used in subtraction");
2807 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2808 pedwarn ("pointer to a function used in subtraction");
2809 }
2810
2811 /* If the conversion to ptrdiff_type does anything like widening or
2812 converting a partial to an integral mode, we get a convert_expression
2813 that is in the way to do any simplifications.
2814 (fold-const.c doesn't know that the extra bits won't be needed.
2815 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2816 different mode in place.)
2817 So first try to find a common term here 'by hand'; we want to cover
2818 at least the cases that occur in legal static initializers. */
2819 if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2820 && (TYPE_PRECISION (TREE_TYPE (op0))
2821 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2822 con0 = TREE_OPERAND (op0, 0);
2823 else
2824 con0 = op0;
2825 if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2826 && (TYPE_PRECISION (TREE_TYPE (op1))
2827 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2828 con1 = TREE_OPERAND (op1, 0);
2829 else
2830 con1 = op1;
2831
2832 if (TREE_CODE (con0) == PLUS_EXPR)
2833 {
2834 lit0 = TREE_OPERAND (con0, 1);
2835 con0 = TREE_OPERAND (con0, 0);
2836 }
2837 else
2838 lit0 = integer_zero_node;
2839
2840 if (TREE_CODE (con1) == PLUS_EXPR)
2841 {
2842 lit1 = TREE_OPERAND (con1, 1);
2843 con1 = TREE_OPERAND (con1, 0);
2844 }
2845 else
2846 lit1 = integer_zero_node;
2847
2848 if (operand_equal_p (con0, con1, 0))
2849 {
2850 op0 = lit0;
2851 op1 = lit1;
2852 }
2853
2854
2855 /* First do the subtraction as integers;
2856 then drop through to build the divide operator.
2857 Do not do default conversions on the minus operator
2858 in case restype is a short type. */
2859
2860 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2861 convert (restype, op1), 0);
2862 /* This generates an error if op1 is pointer to incomplete type. */
2863 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2864 error ("arithmetic on pointer to an incomplete type");
2865
2866 /* This generates an error if op0 is pointer to incomplete type. */
2867 op1 = c_size_in_bytes (target_type);
2868
2869 /* Divide by the size, in easiest possible way. */
2870 return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2871 }
2872 \f
2873 /* Construct and perhaps optimize a tree representation
2874 for a unary operation. CODE, a tree_code, specifies the operation
2875 and XARG is the operand.
2876 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2877 the default promotions (such as from short to int).
2878 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2879 allows non-lvalues; this is only used to handle conversion of non-lvalue
2880 arrays to pointers in C99. */
2881
2882 tree
2883 build_unary_op (enum tree_code code, tree xarg, int flag)
2884 {
2885 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2886 tree arg = xarg;
2887 tree argtype = 0;
2888 enum tree_code typecode;
2889 tree val;
2890 int noconvert = flag;
2891 const char *invalid_op_diag;
2892
2893 if (code != ADDR_EXPR)
2894 arg = require_complete_type (arg);
2895
2896 typecode = TREE_CODE (TREE_TYPE (arg));
2897 if (typecode == ERROR_MARK)
2898 return error_mark_node;
2899 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2900 typecode = INTEGER_TYPE;
2901
2902 if ((invalid_op_diag
2903 = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2904 {
2905 error (invalid_op_diag);
2906 return error_mark_node;
2907 }
2908
2909 switch (code)
2910 {
2911 case CONVERT_EXPR:
2912 /* This is used for unary plus, because a CONVERT_EXPR
2913 is enough to prevent anybody from looking inside for
2914 associativity, but won't generate any code. */
2915 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2916 || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE
2917 || typecode == VECTOR_TYPE))
2918 {
2919 error ("wrong type argument to unary plus");
2920 return error_mark_node;
2921 }
2922 else if (!noconvert)
2923 arg = default_conversion (arg);
2924 arg = non_lvalue (arg);
2925 break;
2926
2927 case NEGATE_EXPR:
2928 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2929 || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE
2930 || typecode == VECTOR_TYPE))
2931 {
2932 error ("wrong type argument to unary minus");
2933 return error_mark_node;
2934 }
2935 else if (!noconvert)
2936 arg = default_conversion (arg);
2937 break;
2938
2939 case BIT_NOT_EXPR:
2940 /* ~ works on integer types and non float vectors. */
2941 if (typecode == INTEGER_TYPE
2942 || (typecode == VECTOR_TYPE
2943 && !VECTOR_FLOAT_TYPE_P (TREE_TYPE (arg))))
2944 {
2945 if (!noconvert)
2946 arg = default_conversion (arg);
2947 }
2948 else if (typecode == COMPLEX_TYPE)
2949 {
2950 code = CONJ_EXPR;
2951 if (pedantic)
2952 pedwarn ("ISO C does not support %<~%> for complex conjugation");
2953 if (!noconvert)
2954 arg = default_conversion (arg);
2955 }
2956 else
2957 {
2958 error ("wrong type argument to bit-complement");
2959 return error_mark_node;
2960 }
2961 break;
2962
2963 case ABS_EXPR:
2964 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2965 {
2966 error ("wrong type argument to abs");
2967 return error_mark_node;
2968 }
2969 else if (!noconvert)
2970 arg = default_conversion (arg);
2971 break;
2972
2973 case CONJ_EXPR:
2974 /* Conjugating a real value is a no-op, but allow it anyway. */
2975 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2976 || typecode == COMPLEX_TYPE))
2977 {
2978 error ("wrong type argument to conjugation");
2979 return error_mark_node;
2980 }
2981 else if (!noconvert)
2982 arg = default_conversion (arg);
2983 break;
2984
2985 case TRUTH_NOT_EXPR:
2986 if (typecode != INTEGER_TYPE && typecode != FIXED_POINT_TYPE
2987 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2988 && typecode != COMPLEX_TYPE)
2989 {
2990 error ("wrong type argument to unary exclamation mark");
2991 return error_mark_node;
2992 }
2993 arg = c_objc_common_truthvalue_conversion (arg);
2994 return invert_truthvalue (arg);
2995
2996 case REALPART_EXPR:
2997 if (TREE_CODE (arg) == COMPLEX_CST)
2998 return TREE_REALPART (arg);
2999 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
3000 return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
3001 else
3002 return arg;
3003
3004 case IMAGPART_EXPR:
3005 if (TREE_CODE (arg) == COMPLEX_CST)
3006 return TREE_IMAGPART (arg);
3007 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
3008 return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
3009 else
3010 return convert (TREE_TYPE (arg), integer_zero_node);
3011
3012 case PREINCREMENT_EXPR:
3013 case POSTINCREMENT_EXPR:
3014 case PREDECREMENT_EXPR:
3015 case POSTDECREMENT_EXPR:
3016
3017 /* Increment or decrement the real part of the value,
3018 and don't change the imaginary part. */
3019 if (typecode == COMPLEX_TYPE)
3020 {
3021 tree real, imag;
3022
3023 if (pedantic)
3024 pedwarn ("ISO C does not support %<++%> and %<--%>"
3025 " on complex types");
3026
3027 arg = stabilize_reference (arg);
3028 real = build_unary_op (REALPART_EXPR, arg, 1);
3029 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
3030 real = build_unary_op (code, real, 1);
3031 if (real == error_mark_node || imag == error_mark_node)
3032 return error_mark_node;
3033 return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
3034 real, imag);
3035 }
3036
3037 /* Report invalid types. */
3038
3039 if (typecode != POINTER_TYPE && typecode != FIXED_POINT_TYPE
3040 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
3041 {
3042 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3043 error ("wrong type argument to increment");
3044 else
3045 error ("wrong type argument to decrement");
3046
3047 return error_mark_node;
3048 }
3049
3050 {
3051 tree inc;
3052 tree result_type = TREE_TYPE (arg);
3053
3054 arg = get_unwidened (arg, 0);
3055 argtype = TREE_TYPE (arg);
3056
3057 /* Compute the increment. */
3058
3059 if (typecode == POINTER_TYPE)
3060 {
3061 /* If pointer target is an undefined struct,
3062 we just cannot know how to do the arithmetic. */
3063 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
3064 {
3065 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3066 error ("increment of pointer to unknown structure");
3067 else
3068 error ("decrement of pointer to unknown structure");
3069 }
3070 else if ((pedantic || warn_pointer_arith)
3071 && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
3072 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
3073 {
3074 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3075 pedwarn ("wrong type argument to increment");
3076 else
3077 pedwarn ("wrong type argument to decrement");
3078 }
3079
3080 inc = c_size_in_bytes (TREE_TYPE (result_type));
3081 inc = fold_convert (sizetype, inc);
3082 }
3083 else if (FRACT_MODE_P (TYPE_MODE (result_type)))
3084 {
3085 /* For signed fract types, we invert ++ to -- or
3086 -- to ++, and change inc from 1 to -1, because
3087 it is not possible to represent 1 in signed fract constants.
3088 For unsigned fract types, the result always overflows and
3089 we get an undefined (original) or the maximum value. */
3090 if (code == PREINCREMENT_EXPR)
3091 code = PREDECREMENT_EXPR;
3092 else if (code == PREDECREMENT_EXPR)
3093 code = PREINCREMENT_EXPR;
3094 else if (code == POSTINCREMENT_EXPR)
3095 code = POSTDECREMENT_EXPR;
3096 else /* code == POSTDECREMENT_EXPR */
3097 code = POSTINCREMENT_EXPR;
3098
3099 inc = integer_minus_one_node;
3100 inc = convert (argtype, inc);
3101 }
3102 else
3103 {
3104 inc = integer_one_node;
3105 inc = convert (argtype, inc);
3106 }
3107
3108 /* Complain about anything else that is not a true lvalue. */
3109 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
3110 || code == POSTINCREMENT_EXPR)
3111 ? lv_increment
3112 : lv_decrement)))
3113 return error_mark_node;
3114
3115 /* Report a read-only lvalue. */
3116 if (TREE_READONLY (arg))
3117 {
3118 readonly_error (arg,
3119 ((code == PREINCREMENT_EXPR
3120 || code == POSTINCREMENT_EXPR)
3121 ? lv_increment : lv_decrement));
3122 return error_mark_node;
3123 }
3124
3125 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3126 val = boolean_increment (code, arg);
3127 else
3128 val = build2 (code, TREE_TYPE (arg), arg, inc);
3129 TREE_SIDE_EFFECTS (val) = 1;
3130 val = convert (result_type, val);
3131 if (TREE_CODE (val) != code)
3132 TREE_NO_WARNING (val) = 1;
3133 return val;
3134 }
3135
3136 case ADDR_EXPR:
3137 /* Note that this operation never does default_conversion. */
3138
3139 /* Let &* cancel out to simplify resulting code. */
3140 if (TREE_CODE (arg) == INDIRECT_REF)
3141 {
3142 /* Don't let this be an lvalue. */
3143 if (lvalue_p (TREE_OPERAND (arg, 0)))
3144 return non_lvalue (TREE_OPERAND (arg, 0));
3145 return TREE_OPERAND (arg, 0);
3146 }
3147
3148 /* For &x[y], return x+y */
3149 if (TREE_CODE (arg) == ARRAY_REF)
3150 {
3151 tree op0 = TREE_OPERAND (arg, 0);
3152 if (!c_mark_addressable (op0))
3153 return error_mark_node;
3154 return build_binary_op (PLUS_EXPR,
3155 (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3156 ? array_to_pointer_conversion (op0)
3157 : op0),
3158 TREE_OPERAND (arg, 1), 1);
3159 }
3160
3161 /* Anything not already handled and not a true memory reference
3162 or a non-lvalue array is an error. */
3163 else if (typecode != FUNCTION_TYPE && !flag
3164 && !lvalue_or_else (arg, lv_addressof))
3165 return error_mark_node;
3166
3167 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3168 argtype = TREE_TYPE (arg);
3169
3170 /* If the lvalue is const or volatile, merge that into the type
3171 to which the address will point. Note that you can't get a
3172 restricted pointer by taking the address of something, so we
3173 only have to deal with `const' and `volatile' here. */
3174 if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3175 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3176 argtype = c_build_type_variant (argtype,
3177 TREE_READONLY (arg),
3178 TREE_THIS_VOLATILE (arg));
3179
3180 if (!c_mark_addressable (arg))
3181 return error_mark_node;
3182
3183 gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3184 || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3185
3186 argtype = build_pointer_type (argtype);
3187
3188 /* ??? Cope with user tricks that amount to offsetof. Delete this
3189 when we have proper support for integer constant expressions. */
3190 val = get_base_address (arg);
3191 if (val && TREE_CODE (val) == INDIRECT_REF
3192 && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3193 {
3194 tree op0 = fold_convert (sizetype, fold_offsetof (arg, val)), op1;
3195
3196 op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3197 return fold_build2 (POINTER_PLUS_EXPR, argtype, op1, op0);
3198 }
3199
3200 val = build1 (ADDR_EXPR, argtype, arg);
3201
3202 return val;
3203
3204 default:
3205 gcc_unreachable ();
3206 }
3207
3208 if (argtype == 0)
3209 argtype = TREE_TYPE (arg);
3210 return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3211 : fold_build1 (code, argtype, arg);
3212 }
3213
3214 /* Return nonzero if REF is an lvalue valid for this language.
3215 Lvalues can be assigned, unless their type has TYPE_READONLY.
3216 Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
3217
3218 static int
3219 lvalue_p (const_tree ref)
3220 {
3221 const enum tree_code code = TREE_CODE (ref);
3222
3223 switch (code)
3224 {
3225 case REALPART_EXPR:
3226 case IMAGPART_EXPR:
3227 case COMPONENT_REF:
3228 return lvalue_p (TREE_OPERAND (ref, 0));
3229
3230 case COMPOUND_LITERAL_EXPR:
3231 case STRING_CST:
3232 return 1;
3233
3234 case INDIRECT_REF:
3235 case ARRAY_REF:
3236 case VAR_DECL:
3237 case PARM_DECL:
3238 case RESULT_DECL:
3239 case ERROR_MARK:
3240 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3241 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3242
3243 case BIND_EXPR:
3244 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3245
3246 default:
3247 return 0;
3248 }
3249 }
3250 \f
3251 /* Give an error for storing in something that is 'const'. */
3252
3253 static void
3254 readonly_error (tree arg, enum lvalue_use use)
3255 {
3256 gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3257 || use == lv_asm);
3258 /* Using this macro rather than (for example) arrays of messages
3259 ensures that all the format strings are checked at compile
3260 time. */
3261 #define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A) \
3262 : (use == lv_increment ? (I) \
3263 : (use == lv_decrement ? (D) : (AS))))
3264 if (TREE_CODE (arg) == COMPONENT_REF)
3265 {
3266 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3267 readonly_error (TREE_OPERAND (arg, 0), use);
3268 else
3269 error (READONLY_MSG (G_("assignment of read-only member %qD"),
3270 G_("increment of read-only member %qD"),
3271 G_("decrement of read-only member %qD"),
3272 G_("read-only member %qD used as %<asm%> output")),
3273 TREE_OPERAND (arg, 1));
3274 }
3275 else if (TREE_CODE (arg) == VAR_DECL)
3276 error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3277 G_("increment of read-only variable %qD"),
3278 G_("decrement of read-only variable %qD"),
3279 G_("read-only variable %qD used as %<asm%> output")),
3280 arg);
3281 else
3282 error (READONLY_MSG (G_("assignment of read-only location %qE"),
3283 G_("increment of read-only location %qE"),
3284 G_("decrement of read-only location %qE"),
3285 G_("read-only location %qE used as %<asm%> output")),
3286 arg);
3287 }
3288
3289
3290 /* Return nonzero if REF is an lvalue valid for this language;
3291 otherwise, print an error message and return zero. USE says
3292 how the lvalue is being used and so selects the error message. */
3293
3294 static int
3295 lvalue_or_else (const_tree ref, enum lvalue_use use)
3296 {
3297 int win = lvalue_p (ref);
3298
3299 if (!win)
3300 lvalue_error (use);
3301
3302 return win;
3303 }
3304 \f
3305 /* Mark EXP saying that we need to be able to take the
3306 address of it; it should not be allocated in a register.
3307 Returns true if successful. */
3308
3309 bool
3310 c_mark_addressable (tree exp)
3311 {
3312 tree x = exp;
3313
3314 while (1)
3315 switch (TREE_CODE (x))
3316 {
3317 case COMPONENT_REF:
3318 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3319 {
3320 error
3321 ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3322 return false;
3323 }
3324
3325 /* ... fall through ... */
3326
3327 case ADDR_EXPR:
3328 case ARRAY_REF:
3329 case REALPART_EXPR:
3330 case IMAGPART_EXPR:
3331 x = TREE_OPERAND (x, 0);
3332 break;
3333
3334 case COMPOUND_LITERAL_EXPR:
3335 case CONSTRUCTOR:
3336 TREE_ADDRESSABLE (x) = 1;
3337 return true;
3338
3339 case VAR_DECL:
3340 case CONST_DECL:
3341 case PARM_DECL:
3342 case RESULT_DECL:
3343 if (C_DECL_REGISTER (x)
3344 && DECL_NONLOCAL (x))
3345 {
3346 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3347 {
3348 error
3349 ("global register variable %qD used in nested function", x);
3350 return false;
3351 }
3352 pedwarn ("register variable %qD used in nested function", x);
3353 }
3354 else if (C_DECL_REGISTER (x))
3355 {
3356 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3357 error ("address of global register variable %qD requested", x);
3358 else
3359 error ("address of register variable %qD requested", x);
3360 return false;
3361 }
3362
3363 /* drops in */
3364 case FUNCTION_DECL:
3365 TREE_ADDRESSABLE (x) = 1;
3366 /* drops out */
3367 default:
3368 return true;
3369 }
3370 }
3371 \f
3372 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3373
3374 tree
3375 build_conditional_expr (tree ifexp, tree op1, tree op2)
3376 {
3377 tree type1;
3378 tree type2;
3379 enum tree_code code1;
3380 enum tree_code code2;
3381 tree result_type = NULL;
3382 tree orig_op1 = op1, orig_op2 = op2;
3383
3384 /* Promote both alternatives. */
3385
3386 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3387 op1 = default_conversion (op1);
3388 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3389 op2 = default_conversion (op2);
3390
3391 if (TREE_CODE (ifexp) == ERROR_MARK
3392 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3393 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3394 return error_mark_node;
3395
3396 type1 = TREE_TYPE (op1);
3397 code1 = TREE_CODE (type1);
3398 type2 = TREE_TYPE (op2);
3399 code2 = TREE_CODE (type2);
3400
3401 /* C90 does not permit non-lvalue arrays in conditional expressions.
3402 In C99 they will be pointers by now. */
3403 if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3404 {
3405 error ("non-lvalue array in conditional expression");
3406 return error_mark_node;
3407 }
3408
3409 /* Quickly detect the usual case where op1 and op2 have the same type
3410 after promotion. */
3411 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3412 {
3413 if (type1 == type2)
3414 result_type = type1;
3415 else
3416 result_type = TYPE_MAIN_VARIANT (type1);
3417 }
3418 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3419 || code1 == COMPLEX_TYPE)
3420 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3421 || code2 == COMPLEX_TYPE))
3422 {
3423 result_type = c_common_type (type1, type2);
3424
3425 /* If -Wsign-compare, warn here if type1 and type2 have
3426 different signedness. We'll promote the signed to unsigned
3427 and later code won't know it used to be different.
3428 Do this check on the original types, so that explicit casts
3429 will be considered, but default promotions won't. */
3430 if (warn_sign_compare && !skip_evaluation)
3431 {
3432 int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3433 int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3434
3435 if (unsigned_op1 ^ unsigned_op2)
3436 {
3437 bool ovf;
3438
3439 /* Do not warn if the result type is signed, since the
3440 signed type will only be chosen if it can represent
3441 all the values of the unsigned type. */
3442 if (!TYPE_UNSIGNED (result_type))
3443 /* OK */;
3444 /* Do not warn if the signed quantity is an unsuffixed
3445 integer literal (or some static constant expression
3446 involving such literals) and it is non-negative. */
3447 else if ((unsigned_op2
3448 && tree_expr_nonnegative_warnv_p (op1, &ovf))
3449 || (unsigned_op1
3450 && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3451 /* OK */;
3452 else
3453 warning (OPT_Wsign_compare, "signed and unsigned type in conditional expression");
3454 }
3455 }
3456 }
3457 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3458 {
3459 if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3460 pedwarn ("ISO C forbids conditional expr with only one void side");
3461 result_type = void_type_node;
3462 }
3463 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3464 {
3465 if (comp_target_types (type1, type2))
3466 result_type = common_pointer_type (type1, type2);
3467 else if (null_pointer_constant_p (orig_op1))
3468 result_type = qualify_type (type2, type1);
3469 else if (null_pointer_constant_p (orig_op2))
3470 result_type = qualify_type (type1, type2);
3471 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3472 {
3473 if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3474 pedwarn ("ISO C forbids conditional expr between "
3475 "%<void *%> and function pointer");
3476 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3477 TREE_TYPE (type2)));
3478 }
3479 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3480 {
3481 if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3482 pedwarn ("ISO C forbids conditional expr between "
3483 "%<void *%> and function pointer");
3484 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3485 TREE_TYPE (type1)));
3486 }
3487 else
3488 {
3489 pedwarn ("pointer type mismatch in conditional expression");
3490 result_type = build_pointer_type (void_type_node);
3491 }
3492 }
3493 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3494 {
3495 if (!null_pointer_constant_p (orig_op2))
3496 pedwarn ("pointer/integer type mismatch in conditional expression");
3497 else
3498 {
3499 op2 = null_pointer_node;
3500 }
3501 result_type = type1;
3502 }
3503 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3504 {
3505 if (!null_pointer_constant_p (orig_op1))
3506 pedwarn ("pointer/integer type mismatch in conditional expression");
3507 else
3508 {
3509 op1 = null_pointer_node;
3510 }
3511 result_type = type2;
3512 }
3513
3514 if (!result_type)
3515 {
3516 if (flag_cond_mismatch)
3517 result_type = void_type_node;
3518 else
3519 {
3520 error ("type mismatch in conditional expression");
3521 return error_mark_node;
3522 }
3523 }
3524
3525 /* Merge const and volatile flags of the incoming types. */
3526 result_type
3527 = build_type_variant (result_type,
3528 TREE_READONLY (op1) || TREE_READONLY (op2),
3529 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3530
3531 if (result_type != TREE_TYPE (op1))
3532 op1 = convert_and_check (result_type, op1);
3533 if (result_type != TREE_TYPE (op2))
3534 op2 = convert_and_check (result_type, op2);
3535
3536 return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3537 }
3538 \f
3539 /* Return a compound expression that performs two expressions and
3540 returns the value of the second of them. */
3541
3542 tree
3543 build_compound_expr (tree expr1, tree expr2)
3544 {
3545 if (!TREE_SIDE_EFFECTS (expr1))
3546 {
3547 /* The left-hand operand of a comma expression is like an expression
3548 statement: with -Wunused, we should warn if it doesn't have
3549 any side-effects, unless it was explicitly cast to (void). */
3550 if (warn_unused_value)
3551 {
3552 if (VOID_TYPE_P (TREE_TYPE (expr1))
3553 && (TREE_CODE (expr1) == NOP_EXPR
3554 || TREE_CODE (expr1) == CONVERT_EXPR))
3555 ; /* (void) a, b */
3556 else if (VOID_TYPE_P (TREE_TYPE (expr1))
3557 && TREE_CODE (expr1) == COMPOUND_EXPR
3558 && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3559 || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3560 ; /* (void) a, (void) b, c */
3561 else
3562 warning (OPT_Wunused_value,
3563 "left-hand operand of comma expression has no effect");
3564 }
3565 }
3566
3567 /* With -Wunused, we should also warn if the left-hand operand does have
3568 side-effects, but computes a value which is not used. For example, in
3569 `foo() + bar(), baz()' the result of the `+' operator is not used,
3570 so we should issue a warning. */
3571 else if (warn_unused_value)
3572 warn_if_unused_value (expr1, input_location);
3573
3574 if (expr2 == error_mark_node)
3575 return error_mark_node;
3576
3577 return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3578 }
3579
3580 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3581
3582 tree
3583 build_c_cast (tree type, tree expr)
3584 {
3585 tree value = expr;
3586
3587 if (type == error_mark_node || expr == error_mark_node)
3588 return error_mark_node;
3589
3590 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3591 only in <protocol> qualifications. But when constructing cast expressions,
3592 the protocols do matter and must be kept around. */
3593 if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3594 return build1 (NOP_EXPR, type, expr);
3595
3596 type = TYPE_MAIN_VARIANT (type);
3597
3598 if (TREE_CODE (type) == ARRAY_TYPE)
3599 {
3600 error ("cast specifies array type");
3601 return error_mark_node;
3602 }
3603
3604 if (TREE_CODE (type) == FUNCTION_TYPE)
3605 {
3606 error ("cast specifies function type");
3607 return error_mark_node;
3608 }
3609
3610 if (!VOID_TYPE_P (type))
3611 {
3612 value = require_complete_type (value);
3613 if (value == error_mark_node)
3614 return error_mark_node;
3615 }
3616
3617 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3618 {
3619 if (pedantic)
3620 {
3621 if (TREE_CODE (type) == RECORD_TYPE
3622 || TREE_CODE (type) == UNION_TYPE)
3623 pedwarn ("ISO C forbids casting nonscalar to the same type");
3624 }
3625 }
3626 else if (TREE_CODE (type) == UNION_TYPE)
3627 {
3628 tree field;
3629
3630 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3631 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3632 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3633 break;
3634
3635 if (field)
3636 {
3637 tree t;
3638
3639 if (pedantic)
3640 pedwarn ("ISO C forbids casts to union type");
3641 t = digest_init (type,
3642 build_constructor_single (type, field, value),
3643 true, 0);
3644 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3645 TREE_INVARIANT (t) = TREE_INVARIANT (value);
3646 return t;
3647 }
3648 error ("cast to union type from type not present in union");
3649 return error_mark_node;
3650 }
3651 else
3652 {
3653 tree otype, ovalue;
3654
3655 if (type == void_type_node)
3656 return build1 (CONVERT_EXPR, type, value);
3657
3658 otype = TREE_TYPE (value);
3659
3660 /* Optionally warn about potentially worrisome casts. */
3661
3662 if (warn_cast_qual
3663 && TREE_CODE (type) == POINTER_TYPE
3664 && TREE_CODE (otype) == POINTER_TYPE)
3665 {
3666 tree in_type = type;
3667 tree in_otype = otype;
3668 int added = 0;
3669 int discarded = 0;
3670
3671 /* Check that the qualifiers on IN_TYPE are a superset of
3672 the qualifiers of IN_OTYPE. The outermost level of
3673 POINTER_TYPE nodes is uninteresting and we stop as soon
3674 as we hit a non-POINTER_TYPE node on either type. */
3675 do
3676 {
3677 in_otype = TREE_TYPE (in_otype);
3678 in_type = TREE_TYPE (in_type);
3679
3680 /* GNU C allows cv-qualified function types. 'const'
3681 means the function is very pure, 'volatile' means it
3682 can't return. We need to warn when such qualifiers
3683 are added, not when they're taken away. */
3684 if (TREE_CODE (in_otype) == FUNCTION_TYPE
3685 && TREE_CODE (in_type) == FUNCTION_TYPE)
3686 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3687 else
3688 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3689 }
3690 while (TREE_CODE (in_type) == POINTER_TYPE
3691 && TREE_CODE (in_otype) == POINTER_TYPE);
3692
3693 if (added)
3694 warning (OPT_Wcast_qual, "cast adds new qualifiers to function type");
3695
3696 if (discarded)
3697 /* There are qualifiers present in IN_OTYPE that are not
3698 present in IN_TYPE. */
3699 warning (OPT_Wcast_qual, "cast discards qualifiers from pointer target type");
3700 }
3701
3702 /* Warn about possible alignment problems. */
3703 if (STRICT_ALIGNMENT
3704 && TREE_CODE (type) == POINTER_TYPE
3705 && TREE_CODE (otype) == POINTER_TYPE
3706 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3707 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3708 /* Don't warn about opaque types, where the actual alignment
3709 restriction is unknown. */
3710 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3711 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3712 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3713 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3714 warning (OPT_Wcast_align,
3715 "cast increases required alignment of target type");
3716
3717 if (TREE_CODE (type) == INTEGER_TYPE
3718 && TREE_CODE (otype) == POINTER_TYPE
3719 && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3720 /* Unlike conversion of integers to pointers, where the
3721 warning is disabled for converting constants because
3722 of cases such as SIG_*, warn about converting constant
3723 pointers to integers. In some cases it may cause unwanted
3724 sign extension, and a warning is appropriate. */
3725 warning (OPT_Wpointer_to_int_cast,
3726 "cast from pointer to integer of different size");
3727
3728 if (TREE_CODE (value) == CALL_EXPR
3729 && TREE_CODE (type) != TREE_CODE (otype))
3730 warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3731 "to non-matching type %qT", otype, type);
3732
3733 if (TREE_CODE (type) == POINTER_TYPE
3734 && TREE_CODE (otype) == INTEGER_TYPE
3735 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3736 /* Don't warn about converting any constant. */
3737 && !TREE_CONSTANT (value))
3738 warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3739 "of different size");
3740
3741 if (warn_strict_aliasing <= 2)
3742 strict_aliasing_warning (otype, type, expr);
3743
3744 /* If pedantic, warn for conversions between function and object
3745 pointer types, except for converting a null pointer constant
3746 to function pointer type. */
3747 if (pedantic
3748 && TREE_CODE (type) == POINTER_TYPE
3749 && TREE_CODE (otype) == POINTER_TYPE
3750 && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3751 && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3752 pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3753
3754 if (pedantic
3755 && TREE_CODE (type) == POINTER_TYPE
3756 && TREE_CODE (otype) == POINTER_TYPE
3757 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3758 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3759 && !null_pointer_constant_p (value))
3760 pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3761
3762 ovalue = value;
3763 value = convert (type, value);
3764
3765 /* Ignore any integer overflow caused by the cast. */
3766 if (TREE_CODE (value) == INTEGER_CST)
3767 {
3768 if (CONSTANT_CLASS_P (ovalue) && TREE_OVERFLOW (ovalue))
3769 {
3770 if (!TREE_OVERFLOW (value))
3771 {
3772 /* Avoid clobbering a shared constant. */
3773 value = copy_node (value);
3774 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3775 }
3776 }
3777 else if (TREE_OVERFLOW (value))
3778 /* Reset VALUE's overflow flags, ensuring constant sharing. */
3779 value = build_int_cst_wide (TREE_TYPE (value),
3780 TREE_INT_CST_LOW (value),
3781 TREE_INT_CST_HIGH (value));
3782 }
3783 }
3784
3785 /* Don't let a cast be an lvalue. */
3786 if (value == expr)
3787 value = non_lvalue (value);
3788
3789 return value;
3790 }
3791
3792 /* Interpret a cast of expression EXPR to type TYPE. */
3793 tree
3794 c_cast_expr (struct c_type_name *type_name, tree expr)
3795 {
3796 tree type;
3797 int saved_wsp = warn_strict_prototypes;
3798
3799 /* This avoids warnings about unprototyped casts on
3800 integers. E.g. "#define SIG_DFL (void(*)())0". */
3801 if (TREE_CODE (expr) == INTEGER_CST)
3802 warn_strict_prototypes = 0;
3803 type = groktypename (type_name);
3804 warn_strict_prototypes = saved_wsp;
3805
3806 return build_c_cast (type, expr);
3807 }
3808 \f
3809 /* Build an assignment expression of lvalue LHS from value RHS.
3810 MODIFYCODE is the code for a binary operator that we use
3811 to combine the old value of LHS with RHS to get the new value.
3812 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3813
3814 tree
3815 build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3816 {
3817 tree result;
3818 tree newrhs;
3819 tree lhstype = TREE_TYPE (lhs);
3820 tree olhstype = lhstype;
3821
3822 /* Types that aren't fully specified cannot be used in assignments. */
3823 lhs = require_complete_type (lhs);
3824
3825 /* Avoid duplicate error messages from operands that had errors. */
3826 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3827 return error_mark_node;
3828
3829 if (!lvalue_or_else (lhs, lv_assign))
3830 return error_mark_node;
3831
3832 STRIP_TYPE_NOPS (rhs);
3833
3834 newrhs = rhs;
3835
3836 /* If a binary op has been requested, combine the old LHS value with the RHS
3837 producing the value we should actually store into the LHS. */
3838
3839 if (modifycode != NOP_EXPR)
3840 {
3841 lhs = stabilize_reference (lhs);
3842 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3843 }
3844
3845 /* Give an error for storing in something that is 'const'. */
3846
3847 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3848 || ((TREE_CODE (lhstype) == RECORD_TYPE
3849 || TREE_CODE (lhstype) == UNION_TYPE)
3850 && C_TYPE_FIELDS_READONLY (lhstype)))
3851 {
3852 readonly_error (lhs, lv_assign);
3853 return error_mark_node;
3854 }
3855
3856 /* If storing into a structure or union member,
3857 it has probably been given type `int'.
3858 Compute the type that would go with
3859 the actual amount of storage the member occupies. */
3860
3861 if (TREE_CODE (lhs) == COMPONENT_REF
3862 && (TREE_CODE (lhstype) == INTEGER_TYPE
3863 || TREE_CODE (lhstype) == BOOLEAN_TYPE
3864 || TREE_CODE (lhstype) == REAL_TYPE
3865 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3866 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3867
3868 /* If storing in a field that is in actuality a short or narrower than one,
3869 we must store in the field in its actual type. */
3870
3871 if (lhstype != TREE_TYPE (lhs))
3872 {
3873 lhs = copy_node (lhs);
3874 TREE_TYPE (lhs) = lhstype;
3875 }
3876
3877 /* Convert new value to destination type. */
3878
3879 newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3880 NULL_TREE, NULL_TREE, 0);
3881 if (TREE_CODE (newrhs) == ERROR_MARK)
3882 return error_mark_node;
3883
3884 /* Emit ObjC write barrier, if necessary. */
3885 if (c_dialect_objc () && flag_objc_gc)
3886 {
3887 result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3888 if (result)
3889 return result;
3890 }
3891
3892 /* Scan operands. */
3893
3894 result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3895 TREE_SIDE_EFFECTS (result) = 1;
3896
3897 /* If we got the LHS in a different type for storing in,
3898 convert the result back to the nominal type of LHS
3899 so that the value we return always has the same type
3900 as the LHS argument. */
3901
3902 if (olhstype == TREE_TYPE (result))
3903 return result;
3904 return convert_for_assignment (olhstype, result, ic_assign,
3905 NULL_TREE, NULL_TREE, 0);
3906 }
3907 \f
3908 /* Convert value RHS to type TYPE as preparation for an assignment
3909 to an lvalue of type TYPE.
3910 The real work of conversion is done by `convert'.
3911 The purpose of this function is to generate error messages
3912 for assignments that are not allowed in C.
3913 ERRTYPE says whether it is argument passing, assignment,
3914 initialization or return.
3915
3916 FUNCTION is a tree for the function being called.
3917 PARMNUM is the number of the argument, for printing in error messages. */
3918
3919 static tree
3920 convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3921 tree fundecl, tree function, int parmnum)
3922 {
3923 enum tree_code codel = TREE_CODE (type);
3924 tree rhstype;
3925 enum tree_code coder;
3926 tree rname = NULL_TREE;
3927 bool objc_ok = false;
3928
3929 if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3930 {
3931 tree selector;
3932 /* Change pointer to function to the function itself for
3933 diagnostics. */
3934 if (TREE_CODE (function) == ADDR_EXPR
3935 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3936 function = TREE_OPERAND (function, 0);
3937
3938 /* Handle an ObjC selector specially for diagnostics. */
3939 selector = objc_message_selector ();
3940 rname = function;
3941 if (selector && parmnum > 2)
3942 {
3943 rname = selector;
3944 parmnum -= 2;
3945 }
3946 }
3947
3948 /* This macro is used to emit diagnostics to ensure that all format
3949 strings are complete sentences, visible to gettext and checked at
3950 compile time. */
3951 #define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE) \
3952 do { \
3953 switch (errtype) \
3954 { \
3955 case ic_argpass: \
3956 pedwarn (AR, parmnum, rname); \
3957 break; \
3958 case ic_argpass_nonproto: \
3959 warning (0, AR, parmnum, rname); \
3960 break; \
3961 case ic_assign: \
3962 pedwarn (AS); \
3963 break; \
3964 case ic_init: \
3965 pedwarn (IN); \
3966 break; \
3967 case ic_return: \
3968 pedwarn (RE); \
3969 break; \
3970 default: \
3971 gcc_unreachable (); \
3972 } \
3973 } while (0)
3974
3975 STRIP_TYPE_NOPS (rhs);
3976
3977 if (optimize && TREE_CODE (rhs) == VAR_DECL
3978 && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3979 rhs = decl_constant_value_for_broken_optimization (rhs);
3980
3981 rhstype = TREE_TYPE (rhs);
3982 coder = TREE_CODE (rhstype);
3983
3984 if (coder == ERROR_MARK)
3985 return error_mark_node;
3986
3987 if (c_dialect_objc ())
3988 {
3989 int parmno;
3990
3991 switch (errtype)
3992 {
3993 case ic_return:
3994 parmno = 0;
3995 break;
3996
3997 case ic_assign:
3998 parmno = -1;
3999 break;
4000
4001 case ic_init:
4002 parmno = -2;
4003 break;
4004
4005 default:
4006 parmno = parmnum;
4007 break;
4008 }
4009
4010 objc_ok = objc_compare_types (type, rhstype, parmno, rname);
4011 }
4012
4013 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
4014 return rhs;
4015
4016 if (coder == VOID_TYPE)
4017 {
4018 /* Except for passing an argument to an unprototyped function,
4019 this is a constraint violation. When passing an argument to
4020 an unprototyped function, it is compile-time undefined;
4021 making it a constraint in that case was rejected in
4022 DR#252. */
4023 error ("void value not ignored as it ought to be");
4024 return error_mark_node;
4025 }
4026 rhs = require_complete_type (rhs);
4027 if (rhs == error_mark_node)
4028 return error_mark_node;
4029 /* A type converts to a reference to it.
4030 This code doesn't fully support references, it's just for the
4031 special case of va_start and va_copy. */
4032 if (codel == REFERENCE_TYPE
4033 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
4034 {
4035 if (!lvalue_p (rhs))
4036 {
4037 error ("cannot pass rvalue to reference parameter");
4038 return error_mark_node;
4039 }
4040 if (!c_mark_addressable (rhs))
4041 return error_mark_node;
4042 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
4043
4044 /* We already know that these two types are compatible, but they
4045 may not be exactly identical. In fact, `TREE_TYPE (type)' is
4046 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
4047 likely to be va_list, a typedef to __builtin_va_list, which
4048 is different enough that it will cause problems later. */
4049 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
4050 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
4051
4052 rhs = build1 (NOP_EXPR, type, rhs);
4053 return rhs;
4054 }
4055 /* Some types can interconvert without explicit casts. */
4056 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
4057 && vector_types_convertible_p (type, TREE_TYPE (rhs), true))
4058 return convert (type, rhs);
4059 /* Arithmetic types all interconvert, and enum is treated like int. */
4060 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
4061 || codel == FIXED_POINT_TYPE
4062 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
4063 || codel == BOOLEAN_TYPE)
4064 && (coder == INTEGER_TYPE || coder == REAL_TYPE
4065 || coder == FIXED_POINT_TYPE
4066 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
4067 || coder == BOOLEAN_TYPE))
4068 return convert_and_check (type, rhs);
4069
4070 /* Aggregates in different TUs might need conversion. */
4071 if ((codel == RECORD_TYPE || codel == UNION_TYPE)
4072 && codel == coder
4073 && comptypes (type, rhstype))
4074 return convert_and_check (type, rhs);
4075
4076 /* Conversion to a transparent union from its member types.
4077 This applies only to function arguments. */
4078 if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
4079 && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
4080 {
4081 tree memb, marginal_memb = NULL_TREE;
4082
4083 for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
4084 {
4085 tree memb_type = TREE_TYPE (memb);
4086
4087 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
4088 TYPE_MAIN_VARIANT (rhstype)))
4089 break;
4090
4091 if (TREE_CODE (memb_type) != POINTER_TYPE)
4092 continue;
4093
4094 if (coder == POINTER_TYPE)
4095 {
4096 tree ttl = TREE_TYPE (memb_type);
4097 tree ttr = TREE_TYPE (rhstype);
4098
4099 /* Any non-function converts to a [const][volatile] void *
4100 and vice versa; otherwise, targets must be the same.
4101 Meanwhile, the lhs target must have all the qualifiers of
4102 the rhs. */
4103 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4104 || comp_target_types (memb_type, rhstype))
4105 {
4106 /* If this type won't generate any warnings, use it. */
4107 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
4108 || ((TREE_CODE (ttr) == FUNCTION_TYPE
4109 && TREE_CODE (ttl) == FUNCTION_TYPE)
4110 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4111 == TYPE_QUALS (ttr))
4112 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4113 == TYPE_QUALS (ttl))))
4114 break;
4115
4116 /* Keep looking for a better type, but remember this one. */
4117 if (!marginal_memb)
4118 marginal_memb = memb;
4119 }
4120 }
4121
4122 /* Can convert integer zero to any pointer type. */
4123 if (null_pointer_constant_p (rhs))
4124 {
4125 rhs = null_pointer_node;
4126 break;
4127 }
4128 }
4129
4130 if (memb || marginal_memb)
4131 {
4132 if (!memb)
4133 {
4134 /* We have only a marginally acceptable member type;
4135 it needs a warning. */
4136 tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
4137 tree ttr = TREE_TYPE (rhstype);
4138
4139 /* Const and volatile mean something different for function
4140 types, so the usual warnings are not appropriate. */
4141 if (TREE_CODE (ttr) == FUNCTION_TYPE
4142 && TREE_CODE (ttl) == FUNCTION_TYPE)
4143 {
4144 /* Because const and volatile on functions are
4145 restrictions that say the function will not do
4146 certain things, it is okay to use a const or volatile
4147 function where an ordinary one is wanted, but not
4148 vice-versa. */
4149 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4150 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
4151 "makes qualified function "
4152 "pointer from unqualified"),
4153 G_("assignment makes qualified "
4154 "function pointer from "
4155 "unqualified"),
4156 G_("initialization makes qualified "
4157 "function pointer from "
4158 "unqualified"),
4159 G_("return makes qualified function "
4160 "pointer from unqualified"));
4161 }
4162 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4163 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4164 "qualifiers from pointer target type"),
4165 G_("assignment discards qualifiers "
4166 "from pointer target type"),
4167 G_("initialization discards qualifiers "
4168 "from pointer target type"),
4169 G_("return discards qualifiers from "
4170 "pointer target type"));
4171
4172 memb = marginal_memb;
4173 }
4174
4175 if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
4176 pedwarn ("ISO C prohibits argument conversion to union type");
4177
4178 rhs = fold_convert (TREE_TYPE (memb), rhs);
4179 return build_constructor_single (type, memb, rhs);
4180 }
4181 }
4182
4183 /* Conversions among pointers */
4184 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4185 && (coder == codel))
4186 {
4187 tree ttl = TREE_TYPE (type);
4188 tree ttr = TREE_TYPE (rhstype);
4189 tree mvl = ttl;
4190 tree mvr = ttr;
4191 bool is_opaque_pointer;
4192 int target_cmp = 0; /* Cache comp_target_types () result. */
4193
4194 if (TREE_CODE (mvl) != ARRAY_TYPE)
4195 mvl = TYPE_MAIN_VARIANT (mvl);
4196 if (TREE_CODE (mvr) != ARRAY_TYPE)
4197 mvr = TYPE_MAIN_VARIANT (mvr);
4198 /* Opaque pointers are treated like void pointers. */
4199 is_opaque_pointer = (targetm.vector_opaque_p (type)
4200 || targetm.vector_opaque_p (rhstype))
4201 && TREE_CODE (ttl) == VECTOR_TYPE
4202 && TREE_CODE (ttr) == VECTOR_TYPE;
4203
4204 /* C++ does not allow the implicit conversion void* -> T*. However,
4205 for the purpose of reducing the number of false positives, we
4206 tolerate the special case of
4207
4208 int *p = NULL;
4209
4210 where NULL is typically defined in C to be '(void *) 0'. */
4211 if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4212 warning (OPT_Wc___compat, "request for implicit conversion from "
4213 "%qT to %qT not permitted in C++", rhstype, type);
4214
4215 /* Check if the right-hand side has a format attribute but the
4216 left-hand side doesn't. */
4217 if (warn_missing_format_attribute
4218 && check_missing_format_attribute (type, rhstype))
4219 {
4220 switch (errtype)
4221 {
4222 case ic_argpass:
4223 case ic_argpass_nonproto:
4224 warning (OPT_Wmissing_format_attribute,
4225 "argument %d of %qE might be "
4226 "a candidate for a format attribute",
4227 parmnum, rname);
4228 break;
4229 case ic_assign:
4230 warning (OPT_Wmissing_format_attribute,
4231 "assignment left-hand side might be "
4232 "a candidate for a format attribute");
4233 break;
4234 case ic_init:
4235 warning (OPT_Wmissing_format_attribute,
4236 "initialization left-hand side might be "
4237 "a candidate for a format attribute");
4238 break;
4239 case ic_return:
4240 warning (OPT_Wmissing_format_attribute,
4241 "return type might be "
4242 "a candidate for a format attribute");
4243 break;
4244 default:
4245 gcc_unreachable ();
4246 }
4247 }
4248
4249 /* Any non-function converts to a [const][volatile] void *
4250 and vice versa; otherwise, targets must be the same.
4251 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4252 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4253 || (target_cmp = comp_target_types (type, rhstype))
4254 || is_opaque_pointer
4255 || (c_common_unsigned_type (mvl)
4256 == c_common_unsigned_type (mvr)))
4257 {
4258 if (pedantic
4259 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4260 ||
4261 (VOID_TYPE_P (ttr)
4262 && !null_pointer_constant_p (rhs)
4263 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4264 WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4265 "%qE between function pointer "
4266 "and %<void *%>"),
4267 G_("ISO C forbids assignment between "
4268 "function pointer and %<void *%>"),
4269 G_("ISO C forbids initialization between "
4270 "function pointer and %<void *%>"),
4271 G_("ISO C forbids return between function "
4272 "pointer and %<void *%>"));
4273 /* Const and volatile mean something different for function types,
4274 so the usual warnings are not appropriate. */
4275 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4276 && TREE_CODE (ttl) != FUNCTION_TYPE)
4277 {
4278 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4279 {
4280 /* Types differing only by the presence of the 'volatile'
4281 qualifier are acceptable if the 'volatile' has been added
4282 in by the Objective-C EH machinery. */
4283 if (!objc_type_quals_match (ttl, ttr))
4284 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4285 "qualifiers from pointer target type"),
4286 G_("assignment discards qualifiers "
4287 "from pointer target type"),
4288 G_("initialization discards qualifiers "
4289 "from pointer target type"),
4290 G_("return discards qualifiers from "
4291 "pointer target type"));
4292 }
4293 /* If this is not a case of ignoring a mismatch in signedness,
4294 no warning. */
4295 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4296 || target_cmp)
4297 ;
4298 /* If there is a mismatch, do warn. */
4299 else if (warn_pointer_sign)
4300 WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4301 "%d of %qE differ in signedness"),
4302 G_("pointer targets in assignment "
4303 "differ in signedness"),
4304 G_("pointer targets in initialization "
4305 "differ in signedness"),
4306 G_("pointer targets in return differ "
4307 "in signedness"));
4308 }
4309 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4310 && TREE_CODE (ttr) == FUNCTION_TYPE)
4311 {
4312 /* Because const and volatile on functions are restrictions
4313 that say the function will not do certain things,
4314 it is okay to use a const or volatile function
4315 where an ordinary one is wanted, but not vice-versa. */
4316 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4317 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4318 "qualified function pointer "
4319 "from unqualified"),
4320 G_("assignment makes qualified function "
4321 "pointer from unqualified"),
4322 G_("initialization makes qualified "
4323 "function pointer from unqualified"),
4324 G_("return makes qualified function "
4325 "pointer from unqualified"));
4326 }
4327 }
4328 else
4329 /* Avoid warning about the volatile ObjC EH puts on decls. */
4330 if (!objc_ok)
4331 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4332 "incompatible pointer type"),
4333 G_("assignment from incompatible pointer type"),
4334 G_("initialization from incompatible "
4335 "pointer type"),
4336 G_("return from incompatible pointer type"));
4337
4338 return convert (type, rhs);
4339 }
4340 else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4341 {
4342 /* ??? This should not be an error when inlining calls to
4343 unprototyped functions. */
4344 error ("invalid use of non-lvalue array");
4345 return error_mark_node;
4346 }
4347 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4348 {
4349 /* An explicit constant 0 can convert to a pointer,
4350 or one that results from arithmetic, even including
4351 a cast to integer type. */
4352 if (!null_pointer_constant_p (rhs))
4353 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4354 "pointer from integer without a cast"),
4355 G_("assignment makes pointer from integer "
4356 "without a cast"),
4357 G_("initialization makes pointer from "
4358 "integer without a cast"),
4359 G_("return makes pointer from integer "
4360 "without a cast"));
4361
4362 return convert (type, rhs);
4363 }
4364 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4365 {
4366 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4367 "from pointer without a cast"),
4368 G_("assignment makes integer from pointer "
4369 "without a cast"),
4370 G_("initialization makes integer from pointer "
4371 "without a cast"),
4372 G_("return makes integer from pointer "
4373 "without a cast"));
4374 return convert (type, rhs);
4375 }
4376 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4377 return convert (type, rhs);
4378
4379 switch (errtype)
4380 {
4381 case ic_argpass:
4382 case ic_argpass_nonproto:
4383 /* ??? This should not be an error when inlining calls to
4384 unprototyped functions. */
4385 error ("incompatible type for argument %d of %qE", parmnum, rname);
4386 break;
4387 case ic_assign:
4388 error ("incompatible types in assignment");
4389 break;
4390 case ic_init:
4391 error ("incompatible types in initialization");
4392 break;
4393 case ic_return:
4394 error ("incompatible types in return");
4395 break;
4396 default:
4397 gcc_unreachable ();
4398 }
4399
4400 return error_mark_node;
4401 }
4402 \f
4403 /* If VALUE is a compound expr all of whose expressions are constant, then
4404 return its value. Otherwise, return error_mark_node.
4405
4406 This is for handling COMPOUND_EXPRs as initializer elements
4407 which is allowed with a warning when -pedantic is specified. */
4408
4409 static tree
4410 valid_compound_expr_initializer (tree value, tree endtype)
4411 {
4412 if (TREE_CODE (value) == COMPOUND_EXPR)
4413 {
4414 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4415 == error_mark_node)
4416 return error_mark_node;
4417 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4418 endtype);
4419 }
4420 else if (!initializer_constant_valid_p (value, endtype))
4421 return error_mark_node;
4422 else
4423 return value;
4424 }
4425 \f
4426 /* Perform appropriate conversions on the initial value of a variable,
4427 store it in the declaration DECL,
4428 and print any error messages that are appropriate.
4429 If the init is invalid, store an ERROR_MARK. */
4430
4431 void
4432 store_init_value (tree decl, tree init)
4433 {
4434 tree value, type;
4435
4436 /* If variable's type was invalidly declared, just ignore it. */
4437
4438 type = TREE_TYPE (decl);
4439 if (TREE_CODE (type) == ERROR_MARK)
4440 return;
4441
4442 /* Digest the specified initializer into an expression. */
4443
4444 value = digest_init (type, init, true, TREE_STATIC (decl));
4445
4446 /* Store the expression if valid; else report error. */
4447
4448 if (!in_system_header
4449 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4450 warning (OPT_Wtraditional, "traditional C rejects automatic "
4451 "aggregate initialization");
4452
4453 DECL_INITIAL (decl) = value;
4454
4455 /* ANSI wants warnings about out-of-range constant initializers. */
4456 STRIP_TYPE_NOPS (value);
4457 if (TREE_STATIC (decl))
4458 constant_expression_warning (value);
4459
4460 /* Check if we need to set array size from compound literal size. */
4461 if (TREE_CODE (type) == ARRAY_TYPE
4462 && TYPE_DOMAIN (type) == 0
4463 && value != error_mark_node)
4464 {
4465 tree inside_init = init;
4466
4467 STRIP_TYPE_NOPS (inside_init);
4468 inside_init = fold (inside_init);
4469
4470 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4471 {
4472 tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4473
4474 if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4475 {
4476 /* For int foo[] = (int [3]){1}; we need to set array size
4477 now since later on array initializer will be just the
4478 brace enclosed list of the compound literal. */
4479 type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4480 TREE_TYPE (decl) = type;
4481 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4482 layout_type (type);
4483 layout_decl (cldecl, 0);
4484 }
4485 }
4486 }
4487 }
4488 \f
4489 /* Methods for storing and printing names for error messages. */
4490
4491 /* Implement a spelling stack that allows components of a name to be pushed
4492 and popped. Each element on the stack is this structure. */
4493
4494 struct spelling
4495 {
4496 int kind;
4497 union
4498 {
4499 unsigned HOST_WIDE_INT i;
4500 const char *s;
4501 } u;
4502 };
4503
4504 #define SPELLING_STRING 1
4505 #define SPELLING_MEMBER 2
4506 #define SPELLING_BOUNDS 3
4507
4508 static struct spelling *spelling; /* Next stack element (unused). */
4509 static struct spelling *spelling_base; /* Spelling stack base. */
4510 static int spelling_size; /* Size of the spelling stack. */
4511
4512 /* Macros to save and restore the spelling stack around push_... functions.
4513 Alternative to SAVE_SPELLING_STACK. */
4514
4515 #define SPELLING_DEPTH() (spelling - spelling_base)
4516 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4517
4518 /* Push an element on the spelling stack with type KIND and assign VALUE
4519 to MEMBER. */
4520
4521 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4522 { \
4523 int depth = SPELLING_DEPTH (); \
4524 \
4525 if (depth >= spelling_size) \
4526 { \
4527 spelling_size += 10; \
4528 spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
4529 spelling_size); \
4530 RESTORE_SPELLING_DEPTH (depth); \
4531 } \
4532 \
4533 spelling->kind = (KIND); \
4534 spelling->MEMBER = (VALUE); \
4535 spelling++; \
4536 }
4537
4538 /* Push STRING on the stack. Printed literally. */
4539
4540 static void
4541 push_string (const char *string)
4542 {
4543 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4544 }
4545
4546 /* Push a member name on the stack. Printed as '.' STRING. */
4547
4548 static void
4549 push_member_name (tree decl)
4550 {
4551 const char *const string
4552 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4553 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4554 }
4555
4556 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4557
4558 static void
4559 push_array_bounds (unsigned HOST_WIDE_INT bounds)
4560 {
4561 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4562 }
4563
4564 /* Compute the maximum size in bytes of the printed spelling. */
4565
4566 static int
4567 spelling_length (void)
4568 {
4569 int size = 0;
4570 struct spelling *p;
4571
4572 for (p = spelling_base; p < spelling; p++)
4573 {
4574 if (p->kind == SPELLING_BOUNDS)
4575 size += 25;
4576 else
4577 size += strlen (p->u.s) + 1;
4578 }
4579
4580 return size;
4581 }
4582
4583 /* Print the spelling to BUFFER and return it. */
4584
4585 static char *
4586 print_spelling (char *buffer)
4587 {
4588 char *d = buffer;
4589 struct spelling *p;
4590
4591 for (p = spelling_base; p < spelling; p++)
4592 if (p->kind == SPELLING_BOUNDS)
4593 {
4594 sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4595 d += strlen (d);
4596 }
4597 else
4598 {
4599 const char *s;
4600 if (p->kind == SPELLING_MEMBER)
4601 *d++ = '.';
4602 for (s = p->u.s; (*d = *s++); d++)
4603 ;
4604 }
4605 *d++ = '\0';
4606 return buffer;
4607 }
4608
4609 /* Issue an error message for a bad initializer component.
4610 MSGID identifies the message.
4611 The component name is taken from the spelling stack. */
4612
4613 void
4614 error_init (const char *msgid)
4615 {
4616 char *ofwhat;
4617
4618 error ("%s", _(msgid));
4619 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4620 if (*ofwhat)
4621 error ("(near initialization for %qs)", ofwhat);
4622 }
4623
4624 /* Issue a pedantic warning for a bad initializer component.
4625 MSGID identifies the message.
4626 The component name is taken from the spelling stack. */
4627
4628 void
4629 pedwarn_init (const char *msgid)
4630 {
4631 char *ofwhat;
4632
4633 pedwarn ("%s", _(msgid));
4634 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4635 if (*ofwhat)
4636 pedwarn ("(near initialization for %qs)", ofwhat);
4637 }
4638
4639 /* Issue a warning for a bad initializer component.
4640
4641 OPT is the OPT_W* value corresponding to the warning option that
4642 controls this warning. MSGID identifies the message. The
4643 component name is taken from the spelling stack. */
4644
4645 static void
4646 warning_init (int opt, const char *msgid)
4647 {
4648 char *ofwhat;
4649
4650 warning (opt, "%s", _(msgid));
4651 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4652 if (*ofwhat)
4653 warning (opt, "(near initialization for %qs)", ofwhat);
4654 }
4655 \f
4656 /* If TYPE is an array type and EXPR is a parenthesized string
4657 constant, warn if pedantic that EXPR is being used to initialize an
4658 object of type TYPE. */
4659
4660 void
4661 maybe_warn_string_init (tree type, struct c_expr expr)
4662 {
4663 if (pedantic
4664 && TREE_CODE (type) == ARRAY_TYPE
4665 && TREE_CODE (expr.value) == STRING_CST
4666 && expr.original_code != STRING_CST)
4667 pedwarn_init ("array initialized from parenthesized string constant");
4668 }
4669
4670 /* Digest the parser output INIT as an initializer for type TYPE.
4671 Return a C expression of type TYPE to represent the initial value.
4672
4673 If INIT is a string constant, STRICT_STRING is true if it is
4674 unparenthesized or we should not warn here for it being parenthesized.
4675 For other types of INIT, STRICT_STRING is not used.
4676
4677 REQUIRE_CONSTANT requests an error if non-constant initializers or
4678 elements are seen. */
4679
4680 static tree
4681 digest_init (tree type, tree init, bool strict_string, int require_constant)
4682 {
4683 enum tree_code code = TREE_CODE (type);
4684 tree inside_init = init;
4685
4686 if (type == error_mark_node
4687 || !init
4688 || init == error_mark_node
4689 || TREE_TYPE (init) == error_mark_node)
4690 return error_mark_node;
4691
4692 STRIP_TYPE_NOPS (inside_init);
4693
4694 inside_init = fold (inside_init);
4695
4696 /* Initialization of an array of chars from a string constant
4697 optionally enclosed in braces. */
4698
4699 if (code == ARRAY_TYPE && inside_init
4700 && TREE_CODE (inside_init) == STRING_CST)
4701 {
4702 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4703 /* Note that an array could be both an array of character type
4704 and an array of wchar_t if wchar_t is signed char or unsigned
4705 char. */
4706 bool char_array = (typ1 == char_type_node
4707 || typ1 == signed_char_type_node
4708 || typ1 == unsigned_char_type_node);
4709 bool wchar_array = !!comptypes (typ1, wchar_type_node);
4710 if (char_array || wchar_array)
4711 {
4712 struct c_expr expr;
4713 bool char_string;
4714 expr.value = inside_init;
4715 expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4716 maybe_warn_string_init (type, expr);
4717
4718 char_string
4719 = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4720 == char_type_node);
4721
4722 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4723 TYPE_MAIN_VARIANT (type)))
4724 return inside_init;
4725
4726 if (!wchar_array && !char_string)
4727 {
4728 error_init ("char-array initialized from wide string");
4729 return error_mark_node;
4730 }
4731 if (char_string && !char_array)
4732 {
4733 error_init ("wchar_t-array initialized from non-wide string");
4734 return error_mark_node;
4735 }
4736
4737 TREE_TYPE (inside_init) = type;
4738 if (TYPE_DOMAIN (type) != 0
4739 && TYPE_SIZE (type) != 0
4740 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4741 /* Subtract 1 (or sizeof (wchar_t))
4742 because it's ok to ignore the terminating null char
4743 that is counted in the length of the constant. */
4744 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4745 TREE_STRING_LENGTH (inside_init)
4746 - ((TYPE_PRECISION (typ1)
4747 != TYPE_PRECISION (char_type_node))
4748 ? (TYPE_PRECISION (wchar_type_node)
4749 / BITS_PER_UNIT)
4750 : 1)))
4751 pedwarn_init ("initializer-string for array of chars is too long");
4752
4753 return inside_init;
4754 }
4755 else if (INTEGRAL_TYPE_P (typ1))
4756 {
4757 error_init ("array of inappropriate type initialized "
4758 "from string constant");
4759 return error_mark_node;
4760 }
4761 }
4762
4763 /* Build a VECTOR_CST from a *constant* vector constructor. If the
4764 vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4765 below and handle as a constructor. */
4766 if (code == VECTOR_TYPE
4767 && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4768 && vector_types_convertible_p (TREE_TYPE (inside_init), type, true)
4769 && TREE_CONSTANT (inside_init))
4770 {
4771 if (TREE_CODE (inside_init) == VECTOR_CST
4772 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4773 TYPE_MAIN_VARIANT (type)))
4774 return inside_init;
4775
4776 if (TREE_CODE (inside_init) == CONSTRUCTOR)
4777 {
4778 unsigned HOST_WIDE_INT ix;
4779 tree value;
4780 bool constant_p = true;
4781
4782 /* Iterate through elements and check if all constructor
4783 elements are *_CSTs. */
4784 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4785 if (!CONSTANT_CLASS_P (value))
4786 {
4787 constant_p = false;
4788 break;
4789 }
4790
4791 if (constant_p)
4792 return build_vector_from_ctor (type,
4793 CONSTRUCTOR_ELTS (inside_init));
4794 }
4795 }
4796
4797 /* Any type can be initialized
4798 from an expression of the same type, optionally with braces. */
4799
4800 if (inside_init && TREE_TYPE (inside_init) != 0
4801 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4802 TYPE_MAIN_VARIANT (type))
4803 || (code == ARRAY_TYPE
4804 && comptypes (TREE_TYPE (inside_init), type))
4805 || (code == VECTOR_TYPE
4806 && comptypes (TREE_TYPE (inside_init), type))
4807 || (code == POINTER_TYPE
4808 && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4809 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4810 TREE_TYPE (type)))))
4811 {
4812 if (code == POINTER_TYPE)
4813 {
4814 if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4815 {
4816 if (TREE_CODE (inside_init) == STRING_CST
4817 || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4818 inside_init = array_to_pointer_conversion (inside_init);
4819 else
4820 {
4821 error_init ("invalid use of non-lvalue array");
4822 return error_mark_node;
4823 }
4824 }
4825 }
4826
4827 if (code == VECTOR_TYPE)
4828 /* Although the types are compatible, we may require a
4829 conversion. */
4830 inside_init = convert (type, inside_init);
4831
4832 if (require_constant
4833 && (code == VECTOR_TYPE || !flag_isoc99)
4834 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4835 {
4836 /* As an extension, allow initializing objects with static storage
4837 duration with compound literals (which are then treated just as
4838 the brace enclosed list they contain). Also allow this for
4839 vectors, as we can only assign them with compound literals. */
4840 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4841 inside_init = DECL_INITIAL (decl);
4842 }
4843
4844 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4845 && TREE_CODE (inside_init) != CONSTRUCTOR)
4846 {
4847 error_init ("array initialized from non-constant array expression");
4848 return error_mark_node;
4849 }
4850
4851 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4852 inside_init = decl_constant_value_for_broken_optimization (inside_init);
4853
4854 /* Compound expressions can only occur here if -pedantic or
4855 -pedantic-errors is specified. In the later case, we always want
4856 an error. In the former case, we simply want a warning. */
4857 if (require_constant && pedantic
4858 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4859 {
4860 inside_init
4861 = valid_compound_expr_initializer (inside_init,
4862 TREE_TYPE (inside_init));
4863 if (inside_init == error_mark_node)
4864 error_init ("initializer element is not constant");
4865 else
4866 pedwarn_init ("initializer element is not constant");
4867 if (flag_pedantic_errors)
4868 inside_init = error_mark_node;
4869 }
4870 else if (require_constant
4871 && !initializer_constant_valid_p (inside_init,
4872 TREE_TYPE (inside_init)))
4873 {
4874 error_init ("initializer element is not constant");
4875 inside_init = error_mark_node;
4876 }
4877
4878 /* Added to enable additional -Wmissing-format-attribute warnings. */
4879 if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4880 inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4881 NULL_TREE, 0);
4882 return inside_init;
4883 }
4884
4885 /* Handle scalar types, including conversions. */
4886
4887 if (code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE
4888 || code == POINTER_TYPE || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
4889 || code == COMPLEX_TYPE || code == VECTOR_TYPE)
4890 {
4891 if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4892 && (TREE_CODE (init) == STRING_CST
4893 || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4894 init = array_to_pointer_conversion (init);
4895 inside_init
4896 = convert_for_assignment (type, init, ic_init,
4897 NULL_TREE, NULL_TREE, 0);
4898
4899 /* Check to see if we have already given an error message. */
4900 if (inside_init == error_mark_node)
4901 ;
4902 else if (require_constant && !TREE_CONSTANT (inside_init))
4903 {
4904 error_init ("initializer element is not constant");
4905 inside_init = error_mark_node;
4906 }
4907 else if (require_constant
4908 && !initializer_constant_valid_p (inside_init,
4909 TREE_TYPE (inside_init)))
4910 {
4911 error_init ("initializer element is not computable at load time");
4912 inside_init = error_mark_node;
4913 }
4914
4915 return inside_init;
4916 }
4917
4918 /* Come here only for records and arrays. */
4919
4920 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4921 {
4922 error_init ("variable-sized object may not be initialized");
4923 return error_mark_node;
4924 }
4925
4926 error_init ("invalid initializer");
4927 return error_mark_node;
4928 }
4929 \f
4930 /* Handle initializers that use braces. */
4931
4932 /* Type of object we are accumulating a constructor for.
4933 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4934 static tree constructor_type;
4935
4936 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4937 left to fill. */
4938 static tree constructor_fields;
4939
4940 /* For an ARRAY_TYPE, this is the specified index
4941 at which to store the next element we get. */
4942 static tree constructor_index;
4943
4944 /* For an ARRAY_TYPE, this is the maximum index. */
4945 static tree constructor_max_index;
4946
4947 /* For a RECORD_TYPE, this is the first field not yet written out. */
4948 static tree constructor_unfilled_fields;
4949
4950 /* For an ARRAY_TYPE, this is the index of the first element
4951 not yet written out. */
4952 static tree constructor_unfilled_index;
4953
4954 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4955 This is so we can generate gaps between fields, when appropriate. */
4956 static tree constructor_bit_index;
4957
4958 /* If we are saving up the elements rather than allocating them,
4959 this is the list of elements so far (in reverse order,
4960 most recent first). */
4961 static VEC(constructor_elt,gc) *constructor_elements;
4962
4963 /* 1 if constructor should be incrementally stored into a constructor chain,
4964 0 if all the elements should be kept in AVL tree. */
4965 static int constructor_incremental;
4966
4967 /* 1 if so far this constructor's elements are all compile-time constants. */
4968 static int constructor_constant;
4969
4970 /* 1 if so far this constructor's elements are all valid address constants. */
4971 static int constructor_simple;
4972
4973 /* 1 if this constructor is erroneous so far. */
4974 static int constructor_erroneous;
4975
4976 /* Structure for managing pending initializer elements, organized as an
4977 AVL tree. */
4978
4979 struct init_node
4980 {
4981 struct init_node *left, *right;
4982 struct init_node *parent;
4983 int balance;
4984 tree purpose;
4985 tree value;
4986 };
4987
4988 /* Tree of pending elements at this constructor level.
4989 These are elements encountered out of order
4990 which belong at places we haven't reached yet in actually
4991 writing the output.
4992 Will never hold tree nodes across GC runs. */
4993 static struct init_node *constructor_pending_elts;
4994
4995 /* The SPELLING_DEPTH of this constructor. */
4996 static int constructor_depth;
4997
4998 /* DECL node for which an initializer is being read.
4999 0 means we are reading a constructor expression
5000 such as (struct foo) {...}. */
5001 static tree constructor_decl;
5002
5003 /* Nonzero if this is an initializer for a top-level decl. */
5004 static int constructor_top_level;
5005
5006 /* Nonzero if there were any member designators in this initializer. */
5007 static int constructor_designated;
5008
5009 /* Nesting depth of designator list. */
5010 static int designator_depth;
5011
5012 /* Nonzero if there were diagnosed errors in this designator list. */
5013 static int designator_erroneous;
5014
5015 \f
5016 /* This stack has a level for each implicit or explicit level of
5017 structuring in the initializer, including the outermost one. It
5018 saves the values of most of the variables above. */
5019
5020 struct constructor_range_stack;
5021
5022 struct constructor_stack
5023 {
5024 struct constructor_stack *next;
5025 tree type;
5026 tree fields;
5027 tree index;
5028 tree max_index;
5029 tree unfilled_index;
5030 tree unfilled_fields;
5031 tree bit_index;
5032 VEC(constructor_elt,gc) *elements;
5033 struct init_node *pending_elts;
5034 int offset;
5035 int depth;
5036 /* If value nonzero, this value should replace the entire
5037 constructor at this level. */
5038 struct c_expr replacement_value;
5039 struct constructor_range_stack *range_stack;
5040 char constant;
5041 char simple;
5042 char implicit;
5043 char erroneous;
5044 char outer;
5045 char incremental;
5046 char designated;
5047 };
5048
5049 static struct constructor_stack *constructor_stack;
5050
5051 /* This stack represents designators from some range designator up to
5052 the last designator in the list. */
5053
5054 struct constructor_range_stack
5055 {
5056 struct constructor_range_stack *next, *prev;
5057 struct constructor_stack *stack;
5058 tree range_start;
5059 tree index;
5060 tree range_end;
5061 tree fields;
5062 };
5063
5064 static struct constructor_range_stack *constructor_range_stack;
5065
5066 /* This stack records separate initializers that are nested.
5067 Nested initializers can't happen in ANSI C, but GNU C allows them
5068 in cases like { ... (struct foo) { ... } ... }. */
5069
5070 struct initializer_stack
5071 {
5072 struct initializer_stack *next;
5073 tree decl;
5074 struct constructor_stack *constructor_stack;
5075 struct constructor_range_stack *constructor_range_stack;
5076 VEC(constructor_elt,gc) *elements;
5077 struct spelling *spelling;
5078 struct spelling *spelling_base;
5079 int spelling_size;
5080 char top_level;
5081 char require_constant_value;
5082 char require_constant_elements;
5083 };
5084
5085 static struct initializer_stack *initializer_stack;
5086 \f
5087 /* Prepare to parse and output the initializer for variable DECL. */
5088
5089 void
5090 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
5091 {
5092 const char *locus;
5093 struct initializer_stack *p = XNEW (struct initializer_stack);
5094
5095 p->decl = constructor_decl;
5096 p->require_constant_value = require_constant_value;
5097 p->require_constant_elements = require_constant_elements;
5098 p->constructor_stack = constructor_stack;
5099 p->constructor_range_stack = constructor_range_stack;
5100 p->elements = constructor_elements;
5101 p->spelling = spelling;
5102 p->spelling_base = spelling_base;
5103 p->spelling_size = spelling_size;
5104 p->top_level = constructor_top_level;
5105 p->next = initializer_stack;
5106 initializer_stack = p;
5107
5108 constructor_decl = decl;
5109 constructor_designated = 0;
5110 constructor_top_level = top_level;
5111
5112 if (decl != 0 && decl != error_mark_node)
5113 {
5114 require_constant_value = TREE_STATIC (decl);
5115 require_constant_elements
5116 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
5117 /* For a scalar, you can always use any value to initialize,
5118 even within braces. */
5119 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
5120 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5121 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
5122 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5123 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
5124 }
5125 else
5126 {
5127 require_constant_value = 0;
5128 require_constant_elements = 0;
5129 locus = "(anonymous)";
5130 }
5131
5132 constructor_stack = 0;
5133 constructor_range_stack = 0;
5134
5135 missing_braces_mentioned = 0;
5136
5137 spelling_base = 0;
5138 spelling_size = 0;
5139 RESTORE_SPELLING_DEPTH (0);
5140
5141 if (locus)
5142 push_string (locus);
5143 }
5144
5145 void
5146 finish_init (void)
5147 {
5148 struct initializer_stack *p = initializer_stack;
5149
5150 /* Free the whole constructor stack of this initializer. */
5151 while (constructor_stack)
5152 {
5153 struct constructor_stack *q = constructor_stack;
5154 constructor_stack = q->next;
5155 free (q);
5156 }
5157
5158 gcc_assert (!constructor_range_stack);
5159
5160 /* Pop back to the data of the outer initializer (if any). */
5161 free (spelling_base);
5162
5163 constructor_decl = p->decl;
5164 require_constant_value = p->require_constant_value;
5165 require_constant_elements = p->require_constant_elements;
5166 constructor_stack = p->constructor_stack;
5167 constructor_range_stack = p->constructor_range_stack;
5168 constructor_elements = p->elements;
5169 spelling = p->spelling;
5170 spelling_base = p->spelling_base;
5171 spelling_size = p->spelling_size;
5172 constructor_top_level = p->top_level;
5173 initializer_stack = p->next;
5174 free (p);
5175 }
5176 \f
5177 /* Call here when we see the initializer is surrounded by braces.
5178 This is instead of a call to push_init_level;
5179 it is matched by a call to pop_init_level.
5180
5181 TYPE is the type to initialize, for a constructor expression.
5182 For an initializer for a decl, TYPE is zero. */
5183
5184 void
5185 really_start_incremental_init (tree type)
5186 {
5187 struct constructor_stack *p = XNEW (struct constructor_stack);
5188
5189 if (type == 0)
5190 type = TREE_TYPE (constructor_decl);
5191
5192 if (targetm.vector_opaque_p (type))
5193 error ("opaque vector types cannot be initialized");
5194
5195 p->type = constructor_type;
5196 p->fields = constructor_fields;
5197 p->index = constructor_index;
5198 p->max_index = constructor_max_index;
5199 p->unfilled_index = constructor_unfilled_index;
5200 p->unfilled_fields = constructor_unfilled_fields;
5201 p->bit_index = constructor_bit_index;
5202 p->elements = constructor_elements;
5203 p->constant = constructor_constant;
5204 p->simple = constructor_simple;
5205 p->erroneous = constructor_erroneous;
5206 p->pending_elts = constructor_pending_elts;
5207 p->depth = constructor_depth;
5208 p->replacement_value.value = 0;
5209 p->replacement_value.original_code = ERROR_MARK;
5210 p->implicit = 0;
5211 p->range_stack = 0;
5212 p->outer = 0;
5213 p->incremental = constructor_incremental;
5214 p->designated = constructor_designated;
5215 p->next = 0;
5216 constructor_stack = p;
5217
5218 constructor_constant = 1;
5219 constructor_simple = 1;
5220 constructor_depth = SPELLING_DEPTH ();
5221 constructor_elements = 0;
5222 constructor_pending_elts = 0;
5223 constructor_type = type;
5224 constructor_incremental = 1;
5225 constructor_designated = 0;
5226 designator_depth = 0;
5227 designator_erroneous = 0;
5228
5229 if (TREE_CODE (constructor_type) == RECORD_TYPE
5230 || TREE_CODE (constructor_type) == UNION_TYPE)
5231 {
5232 constructor_fields = TYPE_FIELDS (constructor_type);
5233 /* Skip any nameless bit fields at the beginning. */
5234 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5235 && DECL_NAME (constructor_fields) == 0)
5236 constructor_fields = TREE_CHAIN (constructor_fields);
5237
5238 constructor_unfilled_fields = constructor_fields;
5239 constructor_bit_index = bitsize_zero_node;
5240 }
5241 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5242 {
5243 if (TYPE_DOMAIN (constructor_type))
5244 {
5245 constructor_max_index
5246 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5247
5248 /* Detect non-empty initializations of zero-length arrays. */
5249 if (constructor_max_index == NULL_TREE
5250 && TYPE_SIZE (constructor_type))
5251 constructor_max_index = build_int_cst (NULL_TREE, -1);
5252
5253 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5254 to initialize VLAs will cause a proper error; avoid tree
5255 checking errors as well by setting a safe value. */
5256 if (constructor_max_index
5257 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5258 constructor_max_index = build_int_cst (NULL_TREE, -1);
5259
5260 constructor_index
5261 = convert (bitsizetype,
5262 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5263 }
5264 else
5265 {
5266 constructor_index = bitsize_zero_node;
5267 constructor_max_index = NULL_TREE;
5268 }
5269
5270 constructor_unfilled_index = constructor_index;
5271 }
5272 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5273 {
5274 /* Vectors are like simple fixed-size arrays. */
5275 constructor_max_index =
5276 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5277 constructor_index = bitsize_zero_node;
5278 constructor_unfilled_index = constructor_index;
5279 }
5280 else
5281 {
5282 /* Handle the case of int x = {5}; */
5283 constructor_fields = constructor_type;
5284 constructor_unfilled_fields = constructor_type;
5285 }
5286 }
5287 \f
5288 /* Push down into a subobject, for initialization.
5289 If this is for an explicit set of braces, IMPLICIT is 0.
5290 If it is because the next element belongs at a lower level,
5291 IMPLICIT is 1 (or 2 if the push is because of designator list). */
5292
5293 void
5294 push_init_level (int implicit)
5295 {
5296 struct constructor_stack *p;
5297 tree value = NULL_TREE;
5298
5299 /* If we've exhausted any levels that didn't have braces,
5300 pop them now. If implicit == 1, this will have been done in
5301 process_init_element; do not repeat it here because in the case
5302 of excess initializers for an empty aggregate this leads to an
5303 infinite cycle of popping a level and immediately recreating
5304 it. */
5305 if (implicit != 1)
5306 {
5307 while (constructor_stack->implicit)
5308 {
5309 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5310 || TREE_CODE (constructor_type) == UNION_TYPE)
5311 && constructor_fields == 0)
5312 process_init_element (pop_init_level (1));
5313 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5314 && constructor_max_index
5315 && tree_int_cst_lt (constructor_max_index,
5316 constructor_index))
5317 process_init_element (pop_init_level (1));
5318 else
5319 break;
5320 }
5321 }
5322
5323 /* Unless this is an explicit brace, we need to preserve previous
5324 content if any. */
5325 if (implicit)
5326 {
5327 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5328 || TREE_CODE (constructor_type) == UNION_TYPE)
5329 && constructor_fields)
5330 value = find_init_member (constructor_fields);
5331 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5332 value = find_init_member (constructor_index);
5333 }
5334
5335 p = XNEW (struct constructor_stack);
5336 p->type = constructor_type;
5337 p->fields = constructor_fields;
5338 p->index = constructor_index;
5339 p->max_index = constructor_max_index;
5340 p->unfilled_index = constructor_unfilled_index;
5341 p->unfilled_fields = constructor_unfilled_fields;
5342 p->bit_index = constructor_bit_index;
5343 p->elements = constructor_elements;
5344 p->constant = constructor_constant;
5345 p->simple = constructor_simple;
5346 p->erroneous = constructor_erroneous;
5347 p->pending_elts = constructor_pending_elts;
5348 p->depth = constructor_depth;
5349 p->replacement_value.value = 0;
5350 p->replacement_value.original_code = ERROR_MARK;
5351 p->implicit = implicit;
5352 p->outer = 0;
5353 p->incremental = constructor_incremental;
5354 p->designated = constructor_designated;
5355 p->next = constructor_stack;
5356 p->range_stack = 0;
5357 constructor_stack = p;
5358
5359 constructor_constant = 1;
5360 constructor_simple = 1;
5361 constructor_depth = SPELLING_DEPTH ();
5362 constructor_elements = 0;
5363 constructor_incremental = 1;
5364 constructor_designated = 0;
5365 constructor_pending_elts = 0;
5366 if (!implicit)
5367 {
5368 p->range_stack = constructor_range_stack;
5369 constructor_range_stack = 0;
5370 designator_depth = 0;
5371 designator_erroneous = 0;
5372 }
5373
5374 /* Don't die if an entire brace-pair level is superfluous
5375 in the containing level. */
5376 if (constructor_type == 0)
5377 ;
5378 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5379 || TREE_CODE (constructor_type) == UNION_TYPE)
5380 {
5381 /* Don't die if there are extra init elts at the end. */
5382 if (constructor_fields == 0)
5383 constructor_type = 0;
5384 else
5385 {
5386 constructor_type = TREE_TYPE (constructor_fields);
5387 push_member_name (constructor_fields);
5388 constructor_depth++;
5389 }
5390 }
5391 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5392 {
5393 constructor_type = TREE_TYPE (constructor_type);
5394 push_array_bounds (tree_low_cst (constructor_index, 1));
5395 constructor_depth++;
5396 }
5397
5398 if (constructor_type == 0)
5399 {
5400 error_init ("extra brace group at end of initializer");
5401 constructor_fields = 0;
5402 constructor_unfilled_fields = 0;
5403 return;
5404 }
5405
5406 if (value && TREE_CODE (value) == CONSTRUCTOR)
5407 {
5408 constructor_constant = TREE_CONSTANT (value);
5409 constructor_simple = TREE_STATIC (value);
5410 constructor_elements = CONSTRUCTOR_ELTS (value);
5411 if (!VEC_empty (constructor_elt, constructor_elements)
5412 && (TREE_CODE (constructor_type) == RECORD_TYPE
5413 || TREE_CODE (constructor_type) == ARRAY_TYPE))
5414 set_nonincremental_init ();
5415 }
5416
5417 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5418 {
5419 missing_braces_mentioned = 1;
5420 warning_init (OPT_Wmissing_braces, "missing braces around initializer");
5421 }
5422
5423 if (TREE_CODE (constructor_type) == RECORD_TYPE
5424 || TREE_CODE (constructor_type) == UNION_TYPE)
5425 {
5426 constructor_fields = TYPE_FIELDS (constructor_type);
5427 /* Skip any nameless bit fields at the beginning. */
5428 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5429 && DECL_NAME (constructor_fields) == 0)
5430 constructor_fields = TREE_CHAIN (constructor_fields);
5431
5432 constructor_unfilled_fields = constructor_fields;
5433 constructor_bit_index = bitsize_zero_node;
5434 }
5435 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5436 {
5437 /* Vectors are like simple fixed-size arrays. */
5438 constructor_max_index =
5439 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5440 constructor_index = convert (bitsizetype, integer_zero_node);
5441 constructor_unfilled_index = constructor_index;
5442 }
5443 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5444 {
5445 if (TYPE_DOMAIN (constructor_type))
5446 {
5447 constructor_max_index
5448 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5449
5450 /* Detect non-empty initializations of zero-length arrays. */
5451 if (constructor_max_index == NULL_TREE
5452 && TYPE_SIZE (constructor_type))
5453 constructor_max_index = build_int_cst (NULL_TREE, -1);
5454
5455 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5456 to initialize VLAs will cause a proper error; avoid tree
5457 checking errors as well by setting a safe value. */
5458 if (constructor_max_index
5459 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5460 constructor_max_index = build_int_cst (NULL_TREE, -1);
5461
5462 constructor_index
5463 = convert (bitsizetype,
5464 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5465 }
5466 else
5467 constructor_index = bitsize_zero_node;
5468
5469 constructor_unfilled_index = constructor_index;
5470 if (value && TREE_CODE (value) == STRING_CST)
5471 {
5472 /* We need to split the char/wchar array into individual
5473 characters, so that we don't have to special case it
5474 everywhere. */
5475 set_nonincremental_init_from_string (value);
5476 }
5477 }
5478 else
5479 {
5480 if (constructor_type != error_mark_node)
5481 warning_init (0, "braces around scalar initializer");
5482 constructor_fields = constructor_type;
5483 constructor_unfilled_fields = constructor_type;
5484 }
5485 }
5486
5487 /* At the end of an implicit or explicit brace level,
5488 finish up that level of constructor. If a single expression
5489 with redundant braces initialized that level, return the
5490 c_expr structure for that expression. Otherwise, the original_code
5491 element is set to ERROR_MARK.
5492 If we were outputting the elements as they are read, return 0 as the value
5493 from inner levels (process_init_element ignores that),
5494 but return error_mark_node as the value from the outermost level
5495 (that's what we want to put in DECL_INITIAL).
5496 Otherwise, return a CONSTRUCTOR expression as the value. */
5497
5498 struct c_expr
5499 pop_init_level (int implicit)
5500 {
5501 struct constructor_stack *p;
5502 struct c_expr ret;
5503 ret.value = 0;
5504 ret.original_code = ERROR_MARK;
5505
5506 if (implicit == 0)
5507 {
5508 /* When we come to an explicit close brace,
5509 pop any inner levels that didn't have explicit braces. */
5510 while (constructor_stack->implicit)
5511 process_init_element (pop_init_level (1));
5512
5513 gcc_assert (!constructor_range_stack);
5514 }
5515
5516 /* Now output all pending elements. */
5517 constructor_incremental = 1;
5518 output_pending_init_elements (1);
5519
5520 p = constructor_stack;
5521
5522 /* Error for initializing a flexible array member, or a zero-length
5523 array member in an inappropriate context. */
5524 if (constructor_type && constructor_fields
5525 && TREE_CODE (constructor_type) == ARRAY_TYPE
5526 && TYPE_DOMAIN (constructor_type)
5527 && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5528 {
5529 /* Silently discard empty initializations. The parser will
5530 already have pedwarned for empty brackets. */
5531 if (integer_zerop (constructor_unfilled_index))
5532 constructor_type = NULL_TREE;
5533 else
5534 {
5535 gcc_assert (!TYPE_SIZE (constructor_type));
5536
5537 if (constructor_depth > 2)
5538 error_init ("initialization of flexible array member in a nested context");
5539 else if (pedantic)
5540 pedwarn_init ("initialization of a flexible array member");
5541
5542 /* We have already issued an error message for the existence
5543 of a flexible array member not at the end of the structure.
5544 Discard the initializer so that we do not die later. */
5545 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5546 constructor_type = NULL_TREE;
5547 }
5548 }
5549
5550 /* Warn when some struct elements are implicitly initialized to zero. */
5551 if (warn_missing_field_initializers
5552 && constructor_type
5553 && TREE_CODE (constructor_type) == RECORD_TYPE
5554 && constructor_unfilled_fields)
5555 {
5556 /* Do not warn for flexible array members or zero-length arrays. */
5557 while (constructor_unfilled_fields
5558 && (!DECL_SIZE (constructor_unfilled_fields)
5559 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5560 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5561
5562 /* Do not warn if this level of the initializer uses member
5563 designators; it is likely to be deliberate. */
5564 if (constructor_unfilled_fields && !constructor_designated)
5565 {
5566 push_member_name (constructor_unfilled_fields);
5567 warning_init (OPT_Wmissing_field_initializers,
5568 "missing initializer");
5569 RESTORE_SPELLING_DEPTH (constructor_depth);
5570 }
5571 }
5572
5573 /* Pad out the end of the structure. */
5574 if (p->replacement_value.value)
5575 /* If this closes a superfluous brace pair,
5576 just pass out the element between them. */
5577 ret = p->replacement_value;
5578 else if (constructor_type == 0)
5579 ;
5580 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5581 && TREE_CODE (constructor_type) != UNION_TYPE
5582 && TREE_CODE (constructor_type) != ARRAY_TYPE
5583 && TREE_CODE (constructor_type) != VECTOR_TYPE)
5584 {
5585 /* A nonincremental scalar initializer--just return
5586 the element, after verifying there is just one. */
5587 if (VEC_empty (constructor_elt,constructor_elements))
5588 {
5589 if (!constructor_erroneous)
5590 error_init ("empty scalar initializer");
5591 ret.value = error_mark_node;
5592 }
5593 else if (VEC_length (constructor_elt,constructor_elements) != 1)
5594 {
5595 error_init ("extra elements in scalar initializer");
5596 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5597 }
5598 else
5599 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5600 }
5601 else
5602 {
5603 if (constructor_erroneous)
5604 ret.value = error_mark_node;
5605 else
5606 {
5607 ret.value = build_constructor (constructor_type,
5608 constructor_elements);
5609 if (constructor_constant)
5610 TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5611 if (constructor_constant && constructor_simple)
5612 TREE_STATIC (ret.value) = 1;
5613 }
5614 }
5615
5616 constructor_type = p->type;
5617 constructor_fields = p->fields;
5618 constructor_index = p->index;
5619 constructor_max_index = p->max_index;
5620 constructor_unfilled_index = p->unfilled_index;
5621 constructor_unfilled_fields = p->unfilled_fields;
5622 constructor_bit_index = p->bit_index;
5623 constructor_elements = p->elements;
5624 constructor_constant = p->constant;
5625 constructor_simple = p->simple;
5626 constructor_erroneous = p->erroneous;
5627 constructor_incremental = p->incremental;
5628 constructor_designated = p->designated;
5629 constructor_pending_elts = p->pending_elts;
5630 constructor_depth = p->depth;
5631 if (!p->implicit)
5632 constructor_range_stack = p->range_stack;
5633 RESTORE_SPELLING_DEPTH (constructor_depth);
5634
5635 constructor_stack = p->next;
5636 free (p);
5637
5638 if (ret.value == 0 && constructor_stack == 0)
5639 ret.value = error_mark_node;
5640 return ret;
5641 }
5642
5643 /* Common handling for both array range and field name designators.
5644 ARRAY argument is nonzero for array ranges. Returns zero for success. */
5645
5646 static int
5647 set_designator (int array)
5648 {
5649 tree subtype;
5650 enum tree_code subcode;
5651
5652 /* Don't die if an entire brace-pair level is superfluous
5653 in the containing level. */
5654 if (constructor_type == 0)
5655 return 1;
5656
5657 /* If there were errors in this designator list already, bail out
5658 silently. */
5659 if (designator_erroneous)
5660 return 1;
5661
5662 if (!designator_depth)
5663 {
5664 gcc_assert (!constructor_range_stack);
5665
5666 /* Designator list starts at the level of closest explicit
5667 braces. */
5668 while (constructor_stack->implicit)
5669 process_init_element (pop_init_level (1));
5670 constructor_designated = 1;
5671 return 0;
5672 }
5673
5674 switch (TREE_CODE (constructor_type))
5675 {
5676 case RECORD_TYPE:
5677 case UNION_TYPE:
5678 subtype = TREE_TYPE (constructor_fields);
5679 if (subtype != error_mark_node)
5680 subtype = TYPE_MAIN_VARIANT (subtype);
5681 break;
5682 case ARRAY_TYPE:
5683 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5684 break;
5685 default:
5686 gcc_unreachable ();
5687 }
5688
5689 subcode = TREE_CODE (subtype);
5690 if (array && subcode != ARRAY_TYPE)
5691 {
5692 error_init ("array index in non-array initializer");
5693 return 1;
5694 }
5695 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5696 {
5697 error_init ("field name not in record or union initializer");
5698 return 1;
5699 }
5700
5701 constructor_designated = 1;
5702 push_init_level (2);
5703 return 0;
5704 }
5705
5706 /* If there are range designators in designator list, push a new designator
5707 to constructor_range_stack. RANGE_END is end of such stack range or
5708 NULL_TREE if there is no range designator at this level. */
5709
5710 static void
5711 push_range_stack (tree range_end)
5712 {
5713 struct constructor_range_stack *p;
5714
5715 p = GGC_NEW (struct constructor_range_stack);
5716 p->prev = constructor_range_stack;
5717 p->next = 0;
5718 p->fields = constructor_fields;
5719 p->range_start = constructor_index;
5720 p->index = constructor_index;
5721 p->stack = constructor_stack;
5722 p->range_end = range_end;
5723 if (constructor_range_stack)
5724 constructor_range_stack->next = p;
5725 constructor_range_stack = p;
5726 }
5727
5728 /* Within an array initializer, specify the next index to be initialized.
5729 FIRST is that index. If LAST is nonzero, then initialize a range
5730 of indices, running from FIRST through LAST. */
5731
5732 void
5733 set_init_index (tree first, tree last)
5734 {
5735 if (set_designator (1))
5736 return;
5737
5738 designator_erroneous = 1;
5739
5740 if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5741 || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5742 {
5743 error_init ("array index in initializer not of integer type");
5744 return;
5745 }
5746
5747 if (TREE_CODE (first) != INTEGER_CST)
5748 error_init ("nonconstant array index in initializer");
5749 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5750 error_init ("nonconstant array index in initializer");
5751 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5752 error_init ("array index in non-array initializer");
5753 else if (tree_int_cst_sgn (first) == -1)
5754 error_init ("array index in initializer exceeds array bounds");
5755 else if (constructor_max_index
5756 && tree_int_cst_lt (constructor_max_index, first))
5757 error_init ("array index in initializer exceeds array bounds");
5758 else
5759 {
5760 constructor_index = convert (bitsizetype, first);
5761
5762 if (last)
5763 {
5764 if (tree_int_cst_equal (first, last))
5765 last = 0;
5766 else if (tree_int_cst_lt (last, first))
5767 {
5768 error_init ("empty index range in initializer");
5769 last = 0;
5770 }
5771 else
5772 {
5773 last = convert (bitsizetype, last);
5774 if (constructor_max_index != 0
5775 && tree_int_cst_lt (constructor_max_index, last))
5776 {
5777 error_init ("array index range in initializer exceeds array bounds");
5778 last = 0;
5779 }
5780 }
5781 }
5782
5783 designator_depth++;
5784 designator_erroneous = 0;
5785 if (constructor_range_stack || last)
5786 push_range_stack (last);
5787 }
5788 }
5789
5790 /* Within a struct initializer, specify the next field to be initialized. */
5791
5792 void
5793 set_init_label (tree fieldname)
5794 {
5795 tree tail;
5796
5797 if (set_designator (0))
5798 return;
5799
5800 designator_erroneous = 1;
5801
5802 if (TREE_CODE (constructor_type) != RECORD_TYPE
5803 && TREE_CODE (constructor_type) != UNION_TYPE)
5804 {
5805 error_init ("field name not in record or union initializer");
5806 return;
5807 }
5808
5809 for (tail = TYPE_FIELDS (constructor_type); tail;
5810 tail = TREE_CHAIN (tail))
5811 {
5812 if (DECL_NAME (tail) == fieldname)
5813 break;
5814 }
5815
5816 if (tail == 0)
5817 error ("unknown field %qE specified in initializer", fieldname);
5818 else
5819 {
5820 constructor_fields = tail;
5821 designator_depth++;
5822 designator_erroneous = 0;
5823 if (constructor_range_stack)
5824 push_range_stack (NULL_TREE);
5825 }
5826 }
5827 \f
5828 /* Add a new initializer to the tree of pending initializers. PURPOSE
5829 identifies the initializer, either array index or field in a structure.
5830 VALUE is the value of that index or field. */
5831
5832 static void
5833 add_pending_init (tree purpose, tree value)
5834 {
5835 struct init_node *p, **q, *r;
5836
5837 q = &constructor_pending_elts;
5838 p = 0;
5839
5840 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5841 {
5842 while (*q != 0)
5843 {
5844 p = *q;
5845 if (tree_int_cst_lt (purpose, p->purpose))
5846 q = &p->left;
5847 else if (tree_int_cst_lt (p->purpose, purpose))
5848 q = &p->right;
5849 else
5850 {
5851 if (TREE_SIDE_EFFECTS (p->value))
5852 warning_init (0, "initialized field with side-effects overwritten");
5853 else if (warn_override_init)
5854 warning_init (OPT_Woverride_init, "initialized field overwritten");
5855 p->value = value;
5856 return;
5857 }
5858 }
5859 }
5860 else
5861 {
5862 tree bitpos;
5863
5864 bitpos = bit_position (purpose);
5865 while (*q != NULL)
5866 {
5867 p = *q;
5868 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5869 q = &p->left;
5870 else if (p->purpose != purpose)
5871 q = &p->right;
5872 else
5873 {
5874 if (TREE_SIDE_EFFECTS (p->value))
5875 warning_init (0, "initialized field with side-effects overwritten");
5876 else if (warn_override_init)
5877 warning_init (OPT_Woverride_init, "initialized field overwritten");
5878 p->value = value;
5879 return;
5880 }
5881 }
5882 }
5883
5884 r = GGC_NEW (struct init_node);
5885 r->purpose = purpose;
5886 r->value = value;
5887
5888 *q = r;
5889 r->parent = p;
5890 r->left = 0;
5891 r->right = 0;
5892 r->balance = 0;
5893
5894 while (p)
5895 {
5896 struct init_node *s;
5897
5898 if (r == p->left)
5899 {
5900 if (p->balance == 0)
5901 p->balance = -1;
5902 else if (p->balance < 0)
5903 {
5904 if (r->balance < 0)
5905 {
5906 /* L rotation. */
5907 p->left = r->right;
5908 if (p->left)
5909 p->left->parent = p;
5910 r->right = p;
5911
5912 p->balance = 0;
5913 r->balance = 0;
5914
5915 s = p->parent;
5916 p->parent = r;
5917 r->parent = s;
5918 if (s)
5919 {
5920 if (s->left == p)
5921 s->left = r;
5922 else
5923 s->right = r;
5924 }
5925 else
5926 constructor_pending_elts = r;
5927 }
5928 else
5929 {
5930 /* LR rotation. */
5931 struct init_node *t = r->right;
5932
5933 r->right = t->left;
5934 if (r->right)
5935 r->right->parent = r;
5936 t->left = r;
5937
5938 p->left = t->right;
5939 if (p->left)
5940 p->left->parent = p;
5941 t->right = p;
5942
5943 p->balance = t->balance < 0;
5944 r->balance = -(t->balance > 0);
5945 t->balance = 0;
5946
5947 s = p->parent;
5948 p->parent = t;
5949 r->parent = t;
5950 t->parent = s;
5951 if (s)
5952 {
5953 if (s->left == p)
5954 s->left = t;
5955 else
5956 s->right = t;
5957 }
5958 else
5959 constructor_pending_elts = t;
5960 }
5961 break;
5962 }
5963 else
5964 {
5965 /* p->balance == +1; growth of left side balances the node. */
5966 p->balance = 0;
5967 break;
5968 }
5969 }
5970 else /* r == p->right */
5971 {
5972 if (p->balance == 0)
5973 /* Growth propagation from right side. */
5974 p->balance++;
5975 else if (p->balance > 0)
5976 {
5977 if (r->balance > 0)
5978 {
5979 /* R rotation. */
5980 p->right = r->left;
5981 if (p->right)
5982 p->right->parent = p;
5983 r->left = p;
5984
5985 p->balance = 0;
5986 r->balance = 0;
5987
5988 s = p->parent;
5989 p->parent = r;
5990 r->parent = s;
5991 if (s)
5992 {
5993 if (s->left == p)
5994 s->left = r;
5995 else
5996 s->right = r;
5997 }
5998 else
5999 constructor_pending_elts = r;
6000 }
6001 else /* r->balance == -1 */
6002 {
6003 /* RL rotation */
6004 struct init_node *t = r->left;
6005
6006 r->left = t->right;
6007 if (r->left)
6008 r->left->parent = r;
6009 t->right = r;
6010
6011 p->right = t->left;
6012 if (p->right)
6013 p->right->parent = p;
6014 t->left = p;
6015
6016 r->balance = (t->balance < 0);
6017 p->balance = -(t->balance > 0);
6018 t->balance = 0;
6019
6020 s = p->parent;
6021 p->parent = t;
6022 r->parent = t;
6023 t->parent = s;
6024 if (s)
6025 {
6026 if (s->left == p)
6027 s->left = t;
6028 else
6029 s->right = t;
6030 }
6031 else
6032 constructor_pending_elts = t;
6033 }
6034 break;
6035 }
6036 else
6037 {
6038 /* p->balance == -1; growth of right side balances the node. */
6039 p->balance = 0;
6040 break;
6041 }
6042 }
6043
6044 r = p;
6045 p = p->parent;
6046 }
6047 }
6048
6049 /* Build AVL tree from a sorted chain. */
6050
6051 static void
6052 set_nonincremental_init (void)
6053 {
6054 unsigned HOST_WIDE_INT ix;
6055 tree index, value;
6056
6057 if (TREE_CODE (constructor_type) != RECORD_TYPE
6058 && TREE_CODE (constructor_type) != ARRAY_TYPE)
6059 return;
6060
6061 FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
6062 add_pending_init (index, value);
6063 constructor_elements = 0;
6064 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6065 {
6066 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
6067 /* Skip any nameless bit fields at the beginning. */
6068 while (constructor_unfilled_fields != 0
6069 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6070 && DECL_NAME (constructor_unfilled_fields) == 0)
6071 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
6072
6073 }
6074 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6075 {
6076 if (TYPE_DOMAIN (constructor_type))
6077 constructor_unfilled_index
6078 = convert (bitsizetype,
6079 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6080 else
6081 constructor_unfilled_index = bitsize_zero_node;
6082 }
6083 constructor_incremental = 0;
6084 }
6085
6086 /* Build AVL tree from a string constant. */
6087
6088 static void
6089 set_nonincremental_init_from_string (tree str)
6090 {
6091 tree value, purpose, type;
6092 HOST_WIDE_INT val[2];
6093 const char *p, *end;
6094 int byte, wchar_bytes, charwidth, bitpos;
6095
6096 gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
6097
6098 if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6099 == TYPE_PRECISION (char_type_node))
6100 wchar_bytes = 1;
6101 else
6102 {
6103 gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
6104 == TYPE_PRECISION (wchar_type_node));
6105 wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
6106 }
6107 charwidth = TYPE_PRECISION (char_type_node);
6108 type = TREE_TYPE (constructor_type);
6109 p = TREE_STRING_POINTER (str);
6110 end = p + TREE_STRING_LENGTH (str);
6111
6112 for (purpose = bitsize_zero_node;
6113 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
6114 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
6115 {
6116 if (wchar_bytes == 1)
6117 {
6118 val[1] = (unsigned char) *p++;
6119 val[0] = 0;
6120 }
6121 else
6122 {
6123 val[0] = 0;
6124 val[1] = 0;
6125 for (byte = 0; byte < wchar_bytes; byte++)
6126 {
6127 if (BYTES_BIG_ENDIAN)
6128 bitpos = (wchar_bytes - byte - 1) * charwidth;
6129 else
6130 bitpos = byte * charwidth;
6131 val[bitpos < HOST_BITS_PER_WIDE_INT]
6132 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
6133 << (bitpos % HOST_BITS_PER_WIDE_INT);
6134 }
6135 }
6136
6137 if (!TYPE_UNSIGNED (type))
6138 {
6139 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6140 if (bitpos < HOST_BITS_PER_WIDE_INT)
6141 {
6142 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6143 {
6144 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6145 val[0] = -1;
6146 }
6147 }
6148 else if (bitpos == HOST_BITS_PER_WIDE_INT)
6149 {
6150 if (val[1] < 0)
6151 val[0] = -1;
6152 }
6153 else if (val[0] & (((HOST_WIDE_INT) 1)
6154 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6155 val[0] |= ((HOST_WIDE_INT) -1)
6156 << (bitpos - HOST_BITS_PER_WIDE_INT);
6157 }
6158
6159 value = build_int_cst_wide (type, val[1], val[0]);
6160 add_pending_init (purpose, value);
6161 }
6162
6163 constructor_incremental = 0;
6164 }
6165
6166 /* Return value of FIELD in pending initializer or zero if the field was
6167 not initialized yet. */
6168
6169 static tree
6170 find_init_member (tree field)
6171 {
6172 struct init_node *p;
6173
6174 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6175 {
6176 if (constructor_incremental
6177 && tree_int_cst_lt (field, constructor_unfilled_index))
6178 set_nonincremental_init ();
6179
6180 p = constructor_pending_elts;
6181 while (p)
6182 {
6183 if (tree_int_cst_lt (field, p->purpose))
6184 p = p->left;
6185 else if (tree_int_cst_lt (p->purpose, field))
6186 p = p->right;
6187 else
6188 return p->value;
6189 }
6190 }
6191 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6192 {
6193 tree bitpos = bit_position (field);
6194
6195 if (constructor_incremental
6196 && (!constructor_unfilled_fields
6197 || tree_int_cst_lt (bitpos,
6198 bit_position (constructor_unfilled_fields))))
6199 set_nonincremental_init ();
6200
6201 p = constructor_pending_elts;
6202 while (p)
6203 {
6204 if (field == p->purpose)
6205 return p->value;
6206 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6207 p = p->left;
6208 else
6209 p = p->right;
6210 }
6211 }
6212 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6213 {
6214 if (!VEC_empty (constructor_elt, constructor_elements)
6215 && (VEC_last (constructor_elt, constructor_elements)->index
6216 == field))
6217 return VEC_last (constructor_elt, constructor_elements)->value;
6218 }
6219 return 0;
6220 }
6221
6222 /* "Output" the next constructor element.
6223 At top level, really output it to assembler code now.
6224 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6225 TYPE is the data type that the containing data type wants here.
6226 FIELD is the field (a FIELD_DECL) or the index that this element fills.
6227 If VALUE is a string constant, STRICT_STRING is true if it is
6228 unparenthesized or we should not warn here for it being parenthesized.
6229 For other types of VALUE, STRICT_STRING is not used.
6230
6231 PENDING if non-nil means output pending elements that belong
6232 right after this element. (PENDING is normally 1;
6233 it is 0 while outputting pending elements, to avoid recursion.) */
6234
6235 static void
6236 output_init_element (tree value, bool strict_string, tree type, tree field,
6237 int pending)
6238 {
6239 constructor_elt *celt;
6240
6241 if (type == error_mark_node || value == error_mark_node)
6242 {
6243 constructor_erroneous = 1;
6244 return;
6245 }
6246 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6247 && (TREE_CODE (value) == STRING_CST
6248 || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6249 && !(TREE_CODE (value) == STRING_CST
6250 && TREE_CODE (type) == ARRAY_TYPE
6251 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6252 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6253 TYPE_MAIN_VARIANT (type)))
6254 value = array_to_pointer_conversion (value);
6255
6256 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6257 && require_constant_value && !flag_isoc99 && pending)
6258 {
6259 /* As an extension, allow initializing objects with static storage
6260 duration with compound literals (which are then treated just as
6261 the brace enclosed list they contain). */
6262 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6263 value = DECL_INITIAL (decl);
6264 }
6265
6266 if (value == error_mark_node)
6267 constructor_erroneous = 1;
6268 else if (!TREE_CONSTANT (value))
6269 constructor_constant = 0;
6270 else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6271 || ((TREE_CODE (constructor_type) == RECORD_TYPE
6272 || TREE_CODE (constructor_type) == UNION_TYPE)
6273 && DECL_C_BIT_FIELD (field)
6274 && TREE_CODE (value) != INTEGER_CST))
6275 constructor_simple = 0;
6276
6277 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6278 {
6279 if (require_constant_value)
6280 {
6281 error_init ("initializer element is not constant");
6282 value = error_mark_node;
6283 }
6284 else if (require_constant_elements)
6285 pedwarn ("initializer element is not computable at load time");
6286 }
6287
6288 /* If this field is empty (and not at the end of structure),
6289 don't do anything other than checking the initializer. */
6290 if (field
6291 && (TREE_TYPE (field) == error_mark_node
6292 || (COMPLETE_TYPE_P (TREE_TYPE (field))
6293 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6294 && (TREE_CODE (constructor_type) == ARRAY_TYPE
6295 || TREE_CHAIN (field)))))
6296 return;
6297
6298 value = digest_init (type, value, strict_string, require_constant_value);
6299 if (value == error_mark_node)
6300 {
6301 constructor_erroneous = 1;
6302 return;
6303 }
6304
6305 /* If this element doesn't come next in sequence,
6306 put it on constructor_pending_elts. */
6307 if (TREE_CODE (constructor_type) == ARRAY_TYPE
6308 && (!constructor_incremental
6309 || !tree_int_cst_equal (field, constructor_unfilled_index)))
6310 {
6311 if (constructor_incremental
6312 && tree_int_cst_lt (field, constructor_unfilled_index))
6313 set_nonincremental_init ();
6314
6315 add_pending_init (field, value);
6316 return;
6317 }
6318 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6319 && (!constructor_incremental
6320 || field != constructor_unfilled_fields))
6321 {
6322 /* We do this for records but not for unions. In a union,
6323 no matter which field is specified, it can be initialized
6324 right away since it starts at the beginning of the union. */
6325 if (constructor_incremental)
6326 {
6327 if (!constructor_unfilled_fields)
6328 set_nonincremental_init ();
6329 else
6330 {
6331 tree bitpos, unfillpos;
6332
6333 bitpos = bit_position (field);
6334 unfillpos = bit_position (constructor_unfilled_fields);
6335
6336 if (tree_int_cst_lt (bitpos, unfillpos))
6337 set_nonincremental_init ();
6338 }
6339 }
6340
6341 add_pending_init (field, value);
6342 return;
6343 }
6344 else if (TREE_CODE (constructor_type) == UNION_TYPE
6345 && !VEC_empty (constructor_elt, constructor_elements))
6346 {
6347 if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6348 constructor_elements)->value))
6349 warning_init (0, "initialized field with side-effects overwritten");
6350 else if (warn_override_init)
6351 warning_init (OPT_Woverride_init, "initialized field overwritten");
6352
6353 /* We can have just one union field set. */
6354 constructor_elements = 0;
6355 }
6356
6357 /* Otherwise, output this element either to
6358 constructor_elements or to the assembler file. */
6359
6360 celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6361 celt->index = field;
6362 celt->value = value;
6363
6364 /* Advance the variable that indicates sequential elements output. */
6365 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6366 constructor_unfilled_index
6367 = size_binop (PLUS_EXPR, constructor_unfilled_index,
6368 bitsize_one_node);
6369 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6370 {
6371 constructor_unfilled_fields
6372 = TREE_CHAIN (constructor_unfilled_fields);
6373
6374 /* Skip any nameless bit fields. */
6375 while (constructor_unfilled_fields != 0
6376 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6377 && DECL_NAME (constructor_unfilled_fields) == 0)
6378 constructor_unfilled_fields =
6379 TREE_CHAIN (constructor_unfilled_fields);
6380 }
6381 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6382 constructor_unfilled_fields = 0;
6383
6384 /* Now output any pending elements which have become next. */
6385 if (pending)
6386 output_pending_init_elements (0);
6387 }
6388
6389 /* Output any pending elements which have become next.
6390 As we output elements, constructor_unfilled_{fields,index}
6391 advances, which may cause other elements to become next;
6392 if so, they too are output.
6393
6394 If ALL is 0, we return when there are
6395 no more pending elements to output now.
6396
6397 If ALL is 1, we output space as necessary so that
6398 we can output all the pending elements. */
6399
6400 static void
6401 output_pending_init_elements (int all)
6402 {
6403 struct init_node *elt = constructor_pending_elts;
6404 tree next;
6405
6406 retry:
6407
6408 /* Look through the whole pending tree.
6409 If we find an element that should be output now,
6410 output it. Otherwise, set NEXT to the element
6411 that comes first among those still pending. */
6412
6413 next = 0;
6414 while (elt)
6415 {
6416 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6417 {
6418 if (tree_int_cst_equal (elt->purpose,
6419 constructor_unfilled_index))
6420 output_init_element (elt->value, true,
6421 TREE_TYPE (constructor_type),
6422 constructor_unfilled_index, 0);
6423 else if (tree_int_cst_lt (constructor_unfilled_index,
6424 elt->purpose))
6425 {
6426 /* Advance to the next smaller node. */
6427 if (elt->left)
6428 elt = elt->left;
6429 else
6430 {
6431 /* We have reached the smallest node bigger than the
6432 current unfilled index. Fill the space first. */
6433 next = elt->purpose;
6434 break;
6435 }
6436 }
6437 else
6438 {
6439 /* Advance to the next bigger node. */
6440 if (elt->right)
6441 elt = elt->right;
6442 else
6443 {
6444 /* We have reached the biggest node in a subtree. Find
6445 the parent of it, which is the next bigger node. */
6446 while (elt->parent && elt->parent->right == elt)
6447 elt = elt->parent;
6448 elt = elt->parent;
6449 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6450 elt->purpose))
6451 {
6452 next = elt->purpose;
6453 break;
6454 }
6455 }
6456 }
6457 }
6458 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6459 || TREE_CODE (constructor_type) == UNION_TYPE)
6460 {
6461 tree ctor_unfilled_bitpos, elt_bitpos;
6462
6463 /* If the current record is complete we are done. */
6464 if (constructor_unfilled_fields == 0)
6465 break;
6466
6467 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6468 elt_bitpos = bit_position (elt->purpose);
6469 /* We can't compare fields here because there might be empty
6470 fields in between. */
6471 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6472 {
6473 constructor_unfilled_fields = elt->purpose;
6474 output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6475 elt->purpose, 0);
6476 }
6477 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6478 {
6479 /* Advance to the next smaller node. */
6480 if (elt->left)
6481 elt = elt->left;
6482 else
6483 {
6484 /* We have reached the smallest node bigger than the
6485 current unfilled field. Fill the space first. */
6486 next = elt->purpose;
6487 break;
6488 }
6489 }
6490 else
6491 {
6492 /* Advance to the next bigger node. */
6493 if (elt->right)
6494 elt = elt->right;
6495 else
6496 {
6497 /* We have reached the biggest node in a subtree. Find
6498 the parent of it, which is the next bigger node. */
6499 while (elt->parent && elt->parent->right == elt)
6500 elt = elt->parent;
6501 elt = elt->parent;
6502 if (elt
6503 && (tree_int_cst_lt (ctor_unfilled_bitpos,
6504 bit_position (elt->purpose))))
6505 {
6506 next = elt->purpose;
6507 break;
6508 }
6509 }
6510 }
6511 }
6512 }
6513
6514 /* Ordinarily return, but not if we want to output all
6515 and there are elements left. */
6516 if (!(all && next != 0))
6517 return;
6518
6519 /* If it's not incremental, just skip over the gap, so that after
6520 jumping to retry we will output the next successive element. */
6521 if (TREE_CODE (constructor_type) == RECORD_TYPE
6522 || TREE_CODE (constructor_type) == UNION_TYPE)
6523 constructor_unfilled_fields = next;
6524 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6525 constructor_unfilled_index = next;
6526
6527 /* ELT now points to the node in the pending tree with the next
6528 initializer to output. */
6529 goto retry;
6530 }
6531 \f
6532 /* Add one non-braced element to the current constructor level.
6533 This adjusts the current position within the constructor's type.
6534 This may also start or terminate implicit levels
6535 to handle a partly-braced initializer.
6536
6537 Once this has found the correct level for the new element,
6538 it calls output_init_element. */
6539
6540 void
6541 process_init_element (struct c_expr value)
6542 {
6543 tree orig_value = value.value;
6544 int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6545 bool strict_string = value.original_code == STRING_CST;
6546
6547 designator_depth = 0;
6548 designator_erroneous = 0;
6549
6550 /* Handle superfluous braces around string cst as in
6551 char x[] = {"foo"}; */
6552 if (string_flag
6553 && constructor_type
6554 && TREE_CODE (constructor_type) == ARRAY_TYPE
6555 && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6556 && integer_zerop (constructor_unfilled_index))
6557 {
6558 if (constructor_stack->replacement_value.value)
6559 error_init ("excess elements in char array initializer");
6560 constructor_stack->replacement_value = value;
6561 return;
6562 }
6563
6564 if (constructor_stack->replacement_value.value != 0)
6565 {
6566 error_init ("excess elements in struct initializer");
6567 return;
6568 }
6569
6570 /* Ignore elements of a brace group if it is entirely superfluous
6571 and has already been diagnosed. */
6572 if (constructor_type == 0)
6573 return;
6574
6575 /* If we've exhausted any levels that didn't have braces,
6576 pop them now. */
6577 while (constructor_stack->implicit)
6578 {
6579 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6580 || TREE_CODE (constructor_type) == UNION_TYPE)
6581 && constructor_fields == 0)
6582 process_init_element (pop_init_level (1));
6583 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6584 && (constructor_max_index == 0
6585 || tree_int_cst_lt (constructor_max_index,
6586 constructor_index)))
6587 process_init_element (pop_init_level (1));
6588 else
6589 break;
6590 }
6591
6592 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
6593 if (constructor_range_stack)
6594 {
6595 /* If value is a compound literal and we'll be just using its
6596 content, don't put it into a SAVE_EXPR. */
6597 if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6598 || !require_constant_value
6599 || flag_isoc99)
6600 value.value = save_expr (value.value);
6601 }
6602
6603 while (1)
6604 {
6605 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6606 {
6607 tree fieldtype;
6608 enum tree_code fieldcode;
6609
6610 if (constructor_fields == 0)
6611 {
6612 pedwarn_init ("excess elements in struct initializer");
6613 break;
6614 }
6615
6616 fieldtype = TREE_TYPE (constructor_fields);
6617 if (fieldtype != error_mark_node)
6618 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6619 fieldcode = TREE_CODE (fieldtype);
6620
6621 /* Error for non-static initialization of a flexible array member. */
6622 if (fieldcode == ARRAY_TYPE
6623 && !require_constant_value
6624 && TYPE_SIZE (fieldtype) == NULL_TREE
6625 && TREE_CHAIN (constructor_fields) == NULL_TREE)
6626 {
6627 error_init ("non-static initialization of a flexible array member");
6628 break;
6629 }
6630
6631 /* Accept a string constant to initialize a subarray. */
6632 if (value.value != 0
6633 && fieldcode == ARRAY_TYPE
6634 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6635 && string_flag)
6636 value.value = orig_value;
6637 /* Otherwise, if we have come to a subaggregate,
6638 and we don't have an element of its type, push into it. */
6639 else if (value.value != 0
6640 && value.value != error_mark_node
6641 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6642 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6643 || fieldcode == UNION_TYPE))
6644 {
6645 push_init_level (1);
6646 continue;
6647 }
6648
6649 if (value.value)
6650 {
6651 push_member_name (constructor_fields);
6652 output_init_element (value.value, strict_string,
6653 fieldtype, constructor_fields, 1);
6654 RESTORE_SPELLING_DEPTH (constructor_depth);
6655 }
6656 else
6657 /* Do the bookkeeping for an element that was
6658 directly output as a constructor. */
6659 {
6660 /* For a record, keep track of end position of last field. */
6661 if (DECL_SIZE (constructor_fields))
6662 constructor_bit_index
6663 = size_binop (PLUS_EXPR,
6664 bit_position (constructor_fields),
6665 DECL_SIZE (constructor_fields));
6666
6667 /* If the current field was the first one not yet written out,
6668 it isn't now, so update. */
6669 if (constructor_unfilled_fields == constructor_fields)
6670 {
6671 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6672 /* Skip any nameless bit fields. */
6673 while (constructor_unfilled_fields != 0
6674 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6675 && DECL_NAME (constructor_unfilled_fields) == 0)
6676 constructor_unfilled_fields =
6677 TREE_CHAIN (constructor_unfilled_fields);
6678 }
6679 }
6680
6681 constructor_fields = TREE_CHAIN (constructor_fields);
6682 /* Skip any nameless bit fields at the beginning. */
6683 while (constructor_fields != 0
6684 && DECL_C_BIT_FIELD (constructor_fields)
6685 && DECL_NAME (constructor_fields) == 0)
6686 constructor_fields = TREE_CHAIN (constructor_fields);
6687 }
6688 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6689 {
6690 tree fieldtype;
6691 enum tree_code fieldcode;
6692
6693 if (constructor_fields == 0)
6694 {
6695 pedwarn_init ("excess elements in union initializer");
6696 break;
6697 }
6698
6699 fieldtype = TREE_TYPE (constructor_fields);
6700 if (fieldtype != error_mark_node)
6701 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6702 fieldcode = TREE_CODE (fieldtype);
6703
6704 /* Warn that traditional C rejects initialization of unions.
6705 We skip the warning if the value is zero. This is done
6706 under the assumption that the zero initializer in user
6707 code appears conditioned on e.g. __STDC__ to avoid
6708 "missing initializer" warnings and relies on default
6709 initialization to zero in the traditional C case.
6710 We also skip the warning if the initializer is designated,
6711 again on the assumption that this must be conditional on
6712 __STDC__ anyway (and we've already complained about the
6713 member-designator already). */
6714 if (!in_system_header && !constructor_designated
6715 && !(value.value && (integer_zerop (value.value)
6716 || real_zerop (value.value))))
6717 warning (OPT_Wtraditional, "traditional C rejects initialization "
6718 "of unions");
6719
6720 /* Accept a string constant to initialize a subarray. */
6721 if (value.value != 0
6722 && fieldcode == ARRAY_TYPE
6723 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6724 && string_flag)
6725 value.value = orig_value;
6726 /* Otherwise, if we have come to a subaggregate,
6727 and we don't have an element of its type, push into it. */
6728 else if (value.value != 0
6729 && value.value != error_mark_node
6730 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6731 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6732 || fieldcode == UNION_TYPE))
6733 {
6734 push_init_level (1);
6735 continue;
6736 }
6737
6738 if (value.value)
6739 {
6740 push_member_name (constructor_fields);
6741 output_init_element (value.value, strict_string,
6742 fieldtype, constructor_fields, 1);
6743 RESTORE_SPELLING_DEPTH (constructor_depth);
6744 }
6745 else
6746 /* Do the bookkeeping for an element that was
6747 directly output as a constructor. */
6748 {
6749 constructor_bit_index = DECL_SIZE (constructor_fields);
6750 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6751 }
6752
6753 constructor_fields = 0;
6754 }
6755 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6756 {
6757 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6758 enum tree_code eltcode = TREE_CODE (elttype);
6759
6760 /* Accept a string constant to initialize a subarray. */
6761 if (value.value != 0
6762 && eltcode == ARRAY_TYPE
6763 && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6764 && string_flag)
6765 value.value = orig_value;
6766 /* Otherwise, if we have come to a subaggregate,
6767 and we don't have an element of its type, push into it. */
6768 else if (value.value != 0
6769 && value.value != error_mark_node
6770 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6771 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6772 || eltcode == UNION_TYPE))
6773 {
6774 push_init_level (1);
6775 continue;
6776 }
6777
6778 if (constructor_max_index != 0
6779 && (tree_int_cst_lt (constructor_max_index, constructor_index)
6780 || integer_all_onesp (constructor_max_index)))
6781 {
6782 pedwarn_init ("excess elements in array initializer");
6783 break;
6784 }
6785
6786 /* Now output the actual element. */
6787 if (value.value)
6788 {
6789 push_array_bounds (tree_low_cst (constructor_index, 1));
6790 output_init_element (value.value, strict_string,
6791 elttype, constructor_index, 1);
6792 RESTORE_SPELLING_DEPTH (constructor_depth);
6793 }
6794
6795 constructor_index
6796 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6797
6798 if (!value.value)
6799 /* If we are doing the bookkeeping for an element that was
6800 directly output as a constructor, we must update
6801 constructor_unfilled_index. */
6802 constructor_unfilled_index = constructor_index;
6803 }
6804 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6805 {
6806 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6807
6808 /* Do a basic check of initializer size. Note that vectors
6809 always have a fixed size derived from their type. */
6810 if (tree_int_cst_lt (constructor_max_index, constructor_index))
6811 {
6812 pedwarn_init ("excess elements in vector initializer");
6813 break;
6814 }
6815
6816 /* Now output the actual element. */
6817 if (value.value)
6818 output_init_element (value.value, strict_string,
6819 elttype, constructor_index, 1);
6820
6821 constructor_index
6822 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6823
6824 if (!value.value)
6825 /* If we are doing the bookkeeping for an element that was
6826 directly output as a constructor, we must update
6827 constructor_unfilled_index. */
6828 constructor_unfilled_index = constructor_index;
6829 }
6830
6831 /* Handle the sole element allowed in a braced initializer
6832 for a scalar variable. */
6833 else if (constructor_type != error_mark_node
6834 && constructor_fields == 0)
6835 {
6836 pedwarn_init ("excess elements in scalar initializer");
6837 break;
6838 }
6839 else
6840 {
6841 if (value.value)
6842 output_init_element (value.value, strict_string,
6843 constructor_type, NULL_TREE, 1);
6844 constructor_fields = 0;
6845 }
6846
6847 /* Handle range initializers either at this level or anywhere higher
6848 in the designator stack. */
6849 if (constructor_range_stack)
6850 {
6851 struct constructor_range_stack *p, *range_stack;
6852 int finish = 0;
6853
6854 range_stack = constructor_range_stack;
6855 constructor_range_stack = 0;
6856 while (constructor_stack != range_stack->stack)
6857 {
6858 gcc_assert (constructor_stack->implicit);
6859 process_init_element (pop_init_level (1));
6860 }
6861 for (p = range_stack;
6862 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6863 p = p->prev)
6864 {
6865 gcc_assert (constructor_stack->implicit);
6866 process_init_element (pop_init_level (1));
6867 }
6868
6869 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6870 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6871 finish = 1;
6872
6873 while (1)
6874 {
6875 constructor_index = p->index;
6876 constructor_fields = p->fields;
6877 if (finish && p->range_end && p->index == p->range_start)
6878 {
6879 finish = 0;
6880 p->prev = 0;
6881 }
6882 p = p->next;
6883 if (!p)
6884 break;
6885 push_init_level (2);
6886 p->stack = constructor_stack;
6887 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6888 p->index = p->range_start;
6889 }
6890
6891 if (!finish)
6892 constructor_range_stack = range_stack;
6893 continue;
6894 }
6895
6896 break;
6897 }
6898
6899 constructor_range_stack = 0;
6900 }
6901 \f
6902 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
6903 (guaranteed to be 'volatile' or null) and ARGS (represented using
6904 an ASM_EXPR node). */
6905 tree
6906 build_asm_stmt (tree cv_qualifier, tree args)
6907 {
6908 if (!ASM_VOLATILE_P (args) && cv_qualifier)
6909 ASM_VOLATILE_P (args) = 1;
6910 return add_stmt (args);
6911 }
6912
6913 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6914 some INPUTS, and some CLOBBERS. The latter three may be NULL.
6915 SIMPLE indicates whether there was anything at all after the
6916 string in the asm expression -- asm("blah") and asm("blah" : )
6917 are subtly different. We use a ASM_EXPR node to represent this. */
6918 tree
6919 build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6920 bool simple)
6921 {
6922 tree tail;
6923 tree args;
6924 int i;
6925 const char *constraint;
6926 const char **oconstraints;
6927 bool allows_mem, allows_reg, is_inout;
6928 int ninputs, noutputs;
6929
6930 ninputs = list_length (inputs);
6931 noutputs = list_length (outputs);
6932 oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6933
6934 string = resolve_asm_operand_names (string, outputs, inputs);
6935
6936 /* Remove output conversions that change the type but not the mode. */
6937 for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6938 {
6939 tree output = TREE_VALUE (tail);
6940
6941 /* ??? Really, this should not be here. Users should be using a
6942 proper lvalue, dammit. But there's a long history of using casts
6943 in the output operands. In cases like longlong.h, this becomes a
6944 primitive form of typechecking -- if the cast can be removed, then
6945 the output operand had a type of the proper width; otherwise we'll
6946 get an error. Gross, but ... */
6947 STRIP_NOPS (output);
6948
6949 if (!lvalue_or_else (output, lv_asm))
6950 output = error_mark_node;
6951
6952 if (output != error_mark_node
6953 && (TREE_READONLY (output)
6954 || TYPE_READONLY (TREE_TYPE (output))
6955 || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6956 || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6957 && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6958 readonly_error (output, lv_asm);
6959
6960 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6961 oconstraints[i] = constraint;
6962
6963 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6964 &allows_mem, &allows_reg, &is_inout))
6965 {
6966 /* If the operand is going to end up in memory,
6967 mark it addressable. */
6968 if (!allows_reg && !c_mark_addressable (output))
6969 output = error_mark_node;
6970 }
6971 else
6972 output = error_mark_node;
6973
6974 TREE_VALUE (tail) = output;
6975 }
6976
6977 for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6978 {
6979 tree input;
6980
6981 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6982 input = TREE_VALUE (tail);
6983
6984 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6985 oconstraints, &allows_mem, &allows_reg))
6986 {
6987 /* If the operand is going to end up in memory,
6988 mark it addressable. */
6989 if (!allows_reg && allows_mem)
6990 {
6991 /* Strip the nops as we allow this case. FIXME, this really
6992 should be rejected or made deprecated. */
6993 STRIP_NOPS (input);
6994 if (!c_mark_addressable (input))
6995 input = error_mark_node;
6996 }
6997 }
6998 else
6999 input = error_mark_node;
7000
7001 TREE_VALUE (tail) = input;
7002 }
7003
7004 args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
7005
7006 /* asm statements without outputs, including simple ones, are treated
7007 as volatile. */
7008 ASM_INPUT_P (args) = simple;
7009 ASM_VOLATILE_P (args) = (noutputs == 0);
7010
7011 return args;
7012 }
7013 \f
7014 /* Generate a goto statement to LABEL. */
7015
7016 tree
7017 c_finish_goto_label (tree label)
7018 {
7019 tree decl = lookup_label (label);
7020 if (!decl)
7021 return NULL_TREE;
7022
7023 if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
7024 {
7025 error ("jump into statement expression");
7026 return NULL_TREE;
7027 }
7028
7029 if (C_DECL_UNJUMPABLE_VM (decl))
7030 {
7031 error ("jump into scope of identifier with variably modified type");
7032 return NULL_TREE;
7033 }
7034
7035 if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
7036 {
7037 /* No jump from outside this statement expression context, so
7038 record that there is a jump from within this context. */
7039 struct c_label_list *nlist;
7040 nlist = XOBNEW (&parser_obstack, struct c_label_list);
7041 nlist->next = label_context_stack_se->labels_used;
7042 nlist->label = decl;
7043 label_context_stack_se->labels_used = nlist;
7044 }
7045
7046 if (!C_DECL_UNDEFINABLE_VM (decl))
7047 {
7048 /* No jump from outside this context context of identifiers with
7049 variably modified type, so record that there is a jump from
7050 within this context. */
7051 struct c_label_list *nlist;
7052 nlist = XOBNEW (&parser_obstack, struct c_label_list);
7053 nlist->next = label_context_stack_vm->labels_used;
7054 nlist->label = decl;
7055 label_context_stack_vm->labels_used = nlist;
7056 }
7057
7058 TREE_USED (decl) = 1;
7059 return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
7060 }
7061
7062 /* Generate a computed goto statement to EXPR. */
7063
7064 tree
7065 c_finish_goto_ptr (tree expr)
7066 {
7067 if (pedantic)
7068 pedwarn ("ISO C forbids %<goto *expr;%>");
7069 expr = convert (ptr_type_node, expr);
7070 return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
7071 }
7072
7073 /* Generate a C `return' statement. RETVAL is the expression for what
7074 to return, or a null pointer for `return;' with no value. */
7075
7076 tree
7077 c_finish_return (tree retval)
7078 {
7079 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
7080 bool no_warning = false;
7081
7082 if (TREE_THIS_VOLATILE (current_function_decl))
7083 warning (0, "function declared %<noreturn%> has a %<return%> statement");
7084
7085 if (!retval)
7086 {
7087 current_function_returns_null = 1;
7088 if ((warn_return_type || flag_isoc99)
7089 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
7090 {
7091 pedwarn_c99 ("%<return%> with no value, in "
7092 "function returning non-void");
7093 no_warning = true;
7094 }
7095 }
7096 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
7097 {
7098 current_function_returns_null = 1;
7099 if (TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
7100 pedwarn ("%<return%> with a value, in function returning void");
7101 else if (pedantic)
7102 pedwarn ("ISO C forbids %<return%> with expression, in function returning void");
7103 }
7104 else
7105 {
7106 tree t = convert_for_assignment (valtype, retval, ic_return,
7107 NULL_TREE, NULL_TREE, 0);
7108 tree res = DECL_RESULT (current_function_decl);
7109 tree inner;
7110
7111 current_function_returns_value = 1;
7112 if (t == error_mark_node)
7113 return NULL_TREE;
7114
7115 inner = t = convert (TREE_TYPE (res), t);
7116
7117 /* Strip any conversions, additions, and subtractions, and see if
7118 we are returning the address of a local variable. Warn if so. */
7119 while (1)
7120 {
7121 switch (TREE_CODE (inner))
7122 {
7123 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
7124 case PLUS_EXPR:
7125 inner = TREE_OPERAND (inner, 0);
7126 continue;
7127
7128 case MINUS_EXPR:
7129 /* If the second operand of the MINUS_EXPR has a pointer
7130 type (or is converted from it), this may be valid, so
7131 don't give a warning. */
7132 {
7133 tree op1 = TREE_OPERAND (inner, 1);
7134
7135 while (!POINTER_TYPE_P (TREE_TYPE (op1))
7136 && (TREE_CODE (op1) == NOP_EXPR
7137 || TREE_CODE (op1) == NON_LVALUE_EXPR
7138 || TREE_CODE (op1) == CONVERT_EXPR))
7139 op1 = TREE_OPERAND (op1, 0);
7140
7141 if (POINTER_TYPE_P (TREE_TYPE (op1)))
7142 break;
7143
7144 inner = TREE_OPERAND (inner, 0);
7145 continue;
7146 }
7147
7148 case ADDR_EXPR:
7149 inner = TREE_OPERAND (inner, 0);
7150
7151 while (REFERENCE_CLASS_P (inner)
7152 && TREE_CODE (inner) != INDIRECT_REF)
7153 inner = TREE_OPERAND (inner, 0);
7154
7155 if (DECL_P (inner)
7156 && !DECL_EXTERNAL (inner)
7157 && !TREE_STATIC (inner)
7158 && DECL_CONTEXT (inner) == current_function_decl)
7159 warning (0, "function returns address of local variable");
7160 break;
7161
7162 default:
7163 break;
7164 }
7165
7166 break;
7167 }
7168
7169 retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7170 }
7171
7172 ret_stmt = build_stmt (RETURN_EXPR, retval);
7173 TREE_NO_WARNING (ret_stmt) |= no_warning;
7174 return add_stmt (ret_stmt);
7175 }
7176 \f
7177 struct c_switch {
7178 /* The SWITCH_EXPR being built. */
7179 tree switch_expr;
7180
7181 /* The original type of the testing expression, i.e. before the
7182 default conversion is applied. */
7183 tree orig_type;
7184
7185 /* A splay-tree mapping the low element of a case range to the high
7186 element, or NULL_TREE if there is no high element. Used to
7187 determine whether or not a new case label duplicates an old case
7188 label. We need a tree, rather than simply a hash table, because
7189 of the GNU case range extension. */
7190 splay_tree cases;
7191
7192 /* Number of nested statement expressions within this switch
7193 statement; if nonzero, case and default labels may not
7194 appear. */
7195 unsigned int blocked_stmt_expr;
7196
7197 /* Scope of outermost declarations of identifiers with variably
7198 modified type within this switch statement; if nonzero, case and
7199 default labels may not appear. */
7200 unsigned int blocked_vm;
7201
7202 /* The next node on the stack. */
7203 struct c_switch *next;
7204 };
7205
7206 /* A stack of the currently active switch statements. The innermost
7207 switch statement is on the top of the stack. There is no need to
7208 mark the stack for garbage collection because it is only active
7209 during the processing of the body of a function, and we never
7210 collect at that point. */
7211
7212 struct c_switch *c_switch_stack;
7213
7214 /* Start a C switch statement, testing expression EXP. Return the new
7215 SWITCH_EXPR. */
7216
7217 tree
7218 c_start_case (tree exp)
7219 {
7220 tree orig_type = error_mark_node;
7221 struct c_switch *cs;
7222
7223 if (exp != error_mark_node)
7224 {
7225 orig_type = TREE_TYPE (exp);
7226
7227 if (!INTEGRAL_TYPE_P (orig_type))
7228 {
7229 if (orig_type != error_mark_node)
7230 {
7231 error ("switch quantity not an integer");
7232 orig_type = error_mark_node;
7233 }
7234 exp = integer_zero_node;
7235 }
7236 else
7237 {
7238 tree type = TYPE_MAIN_VARIANT (orig_type);
7239
7240 if (!in_system_header
7241 && (type == long_integer_type_node
7242 || type == long_unsigned_type_node))
7243 warning (OPT_Wtraditional, "%<long%> switch expression not "
7244 "converted to %<int%> in ISO C");
7245
7246 exp = default_conversion (exp);
7247 }
7248 }
7249
7250 /* Add this new SWITCH_EXPR to the stack. */
7251 cs = XNEW (struct c_switch);
7252 cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7253 cs->orig_type = orig_type;
7254 cs->cases = splay_tree_new (case_compare, NULL, NULL);
7255 cs->blocked_stmt_expr = 0;
7256 cs->blocked_vm = 0;
7257 cs->next = c_switch_stack;
7258 c_switch_stack = cs;
7259
7260 return add_stmt (cs->switch_expr);
7261 }
7262
7263 /* Process a case label. */
7264
7265 tree
7266 do_case (tree low_value, tree high_value)
7267 {
7268 tree label = NULL_TREE;
7269
7270 if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7271 && !c_switch_stack->blocked_vm)
7272 {
7273 label = c_add_case_label (c_switch_stack->cases,
7274 SWITCH_COND (c_switch_stack->switch_expr),
7275 c_switch_stack->orig_type,
7276 low_value, high_value);
7277 if (label == error_mark_node)
7278 label = NULL_TREE;
7279 }
7280 else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7281 {
7282 if (low_value)
7283 error ("case label in statement expression not containing "
7284 "enclosing switch statement");
7285 else
7286 error ("%<default%> label in statement expression not containing "
7287 "enclosing switch statement");
7288 }
7289 else if (c_switch_stack && c_switch_stack->blocked_vm)
7290 {
7291 if (low_value)
7292 error ("case label in scope of identifier with variably modified "
7293 "type not containing enclosing switch statement");
7294 else
7295 error ("%<default%> label in scope of identifier with variably "
7296 "modified type not containing enclosing switch statement");
7297 }
7298 else if (low_value)
7299 error ("case label not within a switch statement");
7300 else
7301 error ("%<default%> label not within a switch statement");
7302
7303 return label;
7304 }
7305
7306 /* Finish the switch statement. */
7307
7308 void
7309 c_finish_case (tree body)
7310 {
7311 struct c_switch *cs = c_switch_stack;
7312 location_t switch_location;
7313
7314 SWITCH_BODY (cs->switch_expr) = body;
7315
7316 /* We must not be within a statement expression nested in the switch
7317 at this point; we might, however, be within the scope of an
7318 identifier with variably modified type nested in the switch. */
7319 gcc_assert (!cs->blocked_stmt_expr);
7320
7321 /* Emit warnings as needed. */
7322 if (EXPR_HAS_LOCATION (cs->switch_expr))
7323 switch_location = EXPR_LOCATION (cs->switch_expr);
7324 else
7325 switch_location = input_location;
7326 c_do_switch_warnings (cs->cases, switch_location,
7327 TREE_TYPE (cs->switch_expr),
7328 SWITCH_COND (cs->switch_expr));
7329
7330 /* Pop the stack. */
7331 c_switch_stack = cs->next;
7332 splay_tree_delete (cs->cases);
7333 XDELETE (cs);
7334 }
7335 \f
7336 /* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
7337 THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7338 may be null. NESTED_IF is true if THEN_BLOCK contains another IF
7339 statement, and was not surrounded with parenthesis. */
7340
7341 void
7342 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7343 tree else_block, bool nested_if)
7344 {
7345 tree stmt;
7346
7347 /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
7348 if (warn_parentheses && nested_if && else_block == NULL)
7349 {
7350 tree inner_if = then_block;
7351
7352 /* We know from the grammar productions that there is an IF nested
7353 within THEN_BLOCK. Due to labels and c99 conditional declarations,
7354 it might not be exactly THEN_BLOCK, but should be the last
7355 non-container statement within. */
7356 while (1)
7357 switch (TREE_CODE (inner_if))
7358 {
7359 case COND_EXPR:
7360 goto found;
7361 case BIND_EXPR:
7362 inner_if = BIND_EXPR_BODY (inner_if);
7363 break;
7364 case STATEMENT_LIST:
7365 inner_if = expr_last (then_block);
7366 break;
7367 case TRY_FINALLY_EXPR:
7368 case TRY_CATCH_EXPR:
7369 inner_if = TREE_OPERAND (inner_if, 0);
7370 break;
7371 default:
7372 gcc_unreachable ();
7373 }
7374 found:
7375
7376 if (COND_EXPR_ELSE (inner_if))
7377 warning (OPT_Wparentheses,
7378 "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7379 &if_locus);
7380 }
7381
7382 empty_if_body_warning (then_block, else_block);
7383
7384 stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7385 SET_EXPR_LOCATION (stmt, if_locus);
7386 add_stmt (stmt);
7387 }
7388
7389 /* Emit a general-purpose loop construct. START_LOCUS is the location of
7390 the beginning of the loop. COND is the loop condition. COND_IS_FIRST
7391 is false for DO loops. INCR is the FOR increment expression. BODY is
7392 the statement controlled by the loop. BLAB is the break label. CLAB is
7393 the continue label. Everything is allowed to be NULL. */
7394
7395 void
7396 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7397 tree blab, tree clab, bool cond_is_first)
7398 {
7399 tree entry = NULL, exit = NULL, t;
7400
7401 /* If the condition is zero don't generate a loop construct. */
7402 if (cond && integer_zerop (cond))
7403 {
7404 if (cond_is_first)
7405 {
7406 t = build_and_jump (&blab);
7407 SET_EXPR_LOCATION (t, start_locus);
7408 add_stmt (t);
7409 }
7410 }
7411 else
7412 {
7413 tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7414
7415 /* If we have an exit condition, then we build an IF with gotos either
7416 out of the loop, or to the top of it. If there's no exit condition,
7417 then we just build a jump back to the top. */
7418 exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7419
7420 if (cond && !integer_nonzerop (cond))
7421 {
7422 /* Canonicalize the loop condition to the end. This means
7423 generating a branch to the loop condition. Reuse the
7424 continue label, if possible. */
7425 if (cond_is_first)
7426 {
7427 if (incr || !clab)
7428 {
7429 entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7430 t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7431 }
7432 else
7433 t = build1 (GOTO_EXPR, void_type_node, clab);
7434 SET_EXPR_LOCATION (t, start_locus);
7435 add_stmt (t);
7436 }
7437
7438 t = build_and_jump (&blab);
7439 exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7440 if (cond_is_first)
7441 SET_EXPR_LOCATION (exit, start_locus);
7442 else
7443 SET_EXPR_LOCATION (exit, input_location);
7444 }
7445
7446 add_stmt (top);
7447 }
7448
7449 if (body)
7450 add_stmt (body);
7451 if (clab)
7452 add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7453 if (incr)
7454 add_stmt (incr);
7455 if (entry)
7456 add_stmt (entry);
7457 if (exit)
7458 add_stmt (exit);
7459 if (blab)
7460 add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7461 }
7462
7463 tree
7464 c_finish_bc_stmt (tree *label_p, bool is_break)
7465 {
7466 bool skip;
7467 tree label = *label_p;
7468
7469 /* In switch statements break is sometimes stylistically used after
7470 a return statement. This can lead to spurious warnings about
7471 control reaching the end of a non-void function when it is
7472 inlined. Note that we are calling block_may_fallthru with
7473 language specific tree nodes; this works because
7474 block_may_fallthru returns true when given something it does not
7475 understand. */
7476 skip = !block_may_fallthru (cur_stmt_list);
7477
7478 if (!label)
7479 {
7480 if (!skip)
7481 *label_p = label = create_artificial_label ();
7482 }
7483 else if (TREE_CODE (label) == LABEL_DECL)
7484 ;
7485 else switch (TREE_INT_CST_LOW (label))
7486 {
7487 case 0:
7488 if (is_break)
7489 error ("break statement not within loop or switch");
7490 else
7491 error ("continue statement not within a loop");
7492 return NULL_TREE;
7493
7494 case 1:
7495 gcc_assert (is_break);
7496 error ("break statement used with OpenMP for loop");
7497 return NULL_TREE;
7498
7499 default:
7500 gcc_unreachable ();
7501 }
7502
7503 if (skip)
7504 return NULL_TREE;
7505
7506 return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7507 }
7508
7509 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
7510
7511 static void
7512 emit_side_effect_warnings (tree expr)
7513 {
7514 if (expr == error_mark_node)
7515 ;
7516 else if (!TREE_SIDE_EFFECTS (expr))
7517 {
7518 if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7519 warning (OPT_Wunused_value, "%Hstatement with no effect",
7520 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7521 }
7522 else
7523 warn_if_unused_value (expr, input_location);
7524 }
7525
7526 /* Process an expression as if it were a complete statement. Emit
7527 diagnostics, but do not call ADD_STMT. */
7528
7529 tree
7530 c_process_expr_stmt (tree expr)
7531 {
7532 if (!expr)
7533 return NULL_TREE;
7534
7535 if (warn_sequence_point)
7536 verify_sequence_points (expr);
7537
7538 if (TREE_TYPE (expr) != error_mark_node
7539 && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7540 && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7541 error ("expression statement has incomplete type");
7542
7543 /* If we're not processing a statement expression, warn about unused values.
7544 Warnings for statement expressions will be emitted later, once we figure
7545 out which is the result. */
7546 if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7547 && warn_unused_value)
7548 emit_side_effect_warnings (expr);
7549
7550 /* If the expression is not of a type to which we cannot assign a line
7551 number, wrap the thing in a no-op NOP_EXPR. */
7552 if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7553 expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7554
7555 if (CAN_HAVE_LOCATION_P (expr))
7556 SET_EXPR_LOCATION (expr, input_location);
7557
7558 return expr;
7559 }
7560
7561 /* Emit an expression as a statement. */
7562
7563 tree
7564 c_finish_expr_stmt (tree expr)
7565 {
7566 if (expr)
7567 return add_stmt (c_process_expr_stmt (expr));
7568 else
7569 return NULL;
7570 }
7571
7572 /* Do the opposite and emit a statement as an expression. To begin,
7573 create a new binding level and return it. */
7574
7575 tree
7576 c_begin_stmt_expr (void)
7577 {
7578 tree ret;
7579 struct c_label_context_se *nstack;
7580 struct c_label_list *glist;
7581
7582 /* We must force a BLOCK for this level so that, if it is not expanded
7583 later, there is a way to turn off the entire subtree of blocks that
7584 are contained in it. */
7585 keep_next_level ();
7586 ret = c_begin_compound_stmt (true);
7587 if (c_switch_stack)
7588 {
7589 c_switch_stack->blocked_stmt_expr++;
7590 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7591 }
7592 for (glist = label_context_stack_se->labels_used;
7593 glist != NULL;
7594 glist = glist->next)
7595 {
7596 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7597 }
7598 nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7599 nstack->labels_def = NULL;
7600 nstack->labels_used = NULL;
7601 nstack->next = label_context_stack_se;
7602 label_context_stack_se = nstack;
7603
7604 /* Mark the current statement list as belonging to a statement list. */
7605 STATEMENT_LIST_STMT_EXPR (ret) = 1;
7606
7607 return ret;
7608 }
7609
7610 tree
7611 c_finish_stmt_expr (tree body)
7612 {
7613 tree last, type, tmp, val;
7614 tree *last_p;
7615 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7616
7617 body = c_end_compound_stmt (body, true);
7618 if (c_switch_stack)
7619 {
7620 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7621 c_switch_stack->blocked_stmt_expr--;
7622 }
7623 /* It is no longer possible to jump to labels defined within this
7624 statement expression. */
7625 for (dlist = label_context_stack_se->labels_def;
7626 dlist != NULL;
7627 dlist = dlist->next)
7628 {
7629 C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7630 }
7631 /* It is again possible to define labels with a goto just outside
7632 this statement expression. */
7633 for (glist = label_context_stack_se->next->labels_used;
7634 glist != NULL;
7635 glist = glist->next)
7636 {
7637 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7638 glist_prev = glist;
7639 }
7640 if (glist_prev != NULL)
7641 glist_prev->next = label_context_stack_se->labels_used;
7642 else
7643 label_context_stack_se->next->labels_used
7644 = label_context_stack_se->labels_used;
7645 label_context_stack_se = label_context_stack_se->next;
7646
7647 /* Locate the last statement in BODY. See c_end_compound_stmt
7648 about always returning a BIND_EXPR. */
7649 last_p = &BIND_EXPR_BODY (body);
7650 last = BIND_EXPR_BODY (body);
7651
7652 continue_searching:
7653 if (TREE_CODE (last) == STATEMENT_LIST)
7654 {
7655 tree_stmt_iterator i;
7656
7657 /* This can happen with degenerate cases like ({ }). No value. */
7658 if (!TREE_SIDE_EFFECTS (last))
7659 return body;
7660
7661 /* If we're supposed to generate side effects warnings, process
7662 all of the statements except the last. */
7663 if (warn_unused_value)
7664 {
7665 for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7666 emit_side_effect_warnings (tsi_stmt (i));
7667 }
7668 else
7669 i = tsi_last (last);
7670 last_p = tsi_stmt_ptr (i);
7671 last = *last_p;
7672 }
7673
7674 /* If the end of the list is exception related, then the list was split
7675 by a call to push_cleanup. Continue searching. */
7676 if (TREE_CODE (last) == TRY_FINALLY_EXPR
7677 || TREE_CODE (last) == TRY_CATCH_EXPR)
7678 {
7679 last_p = &TREE_OPERAND (last, 0);
7680 last = *last_p;
7681 goto continue_searching;
7682 }
7683
7684 /* In the case that the BIND_EXPR is not necessary, return the
7685 expression out from inside it. */
7686 if (last == error_mark_node
7687 || (last == BIND_EXPR_BODY (body)
7688 && BIND_EXPR_VARS (body) == NULL))
7689 {
7690 /* Do not warn if the return value of a statement expression is
7691 unused. */
7692 if (CAN_HAVE_LOCATION_P (last))
7693 TREE_NO_WARNING (last) = 1;
7694 return last;
7695 }
7696
7697 /* Extract the type of said expression. */
7698 type = TREE_TYPE (last);
7699
7700 /* If we're not returning a value at all, then the BIND_EXPR that
7701 we already have is a fine expression to return. */
7702 if (!type || VOID_TYPE_P (type))
7703 return body;
7704
7705 /* Now that we've located the expression containing the value, it seems
7706 silly to make voidify_wrapper_expr repeat the process. Create a
7707 temporary of the appropriate type and stick it in a TARGET_EXPR. */
7708 tmp = create_tmp_var_raw (type, NULL);
7709
7710 /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
7711 tree_expr_nonnegative_p giving up immediately. */
7712 val = last;
7713 if (TREE_CODE (val) == NOP_EXPR
7714 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7715 val = TREE_OPERAND (val, 0);
7716
7717 *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7718 SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7719
7720 return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7721 }
7722
7723 /* Begin the scope of an identifier of variably modified type, scope
7724 number SCOPE. Jumping from outside this scope to inside it is not
7725 permitted. */
7726
7727 void
7728 c_begin_vm_scope (unsigned int scope)
7729 {
7730 struct c_label_context_vm *nstack;
7731 struct c_label_list *glist;
7732
7733 gcc_assert (scope > 0);
7734
7735 /* At file_scope, we don't have to do any processing. */
7736 if (label_context_stack_vm == NULL)
7737 return;
7738
7739 if (c_switch_stack && !c_switch_stack->blocked_vm)
7740 c_switch_stack->blocked_vm = scope;
7741 for (glist = label_context_stack_vm->labels_used;
7742 glist != NULL;
7743 glist = glist->next)
7744 {
7745 C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7746 }
7747 nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7748 nstack->labels_def = NULL;
7749 nstack->labels_used = NULL;
7750 nstack->scope = scope;
7751 nstack->next = label_context_stack_vm;
7752 label_context_stack_vm = nstack;
7753 }
7754
7755 /* End a scope which may contain identifiers of variably modified
7756 type, scope number SCOPE. */
7757
7758 void
7759 c_end_vm_scope (unsigned int scope)
7760 {
7761 if (label_context_stack_vm == NULL)
7762 return;
7763 if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7764 c_switch_stack->blocked_vm = 0;
7765 /* We may have a number of nested scopes of identifiers with
7766 variably modified type, all at this depth. Pop each in turn. */
7767 while (label_context_stack_vm->scope == scope)
7768 {
7769 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7770
7771 /* It is no longer possible to jump to labels defined within this
7772 scope. */
7773 for (dlist = label_context_stack_vm->labels_def;
7774 dlist != NULL;
7775 dlist = dlist->next)
7776 {
7777 C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7778 }
7779 /* It is again possible to define labels with a goto just outside
7780 this scope. */
7781 for (glist = label_context_stack_vm->next->labels_used;
7782 glist != NULL;
7783 glist = glist->next)
7784 {
7785 C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7786 glist_prev = glist;
7787 }
7788 if (glist_prev != NULL)
7789 glist_prev->next = label_context_stack_vm->labels_used;
7790 else
7791 label_context_stack_vm->next->labels_used
7792 = label_context_stack_vm->labels_used;
7793 label_context_stack_vm = label_context_stack_vm->next;
7794 }
7795 }
7796 \f
7797 /* Begin and end compound statements. This is as simple as pushing
7798 and popping new statement lists from the tree. */
7799
7800 tree
7801 c_begin_compound_stmt (bool do_scope)
7802 {
7803 tree stmt = push_stmt_list ();
7804 if (do_scope)
7805 push_scope ();
7806 return stmt;
7807 }
7808
7809 tree
7810 c_end_compound_stmt (tree stmt, bool do_scope)
7811 {
7812 tree block = NULL;
7813
7814 if (do_scope)
7815 {
7816 if (c_dialect_objc ())
7817 objc_clear_super_receiver ();
7818 block = pop_scope ();
7819 }
7820
7821 stmt = pop_stmt_list (stmt);
7822 stmt = c_build_bind_expr (block, stmt);
7823
7824 /* If this compound statement is nested immediately inside a statement
7825 expression, then force a BIND_EXPR to be created. Otherwise we'll
7826 do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
7827 STATEMENT_LISTs merge, and thus we can lose track of what statement
7828 was really last. */
7829 if (cur_stmt_list
7830 && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7831 && TREE_CODE (stmt) != BIND_EXPR)
7832 {
7833 stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7834 TREE_SIDE_EFFECTS (stmt) = 1;
7835 }
7836
7837 return stmt;
7838 }
7839
7840 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
7841 when the current scope is exited. EH_ONLY is true when this is not
7842 meant to apply to normal control flow transfer. */
7843
7844 void
7845 push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7846 {
7847 enum tree_code code;
7848 tree stmt, list;
7849 bool stmt_expr;
7850
7851 code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7852 stmt = build_stmt (code, NULL, cleanup);
7853 add_stmt (stmt);
7854 stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7855 list = push_stmt_list ();
7856 TREE_OPERAND (stmt, 0) = list;
7857 STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7858 }
7859 \f
7860 /* Build a binary-operation expression without default conversions.
7861 CODE is the kind of expression to build.
7862 This function differs from `build' in several ways:
7863 the data type of the result is computed and recorded in it,
7864 warnings are generated if arg data types are invalid,
7865 special handling for addition and subtraction of pointers is known,
7866 and some optimization is done (operations on narrow ints
7867 are done in the narrower type when that gives the same result).
7868 Constant folding is also done before the result is returned.
7869
7870 Note that the operands will never have enumeral types, or function
7871 or array types, because either they will have the default conversions
7872 performed or they have both just been converted to some other type in which
7873 the arithmetic is to be done. */
7874
7875 tree
7876 build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7877 int convert_p)
7878 {
7879 tree type0, type1;
7880 enum tree_code code0, code1;
7881 tree op0, op1;
7882 const char *invalid_op_diag;
7883
7884 /* Expression code to give to the expression when it is built.
7885 Normally this is CODE, which is what the caller asked for,
7886 but in some special cases we change it. */
7887 enum tree_code resultcode = code;
7888
7889 /* Data type in which the computation is to be performed.
7890 In the simplest cases this is the common type of the arguments. */
7891 tree result_type = NULL;
7892
7893 /* Nonzero means operands have already been type-converted
7894 in whatever way is necessary.
7895 Zero means they need to be converted to RESULT_TYPE. */
7896 int converted = 0;
7897
7898 /* Nonzero means create the expression with this type, rather than
7899 RESULT_TYPE. */
7900 tree build_type = 0;
7901
7902 /* Nonzero means after finally constructing the expression
7903 convert it to this type. */
7904 tree final_type = 0;
7905
7906 /* Nonzero if this is an operation like MIN or MAX which can
7907 safely be computed in short if both args are promoted shorts.
7908 Also implies COMMON.
7909 -1 indicates a bitwise operation; this makes a difference
7910 in the exact conditions for when it is safe to do the operation
7911 in a narrower mode. */
7912 int shorten = 0;
7913
7914 /* Nonzero if this is a comparison operation;
7915 if both args are promoted shorts, compare the original shorts.
7916 Also implies COMMON. */
7917 int short_compare = 0;
7918
7919 /* Nonzero if this is a right-shift operation, which can be computed on the
7920 original short and then promoted if the operand is a promoted short. */
7921 int short_shift = 0;
7922
7923 /* Nonzero means set RESULT_TYPE to the common type of the args. */
7924 int common = 0;
7925
7926 /* True means types are compatible as far as ObjC is concerned. */
7927 bool objc_ok;
7928
7929 if (convert_p)
7930 {
7931 op0 = default_conversion (orig_op0);
7932 op1 = default_conversion (orig_op1);
7933 }
7934 else
7935 {
7936 op0 = orig_op0;
7937 op1 = orig_op1;
7938 }
7939
7940 type0 = TREE_TYPE (op0);
7941 type1 = TREE_TYPE (op1);
7942
7943 /* The expression codes of the data types of the arguments tell us
7944 whether the arguments are integers, floating, pointers, etc. */
7945 code0 = TREE_CODE (type0);
7946 code1 = TREE_CODE (type1);
7947
7948 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
7949 STRIP_TYPE_NOPS (op0);
7950 STRIP_TYPE_NOPS (op1);
7951
7952 /* If an error was already reported for one of the arguments,
7953 avoid reporting another error. */
7954
7955 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7956 return error_mark_node;
7957
7958 if ((invalid_op_diag
7959 = targetm.invalid_binary_op (code, type0, type1)))
7960 {
7961 error (invalid_op_diag);
7962 return error_mark_node;
7963 }
7964
7965 objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7966
7967 switch (code)
7968 {
7969 case PLUS_EXPR:
7970 /* Handle the pointer + int case. */
7971 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7972 return pointer_int_sum (PLUS_EXPR, op0, op1);
7973 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7974 return pointer_int_sum (PLUS_EXPR, op1, op0);
7975 else
7976 common = 1;
7977 break;
7978
7979 case MINUS_EXPR:
7980 /* Subtraction of two similar pointers.
7981 We must subtract them as integers, then divide by object size. */
7982 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7983 && comp_target_types (type0, type1))
7984 return pointer_diff (op0, op1);
7985 /* Handle pointer minus int. Just like pointer plus int. */
7986 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7987 return pointer_int_sum (MINUS_EXPR, op0, op1);
7988 else
7989 common = 1;
7990 break;
7991
7992 case MULT_EXPR:
7993 common = 1;
7994 break;
7995
7996 case TRUNC_DIV_EXPR:
7997 case CEIL_DIV_EXPR:
7998 case FLOOR_DIV_EXPR:
7999 case ROUND_DIV_EXPR:
8000 case EXACT_DIV_EXPR:
8001 warn_for_div_by_zero (op1);
8002
8003 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8004 || code0 == FIXED_POINT_TYPE
8005 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
8006 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8007 || code1 == FIXED_POINT_TYPE
8008 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
8009 {
8010 enum tree_code tcode0 = code0, tcode1 = code1;
8011
8012 if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
8013 tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
8014 if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
8015 tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
8016
8017 if (!((tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE)
8018 || (tcode0 == FIXED_POINT_TYPE && tcode1 == FIXED_POINT_TYPE)))
8019 resultcode = RDIV_EXPR;
8020 else
8021 /* Although it would be tempting to shorten always here, that
8022 loses on some targets, since the modulo instruction is
8023 undefined if the quotient can't be represented in the
8024 computation mode. We shorten only if unsigned or if
8025 dividing by something we know != -1. */
8026 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
8027 || (TREE_CODE (op1) == INTEGER_CST
8028 && !integer_all_onesp (op1)));
8029 common = 1;
8030 }
8031 break;
8032
8033 case BIT_AND_EXPR:
8034 case BIT_IOR_EXPR:
8035 case BIT_XOR_EXPR:
8036 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8037 shorten = -1;
8038 /* Allow vector types which are not floating point types. */
8039 else if (code0 == VECTOR_TYPE
8040 && code1 == VECTOR_TYPE
8041 && !VECTOR_FLOAT_TYPE_P (type0)
8042 && !VECTOR_FLOAT_TYPE_P (type1))
8043 common = 1;
8044 break;
8045
8046 case TRUNC_MOD_EXPR:
8047 case FLOOR_MOD_EXPR:
8048 warn_for_div_by_zero (op1);
8049
8050 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8051 {
8052 /* Although it would be tempting to shorten always here, that loses
8053 on some targets, since the modulo instruction is undefined if the
8054 quotient can't be represented in the computation mode. We shorten
8055 only if unsigned or if dividing by something we know != -1. */
8056 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
8057 || (TREE_CODE (op1) == INTEGER_CST
8058 && !integer_all_onesp (op1)));
8059 common = 1;
8060 }
8061 break;
8062
8063 case TRUTH_ANDIF_EXPR:
8064 case TRUTH_ORIF_EXPR:
8065 case TRUTH_AND_EXPR:
8066 case TRUTH_OR_EXPR:
8067 case TRUTH_XOR_EXPR:
8068 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
8069 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8070 || code0 == FIXED_POINT_TYPE)
8071 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
8072 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8073 || code1 == FIXED_POINT_TYPE))
8074 {
8075 /* Result of these operations is always an int,
8076 but that does not mean the operands should be
8077 converted to ints! */
8078 result_type = integer_type_node;
8079 op0 = c_common_truthvalue_conversion (op0);
8080 op1 = c_common_truthvalue_conversion (op1);
8081 converted = 1;
8082 }
8083 break;
8084
8085 /* Shift operations: result has same type as first operand;
8086 always convert second operand to int.
8087 Also set SHORT_SHIFT if shifting rightward. */
8088
8089 case RSHIFT_EXPR:
8090 if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE)
8091 && code1 == INTEGER_TYPE)
8092 {
8093 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8094 {
8095 if (tree_int_cst_sgn (op1) < 0)
8096 warning (0, "right shift count is negative");
8097 else
8098 {
8099 if (!integer_zerop (op1))
8100 short_shift = 1;
8101
8102 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8103 warning (0, "right shift count >= width of type");
8104 }
8105 }
8106
8107 /* Use the type of the value to be shifted. */
8108 result_type = type0;
8109 /* Convert the shift-count to an integer, regardless of size
8110 of value being shifted. */
8111 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8112 op1 = convert (integer_type_node, op1);
8113 /* Avoid converting op1 to result_type later. */
8114 converted = 1;
8115 }
8116 break;
8117
8118 case LSHIFT_EXPR:
8119 if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE)
8120 && code1 == INTEGER_TYPE)
8121 {
8122 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8123 {
8124 if (tree_int_cst_sgn (op1) < 0)
8125 warning (0, "left shift count is negative");
8126
8127 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8128 warning (0, "left shift count >= width of type");
8129 }
8130
8131 /* Use the type of the value to be shifted. */
8132 result_type = type0;
8133 /* Convert the shift-count to an integer, regardless of size
8134 of value being shifted. */
8135 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8136 op1 = convert (integer_type_node, op1);
8137 /* Avoid converting op1 to result_type later. */
8138 converted = 1;
8139 }
8140 break;
8141
8142 case EQ_EXPR:
8143 case NE_EXPR:
8144 if (FLOAT_TYPE_P (type0) || FLOAT_TYPE_P (type1))
8145 warning (OPT_Wfloat_equal,
8146 "comparing floating point with == or != is unsafe");
8147 /* Result of comparison is always int,
8148 but don't convert the args to int! */
8149 build_type = integer_type_node;
8150 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8151 || code0 == FIXED_POINT_TYPE || code0 == COMPLEX_TYPE)
8152 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8153 || code1 == FIXED_POINT_TYPE || code1 == COMPLEX_TYPE))
8154 short_compare = 1;
8155 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8156 {
8157 tree tt0 = TREE_TYPE (type0);
8158 tree tt1 = TREE_TYPE (type1);
8159 /* Anything compares with void *. void * compares with anything.
8160 Otherwise, the targets must be compatible
8161 and both must be object or both incomplete. */
8162 if (comp_target_types (type0, type1))
8163 result_type = common_pointer_type (type0, type1);
8164 else if (VOID_TYPE_P (tt0))
8165 {
8166 /* op0 != orig_op0 detects the case of something
8167 whose value is 0 but which isn't a valid null ptr const. */
8168 if (pedantic && !null_pointer_constant_p (orig_op0)
8169 && TREE_CODE (tt1) == FUNCTION_TYPE)
8170 pedwarn ("ISO C forbids comparison of %<void *%>"
8171 " with function pointer");
8172 }
8173 else if (VOID_TYPE_P (tt1))
8174 {
8175 if (pedantic && !null_pointer_constant_p (orig_op1)
8176 && TREE_CODE (tt0) == FUNCTION_TYPE)
8177 pedwarn ("ISO C forbids comparison of %<void *%>"
8178 " with function pointer");
8179 }
8180 else
8181 /* Avoid warning about the volatile ObjC EH puts on decls. */
8182 if (!objc_ok)
8183 pedwarn ("comparison of distinct pointer types lacks a cast");
8184
8185 if (result_type == NULL_TREE)
8186 result_type = ptr_type_node;
8187 }
8188 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8189 {
8190 if (TREE_CODE (op0) == ADDR_EXPR
8191 && decl_with_nonnull_addr_p (TREE_OPERAND (op0, 0)))
8192 warning (OPT_Waddress, "the address of %qD will never be NULL",
8193 TREE_OPERAND (op0, 0));
8194 result_type = type0;
8195 }
8196 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8197 {
8198 if (TREE_CODE (op1) == ADDR_EXPR
8199 && decl_with_nonnull_addr_p (TREE_OPERAND (op1, 0)))
8200 warning (OPT_Waddress, "the address of %qD will never be NULL",
8201 TREE_OPERAND (op1, 0));
8202 result_type = type1;
8203 }
8204 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8205 {
8206 result_type = type0;
8207 pedwarn ("comparison between pointer and integer");
8208 }
8209 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8210 {
8211 result_type = type1;
8212 pedwarn ("comparison between pointer and integer");
8213 }
8214 break;
8215
8216 case LE_EXPR:
8217 case GE_EXPR:
8218 case LT_EXPR:
8219 case GT_EXPR:
8220 build_type = integer_type_node;
8221 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8222 || code0 == FIXED_POINT_TYPE)
8223 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8224 || code1 == FIXED_POINT_TYPE))
8225 short_compare = 1;
8226 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8227 {
8228 if (comp_target_types (type0, type1))
8229 {
8230 result_type = common_pointer_type (type0, type1);
8231 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8232 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8233 pedwarn ("comparison of complete and incomplete pointers");
8234 else if (pedantic
8235 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8236 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8237 }
8238 else
8239 {
8240 result_type = ptr_type_node;
8241 pedwarn ("comparison of distinct pointer types lacks a cast");
8242 }
8243 }
8244 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8245 {
8246 result_type = type0;
8247 if (pedantic || extra_warnings)
8248 pedwarn ("ordered comparison of pointer with integer zero");
8249 }
8250 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8251 {
8252 result_type = type1;
8253 if (pedantic)
8254 pedwarn ("ordered comparison of pointer with integer zero");
8255 }
8256 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8257 {
8258 result_type = type0;
8259 pedwarn ("comparison between pointer and integer");
8260 }
8261 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8262 {
8263 result_type = type1;
8264 pedwarn ("comparison between pointer and integer");
8265 }
8266 break;
8267
8268 default:
8269 gcc_unreachable ();
8270 }
8271
8272 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8273 return error_mark_node;
8274
8275 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8276 && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8277 || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8278 TREE_TYPE (type1))))
8279 {
8280 binary_op_error (code, type0, type1);
8281 return error_mark_node;
8282 }
8283
8284 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8285 || code0 == FIXED_POINT_TYPE || code0 == VECTOR_TYPE)
8286 &&
8287 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8288 || code1 == FIXED_POINT_TYPE || code1 == VECTOR_TYPE))
8289 {
8290 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8291
8292 if (shorten || common || short_compare)
8293 {
8294 result_type = c_common_type (type0, type1);
8295 if (result_type == error_mark_node)
8296 return error_mark_node;
8297 }
8298
8299 /* For certain operations (which identify themselves by shorten != 0)
8300 if both args were extended from the same smaller type,
8301 do the arithmetic in that type and then extend.
8302
8303 shorten !=0 and !=1 indicates a bitwise operation.
8304 For them, this optimization is safe only if
8305 both args are zero-extended or both are sign-extended.
8306 Otherwise, we might change the result.
8307 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8308 but calculated in (unsigned short) it would be (unsigned short)-1. */
8309
8310 if (shorten && none_complex)
8311 {
8312 int unsigned0, unsigned1;
8313 tree arg0, arg1;
8314 int uns;
8315 tree type;
8316
8317 /* Cast OP0 and OP1 to RESULT_TYPE. Doing so prevents
8318 excessive narrowing when we call get_narrower below. For
8319 example, suppose that OP0 is of unsigned int extended
8320 from signed char and that RESULT_TYPE is long long int.
8321 If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
8322 like
8323
8324 (long long int) (unsigned int) signed_char
8325
8326 which get_narrower would narrow down to
8327
8328 (unsigned int) signed char
8329
8330 If we do not cast OP0 first, get_narrower would return
8331 signed_char, which is inconsistent with the case of the
8332 explicit cast. */
8333 op0 = convert (result_type, op0);
8334 op1 = convert (result_type, op1);
8335
8336 arg0 = get_narrower (op0, &unsigned0);
8337 arg1 = get_narrower (op1, &unsigned1);
8338
8339 /* UNS is 1 if the operation to be done is an unsigned one. */
8340 uns = TYPE_UNSIGNED (result_type);
8341
8342 final_type = result_type;
8343
8344 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8345 but it *requires* conversion to FINAL_TYPE. */
8346
8347 if ((TYPE_PRECISION (TREE_TYPE (op0))
8348 == TYPE_PRECISION (TREE_TYPE (arg0)))
8349 && TREE_TYPE (op0) != final_type)
8350 unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8351 if ((TYPE_PRECISION (TREE_TYPE (op1))
8352 == TYPE_PRECISION (TREE_TYPE (arg1)))
8353 && TREE_TYPE (op1) != final_type)
8354 unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8355
8356 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
8357
8358 /* For bitwise operations, signedness of nominal type
8359 does not matter. Consider only how operands were extended. */
8360 if (shorten == -1)
8361 uns = unsigned0;
8362
8363 /* Note that in all three cases below we refrain from optimizing
8364 an unsigned operation on sign-extended args.
8365 That would not be valid. */
8366
8367 /* Both args variable: if both extended in same way
8368 from same width, do it in that width.
8369 Do it unsigned if args were zero-extended. */
8370 if ((TYPE_PRECISION (TREE_TYPE (arg0))
8371 < TYPE_PRECISION (result_type))
8372 && (TYPE_PRECISION (TREE_TYPE (arg1))
8373 == TYPE_PRECISION (TREE_TYPE (arg0)))
8374 && unsigned0 == unsigned1
8375 && (unsigned0 || !uns))
8376 result_type
8377 = c_common_signed_or_unsigned_type
8378 (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8379 else if (TREE_CODE (arg0) == INTEGER_CST
8380 && (unsigned1 || !uns)
8381 && (TYPE_PRECISION (TREE_TYPE (arg1))
8382 < TYPE_PRECISION (result_type))
8383 && (type
8384 = c_common_signed_or_unsigned_type (unsigned1,
8385 TREE_TYPE (arg1)))
8386 && !POINTER_TYPE_P (type)
8387 && int_fits_type_p (arg0, type))
8388 result_type = type;
8389 else if (TREE_CODE (arg1) == INTEGER_CST
8390 && (unsigned0 || !uns)
8391 && (TYPE_PRECISION (TREE_TYPE (arg0))
8392 < TYPE_PRECISION (result_type))
8393 && (type
8394 = c_common_signed_or_unsigned_type (unsigned0,
8395 TREE_TYPE (arg0)))
8396 && !POINTER_TYPE_P (type)
8397 && int_fits_type_p (arg1, type))
8398 result_type = type;
8399 }
8400
8401 /* Shifts can be shortened if shifting right. */
8402
8403 if (short_shift)
8404 {
8405 int unsigned_arg;
8406 tree arg0 = get_narrower (op0, &unsigned_arg);
8407
8408 final_type = result_type;
8409
8410 if (arg0 == op0 && final_type == TREE_TYPE (op0))
8411 unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8412
8413 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8414 /* We can shorten only if the shift count is less than the
8415 number of bits in the smaller type size. */
8416 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8417 /* We cannot drop an unsigned shift after sign-extension. */
8418 && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8419 {
8420 /* Do an unsigned shift if the operand was zero-extended. */
8421 result_type
8422 = c_common_signed_or_unsigned_type (unsigned_arg,
8423 TREE_TYPE (arg0));
8424 /* Convert value-to-be-shifted to that type. */
8425 if (TREE_TYPE (op0) != result_type)
8426 op0 = convert (result_type, op0);
8427 converted = 1;
8428 }
8429 }
8430
8431 /* Comparison operations are shortened too but differently.
8432 They identify themselves by setting short_compare = 1. */
8433
8434 if (short_compare)
8435 {
8436 /* Don't write &op0, etc., because that would prevent op0
8437 from being kept in a register.
8438 Instead, make copies of the our local variables and
8439 pass the copies by reference, then copy them back afterward. */
8440 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8441 enum tree_code xresultcode = resultcode;
8442 tree val
8443 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8444
8445 if (val != 0)
8446 return val;
8447
8448 op0 = xop0, op1 = xop1;
8449 converted = 1;
8450 resultcode = xresultcode;
8451
8452 if (warn_sign_compare && skip_evaluation == 0)
8453 {
8454 int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8455 int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8456 int unsignedp0, unsignedp1;
8457 tree primop0 = get_narrower (op0, &unsignedp0);
8458 tree primop1 = get_narrower (op1, &unsignedp1);
8459
8460 xop0 = orig_op0;
8461 xop1 = orig_op1;
8462 STRIP_TYPE_NOPS (xop0);
8463 STRIP_TYPE_NOPS (xop1);
8464
8465 /* Give warnings for comparisons between signed and unsigned
8466 quantities that may fail.
8467
8468 Do the checking based on the original operand trees, so that
8469 casts will be considered, but default promotions won't be.
8470
8471 Do not warn if the comparison is being done in a signed type,
8472 since the signed type will only be chosen if it can represent
8473 all the values of the unsigned type. */
8474 if (!TYPE_UNSIGNED (result_type))
8475 /* OK */;
8476 /* Do not warn if both operands are the same signedness. */
8477 else if (op0_signed == op1_signed)
8478 /* OK */;
8479 else
8480 {
8481 tree sop, uop;
8482 bool ovf;
8483
8484 if (op0_signed)
8485 sop = xop0, uop = xop1;
8486 else
8487 sop = xop1, uop = xop0;
8488
8489 /* Do not warn if the signed quantity is an
8490 unsuffixed integer literal (or some static
8491 constant expression involving such literals or a
8492 conditional expression involving such literals)
8493 and it is non-negative. */
8494 if (tree_expr_nonnegative_warnv_p (sop, &ovf))
8495 /* OK */;
8496 /* Do not warn if the comparison is an equality operation,
8497 the unsigned quantity is an integral constant, and it
8498 would fit in the result if the result were signed. */
8499 else if (TREE_CODE (uop) == INTEGER_CST
8500 && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8501 && int_fits_type_p
8502 (uop, c_common_signed_type (result_type)))
8503 /* OK */;
8504 /* Do not warn if the unsigned quantity is an enumeration
8505 constant and its maximum value would fit in the result
8506 if the result were signed. */
8507 else if (TREE_CODE (uop) == INTEGER_CST
8508 && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8509 && int_fits_type_p
8510 (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8511 c_common_signed_type (result_type)))
8512 /* OK */;
8513 else
8514 warning (OPT_Wsign_compare, "comparison between signed and unsigned");
8515 }
8516
8517 /* Warn if two unsigned values are being compared in a size
8518 larger than their original size, and one (and only one) is the
8519 result of a `~' operator. This comparison will always fail.
8520
8521 Also warn if one operand is a constant, and the constant
8522 does not have all bits set that are set in the ~ operand
8523 when it is extended. */
8524
8525 if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8526 != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8527 {
8528 if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8529 primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8530 &unsignedp0);
8531 else
8532 primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8533 &unsignedp1);
8534
8535 if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8536 {
8537 tree primop;
8538 HOST_WIDE_INT constant, mask;
8539 int unsignedp, bits;
8540
8541 if (host_integerp (primop0, 0))
8542 {
8543 primop = primop1;
8544 unsignedp = unsignedp1;
8545 constant = tree_low_cst (primop0, 0);
8546 }
8547 else
8548 {
8549 primop = primop0;
8550 unsignedp = unsignedp0;
8551 constant = tree_low_cst (primop1, 0);
8552 }
8553
8554 bits = TYPE_PRECISION (TREE_TYPE (primop));
8555 if (bits < TYPE_PRECISION (result_type)
8556 && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8557 {
8558 mask = (~(HOST_WIDE_INT) 0) << bits;
8559 if ((mask & constant) != mask)
8560 warning (OPT_Wsign_compare, "comparison of promoted ~unsigned with constant");
8561 }
8562 }
8563 else if (unsignedp0 && unsignedp1
8564 && (TYPE_PRECISION (TREE_TYPE (primop0))
8565 < TYPE_PRECISION (result_type))
8566 && (TYPE_PRECISION (TREE_TYPE (primop1))
8567 < TYPE_PRECISION (result_type)))
8568 warning (OPT_Wsign_compare, "comparison of promoted ~unsigned with unsigned");
8569 }
8570 }
8571 }
8572 }
8573
8574 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8575 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8576 Then the expression will be built.
8577 It will be given type FINAL_TYPE if that is nonzero;
8578 otherwise, it will be given type RESULT_TYPE. */
8579
8580 if (!result_type)
8581 {
8582 binary_op_error (code, TREE_TYPE (op0), TREE_TYPE (op1));
8583 return error_mark_node;
8584 }
8585
8586 if (!converted)
8587 {
8588 if (TREE_TYPE (op0) != result_type)
8589 op0 = convert_and_check (result_type, op0);
8590 if (TREE_TYPE (op1) != result_type)
8591 op1 = convert_and_check (result_type, op1);
8592
8593 /* This can happen if one operand has a vector type, and the other
8594 has a different type. */
8595 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8596 return error_mark_node;
8597 }
8598
8599 if (build_type == NULL_TREE)
8600 build_type = result_type;
8601
8602 {
8603 /* Treat expressions in initializers specially as they can't trap. */
8604 tree result = require_constant_value ? fold_build2_initializer (resultcode,
8605 build_type,
8606 op0, op1)
8607 : fold_build2 (resultcode, build_type,
8608 op0, op1);
8609
8610 if (final_type != 0)
8611 result = convert (final_type, result);
8612 return result;
8613 }
8614 }
8615
8616
8617 /* Convert EXPR to be a truth-value, validating its type for this
8618 purpose. */
8619
8620 tree
8621 c_objc_common_truthvalue_conversion (tree expr)
8622 {
8623 switch (TREE_CODE (TREE_TYPE (expr)))
8624 {
8625 case ARRAY_TYPE:
8626 error ("used array that cannot be converted to pointer where scalar is required");
8627 return error_mark_node;
8628
8629 case RECORD_TYPE:
8630 error ("used struct type value where scalar is required");
8631 return error_mark_node;
8632
8633 case UNION_TYPE:
8634 error ("used union type value where scalar is required");
8635 return error_mark_node;
8636
8637 case FUNCTION_TYPE:
8638 gcc_unreachable ();
8639
8640 default:
8641 break;
8642 }
8643
8644 /* ??? Should we also give an error for void and vectors rather than
8645 leaving those to give errors later? */
8646 return c_common_truthvalue_conversion (expr);
8647 }
8648 \f
8649
8650 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8651 required. */
8652
8653 tree
8654 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8655 bool *ti ATTRIBUTE_UNUSED, bool *se)
8656 {
8657 if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8658 {
8659 tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8660 /* Executing a compound literal inside a function reinitializes
8661 it. */
8662 if (!TREE_STATIC (decl))
8663 *se = true;
8664 return decl;
8665 }
8666 else
8667 return expr;
8668 }
8669 \f
8670 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
8671
8672 tree
8673 c_begin_omp_parallel (void)
8674 {
8675 tree block;
8676
8677 keep_next_level ();
8678 block = c_begin_compound_stmt (true);
8679
8680 return block;
8681 }
8682
8683 tree
8684 c_finish_omp_parallel (tree clauses, tree block)
8685 {
8686 tree stmt;
8687
8688 block = c_end_compound_stmt (block, true);
8689
8690 stmt = make_node (OMP_PARALLEL);
8691 TREE_TYPE (stmt) = void_type_node;
8692 OMP_PARALLEL_CLAUSES (stmt) = clauses;
8693 OMP_PARALLEL_BODY (stmt) = block;
8694
8695 return add_stmt (stmt);
8696 }
8697
8698 /* For all elements of CLAUSES, validate them vs OpenMP constraints.
8699 Remove any elements from the list that are invalid. */
8700
8701 tree
8702 c_finish_omp_clauses (tree clauses)
8703 {
8704 bitmap_head generic_head, firstprivate_head, lastprivate_head;
8705 tree c, t, *pc = &clauses;
8706 const char *name;
8707
8708 bitmap_obstack_initialize (NULL);
8709 bitmap_initialize (&generic_head, &bitmap_default_obstack);
8710 bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8711 bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8712
8713 for (pc = &clauses, c = clauses; c ; c = *pc)
8714 {
8715 bool remove = false;
8716 bool need_complete = false;
8717 bool need_implicitly_determined = false;
8718
8719 switch (OMP_CLAUSE_CODE (c))
8720 {
8721 case OMP_CLAUSE_SHARED:
8722 name = "shared";
8723 need_implicitly_determined = true;
8724 goto check_dup_generic;
8725
8726 case OMP_CLAUSE_PRIVATE:
8727 name = "private";
8728 need_complete = true;
8729 need_implicitly_determined = true;
8730 goto check_dup_generic;
8731
8732 case OMP_CLAUSE_REDUCTION:
8733 name = "reduction";
8734 need_implicitly_determined = true;
8735 t = OMP_CLAUSE_DECL (c);
8736 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8737 || POINTER_TYPE_P (TREE_TYPE (t)))
8738 {
8739 error ("%qE has invalid type for %<reduction%>", t);
8740 remove = true;
8741 }
8742 else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8743 {
8744 enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8745 const char *r_name = NULL;
8746
8747 switch (r_code)
8748 {
8749 case PLUS_EXPR:
8750 case MULT_EXPR:
8751 case MINUS_EXPR:
8752 break;
8753 case BIT_AND_EXPR:
8754 r_name = "&";
8755 break;
8756 case BIT_XOR_EXPR:
8757 r_name = "^";
8758 break;
8759 case BIT_IOR_EXPR:
8760 r_name = "|";
8761 break;
8762 case TRUTH_ANDIF_EXPR:
8763 r_name = "&&";
8764 break;
8765 case TRUTH_ORIF_EXPR:
8766 r_name = "||";
8767 break;
8768 default:
8769 gcc_unreachable ();
8770 }
8771 if (r_name)
8772 {
8773 error ("%qE has invalid type for %<reduction(%s)%>",
8774 t, r_name);
8775 remove = true;
8776 }
8777 }
8778 goto check_dup_generic;
8779
8780 case OMP_CLAUSE_COPYPRIVATE:
8781 name = "copyprivate";
8782 goto check_dup_generic;
8783
8784 case OMP_CLAUSE_COPYIN:
8785 name = "copyin";
8786 t = OMP_CLAUSE_DECL (c);
8787 if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8788 {
8789 error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8790 remove = true;
8791 }
8792 goto check_dup_generic;
8793
8794 check_dup_generic:
8795 t = OMP_CLAUSE_DECL (c);
8796 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8797 {
8798 error ("%qE is not a variable in clause %qs", t, name);
8799 remove = true;
8800 }
8801 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8802 || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8803 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8804 {
8805 error ("%qE appears more than once in data clauses", t);
8806 remove = true;
8807 }
8808 else
8809 bitmap_set_bit (&generic_head, DECL_UID (t));
8810 break;
8811
8812 case OMP_CLAUSE_FIRSTPRIVATE:
8813 name = "firstprivate";
8814 t = OMP_CLAUSE_DECL (c);
8815 need_complete = true;
8816 need_implicitly_determined = true;
8817 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8818 {
8819 error ("%qE is not a variable in clause %<firstprivate%>", t);
8820 remove = true;
8821 }
8822 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8823 || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8824 {
8825 error ("%qE appears more than once in data clauses", t);
8826 remove = true;
8827 }
8828 else
8829 bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8830 break;
8831
8832 case OMP_CLAUSE_LASTPRIVATE:
8833 name = "lastprivate";
8834 t = OMP_CLAUSE_DECL (c);
8835 need_complete = true;
8836 need_implicitly_determined = true;
8837 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8838 {
8839 error ("%qE is not a variable in clause %<lastprivate%>", t);
8840 remove = true;
8841 }
8842 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8843 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8844 {
8845 error ("%qE appears more than once in data clauses", t);
8846 remove = true;
8847 }
8848 else
8849 bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8850 break;
8851
8852 case OMP_CLAUSE_IF:
8853 case OMP_CLAUSE_NUM_THREADS:
8854 case OMP_CLAUSE_SCHEDULE:
8855 case OMP_CLAUSE_NOWAIT:
8856 case OMP_CLAUSE_ORDERED:
8857 case OMP_CLAUSE_DEFAULT:
8858 pc = &OMP_CLAUSE_CHAIN (c);
8859 continue;
8860
8861 default:
8862 gcc_unreachable ();
8863 }
8864
8865 if (!remove)
8866 {
8867 t = OMP_CLAUSE_DECL (c);
8868
8869 if (need_complete)
8870 {
8871 t = require_complete_type (t);
8872 if (t == error_mark_node)
8873 remove = true;
8874 }
8875
8876 if (need_implicitly_determined)
8877 {
8878 const char *share_name = NULL;
8879
8880 if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8881 share_name = "threadprivate";
8882 else switch (c_omp_predetermined_sharing (t))
8883 {
8884 case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8885 break;
8886 case OMP_CLAUSE_DEFAULT_SHARED:
8887 share_name = "shared";
8888 break;
8889 case OMP_CLAUSE_DEFAULT_PRIVATE:
8890 share_name = "private";
8891 break;
8892 default:
8893 gcc_unreachable ();
8894 }
8895 if (share_name)
8896 {
8897 error ("%qE is predetermined %qs for %qs",
8898 t, share_name, name);
8899 remove = true;
8900 }
8901 }
8902 }
8903
8904 if (remove)
8905 *pc = OMP_CLAUSE_CHAIN (c);
8906 else
8907 pc = &OMP_CLAUSE_CHAIN (c);
8908 }
8909
8910 bitmap_obstack_release (NULL);
8911 return clauses;
8912 }
8913
8914 /* Make a variant type in the proper way for C/C++, propagating qualifiers
8915 down to the element type of an array. */
8916
8917 tree
8918 c_build_qualified_type (tree type, int type_quals)
8919 {
8920 if (type == error_mark_node)
8921 return type;
8922
8923 if (TREE_CODE (type) == ARRAY_TYPE)
8924 {
8925 tree t;
8926 tree element_type = c_build_qualified_type (TREE_TYPE (type),
8927 type_quals);
8928
8929 /* See if we already have an identically qualified type. */
8930 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
8931 {
8932 if (TYPE_QUALS (strip_array_types (t)) == type_quals
8933 && TYPE_NAME (t) == TYPE_NAME (type)
8934 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
8935 && attribute_list_equal (TYPE_ATTRIBUTES (t),
8936 TYPE_ATTRIBUTES (type)))
8937 break;
8938 }
8939 if (!t)
8940 {
8941 tree domain = TYPE_DOMAIN (type);
8942
8943 t = build_variant_type_copy (type);
8944 TREE_TYPE (t) = element_type;
8945
8946 if (TYPE_STRUCTURAL_EQUALITY_P (element_type)
8947 || (domain && TYPE_STRUCTURAL_EQUALITY_P (domain)))
8948 SET_TYPE_STRUCTURAL_EQUALITY (t);
8949 else if (TYPE_CANONICAL (element_type) != element_type
8950 || (domain && TYPE_CANONICAL (domain) != domain))
8951 {
8952 tree unqualified_canon
8953 = build_array_type (TYPE_CANONICAL (element_type),
8954 domain? TYPE_CANONICAL (domain)
8955 : NULL_TREE);
8956 TYPE_CANONICAL (t)
8957 = c_build_qualified_type (unqualified_canon, type_quals);
8958 }
8959 else
8960 TYPE_CANONICAL (t) = t;
8961 }
8962 return t;
8963 }
8964
8965 /* A restrict-qualified pointer type must be a pointer to object or
8966 incomplete type. Note that the use of POINTER_TYPE_P also allows
8967 REFERENCE_TYPEs, which is appropriate for C++. */
8968 if ((type_quals & TYPE_QUAL_RESTRICT)
8969 && (!POINTER_TYPE_P (type)
8970 || !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type))))
8971 {
8972 error ("invalid use of %<restrict%>");
8973 type_quals &= ~TYPE_QUAL_RESTRICT;
8974 }
8975
8976 return build_qualified_type (type, type_quals);
8977 }