re PR other/36901 (pedwarn() + -pedantic-errors + -w (inhibit_warnings) should not...
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* This file is part of the C front end.
24 It contains routines to build C expressions given their operands,
25 including computing the types of the result, C-specific error checks,
26 and some optimization. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "langhooks.h"
35 #include "c-tree.h"
36 #include "tm_p.h"
37 #include "flags.h"
38 #include "output.h"
39 #include "expr.h"
40 #include "toplev.h"
41 #include "intl.h"
42 #include "ggc.h"
43 #include "target.h"
44 #include "tree-iterator.h"
45 #include "gimple.h"
46 #include "tree-flow.h"
47
48 /* Possible cases of implicit bad conversions. Used to select
49 diagnostic messages in convert_for_assignment. */
50 enum impl_conv {
51 ic_argpass,
52 ic_argpass_nonproto,
53 ic_assign,
54 ic_init,
55 ic_return
56 };
57
58 /* The level of nesting inside "__alignof__". */
59 int in_alignof;
60
61 /* The level of nesting inside "sizeof". */
62 int in_sizeof;
63
64 /* The level of nesting inside "typeof". */
65 int in_typeof;
66
67 struct c_label_context_se *label_context_stack_se;
68 struct c_label_context_vm *label_context_stack_vm;
69
70 /* Nonzero if we've already printed a "missing braces around initializer"
71 message within this initializer. */
72 static int missing_braces_mentioned;
73
74 static int require_constant_value;
75 static int require_constant_elements;
76
77 static bool null_pointer_constant_p (const_tree);
78 static tree qualify_type (tree, tree);
79 static int tagged_types_tu_compatible_p (const_tree, const_tree);
80 static int comp_target_types (tree, tree);
81 static int function_types_compatible_p (const_tree, const_tree);
82 static int type_lists_compatible_p (const_tree, const_tree);
83 static tree decl_constant_value_for_broken_optimization (tree);
84 static tree lookup_field (tree, tree);
85 static int convert_arguments (int, tree *, tree, tree, tree, tree);
86 static tree pointer_diff (tree, tree);
87 static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
88 int);
89 static tree valid_compound_expr_initializer (tree, tree);
90 static void push_string (const char *);
91 static void push_member_name (tree);
92 static int spelling_length (void);
93 static char *print_spelling (char *);
94 static void warning_init (int, const char *);
95 static tree digest_init (tree, tree, bool, int);
96 static void output_init_element (tree, bool, tree, tree, int);
97 static void output_pending_init_elements (int);
98 static int set_designator (int);
99 static void push_range_stack (tree);
100 static void add_pending_init (tree, tree);
101 static void set_nonincremental_init (void);
102 static void set_nonincremental_init_from_string (tree);
103 static tree find_init_member (tree);
104 static void readonly_error (tree, enum lvalue_use);
105 static int lvalue_or_else (const_tree, enum lvalue_use);
106 static int lvalue_p (const_tree);
107 static void record_maybe_used_decl (tree);
108 static int comptypes_internal (const_tree, const_tree);
109 \f
110 /* Return true if EXP is a null pointer constant, false otherwise. */
111
112 static bool
113 null_pointer_constant_p (const_tree expr)
114 {
115 /* This should really operate on c_expr structures, but they aren't
116 yet available everywhere required. */
117 tree type = TREE_TYPE (expr);
118 return (TREE_CODE (expr) == INTEGER_CST
119 && !TREE_OVERFLOW (expr)
120 && integer_zerop (expr)
121 && (INTEGRAL_TYPE_P (type)
122 || (TREE_CODE (type) == POINTER_TYPE
123 && VOID_TYPE_P (TREE_TYPE (type))
124 && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
125 }
126 \f/* This is a cache to hold if two types are compatible or not. */
127
128 struct tagged_tu_seen_cache {
129 const struct tagged_tu_seen_cache * next;
130 const_tree t1;
131 const_tree t2;
132 /* The return value of tagged_types_tu_compatible_p if we had seen
133 these two types already. */
134 int val;
135 };
136
137 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
138 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
139
140 /* Do `exp = require_complete_type (exp);' to make sure exp
141 does not have an incomplete type. (That includes void types.) */
142
143 tree
144 require_complete_type (tree value)
145 {
146 tree type = TREE_TYPE (value);
147
148 if (value == error_mark_node || type == error_mark_node)
149 return error_mark_node;
150
151 /* First, detect a valid value with a complete type. */
152 if (COMPLETE_TYPE_P (type))
153 return value;
154
155 c_incomplete_type_error (value, type);
156 return error_mark_node;
157 }
158
159 /* Print an error message for invalid use of an incomplete type.
160 VALUE is the expression that was used (or 0 if that isn't known)
161 and TYPE is the type that was invalid. */
162
163 void
164 c_incomplete_type_error (const_tree value, const_tree type)
165 {
166 const char *type_code_string;
167
168 /* Avoid duplicate error message. */
169 if (TREE_CODE (type) == ERROR_MARK)
170 return;
171
172 if (value != 0 && (TREE_CODE (value) == VAR_DECL
173 || TREE_CODE (value) == PARM_DECL))
174 error ("%qD has an incomplete type", value);
175 else
176 {
177 retry:
178 /* We must print an error message. Be clever about what it says. */
179
180 switch (TREE_CODE (type))
181 {
182 case RECORD_TYPE:
183 type_code_string = "struct";
184 break;
185
186 case UNION_TYPE:
187 type_code_string = "union";
188 break;
189
190 case ENUMERAL_TYPE:
191 type_code_string = "enum";
192 break;
193
194 case VOID_TYPE:
195 error ("invalid use of void expression");
196 return;
197
198 case ARRAY_TYPE:
199 if (TYPE_DOMAIN (type))
200 {
201 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
202 {
203 error ("invalid use of flexible array member");
204 return;
205 }
206 type = TREE_TYPE (type);
207 goto retry;
208 }
209 error ("invalid use of array with unspecified bounds");
210 return;
211
212 default:
213 gcc_unreachable ();
214 }
215
216 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
217 error ("invalid use of undefined type %<%s %E%>",
218 type_code_string, TYPE_NAME (type));
219 else
220 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
221 error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
222 }
223 }
224
225 /* Given a type, apply default promotions wrt unnamed function
226 arguments and return the new type. */
227
228 tree
229 c_type_promotes_to (tree type)
230 {
231 if (TYPE_MAIN_VARIANT (type) == float_type_node)
232 return double_type_node;
233
234 if (c_promoting_integer_type_p (type))
235 {
236 /* Preserve unsignedness if not really getting any wider. */
237 if (TYPE_UNSIGNED (type)
238 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
239 return unsigned_type_node;
240 return integer_type_node;
241 }
242
243 return type;
244 }
245
246 /* Return a variant of TYPE which has all the type qualifiers of LIKE
247 as well as those of TYPE. */
248
249 static tree
250 qualify_type (tree type, tree like)
251 {
252 return c_build_qualified_type (type,
253 TYPE_QUALS (type) | TYPE_QUALS (like));
254 }
255
256 /* Return true iff the given tree T is a variable length array. */
257
258 bool
259 c_vla_type_p (const_tree t)
260 {
261 if (TREE_CODE (t) == ARRAY_TYPE
262 && C_TYPE_VARIABLE_SIZE (t))
263 return true;
264 return false;
265 }
266 \f
267 /* Return the composite type of two compatible types.
268
269 We assume that comptypes has already been done and returned
270 nonzero; if that isn't so, this may crash. In particular, we
271 assume that qualifiers match. */
272
273 tree
274 composite_type (tree t1, tree t2)
275 {
276 enum tree_code code1;
277 enum tree_code code2;
278 tree attributes;
279
280 /* Save time if the two types are the same. */
281
282 if (t1 == t2) return t1;
283
284 /* If one type is nonsense, use the other. */
285 if (t1 == error_mark_node)
286 return t2;
287 if (t2 == error_mark_node)
288 return t1;
289
290 code1 = TREE_CODE (t1);
291 code2 = TREE_CODE (t2);
292
293 /* Merge the attributes. */
294 attributes = targetm.merge_type_attributes (t1, t2);
295
296 /* If one is an enumerated type and the other is the compatible
297 integer type, the composite type might be either of the two
298 (DR#013 question 3). For consistency, use the enumerated type as
299 the composite type. */
300
301 if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
302 return t1;
303 if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
304 return t2;
305
306 gcc_assert (code1 == code2);
307
308 switch (code1)
309 {
310 case POINTER_TYPE:
311 /* For two pointers, do this recursively on the target type. */
312 {
313 tree pointed_to_1 = TREE_TYPE (t1);
314 tree pointed_to_2 = TREE_TYPE (t2);
315 tree target = composite_type (pointed_to_1, pointed_to_2);
316 t1 = build_pointer_type (target);
317 t1 = build_type_attribute_variant (t1, attributes);
318 return qualify_type (t1, t2);
319 }
320
321 case ARRAY_TYPE:
322 {
323 tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
324 int quals;
325 tree unqual_elt;
326 tree d1 = TYPE_DOMAIN (t1);
327 tree d2 = TYPE_DOMAIN (t2);
328 bool d1_variable, d2_variable;
329 bool d1_zero, d2_zero;
330
331 /* We should not have any type quals on arrays at all. */
332 gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
333
334 d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
335 d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
336
337 d1_variable = (!d1_zero
338 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
339 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
340 d2_variable = (!d2_zero
341 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
342 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
343 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
344 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
345
346 /* Save space: see if the result is identical to one of the args. */
347 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
348 && (d2_variable || d2_zero || !d1_variable))
349 return build_type_attribute_variant (t1, attributes);
350 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
351 && (d1_variable || d1_zero || !d2_variable))
352 return build_type_attribute_variant (t2, attributes);
353
354 if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
355 return build_type_attribute_variant (t1, attributes);
356 if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
357 return build_type_attribute_variant (t2, attributes);
358
359 /* Merge the element types, and have a size if either arg has
360 one. We may have qualifiers on the element types. To set
361 up TYPE_MAIN_VARIANT correctly, we need to form the
362 composite of the unqualified types and add the qualifiers
363 back at the end. */
364 quals = TYPE_QUALS (strip_array_types (elt));
365 unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
366 t1 = build_array_type (unqual_elt,
367 TYPE_DOMAIN ((TYPE_DOMAIN (t1)
368 && (d2_variable
369 || d2_zero
370 || !d1_variable))
371 ? t1
372 : t2));
373 t1 = c_build_qualified_type (t1, quals);
374 return build_type_attribute_variant (t1, attributes);
375 }
376
377 case ENUMERAL_TYPE:
378 case RECORD_TYPE:
379 case UNION_TYPE:
380 if (attributes != NULL)
381 {
382 /* Try harder not to create a new aggregate type. */
383 if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
384 return t1;
385 if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
386 return t2;
387 }
388 return build_type_attribute_variant (t1, attributes);
389
390 case FUNCTION_TYPE:
391 /* Function types: prefer the one that specified arg types.
392 If both do, merge the arg types. Also merge the return types. */
393 {
394 tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
395 tree p1 = TYPE_ARG_TYPES (t1);
396 tree p2 = TYPE_ARG_TYPES (t2);
397 int len;
398 tree newargs, n;
399 int i;
400
401 /* Save space: see if the result is identical to one of the args. */
402 if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
403 return build_type_attribute_variant (t1, attributes);
404 if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
405 return build_type_attribute_variant (t2, attributes);
406
407 /* Simple way if one arg fails to specify argument types. */
408 if (TYPE_ARG_TYPES (t1) == 0)
409 {
410 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
411 t1 = build_type_attribute_variant (t1, attributes);
412 return qualify_type (t1, t2);
413 }
414 if (TYPE_ARG_TYPES (t2) == 0)
415 {
416 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
417 t1 = build_type_attribute_variant (t1, attributes);
418 return qualify_type (t1, t2);
419 }
420
421 /* If both args specify argument types, we must merge the two
422 lists, argument by argument. */
423 /* Tell global_bindings_p to return false so that variable_size
424 doesn't die on VLAs in parameter types. */
425 c_override_global_bindings_to_false = true;
426
427 len = list_length (p1);
428 newargs = 0;
429
430 for (i = 0; i < len; i++)
431 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
432
433 n = newargs;
434
435 for (; p1;
436 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
437 {
438 /* A null type means arg type is not specified.
439 Take whatever the other function type has. */
440 if (TREE_VALUE (p1) == 0)
441 {
442 TREE_VALUE (n) = TREE_VALUE (p2);
443 goto parm_done;
444 }
445 if (TREE_VALUE (p2) == 0)
446 {
447 TREE_VALUE (n) = TREE_VALUE (p1);
448 goto parm_done;
449 }
450
451 /* Given wait (union {union wait *u; int *i} *)
452 and wait (union wait *),
453 prefer union wait * as type of parm. */
454 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
455 && TREE_VALUE (p1) != TREE_VALUE (p2))
456 {
457 tree memb;
458 tree mv2 = TREE_VALUE (p2);
459 if (mv2 && mv2 != error_mark_node
460 && TREE_CODE (mv2) != ARRAY_TYPE)
461 mv2 = TYPE_MAIN_VARIANT (mv2);
462 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
463 memb; memb = TREE_CHAIN (memb))
464 {
465 tree mv3 = TREE_TYPE (memb);
466 if (mv3 && mv3 != error_mark_node
467 && TREE_CODE (mv3) != ARRAY_TYPE)
468 mv3 = TYPE_MAIN_VARIANT (mv3);
469 if (comptypes (mv3, mv2))
470 {
471 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
472 TREE_VALUE (p2));
473 pedwarn (OPT_pedantic,
474 "function types not truly compatible in ISO C");
475 goto parm_done;
476 }
477 }
478 }
479 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
480 && TREE_VALUE (p2) != TREE_VALUE (p1))
481 {
482 tree memb;
483 tree mv1 = TREE_VALUE (p1);
484 if (mv1 && mv1 != error_mark_node
485 && TREE_CODE (mv1) != ARRAY_TYPE)
486 mv1 = TYPE_MAIN_VARIANT (mv1);
487 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
488 memb; memb = TREE_CHAIN (memb))
489 {
490 tree mv3 = TREE_TYPE (memb);
491 if (mv3 && mv3 != error_mark_node
492 && TREE_CODE (mv3) != ARRAY_TYPE)
493 mv3 = TYPE_MAIN_VARIANT (mv3);
494 if (comptypes (mv3, mv1))
495 {
496 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
497 TREE_VALUE (p1));
498 pedwarn (OPT_pedantic,
499 "function types not truly compatible in ISO C");
500 goto parm_done;
501 }
502 }
503 }
504 TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
505 parm_done: ;
506 }
507
508 c_override_global_bindings_to_false = false;
509 t1 = build_function_type (valtype, newargs);
510 t1 = qualify_type (t1, t2);
511 /* ... falls through ... */
512 }
513
514 default:
515 return build_type_attribute_variant (t1, attributes);
516 }
517
518 }
519
520 /* Return the type of a conditional expression between pointers to
521 possibly differently qualified versions of compatible types.
522
523 We assume that comp_target_types has already been done and returned
524 nonzero; if that isn't so, this may crash. */
525
526 static tree
527 common_pointer_type (tree t1, tree t2)
528 {
529 tree attributes;
530 tree pointed_to_1, mv1;
531 tree pointed_to_2, mv2;
532 tree target;
533 unsigned target_quals;
534
535 /* Save time if the two types are the same. */
536
537 if (t1 == t2) return t1;
538
539 /* If one type is nonsense, use the other. */
540 if (t1 == error_mark_node)
541 return t2;
542 if (t2 == error_mark_node)
543 return t1;
544
545 gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546 && TREE_CODE (t2) == POINTER_TYPE);
547
548 /* Merge the attributes. */
549 attributes = targetm.merge_type_attributes (t1, t2);
550
551 /* Find the composite type of the target types, and combine the
552 qualifiers of the two types' targets. Do not lose qualifiers on
553 array element types by taking the TYPE_MAIN_VARIANT. */
554 mv1 = pointed_to_1 = TREE_TYPE (t1);
555 mv2 = pointed_to_2 = TREE_TYPE (t2);
556 if (TREE_CODE (mv1) != ARRAY_TYPE)
557 mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558 if (TREE_CODE (mv2) != ARRAY_TYPE)
559 mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560 target = composite_type (mv1, mv2);
561
562 /* For function types do not merge const qualifiers, but drop them
563 if used inconsistently. The middle-end uses these to mark const
564 and noreturn functions. */
565 if (TREE_CODE (pointed_to_1) == FUNCTION_TYPE)
566 target_quals = TYPE_QUALS (pointed_to_1) & TYPE_QUALS (pointed_to_2);
567 else
568 target_quals = TYPE_QUALS (pointed_to_1) | TYPE_QUALS (pointed_to_2);
569 t1 = build_pointer_type (c_build_qualified_type (target, target_quals));
570 return build_type_attribute_variant (t1, attributes);
571 }
572
573 /* Return the common type for two arithmetic types under the usual
574 arithmetic conversions. The default conversions have already been
575 applied, and enumerated types converted to their compatible integer
576 types. The resulting type is unqualified and has no attributes.
577
578 This is the type for the result of most arithmetic operations
579 if the operands have the given two types. */
580
581 static tree
582 c_common_type (tree t1, tree t2)
583 {
584 enum tree_code code1;
585 enum tree_code code2;
586
587 /* If one type is nonsense, use the other. */
588 if (t1 == error_mark_node)
589 return t2;
590 if (t2 == error_mark_node)
591 return t1;
592
593 if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
594 t1 = TYPE_MAIN_VARIANT (t1);
595
596 if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
597 t2 = TYPE_MAIN_VARIANT (t2);
598
599 if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
600 t1 = build_type_attribute_variant (t1, NULL_TREE);
601
602 if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
603 t2 = build_type_attribute_variant (t2, NULL_TREE);
604
605 /* Save time if the two types are the same. */
606
607 if (t1 == t2) return t1;
608
609 code1 = TREE_CODE (t1);
610 code2 = TREE_CODE (t2);
611
612 gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
613 || code1 == FIXED_POINT_TYPE || code1 == REAL_TYPE
614 || code1 == INTEGER_TYPE);
615 gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
616 || code2 == FIXED_POINT_TYPE || code2 == REAL_TYPE
617 || code2 == INTEGER_TYPE);
618
619 /* When one operand is a decimal float type, the other operand cannot be
620 a generic float type or a complex type. We also disallow vector types
621 here. */
622 if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
623 && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
624 {
625 if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
626 {
627 error ("can%'t mix operands of decimal float and vector types");
628 return error_mark_node;
629 }
630 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
631 {
632 error ("can%'t mix operands of decimal float and complex types");
633 return error_mark_node;
634 }
635 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
636 {
637 error ("can%'t mix operands of decimal float and other float types");
638 return error_mark_node;
639 }
640 }
641
642 /* If one type is a vector type, return that type. (How the usual
643 arithmetic conversions apply to the vector types extension is not
644 precisely specified.) */
645 if (code1 == VECTOR_TYPE)
646 return t1;
647
648 if (code2 == VECTOR_TYPE)
649 return t2;
650
651 /* If one type is complex, form the common type of the non-complex
652 components, then make that complex. Use T1 or T2 if it is the
653 required type. */
654 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
655 {
656 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
657 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
658 tree subtype = c_common_type (subtype1, subtype2);
659
660 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
661 return t1;
662 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
663 return t2;
664 else
665 return build_complex_type (subtype);
666 }
667
668 /* If only one is real, use it as the result. */
669
670 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
671 return t1;
672
673 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
674 return t2;
675
676 /* If both are real and either are decimal floating point types, use
677 the decimal floating point type with the greater precision. */
678
679 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
680 {
681 if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
682 || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
683 return dfloat128_type_node;
684 else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
685 || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
686 return dfloat64_type_node;
687 else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
688 || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
689 return dfloat32_type_node;
690 }
691
692 /* Deal with fixed-point types. */
693 if (code1 == FIXED_POINT_TYPE || code2 == FIXED_POINT_TYPE)
694 {
695 unsigned int unsignedp = 0, satp = 0;
696 enum machine_mode m1, m2;
697 unsigned int fbit1, ibit1, fbit2, ibit2, max_fbit, max_ibit;
698
699 m1 = TYPE_MODE (t1);
700 m2 = TYPE_MODE (t2);
701
702 /* If one input type is saturating, the result type is saturating. */
703 if (TYPE_SATURATING (t1) || TYPE_SATURATING (t2))
704 satp = 1;
705
706 /* If both fixed-point types are unsigned, the result type is unsigned.
707 When mixing fixed-point and integer types, follow the sign of the
708 fixed-point type.
709 Otherwise, the result type is signed. */
710 if ((TYPE_UNSIGNED (t1) && TYPE_UNSIGNED (t2)
711 && code1 == FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE)
712 || (code1 == FIXED_POINT_TYPE && code2 != FIXED_POINT_TYPE
713 && TYPE_UNSIGNED (t1))
714 || (code1 != FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE
715 && TYPE_UNSIGNED (t2)))
716 unsignedp = 1;
717
718 /* The result type is signed. */
719 if (unsignedp == 0)
720 {
721 /* If the input type is unsigned, we need to convert to the
722 signed type. */
723 if (code1 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t1))
724 {
725 enum mode_class mclass = (enum mode_class) 0;
726 if (GET_MODE_CLASS (m1) == MODE_UFRACT)
727 mclass = MODE_FRACT;
728 else if (GET_MODE_CLASS (m1) == MODE_UACCUM)
729 mclass = MODE_ACCUM;
730 else
731 gcc_unreachable ();
732 m1 = mode_for_size (GET_MODE_PRECISION (m1), mclass, 0);
733 }
734 if (code2 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t2))
735 {
736 enum mode_class mclass = (enum mode_class) 0;
737 if (GET_MODE_CLASS (m2) == MODE_UFRACT)
738 mclass = MODE_FRACT;
739 else if (GET_MODE_CLASS (m2) == MODE_UACCUM)
740 mclass = MODE_ACCUM;
741 else
742 gcc_unreachable ();
743 m2 = mode_for_size (GET_MODE_PRECISION (m2), mclass, 0);
744 }
745 }
746
747 if (code1 == FIXED_POINT_TYPE)
748 {
749 fbit1 = GET_MODE_FBIT (m1);
750 ibit1 = GET_MODE_IBIT (m1);
751 }
752 else
753 {
754 fbit1 = 0;
755 /* Signed integers need to subtract one sign bit. */
756 ibit1 = TYPE_PRECISION (t1) - (!TYPE_UNSIGNED (t1));
757 }
758
759 if (code2 == FIXED_POINT_TYPE)
760 {
761 fbit2 = GET_MODE_FBIT (m2);
762 ibit2 = GET_MODE_IBIT (m2);
763 }
764 else
765 {
766 fbit2 = 0;
767 /* Signed integers need to subtract one sign bit. */
768 ibit2 = TYPE_PRECISION (t2) - (!TYPE_UNSIGNED (t2));
769 }
770
771 max_ibit = ibit1 >= ibit2 ? ibit1 : ibit2;
772 max_fbit = fbit1 >= fbit2 ? fbit1 : fbit2;
773 return c_common_fixed_point_type_for_size (max_ibit, max_fbit, unsignedp,
774 satp);
775 }
776
777 /* Both real or both integers; use the one with greater precision. */
778
779 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
780 return t1;
781 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
782 return t2;
783
784 /* Same precision. Prefer long longs to longs to ints when the
785 same precision, following the C99 rules on integer type rank
786 (which are equivalent to the C90 rules for C90 types). */
787
788 if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
789 || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
790 return long_long_unsigned_type_node;
791
792 if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
793 || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
794 {
795 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
796 return long_long_unsigned_type_node;
797 else
798 return long_long_integer_type_node;
799 }
800
801 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
802 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
803 return long_unsigned_type_node;
804
805 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
806 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
807 {
808 /* But preserve unsignedness from the other type,
809 since long cannot hold all the values of an unsigned int. */
810 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
811 return long_unsigned_type_node;
812 else
813 return long_integer_type_node;
814 }
815
816 /* Likewise, prefer long double to double even if same size. */
817 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
818 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
819 return long_double_type_node;
820
821 /* Otherwise prefer the unsigned one. */
822
823 if (TYPE_UNSIGNED (t1))
824 return t1;
825 else
826 return t2;
827 }
828 \f
829 /* Wrapper around c_common_type that is used by c-common.c and other
830 front end optimizations that remove promotions. ENUMERAL_TYPEs
831 are allowed here and are converted to their compatible integer types.
832 BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
833 preferably a non-Boolean type as the common type. */
834 tree
835 common_type (tree t1, tree t2)
836 {
837 if (TREE_CODE (t1) == ENUMERAL_TYPE)
838 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
839 if (TREE_CODE (t2) == ENUMERAL_TYPE)
840 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
841
842 /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */
843 if (TREE_CODE (t1) == BOOLEAN_TYPE
844 && TREE_CODE (t2) == BOOLEAN_TYPE)
845 return boolean_type_node;
846
847 /* If either type is BOOLEAN_TYPE, then return the other. */
848 if (TREE_CODE (t1) == BOOLEAN_TYPE)
849 return t2;
850 if (TREE_CODE (t2) == BOOLEAN_TYPE)
851 return t1;
852
853 return c_common_type (t1, t2);
854 }
855
856 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
857 or various other operations. Return 2 if they are compatible
858 but a warning may be needed if you use them together. */
859
860 int
861 comptypes (tree type1, tree type2)
862 {
863 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
864 int val;
865
866 val = comptypes_internal (type1, type2);
867 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
868
869 return val;
870 }
871 \f
872 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
873 or various other operations. Return 2 if they are compatible
874 but a warning may be needed if you use them together. This
875 differs from comptypes, in that we don't free the seen types. */
876
877 static int
878 comptypes_internal (const_tree type1, const_tree type2)
879 {
880 const_tree t1 = type1;
881 const_tree t2 = type2;
882 int attrval, val;
883
884 /* Suppress errors caused by previously reported errors. */
885
886 if (t1 == t2 || !t1 || !t2
887 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
888 return 1;
889
890 /* If either type is the internal version of sizetype, return the
891 language version. */
892 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
893 && TYPE_ORIG_SIZE_TYPE (t1))
894 t1 = TYPE_ORIG_SIZE_TYPE (t1);
895
896 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
897 && TYPE_ORIG_SIZE_TYPE (t2))
898 t2 = TYPE_ORIG_SIZE_TYPE (t2);
899
900
901 /* Enumerated types are compatible with integer types, but this is
902 not transitive: two enumerated types in the same translation unit
903 are compatible with each other only if they are the same type. */
904
905 if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
906 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
907 else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
908 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
909
910 if (t1 == t2)
911 return 1;
912
913 /* Different classes of types can't be compatible. */
914
915 if (TREE_CODE (t1) != TREE_CODE (t2))
916 return 0;
917
918 /* Qualifiers must match. C99 6.7.3p9 */
919
920 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
921 return 0;
922
923 /* Allow for two different type nodes which have essentially the same
924 definition. Note that we already checked for equality of the type
925 qualifiers (just above). */
926
927 if (TREE_CODE (t1) != ARRAY_TYPE
928 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
929 return 1;
930
931 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
932 if (!(attrval = targetm.comp_type_attributes (t1, t2)))
933 return 0;
934
935 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
936 val = 0;
937
938 switch (TREE_CODE (t1))
939 {
940 case POINTER_TYPE:
941 /* Do not remove mode or aliasing information. */
942 if (TYPE_MODE (t1) != TYPE_MODE (t2)
943 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
944 break;
945 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
946 ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
947 break;
948
949 case FUNCTION_TYPE:
950 val = function_types_compatible_p (t1, t2);
951 break;
952
953 case ARRAY_TYPE:
954 {
955 tree d1 = TYPE_DOMAIN (t1);
956 tree d2 = TYPE_DOMAIN (t2);
957 bool d1_variable, d2_variable;
958 bool d1_zero, d2_zero;
959 val = 1;
960
961 /* Target types must match incl. qualifiers. */
962 if (TREE_TYPE (t1) != TREE_TYPE (t2)
963 && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
964 return 0;
965
966 /* Sizes must match unless one is missing or variable. */
967 if (d1 == 0 || d2 == 0 || d1 == d2)
968 break;
969
970 d1_zero = !TYPE_MAX_VALUE (d1);
971 d2_zero = !TYPE_MAX_VALUE (d2);
972
973 d1_variable = (!d1_zero
974 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
975 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
976 d2_variable = (!d2_zero
977 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
978 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
979 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
980 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
981
982 if (d1_variable || d2_variable)
983 break;
984 if (d1_zero && d2_zero)
985 break;
986 if (d1_zero || d2_zero
987 || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
988 || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
989 val = 0;
990
991 break;
992 }
993
994 case ENUMERAL_TYPE:
995 case RECORD_TYPE:
996 case UNION_TYPE:
997 if (val != 1 && !same_translation_unit_p (t1, t2))
998 {
999 tree a1 = TYPE_ATTRIBUTES (t1);
1000 tree a2 = TYPE_ATTRIBUTES (t2);
1001
1002 if (! attribute_list_contained (a1, a2)
1003 && ! attribute_list_contained (a2, a1))
1004 break;
1005
1006 if (attrval != 2)
1007 return tagged_types_tu_compatible_p (t1, t2);
1008 val = tagged_types_tu_compatible_p (t1, t2);
1009 }
1010 break;
1011
1012 case VECTOR_TYPE:
1013 val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
1014 && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
1015 break;
1016
1017 default:
1018 break;
1019 }
1020 return attrval == 2 && val == 1 ? 2 : val;
1021 }
1022
1023 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
1024 ignoring their qualifiers. */
1025
1026 static int
1027 comp_target_types (tree ttl, tree ttr)
1028 {
1029 int val;
1030 tree mvl, mvr;
1031
1032 /* Do not lose qualifiers on element types of array types that are
1033 pointer targets by taking their TYPE_MAIN_VARIANT. */
1034 mvl = TREE_TYPE (ttl);
1035 mvr = TREE_TYPE (ttr);
1036 if (TREE_CODE (mvl) != ARRAY_TYPE)
1037 mvl = TYPE_MAIN_VARIANT (mvl);
1038 if (TREE_CODE (mvr) != ARRAY_TYPE)
1039 mvr = TYPE_MAIN_VARIANT (mvr);
1040 val = comptypes (mvl, mvr);
1041
1042 if (val == 2)
1043 pedwarn (OPT_pedantic, "types are not quite compatible");
1044 return val;
1045 }
1046 \f
1047 /* Subroutines of `comptypes'. */
1048
1049 /* Determine whether two trees derive from the same translation unit.
1050 If the CONTEXT chain ends in a null, that tree's context is still
1051 being parsed, so if two trees have context chains ending in null,
1052 they're in the same translation unit. */
1053 int
1054 same_translation_unit_p (const_tree t1, const_tree t2)
1055 {
1056 while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
1057 switch (TREE_CODE_CLASS (TREE_CODE (t1)))
1058 {
1059 case tcc_declaration:
1060 t1 = DECL_CONTEXT (t1); break;
1061 case tcc_type:
1062 t1 = TYPE_CONTEXT (t1); break;
1063 case tcc_exceptional:
1064 t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
1065 default: gcc_unreachable ();
1066 }
1067
1068 while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
1069 switch (TREE_CODE_CLASS (TREE_CODE (t2)))
1070 {
1071 case tcc_declaration:
1072 t2 = DECL_CONTEXT (t2); break;
1073 case tcc_type:
1074 t2 = TYPE_CONTEXT (t2); break;
1075 case tcc_exceptional:
1076 t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
1077 default: gcc_unreachable ();
1078 }
1079
1080 return t1 == t2;
1081 }
1082
1083 /* Allocate the seen two types, assuming that they are compatible. */
1084
1085 static struct tagged_tu_seen_cache *
1086 alloc_tagged_tu_seen_cache (const_tree t1, const_tree t2)
1087 {
1088 struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
1089 tu->next = tagged_tu_seen_base;
1090 tu->t1 = t1;
1091 tu->t2 = t2;
1092
1093 tagged_tu_seen_base = tu;
1094
1095 /* The C standard says that two structures in different translation
1096 units are compatible with each other only if the types of their
1097 fields are compatible (among other things). We assume that they
1098 are compatible until proven otherwise when building the cache.
1099 An example where this can occur is:
1100 struct a
1101 {
1102 struct a *next;
1103 };
1104 If we are comparing this against a similar struct in another TU,
1105 and did not assume they were compatible, we end up with an infinite
1106 loop. */
1107 tu->val = 1;
1108 return tu;
1109 }
1110
1111 /* Free the seen types until we get to TU_TIL. */
1112
1113 static void
1114 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1115 {
1116 const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1117 while (tu != tu_til)
1118 {
1119 const struct tagged_tu_seen_cache *const tu1
1120 = (const struct tagged_tu_seen_cache *) tu;
1121 tu = tu1->next;
1122 free (CONST_CAST (struct tagged_tu_seen_cache *, tu1));
1123 }
1124 tagged_tu_seen_base = tu_til;
1125 }
1126
1127 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1128 compatible. If the two types are not the same (which has been
1129 checked earlier), this can only happen when multiple translation
1130 units are being compiled. See C99 6.2.7 paragraph 1 for the exact
1131 rules. */
1132
1133 static int
1134 tagged_types_tu_compatible_p (const_tree t1, const_tree t2)
1135 {
1136 tree s1, s2;
1137 bool needs_warning = false;
1138
1139 /* We have to verify that the tags of the types are the same. This
1140 is harder than it looks because this may be a typedef, so we have
1141 to go look at the original type. It may even be a typedef of a
1142 typedef...
1143 In the case of compiler-created builtin structs the TYPE_DECL
1144 may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
1145 while (TYPE_NAME (t1)
1146 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1147 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1148 t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1149
1150 while (TYPE_NAME (t2)
1151 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1152 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1153 t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1154
1155 /* C90 didn't have the requirement that the two tags be the same. */
1156 if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1157 return 0;
1158
1159 /* C90 didn't say what happened if one or both of the types were
1160 incomplete; we choose to follow C99 rules here, which is that they
1161 are compatible. */
1162 if (TYPE_SIZE (t1) == NULL
1163 || TYPE_SIZE (t2) == NULL)
1164 return 1;
1165
1166 {
1167 const struct tagged_tu_seen_cache * tts_i;
1168 for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1169 if (tts_i->t1 == t1 && tts_i->t2 == t2)
1170 return tts_i->val;
1171 }
1172
1173 switch (TREE_CODE (t1))
1174 {
1175 case ENUMERAL_TYPE:
1176 {
1177 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1178 /* Speed up the case where the type values are in the same order. */
1179 tree tv1 = TYPE_VALUES (t1);
1180 tree tv2 = TYPE_VALUES (t2);
1181
1182 if (tv1 == tv2)
1183 {
1184 return 1;
1185 }
1186
1187 for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1188 {
1189 if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1190 break;
1191 if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1192 {
1193 tu->val = 0;
1194 return 0;
1195 }
1196 }
1197
1198 if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1199 {
1200 return 1;
1201 }
1202 if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1203 {
1204 tu->val = 0;
1205 return 0;
1206 }
1207
1208 if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1209 {
1210 tu->val = 0;
1211 return 0;
1212 }
1213
1214 for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1215 {
1216 s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1217 if (s2 == NULL
1218 || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1219 {
1220 tu->val = 0;
1221 return 0;
1222 }
1223 }
1224 return 1;
1225 }
1226
1227 case UNION_TYPE:
1228 {
1229 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1230 if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1231 {
1232 tu->val = 0;
1233 return 0;
1234 }
1235
1236 /* Speed up the common case where the fields are in the same order. */
1237 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1238 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1239 {
1240 int result;
1241
1242 if (DECL_NAME (s1) != DECL_NAME (s2))
1243 break;
1244 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1245
1246 if (result != 1 && !DECL_NAME (s1))
1247 break;
1248 if (result == 0)
1249 {
1250 tu->val = 0;
1251 return 0;
1252 }
1253 if (result == 2)
1254 needs_warning = true;
1255
1256 if (TREE_CODE (s1) == FIELD_DECL
1257 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1258 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1259 {
1260 tu->val = 0;
1261 return 0;
1262 }
1263 }
1264 if (!s1 && !s2)
1265 {
1266 tu->val = needs_warning ? 2 : 1;
1267 return tu->val;
1268 }
1269
1270 for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1271 {
1272 bool ok = false;
1273
1274 for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1275 if (DECL_NAME (s1) == DECL_NAME (s2))
1276 {
1277 int result;
1278
1279 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1280
1281 if (result != 1 && !DECL_NAME (s1))
1282 continue;
1283 if (result == 0)
1284 {
1285 tu->val = 0;
1286 return 0;
1287 }
1288 if (result == 2)
1289 needs_warning = true;
1290
1291 if (TREE_CODE (s1) == FIELD_DECL
1292 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1293 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1294 break;
1295
1296 ok = true;
1297 break;
1298 }
1299 if (!ok)
1300 {
1301 tu->val = 0;
1302 return 0;
1303 }
1304 }
1305 tu->val = needs_warning ? 2 : 10;
1306 return tu->val;
1307 }
1308
1309 case RECORD_TYPE:
1310 {
1311 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1312
1313 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1314 s1 && s2;
1315 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1316 {
1317 int result;
1318 if (TREE_CODE (s1) != TREE_CODE (s2)
1319 || DECL_NAME (s1) != DECL_NAME (s2))
1320 break;
1321 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1322 if (result == 0)
1323 break;
1324 if (result == 2)
1325 needs_warning = true;
1326
1327 if (TREE_CODE (s1) == FIELD_DECL
1328 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1329 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1330 break;
1331 }
1332 if (s1 && s2)
1333 tu->val = 0;
1334 else
1335 tu->val = needs_warning ? 2 : 1;
1336 return tu->val;
1337 }
1338
1339 default:
1340 gcc_unreachable ();
1341 }
1342 }
1343
1344 /* Return 1 if two function types F1 and F2 are compatible.
1345 If either type specifies no argument types,
1346 the other must specify a fixed number of self-promoting arg types.
1347 Otherwise, if one type specifies only the number of arguments,
1348 the other must specify that number of self-promoting arg types.
1349 Otherwise, the argument types must match. */
1350
1351 static int
1352 function_types_compatible_p (const_tree f1, const_tree f2)
1353 {
1354 tree args1, args2;
1355 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1356 int val = 1;
1357 int val1;
1358 tree ret1, ret2;
1359
1360 ret1 = TREE_TYPE (f1);
1361 ret2 = TREE_TYPE (f2);
1362
1363 /* 'volatile' qualifiers on a function's return type used to mean
1364 the function is noreturn. */
1365 if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1366 pedwarn (0, "function return types not compatible due to %<volatile%>");
1367 if (TYPE_VOLATILE (ret1))
1368 ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1369 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1370 if (TYPE_VOLATILE (ret2))
1371 ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1372 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1373 val = comptypes_internal (ret1, ret2);
1374 if (val == 0)
1375 return 0;
1376
1377 args1 = TYPE_ARG_TYPES (f1);
1378 args2 = TYPE_ARG_TYPES (f2);
1379
1380 /* An unspecified parmlist matches any specified parmlist
1381 whose argument types don't need default promotions. */
1382
1383 if (args1 == 0)
1384 {
1385 if (!self_promoting_args_p (args2))
1386 return 0;
1387 /* If one of these types comes from a non-prototype fn definition,
1388 compare that with the other type's arglist.
1389 If they don't match, ask for a warning (but no error). */
1390 if (TYPE_ACTUAL_ARG_TYPES (f1)
1391 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1392 val = 2;
1393 return val;
1394 }
1395 if (args2 == 0)
1396 {
1397 if (!self_promoting_args_p (args1))
1398 return 0;
1399 if (TYPE_ACTUAL_ARG_TYPES (f2)
1400 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1401 val = 2;
1402 return val;
1403 }
1404
1405 /* Both types have argument lists: compare them and propagate results. */
1406 val1 = type_lists_compatible_p (args1, args2);
1407 return val1 != 1 ? val1 : val;
1408 }
1409
1410 /* Check two lists of types for compatibility,
1411 returning 0 for incompatible, 1 for compatible,
1412 or 2 for compatible with warning. */
1413
1414 static int
1415 type_lists_compatible_p (const_tree args1, const_tree args2)
1416 {
1417 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1418 int val = 1;
1419 int newval = 0;
1420
1421 while (1)
1422 {
1423 tree a1, mv1, a2, mv2;
1424 if (args1 == 0 && args2 == 0)
1425 return val;
1426 /* If one list is shorter than the other,
1427 they fail to match. */
1428 if (args1 == 0 || args2 == 0)
1429 return 0;
1430 mv1 = a1 = TREE_VALUE (args1);
1431 mv2 = a2 = TREE_VALUE (args2);
1432 if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1433 mv1 = TYPE_MAIN_VARIANT (mv1);
1434 if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1435 mv2 = TYPE_MAIN_VARIANT (mv2);
1436 /* A null pointer instead of a type
1437 means there is supposed to be an argument
1438 but nothing is specified about what type it has.
1439 So match anything that self-promotes. */
1440 if (a1 == 0)
1441 {
1442 if (c_type_promotes_to (a2) != a2)
1443 return 0;
1444 }
1445 else if (a2 == 0)
1446 {
1447 if (c_type_promotes_to (a1) != a1)
1448 return 0;
1449 }
1450 /* If one of the lists has an error marker, ignore this arg. */
1451 else if (TREE_CODE (a1) == ERROR_MARK
1452 || TREE_CODE (a2) == ERROR_MARK)
1453 ;
1454 else if (!(newval = comptypes_internal (mv1, mv2)))
1455 {
1456 /* Allow wait (union {union wait *u; int *i} *)
1457 and wait (union wait *) to be compatible. */
1458 if (TREE_CODE (a1) == UNION_TYPE
1459 && (TYPE_NAME (a1) == 0
1460 || TYPE_TRANSPARENT_UNION (a1))
1461 && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1462 && tree_int_cst_equal (TYPE_SIZE (a1),
1463 TYPE_SIZE (a2)))
1464 {
1465 tree memb;
1466 for (memb = TYPE_FIELDS (a1);
1467 memb; memb = TREE_CHAIN (memb))
1468 {
1469 tree mv3 = TREE_TYPE (memb);
1470 if (mv3 && mv3 != error_mark_node
1471 && TREE_CODE (mv3) != ARRAY_TYPE)
1472 mv3 = TYPE_MAIN_VARIANT (mv3);
1473 if (comptypes_internal (mv3, mv2))
1474 break;
1475 }
1476 if (memb == 0)
1477 return 0;
1478 }
1479 else if (TREE_CODE (a2) == UNION_TYPE
1480 && (TYPE_NAME (a2) == 0
1481 || TYPE_TRANSPARENT_UNION (a2))
1482 && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1483 && tree_int_cst_equal (TYPE_SIZE (a2),
1484 TYPE_SIZE (a1)))
1485 {
1486 tree memb;
1487 for (memb = TYPE_FIELDS (a2);
1488 memb; memb = TREE_CHAIN (memb))
1489 {
1490 tree mv3 = TREE_TYPE (memb);
1491 if (mv3 && mv3 != error_mark_node
1492 && TREE_CODE (mv3) != ARRAY_TYPE)
1493 mv3 = TYPE_MAIN_VARIANT (mv3);
1494 if (comptypes_internal (mv3, mv1))
1495 break;
1496 }
1497 if (memb == 0)
1498 return 0;
1499 }
1500 else
1501 return 0;
1502 }
1503
1504 /* comptypes said ok, but record if it said to warn. */
1505 if (newval > val)
1506 val = newval;
1507
1508 args1 = TREE_CHAIN (args1);
1509 args2 = TREE_CHAIN (args2);
1510 }
1511 }
1512 \f
1513 /* Compute the size to increment a pointer by. */
1514
1515 static tree
1516 c_size_in_bytes (const_tree type)
1517 {
1518 enum tree_code code = TREE_CODE (type);
1519
1520 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1521 return size_one_node;
1522
1523 if (!COMPLETE_OR_VOID_TYPE_P (type))
1524 {
1525 error ("arithmetic on pointer to an incomplete type");
1526 return size_one_node;
1527 }
1528
1529 /* Convert in case a char is more than one unit. */
1530 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1531 size_int (TYPE_PRECISION (char_type_node)
1532 / BITS_PER_UNIT));
1533 }
1534 \f
1535 /* Return either DECL or its known constant value (if it has one). */
1536
1537 tree
1538 decl_constant_value (tree decl)
1539 {
1540 if (/* Don't change a variable array bound or initial value to a constant
1541 in a place where a variable is invalid. Note that DECL_INITIAL
1542 isn't valid for a PARM_DECL. */
1543 current_function_decl != 0
1544 && TREE_CODE (decl) != PARM_DECL
1545 && !TREE_THIS_VOLATILE (decl)
1546 && TREE_READONLY (decl)
1547 && DECL_INITIAL (decl) != 0
1548 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1549 /* This is invalid if initial value is not constant.
1550 If it has either a function call, a memory reference,
1551 or a variable, then re-evaluating it could give different results. */
1552 && TREE_CONSTANT (DECL_INITIAL (decl))
1553 /* Check for cases where this is sub-optimal, even though valid. */
1554 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1555 return DECL_INITIAL (decl);
1556 return decl;
1557 }
1558
1559 /* Return either DECL or its known constant value (if it has one), but
1560 return DECL if pedantic or DECL has mode BLKmode. This is for
1561 bug-compatibility with the old behavior of decl_constant_value
1562 (before GCC 3.0); every use of this function is a bug and it should
1563 be removed before GCC 3.1. It is not appropriate to use pedantic
1564 in a way that affects optimization, and BLKmode is probably not the
1565 right test for avoiding misoptimizations either. */
1566
1567 static tree
1568 decl_constant_value_for_broken_optimization (tree decl)
1569 {
1570 tree ret;
1571
1572 if (pedantic || DECL_MODE (decl) == BLKmode)
1573 return decl;
1574
1575 ret = decl_constant_value (decl);
1576 /* Avoid unwanted tree sharing between the initializer and current
1577 function's body where the tree can be modified e.g. by the
1578 gimplifier. */
1579 if (ret != decl && TREE_STATIC (decl))
1580 ret = unshare_expr (ret);
1581 return ret;
1582 }
1583
1584 /* Convert the array expression EXP to a pointer. */
1585 static tree
1586 array_to_pointer_conversion (tree exp)
1587 {
1588 tree orig_exp = exp;
1589 tree type = TREE_TYPE (exp);
1590 tree adr;
1591 tree restype = TREE_TYPE (type);
1592 tree ptrtype;
1593
1594 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1595
1596 STRIP_TYPE_NOPS (exp);
1597
1598 if (TREE_NO_WARNING (orig_exp))
1599 TREE_NO_WARNING (exp) = 1;
1600
1601 ptrtype = build_pointer_type (restype);
1602
1603 if (TREE_CODE (exp) == INDIRECT_REF)
1604 return convert (ptrtype, TREE_OPERAND (exp, 0));
1605
1606 if (TREE_CODE (exp) == VAR_DECL)
1607 {
1608 /* We are making an ADDR_EXPR of ptrtype. This is a valid
1609 ADDR_EXPR because it's the best way of representing what
1610 happens in C when we take the address of an array and place
1611 it in a pointer to the element type. */
1612 adr = build1 (ADDR_EXPR, ptrtype, exp);
1613 if (!c_mark_addressable (exp))
1614 return error_mark_node;
1615 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
1616 return adr;
1617 }
1618
1619 /* This way is better for a COMPONENT_REF since it can
1620 simplify the offset for a component. */
1621 adr = build_unary_op (ADDR_EXPR, exp, 1);
1622 return convert (ptrtype, adr);
1623 }
1624
1625 /* Convert the function expression EXP to a pointer. */
1626 static tree
1627 function_to_pointer_conversion (tree exp)
1628 {
1629 tree orig_exp = exp;
1630
1631 gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1632
1633 STRIP_TYPE_NOPS (exp);
1634
1635 if (TREE_NO_WARNING (orig_exp))
1636 TREE_NO_WARNING (exp) = 1;
1637
1638 return build_unary_op (ADDR_EXPR, exp, 0);
1639 }
1640
1641 /* Perform the default conversion of arrays and functions to pointers.
1642 Return the result of converting EXP. For any other expression, just
1643 return EXP after removing NOPs. */
1644
1645 struct c_expr
1646 default_function_array_conversion (struct c_expr exp)
1647 {
1648 tree orig_exp = exp.value;
1649 tree type = TREE_TYPE (exp.value);
1650 enum tree_code code = TREE_CODE (type);
1651
1652 switch (code)
1653 {
1654 case ARRAY_TYPE:
1655 {
1656 bool not_lvalue = false;
1657 bool lvalue_array_p;
1658
1659 while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1660 || CONVERT_EXPR_P (exp.value))
1661 && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1662 {
1663 if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1664 not_lvalue = true;
1665 exp.value = TREE_OPERAND (exp.value, 0);
1666 }
1667
1668 if (TREE_NO_WARNING (orig_exp))
1669 TREE_NO_WARNING (exp.value) = 1;
1670
1671 lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1672 if (!flag_isoc99 && !lvalue_array_p)
1673 {
1674 /* Before C99, non-lvalue arrays do not decay to pointers.
1675 Normally, using such an array would be invalid; but it can
1676 be used correctly inside sizeof or as a statement expression.
1677 Thus, do not give an error here; an error will result later. */
1678 return exp;
1679 }
1680
1681 exp.value = array_to_pointer_conversion (exp.value);
1682 }
1683 break;
1684 case FUNCTION_TYPE:
1685 exp.value = function_to_pointer_conversion (exp.value);
1686 break;
1687 default:
1688 STRIP_TYPE_NOPS (exp.value);
1689 if (TREE_NO_WARNING (orig_exp))
1690 TREE_NO_WARNING (exp.value) = 1;
1691 break;
1692 }
1693
1694 return exp;
1695 }
1696
1697
1698 /* EXP is an expression of integer type. Apply the integer promotions
1699 to it and return the promoted value. */
1700
1701 tree
1702 perform_integral_promotions (tree exp)
1703 {
1704 tree type = TREE_TYPE (exp);
1705 enum tree_code code = TREE_CODE (type);
1706
1707 gcc_assert (INTEGRAL_TYPE_P (type));
1708
1709 /* Normally convert enums to int,
1710 but convert wide enums to something wider. */
1711 if (code == ENUMERAL_TYPE)
1712 {
1713 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1714 TYPE_PRECISION (integer_type_node)),
1715 ((TYPE_PRECISION (type)
1716 >= TYPE_PRECISION (integer_type_node))
1717 && TYPE_UNSIGNED (type)));
1718
1719 return convert (type, exp);
1720 }
1721
1722 /* ??? This should no longer be needed now bit-fields have their
1723 proper types. */
1724 if (TREE_CODE (exp) == COMPONENT_REF
1725 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1726 /* If it's thinner than an int, promote it like a
1727 c_promoting_integer_type_p, otherwise leave it alone. */
1728 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1729 TYPE_PRECISION (integer_type_node)))
1730 return convert (integer_type_node, exp);
1731
1732 if (c_promoting_integer_type_p (type))
1733 {
1734 /* Preserve unsignedness if not really getting any wider. */
1735 if (TYPE_UNSIGNED (type)
1736 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1737 return convert (unsigned_type_node, exp);
1738
1739 return convert (integer_type_node, exp);
1740 }
1741
1742 return exp;
1743 }
1744
1745
1746 /* Perform default promotions for C data used in expressions.
1747 Enumeral types or short or char are converted to int.
1748 In addition, manifest constants symbols are replaced by their values. */
1749
1750 tree
1751 default_conversion (tree exp)
1752 {
1753 tree orig_exp;
1754 tree type = TREE_TYPE (exp);
1755 enum tree_code code = TREE_CODE (type);
1756
1757 /* Functions and arrays have been converted during parsing. */
1758 gcc_assert (code != FUNCTION_TYPE);
1759 if (code == ARRAY_TYPE)
1760 return exp;
1761
1762 /* Constants can be used directly unless they're not loadable. */
1763 if (TREE_CODE (exp) == CONST_DECL)
1764 exp = DECL_INITIAL (exp);
1765
1766 /* Replace a nonvolatile const static variable with its value unless
1767 it is an array, in which case we must be sure that taking the
1768 address of the array produces consistent results. */
1769 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1770 {
1771 exp = decl_constant_value_for_broken_optimization (exp);
1772 type = TREE_TYPE (exp);
1773 }
1774
1775 /* Strip no-op conversions. */
1776 orig_exp = exp;
1777 STRIP_TYPE_NOPS (exp);
1778
1779 if (TREE_NO_WARNING (orig_exp))
1780 TREE_NO_WARNING (exp) = 1;
1781
1782 if (code == VOID_TYPE)
1783 {
1784 error ("void value not ignored as it ought to be");
1785 return error_mark_node;
1786 }
1787
1788 exp = require_complete_type (exp);
1789 if (exp == error_mark_node)
1790 return error_mark_node;
1791
1792 if (INTEGRAL_TYPE_P (type))
1793 return perform_integral_promotions (exp);
1794
1795 return exp;
1796 }
1797 \f
1798 /* Look up COMPONENT in a structure or union DECL.
1799
1800 If the component name is not found, returns NULL_TREE. Otherwise,
1801 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1802 stepping down the chain to the component, which is in the last
1803 TREE_VALUE of the list. Normally the list is of length one, but if
1804 the component is embedded within (nested) anonymous structures or
1805 unions, the list steps down the chain to the component. */
1806
1807 static tree
1808 lookup_field (tree decl, tree component)
1809 {
1810 tree type = TREE_TYPE (decl);
1811 tree field;
1812
1813 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1814 to the field elements. Use a binary search on this array to quickly
1815 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1816 will always be set for structures which have many elements. */
1817
1818 if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1819 {
1820 int bot, top, half;
1821 tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1822
1823 field = TYPE_FIELDS (type);
1824 bot = 0;
1825 top = TYPE_LANG_SPECIFIC (type)->s->len;
1826 while (top - bot > 1)
1827 {
1828 half = (top - bot + 1) >> 1;
1829 field = field_array[bot+half];
1830
1831 if (DECL_NAME (field) == NULL_TREE)
1832 {
1833 /* Step through all anon unions in linear fashion. */
1834 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1835 {
1836 field = field_array[bot++];
1837 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1838 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1839 {
1840 tree anon = lookup_field (field, component);
1841
1842 if (anon)
1843 return tree_cons (NULL_TREE, field, anon);
1844 }
1845 }
1846
1847 /* Entire record is only anon unions. */
1848 if (bot > top)
1849 return NULL_TREE;
1850
1851 /* Restart the binary search, with new lower bound. */
1852 continue;
1853 }
1854
1855 if (DECL_NAME (field) == component)
1856 break;
1857 if (DECL_NAME (field) < component)
1858 bot += half;
1859 else
1860 top = bot + half;
1861 }
1862
1863 if (DECL_NAME (field_array[bot]) == component)
1864 field = field_array[bot];
1865 else if (DECL_NAME (field) != component)
1866 return NULL_TREE;
1867 }
1868 else
1869 {
1870 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1871 {
1872 if (DECL_NAME (field) == NULL_TREE
1873 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1874 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1875 {
1876 tree anon = lookup_field (field, component);
1877
1878 if (anon)
1879 return tree_cons (NULL_TREE, field, anon);
1880 }
1881
1882 if (DECL_NAME (field) == component)
1883 break;
1884 }
1885
1886 if (field == NULL_TREE)
1887 return NULL_TREE;
1888 }
1889
1890 return tree_cons (NULL_TREE, field, NULL_TREE);
1891 }
1892
1893 /* Make an expression to refer to the COMPONENT field of
1894 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1895
1896 tree
1897 build_component_ref (tree datum, tree component)
1898 {
1899 tree type = TREE_TYPE (datum);
1900 enum tree_code code = TREE_CODE (type);
1901 tree field = NULL;
1902 tree ref;
1903
1904 if (!objc_is_public (datum, component))
1905 return error_mark_node;
1906
1907 /* See if there is a field or component with name COMPONENT. */
1908
1909 if (code == RECORD_TYPE || code == UNION_TYPE)
1910 {
1911 if (!COMPLETE_TYPE_P (type))
1912 {
1913 c_incomplete_type_error (NULL_TREE, type);
1914 return error_mark_node;
1915 }
1916
1917 field = lookup_field (datum, component);
1918
1919 if (!field)
1920 {
1921 error ("%qT has no member named %qE", type, component);
1922 return error_mark_node;
1923 }
1924
1925 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1926 This might be better solved in future the way the C++ front
1927 end does it - by giving the anonymous entities each a
1928 separate name and type, and then have build_component_ref
1929 recursively call itself. We can't do that here. */
1930 do
1931 {
1932 tree subdatum = TREE_VALUE (field);
1933 int quals;
1934 tree subtype;
1935
1936 if (TREE_TYPE (subdatum) == error_mark_node)
1937 return error_mark_node;
1938
1939 quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1940 quals |= TYPE_QUALS (TREE_TYPE (datum));
1941 subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1942
1943 ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1944 NULL_TREE);
1945 if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1946 TREE_READONLY (ref) = 1;
1947 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1948 TREE_THIS_VOLATILE (ref) = 1;
1949
1950 if (TREE_DEPRECATED (subdatum))
1951 warn_deprecated_use (subdatum);
1952
1953 datum = ref;
1954
1955 field = TREE_CHAIN (field);
1956 }
1957 while (field);
1958
1959 return ref;
1960 }
1961 else if (code != ERROR_MARK)
1962 error ("request for member %qE in something not a structure or union",
1963 component);
1964
1965 return error_mark_node;
1966 }
1967 \f
1968 /* Given an expression PTR for a pointer, return an expression
1969 for the value pointed to.
1970 ERRORSTRING is the name of the operator to appear in error messages. */
1971
1972 tree
1973 build_indirect_ref (tree ptr, const char *errorstring)
1974 {
1975 tree pointer = default_conversion (ptr);
1976 tree type = TREE_TYPE (pointer);
1977
1978 if (TREE_CODE (type) == POINTER_TYPE)
1979 {
1980 if (CONVERT_EXPR_P (pointer)
1981 || TREE_CODE (pointer) == VIEW_CONVERT_EXPR)
1982 {
1983 /* If a warning is issued, mark it to avoid duplicates from
1984 the backend. This only needs to be done at
1985 warn_strict_aliasing > 2. */
1986 if (warn_strict_aliasing > 2)
1987 if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (pointer, 0)),
1988 type, TREE_OPERAND (pointer, 0)))
1989 TREE_NO_WARNING (pointer) = 1;
1990 }
1991
1992 if (TREE_CODE (pointer) == ADDR_EXPR
1993 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1994 == TREE_TYPE (type)))
1995 return TREE_OPERAND (pointer, 0);
1996 else
1997 {
1998 tree t = TREE_TYPE (type);
1999 tree ref;
2000
2001 ref = build1 (INDIRECT_REF, t, pointer);
2002
2003 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
2004 {
2005 error ("dereferencing pointer to incomplete type");
2006 return error_mark_node;
2007 }
2008 if (VOID_TYPE_P (t) && skip_evaluation == 0)
2009 warning (0, "dereferencing %<void *%> pointer");
2010
2011 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
2012 so that we get the proper error message if the result is used
2013 to assign to. Also, &* is supposed to be a no-op.
2014 And ANSI C seems to specify that the type of the result
2015 should be the const type. */
2016 /* A de-reference of a pointer to const is not a const. It is valid
2017 to change it via some other pointer. */
2018 TREE_READONLY (ref) = TYPE_READONLY (t);
2019 TREE_SIDE_EFFECTS (ref)
2020 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
2021 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
2022 return ref;
2023 }
2024 }
2025 else if (TREE_CODE (pointer) != ERROR_MARK)
2026 error ("invalid type argument of %qs (have %qT)", errorstring, type);
2027 return error_mark_node;
2028 }
2029
2030 /* This handles expressions of the form "a[i]", which denotes
2031 an array reference.
2032
2033 This is logically equivalent in C to *(a+i), but we may do it differently.
2034 If A is a variable or a member, we generate a primitive ARRAY_REF.
2035 This avoids forcing the array out of registers, and can work on
2036 arrays that are not lvalues (for example, members of structures returned
2037 by functions). */
2038
2039 tree
2040 build_array_ref (tree array, tree index)
2041 {
2042 bool swapped = false;
2043 if (TREE_TYPE (array) == error_mark_node
2044 || TREE_TYPE (index) == error_mark_node)
2045 return error_mark_node;
2046
2047 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
2048 && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
2049 {
2050 tree temp;
2051 if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
2052 && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
2053 {
2054 error ("subscripted value is neither array nor pointer");
2055 return error_mark_node;
2056 }
2057 temp = array;
2058 array = index;
2059 index = temp;
2060 swapped = true;
2061 }
2062
2063 if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
2064 {
2065 error ("array subscript is not an integer");
2066 return error_mark_node;
2067 }
2068
2069 if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
2070 {
2071 error ("subscripted value is pointer to function");
2072 return error_mark_node;
2073 }
2074
2075 /* ??? Existing practice has been to warn only when the char
2076 index is syntactically the index, not for char[array]. */
2077 if (!swapped)
2078 warn_array_subscript_with_type_char (index);
2079
2080 /* Apply default promotions *after* noticing character types. */
2081 index = default_conversion (index);
2082
2083 gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
2084
2085 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
2086 {
2087 tree rval, type;
2088
2089 /* An array that is indexed by a non-constant
2090 cannot be stored in a register; we must be able to do
2091 address arithmetic on its address.
2092 Likewise an array of elements of variable size. */
2093 if (TREE_CODE (index) != INTEGER_CST
2094 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
2095 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
2096 {
2097 if (!c_mark_addressable (array))
2098 return error_mark_node;
2099 }
2100 /* An array that is indexed by a constant value which is not within
2101 the array bounds cannot be stored in a register either; because we
2102 would get a crash in store_bit_field/extract_bit_field when trying
2103 to access a non-existent part of the register. */
2104 if (TREE_CODE (index) == INTEGER_CST
2105 && TYPE_DOMAIN (TREE_TYPE (array))
2106 && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
2107 {
2108 if (!c_mark_addressable (array))
2109 return error_mark_node;
2110 }
2111
2112 if (pedantic)
2113 {
2114 tree foo = array;
2115 while (TREE_CODE (foo) == COMPONENT_REF)
2116 foo = TREE_OPERAND (foo, 0);
2117 if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2118 pedwarn (OPT_pedantic,
2119 "ISO C forbids subscripting %<register%> array");
2120 else if (!flag_isoc99 && !lvalue_p (foo))
2121 pedwarn (OPT_pedantic,
2122 "ISO C90 forbids subscripting non-lvalue array");
2123 }
2124
2125 type = TREE_TYPE (TREE_TYPE (array));
2126 rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2127 /* Array ref is const/volatile if the array elements are
2128 or if the array is. */
2129 TREE_READONLY (rval)
2130 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2131 | TREE_READONLY (array));
2132 TREE_SIDE_EFFECTS (rval)
2133 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2134 | TREE_SIDE_EFFECTS (array));
2135 TREE_THIS_VOLATILE (rval)
2136 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2137 /* This was added by rms on 16 Nov 91.
2138 It fixes vol struct foo *a; a->elts[1]
2139 in an inline function.
2140 Hope it doesn't break something else. */
2141 | TREE_THIS_VOLATILE (array));
2142 return require_complete_type (fold (rval));
2143 }
2144 else
2145 {
2146 tree ar = default_conversion (array);
2147
2148 if (ar == error_mark_node)
2149 return ar;
2150
2151 gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2152 gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2153
2154 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2155 "array indexing");
2156 }
2157 }
2158 \f
2159 /* Build an external reference to identifier ID. FUN indicates
2160 whether this will be used for a function call. LOC is the source
2161 location of the identifier. */
2162 tree
2163 build_external_ref (tree id, int fun, location_t loc)
2164 {
2165 tree ref;
2166 tree decl = lookup_name (id);
2167
2168 /* In Objective-C, an instance variable (ivar) may be preferred to
2169 whatever lookup_name() found. */
2170 decl = objc_lookup_ivar (decl, id);
2171
2172 if (decl && decl != error_mark_node)
2173 ref = decl;
2174 else if (fun)
2175 /* Implicit function declaration. */
2176 ref = implicitly_declare (id);
2177 else if (decl == error_mark_node)
2178 /* Don't complain about something that's already been
2179 complained about. */
2180 return error_mark_node;
2181 else
2182 {
2183 undeclared_variable (id, loc);
2184 return error_mark_node;
2185 }
2186
2187 if (TREE_TYPE (ref) == error_mark_node)
2188 return error_mark_node;
2189
2190 if (TREE_DEPRECATED (ref))
2191 warn_deprecated_use (ref);
2192
2193 /* Recursive call does not count as usage. */
2194 if (ref != current_function_decl)
2195 {
2196 TREE_USED (ref) = 1;
2197 }
2198
2199 if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2200 {
2201 if (!in_sizeof && !in_typeof)
2202 C_DECL_USED (ref) = 1;
2203 else if (DECL_INITIAL (ref) == 0
2204 && DECL_EXTERNAL (ref)
2205 && !TREE_PUBLIC (ref))
2206 record_maybe_used_decl (ref);
2207 }
2208
2209 if (TREE_CODE (ref) == CONST_DECL)
2210 {
2211 used_types_insert (TREE_TYPE (ref));
2212 ref = DECL_INITIAL (ref);
2213 TREE_CONSTANT (ref) = 1;
2214 }
2215 else if (current_function_decl != 0
2216 && !DECL_FILE_SCOPE_P (current_function_decl)
2217 && (TREE_CODE (ref) == VAR_DECL
2218 || TREE_CODE (ref) == PARM_DECL
2219 || TREE_CODE (ref) == FUNCTION_DECL))
2220 {
2221 tree context = decl_function_context (ref);
2222
2223 if (context != 0 && context != current_function_decl)
2224 DECL_NONLOCAL (ref) = 1;
2225 }
2226 /* C99 6.7.4p3: An inline definition of a function with external
2227 linkage ... shall not contain a reference to an identifier with
2228 internal linkage. */
2229 else if (current_function_decl != 0
2230 && DECL_DECLARED_INLINE_P (current_function_decl)
2231 && DECL_EXTERNAL (current_function_decl)
2232 && VAR_OR_FUNCTION_DECL_P (ref)
2233 && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2234 && ! TREE_PUBLIC (ref)
2235 && DECL_CONTEXT (ref) != current_function_decl)
2236 pedwarn (0, "%H%qD is static but used in inline function %qD "
2237 "which is not static", &loc, ref, current_function_decl);
2238
2239 return ref;
2240 }
2241
2242 /* Record details of decls possibly used inside sizeof or typeof. */
2243 struct maybe_used_decl
2244 {
2245 /* The decl. */
2246 tree decl;
2247 /* The level seen at (in_sizeof + in_typeof). */
2248 int level;
2249 /* The next one at this level or above, or NULL. */
2250 struct maybe_used_decl *next;
2251 };
2252
2253 static struct maybe_used_decl *maybe_used_decls;
2254
2255 /* Record that DECL, an undefined static function reference seen
2256 inside sizeof or typeof, might be used if the operand of sizeof is
2257 a VLA type or the operand of typeof is a variably modified
2258 type. */
2259
2260 static void
2261 record_maybe_used_decl (tree decl)
2262 {
2263 struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2264 t->decl = decl;
2265 t->level = in_sizeof + in_typeof;
2266 t->next = maybe_used_decls;
2267 maybe_used_decls = t;
2268 }
2269
2270 /* Pop the stack of decls possibly used inside sizeof or typeof. If
2271 USED is false, just discard them. If it is true, mark them used
2272 (if no longer inside sizeof or typeof) or move them to the next
2273 level up (if still inside sizeof or typeof). */
2274
2275 void
2276 pop_maybe_used (bool used)
2277 {
2278 struct maybe_used_decl *p = maybe_used_decls;
2279 int cur_level = in_sizeof + in_typeof;
2280 while (p && p->level > cur_level)
2281 {
2282 if (used)
2283 {
2284 if (cur_level == 0)
2285 C_DECL_USED (p->decl) = 1;
2286 else
2287 p->level = cur_level;
2288 }
2289 p = p->next;
2290 }
2291 if (!used || cur_level == 0)
2292 maybe_used_decls = p;
2293 }
2294
2295 /* Return the result of sizeof applied to EXPR. */
2296
2297 struct c_expr
2298 c_expr_sizeof_expr (struct c_expr expr)
2299 {
2300 struct c_expr ret;
2301 if (expr.value == error_mark_node)
2302 {
2303 ret.value = error_mark_node;
2304 ret.original_code = ERROR_MARK;
2305 pop_maybe_used (false);
2306 }
2307 else
2308 {
2309 ret.value = c_sizeof (TREE_TYPE (expr.value));
2310 ret.original_code = ERROR_MARK;
2311 if (c_vla_type_p (TREE_TYPE (expr.value)))
2312 {
2313 /* sizeof is evaluated when given a vla (C99 6.5.3.4p2). */
2314 ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2315 }
2316 pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2317 }
2318 return ret;
2319 }
2320
2321 /* Return the result of sizeof applied to T, a structure for the type
2322 name passed to sizeof (rather than the type itself). */
2323
2324 struct c_expr
2325 c_expr_sizeof_type (struct c_type_name *t)
2326 {
2327 tree type;
2328 struct c_expr ret;
2329 type = groktypename (t);
2330 ret.value = c_sizeof (type);
2331 ret.original_code = ERROR_MARK;
2332 pop_maybe_used (type != error_mark_node
2333 ? C_TYPE_VARIABLE_SIZE (type) : false);
2334 return ret;
2335 }
2336
2337 /* Build a function call to function FUNCTION with parameters PARAMS.
2338 PARAMS is a list--a chain of TREE_LIST nodes--in which the
2339 TREE_VALUE of each node is a parameter-expression.
2340 FUNCTION's data type may be a function type or a pointer-to-function. */
2341
2342 tree
2343 build_function_call (tree function, tree params)
2344 {
2345 tree fntype, fundecl = 0;
2346 tree name = NULL_TREE, result;
2347 tree tem;
2348 int nargs;
2349 tree *argarray;
2350
2351
2352 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
2353 STRIP_TYPE_NOPS (function);
2354
2355 /* Convert anything with function type to a pointer-to-function. */
2356 if (TREE_CODE (function) == FUNCTION_DECL)
2357 {
2358 /* Implement type-directed function overloading for builtins.
2359 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2360 handle all the type checking. The result is a complete expression
2361 that implements this function call. */
2362 tem = resolve_overloaded_builtin (function, params);
2363 if (tem)
2364 return tem;
2365
2366 name = DECL_NAME (function);
2367 fundecl = function;
2368 }
2369 if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2370 function = function_to_pointer_conversion (function);
2371
2372 /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2373 expressions, like those used for ObjC messenger dispatches. */
2374 function = objc_rewrite_function_call (function, params);
2375
2376 fntype = TREE_TYPE (function);
2377
2378 if (TREE_CODE (fntype) == ERROR_MARK)
2379 return error_mark_node;
2380
2381 if (!(TREE_CODE (fntype) == POINTER_TYPE
2382 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2383 {
2384 error ("called object %qE is not a function", function);
2385 return error_mark_node;
2386 }
2387
2388 if (fundecl && TREE_THIS_VOLATILE (fundecl))
2389 current_function_returns_abnormally = 1;
2390
2391 /* fntype now gets the type of function pointed to. */
2392 fntype = TREE_TYPE (fntype);
2393
2394 /* Check that the function is called through a compatible prototype.
2395 If it is not, replace the call by a trap, wrapped up in a compound
2396 expression if necessary. This has the nice side-effect to prevent
2397 the tree-inliner from generating invalid assignment trees which may
2398 blow up in the RTL expander later. */
2399 if (CONVERT_EXPR_P (function)
2400 && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2401 && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2402 && !comptypes (fntype, TREE_TYPE (tem)))
2403 {
2404 tree return_type = TREE_TYPE (fntype);
2405 tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2406 NULL_TREE);
2407
2408 /* This situation leads to run-time undefined behavior. We can't,
2409 therefore, simply error unless we can prove that all possible
2410 executions of the program must execute the code. */
2411 if (warning (0, "function called through a non-compatible type"))
2412 /* We can, however, treat "undefined" any way we please.
2413 Call abort to encourage the user to fix the program. */
2414 inform ("if this code is reached, the program will abort");
2415
2416 if (VOID_TYPE_P (return_type))
2417 return trap;
2418 else
2419 {
2420 tree rhs;
2421
2422 if (AGGREGATE_TYPE_P (return_type))
2423 rhs = build_compound_literal (return_type,
2424 build_constructor (return_type, 0));
2425 else
2426 rhs = fold_convert (return_type, integer_zero_node);
2427
2428 return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2429 }
2430 }
2431
2432 /* Convert the parameters to the types declared in the
2433 function prototype, or apply default promotions. */
2434
2435 nargs = list_length (params);
2436 argarray = (tree *) alloca (nargs * sizeof (tree));
2437 nargs = convert_arguments (nargs, argarray, TYPE_ARG_TYPES (fntype),
2438 params, function, fundecl);
2439 if (nargs < 0)
2440 return error_mark_node;
2441
2442 /* Check that arguments to builtin functions match the expectations. */
2443 if (fundecl
2444 && DECL_BUILT_IN (fundecl)
2445 && DECL_BUILT_IN_CLASS (fundecl) == BUILT_IN_NORMAL
2446 && !check_builtin_function_arguments (fundecl, nargs, argarray))
2447 return error_mark_node;
2448
2449 /* Check that the arguments to the function are valid. */
2450 check_function_arguments (TYPE_ATTRIBUTES (fntype), nargs, argarray,
2451 TYPE_ARG_TYPES (fntype));
2452
2453 if (require_constant_value)
2454 {
2455 result = fold_build_call_array_initializer (TREE_TYPE (fntype),
2456 function, nargs, argarray);
2457 if (TREE_CONSTANT (result)
2458 && (name == NULL_TREE
2459 || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2460 pedwarn_init (0, "initializer element is not constant");
2461 }
2462 else
2463 result = fold_build_call_array (TREE_TYPE (fntype),
2464 function, nargs, argarray);
2465
2466 if (VOID_TYPE_P (TREE_TYPE (result)))
2467 return result;
2468 return require_complete_type (result);
2469 }
2470 \f
2471 /* Convert the argument expressions in the list VALUES
2472 to the types in the list TYPELIST. The resulting arguments are
2473 stored in the array ARGARRAY which has size NARGS.
2474
2475 If TYPELIST is exhausted, or when an element has NULL as its type,
2476 perform the default conversions.
2477
2478 PARMLIST is the chain of parm decls for the function being called.
2479 It may be 0, if that info is not available.
2480 It is used only for generating error messages.
2481
2482 FUNCTION is a tree for the called function. It is used only for
2483 error messages, where it is formatted with %qE.
2484
2485 This is also where warnings about wrong number of args are generated.
2486
2487 VALUES is a chain of TREE_LIST nodes with the elements of the list
2488 in the TREE_VALUE slots of those nodes.
2489
2490 Returns the actual number of arguments processed (which may be less
2491 than NARGS in some error situations), or -1 on failure. */
2492
2493 static int
2494 convert_arguments (int nargs, tree *argarray,
2495 tree typelist, tree values, tree function, tree fundecl)
2496 {
2497 tree typetail, valtail;
2498 int parmnum;
2499 const bool type_generic = fundecl
2500 && lookup_attribute ("type generic", TYPE_ATTRIBUTES(TREE_TYPE (fundecl)));
2501 tree selector;
2502
2503 /* Change pointer to function to the function itself for
2504 diagnostics. */
2505 if (TREE_CODE (function) == ADDR_EXPR
2506 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2507 function = TREE_OPERAND (function, 0);
2508
2509 /* Handle an ObjC selector specially for diagnostics. */
2510 selector = objc_message_selector ();
2511
2512 /* Scan the given expressions and types, producing individual
2513 converted arguments and storing them in ARGARRAY. */
2514
2515 for (valtail = values, typetail = typelist, parmnum = 0;
2516 valtail;
2517 valtail = TREE_CHAIN (valtail), parmnum++)
2518 {
2519 tree type = typetail ? TREE_VALUE (typetail) : 0;
2520 tree val = TREE_VALUE (valtail);
2521 tree rname = function;
2522 int argnum = parmnum + 1;
2523 const char *invalid_func_diag;
2524
2525 if (type == void_type_node)
2526 {
2527 error ("too many arguments to function %qE", function);
2528 return parmnum;
2529 }
2530
2531 if (selector && argnum > 2)
2532 {
2533 rname = selector;
2534 argnum -= 2;
2535 }
2536
2537 STRIP_TYPE_NOPS (val);
2538
2539 val = require_complete_type (val);
2540
2541 if (type != 0)
2542 {
2543 /* Formal parm type is specified by a function prototype. */
2544 tree parmval;
2545
2546 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2547 {
2548 error ("type of formal parameter %d is incomplete", parmnum + 1);
2549 parmval = val;
2550 }
2551 else
2552 {
2553 /* Optionally warn about conversions that
2554 differ from the default conversions. */
2555 if (warn_traditional_conversion || warn_traditional)
2556 {
2557 unsigned int formal_prec = TYPE_PRECISION (type);
2558
2559 if (INTEGRAL_TYPE_P (type)
2560 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2561 warning (0, "passing argument %d of %qE as integer "
2562 "rather than floating due to prototype",
2563 argnum, rname);
2564 if (INTEGRAL_TYPE_P (type)
2565 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2566 warning (0, "passing argument %d of %qE as integer "
2567 "rather than complex due to prototype",
2568 argnum, rname);
2569 else if (TREE_CODE (type) == COMPLEX_TYPE
2570 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2571 warning (0, "passing argument %d of %qE as complex "
2572 "rather than floating due to prototype",
2573 argnum, rname);
2574 else if (TREE_CODE (type) == REAL_TYPE
2575 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2576 warning (0, "passing argument %d of %qE as floating "
2577 "rather than integer due to prototype",
2578 argnum, rname);
2579 else if (TREE_CODE (type) == COMPLEX_TYPE
2580 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2581 warning (0, "passing argument %d of %qE as complex "
2582 "rather than integer due to prototype",
2583 argnum, rname);
2584 else if (TREE_CODE (type) == REAL_TYPE
2585 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2586 warning (0, "passing argument %d of %qE as floating "
2587 "rather than complex due to prototype",
2588 argnum, rname);
2589 /* ??? At some point, messages should be written about
2590 conversions between complex types, but that's too messy
2591 to do now. */
2592 else if (TREE_CODE (type) == REAL_TYPE
2593 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2594 {
2595 /* Warn if any argument is passed as `float',
2596 since without a prototype it would be `double'. */
2597 if (formal_prec == TYPE_PRECISION (float_type_node)
2598 && type != dfloat32_type_node)
2599 warning (0, "passing argument %d of %qE as %<float%> "
2600 "rather than %<double%> due to prototype",
2601 argnum, rname);
2602
2603 /* Warn if mismatch between argument and prototype
2604 for decimal float types. Warn of conversions with
2605 binary float types and of precision narrowing due to
2606 prototype. */
2607 else if (type != TREE_TYPE (val)
2608 && (type == dfloat32_type_node
2609 || type == dfloat64_type_node
2610 || type == dfloat128_type_node
2611 || TREE_TYPE (val) == dfloat32_type_node
2612 || TREE_TYPE (val) == dfloat64_type_node
2613 || TREE_TYPE (val) == dfloat128_type_node)
2614 && (formal_prec
2615 <= TYPE_PRECISION (TREE_TYPE (val))
2616 || (type == dfloat128_type_node
2617 && (TREE_TYPE (val)
2618 != dfloat64_type_node
2619 && (TREE_TYPE (val)
2620 != dfloat32_type_node)))
2621 || (type == dfloat64_type_node
2622 && (TREE_TYPE (val)
2623 != dfloat32_type_node))))
2624 warning (0, "passing argument %d of %qE as %qT "
2625 "rather than %qT due to prototype",
2626 argnum, rname, type, TREE_TYPE (val));
2627
2628 }
2629 /* Detect integer changing in width or signedness.
2630 These warnings are only activated with
2631 -Wtraditional-conversion, not with -Wtraditional. */
2632 else if (warn_traditional_conversion && INTEGRAL_TYPE_P (type)
2633 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2634 {
2635 tree would_have_been = default_conversion (val);
2636 tree type1 = TREE_TYPE (would_have_been);
2637
2638 if (TREE_CODE (type) == ENUMERAL_TYPE
2639 && (TYPE_MAIN_VARIANT (type)
2640 == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2641 /* No warning if function asks for enum
2642 and the actual arg is that enum type. */
2643 ;
2644 else if (formal_prec != TYPE_PRECISION (type1))
2645 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2646 "with different width due to prototype",
2647 argnum, rname);
2648 else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2649 ;
2650 /* Don't complain if the formal parameter type
2651 is an enum, because we can't tell now whether
2652 the value was an enum--even the same enum. */
2653 else if (TREE_CODE (type) == ENUMERAL_TYPE)
2654 ;
2655 else if (TREE_CODE (val) == INTEGER_CST
2656 && int_fits_type_p (val, type))
2657 /* Change in signedness doesn't matter
2658 if a constant value is unaffected. */
2659 ;
2660 /* If the value is extended from a narrower
2661 unsigned type, it doesn't matter whether we
2662 pass it as signed or unsigned; the value
2663 certainly is the same either way. */
2664 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2665 && TYPE_UNSIGNED (TREE_TYPE (val)))
2666 ;
2667 else if (TYPE_UNSIGNED (type))
2668 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2669 "as unsigned due to prototype",
2670 argnum, rname);
2671 else
2672 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2673 "as signed due to prototype", argnum, rname);
2674 }
2675 }
2676
2677 parmval = convert_for_assignment (type, val, ic_argpass,
2678 fundecl, function,
2679 parmnum + 1);
2680
2681 if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2682 && INTEGRAL_TYPE_P (type)
2683 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2684 parmval = default_conversion (parmval);
2685 }
2686 argarray[parmnum] = parmval;
2687 }
2688 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2689 && (TYPE_PRECISION (TREE_TYPE (val))
2690 < TYPE_PRECISION (double_type_node))
2691 && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2692 {
2693 if (type_generic)
2694 argarray[parmnum] = val;
2695 else
2696 /* Convert `float' to `double'. */
2697 argarray[parmnum] = convert (double_type_node, val);
2698 }
2699 else if ((invalid_func_diag =
2700 targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2701 {
2702 error (invalid_func_diag);
2703 return -1;
2704 }
2705 else
2706 /* Convert `short' and `char' to full-size `int'. */
2707 argarray[parmnum] = default_conversion (val);
2708
2709 if (typetail)
2710 typetail = TREE_CHAIN (typetail);
2711 }
2712
2713 gcc_assert (parmnum == nargs);
2714
2715 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2716 {
2717 error ("too few arguments to function %qE", function);
2718 return -1;
2719 }
2720
2721 return parmnum;
2722 }
2723 \f
2724 /* This is the entry point used by the parser to build unary operators
2725 in the input. CODE, a tree_code, specifies the unary operator, and
2726 ARG is the operand. For unary plus, the C parser currently uses
2727 CONVERT_EXPR for code. */
2728
2729 struct c_expr
2730 parser_build_unary_op (enum tree_code code, struct c_expr arg)
2731 {
2732 struct c_expr result;
2733
2734 result.original_code = ERROR_MARK;
2735 result.value = build_unary_op (code, arg.value, 0);
2736
2737 if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value))
2738 overflow_warning (result.value);
2739
2740 return result;
2741 }
2742
2743 /* This is the entry point used by the parser to build binary operators
2744 in the input. CODE, a tree_code, specifies the binary operator, and
2745 ARG1 and ARG2 are the operands. In addition to constructing the
2746 expression, we check for operands that were written with other binary
2747 operators in a way that is likely to confuse the user. */
2748
2749 struct c_expr
2750 parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2751 struct c_expr arg2)
2752 {
2753 struct c_expr result;
2754
2755 enum tree_code code1 = arg1.original_code;
2756 enum tree_code code2 = arg2.original_code;
2757
2758 result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2759 result.original_code = code;
2760
2761 if (TREE_CODE (result.value) == ERROR_MARK)
2762 return result;
2763
2764 /* Check for cases such as x+y<<z which users are likely
2765 to misinterpret. */
2766 if (warn_parentheses)
2767 warn_about_parentheses (code, code1, code2);
2768
2769 if (TREE_CODE_CLASS (code1) != tcc_comparison)
2770 warn_logical_operator (code, arg1.value, arg2.value);
2771
2772 /* Warn about comparisons against string literals, with the exception
2773 of testing for equality or inequality of a string literal with NULL. */
2774 if (code == EQ_EXPR || code == NE_EXPR)
2775 {
2776 if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2777 || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2778 warning (OPT_Waddress, "comparison with string literal results in unspecified behavior");
2779 }
2780 else if (TREE_CODE_CLASS (code) == tcc_comparison
2781 && (code1 == STRING_CST || code2 == STRING_CST))
2782 warning (OPT_Waddress, "comparison with string literal results in unspecified behavior");
2783
2784 if (TREE_OVERFLOW_P (result.value)
2785 && !TREE_OVERFLOW_P (arg1.value)
2786 && !TREE_OVERFLOW_P (arg2.value))
2787 overflow_warning (result.value);
2788
2789 return result;
2790 }
2791 \f
2792 /* Return a tree for the difference of pointers OP0 and OP1.
2793 The resulting tree has type int. */
2794
2795 static tree
2796 pointer_diff (tree op0, tree op1)
2797 {
2798 tree restype = ptrdiff_type_node;
2799
2800 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2801 tree con0, con1, lit0, lit1;
2802 tree orig_op1 = op1;
2803
2804 if (TREE_CODE (target_type) == VOID_TYPE)
2805 pedwarn (pedantic ? OPT_pedantic : OPT_Wpointer_arith,
2806 "pointer of type %<void *%> used in subtraction");
2807 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2808 pedwarn (pedantic ? OPT_pedantic : OPT_Wpointer_arith,
2809 "pointer to a function used in subtraction");
2810
2811 /* If the conversion to ptrdiff_type does anything like widening or
2812 converting a partial to an integral mode, we get a convert_expression
2813 that is in the way to do any simplifications.
2814 (fold-const.c doesn't know that the extra bits won't be needed.
2815 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2816 different mode in place.)
2817 So first try to find a common term here 'by hand'; we want to cover
2818 at least the cases that occur in legal static initializers. */
2819 if (CONVERT_EXPR_P (op0)
2820 && (TYPE_PRECISION (TREE_TYPE (op0))
2821 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2822 con0 = TREE_OPERAND (op0, 0);
2823 else
2824 con0 = op0;
2825 if (CONVERT_EXPR_P (op1)
2826 && (TYPE_PRECISION (TREE_TYPE (op1))
2827 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2828 con1 = TREE_OPERAND (op1, 0);
2829 else
2830 con1 = op1;
2831
2832 if (TREE_CODE (con0) == PLUS_EXPR)
2833 {
2834 lit0 = TREE_OPERAND (con0, 1);
2835 con0 = TREE_OPERAND (con0, 0);
2836 }
2837 else
2838 lit0 = integer_zero_node;
2839
2840 if (TREE_CODE (con1) == PLUS_EXPR)
2841 {
2842 lit1 = TREE_OPERAND (con1, 1);
2843 con1 = TREE_OPERAND (con1, 0);
2844 }
2845 else
2846 lit1 = integer_zero_node;
2847
2848 if (operand_equal_p (con0, con1, 0))
2849 {
2850 op0 = lit0;
2851 op1 = lit1;
2852 }
2853
2854
2855 /* First do the subtraction as integers;
2856 then drop through to build the divide operator.
2857 Do not do default conversions on the minus operator
2858 in case restype is a short type. */
2859
2860 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2861 convert (restype, op1), 0);
2862 /* This generates an error if op1 is pointer to incomplete type. */
2863 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2864 error ("arithmetic on pointer to an incomplete type");
2865
2866 /* This generates an error if op0 is pointer to incomplete type. */
2867 op1 = c_size_in_bytes (target_type);
2868
2869 /* Divide by the size, in easiest possible way. */
2870 return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2871 }
2872 \f
2873 /* Construct and perhaps optimize a tree representation
2874 for a unary operation. CODE, a tree_code, specifies the operation
2875 and XARG is the operand.
2876 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2877 the default promotions (such as from short to int).
2878 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2879 allows non-lvalues; this is only used to handle conversion of non-lvalue
2880 arrays to pointers in C99. */
2881
2882 tree
2883 build_unary_op (enum tree_code code, tree xarg, int flag)
2884 {
2885 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2886 tree arg = xarg;
2887 tree argtype = 0;
2888 enum tree_code typecode;
2889 tree val;
2890 int noconvert = flag;
2891 const char *invalid_op_diag;
2892
2893 if (code != ADDR_EXPR)
2894 arg = require_complete_type (arg);
2895
2896 typecode = TREE_CODE (TREE_TYPE (arg));
2897 if (typecode == ERROR_MARK)
2898 return error_mark_node;
2899 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2900 typecode = INTEGER_TYPE;
2901
2902 if ((invalid_op_diag
2903 = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2904 {
2905 error (invalid_op_diag);
2906 return error_mark_node;
2907 }
2908
2909 switch (code)
2910 {
2911 case CONVERT_EXPR:
2912 /* This is used for unary plus, because a CONVERT_EXPR
2913 is enough to prevent anybody from looking inside for
2914 associativity, but won't generate any code. */
2915 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2916 || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE
2917 || typecode == VECTOR_TYPE))
2918 {
2919 error ("wrong type argument to unary plus");
2920 return error_mark_node;
2921 }
2922 else if (!noconvert)
2923 arg = default_conversion (arg);
2924 arg = non_lvalue (arg);
2925 break;
2926
2927 case NEGATE_EXPR:
2928 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2929 || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE
2930 || typecode == VECTOR_TYPE))
2931 {
2932 error ("wrong type argument to unary minus");
2933 return error_mark_node;
2934 }
2935 else if (!noconvert)
2936 arg = default_conversion (arg);
2937 break;
2938
2939 case BIT_NOT_EXPR:
2940 /* ~ works on integer types and non float vectors. */
2941 if (typecode == INTEGER_TYPE
2942 || (typecode == VECTOR_TYPE
2943 && !VECTOR_FLOAT_TYPE_P (TREE_TYPE (arg))))
2944 {
2945 if (!noconvert)
2946 arg = default_conversion (arg);
2947 }
2948 else if (typecode == COMPLEX_TYPE)
2949 {
2950 code = CONJ_EXPR;
2951 pedwarn (OPT_pedantic,
2952 "ISO C does not support %<~%> for complex conjugation");
2953 if (!noconvert)
2954 arg = default_conversion (arg);
2955 }
2956 else
2957 {
2958 error ("wrong type argument to bit-complement");
2959 return error_mark_node;
2960 }
2961 break;
2962
2963 case ABS_EXPR:
2964 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2965 {
2966 error ("wrong type argument to abs");
2967 return error_mark_node;
2968 }
2969 else if (!noconvert)
2970 arg = default_conversion (arg);
2971 break;
2972
2973 case CONJ_EXPR:
2974 /* Conjugating a real value is a no-op, but allow it anyway. */
2975 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2976 || typecode == COMPLEX_TYPE))
2977 {
2978 error ("wrong type argument to conjugation");
2979 return error_mark_node;
2980 }
2981 else if (!noconvert)
2982 arg = default_conversion (arg);
2983 break;
2984
2985 case TRUTH_NOT_EXPR:
2986 if (typecode != INTEGER_TYPE && typecode != FIXED_POINT_TYPE
2987 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2988 && typecode != COMPLEX_TYPE)
2989 {
2990 error ("wrong type argument to unary exclamation mark");
2991 return error_mark_node;
2992 }
2993 arg = c_objc_common_truthvalue_conversion (arg);
2994 return invert_truthvalue (arg);
2995
2996 case REALPART_EXPR:
2997 if (TREE_CODE (arg) == COMPLEX_CST)
2998 return TREE_REALPART (arg);
2999 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
3000 return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
3001 else
3002 return arg;
3003
3004 case IMAGPART_EXPR:
3005 if (TREE_CODE (arg) == COMPLEX_CST)
3006 return TREE_IMAGPART (arg);
3007 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
3008 return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
3009 else
3010 return convert (TREE_TYPE (arg), integer_zero_node);
3011
3012 case PREINCREMENT_EXPR:
3013 case POSTINCREMENT_EXPR:
3014 case PREDECREMENT_EXPR:
3015 case POSTDECREMENT_EXPR:
3016
3017 /* Increment or decrement the real part of the value,
3018 and don't change the imaginary part. */
3019 if (typecode == COMPLEX_TYPE)
3020 {
3021 tree real, imag;
3022
3023 pedwarn (OPT_pedantic, "ISO C does not support %<++%> and %<--%>"
3024 " on complex types");
3025
3026 arg = stabilize_reference (arg);
3027 real = build_unary_op (REALPART_EXPR, arg, 1);
3028 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
3029 real = build_unary_op (code, real, 1);
3030 if (real == error_mark_node || imag == error_mark_node)
3031 return error_mark_node;
3032 return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
3033 real, imag);
3034 }
3035
3036 /* Report invalid types. */
3037
3038 if (typecode != POINTER_TYPE && typecode != FIXED_POINT_TYPE
3039 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
3040 {
3041 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3042 error ("wrong type argument to increment");
3043 else
3044 error ("wrong type argument to decrement");
3045
3046 return error_mark_node;
3047 }
3048
3049 {
3050 tree inc;
3051 tree result_type = TREE_TYPE (arg);
3052
3053 arg = get_unwidened (arg, 0);
3054 argtype = TREE_TYPE (arg);
3055
3056 /* Compute the increment. */
3057
3058 if (typecode == POINTER_TYPE)
3059 {
3060 /* If pointer target is an undefined struct,
3061 we just cannot know how to do the arithmetic. */
3062 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
3063 {
3064 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3065 error ("increment of pointer to unknown structure");
3066 else
3067 error ("decrement of pointer to unknown structure");
3068 }
3069 else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
3070 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
3071 {
3072 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3073 pedwarn (pedantic ? OPT_pedantic : OPT_Wpointer_arith,
3074 "wrong type argument to increment");
3075 else
3076 pedwarn (pedantic ? OPT_pedantic : OPT_Wpointer_arith,
3077 "wrong type argument to decrement");
3078 }
3079
3080 inc = c_size_in_bytes (TREE_TYPE (result_type));
3081 inc = fold_convert (sizetype, inc);
3082 }
3083 else if (FRACT_MODE_P (TYPE_MODE (result_type)))
3084 {
3085 /* For signed fract types, we invert ++ to -- or
3086 -- to ++, and change inc from 1 to -1, because
3087 it is not possible to represent 1 in signed fract constants.
3088 For unsigned fract types, the result always overflows and
3089 we get an undefined (original) or the maximum value. */
3090 if (code == PREINCREMENT_EXPR)
3091 code = PREDECREMENT_EXPR;
3092 else if (code == PREDECREMENT_EXPR)
3093 code = PREINCREMENT_EXPR;
3094 else if (code == POSTINCREMENT_EXPR)
3095 code = POSTDECREMENT_EXPR;
3096 else /* code == POSTDECREMENT_EXPR */
3097 code = POSTINCREMENT_EXPR;
3098
3099 inc = integer_minus_one_node;
3100 inc = convert (argtype, inc);
3101 }
3102 else
3103 {
3104 inc = integer_one_node;
3105 inc = convert (argtype, inc);
3106 }
3107
3108 /* Complain about anything else that is not a true lvalue. */
3109 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
3110 || code == POSTINCREMENT_EXPR)
3111 ? lv_increment
3112 : lv_decrement)))
3113 return error_mark_node;
3114
3115 /* Report a read-only lvalue. */
3116 if (TREE_READONLY (arg))
3117 {
3118 readonly_error (arg,
3119 ((code == PREINCREMENT_EXPR
3120 || code == POSTINCREMENT_EXPR)
3121 ? lv_increment : lv_decrement));
3122 return error_mark_node;
3123 }
3124
3125 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3126 val = boolean_increment (code, arg);
3127 else
3128 val = build2 (code, TREE_TYPE (arg), arg, inc);
3129 TREE_SIDE_EFFECTS (val) = 1;
3130 val = convert (result_type, val);
3131 if (TREE_CODE (val) != code)
3132 TREE_NO_WARNING (val) = 1;
3133 return val;
3134 }
3135
3136 case ADDR_EXPR:
3137 /* Note that this operation never does default_conversion. */
3138
3139 /* Let &* cancel out to simplify resulting code. */
3140 if (TREE_CODE (arg) == INDIRECT_REF)
3141 {
3142 /* Don't let this be an lvalue. */
3143 if (lvalue_p (TREE_OPERAND (arg, 0)))
3144 return non_lvalue (TREE_OPERAND (arg, 0));
3145 return TREE_OPERAND (arg, 0);
3146 }
3147
3148 /* For &x[y], return x+y */
3149 if (TREE_CODE (arg) == ARRAY_REF)
3150 {
3151 tree op0 = TREE_OPERAND (arg, 0);
3152 if (!c_mark_addressable (op0))
3153 return error_mark_node;
3154 return build_binary_op (PLUS_EXPR,
3155 (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3156 ? array_to_pointer_conversion (op0)
3157 : op0),
3158 TREE_OPERAND (arg, 1), 1);
3159 }
3160
3161 /* Anything not already handled and not a true memory reference
3162 or a non-lvalue array is an error. */
3163 else if (typecode != FUNCTION_TYPE && !flag
3164 && !lvalue_or_else (arg, lv_addressof))
3165 return error_mark_node;
3166
3167 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3168 argtype = TREE_TYPE (arg);
3169
3170 /* If the lvalue is const or volatile, merge that into the type
3171 to which the address will point. Note that you can't get a
3172 restricted pointer by taking the address of something, so we
3173 only have to deal with `const' and `volatile' here. */
3174 if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3175 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3176 argtype = c_build_type_variant (argtype,
3177 TREE_READONLY (arg),
3178 TREE_THIS_VOLATILE (arg));
3179
3180 if (!c_mark_addressable (arg))
3181 return error_mark_node;
3182
3183 gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3184 || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3185
3186 argtype = build_pointer_type (argtype);
3187
3188 /* ??? Cope with user tricks that amount to offsetof. Delete this
3189 when we have proper support for integer constant expressions. */
3190 val = get_base_address (arg);
3191 if (val && TREE_CODE (val) == INDIRECT_REF
3192 && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3193 {
3194 tree op0 = fold_convert (sizetype, fold_offsetof (arg, val)), op1;
3195
3196 op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3197 return fold_build2 (POINTER_PLUS_EXPR, argtype, op1, op0);
3198 }
3199
3200 val = build1 (ADDR_EXPR, argtype, arg);
3201
3202 return val;
3203
3204 default:
3205 gcc_unreachable ();
3206 }
3207
3208 if (argtype == 0)
3209 argtype = TREE_TYPE (arg);
3210 return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3211 : fold_build1 (code, argtype, arg);
3212 }
3213
3214 /* Return nonzero if REF is an lvalue valid for this language.
3215 Lvalues can be assigned, unless their type has TYPE_READONLY.
3216 Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
3217
3218 static int
3219 lvalue_p (const_tree ref)
3220 {
3221 const enum tree_code code = TREE_CODE (ref);
3222
3223 switch (code)
3224 {
3225 case REALPART_EXPR:
3226 case IMAGPART_EXPR:
3227 case COMPONENT_REF:
3228 return lvalue_p (TREE_OPERAND (ref, 0));
3229
3230 case COMPOUND_LITERAL_EXPR:
3231 case STRING_CST:
3232 return 1;
3233
3234 case INDIRECT_REF:
3235 case ARRAY_REF:
3236 case VAR_DECL:
3237 case PARM_DECL:
3238 case RESULT_DECL:
3239 case ERROR_MARK:
3240 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3241 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3242
3243 case BIND_EXPR:
3244 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3245
3246 default:
3247 return 0;
3248 }
3249 }
3250 \f
3251 /* Give an error for storing in something that is 'const'. */
3252
3253 static void
3254 readonly_error (tree arg, enum lvalue_use use)
3255 {
3256 gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3257 || use == lv_asm);
3258 /* Using this macro rather than (for example) arrays of messages
3259 ensures that all the format strings are checked at compile
3260 time. */
3261 #define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A) \
3262 : (use == lv_increment ? (I) \
3263 : (use == lv_decrement ? (D) : (AS))))
3264 if (TREE_CODE (arg) == COMPONENT_REF)
3265 {
3266 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3267 readonly_error (TREE_OPERAND (arg, 0), use);
3268 else
3269 error (READONLY_MSG (G_("assignment of read-only member %qD"),
3270 G_("increment of read-only member %qD"),
3271 G_("decrement of read-only member %qD"),
3272 G_("read-only member %qD used as %<asm%> output")),
3273 TREE_OPERAND (arg, 1));
3274 }
3275 else if (TREE_CODE (arg) == VAR_DECL)
3276 error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3277 G_("increment of read-only variable %qD"),
3278 G_("decrement of read-only variable %qD"),
3279 G_("read-only variable %qD used as %<asm%> output")),
3280 arg);
3281 else
3282 error (READONLY_MSG (G_("assignment of read-only location %qE"),
3283 G_("increment of read-only location %qE"),
3284 G_("decrement of read-only location %qE"),
3285 G_("read-only location %qE used as %<asm%> output")),
3286 arg);
3287 }
3288
3289
3290 /* Return nonzero if REF is an lvalue valid for this language;
3291 otherwise, print an error message and return zero. USE says
3292 how the lvalue is being used and so selects the error message. */
3293
3294 static int
3295 lvalue_or_else (const_tree ref, enum lvalue_use use)
3296 {
3297 int win = lvalue_p (ref);
3298
3299 if (!win)
3300 lvalue_error (use);
3301
3302 return win;
3303 }
3304 \f
3305 /* Mark EXP saying that we need to be able to take the
3306 address of it; it should not be allocated in a register.
3307 Returns true if successful. */
3308
3309 bool
3310 c_mark_addressable (tree exp)
3311 {
3312 tree x = exp;
3313
3314 while (1)
3315 switch (TREE_CODE (x))
3316 {
3317 case COMPONENT_REF:
3318 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3319 {
3320 error
3321 ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3322 return false;
3323 }
3324
3325 /* ... fall through ... */
3326
3327 case ADDR_EXPR:
3328 case ARRAY_REF:
3329 case REALPART_EXPR:
3330 case IMAGPART_EXPR:
3331 x = TREE_OPERAND (x, 0);
3332 break;
3333
3334 case COMPOUND_LITERAL_EXPR:
3335 case CONSTRUCTOR:
3336 TREE_ADDRESSABLE (x) = 1;
3337 return true;
3338
3339 case VAR_DECL:
3340 case CONST_DECL:
3341 case PARM_DECL:
3342 case RESULT_DECL:
3343 if (C_DECL_REGISTER (x)
3344 && DECL_NONLOCAL (x))
3345 {
3346 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3347 {
3348 error
3349 ("global register variable %qD used in nested function", x);
3350 return false;
3351 }
3352 pedwarn (0, "register variable %qD used in nested function", x);
3353 }
3354 else if (C_DECL_REGISTER (x))
3355 {
3356 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3357 error ("address of global register variable %qD requested", x);
3358 else
3359 error ("address of register variable %qD requested", x);
3360 return false;
3361 }
3362
3363 /* drops in */
3364 case FUNCTION_DECL:
3365 TREE_ADDRESSABLE (x) = 1;
3366 /* drops out */
3367 default:
3368 return true;
3369 }
3370 }
3371 \f
3372 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3373
3374 tree
3375 build_conditional_expr (tree ifexp, tree op1, tree op2)
3376 {
3377 tree type1;
3378 tree type2;
3379 enum tree_code code1;
3380 enum tree_code code2;
3381 tree result_type = NULL;
3382 tree orig_op1 = op1, orig_op2 = op2;
3383
3384 /* Promote both alternatives. */
3385
3386 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3387 op1 = default_conversion (op1);
3388 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3389 op2 = default_conversion (op2);
3390
3391 if (TREE_CODE (ifexp) == ERROR_MARK
3392 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3393 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3394 return error_mark_node;
3395
3396 type1 = TREE_TYPE (op1);
3397 code1 = TREE_CODE (type1);
3398 type2 = TREE_TYPE (op2);
3399 code2 = TREE_CODE (type2);
3400
3401 /* C90 does not permit non-lvalue arrays in conditional expressions.
3402 In C99 they will be pointers by now. */
3403 if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3404 {
3405 error ("non-lvalue array in conditional expression");
3406 return error_mark_node;
3407 }
3408
3409 /* Quickly detect the usual case where op1 and op2 have the same type
3410 after promotion. */
3411 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3412 {
3413 if (type1 == type2)
3414 result_type = type1;
3415 else
3416 result_type = TYPE_MAIN_VARIANT (type1);
3417 }
3418 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3419 || code1 == COMPLEX_TYPE)
3420 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3421 || code2 == COMPLEX_TYPE))
3422 {
3423 result_type = c_common_type (type1, type2);
3424
3425 /* If -Wsign-compare, warn here if type1 and type2 have
3426 different signedness. We'll promote the signed to unsigned
3427 and later code won't know it used to be different.
3428 Do this check on the original types, so that explicit casts
3429 will be considered, but default promotions won't. */
3430 if (warn_sign_compare && !skip_evaluation)
3431 {
3432 int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3433 int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3434
3435 if (unsigned_op1 ^ unsigned_op2)
3436 {
3437 bool ovf;
3438
3439 /* Do not warn if the result type is signed, since the
3440 signed type will only be chosen if it can represent
3441 all the values of the unsigned type. */
3442 if (!TYPE_UNSIGNED (result_type))
3443 /* OK */;
3444 /* Do not warn if the signed quantity is an unsuffixed
3445 integer literal (or some static constant expression
3446 involving such literals) and it is non-negative. */
3447 else if ((unsigned_op2
3448 && tree_expr_nonnegative_warnv_p (op1, &ovf))
3449 || (unsigned_op1
3450 && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3451 /* OK */;
3452 else
3453 warning (OPT_Wsign_compare, "signed and unsigned type in conditional expression");
3454 }
3455 }
3456 }
3457 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3458 {
3459 if (code1 != VOID_TYPE || code2 != VOID_TYPE)
3460 pedwarn (OPT_pedantic,
3461 "ISO C forbids conditional expr with only one void side");
3462 result_type = void_type_node;
3463 }
3464 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3465 {
3466 if (comp_target_types (type1, type2))
3467 result_type = common_pointer_type (type1, type2);
3468 else if (null_pointer_constant_p (orig_op1))
3469 result_type = qualify_type (type2, type1);
3470 else if (null_pointer_constant_p (orig_op2))
3471 result_type = qualify_type (type1, type2);
3472 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3473 {
3474 if (TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3475 pedwarn (OPT_pedantic, "ISO C forbids conditional expr between "
3476 "%<void *%> and function pointer");
3477 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3478 TREE_TYPE (type2)));
3479 }
3480 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3481 {
3482 if (TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3483 pedwarn (OPT_pedantic, "ISO C forbids conditional expr between "
3484 "%<void *%> and function pointer");
3485 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3486 TREE_TYPE (type1)));
3487 }
3488 else
3489 {
3490 pedwarn (0, "pointer type mismatch in conditional expression");
3491 result_type = build_pointer_type (void_type_node);
3492 }
3493 }
3494 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3495 {
3496 if (!null_pointer_constant_p (orig_op2))
3497 pedwarn (0, "pointer/integer type mismatch in conditional expression");
3498 else
3499 {
3500 op2 = null_pointer_node;
3501 }
3502 result_type = type1;
3503 }
3504 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3505 {
3506 if (!null_pointer_constant_p (orig_op1))
3507 pedwarn (0, "pointer/integer type mismatch in conditional expression");
3508 else
3509 {
3510 op1 = null_pointer_node;
3511 }
3512 result_type = type2;
3513 }
3514
3515 if (!result_type)
3516 {
3517 if (flag_cond_mismatch)
3518 result_type = void_type_node;
3519 else
3520 {
3521 error ("type mismatch in conditional expression");
3522 return error_mark_node;
3523 }
3524 }
3525
3526 /* Merge const and volatile flags of the incoming types. */
3527 result_type
3528 = build_type_variant (result_type,
3529 TREE_READONLY (op1) || TREE_READONLY (op2),
3530 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3531
3532 if (result_type != TREE_TYPE (op1))
3533 op1 = convert_and_check (result_type, op1);
3534 if (result_type != TREE_TYPE (op2))
3535 op2 = convert_and_check (result_type, op2);
3536
3537 return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3538 }
3539 \f
3540 /* Return a compound expression that performs two expressions and
3541 returns the value of the second of them. */
3542
3543 tree
3544 build_compound_expr (tree expr1, tree expr2)
3545 {
3546 if (!TREE_SIDE_EFFECTS (expr1))
3547 {
3548 /* The left-hand operand of a comma expression is like an expression
3549 statement: with -Wunused, we should warn if it doesn't have
3550 any side-effects, unless it was explicitly cast to (void). */
3551 if (warn_unused_value)
3552 {
3553 if (VOID_TYPE_P (TREE_TYPE (expr1))
3554 && CONVERT_EXPR_P (expr1))
3555 ; /* (void) a, b */
3556 else if (VOID_TYPE_P (TREE_TYPE (expr1))
3557 && TREE_CODE (expr1) == COMPOUND_EXPR
3558 && CONVERT_EXPR_P (TREE_OPERAND (expr1, 1)))
3559 ; /* (void) a, (void) b, c */
3560 else
3561 warning (OPT_Wunused_value,
3562 "left-hand operand of comma expression has no effect");
3563 }
3564 }
3565
3566 /* With -Wunused, we should also warn if the left-hand operand does have
3567 side-effects, but computes a value which is not used. For example, in
3568 `foo() + bar(), baz()' the result of the `+' operator is not used,
3569 so we should issue a warning. */
3570 else if (warn_unused_value)
3571 warn_if_unused_value (expr1, input_location);
3572
3573 if (expr2 == error_mark_node)
3574 return error_mark_node;
3575
3576 return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3577 }
3578
3579 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3580
3581 tree
3582 build_c_cast (tree type, tree expr)
3583 {
3584 tree value = expr;
3585
3586 if (type == error_mark_node || expr == error_mark_node)
3587 return error_mark_node;
3588
3589 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3590 only in <protocol> qualifications. But when constructing cast expressions,
3591 the protocols do matter and must be kept around. */
3592 if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3593 return build1 (NOP_EXPR, type, expr);
3594
3595 type = TYPE_MAIN_VARIANT (type);
3596
3597 if (TREE_CODE (type) == ARRAY_TYPE)
3598 {
3599 error ("cast specifies array type");
3600 return error_mark_node;
3601 }
3602
3603 if (TREE_CODE (type) == FUNCTION_TYPE)
3604 {
3605 error ("cast specifies function type");
3606 return error_mark_node;
3607 }
3608
3609 if (!VOID_TYPE_P (type))
3610 {
3611 value = require_complete_type (value);
3612 if (value == error_mark_node)
3613 return error_mark_node;
3614 }
3615
3616 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3617 {
3618 if (TREE_CODE (type) == RECORD_TYPE
3619 || TREE_CODE (type) == UNION_TYPE)
3620 pedwarn (OPT_pedantic,
3621 "ISO C forbids casting nonscalar to the same type");
3622 }
3623 else if (TREE_CODE (type) == UNION_TYPE)
3624 {
3625 tree field;
3626
3627 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3628 if (TREE_TYPE (field) != error_mark_node
3629 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3630 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3631 break;
3632
3633 if (field)
3634 {
3635 tree t;
3636
3637 pedwarn (OPT_pedantic, "ISO C forbids casts to union type");
3638 t = digest_init (type,
3639 build_constructor_single (type, field, value),
3640 true, 0);
3641 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3642 return t;
3643 }
3644 error ("cast to union type from type not present in union");
3645 return error_mark_node;
3646 }
3647 else
3648 {
3649 tree otype, ovalue;
3650
3651 if (type == void_type_node)
3652 return build1 (CONVERT_EXPR, type, value);
3653
3654 otype = TREE_TYPE (value);
3655
3656 /* Optionally warn about potentially worrisome casts. */
3657
3658 if (warn_cast_qual
3659 && TREE_CODE (type) == POINTER_TYPE
3660 && TREE_CODE (otype) == POINTER_TYPE)
3661 {
3662 tree in_type = type;
3663 tree in_otype = otype;
3664 int added = 0;
3665 int discarded = 0;
3666
3667 /* Check that the qualifiers on IN_TYPE are a superset of
3668 the qualifiers of IN_OTYPE. The outermost level of
3669 POINTER_TYPE nodes is uninteresting and we stop as soon
3670 as we hit a non-POINTER_TYPE node on either type. */
3671 do
3672 {
3673 in_otype = TREE_TYPE (in_otype);
3674 in_type = TREE_TYPE (in_type);
3675
3676 /* GNU C allows cv-qualified function types. 'const'
3677 means the function is very pure, 'volatile' means it
3678 can't return. We need to warn when such qualifiers
3679 are added, not when they're taken away. */
3680 if (TREE_CODE (in_otype) == FUNCTION_TYPE
3681 && TREE_CODE (in_type) == FUNCTION_TYPE)
3682 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3683 else
3684 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3685 }
3686 while (TREE_CODE (in_type) == POINTER_TYPE
3687 && TREE_CODE (in_otype) == POINTER_TYPE);
3688
3689 if (added)
3690 warning (OPT_Wcast_qual, "cast adds new qualifiers to function type");
3691
3692 if (discarded)
3693 /* There are qualifiers present in IN_OTYPE that are not
3694 present in IN_TYPE. */
3695 warning (OPT_Wcast_qual, "cast discards qualifiers from pointer target type");
3696 }
3697
3698 /* Warn about possible alignment problems. */
3699 if (STRICT_ALIGNMENT
3700 && TREE_CODE (type) == POINTER_TYPE
3701 && TREE_CODE (otype) == POINTER_TYPE
3702 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3703 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3704 /* Don't warn about opaque types, where the actual alignment
3705 restriction is unknown. */
3706 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3707 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3708 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3709 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3710 warning (OPT_Wcast_align,
3711 "cast increases required alignment of target type");
3712
3713 if (TREE_CODE (type) == INTEGER_TYPE
3714 && TREE_CODE (otype) == POINTER_TYPE
3715 && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3716 /* Unlike conversion of integers to pointers, where the
3717 warning is disabled for converting constants because
3718 of cases such as SIG_*, warn about converting constant
3719 pointers to integers. In some cases it may cause unwanted
3720 sign extension, and a warning is appropriate. */
3721 warning (OPT_Wpointer_to_int_cast,
3722 "cast from pointer to integer of different size");
3723
3724 if (TREE_CODE (value) == CALL_EXPR
3725 && TREE_CODE (type) != TREE_CODE (otype))
3726 warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3727 "to non-matching type %qT", otype, type);
3728
3729 if (TREE_CODE (type) == POINTER_TYPE
3730 && TREE_CODE (otype) == INTEGER_TYPE
3731 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3732 /* Don't warn about converting any constant. */
3733 && !TREE_CONSTANT (value))
3734 warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3735 "of different size");
3736
3737 if (warn_strict_aliasing <= 2)
3738 strict_aliasing_warning (otype, type, expr);
3739
3740 /* If pedantic, warn for conversions between function and object
3741 pointer types, except for converting a null pointer constant
3742 to function pointer type. */
3743 if (pedantic
3744 && TREE_CODE (type) == POINTER_TYPE
3745 && TREE_CODE (otype) == POINTER_TYPE
3746 && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3747 && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3748 pedwarn (OPT_pedantic, "ISO C forbids "
3749 "conversion of function pointer to object pointer type");
3750
3751 if (pedantic
3752 && TREE_CODE (type) == POINTER_TYPE
3753 && TREE_CODE (otype) == POINTER_TYPE
3754 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3755 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3756 && !null_pointer_constant_p (value))
3757 pedwarn (OPT_pedantic, "ISO C forbids "
3758 "conversion of object pointer to function pointer type");
3759
3760 ovalue = value;
3761 value = convert (type, value);
3762
3763 /* Ignore any integer overflow caused by the cast. */
3764 if (TREE_CODE (value) == INTEGER_CST)
3765 {
3766 if (CONSTANT_CLASS_P (ovalue) && TREE_OVERFLOW (ovalue))
3767 {
3768 if (!TREE_OVERFLOW (value))
3769 {
3770 /* Avoid clobbering a shared constant. */
3771 value = copy_node (value);
3772 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3773 }
3774 }
3775 else if (TREE_OVERFLOW (value))
3776 /* Reset VALUE's overflow flags, ensuring constant sharing. */
3777 value = build_int_cst_wide (TREE_TYPE (value),
3778 TREE_INT_CST_LOW (value),
3779 TREE_INT_CST_HIGH (value));
3780 }
3781 }
3782
3783 /* Don't let a cast be an lvalue. */
3784 if (value == expr)
3785 value = non_lvalue (value);
3786
3787 return value;
3788 }
3789
3790 /* Interpret a cast of expression EXPR to type TYPE. */
3791 tree
3792 c_cast_expr (struct c_type_name *type_name, tree expr)
3793 {
3794 tree type;
3795 int saved_wsp = warn_strict_prototypes;
3796
3797 /* This avoids warnings about unprototyped casts on
3798 integers. E.g. "#define SIG_DFL (void(*)())0". */
3799 if (TREE_CODE (expr) == INTEGER_CST)
3800 warn_strict_prototypes = 0;
3801 type = groktypename (type_name);
3802 warn_strict_prototypes = saved_wsp;
3803
3804 return build_c_cast (type, expr);
3805 }
3806 \f
3807 /* Build an assignment expression of lvalue LHS from value RHS.
3808 MODIFYCODE is the code for a binary operator that we use
3809 to combine the old value of LHS with RHS to get the new value.
3810 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3811
3812 tree
3813 build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3814 {
3815 tree result;
3816 tree newrhs;
3817 tree lhstype = TREE_TYPE (lhs);
3818 tree olhstype = lhstype;
3819
3820 /* Types that aren't fully specified cannot be used in assignments. */
3821 lhs = require_complete_type (lhs);
3822
3823 /* Avoid duplicate error messages from operands that had errors. */
3824 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3825 return error_mark_node;
3826
3827 if (!lvalue_or_else (lhs, lv_assign))
3828 return error_mark_node;
3829
3830 STRIP_TYPE_NOPS (rhs);
3831
3832 newrhs = rhs;
3833
3834 /* If a binary op has been requested, combine the old LHS value with the RHS
3835 producing the value we should actually store into the LHS. */
3836
3837 if (modifycode != NOP_EXPR)
3838 {
3839 lhs = stabilize_reference (lhs);
3840 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3841 }
3842
3843 /* Give an error for storing in something that is 'const'. */
3844
3845 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3846 || ((TREE_CODE (lhstype) == RECORD_TYPE
3847 || TREE_CODE (lhstype) == UNION_TYPE)
3848 && C_TYPE_FIELDS_READONLY (lhstype)))
3849 {
3850 readonly_error (lhs, lv_assign);
3851 return error_mark_node;
3852 }
3853
3854 /* If storing into a structure or union member,
3855 it has probably been given type `int'.
3856 Compute the type that would go with
3857 the actual amount of storage the member occupies. */
3858
3859 if (TREE_CODE (lhs) == COMPONENT_REF
3860 && (TREE_CODE (lhstype) == INTEGER_TYPE
3861 || TREE_CODE (lhstype) == BOOLEAN_TYPE
3862 || TREE_CODE (lhstype) == REAL_TYPE
3863 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3864 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3865
3866 /* If storing in a field that is in actuality a short or narrower than one,
3867 we must store in the field in its actual type. */
3868
3869 if (lhstype != TREE_TYPE (lhs))
3870 {
3871 lhs = copy_node (lhs);
3872 TREE_TYPE (lhs) = lhstype;
3873 }
3874
3875 /* Convert new value to destination type. */
3876
3877 newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3878 NULL_TREE, NULL_TREE, 0);
3879 if (TREE_CODE (newrhs) == ERROR_MARK)
3880 return error_mark_node;
3881
3882 /* Emit ObjC write barrier, if necessary. */
3883 if (c_dialect_objc () && flag_objc_gc)
3884 {
3885 result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3886 if (result)
3887 return result;
3888 }
3889
3890 /* Scan operands. */
3891
3892 result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3893 TREE_SIDE_EFFECTS (result) = 1;
3894
3895 /* If we got the LHS in a different type for storing in,
3896 convert the result back to the nominal type of LHS
3897 so that the value we return always has the same type
3898 as the LHS argument. */
3899
3900 if (olhstype == TREE_TYPE (result))
3901 return result;
3902 return convert_for_assignment (olhstype, result, ic_assign,
3903 NULL_TREE, NULL_TREE, 0);
3904 }
3905 \f
3906 /* Convert value RHS to type TYPE as preparation for an assignment
3907 to an lvalue of type TYPE.
3908 The real work of conversion is done by `convert'.
3909 The purpose of this function is to generate error messages
3910 for assignments that are not allowed in C.
3911 ERRTYPE says whether it is argument passing, assignment,
3912 initialization or return.
3913
3914 FUNCTION is a tree for the function being called.
3915 PARMNUM is the number of the argument, for printing in error messages. */
3916
3917 static tree
3918 convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3919 tree fundecl, tree function, int parmnum)
3920 {
3921 enum tree_code codel = TREE_CODE (type);
3922 tree rhstype;
3923 enum tree_code coder;
3924 tree rname = NULL_TREE;
3925 bool objc_ok = false;
3926
3927 if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3928 {
3929 tree selector;
3930 /* Change pointer to function to the function itself for
3931 diagnostics. */
3932 if (TREE_CODE (function) == ADDR_EXPR
3933 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3934 function = TREE_OPERAND (function, 0);
3935
3936 /* Handle an ObjC selector specially for diagnostics. */
3937 selector = objc_message_selector ();
3938 rname = function;
3939 if (selector && parmnum > 2)
3940 {
3941 rname = selector;
3942 parmnum -= 2;
3943 }
3944 }
3945
3946 /* This macro is used to emit diagnostics to ensure that all format
3947 strings are complete sentences, visible to gettext and checked at
3948 compile time. */
3949 #define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE) \
3950 do { \
3951 switch (errtype) \
3952 { \
3953 case ic_argpass: \
3954 pedwarn (0, AR, parmnum, rname); \
3955 break; \
3956 case ic_argpass_nonproto: \
3957 warning (0, AR, parmnum, rname); \
3958 break; \
3959 case ic_assign: \
3960 pedwarn (0, AS); \
3961 break; \
3962 case ic_init: \
3963 pedwarn (0, IN); \
3964 break; \
3965 case ic_return: \
3966 pedwarn (0, RE); \
3967 break; \
3968 default: \
3969 gcc_unreachable (); \
3970 } \
3971 } while (0)
3972
3973 STRIP_TYPE_NOPS (rhs);
3974
3975 if (optimize && TREE_CODE (rhs) == VAR_DECL
3976 && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3977 rhs = decl_constant_value_for_broken_optimization (rhs);
3978
3979 rhstype = TREE_TYPE (rhs);
3980 coder = TREE_CODE (rhstype);
3981
3982 if (coder == ERROR_MARK)
3983 return error_mark_node;
3984
3985 if (c_dialect_objc ())
3986 {
3987 int parmno;
3988
3989 switch (errtype)
3990 {
3991 case ic_return:
3992 parmno = 0;
3993 break;
3994
3995 case ic_assign:
3996 parmno = -1;
3997 break;
3998
3999 case ic_init:
4000 parmno = -2;
4001 break;
4002
4003 default:
4004 parmno = parmnum;
4005 break;
4006 }
4007
4008 objc_ok = objc_compare_types (type, rhstype, parmno, rname);
4009 }
4010
4011 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
4012 return rhs;
4013
4014 if (coder == VOID_TYPE)
4015 {
4016 /* Except for passing an argument to an unprototyped function,
4017 this is a constraint violation. When passing an argument to
4018 an unprototyped function, it is compile-time undefined;
4019 making it a constraint in that case was rejected in
4020 DR#252. */
4021 error ("void value not ignored as it ought to be");
4022 return error_mark_node;
4023 }
4024 rhs = require_complete_type (rhs);
4025 if (rhs == error_mark_node)
4026 return error_mark_node;
4027 /* A type converts to a reference to it.
4028 This code doesn't fully support references, it's just for the
4029 special case of va_start and va_copy. */
4030 if (codel == REFERENCE_TYPE
4031 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
4032 {
4033 if (!lvalue_p (rhs))
4034 {
4035 error ("cannot pass rvalue to reference parameter");
4036 return error_mark_node;
4037 }
4038 if (!c_mark_addressable (rhs))
4039 return error_mark_node;
4040 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
4041
4042 /* We already know that these two types are compatible, but they
4043 may not be exactly identical. In fact, `TREE_TYPE (type)' is
4044 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
4045 likely to be va_list, a typedef to __builtin_va_list, which
4046 is different enough that it will cause problems later. */
4047 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
4048 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
4049
4050 rhs = build1 (NOP_EXPR, type, rhs);
4051 return rhs;
4052 }
4053 /* Some types can interconvert without explicit casts. */
4054 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
4055 && vector_types_convertible_p (type, TREE_TYPE (rhs), true))
4056 return convert (type, rhs);
4057 /* Arithmetic types all interconvert, and enum is treated like int. */
4058 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
4059 || codel == FIXED_POINT_TYPE
4060 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
4061 || codel == BOOLEAN_TYPE)
4062 && (coder == INTEGER_TYPE || coder == REAL_TYPE
4063 || coder == FIXED_POINT_TYPE
4064 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
4065 || coder == BOOLEAN_TYPE))
4066 return convert_and_check (type, rhs);
4067
4068 /* Aggregates in different TUs might need conversion. */
4069 if ((codel == RECORD_TYPE || codel == UNION_TYPE)
4070 && codel == coder
4071 && comptypes (type, rhstype))
4072 return convert_and_check (type, rhs);
4073
4074 /* Conversion to a transparent union from its member types.
4075 This applies only to function arguments. */
4076 if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
4077 && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
4078 {
4079 tree memb, marginal_memb = NULL_TREE;
4080
4081 for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
4082 {
4083 tree memb_type = TREE_TYPE (memb);
4084
4085 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
4086 TYPE_MAIN_VARIANT (rhstype)))
4087 break;
4088
4089 if (TREE_CODE (memb_type) != POINTER_TYPE)
4090 continue;
4091
4092 if (coder == POINTER_TYPE)
4093 {
4094 tree ttl = TREE_TYPE (memb_type);
4095 tree ttr = TREE_TYPE (rhstype);
4096
4097 /* Any non-function converts to a [const][volatile] void *
4098 and vice versa; otherwise, targets must be the same.
4099 Meanwhile, the lhs target must have all the qualifiers of
4100 the rhs. */
4101 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4102 || comp_target_types (memb_type, rhstype))
4103 {
4104 /* If this type won't generate any warnings, use it. */
4105 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
4106 || ((TREE_CODE (ttr) == FUNCTION_TYPE
4107 && TREE_CODE (ttl) == FUNCTION_TYPE)
4108 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4109 == TYPE_QUALS (ttr))
4110 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4111 == TYPE_QUALS (ttl))))
4112 break;
4113
4114 /* Keep looking for a better type, but remember this one. */
4115 if (!marginal_memb)
4116 marginal_memb = memb;
4117 }
4118 }
4119
4120 /* Can convert integer zero to any pointer type. */
4121 if (null_pointer_constant_p (rhs))
4122 {
4123 rhs = null_pointer_node;
4124 break;
4125 }
4126 }
4127
4128 if (memb || marginal_memb)
4129 {
4130 if (!memb)
4131 {
4132 /* We have only a marginally acceptable member type;
4133 it needs a warning. */
4134 tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
4135 tree ttr = TREE_TYPE (rhstype);
4136
4137 /* Const and volatile mean something different for function
4138 types, so the usual warnings are not appropriate. */
4139 if (TREE_CODE (ttr) == FUNCTION_TYPE
4140 && TREE_CODE (ttl) == FUNCTION_TYPE)
4141 {
4142 /* Because const and volatile on functions are
4143 restrictions that say the function will not do
4144 certain things, it is okay to use a const or volatile
4145 function where an ordinary one is wanted, but not
4146 vice-versa. */
4147 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4148 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
4149 "makes qualified function "
4150 "pointer from unqualified"),
4151 G_("assignment makes qualified "
4152 "function pointer from "
4153 "unqualified"),
4154 G_("initialization makes qualified "
4155 "function pointer from "
4156 "unqualified"),
4157 G_("return makes qualified function "
4158 "pointer from unqualified"));
4159 }
4160 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4161 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4162 "qualifiers from pointer target type"),
4163 G_("assignment discards qualifiers "
4164 "from pointer target type"),
4165 G_("initialization discards qualifiers "
4166 "from pointer target type"),
4167 G_("return discards qualifiers from "
4168 "pointer target type"));
4169
4170 memb = marginal_memb;
4171 }
4172
4173 if (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl))
4174 pedwarn (OPT_pedantic,
4175 "ISO C prohibits argument conversion to union type");
4176
4177 rhs = fold_convert (TREE_TYPE (memb), rhs);
4178 return build_constructor_single (type, memb, rhs);
4179 }
4180 }
4181
4182 /* Conversions among pointers */
4183 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4184 && (coder == codel))
4185 {
4186 tree ttl = TREE_TYPE (type);
4187 tree ttr = TREE_TYPE (rhstype);
4188 tree mvl = ttl;
4189 tree mvr = ttr;
4190 bool is_opaque_pointer;
4191 int target_cmp = 0; /* Cache comp_target_types () result. */
4192
4193 if (TREE_CODE (mvl) != ARRAY_TYPE)
4194 mvl = TYPE_MAIN_VARIANT (mvl);
4195 if (TREE_CODE (mvr) != ARRAY_TYPE)
4196 mvr = TYPE_MAIN_VARIANT (mvr);
4197 /* Opaque pointers are treated like void pointers. */
4198 is_opaque_pointer = vector_targets_convertible_p (ttl, ttr);
4199
4200 /* C++ does not allow the implicit conversion void* -> T*. However,
4201 for the purpose of reducing the number of false positives, we
4202 tolerate the special case of
4203
4204 int *p = NULL;
4205
4206 where NULL is typically defined in C to be '(void *) 0'. */
4207 if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4208 warning (OPT_Wc___compat, "request for implicit conversion from "
4209 "%qT to %qT not permitted in C++", rhstype, type);
4210
4211 /* Check if the right-hand side has a format attribute but the
4212 left-hand side doesn't. */
4213 if (warn_missing_format_attribute
4214 && check_missing_format_attribute (type, rhstype))
4215 {
4216 switch (errtype)
4217 {
4218 case ic_argpass:
4219 case ic_argpass_nonproto:
4220 warning (OPT_Wmissing_format_attribute,
4221 "argument %d of %qE might be "
4222 "a candidate for a format attribute",
4223 parmnum, rname);
4224 break;
4225 case ic_assign:
4226 warning (OPT_Wmissing_format_attribute,
4227 "assignment left-hand side might be "
4228 "a candidate for a format attribute");
4229 break;
4230 case ic_init:
4231 warning (OPT_Wmissing_format_attribute,
4232 "initialization left-hand side might be "
4233 "a candidate for a format attribute");
4234 break;
4235 case ic_return:
4236 warning (OPT_Wmissing_format_attribute,
4237 "return type might be "
4238 "a candidate for a format attribute");
4239 break;
4240 default:
4241 gcc_unreachable ();
4242 }
4243 }
4244
4245 /* Any non-function converts to a [const][volatile] void *
4246 and vice versa; otherwise, targets must be the same.
4247 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4248 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4249 || (target_cmp = comp_target_types (type, rhstype))
4250 || is_opaque_pointer
4251 || (c_common_unsigned_type (mvl)
4252 == c_common_unsigned_type (mvr)))
4253 {
4254 if (pedantic
4255 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4256 ||
4257 (VOID_TYPE_P (ttr)
4258 && !null_pointer_constant_p (rhs)
4259 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4260 WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4261 "%qE between function pointer "
4262 "and %<void *%>"),
4263 G_("ISO C forbids assignment between "
4264 "function pointer and %<void *%>"),
4265 G_("ISO C forbids initialization between "
4266 "function pointer and %<void *%>"),
4267 G_("ISO C forbids return between function "
4268 "pointer and %<void *%>"));
4269 /* Const and volatile mean something different for function types,
4270 so the usual warnings are not appropriate. */
4271 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4272 && TREE_CODE (ttl) != FUNCTION_TYPE)
4273 {
4274 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4275 {
4276 /* Types differing only by the presence of the 'volatile'
4277 qualifier are acceptable if the 'volatile' has been added
4278 in by the Objective-C EH machinery. */
4279 if (!objc_type_quals_match (ttl, ttr))
4280 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4281 "qualifiers from pointer target type"),
4282 G_("assignment discards qualifiers "
4283 "from pointer target type"),
4284 G_("initialization discards qualifiers "
4285 "from pointer target type"),
4286 G_("return discards qualifiers from "
4287 "pointer target type"));
4288 }
4289 /* If this is not a case of ignoring a mismatch in signedness,
4290 no warning. */
4291 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4292 || target_cmp)
4293 ;
4294 /* If there is a mismatch, do warn. */
4295 else if (warn_pointer_sign)
4296 WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4297 "%d of %qE differ in signedness"),
4298 G_("pointer targets in assignment "
4299 "differ in signedness"),
4300 G_("pointer targets in initialization "
4301 "differ in signedness"),
4302 G_("pointer targets in return differ "
4303 "in signedness"));
4304 }
4305 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4306 && TREE_CODE (ttr) == FUNCTION_TYPE)
4307 {
4308 /* Because const and volatile on functions are restrictions
4309 that say the function will not do certain things,
4310 it is okay to use a const or volatile function
4311 where an ordinary one is wanted, but not vice-versa. */
4312 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4313 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4314 "qualified function pointer "
4315 "from unqualified"),
4316 G_("assignment makes qualified function "
4317 "pointer from unqualified"),
4318 G_("initialization makes qualified "
4319 "function pointer from unqualified"),
4320 G_("return makes qualified function "
4321 "pointer from unqualified"));
4322 }
4323 }
4324 else
4325 /* Avoid warning about the volatile ObjC EH puts on decls. */
4326 if (!objc_ok)
4327 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4328 "incompatible pointer type"),
4329 G_("assignment from incompatible pointer type"),
4330 G_("initialization from incompatible "
4331 "pointer type"),
4332 G_("return from incompatible pointer type"));
4333
4334 return convert (type, rhs);
4335 }
4336 else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4337 {
4338 /* ??? This should not be an error when inlining calls to
4339 unprototyped functions. */
4340 error ("invalid use of non-lvalue array");
4341 return error_mark_node;
4342 }
4343 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4344 {
4345 /* An explicit constant 0 can convert to a pointer,
4346 or one that results from arithmetic, even including
4347 a cast to integer type. */
4348 if (!null_pointer_constant_p (rhs))
4349 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4350 "pointer from integer without a cast"),
4351 G_("assignment makes pointer from integer "
4352 "without a cast"),
4353 G_("initialization makes pointer from "
4354 "integer without a cast"),
4355 G_("return makes pointer from integer "
4356 "without a cast"));
4357
4358 return convert (type, rhs);
4359 }
4360 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4361 {
4362 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4363 "from pointer without a cast"),
4364 G_("assignment makes integer from pointer "
4365 "without a cast"),
4366 G_("initialization makes integer from pointer "
4367 "without a cast"),
4368 G_("return makes integer from pointer "
4369 "without a cast"));
4370 return convert (type, rhs);
4371 }
4372 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4373 return convert (type, rhs);
4374
4375 switch (errtype)
4376 {
4377 case ic_argpass:
4378 case ic_argpass_nonproto:
4379 /* ??? This should not be an error when inlining calls to
4380 unprototyped functions. */
4381 error ("incompatible type for argument %d of %qE", parmnum, rname);
4382 break;
4383 case ic_assign:
4384 error ("incompatible types in assignment");
4385 break;
4386 case ic_init:
4387 error ("incompatible types in initialization");
4388 break;
4389 case ic_return:
4390 error ("incompatible types in return");
4391 break;
4392 default:
4393 gcc_unreachable ();
4394 }
4395
4396 return error_mark_node;
4397 }
4398 \f
4399 /* If VALUE is a compound expr all of whose expressions are constant, then
4400 return its value. Otherwise, return error_mark_node.
4401
4402 This is for handling COMPOUND_EXPRs as initializer elements
4403 which is allowed with a warning when -pedantic is specified. */
4404
4405 static tree
4406 valid_compound_expr_initializer (tree value, tree endtype)
4407 {
4408 if (TREE_CODE (value) == COMPOUND_EXPR)
4409 {
4410 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4411 == error_mark_node)
4412 return error_mark_node;
4413 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4414 endtype);
4415 }
4416 else if (!initializer_constant_valid_p (value, endtype))
4417 return error_mark_node;
4418 else
4419 return value;
4420 }
4421 \f
4422 /* Perform appropriate conversions on the initial value of a variable,
4423 store it in the declaration DECL,
4424 and print any error messages that are appropriate.
4425 If the init is invalid, store an ERROR_MARK. */
4426
4427 void
4428 store_init_value (tree decl, tree init)
4429 {
4430 tree value, type;
4431
4432 /* If variable's type was invalidly declared, just ignore it. */
4433
4434 type = TREE_TYPE (decl);
4435 if (TREE_CODE (type) == ERROR_MARK)
4436 return;
4437
4438 /* Digest the specified initializer into an expression. */
4439
4440 value = digest_init (type, init, true, TREE_STATIC (decl));
4441
4442 /* Store the expression if valid; else report error. */
4443
4444 if (!in_system_header
4445 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4446 warning (OPT_Wtraditional, "traditional C rejects automatic "
4447 "aggregate initialization");
4448
4449 DECL_INITIAL (decl) = value;
4450
4451 /* ANSI wants warnings about out-of-range constant initializers. */
4452 STRIP_TYPE_NOPS (value);
4453 if (TREE_STATIC (decl))
4454 constant_expression_warning (value);
4455
4456 /* Check if we need to set array size from compound literal size. */
4457 if (TREE_CODE (type) == ARRAY_TYPE
4458 && TYPE_DOMAIN (type) == 0
4459 && value != error_mark_node)
4460 {
4461 tree inside_init = init;
4462
4463 STRIP_TYPE_NOPS (inside_init);
4464 inside_init = fold (inside_init);
4465
4466 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4467 {
4468 tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4469
4470 if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4471 {
4472 /* For int foo[] = (int [3]){1}; we need to set array size
4473 now since later on array initializer will be just the
4474 brace enclosed list of the compound literal. */
4475 type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4476 TREE_TYPE (decl) = type;
4477 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4478 layout_type (type);
4479 layout_decl (cldecl, 0);
4480 }
4481 }
4482 }
4483 }
4484 \f
4485 /* Methods for storing and printing names for error messages. */
4486
4487 /* Implement a spelling stack that allows components of a name to be pushed
4488 and popped. Each element on the stack is this structure. */
4489
4490 struct spelling
4491 {
4492 int kind;
4493 union
4494 {
4495 unsigned HOST_WIDE_INT i;
4496 const char *s;
4497 } u;
4498 };
4499
4500 #define SPELLING_STRING 1
4501 #define SPELLING_MEMBER 2
4502 #define SPELLING_BOUNDS 3
4503
4504 static struct spelling *spelling; /* Next stack element (unused). */
4505 static struct spelling *spelling_base; /* Spelling stack base. */
4506 static int spelling_size; /* Size of the spelling stack. */
4507
4508 /* Macros to save and restore the spelling stack around push_... functions.
4509 Alternative to SAVE_SPELLING_STACK. */
4510
4511 #define SPELLING_DEPTH() (spelling - spelling_base)
4512 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4513
4514 /* Push an element on the spelling stack with type KIND and assign VALUE
4515 to MEMBER. */
4516
4517 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4518 { \
4519 int depth = SPELLING_DEPTH (); \
4520 \
4521 if (depth >= spelling_size) \
4522 { \
4523 spelling_size += 10; \
4524 spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
4525 spelling_size); \
4526 RESTORE_SPELLING_DEPTH (depth); \
4527 } \
4528 \
4529 spelling->kind = (KIND); \
4530 spelling->MEMBER = (VALUE); \
4531 spelling++; \
4532 }
4533
4534 /* Push STRING on the stack. Printed literally. */
4535
4536 static void
4537 push_string (const char *string)
4538 {
4539 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4540 }
4541
4542 /* Push a member name on the stack. Printed as '.' STRING. */
4543
4544 static void
4545 push_member_name (tree decl)
4546 {
4547 const char *const string
4548 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4549 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4550 }
4551
4552 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4553
4554 static void
4555 push_array_bounds (unsigned HOST_WIDE_INT bounds)
4556 {
4557 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4558 }
4559
4560 /* Compute the maximum size in bytes of the printed spelling. */
4561
4562 static int
4563 spelling_length (void)
4564 {
4565 int size = 0;
4566 struct spelling *p;
4567
4568 for (p = spelling_base; p < spelling; p++)
4569 {
4570 if (p->kind == SPELLING_BOUNDS)
4571 size += 25;
4572 else
4573 size += strlen (p->u.s) + 1;
4574 }
4575
4576 return size;
4577 }
4578
4579 /* Print the spelling to BUFFER and return it. */
4580
4581 static char *
4582 print_spelling (char *buffer)
4583 {
4584 char *d = buffer;
4585 struct spelling *p;
4586
4587 for (p = spelling_base; p < spelling; p++)
4588 if (p->kind == SPELLING_BOUNDS)
4589 {
4590 sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4591 d += strlen (d);
4592 }
4593 else
4594 {
4595 const char *s;
4596 if (p->kind == SPELLING_MEMBER)
4597 *d++ = '.';
4598 for (s = p->u.s; (*d = *s++); d++)
4599 ;
4600 }
4601 *d++ = '\0';
4602 return buffer;
4603 }
4604
4605 /* Issue an error message for a bad initializer component.
4606 MSGID identifies the message.
4607 The component name is taken from the spelling stack. */
4608
4609 void
4610 error_init (const char *msgid)
4611 {
4612 char *ofwhat;
4613
4614 error ("%s", _(msgid));
4615 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4616 if (*ofwhat)
4617 error ("(near initialization for %qs)", ofwhat);
4618 }
4619
4620 /* Issue a pedantic warning for a bad initializer component. OPT is
4621 the option OPT_* (from options.h) controlling this warning or 0 if
4622 it is unconditionally given. MSGID identifies the message. The
4623 component name is taken from the spelling stack. */
4624
4625 void
4626 pedwarn_init (int opt, const char *msgid)
4627 {
4628 char *ofwhat;
4629
4630 pedwarn (opt, "%s", _(msgid));
4631 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4632 if (*ofwhat)
4633 pedwarn (opt, "(near initialization for %qs)", ofwhat);
4634 }
4635
4636 /* Issue a warning for a bad initializer component.
4637
4638 OPT is the OPT_W* value corresponding to the warning option that
4639 controls this warning. MSGID identifies the message. The
4640 component name is taken from the spelling stack. */
4641
4642 static void
4643 warning_init (int opt, const char *msgid)
4644 {
4645 char *ofwhat;
4646
4647 warning (opt, "%s", _(msgid));
4648 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4649 if (*ofwhat)
4650 warning (opt, "(near initialization for %qs)", ofwhat);
4651 }
4652 \f
4653 /* If TYPE is an array type and EXPR is a parenthesized string
4654 constant, warn if pedantic that EXPR is being used to initialize an
4655 object of type TYPE. */
4656
4657 void
4658 maybe_warn_string_init (tree type, struct c_expr expr)
4659 {
4660 if (pedantic
4661 && TREE_CODE (type) == ARRAY_TYPE
4662 && TREE_CODE (expr.value) == STRING_CST
4663 && expr.original_code != STRING_CST)
4664 pedwarn_init (OPT_pedantic,
4665 "array initialized from parenthesized string constant");
4666 }
4667
4668 /* Digest the parser output INIT as an initializer for type TYPE.
4669 Return a C expression of type TYPE to represent the initial value.
4670
4671 If INIT is a string constant, STRICT_STRING is true if it is
4672 unparenthesized or we should not warn here for it being parenthesized.
4673 For other types of INIT, STRICT_STRING is not used.
4674
4675 REQUIRE_CONSTANT requests an error if non-constant initializers or
4676 elements are seen. */
4677
4678 static tree
4679 digest_init (tree type, tree init, bool strict_string, int require_constant)
4680 {
4681 enum tree_code code = TREE_CODE (type);
4682 tree inside_init = init;
4683
4684 if (type == error_mark_node
4685 || !init
4686 || init == error_mark_node
4687 || TREE_TYPE (init) == error_mark_node)
4688 return error_mark_node;
4689
4690 STRIP_TYPE_NOPS (inside_init);
4691
4692 inside_init = fold (inside_init);
4693
4694 /* Initialization of an array of chars from a string constant
4695 optionally enclosed in braces. */
4696
4697 if (code == ARRAY_TYPE && inside_init
4698 && TREE_CODE (inside_init) == STRING_CST)
4699 {
4700 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4701 /* Note that an array could be both an array of character type
4702 and an array of wchar_t if wchar_t is signed char or unsigned
4703 char. */
4704 bool char_array = (typ1 == char_type_node
4705 || typ1 == signed_char_type_node
4706 || typ1 == unsigned_char_type_node);
4707 bool wchar_array = !!comptypes (typ1, wchar_type_node);
4708 bool char16_array = !!comptypes (typ1, char16_type_node);
4709 bool char32_array = !!comptypes (typ1, char32_type_node);
4710
4711 if (char_array || wchar_array || char16_array || char32_array)
4712 {
4713 struct c_expr expr;
4714 tree typ2 = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)));
4715 expr.value = inside_init;
4716 expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4717 maybe_warn_string_init (type, expr);
4718
4719 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4720 TYPE_MAIN_VARIANT (type)))
4721 return inside_init;
4722
4723 if (char_array)
4724 {
4725 if (typ2 != char_type_node)
4726 {
4727 error_init ("char-array initialized from wide string");
4728 return error_mark_node;
4729 }
4730 }
4731 else
4732 {
4733 if (typ2 == char_type_node)
4734 {
4735 error_init ("wide character array initialized from non-wide "
4736 "string");
4737 return error_mark_node;
4738 }
4739 else if (!comptypes(typ1, typ2))
4740 {
4741 error_init ("wide character array initialized from "
4742 "incompatible wide string");
4743 return error_mark_node;
4744 }
4745 }
4746
4747 TREE_TYPE (inside_init) = type;
4748 if (TYPE_DOMAIN (type) != 0
4749 && TYPE_SIZE (type) != 0
4750 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4751 /* Subtract the size of a single (possibly wide) character
4752 because it's ok to ignore the terminating null char
4753 that is counted in the length of the constant. */
4754 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4755 TREE_STRING_LENGTH (inside_init)
4756 - (TYPE_PRECISION (typ1)
4757 / BITS_PER_UNIT)))
4758 pedwarn_init (0, "initializer-string for array of chars is too long");
4759
4760 return inside_init;
4761 }
4762 else if (INTEGRAL_TYPE_P (typ1))
4763 {
4764 error_init ("array of inappropriate type initialized "
4765 "from string constant");
4766 return error_mark_node;
4767 }
4768 }
4769
4770 /* Build a VECTOR_CST from a *constant* vector constructor. If the
4771 vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4772 below and handle as a constructor. */
4773 if (code == VECTOR_TYPE
4774 && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4775 && vector_types_convertible_p (TREE_TYPE (inside_init), type, true)
4776 && TREE_CONSTANT (inside_init))
4777 {
4778 if (TREE_CODE (inside_init) == VECTOR_CST
4779 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4780 TYPE_MAIN_VARIANT (type)))
4781 return inside_init;
4782
4783 if (TREE_CODE (inside_init) == CONSTRUCTOR)
4784 {
4785 unsigned HOST_WIDE_INT ix;
4786 tree value;
4787 bool constant_p = true;
4788
4789 /* Iterate through elements and check if all constructor
4790 elements are *_CSTs. */
4791 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4792 if (!CONSTANT_CLASS_P (value))
4793 {
4794 constant_p = false;
4795 break;
4796 }
4797
4798 if (constant_p)
4799 return build_vector_from_ctor (type,
4800 CONSTRUCTOR_ELTS (inside_init));
4801 }
4802 }
4803
4804 /* Any type can be initialized
4805 from an expression of the same type, optionally with braces. */
4806
4807 if (inside_init && TREE_TYPE (inside_init) != 0
4808 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4809 TYPE_MAIN_VARIANT (type))
4810 || (code == ARRAY_TYPE
4811 && comptypes (TREE_TYPE (inside_init), type))
4812 || (code == VECTOR_TYPE
4813 && comptypes (TREE_TYPE (inside_init), type))
4814 || (code == POINTER_TYPE
4815 && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4816 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4817 TREE_TYPE (type)))))
4818 {
4819 if (code == POINTER_TYPE)
4820 {
4821 if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4822 {
4823 if (TREE_CODE (inside_init) == STRING_CST
4824 || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4825 inside_init = array_to_pointer_conversion (inside_init);
4826 else
4827 {
4828 error_init ("invalid use of non-lvalue array");
4829 return error_mark_node;
4830 }
4831 }
4832 }
4833
4834 if (code == VECTOR_TYPE)
4835 /* Although the types are compatible, we may require a
4836 conversion. */
4837 inside_init = convert (type, inside_init);
4838
4839 if (require_constant
4840 && (code == VECTOR_TYPE || !flag_isoc99)
4841 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4842 {
4843 /* As an extension, allow initializing objects with static storage
4844 duration with compound literals (which are then treated just as
4845 the brace enclosed list they contain). Also allow this for
4846 vectors, as we can only assign them with compound literals. */
4847 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4848 inside_init = DECL_INITIAL (decl);
4849 }
4850
4851 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4852 && TREE_CODE (inside_init) != CONSTRUCTOR)
4853 {
4854 error_init ("array initialized from non-constant array expression");
4855 return error_mark_node;
4856 }
4857
4858 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4859 inside_init = decl_constant_value_for_broken_optimization (inside_init);
4860
4861 /* Compound expressions can only occur here if -pedantic or
4862 -pedantic-errors is specified. In the later case, we always want
4863 an error. In the former case, we simply want a warning. */
4864 if (require_constant && pedantic
4865 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4866 {
4867 inside_init
4868 = valid_compound_expr_initializer (inside_init,
4869 TREE_TYPE (inside_init));
4870 if (inside_init == error_mark_node)
4871 error_init ("initializer element is not constant");
4872 else
4873 pedwarn_init (OPT_pedantic, "initializer element is not constant");
4874 if (flag_pedantic_errors)
4875 inside_init = error_mark_node;
4876 }
4877 else if (require_constant
4878 && !initializer_constant_valid_p (inside_init,
4879 TREE_TYPE (inside_init)))
4880 {
4881 error_init ("initializer element is not constant");
4882 inside_init = error_mark_node;
4883 }
4884
4885 /* Added to enable additional -Wmissing-format-attribute warnings. */
4886 if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4887 inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4888 NULL_TREE, 0);
4889 return inside_init;
4890 }
4891
4892 /* Handle scalar types, including conversions. */
4893
4894 if (code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE
4895 || code == POINTER_TYPE || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
4896 || code == COMPLEX_TYPE || code == VECTOR_TYPE)
4897 {
4898 if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4899 && (TREE_CODE (init) == STRING_CST
4900 || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4901 init = array_to_pointer_conversion (init);
4902 inside_init
4903 = convert_for_assignment (type, init, ic_init,
4904 NULL_TREE, NULL_TREE, 0);
4905
4906 /* Check to see if we have already given an error message. */
4907 if (inside_init == error_mark_node)
4908 ;
4909 else if (require_constant && !TREE_CONSTANT (inside_init))
4910 {
4911 error_init ("initializer element is not constant");
4912 inside_init = error_mark_node;
4913 }
4914 else if (require_constant
4915 && !initializer_constant_valid_p (inside_init,
4916 TREE_TYPE (inside_init)))
4917 {
4918 error_init ("initializer element is not computable at load time");
4919 inside_init = error_mark_node;
4920 }
4921
4922 return inside_init;
4923 }
4924
4925 /* Come here only for records and arrays. */
4926
4927 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4928 {
4929 error_init ("variable-sized object may not be initialized");
4930 return error_mark_node;
4931 }
4932
4933 error_init ("invalid initializer");
4934 return error_mark_node;
4935 }
4936 \f
4937 /* Handle initializers that use braces. */
4938
4939 /* Type of object we are accumulating a constructor for.
4940 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4941 static tree constructor_type;
4942
4943 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4944 left to fill. */
4945 static tree constructor_fields;
4946
4947 /* For an ARRAY_TYPE, this is the specified index
4948 at which to store the next element we get. */
4949 static tree constructor_index;
4950
4951 /* For an ARRAY_TYPE, this is the maximum index. */
4952 static tree constructor_max_index;
4953
4954 /* For a RECORD_TYPE, this is the first field not yet written out. */
4955 static tree constructor_unfilled_fields;
4956
4957 /* For an ARRAY_TYPE, this is the index of the first element
4958 not yet written out. */
4959 static tree constructor_unfilled_index;
4960
4961 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4962 This is so we can generate gaps between fields, when appropriate. */
4963 static tree constructor_bit_index;
4964
4965 /* If we are saving up the elements rather than allocating them,
4966 this is the list of elements so far (in reverse order,
4967 most recent first). */
4968 static VEC(constructor_elt,gc) *constructor_elements;
4969
4970 /* 1 if constructor should be incrementally stored into a constructor chain,
4971 0 if all the elements should be kept in AVL tree. */
4972 static int constructor_incremental;
4973
4974 /* 1 if so far this constructor's elements are all compile-time constants. */
4975 static int constructor_constant;
4976
4977 /* 1 if so far this constructor's elements are all valid address constants. */
4978 static int constructor_simple;
4979
4980 /* 1 if this constructor is erroneous so far. */
4981 static int constructor_erroneous;
4982
4983 /* Structure for managing pending initializer elements, organized as an
4984 AVL tree. */
4985
4986 struct init_node
4987 {
4988 struct init_node *left, *right;
4989 struct init_node *parent;
4990 int balance;
4991 tree purpose;
4992 tree value;
4993 };
4994
4995 /* Tree of pending elements at this constructor level.
4996 These are elements encountered out of order
4997 which belong at places we haven't reached yet in actually
4998 writing the output.
4999 Will never hold tree nodes across GC runs. */
5000 static struct init_node *constructor_pending_elts;
5001
5002 /* The SPELLING_DEPTH of this constructor. */
5003 static int constructor_depth;
5004
5005 /* DECL node for which an initializer is being read.
5006 0 means we are reading a constructor expression
5007 such as (struct foo) {...}. */
5008 static tree constructor_decl;
5009
5010 /* Nonzero if this is an initializer for a top-level decl. */
5011 static int constructor_top_level;
5012
5013 /* Nonzero if there were any member designators in this initializer. */
5014 static int constructor_designated;
5015
5016 /* Nesting depth of designator list. */
5017 static int designator_depth;
5018
5019 /* Nonzero if there were diagnosed errors in this designator list. */
5020 static int designator_erroneous;
5021
5022 \f
5023 /* This stack has a level for each implicit or explicit level of
5024 structuring in the initializer, including the outermost one. It
5025 saves the values of most of the variables above. */
5026
5027 struct constructor_range_stack;
5028
5029 struct constructor_stack
5030 {
5031 struct constructor_stack *next;
5032 tree type;
5033 tree fields;
5034 tree index;
5035 tree max_index;
5036 tree unfilled_index;
5037 tree unfilled_fields;
5038 tree bit_index;
5039 VEC(constructor_elt,gc) *elements;
5040 struct init_node *pending_elts;
5041 int offset;
5042 int depth;
5043 /* If value nonzero, this value should replace the entire
5044 constructor at this level. */
5045 struct c_expr replacement_value;
5046 struct constructor_range_stack *range_stack;
5047 char constant;
5048 char simple;
5049 char implicit;
5050 char erroneous;
5051 char outer;
5052 char incremental;
5053 char designated;
5054 };
5055
5056 static struct constructor_stack *constructor_stack;
5057
5058 /* This stack represents designators from some range designator up to
5059 the last designator in the list. */
5060
5061 struct constructor_range_stack
5062 {
5063 struct constructor_range_stack *next, *prev;
5064 struct constructor_stack *stack;
5065 tree range_start;
5066 tree index;
5067 tree range_end;
5068 tree fields;
5069 };
5070
5071 static struct constructor_range_stack *constructor_range_stack;
5072
5073 /* This stack records separate initializers that are nested.
5074 Nested initializers can't happen in ANSI C, but GNU C allows them
5075 in cases like { ... (struct foo) { ... } ... }. */
5076
5077 struct initializer_stack
5078 {
5079 struct initializer_stack *next;
5080 tree decl;
5081 struct constructor_stack *constructor_stack;
5082 struct constructor_range_stack *constructor_range_stack;
5083 VEC(constructor_elt,gc) *elements;
5084 struct spelling *spelling;
5085 struct spelling *spelling_base;
5086 int spelling_size;
5087 char top_level;
5088 char require_constant_value;
5089 char require_constant_elements;
5090 };
5091
5092 static struct initializer_stack *initializer_stack;
5093 \f
5094 /* Prepare to parse and output the initializer for variable DECL. */
5095
5096 void
5097 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
5098 {
5099 const char *locus;
5100 struct initializer_stack *p = XNEW (struct initializer_stack);
5101
5102 p->decl = constructor_decl;
5103 p->require_constant_value = require_constant_value;
5104 p->require_constant_elements = require_constant_elements;
5105 p->constructor_stack = constructor_stack;
5106 p->constructor_range_stack = constructor_range_stack;
5107 p->elements = constructor_elements;
5108 p->spelling = spelling;
5109 p->spelling_base = spelling_base;
5110 p->spelling_size = spelling_size;
5111 p->top_level = constructor_top_level;
5112 p->next = initializer_stack;
5113 initializer_stack = p;
5114
5115 constructor_decl = decl;
5116 constructor_designated = 0;
5117 constructor_top_level = top_level;
5118
5119 if (decl != 0 && decl != error_mark_node)
5120 {
5121 require_constant_value = TREE_STATIC (decl);
5122 require_constant_elements
5123 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
5124 /* For a scalar, you can always use any value to initialize,
5125 even within braces. */
5126 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
5127 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5128 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
5129 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5130 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
5131 }
5132 else
5133 {
5134 require_constant_value = 0;
5135 require_constant_elements = 0;
5136 locus = "(anonymous)";
5137 }
5138
5139 constructor_stack = 0;
5140 constructor_range_stack = 0;
5141
5142 missing_braces_mentioned = 0;
5143
5144 spelling_base = 0;
5145 spelling_size = 0;
5146 RESTORE_SPELLING_DEPTH (0);
5147
5148 if (locus)
5149 push_string (locus);
5150 }
5151
5152 void
5153 finish_init (void)
5154 {
5155 struct initializer_stack *p = initializer_stack;
5156
5157 /* Free the whole constructor stack of this initializer. */
5158 while (constructor_stack)
5159 {
5160 struct constructor_stack *q = constructor_stack;
5161 constructor_stack = q->next;
5162 free (q);
5163 }
5164
5165 gcc_assert (!constructor_range_stack);
5166
5167 /* Pop back to the data of the outer initializer (if any). */
5168 free (spelling_base);
5169
5170 constructor_decl = p->decl;
5171 require_constant_value = p->require_constant_value;
5172 require_constant_elements = p->require_constant_elements;
5173 constructor_stack = p->constructor_stack;
5174 constructor_range_stack = p->constructor_range_stack;
5175 constructor_elements = p->elements;
5176 spelling = p->spelling;
5177 spelling_base = p->spelling_base;
5178 spelling_size = p->spelling_size;
5179 constructor_top_level = p->top_level;
5180 initializer_stack = p->next;
5181 free (p);
5182 }
5183 \f
5184 /* Call here when we see the initializer is surrounded by braces.
5185 This is instead of a call to push_init_level;
5186 it is matched by a call to pop_init_level.
5187
5188 TYPE is the type to initialize, for a constructor expression.
5189 For an initializer for a decl, TYPE is zero. */
5190
5191 void
5192 really_start_incremental_init (tree type)
5193 {
5194 struct constructor_stack *p = XNEW (struct constructor_stack);
5195
5196 if (type == 0)
5197 type = TREE_TYPE (constructor_decl);
5198
5199 if (targetm.vector_opaque_p (type))
5200 error ("opaque vector types cannot be initialized");
5201
5202 p->type = constructor_type;
5203 p->fields = constructor_fields;
5204 p->index = constructor_index;
5205 p->max_index = constructor_max_index;
5206 p->unfilled_index = constructor_unfilled_index;
5207 p->unfilled_fields = constructor_unfilled_fields;
5208 p->bit_index = constructor_bit_index;
5209 p->elements = constructor_elements;
5210 p->constant = constructor_constant;
5211 p->simple = constructor_simple;
5212 p->erroneous = constructor_erroneous;
5213 p->pending_elts = constructor_pending_elts;
5214 p->depth = constructor_depth;
5215 p->replacement_value.value = 0;
5216 p->replacement_value.original_code = ERROR_MARK;
5217 p->implicit = 0;
5218 p->range_stack = 0;
5219 p->outer = 0;
5220 p->incremental = constructor_incremental;
5221 p->designated = constructor_designated;
5222 p->next = 0;
5223 constructor_stack = p;
5224
5225 constructor_constant = 1;
5226 constructor_simple = 1;
5227 constructor_depth = SPELLING_DEPTH ();
5228 constructor_elements = 0;
5229 constructor_pending_elts = 0;
5230 constructor_type = type;
5231 constructor_incremental = 1;
5232 constructor_designated = 0;
5233 designator_depth = 0;
5234 designator_erroneous = 0;
5235
5236 if (TREE_CODE (constructor_type) == RECORD_TYPE
5237 || TREE_CODE (constructor_type) == UNION_TYPE)
5238 {
5239 constructor_fields = TYPE_FIELDS (constructor_type);
5240 /* Skip any nameless bit fields at the beginning. */
5241 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5242 && DECL_NAME (constructor_fields) == 0)
5243 constructor_fields = TREE_CHAIN (constructor_fields);
5244
5245 constructor_unfilled_fields = constructor_fields;
5246 constructor_bit_index = bitsize_zero_node;
5247 }
5248 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5249 {
5250 if (TYPE_DOMAIN (constructor_type))
5251 {
5252 constructor_max_index
5253 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5254
5255 /* Detect non-empty initializations of zero-length arrays. */
5256 if (constructor_max_index == NULL_TREE
5257 && TYPE_SIZE (constructor_type))
5258 constructor_max_index = build_int_cst (NULL_TREE, -1);
5259
5260 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5261 to initialize VLAs will cause a proper error; avoid tree
5262 checking errors as well by setting a safe value. */
5263 if (constructor_max_index
5264 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5265 constructor_max_index = build_int_cst (NULL_TREE, -1);
5266
5267 constructor_index
5268 = convert (bitsizetype,
5269 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5270 }
5271 else
5272 {
5273 constructor_index = bitsize_zero_node;
5274 constructor_max_index = NULL_TREE;
5275 }
5276
5277 constructor_unfilled_index = constructor_index;
5278 }
5279 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5280 {
5281 /* Vectors are like simple fixed-size arrays. */
5282 constructor_max_index =
5283 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5284 constructor_index = bitsize_zero_node;
5285 constructor_unfilled_index = constructor_index;
5286 }
5287 else
5288 {
5289 /* Handle the case of int x = {5}; */
5290 constructor_fields = constructor_type;
5291 constructor_unfilled_fields = constructor_type;
5292 }
5293 }
5294 \f
5295 /* Push down into a subobject, for initialization.
5296 If this is for an explicit set of braces, IMPLICIT is 0.
5297 If it is because the next element belongs at a lower level,
5298 IMPLICIT is 1 (or 2 if the push is because of designator list). */
5299
5300 void
5301 push_init_level (int implicit)
5302 {
5303 struct constructor_stack *p;
5304 tree value = NULL_TREE;
5305
5306 /* If we've exhausted any levels that didn't have braces,
5307 pop them now. If implicit == 1, this will have been done in
5308 process_init_element; do not repeat it here because in the case
5309 of excess initializers for an empty aggregate this leads to an
5310 infinite cycle of popping a level and immediately recreating
5311 it. */
5312 if (implicit != 1)
5313 {
5314 while (constructor_stack->implicit)
5315 {
5316 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5317 || TREE_CODE (constructor_type) == UNION_TYPE)
5318 && constructor_fields == 0)
5319 process_init_element (pop_init_level (1));
5320 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5321 && constructor_max_index
5322 && tree_int_cst_lt (constructor_max_index,
5323 constructor_index))
5324 process_init_element (pop_init_level (1));
5325 else
5326 break;
5327 }
5328 }
5329
5330 /* Unless this is an explicit brace, we need to preserve previous
5331 content if any. */
5332 if (implicit)
5333 {
5334 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5335 || TREE_CODE (constructor_type) == UNION_TYPE)
5336 && constructor_fields)
5337 value = find_init_member (constructor_fields);
5338 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5339 value = find_init_member (constructor_index);
5340 }
5341
5342 p = XNEW (struct constructor_stack);
5343 p->type = constructor_type;
5344 p->fields = constructor_fields;
5345 p->index = constructor_index;
5346 p->max_index = constructor_max_index;
5347 p->unfilled_index = constructor_unfilled_index;
5348 p->unfilled_fields = constructor_unfilled_fields;
5349 p->bit_index = constructor_bit_index;
5350 p->elements = constructor_elements;
5351 p->constant = constructor_constant;
5352 p->simple = constructor_simple;
5353 p->erroneous = constructor_erroneous;
5354 p->pending_elts = constructor_pending_elts;
5355 p->depth = constructor_depth;
5356 p->replacement_value.value = 0;
5357 p->replacement_value.original_code = ERROR_MARK;
5358 p->implicit = implicit;
5359 p->outer = 0;
5360 p->incremental = constructor_incremental;
5361 p->designated = constructor_designated;
5362 p->next = constructor_stack;
5363 p->range_stack = 0;
5364 constructor_stack = p;
5365
5366 constructor_constant = 1;
5367 constructor_simple = 1;
5368 constructor_depth = SPELLING_DEPTH ();
5369 constructor_elements = 0;
5370 constructor_incremental = 1;
5371 constructor_designated = 0;
5372 constructor_pending_elts = 0;
5373 if (!implicit)
5374 {
5375 p->range_stack = constructor_range_stack;
5376 constructor_range_stack = 0;
5377 designator_depth = 0;
5378 designator_erroneous = 0;
5379 }
5380
5381 /* Don't die if an entire brace-pair level is superfluous
5382 in the containing level. */
5383 if (constructor_type == 0)
5384 ;
5385 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5386 || TREE_CODE (constructor_type) == UNION_TYPE)
5387 {
5388 /* Don't die if there are extra init elts at the end. */
5389 if (constructor_fields == 0)
5390 constructor_type = 0;
5391 else
5392 {
5393 constructor_type = TREE_TYPE (constructor_fields);
5394 push_member_name (constructor_fields);
5395 constructor_depth++;
5396 }
5397 }
5398 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5399 {
5400 constructor_type = TREE_TYPE (constructor_type);
5401 push_array_bounds (tree_low_cst (constructor_index, 1));
5402 constructor_depth++;
5403 }
5404
5405 if (constructor_type == 0)
5406 {
5407 error_init ("extra brace group at end of initializer");
5408 constructor_fields = 0;
5409 constructor_unfilled_fields = 0;
5410 return;
5411 }
5412
5413 if (value && TREE_CODE (value) == CONSTRUCTOR)
5414 {
5415 constructor_constant = TREE_CONSTANT (value);
5416 constructor_simple = TREE_STATIC (value);
5417 constructor_elements = CONSTRUCTOR_ELTS (value);
5418 if (!VEC_empty (constructor_elt, constructor_elements)
5419 && (TREE_CODE (constructor_type) == RECORD_TYPE
5420 || TREE_CODE (constructor_type) == ARRAY_TYPE))
5421 set_nonincremental_init ();
5422 }
5423
5424 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5425 {
5426 missing_braces_mentioned = 1;
5427 warning_init (OPT_Wmissing_braces, "missing braces around initializer");
5428 }
5429
5430 if (TREE_CODE (constructor_type) == RECORD_TYPE
5431 || TREE_CODE (constructor_type) == UNION_TYPE)
5432 {
5433 constructor_fields = TYPE_FIELDS (constructor_type);
5434 /* Skip any nameless bit fields at the beginning. */
5435 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5436 && DECL_NAME (constructor_fields) == 0)
5437 constructor_fields = TREE_CHAIN (constructor_fields);
5438
5439 constructor_unfilled_fields = constructor_fields;
5440 constructor_bit_index = bitsize_zero_node;
5441 }
5442 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5443 {
5444 /* Vectors are like simple fixed-size arrays. */
5445 constructor_max_index =
5446 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5447 constructor_index = convert (bitsizetype, integer_zero_node);
5448 constructor_unfilled_index = constructor_index;
5449 }
5450 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5451 {
5452 if (TYPE_DOMAIN (constructor_type))
5453 {
5454 constructor_max_index
5455 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5456
5457 /* Detect non-empty initializations of zero-length arrays. */
5458 if (constructor_max_index == NULL_TREE
5459 && TYPE_SIZE (constructor_type))
5460 constructor_max_index = build_int_cst (NULL_TREE, -1);
5461
5462 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5463 to initialize VLAs will cause a proper error; avoid tree
5464 checking errors as well by setting a safe value. */
5465 if (constructor_max_index
5466 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5467 constructor_max_index = build_int_cst (NULL_TREE, -1);
5468
5469 constructor_index
5470 = convert (bitsizetype,
5471 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5472 }
5473 else
5474 constructor_index = bitsize_zero_node;
5475
5476 constructor_unfilled_index = constructor_index;
5477 if (value && TREE_CODE (value) == STRING_CST)
5478 {
5479 /* We need to split the char/wchar array into individual
5480 characters, so that we don't have to special case it
5481 everywhere. */
5482 set_nonincremental_init_from_string (value);
5483 }
5484 }
5485 else
5486 {
5487 if (constructor_type != error_mark_node)
5488 warning_init (0, "braces around scalar initializer");
5489 constructor_fields = constructor_type;
5490 constructor_unfilled_fields = constructor_type;
5491 }
5492 }
5493
5494 /* At the end of an implicit or explicit brace level,
5495 finish up that level of constructor. If a single expression
5496 with redundant braces initialized that level, return the
5497 c_expr structure for that expression. Otherwise, the original_code
5498 element is set to ERROR_MARK.
5499 If we were outputting the elements as they are read, return 0 as the value
5500 from inner levels (process_init_element ignores that),
5501 but return error_mark_node as the value from the outermost level
5502 (that's what we want to put in DECL_INITIAL).
5503 Otherwise, return a CONSTRUCTOR expression as the value. */
5504
5505 struct c_expr
5506 pop_init_level (int implicit)
5507 {
5508 struct constructor_stack *p;
5509 struct c_expr ret;
5510 ret.value = 0;
5511 ret.original_code = ERROR_MARK;
5512
5513 if (implicit == 0)
5514 {
5515 /* When we come to an explicit close brace,
5516 pop any inner levels that didn't have explicit braces. */
5517 while (constructor_stack->implicit)
5518 process_init_element (pop_init_level (1));
5519
5520 gcc_assert (!constructor_range_stack);
5521 }
5522
5523 /* Now output all pending elements. */
5524 constructor_incremental = 1;
5525 output_pending_init_elements (1);
5526
5527 p = constructor_stack;
5528
5529 /* Error for initializing a flexible array member, or a zero-length
5530 array member in an inappropriate context. */
5531 if (constructor_type && constructor_fields
5532 && TREE_CODE (constructor_type) == ARRAY_TYPE
5533 && TYPE_DOMAIN (constructor_type)
5534 && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5535 {
5536 /* Silently discard empty initializations. The parser will
5537 already have pedwarned for empty brackets. */
5538 if (integer_zerop (constructor_unfilled_index))
5539 constructor_type = NULL_TREE;
5540 else
5541 {
5542 gcc_assert (!TYPE_SIZE (constructor_type));
5543
5544 if (constructor_depth > 2)
5545 error_init ("initialization of flexible array member in a nested context");
5546 else
5547 pedwarn_init (OPT_pedantic, "initialization of a flexible array member");
5548
5549 /* We have already issued an error message for the existence
5550 of a flexible array member not at the end of the structure.
5551 Discard the initializer so that we do not die later. */
5552 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5553 constructor_type = NULL_TREE;
5554 }
5555 }
5556
5557 /* Warn when some struct elements are implicitly initialized to zero. */
5558 if (warn_missing_field_initializers
5559 && constructor_type
5560 && TREE_CODE (constructor_type) == RECORD_TYPE
5561 && constructor_unfilled_fields)
5562 {
5563 /* Do not warn for flexible array members or zero-length arrays. */
5564 while (constructor_unfilled_fields
5565 && (!DECL_SIZE (constructor_unfilled_fields)
5566 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5567 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5568
5569 /* Do not warn if this level of the initializer uses member
5570 designators; it is likely to be deliberate. */
5571 if (constructor_unfilled_fields && !constructor_designated)
5572 {
5573 push_member_name (constructor_unfilled_fields);
5574 warning_init (OPT_Wmissing_field_initializers,
5575 "missing initializer");
5576 RESTORE_SPELLING_DEPTH (constructor_depth);
5577 }
5578 }
5579
5580 /* Pad out the end of the structure. */
5581 if (p->replacement_value.value)
5582 /* If this closes a superfluous brace pair,
5583 just pass out the element between them. */
5584 ret = p->replacement_value;
5585 else if (constructor_type == 0)
5586 ;
5587 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5588 && TREE_CODE (constructor_type) != UNION_TYPE
5589 && TREE_CODE (constructor_type) != ARRAY_TYPE
5590 && TREE_CODE (constructor_type) != VECTOR_TYPE)
5591 {
5592 /* A nonincremental scalar initializer--just return
5593 the element, after verifying there is just one. */
5594 if (VEC_empty (constructor_elt,constructor_elements))
5595 {
5596 if (!constructor_erroneous)
5597 error_init ("empty scalar initializer");
5598 ret.value = error_mark_node;
5599 }
5600 else if (VEC_length (constructor_elt,constructor_elements) != 1)
5601 {
5602 error_init ("extra elements in scalar initializer");
5603 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5604 }
5605 else
5606 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5607 }
5608 else
5609 {
5610 if (constructor_erroneous)
5611 ret.value = error_mark_node;
5612 else
5613 {
5614 ret.value = build_constructor (constructor_type,
5615 constructor_elements);
5616 if (constructor_constant)
5617 TREE_CONSTANT (ret.value) = 1;
5618 if (constructor_constant && constructor_simple)
5619 TREE_STATIC (ret.value) = 1;
5620 }
5621 }
5622
5623 constructor_type = p->type;
5624 constructor_fields = p->fields;
5625 constructor_index = p->index;
5626 constructor_max_index = p->max_index;
5627 constructor_unfilled_index = p->unfilled_index;
5628 constructor_unfilled_fields = p->unfilled_fields;
5629 constructor_bit_index = p->bit_index;
5630 constructor_elements = p->elements;
5631 constructor_constant = p->constant;
5632 constructor_simple = p->simple;
5633 constructor_erroneous = p->erroneous;
5634 constructor_incremental = p->incremental;
5635 constructor_designated = p->designated;
5636 constructor_pending_elts = p->pending_elts;
5637 constructor_depth = p->depth;
5638 if (!p->implicit)
5639 constructor_range_stack = p->range_stack;
5640 RESTORE_SPELLING_DEPTH (constructor_depth);
5641
5642 constructor_stack = p->next;
5643 free (p);
5644
5645 if (ret.value == 0 && constructor_stack == 0)
5646 ret.value = error_mark_node;
5647 return ret;
5648 }
5649
5650 /* Common handling for both array range and field name designators.
5651 ARRAY argument is nonzero for array ranges. Returns zero for success. */
5652
5653 static int
5654 set_designator (int array)
5655 {
5656 tree subtype;
5657 enum tree_code subcode;
5658
5659 /* Don't die if an entire brace-pair level is superfluous
5660 in the containing level. */
5661 if (constructor_type == 0)
5662 return 1;
5663
5664 /* If there were errors in this designator list already, bail out
5665 silently. */
5666 if (designator_erroneous)
5667 return 1;
5668
5669 if (!designator_depth)
5670 {
5671 gcc_assert (!constructor_range_stack);
5672
5673 /* Designator list starts at the level of closest explicit
5674 braces. */
5675 while (constructor_stack->implicit)
5676 process_init_element (pop_init_level (1));
5677 constructor_designated = 1;
5678 return 0;
5679 }
5680
5681 switch (TREE_CODE (constructor_type))
5682 {
5683 case RECORD_TYPE:
5684 case UNION_TYPE:
5685 subtype = TREE_TYPE (constructor_fields);
5686 if (subtype != error_mark_node)
5687 subtype = TYPE_MAIN_VARIANT (subtype);
5688 break;
5689 case ARRAY_TYPE:
5690 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5691 break;
5692 default:
5693 gcc_unreachable ();
5694 }
5695
5696 subcode = TREE_CODE (subtype);
5697 if (array && subcode != ARRAY_TYPE)
5698 {
5699 error_init ("array index in non-array initializer");
5700 return 1;
5701 }
5702 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5703 {
5704 error_init ("field name not in record or union initializer");
5705 return 1;
5706 }
5707
5708 constructor_designated = 1;
5709 push_init_level (2);
5710 return 0;
5711 }
5712
5713 /* If there are range designators in designator list, push a new designator
5714 to constructor_range_stack. RANGE_END is end of such stack range or
5715 NULL_TREE if there is no range designator at this level. */
5716
5717 static void
5718 push_range_stack (tree range_end)
5719 {
5720 struct constructor_range_stack *p;
5721
5722 p = GGC_NEW (struct constructor_range_stack);
5723 p->prev = constructor_range_stack;
5724 p->next = 0;
5725 p->fields = constructor_fields;
5726 p->range_start = constructor_index;
5727 p->index = constructor_index;
5728 p->stack = constructor_stack;
5729 p->range_end = range_end;
5730 if (constructor_range_stack)
5731 constructor_range_stack->next = p;
5732 constructor_range_stack = p;
5733 }
5734
5735 /* Within an array initializer, specify the next index to be initialized.
5736 FIRST is that index. If LAST is nonzero, then initialize a range
5737 of indices, running from FIRST through LAST. */
5738
5739 void
5740 set_init_index (tree first, tree last)
5741 {
5742 if (set_designator (1))
5743 return;
5744
5745 designator_erroneous = 1;
5746
5747 if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5748 || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5749 {
5750 error_init ("array index in initializer not of integer type");
5751 return;
5752 }
5753
5754 if (TREE_CODE (first) != INTEGER_CST)
5755 error_init ("nonconstant array index in initializer");
5756 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5757 error_init ("nonconstant array index in initializer");
5758 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5759 error_init ("array index in non-array initializer");
5760 else if (tree_int_cst_sgn (first) == -1)
5761 error_init ("array index in initializer exceeds array bounds");
5762 else if (constructor_max_index
5763 && tree_int_cst_lt (constructor_max_index, first))
5764 error_init ("array index in initializer exceeds array bounds");
5765 else
5766 {
5767 constructor_index = convert (bitsizetype, first);
5768
5769 if (last)
5770 {
5771 if (tree_int_cst_equal (first, last))
5772 last = 0;
5773 else if (tree_int_cst_lt (last, first))
5774 {
5775 error_init ("empty index range in initializer");
5776 last = 0;
5777 }
5778 else
5779 {
5780 last = convert (bitsizetype, last);
5781 if (constructor_max_index != 0
5782 && tree_int_cst_lt (constructor_max_index, last))
5783 {
5784 error_init ("array index range in initializer exceeds array bounds");
5785 last = 0;
5786 }
5787 }
5788 }
5789
5790 designator_depth++;
5791 designator_erroneous = 0;
5792 if (constructor_range_stack || last)
5793 push_range_stack (last);
5794 }
5795 }
5796
5797 /* Within a struct initializer, specify the next field to be initialized. */
5798
5799 void
5800 set_init_label (tree fieldname)
5801 {
5802 tree tail;
5803
5804 if (set_designator (0))
5805 return;
5806
5807 designator_erroneous = 1;
5808
5809 if (TREE_CODE (constructor_type) != RECORD_TYPE
5810 && TREE_CODE (constructor_type) != UNION_TYPE)
5811 {
5812 error_init ("field name not in record or union initializer");
5813 return;
5814 }
5815
5816 for (tail = TYPE_FIELDS (constructor_type); tail;
5817 tail = TREE_CHAIN (tail))
5818 {
5819 if (DECL_NAME (tail) == fieldname)
5820 break;
5821 }
5822
5823 if (tail == 0)
5824 error ("unknown field %qE specified in initializer", fieldname);
5825 else
5826 {
5827 constructor_fields = tail;
5828 designator_depth++;
5829 designator_erroneous = 0;
5830 if (constructor_range_stack)
5831 push_range_stack (NULL_TREE);
5832 }
5833 }
5834 \f
5835 /* Add a new initializer to the tree of pending initializers. PURPOSE
5836 identifies the initializer, either array index or field in a structure.
5837 VALUE is the value of that index or field. */
5838
5839 static void
5840 add_pending_init (tree purpose, tree value)
5841 {
5842 struct init_node *p, **q, *r;
5843
5844 q = &constructor_pending_elts;
5845 p = 0;
5846
5847 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5848 {
5849 while (*q != 0)
5850 {
5851 p = *q;
5852 if (tree_int_cst_lt (purpose, p->purpose))
5853 q = &p->left;
5854 else if (tree_int_cst_lt (p->purpose, purpose))
5855 q = &p->right;
5856 else
5857 {
5858 if (TREE_SIDE_EFFECTS (p->value))
5859 warning_init (0, "initialized field with side-effects overwritten");
5860 else if (warn_override_init)
5861 warning_init (OPT_Woverride_init, "initialized field overwritten");
5862 p->value = value;
5863 return;
5864 }
5865 }
5866 }
5867 else
5868 {
5869 tree bitpos;
5870
5871 bitpos = bit_position (purpose);
5872 while (*q != NULL)
5873 {
5874 p = *q;
5875 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5876 q = &p->left;
5877 else if (p->purpose != purpose)
5878 q = &p->right;
5879 else
5880 {
5881 if (TREE_SIDE_EFFECTS (p->value))
5882 warning_init (0, "initialized field with side-effects overwritten");
5883 else if (warn_override_init)
5884 warning_init (OPT_Woverride_init, "initialized field overwritten");
5885 p->value = value;
5886 return;
5887 }
5888 }
5889 }
5890
5891 r = GGC_NEW (struct init_node);
5892 r->purpose = purpose;
5893 r->value = value;
5894
5895 *q = r;
5896 r->parent = p;
5897 r->left = 0;
5898 r->right = 0;
5899 r->balance = 0;
5900
5901 while (p)
5902 {
5903 struct init_node *s;
5904
5905 if (r == p->left)
5906 {
5907 if (p->balance == 0)
5908 p->balance = -1;
5909 else if (p->balance < 0)
5910 {
5911 if (r->balance < 0)
5912 {
5913 /* L rotation. */
5914 p->left = r->right;
5915 if (p->left)
5916 p->left->parent = p;
5917 r->right = p;
5918
5919 p->balance = 0;
5920 r->balance = 0;
5921
5922 s = p->parent;
5923 p->parent = r;
5924 r->parent = s;
5925 if (s)
5926 {
5927 if (s->left == p)
5928 s->left = r;
5929 else
5930 s->right = r;
5931 }
5932 else
5933 constructor_pending_elts = r;
5934 }
5935 else
5936 {
5937 /* LR rotation. */
5938 struct init_node *t = r->right;
5939
5940 r->right = t->left;
5941 if (r->right)
5942 r->right->parent = r;
5943 t->left = r;
5944
5945 p->left = t->right;
5946 if (p->left)
5947 p->left->parent = p;
5948 t->right = p;
5949
5950 p->balance = t->balance < 0;
5951 r->balance = -(t->balance > 0);
5952 t->balance = 0;
5953
5954 s = p->parent;
5955 p->parent = t;
5956 r->parent = t;
5957 t->parent = s;
5958 if (s)
5959 {
5960 if (s->left == p)
5961 s->left = t;
5962 else
5963 s->right = t;
5964 }
5965 else
5966 constructor_pending_elts = t;
5967 }
5968 break;
5969 }
5970 else
5971 {
5972 /* p->balance == +1; growth of left side balances the node. */
5973 p->balance = 0;
5974 break;
5975 }
5976 }
5977 else /* r == p->right */
5978 {
5979 if (p->balance == 0)
5980 /* Growth propagation from right side. */
5981 p->balance++;
5982 else if (p->balance > 0)
5983 {
5984 if (r->balance > 0)
5985 {
5986 /* R rotation. */
5987 p->right = r->left;
5988 if (p->right)
5989 p->right->parent = p;
5990 r->left = p;
5991
5992 p->balance = 0;
5993 r->balance = 0;
5994
5995 s = p->parent;
5996 p->parent = r;
5997 r->parent = s;
5998 if (s)
5999 {
6000 if (s->left == p)
6001 s->left = r;
6002 else
6003 s->right = r;
6004 }
6005 else
6006 constructor_pending_elts = r;
6007 }
6008 else /* r->balance == -1 */
6009 {
6010 /* RL rotation */
6011 struct init_node *t = r->left;
6012
6013 r->left = t->right;
6014 if (r->left)
6015 r->left->parent = r;
6016 t->right = r;
6017
6018 p->right = t->left;
6019 if (p->right)
6020 p->right->parent = p;
6021 t->left = p;
6022
6023 r->balance = (t->balance < 0);
6024 p->balance = -(t->balance > 0);
6025 t->balance = 0;
6026
6027 s = p->parent;
6028 p->parent = t;
6029 r->parent = t;
6030 t->parent = s;
6031 if (s)
6032 {
6033 if (s->left == p)
6034 s->left = t;
6035 else
6036 s->right = t;
6037 }
6038 else
6039 constructor_pending_elts = t;
6040 }
6041 break;
6042 }
6043 else
6044 {
6045 /* p->balance == -1; growth of right side balances the node. */
6046 p->balance = 0;
6047 break;
6048 }
6049 }
6050
6051 r = p;
6052 p = p->parent;
6053 }
6054 }
6055
6056 /* Build AVL tree from a sorted chain. */
6057
6058 static void
6059 set_nonincremental_init (void)
6060 {
6061 unsigned HOST_WIDE_INT ix;
6062 tree index, value;
6063
6064 if (TREE_CODE (constructor_type) != RECORD_TYPE
6065 && TREE_CODE (constructor_type) != ARRAY_TYPE)
6066 return;
6067
6068 FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
6069 add_pending_init (index, value);
6070 constructor_elements = 0;
6071 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6072 {
6073 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
6074 /* Skip any nameless bit fields at the beginning. */
6075 while (constructor_unfilled_fields != 0
6076 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6077 && DECL_NAME (constructor_unfilled_fields) == 0)
6078 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
6079
6080 }
6081 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6082 {
6083 if (TYPE_DOMAIN (constructor_type))
6084 constructor_unfilled_index
6085 = convert (bitsizetype,
6086 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6087 else
6088 constructor_unfilled_index = bitsize_zero_node;
6089 }
6090 constructor_incremental = 0;
6091 }
6092
6093 /* Build AVL tree from a string constant. */
6094
6095 static void
6096 set_nonincremental_init_from_string (tree str)
6097 {
6098 tree value, purpose, type;
6099 HOST_WIDE_INT val[2];
6100 const char *p, *end;
6101 int byte, wchar_bytes, charwidth, bitpos;
6102
6103 gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
6104
6105 wchar_bytes = TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str))) / BITS_PER_UNIT;
6106 charwidth = TYPE_PRECISION (char_type_node);
6107 type = TREE_TYPE (constructor_type);
6108 p = TREE_STRING_POINTER (str);
6109 end = p + TREE_STRING_LENGTH (str);
6110
6111 for (purpose = bitsize_zero_node;
6112 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
6113 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
6114 {
6115 if (wchar_bytes == 1)
6116 {
6117 val[1] = (unsigned char) *p++;
6118 val[0] = 0;
6119 }
6120 else
6121 {
6122 val[0] = 0;
6123 val[1] = 0;
6124 for (byte = 0; byte < wchar_bytes; byte++)
6125 {
6126 if (BYTES_BIG_ENDIAN)
6127 bitpos = (wchar_bytes - byte - 1) * charwidth;
6128 else
6129 bitpos = byte * charwidth;
6130 val[bitpos < HOST_BITS_PER_WIDE_INT]
6131 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
6132 << (bitpos % HOST_BITS_PER_WIDE_INT);
6133 }
6134 }
6135
6136 if (!TYPE_UNSIGNED (type))
6137 {
6138 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6139 if (bitpos < HOST_BITS_PER_WIDE_INT)
6140 {
6141 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6142 {
6143 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6144 val[0] = -1;
6145 }
6146 }
6147 else if (bitpos == HOST_BITS_PER_WIDE_INT)
6148 {
6149 if (val[1] < 0)
6150 val[0] = -1;
6151 }
6152 else if (val[0] & (((HOST_WIDE_INT) 1)
6153 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6154 val[0] |= ((HOST_WIDE_INT) -1)
6155 << (bitpos - HOST_BITS_PER_WIDE_INT);
6156 }
6157
6158 value = build_int_cst_wide (type, val[1], val[0]);
6159 add_pending_init (purpose, value);
6160 }
6161
6162 constructor_incremental = 0;
6163 }
6164
6165 /* Return value of FIELD in pending initializer or zero if the field was
6166 not initialized yet. */
6167
6168 static tree
6169 find_init_member (tree field)
6170 {
6171 struct init_node *p;
6172
6173 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6174 {
6175 if (constructor_incremental
6176 && tree_int_cst_lt (field, constructor_unfilled_index))
6177 set_nonincremental_init ();
6178
6179 p = constructor_pending_elts;
6180 while (p)
6181 {
6182 if (tree_int_cst_lt (field, p->purpose))
6183 p = p->left;
6184 else if (tree_int_cst_lt (p->purpose, field))
6185 p = p->right;
6186 else
6187 return p->value;
6188 }
6189 }
6190 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6191 {
6192 tree bitpos = bit_position (field);
6193
6194 if (constructor_incremental
6195 && (!constructor_unfilled_fields
6196 || tree_int_cst_lt (bitpos,
6197 bit_position (constructor_unfilled_fields))))
6198 set_nonincremental_init ();
6199
6200 p = constructor_pending_elts;
6201 while (p)
6202 {
6203 if (field == p->purpose)
6204 return p->value;
6205 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6206 p = p->left;
6207 else
6208 p = p->right;
6209 }
6210 }
6211 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6212 {
6213 if (!VEC_empty (constructor_elt, constructor_elements)
6214 && (VEC_last (constructor_elt, constructor_elements)->index
6215 == field))
6216 return VEC_last (constructor_elt, constructor_elements)->value;
6217 }
6218 return 0;
6219 }
6220
6221 /* "Output" the next constructor element.
6222 At top level, really output it to assembler code now.
6223 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6224 TYPE is the data type that the containing data type wants here.
6225 FIELD is the field (a FIELD_DECL) or the index that this element fills.
6226 If VALUE is a string constant, STRICT_STRING is true if it is
6227 unparenthesized or we should not warn here for it being parenthesized.
6228 For other types of VALUE, STRICT_STRING is not used.
6229
6230 PENDING if non-nil means output pending elements that belong
6231 right after this element. (PENDING is normally 1;
6232 it is 0 while outputting pending elements, to avoid recursion.) */
6233
6234 static void
6235 output_init_element (tree value, bool strict_string, tree type, tree field,
6236 int pending)
6237 {
6238 constructor_elt *celt;
6239
6240 if (type == error_mark_node || value == error_mark_node)
6241 {
6242 constructor_erroneous = 1;
6243 return;
6244 }
6245 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6246 && (TREE_CODE (value) == STRING_CST
6247 || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6248 && !(TREE_CODE (value) == STRING_CST
6249 && TREE_CODE (type) == ARRAY_TYPE
6250 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6251 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6252 TYPE_MAIN_VARIANT (type)))
6253 value = array_to_pointer_conversion (value);
6254
6255 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6256 && require_constant_value && !flag_isoc99 && pending)
6257 {
6258 /* As an extension, allow initializing objects with static storage
6259 duration with compound literals (which are then treated just as
6260 the brace enclosed list they contain). */
6261 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6262 value = DECL_INITIAL (decl);
6263 }
6264
6265 if (value == error_mark_node)
6266 constructor_erroneous = 1;
6267 else if (!TREE_CONSTANT (value))
6268 constructor_constant = 0;
6269 else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6270 || ((TREE_CODE (constructor_type) == RECORD_TYPE
6271 || TREE_CODE (constructor_type) == UNION_TYPE)
6272 && DECL_C_BIT_FIELD (field)
6273 && TREE_CODE (value) != INTEGER_CST))
6274 constructor_simple = 0;
6275
6276 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6277 {
6278 if (require_constant_value)
6279 {
6280 error_init ("initializer element is not constant");
6281 value = error_mark_node;
6282 }
6283 else if (require_constant_elements)
6284 pedwarn (0, "initializer element is not computable at load time");
6285 }
6286
6287 /* If this field is empty (and not at the end of structure),
6288 don't do anything other than checking the initializer. */
6289 if (field
6290 && (TREE_TYPE (field) == error_mark_node
6291 || (COMPLETE_TYPE_P (TREE_TYPE (field))
6292 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6293 && (TREE_CODE (constructor_type) == ARRAY_TYPE
6294 || TREE_CHAIN (field)))))
6295 return;
6296
6297 value = digest_init (type, value, strict_string, require_constant_value);
6298 if (value == error_mark_node)
6299 {
6300 constructor_erroneous = 1;
6301 return;
6302 }
6303
6304 /* If this element doesn't come next in sequence,
6305 put it on constructor_pending_elts. */
6306 if (TREE_CODE (constructor_type) == ARRAY_TYPE
6307 && (!constructor_incremental
6308 || !tree_int_cst_equal (field, constructor_unfilled_index)))
6309 {
6310 if (constructor_incremental
6311 && tree_int_cst_lt (field, constructor_unfilled_index))
6312 set_nonincremental_init ();
6313
6314 add_pending_init (field, value);
6315 return;
6316 }
6317 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6318 && (!constructor_incremental
6319 || field != constructor_unfilled_fields))
6320 {
6321 /* We do this for records but not for unions. In a union,
6322 no matter which field is specified, it can be initialized
6323 right away since it starts at the beginning of the union. */
6324 if (constructor_incremental)
6325 {
6326 if (!constructor_unfilled_fields)
6327 set_nonincremental_init ();
6328 else
6329 {
6330 tree bitpos, unfillpos;
6331
6332 bitpos = bit_position (field);
6333 unfillpos = bit_position (constructor_unfilled_fields);
6334
6335 if (tree_int_cst_lt (bitpos, unfillpos))
6336 set_nonincremental_init ();
6337 }
6338 }
6339
6340 add_pending_init (field, value);
6341 return;
6342 }
6343 else if (TREE_CODE (constructor_type) == UNION_TYPE
6344 && !VEC_empty (constructor_elt, constructor_elements))
6345 {
6346 if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6347 constructor_elements)->value))
6348 warning_init (0, "initialized field with side-effects overwritten");
6349 else if (warn_override_init)
6350 warning_init (OPT_Woverride_init, "initialized field overwritten");
6351
6352 /* We can have just one union field set. */
6353 constructor_elements = 0;
6354 }
6355
6356 /* Otherwise, output this element either to
6357 constructor_elements or to the assembler file. */
6358
6359 celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6360 celt->index = field;
6361 celt->value = value;
6362
6363 /* Advance the variable that indicates sequential elements output. */
6364 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6365 constructor_unfilled_index
6366 = size_binop (PLUS_EXPR, constructor_unfilled_index,
6367 bitsize_one_node);
6368 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6369 {
6370 constructor_unfilled_fields
6371 = TREE_CHAIN (constructor_unfilled_fields);
6372
6373 /* Skip any nameless bit fields. */
6374 while (constructor_unfilled_fields != 0
6375 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6376 && DECL_NAME (constructor_unfilled_fields) == 0)
6377 constructor_unfilled_fields =
6378 TREE_CHAIN (constructor_unfilled_fields);
6379 }
6380 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6381 constructor_unfilled_fields = 0;
6382
6383 /* Now output any pending elements which have become next. */
6384 if (pending)
6385 output_pending_init_elements (0);
6386 }
6387
6388 /* Output any pending elements which have become next.
6389 As we output elements, constructor_unfilled_{fields,index}
6390 advances, which may cause other elements to become next;
6391 if so, they too are output.
6392
6393 If ALL is 0, we return when there are
6394 no more pending elements to output now.
6395
6396 If ALL is 1, we output space as necessary so that
6397 we can output all the pending elements. */
6398
6399 static void
6400 output_pending_init_elements (int all)
6401 {
6402 struct init_node *elt = constructor_pending_elts;
6403 tree next;
6404
6405 retry:
6406
6407 /* Look through the whole pending tree.
6408 If we find an element that should be output now,
6409 output it. Otherwise, set NEXT to the element
6410 that comes first among those still pending. */
6411
6412 next = 0;
6413 while (elt)
6414 {
6415 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6416 {
6417 if (tree_int_cst_equal (elt->purpose,
6418 constructor_unfilled_index))
6419 output_init_element (elt->value, true,
6420 TREE_TYPE (constructor_type),
6421 constructor_unfilled_index, 0);
6422 else if (tree_int_cst_lt (constructor_unfilled_index,
6423 elt->purpose))
6424 {
6425 /* Advance to the next smaller node. */
6426 if (elt->left)
6427 elt = elt->left;
6428 else
6429 {
6430 /* We have reached the smallest node bigger than the
6431 current unfilled index. Fill the space first. */
6432 next = elt->purpose;
6433 break;
6434 }
6435 }
6436 else
6437 {
6438 /* Advance to the next bigger node. */
6439 if (elt->right)
6440 elt = elt->right;
6441 else
6442 {
6443 /* We have reached the biggest node in a subtree. Find
6444 the parent of it, which is the next bigger node. */
6445 while (elt->parent && elt->parent->right == elt)
6446 elt = elt->parent;
6447 elt = elt->parent;
6448 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6449 elt->purpose))
6450 {
6451 next = elt->purpose;
6452 break;
6453 }
6454 }
6455 }
6456 }
6457 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6458 || TREE_CODE (constructor_type) == UNION_TYPE)
6459 {
6460 tree ctor_unfilled_bitpos, elt_bitpos;
6461
6462 /* If the current record is complete we are done. */
6463 if (constructor_unfilled_fields == 0)
6464 break;
6465
6466 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6467 elt_bitpos = bit_position (elt->purpose);
6468 /* We can't compare fields here because there might be empty
6469 fields in between. */
6470 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6471 {
6472 constructor_unfilled_fields = elt->purpose;
6473 output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6474 elt->purpose, 0);
6475 }
6476 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6477 {
6478 /* Advance to the next smaller node. */
6479 if (elt->left)
6480 elt = elt->left;
6481 else
6482 {
6483 /* We have reached the smallest node bigger than the
6484 current unfilled field. Fill the space first. */
6485 next = elt->purpose;
6486 break;
6487 }
6488 }
6489 else
6490 {
6491 /* Advance to the next bigger node. */
6492 if (elt->right)
6493 elt = elt->right;
6494 else
6495 {
6496 /* We have reached the biggest node in a subtree. Find
6497 the parent of it, which is the next bigger node. */
6498 while (elt->parent && elt->parent->right == elt)
6499 elt = elt->parent;
6500 elt = elt->parent;
6501 if (elt
6502 && (tree_int_cst_lt (ctor_unfilled_bitpos,
6503 bit_position (elt->purpose))))
6504 {
6505 next = elt->purpose;
6506 break;
6507 }
6508 }
6509 }
6510 }
6511 }
6512
6513 /* Ordinarily return, but not if we want to output all
6514 and there are elements left. */
6515 if (!(all && next != 0))
6516 return;
6517
6518 /* If it's not incremental, just skip over the gap, so that after
6519 jumping to retry we will output the next successive element. */
6520 if (TREE_CODE (constructor_type) == RECORD_TYPE
6521 || TREE_CODE (constructor_type) == UNION_TYPE)
6522 constructor_unfilled_fields = next;
6523 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6524 constructor_unfilled_index = next;
6525
6526 /* ELT now points to the node in the pending tree with the next
6527 initializer to output. */
6528 goto retry;
6529 }
6530 \f
6531 /* Add one non-braced element to the current constructor level.
6532 This adjusts the current position within the constructor's type.
6533 This may also start or terminate implicit levels
6534 to handle a partly-braced initializer.
6535
6536 Once this has found the correct level for the new element,
6537 it calls output_init_element. */
6538
6539 void
6540 process_init_element (struct c_expr value)
6541 {
6542 tree orig_value = value.value;
6543 int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6544 bool strict_string = value.original_code == STRING_CST;
6545
6546 designator_depth = 0;
6547 designator_erroneous = 0;
6548
6549 /* Handle superfluous braces around string cst as in
6550 char x[] = {"foo"}; */
6551 if (string_flag
6552 && constructor_type
6553 && TREE_CODE (constructor_type) == ARRAY_TYPE
6554 && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6555 && integer_zerop (constructor_unfilled_index))
6556 {
6557 if (constructor_stack->replacement_value.value)
6558 error_init ("excess elements in char array initializer");
6559 constructor_stack->replacement_value = value;
6560 return;
6561 }
6562
6563 if (constructor_stack->replacement_value.value != 0)
6564 {
6565 error_init ("excess elements in struct initializer");
6566 return;
6567 }
6568
6569 /* Ignore elements of a brace group if it is entirely superfluous
6570 and has already been diagnosed. */
6571 if (constructor_type == 0)
6572 return;
6573
6574 /* If we've exhausted any levels that didn't have braces,
6575 pop them now. */
6576 while (constructor_stack->implicit)
6577 {
6578 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6579 || TREE_CODE (constructor_type) == UNION_TYPE)
6580 && constructor_fields == 0)
6581 process_init_element (pop_init_level (1));
6582 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6583 && (constructor_max_index == 0
6584 || tree_int_cst_lt (constructor_max_index,
6585 constructor_index)))
6586 process_init_element (pop_init_level (1));
6587 else
6588 break;
6589 }
6590
6591 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
6592 if (constructor_range_stack)
6593 {
6594 /* If value is a compound literal and we'll be just using its
6595 content, don't put it into a SAVE_EXPR. */
6596 if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6597 || !require_constant_value
6598 || flag_isoc99)
6599 value.value = save_expr (value.value);
6600 }
6601
6602 while (1)
6603 {
6604 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6605 {
6606 tree fieldtype;
6607 enum tree_code fieldcode;
6608
6609 if (constructor_fields == 0)
6610 {
6611 pedwarn_init (0, "excess elements in struct initializer");
6612 break;
6613 }
6614
6615 fieldtype = TREE_TYPE (constructor_fields);
6616 if (fieldtype != error_mark_node)
6617 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6618 fieldcode = TREE_CODE (fieldtype);
6619
6620 /* Error for non-static initialization of a flexible array member. */
6621 if (fieldcode == ARRAY_TYPE
6622 && !require_constant_value
6623 && TYPE_SIZE (fieldtype) == NULL_TREE
6624 && TREE_CHAIN (constructor_fields) == NULL_TREE)
6625 {
6626 error_init ("non-static initialization of a flexible array member");
6627 break;
6628 }
6629
6630 /* Accept a string constant to initialize a subarray. */
6631 if (value.value != 0
6632 && fieldcode == ARRAY_TYPE
6633 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6634 && string_flag)
6635 value.value = orig_value;
6636 /* Otherwise, if we have come to a subaggregate,
6637 and we don't have an element of its type, push into it. */
6638 else if (value.value != 0
6639 && value.value != error_mark_node
6640 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6641 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6642 || fieldcode == UNION_TYPE))
6643 {
6644 push_init_level (1);
6645 continue;
6646 }
6647
6648 if (value.value)
6649 {
6650 push_member_name (constructor_fields);
6651 output_init_element (value.value, strict_string,
6652 fieldtype, constructor_fields, 1);
6653 RESTORE_SPELLING_DEPTH (constructor_depth);
6654 }
6655 else
6656 /* Do the bookkeeping for an element that was
6657 directly output as a constructor. */
6658 {
6659 /* For a record, keep track of end position of last field. */
6660 if (DECL_SIZE (constructor_fields))
6661 constructor_bit_index
6662 = size_binop (PLUS_EXPR,
6663 bit_position (constructor_fields),
6664 DECL_SIZE (constructor_fields));
6665
6666 /* If the current field was the first one not yet written out,
6667 it isn't now, so update. */
6668 if (constructor_unfilled_fields == constructor_fields)
6669 {
6670 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6671 /* Skip any nameless bit fields. */
6672 while (constructor_unfilled_fields != 0
6673 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6674 && DECL_NAME (constructor_unfilled_fields) == 0)
6675 constructor_unfilled_fields =
6676 TREE_CHAIN (constructor_unfilled_fields);
6677 }
6678 }
6679
6680 constructor_fields = TREE_CHAIN (constructor_fields);
6681 /* Skip any nameless bit fields at the beginning. */
6682 while (constructor_fields != 0
6683 && DECL_C_BIT_FIELD (constructor_fields)
6684 && DECL_NAME (constructor_fields) == 0)
6685 constructor_fields = TREE_CHAIN (constructor_fields);
6686 }
6687 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6688 {
6689 tree fieldtype;
6690 enum tree_code fieldcode;
6691
6692 if (constructor_fields == 0)
6693 {
6694 pedwarn_init (0, "excess elements in union initializer");
6695 break;
6696 }
6697
6698 fieldtype = TREE_TYPE (constructor_fields);
6699 if (fieldtype != error_mark_node)
6700 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6701 fieldcode = TREE_CODE (fieldtype);
6702
6703 /* Warn that traditional C rejects initialization of unions.
6704 We skip the warning if the value is zero. This is done
6705 under the assumption that the zero initializer in user
6706 code appears conditioned on e.g. __STDC__ to avoid
6707 "missing initializer" warnings and relies on default
6708 initialization to zero in the traditional C case.
6709 We also skip the warning if the initializer is designated,
6710 again on the assumption that this must be conditional on
6711 __STDC__ anyway (and we've already complained about the
6712 member-designator already). */
6713 if (!in_system_header && !constructor_designated
6714 && !(value.value && (integer_zerop (value.value)
6715 || real_zerop (value.value))))
6716 warning (OPT_Wtraditional, "traditional C rejects initialization "
6717 "of unions");
6718
6719 /* Accept a string constant to initialize a subarray. */
6720 if (value.value != 0
6721 && fieldcode == ARRAY_TYPE
6722 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6723 && string_flag)
6724 value.value = orig_value;
6725 /* Otherwise, if we have come to a subaggregate,
6726 and we don't have an element of its type, push into it. */
6727 else if (value.value != 0
6728 && value.value != error_mark_node
6729 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6730 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6731 || fieldcode == UNION_TYPE))
6732 {
6733 push_init_level (1);
6734 continue;
6735 }
6736
6737 if (value.value)
6738 {
6739 push_member_name (constructor_fields);
6740 output_init_element (value.value, strict_string,
6741 fieldtype, constructor_fields, 1);
6742 RESTORE_SPELLING_DEPTH (constructor_depth);
6743 }
6744 else
6745 /* Do the bookkeeping for an element that was
6746 directly output as a constructor. */
6747 {
6748 constructor_bit_index = DECL_SIZE (constructor_fields);
6749 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6750 }
6751
6752 constructor_fields = 0;
6753 }
6754 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6755 {
6756 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6757 enum tree_code eltcode = TREE_CODE (elttype);
6758
6759 /* Accept a string constant to initialize a subarray. */
6760 if (value.value != 0
6761 && eltcode == ARRAY_TYPE
6762 && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6763 && string_flag)
6764 value.value = orig_value;
6765 /* Otherwise, if we have come to a subaggregate,
6766 and we don't have an element of its type, push into it. */
6767 else if (value.value != 0
6768 && value.value != error_mark_node
6769 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6770 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6771 || eltcode == UNION_TYPE))
6772 {
6773 push_init_level (1);
6774 continue;
6775 }
6776
6777 if (constructor_max_index != 0
6778 && (tree_int_cst_lt (constructor_max_index, constructor_index)
6779 || integer_all_onesp (constructor_max_index)))
6780 {
6781 pedwarn_init (0, "excess elements in array initializer");
6782 break;
6783 }
6784
6785 /* Now output the actual element. */
6786 if (value.value)
6787 {
6788 push_array_bounds (tree_low_cst (constructor_index, 1));
6789 output_init_element (value.value, strict_string,
6790 elttype, constructor_index, 1);
6791 RESTORE_SPELLING_DEPTH (constructor_depth);
6792 }
6793
6794 constructor_index
6795 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6796
6797 if (!value.value)
6798 /* If we are doing the bookkeeping for an element that was
6799 directly output as a constructor, we must update
6800 constructor_unfilled_index. */
6801 constructor_unfilled_index = constructor_index;
6802 }
6803 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6804 {
6805 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6806
6807 /* Do a basic check of initializer size. Note that vectors
6808 always have a fixed size derived from their type. */
6809 if (tree_int_cst_lt (constructor_max_index, constructor_index))
6810 {
6811 pedwarn_init (0, "excess elements in vector initializer");
6812 break;
6813 }
6814
6815 /* Now output the actual element. */
6816 if (value.value)
6817 output_init_element (value.value, strict_string,
6818 elttype, constructor_index, 1);
6819
6820 constructor_index
6821 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6822
6823 if (!value.value)
6824 /* If we are doing the bookkeeping for an element that was
6825 directly output as a constructor, we must update
6826 constructor_unfilled_index. */
6827 constructor_unfilled_index = constructor_index;
6828 }
6829
6830 /* Handle the sole element allowed in a braced initializer
6831 for a scalar variable. */
6832 else if (constructor_type != error_mark_node
6833 && constructor_fields == 0)
6834 {
6835 pedwarn_init (0, "excess elements in scalar initializer");
6836 break;
6837 }
6838 else
6839 {
6840 if (value.value)
6841 output_init_element (value.value, strict_string,
6842 constructor_type, NULL_TREE, 1);
6843 constructor_fields = 0;
6844 }
6845
6846 /* Handle range initializers either at this level or anywhere higher
6847 in the designator stack. */
6848 if (constructor_range_stack)
6849 {
6850 struct constructor_range_stack *p, *range_stack;
6851 int finish = 0;
6852
6853 range_stack = constructor_range_stack;
6854 constructor_range_stack = 0;
6855 while (constructor_stack != range_stack->stack)
6856 {
6857 gcc_assert (constructor_stack->implicit);
6858 process_init_element (pop_init_level (1));
6859 }
6860 for (p = range_stack;
6861 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6862 p = p->prev)
6863 {
6864 gcc_assert (constructor_stack->implicit);
6865 process_init_element (pop_init_level (1));
6866 }
6867
6868 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6869 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6870 finish = 1;
6871
6872 while (1)
6873 {
6874 constructor_index = p->index;
6875 constructor_fields = p->fields;
6876 if (finish && p->range_end && p->index == p->range_start)
6877 {
6878 finish = 0;
6879 p->prev = 0;
6880 }
6881 p = p->next;
6882 if (!p)
6883 break;
6884 push_init_level (2);
6885 p->stack = constructor_stack;
6886 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6887 p->index = p->range_start;
6888 }
6889
6890 if (!finish)
6891 constructor_range_stack = range_stack;
6892 continue;
6893 }
6894
6895 break;
6896 }
6897
6898 constructor_range_stack = 0;
6899 }
6900 \f
6901 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
6902 (guaranteed to be 'volatile' or null) and ARGS (represented using
6903 an ASM_EXPR node). */
6904 tree
6905 build_asm_stmt (tree cv_qualifier, tree args)
6906 {
6907 if (!ASM_VOLATILE_P (args) && cv_qualifier)
6908 ASM_VOLATILE_P (args) = 1;
6909 return add_stmt (args);
6910 }
6911
6912 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6913 some INPUTS, and some CLOBBERS. The latter three may be NULL.
6914 SIMPLE indicates whether there was anything at all after the
6915 string in the asm expression -- asm("blah") and asm("blah" : )
6916 are subtly different. We use a ASM_EXPR node to represent this. */
6917 tree
6918 build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6919 bool simple)
6920 {
6921 tree tail;
6922 tree args;
6923 int i;
6924 const char *constraint;
6925 const char **oconstraints;
6926 bool allows_mem, allows_reg, is_inout;
6927 int ninputs, noutputs;
6928
6929 ninputs = list_length (inputs);
6930 noutputs = list_length (outputs);
6931 oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6932
6933 string = resolve_asm_operand_names (string, outputs, inputs);
6934
6935 /* Remove output conversions that change the type but not the mode. */
6936 for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6937 {
6938 tree output = TREE_VALUE (tail);
6939
6940 /* ??? Really, this should not be here. Users should be using a
6941 proper lvalue, dammit. But there's a long history of using casts
6942 in the output operands. In cases like longlong.h, this becomes a
6943 primitive form of typechecking -- if the cast can be removed, then
6944 the output operand had a type of the proper width; otherwise we'll
6945 get an error. Gross, but ... */
6946 STRIP_NOPS (output);
6947
6948 if (!lvalue_or_else (output, lv_asm))
6949 output = error_mark_node;
6950
6951 if (output != error_mark_node
6952 && (TREE_READONLY (output)
6953 || TYPE_READONLY (TREE_TYPE (output))
6954 || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6955 || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6956 && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6957 readonly_error (output, lv_asm);
6958
6959 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6960 oconstraints[i] = constraint;
6961
6962 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6963 &allows_mem, &allows_reg, &is_inout))
6964 {
6965 /* If the operand is going to end up in memory,
6966 mark it addressable. */
6967 if (!allows_reg && !c_mark_addressable (output))
6968 output = error_mark_node;
6969 }
6970 else
6971 output = error_mark_node;
6972
6973 TREE_VALUE (tail) = output;
6974 }
6975
6976 for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6977 {
6978 tree input;
6979
6980 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6981 input = TREE_VALUE (tail);
6982
6983 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6984 oconstraints, &allows_mem, &allows_reg))
6985 {
6986 /* If the operand is going to end up in memory,
6987 mark it addressable. */
6988 if (!allows_reg && allows_mem)
6989 {
6990 /* Strip the nops as we allow this case. FIXME, this really
6991 should be rejected or made deprecated. */
6992 STRIP_NOPS (input);
6993 if (!c_mark_addressable (input))
6994 input = error_mark_node;
6995 }
6996 }
6997 else
6998 input = error_mark_node;
6999
7000 TREE_VALUE (tail) = input;
7001 }
7002
7003 args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
7004
7005 /* asm statements without outputs, including simple ones, are treated
7006 as volatile. */
7007 ASM_INPUT_P (args) = simple;
7008 ASM_VOLATILE_P (args) = (noutputs == 0);
7009
7010 return args;
7011 }
7012 \f
7013 /* Generate a goto statement to LABEL. */
7014
7015 tree
7016 c_finish_goto_label (tree label)
7017 {
7018 tree decl = lookup_label (label);
7019 if (!decl)
7020 return NULL_TREE;
7021
7022 if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
7023 {
7024 error ("jump into statement expression");
7025 return NULL_TREE;
7026 }
7027
7028 if (C_DECL_UNJUMPABLE_VM (decl))
7029 {
7030 error ("jump into scope of identifier with variably modified type");
7031 return NULL_TREE;
7032 }
7033
7034 if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
7035 {
7036 /* No jump from outside this statement expression context, so
7037 record that there is a jump from within this context. */
7038 struct c_label_list *nlist;
7039 nlist = XOBNEW (&parser_obstack, struct c_label_list);
7040 nlist->next = label_context_stack_se->labels_used;
7041 nlist->label = decl;
7042 label_context_stack_se->labels_used = nlist;
7043 }
7044
7045 if (!C_DECL_UNDEFINABLE_VM (decl))
7046 {
7047 /* No jump from outside this context context of identifiers with
7048 variably modified type, so record that there is a jump from
7049 within this context. */
7050 struct c_label_list *nlist;
7051 nlist = XOBNEW (&parser_obstack, struct c_label_list);
7052 nlist->next = label_context_stack_vm->labels_used;
7053 nlist->label = decl;
7054 label_context_stack_vm->labels_used = nlist;
7055 }
7056
7057 TREE_USED (decl) = 1;
7058 return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
7059 }
7060
7061 /* Generate a computed goto statement to EXPR. */
7062
7063 tree
7064 c_finish_goto_ptr (tree expr)
7065 {
7066 pedwarn (OPT_pedantic, "ISO C forbids %<goto *expr;%>");
7067 expr = convert (ptr_type_node, expr);
7068 return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
7069 }
7070
7071 /* Generate a C `return' statement. RETVAL is the expression for what
7072 to return, or a null pointer for `return;' with no value. */
7073
7074 tree
7075 c_finish_return (tree retval)
7076 {
7077 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
7078 bool no_warning = false;
7079
7080 if (TREE_THIS_VOLATILE (current_function_decl))
7081 warning (0, "function declared %<noreturn%> has a %<return%> statement");
7082
7083 if (!retval)
7084 {
7085 current_function_returns_null = 1;
7086 if ((warn_return_type || flag_isoc99)
7087 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
7088 {
7089 pedwarn_c99 (flag_isoc99 ? 0 : OPT_Wreturn_type,
7090 "%<return%> with no value, in "
7091 "function returning non-void");
7092 no_warning = true;
7093 }
7094 }
7095 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
7096 {
7097 current_function_returns_null = 1;
7098 if (TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
7099 pedwarn (0, "%<return%> with a value, in function returning void");
7100 else
7101 pedwarn (OPT_pedantic, "ISO C forbids "
7102 "%<return%> with expression, in function returning void");
7103 }
7104 else
7105 {
7106 tree t = convert_for_assignment (valtype, retval, ic_return,
7107 NULL_TREE, NULL_TREE, 0);
7108 tree res = DECL_RESULT (current_function_decl);
7109 tree inner;
7110
7111 current_function_returns_value = 1;
7112 if (t == error_mark_node)
7113 return NULL_TREE;
7114
7115 inner = t = convert (TREE_TYPE (res), t);
7116
7117 /* Strip any conversions, additions, and subtractions, and see if
7118 we are returning the address of a local variable. Warn if so. */
7119 while (1)
7120 {
7121 switch (TREE_CODE (inner))
7122 {
7123 CASE_CONVERT: case NON_LVALUE_EXPR:
7124 case PLUS_EXPR:
7125 inner = TREE_OPERAND (inner, 0);
7126 continue;
7127
7128 case MINUS_EXPR:
7129 /* If the second operand of the MINUS_EXPR has a pointer
7130 type (or is converted from it), this may be valid, so
7131 don't give a warning. */
7132 {
7133 tree op1 = TREE_OPERAND (inner, 1);
7134
7135 while (!POINTER_TYPE_P (TREE_TYPE (op1))
7136 && (CONVERT_EXPR_P (op1)
7137 || TREE_CODE (op1) == NON_LVALUE_EXPR))
7138 op1 = TREE_OPERAND (op1, 0);
7139
7140 if (POINTER_TYPE_P (TREE_TYPE (op1)))
7141 break;
7142
7143 inner = TREE_OPERAND (inner, 0);
7144 continue;
7145 }
7146
7147 case ADDR_EXPR:
7148 inner = TREE_OPERAND (inner, 0);
7149
7150 while (REFERENCE_CLASS_P (inner)
7151 && TREE_CODE (inner) != INDIRECT_REF)
7152 inner = TREE_OPERAND (inner, 0);
7153
7154 if (DECL_P (inner)
7155 && !DECL_EXTERNAL (inner)
7156 && !TREE_STATIC (inner)
7157 && DECL_CONTEXT (inner) == current_function_decl)
7158 warning (0, "function returns address of local variable");
7159 break;
7160
7161 default:
7162 break;
7163 }
7164
7165 break;
7166 }
7167
7168 retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7169 }
7170
7171 ret_stmt = build_stmt (RETURN_EXPR, retval);
7172 TREE_NO_WARNING (ret_stmt) |= no_warning;
7173 return add_stmt (ret_stmt);
7174 }
7175 \f
7176 struct c_switch {
7177 /* The SWITCH_EXPR being built. */
7178 tree switch_expr;
7179
7180 /* The original type of the testing expression, i.e. before the
7181 default conversion is applied. */
7182 tree orig_type;
7183
7184 /* A splay-tree mapping the low element of a case range to the high
7185 element, or NULL_TREE if there is no high element. Used to
7186 determine whether or not a new case label duplicates an old case
7187 label. We need a tree, rather than simply a hash table, because
7188 of the GNU case range extension. */
7189 splay_tree cases;
7190
7191 /* Number of nested statement expressions within this switch
7192 statement; if nonzero, case and default labels may not
7193 appear. */
7194 unsigned int blocked_stmt_expr;
7195
7196 /* Scope of outermost declarations of identifiers with variably
7197 modified type within this switch statement; if nonzero, case and
7198 default labels may not appear. */
7199 unsigned int blocked_vm;
7200
7201 /* The next node on the stack. */
7202 struct c_switch *next;
7203 };
7204
7205 /* A stack of the currently active switch statements. The innermost
7206 switch statement is on the top of the stack. There is no need to
7207 mark the stack for garbage collection because it is only active
7208 during the processing of the body of a function, and we never
7209 collect at that point. */
7210
7211 struct c_switch *c_switch_stack;
7212
7213 /* Start a C switch statement, testing expression EXP. Return the new
7214 SWITCH_EXPR. */
7215
7216 tree
7217 c_start_case (tree exp)
7218 {
7219 tree orig_type = error_mark_node;
7220 struct c_switch *cs;
7221
7222 if (exp != error_mark_node)
7223 {
7224 orig_type = TREE_TYPE (exp);
7225
7226 if (!INTEGRAL_TYPE_P (orig_type))
7227 {
7228 if (orig_type != error_mark_node)
7229 {
7230 error ("switch quantity not an integer");
7231 orig_type = error_mark_node;
7232 }
7233 exp = integer_zero_node;
7234 }
7235 else
7236 {
7237 tree type = TYPE_MAIN_VARIANT (orig_type);
7238
7239 if (!in_system_header
7240 && (type == long_integer_type_node
7241 || type == long_unsigned_type_node))
7242 warning (OPT_Wtraditional, "%<long%> switch expression not "
7243 "converted to %<int%> in ISO C");
7244
7245 exp = default_conversion (exp);
7246 }
7247 }
7248
7249 /* Add this new SWITCH_EXPR to the stack. */
7250 cs = XNEW (struct c_switch);
7251 cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7252 cs->orig_type = orig_type;
7253 cs->cases = splay_tree_new (case_compare, NULL, NULL);
7254 cs->blocked_stmt_expr = 0;
7255 cs->blocked_vm = 0;
7256 cs->next = c_switch_stack;
7257 c_switch_stack = cs;
7258
7259 return add_stmt (cs->switch_expr);
7260 }
7261
7262 /* Process a case label. */
7263
7264 tree
7265 do_case (tree low_value, tree high_value)
7266 {
7267 tree label = NULL_TREE;
7268
7269 if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7270 && !c_switch_stack->blocked_vm)
7271 {
7272 label = c_add_case_label (c_switch_stack->cases,
7273 SWITCH_COND (c_switch_stack->switch_expr),
7274 c_switch_stack->orig_type,
7275 low_value, high_value);
7276 if (label == error_mark_node)
7277 label = NULL_TREE;
7278 }
7279 else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7280 {
7281 if (low_value)
7282 error ("case label in statement expression not containing "
7283 "enclosing switch statement");
7284 else
7285 error ("%<default%> label in statement expression not containing "
7286 "enclosing switch statement");
7287 }
7288 else if (c_switch_stack && c_switch_stack->blocked_vm)
7289 {
7290 if (low_value)
7291 error ("case label in scope of identifier with variably modified "
7292 "type not containing enclosing switch statement");
7293 else
7294 error ("%<default%> label in scope of identifier with variably "
7295 "modified type not containing enclosing switch statement");
7296 }
7297 else if (low_value)
7298 error ("case label not within a switch statement");
7299 else
7300 error ("%<default%> label not within a switch statement");
7301
7302 return label;
7303 }
7304
7305 /* Finish the switch statement. */
7306
7307 void
7308 c_finish_case (tree body)
7309 {
7310 struct c_switch *cs = c_switch_stack;
7311 location_t switch_location;
7312
7313 SWITCH_BODY (cs->switch_expr) = body;
7314
7315 /* We must not be within a statement expression nested in the switch
7316 at this point; we might, however, be within the scope of an
7317 identifier with variably modified type nested in the switch. */
7318 gcc_assert (!cs->blocked_stmt_expr);
7319
7320 /* Emit warnings as needed. */
7321 if (EXPR_HAS_LOCATION (cs->switch_expr))
7322 switch_location = EXPR_LOCATION (cs->switch_expr);
7323 else
7324 switch_location = input_location;
7325 c_do_switch_warnings (cs->cases, switch_location,
7326 TREE_TYPE (cs->switch_expr),
7327 SWITCH_COND (cs->switch_expr));
7328
7329 /* Pop the stack. */
7330 c_switch_stack = cs->next;
7331 splay_tree_delete (cs->cases);
7332 XDELETE (cs);
7333 }
7334 \f
7335 /* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
7336 THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7337 may be null. NESTED_IF is true if THEN_BLOCK contains another IF
7338 statement, and was not surrounded with parenthesis. */
7339
7340 void
7341 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7342 tree else_block, bool nested_if)
7343 {
7344 tree stmt;
7345
7346 /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
7347 if (warn_parentheses && nested_if && else_block == NULL)
7348 {
7349 tree inner_if = then_block;
7350
7351 /* We know from the grammar productions that there is an IF nested
7352 within THEN_BLOCK. Due to labels and c99 conditional declarations,
7353 it might not be exactly THEN_BLOCK, but should be the last
7354 non-container statement within. */
7355 while (1)
7356 switch (TREE_CODE (inner_if))
7357 {
7358 case COND_EXPR:
7359 goto found;
7360 case BIND_EXPR:
7361 inner_if = BIND_EXPR_BODY (inner_if);
7362 break;
7363 case STATEMENT_LIST:
7364 inner_if = expr_last (then_block);
7365 break;
7366 case TRY_FINALLY_EXPR:
7367 case TRY_CATCH_EXPR:
7368 inner_if = TREE_OPERAND (inner_if, 0);
7369 break;
7370 default:
7371 gcc_unreachable ();
7372 }
7373 found:
7374
7375 if (COND_EXPR_ELSE (inner_if))
7376 warning (OPT_Wparentheses,
7377 "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7378 &if_locus);
7379 }
7380
7381 empty_if_body_warning (then_block, else_block);
7382
7383 stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7384 SET_EXPR_LOCATION (stmt, if_locus);
7385 add_stmt (stmt);
7386 }
7387
7388 /* Emit a general-purpose loop construct. START_LOCUS is the location of
7389 the beginning of the loop. COND is the loop condition. COND_IS_FIRST
7390 is false for DO loops. INCR is the FOR increment expression. BODY is
7391 the statement controlled by the loop. BLAB is the break label. CLAB is
7392 the continue label. Everything is allowed to be NULL. */
7393
7394 void
7395 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7396 tree blab, tree clab, bool cond_is_first)
7397 {
7398 tree entry = NULL, exit = NULL, t;
7399
7400 /* If the condition is zero don't generate a loop construct. */
7401 if (cond && integer_zerop (cond))
7402 {
7403 if (cond_is_first)
7404 {
7405 t = build_and_jump (&blab);
7406 SET_EXPR_LOCATION (t, start_locus);
7407 add_stmt (t);
7408 }
7409 }
7410 else
7411 {
7412 tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7413
7414 /* If we have an exit condition, then we build an IF with gotos either
7415 out of the loop, or to the top of it. If there's no exit condition,
7416 then we just build a jump back to the top. */
7417 exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7418
7419 if (cond && !integer_nonzerop (cond))
7420 {
7421 /* Canonicalize the loop condition to the end. This means
7422 generating a branch to the loop condition. Reuse the
7423 continue label, if possible. */
7424 if (cond_is_first)
7425 {
7426 if (incr || !clab)
7427 {
7428 entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7429 t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7430 }
7431 else
7432 t = build1 (GOTO_EXPR, void_type_node, clab);
7433 SET_EXPR_LOCATION (t, start_locus);
7434 add_stmt (t);
7435 }
7436
7437 t = build_and_jump (&blab);
7438 exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7439 if (cond_is_first)
7440 SET_EXPR_LOCATION (exit, start_locus);
7441 else
7442 SET_EXPR_LOCATION (exit, input_location);
7443 }
7444
7445 add_stmt (top);
7446 }
7447
7448 if (body)
7449 add_stmt (body);
7450 if (clab)
7451 add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7452 if (incr)
7453 add_stmt (incr);
7454 if (entry)
7455 add_stmt (entry);
7456 if (exit)
7457 add_stmt (exit);
7458 if (blab)
7459 add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7460 }
7461
7462 tree
7463 c_finish_bc_stmt (tree *label_p, bool is_break)
7464 {
7465 bool skip;
7466 tree label = *label_p;
7467
7468 /* In switch statements break is sometimes stylistically used after
7469 a return statement. This can lead to spurious warnings about
7470 control reaching the end of a non-void function when it is
7471 inlined. Note that we are calling block_may_fallthru with
7472 language specific tree nodes; this works because
7473 block_may_fallthru returns true when given something it does not
7474 understand. */
7475 skip = !block_may_fallthru (cur_stmt_list);
7476
7477 if (!label)
7478 {
7479 if (!skip)
7480 *label_p = label = create_artificial_label ();
7481 }
7482 else if (TREE_CODE (label) == LABEL_DECL)
7483 ;
7484 else switch (TREE_INT_CST_LOW (label))
7485 {
7486 case 0:
7487 if (is_break)
7488 error ("break statement not within loop or switch");
7489 else
7490 error ("continue statement not within a loop");
7491 return NULL_TREE;
7492
7493 case 1:
7494 gcc_assert (is_break);
7495 error ("break statement used with OpenMP for loop");
7496 return NULL_TREE;
7497
7498 default:
7499 gcc_unreachable ();
7500 }
7501
7502 if (skip)
7503 return NULL_TREE;
7504
7505 if (!is_break)
7506 add_stmt (build_predict_expr (PRED_CONTINUE, NOT_TAKEN));
7507
7508 return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7509 }
7510
7511 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
7512
7513 static void
7514 emit_side_effect_warnings (tree expr)
7515 {
7516 if (expr == error_mark_node)
7517 ;
7518 else if (!TREE_SIDE_EFFECTS (expr))
7519 {
7520 if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7521 warning (OPT_Wunused_value, "%Hstatement with no effect",
7522 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7523 }
7524 else
7525 warn_if_unused_value (expr, input_location);
7526 }
7527
7528 /* Process an expression as if it were a complete statement. Emit
7529 diagnostics, but do not call ADD_STMT. */
7530
7531 tree
7532 c_process_expr_stmt (tree expr)
7533 {
7534 if (!expr)
7535 return NULL_TREE;
7536
7537 if (warn_sequence_point)
7538 verify_sequence_points (expr);
7539
7540 if (TREE_TYPE (expr) != error_mark_node
7541 && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7542 && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7543 error ("expression statement has incomplete type");
7544
7545 /* If we're not processing a statement expression, warn about unused values.
7546 Warnings for statement expressions will be emitted later, once we figure
7547 out which is the result. */
7548 if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7549 && warn_unused_value)
7550 emit_side_effect_warnings (expr);
7551
7552 /* If the expression is not of a type to which we cannot assign a line
7553 number, wrap the thing in a no-op NOP_EXPR. */
7554 if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7555 expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7556
7557 if (CAN_HAVE_LOCATION_P (expr))
7558 SET_EXPR_LOCATION (expr, input_location);
7559
7560 return expr;
7561 }
7562
7563 /* Emit an expression as a statement. */
7564
7565 tree
7566 c_finish_expr_stmt (tree expr)
7567 {
7568 if (expr)
7569 return add_stmt (c_process_expr_stmt (expr));
7570 else
7571 return NULL;
7572 }
7573
7574 /* Do the opposite and emit a statement as an expression. To begin,
7575 create a new binding level and return it. */
7576
7577 tree
7578 c_begin_stmt_expr (void)
7579 {
7580 tree ret;
7581 struct c_label_context_se *nstack;
7582 struct c_label_list *glist;
7583
7584 /* We must force a BLOCK for this level so that, if it is not expanded
7585 later, there is a way to turn off the entire subtree of blocks that
7586 are contained in it. */
7587 keep_next_level ();
7588 ret = c_begin_compound_stmt (true);
7589 if (c_switch_stack)
7590 {
7591 c_switch_stack->blocked_stmt_expr++;
7592 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7593 }
7594 for (glist = label_context_stack_se->labels_used;
7595 glist != NULL;
7596 glist = glist->next)
7597 {
7598 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7599 }
7600 nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7601 nstack->labels_def = NULL;
7602 nstack->labels_used = NULL;
7603 nstack->next = label_context_stack_se;
7604 label_context_stack_se = nstack;
7605
7606 /* Mark the current statement list as belonging to a statement list. */
7607 STATEMENT_LIST_STMT_EXPR (ret) = 1;
7608
7609 return ret;
7610 }
7611
7612 tree
7613 c_finish_stmt_expr (tree body)
7614 {
7615 tree last, type, tmp, val;
7616 tree *last_p;
7617 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7618
7619 body = c_end_compound_stmt (body, true);
7620 if (c_switch_stack)
7621 {
7622 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7623 c_switch_stack->blocked_stmt_expr--;
7624 }
7625 /* It is no longer possible to jump to labels defined within this
7626 statement expression. */
7627 for (dlist = label_context_stack_se->labels_def;
7628 dlist != NULL;
7629 dlist = dlist->next)
7630 {
7631 C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7632 }
7633 /* It is again possible to define labels with a goto just outside
7634 this statement expression. */
7635 for (glist = label_context_stack_se->next->labels_used;
7636 glist != NULL;
7637 glist = glist->next)
7638 {
7639 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7640 glist_prev = glist;
7641 }
7642 if (glist_prev != NULL)
7643 glist_prev->next = label_context_stack_se->labels_used;
7644 else
7645 label_context_stack_se->next->labels_used
7646 = label_context_stack_se->labels_used;
7647 label_context_stack_se = label_context_stack_se->next;
7648
7649 /* Locate the last statement in BODY. See c_end_compound_stmt
7650 about always returning a BIND_EXPR. */
7651 last_p = &BIND_EXPR_BODY (body);
7652 last = BIND_EXPR_BODY (body);
7653
7654 continue_searching:
7655 if (TREE_CODE (last) == STATEMENT_LIST)
7656 {
7657 tree_stmt_iterator i;
7658
7659 /* This can happen with degenerate cases like ({ }). No value. */
7660 if (!TREE_SIDE_EFFECTS (last))
7661 return body;
7662
7663 /* If we're supposed to generate side effects warnings, process
7664 all of the statements except the last. */
7665 if (warn_unused_value)
7666 {
7667 for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7668 emit_side_effect_warnings (tsi_stmt (i));
7669 }
7670 else
7671 i = tsi_last (last);
7672 last_p = tsi_stmt_ptr (i);
7673 last = *last_p;
7674 }
7675
7676 /* If the end of the list is exception related, then the list was split
7677 by a call to push_cleanup. Continue searching. */
7678 if (TREE_CODE (last) == TRY_FINALLY_EXPR
7679 || TREE_CODE (last) == TRY_CATCH_EXPR)
7680 {
7681 last_p = &TREE_OPERAND (last, 0);
7682 last = *last_p;
7683 goto continue_searching;
7684 }
7685
7686 /* In the case that the BIND_EXPR is not necessary, return the
7687 expression out from inside it. */
7688 if (last == error_mark_node
7689 || (last == BIND_EXPR_BODY (body)
7690 && BIND_EXPR_VARS (body) == NULL))
7691 {
7692 /* Do not warn if the return value of a statement expression is
7693 unused. */
7694 if (CAN_HAVE_LOCATION_P (last))
7695 TREE_NO_WARNING (last) = 1;
7696 return last;
7697 }
7698
7699 /* Extract the type of said expression. */
7700 type = TREE_TYPE (last);
7701
7702 /* If we're not returning a value at all, then the BIND_EXPR that
7703 we already have is a fine expression to return. */
7704 if (!type || VOID_TYPE_P (type))
7705 return body;
7706
7707 /* Now that we've located the expression containing the value, it seems
7708 silly to make voidify_wrapper_expr repeat the process. Create a
7709 temporary of the appropriate type and stick it in a TARGET_EXPR. */
7710 tmp = create_tmp_var_raw (type, NULL);
7711
7712 /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
7713 tree_expr_nonnegative_p giving up immediately. */
7714 val = last;
7715 if (TREE_CODE (val) == NOP_EXPR
7716 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7717 val = TREE_OPERAND (val, 0);
7718
7719 *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7720 SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7721
7722 return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7723 }
7724
7725 /* Begin the scope of an identifier of variably modified type, scope
7726 number SCOPE. Jumping from outside this scope to inside it is not
7727 permitted. */
7728
7729 void
7730 c_begin_vm_scope (unsigned int scope)
7731 {
7732 struct c_label_context_vm *nstack;
7733 struct c_label_list *glist;
7734
7735 gcc_assert (scope > 0);
7736
7737 /* At file_scope, we don't have to do any processing. */
7738 if (label_context_stack_vm == NULL)
7739 return;
7740
7741 if (c_switch_stack && !c_switch_stack->blocked_vm)
7742 c_switch_stack->blocked_vm = scope;
7743 for (glist = label_context_stack_vm->labels_used;
7744 glist != NULL;
7745 glist = glist->next)
7746 {
7747 C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7748 }
7749 nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7750 nstack->labels_def = NULL;
7751 nstack->labels_used = NULL;
7752 nstack->scope = scope;
7753 nstack->next = label_context_stack_vm;
7754 label_context_stack_vm = nstack;
7755 }
7756
7757 /* End a scope which may contain identifiers of variably modified
7758 type, scope number SCOPE. */
7759
7760 void
7761 c_end_vm_scope (unsigned int scope)
7762 {
7763 if (label_context_stack_vm == NULL)
7764 return;
7765 if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7766 c_switch_stack->blocked_vm = 0;
7767 /* We may have a number of nested scopes of identifiers with
7768 variably modified type, all at this depth. Pop each in turn. */
7769 while (label_context_stack_vm->scope == scope)
7770 {
7771 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7772
7773 /* It is no longer possible to jump to labels defined within this
7774 scope. */
7775 for (dlist = label_context_stack_vm->labels_def;
7776 dlist != NULL;
7777 dlist = dlist->next)
7778 {
7779 C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7780 }
7781 /* It is again possible to define labels with a goto just outside
7782 this scope. */
7783 for (glist = label_context_stack_vm->next->labels_used;
7784 glist != NULL;
7785 glist = glist->next)
7786 {
7787 C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7788 glist_prev = glist;
7789 }
7790 if (glist_prev != NULL)
7791 glist_prev->next = label_context_stack_vm->labels_used;
7792 else
7793 label_context_stack_vm->next->labels_used
7794 = label_context_stack_vm->labels_used;
7795 label_context_stack_vm = label_context_stack_vm->next;
7796 }
7797 }
7798 \f
7799 /* Begin and end compound statements. This is as simple as pushing
7800 and popping new statement lists from the tree. */
7801
7802 tree
7803 c_begin_compound_stmt (bool do_scope)
7804 {
7805 tree stmt = push_stmt_list ();
7806 if (do_scope)
7807 push_scope ();
7808 return stmt;
7809 }
7810
7811 tree
7812 c_end_compound_stmt (tree stmt, bool do_scope)
7813 {
7814 tree block = NULL;
7815
7816 if (do_scope)
7817 {
7818 if (c_dialect_objc ())
7819 objc_clear_super_receiver ();
7820 block = pop_scope ();
7821 }
7822
7823 stmt = pop_stmt_list (stmt);
7824 stmt = c_build_bind_expr (block, stmt);
7825
7826 /* If this compound statement is nested immediately inside a statement
7827 expression, then force a BIND_EXPR to be created. Otherwise we'll
7828 do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
7829 STATEMENT_LISTs merge, and thus we can lose track of what statement
7830 was really last. */
7831 if (cur_stmt_list
7832 && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7833 && TREE_CODE (stmt) != BIND_EXPR)
7834 {
7835 stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7836 TREE_SIDE_EFFECTS (stmt) = 1;
7837 }
7838
7839 return stmt;
7840 }
7841
7842 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
7843 when the current scope is exited. EH_ONLY is true when this is not
7844 meant to apply to normal control flow transfer. */
7845
7846 void
7847 push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7848 {
7849 enum tree_code code;
7850 tree stmt, list;
7851 bool stmt_expr;
7852
7853 code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7854 stmt = build_stmt (code, NULL, cleanup);
7855 add_stmt (stmt);
7856 stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7857 list = push_stmt_list ();
7858 TREE_OPERAND (stmt, 0) = list;
7859 STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7860 }
7861 \f
7862 /* Build a binary-operation expression without default conversions.
7863 CODE is the kind of expression to build.
7864 This function differs from `build' in several ways:
7865 the data type of the result is computed and recorded in it,
7866 warnings are generated if arg data types are invalid,
7867 special handling for addition and subtraction of pointers is known,
7868 and some optimization is done (operations on narrow ints
7869 are done in the narrower type when that gives the same result).
7870 Constant folding is also done before the result is returned.
7871
7872 Note that the operands will never have enumeral types, or function
7873 or array types, because either they will have the default conversions
7874 performed or they have both just been converted to some other type in which
7875 the arithmetic is to be done. */
7876
7877 tree
7878 build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7879 int convert_p)
7880 {
7881 tree type0, type1;
7882 enum tree_code code0, code1;
7883 tree op0, op1;
7884 const char *invalid_op_diag;
7885
7886 /* Expression code to give to the expression when it is built.
7887 Normally this is CODE, which is what the caller asked for,
7888 but in some special cases we change it. */
7889 enum tree_code resultcode = code;
7890
7891 /* Data type in which the computation is to be performed.
7892 In the simplest cases this is the common type of the arguments. */
7893 tree result_type = NULL;
7894
7895 /* Nonzero means operands have already been type-converted
7896 in whatever way is necessary.
7897 Zero means they need to be converted to RESULT_TYPE. */
7898 int converted = 0;
7899
7900 /* Nonzero means create the expression with this type, rather than
7901 RESULT_TYPE. */
7902 tree build_type = 0;
7903
7904 /* Nonzero means after finally constructing the expression
7905 convert it to this type. */
7906 tree final_type = 0;
7907
7908 /* Nonzero if this is an operation like MIN or MAX which can
7909 safely be computed in short if both args are promoted shorts.
7910 Also implies COMMON.
7911 -1 indicates a bitwise operation; this makes a difference
7912 in the exact conditions for when it is safe to do the operation
7913 in a narrower mode. */
7914 int shorten = 0;
7915
7916 /* Nonzero if this is a comparison operation;
7917 if both args are promoted shorts, compare the original shorts.
7918 Also implies COMMON. */
7919 int short_compare = 0;
7920
7921 /* Nonzero if this is a right-shift operation, which can be computed on the
7922 original short and then promoted if the operand is a promoted short. */
7923 int short_shift = 0;
7924
7925 /* Nonzero means set RESULT_TYPE to the common type of the args. */
7926 int common = 0;
7927
7928 /* True means types are compatible as far as ObjC is concerned. */
7929 bool objc_ok;
7930
7931 if (convert_p)
7932 {
7933 op0 = default_conversion (orig_op0);
7934 op1 = default_conversion (orig_op1);
7935 }
7936 else
7937 {
7938 op0 = orig_op0;
7939 op1 = orig_op1;
7940 }
7941
7942 type0 = TREE_TYPE (op0);
7943 type1 = TREE_TYPE (op1);
7944
7945 /* The expression codes of the data types of the arguments tell us
7946 whether the arguments are integers, floating, pointers, etc. */
7947 code0 = TREE_CODE (type0);
7948 code1 = TREE_CODE (type1);
7949
7950 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
7951 STRIP_TYPE_NOPS (op0);
7952 STRIP_TYPE_NOPS (op1);
7953
7954 /* If an error was already reported for one of the arguments,
7955 avoid reporting another error. */
7956
7957 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7958 return error_mark_node;
7959
7960 if ((invalid_op_diag
7961 = targetm.invalid_binary_op (code, type0, type1)))
7962 {
7963 error (invalid_op_diag);
7964 return error_mark_node;
7965 }
7966
7967 objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7968
7969 switch (code)
7970 {
7971 case PLUS_EXPR:
7972 /* Handle the pointer + int case. */
7973 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7974 return pointer_int_sum (PLUS_EXPR, op0, op1);
7975 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7976 return pointer_int_sum (PLUS_EXPR, op1, op0);
7977 else
7978 common = 1;
7979 break;
7980
7981 case MINUS_EXPR:
7982 /* Subtraction of two similar pointers.
7983 We must subtract them as integers, then divide by object size. */
7984 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7985 && comp_target_types (type0, type1))
7986 return pointer_diff (op0, op1);
7987 /* Handle pointer minus int. Just like pointer plus int. */
7988 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7989 return pointer_int_sum (MINUS_EXPR, op0, op1);
7990 else
7991 common = 1;
7992 break;
7993
7994 case MULT_EXPR:
7995 common = 1;
7996 break;
7997
7998 case TRUNC_DIV_EXPR:
7999 case CEIL_DIV_EXPR:
8000 case FLOOR_DIV_EXPR:
8001 case ROUND_DIV_EXPR:
8002 case EXACT_DIV_EXPR:
8003 warn_for_div_by_zero (op1);
8004
8005 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8006 || code0 == FIXED_POINT_TYPE
8007 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
8008 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8009 || code1 == FIXED_POINT_TYPE
8010 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
8011 {
8012 enum tree_code tcode0 = code0, tcode1 = code1;
8013
8014 if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
8015 tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
8016 if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
8017 tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
8018
8019 if (!((tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE)
8020 || (tcode0 == FIXED_POINT_TYPE && tcode1 == FIXED_POINT_TYPE)))
8021 resultcode = RDIV_EXPR;
8022 else
8023 /* Although it would be tempting to shorten always here, that
8024 loses on some targets, since the modulo instruction is
8025 undefined if the quotient can't be represented in the
8026 computation mode. We shorten only if unsigned or if
8027 dividing by something we know != -1. */
8028 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
8029 || (TREE_CODE (op1) == INTEGER_CST
8030 && !integer_all_onesp (op1)));
8031 common = 1;
8032 }
8033 break;
8034
8035 case BIT_AND_EXPR:
8036 case BIT_IOR_EXPR:
8037 case BIT_XOR_EXPR:
8038 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8039 shorten = -1;
8040 /* Allow vector types which are not floating point types. */
8041 else if (code0 == VECTOR_TYPE
8042 && code1 == VECTOR_TYPE
8043 && !VECTOR_FLOAT_TYPE_P (type0)
8044 && !VECTOR_FLOAT_TYPE_P (type1))
8045 common = 1;
8046 break;
8047
8048 case TRUNC_MOD_EXPR:
8049 case FLOOR_MOD_EXPR:
8050 warn_for_div_by_zero (op1);
8051
8052 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8053 {
8054 /* Although it would be tempting to shorten always here, that loses
8055 on some targets, since the modulo instruction is undefined if the
8056 quotient can't be represented in the computation mode. We shorten
8057 only if unsigned or if dividing by something we know != -1. */
8058 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
8059 || (TREE_CODE (op1) == INTEGER_CST
8060 && !integer_all_onesp (op1)));
8061 common = 1;
8062 }
8063 break;
8064
8065 case TRUTH_ANDIF_EXPR:
8066 case TRUTH_ORIF_EXPR:
8067 case TRUTH_AND_EXPR:
8068 case TRUTH_OR_EXPR:
8069 case TRUTH_XOR_EXPR:
8070 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
8071 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8072 || code0 == FIXED_POINT_TYPE)
8073 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
8074 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8075 || code1 == FIXED_POINT_TYPE))
8076 {
8077 /* Result of these operations is always an int,
8078 but that does not mean the operands should be
8079 converted to ints! */
8080 result_type = integer_type_node;
8081 op0 = c_common_truthvalue_conversion (op0);
8082 op1 = c_common_truthvalue_conversion (op1);
8083 converted = 1;
8084 }
8085 break;
8086
8087 /* Shift operations: result has same type as first operand;
8088 always convert second operand to int.
8089 Also set SHORT_SHIFT if shifting rightward. */
8090
8091 case RSHIFT_EXPR:
8092 if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE)
8093 && code1 == INTEGER_TYPE)
8094 {
8095 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8096 {
8097 if (tree_int_cst_sgn (op1) < 0)
8098 warning (0, "right shift count is negative");
8099 else
8100 {
8101 if (!integer_zerop (op1))
8102 short_shift = 1;
8103
8104 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8105 warning (0, "right shift count >= width of type");
8106 }
8107 }
8108
8109 /* Use the type of the value to be shifted. */
8110 result_type = type0;
8111 /* Convert the shift-count to an integer, regardless of size
8112 of value being shifted. */
8113 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8114 op1 = convert (integer_type_node, op1);
8115 /* Avoid converting op1 to result_type later. */
8116 converted = 1;
8117 }
8118 break;
8119
8120 case LSHIFT_EXPR:
8121 if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE)
8122 && code1 == INTEGER_TYPE)
8123 {
8124 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8125 {
8126 if (tree_int_cst_sgn (op1) < 0)
8127 warning (0, "left shift count is negative");
8128
8129 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8130 warning (0, "left shift count >= width of type");
8131 }
8132
8133 /* Use the type of the value to be shifted. */
8134 result_type = type0;
8135 /* Convert the shift-count to an integer, regardless of size
8136 of value being shifted. */
8137 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8138 op1 = convert (integer_type_node, op1);
8139 /* Avoid converting op1 to result_type later. */
8140 converted = 1;
8141 }
8142 break;
8143
8144 case EQ_EXPR:
8145 case NE_EXPR:
8146 if (FLOAT_TYPE_P (type0) || FLOAT_TYPE_P (type1))
8147 warning (OPT_Wfloat_equal,
8148 "comparing floating point with == or != is unsafe");
8149 /* Result of comparison is always int,
8150 but don't convert the args to int! */
8151 build_type = integer_type_node;
8152 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8153 || code0 == FIXED_POINT_TYPE || code0 == COMPLEX_TYPE)
8154 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8155 || code1 == FIXED_POINT_TYPE || code1 == COMPLEX_TYPE))
8156 short_compare = 1;
8157 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8158 {
8159 tree tt0 = TREE_TYPE (type0);
8160 tree tt1 = TREE_TYPE (type1);
8161 /* Anything compares with void *. void * compares with anything.
8162 Otherwise, the targets must be compatible
8163 and both must be object or both incomplete. */
8164 if (comp_target_types (type0, type1))
8165 result_type = common_pointer_type (type0, type1);
8166 else if (VOID_TYPE_P (tt0))
8167 {
8168 /* op0 != orig_op0 detects the case of something
8169 whose value is 0 but which isn't a valid null ptr const. */
8170 if (pedantic && !null_pointer_constant_p (orig_op0)
8171 && TREE_CODE (tt1) == FUNCTION_TYPE)
8172 pedwarn (OPT_pedantic, "ISO C forbids "
8173 "comparison of %<void *%> with function pointer");
8174 }
8175 else if (VOID_TYPE_P (tt1))
8176 {
8177 if (pedantic && !null_pointer_constant_p (orig_op1)
8178 && TREE_CODE (tt0) == FUNCTION_TYPE)
8179 pedwarn (OPT_pedantic, "ISO C forbids "
8180 "comparison of %<void *%> with function pointer");
8181 }
8182 else
8183 /* Avoid warning about the volatile ObjC EH puts on decls. */
8184 if (!objc_ok)
8185 pedwarn (0, "comparison of distinct pointer types lacks a cast");
8186
8187 if (result_type == NULL_TREE)
8188 result_type = ptr_type_node;
8189 }
8190 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8191 {
8192 if (TREE_CODE (op0) == ADDR_EXPR
8193 && decl_with_nonnull_addr_p (TREE_OPERAND (op0, 0)))
8194 warning (OPT_Waddress, "the address of %qD will never be NULL",
8195 TREE_OPERAND (op0, 0));
8196 result_type = type0;
8197 }
8198 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8199 {
8200 if (TREE_CODE (op1) == ADDR_EXPR
8201 && decl_with_nonnull_addr_p (TREE_OPERAND (op1, 0)))
8202 warning (OPT_Waddress, "the address of %qD will never be NULL",
8203 TREE_OPERAND (op1, 0));
8204 result_type = type1;
8205 }
8206 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8207 {
8208 result_type = type0;
8209 pedwarn (0, "comparison between pointer and integer");
8210 }
8211 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8212 {
8213 result_type = type1;
8214 pedwarn (0, "comparison between pointer and integer");
8215 }
8216 break;
8217
8218 case LE_EXPR:
8219 case GE_EXPR:
8220 case LT_EXPR:
8221 case GT_EXPR:
8222 build_type = integer_type_node;
8223 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8224 || code0 == FIXED_POINT_TYPE)
8225 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8226 || code1 == FIXED_POINT_TYPE))
8227 short_compare = 1;
8228 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8229 {
8230 if (comp_target_types (type0, type1))
8231 {
8232 result_type = common_pointer_type (type0, type1);
8233 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8234 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8235 pedwarn (0, "comparison of complete and incomplete pointers");
8236 else if (TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8237 pedwarn (OPT_pedantic, "ISO C forbids "
8238 "ordered comparisons of pointers to functions");
8239 }
8240 else
8241 {
8242 result_type = ptr_type_node;
8243 pedwarn (0, "comparison of distinct pointer types lacks a cast");
8244 }
8245 }
8246 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8247 {
8248 result_type = type0;
8249 if (pedantic)
8250 pedwarn (OPT_pedantic,
8251 "ordered comparison of pointer with integer zero");
8252 else if (extra_warnings)
8253 warning (OPT_Wextra,
8254 "ordered comparison of pointer with integer zero");
8255 }
8256 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8257 {
8258 result_type = type1;
8259 pedwarn (OPT_pedantic,
8260 "ordered comparison of pointer with integer zero");
8261 }
8262 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8263 {
8264 result_type = type0;
8265 pedwarn (0, "comparison between pointer and integer");
8266 }
8267 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8268 {
8269 result_type = type1;
8270 pedwarn (0, "comparison between pointer and integer");
8271 }
8272 break;
8273
8274 default:
8275 gcc_unreachable ();
8276 }
8277
8278 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8279 return error_mark_node;
8280
8281 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8282 && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8283 || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8284 TREE_TYPE (type1))))
8285 {
8286 binary_op_error (code, type0, type1);
8287 return error_mark_node;
8288 }
8289
8290 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8291 || code0 == FIXED_POINT_TYPE || code0 == VECTOR_TYPE)
8292 &&
8293 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8294 || code1 == FIXED_POINT_TYPE || code1 == VECTOR_TYPE))
8295 {
8296 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8297
8298 if (shorten || common || short_compare)
8299 {
8300 result_type = c_common_type (type0, type1);
8301 if (result_type == error_mark_node)
8302 return error_mark_node;
8303 }
8304
8305 /* For certain operations (which identify themselves by shorten != 0)
8306 if both args were extended from the same smaller type,
8307 do the arithmetic in that type and then extend.
8308
8309 shorten !=0 and !=1 indicates a bitwise operation.
8310 For them, this optimization is safe only if
8311 both args are zero-extended or both are sign-extended.
8312 Otherwise, we might change the result.
8313 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8314 but calculated in (unsigned short) it would be (unsigned short)-1. */
8315
8316 if (shorten && none_complex)
8317 {
8318 final_type = result_type;
8319 result_type = shorten_binary_op (result_type, op0, op1,
8320 shorten == -1);
8321 }
8322
8323 /* Shifts can be shortened if shifting right. */
8324
8325 if (short_shift)
8326 {
8327 int unsigned_arg;
8328 tree arg0 = get_narrower (op0, &unsigned_arg);
8329
8330 final_type = result_type;
8331
8332 if (arg0 == op0 && final_type == TREE_TYPE (op0))
8333 unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8334
8335 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8336 /* We can shorten only if the shift count is less than the
8337 number of bits in the smaller type size. */
8338 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8339 /* We cannot drop an unsigned shift after sign-extension. */
8340 && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8341 {
8342 /* Do an unsigned shift if the operand was zero-extended. */
8343 result_type
8344 = c_common_signed_or_unsigned_type (unsigned_arg,
8345 TREE_TYPE (arg0));
8346 /* Convert value-to-be-shifted to that type. */
8347 if (TREE_TYPE (op0) != result_type)
8348 op0 = convert (result_type, op0);
8349 converted = 1;
8350 }
8351 }
8352
8353 /* Comparison operations are shortened too but differently.
8354 They identify themselves by setting short_compare = 1. */
8355
8356 if (short_compare)
8357 {
8358 /* Don't write &op0, etc., because that would prevent op0
8359 from being kept in a register.
8360 Instead, make copies of the our local variables and
8361 pass the copies by reference, then copy them back afterward. */
8362 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8363 enum tree_code xresultcode = resultcode;
8364 tree val
8365 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8366
8367 if (val != 0)
8368 return val;
8369
8370 op0 = xop0, op1 = xop1;
8371 converted = 1;
8372 resultcode = xresultcode;
8373
8374 if (warn_sign_compare && !skip_evaluation)
8375 {
8376 warn_for_sign_compare (orig_op0, orig_op1, op0, op1,
8377 result_type, resultcode);
8378 }
8379 }
8380 }
8381
8382 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8383 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8384 Then the expression will be built.
8385 It will be given type FINAL_TYPE if that is nonzero;
8386 otherwise, it will be given type RESULT_TYPE. */
8387
8388 if (!result_type)
8389 {
8390 binary_op_error (code, TREE_TYPE (op0), TREE_TYPE (op1));
8391 return error_mark_node;
8392 }
8393
8394 if (!converted)
8395 {
8396 if (TREE_TYPE (op0) != result_type)
8397 op0 = convert_and_check (result_type, op0);
8398 if (TREE_TYPE (op1) != result_type)
8399 op1 = convert_and_check (result_type, op1);
8400
8401 /* This can happen if one operand has a vector type, and the other
8402 has a different type. */
8403 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8404 return error_mark_node;
8405 }
8406
8407 if (build_type == NULL_TREE)
8408 build_type = result_type;
8409
8410 {
8411 /* Treat expressions in initializers specially as they can't trap. */
8412 tree result = require_constant_value ? fold_build2_initializer (resultcode,
8413 build_type,
8414 op0, op1)
8415 : fold_build2 (resultcode, build_type,
8416 op0, op1);
8417
8418 if (final_type != 0)
8419 result = convert (final_type, result);
8420 return result;
8421 }
8422 }
8423
8424
8425 /* Convert EXPR to be a truth-value, validating its type for this
8426 purpose. */
8427
8428 tree
8429 c_objc_common_truthvalue_conversion (tree expr)
8430 {
8431 switch (TREE_CODE (TREE_TYPE (expr)))
8432 {
8433 case ARRAY_TYPE:
8434 error ("used array that cannot be converted to pointer where scalar is required");
8435 return error_mark_node;
8436
8437 case RECORD_TYPE:
8438 error ("used struct type value where scalar is required");
8439 return error_mark_node;
8440
8441 case UNION_TYPE:
8442 error ("used union type value where scalar is required");
8443 return error_mark_node;
8444
8445 case FUNCTION_TYPE:
8446 gcc_unreachable ();
8447
8448 default:
8449 break;
8450 }
8451
8452 /* ??? Should we also give an error for void and vectors rather than
8453 leaving those to give errors later? */
8454 return c_common_truthvalue_conversion (expr);
8455 }
8456 \f
8457
8458 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8459 required. */
8460
8461 tree
8462 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED, bool *se)
8463 {
8464 if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8465 {
8466 tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8467 /* Executing a compound literal inside a function reinitializes
8468 it. */
8469 if (!TREE_STATIC (decl))
8470 *se = true;
8471 return decl;
8472 }
8473 else
8474 return expr;
8475 }
8476 \f
8477 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
8478
8479 tree
8480 c_begin_omp_parallel (void)
8481 {
8482 tree block;
8483
8484 keep_next_level ();
8485 block = c_begin_compound_stmt (true);
8486
8487 return block;
8488 }
8489
8490 /* Generate OMP_PARALLEL, with CLAUSES and BLOCK as its compound statement. */
8491
8492 tree
8493 c_finish_omp_parallel (tree clauses, tree block)
8494 {
8495 tree stmt;
8496
8497 block = c_end_compound_stmt (block, true);
8498
8499 stmt = make_node (OMP_PARALLEL);
8500 TREE_TYPE (stmt) = void_type_node;
8501 OMP_PARALLEL_CLAUSES (stmt) = clauses;
8502 OMP_PARALLEL_BODY (stmt) = block;
8503
8504 return add_stmt (stmt);
8505 }
8506
8507 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
8508
8509 tree
8510 c_begin_omp_task (void)
8511 {
8512 tree block;
8513
8514 keep_next_level ();
8515 block = c_begin_compound_stmt (true);
8516
8517 return block;
8518 }
8519
8520 /* Generate OMP_TASK, with CLAUSES and BLOCK as its compound statement. */
8521
8522 tree
8523 c_finish_omp_task (tree clauses, tree block)
8524 {
8525 tree stmt;
8526
8527 block = c_end_compound_stmt (block, true);
8528
8529 stmt = make_node (OMP_TASK);
8530 TREE_TYPE (stmt) = void_type_node;
8531 OMP_TASK_CLAUSES (stmt) = clauses;
8532 OMP_TASK_BODY (stmt) = block;
8533
8534 return add_stmt (stmt);
8535 }
8536
8537 /* For all elements of CLAUSES, validate them vs OpenMP constraints.
8538 Remove any elements from the list that are invalid. */
8539
8540 tree
8541 c_finish_omp_clauses (tree clauses)
8542 {
8543 bitmap_head generic_head, firstprivate_head, lastprivate_head;
8544 tree c, t, *pc = &clauses;
8545 const char *name;
8546
8547 bitmap_obstack_initialize (NULL);
8548 bitmap_initialize (&generic_head, &bitmap_default_obstack);
8549 bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8550 bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8551
8552 for (pc = &clauses, c = clauses; c ; c = *pc)
8553 {
8554 bool remove = false;
8555 bool need_complete = false;
8556 bool need_implicitly_determined = false;
8557
8558 switch (OMP_CLAUSE_CODE (c))
8559 {
8560 case OMP_CLAUSE_SHARED:
8561 name = "shared";
8562 need_implicitly_determined = true;
8563 goto check_dup_generic;
8564
8565 case OMP_CLAUSE_PRIVATE:
8566 name = "private";
8567 need_complete = true;
8568 need_implicitly_determined = true;
8569 goto check_dup_generic;
8570
8571 case OMP_CLAUSE_REDUCTION:
8572 name = "reduction";
8573 need_implicitly_determined = true;
8574 t = OMP_CLAUSE_DECL (c);
8575 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8576 || POINTER_TYPE_P (TREE_TYPE (t)))
8577 {
8578 error ("%qE has invalid type for %<reduction%>", t);
8579 remove = true;
8580 }
8581 else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8582 {
8583 enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8584 const char *r_name = NULL;
8585
8586 switch (r_code)
8587 {
8588 case PLUS_EXPR:
8589 case MULT_EXPR:
8590 case MINUS_EXPR:
8591 break;
8592 case BIT_AND_EXPR:
8593 r_name = "&";
8594 break;
8595 case BIT_XOR_EXPR:
8596 r_name = "^";
8597 break;
8598 case BIT_IOR_EXPR:
8599 r_name = "|";
8600 break;
8601 case TRUTH_ANDIF_EXPR:
8602 r_name = "&&";
8603 break;
8604 case TRUTH_ORIF_EXPR:
8605 r_name = "||";
8606 break;
8607 default:
8608 gcc_unreachable ();
8609 }
8610 if (r_name)
8611 {
8612 error ("%qE has invalid type for %<reduction(%s)%>",
8613 t, r_name);
8614 remove = true;
8615 }
8616 }
8617 goto check_dup_generic;
8618
8619 case OMP_CLAUSE_COPYPRIVATE:
8620 name = "copyprivate";
8621 goto check_dup_generic;
8622
8623 case OMP_CLAUSE_COPYIN:
8624 name = "copyin";
8625 t = OMP_CLAUSE_DECL (c);
8626 if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8627 {
8628 error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8629 remove = true;
8630 }
8631 goto check_dup_generic;
8632
8633 check_dup_generic:
8634 t = OMP_CLAUSE_DECL (c);
8635 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8636 {
8637 error ("%qE is not a variable in clause %qs", t, name);
8638 remove = true;
8639 }
8640 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8641 || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8642 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8643 {
8644 error ("%qE appears more than once in data clauses", t);
8645 remove = true;
8646 }
8647 else
8648 bitmap_set_bit (&generic_head, DECL_UID (t));
8649 break;
8650
8651 case OMP_CLAUSE_FIRSTPRIVATE:
8652 name = "firstprivate";
8653 t = OMP_CLAUSE_DECL (c);
8654 need_complete = true;
8655 need_implicitly_determined = true;
8656 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8657 {
8658 error ("%qE is not a variable in clause %<firstprivate%>", t);
8659 remove = true;
8660 }
8661 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8662 || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8663 {
8664 error ("%qE appears more than once in data clauses", t);
8665 remove = true;
8666 }
8667 else
8668 bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8669 break;
8670
8671 case OMP_CLAUSE_LASTPRIVATE:
8672 name = "lastprivate";
8673 t = OMP_CLAUSE_DECL (c);
8674 need_complete = true;
8675 need_implicitly_determined = true;
8676 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8677 {
8678 error ("%qE is not a variable in clause %<lastprivate%>", t);
8679 remove = true;
8680 }
8681 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8682 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8683 {
8684 error ("%qE appears more than once in data clauses", t);
8685 remove = true;
8686 }
8687 else
8688 bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8689 break;
8690
8691 case OMP_CLAUSE_IF:
8692 case OMP_CLAUSE_NUM_THREADS:
8693 case OMP_CLAUSE_SCHEDULE:
8694 case OMP_CLAUSE_NOWAIT:
8695 case OMP_CLAUSE_ORDERED:
8696 case OMP_CLAUSE_DEFAULT:
8697 case OMP_CLAUSE_UNTIED:
8698 case OMP_CLAUSE_COLLAPSE:
8699 pc = &OMP_CLAUSE_CHAIN (c);
8700 continue;
8701
8702 default:
8703 gcc_unreachable ();
8704 }
8705
8706 if (!remove)
8707 {
8708 t = OMP_CLAUSE_DECL (c);
8709
8710 if (need_complete)
8711 {
8712 t = require_complete_type (t);
8713 if (t == error_mark_node)
8714 remove = true;
8715 }
8716
8717 if (need_implicitly_determined)
8718 {
8719 const char *share_name = NULL;
8720
8721 if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8722 share_name = "threadprivate";
8723 else switch (c_omp_predetermined_sharing (t))
8724 {
8725 case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8726 break;
8727 case OMP_CLAUSE_DEFAULT_SHARED:
8728 share_name = "shared";
8729 break;
8730 case OMP_CLAUSE_DEFAULT_PRIVATE:
8731 share_name = "private";
8732 break;
8733 default:
8734 gcc_unreachable ();
8735 }
8736 if (share_name)
8737 {
8738 error ("%qE is predetermined %qs for %qs",
8739 t, share_name, name);
8740 remove = true;
8741 }
8742 }
8743 }
8744
8745 if (remove)
8746 *pc = OMP_CLAUSE_CHAIN (c);
8747 else
8748 pc = &OMP_CLAUSE_CHAIN (c);
8749 }
8750
8751 bitmap_obstack_release (NULL);
8752 return clauses;
8753 }
8754
8755 /* Make a variant type in the proper way for C/C++, propagating qualifiers
8756 down to the element type of an array. */
8757
8758 tree
8759 c_build_qualified_type (tree type, int type_quals)
8760 {
8761 if (type == error_mark_node)
8762 return type;
8763
8764 if (TREE_CODE (type) == ARRAY_TYPE)
8765 {
8766 tree t;
8767 tree element_type = c_build_qualified_type (TREE_TYPE (type),
8768 type_quals);
8769
8770 /* See if we already have an identically qualified type. */
8771 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
8772 {
8773 if (TYPE_QUALS (strip_array_types (t)) == type_quals
8774 && TYPE_NAME (t) == TYPE_NAME (type)
8775 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
8776 && attribute_list_equal (TYPE_ATTRIBUTES (t),
8777 TYPE_ATTRIBUTES (type)))
8778 break;
8779 }
8780 if (!t)
8781 {
8782 tree domain = TYPE_DOMAIN (type);
8783
8784 t = build_variant_type_copy (type);
8785 TREE_TYPE (t) = element_type;
8786
8787 if (TYPE_STRUCTURAL_EQUALITY_P (element_type)
8788 || (domain && TYPE_STRUCTURAL_EQUALITY_P (domain)))
8789 SET_TYPE_STRUCTURAL_EQUALITY (t);
8790 else if (TYPE_CANONICAL (element_type) != element_type
8791 || (domain && TYPE_CANONICAL (domain) != domain))
8792 {
8793 tree unqualified_canon
8794 = build_array_type (TYPE_CANONICAL (element_type),
8795 domain? TYPE_CANONICAL (domain)
8796 : NULL_TREE);
8797 TYPE_CANONICAL (t)
8798 = c_build_qualified_type (unqualified_canon, type_quals);
8799 }
8800 else
8801 TYPE_CANONICAL (t) = t;
8802 }
8803 return t;
8804 }
8805
8806 /* A restrict-qualified pointer type must be a pointer to object or
8807 incomplete type. Note that the use of POINTER_TYPE_P also allows
8808 REFERENCE_TYPEs, which is appropriate for C++. */
8809 if ((type_quals & TYPE_QUAL_RESTRICT)
8810 && (!POINTER_TYPE_P (type)
8811 || !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type))))
8812 {
8813 error ("invalid use of %<restrict%>");
8814 type_quals &= ~TYPE_QUAL_RESTRICT;
8815 }
8816
8817 return build_qualified_type (type, type_quals);
8818 }