c-common.c (fname_as_string, [...]): Constify.
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 /* This file is part of the C front end.
25 It contains routines to build C expressions given their operands,
26 including computing the types of the result, C-specific error checks,
27 and some optimization. */
28
29 #include "config.h"
30 #include "system.h"
31 #include "coretypes.h"
32 #include "tm.h"
33 #include "rtl.h"
34 #include "tree.h"
35 #include "langhooks.h"
36 #include "c-tree.h"
37 #include "tm_p.h"
38 #include "flags.h"
39 #include "output.h"
40 #include "expr.h"
41 #include "toplev.h"
42 #include "intl.h"
43 #include "ggc.h"
44 #include "target.h"
45 #include "tree-iterator.h"
46 #include "tree-gimple.h"
47 #include "tree-flow.h"
48
49 /* Possible cases of implicit bad conversions. Used to select
50 diagnostic messages in convert_for_assignment. */
51 enum impl_conv {
52 ic_argpass,
53 ic_argpass_nonproto,
54 ic_assign,
55 ic_init,
56 ic_return
57 };
58
59 /* The level of nesting inside "__alignof__". */
60 int in_alignof;
61
62 /* The level of nesting inside "sizeof". */
63 int in_sizeof;
64
65 /* The level of nesting inside "typeof". */
66 int in_typeof;
67
68 struct c_label_context_se *label_context_stack_se;
69 struct c_label_context_vm *label_context_stack_vm;
70
71 /* Nonzero if we've already printed a "missing braces around initializer"
72 message within this initializer. */
73 static int missing_braces_mentioned;
74
75 static int require_constant_value;
76 static int require_constant_elements;
77
78 static bool null_pointer_constant_p (tree);
79 static tree qualify_type (tree, tree);
80 static int tagged_types_tu_compatible_p (tree, tree);
81 static int comp_target_types (tree, tree);
82 static int function_types_compatible_p (tree, tree);
83 static int type_lists_compatible_p (tree, tree);
84 static tree decl_constant_value_for_broken_optimization (tree);
85 static tree lookup_field (tree, tree);
86 static int convert_arguments (int, tree *, tree, tree, tree, tree);
87 static tree pointer_diff (tree, tree);
88 static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
89 int);
90 static tree valid_compound_expr_initializer (tree, tree);
91 static void push_string (const char *);
92 static void push_member_name (tree);
93 static int spelling_length (void);
94 static char *print_spelling (char *);
95 static void warning_init (const char *);
96 static tree digest_init (tree, tree, bool, int);
97 static void output_init_element (tree, bool, tree, tree, int);
98 static void output_pending_init_elements (int);
99 static int set_designator (int);
100 static void push_range_stack (tree);
101 static void add_pending_init (tree, tree);
102 static void set_nonincremental_init (void);
103 static void set_nonincremental_init_from_string (tree);
104 static tree find_init_member (tree);
105 static void readonly_error (tree, enum lvalue_use);
106 static int lvalue_or_else (tree, enum lvalue_use);
107 static int lvalue_p (tree);
108 static void record_maybe_used_decl (tree);
109 static int comptypes_internal (tree, tree);
110 \f
111 /* Return true if EXP is a null pointer constant, false otherwise. */
112
113 static bool
114 null_pointer_constant_p (tree expr)
115 {
116 /* This should really operate on c_expr structures, but they aren't
117 yet available everywhere required. */
118 tree type = TREE_TYPE (expr);
119 return (TREE_CODE (expr) == INTEGER_CST
120 && !TREE_OVERFLOW (expr)
121 && integer_zerop (expr)
122 && (INTEGRAL_TYPE_P (type)
123 || (TREE_CODE (type) == POINTER_TYPE
124 && VOID_TYPE_P (TREE_TYPE (type))
125 && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
126 }
127 \f/* This is a cache to hold if two types are compatible or not. */
128
129 struct tagged_tu_seen_cache {
130 const struct tagged_tu_seen_cache * next;
131 tree t1;
132 tree t2;
133 /* The return value of tagged_types_tu_compatible_p if we had seen
134 these two types already. */
135 int val;
136 };
137
138 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
139 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
140
141 /* Do `exp = require_complete_type (exp);' to make sure exp
142 does not have an incomplete type. (That includes void types.) */
143
144 tree
145 require_complete_type (tree value)
146 {
147 tree type = TREE_TYPE (value);
148
149 if (value == error_mark_node || type == error_mark_node)
150 return error_mark_node;
151
152 /* First, detect a valid value with a complete type. */
153 if (COMPLETE_TYPE_P (type))
154 return value;
155
156 c_incomplete_type_error (value, type);
157 return error_mark_node;
158 }
159
160 /* Print an error message for invalid use of an incomplete type.
161 VALUE is the expression that was used (or 0 if that isn't known)
162 and TYPE is the type that was invalid. */
163
164 void
165 c_incomplete_type_error (tree value, tree type)
166 {
167 const char *type_code_string;
168
169 /* Avoid duplicate error message. */
170 if (TREE_CODE (type) == ERROR_MARK)
171 return;
172
173 if (value != 0 && (TREE_CODE (value) == VAR_DECL
174 || TREE_CODE (value) == PARM_DECL))
175 error ("%qD has an incomplete type", value);
176 else
177 {
178 retry:
179 /* We must print an error message. Be clever about what it says. */
180
181 switch (TREE_CODE (type))
182 {
183 case RECORD_TYPE:
184 type_code_string = "struct";
185 break;
186
187 case UNION_TYPE:
188 type_code_string = "union";
189 break;
190
191 case ENUMERAL_TYPE:
192 type_code_string = "enum";
193 break;
194
195 case VOID_TYPE:
196 error ("invalid use of void expression");
197 return;
198
199 case ARRAY_TYPE:
200 if (TYPE_DOMAIN (type))
201 {
202 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
203 {
204 error ("invalid use of flexible array member");
205 return;
206 }
207 type = TREE_TYPE (type);
208 goto retry;
209 }
210 error ("invalid use of array with unspecified bounds");
211 return;
212
213 default:
214 gcc_unreachable ();
215 }
216
217 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
218 error ("invalid use of undefined type %<%s %E%>",
219 type_code_string, TYPE_NAME (type));
220 else
221 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
222 error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
223 }
224 }
225
226 /* Given a type, apply default promotions wrt unnamed function
227 arguments and return the new type. */
228
229 tree
230 c_type_promotes_to (tree type)
231 {
232 if (TYPE_MAIN_VARIANT (type) == float_type_node)
233 return double_type_node;
234
235 if (c_promoting_integer_type_p (type))
236 {
237 /* Preserve unsignedness if not really getting any wider. */
238 if (TYPE_UNSIGNED (type)
239 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
240 return unsigned_type_node;
241 return integer_type_node;
242 }
243
244 return type;
245 }
246
247 /* Return a variant of TYPE which has all the type qualifiers of LIKE
248 as well as those of TYPE. */
249
250 static tree
251 qualify_type (tree type, tree like)
252 {
253 return c_build_qualified_type (type,
254 TYPE_QUALS (type) | TYPE_QUALS (like));
255 }
256
257 /* Return true iff the given tree T is a variable length array. */
258
259 bool
260 c_vla_type_p (tree t)
261 {
262 if (TREE_CODE (t) == ARRAY_TYPE
263 && C_TYPE_VARIABLE_SIZE (t))
264 return true;
265 return false;
266 }
267 \f
268 /* Return the composite type of two compatible types.
269
270 We assume that comptypes has already been done and returned
271 nonzero; if that isn't so, this may crash. In particular, we
272 assume that qualifiers match. */
273
274 tree
275 composite_type (tree t1, tree t2)
276 {
277 enum tree_code code1;
278 enum tree_code code2;
279 tree attributes;
280
281 /* Save time if the two types are the same. */
282
283 if (t1 == t2) return t1;
284
285 /* If one type is nonsense, use the other. */
286 if (t1 == error_mark_node)
287 return t2;
288 if (t2 == error_mark_node)
289 return t1;
290
291 code1 = TREE_CODE (t1);
292 code2 = TREE_CODE (t2);
293
294 /* Merge the attributes. */
295 attributes = targetm.merge_type_attributes (t1, t2);
296
297 /* If one is an enumerated type and the other is the compatible
298 integer type, the composite type might be either of the two
299 (DR#013 question 3). For consistency, use the enumerated type as
300 the composite type. */
301
302 if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
303 return t1;
304 if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
305 return t2;
306
307 gcc_assert (code1 == code2);
308
309 switch (code1)
310 {
311 case POINTER_TYPE:
312 /* For two pointers, do this recursively on the target type. */
313 {
314 tree pointed_to_1 = TREE_TYPE (t1);
315 tree pointed_to_2 = TREE_TYPE (t2);
316 tree target = composite_type (pointed_to_1, pointed_to_2);
317 t1 = build_pointer_type (target);
318 t1 = build_type_attribute_variant (t1, attributes);
319 return qualify_type (t1, t2);
320 }
321
322 case ARRAY_TYPE:
323 {
324 tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
325 int quals;
326 tree unqual_elt;
327 tree d1 = TYPE_DOMAIN (t1);
328 tree d2 = TYPE_DOMAIN (t2);
329 bool d1_variable, d2_variable;
330 bool d1_zero, d2_zero;
331
332 /* We should not have any type quals on arrays at all. */
333 gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
334
335 d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
336 d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
337
338 d1_variable = (!d1_zero
339 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
340 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
341 d2_variable = (!d2_zero
342 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
343 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
344 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
345 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
346
347 /* Save space: see if the result is identical to one of the args. */
348 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
349 && (d2_variable || d2_zero || !d1_variable))
350 return build_type_attribute_variant (t1, attributes);
351 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
352 && (d1_variable || d1_zero || !d2_variable))
353 return build_type_attribute_variant (t2, attributes);
354
355 if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
356 return build_type_attribute_variant (t1, attributes);
357 if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
358 return build_type_attribute_variant (t2, attributes);
359
360 /* Merge the element types, and have a size if either arg has
361 one. We may have qualifiers on the element types. To set
362 up TYPE_MAIN_VARIANT correctly, we need to form the
363 composite of the unqualified types and add the qualifiers
364 back at the end. */
365 quals = TYPE_QUALS (strip_array_types (elt));
366 unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
367 t1 = build_array_type (unqual_elt,
368 TYPE_DOMAIN ((TYPE_DOMAIN (t1)
369 && (d2_variable
370 || d2_zero
371 || !d1_variable))
372 ? t1
373 : t2));
374 t1 = c_build_qualified_type (t1, quals);
375 return build_type_attribute_variant (t1, attributes);
376 }
377
378 case ENUMERAL_TYPE:
379 case RECORD_TYPE:
380 case UNION_TYPE:
381 if (attributes != NULL)
382 {
383 /* Try harder not to create a new aggregate type. */
384 if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
385 return t1;
386 if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
387 return t2;
388 }
389 return build_type_attribute_variant (t1, attributes);
390
391 case FUNCTION_TYPE:
392 /* Function types: prefer the one that specified arg types.
393 If both do, merge the arg types. Also merge the return types. */
394 {
395 tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
396 tree p1 = TYPE_ARG_TYPES (t1);
397 tree p2 = TYPE_ARG_TYPES (t2);
398 int len;
399 tree newargs, n;
400 int i;
401
402 /* Save space: see if the result is identical to one of the args. */
403 if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
404 return build_type_attribute_variant (t1, attributes);
405 if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
406 return build_type_attribute_variant (t2, attributes);
407
408 /* Simple way if one arg fails to specify argument types. */
409 if (TYPE_ARG_TYPES (t1) == 0)
410 {
411 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
412 t1 = build_type_attribute_variant (t1, attributes);
413 return qualify_type (t1, t2);
414 }
415 if (TYPE_ARG_TYPES (t2) == 0)
416 {
417 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
418 t1 = build_type_attribute_variant (t1, attributes);
419 return qualify_type (t1, t2);
420 }
421
422 /* If both args specify argument types, we must merge the two
423 lists, argument by argument. */
424 /* Tell global_bindings_p to return false so that variable_size
425 doesn't die on VLAs in parameter types. */
426 c_override_global_bindings_to_false = true;
427
428 len = list_length (p1);
429 newargs = 0;
430
431 for (i = 0; i < len; i++)
432 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
433
434 n = newargs;
435
436 for (; p1;
437 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
438 {
439 /* A null type means arg type is not specified.
440 Take whatever the other function type has. */
441 if (TREE_VALUE (p1) == 0)
442 {
443 TREE_VALUE (n) = TREE_VALUE (p2);
444 goto parm_done;
445 }
446 if (TREE_VALUE (p2) == 0)
447 {
448 TREE_VALUE (n) = TREE_VALUE (p1);
449 goto parm_done;
450 }
451
452 /* Given wait (union {union wait *u; int *i} *)
453 and wait (union wait *),
454 prefer union wait * as type of parm. */
455 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
456 && TREE_VALUE (p1) != TREE_VALUE (p2))
457 {
458 tree memb;
459 tree mv2 = TREE_VALUE (p2);
460 if (mv2 && mv2 != error_mark_node
461 && TREE_CODE (mv2) != ARRAY_TYPE)
462 mv2 = TYPE_MAIN_VARIANT (mv2);
463 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
464 memb; memb = TREE_CHAIN (memb))
465 {
466 tree mv3 = TREE_TYPE (memb);
467 if (mv3 && mv3 != error_mark_node
468 && TREE_CODE (mv3) != ARRAY_TYPE)
469 mv3 = TYPE_MAIN_VARIANT (mv3);
470 if (comptypes (mv3, mv2))
471 {
472 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
473 TREE_VALUE (p2));
474 if (pedantic)
475 pedwarn ("function types not truly compatible in ISO C");
476 goto parm_done;
477 }
478 }
479 }
480 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
481 && TREE_VALUE (p2) != TREE_VALUE (p1))
482 {
483 tree memb;
484 tree mv1 = TREE_VALUE (p1);
485 if (mv1 && mv1 != error_mark_node
486 && TREE_CODE (mv1) != ARRAY_TYPE)
487 mv1 = TYPE_MAIN_VARIANT (mv1);
488 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
489 memb; memb = TREE_CHAIN (memb))
490 {
491 tree mv3 = TREE_TYPE (memb);
492 if (mv3 && mv3 != error_mark_node
493 && TREE_CODE (mv3) != ARRAY_TYPE)
494 mv3 = TYPE_MAIN_VARIANT (mv3);
495 if (comptypes (mv3, mv1))
496 {
497 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
498 TREE_VALUE (p1));
499 if (pedantic)
500 pedwarn ("function types not truly compatible in ISO C");
501 goto parm_done;
502 }
503 }
504 }
505 TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
506 parm_done: ;
507 }
508
509 c_override_global_bindings_to_false = false;
510 t1 = build_function_type (valtype, newargs);
511 t1 = qualify_type (t1, t2);
512 /* ... falls through ... */
513 }
514
515 default:
516 return build_type_attribute_variant (t1, attributes);
517 }
518
519 }
520
521 /* Return the type of a conditional expression between pointers to
522 possibly differently qualified versions of compatible types.
523
524 We assume that comp_target_types has already been done and returned
525 nonzero; if that isn't so, this may crash. */
526
527 static tree
528 common_pointer_type (tree t1, tree t2)
529 {
530 tree attributes;
531 tree pointed_to_1, mv1;
532 tree pointed_to_2, mv2;
533 tree target;
534
535 /* Save time if the two types are the same. */
536
537 if (t1 == t2) return t1;
538
539 /* If one type is nonsense, use the other. */
540 if (t1 == error_mark_node)
541 return t2;
542 if (t2 == error_mark_node)
543 return t1;
544
545 gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546 && TREE_CODE (t2) == POINTER_TYPE);
547
548 /* Merge the attributes. */
549 attributes = targetm.merge_type_attributes (t1, t2);
550
551 /* Find the composite type of the target types, and combine the
552 qualifiers of the two types' targets. Do not lose qualifiers on
553 array element types by taking the TYPE_MAIN_VARIANT. */
554 mv1 = pointed_to_1 = TREE_TYPE (t1);
555 mv2 = pointed_to_2 = TREE_TYPE (t2);
556 if (TREE_CODE (mv1) != ARRAY_TYPE)
557 mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558 if (TREE_CODE (mv2) != ARRAY_TYPE)
559 mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560 target = composite_type (mv1, mv2);
561 t1 = build_pointer_type (c_build_qualified_type
562 (target,
563 TYPE_QUALS (pointed_to_1) |
564 TYPE_QUALS (pointed_to_2)));
565 return build_type_attribute_variant (t1, attributes);
566 }
567
568 /* Return the common type for two arithmetic types under the usual
569 arithmetic conversions. The default conversions have already been
570 applied, and enumerated types converted to their compatible integer
571 types. The resulting type is unqualified and has no attributes.
572
573 This is the type for the result of most arithmetic operations
574 if the operands have the given two types. */
575
576 static tree
577 c_common_type (tree t1, tree t2)
578 {
579 enum tree_code code1;
580 enum tree_code code2;
581
582 /* If one type is nonsense, use the other. */
583 if (t1 == error_mark_node)
584 return t2;
585 if (t2 == error_mark_node)
586 return t1;
587
588 if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
589 t1 = TYPE_MAIN_VARIANT (t1);
590
591 if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
592 t2 = TYPE_MAIN_VARIANT (t2);
593
594 if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
595 t1 = build_type_attribute_variant (t1, NULL_TREE);
596
597 if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
598 t2 = build_type_attribute_variant (t2, NULL_TREE);
599
600 /* Save time if the two types are the same. */
601
602 if (t1 == t2) return t1;
603
604 code1 = TREE_CODE (t1);
605 code2 = TREE_CODE (t2);
606
607 gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
608 || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
609 gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
610 || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
611
612 /* When one operand is a decimal float type, the other operand cannot be
613 a generic float type or a complex type. We also disallow vector types
614 here. */
615 if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
616 && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
617 {
618 if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
619 {
620 error ("can%'t mix operands of decimal float and vector types");
621 return error_mark_node;
622 }
623 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
624 {
625 error ("can%'t mix operands of decimal float and complex types");
626 return error_mark_node;
627 }
628 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
629 {
630 error ("can%'t mix operands of decimal float and other float types");
631 return error_mark_node;
632 }
633 }
634
635 /* If one type is a vector type, return that type. (How the usual
636 arithmetic conversions apply to the vector types extension is not
637 precisely specified.) */
638 if (code1 == VECTOR_TYPE)
639 return t1;
640
641 if (code2 == VECTOR_TYPE)
642 return t2;
643
644 /* If one type is complex, form the common type of the non-complex
645 components, then make that complex. Use T1 or T2 if it is the
646 required type. */
647 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
648 {
649 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
650 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
651 tree subtype = c_common_type (subtype1, subtype2);
652
653 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
654 return t1;
655 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
656 return t2;
657 else
658 return build_complex_type (subtype);
659 }
660
661 /* If only one is real, use it as the result. */
662
663 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
664 return t1;
665
666 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
667 return t2;
668
669 /* If both are real and either are decimal floating point types, use
670 the decimal floating point type with the greater precision. */
671
672 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
673 {
674 if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
675 || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
676 return dfloat128_type_node;
677 else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
678 || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
679 return dfloat64_type_node;
680 else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
681 || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
682 return dfloat32_type_node;
683 }
684
685 /* Both real or both integers; use the one with greater precision. */
686
687 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
688 return t1;
689 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
690 return t2;
691
692 /* Same precision. Prefer long longs to longs to ints when the
693 same precision, following the C99 rules on integer type rank
694 (which are equivalent to the C90 rules for C90 types). */
695
696 if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
697 || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
698 return long_long_unsigned_type_node;
699
700 if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
701 || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
702 {
703 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
704 return long_long_unsigned_type_node;
705 else
706 return long_long_integer_type_node;
707 }
708
709 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
710 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
711 return long_unsigned_type_node;
712
713 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
714 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
715 {
716 /* But preserve unsignedness from the other type,
717 since long cannot hold all the values of an unsigned int. */
718 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
719 return long_unsigned_type_node;
720 else
721 return long_integer_type_node;
722 }
723
724 /* Likewise, prefer long double to double even if same size. */
725 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
726 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
727 return long_double_type_node;
728
729 /* Otherwise prefer the unsigned one. */
730
731 if (TYPE_UNSIGNED (t1))
732 return t1;
733 else
734 return t2;
735 }
736 \f
737 /* Wrapper around c_common_type that is used by c-common.c and other
738 front end optimizations that remove promotions. ENUMERAL_TYPEs
739 are allowed here and are converted to their compatible integer types.
740 BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
741 preferably a non-Boolean type as the common type. */
742 tree
743 common_type (tree t1, tree t2)
744 {
745 if (TREE_CODE (t1) == ENUMERAL_TYPE)
746 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
747 if (TREE_CODE (t2) == ENUMERAL_TYPE)
748 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
749
750 /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */
751 if (TREE_CODE (t1) == BOOLEAN_TYPE
752 && TREE_CODE (t2) == BOOLEAN_TYPE)
753 return boolean_type_node;
754
755 /* If either type is BOOLEAN_TYPE, then return the other. */
756 if (TREE_CODE (t1) == BOOLEAN_TYPE)
757 return t2;
758 if (TREE_CODE (t2) == BOOLEAN_TYPE)
759 return t1;
760
761 return c_common_type (t1, t2);
762 }
763
764 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
765 or various other operations. Return 2 if they are compatible
766 but a warning may be needed if you use them together. */
767
768 int
769 comptypes (tree type1, tree type2)
770 {
771 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
772 int val;
773
774 val = comptypes_internal (type1, type2);
775 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
776
777 return val;
778 }
779 \f
780 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
781 or various other operations. Return 2 if they are compatible
782 but a warning may be needed if you use them together. This
783 differs from comptypes, in that we don't free the seen types. */
784
785 static int
786 comptypes_internal (tree type1, tree type2)
787 {
788 tree t1 = type1;
789 tree t2 = type2;
790 int attrval, val;
791
792 /* Suppress errors caused by previously reported errors. */
793
794 if (t1 == t2 || !t1 || !t2
795 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
796 return 1;
797
798 /* If either type is the internal version of sizetype, return the
799 language version. */
800 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
801 && TYPE_ORIG_SIZE_TYPE (t1))
802 t1 = TYPE_ORIG_SIZE_TYPE (t1);
803
804 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
805 && TYPE_ORIG_SIZE_TYPE (t2))
806 t2 = TYPE_ORIG_SIZE_TYPE (t2);
807
808
809 /* Enumerated types are compatible with integer types, but this is
810 not transitive: two enumerated types in the same translation unit
811 are compatible with each other only if they are the same type. */
812
813 if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
814 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
815 else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
816 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
817
818 if (t1 == t2)
819 return 1;
820
821 /* Different classes of types can't be compatible. */
822
823 if (TREE_CODE (t1) != TREE_CODE (t2))
824 return 0;
825
826 /* Qualifiers must match. C99 6.7.3p9 */
827
828 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
829 return 0;
830
831 /* Allow for two different type nodes which have essentially the same
832 definition. Note that we already checked for equality of the type
833 qualifiers (just above). */
834
835 if (TREE_CODE (t1) != ARRAY_TYPE
836 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
837 return 1;
838
839 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
840 if (!(attrval = targetm.comp_type_attributes (t1, t2)))
841 return 0;
842
843 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
844 val = 0;
845
846 switch (TREE_CODE (t1))
847 {
848 case POINTER_TYPE:
849 /* Do not remove mode or aliasing information. */
850 if (TYPE_MODE (t1) != TYPE_MODE (t2)
851 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
852 break;
853 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
854 ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
855 break;
856
857 case FUNCTION_TYPE:
858 val = function_types_compatible_p (t1, t2);
859 break;
860
861 case ARRAY_TYPE:
862 {
863 tree d1 = TYPE_DOMAIN (t1);
864 tree d2 = TYPE_DOMAIN (t2);
865 bool d1_variable, d2_variable;
866 bool d1_zero, d2_zero;
867 val = 1;
868
869 /* Target types must match incl. qualifiers. */
870 if (TREE_TYPE (t1) != TREE_TYPE (t2)
871 && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
872 return 0;
873
874 /* Sizes must match unless one is missing or variable. */
875 if (d1 == 0 || d2 == 0 || d1 == d2)
876 break;
877
878 d1_zero = !TYPE_MAX_VALUE (d1);
879 d2_zero = !TYPE_MAX_VALUE (d2);
880
881 d1_variable = (!d1_zero
882 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
883 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
884 d2_variable = (!d2_zero
885 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
886 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
887 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
888 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
889
890 if (d1_variable || d2_variable)
891 break;
892 if (d1_zero && d2_zero)
893 break;
894 if (d1_zero || d2_zero
895 || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
896 || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
897 val = 0;
898
899 break;
900 }
901
902 case ENUMERAL_TYPE:
903 case RECORD_TYPE:
904 case UNION_TYPE:
905 if (val != 1 && !same_translation_unit_p (t1, t2))
906 {
907 tree a1 = TYPE_ATTRIBUTES (t1);
908 tree a2 = TYPE_ATTRIBUTES (t2);
909
910 if (! attribute_list_contained (a1, a2)
911 && ! attribute_list_contained (a2, a1))
912 break;
913
914 if (attrval != 2)
915 return tagged_types_tu_compatible_p (t1, t2);
916 val = tagged_types_tu_compatible_p (t1, t2);
917 }
918 break;
919
920 case VECTOR_TYPE:
921 val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
922 && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
923 break;
924
925 default:
926 break;
927 }
928 return attrval == 2 && val == 1 ? 2 : val;
929 }
930
931 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
932 ignoring their qualifiers. */
933
934 static int
935 comp_target_types (tree ttl, tree ttr)
936 {
937 int val;
938 tree mvl, mvr;
939
940 /* Do not lose qualifiers on element types of array types that are
941 pointer targets by taking their TYPE_MAIN_VARIANT. */
942 mvl = TREE_TYPE (ttl);
943 mvr = TREE_TYPE (ttr);
944 if (TREE_CODE (mvl) != ARRAY_TYPE)
945 mvl = TYPE_MAIN_VARIANT (mvl);
946 if (TREE_CODE (mvr) != ARRAY_TYPE)
947 mvr = TYPE_MAIN_VARIANT (mvr);
948 val = comptypes (mvl, mvr);
949
950 if (val == 2 && pedantic)
951 pedwarn ("types are not quite compatible");
952 return val;
953 }
954 \f
955 /* Subroutines of `comptypes'. */
956
957 /* Determine whether two trees derive from the same translation unit.
958 If the CONTEXT chain ends in a null, that tree's context is still
959 being parsed, so if two trees have context chains ending in null,
960 they're in the same translation unit. */
961 int
962 same_translation_unit_p (tree t1, tree t2)
963 {
964 while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
965 switch (TREE_CODE_CLASS (TREE_CODE (t1)))
966 {
967 case tcc_declaration:
968 t1 = DECL_CONTEXT (t1); break;
969 case tcc_type:
970 t1 = TYPE_CONTEXT (t1); break;
971 case tcc_exceptional:
972 t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
973 default: gcc_unreachable ();
974 }
975
976 while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
977 switch (TREE_CODE_CLASS (TREE_CODE (t2)))
978 {
979 case tcc_declaration:
980 t2 = DECL_CONTEXT (t2); break;
981 case tcc_type:
982 t2 = TYPE_CONTEXT (t2); break;
983 case tcc_exceptional:
984 t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
985 default: gcc_unreachable ();
986 }
987
988 return t1 == t2;
989 }
990
991 /* Allocate the seen two types, assuming that they are compatible. */
992
993 static struct tagged_tu_seen_cache *
994 alloc_tagged_tu_seen_cache (tree t1, tree t2)
995 {
996 struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
997 tu->next = tagged_tu_seen_base;
998 tu->t1 = t1;
999 tu->t2 = t2;
1000
1001 tagged_tu_seen_base = tu;
1002
1003 /* The C standard says that two structures in different translation
1004 units are compatible with each other only if the types of their
1005 fields are compatible (among other things). We assume that they
1006 are compatible until proven otherwise when building the cache.
1007 An example where this can occur is:
1008 struct a
1009 {
1010 struct a *next;
1011 };
1012 If we are comparing this against a similar struct in another TU,
1013 and did not assume they were compatible, we end up with an infinite
1014 loop. */
1015 tu->val = 1;
1016 return tu;
1017 }
1018
1019 /* Free the seen types until we get to TU_TIL. */
1020
1021 static void
1022 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1023 {
1024 const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1025 while (tu != tu_til)
1026 {
1027 const struct tagged_tu_seen_cache *const tu1
1028 = (const struct tagged_tu_seen_cache *) tu;
1029 tu = tu1->next;
1030 free ((void *)tu1);
1031 }
1032 tagged_tu_seen_base = tu_til;
1033 }
1034
1035 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1036 compatible. If the two types are not the same (which has been
1037 checked earlier), this can only happen when multiple translation
1038 units are being compiled. See C99 6.2.7 paragraph 1 for the exact
1039 rules. */
1040
1041 static int
1042 tagged_types_tu_compatible_p (tree t1, tree t2)
1043 {
1044 tree s1, s2;
1045 bool needs_warning = false;
1046
1047 /* We have to verify that the tags of the types are the same. This
1048 is harder than it looks because this may be a typedef, so we have
1049 to go look at the original type. It may even be a typedef of a
1050 typedef...
1051 In the case of compiler-created builtin structs the TYPE_DECL
1052 may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
1053 while (TYPE_NAME (t1)
1054 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1055 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1056 t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1057
1058 while (TYPE_NAME (t2)
1059 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1060 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1061 t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1062
1063 /* C90 didn't have the requirement that the two tags be the same. */
1064 if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1065 return 0;
1066
1067 /* C90 didn't say what happened if one or both of the types were
1068 incomplete; we choose to follow C99 rules here, which is that they
1069 are compatible. */
1070 if (TYPE_SIZE (t1) == NULL
1071 || TYPE_SIZE (t2) == NULL)
1072 return 1;
1073
1074 {
1075 const struct tagged_tu_seen_cache * tts_i;
1076 for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1077 if (tts_i->t1 == t1 && tts_i->t2 == t2)
1078 return tts_i->val;
1079 }
1080
1081 switch (TREE_CODE (t1))
1082 {
1083 case ENUMERAL_TYPE:
1084 {
1085 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1086 /* Speed up the case where the type values are in the same order. */
1087 tree tv1 = TYPE_VALUES (t1);
1088 tree tv2 = TYPE_VALUES (t2);
1089
1090 if (tv1 == tv2)
1091 {
1092 return 1;
1093 }
1094
1095 for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1096 {
1097 if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1098 break;
1099 if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1100 {
1101 tu->val = 0;
1102 return 0;
1103 }
1104 }
1105
1106 if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1107 {
1108 return 1;
1109 }
1110 if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1111 {
1112 tu->val = 0;
1113 return 0;
1114 }
1115
1116 if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1117 {
1118 tu->val = 0;
1119 return 0;
1120 }
1121
1122 for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1123 {
1124 s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1125 if (s2 == NULL
1126 || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1127 {
1128 tu->val = 0;
1129 return 0;
1130 }
1131 }
1132 return 1;
1133 }
1134
1135 case UNION_TYPE:
1136 {
1137 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1138 if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1139 {
1140 tu->val = 0;
1141 return 0;
1142 }
1143
1144 /* Speed up the common case where the fields are in the same order. */
1145 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1146 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1147 {
1148 int result;
1149
1150
1151 if (DECL_NAME (s1) == NULL
1152 || DECL_NAME (s1) != DECL_NAME (s2))
1153 break;
1154 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1155 if (result == 0)
1156 {
1157 tu->val = 0;
1158 return 0;
1159 }
1160 if (result == 2)
1161 needs_warning = true;
1162
1163 if (TREE_CODE (s1) == FIELD_DECL
1164 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1165 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1166 {
1167 tu->val = 0;
1168 return 0;
1169 }
1170 }
1171 if (!s1 && !s2)
1172 {
1173 tu->val = needs_warning ? 2 : 1;
1174 return tu->val;
1175 }
1176
1177 for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1178 {
1179 bool ok = false;
1180
1181 if (DECL_NAME (s1) != NULL)
1182 for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1183 if (DECL_NAME (s1) == DECL_NAME (s2))
1184 {
1185 int result;
1186 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1187 if (result == 0)
1188 {
1189 tu->val = 0;
1190 return 0;
1191 }
1192 if (result == 2)
1193 needs_warning = true;
1194
1195 if (TREE_CODE (s1) == FIELD_DECL
1196 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1197 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1198 break;
1199
1200 ok = true;
1201 break;
1202 }
1203 if (!ok)
1204 {
1205 tu->val = 0;
1206 return 0;
1207 }
1208 }
1209 tu->val = needs_warning ? 2 : 10;
1210 return tu->val;
1211 }
1212
1213 case RECORD_TYPE:
1214 {
1215 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1216
1217 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1218 s1 && s2;
1219 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1220 {
1221 int result;
1222 if (TREE_CODE (s1) != TREE_CODE (s2)
1223 || DECL_NAME (s1) != DECL_NAME (s2))
1224 break;
1225 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1226 if (result == 0)
1227 break;
1228 if (result == 2)
1229 needs_warning = true;
1230
1231 if (TREE_CODE (s1) == FIELD_DECL
1232 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1233 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1234 break;
1235 }
1236 if (s1 && s2)
1237 tu->val = 0;
1238 else
1239 tu->val = needs_warning ? 2 : 1;
1240 return tu->val;
1241 }
1242
1243 default:
1244 gcc_unreachable ();
1245 }
1246 }
1247
1248 /* Return 1 if two function types F1 and F2 are compatible.
1249 If either type specifies no argument types,
1250 the other must specify a fixed number of self-promoting arg types.
1251 Otherwise, if one type specifies only the number of arguments,
1252 the other must specify that number of self-promoting arg types.
1253 Otherwise, the argument types must match. */
1254
1255 static int
1256 function_types_compatible_p (tree f1, tree f2)
1257 {
1258 tree args1, args2;
1259 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1260 int val = 1;
1261 int val1;
1262 tree ret1, ret2;
1263
1264 ret1 = TREE_TYPE (f1);
1265 ret2 = TREE_TYPE (f2);
1266
1267 /* 'volatile' qualifiers on a function's return type used to mean
1268 the function is noreturn. */
1269 if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1270 pedwarn ("function return types not compatible due to %<volatile%>");
1271 if (TYPE_VOLATILE (ret1))
1272 ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1273 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1274 if (TYPE_VOLATILE (ret2))
1275 ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1276 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1277 val = comptypes_internal (ret1, ret2);
1278 if (val == 0)
1279 return 0;
1280
1281 args1 = TYPE_ARG_TYPES (f1);
1282 args2 = TYPE_ARG_TYPES (f2);
1283
1284 /* An unspecified parmlist matches any specified parmlist
1285 whose argument types don't need default promotions. */
1286
1287 if (args1 == 0)
1288 {
1289 if (!self_promoting_args_p (args2))
1290 return 0;
1291 /* If one of these types comes from a non-prototype fn definition,
1292 compare that with the other type's arglist.
1293 If they don't match, ask for a warning (but no error). */
1294 if (TYPE_ACTUAL_ARG_TYPES (f1)
1295 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1296 val = 2;
1297 return val;
1298 }
1299 if (args2 == 0)
1300 {
1301 if (!self_promoting_args_p (args1))
1302 return 0;
1303 if (TYPE_ACTUAL_ARG_TYPES (f2)
1304 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1305 val = 2;
1306 return val;
1307 }
1308
1309 /* Both types have argument lists: compare them and propagate results. */
1310 val1 = type_lists_compatible_p (args1, args2);
1311 return val1 != 1 ? val1 : val;
1312 }
1313
1314 /* Check two lists of types for compatibility,
1315 returning 0 for incompatible, 1 for compatible,
1316 or 2 for compatible with warning. */
1317
1318 static int
1319 type_lists_compatible_p (tree args1, tree args2)
1320 {
1321 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1322 int val = 1;
1323 int newval = 0;
1324
1325 while (1)
1326 {
1327 tree a1, mv1, a2, mv2;
1328 if (args1 == 0 && args2 == 0)
1329 return val;
1330 /* If one list is shorter than the other,
1331 they fail to match. */
1332 if (args1 == 0 || args2 == 0)
1333 return 0;
1334 mv1 = a1 = TREE_VALUE (args1);
1335 mv2 = a2 = TREE_VALUE (args2);
1336 if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1337 mv1 = TYPE_MAIN_VARIANT (mv1);
1338 if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1339 mv2 = TYPE_MAIN_VARIANT (mv2);
1340 /* A null pointer instead of a type
1341 means there is supposed to be an argument
1342 but nothing is specified about what type it has.
1343 So match anything that self-promotes. */
1344 if (a1 == 0)
1345 {
1346 if (c_type_promotes_to (a2) != a2)
1347 return 0;
1348 }
1349 else if (a2 == 0)
1350 {
1351 if (c_type_promotes_to (a1) != a1)
1352 return 0;
1353 }
1354 /* If one of the lists has an error marker, ignore this arg. */
1355 else if (TREE_CODE (a1) == ERROR_MARK
1356 || TREE_CODE (a2) == ERROR_MARK)
1357 ;
1358 else if (!(newval = comptypes_internal (mv1, mv2)))
1359 {
1360 /* Allow wait (union {union wait *u; int *i} *)
1361 and wait (union wait *) to be compatible. */
1362 if (TREE_CODE (a1) == UNION_TYPE
1363 && (TYPE_NAME (a1) == 0
1364 || TYPE_TRANSPARENT_UNION (a1))
1365 && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1366 && tree_int_cst_equal (TYPE_SIZE (a1),
1367 TYPE_SIZE (a2)))
1368 {
1369 tree memb;
1370 for (memb = TYPE_FIELDS (a1);
1371 memb; memb = TREE_CHAIN (memb))
1372 {
1373 tree mv3 = TREE_TYPE (memb);
1374 if (mv3 && mv3 != error_mark_node
1375 && TREE_CODE (mv3) != ARRAY_TYPE)
1376 mv3 = TYPE_MAIN_VARIANT (mv3);
1377 if (comptypes_internal (mv3, mv2))
1378 break;
1379 }
1380 if (memb == 0)
1381 return 0;
1382 }
1383 else if (TREE_CODE (a2) == UNION_TYPE
1384 && (TYPE_NAME (a2) == 0
1385 || TYPE_TRANSPARENT_UNION (a2))
1386 && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1387 && tree_int_cst_equal (TYPE_SIZE (a2),
1388 TYPE_SIZE (a1)))
1389 {
1390 tree memb;
1391 for (memb = TYPE_FIELDS (a2);
1392 memb; memb = TREE_CHAIN (memb))
1393 {
1394 tree mv3 = TREE_TYPE (memb);
1395 if (mv3 && mv3 != error_mark_node
1396 && TREE_CODE (mv3) != ARRAY_TYPE)
1397 mv3 = TYPE_MAIN_VARIANT (mv3);
1398 if (comptypes_internal (mv3, mv1))
1399 break;
1400 }
1401 if (memb == 0)
1402 return 0;
1403 }
1404 else
1405 return 0;
1406 }
1407
1408 /* comptypes said ok, but record if it said to warn. */
1409 if (newval > val)
1410 val = newval;
1411
1412 args1 = TREE_CHAIN (args1);
1413 args2 = TREE_CHAIN (args2);
1414 }
1415 }
1416 \f
1417 /* Compute the size to increment a pointer by. */
1418
1419 static tree
1420 c_size_in_bytes (tree type)
1421 {
1422 enum tree_code code = TREE_CODE (type);
1423
1424 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1425 return size_one_node;
1426
1427 if (!COMPLETE_OR_VOID_TYPE_P (type))
1428 {
1429 error ("arithmetic on pointer to an incomplete type");
1430 return size_one_node;
1431 }
1432
1433 /* Convert in case a char is more than one unit. */
1434 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1435 size_int (TYPE_PRECISION (char_type_node)
1436 / BITS_PER_UNIT));
1437 }
1438 \f
1439 /* Return either DECL or its known constant value (if it has one). */
1440
1441 tree
1442 decl_constant_value (tree decl)
1443 {
1444 if (/* Don't change a variable array bound or initial value to a constant
1445 in a place where a variable is invalid. Note that DECL_INITIAL
1446 isn't valid for a PARM_DECL. */
1447 current_function_decl != 0
1448 && TREE_CODE (decl) != PARM_DECL
1449 && !TREE_THIS_VOLATILE (decl)
1450 && TREE_READONLY (decl)
1451 && DECL_INITIAL (decl) != 0
1452 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1453 /* This is invalid if initial value is not constant.
1454 If it has either a function call, a memory reference,
1455 or a variable, then re-evaluating it could give different results. */
1456 && TREE_CONSTANT (DECL_INITIAL (decl))
1457 /* Check for cases where this is sub-optimal, even though valid. */
1458 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1459 return DECL_INITIAL (decl);
1460 return decl;
1461 }
1462
1463 /* Return either DECL or its known constant value (if it has one), but
1464 return DECL if pedantic or DECL has mode BLKmode. This is for
1465 bug-compatibility with the old behavior of decl_constant_value
1466 (before GCC 3.0); every use of this function is a bug and it should
1467 be removed before GCC 3.1. It is not appropriate to use pedantic
1468 in a way that affects optimization, and BLKmode is probably not the
1469 right test for avoiding misoptimizations either. */
1470
1471 static tree
1472 decl_constant_value_for_broken_optimization (tree decl)
1473 {
1474 tree ret;
1475
1476 if (pedantic || DECL_MODE (decl) == BLKmode)
1477 return decl;
1478
1479 ret = decl_constant_value (decl);
1480 /* Avoid unwanted tree sharing between the initializer and current
1481 function's body where the tree can be modified e.g. by the
1482 gimplifier. */
1483 if (ret != decl && TREE_STATIC (decl))
1484 ret = unshare_expr (ret);
1485 return ret;
1486 }
1487
1488 /* Convert the array expression EXP to a pointer. */
1489 static tree
1490 array_to_pointer_conversion (tree exp)
1491 {
1492 tree orig_exp = exp;
1493 tree type = TREE_TYPE (exp);
1494 tree adr;
1495 tree restype = TREE_TYPE (type);
1496 tree ptrtype;
1497
1498 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1499
1500 STRIP_TYPE_NOPS (exp);
1501
1502 if (TREE_NO_WARNING (orig_exp))
1503 TREE_NO_WARNING (exp) = 1;
1504
1505 ptrtype = build_pointer_type (restype);
1506
1507 if (TREE_CODE (exp) == INDIRECT_REF)
1508 return convert (ptrtype, TREE_OPERAND (exp, 0));
1509
1510 if (TREE_CODE (exp) == VAR_DECL)
1511 {
1512 /* We are making an ADDR_EXPR of ptrtype. This is a valid
1513 ADDR_EXPR because it's the best way of representing what
1514 happens in C when we take the address of an array and place
1515 it in a pointer to the element type. */
1516 adr = build1 (ADDR_EXPR, ptrtype, exp);
1517 if (!c_mark_addressable (exp))
1518 return error_mark_node;
1519 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
1520 return adr;
1521 }
1522
1523 /* This way is better for a COMPONENT_REF since it can
1524 simplify the offset for a component. */
1525 adr = build_unary_op (ADDR_EXPR, exp, 1);
1526 return convert (ptrtype, adr);
1527 }
1528
1529 /* Convert the function expression EXP to a pointer. */
1530 static tree
1531 function_to_pointer_conversion (tree exp)
1532 {
1533 tree orig_exp = exp;
1534
1535 gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1536
1537 STRIP_TYPE_NOPS (exp);
1538
1539 if (TREE_NO_WARNING (orig_exp))
1540 TREE_NO_WARNING (exp) = 1;
1541
1542 return build_unary_op (ADDR_EXPR, exp, 0);
1543 }
1544
1545 /* Perform the default conversion of arrays and functions to pointers.
1546 Return the result of converting EXP. For any other expression, just
1547 return EXP after removing NOPs. */
1548
1549 struct c_expr
1550 default_function_array_conversion (struct c_expr exp)
1551 {
1552 tree orig_exp = exp.value;
1553 tree type = TREE_TYPE (exp.value);
1554 enum tree_code code = TREE_CODE (type);
1555
1556 switch (code)
1557 {
1558 case ARRAY_TYPE:
1559 {
1560 bool not_lvalue = false;
1561 bool lvalue_array_p;
1562
1563 while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1564 || TREE_CODE (exp.value) == NOP_EXPR
1565 || TREE_CODE (exp.value) == CONVERT_EXPR)
1566 && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1567 {
1568 if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1569 not_lvalue = true;
1570 exp.value = TREE_OPERAND (exp.value, 0);
1571 }
1572
1573 if (TREE_NO_WARNING (orig_exp))
1574 TREE_NO_WARNING (exp.value) = 1;
1575
1576 lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1577 if (!flag_isoc99 && !lvalue_array_p)
1578 {
1579 /* Before C99, non-lvalue arrays do not decay to pointers.
1580 Normally, using such an array would be invalid; but it can
1581 be used correctly inside sizeof or as a statement expression.
1582 Thus, do not give an error here; an error will result later. */
1583 return exp;
1584 }
1585
1586 exp.value = array_to_pointer_conversion (exp.value);
1587 }
1588 break;
1589 case FUNCTION_TYPE:
1590 exp.value = function_to_pointer_conversion (exp.value);
1591 break;
1592 default:
1593 STRIP_TYPE_NOPS (exp.value);
1594 if (TREE_NO_WARNING (orig_exp))
1595 TREE_NO_WARNING (exp.value) = 1;
1596 break;
1597 }
1598
1599 return exp;
1600 }
1601
1602
1603 /* EXP is an expression of integer type. Apply the integer promotions
1604 to it and return the promoted value. */
1605
1606 tree
1607 perform_integral_promotions (tree exp)
1608 {
1609 tree type = TREE_TYPE (exp);
1610 enum tree_code code = TREE_CODE (type);
1611
1612 gcc_assert (INTEGRAL_TYPE_P (type));
1613
1614 /* Normally convert enums to int,
1615 but convert wide enums to something wider. */
1616 if (code == ENUMERAL_TYPE)
1617 {
1618 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1619 TYPE_PRECISION (integer_type_node)),
1620 ((TYPE_PRECISION (type)
1621 >= TYPE_PRECISION (integer_type_node))
1622 && TYPE_UNSIGNED (type)));
1623
1624 return convert (type, exp);
1625 }
1626
1627 /* ??? This should no longer be needed now bit-fields have their
1628 proper types. */
1629 if (TREE_CODE (exp) == COMPONENT_REF
1630 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1631 /* If it's thinner than an int, promote it like a
1632 c_promoting_integer_type_p, otherwise leave it alone. */
1633 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1634 TYPE_PRECISION (integer_type_node)))
1635 return convert (integer_type_node, exp);
1636
1637 if (c_promoting_integer_type_p (type))
1638 {
1639 /* Preserve unsignedness if not really getting any wider. */
1640 if (TYPE_UNSIGNED (type)
1641 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1642 return convert (unsigned_type_node, exp);
1643
1644 return convert (integer_type_node, exp);
1645 }
1646
1647 return exp;
1648 }
1649
1650
1651 /* Perform default promotions for C data used in expressions.
1652 Enumeral types or short or char are converted to int.
1653 In addition, manifest constants symbols are replaced by their values. */
1654
1655 tree
1656 default_conversion (tree exp)
1657 {
1658 tree orig_exp;
1659 tree type = TREE_TYPE (exp);
1660 enum tree_code code = TREE_CODE (type);
1661
1662 /* Functions and arrays have been converted during parsing. */
1663 gcc_assert (code != FUNCTION_TYPE);
1664 if (code == ARRAY_TYPE)
1665 return exp;
1666
1667 /* Constants can be used directly unless they're not loadable. */
1668 if (TREE_CODE (exp) == CONST_DECL)
1669 exp = DECL_INITIAL (exp);
1670
1671 /* Replace a nonvolatile const static variable with its value unless
1672 it is an array, in which case we must be sure that taking the
1673 address of the array produces consistent results. */
1674 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1675 {
1676 exp = decl_constant_value_for_broken_optimization (exp);
1677 type = TREE_TYPE (exp);
1678 }
1679
1680 /* Strip no-op conversions. */
1681 orig_exp = exp;
1682 STRIP_TYPE_NOPS (exp);
1683
1684 if (TREE_NO_WARNING (orig_exp))
1685 TREE_NO_WARNING (exp) = 1;
1686
1687 if (INTEGRAL_TYPE_P (type))
1688 return perform_integral_promotions (exp);
1689
1690 if (code == VOID_TYPE)
1691 {
1692 error ("void value not ignored as it ought to be");
1693 return error_mark_node;
1694 }
1695 return exp;
1696 }
1697 \f
1698 /* Look up COMPONENT in a structure or union DECL.
1699
1700 If the component name is not found, returns NULL_TREE. Otherwise,
1701 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1702 stepping down the chain to the component, which is in the last
1703 TREE_VALUE of the list. Normally the list is of length one, but if
1704 the component is embedded within (nested) anonymous structures or
1705 unions, the list steps down the chain to the component. */
1706
1707 static tree
1708 lookup_field (tree decl, tree component)
1709 {
1710 tree type = TREE_TYPE (decl);
1711 tree field;
1712
1713 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1714 to the field elements. Use a binary search on this array to quickly
1715 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1716 will always be set for structures which have many elements. */
1717
1718 if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1719 {
1720 int bot, top, half;
1721 tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1722
1723 field = TYPE_FIELDS (type);
1724 bot = 0;
1725 top = TYPE_LANG_SPECIFIC (type)->s->len;
1726 while (top - bot > 1)
1727 {
1728 half = (top - bot + 1) >> 1;
1729 field = field_array[bot+half];
1730
1731 if (DECL_NAME (field) == NULL_TREE)
1732 {
1733 /* Step through all anon unions in linear fashion. */
1734 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1735 {
1736 field = field_array[bot++];
1737 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1738 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1739 {
1740 tree anon = lookup_field (field, component);
1741
1742 if (anon)
1743 return tree_cons (NULL_TREE, field, anon);
1744 }
1745 }
1746
1747 /* Entire record is only anon unions. */
1748 if (bot > top)
1749 return NULL_TREE;
1750
1751 /* Restart the binary search, with new lower bound. */
1752 continue;
1753 }
1754
1755 if (DECL_NAME (field) == component)
1756 break;
1757 if (DECL_NAME (field) < component)
1758 bot += half;
1759 else
1760 top = bot + half;
1761 }
1762
1763 if (DECL_NAME (field_array[bot]) == component)
1764 field = field_array[bot];
1765 else if (DECL_NAME (field) != component)
1766 return NULL_TREE;
1767 }
1768 else
1769 {
1770 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1771 {
1772 if (DECL_NAME (field) == NULL_TREE
1773 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1774 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1775 {
1776 tree anon = lookup_field (field, component);
1777
1778 if (anon)
1779 return tree_cons (NULL_TREE, field, anon);
1780 }
1781
1782 if (DECL_NAME (field) == component)
1783 break;
1784 }
1785
1786 if (field == NULL_TREE)
1787 return NULL_TREE;
1788 }
1789
1790 return tree_cons (NULL_TREE, field, NULL_TREE);
1791 }
1792
1793 /* Make an expression to refer to the COMPONENT field of
1794 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1795
1796 tree
1797 build_component_ref (tree datum, tree component)
1798 {
1799 tree type = TREE_TYPE (datum);
1800 enum tree_code code = TREE_CODE (type);
1801 tree field = NULL;
1802 tree ref;
1803
1804 if (!objc_is_public (datum, component))
1805 return error_mark_node;
1806
1807 /* See if there is a field or component with name COMPONENT. */
1808
1809 if (code == RECORD_TYPE || code == UNION_TYPE)
1810 {
1811 if (!COMPLETE_TYPE_P (type))
1812 {
1813 c_incomplete_type_error (NULL_TREE, type);
1814 return error_mark_node;
1815 }
1816
1817 field = lookup_field (datum, component);
1818
1819 if (!field)
1820 {
1821 error ("%qT has no member named %qE", type, component);
1822 return error_mark_node;
1823 }
1824
1825 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1826 This might be better solved in future the way the C++ front
1827 end does it - by giving the anonymous entities each a
1828 separate name and type, and then have build_component_ref
1829 recursively call itself. We can't do that here. */
1830 do
1831 {
1832 tree subdatum = TREE_VALUE (field);
1833 int quals;
1834 tree subtype;
1835
1836 if (TREE_TYPE (subdatum) == error_mark_node)
1837 return error_mark_node;
1838
1839 quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1840 quals |= TYPE_QUALS (TREE_TYPE (datum));
1841 subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1842
1843 ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1844 NULL_TREE);
1845 if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1846 TREE_READONLY (ref) = 1;
1847 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1848 TREE_THIS_VOLATILE (ref) = 1;
1849
1850 if (TREE_DEPRECATED (subdatum))
1851 warn_deprecated_use (subdatum);
1852
1853 datum = ref;
1854
1855 field = TREE_CHAIN (field);
1856 }
1857 while (field);
1858
1859 return ref;
1860 }
1861 else if (code != ERROR_MARK)
1862 error ("request for member %qE in something not a structure or union",
1863 component);
1864
1865 return error_mark_node;
1866 }
1867 \f
1868 /* Given an expression PTR for a pointer, return an expression
1869 for the value pointed to.
1870 ERRORSTRING is the name of the operator to appear in error messages. */
1871
1872 tree
1873 build_indirect_ref (tree ptr, const char *errorstring)
1874 {
1875 tree pointer = default_conversion (ptr);
1876 tree type = TREE_TYPE (pointer);
1877
1878 if (TREE_CODE (type) == POINTER_TYPE)
1879 {
1880 if (TREE_CODE (pointer) == CONVERT_EXPR
1881 || TREE_CODE (pointer) == NOP_EXPR
1882 || TREE_CODE (pointer) == VIEW_CONVERT_EXPR)
1883 {
1884 /* If a warning is issued, mark it to avoid duplicates from
1885 the backend. This only needs to be done at
1886 warn_strict_aliasing > 2. */
1887 if (warn_strict_aliasing > 2)
1888 if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (pointer, 0)),
1889 type, TREE_OPERAND (pointer, 0)))
1890 TREE_NO_WARNING (pointer) = 1;
1891 }
1892
1893 if (TREE_CODE (pointer) == ADDR_EXPR
1894 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1895 == TREE_TYPE (type)))
1896 return TREE_OPERAND (pointer, 0);
1897 else
1898 {
1899 tree t = TREE_TYPE (type);
1900 tree ref;
1901
1902 ref = build1 (INDIRECT_REF, t, pointer);
1903
1904 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1905 {
1906 error ("dereferencing pointer to incomplete type");
1907 return error_mark_node;
1908 }
1909 if (VOID_TYPE_P (t) && skip_evaluation == 0)
1910 warning (0, "dereferencing %<void *%> pointer");
1911
1912 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1913 so that we get the proper error message if the result is used
1914 to assign to. Also, &* is supposed to be a no-op.
1915 And ANSI C seems to specify that the type of the result
1916 should be the const type. */
1917 /* A de-reference of a pointer to const is not a const. It is valid
1918 to change it via some other pointer. */
1919 TREE_READONLY (ref) = TYPE_READONLY (t);
1920 TREE_SIDE_EFFECTS (ref)
1921 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1922 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1923 return ref;
1924 }
1925 }
1926 else if (TREE_CODE (pointer) != ERROR_MARK)
1927 error ("invalid type argument of %qs (have %qT)", errorstring, type);
1928 return error_mark_node;
1929 }
1930
1931 /* This handles expressions of the form "a[i]", which denotes
1932 an array reference.
1933
1934 This is logically equivalent in C to *(a+i), but we may do it differently.
1935 If A is a variable or a member, we generate a primitive ARRAY_REF.
1936 This avoids forcing the array out of registers, and can work on
1937 arrays that are not lvalues (for example, members of structures returned
1938 by functions). */
1939
1940 tree
1941 build_array_ref (tree array, tree index)
1942 {
1943 bool swapped = false;
1944 if (TREE_TYPE (array) == error_mark_node
1945 || TREE_TYPE (index) == error_mark_node)
1946 return error_mark_node;
1947
1948 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1949 && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1950 {
1951 tree temp;
1952 if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1953 && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1954 {
1955 error ("subscripted value is neither array nor pointer");
1956 return error_mark_node;
1957 }
1958 temp = array;
1959 array = index;
1960 index = temp;
1961 swapped = true;
1962 }
1963
1964 if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1965 {
1966 error ("array subscript is not an integer");
1967 return error_mark_node;
1968 }
1969
1970 if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1971 {
1972 error ("subscripted value is pointer to function");
1973 return error_mark_node;
1974 }
1975
1976 /* ??? Existing practice has been to warn only when the char
1977 index is syntactically the index, not for char[array]. */
1978 if (!swapped)
1979 warn_array_subscript_with_type_char (index);
1980
1981 /* Apply default promotions *after* noticing character types. */
1982 index = default_conversion (index);
1983
1984 gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1985
1986 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1987 {
1988 tree rval, type;
1989
1990 /* An array that is indexed by a non-constant
1991 cannot be stored in a register; we must be able to do
1992 address arithmetic on its address.
1993 Likewise an array of elements of variable size. */
1994 if (TREE_CODE (index) != INTEGER_CST
1995 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1996 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1997 {
1998 if (!c_mark_addressable (array))
1999 return error_mark_node;
2000 }
2001 /* An array that is indexed by a constant value which is not within
2002 the array bounds cannot be stored in a register either; because we
2003 would get a crash in store_bit_field/extract_bit_field when trying
2004 to access a non-existent part of the register. */
2005 if (TREE_CODE (index) == INTEGER_CST
2006 && TYPE_DOMAIN (TREE_TYPE (array))
2007 && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
2008 {
2009 if (!c_mark_addressable (array))
2010 return error_mark_node;
2011 }
2012
2013 if (pedantic)
2014 {
2015 tree foo = array;
2016 while (TREE_CODE (foo) == COMPONENT_REF)
2017 foo = TREE_OPERAND (foo, 0);
2018 if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2019 pedwarn ("ISO C forbids subscripting %<register%> array");
2020 else if (!flag_isoc99 && !lvalue_p (foo))
2021 pedwarn ("ISO C90 forbids subscripting non-lvalue array");
2022 }
2023
2024 type = TREE_TYPE (TREE_TYPE (array));
2025 if (TREE_CODE (type) != ARRAY_TYPE)
2026 type = TYPE_MAIN_VARIANT (type);
2027 rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2028 /* Array ref is const/volatile if the array elements are
2029 or if the array is. */
2030 TREE_READONLY (rval)
2031 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2032 | TREE_READONLY (array));
2033 TREE_SIDE_EFFECTS (rval)
2034 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2035 | TREE_SIDE_EFFECTS (array));
2036 TREE_THIS_VOLATILE (rval)
2037 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2038 /* This was added by rms on 16 Nov 91.
2039 It fixes vol struct foo *a; a->elts[1]
2040 in an inline function.
2041 Hope it doesn't break something else. */
2042 | TREE_THIS_VOLATILE (array));
2043 return require_complete_type (fold (rval));
2044 }
2045 else
2046 {
2047 tree ar = default_conversion (array);
2048
2049 if (ar == error_mark_node)
2050 return ar;
2051
2052 gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2053 gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2054
2055 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2056 "array indexing");
2057 }
2058 }
2059 \f
2060 /* Build an external reference to identifier ID. FUN indicates
2061 whether this will be used for a function call. LOC is the source
2062 location of the identifier. */
2063 tree
2064 build_external_ref (tree id, int fun, location_t loc)
2065 {
2066 tree ref;
2067 tree decl = lookup_name (id);
2068
2069 /* In Objective-C, an instance variable (ivar) may be preferred to
2070 whatever lookup_name() found. */
2071 decl = objc_lookup_ivar (decl, id);
2072
2073 if (decl && decl != error_mark_node)
2074 ref = decl;
2075 else if (fun)
2076 /* Implicit function declaration. */
2077 ref = implicitly_declare (id);
2078 else if (decl == error_mark_node)
2079 /* Don't complain about something that's already been
2080 complained about. */
2081 return error_mark_node;
2082 else
2083 {
2084 undeclared_variable (id, loc);
2085 return error_mark_node;
2086 }
2087
2088 if (TREE_TYPE (ref) == error_mark_node)
2089 return error_mark_node;
2090
2091 if (TREE_DEPRECATED (ref))
2092 warn_deprecated_use (ref);
2093
2094 /* Recursive call does not count as usage. */
2095 if (ref != current_function_decl)
2096 {
2097 if (!skip_evaluation)
2098 assemble_external (ref);
2099 TREE_USED (ref) = 1;
2100 }
2101
2102 if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2103 {
2104 if (!in_sizeof && !in_typeof)
2105 C_DECL_USED (ref) = 1;
2106 else if (DECL_INITIAL (ref) == 0
2107 && DECL_EXTERNAL (ref)
2108 && !TREE_PUBLIC (ref))
2109 record_maybe_used_decl (ref);
2110 }
2111
2112 if (TREE_CODE (ref) == CONST_DECL)
2113 {
2114 used_types_insert (TREE_TYPE (ref));
2115 ref = DECL_INITIAL (ref);
2116 TREE_CONSTANT (ref) = 1;
2117 TREE_INVARIANT (ref) = 1;
2118 }
2119 else if (current_function_decl != 0
2120 && !DECL_FILE_SCOPE_P (current_function_decl)
2121 && (TREE_CODE (ref) == VAR_DECL
2122 || TREE_CODE (ref) == PARM_DECL
2123 || TREE_CODE (ref) == FUNCTION_DECL))
2124 {
2125 tree context = decl_function_context (ref);
2126
2127 if (context != 0 && context != current_function_decl)
2128 DECL_NONLOCAL (ref) = 1;
2129 }
2130 /* C99 6.7.4p3: An inline definition of a function with external
2131 linkage ... shall not contain a reference to an identifier with
2132 internal linkage. */
2133 else if (current_function_decl != 0
2134 && DECL_DECLARED_INLINE_P (current_function_decl)
2135 && DECL_EXTERNAL (current_function_decl)
2136 && VAR_OR_FUNCTION_DECL_P (ref)
2137 && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2138 && ! TREE_PUBLIC (ref))
2139 pedwarn ("%H%qD is static but used in inline function %qD "
2140 "which is not static", &loc, ref, current_function_decl);
2141
2142 return ref;
2143 }
2144
2145 /* Record details of decls possibly used inside sizeof or typeof. */
2146 struct maybe_used_decl
2147 {
2148 /* The decl. */
2149 tree decl;
2150 /* The level seen at (in_sizeof + in_typeof). */
2151 int level;
2152 /* The next one at this level or above, or NULL. */
2153 struct maybe_used_decl *next;
2154 };
2155
2156 static struct maybe_used_decl *maybe_used_decls;
2157
2158 /* Record that DECL, an undefined static function reference seen
2159 inside sizeof or typeof, might be used if the operand of sizeof is
2160 a VLA type or the operand of typeof is a variably modified
2161 type. */
2162
2163 static void
2164 record_maybe_used_decl (tree decl)
2165 {
2166 struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2167 t->decl = decl;
2168 t->level = in_sizeof + in_typeof;
2169 t->next = maybe_used_decls;
2170 maybe_used_decls = t;
2171 }
2172
2173 /* Pop the stack of decls possibly used inside sizeof or typeof. If
2174 USED is false, just discard them. If it is true, mark them used
2175 (if no longer inside sizeof or typeof) or move them to the next
2176 level up (if still inside sizeof or typeof). */
2177
2178 void
2179 pop_maybe_used (bool used)
2180 {
2181 struct maybe_used_decl *p = maybe_used_decls;
2182 int cur_level = in_sizeof + in_typeof;
2183 while (p && p->level > cur_level)
2184 {
2185 if (used)
2186 {
2187 if (cur_level == 0)
2188 C_DECL_USED (p->decl) = 1;
2189 else
2190 p->level = cur_level;
2191 }
2192 p = p->next;
2193 }
2194 if (!used || cur_level == 0)
2195 maybe_used_decls = p;
2196 }
2197
2198 /* Return the result of sizeof applied to EXPR. */
2199
2200 struct c_expr
2201 c_expr_sizeof_expr (struct c_expr expr)
2202 {
2203 struct c_expr ret;
2204 if (expr.value == error_mark_node)
2205 {
2206 ret.value = error_mark_node;
2207 ret.original_code = ERROR_MARK;
2208 pop_maybe_used (false);
2209 }
2210 else
2211 {
2212 ret.value = c_sizeof (TREE_TYPE (expr.value));
2213 ret.original_code = ERROR_MARK;
2214 if (c_vla_type_p (TREE_TYPE (expr.value)))
2215 {
2216 /* sizeof is evaluated when given a vla (C99 6.5.3.4p2). */
2217 ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2218 }
2219 pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2220 }
2221 return ret;
2222 }
2223
2224 /* Return the result of sizeof applied to T, a structure for the type
2225 name passed to sizeof (rather than the type itself). */
2226
2227 struct c_expr
2228 c_expr_sizeof_type (struct c_type_name *t)
2229 {
2230 tree type;
2231 struct c_expr ret;
2232 type = groktypename (t);
2233 ret.value = c_sizeof (type);
2234 ret.original_code = ERROR_MARK;
2235 pop_maybe_used (type != error_mark_node
2236 ? C_TYPE_VARIABLE_SIZE (type) : false);
2237 return ret;
2238 }
2239
2240 /* Build a function call to function FUNCTION with parameters PARAMS.
2241 PARAMS is a list--a chain of TREE_LIST nodes--in which the
2242 TREE_VALUE of each node is a parameter-expression.
2243 FUNCTION's data type may be a function type or a pointer-to-function. */
2244
2245 tree
2246 build_function_call (tree function, tree params)
2247 {
2248 tree fntype, fundecl = 0;
2249 tree name = NULL_TREE, result;
2250 tree tem;
2251 int nargs;
2252 tree *argarray;
2253
2254
2255 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
2256 STRIP_TYPE_NOPS (function);
2257
2258 /* Convert anything with function type to a pointer-to-function. */
2259 if (TREE_CODE (function) == FUNCTION_DECL)
2260 {
2261 /* Implement type-directed function overloading for builtins.
2262 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2263 handle all the type checking. The result is a complete expression
2264 that implements this function call. */
2265 tem = resolve_overloaded_builtin (function, params);
2266 if (tem)
2267 return tem;
2268
2269 name = DECL_NAME (function);
2270 fundecl = function;
2271 }
2272 if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2273 function = function_to_pointer_conversion (function);
2274
2275 /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2276 expressions, like those used for ObjC messenger dispatches. */
2277 function = objc_rewrite_function_call (function, params);
2278
2279 fntype = TREE_TYPE (function);
2280
2281 if (TREE_CODE (fntype) == ERROR_MARK)
2282 return error_mark_node;
2283
2284 if (!(TREE_CODE (fntype) == POINTER_TYPE
2285 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2286 {
2287 error ("called object %qE is not a function", function);
2288 return error_mark_node;
2289 }
2290
2291 if (fundecl && TREE_THIS_VOLATILE (fundecl))
2292 current_function_returns_abnormally = 1;
2293
2294 /* fntype now gets the type of function pointed to. */
2295 fntype = TREE_TYPE (fntype);
2296
2297 /* Check that the function is called through a compatible prototype.
2298 If it is not, replace the call by a trap, wrapped up in a compound
2299 expression if necessary. This has the nice side-effect to prevent
2300 the tree-inliner from generating invalid assignment trees which may
2301 blow up in the RTL expander later. */
2302 if ((TREE_CODE (function) == NOP_EXPR
2303 || TREE_CODE (function) == CONVERT_EXPR)
2304 && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2305 && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2306 && !comptypes (fntype, TREE_TYPE (tem)))
2307 {
2308 tree return_type = TREE_TYPE (fntype);
2309 tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2310 NULL_TREE);
2311
2312 /* This situation leads to run-time undefined behavior. We can't,
2313 therefore, simply error unless we can prove that all possible
2314 executions of the program must execute the code. */
2315 warning (0, "function called through a non-compatible type");
2316
2317 /* We can, however, treat "undefined" any way we please.
2318 Call abort to encourage the user to fix the program. */
2319 inform ("if this code is reached, the program will abort");
2320
2321 if (VOID_TYPE_P (return_type))
2322 return trap;
2323 else
2324 {
2325 tree rhs;
2326
2327 if (AGGREGATE_TYPE_P (return_type))
2328 rhs = build_compound_literal (return_type,
2329 build_constructor (return_type, 0));
2330 else
2331 rhs = fold_convert (return_type, integer_zero_node);
2332
2333 return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2334 }
2335 }
2336
2337 /* Convert the parameters to the types declared in the
2338 function prototype, or apply default promotions. */
2339
2340 nargs = list_length (params);
2341 argarray = (tree *) alloca (nargs * sizeof (tree));
2342 nargs = convert_arguments (nargs, argarray, TYPE_ARG_TYPES (fntype),
2343 params, function, fundecl);
2344 if (nargs < 0)
2345 return error_mark_node;
2346
2347 /* Check that the arguments to the function are valid. */
2348
2349 check_function_arguments (TYPE_ATTRIBUTES (fntype), nargs, argarray,
2350 TYPE_ARG_TYPES (fntype));
2351
2352 if (require_constant_value)
2353 {
2354 result = fold_build_call_array_initializer (TREE_TYPE (fntype),
2355 function, nargs, argarray);
2356 if (TREE_CONSTANT (result)
2357 && (name == NULL_TREE
2358 || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2359 pedwarn_init ("initializer element is not constant");
2360 }
2361 else
2362 result = fold_build_call_array (TREE_TYPE (fntype),
2363 function, nargs, argarray);
2364
2365 if (VOID_TYPE_P (TREE_TYPE (result)))
2366 return result;
2367 return require_complete_type (result);
2368 }
2369 \f
2370 /* Convert the argument expressions in the list VALUES
2371 to the types in the list TYPELIST. The resulting arguments are
2372 stored in the array ARGARRAY which has size NARGS.
2373
2374 If TYPELIST is exhausted, or when an element has NULL as its type,
2375 perform the default conversions.
2376
2377 PARMLIST is the chain of parm decls for the function being called.
2378 It may be 0, if that info is not available.
2379 It is used only for generating error messages.
2380
2381 FUNCTION is a tree for the called function. It is used only for
2382 error messages, where it is formatted with %qE.
2383
2384 This is also where warnings about wrong number of args are generated.
2385
2386 VALUES is a chain of TREE_LIST nodes with the elements of the list
2387 in the TREE_VALUE slots of those nodes.
2388
2389 Returns the actual number of arguments processed (which may be less
2390 than NARGS in some error situations), or -1 on failure. */
2391
2392 static int
2393 convert_arguments (int nargs, tree *argarray,
2394 tree typelist, tree values, tree function, tree fundecl)
2395 {
2396 tree typetail, valtail;
2397 int parmnum;
2398 const bool type_generic = fundecl
2399 && lookup_attribute ("type generic", TYPE_ATTRIBUTES(TREE_TYPE (fundecl)));
2400 tree selector;
2401
2402 /* Change pointer to function to the function itself for
2403 diagnostics. */
2404 if (TREE_CODE (function) == ADDR_EXPR
2405 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2406 function = TREE_OPERAND (function, 0);
2407
2408 /* Handle an ObjC selector specially for diagnostics. */
2409 selector = objc_message_selector ();
2410
2411 /* Scan the given expressions and types, producing individual
2412 converted arguments and storing them in ARGARRAY. */
2413
2414 for (valtail = values, typetail = typelist, parmnum = 0;
2415 valtail;
2416 valtail = TREE_CHAIN (valtail), parmnum++)
2417 {
2418 tree type = typetail ? TREE_VALUE (typetail) : 0;
2419 tree val = TREE_VALUE (valtail);
2420 tree rname = function;
2421 int argnum = parmnum + 1;
2422 const char *invalid_func_diag;
2423
2424 if (type == void_type_node)
2425 {
2426 error ("too many arguments to function %qE", function);
2427 return parmnum;
2428 }
2429
2430 if (selector && argnum > 2)
2431 {
2432 rname = selector;
2433 argnum -= 2;
2434 }
2435
2436 STRIP_TYPE_NOPS (val);
2437
2438 val = require_complete_type (val);
2439
2440 if (type != 0)
2441 {
2442 /* Formal parm type is specified by a function prototype. */
2443 tree parmval;
2444
2445 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2446 {
2447 error ("type of formal parameter %d is incomplete", parmnum + 1);
2448 parmval = val;
2449 }
2450 else
2451 {
2452 /* Optionally warn about conversions that
2453 differ from the default conversions. */
2454 if (warn_traditional_conversion || warn_traditional)
2455 {
2456 unsigned int formal_prec = TYPE_PRECISION (type);
2457
2458 if (INTEGRAL_TYPE_P (type)
2459 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2460 warning (0, "passing argument %d of %qE as integer "
2461 "rather than floating due to prototype",
2462 argnum, rname);
2463 if (INTEGRAL_TYPE_P (type)
2464 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2465 warning (0, "passing argument %d of %qE as integer "
2466 "rather than complex due to prototype",
2467 argnum, rname);
2468 else if (TREE_CODE (type) == COMPLEX_TYPE
2469 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2470 warning (0, "passing argument %d of %qE as complex "
2471 "rather than floating due to prototype",
2472 argnum, rname);
2473 else if (TREE_CODE (type) == REAL_TYPE
2474 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2475 warning (0, "passing argument %d of %qE as floating "
2476 "rather than integer due to prototype",
2477 argnum, rname);
2478 else if (TREE_CODE (type) == COMPLEX_TYPE
2479 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2480 warning (0, "passing argument %d of %qE as complex "
2481 "rather than integer due to prototype",
2482 argnum, rname);
2483 else if (TREE_CODE (type) == REAL_TYPE
2484 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2485 warning (0, "passing argument %d of %qE as floating "
2486 "rather than complex due to prototype",
2487 argnum, rname);
2488 /* ??? At some point, messages should be written about
2489 conversions between complex types, but that's too messy
2490 to do now. */
2491 else if (TREE_CODE (type) == REAL_TYPE
2492 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2493 {
2494 /* Warn if any argument is passed as `float',
2495 since without a prototype it would be `double'. */
2496 if (formal_prec == TYPE_PRECISION (float_type_node)
2497 && type != dfloat32_type_node)
2498 warning (0, "passing argument %d of %qE as %<float%> "
2499 "rather than %<double%> due to prototype",
2500 argnum, rname);
2501
2502 /* Warn if mismatch between argument and prototype
2503 for decimal float types. Warn of conversions with
2504 binary float types and of precision narrowing due to
2505 prototype. */
2506 else if (type != TREE_TYPE (val)
2507 && (type == dfloat32_type_node
2508 || type == dfloat64_type_node
2509 || type == dfloat128_type_node
2510 || TREE_TYPE (val) == dfloat32_type_node
2511 || TREE_TYPE (val) == dfloat64_type_node
2512 || TREE_TYPE (val) == dfloat128_type_node)
2513 && (formal_prec
2514 <= TYPE_PRECISION (TREE_TYPE (val))
2515 || (type == dfloat128_type_node
2516 && (TREE_TYPE (val)
2517 != dfloat64_type_node
2518 && (TREE_TYPE (val)
2519 != dfloat32_type_node)))
2520 || (type == dfloat64_type_node
2521 && (TREE_TYPE (val)
2522 != dfloat32_type_node))))
2523 warning (0, "passing argument %d of %qE as %qT "
2524 "rather than %qT due to prototype",
2525 argnum, rname, type, TREE_TYPE (val));
2526
2527 }
2528 /* Detect integer changing in width or signedness.
2529 These warnings are only activated with
2530 -Wtraditional-conversion, not with -Wtraditional. */
2531 else if (warn_traditional_conversion && INTEGRAL_TYPE_P (type)
2532 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2533 {
2534 tree would_have_been = default_conversion (val);
2535 tree type1 = TREE_TYPE (would_have_been);
2536
2537 if (TREE_CODE (type) == ENUMERAL_TYPE
2538 && (TYPE_MAIN_VARIANT (type)
2539 == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2540 /* No warning if function asks for enum
2541 and the actual arg is that enum type. */
2542 ;
2543 else if (formal_prec != TYPE_PRECISION (type1))
2544 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2545 "with different width due to prototype",
2546 argnum, rname);
2547 else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2548 ;
2549 /* Don't complain if the formal parameter type
2550 is an enum, because we can't tell now whether
2551 the value was an enum--even the same enum. */
2552 else if (TREE_CODE (type) == ENUMERAL_TYPE)
2553 ;
2554 else if (TREE_CODE (val) == INTEGER_CST
2555 && int_fits_type_p (val, type))
2556 /* Change in signedness doesn't matter
2557 if a constant value is unaffected. */
2558 ;
2559 /* If the value is extended from a narrower
2560 unsigned type, it doesn't matter whether we
2561 pass it as signed or unsigned; the value
2562 certainly is the same either way. */
2563 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2564 && TYPE_UNSIGNED (TREE_TYPE (val)))
2565 ;
2566 else if (TYPE_UNSIGNED (type))
2567 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2568 "as unsigned due to prototype",
2569 argnum, rname);
2570 else
2571 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2572 "as signed due to prototype", argnum, rname);
2573 }
2574 }
2575
2576 parmval = convert_for_assignment (type, val, ic_argpass,
2577 fundecl, function,
2578 parmnum + 1);
2579
2580 if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2581 && INTEGRAL_TYPE_P (type)
2582 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2583 parmval = default_conversion (parmval);
2584 }
2585 argarray[parmnum] = parmval;
2586 }
2587 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2588 && (TYPE_PRECISION (TREE_TYPE (val))
2589 < TYPE_PRECISION (double_type_node))
2590 && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2591 {
2592 if (type_generic)
2593 argarray[parmnum] = val;
2594 else
2595 /* Convert `float' to `double'. */
2596 argarray[parmnum] = convert (double_type_node, val);
2597 }
2598 else if ((invalid_func_diag =
2599 targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2600 {
2601 error (invalid_func_diag);
2602 return -1;
2603 }
2604 else
2605 /* Convert `short' and `char' to full-size `int'. */
2606 argarray[parmnum] = default_conversion (val);
2607
2608 if (typetail)
2609 typetail = TREE_CHAIN (typetail);
2610 }
2611
2612 gcc_assert (parmnum == nargs);
2613
2614 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2615 {
2616 error ("too few arguments to function %qE", function);
2617 return -1;
2618 }
2619
2620 return parmnum;
2621 }
2622 \f
2623 /* This is the entry point used by the parser to build unary operators
2624 in the input. CODE, a tree_code, specifies the unary operator, and
2625 ARG is the operand. For unary plus, the C parser currently uses
2626 CONVERT_EXPR for code. */
2627
2628 struct c_expr
2629 parser_build_unary_op (enum tree_code code, struct c_expr arg)
2630 {
2631 struct c_expr result;
2632
2633 result.original_code = ERROR_MARK;
2634 result.value = build_unary_op (code, arg.value, 0);
2635
2636 if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value))
2637 overflow_warning (result.value);
2638
2639 return result;
2640 }
2641
2642 /* This is the entry point used by the parser to build binary operators
2643 in the input. CODE, a tree_code, specifies the binary operator, and
2644 ARG1 and ARG2 are the operands. In addition to constructing the
2645 expression, we check for operands that were written with other binary
2646 operators in a way that is likely to confuse the user. */
2647
2648 struct c_expr
2649 parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2650 struct c_expr arg2)
2651 {
2652 struct c_expr result;
2653
2654 enum tree_code code1 = arg1.original_code;
2655 enum tree_code code2 = arg2.original_code;
2656
2657 result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2658 result.original_code = code;
2659
2660 if (TREE_CODE (result.value) == ERROR_MARK)
2661 return result;
2662
2663 /* Check for cases such as x+y<<z which users are likely
2664 to misinterpret. */
2665 if (warn_parentheses)
2666 warn_about_parentheses (code, code1, code2);
2667
2668 if (code1 != tcc_comparison)
2669 warn_logical_operator (code, arg1.value, arg2.value);
2670
2671 /* Warn about comparisons against string literals, with the exception
2672 of testing for equality or inequality of a string literal with NULL. */
2673 if (code == EQ_EXPR || code == NE_EXPR)
2674 {
2675 if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2676 || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2677 warning (OPT_Waddress, "comparison with string literal results in unspecified behavior");
2678 }
2679 else if (TREE_CODE_CLASS (code) == tcc_comparison
2680 && (code1 == STRING_CST || code2 == STRING_CST))
2681 warning (OPT_Waddress, "comparison with string literal results in unspecified behavior");
2682
2683 if (TREE_OVERFLOW_P (result.value)
2684 && !TREE_OVERFLOW_P (arg1.value)
2685 && !TREE_OVERFLOW_P (arg2.value))
2686 overflow_warning (result.value);
2687
2688 return result;
2689 }
2690 \f
2691 /* Return a tree for the difference of pointers OP0 and OP1.
2692 The resulting tree has type int. */
2693
2694 static tree
2695 pointer_diff (tree op0, tree op1)
2696 {
2697 tree restype = ptrdiff_type_node;
2698
2699 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2700 tree con0, con1, lit0, lit1;
2701 tree orig_op1 = op1;
2702
2703 if (pedantic || warn_pointer_arith)
2704 {
2705 if (TREE_CODE (target_type) == VOID_TYPE)
2706 pedwarn ("pointer of type %<void *%> used in subtraction");
2707 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2708 pedwarn ("pointer to a function used in subtraction");
2709 }
2710
2711 /* If the conversion to ptrdiff_type does anything like widening or
2712 converting a partial to an integral mode, we get a convert_expression
2713 that is in the way to do any simplifications.
2714 (fold-const.c doesn't know that the extra bits won't be needed.
2715 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2716 different mode in place.)
2717 So first try to find a common term here 'by hand'; we want to cover
2718 at least the cases that occur in legal static initializers. */
2719 if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2720 && (TYPE_PRECISION (TREE_TYPE (op0))
2721 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2722 con0 = TREE_OPERAND (op0, 0);
2723 else
2724 con0 = op0;
2725 if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2726 && (TYPE_PRECISION (TREE_TYPE (op1))
2727 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2728 con1 = TREE_OPERAND (op1, 0);
2729 else
2730 con1 = op1;
2731
2732 if (TREE_CODE (con0) == PLUS_EXPR)
2733 {
2734 lit0 = TREE_OPERAND (con0, 1);
2735 con0 = TREE_OPERAND (con0, 0);
2736 }
2737 else
2738 lit0 = integer_zero_node;
2739
2740 if (TREE_CODE (con1) == PLUS_EXPR)
2741 {
2742 lit1 = TREE_OPERAND (con1, 1);
2743 con1 = TREE_OPERAND (con1, 0);
2744 }
2745 else
2746 lit1 = integer_zero_node;
2747
2748 if (operand_equal_p (con0, con1, 0))
2749 {
2750 op0 = lit0;
2751 op1 = lit1;
2752 }
2753
2754
2755 /* First do the subtraction as integers;
2756 then drop through to build the divide operator.
2757 Do not do default conversions on the minus operator
2758 in case restype is a short type. */
2759
2760 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2761 convert (restype, op1), 0);
2762 /* This generates an error if op1 is pointer to incomplete type. */
2763 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2764 error ("arithmetic on pointer to an incomplete type");
2765
2766 /* This generates an error if op0 is pointer to incomplete type. */
2767 op1 = c_size_in_bytes (target_type);
2768
2769 /* Divide by the size, in easiest possible way. */
2770 return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2771 }
2772 \f
2773 /* Construct and perhaps optimize a tree representation
2774 for a unary operation. CODE, a tree_code, specifies the operation
2775 and XARG is the operand.
2776 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2777 the default promotions (such as from short to int).
2778 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2779 allows non-lvalues; this is only used to handle conversion of non-lvalue
2780 arrays to pointers in C99. */
2781
2782 tree
2783 build_unary_op (enum tree_code code, tree xarg, int flag)
2784 {
2785 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2786 tree arg = xarg;
2787 tree argtype = 0;
2788 enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2789 tree val;
2790 int noconvert = flag;
2791 const char *invalid_op_diag;
2792
2793 if (typecode == ERROR_MARK)
2794 return error_mark_node;
2795 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2796 typecode = INTEGER_TYPE;
2797
2798 if ((invalid_op_diag
2799 = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2800 {
2801 error (invalid_op_diag);
2802 return error_mark_node;
2803 }
2804
2805 switch (code)
2806 {
2807 case CONVERT_EXPR:
2808 /* This is used for unary plus, because a CONVERT_EXPR
2809 is enough to prevent anybody from looking inside for
2810 associativity, but won't generate any code. */
2811 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2812 || typecode == COMPLEX_TYPE
2813 || typecode == VECTOR_TYPE))
2814 {
2815 error ("wrong type argument to unary plus");
2816 return error_mark_node;
2817 }
2818 else if (!noconvert)
2819 arg = default_conversion (arg);
2820 arg = non_lvalue (arg);
2821 break;
2822
2823 case NEGATE_EXPR:
2824 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2825 || typecode == COMPLEX_TYPE
2826 || typecode == VECTOR_TYPE))
2827 {
2828 error ("wrong type argument to unary minus");
2829 return error_mark_node;
2830 }
2831 else if (!noconvert)
2832 arg = default_conversion (arg);
2833 break;
2834
2835 case BIT_NOT_EXPR:
2836 if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2837 {
2838 if (!noconvert)
2839 arg = default_conversion (arg);
2840 }
2841 else if (typecode == COMPLEX_TYPE)
2842 {
2843 code = CONJ_EXPR;
2844 if (pedantic)
2845 pedwarn ("ISO C does not support %<~%> for complex conjugation");
2846 if (!noconvert)
2847 arg = default_conversion (arg);
2848 }
2849 else
2850 {
2851 error ("wrong type argument to bit-complement");
2852 return error_mark_node;
2853 }
2854 break;
2855
2856 case ABS_EXPR:
2857 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2858 {
2859 error ("wrong type argument to abs");
2860 return error_mark_node;
2861 }
2862 else if (!noconvert)
2863 arg = default_conversion (arg);
2864 break;
2865
2866 case CONJ_EXPR:
2867 /* Conjugating a real value is a no-op, but allow it anyway. */
2868 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2869 || typecode == COMPLEX_TYPE))
2870 {
2871 error ("wrong type argument to conjugation");
2872 return error_mark_node;
2873 }
2874 else if (!noconvert)
2875 arg = default_conversion (arg);
2876 break;
2877
2878 case TRUTH_NOT_EXPR:
2879 if (typecode != INTEGER_TYPE
2880 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2881 && typecode != COMPLEX_TYPE)
2882 {
2883 error ("wrong type argument to unary exclamation mark");
2884 return error_mark_node;
2885 }
2886 arg = c_objc_common_truthvalue_conversion (arg);
2887 return invert_truthvalue (arg);
2888
2889 case REALPART_EXPR:
2890 if (TREE_CODE (arg) == COMPLEX_CST)
2891 return TREE_REALPART (arg);
2892 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2893 return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2894 else
2895 return arg;
2896
2897 case IMAGPART_EXPR:
2898 if (TREE_CODE (arg) == COMPLEX_CST)
2899 return TREE_IMAGPART (arg);
2900 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2901 return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2902 else
2903 return convert (TREE_TYPE (arg), integer_zero_node);
2904
2905 case PREINCREMENT_EXPR:
2906 case POSTINCREMENT_EXPR:
2907 case PREDECREMENT_EXPR:
2908 case POSTDECREMENT_EXPR:
2909
2910 /* Increment or decrement the real part of the value,
2911 and don't change the imaginary part. */
2912 if (typecode == COMPLEX_TYPE)
2913 {
2914 tree real, imag;
2915
2916 if (pedantic)
2917 pedwarn ("ISO C does not support %<++%> and %<--%>"
2918 " on complex types");
2919
2920 arg = stabilize_reference (arg);
2921 real = build_unary_op (REALPART_EXPR, arg, 1);
2922 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2923 real = build_unary_op (code, real, 1);
2924 if (real == error_mark_node || imag == error_mark_node)
2925 return error_mark_node;
2926 return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2927 real, imag);
2928 }
2929
2930 /* Report invalid types. */
2931
2932 if (typecode != POINTER_TYPE
2933 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2934 {
2935 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2936 error ("wrong type argument to increment");
2937 else
2938 error ("wrong type argument to decrement");
2939
2940 return error_mark_node;
2941 }
2942
2943 {
2944 tree inc;
2945 tree result_type = TREE_TYPE (arg);
2946
2947 arg = get_unwidened (arg, 0);
2948 argtype = TREE_TYPE (arg);
2949
2950 /* Compute the increment. */
2951
2952 if (typecode == POINTER_TYPE)
2953 {
2954 /* If pointer target is an undefined struct,
2955 we just cannot know how to do the arithmetic. */
2956 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2957 {
2958 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2959 error ("increment of pointer to unknown structure");
2960 else
2961 error ("decrement of pointer to unknown structure");
2962 }
2963 else if ((pedantic || warn_pointer_arith)
2964 && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2965 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2966 {
2967 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2968 pedwarn ("wrong type argument to increment");
2969 else
2970 pedwarn ("wrong type argument to decrement");
2971 }
2972
2973 inc = c_size_in_bytes (TREE_TYPE (result_type));
2974 inc = fold_convert (sizetype, inc);
2975 }
2976 else
2977 {
2978 inc = integer_one_node;
2979 inc = convert (argtype, inc);
2980 }
2981
2982 /* Complain about anything else that is not a true lvalue. */
2983 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2984 || code == POSTINCREMENT_EXPR)
2985 ? lv_increment
2986 : lv_decrement)))
2987 return error_mark_node;
2988
2989 /* Report a read-only lvalue. */
2990 if (TREE_READONLY (arg))
2991 {
2992 readonly_error (arg,
2993 ((code == PREINCREMENT_EXPR
2994 || code == POSTINCREMENT_EXPR)
2995 ? lv_increment : lv_decrement));
2996 return error_mark_node;
2997 }
2998
2999 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3000 val = boolean_increment (code, arg);
3001 else
3002 val = build2 (code, TREE_TYPE (arg), arg, inc);
3003 TREE_SIDE_EFFECTS (val) = 1;
3004 val = convert (result_type, val);
3005 if (TREE_CODE (val) != code)
3006 TREE_NO_WARNING (val) = 1;
3007 return val;
3008 }
3009
3010 case ADDR_EXPR:
3011 /* Note that this operation never does default_conversion. */
3012
3013 /* Let &* cancel out to simplify resulting code. */
3014 if (TREE_CODE (arg) == INDIRECT_REF)
3015 {
3016 /* Don't let this be an lvalue. */
3017 if (lvalue_p (TREE_OPERAND (arg, 0)))
3018 return non_lvalue (TREE_OPERAND (arg, 0));
3019 return TREE_OPERAND (arg, 0);
3020 }
3021
3022 /* For &x[y], return x+y */
3023 if (TREE_CODE (arg) == ARRAY_REF)
3024 {
3025 tree op0 = TREE_OPERAND (arg, 0);
3026 if (!c_mark_addressable (op0))
3027 return error_mark_node;
3028 return build_binary_op (PLUS_EXPR,
3029 (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3030 ? array_to_pointer_conversion (op0)
3031 : op0),
3032 TREE_OPERAND (arg, 1), 1);
3033 }
3034
3035 /* Anything not already handled and not a true memory reference
3036 or a non-lvalue array is an error. */
3037 else if (typecode != FUNCTION_TYPE && !flag
3038 && !lvalue_or_else (arg, lv_addressof))
3039 return error_mark_node;
3040
3041 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3042 argtype = TREE_TYPE (arg);
3043
3044 /* If the lvalue is const or volatile, merge that into the type
3045 to which the address will point. Note that you can't get a
3046 restricted pointer by taking the address of something, so we
3047 only have to deal with `const' and `volatile' here. */
3048 if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3049 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3050 argtype = c_build_type_variant (argtype,
3051 TREE_READONLY (arg),
3052 TREE_THIS_VOLATILE (arg));
3053
3054 if (!c_mark_addressable (arg))
3055 return error_mark_node;
3056
3057 gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3058 || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3059
3060 argtype = build_pointer_type (argtype);
3061
3062 /* ??? Cope with user tricks that amount to offsetof. Delete this
3063 when we have proper support for integer constant expressions. */
3064 val = get_base_address (arg);
3065 if (val && TREE_CODE (val) == INDIRECT_REF
3066 && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3067 {
3068 tree op0 = fold_convert (sizetype, fold_offsetof (arg, val)), op1;
3069
3070 op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3071 return fold_build2 (POINTER_PLUS_EXPR, argtype, op1, op0);
3072 }
3073
3074 val = build1 (ADDR_EXPR, argtype, arg);
3075
3076 return val;
3077
3078 default:
3079 gcc_unreachable ();
3080 }
3081
3082 if (argtype == 0)
3083 argtype = TREE_TYPE (arg);
3084 return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3085 : fold_build1 (code, argtype, arg);
3086 }
3087
3088 /* Return nonzero if REF is an lvalue valid for this language.
3089 Lvalues can be assigned, unless their type has TYPE_READONLY.
3090 Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
3091
3092 static int
3093 lvalue_p (tree ref)
3094 {
3095 enum tree_code code = TREE_CODE (ref);
3096
3097 switch (code)
3098 {
3099 case REALPART_EXPR:
3100 case IMAGPART_EXPR:
3101 case COMPONENT_REF:
3102 return lvalue_p (TREE_OPERAND (ref, 0));
3103
3104 case COMPOUND_LITERAL_EXPR:
3105 case STRING_CST:
3106 return 1;
3107
3108 case INDIRECT_REF:
3109 case ARRAY_REF:
3110 case VAR_DECL:
3111 case PARM_DECL:
3112 case RESULT_DECL:
3113 case ERROR_MARK:
3114 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3115 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3116
3117 case BIND_EXPR:
3118 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3119
3120 default:
3121 return 0;
3122 }
3123 }
3124 \f
3125 /* Give an error for storing in something that is 'const'. */
3126
3127 static void
3128 readonly_error (tree arg, enum lvalue_use use)
3129 {
3130 gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3131 || use == lv_asm);
3132 /* Using this macro rather than (for example) arrays of messages
3133 ensures that all the format strings are checked at compile
3134 time. */
3135 #define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A) \
3136 : (use == lv_increment ? (I) \
3137 : (use == lv_decrement ? (D) : (AS))))
3138 if (TREE_CODE (arg) == COMPONENT_REF)
3139 {
3140 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3141 readonly_error (TREE_OPERAND (arg, 0), use);
3142 else
3143 error (READONLY_MSG (G_("assignment of read-only member %qD"),
3144 G_("increment of read-only member %qD"),
3145 G_("decrement of read-only member %qD"),
3146 G_("read-only member %qD used as %<asm%> output")),
3147 TREE_OPERAND (arg, 1));
3148 }
3149 else if (TREE_CODE (arg) == VAR_DECL)
3150 error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3151 G_("increment of read-only variable %qD"),
3152 G_("decrement of read-only variable %qD"),
3153 G_("read-only variable %qD used as %<asm%> output")),
3154 arg);
3155 else
3156 error (READONLY_MSG (G_("assignment of read-only location"),
3157 G_("increment of read-only location"),
3158 G_("decrement of read-only location"),
3159 G_("read-only location used as %<asm%> output")));
3160 }
3161
3162
3163 /* Return nonzero if REF is an lvalue valid for this language;
3164 otherwise, print an error message and return zero. USE says
3165 how the lvalue is being used and so selects the error message. */
3166
3167 static int
3168 lvalue_or_else (tree ref, enum lvalue_use use)
3169 {
3170 int win = lvalue_p (ref);
3171
3172 if (!win)
3173 lvalue_error (use);
3174
3175 return win;
3176 }
3177 \f
3178 /* Mark EXP saying that we need to be able to take the
3179 address of it; it should not be allocated in a register.
3180 Returns true if successful. */
3181
3182 bool
3183 c_mark_addressable (tree exp)
3184 {
3185 tree x = exp;
3186
3187 while (1)
3188 switch (TREE_CODE (x))
3189 {
3190 case COMPONENT_REF:
3191 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3192 {
3193 error
3194 ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3195 return false;
3196 }
3197
3198 /* ... fall through ... */
3199
3200 case ADDR_EXPR:
3201 case ARRAY_REF:
3202 case REALPART_EXPR:
3203 case IMAGPART_EXPR:
3204 x = TREE_OPERAND (x, 0);
3205 break;
3206
3207 case COMPOUND_LITERAL_EXPR:
3208 case CONSTRUCTOR:
3209 TREE_ADDRESSABLE (x) = 1;
3210 return true;
3211
3212 case VAR_DECL:
3213 case CONST_DECL:
3214 case PARM_DECL:
3215 case RESULT_DECL:
3216 if (C_DECL_REGISTER (x)
3217 && DECL_NONLOCAL (x))
3218 {
3219 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3220 {
3221 error
3222 ("global register variable %qD used in nested function", x);
3223 return false;
3224 }
3225 pedwarn ("register variable %qD used in nested function", x);
3226 }
3227 else if (C_DECL_REGISTER (x))
3228 {
3229 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3230 error ("address of global register variable %qD requested", x);
3231 else
3232 error ("address of register variable %qD requested", x);
3233 return false;
3234 }
3235
3236 /* drops in */
3237 case FUNCTION_DECL:
3238 TREE_ADDRESSABLE (x) = 1;
3239 /* drops out */
3240 default:
3241 return true;
3242 }
3243 }
3244 \f
3245 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3246
3247 tree
3248 build_conditional_expr (tree ifexp, tree op1, tree op2)
3249 {
3250 tree type1;
3251 tree type2;
3252 enum tree_code code1;
3253 enum tree_code code2;
3254 tree result_type = NULL;
3255 tree orig_op1 = op1, orig_op2 = op2;
3256
3257 /* Promote both alternatives. */
3258
3259 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3260 op1 = default_conversion (op1);
3261 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3262 op2 = default_conversion (op2);
3263
3264 if (TREE_CODE (ifexp) == ERROR_MARK
3265 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3266 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3267 return error_mark_node;
3268
3269 type1 = TREE_TYPE (op1);
3270 code1 = TREE_CODE (type1);
3271 type2 = TREE_TYPE (op2);
3272 code2 = TREE_CODE (type2);
3273
3274 /* C90 does not permit non-lvalue arrays in conditional expressions.
3275 In C99 they will be pointers by now. */
3276 if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3277 {
3278 error ("non-lvalue array in conditional expression");
3279 return error_mark_node;
3280 }
3281
3282 /* Quickly detect the usual case where op1 and op2 have the same type
3283 after promotion. */
3284 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3285 {
3286 if (type1 == type2)
3287 result_type = type1;
3288 else
3289 result_type = TYPE_MAIN_VARIANT (type1);
3290 }
3291 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3292 || code1 == COMPLEX_TYPE)
3293 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3294 || code2 == COMPLEX_TYPE))
3295 {
3296 result_type = c_common_type (type1, type2);
3297
3298 /* If -Wsign-compare, warn here if type1 and type2 have
3299 different signedness. We'll promote the signed to unsigned
3300 and later code won't know it used to be different.
3301 Do this check on the original types, so that explicit casts
3302 will be considered, but default promotions won't. */
3303 if (warn_sign_compare && !skip_evaluation)
3304 {
3305 int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3306 int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3307
3308 if (unsigned_op1 ^ unsigned_op2)
3309 {
3310 bool ovf;
3311
3312 /* Do not warn if the result type is signed, since the
3313 signed type will only be chosen if it can represent
3314 all the values of the unsigned type. */
3315 if (!TYPE_UNSIGNED (result_type))
3316 /* OK */;
3317 /* Do not warn if the signed quantity is an unsuffixed
3318 integer literal (or some static constant expression
3319 involving such literals) and it is non-negative. */
3320 else if ((unsigned_op2
3321 && tree_expr_nonnegative_warnv_p (op1, &ovf))
3322 || (unsigned_op1
3323 && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3324 /* OK */;
3325 else
3326 warning (0, "signed and unsigned type in conditional expression");
3327 }
3328 }
3329 }
3330 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3331 {
3332 if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3333 pedwarn ("ISO C forbids conditional expr with only one void side");
3334 result_type = void_type_node;
3335 }
3336 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3337 {
3338 if (comp_target_types (type1, type2))
3339 result_type = common_pointer_type (type1, type2);
3340 else if (null_pointer_constant_p (orig_op1))
3341 result_type = qualify_type (type2, type1);
3342 else if (null_pointer_constant_p (orig_op2))
3343 result_type = qualify_type (type1, type2);
3344 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3345 {
3346 if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3347 pedwarn ("ISO C forbids conditional expr between "
3348 "%<void *%> and function pointer");
3349 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3350 TREE_TYPE (type2)));
3351 }
3352 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3353 {
3354 if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3355 pedwarn ("ISO C forbids conditional expr between "
3356 "%<void *%> and function pointer");
3357 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3358 TREE_TYPE (type1)));
3359 }
3360 else
3361 {
3362 pedwarn ("pointer type mismatch in conditional expression");
3363 result_type = build_pointer_type (void_type_node);
3364 }
3365 }
3366 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3367 {
3368 if (!null_pointer_constant_p (orig_op2))
3369 pedwarn ("pointer/integer type mismatch in conditional expression");
3370 else
3371 {
3372 op2 = null_pointer_node;
3373 }
3374 result_type = type1;
3375 }
3376 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3377 {
3378 if (!null_pointer_constant_p (orig_op1))
3379 pedwarn ("pointer/integer type mismatch in conditional expression");
3380 else
3381 {
3382 op1 = null_pointer_node;
3383 }
3384 result_type = type2;
3385 }
3386
3387 if (!result_type)
3388 {
3389 if (flag_cond_mismatch)
3390 result_type = void_type_node;
3391 else
3392 {
3393 error ("type mismatch in conditional expression");
3394 return error_mark_node;
3395 }
3396 }
3397
3398 /* Merge const and volatile flags of the incoming types. */
3399 result_type
3400 = build_type_variant (result_type,
3401 TREE_READONLY (op1) || TREE_READONLY (op2),
3402 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3403
3404 if (result_type != TREE_TYPE (op1))
3405 op1 = convert_and_check (result_type, op1);
3406 if (result_type != TREE_TYPE (op2))
3407 op2 = convert_and_check (result_type, op2);
3408
3409 return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3410 }
3411 \f
3412 /* Return a compound expression that performs two expressions and
3413 returns the value of the second of them. */
3414
3415 tree
3416 build_compound_expr (tree expr1, tree expr2)
3417 {
3418 if (!TREE_SIDE_EFFECTS (expr1))
3419 {
3420 /* The left-hand operand of a comma expression is like an expression
3421 statement: with -Wextra or -Wunused, we should warn if it doesn't have
3422 any side-effects, unless it was explicitly cast to (void). */
3423 if (warn_unused_value)
3424 {
3425 if (VOID_TYPE_P (TREE_TYPE (expr1))
3426 && (TREE_CODE (expr1) == NOP_EXPR
3427 || TREE_CODE (expr1) == CONVERT_EXPR))
3428 ; /* (void) a, b */
3429 else if (VOID_TYPE_P (TREE_TYPE (expr1))
3430 && TREE_CODE (expr1) == COMPOUND_EXPR
3431 && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3432 || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3433 ; /* (void) a, (void) b, c */
3434 else
3435 warning (OPT_Wunused_value,
3436 "left-hand operand of comma expression has no effect");
3437 }
3438 }
3439
3440 /* With -Wunused, we should also warn if the left-hand operand does have
3441 side-effects, but computes a value which is not used. For example, in
3442 `foo() + bar(), baz()' the result of the `+' operator is not used,
3443 so we should issue a warning. */
3444 else if (warn_unused_value)
3445 warn_if_unused_value (expr1, input_location);
3446
3447 if (expr2 == error_mark_node)
3448 return error_mark_node;
3449
3450 return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3451 }
3452
3453 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3454
3455 tree
3456 build_c_cast (tree type, tree expr)
3457 {
3458 tree value = expr;
3459
3460 if (type == error_mark_node || expr == error_mark_node)
3461 return error_mark_node;
3462
3463 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3464 only in <protocol> qualifications. But when constructing cast expressions,
3465 the protocols do matter and must be kept around. */
3466 if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3467 return build1 (NOP_EXPR, type, expr);
3468
3469 type = TYPE_MAIN_VARIANT (type);
3470
3471 if (TREE_CODE (type) == ARRAY_TYPE)
3472 {
3473 error ("cast specifies array type");
3474 return error_mark_node;
3475 }
3476
3477 if (TREE_CODE (type) == FUNCTION_TYPE)
3478 {
3479 error ("cast specifies function type");
3480 return error_mark_node;
3481 }
3482
3483 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3484 {
3485 if (pedantic)
3486 {
3487 if (TREE_CODE (type) == RECORD_TYPE
3488 || TREE_CODE (type) == UNION_TYPE)
3489 pedwarn ("ISO C forbids casting nonscalar to the same type");
3490 }
3491 }
3492 else if (TREE_CODE (type) == UNION_TYPE)
3493 {
3494 tree field;
3495
3496 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3497 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3498 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3499 break;
3500
3501 if (field)
3502 {
3503 tree t;
3504
3505 if (pedantic)
3506 pedwarn ("ISO C forbids casts to union type");
3507 t = digest_init (type,
3508 build_constructor_single (type, field, value),
3509 true, 0);
3510 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3511 TREE_INVARIANT (t) = TREE_INVARIANT (value);
3512 return t;
3513 }
3514 error ("cast to union type from type not present in union");
3515 return error_mark_node;
3516 }
3517 else
3518 {
3519 tree otype, ovalue;
3520
3521 if (type == void_type_node)
3522 return build1 (CONVERT_EXPR, type, value);
3523
3524 otype = TREE_TYPE (value);
3525
3526 /* Optionally warn about potentially worrisome casts. */
3527
3528 if (warn_cast_qual
3529 && TREE_CODE (type) == POINTER_TYPE
3530 && TREE_CODE (otype) == POINTER_TYPE)
3531 {
3532 tree in_type = type;
3533 tree in_otype = otype;
3534 int added = 0;
3535 int discarded = 0;
3536
3537 /* Check that the qualifiers on IN_TYPE are a superset of
3538 the qualifiers of IN_OTYPE. The outermost level of
3539 POINTER_TYPE nodes is uninteresting and we stop as soon
3540 as we hit a non-POINTER_TYPE node on either type. */
3541 do
3542 {
3543 in_otype = TREE_TYPE (in_otype);
3544 in_type = TREE_TYPE (in_type);
3545
3546 /* GNU C allows cv-qualified function types. 'const'
3547 means the function is very pure, 'volatile' means it
3548 can't return. We need to warn when such qualifiers
3549 are added, not when they're taken away. */
3550 if (TREE_CODE (in_otype) == FUNCTION_TYPE
3551 && TREE_CODE (in_type) == FUNCTION_TYPE)
3552 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3553 else
3554 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3555 }
3556 while (TREE_CODE (in_type) == POINTER_TYPE
3557 && TREE_CODE (in_otype) == POINTER_TYPE);
3558
3559 if (added)
3560 warning (0, "cast adds new qualifiers to function type");
3561
3562 if (discarded)
3563 /* There are qualifiers present in IN_OTYPE that are not
3564 present in IN_TYPE. */
3565 warning (0, "cast discards qualifiers from pointer target type");
3566 }
3567
3568 /* Warn about possible alignment problems. */
3569 if (STRICT_ALIGNMENT
3570 && TREE_CODE (type) == POINTER_TYPE
3571 && TREE_CODE (otype) == POINTER_TYPE
3572 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3573 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3574 /* Don't warn about opaque types, where the actual alignment
3575 restriction is unknown. */
3576 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3577 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3578 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3579 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3580 warning (OPT_Wcast_align,
3581 "cast increases required alignment of target type");
3582
3583 if (TREE_CODE (type) == INTEGER_TYPE
3584 && TREE_CODE (otype) == POINTER_TYPE
3585 && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3586 /* Unlike conversion of integers to pointers, where the
3587 warning is disabled for converting constants because
3588 of cases such as SIG_*, warn about converting constant
3589 pointers to integers. In some cases it may cause unwanted
3590 sign extension, and a warning is appropriate. */
3591 warning (OPT_Wpointer_to_int_cast,
3592 "cast from pointer to integer of different size");
3593
3594 if (TREE_CODE (value) == CALL_EXPR
3595 && TREE_CODE (type) != TREE_CODE (otype))
3596 warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3597 "to non-matching type %qT", otype, type);
3598
3599 if (TREE_CODE (type) == POINTER_TYPE
3600 && TREE_CODE (otype) == INTEGER_TYPE
3601 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3602 /* Don't warn about converting any constant. */
3603 && !TREE_CONSTANT (value))
3604 warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3605 "of different size");
3606
3607 if (warn_strict_aliasing <= 2)
3608 strict_aliasing_warning (otype, type, expr);
3609
3610 /* If pedantic, warn for conversions between function and object
3611 pointer types, except for converting a null pointer constant
3612 to function pointer type. */
3613 if (pedantic
3614 && TREE_CODE (type) == POINTER_TYPE
3615 && TREE_CODE (otype) == POINTER_TYPE
3616 && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3617 && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3618 pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3619
3620 if (pedantic
3621 && TREE_CODE (type) == POINTER_TYPE
3622 && TREE_CODE (otype) == POINTER_TYPE
3623 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3624 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3625 && !null_pointer_constant_p (value))
3626 pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3627
3628 ovalue = value;
3629 value = convert (type, value);
3630
3631 /* Ignore any integer overflow caused by the cast. */
3632 if (TREE_CODE (value) == INTEGER_CST)
3633 {
3634 if (CONSTANT_CLASS_P (ovalue) && TREE_OVERFLOW (ovalue))
3635 {
3636 if (!TREE_OVERFLOW (value))
3637 {
3638 /* Avoid clobbering a shared constant. */
3639 value = copy_node (value);
3640 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3641 }
3642 }
3643 else if (TREE_OVERFLOW (value))
3644 /* Reset VALUE's overflow flags, ensuring constant sharing. */
3645 value = build_int_cst_wide (TREE_TYPE (value),
3646 TREE_INT_CST_LOW (value),
3647 TREE_INT_CST_HIGH (value));
3648 }
3649 }
3650
3651 /* Don't let a cast be an lvalue. */
3652 if (value == expr)
3653 value = non_lvalue (value);
3654
3655 return value;
3656 }
3657
3658 /* Interpret a cast of expression EXPR to type TYPE. */
3659 tree
3660 c_cast_expr (struct c_type_name *type_name, tree expr)
3661 {
3662 tree type;
3663 int saved_wsp = warn_strict_prototypes;
3664
3665 /* This avoids warnings about unprototyped casts on
3666 integers. E.g. "#define SIG_DFL (void(*)())0". */
3667 if (TREE_CODE (expr) == INTEGER_CST)
3668 warn_strict_prototypes = 0;
3669 type = groktypename (type_name);
3670 warn_strict_prototypes = saved_wsp;
3671
3672 return build_c_cast (type, expr);
3673 }
3674 \f
3675 /* Build an assignment expression of lvalue LHS from value RHS.
3676 MODIFYCODE is the code for a binary operator that we use
3677 to combine the old value of LHS with RHS to get the new value.
3678 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3679
3680 tree
3681 build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3682 {
3683 tree result;
3684 tree newrhs;
3685 tree lhstype = TREE_TYPE (lhs);
3686 tree olhstype = lhstype;
3687
3688 /* Types that aren't fully specified cannot be used in assignments. */
3689 lhs = require_complete_type (lhs);
3690
3691 /* Avoid duplicate error messages from operands that had errors. */
3692 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3693 return error_mark_node;
3694
3695 if (!lvalue_or_else (lhs, lv_assign))
3696 return error_mark_node;
3697
3698 STRIP_TYPE_NOPS (rhs);
3699
3700 newrhs = rhs;
3701
3702 /* If a binary op has been requested, combine the old LHS value with the RHS
3703 producing the value we should actually store into the LHS. */
3704
3705 if (modifycode != NOP_EXPR)
3706 {
3707 lhs = stabilize_reference (lhs);
3708 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3709 }
3710
3711 /* Give an error for storing in something that is 'const'. */
3712
3713 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3714 || ((TREE_CODE (lhstype) == RECORD_TYPE
3715 || TREE_CODE (lhstype) == UNION_TYPE)
3716 && C_TYPE_FIELDS_READONLY (lhstype)))
3717 {
3718 readonly_error (lhs, lv_assign);
3719 return error_mark_node;
3720 }
3721
3722 /* If storing into a structure or union member,
3723 it has probably been given type `int'.
3724 Compute the type that would go with
3725 the actual amount of storage the member occupies. */
3726
3727 if (TREE_CODE (lhs) == COMPONENT_REF
3728 && (TREE_CODE (lhstype) == INTEGER_TYPE
3729 || TREE_CODE (lhstype) == BOOLEAN_TYPE
3730 || TREE_CODE (lhstype) == REAL_TYPE
3731 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3732 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3733
3734 /* If storing in a field that is in actuality a short or narrower than one,
3735 we must store in the field in its actual type. */
3736
3737 if (lhstype != TREE_TYPE (lhs))
3738 {
3739 lhs = copy_node (lhs);
3740 TREE_TYPE (lhs) = lhstype;
3741 }
3742
3743 /* Convert new value to destination type. */
3744
3745 newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3746 NULL_TREE, NULL_TREE, 0);
3747 if (TREE_CODE (newrhs) == ERROR_MARK)
3748 return error_mark_node;
3749
3750 /* Emit ObjC write barrier, if necessary. */
3751 if (c_dialect_objc () && flag_objc_gc)
3752 {
3753 result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3754 if (result)
3755 return result;
3756 }
3757
3758 /* Scan operands. */
3759
3760 result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3761 TREE_SIDE_EFFECTS (result) = 1;
3762
3763 /* If we got the LHS in a different type for storing in,
3764 convert the result back to the nominal type of LHS
3765 so that the value we return always has the same type
3766 as the LHS argument. */
3767
3768 if (olhstype == TREE_TYPE (result))
3769 return result;
3770 return convert_for_assignment (olhstype, result, ic_assign,
3771 NULL_TREE, NULL_TREE, 0);
3772 }
3773 \f
3774 /* Convert value RHS to type TYPE as preparation for an assignment
3775 to an lvalue of type TYPE.
3776 The real work of conversion is done by `convert'.
3777 The purpose of this function is to generate error messages
3778 for assignments that are not allowed in C.
3779 ERRTYPE says whether it is argument passing, assignment,
3780 initialization or return.
3781
3782 FUNCTION is a tree for the function being called.
3783 PARMNUM is the number of the argument, for printing in error messages. */
3784
3785 static tree
3786 convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3787 tree fundecl, tree function, int parmnum)
3788 {
3789 enum tree_code codel = TREE_CODE (type);
3790 tree rhstype;
3791 enum tree_code coder;
3792 tree rname = NULL_TREE;
3793 bool objc_ok = false;
3794
3795 if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3796 {
3797 tree selector;
3798 /* Change pointer to function to the function itself for
3799 diagnostics. */
3800 if (TREE_CODE (function) == ADDR_EXPR
3801 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3802 function = TREE_OPERAND (function, 0);
3803
3804 /* Handle an ObjC selector specially for diagnostics. */
3805 selector = objc_message_selector ();
3806 rname = function;
3807 if (selector && parmnum > 2)
3808 {
3809 rname = selector;
3810 parmnum -= 2;
3811 }
3812 }
3813
3814 /* This macro is used to emit diagnostics to ensure that all format
3815 strings are complete sentences, visible to gettext and checked at
3816 compile time. */
3817 #define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE) \
3818 do { \
3819 switch (errtype) \
3820 { \
3821 case ic_argpass: \
3822 pedwarn (AR, parmnum, rname); \
3823 break; \
3824 case ic_argpass_nonproto: \
3825 warning (0, AR, parmnum, rname); \
3826 break; \
3827 case ic_assign: \
3828 pedwarn (AS); \
3829 break; \
3830 case ic_init: \
3831 pedwarn (IN); \
3832 break; \
3833 case ic_return: \
3834 pedwarn (RE); \
3835 break; \
3836 default: \
3837 gcc_unreachable (); \
3838 } \
3839 } while (0)
3840
3841 STRIP_TYPE_NOPS (rhs);
3842
3843 if (optimize && TREE_CODE (rhs) == VAR_DECL
3844 && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3845 rhs = decl_constant_value_for_broken_optimization (rhs);
3846
3847 rhstype = TREE_TYPE (rhs);
3848 coder = TREE_CODE (rhstype);
3849
3850 if (coder == ERROR_MARK)
3851 return error_mark_node;
3852
3853 if (c_dialect_objc ())
3854 {
3855 int parmno;
3856
3857 switch (errtype)
3858 {
3859 case ic_return:
3860 parmno = 0;
3861 break;
3862
3863 case ic_assign:
3864 parmno = -1;
3865 break;
3866
3867 case ic_init:
3868 parmno = -2;
3869 break;
3870
3871 default:
3872 parmno = parmnum;
3873 break;
3874 }
3875
3876 objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3877 }
3878
3879 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3880 return rhs;
3881
3882 if (coder == VOID_TYPE)
3883 {
3884 /* Except for passing an argument to an unprototyped function,
3885 this is a constraint violation. When passing an argument to
3886 an unprototyped function, it is compile-time undefined;
3887 making it a constraint in that case was rejected in
3888 DR#252. */
3889 error ("void value not ignored as it ought to be");
3890 return error_mark_node;
3891 }
3892 /* A type converts to a reference to it.
3893 This code doesn't fully support references, it's just for the
3894 special case of va_start and va_copy. */
3895 if (codel == REFERENCE_TYPE
3896 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3897 {
3898 if (!lvalue_p (rhs))
3899 {
3900 error ("cannot pass rvalue to reference parameter");
3901 return error_mark_node;
3902 }
3903 if (!c_mark_addressable (rhs))
3904 return error_mark_node;
3905 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3906
3907 /* We already know that these two types are compatible, but they
3908 may not be exactly identical. In fact, `TREE_TYPE (type)' is
3909 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3910 likely to be va_list, a typedef to __builtin_va_list, which
3911 is different enough that it will cause problems later. */
3912 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3913 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3914
3915 rhs = build1 (NOP_EXPR, type, rhs);
3916 return rhs;
3917 }
3918 /* Some types can interconvert without explicit casts. */
3919 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3920 && vector_types_convertible_p (type, TREE_TYPE (rhs), true))
3921 return convert (type, rhs);
3922 /* Arithmetic types all interconvert, and enum is treated like int. */
3923 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3924 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3925 || codel == BOOLEAN_TYPE)
3926 && (coder == INTEGER_TYPE || coder == REAL_TYPE
3927 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3928 || coder == BOOLEAN_TYPE))
3929 return convert_and_check (type, rhs);
3930
3931 /* Aggregates in different TUs might need conversion. */
3932 if ((codel == RECORD_TYPE || codel == UNION_TYPE)
3933 && codel == coder
3934 && comptypes (type, rhstype))
3935 return convert_and_check (type, rhs);
3936
3937 /* Conversion to a transparent union from its member types.
3938 This applies only to function arguments. */
3939 if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3940 && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3941 {
3942 tree memb, marginal_memb = NULL_TREE;
3943
3944 for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3945 {
3946 tree memb_type = TREE_TYPE (memb);
3947
3948 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3949 TYPE_MAIN_VARIANT (rhstype)))
3950 break;
3951
3952 if (TREE_CODE (memb_type) != POINTER_TYPE)
3953 continue;
3954
3955 if (coder == POINTER_TYPE)
3956 {
3957 tree ttl = TREE_TYPE (memb_type);
3958 tree ttr = TREE_TYPE (rhstype);
3959
3960 /* Any non-function converts to a [const][volatile] void *
3961 and vice versa; otherwise, targets must be the same.
3962 Meanwhile, the lhs target must have all the qualifiers of
3963 the rhs. */
3964 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3965 || comp_target_types (memb_type, rhstype))
3966 {
3967 /* If this type won't generate any warnings, use it. */
3968 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3969 || ((TREE_CODE (ttr) == FUNCTION_TYPE
3970 && TREE_CODE (ttl) == FUNCTION_TYPE)
3971 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3972 == TYPE_QUALS (ttr))
3973 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3974 == TYPE_QUALS (ttl))))
3975 break;
3976
3977 /* Keep looking for a better type, but remember this one. */
3978 if (!marginal_memb)
3979 marginal_memb = memb;
3980 }
3981 }
3982
3983 /* Can convert integer zero to any pointer type. */
3984 if (null_pointer_constant_p (rhs))
3985 {
3986 rhs = null_pointer_node;
3987 break;
3988 }
3989 }
3990
3991 if (memb || marginal_memb)
3992 {
3993 if (!memb)
3994 {
3995 /* We have only a marginally acceptable member type;
3996 it needs a warning. */
3997 tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
3998 tree ttr = TREE_TYPE (rhstype);
3999
4000 /* Const and volatile mean something different for function
4001 types, so the usual warnings are not appropriate. */
4002 if (TREE_CODE (ttr) == FUNCTION_TYPE
4003 && TREE_CODE (ttl) == FUNCTION_TYPE)
4004 {
4005 /* Because const and volatile on functions are
4006 restrictions that say the function will not do
4007 certain things, it is okay to use a const or volatile
4008 function where an ordinary one is wanted, but not
4009 vice-versa. */
4010 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4011 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
4012 "makes qualified function "
4013 "pointer from unqualified"),
4014 G_("assignment makes qualified "
4015 "function pointer from "
4016 "unqualified"),
4017 G_("initialization makes qualified "
4018 "function pointer from "
4019 "unqualified"),
4020 G_("return makes qualified function "
4021 "pointer from unqualified"));
4022 }
4023 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4024 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4025 "qualifiers from pointer target type"),
4026 G_("assignment discards qualifiers "
4027 "from pointer target type"),
4028 G_("initialization discards qualifiers "
4029 "from pointer target type"),
4030 G_("return discards qualifiers from "
4031 "pointer target type"));
4032
4033 memb = marginal_memb;
4034 }
4035
4036 if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
4037 pedwarn ("ISO C prohibits argument conversion to union type");
4038
4039 return build_constructor_single (type, memb, rhs);
4040 }
4041 }
4042
4043 /* Conversions among pointers */
4044 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4045 && (coder == codel))
4046 {
4047 tree ttl = TREE_TYPE (type);
4048 tree ttr = TREE_TYPE (rhstype);
4049 tree mvl = ttl;
4050 tree mvr = ttr;
4051 bool is_opaque_pointer;
4052 int target_cmp = 0; /* Cache comp_target_types () result. */
4053
4054 if (TREE_CODE (mvl) != ARRAY_TYPE)
4055 mvl = TYPE_MAIN_VARIANT (mvl);
4056 if (TREE_CODE (mvr) != ARRAY_TYPE)
4057 mvr = TYPE_MAIN_VARIANT (mvr);
4058 /* Opaque pointers are treated like void pointers. */
4059 is_opaque_pointer = (targetm.vector_opaque_p (type)
4060 || targetm.vector_opaque_p (rhstype))
4061 && TREE_CODE (ttl) == VECTOR_TYPE
4062 && TREE_CODE (ttr) == VECTOR_TYPE;
4063
4064 /* C++ does not allow the implicit conversion void* -> T*. However,
4065 for the purpose of reducing the number of false positives, we
4066 tolerate the special case of
4067
4068 int *p = NULL;
4069
4070 where NULL is typically defined in C to be '(void *) 0'. */
4071 if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4072 warning (OPT_Wc___compat, "request for implicit conversion from "
4073 "%qT to %qT not permitted in C++", rhstype, type);
4074
4075 /* Check if the right-hand side has a format attribute but the
4076 left-hand side doesn't. */
4077 if (warn_missing_format_attribute
4078 && check_missing_format_attribute (type, rhstype))
4079 {
4080 switch (errtype)
4081 {
4082 case ic_argpass:
4083 case ic_argpass_nonproto:
4084 warning (OPT_Wmissing_format_attribute,
4085 "argument %d of %qE might be "
4086 "a candidate for a format attribute",
4087 parmnum, rname);
4088 break;
4089 case ic_assign:
4090 warning (OPT_Wmissing_format_attribute,
4091 "assignment left-hand side might be "
4092 "a candidate for a format attribute");
4093 break;
4094 case ic_init:
4095 warning (OPT_Wmissing_format_attribute,
4096 "initialization left-hand side might be "
4097 "a candidate for a format attribute");
4098 break;
4099 case ic_return:
4100 warning (OPT_Wmissing_format_attribute,
4101 "return type might be "
4102 "a candidate for a format attribute");
4103 break;
4104 default:
4105 gcc_unreachable ();
4106 }
4107 }
4108
4109 /* Any non-function converts to a [const][volatile] void *
4110 and vice versa; otherwise, targets must be the same.
4111 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4112 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4113 || (target_cmp = comp_target_types (type, rhstype))
4114 || is_opaque_pointer
4115 || (c_common_unsigned_type (mvl)
4116 == c_common_unsigned_type (mvr)))
4117 {
4118 if (pedantic
4119 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4120 ||
4121 (VOID_TYPE_P (ttr)
4122 && !null_pointer_constant_p (rhs)
4123 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4124 WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4125 "%qE between function pointer "
4126 "and %<void *%>"),
4127 G_("ISO C forbids assignment between "
4128 "function pointer and %<void *%>"),
4129 G_("ISO C forbids initialization between "
4130 "function pointer and %<void *%>"),
4131 G_("ISO C forbids return between function "
4132 "pointer and %<void *%>"));
4133 /* Const and volatile mean something different for function types,
4134 so the usual warnings are not appropriate. */
4135 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4136 && TREE_CODE (ttl) != FUNCTION_TYPE)
4137 {
4138 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4139 {
4140 /* Types differing only by the presence of the 'volatile'
4141 qualifier are acceptable if the 'volatile' has been added
4142 in by the Objective-C EH machinery. */
4143 if (!objc_type_quals_match (ttl, ttr))
4144 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4145 "qualifiers from pointer target type"),
4146 G_("assignment discards qualifiers "
4147 "from pointer target type"),
4148 G_("initialization discards qualifiers "
4149 "from pointer target type"),
4150 G_("return discards qualifiers from "
4151 "pointer target type"));
4152 }
4153 /* If this is not a case of ignoring a mismatch in signedness,
4154 no warning. */
4155 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4156 || target_cmp)
4157 ;
4158 /* If there is a mismatch, do warn. */
4159 else if (warn_pointer_sign)
4160 WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4161 "%d of %qE differ in signedness"),
4162 G_("pointer targets in assignment "
4163 "differ in signedness"),
4164 G_("pointer targets in initialization "
4165 "differ in signedness"),
4166 G_("pointer targets in return differ "
4167 "in signedness"));
4168 }
4169 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4170 && TREE_CODE (ttr) == FUNCTION_TYPE)
4171 {
4172 /* Because const and volatile on functions are restrictions
4173 that say the function will not do certain things,
4174 it is okay to use a const or volatile function
4175 where an ordinary one is wanted, but not vice-versa. */
4176 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4177 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4178 "qualified function pointer "
4179 "from unqualified"),
4180 G_("assignment makes qualified function "
4181 "pointer from unqualified"),
4182 G_("initialization makes qualified "
4183 "function pointer from unqualified"),
4184 G_("return makes qualified function "
4185 "pointer from unqualified"));
4186 }
4187 }
4188 else
4189 /* Avoid warning about the volatile ObjC EH puts on decls. */
4190 if (!objc_ok)
4191 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4192 "incompatible pointer type"),
4193 G_("assignment from incompatible pointer type"),
4194 G_("initialization from incompatible "
4195 "pointer type"),
4196 G_("return from incompatible pointer type"));
4197
4198 return convert (type, rhs);
4199 }
4200 else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4201 {
4202 /* ??? This should not be an error when inlining calls to
4203 unprototyped functions. */
4204 error ("invalid use of non-lvalue array");
4205 return error_mark_node;
4206 }
4207 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4208 {
4209 /* An explicit constant 0 can convert to a pointer,
4210 or one that results from arithmetic, even including
4211 a cast to integer type. */
4212 if (!null_pointer_constant_p (rhs))
4213 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4214 "pointer from integer without a cast"),
4215 G_("assignment makes pointer from integer "
4216 "without a cast"),
4217 G_("initialization makes pointer from "
4218 "integer without a cast"),
4219 G_("return makes pointer from integer "
4220 "without a cast"));
4221
4222 return convert (type, rhs);
4223 }
4224 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4225 {
4226 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4227 "from pointer without a cast"),
4228 G_("assignment makes integer from pointer "
4229 "without a cast"),
4230 G_("initialization makes integer from pointer "
4231 "without a cast"),
4232 G_("return makes integer from pointer "
4233 "without a cast"));
4234 return convert (type, rhs);
4235 }
4236 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4237 return convert (type, rhs);
4238
4239 switch (errtype)
4240 {
4241 case ic_argpass:
4242 case ic_argpass_nonproto:
4243 /* ??? This should not be an error when inlining calls to
4244 unprototyped functions. */
4245 error ("incompatible type for argument %d of %qE", parmnum, rname);
4246 break;
4247 case ic_assign:
4248 error ("incompatible types in assignment");
4249 break;
4250 case ic_init:
4251 error ("incompatible types in initialization");
4252 break;
4253 case ic_return:
4254 error ("incompatible types in return");
4255 break;
4256 default:
4257 gcc_unreachable ();
4258 }
4259
4260 return error_mark_node;
4261 }
4262 \f
4263 /* If VALUE is a compound expr all of whose expressions are constant, then
4264 return its value. Otherwise, return error_mark_node.
4265
4266 This is for handling COMPOUND_EXPRs as initializer elements
4267 which is allowed with a warning when -pedantic is specified. */
4268
4269 static tree
4270 valid_compound_expr_initializer (tree value, tree endtype)
4271 {
4272 if (TREE_CODE (value) == COMPOUND_EXPR)
4273 {
4274 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4275 == error_mark_node)
4276 return error_mark_node;
4277 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4278 endtype);
4279 }
4280 else if (!initializer_constant_valid_p (value, endtype))
4281 return error_mark_node;
4282 else
4283 return value;
4284 }
4285 \f
4286 /* Perform appropriate conversions on the initial value of a variable,
4287 store it in the declaration DECL,
4288 and print any error messages that are appropriate.
4289 If the init is invalid, store an ERROR_MARK. */
4290
4291 void
4292 store_init_value (tree decl, tree init)
4293 {
4294 tree value, type;
4295
4296 /* If variable's type was invalidly declared, just ignore it. */
4297
4298 type = TREE_TYPE (decl);
4299 if (TREE_CODE (type) == ERROR_MARK)
4300 return;
4301
4302 /* Digest the specified initializer into an expression. */
4303
4304 value = digest_init (type, init, true, TREE_STATIC (decl));
4305
4306 /* Store the expression if valid; else report error. */
4307
4308 if (!in_system_header
4309 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4310 warning (OPT_Wtraditional, "traditional C rejects automatic "
4311 "aggregate initialization");
4312
4313 DECL_INITIAL (decl) = value;
4314
4315 /* ANSI wants warnings about out-of-range constant initializers. */
4316 STRIP_TYPE_NOPS (value);
4317 if (TREE_STATIC (decl))
4318 constant_expression_warning (value);
4319
4320 /* Check if we need to set array size from compound literal size. */
4321 if (TREE_CODE (type) == ARRAY_TYPE
4322 && TYPE_DOMAIN (type) == 0
4323 && value != error_mark_node)
4324 {
4325 tree inside_init = init;
4326
4327 STRIP_TYPE_NOPS (inside_init);
4328 inside_init = fold (inside_init);
4329
4330 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4331 {
4332 tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4333
4334 if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4335 {
4336 /* For int foo[] = (int [3]){1}; we need to set array size
4337 now since later on array initializer will be just the
4338 brace enclosed list of the compound literal. */
4339 type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4340 TREE_TYPE (decl) = type;
4341 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4342 layout_type (type);
4343 layout_decl (cldecl, 0);
4344 }
4345 }
4346 }
4347 }
4348 \f
4349 /* Methods for storing and printing names for error messages. */
4350
4351 /* Implement a spelling stack that allows components of a name to be pushed
4352 and popped. Each element on the stack is this structure. */
4353
4354 struct spelling
4355 {
4356 int kind;
4357 union
4358 {
4359 unsigned HOST_WIDE_INT i;
4360 const char *s;
4361 } u;
4362 };
4363
4364 #define SPELLING_STRING 1
4365 #define SPELLING_MEMBER 2
4366 #define SPELLING_BOUNDS 3
4367
4368 static struct spelling *spelling; /* Next stack element (unused). */
4369 static struct spelling *spelling_base; /* Spelling stack base. */
4370 static int spelling_size; /* Size of the spelling stack. */
4371
4372 /* Macros to save and restore the spelling stack around push_... functions.
4373 Alternative to SAVE_SPELLING_STACK. */
4374
4375 #define SPELLING_DEPTH() (spelling - spelling_base)
4376 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4377
4378 /* Push an element on the spelling stack with type KIND and assign VALUE
4379 to MEMBER. */
4380
4381 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4382 { \
4383 int depth = SPELLING_DEPTH (); \
4384 \
4385 if (depth >= spelling_size) \
4386 { \
4387 spelling_size += 10; \
4388 spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
4389 spelling_size); \
4390 RESTORE_SPELLING_DEPTH (depth); \
4391 } \
4392 \
4393 spelling->kind = (KIND); \
4394 spelling->MEMBER = (VALUE); \
4395 spelling++; \
4396 }
4397
4398 /* Push STRING on the stack. Printed literally. */
4399
4400 static void
4401 push_string (const char *string)
4402 {
4403 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4404 }
4405
4406 /* Push a member name on the stack. Printed as '.' STRING. */
4407
4408 static void
4409 push_member_name (tree decl)
4410 {
4411 const char *const string
4412 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4413 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4414 }
4415
4416 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4417
4418 static void
4419 push_array_bounds (unsigned HOST_WIDE_INT bounds)
4420 {
4421 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4422 }
4423
4424 /* Compute the maximum size in bytes of the printed spelling. */
4425
4426 static int
4427 spelling_length (void)
4428 {
4429 int size = 0;
4430 struct spelling *p;
4431
4432 for (p = spelling_base; p < spelling; p++)
4433 {
4434 if (p->kind == SPELLING_BOUNDS)
4435 size += 25;
4436 else
4437 size += strlen (p->u.s) + 1;
4438 }
4439
4440 return size;
4441 }
4442
4443 /* Print the spelling to BUFFER and return it. */
4444
4445 static char *
4446 print_spelling (char *buffer)
4447 {
4448 char *d = buffer;
4449 struct spelling *p;
4450
4451 for (p = spelling_base; p < spelling; p++)
4452 if (p->kind == SPELLING_BOUNDS)
4453 {
4454 sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4455 d += strlen (d);
4456 }
4457 else
4458 {
4459 const char *s;
4460 if (p->kind == SPELLING_MEMBER)
4461 *d++ = '.';
4462 for (s = p->u.s; (*d = *s++); d++)
4463 ;
4464 }
4465 *d++ = '\0';
4466 return buffer;
4467 }
4468
4469 /* Issue an error message for a bad initializer component.
4470 MSGID identifies the message.
4471 The component name is taken from the spelling stack. */
4472
4473 void
4474 error_init (const char *msgid)
4475 {
4476 char *ofwhat;
4477
4478 error ("%s", _(msgid));
4479 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4480 if (*ofwhat)
4481 error ("(near initialization for %qs)", ofwhat);
4482 }
4483
4484 /* Issue a pedantic warning for a bad initializer component.
4485 MSGID identifies the message.
4486 The component name is taken from the spelling stack. */
4487
4488 void
4489 pedwarn_init (const char *msgid)
4490 {
4491 char *ofwhat;
4492
4493 pedwarn ("%s", _(msgid));
4494 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4495 if (*ofwhat)
4496 pedwarn ("(near initialization for %qs)", ofwhat);
4497 }
4498
4499 /* Issue a warning for a bad initializer component.
4500 MSGID identifies the message.
4501 The component name is taken from the spelling stack. */
4502
4503 static void
4504 warning_init (const char *msgid)
4505 {
4506 char *ofwhat;
4507
4508 warning (0, "%s", _(msgid));
4509 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4510 if (*ofwhat)
4511 warning (0, "(near initialization for %qs)", ofwhat);
4512 }
4513 \f
4514 /* If TYPE is an array type and EXPR is a parenthesized string
4515 constant, warn if pedantic that EXPR is being used to initialize an
4516 object of type TYPE. */
4517
4518 void
4519 maybe_warn_string_init (tree type, struct c_expr expr)
4520 {
4521 if (pedantic
4522 && TREE_CODE (type) == ARRAY_TYPE
4523 && TREE_CODE (expr.value) == STRING_CST
4524 && expr.original_code != STRING_CST)
4525 pedwarn_init ("array initialized from parenthesized string constant");
4526 }
4527
4528 /* Digest the parser output INIT as an initializer for type TYPE.
4529 Return a C expression of type TYPE to represent the initial value.
4530
4531 If INIT is a string constant, STRICT_STRING is true if it is
4532 unparenthesized or we should not warn here for it being parenthesized.
4533 For other types of INIT, STRICT_STRING is not used.
4534
4535 REQUIRE_CONSTANT requests an error if non-constant initializers or
4536 elements are seen. */
4537
4538 static tree
4539 digest_init (tree type, tree init, bool strict_string, int require_constant)
4540 {
4541 enum tree_code code = TREE_CODE (type);
4542 tree inside_init = init;
4543
4544 if (type == error_mark_node
4545 || !init
4546 || init == error_mark_node
4547 || TREE_TYPE (init) == error_mark_node)
4548 return error_mark_node;
4549
4550 STRIP_TYPE_NOPS (inside_init);
4551
4552 inside_init = fold (inside_init);
4553
4554 /* Initialization of an array of chars from a string constant
4555 optionally enclosed in braces. */
4556
4557 if (code == ARRAY_TYPE && inside_init
4558 && TREE_CODE (inside_init) == STRING_CST)
4559 {
4560 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4561 /* Note that an array could be both an array of character type
4562 and an array of wchar_t if wchar_t is signed char or unsigned
4563 char. */
4564 bool char_array = (typ1 == char_type_node
4565 || typ1 == signed_char_type_node
4566 || typ1 == unsigned_char_type_node);
4567 bool wchar_array = !!comptypes (typ1, wchar_type_node);
4568 if (char_array || wchar_array)
4569 {
4570 struct c_expr expr;
4571 bool char_string;
4572 expr.value = inside_init;
4573 expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4574 maybe_warn_string_init (type, expr);
4575
4576 char_string
4577 = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4578 == char_type_node);
4579
4580 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4581 TYPE_MAIN_VARIANT (type)))
4582 return inside_init;
4583
4584 if (!wchar_array && !char_string)
4585 {
4586 error_init ("char-array initialized from wide string");
4587 return error_mark_node;
4588 }
4589 if (char_string && !char_array)
4590 {
4591 error_init ("wchar_t-array initialized from non-wide string");
4592 return error_mark_node;
4593 }
4594
4595 TREE_TYPE (inside_init) = type;
4596 if (TYPE_DOMAIN (type) != 0
4597 && TYPE_SIZE (type) != 0
4598 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4599 /* Subtract 1 (or sizeof (wchar_t))
4600 because it's ok to ignore the terminating null char
4601 that is counted in the length of the constant. */
4602 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4603 TREE_STRING_LENGTH (inside_init)
4604 - ((TYPE_PRECISION (typ1)
4605 != TYPE_PRECISION (char_type_node))
4606 ? (TYPE_PRECISION (wchar_type_node)
4607 / BITS_PER_UNIT)
4608 : 1)))
4609 pedwarn_init ("initializer-string for array of chars is too long");
4610
4611 return inside_init;
4612 }
4613 else if (INTEGRAL_TYPE_P (typ1))
4614 {
4615 error_init ("array of inappropriate type initialized "
4616 "from string constant");
4617 return error_mark_node;
4618 }
4619 }
4620
4621 /* Build a VECTOR_CST from a *constant* vector constructor. If the
4622 vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4623 below and handle as a constructor. */
4624 if (code == VECTOR_TYPE
4625 && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4626 && vector_types_convertible_p (TREE_TYPE (inside_init), type, true)
4627 && TREE_CONSTANT (inside_init))
4628 {
4629 if (TREE_CODE (inside_init) == VECTOR_CST
4630 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4631 TYPE_MAIN_VARIANT (type)))
4632 return inside_init;
4633
4634 if (TREE_CODE (inside_init) == CONSTRUCTOR)
4635 {
4636 unsigned HOST_WIDE_INT ix;
4637 tree value;
4638 bool constant_p = true;
4639
4640 /* Iterate through elements and check if all constructor
4641 elements are *_CSTs. */
4642 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4643 if (!CONSTANT_CLASS_P (value))
4644 {
4645 constant_p = false;
4646 break;
4647 }
4648
4649 if (constant_p)
4650 return build_vector_from_ctor (type,
4651 CONSTRUCTOR_ELTS (inside_init));
4652 }
4653 }
4654
4655 /* Any type can be initialized
4656 from an expression of the same type, optionally with braces. */
4657
4658 if (inside_init && TREE_TYPE (inside_init) != 0
4659 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4660 TYPE_MAIN_VARIANT (type))
4661 || (code == ARRAY_TYPE
4662 && comptypes (TREE_TYPE (inside_init), type))
4663 || (code == VECTOR_TYPE
4664 && comptypes (TREE_TYPE (inside_init), type))
4665 || (code == POINTER_TYPE
4666 && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4667 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4668 TREE_TYPE (type)))))
4669 {
4670 if (code == POINTER_TYPE)
4671 {
4672 if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4673 {
4674 if (TREE_CODE (inside_init) == STRING_CST
4675 || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4676 inside_init = array_to_pointer_conversion (inside_init);
4677 else
4678 {
4679 error_init ("invalid use of non-lvalue array");
4680 return error_mark_node;
4681 }
4682 }
4683 }
4684
4685 if (code == VECTOR_TYPE)
4686 /* Although the types are compatible, we may require a
4687 conversion. */
4688 inside_init = convert (type, inside_init);
4689
4690 if (require_constant
4691 && (code == VECTOR_TYPE || !flag_isoc99)
4692 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4693 {
4694 /* As an extension, allow initializing objects with static storage
4695 duration with compound literals (which are then treated just as
4696 the brace enclosed list they contain). Also allow this for
4697 vectors, as we can only assign them with compound literals. */
4698 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4699 inside_init = DECL_INITIAL (decl);
4700 }
4701
4702 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4703 && TREE_CODE (inside_init) != CONSTRUCTOR)
4704 {
4705 error_init ("array initialized from non-constant array expression");
4706 return error_mark_node;
4707 }
4708
4709 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4710 inside_init = decl_constant_value_for_broken_optimization (inside_init);
4711
4712 /* Compound expressions can only occur here if -pedantic or
4713 -pedantic-errors is specified. In the later case, we always want
4714 an error. In the former case, we simply want a warning. */
4715 if (require_constant && pedantic
4716 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4717 {
4718 inside_init
4719 = valid_compound_expr_initializer (inside_init,
4720 TREE_TYPE (inside_init));
4721 if (inside_init == error_mark_node)
4722 error_init ("initializer element is not constant");
4723 else
4724 pedwarn_init ("initializer element is not constant");
4725 if (flag_pedantic_errors)
4726 inside_init = error_mark_node;
4727 }
4728 else if (require_constant
4729 && !initializer_constant_valid_p (inside_init,
4730 TREE_TYPE (inside_init)))
4731 {
4732 error_init ("initializer element is not constant");
4733 inside_init = error_mark_node;
4734 }
4735
4736 /* Added to enable additional -Wmissing-format-attribute warnings. */
4737 if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4738 inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4739 NULL_TREE, 0);
4740 return inside_init;
4741 }
4742
4743 /* Handle scalar types, including conversions. */
4744
4745 if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4746 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4747 || code == VECTOR_TYPE)
4748 {
4749 if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4750 && (TREE_CODE (init) == STRING_CST
4751 || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4752 init = array_to_pointer_conversion (init);
4753 inside_init
4754 = convert_for_assignment (type, init, ic_init,
4755 NULL_TREE, NULL_TREE, 0);
4756
4757 /* Check to see if we have already given an error message. */
4758 if (inside_init == error_mark_node)
4759 ;
4760 else if (require_constant && !TREE_CONSTANT (inside_init))
4761 {
4762 error_init ("initializer element is not constant");
4763 inside_init = error_mark_node;
4764 }
4765 else if (require_constant
4766 && !initializer_constant_valid_p (inside_init,
4767 TREE_TYPE (inside_init)))
4768 {
4769 error_init ("initializer element is not computable at load time");
4770 inside_init = error_mark_node;
4771 }
4772
4773 return inside_init;
4774 }
4775
4776 /* Come here only for records and arrays. */
4777
4778 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4779 {
4780 error_init ("variable-sized object may not be initialized");
4781 return error_mark_node;
4782 }
4783
4784 error_init ("invalid initializer");
4785 return error_mark_node;
4786 }
4787 \f
4788 /* Handle initializers that use braces. */
4789
4790 /* Type of object we are accumulating a constructor for.
4791 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4792 static tree constructor_type;
4793
4794 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4795 left to fill. */
4796 static tree constructor_fields;
4797
4798 /* For an ARRAY_TYPE, this is the specified index
4799 at which to store the next element we get. */
4800 static tree constructor_index;
4801
4802 /* For an ARRAY_TYPE, this is the maximum index. */
4803 static tree constructor_max_index;
4804
4805 /* For a RECORD_TYPE, this is the first field not yet written out. */
4806 static tree constructor_unfilled_fields;
4807
4808 /* For an ARRAY_TYPE, this is the index of the first element
4809 not yet written out. */
4810 static tree constructor_unfilled_index;
4811
4812 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4813 This is so we can generate gaps between fields, when appropriate. */
4814 static tree constructor_bit_index;
4815
4816 /* If we are saving up the elements rather than allocating them,
4817 this is the list of elements so far (in reverse order,
4818 most recent first). */
4819 static VEC(constructor_elt,gc) *constructor_elements;
4820
4821 /* 1 if constructor should be incrementally stored into a constructor chain,
4822 0 if all the elements should be kept in AVL tree. */
4823 static int constructor_incremental;
4824
4825 /* 1 if so far this constructor's elements are all compile-time constants. */
4826 static int constructor_constant;
4827
4828 /* 1 if so far this constructor's elements are all valid address constants. */
4829 static int constructor_simple;
4830
4831 /* 1 if this constructor is erroneous so far. */
4832 static int constructor_erroneous;
4833
4834 /* Structure for managing pending initializer elements, organized as an
4835 AVL tree. */
4836
4837 struct init_node
4838 {
4839 struct init_node *left, *right;
4840 struct init_node *parent;
4841 int balance;
4842 tree purpose;
4843 tree value;
4844 };
4845
4846 /* Tree of pending elements at this constructor level.
4847 These are elements encountered out of order
4848 which belong at places we haven't reached yet in actually
4849 writing the output.
4850 Will never hold tree nodes across GC runs. */
4851 static struct init_node *constructor_pending_elts;
4852
4853 /* The SPELLING_DEPTH of this constructor. */
4854 static int constructor_depth;
4855
4856 /* DECL node for which an initializer is being read.
4857 0 means we are reading a constructor expression
4858 such as (struct foo) {...}. */
4859 static tree constructor_decl;
4860
4861 /* Nonzero if this is an initializer for a top-level decl. */
4862 static int constructor_top_level;
4863
4864 /* Nonzero if there were any member designators in this initializer. */
4865 static int constructor_designated;
4866
4867 /* Nesting depth of designator list. */
4868 static int designator_depth;
4869
4870 /* Nonzero if there were diagnosed errors in this designator list. */
4871 static int designator_erroneous;
4872
4873 \f
4874 /* This stack has a level for each implicit or explicit level of
4875 structuring in the initializer, including the outermost one. It
4876 saves the values of most of the variables above. */
4877
4878 struct constructor_range_stack;
4879
4880 struct constructor_stack
4881 {
4882 struct constructor_stack *next;
4883 tree type;
4884 tree fields;
4885 tree index;
4886 tree max_index;
4887 tree unfilled_index;
4888 tree unfilled_fields;
4889 tree bit_index;
4890 VEC(constructor_elt,gc) *elements;
4891 struct init_node *pending_elts;
4892 int offset;
4893 int depth;
4894 /* If value nonzero, this value should replace the entire
4895 constructor at this level. */
4896 struct c_expr replacement_value;
4897 struct constructor_range_stack *range_stack;
4898 char constant;
4899 char simple;
4900 char implicit;
4901 char erroneous;
4902 char outer;
4903 char incremental;
4904 char designated;
4905 };
4906
4907 static struct constructor_stack *constructor_stack;
4908
4909 /* This stack represents designators from some range designator up to
4910 the last designator in the list. */
4911
4912 struct constructor_range_stack
4913 {
4914 struct constructor_range_stack *next, *prev;
4915 struct constructor_stack *stack;
4916 tree range_start;
4917 tree index;
4918 tree range_end;
4919 tree fields;
4920 };
4921
4922 static struct constructor_range_stack *constructor_range_stack;
4923
4924 /* This stack records separate initializers that are nested.
4925 Nested initializers can't happen in ANSI C, but GNU C allows them
4926 in cases like { ... (struct foo) { ... } ... }. */
4927
4928 struct initializer_stack
4929 {
4930 struct initializer_stack *next;
4931 tree decl;
4932 struct constructor_stack *constructor_stack;
4933 struct constructor_range_stack *constructor_range_stack;
4934 VEC(constructor_elt,gc) *elements;
4935 struct spelling *spelling;
4936 struct spelling *spelling_base;
4937 int spelling_size;
4938 char top_level;
4939 char require_constant_value;
4940 char require_constant_elements;
4941 };
4942
4943 static struct initializer_stack *initializer_stack;
4944 \f
4945 /* Prepare to parse and output the initializer for variable DECL. */
4946
4947 void
4948 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
4949 {
4950 const char *locus;
4951 struct initializer_stack *p = XNEW (struct initializer_stack);
4952
4953 p->decl = constructor_decl;
4954 p->require_constant_value = require_constant_value;
4955 p->require_constant_elements = require_constant_elements;
4956 p->constructor_stack = constructor_stack;
4957 p->constructor_range_stack = constructor_range_stack;
4958 p->elements = constructor_elements;
4959 p->spelling = spelling;
4960 p->spelling_base = spelling_base;
4961 p->spelling_size = spelling_size;
4962 p->top_level = constructor_top_level;
4963 p->next = initializer_stack;
4964 initializer_stack = p;
4965
4966 constructor_decl = decl;
4967 constructor_designated = 0;
4968 constructor_top_level = top_level;
4969
4970 if (decl != 0 && decl != error_mark_node)
4971 {
4972 require_constant_value = TREE_STATIC (decl);
4973 require_constant_elements
4974 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
4975 /* For a scalar, you can always use any value to initialize,
4976 even within braces. */
4977 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
4978 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4979 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
4980 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
4981 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
4982 }
4983 else
4984 {
4985 require_constant_value = 0;
4986 require_constant_elements = 0;
4987 locus = "(anonymous)";
4988 }
4989
4990 constructor_stack = 0;
4991 constructor_range_stack = 0;
4992
4993 missing_braces_mentioned = 0;
4994
4995 spelling_base = 0;
4996 spelling_size = 0;
4997 RESTORE_SPELLING_DEPTH (0);
4998
4999 if (locus)
5000 push_string (locus);
5001 }
5002
5003 void
5004 finish_init (void)
5005 {
5006 struct initializer_stack *p = initializer_stack;
5007
5008 /* Free the whole constructor stack of this initializer. */
5009 while (constructor_stack)
5010 {
5011 struct constructor_stack *q = constructor_stack;
5012 constructor_stack = q->next;
5013 free (q);
5014 }
5015
5016 gcc_assert (!constructor_range_stack);
5017
5018 /* Pop back to the data of the outer initializer (if any). */
5019 free (spelling_base);
5020
5021 constructor_decl = p->decl;
5022 require_constant_value = p->require_constant_value;
5023 require_constant_elements = p->require_constant_elements;
5024 constructor_stack = p->constructor_stack;
5025 constructor_range_stack = p->constructor_range_stack;
5026 constructor_elements = p->elements;
5027 spelling = p->spelling;
5028 spelling_base = p->spelling_base;
5029 spelling_size = p->spelling_size;
5030 constructor_top_level = p->top_level;
5031 initializer_stack = p->next;
5032 free (p);
5033 }
5034 \f
5035 /* Call here when we see the initializer is surrounded by braces.
5036 This is instead of a call to push_init_level;
5037 it is matched by a call to pop_init_level.
5038
5039 TYPE is the type to initialize, for a constructor expression.
5040 For an initializer for a decl, TYPE is zero. */
5041
5042 void
5043 really_start_incremental_init (tree type)
5044 {
5045 struct constructor_stack *p = XNEW (struct constructor_stack);
5046
5047 if (type == 0)
5048 type = TREE_TYPE (constructor_decl);
5049
5050 if (targetm.vector_opaque_p (type))
5051 error ("opaque vector types cannot be initialized");
5052
5053 p->type = constructor_type;
5054 p->fields = constructor_fields;
5055 p->index = constructor_index;
5056 p->max_index = constructor_max_index;
5057 p->unfilled_index = constructor_unfilled_index;
5058 p->unfilled_fields = constructor_unfilled_fields;
5059 p->bit_index = constructor_bit_index;
5060 p->elements = constructor_elements;
5061 p->constant = constructor_constant;
5062 p->simple = constructor_simple;
5063 p->erroneous = constructor_erroneous;
5064 p->pending_elts = constructor_pending_elts;
5065 p->depth = constructor_depth;
5066 p->replacement_value.value = 0;
5067 p->replacement_value.original_code = ERROR_MARK;
5068 p->implicit = 0;
5069 p->range_stack = 0;
5070 p->outer = 0;
5071 p->incremental = constructor_incremental;
5072 p->designated = constructor_designated;
5073 p->next = 0;
5074 constructor_stack = p;
5075
5076 constructor_constant = 1;
5077 constructor_simple = 1;
5078 constructor_depth = SPELLING_DEPTH ();
5079 constructor_elements = 0;
5080 constructor_pending_elts = 0;
5081 constructor_type = type;
5082 constructor_incremental = 1;
5083 constructor_designated = 0;
5084 designator_depth = 0;
5085 designator_erroneous = 0;
5086
5087 if (TREE_CODE (constructor_type) == RECORD_TYPE
5088 || TREE_CODE (constructor_type) == UNION_TYPE)
5089 {
5090 constructor_fields = TYPE_FIELDS (constructor_type);
5091 /* Skip any nameless bit fields at the beginning. */
5092 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5093 && DECL_NAME (constructor_fields) == 0)
5094 constructor_fields = TREE_CHAIN (constructor_fields);
5095
5096 constructor_unfilled_fields = constructor_fields;
5097 constructor_bit_index = bitsize_zero_node;
5098 }
5099 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5100 {
5101 if (TYPE_DOMAIN (constructor_type))
5102 {
5103 constructor_max_index
5104 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5105
5106 /* Detect non-empty initializations of zero-length arrays. */
5107 if (constructor_max_index == NULL_TREE
5108 && TYPE_SIZE (constructor_type))
5109 constructor_max_index = build_int_cst (NULL_TREE, -1);
5110
5111 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5112 to initialize VLAs will cause a proper error; avoid tree
5113 checking errors as well by setting a safe value. */
5114 if (constructor_max_index
5115 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5116 constructor_max_index = build_int_cst (NULL_TREE, -1);
5117
5118 constructor_index
5119 = convert (bitsizetype,
5120 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5121 }
5122 else
5123 {
5124 constructor_index = bitsize_zero_node;
5125 constructor_max_index = NULL_TREE;
5126 }
5127
5128 constructor_unfilled_index = constructor_index;
5129 }
5130 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5131 {
5132 /* Vectors are like simple fixed-size arrays. */
5133 constructor_max_index =
5134 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5135 constructor_index = bitsize_zero_node;
5136 constructor_unfilled_index = constructor_index;
5137 }
5138 else
5139 {
5140 /* Handle the case of int x = {5}; */
5141 constructor_fields = constructor_type;
5142 constructor_unfilled_fields = constructor_type;
5143 }
5144 }
5145 \f
5146 /* Push down into a subobject, for initialization.
5147 If this is for an explicit set of braces, IMPLICIT is 0.
5148 If it is because the next element belongs at a lower level,
5149 IMPLICIT is 1 (or 2 if the push is because of designator list). */
5150
5151 void
5152 push_init_level (int implicit)
5153 {
5154 struct constructor_stack *p;
5155 tree value = NULL_TREE;
5156
5157 /* If we've exhausted any levels that didn't have braces,
5158 pop them now. If implicit == 1, this will have been done in
5159 process_init_element; do not repeat it here because in the case
5160 of excess initializers for an empty aggregate this leads to an
5161 infinite cycle of popping a level and immediately recreating
5162 it. */
5163 if (implicit != 1)
5164 {
5165 while (constructor_stack->implicit)
5166 {
5167 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5168 || TREE_CODE (constructor_type) == UNION_TYPE)
5169 && constructor_fields == 0)
5170 process_init_element (pop_init_level (1));
5171 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5172 && constructor_max_index
5173 && tree_int_cst_lt (constructor_max_index,
5174 constructor_index))
5175 process_init_element (pop_init_level (1));
5176 else
5177 break;
5178 }
5179 }
5180
5181 /* Unless this is an explicit brace, we need to preserve previous
5182 content if any. */
5183 if (implicit)
5184 {
5185 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5186 || TREE_CODE (constructor_type) == UNION_TYPE)
5187 && constructor_fields)
5188 value = find_init_member (constructor_fields);
5189 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5190 value = find_init_member (constructor_index);
5191 }
5192
5193 p = XNEW (struct constructor_stack);
5194 p->type = constructor_type;
5195 p->fields = constructor_fields;
5196 p->index = constructor_index;
5197 p->max_index = constructor_max_index;
5198 p->unfilled_index = constructor_unfilled_index;
5199 p->unfilled_fields = constructor_unfilled_fields;
5200 p->bit_index = constructor_bit_index;
5201 p->elements = constructor_elements;
5202 p->constant = constructor_constant;
5203 p->simple = constructor_simple;
5204 p->erroneous = constructor_erroneous;
5205 p->pending_elts = constructor_pending_elts;
5206 p->depth = constructor_depth;
5207 p->replacement_value.value = 0;
5208 p->replacement_value.original_code = ERROR_MARK;
5209 p->implicit = implicit;
5210 p->outer = 0;
5211 p->incremental = constructor_incremental;
5212 p->designated = constructor_designated;
5213 p->next = constructor_stack;
5214 p->range_stack = 0;
5215 constructor_stack = p;
5216
5217 constructor_constant = 1;
5218 constructor_simple = 1;
5219 constructor_depth = SPELLING_DEPTH ();
5220 constructor_elements = 0;
5221 constructor_incremental = 1;
5222 constructor_designated = 0;
5223 constructor_pending_elts = 0;
5224 if (!implicit)
5225 {
5226 p->range_stack = constructor_range_stack;
5227 constructor_range_stack = 0;
5228 designator_depth = 0;
5229 designator_erroneous = 0;
5230 }
5231
5232 /* Don't die if an entire brace-pair level is superfluous
5233 in the containing level. */
5234 if (constructor_type == 0)
5235 ;
5236 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5237 || TREE_CODE (constructor_type) == UNION_TYPE)
5238 {
5239 /* Don't die if there are extra init elts at the end. */
5240 if (constructor_fields == 0)
5241 constructor_type = 0;
5242 else
5243 {
5244 constructor_type = TREE_TYPE (constructor_fields);
5245 push_member_name (constructor_fields);
5246 constructor_depth++;
5247 }
5248 }
5249 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5250 {
5251 constructor_type = TREE_TYPE (constructor_type);
5252 push_array_bounds (tree_low_cst (constructor_index, 1));
5253 constructor_depth++;
5254 }
5255
5256 if (constructor_type == 0)
5257 {
5258 error_init ("extra brace group at end of initializer");
5259 constructor_fields = 0;
5260 constructor_unfilled_fields = 0;
5261 return;
5262 }
5263
5264 if (value && TREE_CODE (value) == CONSTRUCTOR)
5265 {
5266 constructor_constant = TREE_CONSTANT (value);
5267 constructor_simple = TREE_STATIC (value);
5268 constructor_elements = CONSTRUCTOR_ELTS (value);
5269 if (!VEC_empty (constructor_elt, constructor_elements)
5270 && (TREE_CODE (constructor_type) == RECORD_TYPE
5271 || TREE_CODE (constructor_type) == ARRAY_TYPE))
5272 set_nonincremental_init ();
5273 }
5274
5275 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5276 {
5277 missing_braces_mentioned = 1;
5278 warning_init ("missing braces around initializer");
5279 }
5280
5281 if (TREE_CODE (constructor_type) == RECORD_TYPE
5282 || TREE_CODE (constructor_type) == UNION_TYPE)
5283 {
5284 constructor_fields = TYPE_FIELDS (constructor_type);
5285 /* Skip any nameless bit fields at the beginning. */
5286 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5287 && DECL_NAME (constructor_fields) == 0)
5288 constructor_fields = TREE_CHAIN (constructor_fields);
5289
5290 constructor_unfilled_fields = constructor_fields;
5291 constructor_bit_index = bitsize_zero_node;
5292 }
5293 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5294 {
5295 /* Vectors are like simple fixed-size arrays. */
5296 constructor_max_index =
5297 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5298 constructor_index = convert (bitsizetype, integer_zero_node);
5299 constructor_unfilled_index = constructor_index;
5300 }
5301 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5302 {
5303 if (TYPE_DOMAIN (constructor_type))
5304 {
5305 constructor_max_index
5306 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5307
5308 /* Detect non-empty initializations of zero-length arrays. */
5309 if (constructor_max_index == NULL_TREE
5310 && TYPE_SIZE (constructor_type))
5311 constructor_max_index = build_int_cst (NULL_TREE, -1);
5312
5313 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5314 to initialize VLAs will cause a proper error; avoid tree
5315 checking errors as well by setting a safe value. */
5316 if (constructor_max_index
5317 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5318 constructor_max_index = build_int_cst (NULL_TREE, -1);
5319
5320 constructor_index
5321 = convert (bitsizetype,
5322 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5323 }
5324 else
5325 constructor_index = bitsize_zero_node;
5326
5327 constructor_unfilled_index = constructor_index;
5328 if (value && TREE_CODE (value) == STRING_CST)
5329 {
5330 /* We need to split the char/wchar array into individual
5331 characters, so that we don't have to special case it
5332 everywhere. */
5333 set_nonincremental_init_from_string (value);
5334 }
5335 }
5336 else
5337 {
5338 if (constructor_type != error_mark_node)
5339 warning_init ("braces around scalar initializer");
5340 constructor_fields = constructor_type;
5341 constructor_unfilled_fields = constructor_type;
5342 }
5343 }
5344
5345 /* At the end of an implicit or explicit brace level,
5346 finish up that level of constructor. If a single expression
5347 with redundant braces initialized that level, return the
5348 c_expr structure for that expression. Otherwise, the original_code
5349 element is set to ERROR_MARK.
5350 If we were outputting the elements as they are read, return 0 as the value
5351 from inner levels (process_init_element ignores that),
5352 but return error_mark_node as the value from the outermost level
5353 (that's what we want to put in DECL_INITIAL).
5354 Otherwise, return a CONSTRUCTOR expression as the value. */
5355
5356 struct c_expr
5357 pop_init_level (int implicit)
5358 {
5359 struct constructor_stack *p;
5360 struct c_expr ret;
5361 ret.value = 0;
5362 ret.original_code = ERROR_MARK;
5363
5364 if (implicit == 0)
5365 {
5366 /* When we come to an explicit close brace,
5367 pop any inner levels that didn't have explicit braces. */
5368 while (constructor_stack->implicit)
5369 process_init_element (pop_init_level (1));
5370
5371 gcc_assert (!constructor_range_stack);
5372 }
5373
5374 /* Now output all pending elements. */
5375 constructor_incremental = 1;
5376 output_pending_init_elements (1);
5377
5378 p = constructor_stack;
5379
5380 /* Error for initializing a flexible array member, or a zero-length
5381 array member in an inappropriate context. */
5382 if (constructor_type && constructor_fields
5383 && TREE_CODE (constructor_type) == ARRAY_TYPE
5384 && TYPE_DOMAIN (constructor_type)
5385 && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5386 {
5387 /* Silently discard empty initializations. The parser will
5388 already have pedwarned for empty brackets. */
5389 if (integer_zerop (constructor_unfilled_index))
5390 constructor_type = NULL_TREE;
5391 else
5392 {
5393 gcc_assert (!TYPE_SIZE (constructor_type));
5394
5395 if (constructor_depth > 2)
5396 error_init ("initialization of flexible array member in a nested context");
5397 else if (pedantic)
5398 pedwarn_init ("initialization of a flexible array member");
5399
5400 /* We have already issued an error message for the existence
5401 of a flexible array member not at the end of the structure.
5402 Discard the initializer so that we do not die later. */
5403 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5404 constructor_type = NULL_TREE;
5405 }
5406 }
5407
5408 /* Warn when some struct elements are implicitly initialized to zero. */
5409 if (warn_missing_field_initializers
5410 && constructor_type
5411 && TREE_CODE (constructor_type) == RECORD_TYPE
5412 && constructor_unfilled_fields)
5413 {
5414 /* Do not warn for flexible array members or zero-length arrays. */
5415 while (constructor_unfilled_fields
5416 && (!DECL_SIZE (constructor_unfilled_fields)
5417 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5418 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5419
5420 /* Do not warn if this level of the initializer uses member
5421 designators; it is likely to be deliberate. */
5422 if (constructor_unfilled_fields && !constructor_designated)
5423 {
5424 push_member_name (constructor_unfilled_fields);
5425 warning_init ("missing initializer");
5426 RESTORE_SPELLING_DEPTH (constructor_depth);
5427 }
5428 }
5429
5430 /* Pad out the end of the structure. */
5431 if (p->replacement_value.value)
5432 /* If this closes a superfluous brace pair,
5433 just pass out the element between them. */
5434 ret = p->replacement_value;
5435 else if (constructor_type == 0)
5436 ;
5437 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5438 && TREE_CODE (constructor_type) != UNION_TYPE
5439 && TREE_CODE (constructor_type) != ARRAY_TYPE
5440 && TREE_CODE (constructor_type) != VECTOR_TYPE)
5441 {
5442 /* A nonincremental scalar initializer--just return
5443 the element, after verifying there is just one. */
5444 if (VEC_empty (constructor_elt,constructor_elements))
5445 {
5446 if (!constructor_erroneous)
5447 error_init ("empty scalar initializer");
5448 ret.value = error_mark_node;
5449 }
5450 else if (VEC_length (constructor_elt,constructor_elements) != 1)
5451 {
5452 error_init ("extra elements in scalar initializer");
5453 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5454 }
5455 else
5456 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5457 }
5458 else
5459 {
5460 if (constructor_erroneous)
5461 ret.value = error_mark_node;
5462 else
5463 {
5464 ret.value = build_constructor (constructor_type,
5465 constructor_elements);
5466 if (constructor_constant)
5467 TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5468 if (constructor_constant && constructor_simple)
5469 TREE_STATIC (ret.value) = 1;
5470 }
5471 }
5472
5473 constructor_type = p->type;
5474 constructor_fields = p->fields;
5475 constructor_index = p->index;
5476 constructor_max_index = p->max_index;
5477 constructor_unfilled_index = p->unfilled_index;
5478 constructor_unfilled_fields = p->unfilled_fields;
5479 constructor_bit_index = p->bit_index;
5480 constructor_elements = p->elements;
5481 constructor_constant = p->constant;
5482 constructor_simple = p->simple;
5483 constructor_erroneous = p->erroneous;
5484 constructor_incremental = p->incremental;
5485 constructor_designated = p->designated;
5486 constructor_pending_elts = p->pending_elts;
5487 constructor_depth = p->depth;
5488 if (!p->implicit)
5489 constructor_range_stack = p->range_stack;
5490 RESTORE_SPELLING_DEPTH (constructor_depth);
5491
5492 constructor_stack = p->next;
5493 free (p);
5494
5495 if (ret.value == 0 && constructor_stack == 0)
5496 ret.value = error_mark_node;
5497 return ret;
5498 }
5499
5500 /* Common handling for both array range and field name designators.
5501 ARRAY argument is nonzero for array ranges. Returns zero for success. */
5502
5503 static int
5504 set_designator (int array)
5505 {
5506 tree subtype;
5507 enum tree_code subcode;
5508
5509 /* Don't die if an entire brace-pair level is superfluous
5510 in the containing level. */
5511 if (constructor_type == 0)
5512 return 1;
5513
5514 /* If there were errors in this designator list already, bail out
5515 silently. */
5516 if (designator_erroneous)
5517 return 1;
5518
5519 if (!designator_depth)
5520 {
5521 gcc_assert (!constructor_range_stack);
5522
5523 /* Designator list starts at the level of closest explicit
5524 braces. */
5525 while (constructor_stack->implicit)
5526 process_init_element (pop_init_level (1));
5527 constructor_designated = 1;
5528 return 0;
5529 }
5530
5531 switch (TREE_CODE (constructor_type))
5532 {
5533 case RECORD_TYPE:
5534 case UNION_TYPE:
5535 subtype = TREE_TYPE (constructor_fields);
5536 if (subtype != error_mark_node)
5537 subtype = TYPE_MAIN_VARIANT (subtype);
5538 break;
5539 case ARRAY_TYPE:
5540 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5541 break;
5542 default:
5543 gcc_unreachable ();
5544 }
5545
5546 subcode = TREE_CODE (subtype);
5547 if (array && subcode != ARRAY_TYPE)
5548 {
5549 error_init ("array index in non-array initializer");
5550 return 1;
5551 }
5552 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5553 {
5554 error_init ("field name not in record or union initializer");
5555 return 1;
5556 }
5557
5558 constructor_designated = 1;
5559 push_init_level (2);
5560 return 0;
5561 }
5562
5563 /* If there are range designators in designator list, push a new designator
5564 to constructor_range_stack. RANGE_END is end of such stack range or
5565 NULL_TREE if there is no range designator at this level. */
5566
5567 static void
5568 push_range_stack (tree range_end)
5569 {
5570 struct constructor_range_stack *p;
5571
5572 p = GGC_NEW (struct constructor_range_stack);
5573 p->prev = constructor_range_stack;
5574 p->next = 0;
5575 p->fields = constructor_fields;
5576 p->range_start = constructor_index;
5577 p->index = constructor_index;
5578 p->stack = constructor_stack;
5579 p->range_end = range_end;
5580 if (constructor_range_stack)
5581 constructor_range_stack->next = p;
5582 constructor_range_stack = p;
5583 }
5584
5585 /* Within an array initializer, specify the next index to be initialized.
5586 FIRST is that index. If LAST is nonzero, then initialize a range
5587 of indices, running from FIRST through LAST. */
5588
5589 void
5590 set_init_index (tree first, tree last)
5591 {
5592 if (set_designator (1))
5593 return;
5594
5595 designator_erroneous = 1;
5596
5597 if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5598 || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5599 {
5600 error_init ("array index in initializer not of integer type");
5601 return;
5602 }
5603
5604 if (TREE_CODE (first) != INTEGER_CST)
5605 error_init ("nonconstant array index in initializer");
5606 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5607 error_init ("nonconstant array index in initializer");
5608 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5609 error_init ("array index in non-array initializer");
5610 else if (tree_int_cst_sgn (first) == -1)
5611 error_init ("array index in initializer exceeds array bounds");
5612 else if (constructor_max_index
5613 && tree_int_cst_lt (constructor_max_index, first))
5614 error_init ("array index in initializer exceeds array bounds");
5615 else
5616 {
5617 constructor_index = convert (bitsizetype, first);
5618
5619 if (last)
5620 {
5621 if (tree_int_cst_equal (first, last))
5622 last = 0;
5623 else if (tree_int_cst_lt (last, first))
5624 {
5625 error_init ("empty index range in initializer");
5626 last = 0;
5627 }
5628 else
5629 {
5630 last = convert (bitsizetype, last);
5631 if (constructor_max_index != 0
5632 && tree_int_cst_lt (constructor_max_index, last))
5633 {
5634 error_init ("array index range in initializer exceeds array bounds");
5635 last = 0;
5636 }
5637 }
5638 }
5639
5640 designator_depth++;
5641 designator_erroneous = 0;
5642 if (constructor_range_stack || last)
5643 push_range_stack (last);
5644 }
5645 }
5646
5647 /* Within a struct initializer, specify the next field to be initialized. */
5648
5649 void
5650 set_init_label (tree fieldname)
5651 {
5652 tree tail;
5653
5654 if (set_designator (0))
5655 return;
5656
5657 designator_erroneous = 1;
5658
5659 if (TREE_CODE (constructor_type) != RECORD_TYPE
5660 && TREE_CODE (constructor_type) != UNION_TYPE)
5661 {
5662 error_init ("field name not in record or union initializer");
5663 return;
5664 }
5665
5666 for (tail = TYPE_FIELDS (constructor_type); tail;
5667 tail = TREE_CHAIN (tail))
5668 {
5669 if (DECL_NAME (tail) == fieldname)
5670 break;
5671 }
5672
5673 if (tail == 0)
5674 error ("unknown field %qE specified in initializer", fieldname);
5675 else
5676 {
5677 constructor_fields = tail;
5678 designator_depth++;
5679 designator_erroneous = 0;
5680 if (constructor_range_stack)
5681 push_range_stack (NULL_TREE);
5682 }
5683 }
5684 \f
5685 /* Add a new initializer to the tree of pending initializers. PURPOSE
5686 identifies the initializer, either array index or field in a structure.
5687 VALUE is the value of that index or field. */
5688
5689 static void
5690 add_pending_init (tree purpose, tree value)
5691 {
5692 struct init_node *p, **q, *r;
5693
5694 q = &constructor_pending_elts;
5695 p = 0;
5696
5697 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5698 {
5699 while (*q != 0)
5700 {
5701 p = *q;
5702 if (tree_int_cst_lt (purpose, p->purpose))
5703 q = &p->left;
5704 else if (tree_int_cst_lt (p->purpose, purpose))
5705 q = &p->right;
5706 else
5707 {
5708 if (TREE_SIDE_EFFECTS (p->value))
5709 warning_init ("initialized field with side-effects overwritten");
5710 else if (warn_override_init)
5711 warning_init ("initialized field overwritten");
5712 p->value = value;
5713 return;
5714 }
5715 }
5716 }
5717 else
5718 {
5719 tree bitpos;
5720
5721 bitpos = bit_position (purpose);
5722 while (*q != NULL)
5723 {
5724 p = *q;
5725 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5726 q = &p->left;
5727 else if (p->purpose != purpose)
5728 q = &p->right;
5729 else
5730 {
5731 if (TREE_SIDE_EFFECTS (p->value))
5732 warning_init ("initialized field with side-effects overwritten");
5733 else if (warn_override_init)
5734 warning_init ("initialized field overwritten");
5735 p->value = value;
5736 return;
5737 }
5738 }
5739 }
5740
5741 r = GGC_NEW (struct init_node);
5742 r->purpose = purpose;
5743 r->value = value;
5744
5745 *q = r;
5746 r->parent = p;
5747 r->left = 0;
5748 r->right = 0;
5749 r->balance = 0;
5750
5751 while (p)
5752 {
5753 struct init_node *s;
5754
5755 if (r == p->left)
5756 {
5757 if (p->balance == 0)
5758 p->balance = -1;
5759 else if (p->balance < 0)
5760 {
5761 if (r->balance < 0)
5762 {
5763 /* L rotation. */
5764 p->left = r->right;
5765 if (p->left)
5766 p->left->parent = p;
5767 r->right = p;
5768
5769 p->balance = 0;
5770 r->balance = 0;
5771
5772 s = p->parent;
5773 p->parent = r;
5774 r->parent = s;
5775 if (s)
5776 {
5777 if (s->left == p)
5778 s->left = r;
5779 else
5780 s->right = r;
5781 }
5782 else
5783 constructor_pending_elts = r;
5784 }
5785 else
5786 {
5787 /* LR rotation. */
5788 struct init_node *t = r->right;
5789
5790 r->right = t->left;
5791 if (r->right)
5792 r->right->parent = r;
5793 t->left = r;
5794
5795 p->left = t->right;
5796 if (p->left)
5797 p->left->parent = p;
5798 t->right = p;
5799
5800 p->balance = t->balance < 0;
5801 r->balance = -(t->balance > 0);
5802 t->balance = 0;
5803
5804 s = p->parent;
5805 p->parent = t;
5806 r->parent = t;
5807 t->parent = s;
5808 if (s)
5809 {
5810 if (s->left == p)
5811 s->left = t;
5812 else
5813 s->right = t;
5814 }
5815 else
5816 constructor_pending_elts = t;
5817 }
5818 break;
5819 }
5820 else
5821 {
5822 /* p->balance == +1; growth of left side balances the node. */
5823 p->balance = 0;
5824 break;
5825 }
5826 }
5827 else /* r == p->right */
5828 {
5829 if (p->balance == 0)
5830 /* Growth propagation from right side. */
5831 p->balance++;
5832 else if (p->balance > 0)
5833 {
5834 if (r->balance > 0)
5835 {
5836 /* R rotation. */
5837 p->right = r->left;
5838 if (p->right)
5839 p->right->parent = p;
5840 r->left = p;
5841
5842 p->balance = 0;
5843 r->balance = 0;
5844
5845 s = p->parent;
5846 p->parent = r;
5847 r->parent = s;
5848 if (s)
5849 {
5850 if (s->left == p)
5851 s->left = r;
5852 else
5853 s->right = r;
5854 }
5855 else
5856 constructor_pending_elts = r;
5857 }
5858 else /* r->balance == -1 */
5859 {
5860 /* RL rotation */
5861 struct init_node *t = r->left;
5862
5863 r->left = t->right;
5864 if (r->left)
5865 r->left->parent = r;
5866 t->right = r;
5867
5868 p->right = t->left;
5869 if (p->right)
5870 p->right->parent = p;
5871 t->left = p;
5872
5873 r->balance = (t->balance < 0);
5874 p->balance = -(t->balance > 0);
5875 t->balance = 0;
5876
5877 s = p->parent;
5878 p->parent = t;
5879 r->parent = t;
5880 t->parent = s;
5881 if (s)
5882 {
5883 if (s->left == p)
5884 s->left = t;
5885 else
5886 s->right = t;
5887 }
5888 else
5889 constructor_pending_elts = t;
5890 }
5891 break;
5892 }
5893 else
5894 {
5895 /* p->balance == -1; growth of right side balances the node. */
5896 p->balance = 0;
5897 break;
5898 }
5899 }
5900
5901 r = p;
5902 p = p->parent;
5903 }
5904 }
5905
5906 /* Build AVL tree from a sorted chain. */
5907
5908 static void
5909 set_nonincremental_init (void)
5910 {
5911 unsigned HOST_WIDE_INT ix;
5912 tree index, value;
5913
5914 if (TREE_CODE (constructor_type) != RECORD_TYPE
5915 && TREE_CODE (constructor_type) != ARRAY_TYPE)
5916 return;
5917
5918 FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
5919 add_pending_init (index, value);
5920 constructor_elements = 0;
5921 if (TREE_CODE (constructor_type) == RECORD_TYPE)
5922 {
5923 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
5924 /* Skip any nameless bit fields at the beginning. */
5925 while (constructor_unfilled_fields != 0
5926 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5927 && DECL_NAME (constructor_unfilled_fields) == 0)
5928 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5929
5930 }
5931 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5932 {
5933 if (TYPE_DOMAIN (constructor_type))
5934 constructor_unfilled_index
5935 = convert (bitsizetype,
5936 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5937 else
5938 constructor_unfilled_index = bitsize_zero_node;
5939 }
5940 constructor_incremental = 0;
5941 }
5942
5943 /* Build AVL tree from a string constant. */
5944
5945 static void
5946 set_nonincremental_init_from_string (tree str)
5947 {
5948 tree value, purpose, type;
5949 HOST_WIDE_INT val[2];
5950 const char *p, *end;
5951 int byte, wchar_bytes, charwidth, bitpos;
5952
5953 gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
5954
5955 if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5956 == TYPE_PRECISION (char_type_node))
5957 wchar_bytes = 1;
5958 else
5959 {
5960 gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5961 == TYPE_PRECISION (wchar_type_node));
5962 wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
5963 }
5964 charwidth = TYPE_PRECISION (char_type_node);
5965 type = TREE_TYPE (constructor_type);
5966 p = TREE_STRING_POINTER (str);
5967 end = p + TREE_STRING_LENGTH (str);
5968
5969 for (purpose = bitsize_zero_node;
5970 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
5971 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
5972 {
5973 if (wchar_bytes == 1)
5974 {
5975 val[1] = (unsigned char) *p++;
5976 val[0] = 0;
5977 }
5978 else
5979 {
5980 val[0] = 0;
5981 val[1] = 0;
5982 for (byte = 0; byte < wchar_bytes; byte++)
5983 {
5984 if (BYTES_BIG_ENDIAN)
5985 bitpos = (wchar_bytes - byte - 1) * charwidth;
5986 else
5987 bitpos = byte * charwidth;
5988 val[bitpos < HOST_BITS_PER_WIDE_INT]
5989 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
5990 << (bitpos % HOST_BITS_PER_WIDE_INT);
5991 }
5992 }
5993
5994 if (!TYPE_UNSIGNED (type))
5995 {
5996 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
5997 if (bitpos < HOST_BITS_PER_WIDE_INT)
5998 {
5999 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6000 {
6001 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6002 val[0] = -1;
6003 }
6004 }
6005 else if (bitpos == HOST_BITS_PER_WIDE_INT)
6006 {
6007 if (val[1] < 0)
6008 val[0] = -1;
6009 }
6010 else if (val[0] & (((HOST_WIDE_INT) 1)
6011 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6012 val[0] |= ((HOST_WIDE_INT) -1)
6013 << (bitpos - HOST_BITS_PER_WIDE_INT);
6014 }
6015
6016 value = build_int_cst_wide (type, val[1], val[0]);
6017 add_pending_init (purpose, value);
6018 }
6019
6020 constructor_incremental = 0;
6021 }
6022
6023 /* Return value of FIELD in pending initializer or zero if the field was
6024 not initialized yet. */
6025
6026 static tree
6027 find_init_member (tree field)
6028 {
6029 struct init_node *p;
6030
6031 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6032 {
6033 if (constructor_incremental
6034 && tree_int_cst_lt (field, constructor_unfilled_index))
6035 set_nonincremental_init ();
6036
6037 p = constructor_pending_elts;
6038 while (p)
6039 {
6040 if (tree_int_cst_lt (field, p->purpose))
6041 p = p->left;
6042 else if (tree_int_cst_lt (p->purpose, field))
6043 p = p->right;
6044 else
6045 return p->value;
6046 }
6047 }
6048 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6049 {
6050 tree bitpos = bit_position (field);
6051
6052 if (constructor_incremental
6053 && (!constructor_unfilled_fields
6054 || tree_int_cst_lt (bitpos,
6055 bit_position (constructor_unfilled_fields))))
6056 set_nonincremental_init ();
6057
6058 p = constructor_pending_elts;
6059 while (p)
6060 {
6061 if (field == p->purpose)
6062 return p->value;
6063 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6064 p = p->left;
6065 else
6066 p = p->right;
6067 }
6068 }
6069 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6070 {
6071 if (!VEC_empty (constructor_elt, constructor_elements)
6072 && (VEC_last (constructor_elt, constructor_elements)->index
6073 == field))
6074 return VEC_last (constructor_elt, constructor_elements)->value;
6075 }
6076 return 0;
6077 }
6078
6079 /* "Output" the next constructor element.
6080 At top level, really output it to assembler code now.
6081 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6082 TYPE is the data type that the containing data type wants here.
6083 FIELD is the field (a FIELD_DECL) or the index that this element fills.
6084 If VALUE is a string constant, STRICT_STRING is true if it is
6085 unparenthesized or we should not warn here for it being parenthesized.
6086 For other types of VALUE, STRICT_STRING is not used.
6087
6088 PENDING if non-nil means output pending elements that belong
6089 right after this element. (PENDING is normally 1;
6090 it is 0 while outputting pending elements, to avoid recursion.) */
6091
6092 static void
6093 output_init_element (tree value, bool strict_string, tree type, tree field,
6094 int pending)
6095 {
6096 constructor_elt *celt;
6097
6098 if (type == error_mark_node || value == error_mark_node)
6099 {
6100 constructor_erroneous = 1;
6101 return;
6102 }
6103 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6104 && (TREE_CODE (value) == STRING_CST
6105 || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6106 && !(TREE_CODE (value) == STRING_CST
6107 && TREE_CODE (type) == ARRAY_TYPE
6108 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6109 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6110 TYPE_MAIN_VARIANT (type)))
6111 value = array_to_pointer_conversion (value);
6112
6113 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6114 && require_constant_value && !flag_isoc99 && pending)
6115 {
6116 /* As an extension, allow initializing objects with static storage
6117 duration with compound literals (which are then treated just as
6118 the brace enclosed list they contain). */
6119 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6120 value = DECL_INITIAL (decl);
6121 }
6122
6123 if (value == error_mark_node)
6124 constructor_erroneous = 1;
6125 else if (!TREE_CONSTANT (value))
6126 constructor_constant = 0;
6127 else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6128 || ((TREE_CODE (constructor_type) == RECORD_TYPE
6129 || TREE_CODE (constructor_type) == UNION_TYPE)
6130 && DECL_C_BIT_FIELD (field)
6131 && TREE_CODE (value) != INTEGER_CST))
6132 constructor_simple = 0;
6133
6134 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6135 {
6136 if (require_constant_value)
6137 {
6138 error_init ("initializer element is not constant");
6139 value = error_mark_node;
6140 }
6141 else if (require_constant_elements)
6142 pedwarn ("initializer element is not computable at load time");
6143 }
6144
6145 /* If this field is empty (and not at the end of structure),
6146 don't do anything other than checking the initializer. */
6147 if (field
6148 && (TREE_TYPE (field) == error_mark_node
6149 || (COMPLETE_TYPE_P (TREE_TYPE (field))
6150 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6151 && (TREE_CODE (constructor_type) == ARRAY_TYPE
6152 || TREE_CHAIN (field)))))
6153 return;
6154
6155 value = digest_init (type, value, strict_string, require_constant_value);
6156 if (value == error_mark_node)
6157 {
6158 constructor_erroneous = 1;
6159 return;
6160 }
6161
6162 /* If this element doesn't come next in sequence,
6163 put it on constructor_pending_elts. */
6164 if (TREE_CODE (constructor_type) == ARRAY_TYPE
6165 && (!constructor_incremental
6166 || !tree_int_cst_equal (field, constructor_unfilled_index)))
6167 {
6168 if (constructor_incremental
6169 && tree_int_cst_lt (field, constructor_unfilled_index))
6170 set_nonincremental_init ();
6171
6172 add_pending_init (field, value);
6173 return;
6174 }
6175 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6176 && (!constructor_incremental
6177 || field != constructor_unfilled_fields))
6178 {
6179 /* We do this for records but not for unions. In a union,
6180 no matter which field is specified, it can be initialized
6181 right away since it starts at the beginning of the union. */
6182 if (constructor_incremental)
6183 {
6184 if (!constructor_unfilled_fields)
6185 set_nonincremental_init ();
6186 else
6187 {
6188 tree bitpos, unfillpos;
6189
6190 bitpos = bit_position (field);
6191 unfillpos = bit_position (constructor_unfilled_fields);
6192
6193 if (tree_int_cst_lt (bitpos, unfillpos))
6194 set_nonincremental_init ();
6195 }
6196 }
6197
6198 add_pending_init (field, value);
6199 return;
6200 }
6201 else if (TREE_CODE (constructor_type) == UNION_TYPE
6202 && !VEC_empty (constructor_elt, constructor_elements))
6203 {
6204 if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6205 constructor_elements)->value))
6206 warning_init ("initialized field with side-effects overwritten");
6207 else if (warn_override_init)
6208 warning_init ("initialized field overwritten");
6209
6210 /* We can have just one union field set. */
6211 constructor_elements = 0;
6212 }
6213
6214 /* Otherwise, output this element either to
6215 constructor_elements or to the assembler file. */
6216
6217 celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6218 celt->index = field;
6219 celt->value = value;
6220
6221 /* Advance the variable that indicates sequential elements output. */
6222 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6223 constructor_unfilled_index
6224 = size_binop (PLUS_EXPR, constructor_unfilled_index,
6225 bitsize_one_node);
6226 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6227 {
6228 constructor_unfilled_fields
6229 = TREE_CHAIN (constructor_unfilled_fields);
6230
6231 /* Skip any nameless bit fields. */
6232 while (constructor_unfilled_fields != 0
6233 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6234 && DECL_NAME (constructor_unfilled_fields) == 0)
6235 constructor_unfilled_fields =
6236 TREE_CHAIN (constructor_unfilled_fields);
6237 }
6238 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6239 constructor_unfilled_fields = 0;
6240
6241 /* Now output any pending elements which have become next. */
6242 if (pending)
6243 output_pending_init_elements (0);
6244 }
6245
6246 /* Output any pending elements which have become next.
6247 As we output elements, constructor_unfilled_{fields,index}
6248 advances, which may cause other elements to become next;
6249 if so, they too are output.
6250
6251 If ALL is 0, we return when there are
6252 no more pending elements to output now.
6253
6254 If ALL is 1, we output space as necessary so that
6255 we can output all the pending elements. */
6256
6257 static void
6258 output_pending_init_elements (int all)
6259 {
6260 struct init_node *elt = constructor_pending_elts;
6261 tree next;
6262
6263 retry:
6264
6265 /* Look through the whole pending tree.
6266 If we find an element that should be output now,
6267 output it. Otherwise, set NEXT to the element
6268 that comes first among those still pending. */
6269
6270 next = 0;
6271 while (elt)
6272 {
6273 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6274 {
6275 if (tree_int_cst_equal (elt->purpose,
6276 constructor_unfilled_index))
6277 output_init_element (elt->value, true,
6278 TREE_TYPE (constructor_type),
6279 constructor_unfilled_index, 0);
6280 else if (tree_int_cst_lt (constructor_unfilled_index,
6281 elt->purpose))
6282 {
6283 /* Advance to the next smaller node. */
6284 if (elt->left)
6285 elt = elt->left;
6286 else
6287 {
6288 /* We have reached the smallest node bigger than the
6289 current unfilled index. Fill the space first. */
6290 next = elt->purpose;
6291 break;
6292 }
6293 }
6294 else
6295 {
6296 /* Advance to the next bigger node. */
6297 if (elt->right)
6298 elt = elt->right;
6299 else
6300 {
6301 /* We have reached the biggest node in a subtree. Find
6302 the parent of it, which is the next bigger node. */
6303 while (elt->parent && elt->parent->right == elt)
6304 elt = elt->parent;
6305 elt = elt->parent;
6306 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6307 elt->purpose))
6308 {
6309 next = elt->purpose;
6310 break;
6311 }
6312 }
6313 }
6314 }
6315 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6316 || TREE_CODE (constructor_type) == UNION_TYPE)
6317 {
6318 tree ctor_unfilled_bitpos, elt_bitpos;
6319
6320 /* If the current record is complete we are done. */
6321 if (constructor_unfilled_fields == 0)
6322 break;
6323
6324 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6325 elt_bitpos = bit_position (elt->purpose);
6326 /* We can't compare fields here because there might be empty
6327 fields in between. */
6328 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6329 {
6330 constructor_unfilled_fields = elt->purpose;
6331 output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6332 elt->purpose, 0);
6333 }
6334 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6335 {
6336 /* Advance to the next smaller node. */
6337 if (elt->left)
6338 elt = elt->left;
6339 else
6340 {
6341 /* We have reached the smallest node bigger than the
6342 current unfilled field. Fill the space first. */
6343 next = elt->purpose;
6344 break;
6345 }
6346 }
6347 else
6348 {
6349 /* Advance to the next bigger node. */
6350 if (elt->right)
6351 elt = elt->right;
6352 else
6353 {
6354 /* We have reached the biggest node in a subtree. Find
6355 the parent of it, which is the next bigger node. */
6356 while (elt->parent && elt->parent->right == elt)
6357 elt = elt->parent;
6358 elt = elt->parent;
6359 if (elt
6360 && (tree_int_cst_lt (ctor_unfilled_bitpos,
6361 bit_position (elt->purpose))))
6362 {
6363 next = elt->purpose;
6364 break;
6365 }
6366 }
6367 }
6368 }
6369 }
6370
6371 /* Ordinarily return, but not if we want to output all
6372 and there are elements left. */
6373 if (!(all && next != 0))
6374 return;
6375
6376 /* If it's not incremental, just skip over the gap, so that after
6377 jumping to retry we will output the next successive element. */
6378 if (TREE_CODE (constructor_type) == RECORD_TYPE
6379 || TREE_CODE (constructor_type) == UNION_TYPE)
6380 constructor_unfilled_fields = next;
6381 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6382 constructor_unfilled_index = next;
6383
6384 /* ELT now points to the node in the pending tree with the next
6385 initializer to output. */
6386 goto retry;
6387 }
6388 \f
6389 /* Add one non-braced element to the current constructor level.
6390 This adjusts the current position within the constructor's type.
6391 This may also start or terminate implicit levels
6392 to handle a partly-braced initializer.
6393
6394 Once this has found the correct level for the new element,
6395 it calls output_init_element. */
6396
6397 void
6398 process_init_element (struct c_expr value)
6399 {
6400 tree orig_value = value.value;
6401 int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6402 bool strict_string = value.original_code == STRING_CST;
6403
6404 designator_depth = 0;
6405 designator_erroneous = 0;
6406
6407 /* Handle superfluous braces around string cst as in
6408 char x[] = {"foo"}; */
6409 if (string_flag
6410 && constructor_type
6411 && TREE_CODE (constructor_type) == ARRAY_TYPE
6412 && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6413 && integer_zerop (constructor_unfilled_index))
6414 {
6415 if (constructor_stack->replacement_value.value)
6416 error_init ("excess elements in char array initializer");
6417 constructor_stack->replacement_value = value;
6418 return;
6419 }
6420
6421 if (constructor_stack->replacement_value.value != 0)
6422 {
6423 error_init ("excess elements in struct initializer");
6424 return;
6425 }
6426
6427 /* Ignore elements of a brace group if it is entirely superfluous
6428 and has already been diagnosed. */
6429 if (constructor_type == 0)
6430 return;
6431
6432 /* If we've exhausted any levels that didn't have braces,
6433 pop them now. */
6434 while (constructor_stack->implicit)
6435 {
6436 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6437 || TREE_CODE (constructor_type) == UNION_TYPE)
6438 && constructor_fields == 0)
6439 process_init_element (pop_init_level (1));
6440 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6441 && (constructor_max_index == 0
6442 || tree_int_cst_lt (constructor_max_index,
6443 constructor_index)))
6444 process_init_element (pop_init_level (1));
6445 else
6446 break;
6447 }
6448
6449 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
6450 if (constructor_range_stack)
6451 {
6452 /* If value is a compound literal and we'll be just using its
6453 content, don't put it into a SAVE_EXPR. */
6454 if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6455 || !require_constant_value
6456 || flag_isoc99)
6457 value.value = save_expr (value.value);
6458 }
6459
6460 while (1)
6461 {
6462 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6463 {
6464 tree fieldtype;
6465 enum tree_code fieldcode;
6466
6467 if (constructor_fields == 0)
6468 {
6469 pedwarn_init ("excess elements in struct initializer");
6470 break;
6471 }
6472
6473 fieldtype = TREE_TYPE (constructor_fields);
6474 if (fieldtype != error_mark_node)
6475 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6476 fieldcode = TREE_CODE (fieldtype);
6477
6478 /* Error for non-static initialization of a flexible array member. */
6479 if (fieldcode == ARRAY_TYPE
6480 && !require_constant_value
6481 && TYPE_SIZE (fieldtype) == NULL_TREE
6482 && TREE_CHAIN (constructor_fields) == NULL_TREE)
6483 {
6484 error_init ("non-static initialization of a flexible array member");
6485 break;
6486 }
6487
6488 /* Accept a string constant to initialize a subarray. */
6489 if (value.value != 0
6490 && fieldcode == ARRAY_TYPE
6491 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6492 && string_flag)
6493 value.value = orig_value;
6494 /* Otherwise, if we have come to a subaggregate,
6495 and we don't have an element of its type, push into it. */
6496 else if (value.value != 0
6497 && value.value != error_mark_node
6498 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6499 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6500 || fieldcode == UNION_TYPE))
6501 {
6502 push_init_level (1);
6503 continue;
6504 }
6505
6506 if (value.value)
6507 {
6508 push_member_name (constructor_fields);
6509 output_init_element (value.value, strict_string,
6510 fieldtype, constructor_fields, 1);
6511 RESTORE_SPELLING_DEPTH (constructor_depth);
6512 }
6513 else
6514 /* Do the bookkeeping for an element that was
6515 directly output as a constructor. */
6516 {
6517 /* For a record, keep track of end position of last field. */
6518 if (DECL_SIZE (constructor_fields))
6519 constructor_bit_index
6520 = size_binop (PLUS_EXPR,
6521 bit_position (constructor_fields),
6522 DECL_SIZE (constructor_fields));
6523
6524 /* If the current field was the first one not yet written out,
6525 it isn't now, so update. */
6526 if (constructor_unfilled_fields == constructor_fields)
6527 {
6528 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6529 /* Skip any nameless bit fields. */
6530 while (constructor_unfilled_fields != 0
6531 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6532 && DECL_NAME (constructor_unfilled_fields) == 0)
6533 constructor_unfilled_fields =
6534 TREE_CHAIN (constructor_unfilled_fields);
6535 }
6536 }
6537
6538 constructor_fields = TREE_CHAIN (constructor_fields);
6539 /* Skip any nameless bit fields at the beginning. */
6540 while (constructor_fields != 0
6541 && DECL_C_BIT_FIELD (constructor_fields)
6542 && DECL_NAME (constructor_fields) == 0)
6543 constructor_fields = TREE_CHAIN (constructor_fields);
6544 }
6545 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6546 {
6547 tree fieldtype;
6548 enum tree_code fieldcode;
6549
6550 if (constructor_fields == 0)
6551 {
6552 pedwarn_init ("excess elements in union initializer");
6553 break;
6554 }
6555
6556 fieldtype = TREE_TYPE (constructor_fields);
6557 if (fieldtype != error_mark_node)
6558 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6559 fieldcode = TREE_CODE (fieldtype);
6560
6561 /* Warn that traditional C rejects initialization of unions.
6562 We skip the warning if the value is zero. This is done
6563 under the assumption that the zero initializer in user
6564 code appears conditioned on e.g. __STDC__ to avoid
6565 "missing initializer" warnings and relies on default
6566 initialization to zero in the traditional C case.
6567 We also skip the warning if the initializer is designated,
6568 again on the assumption that this must be conditional on
6569 __STDC__ anyway (and we've already complained about the
6570 member-designator already). */
6571 if (!in_system_header && !constructor_designated
6572 && !(value.value && (integer_zerop (value.value)
6573 || real_zerop (value.value))))
6574 warning (OPT_Wtraditional, "traditional C rejects initialization "
6575 "of unions");
6576
6577 /* Accept a string constant to initialize a subarray. */
6578 if (value.value != 0
6579 && fieldcode == ARRAY_TYPE
6580 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6581 && string_flag)
6582 value.value = orig_value;
6583 /* Otherwise, if we have come to a subaggregate,
6584 and we don't have an element of its type, push into it. */
6585 else if (value.value != 0
6586 && value.value != error_mark_node
6587 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6588 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6589 || fieldcode == UNION_TYPE))
6590 {
6591 push_init_level (1);
6592 continue;
6593 }
6594
6595 if (value.value)
6596 {
6597 push_member_name (constructor_fields);
6598 output_init_element (value.value, strict_string,
6599 fieldtype, constructor_fields, 1);
6600 RESTORE_SPELLING_DEPTH (constructor_depth);
6601 }
6602 else
6603 /* Do the bookkeeping for an element that was
6604 directly output as a constructor. */
6605 {
6606 constructor_bit_index = DECL_SIZE (constructor_fields);
6607 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6608 }
6609
6610 constructor_fields = 0;
6611 }
6612 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6613 {
6614 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6615 enum tree_code eltcode = TREE_CODE (elttype);
6616
6617 /* Accept a string constant to initialize a subarray. */
6618 if (value.value != 0
6619 && eltcode == ARRAY_TYPE
6620 && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6621 && string_flag)
6622 value.value = orig_value;
6623 /* Otherwise, if we have come to a subaggregate,
6624 and we don't have an element of its type, push into it. */
6625 else if (value.value != 0
6626 && value.value != error_mark_node
6627 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6628 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6629 || eltcode == UNION_TYPE))
6630 {
6631 push_init_level (1);
6632 continue;
6633 }
6634
6635 if (constructor_max_index != 0
6636 && (tree_int_cst_lt (constructor_max_index, constructor_index)
6637 || integer_all_onesp (constructor_max_index)))
6638 {
6639 pedwarn_init ("excess elements in array initializer");
6640 break;
6641 }
6642
6643 /* Now output the actual element. */
6644 if (value.value)
6645 {
6646 push_array_bounds (tree_low_cst (constructor_index, 1));
6647 output_init_element (value.value, strict_string,
6648 elttype, constructor_index, 1);
6649 RESTORE_SPELLING_DEPTH (constructor_depth);
6650 }
6651
6652 constructor_index
6653 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6654
6655 if (!value.value)
6656 /* If we are doing the bookkeeping for an element that was
6657 directly output as a constructor, we must update
6658 constructor_unfilled_index. */
6659 constructor_unfilled_index = constructor_index;
6660 }
6661 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6662 {
6663 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6664
6665 /* Do a basic check of initializer size. Note that vectors
6666 always have a fixed size derived from their type. */
6667 if (tree_int_cst_lt (constructor_max_index, constructor_index))
6668 {
6669 pedwarn_init ("excess elements in vector initializer");
6670 break;
6671 }
6672
6673 /* Now output the actual element. */
6674 if (value.value)
6675 output_init_element (value.value, strict_string,
6676 elttype, constructor_index, 1);
6677
6678 constructor_index
6679 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6680
6681 if (!value.value)
6682 /* If we are doing the bookkeeping for an element that was
6683 directly output as a constructor, we must update
6684 constructor_unfilled_index. */
6685 constructor_unfilled_index = constructor_index;
6686 }
6687
6688 /* Handle the sole element allowed in a braced initializer
6689 for a scalar variable. */
6690 else if (constructor_type != error_mark_node
6691 && constructor_fields == 0)
6692 {
6693 pedwarn_init ("excess elements in scalar initializer");
6694 break;
6695 }
6696 else
6697 {
6698 if (value.value)
6699 output_init_element (value.value, strict_string,
6700 constructor_type, NULL_TREE, 1);
6701 constructor_fields = 0;
6702 }
6703
6704 /* Handle range initializers either at this level or anywhere higher
6705 in the designator stack. */
6706 if (constructor_range_stack)
6707 {
6708 struct constructor_range_stack *p, *range_stack;
6709 int finish = 0;
6710
6711 range_stack = constructor_range_stack;
6712 constructor_range_stack = 0;
6713 while (constructor_stack != range_stack->stack)
6714 {
6715 gcc_assert (constructor_stack->implicit);
6716 process_init_element (pop_init_level (1));
6717 }
6718 for (p = range_stack;
6719 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6720 p = p->prev)
6721 {
6722 gcc_assert (constructor_stack->implicit);
6723 process_init_element (pop_init_level (1));
6724 }
6725
6726 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6727 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6728 finish = 1;
6729
6730 while (1)
6731 {
6732 constructor_index = p->index;
6733 constructor_fields = p->fields;
6734 if (finish && p->range_end && p->index == p->range_start)
6735 {
6736 finish = 0;
6737 p->prev = 0;
6738 }
6739 p = p->next;
6740 if (!p)
6741 break;
6742 push_init_level (2);
6743 p->stack = constructor_stack;
6744 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6745 p->index = p->range_start;
6746 }
6747
6748 if (!finish)
6749 constructor_range_stack = range_stack;
6750 continue;
6751 }
6752
6753 break;
6754 }
6755
6756 constructor_range_stack = 0;
6757 }
6758 \f
6759 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
6760 (guaranteed to be 'volatile' or null) and ARGS (represented using
6761 an ASM_EXPR node). */
6762 tree
6763 build_asm_stmt (tree cv_qualifier, tree args)
6764 {
6765 if (!ASM_VOLATILE_P (args) && cv_qualifier)
6766 ASM_VOLATILE_P (args) = 1;
6767 return add_stmt (args);
6768 }
6769
6770 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6771 some INPUTS, and some CLOBBERS. The latter three may be NULL.
6772 SIMPLE indicates whether there was anything at all after the
6773 string in the asm expression -- asm("blah") and asm("blah" : )
6774 are subtly different. We use a ASM_EXPR node to represent this. */
6775 tree
6776 build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6777 bool simple)
6778 {
6779 tree tail;
6780 tree args;
6781 int i;
6782 const char *constraint;
6783 const char **oconstraints;
6784 bool allows_mem, allows_reg, is_inout;
6785 int ninputs, noutputs;
6786
6787 ninputs = list_length (inputs);
6788 noutputs = list_length (outputs);
6789 oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6790
6791 string = resolve_asm_operand_names (string, outputs, inputs);
6792
6793 /* Remove output conversions that change the type but not the mode. */
6794 for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6795 {
6796 tree output = TREE_VALUE (tail);
6797
6798 /* ??? Really, this should not be here. Users should be using a
6799 proper lvalue, dammit. But there's a long history of using casts
6800 in the output operands. In cases like longlong.h, this becomes a
6801 primitive form of typechecking -- if the cast can be removed, then
6802 the output operand had a type of the proper width; otherwise we'll
6803 get an error. Gross, but ... */
6804 STRIP_NOPS (output);
6805
6806 if (!lvalue_or_else (output, lv_asm))
6807 output = error_mark_node;
6808
6809 if (output != error_mark_node
6810 && (TREE_READONLY (output)
6811 || TYPE_READONLY (TREE_TYPE (output))
6812 || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6813 || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6814 && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6815 readonly_error (output, lv_asm);
6816
6817 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6818 oconstraints[i] = constraint;
6819
6820 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6821 &allows_mem, &allows_reg, &is_inout))
6822 {
6823 /* If the operand is going to end up in memory,
6824 mark it addressable. */
6825 if (!allows_reg && !c_mark_addressable (output))
6826 output = error_mark_node;
6827 }
6828 else
6829 output = error_mark_node;
6830
6831 TREE_VALUE (tail) = output;
6832 }
6833
6834 for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6835 {
6836 tree input;
6837
6838 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6839 input = TREE_VALUE (tail);
6840
6841 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6842 oconstraints, &allows_mem, &allows_reg))
6843 {
6844 /* If the operand is going to end up in memory,
6845 mark it addressable. */
6846 if (!allows_reg && allows_mem)
6847 {
6848 /* Strip the nops as we allow this case. FIXME, this really
6849 should be rejected or made deprecated. */
6850 STRIP_NOPS (input);
6851 if (!c_mark_addressable (input))
6852 input = error_mark_node;
6853 }
6854 }
6855 else
6856 input = error_mark_node;
6857
6858 TREE_VALUE (tail) = input;
6859 }
6860
6861 args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6862
6863 /* asm statements without outputs, including simple ones, are treated
6864 as volatile. */
6865 ASM_INPUT_P (args) = simple;
6866 ASM_VOLATILE_P (args) = (noutputs == 0);
6867
6868 return args;
6869 }
6870 \f
6871 /* Generate a goto statement to LABEL. */
6872
6873 tree
6874 c_finish_goto_label (tree label)
6875 {
6876 tree decl = lookup_label (label);
6877 if (!decl)
6878 return NULL_TREE;
6879
6880 if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6881 {
6882 error ("jump into statement expression");
6883 return NULL_TREE;
6884 }
6885
6886 if (C_DECL_UNJUMPABLE_VM (decl))
6887 {
6888 error ("jump into scope of identifier with variably modified type");
6889 return NULL_TREE;
6890 }
6891
6892 if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6893 {
6894 /* No jump from outside this statement expression context, so
6895 record that there is a jump from within this context. */
6896 struct c_label_list *nlist;
6897 nlist = XOBNEW (&parser_obstack, struct c_label_list);
6898 nlist->next = label_context_stack_se->labels_used;
6899 nlist->label = decl;
6900 label_context_stack_se->labels_used = nlist;
6901 }
6902
6903 if (!C_DECL_UNDEFINABLE_VM (decl))
6904 {
6905 /* No jump from outside this context context of identifiers with
6906 variably modified type, so record that there is a jump from
6907 within this context. */
6908 struct c_label_list *nlist;
6909 nlist = XOBNEW (&parser_obstack, struct c_label_list);
6910 nlist->next = label_context_stack_vm->labels_used;
6911 nlist->label = decl;
6912 label_context_stack_vm->labels_used = nlist;
6913 }
6914
6915 TREE_USED (decl) = 1;
6916 return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6917 }
6918
6919 /* Generate a computed goto statement to EXPR. */
6920
6921 tree
6922 c_finish_goto_ptr (tree expr)
6923 {
6924 if (pedantic)
6925 pedwarn ("ISO C forbids %<goto *expr;%>");
6926 expr = convert (ptr_type_node, expr);
6927 return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
6928 }
6929
6930 /* Generate a C `return' statement. RETVAL is the expression for what
6931 to return, or a null pointer for `return;' with no value. */
6932
6933 tree
6934 c_finish_return (tree retval)
6935 {
6936 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
6937 bool no_warning = false;
6938
6939 if (TREE_THIS_VOLATILE (current_function_decl))
6940 warning (0, "function declared %<noreturn%> has a %<return%> statement");
6941
6942 if (!retval)
6943 {
6944 current_function_returns_null = 1;
6945 if ((warn_return_type || flag_isoc99)
6946 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6947 {
6948 pedwarn_c99 ("%<return%> with no value, in "
6949 "function returning non-void");
6950 no_warning = true;
6951 }
6952 }
6953 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6954 {
6955 current_function_returns_null = 1;
6956 if (TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6957 pedwarn ("%<return%> with a value, in function returning void");
6958 else if (pedantic)
6959 pedwarn ("ISO C forbids %<return%> with expression, in function returning void");
6960 }
6961 else
6962 {
6963 tree t = convert_for_assignment (valtype, retval, ic_return,
6964 NULL_TREE, NULL_TREE, 0);
6965 tree res = DECL_RESULT (current_function_decl);
6966 tree inner;
6967
6968 current_function_returns_value = 1;
6969 if (t == error_mark_node)
6970 return NULL_TREE;
6971
6972 inner = t = convert (TREE_TYPE (res), t);
6973
6974 /* Strip any conversions, additions, and subtractions, and see if
6975 we are returning the address of a local variable. Warn if so. */
6976 while (1)
6977 {
6978 switch (TREE_CODE (inner))
6979 {
6980 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
6981 case PLUS_EXPR:
6982 inner = TREE_OPERAND (inner, 0);
6983 continue;
6984
6985 case MINUS_EXPR:
6986 /* If the second operand of the MINUS_EXPR has a pointer
6987 type (or is converted from it), this may be valid, so
6988 don't give a warning. */
6989 {
6990 tree op1 = TREE_OPERAND (inner, 1);
6991
6992 while (!POINTER_TYPE_P (TREE_TYPE (op1))
6993 && (TREE_CODE (op1) == NOP_EXPR
6994 || TREE_CODE (op1) == NON_LVALUE_EXPR
6995 || TREE_CODE (op1) == CONVERT_EXPR))
6996 op1 = TREE_OPERAND (op1, 0);
6997
6998 if (POINTER_TYPE_P (TREE_TYPE (op1)))
6999 break;
7000
7001 inner = TREE_OPERAND (inner, 0);
7002 continue;
7003 }
7004
7005 case ADDR_EXPR:
7006 inner = TREE_OPERAND (inner, 0);
7007
7008 while (REFERENCE_CLASS_P (inner)
7009 && TREE_CODE (inner) != INDIRECT_REF)
7010 inner = TREE_OPERAND (inner, 0);
7011
7012 if (DECL_P (inner)
7013 && !DECL_EXTERNAL (inner)
7014 && !TREE_STATIC (inner)
7015 && DECL_CONTEXT (inner) == current_function_decl)
7016 warning (0, "function returns address of local variable");
7017 break;
7018
7019 default:
7020 break;
7021 }
7022
7023 break;
7024 }
7025
7026 retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7027 }
7028
7029 ret_stmt = build_stmt (RETURN_EXPR, retval);
7030 TREE_NO_WARNING (ret_stmt) |= no_warning;
7031 return add_stmt (ret_stmt);
7032 }
7033 \f
7034 struct c_switch {
7035 /* The SWITCH_EXPR being built. */
7036 tree switch_expr;
7037
7038 /* The original type of the testing expression, i.e. before the
7039 default conversion is applied. */
7040 tree orig_type;
7041
7042 /* A splay-tree mapping the low element of a case range to the high
7043 element, or NULL_TREE if there is no high element. Used to
7044 determine whether or not a new case label duplicates an old case
7045 label. We need a tree, rather than simply a hash table, because
7046 of the GNU case range extension. */
7047 splay_tree cases;
7048
7049 /* Number of nested statement expressions within this switch
7050 statement; if nonzero, case and default labels may not
7051 appear. */
7052 unsigned int blocked_stmt_expr;
7053
7054 /* Scope of outermost declarations of identifiers with variably
7055 modified type within this switch statement; if nonzero, case and
7056 default labels may not appear. */
7057 unsigned int blocked_vm;
7058
7059 /* The next node on the stack. */
7060 struct c_switch *next;
7061 };
7062
7063 /* A stack of the currently active switch statements. The innermost
7064 switch statement is on the top of the stack. There is no need to
7065 mark the stack for garbage collection because it is only active
7066 during the processing of the body of a function, and we never
7067 collect at that point. */
7068
7069 struct c_switch *c_switch_stack;
7070
7071 /* Start a C switch statement, testing expression EXP. Return the new
7072 SWITCH_EXPR. */
7073
7074 tree
7075 c_start_case (tree exp)
7076 {
7077 tree orig_type = error_mark_node;
7078 struct c_switch *cs;
7079
7080 if (exp != error_mark_node)
7081 {
7082 orig_type = TREE_TYPE (exp);
7083
7084 if (!INTEGRAL_TYPE_P (orig_type))
7085 {
7086 if (orig_type != error_mark_node)
7087 {
7088 error ("switch quantity not an integer");
7089 orig_type = error_mark_node;
7090 }
7091 exp = integer_zero_node;
7092 }
7093 else
7094 {
7095 tree type = TYPE_MAIN_VARIANT (orig_type);
7096
7097 if (!in_system_header
7098 && (type == long_integer_type_node
7099 || type == long_unsigned_type_node))
7100 warning (OPT_Wtraditional, "%<long%> switch expression not "
7101 "converted to %<int%> in ISO C");
7102
7103 exp = default_conversion (exp);
7104 }
7105 }
7106
7107 /* Add this new SWITCH_EXPR to the stack. */
7108 cs = XNEW (struct c_switch);
7109 cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7110 cs->orig_type = orig_type;
7111 cs->cases = splay_tree_new (case_compare, NULL, NULL);
7112 cs->blocked_stmt_expr = 0;
7113 cs->blocked_vm = 0;
7114 cs->next = c_switch_stack;
7115 c_switch_stack = cs;
7116
7117 return add_stmt (cs->switch_expr);
7118 }
7119
7120 /* Process a case label. */
7121
7122 tree
7123 do_case (tree low_value, tree high_value)
7124 {
7125 tree label = NULL_TREE;
7126
7127 if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7128 && !c_switch_stack->blocked_vm)
7129 {
7130 label = c_add_case_label (c_switch_stack->cases,
7131 SWITCH_COND (c_switch_stack->switch_expr),
7132 c_switch_stack->orig_type,
7133 low_value, high_value);
7134 if (label == error_mark_node)
7135 label = NULL_TREE;
7136 }
7137 else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7138 {
7139 if (low_value)
7140 error ("case label in statement expression not containing "
7141 "enclosing switch statement");
7142 else
7143 error ("%<default%> label in statement expression not containing "
7144 "enclosing switch statement");
7145 }
7146 else if (c_switch_stack && c_switch_stack->blocked_vm)
7147 {
7148 if (low_value)
7149 error ("case label in scope of identifier with variably modified "
7150 "type not containing enclosing switch statement");
7151 else
7152 error ("%<default%> label in scope of identifier with variably "
7153 "modified type not containing enclosing switch statement");
7154 }
7155 else if (low_value)
7156 error ("case label not within a switch statement");
7157 else
7158 error ("%<default%> label not within a switch statement");
7159
7160 return label;
7161 }
7162
7163 /* Finish the switch statement. */
7164
7165 void
7166 c_finish_case (tree body)
7167 {
7168 struct c_switch *cs = c_switch_stack;
7169 location_t switch_location;
7170
7171 SWITCH_BODY (cs->switch_expr) = body;
7172
7173 /* We must not be within a statement expression nested in the switch
7174 at this point; we might, however, be within the scope of an
7175 identifier with variably modified type nested in the switch. */
7176 gcc_assert (!cs->blocked_stmt_expr);
7177
7178 /* Emit warnings as needed. */
7179 if (EXPR_HAS_LOCATION (cs->switch_expr))
7180 switch_location = EXPR_LOCATION (cs->switch_expr);
7181 else
7182 switch_location = input_location;
7183 c_do_switch_warnings (cs->cases, switch_location,
7184 TREE_TYPE (cs->switch_expr),
7185 SWITCH_COND (cs->switch_expr));
7186
7187 /* Pop the stack. */
7188 c_switch_stack = cs->next;
7189 splay_tree_delete (cs->cases);
7190 XDELETE (cs);
7191 }
7192 \f
7193 /* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
7194 THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7195 may be null. NESTED_IF is true if THEN_BLOCK contains another IF
7196 statement, and was not surrounded with parenthesis. */
7197
7198 void
7199 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7200 tree else_block, bool nested_if)
7201 {
7202 tree stmt;
7203
7204 /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
7205 if (warn_parentheses && nested_if && else_block == NULL)
7206 {
7207 tree inner_if = then_block;
7208
7209 /* We know from the grammar productions that there is an IF nested
7210 within THEN_BLOCK. Due to labels and c99 conditional declarations,
7211 it might not be exactly THEN_BLOCK, but should be the last
7212 non-container statement within. */
7213 while (1)
7214 switch (TREE_CODE (inner_if))
7215 {
7216 case COND_EXPR:
7217 goto found;
7218 case BIND_EXPR:
7219 inner_if = BIND_EXPR_BODY (inner_if);
7220 break;
7221 case STATEMENT_LIST:
7222 inner_if = expr_last (then_block);
7223 break;
7224 case TRY_FINALLY_EXPR:
7225 case TRY_CATCH_EXPR:
7226 inner_if = TREE_OPERAND (inner_if, 0);
7227 break;
7228 default:
7229 gcc_unreachable ();
7230 }
7231 found:
7232
7233 if (COND_EXPR_ELSE (inner_if))
7234 warning (OPT_Wparentheses,
7235 "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7236 &if_locus);
7237 }
7238
7239 empty_if_body_warning (then_block, else_block);
7240
7241 stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7242 SET_EXPR_LOCATION (stmt, if_locus);
7243 add_stmt (stmt);
7244 }
7245
7246 /* Emit a general-purpose loop construct. START_LOCUS is the location of
7247 the beginning of the loop. COND is the loop condition. COND_IS_FIRST
7248 is false for DO loops. INCR is the FOR increment expression. BODY is
7249 the statement controlled by the loop. BLAB is the break label. CLAB is
7250 the continue label. Everything is allowed to be NULL. */
7251
7252 void
7253 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7254 tree blab, tree clab, bool cond_is_first)
7255 {
7256 tree entry = NULL, exit = NULL, t;
7257
7258 /* If the condition is zero don't generate a loop construct. */
7259 if (cond && integer_zerop (cond))
7260 {
7261 if (cond_is_first)
7262 {
7263 t = build_and_jump (&blab);
7264 SET_EXPR_LOCATION (t, start_locus);
7265 add_stmt (t);
7266 }
7267 }
7268 else
7269 {
7270 tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7271
7272 /* If we have an exit condition, then we build an IF with gotos either
7273 out of the loop, or to the top of it. If there's no exit condition,
7274 then we just build a jump back to the top. */
7275 exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7276
7277 if (cond && !integer_nonzerop (cond))
7278 {
7279 /* Canonicalize the loop condition to the end. This means
7280 generating a branch to the loop condition. Reuse the
7281 continue label, if possible. */
7282 if (cond_is_first)
7283 {
7284 if (incr || !clab)
7285 {
7286 entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7287 t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7288 }
7289 else
7290 t = build1 (GOTO_EXPR, void_type_node, clab);
7291 SET_EXPR_LOCATION (t, start_locus);
7292 add_stmt (t);
7293 }
7294
7295 t = build_and_jump (&blab);
7296 exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7297 if (cond_is_first)
7298 SET_EXPR_LOCATION (exit, start_locus);
7299 else
7300 SET_EXPR_LOCATION (exit, input_location);
7301 }
7302
7303 add_stmt (top);
7304 }
7305
7306 if (body)
7307 add_stmt (body);
7308 if (clab)
7309 add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7310 if (incr)
7311 add_stmt (incr);
7312 if (entry)
7313 add_stmt (entry);
7314 if (exit)
7315 add_stmt (exit);
7316 if (blab)
7317 add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7318 }
7319
7320 tree
7321 c_finish_bc_stmt (tree *label_p, bool is_break)
7322 {
7323 bool skip;
7324 tree label = *label_p;
7325
7326 /* In switch statements break is sometimes stylistically used after
7327 a return statement. This can lead to spurious warnings about
7328 control reaching the end of a non-void function when it is
7329 inlined. Note that we are calling block_may_fallthru with
7330 language specific tree nodes; this works because
7331 block_may_fallthru returns true when given something it does not
7332 understand. */
7333 skip = !block_may_fallthru (cur_stmt_list);
7334
7335 if (!label)
7336 {
7337 if (!skip)
7338 *label_p = label = create_artificial_label ();
7339 }
7340 else if (TREE_CODE (label) == LABEL_DECL)
7341 ;
7342 else switch (TREE_INT_CST_LOW (label))
7343 {
7344 case 0:
7345 if (is_break)
7346 error ("break statement not within loop or switch");
7347 else
7348 error ("continue statement not within a loop");
7349 return NULL_TREE;
7350
7351 case 1:
7352 gcc_assert (is_break);
7353 error ("break statement used with OpenMP for loop");
7354 return NULL_TREE;
7355
7356 default:
7357 gcc_unreachable ();
7358 }
7359
7360 if (skip)
7361 return NULL_TREE;
7362
7363 return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7364 }
7365
7366 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
7367
7368 static void
7369 emit_side_effect_warnings (tree expr)
7370 {
7371 if (expr == error_mark_node)
7372 ;
7373 else if (!TREE_SIDE_EFFECTS (expr))
7374 {
7375 if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7376 warning (OPT_Wunused_value, "%Hstatement with no effect",
7377 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7378 }
7379 else
7380 warn_if_unused_value (expr, input_location);
7381 }
7382
7383 /* Process an expression as if it were a complete statement. Emit
7384 diagnostics, but do not call ADD_STMT. */
7385
7386 tree
7387 c_process_expr_stmt (tree expr)
7388 {
7389 if (!expr)
7390 return NULL_TREE;
7391
7392 if (warn_sequence_point)
7393 verify_sequence_points (expr);
7394
7395 if (TREE_TYPE (expr) != error_mark_node
7396 && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7397 && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7398 error ("expression statement has incomplete type");
7399
7400 /* If we're not processing a statement expression, warn about unused values.
7401 Warnings for statement expressions will be emitted later, once we figure
7402 out which is the result. */
7403 if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7404 && warn_unused_value)
7405 emit_side_effect_warnings (expr);
7406
7407 /* If the expression is not of a type to which we cannot assign a line
7408 number, wrap the thing in a no-op NOP_EXPR. */
7409 if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7410 expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7411
7412 if (CAN_HAVE_LOCATION_P (expr))
7413 SET_EXPR_LOCATION (expr, input_location);
7414
7415 return expr;
7416 }
7417
7418 /* Emit an expression as a statement. */
7419
7420 tree
7421 c_finish_expr_stmt (tree expr)
7422 {
7423 if (expr)
7424 return add_stmt (c_process_expr_stmt (expr));
7425 else
7426 return NULL;
7427 }
7428
7429 /* Do the opposite and emit a statement as an expression. To begin,
7430 create a new binding level and return it. */
7431
7432 tree
7433 c_begin_stmt_expr (void)
7434 {
7435 tree ret;
7436 struct c_label_context_se *nstack;
7437 struct c_label_list *glist;
7438
7439 /* We must force a BLOCK for this level so that, if it is not expanded
7440 later, there is a way to turn off the entire subtree of blocks that
7441 are contained in it. */
7442 keep_next_level ();
7443 ret = c_begin_compound_stmt (true);
7444 if (c_switch_stack)
7445 {
7446 c_switch_stack->blocked_stmt_expr++;
7447 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7448 }
7449 for (glist = label_context_stack_se->labels_used;
7450 glist != NULL;
7451 glist = glist->next)
7452 {
7453 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7454 }
7455 nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7456 nstack->labels_def = NULL;
7457 nstack->labels_used = NULL;
7458 nstack->next = label_context_stack_se;
7459 label_context_stack_se = nstack;
7460
7461 /* Mark the current statement list as belonging to a statement list. */
7462 STATEMENT_LIST_STMT_EXPR (ret) = 1;
7463
7464 return ret;
7465 }
7466
7467 tree
7468 c_finish_stmt_expr (tree body)
7469 {
7470 tree last, type, tmp, val;
7471 tree *last_p;
7472 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7473
7474 body = c_end_compound_stmt (body, true);
7475 if (c_switch_stack)
7476 {
7477 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7478 c_switch_stack->blocked_stmt_expr--;
7479 }
7480 /* It is no longer possible to jump to labels defined within this
7481 statement expression. */
7482 for (dlist = label_context_stack_se->labels_def;
7483 dlist != NULL;
7484 dlist = dlist->next)
7485 {
7486 C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7487 }
7488 /* It is again possible to define labels with a goto just outside
7489 this statement expression. */
7490 for (glist = label_context_stack_se->next->labels_used;
7491 glist != NULL;
7492 glist = glist->next)
7493 {
7494 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7495 glist_prev = glist;
7496 }
7497 if (glist_prev != NULL)
7498 glist_prev->next = label_context_stack_se->labels_used;
7499 else
7500 label_context_stack_se->next->labels_used
7501 = label_context_stack_se->labels_used;
7502 label_context_stack_se = label_context_stack_se->next;
7503
7504 /* Locate the last statement in BODY. See c_end_compound_stmt
7505 about always returning a BIND_EXPR. */
7506 last_p = &BIND_EXPR_BODY (body);
7507 last = BIND_EXPR_BODY (body);
7508
7509 continue_searching:
7510 if (TREE_CODE (last) == STATEMENT_LIST)
7511 {
7512 tree_stmt_iterator i;
7513
7514 /* This can happen with degenerate cases like ({ }). No value. */
7515 if (!TREE_SIDE_EFFECTS (last))
7516 return body;
7517
7518 /* If we're supposed to generate side effects warnings, process
7519 all of the statements except the last. */
7520 if (warn_unused_value)
7521 {
7522 for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7523 emit_side_effect_warnings (tsi_stmt (i));
7524 }
7525 else
7526 i = tsi_last (last);
7527 last_p = tsi_stmt_ptr (i);
7528 last = *last_p;
7529 }
7530
7531 /* If the end of the list is exception related, then the list was split
7532 by a call to push_cleanup. Continue searching. */
7533 if (TREE_CODE (last) == TRY_FINALLY_EXPR
7534 || TREE_CODE (last) == TRY_CATCH_EXPR)
7535 {
7536 last_p = &TREE_OPERAND (last, 0);
7537 last = *last_p;
7538 goto continue_searching;
7539 }
7540
7541 /* In the case that the BIND_EXPR is not necessary, return the
7542 expression out from inside it. */
7543 if (last == error_mark_node
7544 || (last == BIND_EXPR_BODY (body)
7545 && BIND_EXPR_VARS (body) == NULL))
7546 {
7547 /* Do not warn if the return value of a statement expression is
7548 unused. */
7549 if (CAN_HAVE_LOCATION_P (last))
7550 TREE_NO_WARNING (last) = 1;
7551 return last;
7552 }
7553
7554 /* Extract the type of said expression. */
7555 type = TREE_TYPE (last);
7556
7557 /* If we're not returning a value at all, then the BIND_EXPR that
7558 we already have is a fine expression to return. */
7559 if (!type || VOID_TYPE_P (type))
7560 return body;
7561
7562 /* Now that we've located the expression containing the value, it seems
7563 silly to make voidify_wrapper_expr repeat the process. Create a
7564 temporary of the appropriate type and stick it in a TARGET_EXPR. */
7565 tmp = create_tmp_var_raw (type, NULL);
7566
7567 /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
7568 tree_expr_nonnegative_p giving up immediately. */
7569 val = last;
7570 if (TREE_CODE (val) == NOP_EXPR
7571 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7572 val = TREE_OPERAND (val, 0);
7573
7574 *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7575 SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7576
7577 return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7578 }
7579
7580 /* Begin the scope of an identifier of variably modified type, scope
7581 number SCOPE. Jumping from outside this scope to inside it is not
7582 permitted. */
7583
7584 void
7585 c_begin_vm_scope (unsigned int scope)
7586 {
7587 struct c_label_context_vm *nstack;
7588 struct c_label_list *glist;
7589
7590 gcc_assert (scope > 0);
7591
7592 /* At file_scope, we don't have to do any processing. */
7593 if (label_context_stack_vm == NULL)
7594 return;
7595
7596 if (c_switch_stack && !c_switch_stack->blocked_vm)
7597 c_switch_stack->blocked_vm = scope;
7598 for (glist = label_context_stack_vm->labels_used;
7599 glist != NULL;
7600 glist = glist->next)
7601 {
7602 C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7603 }
7604 nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7605 nstack->labels_def = NULL;
7606 nstack->labels_used = NULL;
7607 nstack->scope = scope;
7608 nstack->next = label_context_stack_vm;
7609 label_context_stack_vm = nstack;
7610 }
7611
7612 /* End a scope which may contain identifiers of variably modified
7613 type, scope number SCOPE. */
7614
7615 void
7616 c_end_vm_scope (unsigned int scope)
7617 {
7618 if (label_context_stack_vm == NULL)
7619 return;
7620 if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7621 c_switch_stack->blocked_vm = 0;
7622 /* We may have a number of nested scopes of identifiers with
7623 variably modified type, all at this depth. Pop each in turn. */
7624 while (label_context_stack_vm->scope == scope)
7625 {
7626 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7627
7628 /* It is no longer possible to jump to labels defined within this
7629 scope. */
7630 for (dlist = label_context_stack_vm->labels_def;
7631 dlist != NULL;
7632 dlist = dlist->next)
7633 {
7634 C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7635 }
7636 /* It is again possible to define labels with a goto just outside
7637 this scope. */
7638 for (glist = label_context_stack_vm->next->labels_used;
7639 glist != NULL;
7640 glist = glist->next)
7641 {
7642 C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7643 glist_prev = glist;
7644 }
7645 if (glist_prev != NULL)
7646 glist_prev->next = label_context_stack_vm->labels_used;
7647 else
7648 label_context_stack_vm->next->labels_used
7649 = label_context_stack_vm->labels_used;
7650 label_context_stack_vm = label_context_stack_vm->next;
7651 }
7652 }
7653 \f
7654 /* Begin and end compound statements. This is as simple as pushing
7655 and popping new statement lists from the tree. */
7656
7657 tree
7658 c_begin_compound_stmt (bool do_scope)
7659 {
7660 tree stmt = push_stmt_list ();
7661 if (do_scope)
7662 push_scope ();
7663 return stmt;
7664 }
7665
7666 tree
7667 c_end_compound_stmt (tree stmt, bool do_scope)
7668 {
7669 tree block = NULL;
7670
7671 if (do_scope)
7672 {
7673 if (c_dialect_objc ())
7674 objc_clear_super_receiver ();
7675 block = pop_scope ();
7676 }
7677
7678 stmt = pop_stmt_list (stmt);
7679 stmt = c_build_bind_expr (block, stmt);
7680
7681 /* If this compound statement is nested immediately inside a statement
7682 expression, then force a BIND_EXPR to be created. Otherwise we'll
7683 do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
7684 STATEMENT_LISTs merge, and thus we can lose track of what statement
7685 was really last. */
7686 if (cur_stmt_list
7687 && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7688 && TREE_CODE (stmt) != BIND_EXPR)
7689 {
7690 stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7691 TREE_SIDE_EFFECTS (stmt) = 1;
7692 }
7693
7694 return stmt;
7695 }
7696
7697 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
7698 when the current scope is exited. EH_ONLY is true when this is not
7699 meant to apply to normal control flow transfer. */
7700
7701 void
7702 push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7703 {
7704 enum tree_code code;
7705 tree stmt, list;
7706 bool stmt_expr;
7707
7708 code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7709 stmt = build_stmt (code, NULL, cleanup);
7710 add_stmt (stmt);
7711 stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7712 list = push_stmt_list ();
7713 TREE_OPERAND (stmt, 0) = list;
7714 STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7715 }
7716 \f
7717 /* Build a binary-operation expression without default conversions.
7718 CODE is the kind of expression to build.
7719 This function differs from `build' in several ways:
7720 the data type of the result is computed and recorded in it,
7721 warnings are generated if arg data types are invalid,
7722 special handling for addition and subtraction of pointers is known,
7723 and some optimization is done (operations on narrow ints
7724 are done in the narrower type when that gives the same result).
7725 Constant folding is also done before the result is returned.
7726
7727 Note that the operands will never have enumeral types, or function
7728 or array types, because either they will have the default conversions
7729 performed or they have both just been converted to some other type in which
7730 the arithmetic is to be done. */
7731
7732 tree
7733 build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7734 int convert_p)
7735 {
7736 tree type0, type1;
7737 enum tree_code code0, code1;
7738 tree op0, op1;
7739 const char *invalid_op_diag;
7740
7741 /* Expression code to give to the expression when it is built.
7742 Normally this is CODE, which is what the caller asked for,
7743 but in some special cases we change it. */
7744 enum tree_code resultcode = code;
7745
7746 /* Data type in which the computation is to be performed.
7747 In the simplest cases this is the common type of the arguments. */
7748 tree result_type = NULL;
7749
7750 /* Nonzero means operands have already been type-converted
7751 in whatever way is necessary.
7752 Zero means they need to be converted to RESULT_TYPE. */
7753 int converted = 0;
7754
7755 /* Nonzero means create the expression with this type, rather than
7756 RESULT_TYPE. */
7757 tree build_type = 0;
7758
7759 /* Nonzero means after finally constructing the expression
7760 convert it to this type. */
7761 tree final_type = 0;
7762
7763 /* Nonzero if this is an operation like MIN or MAX which can
7764 safely be computed in short if both args are promoted shorts.
7765 Also implies COMMON.
7766 -1 indicates a bitwise operation; this makes a difference
7767 in the exact conditions for when it is safe to do the operation
7768 in a narrower mode. */
7769 int shorten = 0;
7770
7771 /* Nonzero if this is a comparison operation;
7772 if both args are promoted shorts, compare the original shorts.
7773 Also implies COMMON. */
7774 int short_compare = 0;
7775
7776 /* Nonzero if this is a right-shift operation, which can be computed on the
7777 original short and then promoted if the operand is a promoted short. */
7778 int short_shift = 0;
7779
7780 /* Nonzero means set RESULT_TYPE to the common type of the args. */
7781 int common = 0;
7782
7783 /* True means types are compatible as far as ObjC is concerned. */
7784 bool objc_ok;
7785
7786 if (convert_p)
7787 {
7788 op0 = default_conversion (orig_op0);
7789 op1 = default_conversion (orig_op1);
7790 }
7791 else
7792 {
7793 op0 = orig_op0;
7794 op1 = orig_op1;
7795 }
7796
7797 type0 = TREE_TYPE (op0);
7798 type1 = TREE_TYPE (op1);
7799
7800 /* The expression codes of the data types of the arguments tell us
7801 whether the arguments are integers, floating, pointers, etc. */
7802 code0 = TREE_CODE (type0);
7803 code1 = TREE_CODE (type1);
7804
7805 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
7806 STRIP_TYPE_NOPS (op0);
7807 STRIP_TYPE_NOPS (op1);
7808
7809 /* If an error was already reported for one of the arguments,
7810 avoid reporting another error. */
7811
7812 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7813 return error_mark_node;
7814
7815 if ((invalid_op_diag
7816 = targetm.invalid_binary_op (code, type0, type1)))
7817 {
7818 error (invalid_op_diag);
7819 return error_mark_node;
7820 }
7821
7822 objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7823
7824 switch (code)
7825 {
7826 case PLUS_EXPR:
7827 /* Handle the pointer + int case. */
7828 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7829 return pointer_int_sum (PLUS_EXPR, op0, op1);
7830 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7831 return pointer_int_sum (PLUS_EXPR, op1, op0);
7832 else
7833 common = 1;
7834 break;
7835
7836 case MINUS_EXPR:
7837 /* Subtraction of two similar pointers.
7838 We must subtract them as integers, then divide by object size. */
7839 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7840 && comp_target_types (type0, type1))
7841 return pointer_diff (op0, op1);
7842 /* Handle pointer minus int. Just like pointer plus int. */
7843 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7844 return pointer_int_sum (MINUS_EXPR, op0, op1);
7845 else
7846 common = 1;
7847 break;
7848
7849 case MULT_EXPR:
7850 common = 1;
7851 break;
7852
7853 case TRUNC_DIV_EXPR:
7854 case CEIL_DIV_EXPR:
7855 case FLOOR_DIV_EXPR:
7856 case ROUND_DIV_EXPR:
7857 case EXACT_DIV_EXPR:
7858 warn_for_div_by_zero (op1);
7859
7860 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7861 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7862 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7863 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7864 {
7865 enum tree_code tcode0 = code0, tcode1 = code1;
7866
7867 if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7868 tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7869 if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7870 tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7871
7872 if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7873 resultcode = RDIV_EXPR;
7874 else
7875 /* Although it would be tempting to shorten always here, that
7876 loses on some targets, since the modulo instruction is
7877 undefined if the quotient can't be represented in the
7878 computation mode. We shorten only if unsigned or if
7879 dividing by something we know != -1. */
7880 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7881 || (TREE_CODE (op1) == INTEGER_CST
7882 && !integer_all_onesp (op1)));
7883 common = 1;
7884 }
7885 break;
7886
7887 case BIT_AND_EXPR:
7888 case BIT_IOR_EXPR:
7889 case BIT_XOR_EXPR:
7890 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7891 shorten = -1;
7892 else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7893 common = 1;
7894 break;
7895
7896 case TRUNC_MOD_EXPR:
7897 case FLOOR_MOD_EXPR:
7898 warn_for_div_by_zero (op1);
7899
7900 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7901 {
7902 /* Although it would be tempting to shorten always here, that loses
7903 on some targets, since the modulo instruction is undefined if the
7904 quotient can't be represented in the computation mode. We shorten
7905 only if unsigned or if dividing by something we know != -1. */
7906 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7907 || (TREE_CODE (op1) == INTEGER_CST
7908 && !integer_all_onesp (op1)));
7909 common = 1;
7910 }
7911 break;
7912
7913 case TRUTH_ANDIF_EXPR:
7914 case TRUTH_ORIF_EXPR:
7915 case TRUTH_AND_EXPR:
7916 case TRUTH_OR_EXPR:
7917 case TRUTH_XOR_EXPR:
7918 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7919 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7920 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
7921 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
7922 {
7923 /* Result of these operations is always an int,
7924 but that does not mean the operands should be
7925 converted to ints! */
7926 result_type = integer_type_node;
7927 op0 = c_common_truthvalue_conversion (op0);
7928 op1 = c_common_truthvalue_conversion (op1);
7929 converted = 1;
7930 }
7931 break;
7932
7933 /* Shift operations: result has same type as first operand;
7934 always convert second operand to int.
7935 Also set SHORT_SHIFT if shifting rightward. */
7936
7937 case RSHIFT_EXPR:
7938 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7939 {
7940 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7941 {
7942 if (tree_int_cst_sgn (op1) < 0)
7943 warning (0, "right shift count is negative");
7944 else
7945 {
7946 if (!integer_zerop (op1))
7947 short_shift = 1;
7948
7949 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7950 warning (0, "right shift count >= width of type");
7951 }
7952 }
7953
7954 /* Use the type of the value to be shifted. */
7955 result_type = type0;
7956 /* Convert the shift-count to an integer, regardless of size
7957 of value being shifted. */
7958 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7959 op1 = convert (integer_type_node, op1);
7960 /* Avoid converting op1 to result_type later. */
7961 converted = 1;
7962 }
7963 break;
7964
7965 case LSHIFT_EXPR:
7966 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7967 {
7968 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7969 {
7970 if (tree_int_cst_sgn (op1) < 0)
7971 warning (0, "left shift count is negative");
7972
7973 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7974 warning (0, "left shift count >= width of type");
7975 }
7976
7977 /* Use the type of the value to be shifted. */
7978 result_type = type0;
7979 /* Convert the shift-count to an integer, regardless of size
7980 of value being shifted. */
7981 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7982 op1 = convert (integer_type_node, op1);
7983 /* Avoid converting op1 to result_type later. */
7984 converted = 1;
7985 }
7986 break;
7987
7988 case EQ_EXPR:
7989 case NE_EXPR:
7990 if (code0 == REAL_TYPE || code1 == REAL_TYPE)
7991 warning (OPT_Wfloat_equal,
7992 "comparing floating point with == or != is unsafe");
7993 /* Result of comparison is always int,
7994 but don't convert the args to int! */
7995 build_type = integer_type_node;
7996 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7997 || code0 == COMPLEX_TYPE)
7998 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7999 || code1 == COMPLEX_TYPE))
8000 short_compare = 1;
8001 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8002 {
8003 tree tt0 = TREE_TYPE (type0);
8004 tree tt1 = TREE_TYPE (type1);
8005 /* Anything compares with void *. void * compares with anything.
8006 Otherwise, the targets must be compatible
8007 and both must be object or both incomplete. */
8008 if (comp_target_types (type0, type1))
8009 result_type = common_pointer_type (type0, type1);
8010 else if (VOID_TYPE_P (tt0))
8011 {
8012 /* op0 != orig_op0 detects the case of something
8013 whose value is 0 but which isn't a valid null ptr const. */
8014 if (pedantic && !null_pointer_constant_p (orig_op0)
8015 && TREE_CODE (tt1) == FUNCTION_TYPE)
8016 pedwarn ("ISO C forbids comparison of %<void *%>"
8017 " with function pointer");
8018 }
8019 else if (VOID_TYPE_P (tt1))
8020 {
8021 if (pedantic && !null_pointer_constant_p (orig_op1)
8022 && TREE_CODE (tt0) == FUNCTION_TYPE)
8023 pedwarn ("ISO C forbids comparison of %<void *%>"
8024 " with function pointer");
8025 }
8026 else
8027 /* Avoid warning about the volatile ObjC EH puts on decls. */
8028 if (!objc_ok)
8029 pedwarn ("comparison of distinct pointer types lacks a cast");
8030
8031 if (result_type == NULL_TREE)
8032 result_type = ptr_type_node;
8033 }
8034 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8035 {
8036 if (TREE_CODE (op0) == ADDR_EXPR
8037 && decl_with_nonnull_addr_p (TREE_OPERAND (op0, 0)))
8038 warning (OPT_Waddress, "the address of %qD will never be NULL",
8039 TREE_OPERAND (op0, 0));
8040 result_type = type0;
8041 }
8042 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8043 {
8044 if (TREE_CODE (op1) == ADDR_EXPR
8045 && decl_with_nonnull_addr_p (TREE_OPERAND (op1, 0)))
8046 warning (OPT_Waddress, "the address of %qD will never be NULL",
8047 TREE_OPERAND (op1, 0));
8048 result_type = type1;
8049 }
8050 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8051 {
8052 result_type = type0;
8053 pedwarn ("comparison between pointer and integer");
8054 }
8055 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8056 {
8057 result_type = type1;
8058 pedwarn ("comparison between pointer and integer");
8059 }
8060 break;
8061
8062 case LE_EXPR:
8063 case GE_EXPR:
8064 case LT_EXPR:
8065 case GT_EXPR:
8066 build_type = integer_type_node;
8067 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
8068 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
8069 short_compare = 1;
8070 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8071 {
8072 if (comp_target_types (type0, type1))
8073 {
8074 result_type = common_pointer_type (type0, type1);
8075 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8076 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8077 pedwarn ("comparison of complete and incomplete pointers");
8078 else if (pedantic
8079 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8080 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8081 }
8082 else
8083 {
8084 result_type = ptr_type_node;
8085 pedwarn ("comparison of distinct pointer types lacks a cast");
8086 }
8087 }
8088 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8089 {
8090 result_type = type0;
8091 if (pedantic || extra_warnings)
8092 pedwarn ("ordered comparison of pointer with integer zero");
8093 }
8094 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8095 {
8096 result_type = type1;
8097 if (pedantic)
8098 pedwarn ("ordered comparison of pointer with integer zero");
8099 }
8100 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8101 {
8102 result_type = type0;
8103 pedwarn ("comparison between pointer and integer");
8104 }
8105 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8106 {
8107 result_type = type1;
8108 pedwarn ("comparison between pointer and integer");
8109 }
8110 break;
8111
8112 default:
8113 gcc_unreachable ();
8114 }
8115
8116 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8117 return error_mark_node;
8118
8119 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8120 && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8121 || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8122 TREE_TYPE (type1))))
8123 {
8124 binary_op_error (code, type0, type1);
8125 return error_mark_node;
8126 }
8127
8128 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8129 || code0 == VECTOR_TYPE)
8130 &&
8131 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8132 || code1 == VECTOR_TYPE))
8133 {
8134 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8135
8136 if (shorten || common || short_compare)
8137 {
8138 result_type = c_common_type (type0, type1);
8139 if (result_type == error_mark_node)
8140 return error_mark_node;
8141 }
8142
8143 /* For certain operations (which identify themselves by shorten != 0)
8144 if both args were extended from the same smaller type,
8145 do the arithmetic in that type and then extend.
8146
8147 shorten !=0 and !=1 indicates a bitwise operation.
8148 For them, this optimization is safe only if
8149 both args are zero-extended or both are sign-extended.
8150 Otherwise, we might change the result.
8151 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8152 but calculated in (unsigned short) it would be (unsigned short)-1. */
8153
8154 if (shorten && none_complex)
8155 {
8156 int unsigned0, unsigned1;
8157 tree arg0, arg1;
8158 int uns;
8159 tree type;
8160
8161 /* Cast OP0 and OP1 to RESULT_TYPE. Doing so prevents
8162 excessive narrowing when we call get_narrower below. For
8163 example, suppose that OP0 is of unsigned int extended
8164 from signed char and that RESULT_TYPE is long long int.
8165 If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
8166 like
8167
8168 (long long int) (unsigned int) signed_char
8169
8170 which get_narrower would narrow down to
8171
8172 (unsigned int) signed char
8173
8174 If we do not cast OP0 first, get_narrower would return
8175 signed_char, which is inconsistent with the case of the
8176 explicit cast. */
8177 op0 = convert (result_type, op0);
8178 op1 = convert (result_type, op1);
8179
8180 arg0 = get_narrower (op0, &unsigned0);
8181 arg1 = get_narrower (op1, &unsigned1);
8182
8183 /* UNS is 1 if the operation to be done is an unsigned one. */
8184 uns = TYPE_UNSIGNED (result_type);
8185
8186 final_type = result_type;
8187
8188 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8189 but it *requires* conversion to FINAL_TYPE. */
8190
8191 if ((TYPE_PRECISION (TREE_TYPE (op0))
8192 == TYPE_PRECISION (TREE_TYPE (arg0)))
8193 && TREE_TYPE (op0) != final_type)
8194 unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8195 if ((TYPE_PRECISION (TREE_TYPE (op1))
8196 == TYPE_PRECISION (TREE_TYPE (arg1)))
8197 && TREE_TYPE (op1) != final_type)
8198 unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8199
8200 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
8201
8202 /* For bitwise operations, signedness of nominal type
8203 does not matter. Consider only how operands were extended. */
8204 if (shorten == -1)
8205 uns = unsigned0;
8206
8207 /* Note that in all three cases below we refrain from optimizing
8208 an unsigned operation on sign-extended args.
8209 That would not be valid. */
8210
8211 /* Both args variable: if both extended in same way
8212 from same width, do it in that width.
8213 Do it unsigned if args were zero-extended. */
8214 if ((TYPE_PRECISION (TREE_TYPE (arg0))
8215 < TYPE_PRECISION (result_type))
8216 && (TYPE_PRECISION (TREE_TYPE (arg1))
8217 == TYPE_PRECISION (TREE_TYPE (arg0)))
8218 && unsigned0 == unsigned1
8219 && (unsigned0 || !uns))
8220 result_type
8221 = c_common_signed_or_unsigned_type
8222 (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8223 else if (TREE_CODE (arg0) == INTEGER_CST
8224 && (unsigned1 || !uns)
8225 && (TYPE_PRECISION (TREE_TYPE (arg1))
8226 < TYPE_PRECISION (result_type))
8227 && (type
8228 = c_common_signed_or_unsigned_type (unsigned1,
8229 TREE_TYPE (arg1)),
8230 int_fits_type_p (arg0, type)))
8231 result_type = type;
8232 else if (TREE_CODE (arg1) == INTEGER_CST
8233 && (unsigned0 || !uns)
8234 && (TYPE_PRECISION (TREE_TYPE (arg0))
8235 < TYPE_PRECISION (result_type))
8236 && (type
8237 = c_common_signed_or_unsigned_type (unsigned0,
8238 TREE_TYPE (arg0)),
8239 int_fits_type_p (arg1, type)))
8240 result_type = type;
8241 }
8242
8243 /* Shifts can be shortened if shifting right. */
8244
8245 if (short_shift)
8246 {
8247 int unsigned_arg;
8248 tree arg0 = get_narrower (op0, &unsigned_arg);
8249
8250 final_type = result_type;
8251
8252 if (arg0 == op0 && final_type == TREE_TYPE (op0))
8253 unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8254
8255 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8256 /* We can shorten only if the shift count is less than the
8257 number of bits in the smaller type size. */
8258 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8259 /* We cannot drop an unsigned shift after sign-extension. */
8260 && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8261 {
8262 /* Do an unsigned shift if the operand was zero-extended. */
8263 result_type
8264 = c_common_signed_or_unsigned_type (unsigned_arg,
8265 TREE_TYPE (arg0));
8266 /* Convert value-to-be-shifted to that type. */
8267 if (TREE_TYPE (op0) != result_type)
8268 op0 = convert (result_type, op0);
8269 converted = 1;
8270 }
8271 }
8272
8273 /* Comparison operations are shortened too but differently.
8274 They identify themselves by setting short_compare = 1. */
8275
8276 if (short_compare)
8277 {
8278 /* Don't write &op0, etc., because that would prevent op0
8279 from being kept in a register.
8280 Instead, make copies of the our local variables and
8281 pass the copies by reference, then copy them back afterward. */
8282 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8283 enum tree_code xresultcode = resultcode;
8284 tree val
8285 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8286
8287 if (val != 0)
8288 return val;
8289
8290 op0 = xop0, op1 = xop1;
8291 converted = 1;
8292 resultcode = xresultcode;
8293
8294 if (warn_sign_compare && skip_evaluation == 0)
8295 {
8296 int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8297 int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8298 int unsignedp0, unsignedp1;
8299 tree primop0 = get_narrower (op0, &unsignedp0);
8300 tree primop1 = get_narrower (op1, &unsignedp1);
8301
8302 xop0 = orig_op0;
8303 xop1 = orig_op1;
8304 STRIP_TYPE_NOPS (xop0);
8305 STRIP_TYPE_NOPS (xop1);
8306
8307 /* Give warnings for comparisons between signed and unsigned
8308 quantities that may fail.
8309
8310 Do the checking based on the original operand trees, so that
8311 casts will be considered, but default promotions won't be.
8312
8313 Do not warn if the comparison is being done in a signed type,
8314 since the signed type will only be chosen if it can represent
8315 all the values of the unsigned type. */
8316 if (!TYPE_UNSIGNED (result_type))
8317 /* OK */;
8318 /* Do not warn if both operands are the same signedness. */
8319 else if (op0_signed == op1_signed)
8320 /* OK */;
8321 else
8322 {
8323 tree sop, uop;
8324 bool ovf;
8325
8326 if (op0_signed)
8327 sop = xop0, uop = xop1;
8328 else
8329 sop = xop1, uop = xop0;
8330
8331 /* Do not warn if the signed quantity is an
8332 unsuffixed integer literal (or some static
8333 constant expression involving such literals or a
8334 conditional expression involving such literals)
8335 and it is non-negative. */
8336 if (tree_expr_nonnegative_warnv_p (sop, &ovf))
8337 /* OK */;
8338 /* Do not warn if the comparison is an equality operation,
8339 the unsigned quantity is an integral constant, and it
8340 would fit in the result if the result were signed. */
8341 else if (TREE_CODE (uop) == INTEGER_CST
8342 && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8343 && int_fits_type_p
8344 (uop, c_common_signed_type (result_type)))
8345 /* OK */;
8346 /* Do not warn if the unsigned quantity is an enumeration
8347 constant and its maximum value would fit in the result
8348 if the result were signed. */
8349 else if (TREE_CODE (uop) == INTEGER_CST
8350 && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8351 && int_fits_type_p
8352 (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8353 c_common_signed_type (result_type)))
8354 /* OK */;
8355 else
8356 warning (0, "comparison between signed and unsigned");
8357 }
8358
8359 /* Warn if two unsigned values are being compared in a size
8360 larger than their original size, and one (and only one) is the
8361 result of a `~' operator. This comparison will always fail.
8362
8363 Also warn if one operand is a constant, and the constant
8364 does not have all bits set that are set in the ~ operand
8365 when it is extended. */
8366
8367 if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8368 != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8369 {
8370 if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8371 primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8372 &unsignedp0);
8373 else
8374 primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8375 &unsignedp1);
8376
8377 if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8378 {
8379 tree primop;
8380 HOST_WIDE_INT constant, mask;
8381 int unsignedp, bits;
8382
8383 if (host_integerp (primop0, 0))
8384 {
8385 primop = primop1;
8386 unsignedp = unsignedp1;
8387 constant = tree_low_cst (primop0, 0);
8388 }
8389 else
8390 {
8391 primop = primop0;
8392 unsignedp = unsignedp0;
8393 constant = tree_low_cst (primop1, 0);
8394 }
8395
8396 bits = TYPE_PRECISION (TREE_TYPE (primop));
8397 if (bits < TYPE_PRECISION (result_type)
8398 && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8399 {
8400 mask = (~(HOST_WIDE_INT) 0) << bits;
8401 if ((mask & constant) != mask)
8402 warning (0, "comparison of promoted ~unsigned with constant");
8403 }
8404 }
8405 else if (unsignedp0 && unsignedp1
8406 && (TYPE_PRECISION (TREE_TYPE (primop0))
8407 < TYPE_PRECISION (result_type))
8408 && (TYPE_PRECISION (TREE_TYPE (primop1))
8409 < TYPE_PRECISION (result_type)))
8410 warning (0, "comparison of promoted ~unsigned with unsigned");
8411 }
8412 }
8413 }
8414 }
8415
8416 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8417 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8418 Then the expression will be built.
8419 It will be given type FINAL_TYPE if that is nonzero;
8420 otherwise, it will be given type RESULT_TYPE. */
8421
8422 if (!result_type)
8423 {
8424 binary_op_error (code, TREE_TYPE (op0), TREE_TYPE (op1));
8425 return error_mark_node;
8426 }
8427
8428 if (!converted)
8429 {
8430 if (TREE_TYPE (op0) != result_type)
8431 op0 = convert_and_check (result_type, op0);
8432 if (TREE_TYPE (op1) != result_type)
8433 op1 = convert_and_check (result_type, op1);
8434
8435 /* This can happen if one operand has a vector type, and the other
8436 has a different type. */
8437 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8438 return error_mark_node;
8439 }
8440
8441 if (build_type == NULL_TREE)
8442 build_type = result_type;
8443
8444 {
8445 /* Treat expressions in initializers specially as they can't trap. */
8446 tree result = require_constant_value ? fold_build2_initializer (resultcode,
8447 build_type,
8448 op0, op1)
8449 : fold_build2 (resultcode, build_type,
8450 op0, op1);
8451
8452 if (final_type != 0)
8453 result = convert (final_type, result);
8454 return result;
8455 }
8456 }
8457
8458
8459 /* Convert EXPR to be a truth-value, validating its type for this
8460 purpose. */
8461
8462 tree
8463 c_objc_common_truthvalue_conversion (tree expr)
8464 {
8465 switch (TREE_CODE (TREE_TYPE (expr)))
8466 {
8467 case ARRAY_TYPE:
8468 error ("used array that cannot be converted to pointer where scalar is required");
8469 return error_mark_node;
8470
8471 case RECORD_TYPE:
8472 error ("used struct type value where scalar is required");
8473 return error_mark_node;
8474
8475 case UNION_TYPE:
8476 error ("used union type value where scalar is required");
8477 return error_mark_node;
8478
8479 case FUNCTION_TYPE:
8480 gcc_unreachable ();
8481
8482 default:
8483 break;
8484 }
8485
8486 /* ??? Should we also give an error for void and vectors rather than
8487 leaving those to give errors later? */
8488 return c_common_truthvalue_conversion (expr);
8489 }
8490 \f
8491
8492 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8493 required. */
8494
8495 tree
8496 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8497 bool *ti ATTRIBUTE_UNUSED, bool *se)
8498 {
8499 if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8500 {
8501 tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8502 /* Executing a compound literal inside a function reinitializes
8503 it. */
8504 if (!TREE_STATIC (decl))
8505 *se = true;
8506 return decl;
8507 }
8508 else
8509 return expr;
8510 }
8511 \f
8512 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
8513
8514 tree
8515 c_begin_omp_parallel (void)
8516 {
8517 tree block;
8518
8519 keep_next_level ();
8520 block = c_begin_compound_stmt (true);
8521
8522 return block;
8523 }
8524
8525 tree
8526 c_finish_omp_parallel (tree clauses, tree block)
8527 {
8528 tree stmt;
8529
8530 block = c_end_compound_stmt (block, true);
8531
8532 stmt = make_node (OMP_PARALLEL);
8533 TREE_TYPE (stmt) = void_type_node;
8534 OMP_PARALLEL_CLAUSES (stmt) = clauses;
8535 OMP_PARALLEL_BODY (stmt) = block;
8536
8537 return add_stmt (stmt);
8538 }
8539
8540 /* For all elements of CLAUSES, validate them vs OpenMP constraints.
8541 Remove any elements from the list that are invalid. */
8542
8543 tree
8544 c_finish_omp_clauses (tree clauses)
8545 {
8546 bitmap_head generic_head, firstprivate_head, lastprivate_head;
8547 tree c, t, *pc = &clauses;
8548 const char *name;
8549
8550 bitmap_obstack_initialize (NULL);
8551 bitmap_initialize (&generic_head, &bitmap_default_obstack);
8552 bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8553 bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8554
8555 for (pc = &clauses, c = clauses; c ; c = *pc)
8556 {
8557 bool remove = false;
8558 bool need_complete = false;
8559 bool need_implicitly_determined = false;
8560
8561 switch (OMP_CLAUSE_CODE (c))
8562 {
8563 case OMP_CLAUSE_SHARED:
8564 name = "shared";
8565 need_implicitly_determined = true;
8566 goto check_dup_generic;
8567
8568 case OMP_CLAUSE_PRIVATE:
8569 name = "private";
8570 need_complete = true;
8571 need_implicitly_determined = true;
8572 goto check_dup_generic;
8573
8574 case OMP_CLAUSE_REDUCTION:
8575 name = "reduction";
8576 need_implicitly_determined = true;
8577 t = OMP_CLAUSE_DECL (c);
8578 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8579 || POINTER_TYPE_P (TREE_TYPE (t)))
8580 {
8581 error ("%qE has invalid type for %<reduction%>", t);
8582 remove = true;
8583 }
8584 else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8585 {
8586 enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8587 const char *r_name = NULL;
8588
8589 switch (r_code)
8590 {
8591 case PLUS_EXPR:
8592 case MULT_EXPR:
8593 case MINUS_EXPR:
8594 break;
8595 case BIT_AND_EXPR:
8596 r_name = "&";
8597 break;
8598 case BIT_XOR_EXPR:
8599 r_name = "^";
8600 break;
8601 case BIT_IOR_EXPR:
8602 r_name = "|";
8603 break;
8604 case TRUTH_ANDIF_EXPR:
8605 r_name = "&&";
8606 break;
8607 case TRUTH_ORIF_EXPR:
8608 r_name = "||";
8609 break;
8610 default:
8611 gcc_unreachable ();
8612 }
8613 if (r_name)
8614 {
8615 error ("%qE has invalid type for %<reduction(%s)%>",
8616 t, r_name);
8617 remove = true;
8618 }
8619 }
8620 goto check_dup_generic;
8621
8622 case OMP_CLAUSE_COPYPRIVATE:
8623 name = "copyprivate";
8624 goto check_dup_generic;
8625
8626 case OMP_CLAUSE_COPYIN:
8627 name = "copyin";
8628 t = OMP_CLAUSE_DECL (c);
8629 if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8630 {
8631 error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8632 remove = true;
8633 }
8634 goto check_dup_generic;
8635
8636 check_dup_generic:
8637 t = OMP_CLAUSE_DECL (c);
8638 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8639 {
8640 error ("%qE is not a variable in clause %qs", t, name);
8641 remove = true;
8642 }
8643 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8644 || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8645 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8646 {
8647 error ("%qE appears more than once in data clauses", t);
8648 remove = true;
8649 }
8650 else
8651 bitmap_set_bit (&generic_head, DECL_UID (t));
8652 break;
8653
8654 case OMP_CLAUSE_FIRSTPRIVATE:
8655 name = "firstprivate";
8656 t = OMP_CLAUSE_DECL (c);
8657 need_complete = true;
8658 need_implicitly_determined = true;
8659 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8660 {
8661 error ("%qE is not a variable in clause %<firstprivate%>", t);
8662 remove = true;
8663 }
8664 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8665 || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8666 {
8667 error ("%qE appears more than once in data clauses", t);
8668 remove = true;
8669 }
8670 else
8671 bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8672 break;
8673
8674 case OMP_CLAUSE_LASTPRIVATE:
8675 name = "lastprivate";
8676 t = OMP_CLAUSE_DECL (c);
8677 need_complete = true;
8678 need_implicitly_determined = true;
8679 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8680 {
8681 error ("%qE is not a variable in clause %<lastprivate%>", t);
8682 remove = true;
8683 }
8684 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8685 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8686 {
8687 error ("%qE appears more than once in data clauses", t);
8688 remove = true;
8689 }
8690 else
8691 bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8692 break;
8693
8694 case OMP_CLAUSE_IF:
8695 case OMP_CLAUSE_NUM_THREADS:
8696 case OMP_CLAUSE_SCHEDULE:
8697 case OMP_CLAUSE_NOWAIT:
8698 case OMP_CLAUSE_ORDERED:
8699 case OMP_CLAUSE_DEFAULT:
8700 pc = &OMP_CLAUSE_CHAIN (c);
8701 continue;
8702
8703 default:
8704 gcc_unreachable ();
8705 }
8706
8707 if (!remove)
8708 {
8709 t = OMP_CLAUSE_DECL (c);
8710
8711 if (need_complete)
8712 {
8713 t = require_complete_type (t);
8714 if (t == error_mark_node)
8715 remove = true;
8716 }
8717
8718 if (need_implicitly_determined)
8719 {
8720 const char *share_name = NULL;
8721
8722 if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8723 share_name = "threadprivate";
8724 else switch (c_omp_predetermined_sharing (t))
8725 {
8726 case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8727 break;
8728 case OMP_CLAUSE_DEFAULT_SHARED:
8729 share_name = "shared";
8730 break;
8731 case OMP_CLAUSE_DEFAULT_PRIVATE:
8732 share_name = "private";
8733 break;
8734 default:
8735 gcc_unreachable ();
8736 }
8737 if (share_name)
8738 {
8739 error ("%qE is predetermined %qs for %qs",
8740 t, share_name, name);
8741 remove = true;
8742 }
8743 }
8744 }
8745
8746 if (remove)
8747 *pc = OMP_CLAUSE_CHAIN (c);
8748 else
8749 pc = &OMP_CLAUSE_CHAIN (c);
8750 }
8751
8752 bitmap_obstack_release (NULL);
8753 return clauses;
8754 }