Makefile.in (OBJS-common): Add tree-ssa-alias-warnings.o.
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 /* This file is part of the C front end.
25 It contains routines to build C expressions given their operands,
26 including computing the types of the result, C-specific error checks,
27 and some optimization. */
28
29 #include "config.h"
30 #include "system.h"
31 #include "coretypes.h"
32 #include "tm.h"
33 #include "rtl.h"
34 #include "tree.h"
35 #include "langhooks.h"
36 #include "c-tree.h"
37 #include "tm_p.h"
38 #include "flags.h"
39 #include "output.h"
40 #include "expr.h"
41 #include "toplev.h"
42 #include "intl.h"
43 #include "ggc.h"
44 #include "target.h"
45 #include "tree-iterator.h"
46 #include "tree-gimple.h"
47 #include "tree-flow.h"
48
49 /* Possible cases of implicit bad conversions. Used to select
50 diagnostic messages in convert_for_assignment. */
51 enum impl_conv {
52 ic_argpass,
53 ic_argpass_nonproto,
54 ic_assign,
55 ic_init,
56 ic_return
57 };
58
59 /* The level of nesting inside "__alignof__". */
60 int in_alignof;
61
62 /* The level of nesting inside "sizeof". */
63 int in_sizeof;
64
65 /* The level of nesting inside "typeof". */
66 int in_typeof;
67
68 struct c_label_context_se *label_context_stack_se;
69 struct c_label_context_vm *label_context_stack_vm;
70
71 /* Nonzero if we've already printed a "missing braces around initializer"
72 message within this initializer. */
73 static int missing_braces_mentioned;
74
75 static int require_constant_value;
76 static int require_constant_elements;
77
78 static bool null_pointer_constant_p (tree);
79 static tree qualify_type (tree, tree);
80 static int tagged_types_tu_compatible_p (tree, tree);
81 static int comp_target_types (tree, tree);
82 static int function_types_compatible_p (tree, tree);
83 static int type_lists_compatible_p (tree, tree);
84 static tree decl_constant_value_for_broken_optimization (tree);
85 static tree lookup_field (tree, tree);
86 static int convert_arguments (int, tree *, tree, tree, tree, tree);
87 static tree pointer_diff (tree, tree);
88 static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
89 int);
90 static tree valid_compound_expr_initializer (tree, tree);
91 static void push_string (const char *);
92 static void push_member_name (tree);
93 static int spelling_length (void);
94 static char *print_spelling (char *);
95 static void warning_init (const char *);
96 static tree digest_init (tree, tree, bool, int);
97 static void output_init_element (tree, bool, tree, tree, int);
98 static void output_pending_init_elements (int);
99 static int set_designator (int);
100 static void push_range_stack (tree);
101 static void add_pending_init (tree, tree);
102 static void set_nonincremental_init (void);
103 static void set_nonincremental_init_from_string (tree);
104 static tree find_init_member (tree);
105 static void readonly_error (tree, enum lvalue_use);
106 static int lvalue_or_else (tree, enum lvalue_use);
107 static int lvalue_p (tree);
108 static void record_maybe_used_decl (tree);
109 static int comptypes_internal (tree, tree);
110 \f
111 /* Return true if EXP is a null pointer constant, false otherwise. */
112
113 static bool
114 null_pointer_constant_p (tree expr)
115 {
116 /* This should really operate on c_expr structures, but they aren't
117 yet available everywhere required. */
118 tree type = TREE_TYPE (expr);
119 return (TREE_CODE (expr) == INTEGER_CST
120 && !TREE_OVERFLOW (expr)
121 && integer_zerop (expr)
122 && (INTEGRAL_TYPE_P (type)
123 || (TREE_CODE (type) == POINTER_TYPE
124 && VOID_TYPE_P (TREE_TYPE (type))
125 && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
126 }
127 \f/* This is a cache to hold if two types are compatible or not. */
128
129 struct tagged_tu_seen_cache {
130 const struct tagged_tu_seen_cache * next;
131 tree t1;
132 tree t2;
133 /* The return value of tagged_types_tu_compatible_p if we had seen
134 these two types already. */
135 int val;
136 };
137
138 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
139 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
140
141 /* Do `exp = require_complete_type (exp);' to make sure exp
142 does not have an incomplete type. (That includes void types.) */
143
144 tree
145 require_complete_type (tree value)
146 {
147 tree type = TREE_TYPE (value);
148
149 if (value == error_mark_node || type == error_mark_node)
150 return error_mark_node;
151
152 /* First, detect a valid value with a complete type. */
153 if (COMPLETE_TYPE_P (type))
154 return value;
155
156 c_incomplete_type_error (value, type);
157 return error_mark_node;
158 }
159
160 /* Print an error message for invalid use of an incomplete type.
161 VALUE is the expression that was used (or 0 if that isn't known)
162 and TYPE is the type that was invalid. */
163
164 void
165 c_incomplete_type_error (tree value, tree type)
166 {
167 const char *type_code_string;
168
169 /* Avoid duplicate error message. */
170 if (TREE_CODE (type) == ERROR_MARK)
171 return;
172
173 if (value != 0 && (TREE_CODE (value) == VAR_DECL
174 || TREE_CODE (value) == PARM_DECL))
175 error ("%qD has an incomplete type", value);
176 else
177 {
178 retry:
179 /* We must print an error message. Be clever about what it says. */
180
181 switch (TREE_CODE (type))
182 {
183 case RECORD_TYPE:
184 type_code_string = "struct";
185 break;
186
187 case UNION_TYPE:
188 type_code_string = "union";
189 break;
190
191 case ENUMERAL_TYPE:
192 type_code_string = "enum";
193 break;
194
195 case VOID_TYPE:
196 error ("invalid use of void expression");
197 return;
198
199 case ARRAY_TYPE:
200 if (TYPE_DOMAIN (type))
201 {
202 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
203 {
204 error ("invalid use of flexible array member");
205 return;
206 }
207 type = TREE_TYPE (type);
208 goto retry;
209 }
210 error ("invalid use of array with unspecified bounds");
211 return;
212
213 default:
214 gcc_unreachable ();
215 }
216
217 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
218 error ("invalid use of undefined type %<%s %E%>",
219 type_code_string, TYPE_NAME (type));
220 else
221 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
222 error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
223 }
224 }
225
226 /* Given a type, apply default promotions wrt unnamed function
227 arguments and return the new type. */
228
229 tree
230 c_type_promotes_to (tree type)
231 {
232 if (TYPE_MAIN_VARIANT (type) == float_type_node)
233 return double_type_node;
234
235 if (c_promoting_integer_type_p (type))
236 {
237 /* Preserve unsignedness if not really getting any wider. */
238 if (TYPE_UNSIGNED (type)
239 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
240 return unsigned_type_node;
241 return integer_type_node;
242 }
243
244 return type;
245 }
246
247 /* Return a variant of TYPE which has all the type qualifiers of LIKE
248 as well as those of TYPE. */
249
250 static tree
251 qualify_type (tree type, tree like)
252 {
253 return c_build_qualified_type (type,
254 TYPE_QUALS (type) | TYPE_QUALS (like));
255 }
256
257 /* Return true iff the given tree T is a variable length array. */
258
259 bool
260 c_vla_type_p (tree t)
261 {
262 if (TREE_CODE (t) == ARRAY_TYPE
263 && C_TYPE_VARIABLE_SIZE (t))
264 return true;
265 return false;
266 }
267 \f
268 /* Return the composite type of two compatible types.
269
270 We assume that comptypes has already been done and returned
271 nonzero; if that isn't so, this may crash. In particular, we
272 assume that qualifiers match. */
273
274 tree
275 composite_type (tree t1, tree t2)
276 {
277 enum tree_code code1;
278 enum tree_code code2;
279 tree attributes;
280
281 /* Save time if the two types are the same. */
282
283 if (t1 == t2) return t1;
284
285 /* If one type is nonsense, use the other. */
286 if (t1 == error_mark_node)
287 return t2;
288 if (t2 == error_mark_node)
289 return t1;
290
291 code1 = TREE_CODE (t1);
292 code2 = TREE_CODE (t2);
293
294 /* Merge the attributes. */
295 attributes = targetm.merge_type_attributes (t1, t2);
296
297 /* If one is an enumerated type and the other is the compatible
298 integer type, the composite type might be either of the two
299 (DR#013 question 3). For consistency, use the enumerated type as
300 the composite type. */
301
302 if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
303 return t1;
304 if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
305 return t2;
306
307 gcc_assert (code1 == code2);
308
309 switch (code1)
310 {
311 case POINTER_TYPE:
312 /* For two pointers, do this recursively on the target type. */
313 {
314 tree pointed_to_1 = TREE_TYPE (t1);
315 tree pointed_to_2 = TREE_TYPE (t2);
316 tree target = composite_type (pointed_to_1, pointed_to_2);
317 t1 = build_pointer_type (target);
318 t1 = build_type_attribute_variant (t1, attributes);
319 return qualify_type (t1, t2);
320 }
321
322 case ARRAY_TYPE:
323 {
324 tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
325 int quals;
326 tree unqual_elt;
327 tree d1 = TYPE_DOMAIN (t1);
328 tree d2 = TYPE_DOMAIN (t2);
329 bool d1_variable, d2_variable;
330 bool d1_zero, d2_zero;
331
332 /* We should not have any type quals on arrays at all. */
333 gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
334
335 d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
336 d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
337
338 d1_variable = (!d1_zero
339 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
340 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
341 d2_variable = (!d2_zero
342 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
343 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
344 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
345 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
346
347 /* Save space: see if the result is identical to one of the args. */
348 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
349 && (d2_variable || d2_zero || !d1_variable))
350 return build_type_attribute_variant (t1, attributes);
351 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
352 && (d1_variable || d1_zero || !d2_variable))
353 return build_type_attribute_variant (t2, attributes);
354
355 if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
356 return build_type_attribute_variant (t1, attributes);
357 if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
358 return build_type_attribute_variant (t2, attributes);
359
360 /* Merge the element types, and have a size if either arg has
361 one. We may have qualifiers on the element types. To set
362 up TYPE_MAIN_VARIANT correctly, we need to form the
363 composite of the unqualified types and add the qualifiers
364 back at the end. */
365 quals = TYPE_QUALS (strip_array_types (elt));
366 unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
367 t1 = build_array_type (unqual_elt,
368 TYPE_DOMAIN ((TYPE_DOMAIN (t1)
369 && (d2_variable
370 || d2_zero
371 || !d1_variable))
372 ? t1
373 : t2));
374 t1 = c_build_qualified_type (t1, quals);
375 return build_type_attribute_variant (t1, attributes);
376 }
377
378 case ENUMERAL_TYPE:
379 case RECORD_TYPE:
380 case UNION_TYPE:
381 if (attributes != NULL)
382 {
383 /* Try harder not to create a new aggregate type. */
384 if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
385 return t1;
386 if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
387 return t2;
388 }
389 return build_type_attribute_variant (t1, attributes);
390
391 case FUNCTION_TYPE:
392 /* Function types: prefer the one that specified arg types.
393 If both do, merge the arg types. Also merge the return types. */
394 {
395 tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
396 tree p1 = TYPE_ARG_TYPES (t1);
397 tree p2 = TYPE_ARG_TYPES (t2);
398 int len;
399 tree newargs, n;
400 int i;
401
402 /* Save space: see if the result is identical to one of the args. */
403 if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
404 return build_type_attribute_variant (t1, attributes);
405 if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
406 return build_type_attribute_variant (t2, attributes);
407
408 /* Simple way if one arg fails to specify argument types. */
409 if (TYPE_ARG_TYPES (t1) == 0)
410 {
411 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
412 t1 = build_type_attribute_variant (t1, attributes);
413 return qualify_type (t1, t2);
414 }
415 if (TYPE_ARG_TYPES (t2) == 0)
416 {
417 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
418 t1 = build_type_attribute_variant (t1, attributes);
419 return qualify_type (t1, t2);
420 }
421
422 /* If both args specify argument types, we must merge the two
423 lists, argument by argument. */
424 /* Tell global_bindings_p to return false so that variable_size
425 doesn't die on VLAs in parameter types. */
426 c_override_global_bindings_to_false = true;
427
428 len = list_length (p1);
429 newargs = 0;
430
431 for (i = 0; i < len; i++)
432 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
433
434 n = newargs;
435
436 for (; p1;
437 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
438 {
439 /* A null type means arg type is not specified.
440 Take whatever the other function type has. */
441 if (TREE_VALUE (p1) == 0)
442 {
443 TREE_VALUE (n) = TREE_VALUE (p2);
444 goto parm_done;
445 }
446 if (TREE_VALUE (p2) == 0)
447 {
448 TREE_VALUE (n) = TREE_VALUE (p1);
449 goto parm_done;
450 }
451
452 /* Given wait (union {union wait *u; int *i} *)
453 and wait (union wait *),
454 prefer union wait * as type of parm. */
455 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
456 && TREE_VALUE (p1) != TREE_VALUE (p2))
457 {
458 tree memb;
459 tree mv2 = TREE_VALUE (p2);
460 if (mv2 && mv2 != error_mark_node
461 && TREE_CODE (mv2) != ARRAY_TYPE)
462 mv2 = TYPE_MAIN_VARIANT (mv2);
463 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
464 memb; memb = TREE_CHAIN (memb))
465 {
466 tree mv3 = TREE_TYPE (memb);
467 if (mv3 && mv3 != error_mark_node
468 && TREE_CODE (mv3) != ARRAY_TYPE)
469 mv3 = TYPE_MAIN_VARIANT (mv3);
470 if (comptypes (mv3, mv2))
471 {
472 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
473 TREE_VALUE (p2));
474 if (pedantic)
475 pedwarn ("function types not truly compatible in ISO C");
476 goto parm_done;
477 }
478 }
479 }
480 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
481 && TREE_VALUE (p2) != TREE_VALUE (p1))
482 {
483 tree memb;
484 tree mv1 = TREE_VALUE (p1);
485 if (mv1 && mv1 != error_mark_node
486 && TREE_CODE (mv1) != ARRAY_TYPE)
487 mv1 = TYPE_MAIN_VARIANT (mv1);
488 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
489 memb; memb = TREE_CHAIN (memb))
490 {
491 tree mv3 = TREE_TYPE (memb);
492 if (mv3 && mv3 != error_mark_node
493 && TREE_CODE (mv3) != ARRAY_TYPE)
494 mv3 = TYPE_MAIN_VARIANT (mv3);
495 if (comptypes (mv3, mv1))
496 {
497 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
498 TREE_VALUE (p1));
499 if (pedantic)
500 pedwarn ("function types not truly compatible in ISO C");
501 goto parm_done;
502 }
503 }
504 }
505 TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
506 parm_done: ;
507 }
508
509 c_override_global_bindings_to_false = false;
510 t1 = build_function_type (valtype, newargs);
511 t1 = qualify_type (t1, t2);
512 /* ... falls through ... */
513 }
514
515 default:
516 return build_type_attribute_variant (t1, attributes);
517 }
518
519 }
520
521 /* Return the type of a conditional expression between pointers to
522 possibly differently qualified versions of compatible types.
523
524 We assume that comp_target_types has already been done and returned
525 nonzero; if that isn't so, this may crash. */
526
527 static tree
528 common_pointer_type (tree t1, tree t2)
529 {
530 tree attributes;
531 tree pointed_to_1, mv1;
532 tree pointed_to_2, mv2;
533 tree target;
534
535 /* Save time if the two types are the same. */
536
537 if (t1 == t2) return t1;
538
539 /* If one type is nonsense, use the other. */
540 if (t1 == error_mark_node)
541 return t2;
542 if (t2 == error_mark_node)
543 return t1;
544
545 gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546 && TREE_CODE (t2) == POINTER_TYPE);
547
548 /* Merge the attributes. */
549 attributes = targetm.merge_type_attributes (t1, t2);
550
551 /* Find the composite type of the target types, and combine the
552 qualifiers of the two types' targets. Do not lose qualifiers on
553 array element types by taking the TYPE_MAIN_VARIANT. */
554 mv1 = pointed_to_1 = TREE_TYPE (t1);
555 mv2 = pointed_to_2 = TREE_TYPE (t2);
556 if (TREE_CODE (mv1) != ARRAY_TYPE)
557 mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558 if (TREE_CODE (mv2) != ARRAY_TYPE)
559 mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560 target = composite_type (mv1, mv2);
561 t1 = build_pointer_type (c_build_qualified_type
562 (target,
563 TYPE_QUALS (pointed_to_1) |
564 TYPE_QUALS (pointed_to_2)));
565 return build_type_attribute_variant (t1, attributes);
566 }
567
568 /* Return the common type for two arithmetic types under the usual
569 arithmetic conversions. The default conversions have already been
570 applied, and enumerated types converted to their compatible integer
571 types. The resulting type is unqualified and has no attributes.
572
573 This is the type for the result of most arithmetic operations
574 if the operands have the given two types. */
575
576 static tree
577 c_common_type (tree t1, tree t2)
578 {
579 enum tree_code code1;
580 enum tree_code code2;
581
582 /* If one type is nonsense, use the other. */
583 if (t1 == error_mark_node)
584 return t2;
585 if (t2 == error_mark_node)
586 return t1;
587
588 if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
589 t1 = TYPE_MAIN_VARIANT (t1);
590
591 if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
592 t2 = TYPE_MAIN_VARIANT (t2);
593
594 if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
595 t1 = build_type_attribute_variant (t1, NULL_TREE);
596
597 if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
598 t2 = build_type_attribute_variant (t2, NULL_TREE);
599
600 /* Save time if the two types are the same. */
601
602 if (t1 == t2) return t1;
603
604 code1 = TREE_CODE (t1);
605 code2 = TREE_CODE (t2);
606
607 gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
608 || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
609 gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
610 || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
611
612 /* When one operand is a decimal float type, the other operand cannot be
613 a generic float type or a complex type. We also disallow vector types
614 here. */
615 if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
616 && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
617 {
618 if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
619 {
620 error ("can%'t mix operands of decimal float and vector types");
621 return error_mark_node;
622 }
623 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
624 {
625 error ("can%'t mix operands of decimal float and complex types");
626 return error_mark_node;
627 }
628 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
629 {
630 error ("can%'t mix operands of decimal float and other float types");
631 return error_mark_node;
632 }
633 }
634
635 /* If one type is a vector type, return that type. (How the usual
636 arithmetic conversions apply to the vector types extension is not
637 precisely specified.) */
638 if (code1 == VECTOR_TYPE)
639 return t1;
640
641 if (code2 == VECTOR_TYPE)
642 return t2;
643
644 /* If one type is complex, form the common type of the non-complex
645 components, then make that complex. Use T1 or T2 if it is the
646 required type. */
647 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
648 {
649 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
650 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
651 tree subtype = c_common_type (subtype1, subtype2);
652
653 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
654 return t1;
655 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
656 return t2;
657 else
658 return build_complex_type (subtype);
659 }
660
661 /* If only one is real, use it as the result. */
662
663 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
664 return t1;
665
666 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
667 return t2;
668
669 /* If both are real and either are decimal floating point types, use
670 the decimal floating point type with the greater precision. */
671
672 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
673 {
674 if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
675 || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
676 return dfloat128_type_node;
677 else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
678 || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
679 return dfloat64_type_node;
680 else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
681 || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
682 return dfloat32_type_node;
683 }
684
685 /* Both real or both integers; use the one with greater precision. */
686
687 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
688 return t1;
689 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
690 return t2;
691
692 /* Same precision. Prefer long longs to longs to ints when the
693 same precision, following the C99 rules on integer type rank
694 (which are equivalent to the C90 rules for C90 types). */
695
696 if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
697 || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
698 return long_long_unsigned_type_node;
699
700 if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
701 || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
702 {
703 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
704 return long_long_unsigned_type_node;
705 else
706 return long_long_integer_type_node;
707 }
708
709 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
710 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
711 return long_unsigned_type_node;
712
713 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
714 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
715 {
716 /* But preserve unsignedness from the other type,
717 since long cannot hold all the values of an unsigned int. */
718 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
719 return long_unsigned_type_node;
720 else
721 return long_integer_type_node;
722 }
723
724 /* Likewise, prefer long double to double even if same size. */
725 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
726 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
727 return long_double_type_node;
728
729 /* Otherwise prefer the unsigned one. */
730
731 if (TYPE_UNSIGNED (t1))
732 return t1;
733 else
734 return t2;
735 }
736 \f
737 /* Wrapper around c_common_type that is used by c-common.c and other
738 front end optimizations that remove promotions. ENUMERAL_TYPEs
739 are allowed here and are converted to their compatible integer types.
740 BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
741 preferably a non-Boolean type as the common type. */
742 tree
743 common_type (tree t1, tree t2)
744 {
745 if (TREE_CODE (t1) == ENUMERAL_TYPE)
746 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
747 if (TREE_CODE (t2) == ENUMERAL_TYPE)
748 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
749
750 /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */
751 if (TREE_CODE (t1) == BOOLEAN_TYPE
752 && TREE_CODE (t2) == BOOLEAN_TYPE)
753 return boolean_type_node;
754
755 /* If either type is BOOLEAN_TYPE, then return the other. */
756 if (TREE_CODE (t1) == BOOLEAN_TYPE)
757 return t2;
758 if (TREE_CODE (t2) == BOOLEAN_TYPE)
759 return t1;
760
761 return c_common_type (t1, t2);
762 }
763
764 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
765 or various other operations. Return 2 if they are compatible
766 but a warning may be needed if you use them together. */
767
768 int
769 comptypes (tree type1, tree type2)
770 {
771 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
772 int val;
773
774 val = comptypes_internal (type1, type2);
775 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
776
777 return val;
778 }
779 \f
780 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
781 or various other operations. Return 2 if they are compatible
782 but a warning may be needed if you use them together. This
783 differs from comptypes, in that we don't free the seen types. */
784
785 static int
786 comptypes_internal (tree type1, tree type2)
787 {
788 tree t1 = type1;
789 tree t2 = type2;
790 int attrval, val;
791
792 /* Suppress errors caused by previously reported errors. */
793
794 if (t1 == t2 || !t1 || !t2
795 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
796 return 1;
797
798 /* If either type is the internal version of sizetype, return the
799 language version. */
800 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
801 && TYPE_ORIG_SIZE_TYPE (t1))
802 t1 = TYPE_ORIG_SIZE_TYPE (t1);
803
804 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
805 && TYPE_ORIG_SIZE_TYPE (t2))
806 t2 = TYPE_ORIG_SIZE_TYPE (t2);
807
808
809 /* Enumerated types are compatible with integer types, but this is
810 not transitive: two enumerated types in the same translation unit
811 are compatible with each other only if they are the same type. */
812
813 if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
814 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
815 else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
816 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
817
818 if (t1 == t2)
819 return 1;
820
821 /* Different classes of types can't be compatible. */
822
823 if (TREE_CODE (t1) != TREE_CODE (t2))
824 return 0;
825
826 /* Qualifiers must match. C99 6.7.3p9 */
827
828 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
829 return 0;
830
831 /* Allow for two different type nodes which have essentially the same
832 definition. Note that we already checked for equality of the type
833 qualifiers (just above). */
834
835 if (TREE_CODE (t1) != ARRAY_TYPE
836 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
837 return 1;
838
839 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
840 if (!(attrval = targetm.comp_type_attributes (t1, t2)))
841 return 0;
842
843 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
844 val = 0;
845
846 switch (TREE_CODE (t1))
847 {
848 case POINTER_TYPE:
849 /* Do not remove mode or aliasing information. */
850 if (TYPE_MODE (t1) != TYPE_MODE (t2)
851 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
852 break;
853 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
854 ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
855 break;
856
857 case FUNCTION_TYPE:
858 val = function_types_compatible_p (t1, t2);
859 break;
860
861 case ARRAY_TYPE:
862 {
863 tree d1 = TYPE_DOMAIN (t1);
864 tree d2 = TYPE_DOMAIN (t2);
865 bool d1_variable, d2_variable;
866 bool d1_zero, d2_zero;
867 val = 1;
868
869 /* Target types must match incl. qualifiers. */
870 if (TREE_TYPE (t1) != TREE_TYPE (t2)
871 && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
872 return 0;
873
874 /* Sizes must match unless one is missing or variable. */
875 if (d1 == 0 || d2 == 0 || d1 == d2)
876 break;
877
878 d1_zero = !TYPE_MAX_VALUE (d1);
879 d2_zero = !TYPE_MAX_VALUE (d2);
880
881 d1_variable = (!d1_zero
882 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
883 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
884 d2_variable = (!d2_zero
885 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
886 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
887 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
888 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
889
890 if (d1_variable || d2_variable)
891 break;
892 if (d1_zero && d2_zero)
893 break;
894 if (d1_zero || d2_zero
895 || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
896 || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
897 val = 0;
898
899 break;
900 }
901
902 case ENUMERAL_TYPE:
903 case RECORD_TYPE:
904 case UNION_TYPE:
905 if (val != 1 && !same_translation_unit_p (t1, t2))
906 {
907 tree a1 = TYPE_ATTRIBUTES (t1);
908 tree a2 = TYPE_ATTRIBUTES (t2);
909
910 if (! attribute_list_contained (a1, a2)
911 && ! attribute_list_contained (a2, a1))
912 break;
913
914 if (attrval != 2)
915 return tagged_types_tu_compatible_p (t1, t2);
916 val = tagged_types_tu_compatible_p (t1, t2);
917 }
918 break;
919
920 case VECTOR_TYPE:
921 val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
922 && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
923 break;
924
925 default:
926 break;
927 }
928 return attrval == 2 && val == 1 ? 2 : val;
929 }
930
931 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
932 ignoring their qualifiers. */
933
934 static int
935 comp_target_types (tree ttl, tree ttr)
936 {
937 int val;
938 tree mvl, mvr;
939
940 /* Do not lose qualifiers on element types of array types that are
941 pointer targets by taking their TYPE_MAIN_VARIANT. */
942 mvl = TREE_TYPE (ttl);
943 mvr = TREE_TYPE (ttr);
944 if (TREE_CODE (mvl) != ARRAY_TYPE)
945 mvl = TYPE_MAIN_VARIANT (mvl);
946 if (TREE_CODE (mvr) != ARRAY_TYPE)
947 mvr = TYPE_MAIN_VARIANT (mvr);
948 val = comptypes (mvl, mvr);
949
950 if (val == 2 && pedantic)
951 pedwarn ("types are not quite compatible");
952 return val;
953 }
954 \f
955 /* Subroutines of `comptypes'. */
956
957 /* Determine whether two trees derive from the same translation unit.
958 If the CONTEXT chain ends in a null, that tree's context is still
959 being parsed, so if two trees have context chains ending in null,
960 they're in the same translation unit. */
961 int
962 same_translation_unit_p (tree t1, tree t2)
963 {
964 while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
965 switch (TREE_CODE_CLASS (TREE_CODE (t1)))
966 {
967 case tcc_declaration:
968 t1 = DECL_CONTEXT (t1); break;
969 case tcc_type:
970 t1 = TYPE_CONTEXT (t1); break;
971 case tcc_exceptional:
972 t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
973 default: gcc_unreachable ();
974 }
975
976 while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
977 switch (TREE_CODE_CLASS (TREE_CODE (t2)))
978 {
979 case tcc_declaration:
980 t2 = DECL_CONTEXT (t2); break;
981 case tcc_type:
982 t2 = TYPE_CONTEXT (t2); break;
983 case tcc_exceptional:
984 t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
985 default: gcc_unreachable ();
986 }
987
988 return t1 == t2;
989 }
990
991 /* Allocate the seen two types, assuming that they are compatible. */
992
993 static struct tagged_tu_seen_cache *
994 alloc_tagged_tu_seen_cache (tree t1, tree t2)
995 {
996 struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
997 tu->next = tagged_tu_seen_base;
998 tu->t1 = t1;
999 tu->t2 = t2;
1000
1001 tagged_tu_seen_base = tu;
1002
1003 /* The C standard says that two structures in different translation
1004 units are compatible with each other only if the types of their
1005 fields are compatible (among other things). We assume that they
1006 are compatible until proven otherwise when building the cache.
1007 An example where this can occur is:
1008 struct a
1009 {
1010 struct a *next;
1011 };
1012 If we are comparing this against a similar struct in another TU,
1013 and did not assume they were compatible, we end up with an infinite
1014 loop. */
1015 tu->val = 1;
1016 return tu;
1017 }
1018
1019 /* Free the seen types until we get to TU_TIL. */
1020
1021 static void
1022 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1023 {
1024 const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1025 while (tu != tu_til)
1026 {
1027 struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
1028 tu = tu1->next;
1029 free (tu1);
1030 }
1031 tagged_tu_seen_base = tu_til;
1032 }
1033
1034 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1035 compatible. If the two types are not the same (which has been
1036 checked earlier), this can only happen when multiple translation
1037 units are being compiled. See C99 6.2.7 paragraph 1 for the exact
1038 rules. */
1039
1040 static int
1041 tagged_types_tu_compatible_p (tree t1, tree t2)
1042 {
1043 tree s1, s2;
1044 bool needs_warning = false;
1045
1046 /* We have to verify that the tags of the types are the same. This
1047 is harder than it looks because this may be a typedef, so we have
1048 to go look at the original type. It may even be a typedef of a
1049 typedef...
1050 In the case of compiler-created builtin structs the TYPE_DECL
1051 may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
1052 while (TYPE_NAME (t1)
1053 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1054 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1055 t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1056
1057 while (TYPE_NAME (t2)
1058 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1059 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1060 t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1061
1062 /* C90 didn't have the requirement that the two tags be the same. */
1063 if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1064 return 0;
1065
1066 /* C90 didn't say what happened if one or both of the types were
1067 incomplete; we choose to follow C99 rules here, which is that they
1068 are compatible. */
1069 if (TYPE_SIZE (t1) == NULL
1070 || TYPE_SIZE (t2) == NULL)
1071 return 1;
1072
1073 {
1074 const struct tagged_tu_seen_cache * tts_i;
1075 for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1076 if (tts_i->t1 == t1 && tts_i->t2 == t2)
1077 return tts_i->val;
1078 }
1079
1080 switch (TREE_CODE (t1))
1081 {
1082 case ENUMERAL_TYPE:
1083 {
1084 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1085 /* Speed up the case where the type values are in the same order. */
1086 tree tv1 = TYPE_VALUES (t1);
1087 tree tv2 = TYPE_VALUES (t2);
1088
1089 if (tv1 == tv2)
1090 {
1091 return 1;
1092 }
1093
1094 for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1095 {
1096 if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1097 break;
1098 if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1099 {
1100 tu->val = 0;
1101 return 0;
1102 }
1103 }
1104
1105 if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1106 {
1107 return 1;
1108 }
1109 if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1110 {
1111 tu->val = 0;
1112 return 0;
1113 }
1114
1115 if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1116 {
1117 tu->val = 0;
1118 return 0;
1119 }
1120
1121 for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1122 {
1123 s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1124 if (s2 == NULL
1125 || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1126 {
1127 tu->val = 0;
1128 return 0;
1129 }
1130 }
1131 return 1;
1132 }
1133
1134 case UNION_TYPE:
1135 {
1136 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1137 if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1138 {
1139 tu->val = 0;
1140 return 0;
1141 }
1142
1143 /* Speed up the common case where the fields are in the same order. */
1144 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1145 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1146 {
1147 int result;
1148
1149
1150 if (DECL_NAME (s1) == NULL
1151 || DECL_NAME (s1) != DECL_NAME (s2))
1152 break;
1153 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1154 if (result == 0)
1155 {
1156 tu->val = 0;
1157 return 0;
1158 }
1159 if (result == 2)
1160 needs_warning = true;
1161
1162 if (TREE_CODE (s1) == FIELD_DECL
1163 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1164 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1165 {
1166 tu->val = 0;
1167 return 0;
1168 }
1169 }
1170 if (!s1 && !s2)
1171 {
1172 tu->val = needs_warning ? 2 : 1;
1173 return tu->val;
1174 }
1175
1176 for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1177 {
1178 bool ok = false;
1179
1180 if (DECL_NAME (s1) != NULL)
1181 for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1182 if (DECL_NAME (s1) == DECL_NAME (s2))
1183 {
1184 int result;
1185 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1186 if (result == 0)
1187 {
1188 tu->val = 0;
1189 return 0;
1190 }
1191 if (result == 2)
1192 needs_warning = true;
1193
1194 if (TREE_CODE (s1) == FIELD_DECL
1195 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1196 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1197 break;
1198
1199 ok = true;
1200 break;
1201 }
1202 if (!ok)
1203 {
1204 tu->val = 0;
1205 return 0;
1206 }
1207 }
1208 tu->val = needs_warning ? 2 : 10;
1209 return tu->val;
1210 }
1211
1212 case RECORD_TYPE:
1213 {
1214 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1215
1216 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1217 s1 && s2;
1218 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1219 {
1220 int result;
1221 if (TREE_CODE (s1) != TREE_CODE (s2)
1222 || DECL_NAME (s1) != DECL_NAME (s2))
1223 break;
1224 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1225 if (result == 0)
1226 break;
1227 if (result == 2)
1228 needs_warning = true;
1229
1230 if (TREE_CODE (s1) == FIELD_DECL
1231 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1232 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1233 break;
1234 }
1235 if (s1 && s2)
1236 tu->val = 0;
1237 else
1238 tu->val = needs_warning ? 2 : 1;
1239 return tu->val;
1240 }
1241
1242 default:
1243 gcc_unreachable ();
1244 }
1245 }
1246
1247 /* Return 1 if two function types F1 and F2 are compatible.
1248 If either type specifies no argument types,
1249 the other must specify a fixed number of self-promoting arg types.
1250 Otherwise, if one type specifies only the number of arguments,
1251 the other must specify that number of self-promoting arg types.
1252 Otherwise, the argument types must match. */
1253
1254 static int
1255 function_types_compatible_p (tree f1, tree f2)
1256 {
1257 tree args1, args2;
1258 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1259 int val = 1;
1260 int val1;
1261 tree ret1, ret2;
1262
1263 ret1 = TREE_TYPE (f1);
1264 ret2 = TREE_TYPE (f2);
1265
1266 /* 'volatile' qualifiers on a function's return type used to mean
1267 the function is noreturn. */
1268 if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1269 pedwarn ("function return types not compatible due to %<volatile%>");
1270 if (TYPE_VOLATILE (ret1))
1271 ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1272 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1273 if (TYPE_VOLATILE (ret2))
1274 ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1275 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1276 val = comptypes_internal (ret1, ret2);
1277 if (val == 0)
1278 return 0;
1279
1280 args1 = TYPE_ARG_TYPES (f1);
1281 args2 = TYPE_ARG_TYPES (f2);
1282
1283 /* An unspecified parmlist matches any specified parmlist
1284 whose argument types don't need default promotions. */
1285
1286 if (args1 == 0)
1287 {
1288 if (!self_promoting_args_p (args2))
1289 return 0;
1290 /* If one of these types comes from a non-prototype fn definition,
1291 compare that with the other type's arglist.
1292 If they don't match, ask for a warning (but no error). */
1293 if (TYPE_ACTUAL_ARG_TYPES (f1)
1294 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1295 val = 2;
1296 return val;
1297 }
1298 if (args2 == 0)
1299 {
1300 if (!self_promoting_args_p (args1))
1301 return 0;
1302 if (TYPE_ACTUAL_ARG_TYPES (f2)
1303 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1304 val = 2;
1305 return val;
1306 }
1307
1308 /* Both types have argument lists: compare them and propagate results. */
1309 val1 = type_lists_compatible_p (args1, args2);
1310 return val1 != 1 ? val1 : val;
1311 }
1312
1313 /* Check two lists of types for compatibility,
1314 returning 0 for incompatible, 1 for compatible,
1315 or 2 for compatible with warning. */
1316
1317 static int
1318 type_lists_compatible_p (tree args1, tree args2)
1319 {
1320 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1321 int val = 1;
1322 int newval = 0;
1323
1324 while (1)
1325 {
1326 tree a1, mv1, a2, mv2;
1327 if (args1 == 0 && args2 == 0)
1328 return val;
1329 /* If one list is shorter than the other,
1330 they fail to match. */
1331 if (args1 == 0 || args2 == 0)
1332 return 0;
1333 mv1 = a1 = TREE_VALUE (args1);
1334 mv2 = a2 = TREE_VALUE (args2);
1335 if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1336 mv1 = TYPE_MAIN_VARIANT (mv1);
1337 if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1338 mv2 = TYPE_MAIN_VARIANT (mv2);
1339 /* A null pointer instead of a type
1340 means there is supposed to be an argument
1341 but nothing is specified about what type it has.
1342 So match anything that self-promotes. */
1343 if (a1 == 0)
1344 {
1345 if (c_type_promotes_to (a2) != a2)
1346 return 0;
1347 }
1348 else if (a2 == 0)
1349 {
1350 if (c_type_promotes_to (a1) != a1)
1351 return 0;
1352 }
1353 /* If one of the lists has an error marker, ignore this arg. */
1354 else if (TREE_CODE (a1) == ERROR_MARK
1355 || TREE_CODE (a2) == ERROR_MARK)
1356 ;
1357 else if (!(newval = comptypes_internal (mv1, mv2)))
1358 {
1359 /* Allow wait (union {union wait *u; int *i} *)
1360 and wait (union wait *) to be compatible. */
1361 if (TREE_CODE (a1) == UNION_TYPE
1362 && (TYPE_NAME (a1) == 0
1363 || TYPE_TRANSPARENT_UNION (a1))
1364 && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1365 && tree_int_cst_equal (TYPE_SIZE (a1),
1366 TYPE_SIZE (a2)))
1367 {
1368 tree memb;
1369 for (memb = TYPE_FIELDS (a1);
1370 memb; memb = TREE_CHAIN (memb))
1371 {
1372 tree mv3 = TREE_TYPE (memb);
1373 if (mv3 && mv3 != error_mark_node
1374 && TREE_CODE (mv3) != ARRAY_TYPE)
1375 mv3 = TYPE_MAIN_VARIANT (mv3);
1376 if (comptypes_internal (mv3, mv2))
1377 break;
1378 }
1379 if (memb == 0)
1380 return 0;
1381 }
1382 else if (TREE_CODE (a2) == UNION_TYPE
1383 && (TYPE_NAME (a2) == 0
1384 || TYPE_TRANSPARENT_UNION (a2))
1385 && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1386 && tree_int_cst_equal (TYPE_SIZE (a2),
1387 TYPE_SIZE (a1)))
1388 {
1389 tree memb;
1390 for (memb = TYPE_FIELDS (a2);
1391 memb; memb = TREE_CHAIN (memb))
1392 {
1393 tree mv3 = TREE_TYPE (memb);
1394 if (mv3 && mv3 != error_mark_node
1395 && TREE_CODE (mv3) != ARRAY_TYPE)
1396 mv3 = TYPE_MAIN_VARIANT (mv3);
1397 if (comptypes_internal (mv3, mv1))
1398 break;
1399 }
1400 if (memb == 0)
1401 return 0;
1402 }
1403 else
1404 return 0;
1405 }
1406
1407 /* comptypes said ok, but record if it said to warn. */
1408 if (newval > val)
1409 val = newval;
1410
1411 args1 = TREE_CHAIN (args1);
1412 args2 = TREE_CHAIN (args2);
1413 }
1414 }
1415 \f
1416 /* Compute the size to increment a pointer by. */
1417
1418 static tree
1419 c_size_in_bytes (tree type)
1420 {
1421 enum tree_code code = TREE_CODE (type);
1422
1423 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1424 return size_one_node;
1425
1426 if (!COMPLETE_OR_VOID_TYPE_P (type))
1427 {
1428 error ("arithmetic on pointer to an incomplete type");
1429 return size_one_node;
1430 }
1431
1432 /* Convert in case a char is more than one unit. */
1433 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1434 size_int (TYPE_PRECISION (char_type_node)
1435 / BITS_PER_UNIT));
1436 }
1437 \f
1438 /* Return either DECL or its known constant value (if it has one). */
1439
1440 tree
1441 decl_constant_value (tree decl)
1442 {
1443 if (/* Don't change a variable array bound or initial value to a constant
1444 in a place where a variable is invalid. Note that DECL_INITIAL
1445 isn't valid for a PARM_DECL. */
1446 current_function_decl != 0
1447 && TREE_CODE (decl) != PARM_DECL
1448 && !TREE_THIS_VOLATILE (decl)
1449 && TREE_READONLY (decl)
1450 && DECL_INITIAL (decl) != 0
1451 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1452 /* This is invalid if initial value is not constant.
1453 If it has either a function call, a memory reference,
1454 or a variable, then re-evaluating it could give different results. */
1455 && TREE_CONSTANT (DECL_INITIAL (decl))
1456 /* Check for cases where this is sub-optimal, even though valid. */
1457 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1458 return DECL_INITIAL (decl);
1459 return decl;
1460 }
1461
1462 /* Return either DECL or its known constant value (if it has one), but
1463 return DECL if pedantic or DECL has mode BLKmode. This is for
1464 bug-compatibility with the old behavior of decl_constant_value
1465 (before GCC 3.0); every use of this function is a bug and it should
1466 be removed before GCC 3.1. It is not appropriate to use pedantic
1467 in a way that affects optimization, and BLKmode is probably not the
1468 right test for avoiding misoptimizations either. */
1469
1470 static tree
1471 decl_constant_value_for_broken_optimization (tree decl)
1472 {
1473 tree ret;
1474
1475 if (pedantic || DECL_MODE (decl) == BLKmode)
1476 return decl;
1477
1478 ret = decl_constant_value (decl);
1479 /* Avoid unwanted tree sharing between the initializer and current
1480 function's body where the tree can be modified e.g. by the
1481 gimplifier. */
1482 if (ret != decl && TREE_STATIC (decl))
1483 ret = unshare_expr (ret);
1484 return ret;
1485 }
1486
1487 /* Convert the array expression EXP to a pointer. */
1488 static tree
1489 array_to_pointer_conversion (tree exp)
1490 {
1491 tree orig_exp = exp;
1492 tree type = TREE_TYPE (exp);
1493 tree adr;
1494 tree restype = TREE_TYPE (type);
1495 tree ptrtype;
1496
1497 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1498
1499 STRIP_TYPE_NOPS (exp);
1500
1501 if (TREE_NO_WARNING (orig_exp))
1502 TREE_NO_WARNING (exp) = 1;
1503
1504 ptrtype = build_pointer_type (restype);
1505
1506 if (TREE_CODE (exp) == INDIRECT_REF)
1507 return convert (ptrtype, TREE_OPERAND (exp, 0));
1508
1509 if (TREE_CODE (exp) == VAR_DECL)
1510 {
1511 /* We are making an ADDR_EXPR of ptrtype. This is a valid
1512 ADDR_EXPR because it's the best way of representing what
1513 happens in C when we take the address of an array and place
1514 it in a pointer to the element type. */
1515 adr = build1 (ADDR_EXPR, ptrtype, exp);
1516 if (!c_mark_addressable (exp))
1517 return error_mark_node;
1518 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
1519 return adr;
1520 }
1521
1522 /* This way is better for a COMPONENT_REF since it can
1523 simplify the offset for a component. */
1524 adr = build_unary_op (ADDR_EXPR, exp, 1);
1525 return convert (ptrtype, adr);
1526 }
1527
1528 /* Convert the function expression EXP to a pointer. */
1529 static tree
1530 function_to_pointer_conversion (tree exp)
1531 {
1532 tree orig_exp = exp;
1533
1534 gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1535
1536 STRIP_TYPE_NOPS (exp);
1537
1538 if (TREE_NO_WARNING (orig_exp))
1539 TREE_NO_WARNING (exp) = 1;
1540
1541 return build_unary_op (ADDR_EXPR, exp, 0);
1542 }
1543
1544 /* Perform the default conversion of arrays and functions to pointers.
1545 Return the result of converting EXP. For any other expression, just
1546 return EXP after removing NOPs. */
1547
1548 struct c_expr
1549 default_function_array_conversion (struct c_expr exp)
1550 {
1551 tree orig_exp = exp.value;
1552 tree type = TREE_TYPE (exp.value);
1553 enum tree_code code = TREE_CODE (type);
1554
1555 switch (code)
1556 {
1557 case ARRAY_TYPE:
1558 {
1559 bool not_lvalue = false;
1560 bool lvalue_array_p;
1561
1562 while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1563 || TREE_CODE (exp.value) == NOP_EXPR
1564 || TREE_CODE (exp.value) == CONVERT_EXPR)
1565 && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1566 {
1567 if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1568 not_lvalue = true;
1569 exp.value = TREE_OPERAND (exp.value, 0);
1570 }
1571
1572 if (TREE_NO_WARNING (orig_exp))
1573 TREE_NO_WARNING (exp.value) = 1;
1574
1575 lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1576 if (!flag_isoc99 && !lvalue_array_p)
1577 {
1578 /* Before C99, non-lvalue arrays do not decay to pointers.
1579 Normally, using such an array would be invalid; but it can
1580 be used correctly inside sizeof or as a statement expression.
1581 Thus, do not give an error here; an error will result later. */
1582 return exp;
1583 }
1584
1585 exp.value = array_to_pointer_conversion (exp.value);
1586 }
1587 break;
1588 case FUNCTION_TYPE:
1589 exp.value = function_to_pointer_conversion (exp.value);
1590 break;
1591 default:
1592 STRIP_TYPE_NOPS (exp.value);
1593 if (TREE_NO_WARNING (orig_exp))
1594 TREE_NO_WARNING (exp.value) = 1;
1595 break;
1596 }
1597
1598 return exp;
1599 }
1600
1601
1602 /* EXP is an expression of integer type. Apply the integer promotions
1603 to it and return the promoted value. */
1604
1605 tree
1606 perform_integral_promotions (tree exp)
1607 {
1608 tree type = TREE_TYPE (exp);
1609 enum tree_code code = TREE_CODE (type);
1610
1611 gcc_assert (INTEGRAL_TYPE_P (type));
1612
1613 /* Normally convert enums to int,
1614 but convert wide enums to something wider. */
1615 if (code == ENUMERAL_TYPE)
1616 {
1617 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1618 TYPE_PRECISION (integer_type_node)),
1619 ((TYPE_PRECISION (type)
1620 >= TYPE_PRECISION (integer_type_node))
1621 && TYPE_UNSIGNED (type)));
1622
1623 return convert (type, exp);
1624 }
1625
1626 /* ??? This should no longer be needed now bit-fields have their
1627 proper types. */
1628 if (TREE_CODE (exp) == COMPONENT_REF
1629 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1630 /* If it's thinner than an int, promote it like a
1631 c_promoting_integer_type_p, otherwise leave it alone. */
1632 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1633 TYPE_PRECISION (integer_type_node)))
1634 return convert (integer_type_node, exp);
1635
1636 if (c_promoting_integer_type_p (type))
1637 {
1638 /* Preserve unsignedness if not really getting any wider. */
1639 if (TYPE_UNSIGNED (type)
1640 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1641 return convert (unsigned_type_node, exp);
1642
1643 return convert (integer_type_node, exp);
1644 }
1645
1646 return exp;
1647 }
1648
1649
1650 /* Perform default promotions for C data used in expressions.
1651 Enumeral types or short or char are converted to int.
1652 In addition, manifest constants symbols are replaced by their values. */
1653
1654 tree
1655 default_conversion (tree exp)
1656 {
1657 tree orig_exp;
1658 tree type = TREE_TYPE (exp);
1659 enum tree_code code = TREE_CODE (type);
1660
1661 /* Functions and arrays have been converted during parsing. */
1662 gcc_assert (code != FUNCTION_TYPE);
1663 if (code == ARRAY_TYPE)
1664 return exp;
1665
1666 /* Constants can be used directly unless they're not loadable. */
1667 if (TREE_CODE (exp) == CONST_DECL)
1668 exp = DECL_INITIAL (exp);
1669
1670 /* Replace a nonvolatile const static variable with its value unless
1671 it is an array, in which case we must be sure that taking the
1672 address of the array produces consistent results. */
1673 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1674 {
1675 exp = decl_constant_value_for_broken_optimization (exp);
1676 type = TREE_TYPE (exp);
1677 }
1678
1679 /* Strip no-op conversions. */
1680 orig_exp = exp;
1681 STRIP_TYPE_NOPS (exp);
1682
1683 if (TREE_NO_WARNING (orig_exp))
1684 TREE_NO_WARNING (exp) = 1;
1685
1686 if (INTEGRAL_TYPE_P (type))
1687 return perform_integral_promotions (exp);
1688
1689 if (code == VOID_TYPE)
1690 {
1691 error ("void value not ignored as it ought to be");
1692 return error_mark_node;
1693 }
1694 return exp;
1695 }
1696 \f
1697 /* Look up COMPONENT in a structure or union DECL.
1698
1699 If the component name is not found, returns NULL_TREE. Otherwise,
1700 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1701 stepping down the chain to the component, which is in the last
1702 TREE_VALUE of the list. Normally the list is of length one, but if
1703 the component is embedded within (nested) anonymous structures or
1704 unions, the list steps down the chain to the component. */
1705
1706 static tree
1707 lookup_field (tree decl, tree component)
1708 {
1709 tree type = TREE_TYPE (decl);
1710 tree field;
1711
1712 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1713 to the field elements. Use a binary search on this array to quickly
1714 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1715 will always be set for structures which have many elements. */
1716
1717 if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1718 {
1719 int bot, top, half;
1720 tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1721
1722 field = TYPE_FIELDS (type);
1723 bot = 0;
1724 top = TYPE_LANG_SPECIFIC (type)->s->len;
1725 while (top - bot > 1)
1726 {
1727 half = (top - bot + 1) >> 1;
1728 field = field_array[bot+half];
1729
1730 if (DECL_NAME (field) == NULL_TREE)
1731 {
1732 /* Step through all anon unions in linear fashion. */
1733 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1734 {
1735 field = field_array[bot++];
1736 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1737 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1738 {
1739 tree anon = lookup_field (field, component);
1740
1741 if (anon)
1742 return tree_cons (NULL_TREE, field, anon);
1743 }
1744 }
1745
1746 /* Entire record is only anon unions. */
1747 if (bot > top)
1748 return NULL_TREE;
1749
1750 /* Restart the binary search, with new lower bound. */
1751 continue;
1752 }
1753
1754 if (DECL_NAME (field) == component)
1755 break;
1756 if (DECL_NAME (field) < component)
1757 bot += half;
1758 else
1759 top = bot + half;
1760 }
1761
1762 if (DECL_NAME (field_array[bot]) == component)
1763 field = field_array[bot];
1764 else if (DECL_NAME (field) != component)
1765 return NULL_TREE;
1766 }
1767 else
1768 {
1769 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1770 {
1771 if (DECL_NAME (field) == NULL_TREE
1772 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1773 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1774 {
1775 tree anon = lookup_field (field, component);
1776
1777 if (anon)
1778 return tree_cons (NULL_TREE, field, anon);
1779 }
1780
1781 if (DECL_NAME (field) == component)
1782 break;
1783 }
1784
1785 if (field == NULL_TREE)
1786 return NULL_TREE;
1787 }
1788
1789 return tree_cons (NULL_TREE, field, NULL_TREE);
1790 }
1791
1792 /* Make an expression to refer to the COMPONENT field of
1793 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1794
1795 tree
1796 build_component_ref (tree datum, tree component)
1797 {
1798 tree type = TREE_TYPE (datum);
1799 enum tree_code code = TREE_CODE (type);
1800 tree field = NULL;
1801 tree ref;
1802
1803 if (!objc_is_public (datum, component))
1804 return error_mark_node;
1805
1806 /* See if there is a field or component with name COMPONENT. */
1807
1808 if (code == RECORD_TYPE || code == UNION_TYPE)
1809 {
1810 if (!COMPLETE_TYPE_P (type))
1811 {
1812 c_incomplete_type_error (NULL_TREE, type);
1813 return error_mark_node;
1814 }
1815
1816 field = lookup_field (datum, component);
1817
1818 if (!field)
1819 {
1820 error ("%qT has no member named %qE", type, component);
1821 return error_mark_node;
1822 }
1823
1824 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1825 This might be better solved in future the way the C++ front
1826 end does it - by giving the anonymous entities each a
1827 separate name and type, and then have build_component_ref
1828 recursively call itself. We can't do that here. */
1829 do
1830 {
1831 tree subdatum = TREE_VALUE (field);
1832 int quals;
1833 tree subtype;
1834
1835 if (TREE_TYPE (subdatum) == error_mark_node)
1836 return error_mark_node;
1837
1838 quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1839 quals |= TYPE_QUALS (TREE_TYPE (datum));
1840 subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1841
1842 ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1843 NULL_TREE);
1844 if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1845 TREE_READONLY (ref) = 1;
1846 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1847 TREE_THIS_VOLATILE (ref) = 1;
1848
1849 if (TREE_DEPRECATED (subdatum))
1850 warn_deprecated_use (subdatum);
1851
1852 datum = ref;
1853
1854 field = TREE_CHAIN (field);
1855 }
1856 while (field);
1857
1858 return ref;
1859 }
1860 else if (code != ERROR_MARK)
1861 error ("request for member %qE in something not a structure or union",
1862 component);
1863
1864 return error_mark_node;
1865 }
1866 \f
1867 /* Given an expression PTR for a pointer, return an expression
1868 for the value pointed to.
1869 ERRORSTRING is the name of the operator to appear in error messages. */
1870
1871 tree
1872 build_indirect_ref (tree ptr, const char *errorstring)
1873 {
1874 tree pointer = default_conversion (ptr);
1875 tree type = TREE_TYPE (pointer);
1876
1877 if (TREE_CODE (type) == POINTER_TYPE)
1878 {
1879 if (TREE_CODE (pointer) == CONVERT_EXPR
1880 || TREE_CODE (pointer) == NOP_EXPR
1881 || TREE_CODE (pointer) == VIEW_CONVERT_EXPR)
1882 {
1883 /* If a warning is issued, mark it to avoid duplicates from
1884 the backend. This only needs to be done at
1885 warn_strict_aliasing > 2. */
1886 if (warn_strict_aliasing > 2)
1887 if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (pointer, 0)),
1888 type, TREE_OPERAND (pointer, 0)))
1889 TREE_NO_WARNING (pointer) = 1;
1890 }
1891
1892 if (TREE_CODE (pointer) == ADDR_EXPR
1893 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1894 == TREE_TYPE (type)))
1895 return TREE_OPERAND (pointer, 0);
1896 else
1897 {
1898 tree t = TREE_TYPE (type);
1899 tree ref;
1900
1901 ref = build1 (INDIRECT_REF, t, pointer);
1902
1903 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1904 {
1905 error ("dereferencing pointer to incomplete type");
1906 return error_mark_node;
1907 }
1908 if (VOID_TYPE_P (t) && skip_evaluation == 0)
1909 warning (0, "dereferencing %<void *%> pointer");
1910
1911 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1912 so that we get the proper error message if the result is used
1913 to assign to. Also, &* is supposed to be a no-op.
1914 And ANSI C seems to specify that the type of the result
1915 should be the const type. */
1916 /* A de-reference of a pointer to const is not a const. It is valid
1917 to change it via some other pointer. */
1918 TREE_READONLY (ref) = TYPE_READONLY (t);
1919 TREE_SIDE_EFFECTS (ref)
1920 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1921 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1922 return ref;
1923 }
1924 }
1925 else if (TREE_CODE (pointer) != ERROR_MARK)
1926 error ("invalid type argument of %qs", errorstring);
1927 return error_mark_node;
1928 }
1929
1930 /* This handles expressions of the form "a[i]", which denotes
1931 an array reference.
1932
1933 This is logically equivalent in C to *(a+i), but we may do it differently.
1934 If A is a variable or a member, we generate a primitive ARRAY_REF.
1935 This avoids forcing the array out of registers, and can work on
1936 arrays that are not lvalues (for example, members of structures returned
1937 by functions). */
1938
1939 tree
1940 build_array_ref (tree array, tree index)
1941 {
1942 bool swapped = false;
1943 if (TREE_TYPE (array) == error_mark_node
1944 || TREE_TYPE (index) == error_mark_node)
1945 return error_mark_node;
1946
1947 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1948 && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1949 {
1950 tree temp;
1951 if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1952 && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1953 {
1954 error ("subscripted value is neither array nor pointer");
1955 return error_mark_node;
1956 }
1957 temp = array;
1958 array = index;
1959 index = temp;
1960 swapped = true;
1961 }
1962
1963 if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1964 {
1965 error ("array subscript is not an integer");
1966 return error_mark_node;
1967 }
1968
1969 if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1970 {
1971 error ("subscripted value is pointer to function");
1972 return error_mark_node;
1973 }
1974
1975 /* ??? Existing practice has been to warn only when the char
1976 index is syntactically the index, not for char[array]. */
1977 if (!swapped)
1978 warn_array_subscript_with_type_char (index);
1979
1980 /* Apply default promotions *after* noticing character types. */
1981 index = default_conversion (index);
1982
1983 gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1984
1985 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1986 {
1987 tree rval, type;
1988
1989 /* An array that is indexed by a non-constant
1990 cannot be stored in a register; we must be able to do
1991 address arithmetic on its address.
1992 Likewise an array of elements of variable size. */
1993 if (TREE_CODE (index) != INTEGER_CST
1994 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1995 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1996 {
1997 if (!c_mark_addressable (array))
1998 return error_mark_node;
1999 }
2000 /* An array that is indexed by a constant value which is not within
2001 the array bounds cannot be stored in a register either; because we
2002 would get a crash in store_bit_field/extract_bit_field when trying
2003 to access a non-existent part of the register. */
2004 if (TREE_CODE (index) == INTEGER_CST
2005 && TYPE_DOMAIN (TREE_TYPE (array))
2006 && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
2007 {
2008 if (!c_mark_addressable (array))
2009 return error_mark_node;
2010 }
2011
2012 if (pedantic)
2013 {
2014 tree foo = array;
2015 while (TREE_CODE (foo) == COMPONENT_REF)
2016 foo = TREE_OPERAND (foo, 0);
2017 if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2018 pedwarn ("ISO C forbids subscripting %<register%> array");
2019 else if (!flag_isoc99 && !lvalue_p (foo))
2020 pedwarn ("ISO C90 forbids subscripting non-lvalue array");
2021 }
2022
2023 type = TREE_TYPE (TREE_TYPE (array));
2024 if (TREE_CODE (type) != ARRAY_TYPE)
2025 type = TYPE_MAIN_VARIANT (type);
2026 rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2027 /* Array ref is const/volatile if the array elements are
2028 or if the array is. */
2029 TREE_READONLY (rval)
2030 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2031 | TREE_READONLY (array));
2032 TREE_SIDE_EFFECTS (rval)
2033 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2034 | TREE_SIDE_EFFECTS (array));
2035 TREE_THIS_VOLATILE (rval)
2036 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2037 /* This was added by rms on 16 Nov 91.
2038 It fixes vol struct foo *a; a->elts[1]
2039 in an inline function.
2040 Hope it doesn't break something else. */
2041 | TREE_THIS_VOLATILE (array));
2042 return require_complete_type (fold (rval));
2043 }
2044 else
2045 {
2046 tree ar = default_conversion (array);
2047
2048 if (ar == error_mark_node)
2049 return ar;
2050
2051 gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2052 gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2053
2054 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2055 "array indexing");
2056 }
2057 }
2058 \f
2059 /* Build an external reference to identifier ID. FUN indicates
2060 whether this will be used for a function call. LOC is the source
2061 location of the identifier. */
2062 tree
2063 build_external_ref (tree id, int fun, location_t loc)
2064 {
2065 tree ref;
2066 tree decl = lookup_name (id);
2067
2068 /* In Objective-C, an instance variable (ivar) may be preferred to
2069 whatever lookup_name() found. */
2070 decl = objc_lookup_ivar (decl, id);
2071
2072 if (decl && decl != error_mark_node)
2073 ref = decl;
2074 else if (fun)
2075 /* Implicit function declaration. */
2076 ref = implicitly_declare (id);
2077 else if (decl == error_mark_node)
2078 /* Don't complain about something that's already been
2079 complained about. */
2080 return error_mark_node;
2081 else
2082 {
2083 undeclared_variable (id, loc);
2084 return error_mark_node;
2085 }
2086
2087 if (TREE_TYPE (ref) == error_mark_node)
2088 return error_mark_node;
2089
2090 if (TREE_DEPRECATED (ref))
2091 warn_deprecated_use (ref);
2092
2093 if (!skip_evaluation)
2094 assemble_external (ref);
2095 TREE_USED (ref) = 1;
2096
2097 if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2098 {
2099 if (!in_sizeof && !in_typeof)
2100 C_DECL_USED (ref) = 1;
2101 else if (DECL_INITIAL (ref) == 0
2102 && DECL_EXTERNAL (ref)
2103 && !TREE_PUBLIC (ref))
2104 record_maybe_used_decl (ref);
2105 }
2106
2107 if (TREE_CODE (ref) == CONST_DECL)
2108 {
2109 used_types_insert (TREE_TYPE (ref));
2110 ref = DECL_INITIAL (ref);
2111 TREE_CONSTANT (ref) = 1;
2112 TREE_INVARIANT (ref) = 1;
2113 }
2114 else if (current_function_decl != 0
2115 && !DECL_FILE_SCOPE_P (current_function_decl)
2116 && (TREE_CODE (ref) == VAR_DECL
2117 || TREE_CODE (ref) == PARM_DECL
2118 || TREE_CODE (ref) == FUNCTION_DECL))
2119 {
2120 tree context = decl_function_context (ref);
2121
2122 if (context != 0 && context != current_function_decl)
2123 DECL_NONLOCAL (ref) = 1;
2124 }
2125 /* C99 6.7.4p3: An inline definition of a function with external
2126 linkage ... shall not contain a reference to an identifier with
2127 internal linkage. */
2128 else if (current_function_decl != 0
2129 && DECL_DECLARED_INLINE_P (current_function_decl)
2130 && DECL_EXTERNAL (current_function_decl)
2131 && VAR_OR_FUNCTION_DECL_P (ref)
2132 && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2133 && ! TREE_PUBLIC (ref))
2134 pedwarn ("%H%qD is static but used in inline function %qD "
2135 "which is not static", &loc, ref, current_function_decl);
2136
2137 return ref;
2138 }
2139
2140 /* Record details of decls possibly used inside sizeof or typeof. */
2141 struct maybe_used_decl
2142 {
2143 /* The decl. */
2144 tree decl;
2145 /* The level seen at (in_sizeof + in_typeof). */
2146 int level;
2147 /* The next one at this level or above, or NULL. */
2148 struct maybe_used_decl *next;
2149 };
2150
2151 static struct maybe_used_decl *maybe_used_decls;
2152
2153 /* Record that DECL, an undefined static function reference seen
2154 inside sizeof or typeof, might be used if the operand of sizeof is
2155 a VLA type or the operand of typeof is a variably modified
2156 type. */
2157
2158 static void
2159 record_maybe_used_decl (tree decl)
2160 {
2161 struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2162 t->decl = decl;
2163 t->level = in_sizeof + in_typeof;
2164 t->next = maybe_used_decls;
2165 maybe_used_decls = t;
2166 }
2167
2168 /* Pop the stack of decls possibly used inside sizeof or typeof. If
2169 USED is false, just discard them. If it is true, mark them used
2170 (if no longer inside sizeof or typeof) or move them to the next
2171 level up (if still inside sizeof or typeof). */
2172
2173 void
2174 pop_maybe_used (bool used)
2175 {
2176 struct maybe_used_decl *p = maybe_used_decls;
2177 int cur_level = in_sizeof + in_typeof;
2178 while (p && p->level > cur_level)
2179 {
2180 if (used)
2181 {
2182 if (cur_level == 0)
2183 C_DECL_USED (p->decl) = 1;
2184 else
2185 p->level = cur_level;
2186 }
2187 p = p->next;
2188 }
2189 if (!used || cur_level == 0)
2190 maybe_used_decls = p;
2191 }
2192
2193 /* Return the result of sizeof applied to EXPR. */
2194
2195 struct c_expr
2196 c_expr_sizeof_expr (struct c_expr expr)
2197 {
2198 struct c_expr ret;
2199 if (expr.value == error_mark_node)
2200 {
2201 ret.value = error_mark_node;
2202 ret.original_code = ERROR_MARK;
2203 pop_maybe_used (false);
2204 }
2205 else
2206 {
2207 ret.value = c_sizeof (TREE_TYPE (expr.value));
2208 ret.original_code = ERROR_MARK;
2209 if (c_vla_type_p (TREE_TYPE (expr.value)))
2210 {
2211 /* sizeof is evaluated when given a vla (C99 6.5.3.4p2). */
2212 ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2213 }
2214 pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2215 }
2216 return ret;
2217 }
2218
2219 /* Return the result of sizeof applied to T, a structure for the type
2220 name passed to sizeof (rather than the type itself). */
2221
2222 struct c_expr
2223 c_expr_sizeof_type (struct c_type_name *t)
2224 {
2225 tree type;
2226 struct c_expr ret;
2227 type = groktypename (t);
2228 ret.value = c_sizeof (type);
2229 ret.original_code = ERROR_MARK;
2230 pop_maybe_used (type != error_mark_node
2231 ? C_TYPE_VARIABLE_SIZE (type) : false);
2232 return ret;
2233 }
2234
2235 /* Build a function call to function FUNCTION with parameters PARAMS.
2236 PARAMS is a list--a chain of TREE_LIST nodes--in which the
2237 TREE_VALUE of each node is a parameter-expression.
2238 FUNCTION's data type may be a function type or a pointer-to-function. */
2239
2240 tree
2241 build_function_call (tree function, tree params)
2242 {
2243 tree fntype, fundecl = 0;
2244 tree name = NULL_TREE, result;
2245 tree tem;
2246 int nargs;
2247 tree *argarray;
2248
2249
2250 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
2251 STRIP_TYPE_NOPS (function);
2252
2253 /* Convert anything with function type to a pointer-to-function. */
2254 if (TREE_CODE (function) == FUNCTION_DECL)
2255 {
2256 /* Implement type-directed function overloading for builtins.
2257 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2258 handle all the type checking. The result is a complete expression
2259 that implements this function call. */
2260 tem = resolve_overloaded_builtin (function, params);
2261 if (tem)
2262 return tem;
2263
2264 name = DECL_NAME (function);
2265 fundecl = function;
2266 }
2267 if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2268 function = function_to_pointer_conversion (function);
2269
2270 /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2271 expressions, like those used for ObjC messenger dispatches. */
2272 function = objc_rewrite_function_call (function, params);
2273
2274 fntype = TREE_TYPE (function);
2275
2276 if (TREE_CODE (fntype) == ERROR_MARK)
2277 return error_mark_node;
2278
2279 if (!(TREE_CODE (fntype) == POINTER_TYPE
2280 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2281 {
2282 error ("called object %qE is not a function", function);
2283 return error_mark_node;
2284 }
2285
2286 if (fundecl && TREE_THIS_VOLATILE (fundecl))
2287 current_function_returns_abnormally = 1;
2288
2289 /* fntype now gets the type of function pointed to. */
2290 fntype = TREE_TYPE (fntype);
2291
2292 /* Check that the function is called through a compatible prototype.
2293 If it is not, replace the call by a trap, wrapped up in a compound
2294 expression if necessary. This has the nice side-effect to prevent
2295 the tree-inliner from generating invalid assignment trees which may
2296 blow up in the RTL expander later. */
2297 if ((TREE_CODE (function) == NOP_EXPR
2298 || TREE_CODE (function) == CONVERT_EXPR)
2299 && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2300 && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2301 && !comptypes (fntype, TREE_TYPE (tem)))
2302 {
2303 tree return_type = TREE_TYPE (fntype);
2304 tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2305 NULL_TREE);
2306
2307 /* This situation leads to run-time undefined behavior. We can't,
2308 therefore, simply error unless we can prove that all possible
2309 executions of the program must execute the code. */
2310 warning (0, "function called through a non-compatible type");
2311
2312 /* We can, however, treat "undefined" any way we please.
2313 Call abort to encourage the user to fix the program. */
2314 inform ("if this code is reached, the program will abort");
2315
2316 if (VOID_TYPE_P (return_type))
2317 return trap;
2318 else
2319 {
2320 tree rhs;
2321
2322 if (AGGREGATE_TYPE_P (return_type))
2323 rhs = build_compound_literal (return_type,
2324 build_constructor (return_type, 0));
2325 else
2326 rhs = fold_convert (return_type, integer_zero_node);
2327
2328 return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2329 }
2330 }
2331
2332 /* Convert the parameters to the types declared in the
2333 function prototype, or apply default promotions. */
2334
2335 nargs = list_length (params);
2336 argarray = (tree *) alloca (nargs * sizeof (tree));
2337 nargs = convert_arguments (nargs, argarray, TYPE_ARG_TYPES (fntype),
2338 params, function, fundecl);
2339 if (nargs < 0)
2340 return error_mark_node;
2341
2342 /* Check that the arguments to the function are valid. */
2343
2344 check_function_arguments (TYPE_ATTRIBUTES (fntype), nargs, argarray,
2345 TYPE_ARG_TYPES (fntype));
2346
2347 if (require_constant_value)
2348 {
2349 result = fold_build_call_array_initializer (TREE_TYPE (fntype),
2350 function, nargs, argarray);
2351 if (TREE_CONSTANT (result)
2352 && (name == NULL_TREE
2353 || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2354 pedwarn_init ("initializer element is not constant");
2355 }
2356 else
2357 result = fold_build_call_array (TREE_TYPE (fntype),
2358 function, nargs, argarray);
2359
2360 if (VOID_TYPE_P (TREE_TYPE (result)))
2361 return result;
2362 return require_complete_type (result);
2363 }
2364 \f
2365 /* Convert the argument expressions in the list VALUES
2366 to the types in the list TYPELIST. The resulting arguments are
2367 stored in the array ARGARRAY which has size NARGS.
2368
2369 If TYPELIST is exhausted, or when an element has NULL as its type,
2370 perform the default conversions.
2371
2372 PARMLIST is the chain of parm decls for the function being called.
2373 It may be 0, if that info is not available.
2374 It is used only for generating error messages.
2375
2376 FUNCTION is a tree for the called function. It is used only for
2377 error messages, where it is formatted with %qE.
2378
2379 This is also where warnings about wrong number of args are generated.
2380
2381 VALUES is a chain of TREE_LIST nodes with the elements of the list
2382 in the TREE_VALUE slots of those nodes.
2383
2384 Returns the actual number of arguments processed (which may be less
2385 than NARGS in some error situations), or -1 on failure. */
2386
2387 static int
2388 convert_arguments (int nargs, tree *argarray,
2389 tree typelist, tree values, tree function, tree fundecl)
2390 {
2391 tree typetail, valtail;
2392 int parmnum;
2393 tree selector;
2394
2395 /* Change pointer to function to the function itself for
2396 diagnostics. */
2397 if (TREE_CODE (function) == ADDR_EXPR
2398 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2399 function = TREE_OPERAND (function, 0);
2400
2401 /* Handle an ObjC selector specially for diagnostics. */
2402 selector = objc_message_selector ();
2403
2404 /* Scan the given expressions and types, producing individual
2405 converted arguments and storing them in ARGARRAY. */
2406
2407 for (valtail = values, typetail = typelist, parmnum = 0;
2408 valtail;
2409 valtail = TREE_CHAIN (valtail), parmnum++)
2410 {
2411 tree type = typetail ? TREE_VALUE (typetail) : 0;
2412 tree val = TREE_VALUE (valtail);
2413 tree rname = function;
2414 int argnum = parmnum + 1;
2415 const char *invalid_func_diag;
2416
2417 if (type == void_type_node)
2418 {
2419 error ("too many arguments to function %qE", function);
2420 return parmnum;
2421 }
2422
2423 if (selector && argnum > 2)
2424 {
2425 rname = selector;
2426 argnum -= 2;
2427 }
2428
2429 STRIP_TYPE_NOPS (val);
2430
2431 val = require_complete_type (val);
2432
2433 if (type != 0)
2434 {
2435 /* Formal parm type is specified by a function prototype. */
2436 tree parmval;
2437
2438 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2439 {
2440 error ("type of formal parameter %d is incomplete", parmnum + 1);
2441 parmval = val;
2442 }
2443 else
2444 {
2445 /* Optionally warn about conversions that
2446 differ from the default conversions. */
2447 if (warn_traditional_conversion || warn_traditional)
2448 {
2449 unsigned int formal_prec = TYPE_PRECISION (type);
2450
2451 if (INTEGRAL_TYPE_P (type)
2452 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2453 warning (0, "passing argument %d of %qE as integer "
2454 "rather than floating due to prototype",
2455 argnum, rname);
2456 if (INTEGRAL_TYPE_P (type)
2457 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2458 warning (0, "passing argument %d of %qE as integer "
2459 "rather than complex due to prototype",
2460 argnum, rname);
2461 else if (TREE_CODE (type) == COMPLEX_TYPE
2462 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2463 warning (0, "passing argument %d of %qE as complex "
2464 "rather than floating due to prototype",
2465 argnum, rname);
2466 else if (TREE_CODE (type) == REAL_TYPE
2467 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2468 warning (0, "passing argument %d of %qE as floating "
2469 "rather than integer due to prototype",
2470 argnum, rname);
2471 else if (TREE_CODE (type) == COMPLEX_TYPE
2472 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2473 warning (0, "passing argument %d of %qE as complex "
2474 "rather than integer due to prototype",
2475 argnum, rname);
2476 else if (TREE_CODE (type) == REAL_TYPE
2477 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2478 warning (0, "passing argument %d of %qE as floating "
2479 "rather than complex due to prototype",
2480 argnum, rname);
2481 /* ??? At some point, messages should be written about
2482 conversions between complex types, but that's too messy
2483 to do now. */
2484 else if (TREE_CODE (type) == REAL_TYPE
2485 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2486 {
2487 /* Warn if any argument is passed as `float',
2488 since without a prototype it would be `double'. */
2489 if (formal_prec == TYPE_PRECISION (float_type_node)
2490 && type != dfloat32_type_node)
2491 warning (0, "passing argument %d of %qE as %<float%> "
2492 "rather than %<double%> due to prototype",
2493 argnum, rname);
2494
2495 /* Warn if mismatch between argument and prototype
2496 for decimal float types. Warn of conversions with
2497 binary float types and of precision narrowing due to
2498 prototype. */
2499 else if (type != TREE_TYPE (val)
2500 && (type == dfloat32_type_node
2501 || type == dfloat64_type_node
2502 || type == dfloat128_type_node
2503 || TREE_TYPE (val) == dfloat32_type_node
2504 || TREE_TYPE (val) == dfloat64_type_node
2505 || TREE_TYPE (val) == dfloat128_type_node)
2506 && (formal_prec
2507 <= TYPE_PRECISION (TREE_TYPE (val))
2508 || (type == dfloat128_type_node
2509 && (TREE_TYPE (val)
2510 != dfloat64_type_node
2511 && (TREE_TYPE (val)
2512 != dfloat32_type_node)))
2513 || (type == dfloat64_type_node
2514 && (TREE_TYPE (val)
2515 != dfloat32_type_node))))
2516 warning (0, "passing argument %d of %qE as %qT "
2517 "rather than %qT due to prototype",
2518 argnum, rname, type, TREE_TYPE (val));
2519
2520 }
2521 /* Detect integer changing in width or signedness.
2522 These warnings are only activated with
2523 -Wtraditional-conversion, not with -Wtraditional. */
2524 else if (warn_traditional_conversion && INTEGRAL_TYPE_P (type)
2525 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2526 {
2527 tree would_have_been = default_conversion (val);
2528 tree type1 = TREE_TYPE (would_have_been);
2529
2530 if (TREE_CODE (type) == ENUMERAL_TYPE
2531 && (TYPE_MAIN_VARIANT (type)
2532 == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2533 /* No warning if function asks for enum
2534 and the actual arg is that enum type. */
2535 ;
2536 else if (formal_prec != TYPE_PRECISION (type1))
2537 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2538 "with different width due to prototype",
2539 argnum, rname);
2540 else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2541 ;
2542 /* Don't complain if the formal parameter type
2543 is an enum, because we can't tell now whether
2544 the value was an enum--even the same enum. */
2545 else if (TREE_CODE (type) == ENUMERAL_TYPE)
2546 ;
2547 else if (TREE_CODE (val) == INTEGER_CST
2548 && int_fits_type_p (val, type))
2549 /* Change in signedness doesn't matter
2550 if a constant value is unaffected. */
2551 ;
2552 /* If the value is extended from a narrower
2553 unsigned type, it doesn't matter whether we
2554 pass it as signed or unsigned; the value
2555 certainly is the same either way. */
2556 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2557 && TYPE_UNSIGNED (TREE_TYPE (val)))
2558 ;
2559 else if (TYPE_UNSIGNED (type))
2560 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2561 "as unsigned due to prototype",
2562 argnum, rname);
2563 else
2564 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2565 "as signed due to prototype", argnum, rname);
2566 }
2567 }
2568
2569 parmval = convert_for_assignment (type, val, ic_argpass,
2570 fundecl, function,
2571 parmnum + 1);
2572
2573 if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2574 && INTEGRAL_TYPE_P (type)
2575 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2576 parmval = default_conversion (parmval);
2577 }
2578 argarray[parmnum] = parmval;
2579 }
2580 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2581 && (TYPE_PRECISION (TREE_TYPE (val))
2582 < TYPE_PRECISION (double_type_node))
2583 && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2584 /* Convert `float' to `double'. */
2585 argarray[parmnum] = convert (double_type_node, val);
2586 else if ((invalid_func_diag =
2587 targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2588 {
2589 error (invalid_func_diag);
2590 return -1;
2591 }
2592 else
2593 /* Convert `short' and `char' to full-size `int'. */
2594 argarray[parmnum] = default_conversion (val);
2595
2596 if (typetail)
2597 typetail = TREE_CHAIN (typetail);
2598 }
2599
2600 gcc_assert (parmnum == nargs);
2601
2602 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2603 {
2604 error ("too few arguments to function %qE", function);
2605 return -1;
2606 }
2607
2608 return parmnum;
2609 }
2610 \f
2611 /* This is the entry point used by the parser to build unary operators
2612 in the input. CODE, a tree_code, specifies the unary operator, and
2613 ARG is the operand. For unary plus, the C parser currently uses
2614 CONVERT_EXPR for code. */
2615
2616 struct c_expr
2617 parser_build_unary_op (enum tree_code code, struct c_expr arg)
2618 {
2619 struct c_expr result;
2620
2621 result.original_code = ERROR_MARK;
2622 result.value = build_unary_op (code, arg.value, 0);
2623
2624 if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value))
2625 overflow_warning (result.value);
2626
2627 return result;
2628 }
2629
2630 /* This is the entry point used by the parser to build binary operators
2631 in the input. CODE, a tree_code, specifies the binary operator, and
2632 ARG1 and ARG2 are the operands. In addition to constructing the
2633 expression, we check for operands that were written with other binary
2634 operators in a way that is likely to confuse the user. */
2635
2636 struct c_expr
2637 parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2638 struct c_expr arg2)
2639 {
2640 struct c_expr result;
2641
2642 enum tree_code code1 = arg1.original_code;
2643 enum tree_code code2 = arg2.original_code;
2644
2645 result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2646 result.original_code = code;
2647
2648 if (TREE_CODE (result.value) == ERROR_MARK)
2649 return result;
2650
2651 /* Check for cases such as x+y<<z which users are likely
2652 to misinterpret. */
2653 if (warn_parentheses)
2654 warn_about_parentheses (code, code1, code2);
2655
2656 if (code1 != tcc_comparison)
2657 warn_logical_operator (code, arg1.value, arg2.value);
2658
2659 /* Warn about comparisons against string literals, with the exception
2660 of testing for equality or inequality of a string literal with NULL. */
2661 if (code == EQ_EXPR || code == NE_EXPR)
2662 {
2663 if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2664 || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2665 warning (OPT_Waddress, "comparison with string literal results in unspecified behaviour");
2666 }
2667 else if (TREE_CODE_CLASS (code) == tcc_comparison
2668 && (code1 == STRING_CST || code2 == STRING_CST))
2669 warning (OPT_Waddress, "comparison with string literal results in unspecified behaviour");
2670
2671 if (TREE_OVERFLOW_P (result.value)
2672 && !TREE_OVERFLOW_P (arg1.value)
2673 && !TREE_OVERFLOW_P (arg2.value))
2674 overflow_warning (result.value);
2675
2676 return result;
2677 }
2678 \f
2679 /* Return a tree for the difference of pointers OP0 and OP1.
2680 The resulting tree has type int. */
2681
2682 static tree
2683 pointer_diff (tree op0, tree op1)
2684 {
2685 tree restype = ptrdiff_type_node;
2686
2687 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2688 tree con0, con1, lit0, lit1;
2689 tree orig_op1 = op1;
2690
2691 if (pedantic || warn_pointer_arith)
2692 {
2693 if (TREE_CODE (target_type) == VOID_TYPE)
2694 pedwarn ("pointer of type %<void *%> used in subtraction");
2695 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2696 pedwarn ("pointer to a function used in subtraction");
2697 }
2698
2699 /* If the conversion to ptrdiff_type does anything like widening or
2700 converting a partial to an integral mode, we get a convert_expression
2701 that is in the way to do any simplifications.
2702 (fold-const.c doesn't know that the extra bits won't be needed.
2703 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2704 different mode in place.)
2705 So first try to find a common term here 'by hand'; we want to cover
2706 at least the cases that occur in legal static initializers. */
2707 if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2708 && (TYPE_PRECISION (TREE_TYPE (op0))
2709 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2710 con0 = TREE_OPERAND (op0, 0);
2711 else
2712 con0 = op0;
2713 if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2714 && (TYPE_PRECISION (TREE_TYPE (op1))
2715 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2716 con1 = TREE_OPERAND (op1, 0);
2717 else
2718 con1 = op1;
2719
2720 if (TREE_CODE (con0) == PLUS_EXPR)
2721 {
2722 lit0 = TREE_OPERAND (con0, 1);
2723 con0 = TREE_OPERAND (con0, 0);
2724 }
2725 else
2726 lit0 = integer_zero_node;
2727
2728 if (TREE_CODE (con1) == PLUS_EXPR)
2729 {
2730 lit1 = TREE_OPERAND (con1, 1);
2731 con1 = TREE_OPERAND (con1, 0);
2732 }
2733 else
2734 lit1 = integer_zero_node;
2735
2736 if (operand_equal_p (con0, con1, 0))
2737 {
2738 op0 = lit0;
2739 op1 = lit1;
2740 }
2741
2742
2743 /* First do the subtraction as integers;
2744 then drop through to build the divide operator.
2745 Do not do default conversions on the minus operator
2746 in case restype is a short type. */
2747
2748 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2749 convert (restype, op1), 0);
2750 /* This generates an error if op1 is pointer to incomplete type. */
2751 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2752 error ("arithmetic on pointer to an incomplete type");
2753
2754 /* This generates an error if op0 is pointer to incomplete type. */
2755 op1 = c_size_in_bytes (target_type);
2756
2757 /* Divide by the size, in easiest possible way. */
2758 return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2759 }
2760 \f
2761 /* Construct and perhaps optimize a tree representation
2762 for a unary operation. CODE, a tree_code, specifies the operation
2763 and XARG is the operand.
2764 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2765 the default promotions (such as from short to int).
2766 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2767 allows non-lvalues; this is only used to handle conversion of non-lvalue
2768 arrays to pointers in C99. */
2769
2770 tree
2771 build_unary_op (enum tree_code code, tree xarg, int flag)
2772 {
2773 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2774 tree arg = xarg;
2775 tree argtype = 0;
2776 enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2777 tree val;
2778 int noconvert = flag;
2779 const char *invalid_op_diag;
2780
2781 if (typecode == ERROR_MARK)
2782 return error_mark_node;
2783 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2784 typecode = INTEGER_TYPE;
2785
2786 if ((invalid_op_diag
2787 = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2788 {
2789 error (invalid_op_diag);
2790 return error_mark_node;
2791 }
2792
2793 switch (code)
2794 {
2795 case CONVERT_EXPR:
2796 /* This is used for unary plus, because a CONVERT_EXPR
2797 is enough to prevent anybody from looking inside for
2798 associativity, but won't generate any code. */
2799 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2800 || typecode == COMPLEX_TYPE
2801 || typecode == VECTOR_TYPE))
2802 {
2803 error ("wrong type argument to unary plus");
2804 return error_mark_node;
2805 }
2806 else if (!noconvert)
2807 arg = default_conversion (arg);
2808 arg = non_lvalue (arg);
2809 break;
2810
2811 case NEGATE_EXPR:
2812 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2813 || typecode == COMPLEX_TYPE
2814 || typecode == VECTOR_TYPE))
2815 {
2816 error ("wrong type argument to unary minus");
2817 return error_mark_node;
2818 }
2819 else if (!noconvert)
2820 arg = default_conversion (arg);
2821 break;
2822
2823 case BIT_NOT_EXPR:
2824 if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2825 {
2826 if (!noconvert)
2827 arg = default_conversion (arg);
2828 }
2829 else if (typecode == COMPLEX_TYPE)
2830 {
2831 code = CONJ_EXPR;
2832 if (pedantic)
2833 pedwarn ("ISO C does not support %<~%> for complex conjugation");
2834 if (!noconvert)
2835 arg = default_conversion (arg);
2836 }
2837 else
2838 {
2839 error ("wrong type argument to bit-complement");
2840 return error_mark_node;
2841 }
2842 break;
2843
2844 case ABS_EXPR:
2845 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2846 {
2847 error ("wrong type argument to abs");
2848 return error_mark_node;
2849 }
2850 else if (!noconvert)
2851 arg = default_conversion (arg);
2852 break;
2853
2854 case CONJ_EXPR:
2855 /* Conjugating a real value is a no-op, but allow it anyway. */
2856 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2857 || typecode == COMPLEX_TYPE))
2858 {
2859 error ("wrong type argument to conjugation");
2860 return error_mark_node;
2861 }
2862 else if (!noconvert)
2863 arg = default_conversion (arg);
2864 break;
2865
2866 case TRUTH_NOT_EXPR:
2867 if (typecode != INTEGER_TYPE
2868 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2869 && typecode != COMPLEX_TYPE)
2870 {
2871 error ("wrong type argument to unary exclamation mark");
2872 return error_mark_node;
2873 }
2874 arg = c_objc_common_truthvalue_conversion (arg);
2875 return invert_truthvalue (arg);
2876
2877 case REALPART_EXPR:
2878 if (TREE_CODE (arg) == COMPLEX_CST)
2879 return TREE_REALPART (arg);
2880 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2881 return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2882 else
2883 return arg;
2884
2885 case IMAGPART_EXPR:
2886 if (TREE_CODE (arg) == COMPLEX_CST)
2887 return TREE_IMAGPART (arg);
2888 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2889 return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2890 else
2891 return convert (TREE_TYPE (arg), integer_zero_node);
2892
2893 case PREINCREMENT_EXPR:
2894 case POSTINCREMENT_EXPR:
2895 case PREDECREMENT_EXPR:
2896 case POSTDECREMENT_EXPR:
2897
2898 /* Increment or decrement the real part of the value,
2899 and don't change the imaginary part. */
2900 if (typecode == COMPLEX_TYPE)
2901 {
2902 tree real, imag;
2903
2904 if (pedantic)
2905 pedwarn ("ISO C does not support %<++%> and %<--%>"
2906 " on complex types");
2907
2908 arg = stabilize_reference (arg);
2909 real = build_unary_op (REALPART_EXPR, arg, 1);
2910 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2911 return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2912 build_unary_op (code, real, 1), imag);
2913 }
2914
2915 /* Report invalid types. */
2916
2917 if (typecode != POINTER_TYPE
2918 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2919 {
2920 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2921 error ("wrong type argument to increment");
2922 else
2923 error ("wrong type argument to decrement");
2924
2925 return error_mark_node;
2926 }
2927
2928 {
2929 tree inc;
2930 tree result_type = TREE_TYPE (arg);
2931
2932 arg = get_unwidened (arg, 0);
2933 argtype = TREE_TYPE (arg);
2934
2935 /* Compute the increment. */
2936
2937 if (typecode == POINTER_TYPE)
2938 {
2939 /* If pointer target is an undefined struct,
2940 we just cannot know how to do the arithmetic. */
2941 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2942 {
2943 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2944 error ("increment of pointer to unknown structure");
2945 else
2946 error ("decrement of pointer to unknown structure");
2947 }
2948 else if ((pedantic || warn_pointer_arith)
2949 && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2950 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2951 {
2952 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2953 pedwarn ("wrong type argument to increment");
2954 else
2955 pedwarn ("wrong type argument to decrement");
2956 }
2957
2958 inc = c_size_in_bytes (TREE_TYPE (result_type));
2959 }
2960 else
2961 inc = integer_one_node;
2962
2963 inc = convert (argtype, inc);
2964
2965 /* Complain about anything else that is not a true lvalue. */
2966 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2967 || code == POSTINCREMENT_EXPR)
2968 ? lv_increment
2969 : lv_decrement)))
2970 return error_mark_node;
2971
2972 /* Report a read-only lvalue. */
2973 if (TREE_READONLY (arg))
2974 {
2975 readonly_error (arg,
2976 ((code == PREINCREMENT_EXPR
2977 || code == POSTINCREMENT_EXPR)
2978 ? lv_increment : lv_decrement));
2979 return error_mark_node;
2980 }
2981
2982 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2983 val = boolean_increment (code, arg);
2984 else
2985 val = build2 (code, TREE_TYPE (arg), arg, inc);
2986 TREE_SIDE_EFFECTS (val) = 1;
2987 val = convert (result_type, val);
2988 if (TREE_CODE (val) != code)
2989 TREE_NO_WARNING (val) = 1;
2990 return val;
2991 }
2992
2993 case ADDR_EXPR:
2994 /* Note that this operation never does default_conversion. */
2995
2996 /* Let &* cancel out to simplify resulting code. */
2997 if (TREE_CODE (arg) == INDIRECT_REF)
2998 {
2999 /* Don't let this be an lvalue. */
3000 if (lvalue_p (TREE_OPERAND (arg, 0)))
3001 return non_lvalue (TREE_OPERAND (arg, 0));
3002 return TREE_OPERAND (arg, 0);
3003 }
3004
3005 /* For &x[y], return x+y */
3006 if (TREE_CODE (arg) == ARRAY_REF)
3007 {
3008 tree op0 = TREE_OPERAND (arg, 0);
3009 if (!c_mark_addressable (op0))
3010 return error_mark_node;
3011 return build_binary_op (PLUS_EXPR,
3012 (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3013 ? array_to_pointer_conversion (op0)
3014 : op0),
3015 TREE_OPERAND (arg, 1), 1);
3016 }
3017
3018 /* Anything not already handled and not a true memory reference
3019 or a non-lvalue array is an error. */
3020 else if (typecode != FUNCTION_TYPE && !flag
3021 && !lvalue_or_else (arg, lv_addressof))
3022 return error_mark_node;
3023
3024 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3025 argtype = TREE_TYPE (arg);
3026
3027 /* If the lvalue is const or volatile, merge that into the type
3028 to which the address will point. Note that you can't get a
3029 restricted pointer by taking the address of something, so we
3030 only have to deal with `const' and `volatile' here. */
3031 if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3032 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3033 argtype = c_build_type_variant (argtype,
3034 TREE_READONLY (arg),
3035 TREE_THIS_VOLATILE (arg));
3036
3037 if (!c_mark_addressable (arg))
3038 return error_mark_node;
3039
3040 gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3041 || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3042
3043 argtype = build_pointer_type (argtype);
3044
3045 /* ??? Cope with user tricks that amount to offsetof. Delete this
3046 when we have proper support for integer constant expressions. */
3047 val = get_base_address (arg);
3048 if (val && TREE_CODE (val) == INDIRECT_REF
3049 && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3050 {
3051 tree op0 = fold_convert (argtype, fold_offsetof (arg, val)), op1;
3052
3053 op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3054 return fold_build2 (PLUS_EXPR, argtype, op0, op1);
3055 }
3056
3057 val = build1 (ADDR_EXPR, argtype, arg);
3058
3059 return val;
3060
3061 default:
3062 gcc_unreachable ();
3063 }
3064
3065 if (argtype == 0)
3066 argtype = TREE_TYPE (arg);
3067 return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3068 : fold_build1 (code, argtype, arg);
3069 }
3070
3071 /* Return nonzero if REF is an lvalue valid for this language.
3072 Lvalues can be assigned, unless their type has TYPE_READONLY.
3073 Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
3074
3075 static int
3076 lvalue_p (tree ref)
3077 {
3078 enum tree_code code = TREE_CODE (ref);
3079
3080 switch (code)
3081 {
3082 case REALPART_EXPR:
3083 case IMAGPART_EXPR:
3084 case COMPONENT_REF:
3085 return lvalue_p (TREE_OPERAND (ref, 0));
3086
3087 case COMPOUND_LITERAL_EXPR:
3088 case STRING_CST:
3089 return 1;
3090
3091 case INDIRECT_REF:
3092 case ARRAY_REF:
3093 case VAR_DECL:
3094 case PARM_DECL:
3095 case RESULT_DECL:
3096 case ERROR_MARK:
3097 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3098 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3099
3100 case BIND_EXPR:
3101 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3102
3103 default:
3104 return 0;
3105 }
3106 }
3107 \f
3108 /* Give an error for storing in something that is 'const'. */
3109
3110 static void
3111 readonly_error (tree arg, enum lvalue_use use)
3112 {
3113 gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3114 || use == lv_asm);
3115 /* Using this macro rather than (for example) arrays of messages
3116 ensures that all the format strings are checked at compile
3117 time. */
3118 #define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A) \
3119 : (use == lv_increment ? (I) \
3120 : (use == lv_decrement ? (D) : (AS))))
3121 if (TREE_CODE (arg) == COMPONENT_REF)
3122 {
3123 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3124 readonly_error (TREE_OPERAND (arg, 0), use);
3125 else
3126 error (READONLY_MSG (G_("assignment of read-only member %qD"),
3127 G_("increment of read-only member %qD"),
3128 G_("decrement of read-only member %qD"),
3129 G_("read-only member %qD used as %<asm%> output")),
3130 TREE_OPERAND (arg, 1));
3131 }
3132 else if (TREE_CODE (arg) == VAR_DECL)
3133 error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3134 G_("increment of read-only variable %qD"),
3135 G_("decrement of read-only variable %qD"),
3136 G_("read-only variable %qD used as %<asm%> output")),
3137 arg);
3138 else
3139 error (READONLY_MSG (G_("assignment of read-only location"),
3140 G_("increment of read-only location"),
3141 G_("decrement of read-only location"),
3142 G_("read-only location used as %<asm%> output")));
3143 }
3144
3145
3146 /* Return nonzero if REF is an lvalue valid for this language;
3147 otherwise, print an error message and return zero. USE says
3148 how the lvalue is being used and so selects the error message. */
3149
3150 static int
3151 lvalue_or_else (tree ref, enum lvalue_use use)
3152 {
3153 int win = lvalue_p (ref);
3154
3155 if (!win)
3156 lvalue_error (use);
3157
3158 return win;
3159 }
3160 \f
3161 /* Mark EXP saying that we need to be able to take the
3162 address of it; it should not be allocated in a register.
3163 Returns true if successful. */
3164
3165 bool
3166 c_mark_addressable (tree exp)
3167 {
3168 tree x = exp;
3169
3170 while (1)
3171 switch (TREE_CODE (x))
3172 {
3173 case COMPONENT_REF:
3174 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3175 {
3176 error
3177 ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3178 return false;
3179 }
3180
3181 /* ... fall through ... */
3182
3183 case ADDR_EXPR:
3184 case ARRAY_REF:
3185 case REALPART_EXPR:
3186 case IMAGPART_EXPR:
3187 x = TREE_OPERAND (x, 0);
3188 break;
3189
3190 case COMPOUND_LITERAL_EXPR:
3191 case CONSTRUCTOR:
3192 TREE_ADDRESSABLE (x) = 1;
3193 return true;
3194
3195 case VAR_DECL:
3196 case CONST_DECL:
3197 case PARM_DECL:
3198 case RESULT_DECL:
3199 if (C_DECL_REGISTER (x)
3200 && DECL_NONLOCAL (x))
3201 {
3202 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3203 {
3204 error
3205 ("global register variable %qD used in nested function", x);
3206 return false;
3207 }
3208 pedwarn ("register variable %qD used in nested function", x);
3209 }
3210 else if (C_DECL_REGISTER (x))
3211 {
3212 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3213 error ("address of global register variable %qD requested", x);
3214 else
3215 error ("address of register variable %qD requested", x);
3216 return false;
3217 }
3218
3219 /* drops in */
3220 case FUNCTION_DECL:
3221 TREE_ADDRESSABLE (x) = 1;
3222 /* drops out */
3223 default:
3224 return true;
3225 }
3226 }
3227 \f
3228 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3229
3230 tree
3231 build_conditional_expr (tree ifexp, tree op1, tree op2)
3232 {
3233 tree type1;
3234 tree type2;
3235 enum tree_code code1;
3236 enum tree_code code2;
3237 tree result_type = NULL;
3238 tree orig_op1 = op1, orig_op2 = op2;
3239
3240 /* Promote both alternatives. */
3241
3242 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3243 op1 = default_conversion (op1);
3244 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3245 op2 = default_conversion (op2);
3246
3247 if (TREE_CODE (ifexp) == ERROR_MARK
3248 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3249 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3250 return error_mark_node;
3251
3252 type1 = TREE_TYPE (op1);
3253 code1 = TREE_CODE (type1);
3254 type2 = TREE_TYPE (op2);
3255 code2 = TREE_CODE (type2);
3256
3257 /* C90 does not permit non-lvalue arrays in conditional expressions.
3258 In C99 they will be pointers by now. */
3259 if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3260 {
3261 error ("non-lvalue array in conditional expression");
3262 return error_mark_node;
3263 }
3264
3265 /* Quickly detect the usual case where op1 and op2 have the same type
3266 after promotion. */
3267 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3268 {
3269 if (type1 == type2)
3270 result_type = type1;
3271 else
3272 result_type = TYPE_MAIN_VARIANT (type1);
3273 }
3274 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3275 || code1 == COMPLEX_TYPE)
3276 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3277 || code2 == COMPLEX_TYPE))
3278 {
3279 result_type = c_common_type (type1, type2);
3280
3281 /* If -Wsign-compare, warn here if type1 and type2 have
3282 different signedness. We'll promote the signed to unsigned
3283 and later code won't know it used to be different.
3284 Do this check on the original types, so that explicit casts
3285 will be considered, but default promotions won't. */
3286 if (warn_sign_compare && !skip_evaluation)
3287 {
3288 int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3289 int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3290
3291 if (unsigned_op1 ^ unsigned_op2)
3292 {
3293 bool ovf;
3294
3295 /* Do not warn if the result type is signed, since the
3296 signed type will only be chosen if it can represent
3297 all the values of the unsigned type. */
3298 if (!TYPE_UNSIGNED (result_type))
3299 /* OK */;
3300 /* Do not warn if the signed quantity is an unsuffixed
3301 integer literal (or some static constant expression
3302 involving such literals) and it is non-negative. */
3303 else if ((unsigned_op2
3304 && tree_expr_nonnegative_warnv_p (op1, &ovf))
3305 || (unsigned_op1
3306 && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3307 /* OK */;
3308 else
3309 warning (0, "signed and unsigned type in conditional expression");
3310 }
3311 }
3312 }
3313 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3314 {
3315 if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3316 pedwarn ("ISO C forbids conditional expr with only one void side");
3317 result_type = void_type_node;
3318 }
3319 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3320 {
3321 if (comp_target_types (type1, type2))
3322 result_type = common_pointer_type (type1, type2);
3323 else if (null_pointer_constant_p (orig_op1))
3324 result_type = qualify_type (type2, type1);
3325 else if (null_pointer_constant_p (orig_op2))
3326 result_type = qualify_type (type1, type2);
3327 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3328 {
3329 if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3330 pedwarn ("ISO C forbids conditional expr between "
3331 "%<void *%> and function pointer");
3332 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3333 TREE_TYPE (type2)));
3334 }
3335 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3336 {
3337 if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3338 pedwarn ("ISO C forbids conditional expr between "
3339 "%<void *%> and function pointer");
3340 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3341 TREE_TYPE (type1)));
3342 }
3343 else
3344 {
3345 pedwarn ("pointer type mismatch in conditional expression");
3346 result_type = build_pointer_type (void_type_node);
3347 }
3348 }
3349 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3350 {
3351 if (!null_pointer_constant_p (orig_op2))
3352 pedwarn ("pointer/integer type mismatch in conditional expression");
3353 else
3354 {
3355 op2 = null_pointer_node;
3356 }
3357 result_type = type1;
3358 }
3359 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3360 {
3361 if (!null_pointer_constant_p (orig_op1))
3362 pedwarn ("pointer/integer type mismatch in conditional expression");
3363 else
3364 {
3365 op1 = null_pointer_node;
3366 }
3367 result_type = type2;
3368 }
3369
3370 if (!result_type)
3371 {
3372 if (flag_cond_mismatch)
3373 result_type = void_type_node;
3374 else
3375 {
3376 error ("type mismatch in conditional expression");
3377 return error_mark_node;
3378 }
3379 }
3380
3381 /* Merge const and volatile flags of the incoming types. */
3382 result_type
3383 = build_type_variant (result_type,
3384 TREE_READONLY (op1) || TREE_READONLY (op2),
3385 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3386
3387 if (result_type != TREE_TYPE (op1))
3388 op1 = convert_and_check (result_type, op1);
3389 if (result_type != TREE_TYPE (op2))
3390 op2 = convert_and_check (result_type, op2);
3391
3392 return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3393 }
3394 \f
3395 /* Return a compound expression that performs two expressions and
3396 returns the value of the second of them. */
3397
3398 tree
3399 build_compound_expr (tree expr1, tree expr2)
3400 {
3401 if (!TREE_SIDE_EFFECTS (expr1))
3402 {
3403 /* The left-hand operand of a comma expression is like an expression
3404 statement: with -Wextra or -Wunused, we should warn if it doesn't have
3405 any side-effects, unless it was explicitly cast to (void). */
3406 if (warn_unused_value)
3407 {
3408 if (VOID_TYPE_P (TREE_TYPE (expr1))
3409 && (TREE_CODE (expr1) == NOP_EXPR
3410 || TREE_CODE (expr1) == CONVERT_EXPR))
3411 ; /* (void) a, b */
3412 else if (VOID_TYPE_P (TREE_TYPE (expr1))
3413 && TREE_CODE (expr1) == COMPOUND_EXPR
3414 && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3415 || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3416 ; /* (void) a, (void) b, c */
3417 else
3418 warning (OPT_Wunused_value,
3419 "left-hand operand of comma expression has no effect");
3420 }
3421 }
3422
3423 /* With -Wunused, we should also warn if the left-hand operand does have
3424 side-effects, but computes a value which is not used. For example, in
3425 `foo() + bar(), baz()' the result of the `+' operator is not used,
3426 so we should issue a warning. */
3427 else if (warn_unused_value)
3428 warn_if_unused_value (expr1, input_location);
3429
3430 if (expr2 == error_mark_node)
3431 return error_mark_node;
3432
3433 return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3434 }
3435
3436 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3437
3438 tree
3439 build_c_cast (tree type, tree expr)
3440 {
3441 tree value = expr;
3442
3443 if (type == error_mark_node || expr == error_mark_node)
3444 return error_mark_node;
3445
3446 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3447 only in <protocol> qualifications. But when constructing cast expressions,
3448 the protocols do matter and must be kept around. */
3449 if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3450 return build1 (NOP_EXPR, type, expr);
3451
3452 type = TYPE_MAIN_VARIANT (type);
3453
3454 if (TREE_CODE (type) == ARRAY_TYPE)
3455 {
3456 error ("cast specifies array type");
3457 return error_mark_node;
3458 }
3459
3460 if (TREE_CODE (type) == FUNCTION_TYPE)
3461 {
3462 error ("cast specifies function type");
3463 return error_mark_node;
3464 }
3465
3466 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3467 {
3468 if (pedantic)
3469 {
3470 if (TREE_CODE (type) == RECORD_TYPE
3471 || TREE_CODE (type) == UNION_TYPE)
3472 pedwarn ("ISO C forbids casting nonscalar to the same type");
3473 }
3474 }
3475 else if (TREE_CODE (type) == UNION_TYPE)
3476 {
3477 tree field;
3478
3479 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3480 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3481 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3482 break;
3483
3484 if (field)
3485 {
3486 tree t;
3487
3488 if (pedantic)
3489 pedwarn ("ISO C forbids casts to union type");
3490 t = digest_init (type,
3491 build_constructor_single (type, field, value),
3492 true, 0);
3493 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3494 TREE_INVARIANT (t) = TREE_INVARIANT (value);
3495 return t;
3496 }
3497 error ("cast to union type from type not present in union");
3498 return error_mark_node;
3499 }
3500 else
3501 {
3502 tree otype, ovalue;
3503
3504 if (type == void_type_node)
3505 return build1 (CONVERT_EXPR, type, value);
3506
3507 otype = TREE_TYPE (value);
3508
3509 /* Optionally warn about potentially worrisome casts. */
3510
3511 if (warn_cast_qual
3512 && TREE_CODE (type) == POINTER_TYPE
3513 && TREE_CODE (otype) == POINTER_TYPE)
3514 {
3515 tree in_type = type;
3516 tree in_otype = otype;
3517 int added = 0;
3518 int discarded = 0;
3519
3520 /* Check that the qualifiers on IN_TYPE are a superset of
3521 the qualifiers of IN_OTYPE. The outermost level of
3522 POINTER_TYPE nodes is uninteresting and we stop as soon
3523 as we hit a non-POINTER_TYPE node on either type. */
3524 do
3525 {
3526 in_otype = TREE_TYPE (in_otype);
3527 in_type = TREE_TYPE (in_type);
3528
3529 /* GNU C allows cv-qualified function types. 'const'
3530 means the function is very pure, 'volatile' means it
3531 can't return. We need to warn when such qualifiers
3532 are added, not when they're taken away. */
3533 if (TREE_CODE (in_otype) == FUNCTION_TYPE
3534 && TREE_CODE (in_type) == FUNCTION_TYPE)
3535 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3536 else
3537 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3538 }
3539 while (TREE_CODE (in_type) == POINTER_TYPE
3540 && TREE_CODE (in_otype) == POINTER_TYPE);
3541
3542 if (added)
3543 warning (0, "cast adds new qualifiers to function type");
3544
3545 if (discarded)
3546 /* There are qualifiers present in IN_OTYPE that are not
3547 present in IN_TYPE. */
3548 warning (0, "cast discards qualifiers from pointer target type");
3549 }
3550
3551 /* Warn about possible alignment problems. */
3552 if (STRICT_ALIGNMENT
3553 && TREE_CODE (type) == POINTER_TYPE
3554 && TREE_CODE (otype) == POINTER_TYPE
3555 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3556 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3557 /* Don't warn about opaque types, where the actual alignment
3558 restriction is unknown. */
3559 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3560 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3561 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3562 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3563 warning (OPT_Wcast_align,
3564 "cast increases required alignment of target type");
3565
3566 if (TREE_CODE (type) == INTEGER_TYPE
3567 && TREE_CODE (otype) == POINTER_TYPE
3568 && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3569 /* Unlike conversion of integers to pointers, where the
3570 warning is disabled for converting constants because
3571 of cases such as SIG_*, warn about converting constant
3572 pointers to integers. In some cases it may cause unwanted
3573 sign extension, and a warning is appropriate. */
3574 warning (OPT_Wpointer_to_int_cast,
3575 "cast from pointer to integer of different size");
3576
3577 if (TREE_CODE (value) == CALL_EXPR
3578 && TREE_CODE (type) != TREE_CODE (otype))
3579 warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3580 "to non-matching type %qT", otype, type);
3581
3582 if (TREE_CODE (type) == POINTER_TYPE
3583 && TREE_CODE (otype) == INTEGER_TYPE
3584 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3585 /* Don't warn about converting any constant. */
3586 && !TREE_CONSTANT (value))
3587 warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3588 "of different size");
3589
3590 if (warn_strict_aliasing <= 2)
3591 strict_aliasing_warning (otype, type, expr);
3592
3593 /* If pedantic, warn for conversions between function and object
3594 pointer types, except for converting a null pointer constant
3595 to function pointer type. */
3596 if (pedantic
3597 && TREE_CODE (type) == POINTER_TYPE
3598 && TREE_CODE (otype) == POINTER_TYPE
3599 && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3600 && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3601 pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3602
3603 if (pedantic
3604 && TREE_CODE (type) == POINTER_TYPE
3605 && TREE_CODE (otype) == POINTER_TYPE
3606 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3607 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3608 && !null_pointer_constant_p (value))
3609 pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3610
3611 ovalue = value;
3612 value = convert (type, value);
3613
3614 /* Ignore any integer overflow caused by the cast. */
3615 if (TREE_CODE (value) == INTEGER_CST)
3616 {
3617 if (CONSTANT_CLASS_P (ovalue) && TREE_OVERFLOW (ovalue))
3618 {
3619 if (!TREE_OVERFLOW (value))
3620 {
3621 /* Avoid clobbering a shared constant. */
3622 value = copy_node (value);
3623 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3624 }
3625 }
3626 else if (TREE_OVERFLOW (value))
3627 /* Reset VALUE's overflow flags, ensuring constant sharing. */
3628 value = build_int_cst_wide (TREE_TYPE (value),
3629 TREE_INT_CST_LOW (value),
3630 TREE_INT_CST_HIGH (value));
3631 }
3632 }
3633
3634 /* Don't let a cast be an lvalue. */
3635 if (value == expr)
3636 value = non_lvalue (value);
3637
3638 return value;
3639 }
3640
3641 /* Interpret a cast of expression EXPR to type TYPE. */
3642 tree
3643 c_cast_expr (struct c_type_name *type_name, tree expr)
3644 {
3645 tree type;
3646 int saved_wsp = warn_strict_prototypes;
3647
3648 /* This avoids warnings about unprototyped casts on
3649 integers. E.g. "#define SIG_DFL (void(*)())0". */
3650 if (TREE_CODE (expr) == INTEGER_CST)
3651 warn_strict_prototypes = 0;
3652 type = groktypename (type_name);
3653 warn_strict_prototypes = saved_wsp;
3654
3655 return build_c_cast (type, expr);
3656 }
3657 \f
3658 /* Build an assignment expression of lvalue LHS from value RHS.
3659 MODIFYCODE is the code for a binary operator that we use
3660 to combine the old value of LHS with RHS to get the new value.
3661 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3662
3663 tree
3664 build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3665 {
3666 tree result;
3667 tree newrhs;
3668 tree lhstype = TREE_TYPE (lhs);
3669 tree olhstype = lhstype;
3670
3671 /* Types that aren't fully specified cannot be used in assignments. */
3672 lhs = require_complete_type (lhs);
3673
3674 /* Avoid duplicate error messages from operands that had errors. */
3675 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3676 return error_mark_node;
3677
3678 if (!lvalue_or_else (lhs, lv_assign))
3679 return error_mark_node;
3680
3681 STRIP_TYPE_NOPS (rhs);
3682
3683 newrhs = rhs;
3684
3685 /* If a binary op has been requested, combine the old LHS value with the RHS
3686 producing the value we should actually store into the LHS. */
3687
3688 if (modifycode != NOP_EXPR)
3689 {
3690 lhs = stabilize_reference (lhs);
3691 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3692 }
3693
3694 /* Give an error for storing in something that is 'const'. */
3695
3696 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3697 || ((TREE_CODE (lhstype) == RECORD_TYPE
3698 || TREE_CODE (lhstype) == UNION_TYPE)
3699 && C_TYPE_FIELDS_READONLY (lhstype)))
3700 {
3701 readonly_error (lhs, lv_assign);
3702 return error_mark_node;
3703 }
3704
3705 /* If storing into a structure or union member,
3706 it has probably been given type `int'.
3707 Compute the type that would go with
3708 the actual amount of storage the member occupies. */
3709
3710 if (TREE_CODE (lhs) == COMPONENT_REF
3711 && (TREE_CODE (lhstype) == INTEGER_TYPE
3712 || TREE_CODE (lhstype) == BOOLEAN_TYPE
3713 || TREE_CODE (lhstype) == REAL_TYPE
3714 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3715 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3716
3717 /* If storing in a field that is in actuality a short or narrower than one,
3718 we must store in the field in its actual type. */
3719
3720 if (lhstype != TREE_TYPE (lhs))
3721 {
3722 lhs = copy_node (lhs);
3723 TREE_TYPE (lhs) = lhstype;
3724 }
3725
3726 /* Convert new value to destination type. */
3727
3728 newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3729 NULL_TREE, NULL_TREE, 0);
3730 if (TREE_CODE (newrhs) == ERROR_MARK)
3731 return error_mark_node;
3732
3733 /* Emit ObjC write barrier, if necessary. */
3734 if (c_dialect_objc () && flag_objc_gc)
3735 {
3736 result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3737 if (result)
3738 return result;
3739 }
3740
3741 /* Scan operands. */
3742
3743 result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3744 TREE_SIDE_EFFECTS (result) = 1;
3745
3746 /* If we got the LHS in a different type for storing in,
3747 convert the result back to the nominal type of LHS
3748 so that the value we return always has the same type
3749 as the LHS argument. */
3750
3751 if (olhstype == TREE_TYPE (result))
3752 return result;
3753 return convert_for_assignment (olhstype, result, ic_assign,
3754 NULL_TREE, NULL_TREE, 0);
3755 }
3756 \f
3757 /* Convert value RHS to type TYPE as preparation for an assignment
3758 to an lvalue of type TYPE.
3759 The real work of conversion is done by `convert'.
3760 The purpose of this function is to generate error messages
3761 for assignments that are not allowed in C.
3762 ERRTYPE says whether it is argument passing, assignment,
3763 initialization or return.
3764
3765 FUNCTION is a tree for the function being called.
3766 PARMNUM is the number of the argument, for printing in error messages. */
3767
3768 static tree
3769 convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3770 tree fundecl, tree function, int parmnum)
3771 {
3772 enum tree_code codel = TREE_CODE (type);
3773 tree rhstype;
3774 enum tree_code coder;
3775 tree rname = NULL_TREE;
3776 bool objc_ok = false;
3777
3778 if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3779 {
3780 tree selector;
3781 /* Change pointer to function to the function itself for
3782 diagnostics. */
3783 if (TREE_CODE (function) == ADDR_EXPR
3784 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3785 function = TREE_OPERAND (function, 0);
3786
3787 /* Handle an ObjC selector specially for diagnostics. */
3788 selector = objc_message_selector ();
3789 rname = function;
3790 if (selector && parmnum > 2)
3791 {
3792 rname = selector;
3793 parmnum -= 2;
3794 }
3795 }
3796
3797 /* This macro is used to emit diagnostics to ensure that all format
3798 strings are complete sentences, visible to gettext and checked at
3799 compile time. */
3800 #define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE) \
3801 do { \
3802 switch (errtype) \
3803 { \
3804 case ic_argpass: \
3805 pedwarn (AR, parmnum, rname); \
3806 break; \
3807 case ic_argpass_nonproto: \
3808 warning (0, AR, parmnum, rname); \
3809 break; \
3810 case ic_assign: \
3811 pedwarn (AS); \
3812 break; \
3813 case ic_init: \
3814 pedwarn (IN); \
3815 break; \
3816 case ic_return: \
3817 pedwarn (RE); \
3818 break; \
3819 default: \
3820 gcc_unreachable (); \
3821 } \
3822 } while (0)
3823
3824 STRIP_TYPE_NOPS (rhs);
3825
3826 if (optimize && TREE_CODE (rhs) == VAR_DECL
3827 && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3828 rhs = decl_constant_value_for_broken_optimization (rhs);
3829
3830 rhstype = TREE_TYPE (rhs);
3831 coder = TREE_CODE (rhstype);
3832
3833 if (coder == ERROR_MARK)
3834 return error_mark_node;
3835
3836 if (c_dialect_objc ())
3837 {
3838 int parmno;
3839
3840 switch (errtype)
3841 {
3842 case ic_return:
3843 parmno = 0;
3844 break;
3845
3846 case ic_assign:
3847 parmno = -1;
3848 break;
3849
3850 case ic_init:
3851 parmno = -2;
3852 break;
3853
3854 default:
3855 parmno = parmnum;
3856 break;
3857 }
3858
3859 objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3860 }
3861
3862 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3863 return rhs;
3864
3865 if (coder == VOID_TYPE)
3866 {
3867 /* Except for passing an argument to an unprototyped function,
3868 this is a constraint violation. When passing an argument to
3869 an unprototyped function, it is compile-time undefined;
3870 making it a constraint in that case was rejected in
3871 DR#252. */
3872 error ("void value not ignored as it ought to be");
3873 return error_mark_node;
3874 }
3875 /* A type converts to a reference to it.
3876 This code doesn't fully support references, it's just for the
3877 special case of va_start and va_copy. */
3878 if (codel == REFERENCE_TYPE
3879 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3880 {
3881 if (!lvalue_p (rhs))
3882 {
3883 error ("cannot pass rvalue to reference parameter");
3884 return error_mark_node;
3885 }
3886 if (!c_mark_addressable (rhs))
3887 return error_mark_node;
3888 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3889
3890 /* We already know that these two types are compatible, but they
3891 may not be exactly identical. In fact, `TREE_TYPE (type)' is
3892 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3893 likely to be va_list, a typedef to __builtin_va_list, which
3894 is different enough that it will cause problems later. */
3895 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3896 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3897
3898 rhs = build1 (NOP_EXPR, type, rhs);
3899 return rhs;
3900 }
3901 /* Some types can interconvert without explicit casts. */
3902 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3903 && vector_types_convertible_p (type, TREE_TYPE (rhs), true))
3904 return convert (type, rhs);
3905 /* Arithmetic types all interconvert, and enum is treated like int. */
3906 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3907 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3908 || codel == BOOLEAN_TYPE)
3909 && (coder == INTEGER_TYPE || coder == REAL_TYPE
3910 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3911 || coder == BOOLEAN_TYPE))
3912 return convert_and_check (type, rhs);
3913
3914 /* Aggregates in different TUs might need conversion. */
3915 if ((codel == RECORD_TYPE || codel == UNION_TYPE)
3916 && codel == coder
3917 && comptypes (type, rhstype))
3918 return convert_and_check (type, rhs);
3919
3920 /* Conversion to a transparent union from its member types.
3921 This applies only to function arguments. */
3922 if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3923 && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3924 {
3925 tree memb, marginal_memb = NULL_TREE;
3926
3927 for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3928 {
3929 tree memb_type = TREE_TYPE (memb);
3930
3931 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3932 TYPE_MAIN_VARIANT (rhstype)))
3933 break;
3934
3935 if (TREE_CODE (memb_type) != POINTER_TYPE)
3936 continue;
3937
3938 if (coder == POINTER_TYPE)
3939 {
3940 tree ttl = TREE_TYPE (memb_type);
3941 tree ttr = TREE_TYPE (rhstype);
3942
3943 /* Any non-function converts to a [const][volatile] void *
3944 and vice versa; otherwise, targets must be the same.
3945 Meanwhile, the lhs target must have all the qualifiers of
3946 the rhs. */
3947 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3948 || comp_target_types (memb_type, rhstype))
3949 {
3950 /* If this type won't generate any warnings, use it. */
3951 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3952 || ((TREE_CODE (ttr) == FUNCTION_TYPE
3953 && TREE_CODE (ttl) == FUNCTION_TYPE)
3954 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3955 == TYPE_QUALS (ttr))
3956 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3957 == TYPE_QUALS (ttl))))
3958 break;
3959
3960 /* Keep looking for a better type, but remember this one. */
3961 if (!marginal_memb)
3962 marginal_memb = memb;
3963 }
3964 }
3965
3966 /* Can convert integer zero to any pointer type. */
3967 if (null_pointer_constant_p (rhs))
3968 {
3969 rhs = null_pointer_node;
3970 break;
3971 }
3972 }
3973
3974 if (memb || marginal_memb)
3975 {
3976 if (!memb)
3977 {
3978 /* We have only a marginally acceptable member type;
3979 it needs a warning. */
3980 tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
3981 tree ttr = TREE_TYPE (rhstype);
3982
3983 /* Const and volatile mean something different for function
3984 types, so the usual warnings are not appropriate. */
3985 if (TREE_CODE (ttr) == FUNCTION_TYPE
3986 && TREE_CODE (ttl) == FUNCTION_TYPE)
3987 {
3988 /* Because const and volatile on functions are
3989 restrictions that say the function will not do
3990 certain things, it is okay to use a const or volatile
3991 function where an ordinary one is wanted, but not
3992 vice-versa. */
3993 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
3994 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
3995 "makes qualified function "
3996 "pointer from unqualified"),
3997 G_("assignment makes qualified "
3998 "function pointer from "
3999 "unqualified"),
4000 G_("initialization makes qualified "
4001 "function pointer from "
4002 "unqualified"),
4003 G_("return makes qualified function "
4004 "pointer from unqualified"));
4005 }
4006 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4007 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4008 "qualifiers from pointer target type"),
4009 G_("assignment discards qualifiers "
4010 "from pointer target type"),
4011 G_("initialization discards qualifiers "
4012 "from pointer target type"),
4013 G_("return discards qualifiers from "
4014 "pointer target type"));
4015
4016 memb = marginal_memb;
4017 }
4018
4019 if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
4020 pedwarn ("ISO C prohibits argument conversion to union type");
4021
4022 return build_constructor_single (type, memb, rhs);
4023 }
4024 }
4025
4026 /* Conversions among pointers */
4027 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4028 && (coder == codel))
4029 {
4030 tree ttl = TREE_TYPE (type);
4031 tree ttr = TREE_TYPE (rhstype);
4032 tree mvl = ttl;
4033 tree mvr = ttr;
4034 bool is_opaque_pointer;
4035 int target_cmp = 0; /* Cache comp_target_types () result. */
4036
4037 if (TREE_CODE (mvl) != ARRAY_TYPE)
4038 mvl = TYPE_MAIN_VARIANT (mvl);
4039 if (TREE_CODE (mvr) != ARRAY_TYPE)
4040 mvr = TYPE_MAIN_VARIANT (mvr);
4041 /* Opaque pointers are treated like void pointers. */
4042 is_opaque_pointer = (targetm.vector_opaque_p (type)
4043 || targetm.vector_opaque_p (rhstype))
4044 && TREE_CODE (ttl) == VECTOR_TYPE
4045 && TREE_CODE (ttr) == VECTOR_TYPE;
4046
4047 /* C++ does not allow the implicit conversion void* -> T*. However,
4048 for the purpose of reducing the number of false positives, we
4049 tolerate the special case of
4050
4051 int *p = NULL;
4052
4053 where NULL is typically defined in C to be '(void *) 0'. */
4054 if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4055 warning (OPT_Wc___compat, "request for implicit conversion from "
4056 "%qT to %qT not permitted in C++", rhstype, type);
4057
4058 /* Check if the right-hand side has a format attribute but the
4059 left-hand side doesn't. */
4060 if (warn_missing_format_attribute
4061 && check_missing_format_attribute (type, rhstype))
4062 {
4063 switch (errtype)
4064 {
4065 case ic_argpass:
4066 case ic_argpass_nonproto:
4067 warning (OPT_Wmissing_format_attribute,
4068 "argument %d of %qE might be "
4069 "a candidate for a format attribute",
4070 parmnum, rname);
4071 break;
4072 case ic_assign:
4073 warning (OPT_Wmissing_format_attribute,
4074 "assignment left-hand side might be "
4075 "a candidate for a format attribute");
4076 break;
4077 case ic_init:
4078 warning (OPT_Wmissing_format_attribute,
4079 "initialization left-hand side might be "
4080 "a candidate for a format attribute");
4081 break;
4082 case ic_return:
4083 warning (OPT_Wmissing_format_attribute,
4084 "return type might be "
4085 "a candidate for a format attribute");
4086 break;
4087 default:
4088 gcc_unreachable ();
4089 }
4090 }
4091
4092 /* Any non-function converts to a [const][volatile] void *
4093 and vice versa; otherwise, targets must be the same.
4094 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4095 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4096 || (target_cmp = comp_target_types (type, rhstype))
4097 || is_opaque_pointer
4098 || (c_common_unsigned_type (mvl)
4099 == c_common_unsigned_type (mvr)))
4100 {
4101 if (pedantic
4102 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4103 ||
4104 (VOID_TYPE_P (ttr)
4105 && !null_pointer_constant_p (rhs)
4106 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4107 WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4108 "%qE between function pointer "
4109 "and %<void *%>"),
4110 G_("ISO C forbids assignment between "
4111 "function pointer and %<void *%>"),
4112 G_("ISO C forbids initialization between "
4113 "function pointer and %<void *%>"),
4114 G_("ISO C forbids return between function "
4115 "pointer and %<void *%>"));
4116 /* Const and volatile mean something different for function types,
4117 so the usual warnings are not appropriate. */
4118 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4119 && TREE_CODE (ttl) != FUNCTION_TYPE)
4120 {
4121 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4122 {
4123 /* Types differing only by the presence of the 'volatile'
4124 qualifier are acceptable if the 'volatile' has been added
4125 in by the Objective-C EH machinery. */
4126 if (!objc_type_quals_match (ttl, ttr))
4127 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4128 "qualifiers from pointer target type"),
4129 G_("assignment discards qualifiers "
4130 "from pointer target type"),
4131 G_("initialization discards qualifiers "
4132 "from pointer target type"),
4133 G_("return discards qualifiers from "
4134 "pointer target type"));
4135 }
4136 /* If this is not a case of ignoring a mismatch in signedness,
4137 no warning. */
4138 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4139 || target_cmp)
4140 ;
4141 /* If there is a mismatch, do warn. */
4142 else if (warn_pointer_sign)
4143 WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4144 "%d of %qE differ in signedness"),
4145 G_("pointer targets in assignment "
4146 "differ in signedness"),
4147 G_("pointer targets in initialization "
4148 "differ in signedness"),
4149 G_("pointer targets in return differ "
4150 "in signedness"));
4151 }
4152 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4153 && TREE_CODE (ttr) == FUNCTION_TYPE)
4154 {
4155 /* Because const and volatile on functions are restrictions
4156 that say the function will not do certain things,
4157 it is okay to use a const or volatile function
4158 where an ordinary one is wanted, but not vice-versa. */
4159 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4160 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4161 "qualified function pointer "
4162 "from unqualified"),
4163 G_("assignment makes qualified function "
4164 "pointer from unqualified"),
4165 G_("initialization makes qualified "
4166 "function pointer from unqualified"),
4167 G_("return makes qualified function "
4168 "pointer from unqualified"));
4169 }
4170 }
4171 else
4172 /* Avoid warning about the volatile ObjC EH puts on decls. */
4173 if (!objc_ok)
4174 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4175 "incompatible pointer type"),
4176 G_("assignment from incompatible pointer type"),
4177 G_("initialization from incompatible "
4178 "pointer type"),
4179 G_("return from incompatible pointer type"));
4180
4181 return convert (type, rhs);
4182 }
4183 else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4184 {
4185 /* ??? This should not be an error when inlining calls to
4186 unprototyped functions. */
4187 error ("invalid use of non-lvalue array");
4188 return error_mark_node;
4189 }
4190 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4191 {
4192 /* An explicit constant 0 can convert to a pointer,
4193 or one that results from arithmetic, even including
4194 a cast to integer type. */
4195 if (!null_pointer_constant_p (rhs))
4196 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4197 "pointer from integer without a cast"),
4198 G_("assignment makes pointer from integer "
4199 "without a cast"),
4200 G_("initialization makes pointer from "
4201 "integer without a cast"),
4202 G_("return makes pointer from integer "
4203 "without a cast"));
4204
4205 return convert (type, rhs);
4206 }
4207 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4208 {
4209 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4210 "from pointer without a cast"),
4211 G_("assignment makes integer from pointer "
4212 "without a cast"),
4213 G_("initialization makes integer from pointer "
4214 "without a cast"),
4215 G_("return makes integer from pointer "
4216 "without a cast"));
4217 return convert (type, rhs);
4218 }
4219 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4220 return convert (type, rhs);
4221
4222 switch (errtype)
4223 {
4224 case ic_argpass:
4225 case ic_argpass_nonproto:
4226 /* ??? This should not be an error when inlining calls to
4227 unprototyped functions. */
4228 error ("incompatible type for argument %d of %qE", parmnum, rname);
4229 break;
4230 case ic_assign:
4231 error ("incompatible types in assignment");
4232 break;
4233 case ic_init:
4234 error ("incompatible types in initialization");
4235 break;
4236 case ic_return:
4237 error ("incompatible types in return");
4238 break;
4239 default:
4240 gcc_unreachable ();
4241 }
4242
4243 return error_mark_node;
4244 }
4245
4246 /* Convert VALUE for assignment into inlined parameter PARM. ARGNUM
4247 is used for error and warning reporting and indicates which argument
4248 is being processed. */
4249
4250 tree
4251 c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
4252 {
4253 tree ret, type;
4254
4255 /* If FN was prototyped at the call site, the value has been converted
4256 already in convert_arguments.
4257 However, we might see a prototype now that was not in place when
4258 the function call was seen, so check that the VALUE actually matches
4259 PARM before taking an early exit. */
4260 if (!value
4261 || (TYPE_ARG_TYPES (TREE_TYPE (fn))
4262 && (TYPE_MAIN_VARIANT (TREE_TYPE (parm))
4263 == TYPE_MAIN_VARIANT (TREE_TYPE (value)))))
4264 return value;
4265
4266 type = TREE_TYPE (parm);
4267 ret = convert_for_assignment (type, value,
4268 ic_argpass_nonproto, fn,
4269 fn, argnum);
4270 if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
4271 && INTEGRAL_TYPE_P (type)
4272 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4273 ret = default_conversion (ret);
4274 return ret;
4275 }
4276 \f
4277 /* If VALUE is a compound expr all of whose expressions are constant, then
4278 return its value. Otherwise, return error_mark_node.
4279
4280 This is for handling COMPOUND_EXPRs as initializer elements
4281 which is allowed with a warning when -pedantic is specified. */
4282
4283 static tree
4284 valid_compound_expr_initializer (tree value, tree endtype)
4285 {
4286 if (TREE_CODE (value) == COMPOUND_EXPR)
4287 {
4288 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4289 == error_mark_node)
4290 return error_mark_node;
4291 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4292 endtype);
4293 }
4294 else if (!initializer_constant_valid_p (value, endtype))
4295 return error_mark_node;
4296 else
4297 return value;
4298 }
4299 \f
4300 /* Perform appropriate conversions on the initial value of a variable,
4301 store it in the declaration DECL,
4302 and print any error messages that are appropriate.
4303 If the init is invalid, store an ERROR_MARK. */
4304
4305 void
4306 store_init_value (tree decl, tree init)
4307 {
4308 tree value, type;
4309
4310 /* If variable's type was invalidly declared, just ignore it. */
4311
4312 type = TREE_TYPE (decl);
4313 if (TREE_CODE (type) == ERROR_MARK)
4314 return;
4315
4316 /* Digest the specified initializer into an expression. */
4317
4318 value = digest_init (type, init, true, TREE_STATIC (decl));
4319
4320 /* Store the expression if valid; else report error. */
4321
4322 if (!in_system_header
4323 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4324 warning (OPT_Wtraditional, "traditional C rejects automatic "
4325 "aggregate initialization");
4326
4327 DECL_INITIAL (decl) = value;
4328
4329 /* ANSI wants warnings about out-of-range constant initializers. */
4330 STRIP_TYPE_NOPS (value);
4331 if (TREE_STATIC (decl))
4332 constant_expression_warning (value);
4333
4334 /* Check if we need to set array size from compound literal size. */
4335 if (TREE_CODE (type) == ARRAY_TYPE
4336 && TYPE_DOMAIN (type) == 0
4337 && value != error_mark_node)
4338 {
4339 tree inside_init = init;
4340
4341 STRIP_TYPE_NOPS (inside_init);
4342 inside_init = fold (inside_init);
4343
4344 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4345 {
4346 tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4347
4348 if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4349 {
4350 /* For int foo[] = (int [3]){1}; we need to set array size
4351 now since later on array initializer will be just the
4352 brace enclosed list of the compound literal. */
4353 type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4354 TREE_TYPE (decl) = type;
4355 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4356 layout_type (type);
4357 layout_decl (cldecl, 0);
4358 }
4359 }
4360 }
4361 }
4362 \f
4363 /* Methods for storing and printing names for error messages. */
4364
4365 /* Implement a spelling stack that allows components of a name to be pushed
4366 and popped. Each element on the stack is this structure. */
4367
4368 struct spelling
4369 {
4370 int kind;
4371 union
4372 {
4373 unsigned HOST_WIDE_INT i;
4374 const char *s;
4375 } u;
4376 };
4377
4378 #define SPELLING_STRING 1
4379 #define SPELLING_MEMBER 2
4380 #define SPELLING_BOUNDS 3
4381
4382 static struct spelling *spelling; /* Next stack element (unused). */
4383 static struct spelling *spelling_base; /* Spelling stack base. */
4384 static int spelling_size; /* Size of the spelling stack. */
4385
4386 /* Macros to save and restore the spelling stack around push_... functions.
4387 Alternative to SAVE_SPELLING_STACK. */
4388
4389 #define SPELLING_DEPTH() (spelling - spelling_base)
4390 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4391
4392 /* Push an element on the spelling stack with type KIND and assign VALUE
4393 to MEMBER. */
4394
4395 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4396 { \
4397 int depth = SPELLING_DEPTH (); \
4398 \
4399 if (depth >= spelling_size) \
4400 { \
4401 spelling_size += 10; \
4402 spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
4403 spelling_size); \
4404 RESTORE_SPELLING_DEPTH (depth); \
4405 } \
4406 \
4407 spelling->kind = (KIND); \
4408 spelling->MEMBER = (VALUE); \
4409 spelling++; \
4410 }
4411
4412 /* Push STRING on the stack. Printed literally. */
4413
4414 static void
4415 push_string (const char *string)
4416 {
4417 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4418 }
4419
4420 /* Push a member name on the stack. Printed as '.' STRING. */
4421
4422 static void
4423 push_member_name (tree decl)
4424 {
4425 const char *const string
4426 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4427 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4428 }
4429
4430 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4431
4432 static void
4433 push_array_bounds (unsigned HOST_WIDE_INT bounds)
4434 {
4435 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4436 }
4437
4438 /* Compute the maximum size in bytes of the printed spelling. */
4439
4440 static int
4441 spelling_length (void)
4442 {
4443 int size = 0;
4444 struct spelling *p;
4445
4446 for (p = spelling_base; p < spelling; p++)
4447 {
4448 if (p->kind == SPELLING_BOUNDS)
4449 size += 25;
4450 else
4451 size += strlen (p->u.s) + 1;
4452 }
4453
4454 return size;
4455 }
4456
4457 /* Print the spelling to BUFFER and return it. */
4458
4459 static char *
4460 print_spelling (char *buffer)
4461 {
4462 char *d = buffer;
4463 struct spelling *p;
4464
4465 for (p = spelling_base; p < spelling; p++)
4466 if (p->kind == SPELLING_BOUNDS)
4467 {
4468 sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4469 d += strlen (d);
4470 }
4471 else
4472 {
4473 const char *s;
4474 if (p->kind == SPELLING_MEMBER)
4475 *d++ = '.';
4476 for (s = p->u.s; (*d = *s++); d++)
4477 ;
4478 }
4479 *d++ = '\0';
4480 return buffer;
4481 }
4482
4483 /* Issue an error message for a bad initializer component.
4484 MSGID identifies the message.
4485 The component name is taken from the spelling stack. */
4486
4487 void
4488 error_init (const char *msgid)
4489 {
4490 char *ofwhat;
4491
4492 error ("%s", _(msgid));
4493 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4494 if (*ofwhat)
4495 error ("(near initialization for %qs)", ofwhat);
4496 }
4497
4498 /* Issue a pedantic warning for a bad initializer component.
4499 MSGID identifies the message.
4500 The component name is taken from the spelling stack. */
4501
4502 void
4503 pedwarn_init (const char *msgid)
4504 {
4505 char *ofwhat;
4506
4507 pedwarn ("%s", _(msgid));
4508 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4509 if (*ofwhat)
4510 pedwarn ("(near initialization for %qs)", ofwhat);
4511 }
4512
4513 /* Issue a warning for a bad initializer component.
4514 MSGID identifies the message.
4515 The component name is taken from the spelling stack. */
4516
4517 static void
4518 warning_init (const char *msgid)
4519 {
4520 char *ofwhat;
4521
4522 warning (0, "%s", _(msgid));
4523 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4524 if (*ofwhat)
4525 warning (0, "(near initialization for %qs)", ofwhat);
4526 }
4527 \f
4528 /* If TYPE is an array type and EXPR is a parenthesized string
4529 constant, warn if pedantic that EXPR is being used to initialize an
4530 object of type TYPE. */
4531
4532 void
4533 maybe_warn_string_init (tree type, struct c_expr expr)
4534 {
4535 if (pedantic
4536 && TREE_CODE (type) == ARRAY_TYPE
4537 && TREE_CODE (expr.value) == STRING_CST
4538 && expr.original_code != STRING_CST)
4539 pedwarn_init ("array initialized from parenthesized string constant");
4540 }
4541
4542 /* Digest the parser output INIT as an initializer for type TYPE.
4543 Return a C expression of type TYPE to represent the initial value.
4544
4545 If INIT is a string constant, STRICT_STRING is true if it is
4546 unparenthesized or we should not warn here for it being parenthesized.
4547 For other types of INIT, STRICT_STRING is not used.
4548
4549 REQUIRE_CONSTANT requests an error if non-constant initializers or
4550 elements are seen. */
4551
4552 static tree
4553 digest_init (tree type, tree init, bool strict_string, int require_constant)
4554 {
4555 enum tree_code code = TREE_CODE (type);
4556 tree inside_init = init;
4557
4558 if (type == error_mark_node
4559 || !init
4560 || init == error_mark_node
4561 || TREE_TYPE (init) == error_mark_node)
4562 return error_mark_node;
4563
4564 STRIP_TYPE_NOPS (inside_init);
4565
4566 inside_init = fold (inside_init);
4567
4568 /* Initialization of an array of chars from a string constant
4569 optionally enclosed in braces. */
4570
4571 if (code == ARRAY_TYPE && inside_init
4572 && TREE_CODE (inside_init) == STRING_CST)
4573 {
4574 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4575 /* Note that an array could be both an array of character type
4576 and an array of wchar_t if wchar_t is signed char or unsigned
4577 char. */
4578 bool char_array = (typ1 == char_type_node
4579 || typ1 == signed_char_type_node
4580 || typ1 == unsigned_char_type_node);
4581 bool wchar_array = !!comptypes (typ1, wchar_type_node);
4582 if (char_array || wchar_array)
4583 {
4584 struct c_expr expr;
4585 bool char_string;
4586 expr.value = inside_init;
4587 expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4588 maybe_warn_string_init (type, expr);
4589
4590 char_string
4591 = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4592 == char_type_node);
4593
4594 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4595 TYPE_MAIN_VARIANT (type)))
4596 return inside_init;
4597
4598 if (!wchar_array && !char_string)
4599 {
4600 error_init ("char-array initialized from wide string");
4601 return error_mark_node;
4602 }
4603 if (char_string && !char_array)
4604 {
4605 error_init ("wchar_t-array initialized from non-wide string");
4606 return error_mark_node;
4607 }
4608
4609 TREE_TYPE (inside_init) = type;
4610 if (TYPE_DOMAIN (type) != 0
4611 && TYPE_SIZE (type) != 0
4612 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4613 /* Subtract 1 (or sizeof (wchar_t))
4614 because it's ok to ignore the terminating null char
4615 that is counted in the length of the constant. */
4616 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4617 TREE_STRING_LENGTH (inside_init)
4618 - ((TYPE_PRECISION (typ1)
4619 != TYPE_PRECISION (char_type_node))
4620 ? (TYPE_PRECISION (wchar_type_node)
4621 / BITS_PER_UNIT)
4622 : 1)))
4623 pedwarn_init ("initializer-string for array of chars is too long");
4624
4625 return inside_init;
4626 }
4627 else if (INTEGRAL_TYPE_P (typ1))
4628 {
4629 error_init ("array of inappropriate type initialized "
4630 "from string constant");
4631 return error_mark_node;
4632 }
4633 }
4634
4635 /* Build a VECTOR_CST from a *constant* vector constructor. If the
4636 vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4637 below and handle as a constructor. */
4638 if (code == VECTOR_TYPE
4639 && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4640 && vector_types_convertible_p (TREE_TYPE (inside_init), type, true)
4641 && TREE_CONSTANT (inside_init))
4642 {
4643 if (TREE_CODE (inside_init) == VECTOR_CST
4644 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4645 TYPE_MAIN_VARIANT (type)))
4646 return inside_init;
4647
4648 if (TREE_CODE (inside_init) == CONSTRUCTOR)
4649 {
4650 unsigned HOST_WIDE_INT ix;
4651 tree value;
4652 bool constant_p = true;
4653
4654 /* Iterate through elements and check if all constructor
4655 elements are *_CSTs. */
4656 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4657 if (!CONSTANT_CLASS_P (value))
4658 {
4659 constant_p = false;
4660 break;
4661 }
4662
4663 if (constant_p)
4664 return build_vector_from_ctor (type,
4665 CONSTRUCTOR_ELTS (inside_init));
4666 }
4667 }
4668
4669 /* Any type can be initialized
4670 from an expression of the same type, optionally with braces. */
4671
4672 if (inside_init && TREE_TYPE (inside_init) != 0
4673 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4674 TYPE_MAIN_VARIANT (type))
4675 || (code == ARRAY_TYPE
4676 && comptypes (TREE_TYPE (inside_init), type))
4677 || (code == VECTOR_TYPE
4678 && comptypes (TREE_TYPE (inside_init), type))
4679 || (code == POINTER_TYPE
4680 && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4681 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4682 TREE_TYPE (type)))))
4683 {
4684 if (code == POINTER_TYPE)
4685 {
4686 if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4687 {
4688 if (TREE_CODE (inside_init) == STRING_CST
4689 || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4690 inside_init = array_to_pointer_conversion (inside_init);
4691 else
4692 {
4693 error_init ("invalid use of non-lvalue array");
4694 return error_mark_node;
4695 }
4696 }
4697 }
4698
4699 if (code == VECTOR_TYPE)
4700 /* Although the types are compatible, we may require a
4701 conversion. */
4702 inside_init = convert (type, inside_init);
4703
4704 if (require_constant
4705 && (code == VECTOR_TYPE || !flag_isoc99)
4706 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4707 {
4708 /* As an extension, allow initializing objects with static storage
4709 duration with compound literals (which are then treated just as
4710 the brace enclosed list they contain). Also allow this for
4711 vectors, as we can only assign them with compound literals. */
4712 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4713 inside_init = DECL_INITIAL (decl);
4714 }
4715
4716 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4717 && TREE_CODE (inside_init) != CONSTRUCTOR)
4718 {
4719 error_init ("array initialized from non-constant array expression");
4720 return error_mark_node;
4721 }
4722
4723 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4724 inside_init = decl_constant_value_for_broken_optimization (inside_init);
4725
4726 /* Compound expressions can only occur here if -pedantic or
4727 -pedantic-errors is specified. In the later case, we always want
4728 an error. In the former case, we simply want a warning. */
4729 if (require_constant && pedantic
4730 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4731 {
4732 inside_init
4733 = valid_compound_expr_initializer (inside_init,
4734 TREE_TYPE (inside_init));
4735 if (inside_init == error_mark_node)
4736 error_init ("initializer element is not constant");
4737 else
4738 pedwarn_init ("initializer element is not constant");
4739 if (flag_pedantic_errors)
4740 inside_init = error_mark_node;
4741 }
4742 else if (require_constant
4743 && !initializer_constant_valid_p (inside_init,
4744 TREE_TYPE (inside_init)))
4745 {
4746 error_init ("initializer element is not constant");
4747 inside_init = error_mark_node;
4748 }
4749
4750 /* Added to enable additional -Wmissing-format-attribute warnings. */
4751 if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4752 inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4753 NULL_TREE, 0);
4754 return inside_init;
4755 }
4756
4757 /* Handle scalar types, including conversions. */
4758
4759 if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4760 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4761 || code == VECTOR_TYPE)
4762 {
4763 if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4764 && (TREE_CODE (init) == STRING_CST
4765 || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4766 init = array_to_pointer_conversion (init);
4767 inside_init
4768 = convert_for_assignment (type, init, ic_init,
4769 NULL_TREE, NULL_TREE, 0);
4770
4771 /* Check to see if we have already given an error message. */
4772 if (inside_init == error_mark_node)
4773 ;
4774 else if (require_constant && !TREE_CONSTANT (inside_init))
4775 {
4776 error_init ("initializer element is not constant");
4777 inside_init = error_mark_node;
4778 }
4779 else if (require_constant
4780 && !initializer_constant_valid_p (inside_init,
4781 TREE_TYPE (inside_init)))
4782 {
4783 error_init ("initializer element is not computable at load time");
4784 inside_init = error_mark_node;
4785 }
4786
4787 return inside_init;
4788 }
4789
4790 /* Come here only for records and arrays. */
4791
4792 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4793 {
4794 error_init ("variable-sized object may not be initialized");
4795 return error_mark_node;
4796 }
4797
4798 error_init ("invalid initializer");
4799 return error_mark_node;
4800 }
4801 \f
4802 /* Handle initializers that use braces. */
4803
4804 /* Type of object we are accumulating a constructor for.
4805 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4806 static tree constructor_type;
4807
4808 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4809 left to fill. */
4810 static tree constructor_fields;
4811
4812 /* For an ARRAY_TYPE, this is the specified index
4813 at which to store the next element we get. */
4814 static tree constructor_index;
4815
4816 /* For an ARRAY_TYPE, this is the maximum index. */
4817 static tree constructor_max_index;
4818
4819 /* For a RECORD_TYPE, this is the first field not yet written out. */
4820 static tree constructor_unfilled_fields;
4821
4822 /* For an ARRAY_TYPE, this is the index of the first element
4823 not yet written out. */
4824 static tree constructor_unfilled_index;
4825
4826 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4827 This is so we can generate gaps between fields, when appropriate. */
4828 static tree constructor_bit_index;
4829
4830 /* If we are saving up the elements rather than allocating them,
4831 this is the list of elements so far (in reverse order,
4832 most recent first). */
4833 static VEC(constructor_elt,gc) *constructor_elements;
4834
4835 /* 1 if constructor should be incrementally stored into a constructor chain,
4836 0 if all the elements should be kept in AVL tree. */
4837 static int constructor_incremental;
4838
4839 /* 1 if so far this constructor's elements are all compile-time constants. */
4840 static int constructor_constant;
4841
4842 /* 1 if so far this constructor's elements are all valid address constants. */
4843 static int constructor_simple;
4844
4845 /* 1 if this constructor is erroneous so far. */
4846 static int constructor_erroneous;
4847
4848 /* Structure for managing pending initializer elements, organized as an
4849 AVL tree. */
4850
4851 struct init_node
4852 {
4853 struct init_node *left, *right;
4854 struct init_node *parent;
4855 int balance;
4856 tree purpose;
4857 tree value;
4858 };
4859
4860 /* Tree of pending elements at this constructor level.
4861 These are elements encountered out of order
4862 which belong at places we haven't reached yet in actually
4863 writing the output.
4864 Will never hold tree nodes across GC runs. */
4865 static struct init_node *constructor_pending_elts;
4866
4867 /* The SPELLING_DEPTH of this constructor. */
4868 static int constructor_depth;
4869
4870 /* DECL node for which an initializer is being read.
4871 0 means we are reading a constructor expression
4872 such as (struct foo) {...}. */
4873 static tree constructor_decl;
4874
4875 /* Nonzero if this is an initializer for a top-level decl. */
4876 static int constructor_top_level;
4877
4878 /* Nonzero if there were any member designators in this initializer. */
4879 static int constructor_designated;
4880
4881 /* Nesting depth of designator list. */
4882 static int designator_depth;
4883
4884 /* Nonzero if there were diagnosed errors in this designator list. */
4885 static int designator_erroneous;
4886
4887 \f
4888 /* This stack has a level for each implicit or explicit level of
4889 structuring in the initializer, including the outermost one. It
4890 saves the values of most of the variables above. */
4891
4892 struct constructor_range_stack;
4893
4894 struct constructor_stack
4895 {
4896 struct constructor_stack *next;
4897 tree type;
4898 tree fields;
4899 tree index;
4900 tree max_index;
4901 tree unfilled_index;
4902 tree unfilled_fields;
4903 tree bit_index;
4904 VEC(constructor_elt,gc) *elements;
4905 struct init_node *pending_elts;
4906 int offset;
4907 int depth;
4908 /* If value nonzero, this value should replace the entire
4909 constructor at this level. */
4910 struct c_expr replacement_value;
4911 struct constructor_range_stack *range_stack;
4912 char constant;
4913 char simple;
4914 char implicit;
4915 char erroneous;
4916 char outer;
4917 char incremental;
4918 char designated;
4919 };
4920
4921 static struct constructor_stack *constructor_stack;
4922
4923 /* This stack represents designators from some range designator up to
4924 the last designator in the list. */
4925
4926 struct constructor_range_stack
4927 {
4928 struct constructor_range_stack *next, *prev;
4929 struct constructor_stack *stack;
4930 tree range_start;
4931 tree index;
4932 tree range_end;
4933 tree fields;
4934 };
4935
4936 static struct constructor_range_stack *constructor_range_stack;
4937
4938 /* This stack records separate initializers that are nested.
4939 Nested initializers can't happen in ANSI C, but GNU C allows them
4940 in cases like { ... (struct foo) { ... } ... }. */
4941
4942 struct initializer_stack
4943 {
4944 struct initializer_stack *next;
4945 tree decl;
4946 struct constructor_stack *constructor_stack;
4947 struct constructor_range_stack *constructor_range_stack;
4948 VEC(constructor_elt,gc) *elements;
4949 struct spelling *spelling;
4950 struct spelling *spelling_base;
4951 int spelling_size;
4952 char top_level;
4953 char require_constant_value;
4954 char require_constant_elements;
4955 };
4956
4957 static struct initializer_stack *initializer_stack;
4958 \f
4959 /* Prepare to parse and output the initializer for variable DECL. */
4960
4961 void
4962 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
4963 {
4964 const char *locus;
4965 struct initializer_stack *p = XNEW (struct initializer_stack);
4966
4967 p->decl = constructor_decl;
4968 p->require_constant_value = require_constant_value;
4969 p->require_constant_elements = require_constant_elements;
4970 p->constructor_stack = constructor_stack;
4971 p->constructor_range_stack = constructor_range_stack;
4972 p->elements = constructor_elements;
4973 p->spelling = spelling;
4974 p->spelling_base = spelling_base;
4975 p->spelling_size = spelling_size;
4976 p->top_level = constructor_top_level;
4977 p->next = initializer_stack;
4978 initializer_stack = p;
4979
4980 constructor_decl = decl;
4981 constructor_designated = 0;
4982 constructor_top_level = top_level;
4983
4984 if (decl != 0 && decl != error_mark_node)
4985 {
4986 require_constant_value = TREE_STATIC (decl);
4987 require_constant_elements
4988 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
4989 /* For a scalar, you can always use any value to initialize,
4990 even within braces. */
4991 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
4992 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4993 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
4994 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
4995 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
4996 }
4997 else
4998 {
4999 require_constant_value = 0;
5000 require_constant_elements = 0;
5001 locus = "(anonymous)";
5002 }
5003
5004 constructor_stack = 0;
5005 constructor_range_stack = 0;
5006
5007 missing_braces_mentioned = 0;
5008
5009 spelling_base = 0;
5010 spelling_size = 0;
5011 RESTORE_SPELLING_DEPTH (0);
5012
5013 if (locus)
5014 push_string (locus);
5015 }
5016
5017 void
5018 finish_init (void)
5019 {
5020 struct initializer_stack *p = initializer_stack;
5021
5022 /* Free the whole constructor stack of this initializer. */
5023 while (constructor_stack)
5024 {
5025 struct constructor_stack *q = constructor_stack;
5026 constructor_stack = q->next;
5027 free (q);
5028 }
5029
5030 gcc_assert (!constructor_range_stack);
5031
5032 /* Pop back to the data of the outer initializer (if any). */
5033 free (spelling_base);
5034
5035 constructor_decl = p->decl;
5036 require_constant_value = p->require_constant_value;
5037 require_constant_elements = p->require_constant_elements;
5038 constructor_stack = p->constructor_stack;
5039 constructor_range_stack = p->constructor_range_stack;
5040 constructor_elements = p->elements;
5041 spelling = p->spelling;
5042 spelling_base = p->spelling_base;
5043 spelling_size = p->spelling_size;
5044 constructor_top_level = p->top_level;
5045 initializer_stack = p->next;
5046 free (p);
5047 }
5048 \f
5049 /* Call here when we see the initializer is surrounded by braces.
5050 This is instead of a call to push_init_level;
5051 it is matched by a call to pop_init_level.
5052
5053 TYPE is the type to initialize, for a constructor expression.
5054 For an initializer for a decl, TYPE is zero. */
5055
5056 void
5057 really_start_incremental_init (tree type)
5058 {
5059 struct constructor_stack *p = XNEW (struct constructor_stack);
5060
5061 if (type == 0)
5062 type = TREE_TYPE (constructor_decl);
5063
5064 if (targetm.vector_opaque_p (type))
5065 error ("opaque vector types cannot be initialized");
5066
5067 p->type = constructor_type;
5068 p->fields = constructor_fields;
5069 p->index = constructor_index;
5070 p->max_index = constructor_max_index;
5071 p->unfilled_index = constructor_unfilled_index;
5072 p->unfilled_fields = constructor_unfilled_fields;
5073 p->bit_index = constructor_bit_index;
5074 p->elements = constructor_elements;
5075 p->constant = constructor_constant;
5076 p->simple = constructor_simple;
5077 p->erroneous = constructor_erroneous;
5078 p->pending_elts = constructor_pending_elts;
5079 p->depth = constructor_depth;
5080 p->replacement_value.value = 0;
5081 p->replacement_value.original_code = ERROR_MARK;
5082 p->implicit = 0;
5083 p->range_stack = 0;
5084 p->outer = 0;
5085 p->incremental = constructor_incremental;
5086 p->designated = constructor_designated;
5087 p->next = 0;
5088 constructor_stack = p;
5089
5090 constructor_constant = 1;
5091 constructor_simple = 1;
5092 constructor_depth = SPELLING_DEPTH ();
5093 constructor_elements = 0;
5094 constructor_pending_elts = 0;
5095 constructor_type = type;
5096 constructor_incremental = 1;
5097 constructor_designated = 0;
5098 designator_depth = 0;
5099 designator_erroneous = 0;
5100
5101 if (TREE_CODE (constructor_type) == RECORD_TYPE
5102 || TREE_CODE (constructor_type) == UNION_TYPE)
5103 {
5104 constructor_fields = TYPE_FIELDS (constructor_type);
5105 /* Skip any nameless bit fields at the beginning. */
5106 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5107 && DECL_NAME (constructor_fields) == 0)
5108 constructor_fields = TREE_CHAIN (constructor_fields);
5109
5110 constructor_unfilled_fields = constructor_fields;
5111 constructor_bit_index = bitsize_zero_node;
5112 }
5113 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5114 {
5115 if (TYPE_DOMAIN (constructor_type))
5116 {
5117 constructor_max_index
5118 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5119
5120 /* Detect non-empty initializations of zero-length arrays. */
5121 if (constructor_max_index == NULL_TREE
5122 && TYPE_SIZE (constructor_type))
5123 constructor_max_index = build_int_cst (NULL_TREE, -1);
5124
5125 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5126 to initialize VLAs will cause a proper error; avoid tree
5127 checking errors as well by setting a safe value. */
5128 if (constructor_max_index
5129 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5130 constructor_max_index = build_int_cst (NULL_TREE, -1);
5131
5132 constructor_index
5133 = convert (bitsizetype,
5134 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5135 }
5136 else
5137 {
5138 constructor_index = bitsize_zero_node;
5139 constructor_max_index = NULL_TREE;
5140 }
5141
5142 constructor_unfilled_index = constructor_index;
5143 }
5144 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5145 {
5146 /* Vectors are like simple fixed-size arrays. */
5147 constructor_max_index =
5148 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5149 constructor_index = bitsize_zero_node;
5150 constructor_unfilled_index = constructor_index;
5151 }
5152 else
5153 {
5154 /* Handle the case of int x = {5}; */
5155 constructor_fields = constructor_type;
5156 constructor_unfilled_fields = constructor_type;
5157 }
5158 }
5159 \f
5160 /* Push down into a subobject, for initialization.
5161 If this is for an explicit set of braces, IMPLICIT is 0.
5162 If it is because the next element belongs at a lower level,
5163 IMPLICIT is 1 (or 2 if the push is because of designator list). */
5164
5165 void
5166 push_init_level (int implicit)
5167 {
5168 struct constructor_stack *p;
5169 tree value = NULL_TREE;
5170
5171 /* If we've exhausted any levels that didn't have braces,
5172 pop them now. If implicit == 1, this will have been done in
5173 process_init_element; do not repeat it here because in the case
5174 of excess initializers for an empty aggregate this leads to an
5175 infinite cycle of popping a level and immediately recreating
5176 it. */
5177 if (implicit != 1)
5178 {
5179 while (constructor_stack->implicit)
5180 {
5181 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5182 || TREE_CODE (constructor_type) == UNION_TYPE)
5183 && constructor_fields == 0)
5184 process_init_element (pop_init_level (1));
5185 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5186 && constructor_max_index
5187 && tree_int_cst_lt (constructor_max_index,
5188 constructor_index))
5189 process_init_element (pop_init_level (1));
5190 else
5191 break;
5192 }
5193 }
5194
5195 /* Unless this is an explicit brace, we need to preserve previous
5196 content if any. */
5197 if (implicit)
5198 {
5199 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5200 || TREE_CODE (constructor_type) == UNION_TYPE)
5201 && constructor_fields)
5202 value = find_init_member (constructor_fields);
5203 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5204 value = find_init_member (constructor_index);
5205 }
5206
5207 p = XNEW (struct constructor_stack);
5208 p->type = constructor_type;
5209 p->fields = constructor_fields;
5210 p->index = constructor_index;
5211 p->max_index = constructor_max_index;
5212 p->unfilled_index = constructor_unfilled_index;
5213 p->unfilled_fields = constructor_unfilled_fields;
5214 p->bit_index = constructor_bit_index;
5215 p->elements = constructor_elements;
5216 p->constant = constructor_constant;
5217 p->simple = constructor_simple;
5218 p->erroneous = constructor_erroneous;
5219 p->pending_elts = constructor_pending_elts;
5220 p->depth = constructor_depth;
5221 p->replacement_value.value = 0;
5222 p->replacement_value.original_code = ERROR_MARK;
5223 p->implicit = implicit;
5224 p->outer = 0;
5225 p->incremental = constructor_incremental;
5226 p->designated = constructor_designated;
5227 p->next = constructor_stack;
5228 p->range_stack = 0;
5229 constructor_stack = p;
5230
5231 constructor_constant = 1;
5232 constructor_simple = 1;
5233 constructor_depth = SPELLING_DEPTH ();
5234 constructor_elements = 0;
5235 constructor_incremental = 1;
5236 constructor_designated = 0;
5237 constructor_pending_elts = 0;
5238 if (!implicit)
5239 {
5240 p->range_stack = constructor_range_stack;
5241 constructor_range_stack = 0;
5242 designator_depth = 0;
5243 designator_erroneous = 0;
5244 }
5245
5246 /* Don't die if an entire brace-pair level is superfluous
5247 in the containing level. */
5248 if (constructor_type == 0)
5249 ;
5250 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5251 || TREE_CODE (constructor_type) == UNION_TYPE)
5252 {
5253 /* Don't die if there are extra init elts at the end. */
5254 if (constructor_fields == 0)
5255 constructor_type = 0;
5256 else
5257 {
5258 constructor_type = TREE_TYPE (constructor_fields);
5259 push_member_name (constructor_fields);
5260 constructor_depth++;
5261 }
5262 }
5263 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5264 {
5265 constructor_type = TREE_TYPE (constructor_type);
5266 push_array_bounds (tree_low_cst (constructor_index, 1));
5267 constructor_depth++;
5268 }
5269
5270 if (constructor_type == 0)
5271 {
5272 error_init ("extra brace group at end of initializer");
5273 constructor_fields = 0;
5274 constructor_unfilled_fields = 0;
5275 return;
5276 }
5277
5278 if (value && TREE_CODE (value) == CONSTRUCTOR)
5279 {
5280 constructor_constant = TREE_CONSTANT (value);
5281 constructor_simple = TREE_STATIC (value);
5282 constructor_elements = CONSTRUCTOR_ELTS (value);
5283 if (!VEC_empty (constructor_elt, constructor_elements)
5284 && (TREE_CODE (constructor_type) == RECORD_TYPE
5285 || TREE_CODE (constructor_type) == ARRAY_TYPE))
5286 set_nonincremental_init ();
5287 }
5288
5289 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5290 {
5291 missing_braces_mentioned = 1;
5292 warning_init ("missing braces around initializer");
5293 }
5294
5295 if (TREE_CODE (constructor_type) == RECORD_TYPE
5296 || TREE_CODE (constructor_type) == UNION_TYPE)
5297 {
5298 constructor_fields = TYPE_FIELDS (constructor_type);
5299 /* Skip any nameless bit fields at the beginning. */
5300 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5301 && DECL_NAME (constructor_fields) == 0)
5302 constructor_fields = TREE_CHAIN (constructor_fields);
5303
5304 constructor_unfilled_fields = constructor_fields;
5305 constructor_bit_index = bitsize_zero_node;
5306 }
5307 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5308 {
5309 /* Vectors are like simple fixed-size arrays. */
5310 constructor_max_index =
5311 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5312 constructor_index = convert (bitsizetype, integer_zero_node);
5313 constructor_unfilled_index = constructor_index;
5314 }
5315 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5316 {
5317 if (TYPE_DOMAIN (constructor_type))
5318 {
5319 constructor_max_index
5320 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5321
5322 /* Detect non-empty initializations of zero-length arrays. */
5323 if (constructor_max_index == NULL_TREE
5324 && TYPE_SIZE (constructor_type))
5325 constructor_max_index = build_int_cst (NULL_TREE, -1);
5326
5327 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5328 to initialize VLAs will cause a proper error; avoid tree
5329 checking errors as well by setting a safe value. */
5330 if (constructor_max_index
5331 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5332 constructor_max_index = build_int_cst (NULL_TREE, -1);
5333
5334 constructor_index
5335 = convert (bitsizetype,
5336 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5337 }
5338 else
5339 constructor_index = bitsize_zero_node;
5340
5341 constructor_unfilled_index = constructor_index;
5342 if (value && TREE_CODE (value) == STRING_CST)
5343 {
5344 /* We need to split the char/wchar array into individual
5345 characters, so that we don't have to special case it
5346 everywhere. */
5347 set_nonincremental_init_from_string (value);
5348 }
5349 }
5350 else
5351 {
5352 if (constructor_type != error_mark_node)
5353 warning_init ("braces around scalar initializer");
5354 constructor_fields = constructor_type;
5355 constructor_unfilled_fields = constructor_type;
5356 }
5357 }
5358
5359 /* At the end of an implicit or explicit brace level,
5360 finish up that level of constructor. If a single expression
5361 with redundant braces initialized that level, return the
5362 c_expr structure for that expression. Otherwise, the original_code
5363 element is set to ERROR_MARK.
5364 If we were outputting the elements as they are read, return 0 as the value
5365 from inner levels (process_init_element ignores that),
5366 but return error_mark_node as the value from the outermost level
5367 (that's what we want to put in DECL_INITIAL).
5368 Otherwise, return a CONSTRUCTOR expression as the value. */
5369
5370 struct c_expr
5371 pop_init_level (int implicit)
5372 {
5373 struct constructor_stack *p;
5374 struct c_expr ret;
5375 ret.value = 0;
5376 ret.original_code = ERROR_MARK;
5377
5378 if (implicit == 0)
5379 {
5380 /* When we come to an explicit close brace,
5381 pop any inner levels that didn't have explicit braces. */
5382 while (constructor_stack->implicit)
5383 process_init_element (pop_init_level (1));
5384
5385 gcc_assert (!constructor_range_stack);
5386 }
5387
5388 /* Now output all pending elements. */
5389 constructor_incremental = 1;
5390 output_pending_init_elements (1);
5391
5392 p = constructor_stack;
5393
5394 /* Error for initializing a flexible array member, or a zero-length
5395 array member in an inappropriate context. */
5396 if (constructor_type && constructor_fields
5397 && TREE_CODE (constructor_type) == ARRAY_TYPE
5398 && TYPE_DOMAIN (constructor_type)
5399 && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5400 {
5401 /* Silently discard empty initializations. The parser will
5402 already have pedwarned for empty brackets. */
5403 if (integer_zerop (constructor_unfilled_index))
5404 constructor_type = NULL_TREE;
5405 else
5406 {
5407 gcc_assert (!TYPE_SIZE (constructor_type));
5408
5409 if (constructor_depth > 2)
5410 error_init ("initialization of flexible array member in a nested context");
5411 else if (pedantic)
5412 pedwarn_init ("initialization of a flexible array member");
5413
5414 /* We have already issued an error message for the existence
5415 of a flexible array member not at the end of the structure.
5416 Discard the initializer so that we do not die later. */
5417 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5418 constructor_type = NULL_TREE;
5419 }
5420 }
5421
5422 /* Warn when some struct elements are implicitly initialized to zero. */
5423 if (warn_missing_field_initializers
5424 && constructor_type
5425 && TREE_CODE (constructor_type) == RECORD_TYPE
5426 && constructor_unfilled_fields)
5427 {
5428 /* Do not warn for flexible array members or zero-length arrays. */
5429 while (constructor_unfilled_fields
5430 && (!DECL_SIZE (constructor_unfilled_fields)
5431 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5432 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5433
5434 /* Do not warn if this level of the initializer uses member
5435 designators; it is likely to be deliberate. */
5436 if (constructor_unfilled_fields && !constructor_designated)
5437 {
5438 push_member_name (constructor_unfilled_fields);
5439 warning_init ("missing initializer");
5440 RESTORE_SPELLING_DEPTH (constructor_depth);
5441 }
5442 }
5443
5444 /* Pad out the end of the structure. */
5445 if (p->replacement_value.value)
5446 /* If this closes a superfluous brace pair,
5447 just pass out the element between them. */
5448 ret = p->replacement_value;
5449 else if (constructor_type == 0)
5450 ;
5451 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5452 && TREE_CODE (constructor_type) != UNION_TYPE
5453 && TREE_CODE (constructor_type) != ARRAY_TYPE
5454 && TREE_CODE (constructor_type) != VECTOR_TYPE)
5455 {
5456 /* A nonincremental scalar initializer--just return
5457 the element, after verifying there is just one. */
5458 if (VEC_empty (constructor_elt,constructor_elements))
5459 {
5460 if (!constructor_erroneous)
5461 error_init ("empty scalar initializer");
5462 ret.value = error_mark_node;
5463 }
5464 else if (VEC_length (constructor_elt,constructor_elements) != 1)
5465 {
5466 error_init ("extra elements in scalar initializer");
5467 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5468 }
5469 else
5470 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5471 }
5472 else
5473 {
5474 if (constructor_erroneous)
5475 ret.value = error_mark_node;
5476 else
5477 {
5478 ret.value = build_constructor (constructor_type,
5479 constructor_elements);
5480 if (constructor_constant)
5481 TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5482 if (constructor_constant && constructor_simple)
5483 TREE_STATIC (ret.value) = 1;
5484 }
5485 }
5486
5487 constructor_type = p->type;
5488 constructor_fields = p->fields;
5489 constructor_index = p->index;
5490 constructor_max_index = p->max_index;
5491 constructor_unfilled_index = p->unfilled_index;
5492 constructor_unfilled_fields = p->unfilled_fields;
5493 constructor_bit_index = p->bit_index;
5494 constructor_elements = p->elements;
5495 constructor_constant = p->constant;
5496 constructor_simple = p->simple;
5497 constructor_erroneous = p->erroneous;
5498 constructor_incremental = p->incremental;
5499 constructor_designated = p->designated;
5500 constructor_pending_elts = p->pending_elts;
5501 constructor_depth = p->depth;
5502 if (!p->implicit)
5503 constructor_range_stack = p->range_stack;
5504 RESTORE_SPELLING_DEPTH (constructor_depth);
5505
5506 constructor_stack = p->next;
5507 free (p);
5508
5509 if (ret.value == 0 && constructor_stack == 0)
5510 ret.value = error_mark_node;
5511 return ret;
5512 }
5513
5514 /* Common handling for both array range and field name designators.
5515 ARRAY argument is nonzero for array ranges. Returns zero for success. */
5516
5517 static int
5518 set_designator (int array)
5519 {
5520 tree subtype;
5521 enum tree_code subcode;
5522
5523 /* Don't die if an entire brace-pair level is superfluous
5524 in the containing level. */
5525 if (constructor_type == 0)
5526 return 1;
5527
5528 /* If there were errors in this designator list already, bail out
5529 silently. */
5530 if (designator_erroneous)
5531 return 1;
5532
5533 if (!designator_depth)
5534 {
5535 gcc_assert (!constructor_range_stack);
5536
5537 /* Designator list starts at the level of closest explicit
5538 braces. */
5539 while (constructor_stack->implicit)
5540 process_init_element (pop_init_level (1));
5541 constructor_designated = 1;
5542 return 0;
5543 }
5544
5545 switch (TREE_CODE (constructor_type))
5546 {
5547 case RECORD_TYPE:
5548 case UNION_TYPE:
5549 subtype = TREE_TYPE (constructor_fields);
5550 if (subtype != error_mark_node)
5551 subtype = TYPE_MAIN_VARIANT (subtype);
5552 break;
5553 case ARRAY_TYPE:
5554 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5555 break;
5556 default:
5557 gcc_unreachable ();
5558 }
5559
5560 subcode = TREE_CODE (subtype);
5561 if (array && subcode != ARRAY_TYPE)
5562 {
5563 error_init ("array index in non-array initializer");
5564 return 1;
5565 }
5566 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5567 {
5568 error_init ("field name not in record or union initializer");
5569 return 1;
5570 }
5571
5572 constructor_designated = 1;
5573 push_init_level (2);
5574 return 0;
5575 }
5576
5577 /* If there are range designators in designator list, push a new designator
5578 to constructor_range_stack. RANGE_END is end of such stack range or
5579 NULL_TREE if there is no range designator at this level. */
5580
5581 static void
5582 push_range_stack (tree range_end)
5583 {
5584 struct constructor_range_stack *p;
5585
5586 p = GGC_NEW (struct constructor_range_stack);
5587 p->prev = constructor_range_stack;
5588 p->next = 0;
5589 p->fields = constructor_fields;
5590 p->range_start = constructor_index;
5591 p->index = constructor_index;
5592 p->stack = constructor_stack;
5593 p->range_end = range_end;
5594 if (constructor_range_stack)
5595 constructor_range_stack->next = p;
5596 constructor_range_stack = p;
5597 }
5598
5599 /* Within an array initializer, specify the next index to be initialized.
5600 FIRST is that index. If LAST is nonzero, then initialize a range
5601 of indices, running from FIRST through LAST. */
5602
5603 void
5604 set_init_index (tree first, tree last)
5605 {
5606 if (set_designator (1))
5607 return;
5608
5609 designator_erroneous = 1;
5610
5611 if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5612 || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5613 {
5614 error_init ("array index in initializer not of integer type");
5615 return;
5616 }
5617
5618 if (TREE_CODE (first) != INTEGER_CST)
5619 error_init ("nonconstant array index in initializer");
5620 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5621 error_init ("nonconstant array index in initializer");
5622 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5623 error_init ("array index in non-array initializer");
5624 else if (tree_int_cst_sgn (first) == -1)
5625 error_init ("array index in initializer exceeds array bounds");
5626 else if (constructor_max_index
5627 && tree_int_cst_lt (constructor_max_index, first))
5628 error_init ("array index in initializer exceeds array bounds");
5629 else
5630 {
5631 constructor_index = convert (bitsizetype, first);
5632
5633 if (last)
5634 {
5635 if (tree_int_cst_equal (first, last))
5636 last = 0;
5637 else if (tree_int_cst_lt (last, first))
5638 {
5639 error_init ("empty index range in initializer");
5640 last = 0;
5641 }
5642 else
5643 {
5644 last = convert (bitsizetype, last);
5645 if (constructor_max_index != 0
5646 && tree_int_cst_lt (constructor_max_index, last))
5647 {
5648 error_init ("array index range in initializer exceeds array bounds");
5649 last = 0;
5650 }
5651 }
5652 }
5653
5654 designator_depth++;
5655 designator_erroneous = 0;
5656 if (constructor_range_stack || last)
5657 push_range_stack (last);
5658 }
5659 }
5660
5661 /* Within a struct initializer, specify the next field to be initialized. */
5662
5663 void
5664 set_init_label (tree fieldname)
5665 {
5666 tree tail;
5667
5668 if (set_designator (0))
5669 return;
5670
5671 designator_erroneous = 1;
5672
5673 if (TREE_CODE (constructor_type) != RECORD_TYPE
5674 && TREE_CODE (constructor_type) != UNION_TYPE)
5675 {
5676 error_init ("field name not in record or union initializer");
5677 return;
5678 }
5679
5680 for (tail = TYPE_FIELDS (constructor_type); tail;
5681 tail = TREE_CHAIN (tail))
5682 {
5683 if (DECL_NAME (tail) == fieldname)
5684 break;
5685 }
5686
5687 if (tail == 0)
5688 error ("unknown field %qE specified in initializer", fieldname);
5689 else
5690 {
5691 constructor_fields = tail;
5692 designator_depth++;
5693 designator_erroneous = 0;
5694 if (constructor_range_stack)
5695 push_range_stack (NULL_TREE);
5696 }
5697 }
5698 \f
5699 /* Add a new initializer to the tree of pending initializers. PURPOSE
5700 identifies the initializer, either array index or field in a structure.
5701 VALUE is the value of that index or field. */
5702
5703 static void
5704 add_pending_init (tree purpose, tree value)
5705 {
5706 struct init_node *p, **q, *r;
5707
5708 q = &constructor_pending_elts;
5709 p = 0;
5710
5711 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5712 {
5713 while (*q != 0)
5714 {
5715 p = *q;
5716 if (tree_int_cst_lt (purpose, p->purpose))
5717 q = &p->left;
5718 else if (tree_int_cst_lt (p->purpose, purpose))
5719 q = &p->right;
5720 else
5721 {
5722 if (TREE_SIDE_EFFECTS (p->value))
5723 warning_init ("initialized field with side-effects overwritten");
5724 else if (warn_override_init)
5725 warning_init ("initialized field overwritten");
5726 p->value = value;
5727 return;
5728 }
5729 }
5730 }
5731 else
5732 {
5733 tree bitpos;
5734
5735 bitpos = bit_position (purpose);
5736 while (*q != NULL)
5737 {
5738 p = *q;
5739 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5740 q = &p->left;
5741 else if (p->purpose != purpose)
5742 q = &p->right;
5743 else
5744 {
5745 if (TREE_SIDE_EFFECTS (p->value))
5746 warning_init ("initialized field with side-effects overwritten");
5747 else if (warn_override_init)
5748 warning_init ("initialized field overwritten");
5749 p->value = value;
5750 return;
5751 }
5752 }
5753 }
5754
5755 r = GGC_NEW (struct init_node);
5756 r->purpose = purpose;
5757 r->value = value;
5758
5759 *q = r;
5760 r->parent = p;
5761 r->left = 0;
5762 r->right = 0;
5763 r->balance = 0;
5764
5765 while (p)
5766 {
5767 struct init_node *s;
5768
5769 if (r == p->left)
5770 {
5771 if (p->balance == 0)
5772 p->balance = -1;
5773 else if (p->balance < 0)
5774 {
5775 if (r->balance < 0)
5776 {
5777 /* L rotation. */
5778 p->left = r->right;
5779 if (p->left)
5780 p->left->parent = p;
5781 r->right = p;
5782
5783 p->balance = 0;
5784 r->balance = 0;
5785
5786 s = p->parent;
5787 p->parent = r;
5788 r->parent = s;
5789 if (s)
5790 {
5791 if (s->left == p)
5792 s->left = r;
5793 else
5794 s->right = r;
5795 }
5796 else
5797 constructor_pending_elts = r;
5798 }
5799 else
5800 {
5801 /* LR rotation. */
5802 struct init_node *t = r->right;
5803
5804 r->right = t->left;
5805 if (r->right)
5806 r->right->parent = r;
5807 t->left = r;
5808
5809 p->left = t->right;
5810 if (p->left)
5811 p->left->parent = p;
5812 t->right = p;
5813
5814 p->balance = t->balance < 0;
5815 r->balance = -(t->balance > 0);
5816 t->balance = 0;
5817
5818 s = p->parent;
5819 p->parent = t;
5820 r->parent = t;
5821 t->parent = s;
5822 if (s)
5823 {
5824 if (s->left == p)
5825 s->left = t;
5826 else
5827 s->right = t;
5828 }
5829 else
5830 constructor_pending_elts = t;
5831 }
5832 break;
5833 }
5834 else
5835 {
5836 /* p->balance == +1; growth of left side balances the node. */
5837 p->balance = 0;
5838 break;
5839 }
5840 }
5841 else /* r == p->right */
5842 {
5843 if (p->balance == 0)
5844 /* Growth propagation from right side. */
5845 p->balance++;
5846 else if (p->balance > 0)
5847 {
5848 if (r->balance > 0)
5849 {
5850 /* R rotation. */
5851 p->right = r->left;
5852 if (p->right)
5853 p->right->parent = p;
5854 r->left = p;
5855
5856 p->balance = 0;
5857 r->balance = 0;
5858
5859 s = p->parent;
5860 p->parent = r;
5861 r->parent = s;
5862 if (s)
5863 {
5864 if (s->left == p)
5865 s->left = r;
5866 else
5867 s->right = r;
5868 }
5869 else
5870 constructor_pending_elts = r;
5871 }
5872 else /* r->balance == -1 */
5873 {
5874 /* RL rotation */
5875 struct init_node *t = r->left;
5876
5877 r->left = t->right;
5878 if (r->left)
5879 r->left->parent = r;
5880 t->right = r;
5881
5882 p->right = t->left;
5883 if (p->right)
5884 p->right->parent = p;
5885 t->left = p;
5886
5887 r->balance = (t->balance < 0);
5888 p->balance = -(t->balance > 0);
5889 t->balance = 0;
5890
5891 s = p->parent;
5892 p->parent = t;
5893 r->parent = t;
5894 t->parent = s;
5895 if (s)
5896 {
5897 if (s->left == p)
5898 s->left = t;
5899 else
5900 s->right = t;
5901 }
5902 else
5903 constructor_pending_elts = t;
5904 }
5905 break;
5906 }
5907 else
5908 {
5909 /* p->balance == -1; growth of right side balances the node. */
5910 p->balance = 0;
5911 break;
5912 }
5913 }
5914
5915 r = p;
5916 p = p->parent;
5917 }
5918 }
5919
5920 /* Build AVL tree from a sorted chain. */
5921
5922 static void
5923 set_nonincremental_init (void)
5924 {
5925 unsigned HOST_WIDE_INT ix;
5926 tree index, value;
5927
5928 if (TREE_CODE (constructor_type) != RECORD_TYPE
5929 && TREE_CODE (constructor_type) != ARRAY_TYPE)
5930 return;
5931
5932 FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
5933 add_pending_init (index, value);
5934 constructor_elements = 0;
5935 if (TREE_CODE (constructor_type) == RECORD_TYPE)
5936 {
5937 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
5938 /* Skip any nameless bit fields at the beginning. */
5939 while (constructor_unfilled_fields != 0
5940 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5941 && DECL_NAME (constructor_unfilled_fields) == 0)
5942 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5943
5944 }
5945 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5946 {
5947 if (TYPE_DOMAIN (constructor_type))
5948 constructor_unfilled_index
5949 = convert (bitsizetype,
5950 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5951 else
5952 constructor_unfilled_index = bitsize_zero_node;
5953 }
5954 constructor_incremental = 0;
5955 }
5956
5957 /* Build AVL tree from a string constant. */
5958
5959 static void
5960 set_nonincremental_init_from_string (tree str)
5961 {
5962 tree value, purpose, type;
5963 HOST_WIDE_INT val[2];
5964 const char *p, *end;
5965 int byte, wchar_bytes, charwidth, bitpos;
5966
5967 gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
5968
5969 if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5970 == TYPE_PRECISION (char_type_node))
5971 wchar_bytes = 1;
5972 else
5973 {
5974 gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5975 == TYPE_PRECISION (wchar_type_node));
5976 wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
5977 }
5978 charwidth = TYPE_PRECISION (char_type_node);
5979 type = TREE_TYPE (constructor_type);
5980 p = TREE_STRING_POINTER (str);
5981 end = p + TREE_STRING_LENGTH (str);
5982
5983 for (purpose = bitsize_zero_node;
5984 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
5985 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
5986 {
5987 if (wchar_bytes == 1)
5988 {
5989 val[1] = (unsigned char) *p++;
5990 val[0] = 0;
5991 }
5992 else
5993 {
5994 val[0] = 0;
5995 val[1] = 0;
5996 for (byte = 0; byte < wchar_bytes; byte++)
5997 {
5998 if (BYTES_BIG_ENDIAN)
5999 bitpos = (wchar_bytes - byte - 1) * charwidth;
6000 else
6001 bitpos = byte * charwidth;
6002 val[bitpos < HOST_BITS_PER_WIDE_INT]
6003 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
6004 << (bitpos % HOST_BITS_PER_WIDE_INT);
6005 }
6006 }
6007
6008 if (!TYPE_UNSIGNED (type))
6009 {
6010 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6011 if (bitpos < HOST_BITS_PER_WIDE_INT)
6012 {
6013 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6014 {
6015 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6016 val[0] = -1;
6017 }
6018 }
6019 else if (bitpos == HOST_BITS_PER_WIDE_INT)
6020 {
6021 if (val[1] < 0)
6022 val[0] = -1;
6023 }
6024 else if (val[0] & (((HOST_WIDE_INT) 1)
6025 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6026 val[0] |= ((HOST_WIDE_INT) -1)
6027 << (bitpos - HOST_BITS_PER_WIDE_INT);
6028 }
6029
6030 value = build_int_cst_wide (type, val[1], val[0]);
6031 add_pending_init (purpose, value);
6032 }
6033
6034 constructor_incremental = 0;
6035 }
6036
6037 /* Return value of FIELD in pending initializer or zero if the field was
6038 not initialized yet. */
6039
6040 static tree
6041 find_init_member (tree field)
6042 {
6043 struct init_node *p;
6044
6045 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6046 {
6047 if (constructor_incremental
6048 && tree_int_cst_lt (field, constructor_unfilled_index))
6049 set_nonincremental_init ();
6050
6051 p = constructor_pending_elts;
6052 while (p)
6053 {
6054 if (tree_int_cst_lt (field, p->purpose))
6055 p = p->left;
6056 else if (tree_int_cst_lt (p->purpose, field))
6057 p = p->right;
6058 else
6059 return p->value;
6060 }
6061 }
6062 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6063 {
6064 tree bitpos = bit_position (field);
6065
6066 if (constructor_incremental
6067 && (!constructor_unfilled_fields
6068 || tree_int_cst_lt (bitpos,
6069 bit_position (constructor_unfilled_fields))))
6070 set_nonincremental_init ();
6071
6072 p = constructor_pending_elts;
6073 while (p)
6074 {
6075 if (field == p->purpose)
6076 return p->value;
6077 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6078 p = p->left;
6079 else
6080 p = p->right;
6081 }
6082 }
6083 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6084 {
6085 if (!VEC_empty (constructor_elt, constructor_elements)
6086 && (VEC_last (constructor_elt, constructor_elements)->index
6087 == field))
6088 return VEC_last (constructor_elt, constructor_elements)->value;
6089 }
6090 return 0;
6091 }
6092
6093 /* "Output" the next constructor element.
6094 At top level, really output it to assembler code now.
6095 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6096 TYPE is the data type that the containing data type wants here.
6097 FIELD is the field (a FIELD_DECL) or the index that this element fills.
6098 If VALUE is a string constant, STRICT_STRING is true if it is
6099 unparenthesized or we should not warn here for it being parenthesized.
6100 For other types of VALUE, STRICT_STRING is not used.
6101
6102 PENDING if non-nil means output pending elements that belong
6103 right after this element. (PENDING is normally 1;
6104 it is 0 while outputting pending elements, to avoid recursion.) */
6105
6106 static void
6107 output_init_element (tree value, bool strict_string, tree type, tree field,
6108 int pending)
6109 {
6110 constructor_elt *celt;
6111
6112 if (type == error_mark_node || value == error_mark_node)
6113 {
6114 constructor_erroneous = 1;
6115 return;
6116 }
6117 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6118 && (TREE_CODE (value) == STRING_CST
6119 || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6120 && !(TREE_CODE (value) == STRING_CST
6121 && TREE_CODE (type) == ARRAY_TYPE
6122 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6123 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6124 TYPE_MAIN_VARIANT (type)))
6125 value = array_to_pointer_conversion (value);
6126
6127 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6128 && require_constant_value && !flag_isoc99 && pending)
6129 {
6130 /* As an extension, allow initializing objects with static storage
6131 duration with compound literals (which are then treated just as
6132 the brace enclosed list they contain). */
6133 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6134 value = DECL_INITIAL (decl);
6135 }
6136
6137 if (value == error_mark_node)
6138 constructor_erroneous = 1;
6139 else if (!TREE_CONSTANT (value))
6140 constructor_constant = 0;
6141 else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6142 || ((TREE_CODE (constructor_type) == RECORD_TYPE
6143 || TREE_CODE (constructor_type) == UNION_TYPE)
6144 && DECL_C_BIT_FIELD (field)
6145 && TREE_CODE (value) != INTEGER_CST))
6146 constructor_simple = 0;
6147
6148 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6149 {
6150 if (require_constant_value)
6151 {
6152 error_init ("initializer element is not constant");
6153 value = error_mark_node;
6154 }
6155 else if (require_constant_elements)
6156 pedwarn ("initializer element is not computable at load time");
6157 }
6158
6159 /* If this field is empty (and not at the end of structure),
6160 don't do anything other than checking the initializer. */
6161 if (field
6162 && (TREE_TYPE (field) == error_mark_node
6163 || (COMPLETE_TYPE_P (TREE_TYPE (field))
6164 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6165 && (TREE_CODE (constructor_type) == ARRAY_TYPE
6166 || TREE_CHAIN (field)))))
6167 return;
6168
6169 value = digest_init (type, value, strict_string, require_constant_value);
6170 if (value == error_mark_node)
6171 {
6172 constructor_erroneous = 1;
6173 return;
6174 }
6175
6176 /* If this element doesn't come next in sequence,
6177 put it on constructor_pending_elts. */
6178 if (TREE_CODE (constructor_type) == ARRAY_TYPE
6179 && (!constructor_incremental
6180 || !tree_int_cst_equal (field, constructor_unfilled_index)))
6181 {
6182 if (constructor_incremental
6183 && tree_int_cst_lt (field, constructor_unfilled_index))
6184 set_nonincremental_init ();
6185
6186 add_pending_init (field, value);
6187 return;
6188 }
6189 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6190 && (!constructor_incremental
6191 || field != constructor_unfilled_fields))
6192 {
6193 /* We do this for records but not for unions. In a union,
6194 no matter which field is specified, it can be initialized
6195 right away since it starts at the beginning of the union. */
6196 if (constructor_incremental)
6197 {
6198 if (!constructor_unfilled_fields)
6199 set_nonincremental_init ();
6200 else
6201 {
6202 tree bitpos, unfillpos;
6203
6204 bitpos = bit_position (field);
6205 unfillpos = bit_position (constructor_unfilled_fields);
6206
6207 if (tree_int_cst_lt (bitpos, unfillpos))
6208 set_nonincremental_init ();
6209 }
6210 }
6211
6212 add_pending_init (field, value);
6213 return;
6214 }
6215 else if (TREE_CODE (constructor_type) == UNION_TYPE
6216 && !VEC_empty (constructor_elt, constructor_elements))
6217 {
6218 if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6219 constructor_elements)->value))
6220 warning_init ("initialized field with side-effects overwritten");
6221 else if (warn_override_init)
6222 warning_init ("initialized field overwritten");
6223
6224 /* We can have just one union field set. */
6225 constructor_elements = 0;
6226 }
6227
6228 /* Otherwise, output this element either to
6229 constructor_elements or to the assembler file. */
6230
6231 celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6232 celt->index = field;
6233 celt->value = value;
6234
6235 /* Advance the variable that indicates sequential elements output. */
6236 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6237 constructor_unfilled_index
6238 = size_binop (PLUS_EXPR, constructor_unfilled_index,
6239 bitsize_one_node);
6240 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6241 {
6242 constructor_unfilled_fields
6243 = TREE_CHAIN (constructor_unfilled_fields);
6244
6245 /* Skip any nameless bit fields. */
6246 while (constructor_unfilled_fields != 0
6247 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6248 && DECL_NAME (constructor_unfilled_fields) == 0)
6249 constructor_unfilled_fields =
6250 TREE_CHAIN (constructor_unfilled_fields);
6251 }
6252 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6253 constructor_unfilled_fields = 0;
6254
6255 /* Now output any pending elements which have become next. */
6256 if (pending)
6257 output_pending_init_elements (0);
6258 }
6259
6260 /* Output any pending elements which have become next.
6261 As we output elements, constructor_unfilled_{fields,index}
6262 advances, which may cause other elements to become next;
6263 if so, they too are output.
6264
6265 If ALL is 0, we return when there are
6266 no more pending elements to output now.
6267
6268 If ALL is 1, we output space as necessary so that
6269 we can output all the pending elements. */
6270
6271 static void
6272 output_pending_init_elements (int all)
6273 {
6274 struct init_node *elt = constructor_pending_elts;
6275 tree next;
6276
6277 retry:
6278
6279 /* Look through the whole pending tree.
6280 If we find an element that should be output now,
6281 output it. Otherwise, set NEXT to the element
6282 that comes first among those still pending. */
6283
6284 next = 0;
6285 while (elt)
6286 {
6287 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6288 {
6289 if (tree_int_cst_equal (elt->purpose,
6290 constructor_unfilled_index))
6291 output_init_element (elt->value, true,
6292 TREE_TYPE (constructor_type),
6293 constructor_unfilled_index, 0);
6294 else if (tree_int_cst_lt (constructor_unfilled_index,
6295 elt->purpose))
6296 {
6297 /* Advance to the next smaller node. */
6298 if (elt->left)
6299 elt = elt->left;
6300 else
6301 {
6302 /* We have reached the smallest node bigger than the
6303 current unfilled index. Fill the space first. */
6304 next = elt->purpose;
6305 break;
6306 }
6307 }
6308 else
6309 {
6310 /* Advance to the next bigger node. */
6311 if (elt->right)
6312 elt = elt->right;
6313 else
6314 {
6315 /* We have reached the biggest node in a subtree. Find
6316 the parent of it, which is the next bigger node. */
6317 while (elt->parent && elt->parent->right == elt)
6318 elt = elt->parent;
6319 elt = elt->parent;
6320 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6321 elt->purpose))
6322 {
6323 next = elt->purpose;
6324 break;
6325 }
6326 }
6327 }
6328 }
6329 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6330 || TREE_CODE (constructor_type) == UNION_TYPE)
6331 {
6332 tree ctor_unfilled_bitpos, elt_bitpos;
6333
6334 /* If the current record is complete we are done. */
6335 if (constructor_unfilled_fields == 0)
6336 break;
6337
6338 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6339 elt_bitpos = bit_position (elt->purpose);
6340 /* We can't compare fields here because there might be empty
6341 fields in between. */
6342 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6343 {
6344 constructor_unfilled_fields = elt->purpose;
6345 output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6346 elt->purpose, 0);
6347 }
6348 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6349 {
6350 /* Advance to the next smaller node. */
6351 if (elt->left)
6352 elt = elt->left;
6353 else
6354 {
6355 /* We have reached the smallest node bigger than the
6356 current unfilled field. Fill the space first. */
6357 next = elt->purpose;
6358 break;
6359 }
6360 }
6361 else
6362 {
6363 /* Advance to the next bigger node. */
6364 if (elt->right)
6365 elt = elt->right;
6366 else
6367 {
6368 /* We have reached the biggest node in a subtree. Find
6369 the parent of it, which is the next bigger node. */
6370 while (elt->parent && elt->parent->right == elt)
6371 elt = elt->parent;
6372 elt = elt->parent;
6373 if (elt
6374 && (tree_int_cst_lt (ctor_unfilled_bitpos,
6375 bit_position (elt->purpose))))
6376 {
6377 next = elt->purpose;
6378 break;
6379 }
6380 }
6381 }
6382 }
6383 }
6384
6385 /* Ordinarily return, but not if we want to output all
6386 and there are elements left. */
6387 if (!(all && next != 0))
6388 return;
6389
6390 /* If it's not incremental, just skip over the gap, so that after
6391 jumping to retry we will output the next successive element. */
6392 if (TREE_CODE (constructor_type) == RECORD_TYPE
6393 || TREE_CODE (constructor_type) == UNION_TYPE)
6394 constructor_unfilled_fields = next;
6395 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6396 constructor_unfilled_index = next;
6397
6398 /* ELT now points to the node in the pending tree with the next
6399 initializer to output. */
6400 goto retry;
6401 }
6402 \f
6403 /* Add one non-braced element to the current constructor level.
6404 This adjusts the current position within the constructor's type.
6405 This may also start or terminate implicit levels
6406 to handle a partly-braced initializer.
6407
6408 Once this has found the correct level for the new element,
6409 it calls output_init_element. */
6410
6411 void
6412 process_init_element (struct c_expr value)
6413 {
6414 tree orig_value = value.value;
6415 int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6416 bool strict_string = value.original_code == STRING_CST;
6417
6418 designator_depth = 0;
6419 designator_erroneous = 0;
6420
6421 /* Handle superfluous braces around string cst as in
6422 char x[] = {"foo"}; */
6423 if (string_flag
6424 && constructor_type
6425 && TREE_CODE (constructor_type) == ARRAY_TYPE
6426 && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6427 && integer_zerop (constructor_unfilled_index))
6428 {
6429 if (constructor_stack->replacement_value.value)
6430 error_init ("excess elements in char array initializer");
6431 constructor_stack->replacement_value = value;
6432 return;
6433 }
6434
6435 if (constructor_stack->replacement_value.value != 0)
6436 {
6437 error_init ("excess elements in struct initializer");
6438 return;
6439 }
6440
6441 /* Ignore elements of a brace group if it is entirely superfluous
6442 and has already been diagnosed. */
6443 if (constructor_type == 0)
6444 return;
6445
6446 /* If we've exhausted any levels that didn't have braces,
6447 pop them now. */
6448 while (constructor_stack->implicit)
6449 {
6450 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6451 || TREE_CODE (constructor_type) == UNION_TYPE)
6452 && constructor_fields == 0)
6453 process_init_element (pop_init_level (1));
6454 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6455 && (constructor_max_index == 0
6456 || tree_int_cst_lt (constructor_max_index,
6457 constructor_index)))
6458 process_init_element (pop_init_level (1));
6459 else
6460 break;
6461 }
6462
6463 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
6464 if (constructor_range_stack)
6465 {
6466 /* If value is a compound literal and we'll be just using its
6467 content, don't put it into a SAVE_EXPR. */
6468 if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6469 || !require_constant_value
6470 || flag_isoc99)
6471 value.value = save_expr (value.value);
6472 }
6473
6474 while (1)
6475 {
6476 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6477 {
6478 tree fieldtype;
6479 enum tree_code fieldcode;
6480
6481 if (constructor_fields == 0)
6482 {
6483 pedwarn_init ("excess elements in struct initializer");
6484 break;
6485 }
6486
6487 fieldtype = TREE_TYPE (constructor_fields);
6488 if (fieldtype != error_mark_node)
6489 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6490 fieldcode = TREE_CODE (fieldtype);
6491
6492 /* Error for non-static initialization of a flexible array member. */
6493 if (fieldcode == ARRAY_TYPE
6494 && !require_constant_value
6495 && TYPE_SIZE (fieldtype) == NULL_TREE
6496 && TREE_CHAIN (constructor_fields) == NULL_TREE)
6497 {
6498 error_init ("non-static initialization of a flexible array member");
6499 break;
6500 }
6501
6502 /* Accept a string constant to initialize a subarray. */
6503 if (value.value != 0
6504 && fieldcode == ARRAY_TYPE
6505 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6506 && string_flag)
6507 value.value = orig_value;
6508 /* Otherwise, if we have come to a subaggregate,
6509 and we don't have an element of its type, push into it. */
6510 else if (value.value != 0
6511 && value.value != error_mark_node
6512 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6513 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6514 || fieldcode == UNION_TYPE))
6515 {
6516 push_init_level (1);
6517 continue;
6518 }
6519
6520 if (value.value)
6521 {
6522 push_member_name (constructor_fields);
6523 output_init_element (value.value, strict_string,
6524 fieldtype, constructor_fields, 1);
6525 RESTORE_SPELLING_DEPTH (constructor_depth);
6526 }
6527 else
6528 /* Do the bookkeeping for an element that was
6529 directly output as a constructor. */
6530 {
6531 /* For a record, keep track of end position of last field. */
6532 if (DECL_SIZE (constructor_fields))
6533 constructor_bit_index
6534 = size_binop (PLUS_EXPR,
6535 bit_position (constructor_fields),
6536 DECL_SIZE (constructor_fields));
6537
6538 /* If the current field was the first one not yet written out,
6539 it isn't now, so update. */
6540 if (constructor_unfilled_fields == constructor_fields)
6541 {
6542 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6543 /* Skip any nameless bit fields. */
6544 while (constructor_unfilled_fields != 0
6545 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6546 && DECL_NAME (constructor_unfilled_fields) == 0)
6547 constructor_unfilled_fields =
6548 TREE_CHAIN (constructor_unfilled_fields);
6549 }
6550 }
6551
6552 constructor_fields = TREE_CHAIN (constructor_fields);
6553 /* Skip any nameless bit fields at the beginning. */
6554 while (constructor_fields != 0
6555 && DECL_C_BIT_FIELD (constructor_fields)
6556 && DECL_NAME (constructor_fields) == 0)
6557 constructor_fields = TREE_CHAIN (constructor_fields);
6558 }
6559 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6560 {
6561 tree fieldtype;
6562 enum tree_code fieldcode;
6563
6564 if (constructor_fields == 0)
6565 {
6566 pedwarn_init ("excess elements in union initializer");
6567 break;
6568 }
6569
6570 fieldtype = TREE_TYPE (constructor_fields);
6571 if (fieldtype != error_mark_node)
6572 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6573 fieldcode = TREE_CODE (fieldtype);
6574
6575 /* Warn that traditional C rejects initialization of unions.
6576 We skip the warning if the value is zero. This is done
6577 under the assumption that the zero initializer in user
6578 code appears conditioned on e.g. __STDC__ to avoid
6579 "missing initializer" warnings and relies on default
6580 initialization to zero in the traditional C case.
6581 We also skip the warning if the initializer is designated,
6582 again on the assumption that this must be conditional on
6583 __STDC__ anyway (and we've already complained about the
6584 member-designator already). */
6585 if (!in_system_header && !constructor_designated
6586 && !(value.value && (integer_zerop (value.value)
6587 || real_zerop (value.value))))
6588 warning (OPT_Wtraditional, "traditional C rejects initialization "
6589 "of unions");
6590
6591 /* Accept a string constant to initialize a subarray. */
6592 if (value.value != 0
6593 && fieldcode == ARRAY_TYPE
6594 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6595 && string_flag)
6596 value.value = orig_value;
6597 /* Otherwise, if we have come to a subaggregate,
6598 and we don't have an element of its type, push into it. */
6599 else if (value.value != 0
6600 && value.value != error_mark_node
6601 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6602 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6603 || fieldcode == UNION_TYPE))
6604 {
6605 push_init_level (1);
6606 continue;
6607 }
6608
6609 if (value.value)
6610 {
6611 push_member_name (constructor_fields);
6612 output_init_element (value.value, strict_string,
6613 fieldtype, constructor_fields, 1);
6614 RESTORE_SPELLING_DEPTH (constructor_depth);
6615 }
6616 else
6617 /* Do the bookkeeping for an element that was
6618 directly output as a constructor. */
6619 {
6620 constructor_bit_index = DECL_SIZE (constructor_fields);
6621 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6622 }
6623
6624 constructor_fields = 0;
6625 }
6626 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6627 {
6628 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6629 enum tree_code eltcode = TREE_CODE (elttype);
6630
6631 /* Accept a string constant to initialize a subarray. */
6632 if (value.value != 0
6633 && eltcode == ARRAY_TYPE
6634 && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6635 && string_flag)
6636 value.value = orig_value;
6637 /* Otherwise, if we have come to a subaggregate,
6638 and we don't have an element of its type, push into it. */
6639 else if (value.value != 0
6640 && value.value != error_mark_node
6641 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6642 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6643 || eltcode == UNION_TYPE))
6644 {
6645 push_init_level (1);
6646 continue;
6647 }
6648
6649 if (constructor_max_index != 0
6650 && (tree_int_cst_lt (constructor_max_index, constructor_index)
6651 || integer_all_onesp (constructor_max_index)))
6652 {
6653 pedwarn_init ("excess elements in array initializer");
6654 break;
6655 }
6656
6657 /* Now output the actual element. */
6658 if (value.value)
6659 {
6660 push_array_bounds (tree_low_cst (constructor_index, 1));
6661 output_init_element (value.value, strict_string,
6662 elttype, constructor_index, 1);
6663 RESTORE_SPELLING_DEPTH (constructor_depth);
6664 }
6665
6666 constructor_index
6667 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6668
6669 if (!value.value)
6670 /* If we are doing the bookkeeping for an element that was
6671 directly output as a constructor, we must update
6672 constructor_unfilled_index. */
6673 constructor_unfilled_index = constructor_index;
6674 }
6675 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6676 {
6677 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6678
6679 /* Do a basic check of initializer size. Note that vectors
6680 always have a fixed size derived from their type. */
6681 if (tree_int_cst_lt (constructor_max_index, constructor_index))
6682 {
6683 pedwarn_init ("excess elements in vector initializer");
6684 break;
6685 }
6686
6687 /* Now output the actual element. */
6688 if (value.value)
6689 output_init_element (value.value, strict_string,
6690 elttype, constructor_index, 1);
6691
6692 constructor_index
6693 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6694
6695 if (!value.value)
6696 /* If we are doing the bookkeeping for an element that was
6697 directly output as a constructor, we must update
6698 constructor_unfilled_index. */
6699 constructor_unfilled_index = constructor_index;
6700 }
6701
6702 /* Handle the sole element allowed in a braced initializer
6703 for a scalar variable. */
6704 else if (constructor_type != error_mark_node
6705 && constructor_fields == 0)
6706 {
6707 pedwarn_init ("excess elements in scalar initializer");
6708 break;
6709 }
6710 else
6711 {
6712 if (value.value)
6713 output_init_element (value.value, strict_string,
6714 constructor_type, NULL_TREE, 1);
6715 constructor_fields = 0;
6716 }
6717
6718 /* Handle range initializers either at this level or anywhere higher
6719 in the designator stack. */
6720 if (constructor_range_stack)
6721 {
6722 struct constructor_range_stack *p, *range_stack;
6723 int finish = 0;
6724
6725 range_stack = constructor_range_stack;
6726 constructor_range_stack = 0;
6727 while (constructor_stack != range_stack->stack)
6728 {
6729 gcc_assert (constructor_stack->implicit);
6730 process_init_element (pop_init_level (1));
6731 }
6732 for (p = range_stack;
6733 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6734 p = p->prev)
6735 {
6736 gcc_assert (constructor_stack->implicit);
6737 process_init_element (pop_init_level (1));
6738 }
6739
6740 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6741 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6742 finish = 1;
6743
6744 while (1)
6745 {
6746 constructor_index = p->index;
6747 constructor_fields = p->fields;
6748 if (finish && p->range_end && p->index == p->range_start)
6749 {
6750 finish = 0;
6751 p->prev = 0;
6752 }
6753 p = p->next;
6754 if (!p)
6755 break;
6756 push_init_level (2);
6757 p->stack = constructor_stack;
6758 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6759 p->index = p->range_start;
6760 }
6761
6762 if (!finish)
6763 constructor_range_stack = range_stack;
6764 continue;
6765 }
6766
6767 break;
6768 }
6769
6770 constructor_range_stack = 0;
6771 }
6772 \f
6773 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
6774 (guaranteed to be 'volatile' or null) and ARGS (represented using
6775 an ASM_EXPR node). */
6776 tree
6777 build_asm_stmt (tree cv_qualifier, tree args)
6778 {
6779 if (!ASM_VOLATILE_P (args) && cv_qualifier)
6780 ASM_VOLATILE_P (args) = 1;
6781 return add_stmt (args);
6782 }
6783
6784 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6785 some INPUTS, and some CLOBBERS. The latter three may be NULL.
6786 SIMPLE indicates whether there was anything at all after the
6787 string in the asm expression -- asm("blah") and asm("blah" : )
6788 are subtly different. We use a ASM_EXPR node to represent this. */
6789 tree
6790 build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6791 bool simple)
6792 {
6793 tree tail;
6794 tree args;
6795 int i;
6796 const char *constraint;
6797 const char **oconstraints;
6798 bool allows_mem, allows_reg, is_inout;
6799 int ninputs, noutputs;
6800
6801 ninputs = list_length (inputs);
6802 noutputs = list_length (outputs);
6803 oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6804
6805 string = resolve_asm_operand_names (string, outputs, inputs);
6806
6807 /* Remove output conversions that change the type but not the mode. */
6808 for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6809 {
6810 tree output = TREE_VALUE (tail);
6811
6812 /* ??? Really, this should not be here. Users should be using a
6813 proper lvalue, dammit. But there's a long history of using casts
6814 in the output operands. In cases like longlong.h, this becomes a
6815 primitive form of typechecking -- if the cast can be removed, then
6816 the output operand had a type of the proper width; otherwise we'll
6817 get an error. Gross, but ... */
6818 STRIP_NOPS (output);
6819
6820 if (!lvalue_or_else (output, lv_asm))
6821 output = error_mark_node;
6822
6823 if (output != error_mark_node
6824 && (TREE_READONLY (output)
6825 || TYPE_READONLY (TREE_TYPE (output))
6826 || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6827 || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6828 && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6829 readonly_error (output, lv_asm);
6830
6831 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6832 oconstraints[i] = constraint;
6833
6834 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6835 &allows_mem, &allows_reg, &is_inout))
6836 {
6837 /* If the operand is going to end up in memory,
6838 mark it addressable. */
6839 if (!allows_reg && !c_mark_addressable (output))
6840 output = error_mark_node;
6841 }
6842 else
6843 output = error_mark_node;
6844
6845 TREE_VALUE (tail) = output;
6846 }
6847
6848 for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6849 {
6850 tree input;
6851
6852 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6853 input = TREE_VALUE (tail);
6854
6855 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6856 oconstraints, &allows_mem, &allows_reg))
6857 {
6858 /* If the operand is going to end up in memory,
6859 mark it addressable. */
6860 if (!allows_reg && allows_mem)
6861 {
6862 /* Strip the nops as we allow this case. FIXME, this really
6863 should be rejected or made deprecated. */
6864 STRIP_NOPS (input);
6865 if (!c_mark_addressable (input))
6866 input = error_mark_node;
6867 }
6868 }
6869 else
6870 input = error_mark_node;
6871
6872 TREE_VALUE (tail) = input;
6873 }
6874
6875 args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6876
6877 /* asm statements without outputs, including simple ones, are treated
6878 as volatile. */
6879 ASM_INPUT_P (args) = simple;
6880 ASM_VOLATILE_P (args) = (noutputs == 0);
6881
6882 return args;
6883 }
6884 \f
6885 /* Generate a goto statement to LABEL. */
6886
6887 tree
6888 c_finish_goto_label (tree label)
6889 {
6890 tree decl = lookup_label (label);
6891 if (!decl)
6892 return NULL_TREE;
6893
6894 if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6895 {
6896 error ("jump into statement expression");
6897 return NULL_TREE;
6898 }
6899
6900 if (C_DECL_UNJUMPABLE_VM (decl))
6901 {
6902 error ("jump into scope of identifier with variably modified type");
6903 return NULL_TREE;
6904 }
6905
6906 if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6907 {
6908 /* No jump from outside this statement expression context, so
6909 record that there is a jump from within this context. */
6910 struct c_label_list *nlist;
6911 nlist = XOBNEW (&parser_obstack, struct c_label_list);
6912 nlist->next = label_context_stack_se->labels_used;
6913 nlist->label = decl;
6914 label_context_stack_se->labels_used = nlist;
6915 }
6916
6917 if (!C_DECL_UNDEFINABLE_VM (decl))
6918 {
6919 /* No jump from outside this context context of identifiers with
6920 variably modified type, so record that there is a jump from
6921 within this context. */
6922 struct c_label_list *nlist;
6923 nlist = XOBNEW (&parser_obstack, struct c_label_list);
6924 nlist->next = label_context_stack_vm->labels_used;
6925 nlist->label = decl;
6926 label_context_stack_vm->labels_used = nlist;
6927 }
6928
6929 TREE_USED (decl) = 1;
6930 return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6931 }
6932
6933 /* Generate a computed goto statement to EXPR. */
6934
6935 tree
6936 c_finish_goto_ptr (tree expr)
6937 {
6938 if (pedantic)
6939 pedwarn ("ISO C forbids %<goto *expr;%>");
6940 expr = convert (ptr_type_node, expr);
6941 return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
6942 }
6943
6944 /* Generate a C `return' statement. RETVAL is the expression for what
6945 to return, or a null pointer for `return;' with no value. */
6946
6947 tree
6948 c_finish_return (tree retval)
6949 {
6950 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
6951 bool no_warning = false;
6952
6953 if (TREE_THIS_VOLATILE (current_function_decl))
6954 warning (0, "function declared %<noreturn%> has a %<return%> statement");
6955
6956 if (!retval)
6957 {
6958 current_function_returns_null = 1;
6959 if ((warn_return_type || flag_isoc99)
6960 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6961 {
6962 pedwarn_c99 ("%<return%> with no value, in "
6963 "function returning non-void");
6964 no_warning = true;
6965 }
6966 }
6967 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6968 {
6969 current_function_returns_null = 1;
6970 if (TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6971 pedwarn ("%<return%> with a value, in function returning void");
6972 else if (pedantic)
6973 pedwarn ("ISO C forbids %<return%> with expression, in function returning void");
6974 }
6975 else
6976 {
6977 tree t = convert_for_assignment (valtype, retval, ic_return,
6978 NULL_TREE, NULL_TREE, 0);
6979 tree res = DECL_RESULT (current_function_decl);
6980 tree inner;
6981
6982 current_function_returns_value = 1;
6983 if (t == error_mark_node)
6984 return NULL_TREE;
6985
6986 inner = t = convert (TREE_TYPE (res), t);
6987
6988 /* Strip any conversions, additions, and subtractions, and see if
6989 we are returning the address of a local variable. Warn if so. */
6990 while (1)
6991 {
6992 switch (TREE_CODE (inner))
6993 {
6994 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
6995 case PLUS_EXPR:
6996 inner = TREE_OPERAND (inner, 0);
6997 continue;
6998
6999 case MINUS_EXPR:
7000 /* If the second operand of the MINUS_EXPR has a pointer
7001 type (or is converted from it), this may be valid, so
7002 don't give a warning. */
7003 {
7004 tree op1 = TREE_OPERAND (inner, 1);
7005
7006 while (!POINTER_TYPE_P (TREE_TYPE (op1))
7007 && (TREE_CODE (op1) == NOP_EXPR
7008 || TREE_CODE (op1) == NON_LVALUE_EXPR
7009 || TREE_CODE (op1) == CONVERT_EXPR))
7010 op1 = TREE_OPERAND (op1, 0);
7011
7012 if (POINTER_TYPE_P (TREE_TYPE (op1)))
7013 break;
7014
7015 inner = TREE_OPERAND (inner, 0);
7016 continue;
7017 }
7018
7019 case ADDR_EXPR:
7020 inner = TREE_OPERAND (inner, 0);
7021
7022 while (REFERENCE_CLASS_P (inner)
7023 && TREE_CODE (inner) != INDIRECT_REF)
7024 inner = TREE_OPERAND (inner, 0);
7025
7026 if (DECL_P (inner)
7027 && !DECL_EXTERNAL (inner)
7028 && !TREE_STATIC (inner)
7029 && DECL_CONTEXT (inner) == current_function_decl)
7030 warning (0, "function returns address of local variable");
7031 break;
7032
7033 default:
7034 break;
7035 }
7036
7037 break;
7038 }
7039
7040 retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7041 }
7042
7043 ret_stmt = build_stmt (RETURN_EXPR, retval);
7044 TREE_NO_WARNING (ret_stmt) |= no_warning;
7045 return add_stmt (ret_stmt);
7046 }
7047 \f
7048 struct c_switch {
7049 /* The SWITCH_EXPR being built. */
7050 tree switch_expr;
7051
7052 /* The original type of the testing expression, i.e. before the
7053 default conversion is applied. */
7054 tree orig_type;
7055
7056 /* A splay-tree mapping the low element of a case range to the high
7057 element, or NULL_TREE if there is no high element. Used to
7058 determine whether or not a new case label duplicates an old case
7059 label. We need a tree, rather than simply a hash table, because
7060 of the GNU case range extension. */
7061 splay_tree cases;
7062
7063 /* Number of nested statement expressions within this switch
7064 statement; if nonzero, case and default labels may not
7065 appear. */
7066 unsigned int blocked_stmt_expr;
7067
7068 /* Scope of outermost declarations of identifiers with variably
7069 modified type within this switch statement; if nonzero, case and
7070 default labels may not appear. */
7071 unsigned int blocked_vm;
7072
7073 /* The next node on the stack. */
7074 struct c_switch *next;
7075 };
7076
7077 /* A stack of the currently active switch statements. The innermost
7078 switch statement is on the top of the stack. There is no need to
7079 mark the stack for garbage collection because it is only active
7080 during the processing of the body of a function, and we never
7081 collect at that point. */
7082
7083 struct c_switch *c_switch_stack;
7084
7085 /* Start a C switch statement, testing expression EXP. Return the new
7086 SWITCH_EXPR. */
7087
7088 tree
7089 c_start_case (tree exp)
7090 {
7091 tree orig_type = error_mark_node;
7092 struct c_switch *cs;
7093
7094 if (exp != error_mark_node)
7095 {
7096 orig_type = TREE_TYPE (exp);
7097
7098 if (!INTEGRAL_TYPE_P (orig_type))
7099 {
7100 if (orig_type != error_mark_node)
7101 {
7102 error ("switch quantity not an integer");
7103 orig_type = error_mark_node;
7104 }
7105 exp = integer_zero_node;
7106 }
7107 else
7108 {
7109 tree type = TYPE_MAIN_VARIANT (orig_type);
7110
7111 if (!in_system_header
7112 && (type == long_integer_type_node
7113 || type == long_unsigned_type_node))
7114 warning (OPT_Wtraditional, "%<long%> switch expression not "
7115 "converted to %<int%> in ISO C");
7116
7117 exp = default_conversion (exp);
7118 }
7119 }
7120
7121 /* Add this new SWITCH_EXPR to the stack. */
7122 cs = XNEW (struct c_switch);
7123 cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7124 cs->orig_type = orig_type;
7125 cs->cases = splay_tree_new (case_compare, NULL, NULL);
7126 cs->blocked_stmt_expr = 0;
7127 cs->blocked_vm = 0;
7128 cs->next = c_switch_stack;
7129 c_switch_stack = cs;
7130
7131 return add_stmt (cs->switch_expr);
7132 }
7133
7134 /* Process a case label. */
7135
7136 tree
7137 do_case (tree low_value, tree high_value)
7138 {
7139 tree label = NULL_TREE;
7140
7141 if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7142 && !c_switch_stack->blocked_vm)
7143 {
7144 label = c_add_case_label (c_switch_stack->cases,
7145 SWITCH_COND (c_switch_stack->switch_expr),
7146 c_switch_stack->orig_type,
7147 low_value, high_value);
7148 if (label == error_mark_node)
7149 label = NULL_TREE;
7150 }
7151 else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7152 {
7153 if (low_value)
7154 error ("case label in statement expression not containing "
7155 "enclosing switch statement");
7156 else
7157 error ("%<default%> label in statement expression not containing "
7158 "enclosing switch statement");
7159 }
7160 else if (c_switch_stack && c_switch_stack->blocked_vm)
7161 {
7162 if (low_value)
7163 error ("case label in scope of identifier with variably modified "
7164 "type not containing enclosing switch statement");
7165 else
7166 error ("%<default%> label in scope of identifier with variably "
7167 "modified type not containing enclosing switch statement");
7168 }
7169 else if (low_value)
7170 error ("case label not within a switch statement");
7171 else
7172 error ("%<default%> label not within a switch statement");
7173
7174 return label;
7175 }
7176
7177 /* Finish the switch statement. */
7178
7179 void
7180 c_finish_case (tree body)
7181 {
7182 struct c_switch *cs = c_switch_stack;
7183 location_t switch_location;
7184
7185 SWITCH_BODY (cs->switch_expr) = body;
7186
7187 /* We must not be within a statement expression nested in the switch
7188 at this point; we might, however, be within the scope of an
7189 identifier with variably modified type nested in the switch. */
7190 gcc_assert (!cs->blocked_stmt_expr);
7191
7192 /* Emit warnings as needed. */
7193 if (EXPR_HAS_LOCATION (cs->switch_expr))
7194 switch_location = EXPR_LOCATION (cs->switch_expr);
7195 else
7196 switch_location = input_location;
7197 c_do_switch_warnings (cs->cases, switch_location,
7198 TREE_TYPE (cs->switch_expr),
7199 SWITCH_COND (cs->switch_expr));
7200
7201 /* Pop the stack. */
7202 c_switch_stack = cs->next;
7203 splay_tree_delete (cs->cases);
7204 XDELETE (cs);
7205 }
7206 \f
7207 /* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
7208 THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7209 may be null. NESTED_IF is true if THEN_BLOCK contains another IF
7210 statement, and was not surrounded with parenthesis. */
7211
7212 void
7213 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7214 tree else_block, bool nested_if)
7215 {
7216 tree stmt;
7217
7218 /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
7219 if (warn_parentheses && nested_if && else_block == NULL)
7220 {
7221 tree inner_if = then_block;
7222
7223 /* We know from the grammar productions that there is an IF nested
7224 within THEN_BLOCK. Due to labels and c99 conditional declarations,
7225 it might not be exactly THEN_BLOCK, but should be the last
7226 non-container statement within. */
7227 while (1)
7228 switch (TREE_CODE (inner_if))
7229 {
7230 case COND_EXPR:
7231 goto found;
7232 case BIND_EXPR:
7233 inner_if = BIND_EXPR_BODY (inner_if);
7234 break;
7235 case STATEMENT_LIST:
7236 inner_if = expr_last (then_block);
7237 break;
7238 case TRY_FINALLY_EXPR:
7239 case TRY_CATCH_EXPR:
7240 inner_if = TREE_OPERAND (inner_if, 0);
7241 break;
7242 default:
7243 gcc_unreachable ();
7244 }
7245 found:
7246
7247 if (COND_EXPR_ELSE (inner_if))
7248 warning (OPT_Wparentheses,
7249 "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7250 &if_locus);
7251 }
7252
7253 empty_if_body_warning (then_block, else_block);
7254
7255 stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7256 SET_EXPR_LOCATION (stmt, if_locus);
7257 add_stmt (stmt);
7258 }
7259
7260 /* Emit a general-purpose loop construct. START_LOCUS is the location of
7261 the beginning of the loop. COND is the loop condition. COND_IS_FIRST
7262 is false for DO loops. INCR is the FOR increment expression. BODY is
7263 the statement controlled by the loop. BLAB is the break label. CLAB is
7264 the continue label. Everything is allowed to be NULL. */
7265
7266 void
7267 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7268 tree blab, tree clab, bool cond_is_first)
7269 {
7270 tree entry = NULL, exit = NULL, t;
7271
7272 /* If the condition is zero don't generate a loop construct. */
7273 if (cond && integer_zerop (cond))
7274 {
7275 if (cond_is_first)
7276 {
7277 t = build_and_jump (&blab);
7278 SET_EXPR_LOCATION (t, start_locus);
7279 add_stmt (t);
7280 }
7281 }
7282 else
7283 {
7284 tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7285
7286 /* If we have an exit condition, then we build an IF with gotos either
7287 out of the loop, or to the top of it. If there's no exit condition,
7288 then we just build a jump back to the top. */
7289 exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7290
7291 if (cond && !integer_nonzerop (cond))
7292 {
7293 /* Canonicalize the loop condition to the end. This means
7294 generating a branch to the loop condition. Reuse the
7295 continue label, if possible. */
7296 if (cond_is_first)
7297 {
7298 if (incr || !clab)
7299 {
7300 entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7301 t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7302 }
7303 else
7304 t = build1 (GOTO_EXPR, void_type_node, clab);
7305 SET_EXPR_LOCATION (t, start_locus);
7306 add_stmt (t);
7307 }
7308
7309 t = build_and_jump (&blab);
7310 exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7311 if (cond_is_first)
7312 SET_EXPR_LOCATION (exit, start_locus);
7313 else
7314 SET_EXPR_LOCATION (exit, input_location);
7315 }
7316
7317 add_stmt (top);
7318 }
7319
7320 if (body)
7321 add_stmt (body);
7322 if (clab)
7323 add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7324 if (incr)
7325 add_stmt (incr);
7326 if (entry)
7327 add_stmt (entry);
7328 if (exit)
7329 add_stmt (exit);
7330 if (blab)
7331 add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7332 }
7333
7334 tree
7335 c_finish_bc_stmt (tree *label_p, bool is_break)
7336 {
7337 bool skip;
7338 tree label = *label_p;
7339
7340 /* In switch statements break is sometimes stylistically used after
7341 a return statement. This can lead to spurious warnings about
7342 control reaching the end of a non-void function when it is
7343 inlined. Note that we are calling block_may_fallthru with
7344 language specific tree nodes; this works because
7345 block_may_fallthru returns true when given something it does not
7346 understand. */
7347 skip = !block_may_fallthru (cur_stmt_list);
7348
7349 if (!label)
7350 {
7351 if (!skip)
7352 *label_p = label = create_artificial_label ();
7353 }
7354 else if (TREE_CODE (label) == LABEL_DECL)
7355 ;
7356 else switch (TREE_INT_CST_LOW (label))
7357 {
7358 case 0:
7359 if (is_break)
7360 error ("break statement not within loop or switch");
7361 else
7362 error ("continue statement not within a loop");
7363 return NULL_TREE;
7364
7365 case 1:
7366 gcc_assert (is_break);
7367 error ("break statement used with OpenMP for loop");
7368 return NULL_TREE;
7369
7370 default:
7371 gcc_unreachable ();
7372 }
7373
7374 if (skip)
7375 return NULL_TREE;
7376
7377 return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7378 }
7379
7380 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
7381
7382 static void
7383 emit_side_effect_warnings (tree expr)
7384 {
7385 if (expr == error_mark_node)
7386 ;
7387 else if (!TREE_SIDE_EFFECTS (expr))
7388 {
7389 if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7390 warning (OPT_Wunused_value, "%Hstatement with no effect",
7391 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7392 }
7393 else
7394 warn_if_unused_value (expr, input_location);
7395 }
7396
7397 /* Process an expression as if it were a complete statement. Emit
7398 diagnostics, but do not call ADD_STMT. */
7399
7400 tree
7401 c_process_expr_stmt (tree expr)
7402 {
7403 if (!expr)
7404 return NULL_TREE;
7405
7406 if (warn_sequence_point)
7407 verify_sequence_points (expr);
7408
7409 if (TREE_TYPE (expr) != error_mark_node
7410 && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7411 && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7412 error ("expression statement has incomplete type");
7413
7414 /* If we're not processing a statement expression, warn about unused values.
7415 Warnings for statement expressions will be emitted later, once we figure
7416 out which is the result. */
7417 if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7418 && warn_unused_value)
7419 emit_side_effect_warnings (expr);
7420
7421 /* If the expression is not of a type to which we cannot assign a line
7422 number, wrap the thing in a no-op NOP_EXPR. */
7423 if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7424 expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7425
7426 if (CAN_HAVE_LOCATION_P (expr))
7427 SET_EXPR_LOCATION (expr, input_location);
7428
7429 return expr;
7430 }
7431
7432 /* Emit an expression as a statement. */
7433
7434 tree
7435 c_finish_expr_stmt (tree expr)
7436 {
7437 if (expr)
7438 return add_stmt (c_process_expr_stmt (expr));
7439 else
7440 return NULL;
7441 }
7442
7443 /* Do the opposite and emit a statement as an expression. To begin,
7444 create a new binding level and return it. */
7445
7446 tree
7447 c_begin_stmt_expr (void)
7448 {
7449 tree ret;
7450 struct c_label_context_se *nstack;
7451 struct c_label_list *glist;
7452
7453 /* We must force a BLOCK for this level so that, if it is not expanded
7454 later, there is a way to turn off the entire subtree of blocks that
7455 are contained in it. */
7456 keep_next_level ();
7457 ret = c_begin_compound_stmt (true);
7458 if (c_switch_stack)
7459 {
7460 c_switch_stack->blocked_stmt_expr++;
7461 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7462 }
7463 for (glist = label_context_stack_se->labels_used;
7464 glist != NULL;
7465 glist = glist->next)
7466 {
7467 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7468 }
7469 nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7470 nstack->labels_def = NULL;
7471 nstack->labels_used = NULL;
7472 nstack->next = label_context_stack_se;
7473 label_context_stack_se = nstack;
7474
7475 /* Mark the current statement list as belonging to a statement list. */
7476 STATEMENT_LIST_STMT_EXPR (ret) = 1;
7477
7478 return ret;
7479 }
7480
7481 tree
7482 c_finish_stmt_expr (tree body)
7483 {
7484 tree last, type, tmp, val;
7485 tree *last_p;
7486 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7487
7488 body = c_end_compound_stmt (body, true);
7489 if (c_switch_stack)
7490 {
7491 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7492 c_switch_stack->blocked_stmt_expr--;
7493 }
7494 /* It is no longer possible to jump to labels defined within this
7495 statement expression. */
7496 for (dlist = label_context_stack_se->labels_def;
7497 dlist != NULL;
7498 dlist = dlist->next)
7499 {
7500 C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7501 }
7502 /* It is again possible to define labels with a goto just outside
7503 this statement expression. */
7504 for (glist = label_context_stack_se->next->labels_used;
7505 glist != NULL;
7506 glist = glist->next)
7507 {
7508 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7509 glist_prev = glist;
7510 }
7511 if (glist_prev != NULL)
7512 glist_prev->next = label_context_stack_se->labels_used;
7513 else
7514 label_context_stack_se->next->labels_used
7515 = label_context_stack_se->labels_used;
7516 label_context_stack_se = label_context_stack_se->next;
7517
7518 /* Locate the last statement in BODY. See c_end_compound_stmt
7519 about always returning a BIND_EXPR. */
7520 last_p = &BIND_EXPR_BODY (body);
7521 last = BIND_EXPR_BODY (body);
7522
7523 continue_searching:
7524 if (TREE_CODE (last) == STATEMENT_LIST)
7525 {
7526 tree_stmt_iterator i;
7527
7528 /* This can happen with degenerate cases like ({ }). No value. */
7529 if (!TREE_SIDE_EFFECTS (last))
7530 return body;
7531
7532 /* If we're supposed to generate side effects warnings, process
7533 all of the statements except the last. */
7534 if (warn_unused_value)
7535 {
7536 for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7537 emit_side_effect_warnings (tsi_stmt (i));
7538 }
7539 else
7540 i = tsi_last (last);
7541 last_p = tsi_stmt_ptr (i);
7542 last = *last_p;
7543 }
7544
7545 /* If the end of the list is exception related, then the list was split
7546 by a call to push_cleanup. Continue searching. */
7547 if (TREE_CODE (last) == TRY_FINALLY_EXPR
7548 || TREE_CODE (last) == TRY_CATCH_EXPR)
7549 {
7550 last_p = &TREE_OPERAND (last, 0);
7551 last = *last_p;
7552 goto continue_searching;
7553 }
7554
7555 /* In the case that the BIND_EXPR is not necessary, return the
7556 expression out from inside it. */
7557 if (last == error_mark_node
7558 || (last == BIND_EXPR_BODY (body)
7559 && BIND_EXPR_VARS (body) == NULL))
7560 {
7561 /* Do not warn if the return value of a statement expression is
7562 unused. */
7563 if (CAN_HAVE_LOCATION_P (last))
7564 TREE_NO_WARNING (last) = 1;
7565 return last;
7566 }
7567
7568 /* Extract the type of said expression. */
7569 type = TREE_TYPE (last);
7570
7571 /* If we're not returning a value at all, then the BIND_EXPR that
7572 we already have is a fine expression to return. */
7573 if (!type || VOID_TYPE_P (type))
7574 return body;
7575
7576 /* Now that we've located the expression containing the value, it seems
7577 silly to make voidify_wrapper_expr repeat the process. Create a
7578 temporary of the appropriate type and stick it in a TARGET_EXPR. */
7579 tmp = create_tmp_var_raw (type, NULL);
7580
7581 /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
7582 tree_expr_nonnegative_p giving up immediately. */
7583 val = last;
7584 if (TREE_CODE (val) == NOP_EXPR
7585 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7586 val = TREE_OPERAND (val, 0);
7587
7588 *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7589 SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7590
7591 return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7592 }
7593
7594 /* Begin the scope of an identifier of variably modified type, scope
7595 number SCOPE. Jumping from outside this scope to inside it is not
7596 permitted. */
7597
7598 void
7599 c_begin_vm_scope (unsigned int scope)
7600 {
7601 struct c_label_context_vm *nstack;
7602 struct c_label_list *glist;
7603
7604 gcc_assert (scope > 0);
7605
7606 /* At file_scope, we don't have to do any processing. */
7607 if (label_context_stack_vm == NULL)
7608 return;
7609
7610 if (c_switch_stack && !c_switch_stack->blocked_vm)
7611 c_switch_stack->blocked_vm = scope;
7612 for (glist = label_context_stack_vm->labels_used;
7613 glist != NULL;
7614 glist = glist->next)
7615 {
7616 C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7617 }
7618 nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7619 nstack->labels_def = NULL;
7620 nstack->labels_used = NULL;
7621 nstack->scope = scope;
7622 nstack->next = label_context_stack_vm;
7623 label_context_stack_vm = nstack;
7624 }
7625
7626 /* End a scope which may contain identifiers of variably modified
7627 type, scope number SCOPE. */
7628
7629 void
7630 c_end_vm_scope (unsigned int scope)
7631 {
7632 if (label_context_stack_vm == NULL)
7633 return;
7634 if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7635 c_switch_stack->blocked_vm = 0;
7636 /* We may have a number of nested scopes of identifiers with
7637 variably modified type, all at this depth. Pop each in turn. */
7638 while (label_context_stack_vm->scope == scope)
7639 {
7640 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7641
7642 /* It is no longer possible to jump to labels defined within this
7643 scope. */
7644 for (dlist = label_context_stack_vm->labels_def;
7645 dlist != NULL;
7646 dlist = dlist->next)
7647 {
7648 C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7649 }
7650 /* It is again possible to define labels with a goto just outside
7651 this scope. */
7652 for (glist = label_context_stack_vm->next->labels_used;
7653 glist != NULL;
7654 glist = glist->next)
7655 {
7656 C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7657 glist_prev = glist;
7658 }
7659 if (glist_prev != NULL)
7660 glist_prev->next = label_context_stack_vm->labels_used;
7661 else
7662 label_context_stack_vm->next->labels_used
7663 = label_context_stack_vm->labels_used;
7664 label_context_stack_vm = label_context_stack_vm->next;
7665 }
7666 }
7667 \f
7668 /* Begin and end compound statements. This is as simple as pushing
7669 and popping new statement lists from the tree. */
7670
7671 tree
7672 c_begin_compound_stmt (bool do_scope)
7673 {
7674 tree stmt = push_stmt_list ();
7675 if (do_scope)
7676 push_scope ();
7677 return stmt;
7678 }
7679
7680 tree
7681 c_end_compound_stmt (tree stmt, bool do_scope)
7682 {
7683 tree block = NULL;
7684
7685 if (do_scope)
7686 {
7687 if (c_dialect_objc ())
7688 objc_clear_super_receiver ();
7689 block = pop_scope ();
7690 }
7691
7692 stmt = pop_stmt_list (stmt);
7693 stmt = c_build_bind_expr (block, stmt);
7694
7695 /* If this compound statement is nested immediately inside a statement
7696 expression, then force a BIND_EXPR to be created. Otherwise we'll
7697 do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
7698 STATEMENT_LISTs merge, and thus we can lose track of what statement
7699 was really last. */
7700 if (cur_stmt_list
7701 && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7702 && TREE_CODE (stmt) != BIND_EXPR)
7703 {
7704 stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7705 TREE_SIDE_EFFECTS (stmt) = 1;
7706 }
7707
7708 return stmt;
7709 }
7710
7711 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
7712 when the current scope is exited. EH_ONLY is true when this is not
7713 meant to apply to normal control flow transfer. */
7714
7715 void
7716 push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7717 {
7718 enum tree_code code;
7719 tree stmt, list;
7720 bool stmt_expr;
7721
7722 code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7723 stmt = build_stmt (code, NULL, cleanup);
7724 add_stmt (stmt);
7725 stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7726 list = push_stmt_list ();
7727 TREE_OPERAND (stmt, 0) = list;
7728 STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7729 }
7730 \f
7731 /* Build a binary-operation expression without default conversions.
7732 CODE is the kind of expression to build.
7733 This function differs from `build' in several ways:
7734 the data type of the result is computed and recorded in it,
7735 warnings are generated if arg data types are invalid,
7736 special handling for addition and subtraction of pointers is known,
7737 and some optimization is done (operations on narrow ints
7738 are done in the narrower type when that gives the same result).
7739 Constant folding is also done before the result is returned.
7740
7741 Note that the operands will never have enumeral types, or function
7742 or array types, because either they will have the default conversions
7743 performed or they have both just been converted to some other type in which
7744 the arithmetic is to be done. */
7745
7746 tree
7747 build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7748 int convert_p)
7749 {
7750 tree type0, type1;
7751 enum tree_code code0, code1;
7752 tree op0, op1;
7753 const char *invalid_op_diag;
7754
7755 /* Expression code to give to the expression when it is built.
7756 Normally this is CODE, which is what the caller asked for,
7757 but in some special cases we change it. */
7758 enum tree_code resultcode = code;
7759
7760 /* Data type in which the computation is to be performed.
7761 In the simplest cases this is the common type of the arguments. */
7762 tree result_type = NULL;
7763
7764 /* Nonzero means operands have already been type-converted
7765 in whatever way is necessary.
7766 Zero means they need to be converted to RESULT_TYPE. */
7767 int converted = 0;
7768
7769 /* Nonzero means create the expression with this type, rather than
7770 RESULT_TYPE. */
7771 tree build_type = 0;
7772
7773 /* Nonzero means after finally constructing the expression
7774 convert it to this type. */
7775 tree final_type = 0;
7776
7777 /* Nonzero if this is an operation like MIN or MAX which can
7778 safely be computed in short if both args are promoted shorts.
7779 Also implies COMMON.
7780 -1 indicates a bitwise operation; this makes a difference
7781 in the exact conditions for when it is safe to do the operation
7782 in a narrower mode. */
7783 int shorten = 0;
7784
7785 /* Nonzero if this is a comparison operation;
7786 if both args are promoted shorts, compare the original shorts.
7787 Also implies COMMON. */
7788 int short_compare = 0;
7789
7790 /* Nonzero if this is a right-shift operation, which can be computed on the
7791 original short and then promoted if the operand is a promoted short. */
7792 int short_shift = 0;
7793
7794 /* Nonzero means set RESULT_TYPE to the common type of the args. */
7795 int common = 0;
7796
7797 /* True means types are compatible as far as ObjC is concerned. */
7798 bool objc_ok;
7799
7800 if (convert_p)
7801 {
7802 op0 = default_conversion (orig_op0);
7803 op1 = default_conversion (orig_op1);
7804 }
7805 else
7806 {
7807 op0 = orig_op0;
7808 op1 = orig_op1;
7809 }
7810
7811 type0 = TREE_TYPE (op0);
7812 type1 = TREE_TYPE (op1);
7813
7814 /* The expression codes of the data types of the arguments tell us
7815 whether the arguments are integers, floating, pointers, etc. */
7816 code0 = TREE_CODE (type0);
7817 code1 = TREE_CODE (type1);
7818
7819 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
7820 STRIP_TYPE_NOPS (op0);
7821 STRIP_TYPE_NOPS (op1);
7822
7823 /* If an error was already reported for one of the arguments,
7824 avoid reporting another error. */
7825
7826 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7827 return error_mark_node;
7828
7829 if ((invalid_op_diag
7830 = targetm.invalid_binary_op (code, type0, type1)))
7831 {
7832 error (invalid_op_diag);
7833 return error_mark_node;
7834 }
7835
7836 objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7837
7838 switch (code)
7839 {
7840 case PLUS_EXPR:
7841 /* Handle the pointer + int case. */
7842 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7843 return pointer_int_sum (PLUS_EXPR, op0, op1);
7844 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7845 return pointer_int_sum (PLUS_EXPR, op1, op0);
7846 else
7847 common = 1;
7848 break;
7849
7850 case MINUS_EXPR:
7851 /* Subtraction of two similar pointers.
7852 We must subtract them as integers, then divide by object size. */
7853 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7854 && comp_target_types (type0, type1))
7855 return pointer_diff (op0, op1);
7856 /* Handle pointer minus int. Just like pointer plus int. */
7857 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7858 return pointer_int_sum (MINUS_EXPR, op0, op1);
7859 else
7860 common = 1;
7861 break;
7862
7863 case MULT_EXPR:
7864 common = 1;
7865 break;
7866
7867 case TRUNC_DIV_EXPR:
7868 case CEIL_DIV_EXPR:
7869 case FLOOR_DIV_EXPR:
7870 case ROUND_DIV_EXPR:
7871 case EXACT_DIV_EXPR:
7872 warn_for_div_by_zero (op1);
7873
7874 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7875 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7876 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7877 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7878 {
7879 enum tree_code tcode0 = code0, tcode1 = code1;
7880
7881 if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7882 tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7883 if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7884 tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7885
7886 if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7887 resultcode = RDIV_EXPR;
7888 else
7889 /* Although it would be tempting to shorten always here, that
7890 loses on some targets, since the modulo instruction is
7891 undefined if the quotient can't be represented in the
7892 computation mode. We shorten only if unsigned or if
7893 dividing by something we know != -1. */
7894 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7895 || (TREE_CODE (op1) == INTEGER_CST
7896 && !integer_all_onesp (op1)));
7897 common = 1;
7898 }
7899 break;
7900
7901 case BIT_AND_EXPR:
7902 case BIT_IOR_EXPR:
7903 case BIT_XOR_EXPR:
7904 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7905 shorten = -1;
7906 else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7907 common = 1;
7908 break;
7909
7910 case TRUNC_MOD_EXPR:
7911 case FLOOR_MOD_EXPR:
7912 warn_for_div_by_zero (op1);
7913
7914 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7915 {
7916 /* Although it would be tempting to shorten always here, that loses
7917 on some targets, since the modulo instruction is undefined if the
7918 quotient can't be represented in the computation mode. We shorten
7919 only if unsigned or if dividing by something we know != -1. */
7920 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7921 || (TREE_CODE (op1) == INTEGER_CST
7922 && !integer_all_onesp (op1)));
7923 common = 1;
7924 }
7925 break;
7926
7927 case TRUTH_ANDIF_EXPR:
7928 case TRUTH_ORIF_EXPR:
7929 case TRUTH_AND_EXPR:
7930 case TRUTH_OR_EXPR:
7931 case TRUTH_XOR_EXPR:
7932 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7933 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7934 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
7935 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
7936 {
7937 /* Result of these operations is always an int,
7938 but that does not mean the operands should be
7939 converted to ints! */
7940 result_type = integer_type_node;
7941 op0 = c_common_truthvalue_conversion (op0);
7942 op1 = c_common_truthvalue_conversion (op1);
7943 converted = 1;
7944 }
7945 break;
7946
7947 /* Shift operations: result has same type as first operand;
7948 always convert second operand to int.
7949 Also set SHORT_SHIFT if shifting rightward. */
7950
7951 case RSHIFT_EXPR:
7952 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7953 {
7954 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7955 {
7956 if (tree_int_cst_sgn (op1) < 0)
7957 warning (0, "right shift count is negative");
7958 else
7959 {
7960 if (!integer_zerop (op1))
7961 short_shift = 1;
7962
7963 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7964 warning (0, "right shift count >= width of type");
7965 }
7966 }
7967
7968 /* Use the type of the value to be shifted. */
7969 result_type = type0;
7970 /* Convert the shift-count to an integer, regardless of size
7971 of value being shifted. */
7972 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7973 op1 = convert (integer_type_node, op1);
7974 /* Avoid converting op1 to result_type later. */
7975 converted = 1;
7976 }
7977 break;
7978
7979 case LSHIFT_EXPR:
7980 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7981 {
7982 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7983 {
7984 if (tree_int_cst_sgn (op1) < 0)
7985 warning (0, "left shift count is negative");
7986
7987 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7988 warning (0, "left shift count >= width of type");
7989 }
7990
7991 /* Use the type of the value to be shifted. */
7992 result_type = type0;
7993 /* Convert the shift-count to an integer, regardless of size
7994 of value being shifted. */
7995 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7996 op1 = convert (integer_type_node, op1);
7997 /* Avoid converting op1 to result_type later. */
7998 converted = 1;
7999 }
8000 break;
8001
8002 case EQ_EXPR:
8003 case NE_EXPR:
8004 if (code0 == REAL_TYPE || code1 == REAL_TYPE)
8005 warning (OPT_Wfloat_equal,
8006 "comparing floating point with == or != is unsafe");
8007 /* Result of comparison is always int,
8008 but don't convert the args to int! */
8009 build_type = integer_type_node;
8010 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8011 || code0 == COMPLEX_TYPE)
8012 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8013 || code1 == COMPLEX_TYPE))
8014 short_compare = 1;
8015 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8016 {
8017 tree tt0 = TREE_TYPE (type0);
8018 tree tt1 = TREE_TYPE (type1);
8019 /* Anything compares with void *. void * compares with anything.
8020 Otherwise, the targets must be compatible
8021 and both must be object or both incomplete. */
8022 if (comp_target_types (type0, type1))
8023 result_type = common_pointer_type (type0, type1);
8024 else if (VOID_TYPE_P (tt0))
8025 {
8026 /* op0 != orig_op0 detects the case of something
8027 whose value is 0 but which isn't a valid null ptr const. */
8028 if (pedantic && !null_pointer_constant_p (orig_op0)
8029 && TREE_CODE (tt1) == FUNCTION_TYPE)
8030 pedwarn ("ISO C forbids comparison of %<void *%>"
8031 " with function pointer");
8032 }
8033 else if (VOID_TYPE_P (tt1))
8034 {
8035 if (pedantic && !null_pointer_constant_p (orig_op1)
8036 && TREE_CODE (tt0) == FUNCTION_TYPE)
8037 pedwarn ("ISO C forbids comparison of %<void *%>"
8038 " with function pointer");
8039 }
8040 else
8041 /* Avoid warning about the volatile ObjC EH puts on decls. */
8042 if (!objc_ok)
8043 pedwarn ("comparison of distinct pointer types lacks a cast");
8044
8045 if (result_type == NULL_TREE)
8046 result_type = ptr_type_node;
8047 }
8048 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8049 {
8050 if (TREE_CODE (op0) == ADDR_EXPR
8051 && decl_with_nonnull_addr_p (TREE_OPERAND (op0, 0)))
8052 warning (OPT_Waddress, "the address of %qD will never be NULL",
8053 TREE_OPERAND (op0, 0));
8054 result_type = type0;
8055 }
8056 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8057 {
8058 if (TREE_CODE (op1) == ADDR_EXPR
8059 && decl_with_nonnull_addr_p (TREE_OPERAND (op1, 0)))
8060 warning (OPT_Waddress, "the address of %qD will never be NULL",
8061 TREE_OPERAND (op1, 0));
8062 result_type = type1;
8063 }
8064 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8065 {
8066 result_type = type0;
8067 pedwarn ("comparison between pointer and integer");
8068 }
8069 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8070 {
8071 result_type = type1;
8072 pedwarn ("comparison between pointer and integer");
8073 }
8074 break;
8075
8076 case LE_EXPR:
8077 case GE_EXPR:
8078 case LT_EXPR:
8079 case GT_EXPR:
8080 build_type = integer_type_node;
8081 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
8082 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
8083 short_compare = 1;
8084 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8085 {
8086 if (comp_target_types (type0, type1))
8087 {
8088 result_type = common_pointer_type (type0, type1);
8089 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8090 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8091 pedwarn ("comparison of complete and incomplete pointers");
8092 else if (pedantic
8093 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8094 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8095 }
8096 else
8097 {
8098 result_type = ptr_type_node;
8099 pedwarn ("comparison of distinct pointer types lacks a cast");
8100 }
8101 }
8102 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8103 {
8104 result_type = type0;
8105 if (pedantic || extra_warnings)
8106 pedwarn ("ordered comparison of pointer with integer zero");
8107 }
8108 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8109 {
8110 result_type = type1;
8111 if (pedantic)
8112 pedwarn ("ordered comparison of pointer with integer zero");
8113 }
8114 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8115 {
8116 result_type = type0;
8117 pedwarn ("comparison between pointer and integer");
8118 }
8119 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8120 {
8121 result_type = type1;
8122 pedwarn ("comparison between pointer and integer");
8123 }
8124 break;
8125
8126 default:
8127 gcc_unreachable ();
8128 }
8129
8130 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8131 return error_mark_node;
8132
8133 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8134 && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8135 || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8136 TREE_TYPE (type1))))
8137 {
8138 binary_op_error (code);
8139 return error_mark_node;
8140 }
8141
8142 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8143 || code0 == VECTOR_TYPE)
8144 &&
8145 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8146 || code1 == VECTOR_TYPE))
8147 {
8148 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8149
8150 if (shorten || common || short_compare)
8151 result_type = c_common_type (type0, type1);
8152
8153 /* For certain operations (which identify themselves by shorten != 0)
8154 if both args were extended from the same smaller type,
8155 do the arithmetic in that type and then extend.
8156
8157 shorten !=0 and !=1 indicates a bitwise operation.
8158 For them, this optimization is safe only if
8159 both args are zero-extended or both are sign-extended.
8160 Otherwise, we might change the result.
8161 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8162 but calculated in (unsigned short) it would be (unsigned short)-1. */
8163
8164 if (shorten && none_complex)
8165 {
8166 int unsigned0, unsigned1;
8167 tree arg0, arg1;
8168 int uns;
8169 tree type;
8170
8171 /* Cast OP0 and OP1 to RESULT_TYPE. Doing so prevents
8172 excessive narrowing when we call get_narrower below. For
8173 example, suppose that OP0 is of unsigned int extended
8174 from signed char and that RESULT_TYPE is long long int.
8175 If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
8176 like
8177
8178 (long long int) (unsigned int) signed_char
8179
8180 which get_narrower would narrow down to
8181
8182 (unsigned int) signed char
8183
8184 If we do not cast OP0 first, get_narrower would return
8185 signed_char, which is inconsistent with the case of the
8186 explicit cast. */
8187 op0 = convert (result_type, op0);
8188 op1 = convert (result_type, op1);
8189
8190 arg0 = get_narrower (op0, &unsigned0);
8191 arg1 = get_narrower (op1, &unsigned1);
8192
8193 /* UNS is 1 if the operation to be done is an unsigned one. */
8194 uns = TYPE_UNSIGNED (result_type);
8195
8196 final_type = result_type;
8197
8198 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8199 but it *requires* conversion to FINAL_TYPE. */
8200
8201 if ((TYPE_PRECISION (TREE_TYPE (op0))
8202 == TYPE_PRECISION (TREE_TYPE (arg0)))
8203 && TREE_TYPE (op0) != final_type)
8204 unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8205 if ((TYPE_PRECISION (TREE_TYPE (op1))
8206 == TYPE_PRECISION (TREE_TYPE (arg1)))
8207 && TREE_TYPE (op1) != final_type)
8208 unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8209
8210 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
8211
8212 /* For bitwise operations, signedness of nominal type
8213 does not matter. Consider only how operands were extended. */
8214 if (shorten == -1)
8215 uns = unsigned0;
8216
8217 /* Note that in all three cases below we refrain from optimizing
8218 an unsigned operation on sign-extended args.
8219 That would not be valid. */
8220
8221 /* Both args variable: if both extended in same way
8222 from same width, do it in that width.
8223 Do it unsigned if args were zero-extended. */
8224 if ((TYPE_PRECISION (TREE_TYPE (arg0))
8225 < TYPE_PRECISION (result_type))
8226 && (TYPE_PRECISION (TREE_TYPE (arg1))
8227 == TYPE_PRECISION (TREE_TYPE (arg0)))
8228 && unsigned0 == unsigned1
8229 && (unsigned0 || !uns))
8230 result_type
8231 = c_common_signed_or_unsigned_type
8232 (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8233 else if (TREE_CODE (arg0) == INTEGER_CST
8234 && (unsigned1 || !uns)
8235 && (TYPE_PRECISION (TREE_TYPE (arg1))
8236 < TYPE_PRECISION (result_type))
8237 && (type
8238 = c_common_signed_or_unsigned_type (unsigned1,
8239 TREE_TYPE (arg1)),
8240 int_fits_type_p (arg0, type)))
8241 result_type = type;
8242 else if (TREE_CODE (arg1) == INTEGER_CST
8243 && (unsigned0 || !uns)
8244 && (TYPE_PRECISION (TREE_TYPE (arg0))
8245 < TYPE_PRECISION (result_type))
8246 && (type
8247 = c_common_signed_or_unsigned_type (unsigned0,
8248 TREE_TYPE (arg0)),
8249 int_fits_type_p (arg1, type)))
8250 result_type = type;
8251 }
8252
8253 /* Shifts can be shortened if shifting right. */
8254
8255 if (short_shift)
8256 {
8257 int unsigned_arg;
8258 tree arg0 = get_narrower (op0, &unsigned_arg);
8259
8260 final_type = result_type;
8261
8262 if (arg0 == op0 && final_type == TREE_TYPE (op0))
8263 unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8264
8265 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8266 /* We can shorten only if the shift count is less than the
8267 number of bits in the smaller type size. */
8268 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8269 /* We cannot drop an unsigned shift after sign-extension. */
8270 && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8271 {
8272 /* Do an unsigned shift if the operand was zero-extended. */
8273 result_type
8274 = c_common_signed_or_unsigned_type (unsigned_arg,
8275 TREE_TYPE (arg0));
8276 /* Convert value-to-be-shifted to that type. */
8277 if (TREE_TYPE (op0) != result_type)
8278 op0 = convert (result_type, op0);
8279 converted = 1;
8280 }
8281 }
8282
8283 /* Comparison operations are shortened too but differently.
8284 They identify themselves by setting short_compare = 1. */
8285
8286 if (short_compare)
8287 {
8288 /* Don't write &op0, etc., because that would prevent op0
8289 from being kept in a register.
8290 Instead, make copies of the our local variables and
8291 pass the copies by reference, then copy them back afterward. */
8292 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8293 enum tree_code xresultcode = resultcode;
8294 tree val
8295 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8296
8297 if (val != 0)
8298 return val;
8299
8300 op0 = xop0, op1 = xop1;
8301 converted = 1;
8302 resultcode = xresultcode;
8303
8304 if (warn_sign_compare && skip_evaluation == 0)
8305 {
8306 int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8307 int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8308 int unsignedp0, unsignedp1;
8309 tree primop0 = get_narrower (op0, &unsignedp0);
8310 tree primop1 = get_narrower (op1, &unsignedp1);
8311
8312 xop0 = orig_op0;
8313 xop1 = orig_op1;
8314 STRIP_TYPE_NOPS (xop0);
8315 STRIP_TYPE_NOPS (xop1);
8316
8317 /* Give warnings for comparisons between signed and unsigned
8318 quantities that may fail.
8319
8320 Do the checking based on the original operand trees, so that
8321 casts will be considered, but default promotions won't be.
8322
8323 Do not warn if the comparison is being done in a signed type,
8324 since the signed type will only be chosen if it can represent
8325 all the values of the unsigned type. */
8326 if (!TYPE_UNSIGNED (result_type))
8327 /* OK */;
8328 /* Do not warn if both operands are the same signedness. */
8329 else if (op0_signed == op1_signed)
8330 /* OK */;
8331 else
8332 {
8333 tree sop, uop;
8334 bool ovf;
8335
8336 if (op0_signed)
8337 sop = xop0, uop = xop1;
8338 else
8339 sop = xop1, uop = xop0;
8340
8341 /* Do not warn if the signed quantity is an
8342 unsuffixed integer literal (or some static
8343 constant expression involving such literals or a
8344 conditional expression involving such literals)
8345 and it is non-negative. */
8346 if (tree_expr_nonnegative_warnv_p (sop, &ovf))
8347 /* OK */;
8348 /* Do not warn if the comparison is an equality operation,
8349 the unsigned quantity is an integral constant, and it
8350 would fit in the result if the result were signed. */
8351 else if (TREE_CODE (uop) == INTEGER_CST
8352 && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8353 && int_fits_type_p
8354 (uop, c_common_signed_type (result_type)))
8355 /* OK */;
8356 /* Do not warn if the unsigned quantity is an enumeration
8357 constant and its maximum value would fit in the result
8358 if the result were signed. */
8359 else if (TREE_CODE (uop) == INTEGER_CST
8360 && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8361 && int_fits_type_p
8362 (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8363 c_common_signed_type (result_type)))
8364 /* OK */;
8365 else
8366 warning (0, "comparison between signed and unsigned");
8367 }
8368
8369 /* Warn if two unsigned values are being compared in a size
8370 larger than their original size, and one (and only one) is the
8371 result of a `~' operator. This comparison will always fail.
8372
8373 Also warn if one operand is a constant, and the constant
8374 does not have all bits set that are set in the ~ operand
8375 when it is extended. */
8376
8377 if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8378 != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8379 {
8380 if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8381 primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8382 &unsignedp0);
8383 else
8384 primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8385 &unsignedp1);
8386
8387 if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8388 {
8389 tree primop;
8390 HOST_WIDE_INT constant, mask;
8391 int unsignedp, bits;
8392
8393 if (host_integerp (primop0, 0))
8394 {
8395 primop = primop1;
8396 unsignedp = unsignedp1;
8397 constant = tree_low_cst (primop0, 0);
8398 }
8399 else
8400 {
8401 primop = primop0;
8402 unsignedp = unsignedp0;
8403 constant = tree_low_cst (primop1, 0);
8404 }
8405
8406 bits = TYPE_PRECISION (TREE_TYPE (primop));
8407 if (bits < TYPE_PRECISION (result_type)
8408 && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8409 {
8410 mask = (~(HOST_WIDE_INT) 0) << bits;
8411 if ((mask & constant) != mask)
8412 warning (0, "comparison of promoted ~unsigned with constant");
8413 }
8414 }
8415 else if (unsignedp0 && unsignedp1
8416 && (TYPE_PRECISION (TREE_TYPE (primop0))
8417 < TYPE_PRECISION (result_type))
8418 && (TYPE_PRECISION (TREE_TYPE (primop1))
8419 < TYPE_PRECISION (result_type)))
8420 warning (0, "comparison of promoted ~unsigned with unsigned");
8421 }
8422 }
8423 }
8424 }
8425
8426 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8427 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8428 Then the expression will be built.
8429 It will be given type FINAL_TYPE if that is nonzero;
8430 otherwise, it will be given type RESULT_TYPE. */
8431
8432 if (!result_type)
8433 {
8434 binary_op_error (code);
8435 return error_mark_node;
8436 }
8437
8438 if (!converted)
8439 {
8440 if (TREE_TYPE (op0) != result_type)
8441 op0 = convert_and_check (result_type, op0);
8442 if (TREE_TYPE (op1) != result_type)
8443 op1 = convert_and_check (result_type, op1);
8444
8445 /* This can happen if one operand has a vector type, and the other
8446 has a different type. */
8447 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8448 return error_mark_node;
8449 }
8450
8451 if (build_type == NULL_TREE)
8452 build_type = result_type;
8453
8454 {
8455 /* Treat expressions in initializers specially as they can't trap. */
8456 tree result = require_constant_value ? fold_build2_initializer (resultcode,
8457 build_type,
8458 op0, op1)
8459 : fold_build2 (resultcode, build_type,
8460 op0, op1);
8461
8462 if (final_type != 0)
8463 result = convert (final_type, result);
8464 return result;
8465 }
8466 }
8467
8468
8469 /* Convert EXPR to be a truth-value, validating its type for this
8470 purpose. */
8471
8472 tree
8473 c_objc_common_truthvalue_conversion (tree expr)
8474 {
8475 switch (TREE_CODE (TREE_TYPE (expr)))
8476 {
8477 case ARRAY_TYPE:
8478 error ("used array that cannot be converted to pointer where scalar is required");
8479 return error_mark_node;
8480
8481 case RECORD_TYPE:
8482 error ("used struct type value where scalar is required");
8483 return error_mark_node;
8484
8485 case UNION_TYPE:
8486 error ("used union type value where scalar is required");
8487 return error_mark_node;
8488
8489 case FUNCTION_TYPE:
8490 gcc_unreachable ();
8491
8492 default:
8493 break;
8494 }
8495
8496 /* ??? Should we also give an error for void and vectors rather than
8497 leaving those to give errors later? */
8498 return c_common_truthvalue_conversion (expr);
8499 }
8500 \f
8501
8502 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8503 required. */
8504
8505 tree
8506 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8507 bool *ti ATTRIBUTE_UNUSED, bool *se)
8508 {
8509 if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8510 {
8511 tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8512 /* Executing a compound literal inside a function reinitializes
8513 it. */
8514 if (!TREE_STATIC (decl))
8515 *se = true;
8516 return decl;
8517 }
8518 else
8519 return expr;
8520 }
8521 \f
8522 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
8523
8524 tree
8525 c_begin_omp_parallel (void)
8526 {
8527 tree block;
8528
8529 keep_next_level ();
8530 block = c_begin_compound_stmt (true);
8531
8532 return block;
8533 }
8534
8535 tree
8536 c_finish_omp_parallel (tree clauses, tree block)
8537 {
8538 tree stmt;
8539
8540 block = c_end_compound_stmt (block, true);
8541
8542 stmt = make_node (OMP_PARALLEL);
8543 TREE_TYPE (stmt) = void_type_node;
8544 OMP_PARALLEL_CLAUSES (stmt) = clauses;
8545 OMP_PARALLEL_BODY (stmt) = block;
8546
8547 return add_stmt (stmt);
8548 }
8549
8550 /* For all elements of CLAUSES, validate them vs OpenMP constraints.
8551 Remove any elements from the list that are invalid. */
8552
8553 tree
8554 c_finish_omp_clauses (tree clauses)
8555 {
8556 bitmap_head generic_head, firstprivate_head, lastprivate_head;
8557 tree c, t, *pc = &clauses;
8558 const char *name;
8559
8560 bitmap_obstack_initialize (NULL);
8561 bitmap_initialize (&generic_head, &bitmap_default_obstack);
8562 bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8563 bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8564
8565 for (pc = &clauses, c = clauses; c ; c = *pc)
8566 {
8567 bool remove = false;
8568 bool need_complete = false;
8569 bool need_implicitly_determined = false;
8570
8571 switch (OMP_CLAUSE_CODE (c))
8572 {
8573 case OMP_CLAUSE_SHARED:
8574 name = "shared";
8575 need_implicitly_determined = true;
8576 goto check_dup_generic;
8577
8578 case OMP_CLAUSE_PRIVATE:
8579 name = "private";
8580 need_complete = true;
8581 need_implicitly_determined = true;
8582 goto check_dup_generic;
8583
8584 case OMP_CLAUSE_REDUCTION:
8585 name = "reduction";
8586 need_implicitly_determined = true;
8587 t = OMP_CLAUSE_DECL (c);
8588 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8589 || POINTER_TYPE_P (TREE_TYPE (t)))
8590 {
8591 error ("%qE has invalid type for %<reduction%>", t);
8592 remove = true;
8593 }
8594 else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8595 {
8596 enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8597 const char *r_name = NULL;
8598
8599 switch (r_code)
8600 {
8601 case PLUS_EXPR:
8602 case MULT_EXPR:
8603 case MINUS_EXPR:
8604 break;
8605 case BIT_AND_EXPR:
8606 r_name = "&";
8607 break;
8608 case BIT_XOR_EXPR:
8609 r_name = "^";
8610 break;
8611 case BIT_IOR_EXPR:
8612 r_name = "|";
8613 break;
8614 case TRUTH_ANDIF_EXPR:
8615 r_name = "&&";
8616 break;
8617 case TRUTH_ORIF_EXPR:
8618 r_name = "||";
8619 break;
8620 default:
8621 gcc_unreachable ();
8622 }
8623 if (r_name)
8624 {
8625 error ("%qE has invalid type for %<reduction(%s)%>",
8626 t, r_name);
8627 remove = true;
8628 }
8629 }
8630 goto check_dup_generic;
8631
8632 case OMP_CLAUSE_COPYPRIVATE:
8633 name = "copyprivate";
8634 goto check_dup_generic;
8635
8636 case OMP_CLAUSE_COPYIN:
8637 name = "copyin";
8638 t = OMP_CLAUSE_DECL (c);
8639 if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8640 {
8641 error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8642 remove = true;
8643 }
8644 goto check_dup_generic;
8645
8646 check_dup_generic:
8647 t = OMP_CLAUSE_DECL (c);
8648 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8649 {
8650 error ("%qE is not a variable in clause %qs", t, name);
8651 remove = true;
8652 }
8653 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8654 || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8655 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8656 {
8657 error ("%qE appears more than once in data clauses", t);
8658 remove = true;
8659 }
8660 else
8661 bitmap_set_bit (&generic_head, DECL_UID (t));
8662 break;
8663
8664 case OMP_CLAUSE_FIRSTPRIVATE:
8665 name = "firstprivate";
8666 t = OMP_CLAUSE_DECL (c);
8667 need_complete = true;
8668 need_implicitly_determined = true;
8669 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8670 {
8671 error ("%qE is not a variable in clause %<firstprivate%>", t);
8672 remove = true;
8673 }
8674 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8675 || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8676 {
8677 error ("%qE appears more than once in data clauses", t);
8678 remove = true;
8679 }
8680 else
8681 bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8682 break;
8683
8684 case OMP_CLAUSE_LASTPRIVATE:
8685 name = "lastprivate";
8686 t = OMP_CLAUSE_DECL (c);
8687 need_complete = true;
8688 need_implicitly_determined = true;
8689 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8690 {
8691 error ("%qE is not a variable in clause %<lastprivate%>", t);
8692 remove = true;
8693 }
8694 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8695 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8696 {
8697 error ("%qE appears more than once in data clauses", t);
8698 remove = true;
8699 }
8700 else
8701 bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8702 break;
8703
8704 case OMP_CLAUSE_IF:
8705 case OMP_CLAUSE_NUM_THREADS:
8706 case OMP_CLAUSE_SCHEDULE:
8707 case OMP_CLAUSE_NOWAIT:
8708 case OMP_CLAUSE_ORDERED:
8709 case OMP_CLAUSE_DEFAULT:
8710 pc = &OMP_CLAUSE_CHAIN (c);
8711 continue;
8712
8713 default:
8714 gcc_unreachable ();
8715 }
8716
8717 if (!remove)
8718 {
8719 t = OMP_CLAUSE_DECL (c);
8720
8721 if (need_complete)
8722 {
8723 t = require_complete_type (t);
8724 if (t == error_mark_node)
8725 remove = true;
8726 }
8727
8728 if (need_implicitly_determined)
8729 {
8730 const char *share_name = NULL;
8731
8732 if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8733 share_name = "threadprivate";
8734 else switch (c_omp_predetermined_sharing (t))
8735 {
8736 case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8737 break;
8738 case OMP_CLAUSE_DEFAULT_SHARED:
8739 share_name = "shared";
8740 break;
8741 case OMP_CLAUSE_DEFAULT_PRIVATE:
8742 share_name = "private";
8743 break;
8744 default:
8745 gcc_unreachable ();
8746 }
8747 if (share_name)
8748 {
8749 error ("%qE is predetermined %qs for %qs",
8750 t, share_name, name);
8751 remove = true;
8752 }
8753 }
8754 }
8755
8756 if (remove)
8757 *pc = OMP_CLAUSE_CHAIN (c);
8758 else
8759 pc = &OMP_CLAUSE_CHAIN (c);
8760 }
8761
8762 bitmap_obstack_release (NULL);
8763 return clauses;
8764 }