c-typeck.c (build_c_cast): Always warn when casting from a pointer to an integer...
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 /* This file is part of the C front end.
24 It contains routines to build C expressions given their operands,
25 including computing the types of the result, C-specific error checks,
26 and some optimization. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "langhooks.h"
35 #include "c-tree.h"
36 #include "tm_p.h"
37 #include "flags.h"
38 #include "output.h"
39 #include "expr.h"
40 #include "toplev.h"
41 #include "intl.h"
42 #include "ggc.h"
43 #include "target.h"
44 #include "tree-iterator.h"
45 #include "tree-gimple.h"
46 #include "tree-flow.h"
47
48 /* Possible cases of implicit bad conversions. Used to select
49 diagnostic messages in convert_for_assignment. */
50 enum impl_conv {
51 ic_argpass,
52 ic_argpass_nonproto,
53 ic_assign,
54 ic_init,
55 ic_return
56 };
57
58 /* The level of nesting inside "__alignof__". */
59 int in_alignof;
60
61 /* The level of nesting inside "sizeof". */
62 int in_sizeof;
63
64 /* The level of nesting inside "typeof". */
65 int in_typeof;
66
67 struct c_label_context_se *label_context_stack_se;
68 struct c_label_context_vm *label_context_stack_vm;
69
70 /* Nonzero if we've already printed a "missing braces around initializer"
71 message within this initializer. */
72 static int missing_braces_mentioned;
73
74 static int require_constant_value;
75 static int require_constant_elements;
76
77 static bool null_pointer_constant_p (tree);
78 static tree qualify_type (tree, tree);
79 static int tagged_types_tu_compatible_p (tree, tree);
80 static int comp_target_types (tree, tree);
81 static int function_types_compatible_p (tree, tree);
82 static int type_lists_compatible_p (tree, tree);
83 static tree decl_constant_value_for_broken_optimization (tree);
84 static tree lookup_field (tree, tree);
85 static tree convert_arguments (tree, tree, tree, tree);
86 static tree pointer_diff (tree, tree);
87 static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
88 int);
89 static tree valid_compound_expr_initializer (tree, tree);
90 static void push_string (const char *);
91 static void push_member_name (tree);
92 static void push_array_bounds (int);
93 static int spelling_length (void);
94 static char *print_spelling (char *);
95 static void warning_init (const char *);
96 static tree digest_init (tree, tree, bool, int);
97 static void output_init_element (tree, bool, tree, tree, int);
98 static void output_pending_init_elements (int);
99 static int set_designator (int);
100 static void push_range_stack (tree);
101 static void add_pending_init (tree, tree);
102 static void set_nonincremental_init (void);
103 static void set_nonincremental_init_from_string (tree);
104 static tree find_init_member (tree);
105 static void readonly_error (tree, enum lvalue_use);
106 static int lvalue_or_else (tree, enum lvalue_use);
107 static int lvalue_p (tree);
108 static void record_maybe_used_decl (tree);
109 static int comptypes_internal (tree, tree);
110 \f
111 /* Return true if EXP is a null pointer constant, false otherwise. */
112
113 static bool
114 null_pointer_constant_p (tree expr)
115 {
116 /* This should really operate on c_expr structures, but they aren't
117 yet available everywhere required. */
118 tree type = TREE_TYPE (expr);
119 return (TREE_CODE (expr) == INTEGER_CST
120 && !TREE_CONSTANT_OVERFLOW (expr)
121 && integer_zerop (expr)
122 && (INTEGRAL_TYPE_P (type)
123 || (TREE_CODE (type) == POINTER_TYPE
124 && VOID_TYPE_P (TREE_TYPE (type))
125 && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
126 }
127 \f/* This is a cache to hold if two types are compatible or not. */
128
129 struct tagged_tu_seen_cache {
130 const struct tagged_tu_seen_cache * next;
131 tree t1;
132 tree t2;
133 /* The return value of tagged_types_tu_compatible_p if we had seen
134 these two types already. */
135 int val;
136 };
137
138 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
139 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
140
141 /* Do `exp = require_complete_type (exp);' to make sure exp
142 does not have an incomplete type. (That includes void types.) */
143
144 tree
145 require_complete_type (tree value)
146 {
147 tree type = TREE_TYPE (value);
148
149 if (value == error_mark_node || type == error_mark_node)
150 return error_mark_node;
151
152 /* First, detect a valid value with a complete type. */
153 if (COMPLETE_TYPE_P (type))
154 return value;
155
156 c_incomplete_type_error (value, type);
157 return error_mark_node;
158 }
159
160 /* Print an error message for invalid use of an incomplete type.
161 VALUE is the expression that was used (or 0 if that isn't known)
162 and TYPE is the type that was invalid. */
163
164 void
165 c_incomplete_type_error (tree value, tree type)
166 {
167 const char *type_code_string;
168
169 /* Avoid duplicate error message. */
170 if (TREE_CODE (type) == ERROR_MARK)
171 return;
172
173 if (value != 0 && (TREE_CODE (value) == VAR_DECL
174 || TREE_CODE (value) == PARM_DECL))
175 error ("%qD has an incomplete type", value);
176 else
177 {
178 retry:
179 /* We must print an error message. Be clever about what it says. */
180
181 switch (TREE_CODE (type))
182 {
183 case RECORD_TYPE:
184 type_code_string = "struct";
185 break;
186
187 case UNION_TYPE:
188 type_code_string = "union";
189 break;
190
191 case ENUMERAL_TYPE:
192 type_code_string = "enum";
193 break;
194
195 case VOID_TYPE:
196 error ("invalid use of void expression");
197 return;
198
199 case ARRAY_TYPE:
200 if (TYPE_DOMAIN (type))
201 {
202 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
203 {
204 error ("invalid use of flexible array member");
205 return;
206 }
207 type = TREE_TYPE (type);
208 goto retry;
209 }
210 error ("invalid use of array with unspecified bounds");
211 return;
212
213 default:
214 gcc_unreachable ();
215 }
216
217 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
218 error ("invalid use of undefined type %<%s %E%>",
219 type_code_string, TYPE_NAME (type));
220 else
221 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
222 error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
223 }
224 }
225
226 /* Given a type, apply default promotions wrt unnamed function
227 arguments and return the new type. */
228
229 tree
230 c_type_promotes_to (tree type)
231 {
232 if (TYPE_MAIN_VARIANT (type) == float_type_node)
233 return double_type_node;
234
235 if (c_promoting_integer_type_p (type))
236 {
237 /* Preserve unsignedness if not really getting any wider. */
238 if (TYPE_UNSIGNED (type)
239 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
240 return unsigned_type_node;
241 return integer_type_node;
242 }
243
244 return type;
245 }
246
247 /* Return a variant of TYPE which has all the type qualifiers of LIKE
248 as well as those of TYPE. */
249
250 static tree
251 qualify_type (tree type, tree like)
252 {
253 return c_build_qualified_type (type,
254 TYPE_QUALS (type) | TYPE_QUALS (like));
255 }
256 \f
257 /* Return the composite type of two compatible types.
258
259 We assume that comptypes has already been done and returned
260 nonzero; if that isn't so, this may crash. In particular, we
261 assume that qualifiers match. */
262
263 tree
264 composite_type (tree t1, tree t2)
265 {
266 enum tree_code code1;
267 enum tree_code code2;
268 tree attributes;
269
270 /* Save time if the two types are the same. */
271
272 if (t1 == t2) return t1;
273
274 /* If one type is nonsense, use the other. */
275 if (t1 == error_mark_node)
276 return t2;
277 if (t2 == error_mark_node)
278 return t1;
279
280 code1 = TREE_CODE (t1);
281 code2 = TREE_CODE (t2);
282
283 /* Merge the attributes. */
284 attributes = targetm.merge_type_attributes (t1, t2);
285
286 /* If one is an enumerated type and the other is the compatible
287 integer type, the composite type might be either of the two
288 (DR#013 question 3). For consistency, use the enumerated type as
289 the composite type. */
290
291 if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
292 return t1;
293 if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
294 return t2;
295
296 gcc_assert (code1 == code2);
297
298 switch (code1)
299 {
300 case POINTER_TYPE:
301 /* For two pointers, do this recursively on the target type. */
302 {
303 tree pointed_to_1 = TREE_TYPE (t1);
304 tree pointed_to_2 = TREE_TYPE (t2);
305 tree target = composite_type (pointed_to_1, pointed_to_2);
306 t1 = build_pointer_type (target);
307 t1 = build_type_attribute_variant (t1, attributes);
308 return qualify_type (t1, t2);
309 }
310
311 case ARRAY_TYPE:
312 {
313 tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
314 int quals;
315 tree unqual_elt;
316 tree d1 = TYPE_DOMAIN (t1);
317 tree d2 = TYPE_DOMAIN (t2);
318 bool d1_variable, d2_variable;
319 bool d1_zero, d2_zero;
320
321 /* We should not have any type quals on arrays at all. */
322 gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
323
324 d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
325 d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
326
327 d1_variable = (!d1_zero
328 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
329 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
330 d2_variable = (!d2_zero
331 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
332 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
333
334 /* Save space: see if the result is identical to one of the args. */
335 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
336 && (d2_variable || d2_zero || !d1_variable))
337 return build_type_attribute_variant (t1, attributes);
338 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
339 && (d1_variable || d1_zero || !d2_variable))
340 return build_type_attribute_variant (t2, attributes);
341
342 if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
343 return build_type_attribute_variant (t1, attributes);
344 if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
345 return build_type_attribute_variant (t2, attributes);
346
347 /* Merge the element types, and have a size if either arg has
348 one. We may have qualifiers on the element types. To set
349 up TYPE_MAIN_VARIANT correctly, we need to form the
350 composite of the unqualified types and add the qualifiers
351 back at the end. */
352 quals = TYPE_QUALS (strip_array_types (elt));
353 unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
354 t1 = build_array_type (unqual_elt,
355 TYPE_DOMAIN ((TYPE_DOMAIN (t1)
356 && (d2_variable
357 || d2_zero
358 || !d1_variable))
359 ? t1
360 : t2));
361 t1 = c_build_qualified_type (t1, quals);
362 return build_type_attribute_variant (t1, attributes);
363 }
364
365 case FUNCTION_TYPE:
366 /* Function types: prefer the one that specified arg types.
367 If both do, merge the arg types. Also merge the return types. */
368 {
369 tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
370 tree p1 = TYPE_ARG_TYPES (t1);
371 tree p2 = TYPE_ARG_TYPES (t2);
372 int len;
373 tree newargs, n;
374 int i;
375
376 /* Save space: see if the result is identical to one of the args. */
377 if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
378 return build_type_attribute_variant (t1, attributes);
379 if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
380 return build_type_attribute_variant (t2, attributes);
381
382 /* Simple way if one arg fails to specify argument types. */
383 if (TYPE_ARG_TYPES (t1) == 0)
384 {
385 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
386 t1 = build_type_attribute_variant (t1, attributes);
387 return qualify_type (t1, t2);
388 }
389 if (TYPE_ARG_TYPES (t2) == 0)
390 {
391 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
392 t1 = build_type_attribute_variant (t1, attributes);
393 return qualify_type (t1, t2);
394 }
395
396 /* If both args specify argument types, we must merge the two
397 lists, argument by argument. */
398 /* Tell global_bindings_p to return false so that variable_size
399 doesn't die on VLAs in parameter types. */
400 c_override_global_bindings_to_false = true;
401
402 len = list_length (p1);
403 newargs = 0;
404
405 for (i = 0; i < len; i++)
406 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
407
408 n = newargs;
409
410 for (; p1;
411 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
412 {
413 /* A null type means arg type is not specified.
414 Take whatever the other function type has. */
415 if (TREE_VALUE (p1) == 0)
416 {
417 TREE_VALUE (n) = TREE_VALUE (p2);
418 goto parm_done;
419 }
420 if (TREE_VALUE (p2) == 0)
421 {
422 TREE_VALUE (n) = TREE_VALUE (p1);
423 goto parm_done;
424 }
425
426 /* Given wait (union {union wait *u; int *i} *)
427 and wait (union wait *),
428 prefer union wait * as type of parm. */
429 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
430 && TREE_VALUE (p1) != TREE_VALUE (p2))
431 {
432 tree memb;
433 tree mv2 = TREE_VALUE (p2);
434 if (mv2 && mv2 != error_mark_node
435 && TREE_CODE (mv2) != ARRAY_TYPE)
436 mv2 = TYPE_MAIN_VARIANT (mv2);
437 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
438 memb; memb = TREE_CHAIN (memb))
439 {
440 tree mv3 = TREE_TYPE (memb);
441 if (mv3 && mv3 != error_mark_node
442 && TREE_CODE (mv3) != ARRAY_TYPE)
443 mv3 = TYPE_MAIN_VARIANT (mv3);
444 if (comptypes (mv3, mv2))
445 {
446 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
447 TREE_VALUE (p2));
448 if (pedantic)
449 pedwarn ("function types not truly compatible in ISO C");
450 goto parm_done;
451 }
452 }
453 }
454 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
455 && TREE_VALUE (p2) != TREE_VALUE (p1))
456 {
457 tree memb;
458 tree mv1 = TREE_VALUE (p1);
459 if (mv1 && mv1 != error_mark_node
460 && TREE_CODE (mv1) != ARRAY_TYPE)
461 mv1 = TYPE_MAIN_VARIANT (mv1);
462 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
463 memb; memb = TREE_CHAIN (memb))
464 {
465 tree mv3 = TREE_TYPE (memb);
466 if (mv3 && mv3 != error_mark_node
467 && TREE_CODE (mv3) != ARRAY_TYPE)
468 mv3 = TYPE_MAIN_VARIANT (mv3);
469 if (comptypes (mv3, mv1))
470 {
471 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
472 TREE_VALUE (p1));
473 if (pedantic)
474 pedwarn ("function types not truly compatible in ISO C");
475 goto parm_done;
476 }
477 }
478 }
479 TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
480 parm_done: ;
481 }
482
483 c_override_global_bindings_to_false = false;
484 t1 = build_function_type (valtype, newargs);
485 t1 = qualify_type (t1, t2);
486 /* ... falls through ... */
487 }
488
489 default:
490 return build_type_attribute_variant (t1, attributes);
491 }
492
493 }
494
495 /* Return the type of a conditional expression between pointers to
496 possibly differently qualified versions of compatible types.
497
498 We assume that comp_target_types has already been done and returned
499 nonzero; if that isn't so, this may crash. */
500
501 static tree
502 common_pointer_type (tree t1, tree t2)
503 {
504 tree attributes;
505 tree pointed_to_1, mv1;
506 tree pointed_to_2, mv2;
507 tree target;
508
509 /* Save time if the two types are the same. */
510
511 if (t1 == t2) return t1;
512
513 /* If one type is nonsense, use the other. */
514 if (t1 == error_mark_node)
515 return t2;
516 if (t2 == error_mark_node)
517 return t1;
518
519 gcc_assert (TREE_CODE (t1) == POINTER_TYPE
520 && TREE_CODE (t2) == POINTER_TYPE);
521
522 /* Merge the attributes. */
523 attributes = targetm.merge_type_attributes (t1, t2);
524
525 /* Find the composite type of the target types, and combine the
526 qualifiers of the two types' targets. Do not lose qualifiers on
527 array element types by taking the TYPE_MAIN_VARIANT. */
528 mv1 = pointed_to_1 = TREE_TYPE (t1);
529 mv2 = pointed_to_2 = TREE_TYPE (t2);
530 if (TREE_CODE (mv1) != ARRAY_TYPE)
531 mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
532 if (TREE_CODE (mv2) != ARRAY_TYPE)
533 mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
534 target = composite_type (mv1, mv2);
535 t1 = build_pointer_type (c_build_qualified_type
536 (target,
537 TYPE_QUALS (pointed_to_1) |
538 TYPE_QUALS (pointed_to_2)));
539 return build_type_attribute_variant (t1, attributes);
540 }
541
542 /* Return the common type for two arithmetic types under the usual
543 arithmetic conversions. The default conversions have already been
544 applied, and enumerated types converted to their compatible integer
545 types. The resulting type is unqualified and has no attributes.
546
547 This is the type for the result of most arithmetic operations
548 if the operands have the given two types. */
549
550 static tree
551 c_common_type (tree t1, tree t2)
552 {
553 enum tree_code code1;
554 enum tree_code code2;
555
556 /* If one type is nonsense, use the other. */
557 if (t1 == error_mark_node)
558 return t2;
559 if (t2 == error_mark_node)
560 return t1;
561
562 if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
563 t1 = TYPE_MAIN_VARIANT (t1);
564
565 if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
566 t2 = TYPE_MAIN_VARIANT (t2);
567
568 if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
569 t1 = build_type_attribute_variant (t1, NULL_TREE);
570
571 if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
572 t2 = build_type_attribute_variant (t2, NULL_TREE);
573
574 /* Save time if the two types are the same. */
575
576 if (t1 == t2) return t1;
577
578 code1 = TREE_CODE (t1);
579 code2 = TREE_CODE (t2);
580
581 gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
582 || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
583 gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
584 || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
585
586 /* If one type is a vector type, return that type. (How the usual
587 arithmetic conversions apply to the vector types extension is not
588 precisely specified.) */
589 if (code1 == VECTOR_TYPE)
590 return t1;
591
592 if (code2 == VECTOR_TYPE)
593 return t2;
594
595 /* If one type is complex, form the common type of the non-complex
596 components, then make that complex. Use T1 or T2 if it is the
597 required type. */
598 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
599 {
600 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
601 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
602 tree subtype = c_common_type (subtype1, subtype2);
603
604 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
605 return t1;
606 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
607 return t2;
608 else
609 return build_complex_type (subtype);
610 }
611
612 /* If only one is real, use it as the result. */
613
614 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
615 return t1;
616
617 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
618 return t2;
619
620 /* If both are real and either are decimal floating point types, use
621 the decimal floating point type with the greater precision. */
622
623 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
624 {
625 if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
626 || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
627 return dfloat128_type_node;
628 else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
629 || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
630 return dfloat64_type_node;
631 else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
632 || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
633 return dfloat32_type_node;
634 }
635
636 /* Both real or both integers; use the one with greater precision. */
637
638 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
639 return t1;
640 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
641 return t2;
642
643 /* Same precision. Prefer long longs to longs to ints when the
644 same precision, following the C99 rules on integer type rank
645 (which are equivalent to the C90 rules for C90 types). */
646
647 if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
648 || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
649 return long_long_unsigned_type_node;
650
651 if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
652 || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
653 {
654 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
655 return long_long_unsigned_type_node;
656 else
657 return long_long_integer_type_node;
658 }
659
660 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
661 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
662 return long_unsigned_type_node;
663
664 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
665 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
666 {
667 /* But preserve unsignedness from the other type,
668 since long cannot hold all the values of an unsigned int. */
669 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
670 return long_unsigned_type_node;
671 else
672 return long_integer_type_node;
673 }
674
675 /* Likewise, prefer long double to double even if same size. */
676 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
677 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
678 return long_double_type_node;
679
680 /* Otherwise prefer the unsigned one. */
681
682 if (TYPE_UNSIGNED (t1))
683 return t1;
684 else
685 return t2;
686 }
687 \f
688 /* Wrapper around c_common_type that is used by c-common.c and other
689 front end optimizations that remove promotions. ENUMERAL_TYPEs
690 are allowed here and are converted to their compatible integer types.
691 BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
692 preferably a non-Boolean type as the common type. */
693 tree
694 common_type (tree t1, tree t2)
695 {
696 if (TREE_CODE (t1) == ENUMERAL_TYPE)
697 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
698 if (TREE_CODE (t2) == ENUMERAL_TYPE)
699 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
700
701 /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */
702 if (TREE_CODE (t1) == BOOLEAN_TYPE
703 && TREE_CODE (t2) == BOOLEAN_TYPE)
704 return boolean_type_node;
705
706 /* If either type is BOOLEAN_TYPE, then return the other. */
707 if (TREE_CODE (t1) == BOOLEAN_TYPE)
708 return t2;
709 if (TREE_CODE (t2) == BOOLEAN_TYPE)
710 return t1;
711
712 return c_common_type (t1, t2);
713 }
714
715 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
716 or various other operations. Return 2 if they are compatible
717 but a warning may be needed if you use them together. */
718
719 int
720 comptypes (tree type1, tree type2)
721 {
722 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
723 int val;
724
725 val = comptypes_internal (type1, type2);
726 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
727
728 return val;
729 }\f
730 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
731 or various other operations. Return 2 if they are compatible
732 but a warning may be needed if you use them together. This
733 differs from comptypes, in that we don't free the seen types. */
734
735 static int
736 comptypes_internal (tree type1, tree type2)
737 {
738 tree t1 = type1;
739 tree t2 = type2;
740 int attrval, val;
741
742 /* Suppress errors caused by previously reported errors. */
743
744 if (t1 == t2 || !t1 || !t2
745 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
746 return 1;
747
748 /* If either type is the internal version of sizetype, return the
749 language version. */
750 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
751 && TYPE_ORIG_SIZE_TYPE (t1))
752 t1 = TYPE_ORIG_SIZE_TYPE (t1);
753
754 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
755 && TYPE_ORIG_SIZE_TYPE (t2))
756 t2 = TYPE_ORIG_SIZE_TYPE (t2);
757
758
759 /* Enumerated types are compatible with integer types, but this is
760 not transitive: two enumerated types in the same translation unit
761 are compatible with each other only if they are the same type. */
762
763 if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
764 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
765 else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
766 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
767
768 if (t1 == t2)
769 return 1;
770
771 /* Different classes of types can't be compatible. */
772
773 if (TREE_CODE (t1) != TREE_CODE (t2))
774 return 0;
775
776 /* Qualifiers must match. C99 6.7.3p9 */
777
778 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
779 return 0;
780
781 /* Allow for two different type nodes which have essentially the same
782 definition. Note that we already checked for equality of the type
783 qualifiers (just above). */
784
785 if (TREE_CODE (t1) != ARRAY_TYPE
786 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
787 return 1;
788
789 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
790 if (!(attrval = targetm.comp_type_attributes (t1, t2)))
791 return 0;
792
793 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
794 val = 0;
795
796 switch (TREE_CODE (t1))
797 {
798 case POINTER_TYPE:
799 /* Do not remove mode or aliasing information. */
800 if (TYPE_MODE (t1) != TYPE_MODE (t2)
801 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
802 break;
803 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
804 ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
805 break;
806
807 case FUNCTION_TYPE:
808 val = function_types_compatible_p (t1, t2);
809 break;
810
811 case ARRAY_TYPE:
812 {
813 tree d1 = TYPE_DOMAIN (t1);
814 tree d2 = TYPE_DOMAIN (t2);
815 bool d1_variable, d2_variable;
816 bool d1_zero, d2_zero;
817 val = 1;
818
819 /* Target types must match incl. qualifiers. */
820 if (TREE_TYPE (t1) != TREE_TYPE (t2)
821 && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
822 return 0;
823
824 /* Sizes must match unless one is missing or variable. */
825 if (d1 == 0 || d2 == 0 || d1 == d2)
826 break;
827
828 d1_zero = !TYPE_MAX_VALUE (d1);
829 d2_zero = !TYPE_MAX_VALUE (d2);
830
831 d1_variable = (!d1_zero
832 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
833 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
834 d2_variable = (!d2_zero
835 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
836 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
837
838 if (d1_variable || d2_variable)
839 break;
840 if (d1_zero && d2_zero)
841 break;
842 if (d1_zero || d2_zero
843 || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
844 || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
845 val = 0;
846
847 break;
848 }
849
850 case ENUMERAL_TYPE:
851 case RECORD_TYPE:
852 case UNION_TYPE:
853 if (val != 1 && !same_translation_unit_p (t1, t2))
854 {
855 if (attrval != 2)
856 return tagged_types_tu_compatible_p (t1, t2);
857 val = tagged_types_tu_compatible_p (t1, t2);
858 }
859 break;
860
861 case VECTOR_TYPE:
862 val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
863 && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
864 break;
865
866 default:
867 break;
868 }
869 return attrval == 2 && val == 1 ? 2 : val;
870 }
871
872 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
873 ignoring their qualifiers. */
874
875 static int
876 comp_target_types (tree ttl, tree ttr)
877 {
878 int val;
879 tree mvl, mvr;
880
881 /* Do not lose qualifiers on element types of array types that are
882 pointer targets by taking their TYPE_MAIN_VARIANT. */
883 mvl = TREE_TYPE (ttl);
884 mvr = TREE_TYPE (ttr);
885 if (TREE_CODE (mvl) != ARRAY_TYPE)
886 mvl = TYPE_MAIN_VARIANT (mvl);
887 if (TREE_CODE (mvr) != ARRAY_TYPE)
888 mvr = TYPE_MAIN_VARIANT (mvr);
889 val = comptypes (mvl, mvr);
890
891 if (val == 2 && pedantic)
892 pedwarn ("types are not quite compatible");
893 return val;
894 }
895 \f
896 /* Subroutines of `comptypes'. */
897
898 /* Determine whether two trees derive from the same translation unit.
899 If the CONTEXT chain ends in a null, that tree's context is still
900 being parsed, so if two trees have context chains ending in null,
901 they're in the same translation unit. */
902 int
903 same_translation_unit_p (tree t1, tree t2)
904 {
905 while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
906 switch (TREE_CODE_CLASS (TREE_CODE (t1)))
907 {
908 case tcc_declaration:
909 t1 = DECL_CONTEXT (t1); break;
910 case tcc_type:
911 t1 = TYPE_CONTEXT (t1); break;
912 case tcc_exceptional:
913 t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
914 default: gcc_unreachable ();
915 }
916
917 while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
918 switch (TREE_CODE_CLASS (TREE_CODE (t2)))
919 {
920 case tcc_declaration:
921 t2 = DECL_CONTEXT (t2); break;
922 case tcc_type:
923 t2 = TYPE_CONTEXT (t2); break;
924 case tcc_exceptional:
925 t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
926 default: gcc_unreachable ();
927 }
928
929 return t1 == t2;
930 }
931
932 /* Allocate the seen two types, assuming that they are compatible. */
933
934 static struct tagged_tu_seen_cache *
935 alloc_tagged_tu_seen_cache (tree t1, tree t2)
936 {
937 struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
938 tu->next = tagged_tu_seen_base;
939 tu->t1 = t1;
940 tu->t2 = t2;
941
942 tagged_tu_seen_base = tu;
943
944 /* The C standard says that two structures in different translation
945 units are compatible with each other only if the types of their
946 fields are compatible (among other things). We assume that they
947 are compatible until proven otherwise when building the cache.
948 An example where this can occur is:
949 struct a
950 {
951 struct a *next;
952 };
953 If we are comparing this against a similar struct in another TU,
954 and did not assume they were compatible, we end up with an infinite
955 loop. */
956 tu->val = 1;
957 return tu;
958 }
959
960 /* Free the seen types until we get to TU_TIL. */
961
962 static void
963 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
964 {
965 const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
966 while (tu != tu_til)
967 {
968 struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
969 tu = tu1->next;
970 free (tu1);
971 }
972 tagged_tu_seen_base = tu_til;
973 }
974
975 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
976 compatible. If the two types are not the same (which has been
977 checked earlier), this can only happen when multiple translation
978 units are being compiled. See C99 6.2.7 paragraph 1 for the exact
979 rules. */
980
981 static int
982 tagged_types_tu_compatible_p (tree t1, tree t2)
983 {
984 tree s1, s2;
985 bool needs_warning = false;
986
987 /* We have to verify that the tags of the types are the same. This
988 is harder than it looks because this may be a typedef, so we have
989 to go look at the original type. It may even be a typedef of a
990 typedef...
991 In the case of compiler-created builtin structs the TYPE_DECL
992 may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
993 while (TYPE_NAME (t1)
994 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
995 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
996 t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
997
998 while (TYPE_NAME (t2)
999 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1000 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1001 t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1002
1003 /* C90 didn't have the requirement that the two tags be the same. */
1004 if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1005 return 0;
1006
1007 /* C90 didn't say what happened if one or both of the types were
1008 incomplete; we choose to follow C99 rules here, which is that they
1009 are compatible. */
1010 if (TYPE_SIZE (t1) == NULL
1011 || TYPE_SIZE (t2) == NULL)
1012 return 1;
1013
1014 {
1015 const struct tagged_tu_seen_cache * tts_i;
1016 for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1017 if (tts_i->t1 == t1 && tts_i->t2 == t2)
1018 return tts_i->val;
1019 }
1020
1021 switch (TREE_CODE (t1))
1022 {
1023 case ENUMERAL_TYPE:
1024 {
1025 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1026 /* Speed up the case where the type values are in the same order. */
1027 tree tv1 = TYPE_VALUES (t1);
1028 tree tv2 = TYPE_VALUES (t2);
1029
1030 if (tv1 == tv2)
1031 {
1032 return 1;
1033 }
1034
1035 for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1036 {
1037 if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1038 break;
1039 if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1040 {
1041 tu->val = 0;
1042 return 0;
1043 }
1044 }
1045
1046 if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1047 {
1048 return 1;
1049 }
1050 if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1051 {
1052 tu->val = 0;
1053 return 0;
1054 }
1055
1056 if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1057 {
1058 tu->val = 0;
1059 return 0;
1060 }
1061
1062 for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1063 {
1064 s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1065 if (s2 == NULL
1066 || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1067 {
1068 tu->val = 0;
1069 return 0;
1070 }
1071 }
1072 return 1;
1073 }
1074
1075 case UNION_TYPE:
1076 {
1077 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1078 if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1079 {
1080 tu->val = 0;
1081 return 0;
1082 }
1083
1084 /* Speed up the common case where the fields are in the same order. */
1085 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1086 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1087 {
1088 int result;
1089
1090
1091 if (DECL_NAME (s1) == NULL
1092 || DECL_NAME (s1) != DECL_NAME (s2))
1093 break;
1094 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1095 if (result == 0)
1096 {
1097 tu->val = 0;
1098 return 0;
1099 }
1100 if (result == 2)
1101 needs_warning = true;
1102
1103 if (TREE_CODE (s1) == FIELD_DECL
1104 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1105 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1106 {
1107 tu->val = 0;
1108 return 0;
1109 }
1110 }
1111 if (!s1 && !s2)
1112 {
1113 tu->val = needs_warning ? 2 : 1;
1114 return tu->val;
1115 }
1116
1117 for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1118 {
1119 bool ok = false;
1120
1121 if (DECL_NAME (s1) != NULL)
1122 for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1123 if (DECL_NAME (s1) == DECL_NAME (s2))
1124 {
1125 int result;
1126 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1127 if (result == 0)
1128 {
1129 tu->val = 0;
1130 return 0;
1131 }
1132 if (result == 2)
1133 needs_warning = true;
1134
1135 if (TREE_CODE (s1) == FIELD_DECL
1136 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1137 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1138 break;
1139
1140 ok = true;
1141 break;
1142 }
1143 if (!ok)
1144 {
1145 tu->val = 0;
1146 return 0;
1147 }
1148 }
1149 tu->val = needs_warning ? 2 : 10;
1150 return tu->val;
1151 }
1152
1153 case RECORD_TYPE:
1154 {
1155 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1156
1157 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1158 s1 && s2;
1159 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1160 {
1161 int result;
1162 if (TREE_CODE (s1) != TREE_CODE (s2)
1163 || DECL_NAME (s1) != DECL_NAME (s2))
1164 break;
1165 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1166 if (result == 0)
1167 break;
1168 if (result == 2)
1169 needs_warning = true;
1170
1171 if (TREE_CODE (s1) == FIELD_DECL
1172 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1173 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1174 break;
1175 }
1176 if (s1 && s2)
1177 tu->val = 0;
1178 else
1179 tu->val = needs_warning ? 2 : 1;
1180 return tu->val;
1181 }
1182
1183 default:
1184 gcc_unreachable ();
1185 }
1186 }
1187
1188 /* Return 1 if two function types F1 and F2 are compatible.
1189 If either type specifies no argument types,
1190 the other must specify a fixed number of self-promoting arg types.
1191 Otherwise, if one type specifies only the number of arguments,
1192 the other must specify that number of self-promoting arg types.
1193 Otherwise, the argument types must match. */
1194
1195 static int
1196 function_types_compatible_p (tree f1, tree f2)
1197 {
1198 tree args1, args2;
1199 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1200 int val = 1;
1201 int val1;
1202 tree ret1, ret2;
1203
1204 ret1 = TREE_TYPE (f1);
1205 ret2 = TREE_TYPE (f2);
1206
1207 /* 'volatile' qualifiers on a function's return type used to mean
1208 the function is noreturn. */
1209 if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1210 pedwarn ("function return types not compatible due to %<volatile%>");
1211 if (TYPE_VOLATILE (ret1))
1212 ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1213 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1214 if (TYPE_VOLATILE (ret2))
1215 ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1216 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1217 val = comptypes_internal (ret1, ret2);
1218 if (val == 0)
1219 return 0;
1220
1221 args1 = TYPE_ARG_TYPES (f1);
1222 args2 = TYPE_ARG_TYPES (f2);
1223
1224 /* An unspecified parmlist matches any specified parmlist
1225 whose argument types don't need default promotions. */
1226
1227 if (args1 == 0)
1228 {
1229 if (!self_promoting_args_p (args2))
1230 return 0;
1231 /* If one of these types comes from a non-prototype fn definition,
1232 compare that with the other type's arglist.
1233 If they don't match, ask for a warning (but no error). */
1234 if (TYPE_ACTUAL_ARG_TYPES (f1)
1235 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1236 val = 2;
1237 return val;
1238 }
1239 if (args2 == 0)
1240 {
1241 if (!self_promoting_args_p (args1))
1242 return 0;
1243 if (TYPE_ACTUAL_ARG_TYPES (f2)
1244 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1245 val = 2;
1246 return val;
1247 }
1248
1249 /* Both types have argument lists: compare them and propagate results. */
1250 val1 = type_lists_compatible_p (args1, args2);
1251 return val1 != 1 ? val1 : val;
1252 }
1253
1254 /* Check two lists of types for compatibility,
1255 returning 0 for incompatible, 1 for compatible,
1256 or 2 for compatible with warning. */
1257
1258 static int
1259 type_lists_compatible_p (tree args1, tree args2)
1260 {
1261 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1262 int val = 1;
1263 int newval = 0;
1264
1265 while (1)
1266 {
1267 tree a1, mv1, a2, mv2;
1268 if (args1 == 0 && args2 == 0)
1269 return val;
1270 /* If one list is shorter than the other,
1271 they fail to match. */
1272 if (args1 == 0 || args2 == 0)
1273 return 0;
1274 mv1 = a1 = TREE_VALUE (args1);
1275 mv2 = a2 = TREE_VALUE (args2);
1276 if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1277 mv1 = TYPE_MAIN_VARIANT (mv1);
1278 if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1279 mv2 = TYPE_MAIN_VARIANT (mv2);
1280 /* A null pointer instead of a type
1281 means there is supposed to be an argument
1282 but nothing is specified about what type it has.
1283 So match anything that self-promotes. */
1284 if (a1 == 0)
1285 {
1286 if (c_type_promotes_to (a2) != a2)
1287 return 0;
1288 }
1289 else if (a2 == 0)
1290 {
1291 if (c_type_promotes_to (a1) != a1)
1292 return 0;
1293 }
1294 /* If one of the lists has an error marker, ignore this arg. */
1295 else if (TREE_CODE (a1) == ERROR_MARK
1296 || TREE_CODE (a2) == ERROR_MARK)
1297 ;
1298 else if (!(newval = comptypes_internal (mv1, mv2)))
1299 {
1300 /* Allow wait (union {union wait *u; int *i} *)
1301 and wait (union wait *) to be compatible. */
1302 if (TREE_CODE (a1) == UNION_TYPE
1303 && (TYPE_NAME (a1) == 0
1304 || TYPE_TRANSPARENT_UNION (a1))
1305 && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1306 && tree_int_cst_equal (TYPE_SIZE (a1),
1307 TYPE_SIZE (a2)))
1308 {
1309 tree memb;
1310 for (memb = TYPE_FIELDS (a1);
1311 memb; memb = TREE_CHAIN (memb))
1312 {
1313 tree mv3 = TREE_TYPE (memb);
1314 if (mv3 && mv3 != error_mark_node
1315 && TREE_CODE (mv3) != ARRAY_TYPE)
1316 mv3 = TYPE_MAIN_VARIANT (mv3);
1317 if (comptypes_internal (mv3, mv2))
1318 break;
1319 }
1320 if (memb == 0)
1321 return 0;
1322 }
1323 else if (TREE_CODE (a2) == UNION_TYPE
1324 && (TYPE_NAME (a2) == 0
1325 || TYPE_TRANSPARENT_UNION (a2))
1326 && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1327 && tree_int_cst_equal (TYPE_SIZE (a2),
1328 TYPE_SIZE (a1)))
1329 {
1330 tree memb;
1331 for (memb = TYPE_FIELDS (a2);
1332 memb; memb = TREE_CHAIN (memb))
1333 {
1334 tree mv3 = TREE_TYPE (memb);
1335 if (mv3 && mv3 != error_mark_node
1336 && TREE_CODE (mv3) != ARRAY_TYPE)
1337 mv3 = TYPE_MAIN_VARIANT (mv3);
1338 if (comptypes_internal (mv3, mv1))
1339 break;
1340 }
1341 if (memb == 0)
1342 return 0;
1343 }
1344 else
1345 return 0;
1346 }
1347
1348 /* comptypes said ok, but record if it said to warn. */
1349 if (newval > val)
1350 val = newval;
1351
1352 args1 = TREE_CHAIN (args1);
1353 args2 = TREE_CHAIN (args2);
1354 }
1355 }
1356 \f
1357 /* Compute the size to increment a pointer by. */
1358
1359 static tree
1360 c_size_in_bytes (tree type)
1361 {
1362 enum tree_code code = TREE_CODE (type);
1363
1364 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1365 return size_one_node;
1366
1367 if (!COMPLETE_OR_VOID_TYPE_P (type))
1368 {
1369 error ("arithmetic on pointer to an incomplete type");
1370 return size_one_node;
1371 }
1372
1373 /* Convert in case a char is more than one unit. */
1374 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1375 size_int (TYPE_PRECISION (char_type_node)
1376 / BITS_PER_UNIT));
1377 }
1378 \f
1379 /* Return either DECL or its known constant value (if it has one). */
1380
1381 tree
1382 decl_constant_value (tree decl)
1383 {
1384 if (/* Don't change a variable array bound or initial value to a constant
1385 in a place where a variable is invalid. Note that DECL_INITIAL
1386 isn't valid for a PARM_DECL. */
1387 current_function_decl != 0
1388 && TREE_CODE (decl) != PARM_DECL
1389 && !TREE_THIS_VOLATILE (decl)
1390 && TREE_READONLY (decl)
1391 && DECL_INITIAL (decl) != 0
1392 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1393 /* This is invalid if initial value is not constant.
1394 If it has either a function call, a memory reference,
1395 or a variable, then re-evaluating it could give different results. */
1396 && TREE_CONSTANT (DECL_INITIAL (decl))
1397 /* Check for cases where this is sub-optimal, even though valid. */
1398 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1399 return DECL_INITIAL (decl);
1400 return decl;
1401 }
1402
1403 /* Return either DECL or its known constant value (if it has one), but
1404 return DECL if pedantic or DECL has mode BLKmode. This is for
1405 bug-compatibility with the old behavior of decl_constant_value
1406 (before GCC 3.0); every use of this function is a bug and it should
1407 be removed before GCC 3.1. It is not appropriate to use pedantic
1408 in a way that affects optimization, and BLKmode is probably not the
1409 right test for avoiding misoptimizations either. */
1410
1411 static tree
1412 decl_constant_value_for_broken_optimization (tree decl)
1413 {
1414 tree ret;
1415
1416 if (pedantic || DECL_MODE (decl) == BLKmode)
1417 return decl;
1418
1419 ret = decl_constant_value (decl);
1420 /* Avoid unwanted tree sharing between the initializer and current
1421 function's body where the tree can be modified e.g. by the
1422 gimplifier. */
1423 if (ret != decl && TREE_STATIC (decl))
1424 ret = unshare_expr (ret);
1425 return ret;
1426 }
1427
1428 /* Convert the array expression EXP to a pointer. */
1429 static tree
1430 array_to_pointer_conversion (tree exp)
1431 {
1432 tree orig_exp = exp;
1433 tree type = TREE_TYPE (exp);
1434 tree adr;
1435 tree restype = TREE_TYPE (type);
1436 tree ptrtype;
1437
1438 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1439
1440 STRIP_TYPE_NOPS (exp);
1441
1442 if (TREE_NO_WARNING (orig_exp))
1443 TREE_NO_WARNING (exp) = 1;
1444
1445 ptrtype = build_pointer_type (restype);
1446
1447 if (TREE_CODE (exp) == INDIRECT_REF)
1448 return convert (ptrtype, TREE_OPERAND (exp, 0));
1449
1450 if (TREE_CODE (exp) == VAR_DECL)
1451 {
1452 /* We are making an ADDR_EXPR of ptrtype. This is a valid
1453 ADDR_EXPR because it's the best way of representing what
1454 happens in C when we take the address of an array and place
1455 it in a pointer to the element type. */
1456 adr = build1 (ADDR_EXPR, ptrtype, exp);
1457 if (!c_mark_addressable (exp))
1458 return error_mark_node;
1459 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
1460 return adr;
1461 }
1462
1463 /* This way is better for a COMPONENT_REF since it can
1464 simplify the offset for a component. */
1465 adr = build_unary_op (ADDR_EXPR, exp, 1);
1466 return convert (ptrtype, adr);
1467 }
1468
1469 /* Convert the function expression EXP to a pointer. */
1470 static tree
1471 function_to_pointer_conversion (tree exp)
1472 {
1473 tree orig_exp = exp;
1474
1475 gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1476
1477 STRIP_TYPE_NOPS (exp);
1478
1479 if (TREE_NO_WARNING (orig_exp))
1480 TREE_NO_WARNING (exp) = 1;
1481
1482 return build_unary_op (ADDR_EXPR, exp, 0);
1483 }
1484
1485 /* Perform the default conversion of arrays and functions to pointers.
1486 Return the result of converting EXP. For any other expression, just
1487 return EXP after removing NOPs. */
1488
1489 struct c_expr
1490 default_function_array_conversion (struct c_expr exp)
1491 {
1492 tree orig_exp = exp.value;
1493 tree type = TREE_TYPE (exp.value);
1494 enum tree_code code = TREE_CODE (type);
1495
1496 switch (code)
1497 {
1498 case ARRAY_TYPE:
1499 {
1500 bool not_lvalue = false;
1501 bool lvalue_array_p;
1502
1503 while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1504 || TREE_CODE (exp.value) == NOP_EXPR
1505 || TREE_CODE (exp.value) == CONVERT_EXPR)
1506 && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1507 {
1508 if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1509 not_lvalue = true;
1510 exp.value = TREE_OPERAND (exp.value, 0);
1511 }
1512
1513 if (TREE_NO_WARNING (orig_exp))
1514 TREE_NO_WARNING (exp.value) = 1;
1515
1516 lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1517 if (!flag_isoc99 && !lvalue_array_p)
1518 {
1519 /* Before C99, non-lvalue arrays do not decay to pointers.
1520 Normally, using such an array would be invalid; but it can
1521 be used correctly inside sizeof or as a statement expression.
1522 Thus, do not give an error here; an error will result later. */
1523 return exp;
1524 }
1525
1526 exp.value = array_to_pointer_conversion (exp.value);
1527 }
1528 break;
1529 case FUNCTION_TYPE:
1530 exp.value = function_to_pointer_conversion (exp.value);
1531 break;
1532 default:
1533 STRIP_TYPE_NOPS (exp.value);
1534 if (TREE_NO_WARNING (orig_exp))
1535 TREE_NO_WARNING (exp.value) = 1;
1536 break;
1537 }
1538
1539 return exp;
1540 }
1541
1542
1543 /* EXP is an expression of integer type. Apply the integer promotions
1544 to it and return the promoted value. */
1545
1546 tree
1547 perform_integral_promotions (tree exp)
1548 {
1549 tree type = TREE_TYPE (exp);
1550 enum tree_code code = TREE_CODE (type);
1551
1552 gcc_assert (INTEGRAL_TYPE_P (type));
1553
1554 /* Normally convert enums to int,
1555 but convert wide enums to something wider. */
1556 if (code == ENUMERAL_TYPE)
1557 {
1558 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1559 TYPE_PRECISION (integer_type_node)),
1560 ((TYPE_PRECISION (type)
1561 >= TYPE_PRECISION (integer_type_node))
1562 && TYPE_UNSIGNED (type)));
1563
1564 return convert (type, exp);
1565 }
1566
1567 /* ??? This should no longer be needed now bit-fields have their
1568 proper types. */
1569 if (TREE_CODE (exp) == COMPONENT_REF
1570 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1571 /* If it's thinner than an int, promote it like a
1572 c_promoting_integer_type_p, otherwise leave it alone. */
1573 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1574 TYPE_PRECISION (integer_type_node)))
1575 return convert (integer_type_node, exp);
1576
1577 if (c_promoting_integer_type_p (type))
1578 {
1579 /* Preserve unsignedness if not really getting any wider. */
1580 if (TYPE_UNSIGNED (type)
1581 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1582 return convert (unsigned_type_node, exp);
1583
1584 return convert (integer_type_node, exp);
1585 }
1586
1587 return exp;
1588 }
1589
1590
1591 /* Perform default promotions for C data used in expressions.
1592 Enumeral types or short or char are converted to int.
1593 In addition, manifest constants symbols are replaced by their values. */
1594
1595 tree
1596 default_conversion (tree exp)
1597 {
1598 tree orig_exp;
1599 tree type = TREE_TYPE (exp);
1600 enum tree_code code = TREE_CODE (type);
1601
1602 /* Functions and arrays have been converted during parsing. */
1603 gcc_assert (code != FUNCTION_TYPE);
1604 if (code == ARRAY_TYPE)
1605 return exp;
1606
1607 /* Constants can be used directly unless they're not loadable. */
1608 if (TREE_CODE (exp) == CONST_DECL)
1609 exp = DECL_INITIAL (exp);
1610
1611 /* Replace a nonvolatile const static variable with its value unless
1612 it is an array, in which case we must be sure that taking the
1613 address of the array produces consistent results. */
1614 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1615 {
1616 exp = decl_constant_value_for_broken_optimization (exp);
1617 type = TREE_TYPE (exp);
1618 }
1619
1620 /* Strip no-op conversions. */
1621 orig_exp = exp;
1622 STRIP_TYPE_NOPS (exp);
1623
1624 if (TREE_NO_WARNING (orig_exp))
1625 TREE_NO_WARNING (exp) = 1;
1626
1627 if (INTEGRAL_TYPE_P (type))
1628 return perform_integral_promotions (exp);
1629
1630 if (code == VOID_TYPE)
1631 {
1632 error ("void value not ignored as it ought to be");
1633 return error_mark_node;
1634 }
1635 return exp;
1636 }
1637 \f
1638 /* Look up COMPONENT in a structure or union DECL.
1639
1640 If the component name is not found, returns NULL_TREE. Otherwise,
1641 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1642 stepping down the chain to the component, which is in the last
1643 TREE_VALUE of the list. Normally the list is of length one, but if
1644 the component is embedded within (nested) anonymous structures or
1645 unions, the list steps down the chain to the component. */
1646
1647 static tree
1648 lookup_field (tree decl, tree component)
1649 {
1650 tree type = TREE_TYPE (decl);
1651 tree field;
1652
1653 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1654 to the field elements. Use a binary search on this array to quickly
1655 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1656 will always be set for structures which have many elements. */
1657
1658 if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1659 {
1660 int bot, top, half;
1661 tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1662
1663 field = TYPE_FIELDS (type);
1664 bot = 0;
1665 top = TYPE_LANG_SPECIFIC (type)->s->len;
1666 while (top - bot > 1)
1667 {
1668 half = (top - bot + 1) >> 1;
1669 field = field_array[bot+half];
1670
1671 if (DECL_NAME (field) == NULL_TREE)
1672 {
1673 /* Step through all anon unions in linear fashion. */
1674 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1675 {
1676 field = field_array[bot++];
1677 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1678 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1679 {
1680 tree anon = lookup_field (field, component);
1681
1682 if (anon)
1683 return tree_cons (NULL_TREE, field, anon);
1684 }
1685 }
1686
1687 /* Entire record is only anon unions. */
1688 if (bot > top)
1689 return NULL_TREE;
1690
1691 /* Restart the binary search, with new lower bound. */
1692 continue;
1693 }
1694
1695 if (DECL_NAME (field) == component)
1696 break;
1697 if (DECL_NAME (field) < component)
1698 bot += half;
1699 else
1700 top = bot + half;
1701 }
1702
1703 if (DECL_NAME (field_array[bot]) == component)
1704 field = field_array[bot];
1705 else if (DECL_NAME (field) != component)
1706 return NULL_TREE;
1707 }
1708 else
1709 {
1710 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1711 {
1712 if (DECL_NAME (field) == NULL_TREE
1713 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1714 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1715 {
1716 tree anon = lookup_field (field, component);
1717
1718 if (anon)
1719 return tree_cons (NULL_TREE, field, anon);
1720 }
1721
1722 if (DECL_NAME (field) == component)
1723 break;
1724 }
1725
1726 if (field == NULL_TREE)
1727 return NULL_TREE;
1728 }
1729
1730 return tree_cons (NULL_TREE, field, NULL_TREE);
1731 }
1732
1733 /* Make an expression to refer to the COMPONENT field of
1734 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1735
1736 tree
1737 build_component_ref (tree datum, tree component)
1738 {
1739 tree type = TREE_TYPE (datum);
1740 enum tree_code code = TREE_CODE (type);
1741 tree field = NULL;
1742 tree ref;
1743
1744 if (!objc_is_public (datum, component))
1745 return error_mark_node;
1746
1747 /* See if there is a field or component with name COMPONENT. */
1748
1749 if (code == RECORD_TYPE || code == UNION_TYPE)
1750 {
1751 if (!COMPLETE_TYPE_P (type))
1752 {
1753 c_incomplete_type_error (NULL_TREE, type);
1754 return error_mark_node;
1755 }
1756
1757 field = lookup_field (datum, component);
1758
1759 if (!field)
1760 {
1761 error ("%qT has no member named %qE", type, component);
1762 return error_mark_node;
1763 }
1764
1765 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1766 This might be better solved in future the way the C++ front
1767 end does it - by giving the anonymous entities each a
1768 separate name and type, and then have build_component_ref
1769 recursively call itself. We can't do that here. */
1770 do
1771 {
1772 tree subdatum = TREE_VALUE (field);
1773
1774 if (TREE_TYPE (subdatum) == error_mark_node)
1775 return error_mark_node;
1776
1777 ref = build3 (COMPONENT_REF, TREE_TYPE (subdatum), datum, subdatum,
1778 NULL_TREE);
1779 if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1780 TREE_READONLY (ref) = 1;
1781 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1782 TREE_THIS_VOLATILE (ref) = 1;
1783
1784 if (TREE_DEPRECATED (subdatum))
1785 warn_deprecated_use (subdatum);
1786
1787 datum = ref;
1788
1789 field = TREE_CHAIN (field);
1790 }
1791 while (field);
1792
1793 return ref;
1794 }
1795 else if (code != ERROR_MARK)
1796 error ("request for member %qE in something not a structure or union",
1797 component);
1798
1799 return error_mark_node;
1800 }
1801 \f
1802 /* Given an expression PTR for a pointer, return an expression
1803 for the value pointed to.
1804 ERRORSTRING is the name of the operator to appear in error messages. */
1805
1806 tree
1807 build_indirect_ref (tree ptr, const char *errorstring)
1808 {
1809 tree pointer = default_conversion (ptr);
1810 tree type = TREE_TYPE (pointer);
1811
1812 if (TREE_CODE (type) == POINTER_TYPE)
1813 {
1814 if (TREE_CODE (pointer) == ADDR_EXPR
1815 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1816 == TREE_TYPE (type)))
1817 return TREE_OPERAND (pointer, 0);
1818 else
1819 {
1820 tree t = TREE_TYPE (type);
1821 tree ref;
1822
1823 ref = build1 (INDIRECT_REF, t, pointer);
1824
1825 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1826 {
1827 error ("dereferencing pointer to incomplete type");
1828 return error_mark_node;
1829 }
1830 if (VOID_TYPE_P (t) && skip_evaluation == 0)
1831 warning (0, "dereferencing %<void *%> pointer");
1832
1833 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1834 so that we get the proper error message if the result is used
1835 to assign to. Also, &* is supposed to be a no-op.
1836 And ANSI C seems to specify that the type of the result
1837 should be the const type. */
1838 /* A de-reference of a pointer to const is not a const. It is valid
1839 to change it via some other pointer. */
1840 TREE_READONLY (ref) = TYPE_READONLY (t);
1841 TREE_SIDE_EFFECTS (ref)
1842 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1843 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1844 return ref;
1845 }
1846 }
1847 else if (TREE_CODE (pointer) != ERROR_MARK)
1848 error ("invalid type argument of %qs", errorstring);
1849 return error_mark_node;
1850 }
1851
1852 /* This handles expressions of the form "a[i]", which denotes
1853 an array reference.
1854
1855 This is logically equivalent in C to *(a+i), but we may do it differently.
1856 If A is a variable or a member, we generate a primitive ARRAY_REF.
1857 This avoids forcing the array out of registers, and can work on
1858 arrays that are not lvalues (for example, members of structures returned
1859 by functions). */
1860
1861 tree
1862 build_array_ref (tree array, tree index)
1863 {
1864 bool swapped = false;
1865 if (TREE_TYPE (array) == error_mark_node
1866 || TREE_TYPE (index) == error_mark_node)
1867 return error_mark_node;
1868
1869 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1870 && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1871 {
1872 tree temp;
1873 if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1874 && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1875 {
1876 error ("subscripted value is neither array nor pointer");
1877 return error_mark_node;
1878 }
1879 temp = array;
1880 array = index;
1881 index = temp;
1882 swapped = true;
1883 }
1884
1885 if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1886 {
1887 error ("array subscript is not an integer");
1888 return error_mark_node;
1889 }
1890
1891 if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1892 {
1893 error ("subscripted value is pointer to function");
1894 return error_mark_node;
1895 }
1896
1897 /* ??? Existing practice has been to warn only when the char
1898 index is syntactically the index, not for char[array]. */
1899 if (!swapped)
1900 warn_array_subscript_with_type_char (index);
1901
1902 /* Apply default promotions *after* noticing character types. */
1903 index = default_conversion (index);
1904
1905 gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1906
1907 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1908 {
1909 tree rval, type;
1910
1911 /* An array that is indexed by a non-constant
1912 cannot be stored in a register; we must be able to do
1913 address arithmetic on its address.
1914 Likewise an array of elements of variable size. */
1915 if (TREE_CODE (index) != INTEGER_CST
1916 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1917 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1918 {
1919 if (!c_mark_addressable (array))
1920 return error_mark_node;
1921 }
1922 /* An array that is indexed by a constant value which is not within
1923 the array bounds cannot be stored in a register either; because we
1924 would get a crash in store_bit_field/extract_bit_field when trying
1925 to access a non-existent part of the register. */
1926 if (TREE_CODE (index) == INTEGER_CST
1927 && TYPE_DOMAIN (TREE_TYPE (array))
1928 && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
1929 {
1930 if (!c_mark_addressable (array))
1931 return error_mark_node;
1932 }
1933
1934 if (pedantic)
1935 {
1936 tree foo = array;
1937 while (TREE_CODE (foo) == COMPONENT_REF)
1938 foo = TREE_OPERAND (foo, 0);
1939 if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
1940 pedwarn ("ISO C forbids subscripting %<register%> array");
1941 else if (!flag_isoc99 && !lvalue_p (foo))
1942 pedwarn ("ISO C90 forbids subscripting non-lvalue array");
1943 }
1944
1945 type = TREE_TYPE (TREE_TYPE (array));
1946 if (TREE_CODE (type) != ARRAY_TYPE)
1947 type = TYPE_MAIN_VARIANT (type);
1948 rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
1949 /* Array ref is const/volatile if the array elements are
1950 or if the array is. */
1951 TREE_READONLY (rval)
1952 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
1953 | TREE_READONLY (array));
1954 TREE_SIDE_EFFECTS (rval)
1955 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1956 | TREE_SIDE_EFFECTS (array));
1957 TREE_THIS_VOLATILE (rval)
1958 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1959 /* This was added by rms on 16 Nov 91.
1960 It fixes vol struct foo *a; a->elts[1]
1961 in an inline function.
1962 Hope it doesn't break something else. */
1963 | TREE_THIS_VOLATILE (array));
1964 return require_complete_type (fold (rval));
1965 }
1966 else
1967 {
1968 tree ar = default_conversion (array);
1969
1970 if (ar == error_mark_node)
1971 return ar;
1972
1973 gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
1974 gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
1975
1976 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
1977 "array indexing");
1978 }
1979 }
1980 \f
1981 /* Build an external reference to identifier ID. FUN indicates
1982 whether this will be used for a function call. LOC is the source
1983 location of the identifier. */
1984 tree
1985 build_external_ref (tree id, int fun, location_t loc)
1986 {
1987 tree ref;
1988 tree decl = lookup_name (id);
1989
1990 /* In Objective-C, an instance variable (ivar) may be preferred to
1991 whatever lookup_name() found. */
1992 decl = objc_lookup_ivar (decl, id);
1993
1994 if (decl && decl != error_mark_node)
1995 ref = decl;
1996 else if (fun)
1997 /* Implicit function declaration. */
1998 ref = implicitly_declare (id);
1999 else if (decl == error_mark_node)
2000 /* Don't complain about something that's already been
2001 complained about. */
2002 return error_mark_node;
2003 else
2004 {
2005 undeclared_variable (id, loc);
2006 return error_mark_node;
2007 }
2008
2009 if (TREE_TYPE (ref) == error_mark_node)
2010 return error_mark_node;
2011
2012 if (TREE_DEPRECATED (ref))
2013 warn_deprecated_use (ref);
2014
2015 if (!skip_evaluation)
2016 assemble_external (ref);
2017 TREE_USED (ref) = 1;
2018
2019 if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2020 {
2021 if (!in_sizeof && !in_typeof)
2022 C_DECL_USED (ref) = 1;
2023 else if (DECL_INITIAL (ref) == 0
2024 && DECL_EXTERNAL (ref)
2025 && !TREE_PUBLIC (ref))
2026 record_maybe_used_decl (ref);
2027 }
2028
2029 if (TREE_CODE (ref) == CONST_DECL)
2030 {
2031 ref = DECL_INITIAL (ref);
2032 TREE_CONSTANT (ref) = 1;
2033 TREE_INVARIANT (ref) = 1;
2034 }
2035 else if (current_function_decl != 0
2036 && !DECL_FILE_SCOPE_P (current_function_decl)
2037 && (TREE_CODE (ref) == VAR_DECL
2038 || TREE_CODE (ref) == PARM_DECL
2039 || TREE_CODE (ref) == FUNCTION_DECL))
2040 {
2041 tree context = decl_function_context (ref);
2042
2043 if (context != 0 && context != current_function_decl)
2044 DECL_NONLOCAL (ref) = 1;
2045 }
2046
2047 return ref;
2048 }
2049
2050 /* Record details of decls possibly used inside sizeof or typeof. */
2051 struct maybe_used_decl
2052 {
2053 /* The decl. */
2054 tree decl;
2055 /* The level seen at (in_sizeof + in_typeof). */
2056 int level;
2057 /* The next one at this level or above, or NULL. */
2058 struct maybe_used_decl *next;
2059 };
2060
2061 static struct maybe_used_decl *maybe_used_decls;
2062
2063 /* Record that DECL, an undefined static function reference seen
2064 inside sizeof or typeof, might be used if the operand of sizeof is
2065 a VLA type or the operand of typeof is a variably modified
2066 type. */
2067
2068 static void
2069 record_maybe_used_decl (tree decl)
2070 {
2071 struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2072 t->decl = decl;
2073 t->level = in_sizeof + in_typeof;
2074 t->next = maybe_used_decls;
2075 maybe_used_decls = t;
2076 }
2077
2078 /* Pop the stack of decls possibly used inside sizeof or typeof. If
2079 USED is false, just discard them. If it is true, mark them used
2080 (if no longer inside sizeof or typeof) or move them to the next
2081 level up (if still inside sizeof or typeof). */
2082
2083 void
2084 pop_maybe_used (bool used)
2085 {
2086 struct maybe_used_decl *p = maybe_used_decls;
2087 int cur_level = in_sizeof + in_typeof;
2088 while (p && p->level > cur_level)
2089 {
2090 if (used)
2091 {
2092 if (cur_level == 0)
2093 C_DECL_USED (p->decl) = 1;
2094 else
2095 p->level = cur_level;
2096 }
2097 p = p->next;
2098 }
2099 if (!used || cur_level == 0)
2100 maybe_used_decls = p;
2101 }
2102
2103 /* Return the result of sizeof applied to EXPR. */
2104
2105 struct c_expr
2106 c_expr_sizeof_expr (struct c_expr expr)
2107 {
2108 struct c_expr ret;
2109 if (expr.value == error_mark_node)
2110 {
2111 ret.value = error_mark_node;
2112 ret.original_code = ERROR_MARK;
2113 pop_maybe_used (false);
2114 }
2115 else
2116 {
2117 ret.value = c_sizeof (TREE_TYPE (expr.value));
2118 ret.original_code = ERROR_MARK;
2119 pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2120 }
2121 return ret;
2122 }
2123
2124 /* Return the result of sizeof applied to T, a structure for the type
2125 name passed to sizeof (rather than the type itself). */
2126
2127 struct c_expr
2128 c_expr_sizeof_type (struct c_type_name *t)
2129 {
2130 tree type;
2131 struct c_expr ret;
2132 type = groktypename (t);
2133 ret.value = c_sizeof (type);
2134 ret.original_code = ERROR_MARK;
2135 pop_maybe_used (C_TYPE_VARIABLE_SIZE (type));
2136 return ret;
2137 }
2138
2139 /* Build a function call to function FUNCTION with parameters PARAMS.
2140 PARAMS is a list--a chain of TREE_LIST nodes--in which the
2141 TREE_VALUE of each node is a parameter-expression.
2142 FUNCTION's data type may be a function type or a pointer-to-function. */
2143
2144 tree
2145 build_function_call (tree function, tree params)
2146 {
2147 tree fntype, fundecl = 0;
2148 tree coerced_params;
2149 tree name = NULL_TREE, result;
2150 tree tem;
2151
2152 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
2153 STRIP_TYPE_NOPS (function);
2154
2155 /* Convert anything with function type to a pointer-to-function. */
2156 if (TREE_CODE (function) == FUNCTION_DECL)
2157 {
2158 /* Implement type-directed function overloading for builtins.
2159 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2160 handle all the type checking. The result is a complete expression
2161 that implements this function call. */
2162 tem = resolve_overloaded_builtin (function, params);
2163 if (tem)
2164 return tem;
2165
2166 name = DECL_NAME (function);
2167 fundecl = function;
2168 }
2169 if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2170 function = function_to_pointer_conversion (function);
2171
2172 /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2173 expressions, like those used for ObjC messenger dispatches. */
2174 function = objc_rewrite_function_call (function, params);
2175
2176 fntype = TREE_TYPE (function);
2177
2178 if (TREE_CODE (fntype) == ERROR_MARK)
2179 return error_mark_node;
2180
2181 if (!(TREE_CODE (fntype) == POINTER_TYPE
2182 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2183 {
2184 error ("called object %qE is not a function", function);
2185 return error_mark_node;
2186 }
2187
2188 if (fundecl && TREE_THIS_VOLATILE (fundecl))
2189 current_function_returns_abnormally = 1;
2190
2191 /* fntype now gets the type of function pointed to. */
2192 fntype = TREE_TYPE (fntype);
2193
2194 /* Check that the function is called through a compatible prototype.
2195 If it is not, replace the call by a trap, wrapped up in a compound
2196 expression if necessary. This has the nice side-effect to prevent
2197 the tree-inliner from generating invalid assignment trees which may
2198 blow up in the RTL expander later. */
2199 if ((TREE_CODE (function) == NOP_EXPR
2200 || TREE_CODE (function) == CONVERT_EXPR)
2201 && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2202 && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2203 && !comptypes (fntype, TREE_TYPE (tem)))
2204 {
2205 tree return_type = TREE_TYPE (fntype);
2206 tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2207 NULL_TREE);
2208
2209 /* This situation leads to run-time undefined behavior. We can't,
2210 therefore, simply error unless we can prove that all possible
2211 executions of the program must execute the code. */
2212 warning (0, "function called through a non-compatible type");
2213
2214 /* We can, however, treat "undefined" any way we please.
2215 Call abort to encourage the user to fix the program. */
2216 inform ("if this code is reached, the program will abort");
2217
2218 if (VOID_TYPE_P (return_type))
2219 return trap;
2220 else
2221 {
2222 tree rhs;
2223
2224 if (AGGREGATE_TYPE_P (return_type))
2225 rhs = build_compound_literal (return_type,
2226 build_constructor (return_type, 0));
2227 else
2228 rhs = fold_convert (return_type, integer_zero_node);
2229
2230 return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2231 }
2232 }
2233
2234 /* Convert the parameters to the types declared in the
2235 function prototype, or apply default promotions. */
2236
2237 coerced_params
2238 = convert_arguments (TYPE_ARG_TYPES (fntype), params, function, fundecl);
2239
2240 if (coerced_params == error_mark_node)
2241 return error_mark_node;
2242
2243 /* Check that the arguments to the function are valid. */
2244
2245 check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params,
2246 TYPE_ARG_TYPES (fntype));
2247
2248 if (require_constant_value)
2249 {
2250 result = fold_build3_initializer (CALL_EXPR, TREE_TYPE (fntype),
2251 function, coerced_params, NULL_TREE);
2252
2253 if (TREE_CONSTANT (result)
2254 && (name == NULL_TREE
2255 || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2256 pedwarn_init ("initializer element is not constant");
2257 }
2258 else
2259 result = fold_build3 (CALL_EXPR, TREE_TYPE (fntype),
2260 function, coerced_params, NULL_TREE);
2261
2262 if (VOID_TYPE_P (TREE_TYPE (result)))
2263 return result;
2264 return require_complete_type (result);
2265 }
2266 \f
2267 /* Convert the argument expressions in the list VALUES
2268 to the types in the list TYPELIST. The result is a list of converted
2269 argument expressions, unless there are too few arguments in which
2270 case it is error_mark_node.
2271
2272 If TYPELIST is exhausted, or when an element has NULL as its type,
2273 perform the default conversions.
2274
2275 PARMLIST is the chain of parm decls for the function being called.
2276 It may be 0, if that info is not available.
2277 It is used only for generating error messages.
2278
2279 FUNCTION is a tree for the called function. It is used only for
2280 error messages, where it is formatted with %qE.
2281
2282 This is also where warnings about wrong number of args are generated.
2283
2284 Both VALUES and the returned value are chains of TREE_LIST nodes
2285 with the elements of the list in the TREE_VALUE slots of those nodes. */
2286
2287 static tree
2288 convert_arguments (tree typelist, tree values, tree function, tree fundecl)
2289 {
2290 tree typetail, valtail;
2291 tree result = NULL;
2292 int parmnum;
2293 tree selector;
2294
2295 /* Change pointer to function to the function itself for
2296 diagnostics. */
2297 if (TREE_CODE (function) == ADDR_EXPR
2298 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2299 function = TREE_OPERAND (function, 0);
2300
2301 /* Handle an ObjC selector specially for diagnostics. */
2302 selector = objc_message_selector ();
2303
2304 /* Scan the given expressions and types, producing individual
2305 converted arguments and pushing them on RESULT in reverse order. */
2306
2307 for (valtail = values, typetail = typelist, parmnum = 0;
2308 valtail;
2309 valtail = TREE_CHAIN (valtail), parmnum++)
2310 {
2311 tree type = typetail ? TREE_VALUE (typetail) : 0;
2312 tree val = TREE_VALUE (valtail);
2313 tree rname = function;
2314 int argnum = parmnum + 1;
2315 const char *invalid_func_diag;
2316
2317 if (type == void_type_node)
2318 {
2319 error ("too many arguments to function %qE", function);
2320 break;
2321 }
2322
2323 if (selector && argnum > 2)
2324 {
2325 rname = selector;
2326 argnum -= 2;
2327 }
2328
2329 STRIP_TYPE_NOPS (val);
2330
2331 val = require_complete_type (val);
2332
2333 if (type != 0)
2334 {
2335 /* Formal parm type is specified by a function prototype. */
2336 tree parmval;
2337
2338 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2339 {
2340 error ("type of formal parameter %d is incomplete", parmnum + 1);
2341 parmval = val;
2342 }
2343 else
2344 {
2345 /* Optionally warn about conversions that
2346 differ from the default conversions. */
2347 if (warn_conversion || warn_traditional)
2348 {
2349 unsigned int formal_prec = TYPE_PRECISION (type);
2350
2351 if (INTEGRAL_TYPE_P (type)
2352 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2353 warning (0, "passing argument %d of %qE as integer "
2354 "rather than floating due to prototype",
2355 argnum, rname);
2356 if (INTEGRAL_TYPE_P (type)
2357 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2358 warning (0, "passing argument %d of %qE as integer "
2359 "rather than complex due to prototype",
2360 argnum, rname);
2361 else if (TREE_CODE (type) == COMPLEX_TYPE
2362 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2363 warning (0, "passing argument %d of %qE as complex "
2364 "rather than floating due to prototype",
2365 argnum, rname);
2366 else if (TREE_CODE (type) == REAL_TYPE
2367 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2368 warning (0, "passing argument %d of %qE as floating "
2369 "rather than integer due to prototype",
2370 argnum, rname);
2371 else if (TREE_CODE (type) == COMPLEX_TYPE
2372 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2373 warning (0, "passing argument %d of %qE as complex "
2374 "rather than integer due to prototype",
2375 argnum, rname);
2376 else if (TREE_CODE (type) == REAL_TYPE
2377 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2378 warning (0, "passing argument %d of %qE as floating "
2379 "rather than complex due to prototype",
2380 argnum, rname);
2381 /* ??? At some point, messages should be written about
2382 conversions between complex types, but that's too messy
2383 to do now. */
2384 else if (TREE_CODE (type) == REAL_TYPE
2385 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2386 {
2387 /* Warn if any argument is passed as `float',
2388 since without a prototype it would be `double'. */
2389 if (formal_prec == TYPE_PRECISION (float_type_node)
2390 && type != dfloat32_type_node)
2391 warning (0, "passing argument %d of %qE as %<float%> "
2392 "rather than %<double%> due to prototype",
2393 argnum, rname);
2394
2395 /* Warn if mismatch between argument and prototype
2396 for decimal float types. Warn of conversions with
2397 binary float types and of precision narrowing due to
2398 prototype. */
2399 else if (type != TREE_TYPE (val)
2400 && (type == dfloat32_type_node
2401 || type == dfloat64_type_node
2402 || type == dfloat128_type_node
2403 || TREE_TYPE (val) == dfloat32_type_node
2404 || TREE_TYPE (val) == dfloat64_type_node
2405 || TREE_TYPE (val) == dfloat128_type_node)
2406 && (formal_prec
2407 <= TYPE_PRECISION (TREE_TYPE (val))
2408 || (type == dfloat128_type_node
2409 && (TREE_TYPE (val)
2410 != dfloat64_type_node
2411 && (TREE_TYPE (val)
2412 != dfloat32_type_node)))
2413 || (type == dfloat64_type_node
2414 && (TREE_TYPE (val)
2415 != dfloat32_type_node))))
2416 warning (0, "passing argument %d of %qE as %qT "
2417 "rather than %qT due to prototype",
2418 argnum, rname, type, TREE_TYPE (val));
2419
2420 }
2421 /* Detect integer changing in width or signedness.
2422 These warnings are only activated with
2423 -Wconversion, not with -Wtraditional. */
2424 else if (warn_conversion && INTEGRAL_TYPE_P (type)
2425 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2426 {
2427 tree would_have_been = default_conversion (val);
2428 tree type1 = TREE_TYPE (would_have_been);
2429
2430 if (TREE_CODE (type) == ENUMERAL_TYPE
2431 && (TYPE_MAIN_VARIANT (type)
2432 == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2433 /* No warning if function asks for enum
2434 and the actual arg is that enum type. */
2435 ;
2436 else if (formal_prec != TYPE_PRECISION (type1))
2437 warning (OPT_Wconversion, "passing argument %d of %qE "
2438 "with different width due to prototype",
2439 argnum, rname);
2440 else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2441 ;
2442 /* Don't complain if the formal parameter type
2443 is an enum, because we can't tell now whether
2444 the value was an enum--even the same enum. */
2445 else if (TREE_CODE (type) == ENUMERAL_TYPE)
2446 ;
2447 else if (TREE_CODE (val) == INTEGER_CST
2448 && int_fits_type_p (val, type))
2449 /* Change in signedness doesn't matter
2450 if a constant value is unaffected. */
2451 ;
2452 /* If the value is extended from a narrower
2453 unsigned type, it doesn't matter whether we
2454 pass it as signed or unsigned; the value
2455 certainly is the same either way. */
2456 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2457 && TYPE_UNSIGNED (TREE_TYPE (val)))
2458 ;
2459 else if (TYPE_UNSIGNED (type))
2460 warning (OPT_Wconversion, "passing argument %d of %qE "
2461 "as unsigned due to prototype",
2462 argnum, rname);
2463 else
2464 warning (OPT_Wconversion, "passing argument %d of %qE "
2465 "as signed due to prototype", argnum, rname);
2466 }
2467 }
2468
2469 parmval = convert_for_assignment (type, val, ic_argpass,
2470 fundecl, function,
2471 parmnum + 1);
2472
2473 if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2474 && INTEGRAL_TYPE_P (type)
2475 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2476 parmval = default_conversion (parmval);
2477 }
2478 result = tree_cons (NULL_TREE, parmval, result);
2479 }
2480 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2481 && (TYPE_PRECISION (TREE_TYPE (val))
2482 < TYPE_PRECISION (double_type_node))
2483 && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2484 /* Convert `float' to `double'. */
2485 result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
2486 else if ((invalid_func_diag =
2487 targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2488 {
2489 error (invalid_func_diag);
2490 return error_mark_node;
2491 }
2492 else
2493 /* Convert `short' and `char' to full-size `int'. */
2494 result = tree_cons (NULL_TREE, default_conversion (val), result);
2495
2496 if (typetail)
2497 typetail = TREE_CHAIN (typetail);
2498 }
2499
2500 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2501 {
2502 error ("too few arguments to function %qE", function);
2503 return error_mark_node;
2504 }
2505
2506 return nreverse (result);
2507 }
2508 \f
2509 /* This is the entry point used by the parser to build unary operators
2510 in the input. CODE, a tree_code, specifies the unary operator, and
2511 ARG is the operand. For unary plus, the C parser currently uses
2512 CONVERT_EXPR for code. */
2513
2514 struct c_expr
2515 parser_build_unary_op (enum tree_code code, struct c_expr arg)
2516 {
2517 struct c_expr result;
2518
2519 result.original_code = ERROR_MARK;
2520 result.value = build_unary_op (code, arg.value, 0);
2521 overflow_warning (result.value);
2522 return result;
2523 }
2524
2525 /* This is the entry point used by the parser to build binary operators
2526 in the input. CODE, a tree_code, specifies the binary operator, and
2527 ARG1 and ARG2 are the operands. In addition to constructing the
2528 expression, we check for operands that were written with other binary
2529 operators in a way that is likely to confuse the user. */
2530
2531 struct c_expr
2532 parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2533 struct c_expr arg2)
2534 {
2535 struct c_expr result;
2536
2537 enum tree_code code1 = arg1.original_code;
2538 enum tree_code code2 = arg2.original_code;
2539
2540 result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2541 result.original_code = code;
2542
2543 if (TREE_CODE (result.value) == ERROR_MARK)
2544 return result;
2545
2546 /* Check for cases such as x+y<<z which users are likely
2547 to misinterpret. */
2548 if (warn_parentheses)
2549 {
2550 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
2551 {
2552 if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2553 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2554 warning (OPT_Wparentheses,
2555 "suggest parentheses around + or - inside shift");
2556 }
2557
2558 if (code == TRUTH_ORIF_EXPR)
2559 {
2560 if (code1 == TRUTH_ANDIF_EXPR
2561 || code2 == TRUTH_ANDIF_EXPR)
2562 warning (OPT_Wparentheses,
2563 "suggest parentheses around && within ||");
2564 }
2565
2566 if (code == BIT_IOR_EXPR)
2567 {
2568 if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
2569 || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2570 || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
2571 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2572 warning (OPT_Wparentheses,
2573 "suggest parentheses around arithmetic in operand of |");
2574 /* Check cases like x|y==z */
2575 if (TREE_CODE_CLASS (code1) == tcc_comparison
2576 || TREE_CODE_CLASS (code2) == tcc_comparison)
2577 warning (OPT_Wparentheses,
2578 "suggest parentheses around comparison in operand of |");
2579 }
2580
2581 if (code == BIT_XOR_EXPR)
2582 {
2583 if (code1 == BIT_AND_EXPR
2584 || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2585 || code2 == BIT_AND_EXPR
2586 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2587 warning (OPT_Wparentheses,
2588 "suggest parentheses around arithmetic in operand of ^");
2589 /* Check cases like x^y==z */
2590 if (TREE_CODE_CLASS (code1) == tcc_comparison
2591 || TREE_CODE_CLASS (code2) == tcc_comparison)
2592 warning (OPT_Wparentheses,
2593 "suggest parentheses around comparison in operand of ^");
2594 }
2595
2596 if (code == BIT_AND_EXPR)
2597 {
2598 if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2599 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2600 warning (OPT_Wparentheses,
2601 "suggest parentheses around + or - in operand of &");
2602 /* Check cases like x&y==z */
2603 if (TREE_CODE_CLASS (code1) == tcc_comparison
2604 || TREE_CODE_CLASS (code2) == tcc_comparison)
2605 warning (OPT_Wparentheses,
2606 "suggest parentheses around comparison in operand of &");
2607 }
2608 /* Similarly, check for cases like 1<=i<=10 that are probably errors. */
2609 if (TREE_CODE_CLASS (code) == tcc_comparison
2610 && (TREE_CODE_CLASS (code1) == tcc_comparison
2611 || TREE_CODE_CLASS (code2) == tcc_comparison))
2612 warning (OPT_Wparentheses, "comparisons like X<=Y<=Z do not "
2613 "have their mathematical meaning");
2614
2615 }
2616
2617 /* Warn about comparisons against string literals, with the exception
2618 of testing for equality or inequality of a string literal with NULL. */
2619 if (code == EQ_EXPR || code == NE_EXPR)
2620 {
2621 if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2622 || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2623 warning (OPT_Wstring_literal_comparison,
2624 "comparison with string literal");
2625 }
2626 else if (TREE_CODE_CLASS (code) == tcc_comparison
2627 && (code1 == STRING_CST || code2 == STRING_CST))
2628 warning (OPT_Wstring_literal_comparison,
2629 "comparison with string literal");
2630
2631 unsigned_conversion_warning (result.value, arg1.value);
2632 unsigned_conversion_warning (result.value, arg2.value);
2633 overflow_warning (result.value);
2634
2635 return result;
2636 }
2637 \f
2638 /* Return a tree for the difference of pointers OP0 and OP1.
2639 The resulting tree has type int. */
2640
2641 static tree
2642 pointer_diff (tree op0, tree op1)
2643 {
2644 tree restype = ptrdiff_type_node;
2645
2646 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2647 tree con0, con1, lit0, lit1;
2648 tree orig_op1 = op1;
2649
2650 if (pedantic || warn_pointer_arith)
2651 {
2652 if (TREE_CODE (target_type) == VOID_TYPE)
2653 pedwarn ("pointer of type %<void *%> used in subtraction");
2654 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2655 pedwarn ("pointer to a function used in subtraction");
2656 }
2657
2658 /* If the conversion to ptrdiff_type does anything like widening or
2659 converting a partial to an integral mode, we get a convert_expression
2660 that is in the way to do any simplifications.
2661 (fold-const.c doesn't know that the extra bits won't be needed.
2662 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2663 different mode in place.)
2664 So first try to find a common term here 'by hand'; we want to cover
2665 at least the cases that occur in legal static initializers. */
2666 if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2667 && (TYPE_PRECISION (TREE_TYPE (op0))
2668 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2669 con0 = TREE_OPERAND (op0, 0);
2670 else
2671 con0 = op0;
2672 if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2673 && (TYPE_PRECISION (TREE_TYPE (op1))
2674 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2675 con1 = TREE_OPERAND (op1, 0);
2676 else
2677 con1 = op1;
2678
2679 if (TREE_CODE (con0) == PLUS_EXPR)
2680 {
2681 lit0 = TREE_OPERAND (con0, 1);
2682 con0 = TREE_OPERAND (con0, 0);
2683 }
2684 else
2685 lit0 = integer_zero_node;
2686
2687 if (TREE_CODE (con1) == PLUS_EXPR)
2688 {
2689 lit1 = TREE_OPERAND (con1, 1);
2690 con1 = TREE_OPERAND (con1, 0);
2691 }
2692 else
2693 lit1 = integer_zero_node;
2694
2695 if (operand_equal_p (con0, con1, 0))
2696 {
2697 op0 = lit0;
2698 op1 = lit1;
2699 }
2700
2701
2702 /* First do the subtraction as integers;
2703 then drop through to build the divide operator.
2704 Do not do default conversions on the minus operator
2705 in case restype is a short type. */
2706
2707 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2708 convert (restype, op1), 0);
2709 /* This generates an error if op1 is pointer to incomplete type. */
2710 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2711 error ("arithmetic on pointer to an incomplete type");
2712
2713 /* This generates an error if op0 is pointer to incomplete type. */
2714 op1 = c_size_in_bytes (target_type);
2715
2716 /* Divide by the size, in easiest possible way. */
2717 return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2718 }
2719 \f
2720 /* Construct and perhaps optimize a tree representation
2721 for a unary operation. CODE, a tree_code, specifies the operation
2722 and XARG is the operand.
2723 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2724 the default promotions (such as from short to int).
2725 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2726 allows non-lvalues; this is only used to handle conversion of non-lvalue
2727 arrays to pointers in C99. */
2728
2729 tree
2730 build_unary_op (enum tree_code code, tree xarg, int flag)
2731 {
2732 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2733 tree arg = xarg;
2734 tree argtype = 0;
2735 enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2736 tree val;
2737 int noconvert = flag;
2738 const char *invalid_op_diag;
2739
2740 if (typecode == ERROR_MARK)
2741 return error_mark_node;
2742 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2743 typecode = INTEGER_TYPE;
2744
2745 if ((invalid_op_diag
2746 = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2747 {
2748 error (invalid_op_diag);
2749 return error_mark_node;
2750 }
2751
2752 switch (code)
2753 {
2754 case CONVERT_EXPR:
2755 /* This is used for unary plus, because a CONVERT_EXPR
2756 is enough to prevent anybody from looking inside for
2757 associativity, but won't generate any code. */
2758 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2759 || typecode == COMPLEX_TYPE
2760 || typecode == VECTOR_TYPE))
2761 {
2762 error ("wrong type argument to unary plus");
2763 return error_mark_node;
2764 }
2765 else if (!noconvert)
2766 arg = default_conversion (arg);
2767 arg = non_lvalue (arg);
2768 break;
2769
2770 case NEGATE_EXPR:
2771 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2772 || typecode == COMPLEX_TYPE
2773 || typecode == VECTOR_TYPE))
2774 {
2775 error ("wrong type argument to unary minus");
2776 return error_mark_node;
2777 }
2778 else if (!noconvert)
2779 arg = default_conversion (arg);
2780 break;
2781
2782 case BIT_NOT_EXPR:
2783 if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2784 {
2785 if (!noconvert)
2786 arg = default_conversion (arg);
2787 }
2788 else if (typecode == COMPLEX_TYPE)
2789 {
2790 code = CONJ_EXPR;
2791 if (pedantic)
2792 pedwarn ("ISO C does not support %<~%> for complex conjugation");
2793 if (!noconvert)
2794 arg = default_conversion (arg);
2795 }
2796 else
2797 {
2798 error ("wrong type argument to bit-complement");
2799 return error_mark_node;
2800 }
2801 break;
2802
2803 case ABS_EXPR:
2804 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2805 {
2806 error ("wrong type argument to abs");
2807 return error_mark_node;
2808 }
2809 else if (!noconvert)
2810 arg = default_conversion (arg);
2811 break;
2812
2813 case CONJ_EXPR:
2814 /* Conjugating a real value is a no-op, but allow it anyway. */
2815 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2816 || typecode == COMPLEX_TYPE))
2817 {
2818 error ("wrong type argument to conjugation");
2819 return error_mark_node;
2820 }
2821 else if (!noconvert)
2822 arg = default_conversion (arg);
2823 break;
2824
2825 case TRUTH_NOT_EXPR:
2826 if (typecode != INTEGER_TYPE
2827 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2828 && typecode != COMPLEX_TYPE)
2829 {
2830 error ("wrong type argument to unary exclamation mark");
2831 return error_mark_node;
2832 }
2833 arg = c_objc_common_truthvalue_conversion (arg);
2834 return invert_truthvalue (arg);
2835
2836 case REALPART_EXPR:
2837 if (TREE_CODE (arg) == COMPLEX_CST)
2838 return TREE_REALPART (arg);
2839 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2840 return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2841 else
2842 return arg;
2843
2844 case IMAGPART_EXPR:
2845 if (TREE_CODE (arg) == COMPLEX_CST)
2846 return TREE_IMAGPART (arg);
2847 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2848 return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2849 else
2850 return convert (TREE_TYPE (arg), integer_zero_node);
2851
2852 case PREINCREMENT_EXPR:
2853 case POSTINCREMENT_EXPR:
2854 case PREDECREMENT_EXPR:
2855 case POSTDECREMENT_EXPR:
2856
2857 /* Increment or decrement the real part of the value,
2858 and don't change the imaginary part. */
2859 if (typecode == COMPLEX_TYPE)
2860 {
2861 tree real, imag;
2862
2863 if (pedantic)
2864 pedwarn ("ISO C does not support %<++%> and %<--%>"
2865 " on complex types");
2866
2867 arg = stabilize_reference (arg);
2868 real = build_unary_op (REALPART_EXPR, arg, 1);
2869 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2870 return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2871 build_unary_op (code, real, 1), imag);
2872 }
2873
2874 /* Report invalid types. */
2875
2876 if (typecode != POINTER_TYPE
2877 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2878 {
2879 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2880 error ("wrong type argument to increment");
2881 else
2882 error ("wrong type argument to decrement");
2883
2884 return error_mark_node;
2885 }
2886
2887 {
2888 tree inc;
2889 tree result_type = TREE_TYPE (arg);
2890
2891 arg = get_unwidened (arg, 0);
2892 argtype = TREE_TYPE (arg);
2893
2894 /* Compute the increment. */
2895
2896 if (typecode == POINTER_TYPE)
2897 {
2898 /* If pointer target is an undefined struct,
2899 we just cannot know how to do the arithmetic. */
2900 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2901 {
2902 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2903 error ("increment of pointer to unknown structure");
2904 else
2905 error ("decrement of pointer to unknown structure");
2906 }
2907 else if ((pedantic || warn_pointer_arith)
2908 && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2909 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2910 {
2911 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2912 pedwarn ("wrong type argument to increment");
2913 else
2914 pedwarn ("wrong type argument to decrement");
2915 }
2916
2917 inc = c_size_in_bytes (TREE_TYPE (result_type));
2918 }
2919 else
2920 inc = integer_one_node;
2921
2922 inc = convert (argtype, inc);
2923
2924 /* Complain about anything else that is not a true lvalue. */
2925 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2926 || code == POSTINCREMENT_EXPR)
2927 ? lv_increment
2928 : lv_decrement)))
2929 return error_mark_node;
2930
2931 /* Report a read-only lvalue. */
2932 if (TREE_READONLY (arg))
2933 readonly_error (arg,
2934 ((code == PREINCREMENT_EXPR
2935 || code == POSTINCREMENT_EXPR)
2936 ? lv_increment : lv_decrement));
2937
2938 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2939 val = boolean_increment (code, arg);
2940 else
2941 val = build2 (code, TREE_TYPE (arg), arg, inc);
2942 TREE_SIDE_EFFECTS (val) = 1;
2943 val = convert (result_type, val);
2944 if (TREE_CODE (val) != code)
2945 TREE_NO_WARNING (val) = 1;
2946 return val;
2947 }
2948
2949 case ADDR_EXPR:
2950 /* Note that this operation never does default_conversion. */
2951
2952 /* Let &* cancel out to simplify resulting code. */
2953 if (TREE_CODE (arg) == INDIRECT_REF)
2954 {
2955 /* Don't let this be an lvalue. */
2956 if (lvalue_p (TREE_OPERAND (arg, 0)))
2957 return non_lvalue (TREE_OPERAND (arg, 0));
2958 return TREE_OPERAND (arg, 0);
2959 }
2960
2961 /* For &x[y], return x+y */
2962 if (TREE_CODE (arg) == ARRAY_REF)
2963 {
2964 tree op0 = TREE_OPERAND (arg, 0);
2965 if (!c_mark_addressable (op0))
2966 return error_mark_node;
2967 return build_binary_op (PLUS_EXPR,
2968 (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
2969 ? array_to_pointer_conversion (op0)
2970 : op0),
2971 TREE_OPERAND (arg, 1), 1);
2972 }
2973
2974 /* Anything not already handled and not a true memory reference
2975 or a non-lvalue array is an error. */
2976 else if (typecode != FUNCTION_TYPE && !flag
2977 && !lvalue_or_else (arg, lv_addressof))
2978 return error_mark_node;
2979
2980 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
2981 argtype = TREE_TYPE (arg);
2982
2983 /* If the lvalue is const or volatile, merge that into the type
2984 to which the address will point. Note that you can't get a
2985 restricted pointer by taking the address of something, so we
2986 only have to deal with `const' and `volatile' here. */
2987 if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
2988 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
2989 argtype = c_build_type_variant (argtype,
2990 TREE_READONLY (arg),
2991 TREE_THIS_VOLATILE (arg));
2992
2993 if (!c_mark_addressable (arg))
2994 return error_mark_node;
2995
2996 gcc_assert (TREE_CODE (arg) != COMPONENT_REF
2997 || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
2998
2999 argtype = build_pointer_type (argtype);
3000
3001 /* ??? Cope with user tricks that amount to offsetof. Delete this
3002 when we have proper support for integer constant expressions. */
3003 val = get_base_address (arg);
3004 if (val && TREE_CODE (val) == INDIRECT_REF
3005 && integer_zerop (TREE_OPERAND (val, 0)))
3006 return fold_convert (argtype, fold_offsetof (arg));
3007
3008 val = build1 (ADDR_EXPR, argtype, arg);
3009
3010 return val;
3011
3012 default:
3013 gcc_unreachable ();
3014 }
3015
3016 if (argtype == 0)
3017 argtype = TREE_TYPE (arg);
3018 return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3019 : fold_build1 (code, argtype, arg);
3020 }
3021
3022 /* Return nonzero if REF is an lvalue valid for this language.
3023 Lvalues can be assigned, unless their type has TYPE_READONLY.
3024 Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
3025
3026 static int
3027 lvalue_p (tree ref)
3028 {
3029 enum tree_code code = TREE_CODE (ref);
3030
3031 switch (code)
3032 {
3033 case REALPART_EXPR:
3034 case IMAGPART_EXPR:
3035 case COMPONENT_REF:
3036 return lvalue_p (TREE_OPERAND (ref, 0));
3037
3038 case COMPOUND_LITERAL_EXPR:
3039 case STRING_CST:
3040 return 1;
3041
3042 case INDIRECT_REF:
3043 case ARRAY_REF:
3044 case VAR_DECL:
3045 case PARM_DECL:
3046 case RESULT_DECL:
3047 case ERROR_MARK:
3048 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3049 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3050
3051 case BIND_EXPR:
3052 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3053
3054 default:
3055 return 0;
3056 }
3057 }
3058 \f
3059 /* Give an error for storing in something that is 'const'. */
3060
3061 static void
3062 readonly_error (tree arg, enum lvalue_use use)
3063 {
3064 gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3065 || use == lv_asm);
3066 /* Using this macro rather than (for example) arrays of messages
3067 ensures that all the format strings are checked at compile
3068 time. */
3069 #define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A) \
3070 : (use == lv_increment ? (I) \
3071 : (use == lv_decrement ? (D) : (AS))))
3072 if (TREE_CODE (arg) == COMPONENT_REF)
3073 {
3074 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3075 readonly_error (TREE_OPERAND (arg, 0), use);
3076 else
3077 error (READONLY_MSG (G_("assignment of read-only member %qD"),
3078 G_("increment of read-only member %qD"),
3079 G_("decrement of read-only member %qD"),
3080 G_("read-only member %qD used as %<asm%> output")),
3081 TREE_OPERAND (arg, 1));
3082 }
3083 else if (TREE_CODE (arg) == VAR_DECL)
3084 error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3085 G_("increment of read-only variable %qD"),
3086 G_("decrement of read-only variable %qD"),
3087 G_("read-only variable %qD used as %<asm%> output")),
3088 arg);
3089 else
3090 error (READONLY_MSG (G_("assignment of read-only location"),
3091 G_("increment of read-only location"),
3092 G_("decrement of read-only location"),
3093 G_("read-only location used as %<asm%> output")));
3094 }
3095
3096
3097 /* Return nonzero if REF is an lvalue valid for this language;
3098 otherwise, print an error message and return zero. USE says
3099 how the lvalue is being used and so selects the error message. */
3100
3101 static int
3102 lvalue_or_else (tree ref, enum lvalue_use use)
3103 {
3104 int win = lvalue_p (ref);
3105
3106 if (!win)
3107 lvalue_error (use);
3108
3109 return win;
3110 }
3111 \f
3112 /* Mark EXP saying that we need to be able to take the
3113 address of it; it should not be allocated in a register.
3114 Returns true if successful. */
3115
3116 bool
3117 c_mark_addressable (tree exp)
3118 {
3119 tree x = exp;
3120
3121 while (1)
3122 switch (TREE_CODE (x))
3123 {
3124 case COMPONENT_REF:
3125 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3126 {
3127 error
3128 ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3129 return false;
3130 }
3131
3132 /* ... fall through ... */
3133
3134 case ADDR_EXPR:
3135 case ARRAY_REF:
3136 case REALPART_EXPR:
3137 case IMAGPART_EXPR:
3138 x = TREE_OPERAND (x, 0);
3139 break;
3140
3141 case COMPOUND_LITERAL_EXPR:
3142 case CONSTRUCTOR:
3143 TREE_ADDRESSABLE (x) = 1;
3144 return true;
3145
3146 case VAR_DECL:
3147 case CONST_DECL:
3148 case PARM_DECL:
3149 case RESULT_DECL:
3150 if (C_DECL_REGISTER (x)
3151 && DECL_NONLOCAL (x))
3152 {
3153 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3154 {
3155 error
3156 ("global register variable %qD used in nested function", x);
3157 return false;
3158 }
3159 pedwarn ("register variable %qD used in nested function", x);
3160 }
3161 else if (C_DECL_REGISTER (x))
3162 {
3163 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3164 error ("address of global register variable %qD requested", x);
3165 else
3166 error ("address of register variable %qD requested", x);
3167 return false;
3168 }
3169
3170 /* drops in */
3171 case FUNCTION_DECL:
3172 TREE_ADDRESSABLE (x) = 1;
3173 /* drops out */
3174 default:
3175 return true;
3176 }
3177 }
3178 \f
3179 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3180
3181 tree
3182 build_conditional_expr (tree ifexp, tree op1, tree op2)
3183 {
3184 tree type1;
3185 tree type2;
3186 enum tree_code code1;
3187 enum tree_code code2;
3188 tree result_type = NULL;
3189 tree orig_op1 = op1, orig_op2 = op2;
3190
3191 /* Promote both alternatives. */
3192
3193 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3194 op1 = default_conversion (op1);
3195 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3196 op2 = default_conversion (op2);
3197
3198 if (TREE_CODE (ifexp) == ERROR_MARK
3199 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3200 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3201 return error_mark_node;
3202
3203 type1 = TREE_TYPE (op1);
3204 code1 = TREE_CODE (type1);
3205 type2 = TREE_TYPE (op2);
3206 code2 = TREE_CODE (type2);
3207
3208 /* C90 does not permit non-lvalue arrays in conditional expressions.
3209 In C99 they will be pointers by now. */
3210 if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3211 {
3212 error ("non-lvalue array in conditional expression");
3213 return error_mark_node;
3214 }
3215
3216 /* Quickly detect the usual case where op1 and op2 have the same type
3217 after promotion. */
3218 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3219 {
3220 if (type1 == type2)
3221 result_type = type1;
3222 else
3223 result_type = TYPE_MAIN_VARIANT (type1);
3224 }
3225 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3226 || code1 == COMPLEX_TYPE)
3227 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3228 || code2 == COMPLEX_TYPE))
3229 {
3230 result_type = c_common_type (type1, type2);
3231
3232 /* If -Wsign-compare, warn here if type1 and type2 have
3233 different signedness. We'll promote the signed to unsigned
3234 and later code won't know it used to be different.
3235 Do this check on the original types, so that explicit casts
3236 will be considered, but default promotions won't. */
3237 if (warn_sign_compare && !skip_evaluation)
3238 {
3239 int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3240 int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3241
3242 if (unsigned_op1 ^ unsigned_op2)
3243 {
3244 /* Do not warn if the result type is signed, since the
3245 signed type will only be chosen if it can represent
3246 all the values of the unsigned type. */
3247 if (!TYPE_UNSIGNED (result_type))
3248 /* OK */;
3249 /* Do not warn if the signed quantity is an unsuffixed
3250 integer literal (or some static constant expression
3251 involving such literals) and it is non-negative. */
3252 else if ((unsigned_op2 && tree_expr_nonnegative_p (op1))
3253 || (unsigned_op1 && tree_expr_nonnegative_p (op2)))
3254 /* OK */;
3255 else
3256 warning (0, "signed and unsigned type in conditional expression");
3257 }
3258 }
3259 }
3260 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3261 {
3262 if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3263 pedwarn ("ISO C forbids conditional expr with only one void side");
3264 result_type = void_type_node;
3265 }
3266 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3267 {
3268 if (comp_target_types (type1, type2))
3269 result_type = common_pointer_type (type1, type2);
3270 else if (null_pointer_constant_p (orig_op1))
3271 result_type = qualify_type (type2, type1);
3272 else if (null_pointer_constant_p (orig_op2))
3273 result_type = qualify_type (type1, type2);
3274 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3275 {
3276 if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3277 pedwarn ("ISO C forbids conditional expr between "
3278 "%<void *%> and function pointer");
3279 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3280 TREE_TYPE (type2)));
3281 }
3282 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3283 {
3284 if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3285 pedwarn ("ISO C forbids conditional expr between "
3286 "%<void *%> and function pointer");
3287 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3288 TREE_TYPE (type1)));
3289 }
3290 else
3291 {
3292 pedwarn ("pointer type mismatch in conditional expression");
3293 result_type = build_pointer_type (void_type_node);
3294 }
3295 }
3296 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3297 {
3298 if (!null_pointer_constant_p (orig_op2))
3299 pedwarn ("pointer/integer type mismatch in conditional expression");
3300 else
3301 {
3302 op2 = null_pointer_node;
3303 }
3304 result_type = type1;
3305 }
3306 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3307 {
3308 if (!null_pointer_constant_p (orig_op1))
3309 pedwarn ("pointer/integer type mismatch in conditional expression");
3310 else
3311 {
3312 op1 = null_pointer_node;
3313 }
3314 result_type = type2;
3315 }
3316
3317 if (!result_type)
3318 {
3319 if (flag_cond_mismatch)
3320 result_type = void_type_node;
3321 else
3322 {
3323 error ("type mismatch in conditional expression");
3324 return error_mark_node;
3325 }
3326 }
3327
3328 /* Merge const and volatile flags of the incoming types. */
3329 result_type
3330 = build_type_variant (result_type,
3331 TREE_READONLY (op1) || TREE_READONLY (op2),
3332 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3333
3334 if (result_type != TREE_TYPE (op1))
3335 op1 = convert_and_check (result_type, op1);
3336 if (result_type != TREE_TYPE (op2))
3337 op2 = convert_and_check (result_type, op2);
3338
3339 return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3340 }
3341 \f
3342 /* Return a compound expression that performs two expressions and
3343 returns the value of the second of them. */
3344
3345 tree
3346 build_compound_expr (tree expr1, tree expr2)
3347 {
3348 if (!TREE_SIDE_EFFECTS (expr1))
3349 {
3350 /* The left-hand operand of a comma expression is like an expression
3351 statement: with -Wextra or -Wunused, we should warn if it doesn't have
3352 any side-effects, unless it was explicitly cast to (void). */
3353 if (warn_unused_value)
3354 {
3355 if (VOID_TYPE_P (TREE_TYPE (expr1))
3356 && (TREE_CODE (expr1) == NOP_EXPR
3357 || TREE_CODE (expr1) == CONVERT_EXPR))
3358 ; /* (void) a, b */
3359 else if (VOID_TYPE_P (TREE_TYPE (expr1))
3360 && TREE_CODE (expr1) == COMPOUND_EXPR
3361 && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3362 || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3363 ; /* (void) a, (void) b, c */
3364 else
3365 warning (0, "left-hand operand of comma expression has no effect");
3366 }
3367 }
3368
3369 /* With -Wunused, we should also warn if the left-hand operand does have
3370 side-effects, but computes a value which is not used. For example, in
3371 `foo() + bar(), baz()' the result of the `+' operator is not used,
3372 so we should issue a warning. */
3373 else if (warn_unused_value)
3374 warn_if_unused_value (expr1, input_location);
3375
3376 return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3377 }
3378
3379 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3380
3381 tree
3382 build_c_cast (tree type, tree expr)
3383 {
3384 tree value = expr;
3385
3386 if (type == error_mark_node || expr == error_mark_node)
3387 return error_mark_node;
3388
3389 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3390 only in <protocol> qualifications. But when constructing cast expressions,
3391 the protocols do matter and must be kept around. */
3392 if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3393 return build1 (NOP_EXPR, type, expr);
3394
3395 type = TYPE_MAIN_VARIANT (type);
3396
3397 if (TREE_CODE (type) == ARRAY_TYPE)
3398 {
3399 error ("cast specifies array type");
3400 return error_mark_node;
3401 }
3402
3403 if (TREE_CODE (type) == FUNCTION_TYPE)
3404 {
3405 error ("cast specifies function type");
3406 return error_mark_node;
3407 }
3408
3409 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3410 {
3411 if (pedantic)
3412 {
3413 if (TREE_CODE (type) == RECORD_TYPE
3414 || TREE_CODE (type) == UNION_TYPE)
3415 pedwarn ("ISO C forbids casting nonscalar to the same type");
3416 }
3417 }
3418 else if (TREE_CODE (type) == UNION_TYPE)
3419 {
3420 tree field;
3421
3422 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3423 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3424 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3425 break;
3426
3427 if (field)
3428 {
3429 tree t;
3430
3431 if (pedantic)
3432 pedwarn ("ISO C forbids casts to union type");
3433 t = digest_init (type,
3434 build_constructor_single (type, field, value),
3435 true, 0);
3436 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3437 TREE_INVARIANT (t) = TREE_INVARIANT (value);
3438 return t;
3439 }
3440 error ("cast to union type from type not present in union");
3441 return error_mark_node;
3442 }
3443 else
3444 {
3445 tree otype, ovalue;
3446
3447 if (type == void_type_node)
3448 return build1 (CONVERT_EXPR, type, value);
3449
3450 otype = TREE_TYPE (value);
3451
3452 /* Optionally warn about potentially worrisome casts. */
3453
3454 if (warn_cast_qual
3455 && TREE_CODE (type) == POINTER_TYPE
3456 && TREE_CODE (otype) == POINTER_TYPE)
3457 {
3458 tree in_type = type;
3459 tree in_otype = otype;
3460 int added = 0;
3461 int discarded = 0;
3462
3463 /* Check that the qualifiers on IN_TYPE are a superset of
3464 the qualifiers of IN_OTYPE. The outermost level of
3465 POINTER_TYPE nodes is uninteresting and we stop as soon
3466 as we hit a non-POINTER_TYPE node on either type. */
3467 do
3468 {
3469 in_otype = TREE_TYPE (in_otype);
3470 in_type = TREE_TYPE (in_type);
3471
3472 /* GNU C allows cv-qualified function types. 'const'
3473 means the function is very pure, 'volatile' means it
3474 can't return. We need to warn when such qualifiers
3475 are added, not when they're taken away. */
3476 if (TREE_CODE (in_otype) == FUNCTION_TYPE
3477 && TREE_CODE (in_type) == FUNCTION_TYPE)
3478 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3479 else
3480 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3481 }
3482 while (TREE_CODE (in_type) == POINTER_TYPE
3483 && TREE_CODE (in_otype) == POINTER_TYPE);
3484
3485 if (added)
3486 warning (0, "cast adds new qualifiers to function type");
3487
3488 if (discarded)
3489 /* There are qualifiers present in IN_OTYPE that are not
3490 present in IN_TYPE. */
3491 warning (0, "cast discards qualifiers from pointer target type");
3492 }
3493
3494 /* Warn about possible alignment problems. */
3495 if (STRICT_ALIGNMENT
3496 && TREE_CODE (type) == POINTER_TYPE
3497 && TREE_CODE (otype) == POINTER_TYPE
3498 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3499 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3500 /* Don't warn about opaque types, where the actual alignment
3501 restriction is unknown. */
3502 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3503 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3504 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3505 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3506 warning (OPT_Wcast_align,
3507 "cast increases required alignment of target type");
3508
3509 if (TREE_CODE (type) == INTEGER_TYPE
3510 && TREE_CODE (otype) == POINTER_TYPE
3511 && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3512 /* Unlike conversion of integers to pointers, where the
3513 warning is disabled for converting constants because
3514 of cases such as SIG_*, warn about converting constant
3515 pointers to integers. In some cases it may cause unwanted
3516 sign extension, and a warning is appropriate. */
3517 warning (OPT_Wpointer_to_int_cast,
3518 "cast from pointer to integer of different size");
3519
3520 if (TREE_CODE (value) == CALL_EXPR
3521 && TREE_CODE (type) != TREE_CODE (otype))
3522 warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3523 "to non-matching type %qT", otype, type);
3524
3525 if (TREE_CODE (type) == POINTER_TYPE
3526 && TREE_CODE (otype) == INTEGER_TYPE
3527 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3528 /* Don't warn about converting any constant. */
3529 && !TREE_CONSTANT (value))
3530 warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3531 "of different size");
3532
3533 strict_aliasing_warning (otype, type, expr);
3534
3535 /* If pedantic, warn for conversions between function and object
3536 pointer types, except for converting a null pointer constant
3537 to function pointer type. */
3538 if (pedantic
3539 && TREE_CODE (type) == POINTER_TYPE
3540 && TREE_CODE (otype) == POINTER_TYPE
3541 && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3542 && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3543 pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3544
3545 if (pedantic
3546 && TREE_CODE (type) == POINTER_TYPE
3547 && TREE_CODE (otype) == POINTER_TYPE
3548 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3549 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3550 && !null_pointer_constant_p (value))
3551 pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3552
3553 ovalue = value;
3554 value = convert (type, value);
3555
3556 /* Ignore any integer overflow caused by the cast. */
3557 if (TREE_CODE (value) == INTEGER_CST)
3558 {
3559 if (CONSTANT_CLASS_P (ovalue)
3560 && (TREE_OVERFLOW (ovalue) || TREE_CONSTANT_OVERFLOW (ovalue)))
3561 {
3562 /* Avoid clobbering a shared constant. */
3563 value = copy_node (value);
3564 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3565 TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3566 }
3567 else if (TREE_OVERFLOW (value) || TREE_CONSTANT_OVERFLOW (value))
3568 /* Reset VALUE's overflow flags, ensuring constant sharing. */
3569 value = build_int_cst_wide (TREE_TYPE (value),
3570 TREE_INT_CST_LOW (value),
3571 TREE_INT_CST_HIGH (value));
3572 }
3573 }
3574
3575 /* Don't let a cast be an lvalue. */
3576 if (value == expr)
3577 value = non_lvalue (value);
3578
3579 return value;
3580 }
3581
3582 /* Interpret a cast of expression EXPR to type TYPE. */
3583 tree
3584 c_cast_expr (struct c_type_name *type_name, tree expr)
3585 {
3586 tree type;
3587 int saved_wsp = warn_strict_prototypes;
3588
3589 /* This avoids warnings about unprototyped casts on
3590 integers. E.g. "#define SIG_DFL (void(*)())0". */
3591 if (TREE_CODE (expr) == INTEGER_CST)
3592 warn_strict_prototypes = 0;
3593 type = groktypename (type_name);
3594 warn_strict_prototypes = saved_wsp;
3595
3596 return build_c_cast (type, expr);
3597 }
3598
3599 \f
3600 /* Build an assignment expression of lvalue LHS from value RHS.
3601 MODIFYCODE is the code for a binary operator that we use
3602 to combine the old value of LHS with RHS to get the new value.
3603 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3604
3605 tree
3606 build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3607 {
3608 tree result;
3609 tree newrhs;
3610 tree lhstype = TREE_TYPE (lhs);
3611 tree olhstype = lhstype;
3612
3613 /* Types that aren't fully specified cannot be used in assignments. */
3614 lhs = require_complete_type (lhs);
3615
3616 /* Avoid duplicate error messages from operands that had errors. */
3617 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3618 return error_mark_node;
3619
3620 STRIP_TYPE_NOPS (rhs);
3621
3622 newrhs = rhs;
3623
3624 /* If a binary op has been requested, combine the old LHS value with the RHS
3625 producing the value we should actually store into the LHS. */
3626
3627 if (modifycode != NOP_EXPR)
3628 {
3629 lhs = stabilize_reference (lhs);
3630 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3631 }
3632
3633 if (!lvalue_or_else (lhs, lv_assign))
3634 return error_mark_node;
3635
3636 /* Give an error for storing in something that is 'const'. */
3637
3638 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3639 || ((TREE_CODE (lhstype) == RECORD_TYPE
3640 || TREE_CODE (lhstype) == UNION_TYPE)
3641 && C_TYPE_FIELDS_READONLY (lhstype)))
3642 readonly_error (lhs, lv_assign);
3643
3644 /* If storing into a structure or union member,
3645 it has probably been given type `int'.
3646 Compute the type that would go with
3647 the actual amount of storage the member occupies. */
3648
3649 if (TREE_CODE (lhs) == COMPONENT_REF
3650 && (TREE_CODE (lhstype) == INTEGER_TYPE
3651 || TREE_CODE (lhstype) == BOOLEAN_TYPE
3652 || TREE_CODE (lhstype) == REAL_TYPE
3653 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3654 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3655
3656 /* If storing in a field that is in actuality a short or narrower than one,
3657 we must store in the field in its actual type. */
3658
3659 if (lhstype != TREE_TYPE (lhs))
3660 {
3661 lhs = copy_node (lhs);
3662 TREE_TYPE (lhs) = lhstype;
3663 }
3664
3665 /* Convert new value to destination type. */
3666
3667 newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3668 NULL_TREE, NULL_TREE, 0);
3669 if (TREE_CODE (newrhs) == ERROR_MARK)
3670 return error_mark_node;
3671
3672 /* Emit ObjC write barrier, if necessary. */
3673 if (c_dialect_objc () && flag_objc_gc)
3674 {
3675 result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3676 if (result)
3677 return result;
3678 }
3679
3680 /* Scan operands. */
3681
3682 result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3683 TREE_SIDE_EFFECTS (result) = 1;
3684
3685 /* If we got the LHS in a different type for storing in,
3686 convert the result back to the nominal type of LHS
3687 so that the value we return always has the same type
3688 as the LHS argument. */
3689
3690 if (olhstype == TREE_TYPE (result))
3691 return result;
3692 return convert_for_assignment (olhstype, result, ic_assign,
3693 NULL_TREE, NULL_TREE, 0);
3694 }
3695 \f
3696 /* Convert value RHS to type TYPE as preparation for an assignment
3697 to an lvalue of type TYPE.
3698 The real work of conversion is done by `convert'.
3699 The purpose of this function is to generate error messages
3700 for assignments that are not allowed in C.
3701 ERRTYPE says whether it is argument passing, assignment,
3702 initialization or return.
3703
3704 FUNCTION is a tree for the function being called.
3705 PARMNUM is the number of the argument, for printing in error messages. */
3706
3707 static tree
3708 convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3709 tree fundecl, tree function, int parmnum)
3710 {
3711 enum tree_code codel = TREE_CODE (type);
3712 tree rhstype;
3713 enum tree_code coder;
3714 tree rname = NULL_TREE;
3715 bool objc_ok = false;
3716
3717 if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3718 {
3719 tree selector;
3720 /* Change pointer to function to the function itself for
3721 diagnostics. */
3722 if (TREE_CODE (function) == ADDR_EXPR
3723 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3724 function = TREE_OPERAND (function, 0);
3725
3726 /* Handle an ObjC selector specially for diagnostics. */
3727 selector = objc_message_selector ();
3728 rname = function;
3729 if (selector && parmnum > 2)
3730 {
3731 rname = selector;
3732 parmnum -= 2;
3733 }
3734 }
3735
3736 /* This macro is used to emit diagnostics to ensure that all format
3737 strings are complete sentences, visible to gettext and checked at
3738 compile time. */
3739 #define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE) \
3740 do { \
3741 switch (errtype) \
3742 { \
3743 case ic_argpass: \
3744 pedwarn (AR, parmnum, rname); \
3745 break; \
3746 case ic_argpass_nonproto: \
3747 warning (0, AR, parmnum, rname); \
3748 break; \
3749 case ic_assign: \
3750 pedwarn (AS); \
3751 break; \
3752 case ic_init: \
3753 pedwarn (IN); \
3754 break; \
3755 case ic_return: \
3756 pedwarn (RE); \
3757 break; \
3758 default: \
3759 gcc_unreachable (); \
3760 } \
3761 } while (0)
3762
3763 STRIP_TYPE_NOPS (rhs);
3764
3765 if (optimize && TREE_CODE (rhs) == VAR_DECL
3766 && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3767 rhs = decl_constant_value_for_broken_optimization (rhs);
3768
3769 rhstype = TREE_TYPE (rhs);
3770 coder = TREE_CODE (rhstype);
3771
3772 if (coder == ERROR_MARK)
3773 return error_mark_node;
3774
3775 if (c_dialect_objc ())
3776 {
3777 int parmno;
3778
3779 switch (errtype)
3780 {
3781 case ic_return:
3782 parmno = 0;
3783 break;
3784
3785 case ic_assign:
3786 parmno = -1;
3787 break;
3788
3789 case ic_init:
3790 parmno = -2;
3791 break;
3792
3793 default:
3794 parmno = parmnum;
3795 break;
3796 }
3797
3798 objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3799 }
3800
3801 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3802 {
3803 overflow_warning (rhs);
3804 return rhs;
3805 }
3806
3807 if (coder == VOID_TYPE)
3808 {
3809 /* Except for passing an argument to an unprototyped function,
3810 this is a constraint violation. When passing an argument to
3811 an unprototyped function, it is compile-time undefined;
3812 making it a constraint in that case was rejected in
3813 DR#252. */
3814 error ("void value not ignored as it ought to be");
3815 return error_mark_node;
3816 }
3817 /* A type converts to a reference to it.
3818 This code doesn't fully support references, it's just for the
3819 special case of va_start and va_copy. */
3820 if (codel == REFERENCE_TYPE
3821 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3822 {
3823 if (!lvalue_p (rhs))
3824 {
3825 error ("cannot pass rvalue to reference parameter");
3826 return error_mark_node;
3827 }
3828 if (!c_mark_addressable (rhs))
3829 return error_mark_node;
3830 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3831
3832 /* We already know that these two types are compatible, but they
3833 may not be exactly identical. In fact, `TREE_TYPE (type)' is
3834 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3835 likely to be va_list, a typedef to __builtin_va_list, which
3836 is different enough that it will cause problems later. */
3837 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3838 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3839
3840 rhs = build1 (NOP_EXPR, type, rhs);
3841 return rhs;
3842 }
3843 /* Some types can interconvert without explicit casts. */
3844 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3845 && vector_types_convertible_p (type, TREE_TYPE (rhs)))
3846 return convert (type, rhs);
3847 /* Arithmetic types all interconvert, and enum is treated like int. */
3848 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3849 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3850 || codel == BOOLEAN_TYPE)
3851 && (coder == INTEGER_TYPE || coder == REAL_TYPE
3852 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3853 || coder == BOOLEAN_TYPE))
3854 return convert_and_check (type, rhs);
3855
3856 /* Conversion to a transparent union from its member types.
3857 This applies only to function arguments. */
3858 else if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3859 && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3860 {
3861 tree memb, marginal_memb = NULL_TREE;
3862
3863 for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3864 {
3865 tree memb_type = TREE_TYPE (memb);
3866
3867 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3868 TYPE_MAIN_VARIANT (rhstype)))
3869 break;
3870
3871 if (TREE_CODE (memb_type) != POINTER_TYPE)
3872 continue;
3873
3874 if (coder == POINTER_TYPE)
3875 {
3876 tree ttl = TREE_TYPE (memb_type);
3877 tree ttr = TREE_TYPE (rhstype);
3878
3879 /* Any non-function converts to a [const][volatile] void *
3880 and vice versa; otherwise, targets must be the same.
3881 Meanwhile, the lhs target must have all the qualifiers of
3882 the rhs. */
3883 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3884 || comp_target_types (memb_type, rhstype))
3885 {
3886 /* If this type won't generate any warnings, use it. */
3887 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3888 || ((TREE_CODE (ttr) == FUNCTION_TYPE
3889 && TREE_CODE (ttl) == FUNCTION_TYPE)
3890 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3891 == TYPE_QUALS (ttr))
3892 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3893 == TYPE_QUALS (ttl))))
3894 break;
3895
3896 /* Keep looking for a better type, but remember this one. */
3897 if (!marginal_memb)
3898 marginal_memb = memb;
3899 }
3900 }
3901
3902 /* Can convert integer zero to any pointer type. */
3903 if (null_pointer_constant_p (rhs))
3904 {
3905 rhs = null_pointer_node;
3906 break;
3907 }
3908 }
3909
3910 if (memb || marginal_memb)
3911 {
3912 if (!memb)
3913 {
3914 /* We have only a marginally acceptable member type;
3915 it needs a warning. */
3916 tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
3917 tree ttr = TREE_TYPE (rhstype);
3918
3919 /* Const and volatile mean something different for function
3920 types, so the usual warnings are not appropriate. */
3921 if (TREE_CODE (ttr) == FUNCTION_TYPE
3922 && TREE_CODE (ttl) == FUNCTION_TYPE)
3923 {
3924 /* Because const and volatile on functions are
3925 restrictions that say the function will not do
3926 certain things, it is okay to use a const or volatile
3927 function where an ordinary one is wanted, but not
3928 vice-versa. */
3929 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
3930 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
3931 "makes qualified function "
3932 "pointer from unqualified"),
3933 G_("assignment makes qualified "
3934 "function pointer from "
3935 "unqualified"),
3936 G_("initialization makes qualified "
3937 "function pointer from "
3938 "unqualified"),
3939 G_("return makes qualified function "
3940 "pointer from unqualified"));
3941 }
3942 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
3943 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
3944 "qualifiers from pointer target type"),
3945 G_("assignment discards qualifiers "
3946 "from pointer target type"),
3947 G_("initialization discards qualifiers "
3948 "from pointer target type"),
3949 G_("return discards qualifiers from "
3950 "pointer target type"));
3951
3952 memb = marginal_memb;
3953 }
3954
3955 if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
3956 pedwarn ("ISO C prohibits argument conversion to union type");
3957
3958 return build_constructor_single (type, memb, rhs);
3959 }
3960 }
3961
3962 /* Conversions among pointers */
3963 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
3964 && (coder == codel))
3965 {
3966 tree ttl = TREE_TYPE (type);
3967 tree ttr = TREE_TYPE (rhstype);
3968 tree mvl = ttl;
3969 tree mvr = ttr;
3970 bool is_opaque_pointer;
3971 int target_cmp = 0; /* Cache comp_target_types () result. */
3972
3973 if (TREE_CODE (mvl) != ARRAY_TYPE)
3974 mvl = TYPE_MAIN_VARIANT (mvl);
3975 if (TREE_CODE (mvr) != ARRAY_TYPE)
3976 mvr = TYPE_MAIN_VARIANT (mvr);
3977 /* Opaque pointers are treated like void pointers. */
3978 is_opaque_pointer = (targetm.vector_opaque_p (type)
3979 || targetm.vector_opaque_p (rhstype))
3980 && TREE_CODE (ttl) == VECTOR_TYPE
3981 && TREE_CODE (ttr) == VECTOR_TYPE;
3982
3983 /* C++ does not allow the implicit conversion void* -> T*. However,
3984 for the purpose of reducing the number of false positives, we
3985 tolerate the special case of
3986
3987 int *p = NULL;
3988
3989 where NULL is typically defined in C to be '(void *) 0'. */
3990 if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
3991 warning (OPT_Wc___compat, "request for implicit conversion from "
3992 "%qT to %qT not permitted in C++", rhstype, type);
3993
3994 /* Check if the right-hand side has a format attribute but the
3995 left-hand side doesn't. */
3996 if (warn_missing_format_attribute
3997 && check_missing_format_attribute (type, rhstype))
3998 {
3999 switch (errtype)
4000 {
4001 case ic_argpass:
4002 case ic_argpass_nonproto:
4003 warning (OPT_Wmissing_format_attribute,
4004 "argument %d of %qE might be "
4005 "a candidate for a format attribute",
4006 parmnum, rname);
4007 break;
4008 case ic_assign:
4009 warning (OPT_Wmissing_format_attribute,
4010 "assignment left-hand side might be "
4011 "a candidate for a format attribute");
4012 break;
4013 case ic_init:
4014 warning (OPT_Wmissing_format_attribute,
4015 "initialization left-hand side might be "
4016 "a candidate for a format attribute");
4017 break;
4018 case ic_return:
4019 warning (OPT_Wmissing_format_attribute,
4020 "return type might be "
4021 "a candidate for a format attribute");
4022 break;
4023 default:
4024 gcc_unreachable ();
4025 }
4026 }
4027
4028 /* Any non-function converts to a [const][volatile] void *
4029 and vice versa; otherwise, targets must be the same.
4030 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4031 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4032 || (target_cmp = comp_target_types (type, rhstype))
4033 || is_opaque_pointer
4034 || (c_common_unsigned_type (mvl)
4035 == c_common_unsigned_type (mvr)))
4036 {
4037 if (pedantic
4038 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4039 ||
4040 (VOID_TYPE_P (ttr)
4041 && !null_pointer_constant_p (rhs)
4042 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4043 WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4044 "%qE between function pointer "
4045 "and %<void *%>"),
4046 G_("ISO C forbids assignment between "
4047 "function pointer and %<void *%>"),
4048 G_("ISO C forbids initialization between "
4049 "function pointer and %<void *%>"),
4050 G_("ISO C forbids return between function "
4051 "pointer and %<void *%>"));
4052 /* Const and volatile mean something different for function types,
4053 so the usual warnings are not appropriate. */
4054 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4055 && TREE_CODE (ttl) != FUNCTION_TYPE)
4056 {
4057 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4058 {
4059 /* Types differing only by the presence of the 'volatile'
4060 qualifier are acceptable if the 'volatile' has been added
4061 in by the Objective-C EH machinery. */
4062 if (!objc_type_quals_match (ttl, ttr))
4063 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4064 "qualifiers from pointer target type"),
4065 G_("assignment discards qualifiers "
4066 "from pointer target type"),
4067 G_("initialization discards qualifiers "
4068 "from pointer target type"),
4069 G_("return discards qualifiers from "
4070 "pointer target type"));
4071 }
4072 /* If this is not a case of ignoring a mismatch in signedness,
4073 no warning. */
4074 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4075 || target_cmp)
4076 ;
4077 /* If there is a mismatch, do warn. */
4078 else if (warn_pointer_sign)
4079 WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4080 "%d of %qE differ in signedness"),
4081 G_("pointer targets in assignment "
4082 "differ in signedness"),
4083 G_("pointer targets in initialization "
4084 "differ in signedness"),
4085 G_("pointer targets in return differ "
4086 "in signedness"));
4087 }
4088 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4089 && TREE_CODE (ttr) == FUNCTION_TYPE)
4090 {
4091 /* Because const and volatile on functions are restrictions
4092 that say the function will not do certain things,
4093 it is okay to use a const or volatile function
4094 where an ordinary one is wanted, but not vice-versa. */
4095 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4096 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4097 "qualified function pointer "
4098 "from unqualified"),
4099 G_("assignment makes qualified function "
4100 "pointer from unqualified"),
4101 G_("initialization makes qualified "
4102 "function pointer from unqualified"),
4103 G_("return makes qualified function "
4104 "pointer from unqualified"));
4105 }
4106 }
4107 else
4108 /* Avoid warning about the volatile ObjC EH puts on decls. */
4109 if (!objc_ok)
4110 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4111 "incompatible pointer type"),
4112 G_("assignment from incompatible pointer type"),
4113 G_("initialization from incompatible "
4114 "pointer type"),
4115 G_("return from incompatible pointer type"));
4116
4117 return convert (type, rhs);
4118 }
4119 else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4120 {
4121 /* ??? This should not be an error when inlining calls to
4122 unprototyped functions. */
4123 error ("invalid use of non-lvalue array");
4124 return error_mark_node;
4125 }
4126 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4127 {
4128 /* An explicit constant 0 can convert to a pointer,
4129 or one that results from arithmetic, even including
4130 a cast to integer type. */
4131 if (!null_pointer_constant_p (rhs))
4132 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4133 "pointer from integer without a cast"),
4134 G_("assignment makes pointer from integer "
4135 "without a cast"),
4136 G_("initialization makes pointer from "
4137 "integer without a cast"),
4138 G_("return makes pointer from integer "
4139 "without a cast"));
4140
4141 return convert (type, rhs);
4142 }
4143 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4144 {
4145 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4146 "from pointer without a cast"),
4147 G_("assignment makes integer from pointer "
4148 "without a cast"),
4149 G_("initialization makes integer from pointer "
4150 "without a cast"),
4151 G_("return makes integer from pointer "
4152 "without a cast"));
4153 return convert (type, rhs);
4154 }
4155 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4156 return convert (type, rhs);
4157
4158 switch (errtype)
4159 {
4160 case ic_argpass:
4161 case ic_argpass_nonproto:
4162 /* ??? This should not be an error when inlining calls to
4163 unprototyped functions. */
4164 error ("incompatible type for argument %d of %qE", parmnum, rname);
4165 break;
4166 case ic_assign:
4167 error ("incompatible types in assignment");
4168 break;
4169 case ic_init:
4170 error ("incompatible types in initialization");
4171 break;
4172 case ic_return:
4173 error ("incompatible types in return");
4174 break;
4175 default:
4176 gcc_unreachable ();
4177 }
4178
4179 return error_mark_node;
4180 }
4181
4182 /* Convert VALUE for assignment into inlined parameter PARM. ARGNUM
4183 is used for error and waring reporting and indicates which argument
4184 is being processed. */
4185
4186 tree
4187 c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
4188 {
4189 tree ret, type;
4190
4191 /* If FN was prototyped, the value has been converted already
4192 in convert_arguments. */
4193 if (!value || TYPE_ARG_TYPES (TREE_TYPE (fn)))
4194 return value;
4195
4196 type = TREE_TYPE (parm);
4197 ret = convert_for_assignment (type, value,
4198 ic_argpass_nonproto, fn,
4199 fn, argnum);
4200 if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
4201 && INTEGRAL_TYPE_P (type)
4202 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4203 ret = default_conversion (ret);
4204 return ret;
4205 }
4206 \f
4207 /* If VALUE is a compound expr all of whose expressions are constant, then
4208 return its value. Otherwise, return error_mark_node.
4209
4210 This is for handling COMPOUND_EXPRs as initializer elements
4211 which is allowed with a warning when -pedantic is specified. */
4212
4213 static tree
4214 valid_compound_expr_initializer (tree value, tree endtype)
4215 {
4216 if (TREE_CODE (value) == COMPOUND_EXPR)
4217 {
4218 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4219 == error_mark_node)
4220 return error_mark_node;
4221 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4222 endtype);
4223 }
4224 else if (!initializer_constant_valid_p (value, endtype))
4225 return error_mark_node;
4226 else
4227 return value;
4228 }
4229 \f
4230 /* Perform appropriate conversions on the initial value of a variable,
4231 store it in the declaration DECL,
4232 and print any error messages that are appropriate.
4233 If the init is invalid, store an ERROR_MARK. */
4234
4235 void
4236 store_init_value (tree decl, tree init)
4237 {
4238 tree value, type;
4239
4240 /* If variable's type was invalidly declared, just ignore it. */
4241
4242 type = TREE_TYPE (decl);
4243 if (TREE_CODE (type) == ERROR_MARK)
4244 return;
4245
4246 /* Digest the specified initializer into an expression. */
4247
4248 value = digest_init (type, init, true, TREE_STATIC (decl));
4249
4250 /* Store the expression if valid; else report error. */
4251
4252 if (!in_system_header
4253 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4254 warning (OPT_Wtraditional, "traditional C rejects automatic "
4255 "aggregate initialization");
4256
4257 DECL_INITIAL (decl) = value;
4258
4259 /* ANSI wants warnings about out-of-range constant initializers. */
4260 STRIP_TYPE_NOPS (value);
4261 constant_expression_warning (value);
4262
4263 /* Check if we need to set array size from compound literal size. */
4264 if (TREE_CODE (type) == ARRAY_TYPE
4265 && TYPE_DOMAIN (type) == 0
4266 && value != error_mark_node)
4267 {
4268 tree inside_init = init;
4269
4270 STRIP_TYPE_NOPS (inside_init);
4271 inside_init = fold (inside_init);
4272
4273 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4274 {
4275 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4276
4277 if (TYPE_DOMAIN (TREE_TYPE (decl)))
4278 {
4279 /* For int foo[] = (int [3]){1}; we need to set array size
4280 now since later on array initializer will be just the
4281 brace enclosed list of the compound literal. */
4282 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (decl));
4283 layout_type (type);
4284 layout_decl (decl, 0);
4285 }
4286 }
4287 }
4288 }
4289 \f
4290 /* Methods for storing and printing names for error messages. */
4291
4292 /* Implement a spelling stack that allows components of a name to be pushed
4293 and popped. Each element on the stack is this structure. */
4294
4295 struct spelling
4296 {
4297 int kind;
4298 union
4299 {
4300 int i;
4301 const char *s;
4302 } u;
4303 };
4304
4305 #define SPELLING_STRING 1
4306 #define SPELLING_MEMBER 2
4307 #define SPELLING_BOUNDS 3
4308
4309 static struct spelling *spelling; /* Next stack element (unused). */
4310 static struct spelling *spelling_base; /* Spelling stack base. */
4311 static int spelling_size; /* Size of the spelling stack. */
4312
4313 /* Macros to save and restore the spelling stack around push_... functions.
4314 Alternative to SAVE_SPELLING_STACK. */
4315
4316 #define SPELLING_DEPTH() (spelling - spelling_base)
4317 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4318
4319 /* Push an element on the spelling stack with type KIND and assign VALUE
4320 to MEMBER. */
4321
4322 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4323 { \
4324 int depth = SPELLING_DEPTH (); \
4325 \
4326 if (depth >= spelling_size) \
4327 { \
4328 spelling_size += 10; \
4329 spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
4330 spelling_size); \
4331 RESTORE_SPELLING_DEPTH (depth); \
4332 } \
4333 \
4334 spelling->kind = (KIND); \
4335 spelling->MEMBER = (VALUE); \
4336 spelling++; \
4337 }
4338
4339 /* Push STRING on the stack. Printed literally. */
4340
4341 static void
4342 push_string (const char *string)
4343 {
4344 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4345 }
4346
4347 /* Push a member name on the stack. Printed as '.' STRING. */
4348
4349 static void
4350 push_member_name (tree decl)
4351 {
4352 const char *const string
4353 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4354 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4355 }
4356
4357 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4358
4359 static void
4360 push_array_bounds (int bounds)
4361 {
4362 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4363 }
4364
4365 /* Compute the maximum size in bytes of the printed spelling. */
4366
4367 static int
4368 spelling_length (void)
4369 {
4370 int size = 0;
4371 struct spelling *p;
4372
4373 for (p = spelling_base; p < spelling; p++)
4374 {
4375 if (p->kind == SPELLING_BOUNDS)
4376 size += 25;
4377 else
4378 size += strlen (p->u.s) + 1;
4379 }
4380
4381 return size;
4382 }
4383
4384 /* Print the spelling to BUFFER and return it. */
4385
4386 static char *
4387 print_spelling (char *buffer)
4388 {
4389 char *d = buffer;
4390 struct spelling *p;
4391
4392 for (p = spelling_base; p < spelling; p++)
4393 if (p->kind == SPELLING_BOUNDS)
4394 {
4395 sprintf (d, "[%d]", p->u.i);
4396 d += strlen (d);
4397 }
4398 else
4399 {
4400 const char *s;
4401 if (p->kind == SPELLING_MEMBER)
4402 *d++ = '.';
4403 for (s = p->u.s; (*d = *s++); d++)
4404 ;
4405 }
4406 *d++ = '\0';
4407 return buffer;
4408 }
4409
4410 /* Issue an error message for a bad initializer component.
4411 MSGID identifies the message.
4412 The component name is taken from the spelling stack. */
4413
4414 void
4415 error_init (const char *msgid)
4416 {
4417 char *ofwhat;
4418
4419 error ("%s", _(msgid));
4420 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4421 if (*ofwhat)
4422 error ("(near initialization for %qs)", ofwhat);
4423 }
4424
4425 /* Issue a pedantic warning for a bad initializer component.
4426 MSGID identifies the message.
4427 The component name is taken from the spelling stack. */
4428
4429 void
4430 pedwarn_init (const char *msgid)
4431 {
4432 char *ofwhat;
4433
4434 pedwarn ("%s", _(msgid));
4435 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4436 if (*ofwhat)
4437 pedwarn ("(near initialization for %qs)", ofwhat);
4438 }
4439
4440 /* Issue a warning for a bad initializer component.
4441 MSGID identifies the message.
4442 The component name is taken from the spelling stack. */
4443
4444 static void
4445 warning_init (const char *msgid)
4446 {
4447 char *ofwhat;
4448
4449 warning (0, "%s", _(msgid));
4450 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4451 if (*ofwhat)
4452 warning (0, "(near initialization for %qs)", ofwhat);
4453 }
4454 \f
4455 /* If TYPE is an array type and EXPR is a parenthesized string
4456 constant, warn if pedantic that EXPR is being used to initialize an
4457 object of type TYPE. */
4458
4459 void
4460 maybe_warn_string_init (tree type, struct c_expr expr)
4461 {
4462 if (pedantic
4463 && TREE_CODE (type) == ARRAY_TYPE
4464 && TREE_CODE (expr.value) == STRING_CST
4465 && expr.original_code != STRING_CST)
4466 pedwarn_init ("array initialized from parenthesized string constant");
4467 }
4468
4469 /* Digest the parser output INIT as an initializer for type TYPE.
4470 Return a C expression of type TYPE to represent the initial value.
4471
4472 If INIT is a string constant, STRICT_STRING is true if it is
4473 unparenthesized or we should not warn here for it being parenthesized.
4474 For other types of INIT, STRICT_STRING is not used.
4475
4476 REQUIRE_CONSTANT requests an error if non-constant initializers or
4477 elements are seen. */
4478
4479 static tree
4480 digest_init (tree type, tree init, bool strict_string, int require_constant)
4481 {
4482 enum tree_code code = TREE_CODE (type);
4483 tree inside_init = init;
4484
4485 if (type == error_mark_node
4486 || init == error_mark_node
4487 || TREE_TYPE (init) == error_mark_node)
4488 return error_mark_node;
4489
4490 STRIP_TYPE_NOPS (inside_init);
4491
4492 inside_init = fold (inside_init);
4493
4494 /* Initialization of an array of chars from a string constant
4495 optionally enclosed in braces. */
4496
4497 if (code == ARRAY_TYPE && inside_init
4498 && TREE_CODE (inside_init) == STRING_CST)
4499 {
4500 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4501 /* Note that an array could be both an array of character type
4502 and an array of wchar_t if wchar_t is signed char or unsigned
4503 char. */
4504 bool char_array = (typ1 == char_type_node
4505 || typ1 == signed_char_type_node
4506 || typ1 == unsigned_char_type_node);
4507 bool wchar_array = !!comptypes (typ1, wchar_type_node);
4508 if (char_array || wchar_array)
4509 {
4510 struct c_expr expr;
4511 bool char_string;
4512 expr.value = inside_init;
4513 expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4514 maybe_warn_string_init (type, expr);
4515
4516 char_string
4517 = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4518 == char_type_node);
4519
4520 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4521 TYPE_MAIN_VARIANT (type)))
4522 return inside_init;
4523
4524 if (!wchar_array && !char_string)
4525 {
4526 error_init ("char-array initialized from wide string");
4527 return error_mark_node;
4528 }
4529 if (char_string && !char_array)
4530 {
4531 error_init ("wchar_t-array initialized from non-wide string");
4532 return error_mark_node;
4533 }
4534
4535 TREE_TYPE (inside_init) = type;
4536 if (TYPE_DOMAIN (type) != 0
4537 && TYPE_SIZE (type) != 0
4538 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4539 /* Subtract 1 (or sizeof (wchar_t))
4540 because it's ok to ignore the terminating null char
4541 that is counted in the length of the constant. */
4542 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4543 TREE_STRING_LENGTH (inside_init)
4544 - ((TYPE_PRECISION (typ1)
4545 != TYPE_PRECISION (char_type_node))
4546 ? (TYPE_PRECISION (wchar_type_node)
4547 / BITS_PER_UNIT)
4548 : 1)))
4549 pedwarn_init ("initializer-string for array of chars is too long");
4550
4551 return inside_init;
4552 }
4553 else if (INTEGRAL_TYPE_P (typ1))
4554 {
4555 error_init ("array of inappropriate type initialized "
4556 "from string constant");
4557 return error_mark_node;
4558 }
4559 }
4560
4561 /* Build a VECTOR_CST from a *constant* vector constructor. If the
4562 vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4563 below and handle as a constructor. */
4564 if (code == VECTOR_TYPE
4565 && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4566 && vector_types_convertible_p (TREE_TYPE (inside_init), type)
4567 && TREE_CONSTANT (inside_init))
4568 {
4569 if (TREE_CODE (inside_init) == VECTOR_CST
4570 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4571 TYPE_MAIN_VARIANT (type)))
4572 return inside_init;
4573
4574 if (TREE_CODE (inside_init) == CONSTRUCTOR)
4575 {
4576 unsigned HOST_WIDE_INT ix;
4577 tree value;
4578 bool constant_p = true;
4579
4580 /* Iterate through elements and check if all constructor
4581 elements are *_CSTs. */
4582 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4583 if (!CONSTANT_CLASS_P (value))
4584 {
4585 constant_p = false;
4586 break;
4587 }
4588
4589 if (constant_p)
4590 return build_vector_from_ctor (type,
4591 CONSTRUCTOR_ELTS (inside_init));
4592 }
4593 }
4594
4595 /* Any type can be initialized
4596 from an expression of the same type, optionally with braces. */
4597
4598 if (inside_init && TREE_TYPE (inside_init) != 0
4599 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4600 TYPE_MAIN_VARIANT (type))
4601 || (code == ARRAY_TYPE
4602 && comptypes (TREE_TYPE (inside_init), type))
4603 || (code == VECTOR_TYPE
4604 && comptypes (TREE_TYPE (inside_init), type))
4605 || (code == POINTER_TYPE
4606 && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4607 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4608 TREE_TYPE (type)))))
4609 {
4610 if (code == POINTER_TYPE)
4611 {
4612 if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4613 {
4614 if (TREE_CODE (inside_init) == STRING_CST
4615 || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4616 inside_init = array_to_pointer_conversion (inside_init);
4617 else
4618 {
4619 error_init ("invalid use of non-lvalue array");
4620 return error_mark_node;
4621 }
4622 }
4623 }
4624
4625 if (code == VECTOR_TYPE)
4626 /* Although the types are compatible, we may require a
4627 conversion. */
4628 inside_init = convert (type, inside_init);
4629
4630 if (require_constant && !flag_isoc99
4631 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4632 {
4633 /* As an extension, allow initializing objects with static storage
4634 duration with compound literals (which are then treated just as
4635 the brace enclosed list they contain). */
4636 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4637 inside_init = DECL_INITIAL (decl);
4638 }
4639
4640 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4641 && TREE_CODE (inside_init) != CONSTRUCTOR)
4642 {
4643 error_init ("array initialized from non-constant array expression");
4644 return error_mark_node;
4645 }
4646
4647 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4648 inside_init = decl_constant_value_for_broken_optimization (inside_init);
4649
4650 /* Compound expressions can only occur here if -pedantic or
4651 -pedantic-errors is specified. In the later case, we always want
4652 an error. In the former case, we simply want a warning. */
4653 if (require_constant && pedantic
4654 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4655 {
4656 inside_init
4657 = valid_compound_expr_initializer (inside_init,
4658 TREE_TYPE (inside_init));
4659 if (inside_init == error_mark_node)
4660 error_init ("initializer element is not constant");
4661 else
4662 pedwarn_init ("initializer element is not constant");
4663 if (flag_pedantic_errors)
4664 inside_init = error_mark_node;
4665 }
4666 else if (require_constant
4667 && !initializer_constant_valid_p (inside_init,
4668 TREE_TYPE (inside_init)))
4669 {
4670 error_init ("initializer element is not constant");
4671 inside_init = error_mark_node;
4672 }
4673
4674 /* Added to enable additional -Wmissing-format-attribute warnings. */
4675 if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4676 inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4677 NULL_TREE, 0);
4678 return inside_init;
4679 }
4680
4681 /* Handle scalar types, including conversions. */
4682
4683 if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4684 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4685 || code == VECTOR_TYPE)
4686 {
4687 if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4688 && (TREE_CODE (init) == STRING_CST
4689 || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4690 init = array_to_pointer_conversion (init);
4691 inside_init
4692 = convert_for_assignment (type, init, ic_init,
4693 NULL_TREE, NULL_TREE, 0);
4694
4695 /* Check to see if we have already given an error message. */
4696 if (inside_init == error_mark_node)
4697 ;
4698 else if (require_constant && !TREE_CONSTANT (inside_init))
4699 {
4700 error_init ("initializer element is not constant");
4701 inside_init = error_mark_node;
4702 }
4703 else if (require_constant
4704 && !initializer_constant_valid_p (inside_init,
4705 TREE_TYPE (inside_init)))
4706 {
4707 error_init ("initializer element is not computable at load time");
4708 inside_init = error_mark_node;
4709 }
4710
4711 return inside_init;
4712 }
4713
4714 /* Come here only for records and arrays. */
4715
4716 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4717 {
4718 error_init ("variable-sized object may not be initialized");
4719 return error_mark_node;
4720 }
4721
4722 error_init ("invalid initializer");
4723 return error_mark_node;
4724 }
4725 \f
4726 /* Handle initializers that use braces. */
4727
4728 /* Type of object we are accumulating a constructor for.
4729 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4730 static tree constructor_type;
4731
4732 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4733 left to fill. */
4734 static tree constructor_fields;
4735
4736 /* For an ARRAY_TYPE, this is the specified index
4737 at which to store the next element we get. */
4738 static tree constructor_index;
4739
4740 /* For an ARRAY_TYPE, this is the maximum index. */
4741 static tree constructor_max_index;
4742
4743 /* For a RECORD_TYPE, this is the first field not yet written out. */
4744 static tree constructor_unfilled_fields;
4745
4746 /* For an ARRAY_TYPE, this is the index of the first element
4747 not yet written out. */
4748 static tree constructor_unfilled_index;
4749
4750 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4751 This is so we can generate gaps between fields, when appropriate. */
4752 static tree constructor_bit_index;
4753
4754 /* If we are saving up the elements rather than allocating them,
4755 this is the list of elements so far (in reverse order,
4756 most recent first). */
4757 static VEC(constructor_elt,gc) *constructor_elements;
4758
4759 /* 1 if constructor should be incrementally stored into a constructor chain,
4760 0 if all the elements should be kept in AVL tree. */
4761 static int constructor_incremental;
4762
4763 /* 1 if so far this constructor's elements are all compile-time constants. */
4764 static int constructor_constant;
4765
4766 /* 1 if so far this constructor's elements are all valid address constants. */
4767 static int constructor_simple;
4768
4769 /* 1 if this constructor is erroneous so far. */
4770 static int constructor_erroneous;
4771
4772 /* Structure for managing pending initializer elements, organized as an
4773 AVL tree. */
4774
4775 struct init_node
4776 {
4777 struct init_node *left, *right;
4778 struct init_node *parent;
4779 int balance;
4780 tree purpose;
4781 tree value;
4782 };
4783
4784 /* Tree of pending elements at this constructor level.
4785 These are elements encountered out of order
4786 which belong at places we haven't reached yet in actually
4787 writing the output.
4788 Will never hold tree nodes across GC runs. */
4789 static struct init_node *constructor_pending_elts;
4790
4791 /* The SPELLING_DEPTH of this constructor. */
4792 static int constructor_depth;
4793
4794 /* DECL node for which an initializer is being read.
4795 0 means we are reading a constructor expression
4796 such as (struct foo) {...}. */
4797 static tree constructor_decl;
4798
4799 /* Nonzero if this is an initializer for a top-level decl. */
4800 static int constructor_top_level;
4801
4802 /* Nonzero if there were any member designators in this initializer. */
4803 static int constructor_designated;
4804
4805 /* Nesting depth of designator list. */
4806 static int designator_depth;
4807
4808 /* Nonzero if there were diagnosed errors in this designator list. */
4809 static int designator_erroneous;
4810
4811 \f
4812 /* This stack has a level for each implicit or explicit level of
4813 structuring in the initializer, including the outermost one. It
4814 saves the values of most of the variables above. */
4815
4816 struct constructor_range_stack;
4817
4818 struct constructor_stack
4819 {
4820 struct constructor_stack *next;
4821 tree type;
4822 tree fields;
4823 tree index;
4824 tree max_index;
4825 tree unfilled_index;
4826 tree unfilled_fields;
4827 tree bit_index;
4828 VEC(constructor_elt,gc) *elements;
4829 struct init_node *pending_elts;
4830 int offset;
4831 int depth;
4832 /* If value nonzero, this value should replace the entire
4833 constructor at this level. */
4834 struct c_expr replacement_value;
4835 struct constructor_range_stack *range_stack;
4836 char constant;
4837 char simple;
4838 char implicit;
4839 char erroneous;
4840 char outer;
4841 char incremental;
4842 char designated;
4843 };
4844
4845 static struct constructor_stack *constructor_stack;
4846
4847 /* This stack represents designators from some range designator up to
4848 the last designator in the list. */
4849
4850 struct constructor_range_stack
4851 {
4852 struct constructor_range_stack *next, *prev;
4853 struct constructor_stack *stack;
4854 tree range_start;
4855 tree index;
4856 tree range_end;
4857 tree fields;
4858 };
4859
4860 static struct constructor_range_stack *constructor_range_stack;
4861
4862 /* This stack records separate initializers that are nested.
4863 Nested initializers can't happen in ANSI C, but GNU C allows them
4864 in cases like { ... (struct foo) { ... } ... }. */
4865
4866 struct initializer_stack
4867 {
4868 struct initializer_stack *next;
4869 tree decl;
4870 struct constructor_stack *constructor_stack;
4871 struct constructor_range_stack *constructor_range_stack;
4872 VEC(constructor_elt,gc) *elements;
4873 struct spelling *spelling;
4874 struct spelling *spelling_base;
4875 int spelling_size;
4876 char top_level;
4877 char require_constant_value;
4878 char require_constant_elements;
4879 };
4880
4881 static struct initializer_stack *initializer_stack;
4882 \f
4883 /* Prepare to parse and output the initializer for variable DECL. */
4884
4885 void
4886 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
4887 {
4888 const char *locus;
4889 struct initializer_stack *p = XNEW (struct initializer_stack);
4890
4891 p->decl = constructor_decl;
4892 p->require_constant_value = require_constant_value;
4893 p->require_constant_elements = require_constant_elements;
4894 p->constructor_stack = constructor_stack;
4895 p->constructor_range_stack = constructor_range_stack;
4896 p->elements = constructor_elements;
4897 p->spelling = spelling;
4898 p->spelling_base = spelling_base;
4899 p->spelling_size = spelling_size;
4900 p->top_level = constructor_top_level;
4901 p->next = initializer_stack;
4902 initializer_stack = p;
4903
4904 constructor_decl = decl;
4905 constructor_designated = 0;
4906 constructor_top_level = top_level;
4907
4908 if (decl != 0 && decl != error_mark_node)
4909 {
4910 require_constant_value = TREE_STATIC (decl);
4911 require_constant_elements
4912 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
4913 /* For a scalar, you can always use any value to initialize,
4914 even within braces. */
4915 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
4916 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4917 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
4918 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
4919 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
4920 }
4921 else
4922 {
4923 require_constant_value = 0;
4924 require_constant_elements = 0;
4925 locus = "(anonymous)";
4926 }
4927
4928 constructor_stack = 0;
4929 constructor_range_stack = 0;
4930
4931 missing_braces_mentioned = 0;
4932
4933 spelling_base = 0;
4934 spelling_size = 0;
4935 RESTORE_SPELLING_DEPTH (0);
4936
4937 if (locus)
4938 push_string (locus);
4939 }
4940
4941 void
4942 finish_init (void)
4943 {
4944 struct initializer_stack *p = initializer_stack;
4945
4946 /* Free the whole constructor stack of this initializer. */
4947 while (constructor_stack)
4948 {
4949 struct constructor_stack *q = constructor_stack;
4950 constructor_stack = q->next;
4951 free (q);
4952 }
4953
4954 gcc_assert (!constructor_range_stack);
4955
4956 /* Pop back to the data of the outer initializer (if any). */
4957 free (spelling_base);
4958
4959 constructor_decl = p->decl;
4960 require_constant_value = p->require_constant_value;
4961 require_constant_elements = p->require_constant_elements;
4962 constructor_stack = p->constructor_stack;
4963 constructor_range_stack = p->constructor_range_stack;
4964 constructor_elements = p->elements;
4965 spelling = p->spelling;
4966 spelling_base = p->spelling_base;
4967 spelling_size = p->spelling_size;
4968 constructor_top_level = p->top_level;
4969 initializer_stack = p->next;
4970 free (p);
4971 }
4972 \f
4973 /* Call here when we see the initializer is surrounded by braces.
4974 This is instead of a call to push_init_level;
4975 it is matched by a call to pop_init_level.
4976
4977 TYPE is the type to initialize, for a constructor expression.
4978 For an initializer for a decl, TYPE is zero. */
4979
4980 void
4981 really_start_incremental_init (tree type)
4982 {
4983 struct constructor_stack *p = XNEW (struct constructor_stack);
4984
4985 if (type == 0)
4986 type = TREE_TYPE (constructor_decl);
4987
4988 if (targetm.vector_opaque_p (type))
4989 error ("opaque vector types cannot be initialized");
4990
4991 p->type = constructor_type;
4992 p->fields = constructor_fields;
4993 p->index = constructor_index;
4994 p->max_index = constructor_max_index;
4995 p->unfilled_index = constructor_unfilled_index;
4996 p->unfilled_fields = constructor_unfilled_fields;
4997 p->bit_index = constructor_bit_index;
4998 p->elements = constructor_elements;
4999 p->constant = constructor_constant;
5000 p->simple = constructor_simple;
5001 p->erroneous = constructor_erroneous;
5002 p->pending_elts = constructor_pending_elts;
5003 p->depth = constructor_depth;
5004 p->replacement_value.value = 0;
5005 p->replacement_value.original_code = ERROR_MARK;
5006 p->implicit = 0;
5007 p->range_stack = 0;
5008 p->outer = 0;
5009 p->incremental = constructor_incremental;
5010 p->designated = constructor_designated;
5011 p->next = 0;
5012 constructor_stack = p;
5013
5014 constructor_constant = 1;
5015 constructor_simple = 1;
5016 constructor_depth = SPELLING_DEPTH ();
5017 constructor_elements = 0;
5018 constructor_pending_elts = 0;
5019 constructor_type = type;
5020 constructor_incremental = 1;
5021 constructor_designated = 0;
5022 designator_depth = 0;
5023 designator_erroneous = 0;
5024
5025 if (TREE_CODE (constructor_type) == RECORD_TYPE
5026 || TREE_CODE (constructor_type) == UNION_TYPE)
5027 {
5028 constructor_fields = TYPE_FIELDS (constructor_type);
5029 /* Skip any nameless bit fields at the beginning. */
5030 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5031 && DECL_NAME (constructor_fields) == 0)
5032 constructor_fields = TREE_CHAIN (constructor_fields);
5033
5034 constructor_unfilled_fields = constructor_fields;
5035 constructor_bit_index = bitsize_zero_node;
5036 }
5037 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5038 {
5039 if (TYPE_DOMAIN (constructor_type))
5040 {
5041 constructor_max_index
5042 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5043
5044 /* Detect non-empty initializations of zero-length arrays. */
5045 if (constructor_max_index == NULL_TREE
5046 && TYPE_SIZE (constructor_type))
5047 constructor_max_index = build_int_cst (NULL_TREE, -1);
5048
5049 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5050 to initialize VLAs will cause a proper error; avoid tree
5051 checking errors as well by setting a safe value. */
5052 if (constructor_max_index
5053 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5054 constructor_max_index = build_int_cst (NULL_TREE, -1);
5055
5056 constructor_index
5057 = convert (bitsizetype,
5058 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5059 }
5060 else
5061 {
5062 constructor_index = bitsize_zero_node;
5063 constructor_max_index = NULL_TREE;
5064 }
5065
5066 constructor_unfilled_index = constructor_index;
5067 }
5068 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5069 {
5070 /* Vectors are like simple fixed-size arrays. */
5071 constructor_max_index =
5072 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5073 constructor_index = convert (bitsizetype, bitsize_zero_node);
5074 constructor_unfilled_index = constructor_index;
5075 }
5076 else
5077 {
5078 /* Handle the case of int x = {5}; */
5079 constructor_fields = constructor_type;
5080 constructor_unfilled_fields = constructor_type;
5081 }
5082 }
5083 \f
5084 /* Push down into a subobject, for initialization.
5085 If this is for an explicit set of braces, IMPLICIT is 0.
5086 If it is because the next element belongs at a lower level,
5087 IMPLICIT is 1 (or 2 if the push is because of designator list). */
5088
5089 void
5090 push_init_level (int implicit)
5091 {
5092 struct constructor_stack *p;
5093 tree value = NULL_TREE;
5094
5095 /* If we've exhausted any levels that didn't have braces,
5096 pop them now. If implicit == 1, this will have been done in
5097 process_init_element; do not repeat it here because in the case
5098 of excess initializers for an empty aggregate this leads to an
5099 infinite cycle of popping a level and immediately recreating
5100 it. */
5101 if (implicit != 1)
5102 {
5103 while (constructor_stack->implicit)
5104 {
5105 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5106 || TREE_CODE (constructor_type) == UNION_TYPE)
5107 && constructor_fields == 0)
5108 process_init_element (pop_init_level (1));
5109 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5110 && constructor_max_index
5111 && tree_int_cst_lt (constructor_max_index,
5112 constructor_index))
5113 process_init_element (pop_init_level (1));
5114 else
5115 break;
5116 }
5117 }
5118
5119 /* Unless this is an explicit brace, we need to preserve previous
5120 content if any. */
5121 if (implicit)
5122 {
5123 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5124 || TREE_CODE (constructor_type) == UNION_TYPE)
5125 && constructor_fields)
5126 value = find_init_member (constructor_fields);
5127 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5128 value = find_init_member (constructor_index);
5129 }
5130
5131 p = XNEW (struct constructor_stack);
5132 p->type = constructor_type;
5133 p->fields = constructor_fields;
5134 p->index = constructor_index;
5135 p->max_index = constructor_max_index;
5136 p->unfilled_index = constructor_unfilled_index;
5137 p->unfilled_fields = constructor_unfilled_fields;
5138 p->bit_index = constructor_bit_index;
5139 p->elements = constructor_elements;
5140 p->constant = constructor_constant;
5141 p->simple = constructor_simple;
5142 p->erroneous = constructor_erroneous;
5143 p->pending_elts = constructor_pending_elts;
5144 p->depth = constructor_depth;
5145 p->replacement_value.value = 0;
5146 p->replacement_value.original_code = ERROR_MARK;
5147 p->implicit = implicit;
5148 p->outer = 0;
5149 p->incremental = constructor_incremental;
5150 p->designated = constructor_designated;
5151 p->next = constructor_stack;
5152 p->range_stack = 0;
5153 constructor_stack = p;
5154
5155 constructor_constant = 1;
5156 constructor_simple = 1;
5157 constructor_depth = SPELLING_DEPTH ();
5158 constructor_elements = 0;
5159 constructor_incremental = 1;
5160 constructor_designated = 0;
5161 constructor_pending_elts = 0;
5162 if (!implicit)
5163 {
5164 p->range_stack = constructor_range_stack;
5165 constructor_range_stack = 0;
5166 designator_depth = 0;
5167 designator_erroneous = 0;
5168 }
5169
5170 /* Don't die if an entire brace-pair level is superfluous
5171 in the containing level. */
5172 if (constructor_type == 0)
5173 ;
5174 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5175 || TREE_CODE (constructor_type) == UNION_TYPE)
5176 {
5177 /* Don't die if there are extra init elts at the end. */
5178 if (constructor_fields == 0)
5179 constructor_type = 0;
5180 else
5181 {
5182 constructor_type = TREE_TYPE (constructor_fields);
5183 push_member_name (constructor_fields);
5184 constructor_depth++;
5185 }
5186 }
5187 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5188 {
5189 constructor_type = TREE_TYPE (constructor_type);
5190 push_array_bounds (tree_low_cst (constructor_index, 0));
5191 constructor_depth++;
5192 }
5193
5194 if (constructor_type == 0)
5195 {
5196 error_init ("extra brace group at end of initializer");
5197 constructor_fields = 0;
5198 constructor_unfilled_fields = 0;
5199 return;
5200 }
5201
5202 if (value && TREE_CODE (value) == CONSTRUCTOR)
5203 {
5204 constructor_constant = TREE_CONSTANT (value);
5205 constructor_simple = TREE_STATIC (value);
5206 constructor_elements = CONSTRUCTOR_ELTS (value);
5207 if (!VEC_empty (constructor_elt, constructor_elements)
5208 && (TREE_CODE (constructor_type) == RECORD_TYPE
5209 || TREE_CODE (constructor_type) == ARRAY_TYPE))
5210 set_nonincremental_init ();
5211 }
5212
5213 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5214 {
5215 missing_braces_mentioned = 1;
5216 warning_init ("missing braces around initializer");
5217 }
5218
5219 if (TREE_CODE (constructor_type) == RECORD_TYPE
5220 || TREE_CODE (constructor_type) == UNION_TYPE)
5221 {
5222 constructor_fields = TYPE_FIELDS (constructor_type);
5223 /* Skip any nameless bit fields at the beginning. */
5224 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5225 && DECL_NAME (constructor_fields) == 0)
5226 constructor_fields = TREE_CHAIN (constructor_fields);
5227
5228 constructor_unfilled_fields = constructor_fields;
5229 constructor_bit_index = bitsize_zero_node;
5230 }
5231 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5232 {
5233 /* Vectors are like simple fixed-size arrays. */
5234 constructor_max_index =
5235 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5236 constructor_index = convert (bitsizetype, integer_zero_node);
5237 constructor_unfilled_index = constructor_index;
5238 }
5239 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5240 {
5241 if (TYPE_DOMAIN (constructor_type))
5242 {
5243 constructor_max_index
5244 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5245
5246 /* Detect non-empty initializations of zero-length arrays. */
5247 if (constructor_max_index == NULL_TREE
5248 && TYPE_SIZE (constructor_type))
5249 constructor_max_index = build_int_cst (NULL_TREE, -1);
5250
5251 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5252 to initialize VLAs will cause a proper error; avoid tree
5253 checking errors as well by setting a safe value. */
5254 if (constructor_max_index
5255 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5256 constructor_max_index = build_int_cst (NULL_TREE, -1);
5257
5258 constructor_index
5259 = convert (bitsizetype,
5260 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5261 }
5262 else
5263 constructor_index = bitsize_zero_node;
5264
5265 constructor_unfilled_index = constructor_index;
5266 if (value && TREE_CODE (value) == STRING_CST)
5267 {
5268 /* We need to split the char/wchar array into individual
5269 characters, so that we don't have to special case it
5270 everywhere. */
5271 set_nonincremental_init_from_string (value);
5272 }
5273 }
5274 else
5275 {
5276 if (constructor_type != error_mark_node)
5277 warning_init ("braces around scalar initializer");
5278 constructor_fields = constructor_type;
5279 constructor_unfilled_fields = constructor_type;
5280 }
5281 }
5282
5283 /* At the end of an implicit or explicit brace level,
5284 finish up that level of constructor. If a single expression
5285 with redundant braces initialized that level, return the
5286 c_expr structure for that expression. Otherwise, the original_code
5287 element is set to ERROR_MARK.
5288 If we were outputting the elements as they are read, return 0 as the value
5289 from inner levels (process_init_element ignores that),
5290 but return error_mark_node as the value from the outermost level
5291 (that's what we want to put in DECL_INITIAL).
5292 Otherwise, return a CONSTRUCTOR expression as the value. */
5293
5294 struct c_expr
5295 pop_init_level (int implicit)
5296 {
5297 struct constructor_stack *p;
5298 struct c_expr ret;
5299 ret.value = 0;
5300 ret.original_code = ERROR_MARK;
5301
5302 if (implicit == 0)
5303 {
5304 /* When we come to an explicit close brace,
5305 pop any inner levels that didn't have explicit braces. */
5306 while (constructor_stack->implicit)
5307 process_init_element (pop_init_level (1));
5308
5309 gcc_assert (!constructor_range_stack);
5310 }
5311
5312 /* Now output all pending elements. */
5313 constructor_incremental = 1;
5314 output_pending_init_elements (1);
5315
5316 p = constructor_stack;
5317
5318 /* Error for initializing a flexible array member, or a zero-length
5319 array member in an inappropriate context. */
5320 if (constructor_type && constructor_fields
5321 && TREE_CODE (constructor_type) == ARRAY_TYPE
5322 && TYPE_DOMAIN (constructor_type)
5323 && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5324 {
5325 /* Silently discard empty initializations. The parser will
5326 already have pedwarned for empty brackets. */
5327 if (integer_zerop (constructor_unfilled_index))
5328 constructor_type = NULL_TREE;
5329 else
5330 {
5331 gcc_assert (!TYPE_SIZE (constructor_type));
5332
5333 if (constructor_depth > 2)
5334 error_init ("initialization of flexible array member in a nested context");
5335 else if (pedantic)
5336 pedwarn_init ("initialization of a flexible array member");
5337
5338 /* We have already issued an error message for the existence
5339 of a flexible array member not at the end of the structure.
5340 Discard the initializer so that we do not die later. */
5341 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5342 constructor_type = NULL_TREE;
5343 }
5344 }
5345
5346 /* Warn when some struct elements are implicitly initialized to zero. */
5347 if (warn_missing_field_initializers
5348 && constructor_type
5349 && TREE_CODE (constructor_type) == RECORD_TYPE
5350 && constructor_unfilled_fields)
5351 {
5352 /* Do not warn for flexible array members or zero-length arrays. */
5353 while (constructor_unfilled_fields
5354 && (!DECL_SIZE (constructor_unfilled_fields)
5355 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5356 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5357
5358 /* Do not warn if this level of the initializer uses member
5359 designators; it is likely to be deliberate. */
5360 if (constructor_unfilled_fields && !constructor_designated)
5361 {
5362 push_member_name (constructor_unfilled_fields);
5363 warning_init ("missing initializer");
5364 RESTORE_SPELLING_DEPTH (constructor_depth);
5365 }
5366 }
5367
5368 /* Pad out the end of the structure. */
5369 if (p->replacement_value.value)
5370 /* If this closes a superfluous brace pair,
5371 just pass out the element between them. */
5372 ret = p->replacement_value;
5373 else if (constructor_type == 0)
5374 ;
5375 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5376 && TREE_CODE (constructor_type) != UNION_TYPE
5377 && TREE_CODE (constructor_type) != ARRAY_TYPE
5378 && TREE_CODE (constructor_type) != VECTOR_TYPE)
5379 {
5380 /* A nonincremental scalar initializer--just return
5381 the element, after verifying there is just one. */
5382 if (VEC_empty (constructor_elt,constructor_elements))
5383 {
5384 if (!constructor_erroneous)
5385 error_init ("empty scalar initializer");
5386 ret.value = error_mark_node;
5387 }
5388 else if (VEC_length (constructor_elt,constructor_elements) != 1)
5389 {
5390 error_init ("extra elements in scalar initializer");
5391 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5392 }
5393 else
5394 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5395 }
5396 else
5397 {
5398 if (constructor_erroneous)
5399 ret.value = error_mark_node;
5400 else
5401 {
5402 ret.value = build_constructor (constructor_type,
5403 constructor_elements);
5404 if (constructor_constant)
5405 TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5406 if (constructor_constant && constructor_simple)
5407 TREE_STATIC (ret.value) = 1;
5408 }
5409 }
5410
5411 constructor_type = p->type;
5412 constructor_fields = p->fields;
5413 constructor_index = p->index;
5414 constructor_max_index = p->max_index;
5415 constructor_unfilled_index = p->unfilled_index;
5416 constructor_unfilled_fields = p->unfilled_fields;
5417 constructor_bit_index = p->bit_index;
5418 constructor_elements = p->elements;
5419 constructor_constant = p->constant;
5420 constructor_simple = p->simple;
5421 constructor_erroneous = p->erroneous;
5422 constructor_incremental = p->incremental;
5423 constructor_designated = p->designated;
5424 constructor_pending_elts = p->pending_elts;
5425 constructor_depth = p->depth;
5426 if (!p->implicit)
5427 constructor_range_stack = p->range_stack;
5428 RESTORE_SPELLING_DEPTH (constructor_depth);
5429
5430 constructor_stack = p->next;
5431 free (p);
5432
5433 if (ret.value == 0)
5434 {
5435 if (constructor_stack == 0)
5436 {
5437 ret.value = error_mark_node;
5438 return ret;
5439 }
5440 return ret;
5441 }
5442 return ret;
5443 }
5444
5445 /* Common handling for both array range and field name designators.
5446 ARRAY argument is nonzero for array ranges. Returns zero for success. */
5447
5448 static int
5449 set_designator (int array)
5450 {
5451 tree subtype;
5452 enum tree_code subcode;
5453
5454 /* Don't die if an entire brace-pair level is superfluous
5455 in the containing level. */
5456 if (constructor_type == 0)
5457 return 1;
5458
5459 /* If there were errors in this designator list already, bail out
5460 silently. */
5461 if (designator_erroneous)
5462 return 1;
5463
5464 if (!designator_depth)
5465 {
5466 gcc_assert (!constructor_range_stack);
5467
5468 /* Designator list starts at the level of closest explicit
5469 braces. */
5470 while (constructor_stack->implicit)
5471 process_init_element (pop_init_level (1));
5472 constructor_designated = 1;
5473 return 0;
5474 }
5475
5476 switch (TREE_CODE (constructor_type))
5477 {
5478 case RECORD_TYPE:
5479 case UNION_TYPE:
5480 subtype = TREE_TYPE (constructor_fields);
5481 if (subtype != error_mark_node)
5482 subtype = TYPE_MAIN_VARIANT (subtype);
5483 break;
5484 case ARRAY_TYPE:
5485 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5486 break;
5487 default:
5488 gcc_unreachable ();
5489 }
5490
5491 subcode = TREE_CODE (subtype);
5492 if (array && subcode != ARRAY_TYPE)
5493 {
5494 error_init ("array index in non-array initializer");
5495 return 1;
5496 }
5497 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5498 {
5499 error_init ("field name not in record or union initializer");
5500 return 1;
5501 }
5502
5503 constructor_designated = 1;
5504 push_init_level (2);
5505 return 0;
5506 }
5507
5508 /* If there are range designators in designator list, push a new designator
5509 to constructor_range_stack. RANGE_END is end of such stack range or
5510 NULL_TREE if there is no range designator at this level. */
5511
5512 static void
5513 push_range_stack (tree range_end)
5514 {
5515 struct constructor_range_stack *p;
5516
5517 p = GGC_NEW (struct constructor_range_stack);
5518 p->prev = constructor_range_stack;
5519 p->next = 0;
5520 p->fields = constructor_fields;
5521 p->range_start = constructor_index;
5522 p->index = constructor_index;
5523 p->stack = constructor_stack;
5524 p->range_end = range_end;
5525 if (constructor_range_stack)
5526 constructor_range_stack->next = p;
5527 constructor_range_stack = p;
5528 }
5529
5530 /* Within an array initializer, specify the next index to be initialized.
5531 FIRST is that index. If LAST is nonzero, then initialize a range
5532 of indices, running from FIRST through LAST. */
5533
5534 void
5535 set_init_index (tree first, tree last)
5536 {
5537 if (set_designator (1))
5538 return;
5539
5540 designator_erroneous = 1;
5541
5542 if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5543 || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5544 {
5545 error_init ("array index in initializer not of integer type");
5546 return;
5547 }
5548
5549 if (TREE_CODE (first) != INTEGER_CST)
5550 error_init ("nonconstant array index in initializer");
5551 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5552 error_init ("nonconstant array index in initializer");
5553 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5554 error_init ("array index in non-array initializer");
5555 else if (tree_int_cst_sgn (first) == -1)
5556 error_init ("array index in initializer exceeds array bounds");
5557 else if (constructor_max_index
5558 && tree_int_cst_lt (constructor_max_index, first))
5559 error_init ("array index in initializer exceeds array bounds");
5560 else
5561 {
5562 constructor_index = convert (bitsizetype, first);
5563
5564 if (last)
5565 {
5566 if (tree_int_cst_equal (first, last))
5567 last = 0;
5568 else if (tree_int_cst_lt (last, first))
5569 {
5570 error_init ("empty index range in initializer");
5571 last = 0;
5572 }
5573 else
5574 {
5575 last = convert (bitsizetype, last);
5576 if (constructor_max_index != 0
5577 && tree_int_cst_lt (constructor_max_index, last))
5578 {
5579 error_init ("array index range in initializer exceeds array bounds");
5580 last = 0;
5581 }
5582 }
5583 }
5584
5585 designator_depth++;
5586 designator_erroneous = 0;
5587 if (constructor_range_stack || last)
5588 push_range_stack (last);
5589 }
5590 }
5591
5592 /* Within a struct initializer, specify the next field to be initialized. */
5593
5594 void
5595 set_init_label (tree fieldname)
5596 {
5597 tree tail;
5598
5599 if (set_designator (0))
5600 return;
5601
5602 designator_erroneous = 1;
5603
5604 if (TREE_CODE (constructor_type) != RECORD_TYPE
5605 && TREE_CODE (constructor_type) != UNION_TYPE)
5606 {
5607 error_init ("field name not in record or union initializer");
5608 return;
5609 }
5610
5611 for (tail = TYPE_FIELDS (constructor_type); tail;
5612 tail = TREE_CHAIN (tail))
5613 {
5614 if (DECL_NAME (tail) == fieldname)
5615 break;
5616 }
5617
5618 if (tail == 0)
5619 error ("unknown field %qE specified in initializer", fieldname);
5620 else
5621 {
5622 constructor_fields = tail;
5623 designator_depth++;
5624 designator_erroneous = 0;
5625 if (constructor_range_stack)
5626 push_range_stack (NULL_TREE);
5627 }
5628 }
5629 \f
5630 /* Add a new initializer to the tree of pending initializers. PURPOSE
5631 identifies the initializer, either array index or field in a structure.
5632 VALUE is the value of that index or field. */
5633
5634 static void
5635 add_pending_init (tree purpose, tree value)
5636 {
5637 struct init_node *p, **q, *r;
5638
5639 q = &constructor_pending_elts;
5640 p = 0;
5641
5642 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5643 {
5644 while (*q != 0)
5645 {
5646 p = *q;
5647 if (tree_int_cst_lt (purpose, p->purpose))
5648 q = &p->left;
5649 else if (tree_int_cst_lt (p->purpose, purpose))
5650 q = &p->right;
5651 else
5652 {
5653 if (TREE_SIDE_EFFECTS (p->value))
5654 warning_init ("initialized field with side-effects overwritten");
5655 p->value = value;
5656 return;
5657 }
5658 }
5659 }
5660 else
5661 {
5662 tree bitpos;
5663
5664 bitpos = bit_position (purpose);
5665 while (*q != NULL)
5666 {
5667 p = *q;
5668 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5669 q = &p->left;
5670 else if (p->purpose != purpose)
5671 q = &p->right;
5672 else
5673 {
5674 if (TREE_SIDE_EFFECTS (p->value))
5675 warning_init ("initialized field with side-effects overwritten");
5676 p->value = value;
5677 return;
5678 }
5679 }
5680 }
5681
5682 r = GGC_NEW (struct init_node);
5683 r->purpose = purpose;
5684 r->value = value;
5685
5686 *q = r;
5687 r->parent = p;
5688 r->left = 0;
5689 r->right = 0;
5690 r->balance = 0;
5691
5692 while (p)
5693 {
5694 struct init_node *s;
5695
5696 if (r == p->left)
5697 {
5698 if (p->balance == 0)
5699 p->balance = -1;
5700 else if (p->balance < 0)
5701 {
5702 if (r->balance < 0)
5703 {
5704 /* L rotation. */
5705 p->left = r->right;
5706 if (p->left)
5707 p->left->parent = p;
5708 r->right = p;
5709
5710 p->balance = 0;
5711 r->balance = 0;
5712
5713 s = p->parent;
5714 p->parent = r;
5715 r->parent = s;
5716 if (s)
5717 {
5718 if (s->left == p)
5719 s->left = r;
5720 else
5721 s->right = r;
5722 }
5723 else
5724 constructor_pending_elts = r;
5725 }
5726 else
5727 {
5728 /* LR rotation. */
5729 struct init_node *t = r->right;
5730
5731 r->right = t->left;
5732 if (r->right)
5733 r->right->parent = r;
5734 t->left = r;
5735
5736 p->left = t->right;
5737 if (p->left)
5738 p->left->parent = p;
5739 t->right = p;
5740
5741 p->balance = t->balance < 0;
5742 r->balance = -(t->balance > 0);
5743 t->balance = 0;
5744
5745 s = p->parent;
5746 p->parent = t;
5747 r->parent = t;
5748 t->parent = s;
5749 if (s)
5750 {
5751 if (s->left == p)
5752 s->left = t;
5753 else
5754 s->right = t;
5755 }
5756 else
5757 constructor_pending_elts = t;
5758 }
5759 break;
5760 }
5761 else
5762 {
5763 /* p->balance == +1; growth of left side balances the node. */
5764 p->balance = 0;
5765 break;
5766 }
5767 }
5768 else /* r == p->right */
5769 {
5770 if (p->balance == 0)
5771 /* Growth propagation from right side. */
5772 p->balance++;
5773 else if (p->balance > 0)
5774 {
5775 if (r->balance > 0)
5776 {
5777 /* R rotation. */
5778 p->right = r->left;
5779 if (p->right)
5780 p->right->parent = p;
5781 r->left = p;
5782
5783 p->balance = 0;
5784 r->balance = 0;
5785
5786 s = p->parent;
5787 p->parent = r;
5788 r->parent = s;
5789 if (s)
5790 {
5791 if (s->left == p)
5792 s->left = r;
5793 else
5794 s->right = r;
5795 }
5796 else
5797 constructor_pending_elts = r;
5798 }
5799 else /* r->balance == -1 */
5800 {
5801 /* RL rotation */
5802 struct init_node *t = r->left;
5803
5804 r->left = t->right;
5805 if (r->left)
5806 r->left->parent = r;
5807 t->right = r;
5808
5809 p->right = t->left;
5810 if (p->right)
5811 p->right->parent = p;
5812 t->left = p;
5813
5814 r->balance = (t->balance < 0);
5815 p->balance = -(t->balance > 0);
5816 t->balance = 0;
5817
5818 s = p->parent;
5819 p->parent = t;
5820 r->parent = t;
5821 t->parent = s;
5822 if (s)
5823 {
5824 if (s->left == p)
5825 s->left = t;
5826 else
5827 s->right = t;
5828 }
5829 else
5830 constructor_pending_elts = t;
5831 }
5832 break;
5833 }
5834 else
5835 {
5836 /* p->balance == -1; growth of right side balances the node. */
5837 p->balance = 0;
5838 break;
5839 }
5840 }
5841
5842 r = p;
5843 p = p->parent;
5844 }
5845 }
5846
5847 /* Build AVL tree from a sorted chain. */
5848
5849 static void
5850 set_nonincremental_init (void)
5851 {
5852 unsigned HOST_WIDE_INT ix;
5853 tree index, value;
5854
5855 if (TREE_CODE (constructor_type) != RECORD_TYPE
5856 && TREE_CODE (constructor_type) != ARRAY_TYPE)
5857 return;
5858
5859 FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
5860 add_pending_init (index, value);
5861 constructor_elements = 0;
5862 if (TREE_CODE (constructor_type) == RECORD_TYPE)
5863 {
5864 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
5865 /* Skip any nameless bit fields at the beginning. */
5866 while (constructor_unfilled_fields != 0
5867 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5868 && DECL_NAME (constructor_unfilled_fields) == 0)
5869 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5870
5871 }
5872 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5873 {
5874 if (TYPE_DOMAIN (constructor_type))
5875 constructor_unfilled_index
5876 = convert (bitsizetype,
5877 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5878 else
5879 constructor_unfilled_index = bitsize_zero_node;
5880 }
5881 constructor_incremental = 0;
5882 }
5883
5884 /* Build AVL tree from a string constant. */
5885
5886 static void
5887 set_nonincremental_init_from_string (tree str)
5888 {
5889 tree value, purpose, type;
5890 HOST_WIDE_INT val[2];
5891 const char *p, *end;
5892 int byte, wchar_bytes, charwidth, bitpos;
5893
5894 gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
5895
5896 if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5897 == TYPE_PRECISION (char_type_node))
5898 wchar_bytes = 1;
5899 else
5900 {
5901 gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5902 == TYPE_PRECISION (wchar_type_node));
5903 wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
5904 }
5905 charwidth = TYPE_PRECISION (char_type_node);
5906 type = TREE_TYPE (constructor_type);
5907 p = TREE_STRING_POINTER (str);
5908 end = p + TREE_STRING_LENGTH (str);
5909
5910 for (purpose = bitsize_zero_node;
5911 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
5912 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
5913 {
5914 if (wchar_bytes == 1)
5915 {
5916 val[1] = (unsigned char) *p++;
5917 val[0] = 0;
5918 }
5919 else
5920 {
5921 val[0] = 0;
5922 val[1] = 0;
5923 for (byte = 0; byte < wchar_bytes; byte++)
5924 {
5925 if (BYTES_BIG_ENDIAN)
5926 bitpos = (wchar_bytes - byte - 1) * charwidth;
5927 else
5928 bitpos = byte * charwidth;
5929 val[bitpos < HOST_BITS_PER_WIDE_INT]
5930 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
5931 << (bitpos % HOST_BITS_PER_WIDE_INT);
5932 }
5933 }
5934
5935 if (!TYPE_UNSIGNED (type))
5936 {
5937 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
5938 if (bitpos < HOST_BITS_PER_WIDE_INT)
5939 {
5940 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
5941 {
5942 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
5943 val[0] = -1;
5944 }
5945 }
5946 else if (bitpos == HOST_BITS_PER_WIDE_INT)
5947 {
5948 if (val[1] < 0)
5949 val[0] = -1;
5950 }
5951 else if (val[0] & (((HOST_WIDE_INT) 1)
5952 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
5953 val[0] |= ((HOST_WIDE_INT) -1)
5954 << (bitpos - HOST_BITS_PER_WIDE_INT);
5955 }
5956
5957 value = build_int_cst_wide (type, val[1], val[0]);
5958 add_pending_init (purpose, value);
5959 }
5960
5961 constructor_incremental = 0;
5962 }
5963
5964 /* Return value of FIELD in pending initializer or zero if the field was
5965 not initialized yet. */
5966
5967 static tree
5968 find_init_member (tree field)
5969 {
5970 struct init_node *p;
5971
5972 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5973 {
5974 if (constructor_incremental
5975 && tree_int_cst_lt (field, constructor_unfilled_index))
5976 set_nonincremental_init ();
5977
5978 p = constructor_pending_elts;
5979 while (p)
5980 {
5981 if (tree_int_cst_lt (field, p->purpose))
5982 p = p->left;
5983 else if (tree_int_cst_lt (p->purpose, field))
5984 p = p->right;
5985 else
5986 return p->value;
5987 }
5988 }
5989 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
5990 {
5991 tree bitpos = bit_position (field);
5992
5993 if (constructor_incremental
5994 && (!constructor_unfilled_fields
5995 || tree_int_cst_lt (bitpos,
5996 bit_position (constructor_unfilled_fields))))
5997 set_nonincremental_init ();
5998
5999 p = constructor_pending_elts;
6000 while (p)
6001 {
6002 if (field == p->purpose)
6003 return p->value;
6004 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6005 p = p->left;
6006 else
6007 p = p->right;
6008 }
6009 }
6010 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6011 {
6012 if (!VEC_empty (constructor_elt, constructor_elements)
6013 && (VEC_last (constructor_elt, constructor_elements)->index
6014 == field))
6015 return VEC_last (constructor_elt, constructor_elements)->value;
6016 }
6017 return 0;
6018 }
6019
6020 /* "Output" the next constructor element.
6021 At top level, really output it to assembler code now.
6022 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6023 TYPE is the data type that the containing data type wants here.
6024 FIELD is the field (a FIELD_DECL) or the index that this element fills.
6025 If VALUE is a string constant, STRICT_STRING is true if it is
6026 unparenthesized or we should not warn here for it being parenthesized.
6027 For other types of VALUE, STRICT_STRING is not used.
6028
6029 PENDING if non-nil means output pending elements that belong
6030 right after this element. (PENDING is normally 1;
6031 it is 0 while outputting pending elements, to avoid recursion.) */
6032
6033 static void
6034 output_init_element (tree value, bool strict_string, tree type, tree field,
6035 int pending)
6036 {
6037 constructor_elt *celt;
6038
6039 if (type == error_mark_node || value == error_mark_node)
6040 {
6041 constructor_erroneous = 1;
6042 return;
6043 }
6044 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6045 && (TREE_CODE (value) == STRING_CST
6046 || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6047 && !(TREE_CODE (value) == STRING_CST
6048 && TREE_CODE (type) == ARRAY_TYPE
6049 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6050 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6051 TYPE_MAIN_VARIANT (type)))
6052 value = array_to_pointer_conversion (value);
6053
6054 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6055 && require_constant_value && !flag_isoc99 && pending)
6056 {
6057 /* As an extension, allow initializing objects with static storage
6058 duration with compound literals (which are then treated just as
6059 the brace enclosed list they contain). */
6060 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6061 value = DECL_INITIAL (decl);
6062 }
6063
6064 if (value == error_mark_node)
6065 constructor_erroneous = 1;
6066 else if (!TREE_CONSTANT (value))
6067 constructor_constant = 0;
6068 else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6069 || ((TREE_CODE (constructor_type) == RECORD_TYPE
6070 || TREE_CODE (constructor_type) == UNION_TYPE)
6071 && DECL_C_BIT_FIELD (field)
6072 && TREE_CODE (value) != INTEGER_CST))
6073 constructor_simple = 0;
6074
6075 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6076 {
6077 if (require_constant_value)
6078 {
6079 error_init ("initializer element is not constant");
6080 value = error_mark_node;
6081 }
6082 else if (require_constant_elements)
6083 pedwarn ("initializer element is not computable at load time");
6084 }
6085
6086 /* If this field is empty (and not at the end of structure),
6087 don't do anything other than checking the initializer. */
6088 if (field
6089 && (TREE_TYPE (field) == error_mark_node
6090 || (COMPLETE_TYPE_P (TREE_TYPE (field))
6091 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6092 && (TREE_CODE (constructor_type) == ARRAY_TYPE
6093 || TREE_CHAIN (field)))))
6094 return;
6095
6096 value = digest_init (type, value, strict_string, require_constant_value);
6097 if (value == error_mark_node)
6098 {
6099 constructor_erroneous = 1;
6100 return;
6101 }
6102
6103 /* If this element doesn't come next in sequence,
6104 put it on constructor_pending_elts. */
6105 if (TREE_CODE (constructor_type) == ARRAY_TYPE
6106 && (!constructor_incremental
6107 || !tree_int_cst_equal (field, constructor_unfilled_index)))
6108 {
6109 if (constructor_incremental
6110 && tree_int_cst_lt (field, constructor_unfilled_index))
6111 set_nonincremental_init ();
6112
6113 add_pending_init (field, value);
6114 return;
6115 }
6116 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6117 && (!constructor_incremental
6118 || field != constructor_unfilled_fields))
6119 {
6120 /* We do this for records but not for unions. In a union,
6121 no matter which field is specified, it can be initialized
6122 right away since it starts at the beginning of the union. */
6123 if (constructor_incremental)
6124 {
6125 if (!constructor_unfilled_fields)
6126 set_nonincremental_init ();
6127 else
6128 {
6129 tree bitpos, unfillpos;
6130
6131 bitpos = bit_position (field);
6132 unfillpos = bit_position (constructor_unfilled_fields);
6133
6134 if (tree_int_cst_lt (bitpos, unfillpos))
6135 set_nonincremental_init ();
6136 }
6137 }
6138
6139 add_pending_init (field, value);
6140 return;
6141 }
6142 else if (TREE_CODE (constructor_type) == UNION_TYPE
6143 && !VEC_empty (constructor_elt, constructor_elements))
6144 {
6145 if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6146 constructor_elements)->value))
6147 warning_init ("initialized field with side-effects overwritten");
6148
6149 /* We can have just one union field set. */
6150 constructor_elements = 0;
6151 }
6152
6153 /* Otherwise, output this element either to
6154 constructor_elements or to the assembler file. */
6155
6156 celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6157 celt->index = field;
6158 celt->value = value;
6159
6160 /* Advance the variable that indicates sequential elements output. */
6161 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6162 constructor_unfilled_index
6163 = size_binop (PLUS_EXPR, constructor_unfilled_index,
6164 bitsize_one_node);
6165 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6166 {
6167 constructor_unfilled_fields
6168 = TREE_CHAIN (constructor_unfilled_fields);
6169
6170 /* Skip any nameless bit fields. */
6171 while (constructor_unfilled_fields != 0
6172 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6173 && DECL_NAME (constructor_unfilled_fields) == 0)
6174 constructor_unfilled_fields =
6175 TREE_CHAIN (constructor_unfilled_fields);
6176 }
6177 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6178 constructor_unfilled_fields = 0;
6179
6180 /* Now output any pending elements which have become next. */
6181 if (pending)
6182 output_pending_init_elements (0);
6183 }
6184
6185 /* Output any pending elements which have become next.
6186 As we output elements, constructor_unfilled_{fields,index}
6187 advances, which may cause other elements to become next;
6188 if so, they too are output.
6189
6190 If ALL is 0, we return when there are
6191 no more pending elements to output now.
6192
6193 If ALL is 1, we output space as necessary so that
6194 we can output all the pending elements. */
6195
6196 static void
6197 output_pending_init_elements (int all)
6198 {
6199 struct init_node *elt = constructor_pending_elts;
6200 tree next;
6201
6202 retry:
6203
6204 /* Look through the whole pending tree.
6205 If we find an element that should be output now,
6206 output it. Otherwise, set NEXT to the element
6207 that comes first among those still pending. */
6208
6209 next = 0;
6210 while (elt)
6211 {
6212 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6213 {
6214 if (tree_int_cst_equal (elt->purpose,
6215 constructor_unfilled_index))
6216 output_init_element (elt->value, true,
6217 TREE_TYPE (constructor_type),
6218 constructor_unfilled_index, 0);
6219 else if (tree_int_cst_lt (constructor_unfilled_index,
6220 elt->purpose))
6221 {
6222 /* Advance to the next smaller node. */
6223 if (elt->left)
6224 elt = elt->left;
6225 else
6226 {
6227 /* We have reached the smallest node bigger than the
6228 current unfilled index. Fill the space first. */
6229 next = elt->purpose;
6230 break;
6231 }
6232 }
6233 else
6234 {
6235 /* Advance to the next bigger node. */
6236 if (elt->right)
6237 elt = elt->right;
6238 else
6239 {
6240 /* We have reached the biggest node in a subtree. Find
6241 the parent of it, which is the next bigger node. */
6242 while (elt->parent && elt->parent->right == elt)
6243 elt = elt->parent;
6244 elt = elt->parent;
6245 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6246 elt->purpose))
6247 {
6248 next = elt->purpose;
6249 break;
6250 }
6251 }
6252 }
6253 }
6254 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6255 || TREE_CODE (constructor_type) == UNION_TYPE)
6256 {
6257 tree ctor_unfilled_bitpos, elt_bitpos;
6258
6259 /* If the current record is complete we are done. */
6260 if (constructor_unfilled_fields == 0)
6261 break;
6262
6263 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6264 elt_bitpos = bit_position (elt->purpose);
6265 /* We can't compare fields here because there might be empty
6266 fields in between. */
6267 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6268 {
6269 constructor_unfilled_fields = elt->purpose;
6270 output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6271 elt->purpose, 0);
6272 }
6273 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6274 {
6275 /* Advance to the next smaller node. */
6276 if (elt->left)
6277 elt = elt->left;
6278 else
6279 {
6280 /* We have reached the smallest node bigger than the
6281 current unfilled field. Fill the space first. */
6282 next = elt->purpose;
6283 break;
6284 }
6285 }
6286 else
6287 {
6288 /* Advance to the next bigger node. */
6289 if (elt->right)
6290 elt = elt->right;
6291 else
6292 {
6293 /* We have reached the biggest node in a subtree. Find
6294 the parent of it, which is the next bigger node. */
6295 while (elt->parent && elt->parent->right == elt)
6296 elt = elt->parent;
6297 elt = elt->parent;
6298 if (elt
6299 && (tree_int_cst_lt (ctor_unfilled_bitpos,
6300 bit_position (elt->purpose))))
6301 {
6302 next = elt->purpose;
6303 break;
6304 }
6305 }
6306 }
6307 }
6308 }
6309
6310 /* Ordinarily return, but not if we want to output all
6311 and there are elements left. */
6312 if (!(all && next != 0))
6313 return;
6314
6315 /* If it's not incremental, just skip over the gap, so that after
6316 jumping to retry we will output the next successive element. */
6317 if (TREE_CODE (constructor_type) == RECORD_TYPE
6318 || TREE_CODE (constructor_type) == UNION_TYPE)
6319 constructor_unfilled_fields = next;
6320 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6321 constructor_unfilled_index = next;
6322
6323 /* ELT now points to the node in the pending tree with the next
6324 initializer to output. */
6325 goto retry;
6326 }
6327 \f
6328 /* Add one non-braced element to the current constructor level.
6329 This adjusts the current position within the constructor's type.
6330 This may also start or terminate implicit levels
6331 to handle a partly-braced initializer.
6332
6333 Once this has found the correct level for the new element,
6334 it calls output_init_element. */
6335
6336 void
6337 process_init_element (struct c_expr value)
6338 {
6339 tree orig_value = value.value;
6340 int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6341 bool strict_string = value.original_code == STRING_CST;
6342
6343 designator_depth = 0;
6344 designator_erroneous = 0;
6345
6346 /* Handle superfluous braces around string cst as in
6347 char x[] = {"foo"}; */
6348 if (string_flag
6349 && constructor_type
6350 && TREE_CODE (constructor_type) == ARRAY_TYPE
6351 && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6352 && integer_zerop (constructor_unfilled_index))
6353 {
6354 if (constructor_stack->replacement_value.value)
6355 error_init ("excess elements in char array initializer");
6356 constructor_stack->replacement_value = value;
6357 return;
6358 }
6359
6360 if (constructor_stack->replacement_value.value != 0)
6361 {
6362 error_init ("excess elements in struct initializer");
6363 return;
6364 }
6365
6366 /* Ignore elements of a brace group if it is entirely superfluous
6367 and has already been diagnosed. */
6368 if (constructor_type == 0)
6369 return;
6370
6371 /* If we've exhausted any levels that didn't have braces,
6372 pop them now. */
6373 while (constructor_stack->implicit)
6374 {
6375 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6376 || TREE_CODE (constructor_type) == UNION_TYPE)
6377 && constructor_fields == 0)
6378 process_init_element (pop_init_level (1));
6379 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6380 && (constructor_max_index == 0
6381 || tree_int_cst_lt (constructor_max_index,
6382 constructor_index)))
6383 process_init_element (pop_init_level (1));
6384 else
6385 break;
6386 }
6387
6388 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
6389 if (constructor_range_stack)
6390 {
6391 /* If value is a compound literal and we'll be just using its
6392 content, don't put it into a SAVE_EXPR. */
6393 if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6394 || !require_constant_value
6395 || flag_isoc99)
6396 value.value = save_expr (value.value);
6397 }
6398
6399 while (1)
6400 {
6401 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6402 {
6403 tree fieldtype;
6404 enum tree_code fieldcode;
6405
6406 if (constructor_fields == 0)
6407 {
6408 pedwarn_init ("excess elements in struct initializer");
6409 break;
6410 }
6411
6412 fieldtype = TREE_TYPE (constructor_fields);
6413 if (fieldtype != error_mark_node)
6414 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6415 fieldcode = TREE_CODE (fieldtype);
6416
6417 /* Error for non-static initialization of a flexible array member. */
6418 if (fieldcode == ARRAY_TYPE
6419 && !require_constant_value
6420 && TYPE_SIZE (fieldtype) == NULL_TREE
6421 && TREE_CHAIN (constructor_fields) == NULL_TREE)
6422 {
6423 error_init ("non-static initialization of a flexible array member");
6424 break;
6425 }
6426
6427 /* Accept a string constant to initialize a subarray. */
6428 if (value.value != 0
6429 && fieldcode == ARRAY_TYPE
6430 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6431 && string_flag)
6432 value.value = orig_value;
6433 /* Otherwise, if we have come to a subaggregate,
6434 and we don't have an element of its type, push into it. */
6435 else if (value.value != 0
6436 && value.value != error_mark_node
6437 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6438 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6439 || fieldcode == UNION_TYPE))
6440 {
6441 push_init_level (1);
6442 continue;
6443 }
6444
6445 if (value.value)
6446 {
6447 push_member_name (constructor_fields);
6448 output_init_element (value.value, strict_string,
6449 fieldtype, constructor_fields, 1);
6450 RESTORE_SPELLING_DEPTH (constructor_depth);
6451 }
6452 else
6453 /* Do the bookkeeping for an element that was
6454 directly output as a constructor. */
6455 {
6456 /* For a record, keep track of end position of last field. */
6457 if (DECL_SIZE (constructor_fields))
6458 constructor_bit_index
6459 = size_binop (PLUS_EXPR,
6460 bit_position (constructor_fields),
6461 DECL_SIZE (constructor_fields));
6462
6463 /* If the current field was the first one not yet written out,
6464 it isn't now, so update. */
6465 if (constructor_unfilled_fields == constructor_fields)
6466 {
6467 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6468 /* Skip any nameless bit fields. */
6469 while (constructor_unfilled_fields != 0
6470 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6471 && DECL_NAME (constructor_unfilled_fields) == 0)
6472 constructor_unfilled_fields =
6473 TREE_CHAIN (constructor_unfilled_fields);
6474 }
6475 }
6476
6477 constructor_fields = TREE_CHAIN (constructor_fields);
6478 /* Skip any nameless bit fields at the beginning. */
6479 while (constructor_fields != 0
6480 && DECL_C_BIT_FIELD (constructor_fields)
6481 && DECL_NAME (constructor_fields) == 0)
6482 constructor_fields = TREE_CHAIN (constructor_fields);
6483 }
6484 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6485 {
6486 tree fieldtype;
6487 enum tree_code fieldcode;
6488
6489 if (constructor_fields == 0)
6490 {
6491 pedwarn_init ("excess elements in union initializer");
6492 break;
6493 }
6494
6495 fieldtype = TREE_TYPE (constructor_fields);
6496 if (fieldtype != error_mark_node)
6497 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6498 fieldcode = TREE_CODE (fieldtype);
6499
6500 /* Warn that traditional C rejects initialization of unions.
6501 We skip the warning if the value is zero. This is done
6502 under the assumption that the zero initializer in user
6503 code appears conditioned on e.g. __STDC__ to avoid
6504 "missing initializer" warnings and relies on default
6505 initialization to zero in the traditional C case.
6506 We also skip the warning if the initializer is designated,
6507 again on the assumption that this must be conditional on
6508 __STDC__ anyway (and we've already complained about the
6509 member-designator already). */
6510 if (!in_system_header && !constructor_designated
6511 && !(value.value && (integer_zerop (value.value)
6512 || real_zerop (value.value))))
6513 warning (OPT_Wtraditional, "traditional C rejects initialization "
6514 "of unions");
6515
6516 /* Accept a string constant to initialize a subarray. */
6517 if (value.value != 0
6518 && fieldcode == ARRAY_TYPE
6519 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6520 && string_flag)
6521 value.value = orig_value;
6522 /* Otherwise, if we have come to a subaggregate,
6523 and we don't have an element of its type, push into it. */
6524 else if (value.value != 0
6525 && value.value != error_mark_node
6526 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6527 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6528 || fieldcode == UNION_TYPE))
6529 {
6530 push_init_level (1);
6531 continue;
6532 }
6533
6534 if (value.value)
6535 {
6536 push_member_name (constructor_fields);
6537 output_init_element (value.value, strict_string,
6538 fieldtype, constructor_fields, 1);
6539 RESTORE_SPELLING_DEPTH (constructor_depth);
6540 }
6541 else
6542 /* Do the bookkeeping for an element that was
6543 directly output as a constructor. */
6544 {
6545 constructor_bit_index = DECL_SIZE (constructor_fields);
6546 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6547 }
6548
6549 constructor_fields = 0;
6550 }
6551 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6552 {
6553 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6554 enum tree_code eltcode = TREE_CODE (elttype);
6555
6556 /* Accept a string constant to initialize a subarray. */
6557 if (value.value != 0
6558 && eltcode == ARRAY_TYPE
6559 && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6560 && string_flag)
6561 value.value = orig_value;
6562 /* Otherwise, if we have come to a subaggregate,
6563 and we don't have an element of its type, push into it. */
6564 else if (value.value != 0
6565 && value.value != error_mark_node
6566 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6567 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6568 || eltcode == UNION_TYPE))
6569 {
6570 push_init_level (1);
6571 continue;
6572 }
6573
6574 if (constructor_max_index != 0
6575 && (tree_int_cst_lt (constructor_max_index, constructor_index)
6576 || integer_all_onesp (constructor_max_index)))
6577 {
6578 pedwarn_init ("excess elements in array initializer");
6579 break;
6580 }
6581
6582 /* Now output the actual element. */
6583 if (value.value)
6584 {
6585 push_array_bounds (tree_low_cst (constructor_index, 0));
6586 output_init_element (value.value, strict_string,
6587 elttype, constructor_index, 1);
6588 RESTORE_SPELLING_DEPTH (constructor_depth);
6589 }
6590
6591 constructor_index
6592 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6593
6594 if (!value.value)
6595 /* If we are doing the bookkeeping for an element that was
6596 directly output as a constructor, we must update
6597 constructor_unfilled_index. */
6598 constructor_unfilled_index = constructor_index;
6599 }
6600 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6601 {
6602 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6603
6604 /* Do a basic check of initializer size. Note that vectors
6605 always have a fixed size derived from their type. */
6606 if (tree_int_cst_lt (constructor_max_index, constructor_index))
6607 {
6608 pedwarn_init ("excess elements in vector initializer");
6609 break;
6610 }
6611
6612 /* Now output the actual element. */
6613 if (value.value)
6614 output_init_element (value.value, strict_string,
6615 elttype, constructor_index, 1);
6616
6617 constructor_index
6618 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6619
6620 if (!value.value)
6621 /* If we are doing the bookkeeping for an element that was
6622 directly output as a constructor, we must update
6623 constructor_unfilled_index. */
6624 constructor_unfilled_index = constructor_index;
6625 }
6626
6627 /* Handle the sole element allowed in a braced initializer
6628 for a scalar variable. */
6629 else if (constructor_type != error_mark_node
6630 && constructor_fields == 0)
6631 {
6632 pedwarn_init ("excess elements in scalar initializer");
6633 break;
6634 }
6635 else
6636 {
6637 if (value.value)
6638 output_init_element (value.value, strict_string,
6639 constructor_type, NULL_TREE, 1);
6640 constructor_fields = 0;
6641 }
6642
6643 /* Handle range initializers either at this level or anywhere higher
6644 in the designator stack. */
6645 if (constructor_range_stack)
6646 {
6647 struct constructor_range_stack *p, *range_stack;
6648 int finish = 0;
6649
6650 range_stack = constructor_range_stack;
6651 constructor_range_stack = 0;
6652 while (constructor_stack != range_stack->stack)
6653 {
6654 gcc_assert (constructor_stack->implicit);
6655 process_init_element (pop_init_level (1));
6656 }
6657 for (p = range_stack;
6658 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6659 p = p->prev)
6660 {
6661 gcc_assert (constructor_stack->implicit);
6662 process_init_element (pop_init_level (1));
6663 }
6664
6665 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6666 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6667 finish = 1;
6668
6669 while (1)
6670 {
6671 constructor_index = p->index;
6672 constructor_fields = p->fields;
6673 if (finish && p->range_end && p->index == p->range_start)
6674 {
6675 finish = 0;
6676 p->prev = 0;
6677 }
6678 p = p->next;
6679 if (!p)
6680 break;
6681 push_init_level (2);
6682 p->stack = constructor_stack;
6683 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6684 p->index = p->range_start;
6685 }
6686
6687 if (!finish)
6688 constructor_range_stack = range_stack;
6689 continue;
6690 }
6691
6692 break;
6693 }
6694
6695 constructor_range_stack = 0;
6696 }
6697 \f
6698 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
6699 (guaranteed to be 'volatile' or null) and ARGS (represented using
6700 an ASM_EXPR node). */
6701 tree
6702 build_asm_stmt (tree cv_qualifier, tree args)
6703 {
6704 if (!ASM_VOLATILE_P (args) && cv_qualifier)
6705 ASM_VOLATILE_P (args) = 1;
6706 return add_stmt (args);
6707 }
6708
6709 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6710 some INPUTS, and some CLOBBERS. The latter three may be NULL.
6711 SIMPLE indicates whether there was anything at all after the
6712 string in the asm expression -- asm("blah") and asm("blah" : )
6713 are subtly different. We use a ASM_EXPR node to represent this. */
6714 tree
6715 build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6716 bool simple)
6717 {
6718 tree tail;
6719 tree args;
6720 int i;
6721 const char *constraint;
6722 const char **oconstraints;
6723 bool allows_mem, allows_reg, is_inout;
6724 int ninputs, noutputs;
6725
6726 ninputs = list_length (inputs);
6727 noutputs = list_length (outputs);
6728 oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6729
6730 string = resolve_asm_operand_names (string, outputs, inputs);
6731
6732 /* Remove output conversions that change the type but not the mode. */
6733 for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6734 {
6735 tree output = TREE_VALUE (tail);
6736
6737 /* ??? Really, this should not be here. Users should be using a
6738 proper lvalue, dammit. But there's a long history of using casts
6739 in the output operands. In cases like longlong.h, this becomes a
6740 primitive form of typechecking -- if the cast can be removed, then
6741 the output operand had a type of the proper width; otherwise we'll
6742 get an error. Gross, but ... */
6743 STRIP_NOPS (output);
6744
6745 if (!lvalue_or_else (output, lv_asm))
6746 output = error_mark_node;
6747
6748 if (output != error_mark_node
6749 && (TREE_READONLY (output)
6750 || TYPE_READONLY (TREE_TYPE (output))
6751 || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6752 || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6753 && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6754 readonly_error (output, lv_asm);
6755
6756 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6757 oconstraints[i] = constraint;
6758
6759 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6760 &allows_mem, &allows_reg, &is_inout))
6761 {
6762 /* If the operand is going to end up in memory,
6763 mark it addressable. */
6764 if (!allows_reg && !c_mark_addressable (output))
6765 output = error_mark_node;
6766 }
6767 else
6768 output = error_mark_node;
6769
6770 TREE_VALUE (tail) = output;
6771 }
6772
6773 for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6774 {
6775 tree input;
6776
6777 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6778 input = TREE_VALUE (tail);
6779
6780 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6781 oconstraints, &allows_mem, &allows_reg))
6782 {
6783 /* If the operand is going to end up in memory,
6784 mark it addressable. */
6785 if (!allows_reg && allows_mem)
6786 {
6787 /* Strip the nops as we allow this case. FIXME, this really
6788 should be rejected or made deprecated. */
6789 STRIP_NOPS (input);
6790 if (!c_mark_addressable (input))
6791 input = error_mark_node;
6792 }
6793 }
6794 else
6795 input = error_mark_node;
6796
6797 TREE_VALUE (tail) = input;
6798 }
6799
6800 args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6801
6802 /* asm statements without outputs, including simple ones, are treated
6803 as volatile. */
6804 ASM_INPUT_P (args) = simple;
6805 ASM_VOLATILE_P (args) = (noutputs == 0);
6806
6807 return args;
6808 }
6809 \f
6810 /* Generate a goto statement to LABEL. */
6811
6812 tree
6813 c_finish_goto_label (tree label)
6814 {
6815 tree decl = lookup_label (label);
6816 if (!decl)
6817 return NULL_TREE;
6818
6819 if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6820 {
6821 error ("jump into statement expression");
6822 return NULL_TREE;
6823 }
6824
6825 if (C_DECL_UNJUMPABLE_VM (decl))
6826 {
6827 error ("jump into scope of identifier with variably modified type");
6828 return NULL_TREE;
6829 }
6830
6831 if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6832 {
6833 /* No jump from outside this statement expression context, so
6834 record that there is a jump from within this context. */
6835 struct c_label_list *nlist;
6836 nlist = XOBNEW (&parser_obstack, struct c_label_list);
6837 nlist->next = label_context_stack_se->labels_used;
6838 nlist->label = decl;
6839 label_context_stack_se->labels_used = nlist;
6840 }
6841
6842 if (!C_DECL_UNDEFINABLE_VM (decl))
6843 {
6844 /* No jump from outside this context context of identifiers with
6845 variably modified type, so record that there is a jump from
6846 within this context. */
6847 struct c_label_list *nlist;
6848 nlist = XOBNEW (&parser_obstack, struct c_label_list);
6849 nlist->next = label_context_stack_vm->labels_used;
6850 nlist->label = decl;
6851 label_context_stack_vm->labels_used = nlist;
6852 }
6853
6854 TREE_USED (decl) = 1;
6855 return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6856 }
6857
6858 /* Generate a computed goto statement to EXPR. */
6859
6860 tree
6861 c_finish_goto_ptr (tree expr)
6862 {
6863 if (pedantic)
6864 pedwarn ("ISO C forbids %<goto *expr;%>");
6865 expr = convert (ptr_type_node, expr);
6866 return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
6867 }
6868
6869 /* Generate a C `return' statement. RETVAL is the expression for what
6870 to return, or a null pointer for `return;' with no value. */
6871
6872 tree
6873 c_finish_return (tree retval)
6874 {
6875 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
6876 bool no_warning = false;
6877
6878 if (TREE_THIS_VOLATILE (current_function_decl))
6879 warning (0, "function declared %<noreturn%> has a %<return%> statement");
6880
6881 if (!retval)
6882 {
6883 current_function_returns_null = 1;
6884 if ((warn_return_type || flag_isoc99)
6885 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6886 {
6887 pedwarn_c99 ("%<return%> with no value, in "
6888 "function returning non-void");
6889 no_warning = true;
6890 }
6891 }
6892 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6893 {
6894 current_function_returns_null = 1;
6895 if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6896 pedwarn ("%<return%> with a value, in function returning void");
6897 }
6898 else
6899 {
6900 tree t = convert_for_assignment (valtype, retval, ic_return,
6901 NULL_TREE, NULL_TREE, 0);
6902 tree res = DECL_RESULT (current_function_decl);
6903 tree inner;
6904
6905 current_function_returns_value = 1;
6906 if (t == error_mark_node)
6907 return NULL_TREE;
6908
6909 inner = t = convert (TREE_TYPE (res), t);
6910
6911 /* Strip any conversions, additions, and subtractions, and see if
6912 we are returning the address of a local variable. Warn if so. */
6913 while (1)
6914 {
6915 switch (TREE_CODE (inner))
6916 {
6917 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
6918 case PLUS_EXPR:
6919 inner = TREE_OPERAND (inner, 0);
6920 continue;
6921
6922 case MINUS_EXPR:
6923 /* If the second operand of the MINUS_EXPR has a pointer
6924 type (or is converted from it), this may be valid, so
6925 don't give a warning. */
6926 {
6927 tree op1 = TREE_OPERAND (inner, 1);
6928
6929 while (!POINTER_TYPE_P (TREE_TYPE (op1))
6930 && (TREE_CODE (op1) == NOP_EXPR
6931 || TREE_CODE (op1) == NON_LVALUE_EXPR
6932 || TREE_CODE (op1) == CONVERT_EXPR))
6933 op1 = TREE_OPERAND (op1, 0);
6934
6935 if (POINTER_TYPE_P (TREE_TYPE (op1)))
6936 break;
6937
6938 inner = TREE_OPERAND (inner, 0);
6939 continue;
6940 }
6941
6942 case ADDR_EXPR:
6943 inner = TREE_OPERAND (inner, 0);
6944
6945 while (REFERENCE_CLASS_P (inner)
6946 && TREE_CODE (inner) != INDIRECT_REF)
6947 inner = TREE_OPERAND (inner, 0);
6948
6949 if (DECL_P (inner)
6950 && !DECL_EXTERNAL (inner)
6951 && !TREE_STATIC (inner)
6952 && DECL_CONTEXT (inner) == current_function_decl)
6953 warning (0, "function returns address of local variable");
6954 break;
6955
6956 default:
6957 break;
6958 }
6959
6960 break;
6961 }
6962
6963 retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
6964 }
6965
6966 ret_stmt = build_stmt (RETURN_EXPR, retval);
6967 TREE_NO_WARNING (ret_stmt) |= no_warning;
6968 return add_stmt (ret_stmt);
6969 }
6970 \f
6971 struct c_switch {
6972 /* The SWITCH_EXPR being built. */
6973 tree switch_expr;
6974
6975 /* The original type of the testing expression, i.e. before the
6976 default conversion is applied. */
6977 tree orig_type;
6978
6979 /* A splay-tree mapping the low element of a case range to the high
6980 element, or NULL_TREE if there is no high element. Used to
6981 determine whether or not a new case label duplicates an old case
6982 label. We need a tree, rather than simply a hash table, because
6983 of the GNU case range extension. */
6984 splay_tree cases;
6985
6986 /* Number of nested statement expressions within this switch
6987 statement; if nonzero, case and default labels may not
6988 appear. */
6989 unsigned int blocked_stmt_expr;
6990
6991 /* Scope of outermost declarations of identifiers with variably
6992 modified type within this switch statement; if nonzero, case and
6993 default labels may not appear. */
6994 unsigned int blocked_vm;
6995
6996 /* The next node on the stack. */
6997 struct c_switch *next;
6998 };
6999
7000 /* A stack of the currently active switch statements. The innermost
7001 switch statement is on the top of the stack. There is no need to
7002 mark the stack for garbage collection because it is only active
7003 during the processing of the body of a function, and we never
7004 collect at that point. */
7005
7006 struct c_switch *c_switch_stack;
7007
7008 /* Start a C switch statement, testing expression EXP. Return the new
7009 SWITCH_EXPR. */
7010
7011 tree
7012 c_start_case (tree exp)
7013 {
7014 enum tree_code code;
7015 tree type, orig_type = error_mark_node;
7016 struct c_switch *cs;
7017
7018 if (exp != error_mark_node)
7019 {
7020 code = TREE_CODE (TREE_TYPE (exp));
7021 orig_type = TREE_TYPE (exp);
7022
7023 if (!INTEGRAL_TYPE_P (orig_type)
7024 && code != ERROR_MARK)
7025 {
7026 error ("switch quantity not an integer");
7027 exp = integer_zero_node;
7028 orig_type = error_mark_node;
7029 }
7030 else
7031 {
7032 type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
7033
7034 if (!in_system_header
7035 && (type == long_integer_type_node
7036 || type == long_unsigned_type_node))
7037 warning (OPT_Wtraditional, "%<long%> switch expression not "
7038 "converted to %<int%> in ISO C");
7039
7040 exp = default_conversion (exp);
7041 type = TREE_TYPE (exp);
7042 }
7043 }
7044
7045 /* Add this new SWITCH_EXPR to the stack. */
7046 cs = XNEW (struct c_switch);
7047 cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7048 cs->orig_type = orig_type;
7049 cs->cases = splay_tree_new (case_compare, NULL, NULL);
7050 cs->blocked_stmt_expr = 0;
7051 cs->blocked_vm = 0;
7052 cs->next = c_switch_stack;
7053 c_switch_stack = cs;
7054
7055 return add_stmt (cs->switch_expr);
7056 }
7057
7058 /* Process a case label. */
7059
7060 tree
7061 do_case (tree low_value, tree high_value)
7062 {
7063 tree label = NULL_TREE;
7064
7065 if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7066 && !c_switch_stack->blocked_vm)
7067 {
7068 label = c_add_case_label (c_switch_stack->cases,
7069 SWITCH_COND (c_switch_stack->switch_expr),
7070 c_switch_stack->orig_type,
7071 low_value, high_value);
7072 if (label == error_mark_node)
7073 label = NULL_TREE;
7074 }
7075 else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7076 {
7077 if (low_value)
7078 error ("case label in statement expression not containing "
7079 "enclosing switch statement");
7080 else
7081 error ("%<default%> label in statement expression not containing "
7082 "enclosing switch statement");
7083 }
7084 else if (c_switch_stack && c_switch_stack->blocked_vm)
7085 {
7086 if (low_value)
7087 error ("case label in scope of identifier with variably modified "
7088 "type not containing enclosing switch statement");
7089 else
7090 error ("%<default%> label in scope of identifier with variably "
7091 "modified type not containing enclosing switch statement");
7092 }
7093 else if (low_value)
7094 error ("case label not within a switch statement");
7095 else
7096 error ("%<default%> label not within a switch statement");
7097
7098 return label;
7099 }
7100
7101 /* Finish the switch statement. */
7102
7103 void
7104 c_finish_case (tree body)
7105 {
7106 struct c_switch *cs = c_switch_stack;
7107 location_t switch_location;
7108
7109 SWITCH_BODY (cs->switch_expr) = body;
7110
7111 /* We must not be within a statement expression nested in the switch
7112 at this point; we might, however, be within the scope of an
7113 identifier with variably modified type nested in the switch. */
7114 gcc_assert (!cs->blocked_stmt_expr);
7115
7116 /* Emit warnings as needed. */
7117 if (EXPR_HAS_LOCATION (cs->switch_expr))
7118 switch_location = EXPR_LOCATION (cs->switch_expr);
7119 else
7120 switch_location = input_location;
7121 c_do_switch_warnings (cs->cases, switch_location,
7122 TREE_TYPE (cs->switch_expr),
7123 SWITCH_COND (cs->switch_expr));
7124
7125 /* Pop the stack. */
7126 c_switch_stack = cs->next;
7127 splay_tree_delete (cs->cases);
7128 XDELETE (cs);
7129 }
7130 \f
7131 /* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
7132 THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7133 may be null. NESTED_IF is true if THEN_BLOCK contains another IF
7134 statement, and was not surrounded with parenthesis. */
7135
7136 void
7137 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7138 tree else_block, bool nested_if)
7139 {
7140 tree stmt;
7141
7142 /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
7143 if (warn_parentheses && nested_if && else_block == NULL)
7144 {
7145 tree inner_if = then_block;
7146
7147 /* We know from the grammar productions that there is an IF nested
7148 within THEN_BLOCK. Due to labels and c99 conditional declarations,
7149 it might not be exactly THEN_BLOCK, but should be the last
7150 non-container statement within. */
7151 while (1)
7152 switch (TREE_CODE (inner_if))
7153 {
7154 case COND_EXPR:
7155 goto found;
7156 case BIND_EXPR:
7157 inner_if = BIND_EXPR_BODY (inner_if);
7158 break;
7159 case STATEMENT_LIST:
7160 inner_if = expr_last (then_block);
7161 break;
7162 case TRY_FINALLY_EXPR:
7163 case TRY_CATCH_EXPR:
7164 inner_if = TREE_OPERAND (inner_if, 0);
7165 break;
7166 default:
7167 gcc_unreachable ();
7168 }
7169 found:
7170
7171 if (COND_EXPR_ELSE (inner_if))
7172 warning (OPT_Wparentheses,
7173 "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7174 &if_locus);
7175 }
7176
7177 /* Diagnose ";" via the special empty statement node that we create. */
7178 if (extra_warnings)
7179 {
7180 tree *inner_then = &then_block, *inner_else = &else_block;
7181
7182 if (TREE_CODE (*inner_then) == STATEMENT_LIST
7183 && STATEMENT_LIST_TAIL (*inner_then))
7184 inner_then = &STATEMENT_LIST_TAIL (*inner_then)->stmt;
7185 if (*inner_else && TREE_CODE (*inner_else) == STATEMENT_LIST
7186 && STATEMENT_LIST_TAIL (*inner_else))
7187 inner_else = &STATEMENT_LIST_TAIL (*inner_else)->stmt;
7188
7189 if (TREE_CODE (*inner_then) == NOP_EXPR && !TREE_TYPE (*inner_then))
7190 {
7191 if (!*inner_else)
7192 warning (0, "%Hempty body in an if-statement",
7193 EXPR_LOCUS (*inner_then));
7194
7195 *inner_then = alloc_stmt_list ();
7196 }
7197 if (*inner_else
7198 && TREE_CODE (*inner_else) == NOP_EXPR
7199 && !TREE_TYPE (*inner_else))
7200 {
7201 warning (0, "%Hempty body in an else-statement",
7202 EXPR_LOCUS (*inner_else));
7203
7204 *inner_else = alloc_stmt_list ();
7205 }
7206 }
7207
7208 stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7209 SET_EXPR_LOCATION (stmt, if_locus);
7210 add_stmt (stmt);
7211 }
7212
7213 /* Emit a general-purpose loop construct. START_LOCUS is the location of
7214 the beginning of the loop. COND is the loop condition. COND_IS_FIRST
7215 is false for DO loops. INCR is the FOR increment expression. BODY is
7216 the statement controlled by the loop. BLAB is the break label. CLAB is
7217 the continue label. Everything is allowed to be NULL. */
7218
7219 void
7220 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7221 tree blab, tree clab, bool cond_is_first)
7222 {
7223 tree entry = NULL, exit = NULL, t;
7224
7225 /* If the condition is zero don't generate a loop construct. */
7226 if (cond && integer_zerop (cond))
7227 {
7228 if (cond_is_first)
7229 {
7230 t = build_and_jump (&blab);
7231 SET_EXPR_LOCATION (t, start_locus);
7232 add_stmt (t);
7233 }
7234 }
7235 else
7236 {
7237 tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7238
7239 /* If we have an exit condition, then we build an IF with gotos either
7240 out of the loop, or to the top of it. If there's no exit condition,
7241 then we just build a jump back to the top. */
7242 exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7243
7244 if (cond && !integer_nonzerop (cond))
7245 {
7246 /* Canonicalize the loop condition to the end. This means
7247 generating a branch to the loop condition. Reuse the
7248 continue label, if possible. */
7249 if (cond_is_first)
7250 {
7251 if (incr || !clab)
7252 {
7253 entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7254 t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7255 }
7256 else
7257 t = build1 (GOTO_EXPR, void_type_node, clab);
7258 SET_EXPR_LOCATION (t, start_locus);
7259 add_stmt (t);
7260 }
7261
7262 t = build_and_jump (&blab);
7263 exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7264 if (cond_is_first)
7265 SET_EXPR_LOCATION (exit, start_locus);
7266 else
7267 SET_EXPR_LOCATION (exit, input_location);
7268 }
7269
7270 add_stmt (top);
7271 }
7272
7273 if (body)
7274 add_stmt (body);
7275 if (clab)
7276 add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7277 if (incr)
7278 add_stmt (incr);
7279 if (entry)
7280 add_stmt (entry);
7281 if (exit)
7282 add_stmt (exit);
7283 if (blab)
7284 add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7285 }
7286
7287 tree
7288 c_finish_bc_stmt (tree *label_p, bool is_break)
7289 {
7290 bool skip;
7291 tree label = *label_p;
7292
7293 /* In switch statements break is sometimes stylistically used after
7294 a return statement. This can lead to spurious warnings about
7295 control reaching the end of a non-void function when it is
7296 inlined. Note that we are calling block_may_fallthru with
7297 language specific tree nodes; this works because
7298 block_may_fallthru returns true when given something it does not
7299 understand. */
7300 skip = !block_may_fallthru (cur_stmt_list);
7301
7302 if (!label)
7303 {
7304 if (!skip)
7305 *label_p = label = create_artificial_label ();
7306 }
7307 else if (TREE_CODE (label) != LABEL_DECL)
7308 {
7309 if (is_break)
7310 error ("break statement not within loop or switch");
7311 else
7312 error ("continue statement not within a loop");
7313 return NULL_TREE;
7314 }
7315
7316 if (skip)
7317 return NULL_TREE;
7318
7319 return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7320 }
7321
7322 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
7323
7324 static void
7325 emit_side_effect_warnings (tree expr)
7326 {
7327 if (expr == error_mark_node)
7328 ;
7329 else if (!TREE_SIDE_EFFECTS (expr))
7330 {
7331 if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7332 warning (0, "%Hstatement with no effect",
7333 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7334 }
7335 else if (warn_unused_value)
7336 warn_if_unused_value (expr, input_location);
7337 }
7338
7339 /* Process an expression as if it were a complete statement. Emit
7340 diagnostics, but do not call ADD_STMT. */
7341
7342 tree
7343 c_process_expr_stmt (tree expr)
7344 {
7345 if (!expr)
7346 return NULL_TREE;
7347
7348 if (warn_sequence_point)
7349 verify_sequence_points (expr);
7350
7351 if (TREE_TYPE (expr) != error_mark_node
7352 && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7353 && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7354 error ("expression statement has incomplete type");
7355
7356 /* If we're not processing a statement expression, warn about unused values.
7357 Warnings for statement expressions will be emitted later, once we figure
7358 out which is the result. */
7359 if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7360 && (extra_warnings || warn_unused_value))
7361 emit_side_effect_warnings (expr);
7362
7363 /* If the expression is not of a type to which we cannot assign a line
7364 number, wrap the thing in a no-op NOP_EXPR. */
7365 if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7366 expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7367
7368 if (EXPR_P (expr))
7369 SET_EXPR_LOCATION (expr, input_location);
7370
7371 return expr;
7372 }
7373
7374 /* Emit an expression as a statement. */
7375
7376 tree
7377 c_finish_expr_stmt (tree expr)
7378 {
7379 if (expr)
7380 return add_stmt (c_process_expr_stmt (expr));
7381 else
7382 return NULL;
7383 }
7384
7385 /* Do the opposite and emit a statement as an expression. To begin,
7386 create a new binding level and return it. */
7387
7388 tree
7389 c_begin_stmt_expr (void)
7390 {
7391 tree ret;
7392 struct c_label_context_se *nstack;
7393 struct c_label_list *glist;
7394
7395 /* We must force a BLOCK for this level so that, if it is not expanded
7396 later, there is a way to turn off the entire subtree of blocks that
7397 are contained in it. */
7398 keep_next_level ();
7399 ret = c_begin_compound_stmt (true);
7400 if (c_switch_stack)
7401 {
7402 c_switch_stack->blocked_stmt_expr++;
7403 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7404 }
7405 for (glist = label_context_stack_se->labels_used;
7406 glist != NULL;
7407 glist = glist->next)
7408 {
7409 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7410 }
7411 nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7412 nstack->labels_def = NULL;
7413 nstack->labels_used = NULL;
7414 nstack->next = label_context_stack_se;
7415 label_context_stack_se = nstack;
7416
7417 /* Mark the current statement list as belonging to a statement list. */
7418 STATEMENT_LIST_STMT_EXPR (ret) = 1;
7419
7420 return ret;
7421 }
7422
7423 tree
7424 c_finish_stmt_expr (tree body)
7425 {
7426 tree last, type, tmp, val;
7427 tree *last_p;
7428 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7429
7430 body = c_end_compound_stmt (body, true);
7431 if (c_switch_stack)
7432 {
7433 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7434 c_switch_stack->blocked_stmt_expr--;
7435 }
7436 /* It is no longer possible to jump to labels defined within this
7437 statement expression. */
7438 for (dlist = label_context_stack_se->labels_def;
7439 dlist != NULL;
7440 dlist = dlist->next)
7441 {
7442 C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7443 }
7444 /* It is again possible to define labels with a goto just outside
7445 this statement expression. */
7446 for (glist = label_context_stack_se->next->labels_used;
7447 glist != NULL;
7448 glist = glist->next)
7449 {
7450 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7451 glist_prev = glist;
7452 }
7453 if (glist_prev != NULL)
7454 glist_prev->next = label_context_stack_se->labels_used;
7455 else
7456 label_context_stack_se->next->labels_used
7457 = label_context_stack_se->labels_used;
7458 label_context_stack_se = label_context_stack_se->next;
7459
7460 /* Locate the last statement in BODY. See c_end_compound_stmt
7461 about always returning a BIND_EXPR. */
7462 last_p = &BIND_EXPR_BODY (body);
7463 last = BIND_EXPR_BODY (body);
7464
7465 continue_searching:
7466 if (TREE_CODE (last) == STATEMENT_LIST)
7467 {
7468 tree_stmt_iterator i;
7469
7470 /* This can happen with degenerate cases like ({ }). No value. */
7471 if (!TREE_SIDE_EFFECTS (last))
7472 return body;
7473
7474 /* If we're supposed to generate side effects warnings, process
7475 all of the statements except the last. */
7476 if (extra_warnings || warn_unused_value)
7477 {
7478 for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7479 emit_side_effect_warnings (tsi_stmt (i));
7480 }
7481 else
7482 i = tsi_last (last);
7483 last_p = tsi_stmt_ptr (i);
7484 last = *last_p;
7485 }
7486
7487 /* If the end of the list is exception related, then the list was split
7488 by a call to push_cleanup. Continue searching. */
7489 if (TREE_CODE (last) == TRY_FINALLY_EXPR
7490 || TREE_CODE (last) == TRY_CATCH_EXPR)
7491 {
7492 last_p = &TREE_OPERAND (last, 0);
7493 last = *last_p;
7494 goto continue_searching;
7495 }
7496
7497 /* In the case that the BIND_EXPR is not necessary, return the
7498 expression out from inside it. */
7499 if (last == error_mark_node
7500 || (last == BIND_EXPR_BODY (body)
7501 && BIND_EXPR_VARS (body) == NULL))
7502 {
7503 /* Do not warn if the return value of a statement expression is
7504 unused. */
7505 if (EXPR_P (last))
7506 TREE_NO_WARNING (last) = 1;
7507 return last;
7508 }
7509
7510 /* Extract the type of said expression. */
7511 type = TREE_TYPE (last);
7512
7513 /* If we're not returning a value at all, then the BIND_EXPR that
7514 we already have is a fine expression to return. */
7515 if (!type || VOID_TYPE_P (type))
7516 return body;
7517
7518 /* Now that we've located the expression containing the value, it seems
7519 silly to make voidify_wrapper_expr repeat the process. Create a
7520 temporary of the appropriate type and stick it in a TARGET_EXPR. */
7521 tmp = create_tmp_var_raw (type, NULL);
7522
7523 /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
7524 tree_expr_nonnegative_p giving up immediately. */
7525 val = last;
7526 if (TREE_CODE (val) == NOP_EXPR
7527 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7528 val = TREE_OPERAND (val, 0);
7529
7530 *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7531 SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7532
7533 return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7534 }
7535
7536 /* Begin the scope of an identifier of variably modified type, scope
7537 number SCOPE. Jumping from outside this scope to inside it is not
7538 permitted. */
7539
7540 void
7541 c_begin_vm_scope (unsigned int scope)
7542 {
7543 struct c_label_context_vm *nstack;
7544 struct c_label_list *glist;
7545
7546 gcc_assert (scope > 0);
7547 if (c_switch_stack && !c_switch_stack->blocked_vm)
7548 c_switch_stack->blocked_vm = scope;
7549 for (glist = label_context_stack_vm->labels_used;
7550 glist != NULL;
7551 glist = glist->next)
7552 {
7553 C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7554 }
7555 nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7556 nstack->labels_def = NULL;
7557 nstack->labels_used = NULL;
7558 nstack->scope = scope;
7559 nstack->next = label_context_stack_vm;
7560 label_context_stack_vm = nstack;
7561 }
7562
7563 /* End a scope which may contain identifiers of variably modified
7564 type, scope number SCOPE. */
7565
7566 void
7567 c_end_vm_scope (unsigned int scope)
7568 {
7569 if (label_context_stack_vm == NULL)
7570 return;
7571 if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7572 c_switch_stack->blocked_vm = 0;
7573 /* We may have a number of nested scopes of identifiers with
7574 variably modified type, all at this depth. Pop each in turn. */
7575 while (label_context_stack_vm->scope == scope)
7576 {
7577 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7578
7579 /* It is no longer possible to jump to labels defined within this
7580 scope. */
7581 for (dlist = label_context_stack_vm->labels_def;
7582 dlist != NULL;
7583 dlist = dlist->next)
7584 {
7585 C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7586 }
7587 /* It is again possible to define labels with a goto just outside
7588 this scope. */
7589 for (glist = label_context_stack_vm->next->labels_used;
7590 glist != NULL;
7591 glist = glist->next)
7592 {
7593 C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7594 glist_prev = glist;
7595 }
7596 if (glist_prev != NULL)
7597 glist_prev->next = label_context_stack_vm->labels_used;
7598 else
7599 label_context_stack_vm->next->labels_used
7600 = label_context_stack_vm->labels_used;
7601 label_context_stack_vm = label_context_stack_vm->next;
7602 }
7603 }
7604 \f
7605 /* Begin and end compound statements. This is as simple as pushing
7606 and popping new statement lists from the tree. */
7607
7608 tree
7609 c_begin_compound_stmt (bool do_scope)
7610 {
7611 tree stmt = push_stmt_list ();
7612 if (do_scope)
7613 push_scope ();
7614 return stmt;
7615 }
7616
7617 tree
7618 c_end_compound_stmt (tree stmt, bool do_scope)
7619 {
7620 tree block = NULL;
7621
7622 if (do_scope)
7623 {
7624 if (c_dialect_objc ())
7625 objc_clear_super_receiver ();
7626 block = pop_scope ();
7627 }
7628
7629 stmt = pop_stmt_list (stmt);
7630 stmt = c_build_bind_expr (block, stmt);
7631
7632 /* If this compound statement is nested immediately inside a statement
7633 expression, then force a BIND_EXPR to be created. Otherwise we'll
7634 do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
7635 STATEMENT_LISTs merge, and thus we can lose track of what statement
7636 was really last. */
7637 if (cur_stmt_list
7638 && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7639 && TREE_CODE (stmt) != BIND_EXPR)
7640 {
7641 stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7642 TREE_SIDE_EFFECTS (stmt) = 1;
7643 }
7644
7645 return stmt;
7646 }
7647
7648 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
7649 when the current scope is exited. EH_ONLY is true when this is not
7650 meant to apply to normal control flow transfer. */
7651
7652 void
7653 push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7654 {
7655 enum tree_code code;
7656 tree stmt, list;
7657 bool stmt_expr;
7658
7659 code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7660 stmt = build_stmt (code, NULL, cleanup);
7661 add_stmt (stmt);
7662 stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7663 list = push_stmt_list ();
7664 TREE_OPERAND (stmt, 0) = list;
7665 STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7666 }
7667 \f
7668 /* Build a binary-operation expression without default conversions.
7669 CODE is the kind of expression to build.
7670 This function differs from `build' in several ways:
7671 the data type of the result is computed and recorded in it,
7672 warnings are generated if arg data types are invalid,
7673 special handling for addition and subtraction of pointers is known,
7674 and some optimization is done (operations on narrow ints
7675 are done in the narrower type when that gives the same result).
7676 Constant folding is also done before the result is returned.
7677
7678 Note that the operands will never have enumeral types, or function
7679 or array types, because either they will have the default conversions
7680 performed or they have both just been converted to some other type in which
7681 the arithmetic is to be done. */
7682
7683 tree
7684 build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7685 int convert_p)
7686 {
7687 tree type0, type1;
7688 enum tree_code code0, code1;
7689 tree op0, op1;
7690 const char *invalid_op_diag;
7691
7692 /* Expression code to give to the expression when it is built.
7693 Normally this is CODE, which is what the caller asked for,
7694 but in some special cases we change it. */
7695 enum tree_code resultcode = code;
7696
7697 /* Data type in which the computation is to be performed.
7698 In the simplest cases this is the common type of the arguments. */
7699 tree result_type = NULL;
7700
7701 /* Nonzero means operands have already been type-converted
7702 in whatever way is necessary.
7703 Zero means they need to be converted to RESULT_TYPE. */
7704 int converted = 0;
7705
7706 /* Nonzero means create the expression with this type, rather than
7707 RESULT_TYPE. */
7708 tree build_type = 0;
7709
7710 /* Nonzero means after finally constructing the expression
7711 convert it to this type. */
7712 tree final_type = 0;
7713
7714 /* Nonzero if this is an operation like MIN or MAX which can
7715 safely be computed in short if both args are promoted shorts.
7716 Also implies COMMON.
7717 -1 indicates a bitwise operation; this makes a difference
7718 in the exact conditions for when it is safe to do the operation
7719 in a narrower mode. */
7720 int shorten = 0;
7721
7722 /* Nonzero if this is a comparison operation;
7723 if both args are promoted shorts, compare the original shorts.
7724 Also implies COMMON. */
7725 int short_compare = 0;
7726
7727 /* Nonzero if this is a right-shift operation, which can be computed on the
7728 original short and then promoted if the operand is a promoted short. */
7729 int short_shift = 0;
7730
7731 /* Nonzero means set RESULT_TYPE to the common type of the args. */
7732 int common = 0;
7733
7734 /* True means types are compatible as far as ObjC is concerned. */
7735 bool objc_ok;
7736
7737 if (convert_p)
7738 {
7739 op0 = default_conversion (orig_op0);
7740 op1 = default_conversion (orig_op1);
7741 }
7742 else
7743 {
7744 op0 = orig_op0;
7745 op1 = orig_op1;
7746 }
7747
7748 type0 = TREE_TYPE (op0);
7749 type1 = TREE_TYPE (op1);
7750
7751 /* The expression codes of the data types of the arguments tell us
7752 whether the arguments are integers, floating, pointers, etc. */
7753 code0 = TREE_CODE (type0);
7754 code1 = TREE_CODE (type1);
7755
7756 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
7757 STRIP_TYPE_NOPS (op0);
7758 STRIP_TYPE_NOPS (op1);
7759
7760 /* If an error was already reported for one of the arguments,
7761 avoid reporting another error. */
7762
7763 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7764 return error_mark_node;
7765
7766 if ((invalid_op_diag
7767 = targetm.invalid_binary_op (code, type0, type1)))
7768 {
7769 error (invalid_op_diag);
7770 return error_mark_node;
7771 }
7772
7773 objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7774
7775 switch (code)
7776 {
7777 case PLUS_EXPR:
7778 /* Handle the pointer + int case. */
7779 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7780 return pointer_int_sum (PLUS_EXPR, op0, op1);
7781 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7782 return pointer_int_sum (PLUS_EXPR, op1, op0);
7783 else
7784 common = 1;
7785 break;
7786
7787 case MINUS_EXPR:
7788 /* Subtraction of two similar pointers.
7789 We must subtract them as integers, then divide by object size. */
7790 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7791 && comp_target_types (type0, type1))
7792 return pointer_diff (op0, op1);
7793 /* Handle pointer minus int. Just like pointer plus int. */
7794 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7795 return pointer_int_sum (MINUS_EXPR, op0, op1);
7796 else
7797 common = 1;
7798 break;
7799
7800 case MULT_EXPR:
7801 common = 1;
7802 break;
7803
7804 case TRUNC_DIV_EXPR:
7805 case CEIL_DIV_EXPR:
7806 case FLOOR_DIV_EXPR:
7807 case ROUND_DIV_EXPR:
7808 case EXACT_DIV_EXPR:
7809 /* Floating point division by zero is a legitimate way to obtain
7810 infinities and NaNs. */
7811 if (skip_evaluation == 0 && integer_zerop (op1))
7812 warning (OPT_Wdiv_by_zero, "division by zero");
7813
7814 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7815 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7816 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7817 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7818 {
7819 enum tree_code tcode0 = code0, tcode1 = code1;
7820
7821 if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7822 tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7823 if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7824 tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7825
7826 if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7827 resultcode = RDIV_EXPR;
7828 else
7829 /* Although it would be tempting to shorten always here, that
7830 loses on some targets, since the modulo instruction is
7831 undefined if the quotient can't be represented in the
7832 computation mode. We shorten only if unsigned or if
7833 dividing by something we know != -1. */
7834 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7835 || (TREE_CODE (op1) == INTEGER_CST
7836 && !integer_all_onesp (op1)));
7837 common = 1;
7838 }
7839 break;
7840
7841 case BIT_AND_EXPR:
7842 case BIT_IOR_EXPR:
7843 case BIT_XOR_EXPR:
7844 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7845 shorten = -1;
7846 else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7847 common = 1;
7848 break;
7849
7850 case TRUNC_MOD_EXPR:
7851 case FLOOR_MOD_EXPR:
7852 if (skip_evaluation == 0 && integer_zerop (op1))
7853 warning (OPT_Wdiv_by_zero, "division by zero");
7854
7855 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7856 {
7857 /* Although it would be tempting to shorten always here, that loses
7858 on some targets, since the modulo instruction is undefined if the
7859 quotient can't be represented in the computation mode. We shorten
7860 only if unsigned or if dividing by something we know != -1. */
7861 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7862 || (TREE_CODE (op1) == INTEGER_CST
7863 && !integer_all_onesp (op1)));
7864 common = 1;
7865 }
7866 break;
7867
7868 case TRUTH_ANDIF_EXPR:
7869 case TRUTH_ORIF_EXPR:
7870 case TRUTH_AND_EXPR:
7871 case TRUTH_OR_EXPR:
7872 case TRUTH_XOR_EXPR:
7873 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7874 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7875 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
7876 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
7877 {
7878 /* Result of these operations is always an int,
7879 but that does not mean the operands should be
7880 converted to ints! */
7881 result_type = integer_type_node;
7882 op0 = c_common_truthvalue_conversion (op0);
7883 op1 = c_common_truthvalue_conversion (op1);
7884 converted = 1;
7885 }
7886 break;
7887
7888 /* Shift operations: result has same type as first operand;
7889 always convert second operand to int.
7890 Also set SHORT_SHIFT if shifting rightward. */
7891
7892 case RSHIFT_EXPR:
7893 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7894 {
7895 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7896 {
7897 if (tree_int_cst_sgn (op1) < 0)
7898 warning (0, "right shift count is negative");
7899 else
7900 {
7901 if (!integer_zerop (op1))
7902 short_shift = 1;
7903
7904 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7905 warning (0, "right shift count >= width of type");
7906 }
7907 }
7908
7909 /* Use the type of the value to be shifted. */
7910 result_type = type0;
7911 /* Convert the shift-count to an integer, regardless of size
7912 of value being shifted. */
7913 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7914 op1 = convert (integer_type_node, op1);
7915 /* Avoid converting op1 to result_type later. */
7916 converted = 1;
7917 }
7918 break;
7919
7920 case LSHIFT_EXPR:
7921 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7922 {
7923 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7924 {
7925 if (tree_int_cst_sgn (op1) < 0)
7926 warning (0, "left shift count is negative");
7927
7928 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7929 warning (0, "left shift count >= width of type");
7930 }
7931
7932 /* Use the type of the value to be shifted. */
7933 result_type = type0;
7934 /* Convert the shift-count to an integer, regardless of size
7935 of value being shifted. */
7936 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7937 op1 = convert (integer_type_node, op1);
7938 /* Avoid converting op1 to result_type later. */
7939 converted = 1;
7940 }
7941 break;
7942
7943 case EQ_EXPR:
7944 case NE_EXPR:
7945 if (code0 == REAL_TYPE || code1 == REAL_TYPE)
7946 warning (OPT_Wfloat_equal,
7947 "comparing floating point with == or != is unsafe");
7948 /* Result of comparison is always int,
7949 but don't convert the args to int! */
7950 build_type = integer_type_node;
7951 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7952 || code0 == COMPLEX_TYPE)
7953 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7954 || code1 == COMPLEX_TYPE))
7955 short_compare = 1;
7956 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
7957 {
7958 tree tt0 = TREE_TYPE (type0);
7959 tree tt1 = TREE_TYPE (type1);
7960 /* Anything compares with void *. void * compares with anything.
7961 Otherwise, the targets must be compatible
7962 and both must be object or both incomplete. */
7963 if (comp_target_types (type0, type1))
7964 result_type = common_pointer_type (type0, type1);
7965 else if (VOID_TYPE_P (tt0))
7966 {
7967 /* op0 != orig_op0 detects the case of something
7968 whose value is 0 but which isn't a valid null ptr const. */
7969 if (pedantic && !null_pointer_constant_p (orig_op0)
7970 && TREE_CODE (tt1) == FUNCTION_TYPE)
7971 pedwarn ("ISO C forbids comparison of %<void *%>"
7972 " with function pointer");
7973 }
7974 else if (VOID_TYPE_P (tt1))
7975 {
7976 if (pedantic && !null_pointer_constant_p (orig_op1)
7977 && TREE_CODE (tt0) == FUNCTION_TYPE)
7978 pedwarn ("ISO C forbids comparison of %<void *%>"
7979 " with function pointer");
7980 }
7981 else
7982 /* Avoid warning about the volatile ObjC EH puts on decls. */
7983 if (!objc_ok)
7984 pedwarn ("comparison of distinct pointer types lacks a cast");
7985
7986 if (result_type == NULL_TREE)
7987 result_type = ptr_type_node;
7988 }
7989 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
7990 {
7991 if (TREE_CODE (op0) == ADDR_EXPR
7992 && DECL_P (TREE_OPERAND (op0, 0))
7993 && !DECL_WEAK (TREE_OPERAND (op0, 0)))
7994 warning (OPT_Walways_true, "the address of %qD will never be NULL",
7995 TREE_OPERAND (op0, 0));
7996 result_type = type0;
7997 }
7998 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
7999 {
8000 if (TREE_CODE (op1) == ADDR_EXPR
8001 && DECL_P (TREE_OPERAND (op1, 0))
8002 && !DECL_WEAK (TREE_OPERAND (op1, 0)))
8003 warning (OPT_Walways_true, "the address of %qD will never be NULL",
8004 TREE_OPERAND (op1, 0));
8005 result_type = type1;
8006 }
8007 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8008 {
8009 result_type = type0;
8010 pedwarn ("comparison between pointer and integer");
8011 }
8012 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8013 {
8014 result_type = type1;
8015 pedwarn ("comparison between pointer and integer");
8016 }
8017 break;
8018
8019 case LE_EXPR:
8020 case GE_EXPR:
8021 case LT_EXPR:
8022 case GT_EXPR:
8023 build_type = integer_type_node;
8024 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
8025 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
8026 short_compare = 1;
8027 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8028 {
8029 if (comp_target_types (type0, type1))
8030 {
8031 result_type = common_pointer_type (type0, type1);
8032 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8033 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8034 pedwarn ("comparison of complete and incomplete pointers");
8035 else if (pedantic
8036 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8037 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8038 }
8039 else
8040 {
8041 result_type = ptr_type_node;
8042 pedwarn ("comparison of distinct pointer types lacks a cast");
8043 }
8044 }
8045 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8046 {
8047 result_type = type0;
8048 if (pedantic || extra_warnings)
8049 pedwarn ("ordered comparison of pointer with integer zero");
8050 }
8051 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8052 {
8053 result_type = type1;
8054 if (pedantic)
8055 pedwarn ("ordered comparison of pointer with integer zero");
8056 }
8057 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8058 {
8059 result_type = type0;
8060 pedwarn ("comparison between pointer and integer");
8061 }
8062 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8063 {
8064 result_type = type1;
8065 pedwarn ("comparison between pointer and integer");
8066 }
8067 break;
8068
8069 default:
8070 gcc_unreachable ();
8071 }
8072
8073 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8074 return error_mark_node;
8075
8076 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8077 && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8078 || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8079 TREE_TYPE (type1))))
8080 {
8081 binary_op_error (code);
8082 return error_mark_node;
8083 }
8084
8085 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8086 || code0 == VECTOR_TYPE)
8087 &&
8088 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8089 || code1 == VECTOR_TYPE))
8090 {
8091 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8092
8093 if (shorten || common || short_compare)
8094 result_type = c_common_type (type0, type1);
8095
8096 /* For certain operations (which identify themselves by shorten != 0)
8097 if both args were extended from the same smaller type,
8098 do the arithmetic in that type and then extend.
8099
8100 shorten !=0 and !=1 indicates a bitwise operation.
8101 For them, this optimization is safe only if
8102 both args are zero-extended or both are sign-extended.
8103 Otherwise, we might change the result.
8104 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8105 but calculated in (unsigned short) it would be (unsigned short)-1. */
8106
8107 if (shorten && none_complex)
8108 {
8109 int unsigned0, unsigned1;
8110 tree arg0 = get_narrower (op0, &unsigned0);
8111 tree arg1 = get_narrower (op1, &unsigned1);
8112 /* UNS is 1 if the operation to be done is an unsigned one. */
8113 int uns = TYPE_UNSIGNED (result_type);
8114 tree type;
8115
8116 final_type = result_type;
8117
8118 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8119 but it *requires* conversion to FINAL_TYPE. */
8120
8121 if ((TYPE_PRECISION (TREE_TYPE (op0))
8122 == TYPE_PRECISION (TREE_TYPE (arg0)))
8123 && TREE_TYPE (op0) != final_type)
8124 unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8125 if ((TYPE_PRECISION (TREE_TYPE (op1))
8126 == TYPE_PRECISION (TREE_TYPE (arg1)))
8127 && TREE_TYPE (op1) != final_type)
8128 unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8129
8130 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
8131
8132 /* For bitwise operations, signedness of nominal type
8133 does not matter. Consider only how operands were extended. */
8134 if (shorten == -1)
8135 uns = unsigned0;
8136
8137 /* Note that in all three cases below we refrain from optimizing
8138 an unsigned operation on sign-extended args.
8139 That would not be valid. */
8140
8141 /* Both args variable: if both extended in same way
8142 from same width, do it in that width.
8143 Do it unsigned if args were zero-extended. */
8144 if ((TYPE_PRECISION (TREE_TYPE (arg0))
8145 < TYPE_PRECISION (result_type))
8146 && (TYPE_PRECISION (TREE_TYPE (arg1))
8147 == TYPE_PRECISION (TREE_TYPE (arg0)))
8148 && unsigned0 == unsigned1
8149 && (unsigned0 || !uns))
8150 result_type
8151 = c_common_signed_or_unsigned_type
8152 (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8153 else if (TREE_CODE (arg0) == INTEGER_CST
8154 && (unsigned1 || !uns)
8155 && (TYPE_PRECISION (TREE_TYPE (arg1))
8156 < TYPE_PRECISION (result_type))
8157 && (type
8158 = c_common_signed_or_unsigned_type (unsigned1,
8159 TREE_TYPE (arg1)),
8160 int_fits_type_p (arg0, type)))
8161 result_type = type;
8162 else if (TREE_CODE (arg1) == INTEGER_CST
8163 && (unsigned0 || !uns)
8164 && (TYPE_PRECISION (TREE_TYPE (arg0))
8165 < TYPE_PRECISION (result_type))
8166 && (type
8167 = c_common_signed_or_unsigned_type (unsigned0,
8168 TREE_TYPE (arg0)),
8169 int_fits_type_p (arg1, type)))
8170 result_type = type;
8171 }
8172
8173 /* Shifts can be shortened if shifting right. */
8174
8175 if (short_shift)
8176 {
8177 int unsigned_arg;
8178 tree arg0 = get_narrower (op0, &unsigned_arg);
8179
8180 final_type = result_type;
8181
8182 if (arg0 == op0 && final_type == TREE_TYPE (op0))
8183 unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8184
8185 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8186 /* We can shorten only if the shift count is less than the
8187 number of bits in the smaller type size. */
8188 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8189 /* We cannot drop an unsigned shift after sign-extension. */
8190 && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8191 {
8192 /* Do an unsigned shift if the operand was zero-extended. */
8193 result_type
8194 = c_common_signed_or_unsigned_type (unsigned_arg,
8195 TREE_TYPE (arg0));
8196 /* Convert value-to-be-shifted to that type. */
8197 if (TREE_TYPE (op0) != result_type)
8198 op0 = convert (result_type, op0);
8199 converted = 1;
8200 }
8201 }
8202
8203 /* Comparison operations are shortened too but differently.
8204 They identify themselves by setting short_compare = 1. */
8205
8206 if (short_compare)
8207 {
8208 /* Don't write &op0, etc., because that would prevent op0
8209 from being kept in a register.
8210 Instead, make copies of the our local variables and
8211 pass the copies by reference, then copy them back afterward. */
8212 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8213 enum tree_code xresultcode = resultcode;
8214 tree val
8215 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8216
8217 if (val != 0)
8218 return val;
8219
8220 op0 = xop0, op1 = xop1;
8221 converted = 1;
8222 resultcode = xresultcode;
8223
8224 if (warn_sign_compare && skip_evaluation == 0)
8225 {
8226 int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8227 int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8228 int unsignedp0, unsignedp1;
8229 tree primop0 = get_narrower (op0, &unsignedp0);
8230 tree primop1 = get_narrower (op1, &unsignedp1);
8231
8232 xop0 = orig_op0;
8233 xop1 = orig_op1;
8234 STRIP_TYPE_NOPS (xop0);
8235 STRIP_TYPE_NOPS (xop1);
8236
8237 /* Give warnings for comparisons between signed and unsigned
8238 quantities that may fail.
8239
8240 Do the checking based on the original operand trees, so that
8241 casts will be considered, but default promotions won't be.
8242
8243 Do not warn if the comparison is being done in a signed type,
8244 since the signed type will only be chosen if it can represent
8245 all the values of the unsigned type. */
8246 if (!TYPE_UNSIGNED (result_type))
8247 /* OK */;
8248 /* Do not warn if both operands are the same signedness. */
8249 else if (op0_signed == op1_signed)
8250 /* OK */;
8251 else
8252 {
8253 tree sop, uop;
8254
8255 if (op0_signed)
8256 sop = xop0, uop = xop1;
8257 else
8258 sop = xop1, uop = xop0;
8259
8260 /* Do not warn if the signed quantity is an
8261 unsuffixed integer literal (or some static
8262 constant expression involving such literals or a
8263 conditional expression involving such literals)
8264 and it is non-negative. */
8265 if (tree_expr_nonnegative_p (sop))
8266 /* OK */;
8267 /* Do not warn if the comparison is an equality operation,
8268 the unsigned quantity is an integral constant, and it
8269 would fit in the result if the result were signed. */
8270 else if (TREE_CODE (uop) == INTEGER_CST
8271 && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8272 && int_fits_type_p
8273 (uop, c_common_signed_type (result_type)))
8274 /* OK */;
8275 /* Do not warn if the unsigned quantity is an enumeration
8276 constant and its maximum value would fit in the result
8277 if the result were signed. */
8278 else if (TREE_CODE (uop) == INTEGER_CST
8279 && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8280 && int_fits_type_p
8281 (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8282 c_common_signed_type (result_type)))
8283 /* OK */;
8284 else
8285 warning (0, "comparison between signed and unsigned");
8286 }
8287
8288 /* Warn if two unsigned values are being compared in a size
8289 larger than their original size, and one (and only one) is the
8290 result of a `~' operator. This comparison will always fail.
8291
8292 Also warn if one operand is a constant, and the constant
8293 does not have all bits set that are set in the ~ operand
8294 when it is extended. */
8295
8296 if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8297 != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8298 {
8299 if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8300 primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8301 &unsignedp0);
8302 else
8303 primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8304 &unsignedp1);
8305
8306 if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8307 {
8308 tree primop;
8309 HOST_WIDE_INT constant, mask;
8310 int unsignedp, bits;
8311
8312 if (host_integerp (primop0, 0))
8313 {
8314 primop = primop1;
8315 unsignedp = unsignedp1;
8316 constant = tree_low_cst (primop0, 0);
8317 }
8318 else
8319 {
8320 primop = primop0;
8321 unsignedp = unsignedp0;
8322 constant = tree_low_cst (primop1, 0);
8323 }
8324
8325 bits = TYPE_PRECISION (TREE_TYPE (primop));
8326 if (bits < TYPE_PRECISION (result_type)
8327 && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8328 {
8329 mask = (~(HOST_WIDE_INT) 0) << bits;
8330 if ((mask & constant) != mask)
8331 warning (0, "comparison of promoted ~unsigned with constant");
8332 }
8333 }
8334 else if (unsignedp0 && unsignedp1
8335 && (TYPE_PRECISION (TREE_TYPE (primop0))
8336 < TYPE_PRECISION (result_type))
8337 && (TYPE_PRECISION (TREE_TYPE (primop1))
8338 < TYPE_PRECISION (result_type)))
8339 warning (0, "comparison of promoted ~unsigned with unsigned");
8340 }
8341 }
8342 }
8343 }
8344
8345 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8346 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8347 Then the expression will be built.
8348 It will be given type FINAL_TYPE if that is nonzero;
8349 otherwise, it will be given type RESULT_TYPE. */
8350
8351 if (!result_type)
8352 {
8353 binary_op_error (code);
8354 return error_mark_node;
8355 }
8356
8357 if (!converted)
8358 {
8359 if (TREE_TYPE (op0) != result_type)
8360 op0 = convert (result_type, op0);
8361 if (TREE_TYPE (op1) != result_type)
8362 op1 = convert (result_type, op1);
8363
8364 /* This can happen if one operand has a vector type, and the other
8365 has a different type. */
8366 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8367 return error_mark_node;
8368 }
8369
8370 if (build_type == NULL_TREE)
8371 build_type = result_type;
8372
8373 {
8374 /* Treat expressions in initializers specially as they can't trap. */
8375 tree result = require_constant_value ? fold_build2_initializer (resultcode,
8376 build_type,
8377 op0, op1)
8378 : fold_build2 (resultcode, build_type,
8379 op0, op1);
8380
8381 if (final_type != 0)
8382 result = convert (final_type, result);
8383 return result;
8384 }
8385 }
8386
8387
8388 /* Convert EXPR to be a truth-value, validating its type for this
8389 purpose. */
8390
8391 tree
8392 c_objc_common_truthvalue_conversion (tree expr)
8393 {
8394 switch (TREE_CODE (TREE_TYPE (expr)))
8395 {
8396 case ARRAY_TYPE:
8397 error ("used array that cannot be converted to pointer where scalar is required");
8398 return error_mark_node;
8399
8400 case RECORD_TYPE:
8401 error ("used struct type value where scalar is required");
8402 return error_mark_node;
8403
8404 case UNION_TYPE:
8405 error ("used union type value where scalar is required");
8406 return error_mark_node;
8407
8408 case FUNCTION_TYPE:
8409 gcc_unreachable ();
8410
8411 default:
8412 break;
8413 }
8414
8415 /* ??? Should we also give an error for void and vectors rather than
8416 leaving those to give errors later? */
8417 return c_common_truthvalue_conversion (expr);
8418 }
8419 \f
8420
8421 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8422 required. */
8423
8424 tree
8425 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8426 bool *ti ATTRIBUTE_UNUSED, bool *se)
8427 {
8428 if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8429 {
8430 tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8431 /* Executing a compound literal inside a function reinitializes
8432 it. */
8433 if (!TREE_STATIC (decl))
8434 *se = true;
8435 return decl;
8436 }
8437 else
8438 return expr;
8439 }