Vector shuffling patch from Artem Shinkarov.
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* This file is part of the C front end.
24 It contains routines to build C expressions given their operands,
25 including computing the types of the result, C-specific error checks,
26 and some optimization. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "tree.h"
33 #include "langhooks.h"
34 #include "c-tree.h"
35 #include "c-lang.h"
36 #include "flags.h"
37 #include "output.h"
38 #include "intl.h"
39 #include "target.h"
40 #include "tree-iterator.h"
41 #include "bitmap.h"
42 #include "gimple.h"
43 #include "c-family/c-objc.h"
44
45 /* Possible cases of implicit bad conversions. Used to select
46 diagnostic messages in convert_for_assignment. */
47 enum impl_conv {
48 ic_argpass,
49 ic_assign,
50 ic_init,
51 ic_return
52 };
53
54 /* Possibe cases of scalar_to_vector conversion. */
55 enum stv_conv {
56 stv_error, /* Error occured. */
57 stv_nothing, /* Nothing happened. */
58 stv_firstarg, /* First argument must be expanded. */
59 stv_secondarg /* Second argument must be expanded. */
60 };
61
62 /* The level of nesting inside "__alignof__". */
63 int in_alignof;
64
65 /* The level of nesting inside "sizeof". */
66 int in_sizeof;
67
68 /* The level of nesting inside "typeof". */
69 int in_typeof;
70
71 /* Nonzero if we've already printed a "missing braces around initializer"
72 message within this initializer. */
73 static int missing_braces_mentioned;
74
75 static int require_constant_value;
76 static int require_constant_elements;
77
78 static bool null_pointer_constant_p (const_tree);
79 static tree qualify_type (tree, tree);
80 static int tagged_types_tu_compatible_p (const_tree, const_tree, bool *,
81 bool *);
82 static int comp_target_types (location_t, tree, tree);
83 static int function_types_compatible_p (const_tree, const_tree, bool *,
84 bool *);
85 static int type_lists_compatible_p (const_tree, const_tree, bool *, bool *);
86 static tree lookup_field (tree, tree);
87 static int convert_arguments (tree, VEC(tree,gc) *, VEC(tree,gc) *, tree,
88 tree);
89 static tree pointer_diff (location_t, tree, tree);
90 static tree convert_for_assignment (location_t, tree, tree, tree,
91 enum impl_conv, bool, tree, tree, int);
92 static tree valid_compound_expr_initializer (tree, tree);
93 static void push_string (const char *);
94 static void push_member_name (tree);
95 static int spelling_length (void);
96 static char *print_spelling (char *);
97 static void warning_init (int, const char *);
98 static tree digest_init (location_t, tree, tree, tree, bool, bool, int);
99 static void output_init_element (tree, tree, bool, tree, tree, int, bool,
100 struct obstack *);
101 static void output_pending_init_elements (int, struct obstack *);
102 static int set_designator (int, struct obstack *);
103 static void push_range_stack (tree, struct obstack *);
104 static void add_pending_init (tree, tree, tree, bool, struct obstack *);
105 static void set_nonincremental_init (struct obstack *);
106 static void set_nonincremental_init_from_string (tree, struct obstack *);
107 static tree find_init_member (tree, struct obstack *);
108 static void readonly_warning (tree, enum lvalue_use);
109 static int lvalue_or_else (location_t, const_tree, enum lvalue_use);
110 static void record_maybe_used_decl (tree);
111 static int comptypes_internal (const_tree, const_tree, bool *, bool *);
112 \f
113 /* Return true if EXP is a null pointer constant, false otherwise. */
114
115 static bool
116 null_pointer_constant_p (const_tree expr)
117 {
118 /* This should really operate on c_expr structures, but they aren't
119 yet available everywhere required. */
120 tree type = TREE_TYPE (expr);
121 return (TREE_CODE (expr) == INTEGER_CST
122 && !TREE_OVERFLOW (expr)
123 && integer_zerop (expr)
124 && (INTEGRAL_TYPE_P (type)
125 || (TREE_CODE (type) == POINTER_TYPE
126 && VOID_TYPE_P (TREE_TYPE (type))
127 && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
128 }
129
130 /* EXPR may appear in an unevaluated part of an integer constant
131 expression, but not in an evaluated part. Wrap it in a
132 C_MAYBE_CONST_EXPR, or mark it with TREE_OVERFLOW if it is just an
133 INTEGER_CST and we cannot create a C_MAYBE_CONST_EXPR. */
134
135 static tree
136 note_integer_operands (tree expr)
137 {
138 tree ret;
139 if (TREE_CODE (expr) == INTEGER_CST && in_late_binary_op)
140 {
141 ret = copy_node (expr);
142 TREE_OVERFLOW (ret) = 1;
143 }
144 else
145 {
146 ret = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (expr), NULL_TREE, expr);
147 C_MAYBE_CONST_EXPR_INT_OPERANDS (ret) = 1;
148 }
149 return ret;
150 }
151
152 /* Having checked whether EXPR may appear in an unevaluated part of an
153 integer constant expression and found that it may, remove any
154 C_MAYBE_CONST_EXPR noting this fact and return the resulting
155 expression. */
156
157 static inline tree
158 remove_c_maybe_const_expr (tree expr)
159 {
160 if (TREE_CODE (expr) == C_MAYBE_CONST_EXPR)
161 return C_MAYBE_CONST_EXPR_EXPR (expr);
162 else
163 return expr;
164 }
165
166 \f/* This is a cache to hold if two types are compatible or not. */
167
168 struct tagged_tu_seen_cache {
169 const struct tagged_tu_seen_cache * next;
170 const_tree t1;
171 const_tree t2;
172 /* The return value of tagged_types_tu_compatible_p if we had seen
173 these two types already. */
174 int val;
175 };
176
177 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
178 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
179
180 /* Do `exp = require_complete_type (exp);' to make sure exp
181 does not have an incomplete type. (That includes void types.) */
182
183 tree
184 require_complete_type (tree value)
185 {
186 tree type = TREE_TYPE (value);
187
188 if (value == error_mark_node || type == error_mark_node)
189 return error_mark_node;
190
191 /* First, detect a valid value with a complete type. */
192 if (COMPLETE_TYPE_P (type))
193 return value;
194
195 c_incomplete_type_error (value, type);
196 return error_mark_node;
197 }
198
199 /* Print an error message for invalid use of an incomplete type.
200 VALUE is the expression that was used (or 0 if that isn't known)
201 and TYPE is the type that was invalid. */
202
203 void
204 c_incomplete_type_error (const_tree value, const_tree type)
205 {
206 const char *type_code_string;
207
208 /* Avoid duplicate error message. */
209 if (TREE_CODE (type) == ERROR_MARK)
210 return;
211
212 if (value != 0 && (TREE_CODE (value) == VAR_DECL
213 || TREE_CODE (value) == PARM_DECL))
214 error ("%qD has an incomplete type", value);
215 else
216 {
217 retry:
218 /* We must print an error message. Be clever about what it says. */
219
220 switch (TREE_CODE (type))
221 {
222 case RECORD_TYPE:
223 type_code_string = "struct";
224 break;
225
226 case UNION_TYPE:
227 type_code_string = "union";
228 break;
229
230 case ENUMERAL_TYPE:
231 type_code_string = "enum";
232 break;
233
234 case VOID_TYPE:
235 error ("invalid use of void expression");
236 return;
237
238 case ARRAY_TYPE:
239 if (TYPE_DOMAIN (type))
240 {
241 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
242 {
243 error ("invalid use of flexible array member");
244 return;
245 }
246 type = TREE_TYPE (type);
247 goto retry;
248 }
249 error ("invalid use of array with unspecified bounds");
250 return;
251
252 default:
253 gcc_unreachable ();
254 }
255
256 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
257 error ("invalid use of undefined type %<%s %E%>",
258 type_code_string, TYPE_NAME (type));
259 else
260 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
261 error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
262 }
263 }
264
265 /* Given a type, apply default promotions wrt unnamed function
266 arguments and return the new type. */
267
268 tree
269 c_type_promotes_to (tree type)
270 {
271 if (TYPE_MAIN_VARIANT (type) == float_type_node)
272 return double_type_node;
273
274 if (c_promoting_integer_type_p (type))
275 {
276 /* Preserve unsignedness if not really getting any wider. */
277 if (TYPE_UNSIGNED (type)
278 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
279 return unsigned_type_node;
280 return integer_type_node;
281 }
282
283 return type;
284 }
285
286 /* Return true if between two named address spaces, whether there is a superset
287 named address space that encompasses both address spaces. If there is a
288 superset, return which address space is the superset. */
289
290 static bool
291 addr_space_superset (addr_space_t as1, addr_space_t as2, addr_space_t *common)
292 {
293 if (as1 == as2)
294 {
295 *common = as1;
296 return true;
297 }
298 else if (targetm.addr_space.subset_p (as1, as2))
299 {
300 *common = as2;
301 return true;
302 }
303 else if (targetm.addr_space.subset_p (as2, as1))
304 {
305 *common = as1;
306 return true;
307 }
308 else
309 return false;
310 }
311
312 /* Return a variant of TYPE which has all the type qualifiers of LIKE
313 as well as those of TYPE. */
314
315 static tree
316 qualify_type (tree type, tree like)
317 {
318 addr_space_t as_type = TYPE_ADDR_SPACE (type);
319 addr_space_t as_like = TYPE_ADDR_SPACE (like);
320 addr_space_t as_common;
321
322 /* If the two named address spaces are different, determine the common
323 superset address space. If there isn't one, raise an error. */
324 if (!addr_space_superset (as_type, as_like, &as_common))
325 {
326 as_common = as_type;
327 error ("%qT and %qT are in disjoint named address spaces",
328 type, like);
329 }
330
331 return c_build_qualified_type (type,
332 TYPE_QUALS_NO_ADDR_SPACE (type)
333 | TYPE_QUALS_NO_ADDR_SPACE (like)
334 | ENCODE_QUAL_ADDR_SPACE (as_common));
335 }
336
337 /* Return true iff the given tree T is a variable length array. */
338
339 bool
340 c_vla_type_p (const_tree t)
341 {
342 if (TREE_CODE (t) == ARRAY_TYPE
343 && C_TYPE_VARIABLE_SIZE (t))
344 return true;
345 return false;
346 }
347 \f
348 /* Return the composite type of two compatible types.
349
350 We assume that comptypes has already been done and returned
351 nonzero; if that isn't so, this may crash. In particular, we
352 assume that qualifiers match. */
353
354 tree
355 composite_type (tree t1, tree t2)
356 {
357 enum tree_code code1;
358 enum tree_code code2;
359 tree attributes;
360
361 /* Save time if the two types are the same. */
362
363 if (t1 == t2) return t1;
364
365 /* If one type is nonsense, use the other. */
366 if (t1 == error_mark_node)
367 return t2;
368 if (t2 == error_mark_node)
369 return t1;
370
371 code1 = TREE_CODE (t1);
372 code2 = TREE_CODE (t2);
373
374 /* Merge the attributes. */
375 attributes = targetm.merge_type_attributes (t1, t2);
376
377 /* If one is an enumerated type and the other is the compatible
378 integer type, the composite type might be either of the two
379 (DR#013 question 3). For consistency, use the enumerated type as
380 the composite type. */
381
382 if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
383 return t1;
384 if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
385 return t2;
386
387 gcc_assert (code1 == code2);
388
389 switch (code1)
390 {
391 case POINTER_TYPE:
392 /* For two pointers, do this recursively on the target type. */
393 {
394 tree pointed_to_1 = TREE_TYPE (t1);
395 tree pointed_to_2 = TREE_TYPE (t2);
396 tree target = composite_type (pointed_to_1, pointed_to_2);
397 t1 = build_pointer_type (target);
398 t1 = build_type_attribute_variant (t1, attributes);
399 return qualify_type (t1, t2);
400 }
401
402 case ARRAY_TYPE:
403 {
404 tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
405 int quals;
406 tree unqual_elt;
407 tree d1 = TYPE_DOMAIN (t1);
408 tree d2 = TYPE_DOMAIN (t2);
409 bool d1_variable, d2_variable;
410 bool d1_zero, d2_zero;
411 bool t1_complete, t2_complete;
412
413 /* We should not have any type quals on arrays at all. */
414 gcc_assert (!TYPE_QUALS_NO_ADDR_SPACE (t1)
415 && !TYPE_QUALS_NO_ADDR_SPACE (t2));
416
417 t1_complete = COMPLETE_TYPE_P (t1);
418 t2_complete = COMPLETE_TYPE_P (t2);
419
420 d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
421 d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
422
423 d1_variable = (!d1_zero
424 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
425 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
426 d2_variable = (!d2_zero
427 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
428 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
429 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
430 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
431
432 /* Save space: see if the result is identical to one of the args. */
433 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
434 && (d2_variable || d2_zero || !d1_variable))
435 return build_type_attribute_variant (t1, attributes);
436 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
437 && (d1_variable || d1_zero || !d2_variable))
438 return build_type_attribute_variant (t2, attributes);
439
440 if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
441 return build_type_attribute_variant (t1, attributes);
442 if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
443 return build_type_attribute_variant (t2, attributes);
444
445 /* Merge the element types, and have a size if either arg has
446 one. We may have qualifiers on the element types. To set
447 up TYPE_MAIN_VARIANT correctly, we need to form the
448 composite of the unqualified types and add the qualifiers
449 back at the end. */
450 quals = TYPE_QUALS (strip_array_types (elt));
451 unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
452 t1 = build_array_type (unqual_elt,
453 TYPE_DOMAIN ((TYPE_DOMAIN (t1)
454 && (d2_variable
455 || d2_zero
456 || !d1_variable))
457 ? t1
458 : t2));
459 /* Ensure a composite type involving a zero-length array type
460 is a zero-length type not an incomplete type. */
461 if (d1_zero && d2_zero
462 && (t1_complete || t2_complete)
463 && !COMPLETE_TYPE_P (t1))
464 {
465 TYPE_SIZE (t1) = bitsize_zero_node;
466 TYPE_SIZE_UNIT (t1) = size_zero_node;
467 }
468 t1 = c_build_qualified_type (t1, quals);
469 return build_type_attribute_variant (t1, attributes);
470 }
471
472 case ENUMERAL_TYPE:
473 case RECORD_TYPE:
474 case UNION_TYPE:
475 if (attributes != NULL)
476 {
477 /* Try harder not to create a new aggregate type. */
478 if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
479 return t1;
480 if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
481 return t2;
482 }
483 return build_type_attribute_variant (t1, attributes);
484
485 case FUNCTION_TYPE:
486 /* Function types: prefer the one that specified arg types.
487 If both do, merge the arg types. Also merge the return types. */
488 {
489 tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
490 tree p1 = TYPE_ARG_TYPES (t1);
491 tree p2 = TYPE_ARG_TYPES (t2);
492 int len;
493 tree newargs, n;
494 int i;
495
496 /* Save space: see if the result is identical to one of the args. */
497 if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
498 return build_type_attribute_variant (t1, attributes);
499 if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
500 return build_type_attribute_variant (t2, attributes);
501
502 /* Simple way if one arg fails to specify argument types. */
503 if (TYPE_ARG_TYPES (t1) == 0)
504 {
505 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
506 t1 = build_type_attribute_variant (t1, attributes);
507 return qualify_type (t1, t2);
508 }
509 if (TYPE_ARG_TYPES (t2) == 0)
510 {
511 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
512 t1 = build_type_attribute_variant (t1, attributes);
513 return qualify_type (t1, t2);
514 }
515
516 /* If both args specify argument types, we must merge the two
517 lists, argument by argument. */
518
519 len = list_length (p1);
520 newargs = 0;
521
522 for (i = 0; i < len; i++)
523 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
524
525 n = newargs;
526
527 for (; p1;
528 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
529 {
530 /* A null type means arg type is not specified.
531 Take whatever the other function type has. */
532 if (TREE_VALUE (p1) == 0)
533 {
534 TREE_VALUE (n) = TREE_VALUE (p2);
535 goto parm_done;
536 }
537 if (TREE_VALUE (p2) == 0)
538 {
539 TREE_VALUE (n) = TREE_VALUE (p1);
540 goto parm_done;
541 }
542
543 /* Given wait (union {union wait *u; int *i} *)
544 and wait (union wait *),
545 prefer union wait * as type of parm. */
546 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
547 && TREE_VALUE (p1) != TREE_VALUE (p2))
548 {
549 tree memb;
550 tree mv2 = TREE_VALUE (p2);
551 if (mv2 && mv2 != error_mark_node
552 && TREE_CODE (mv2) != ARRAY_TYPE)
553 mv2 = TYPE_MAIN_VARIANT (mv2);
554 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
555 memb; memb = DECL_CHAIN (memb))
556 {
557 tree mv3 = TREE_TYPE (memb);
558 if (mv3 && mv3 != error_mark_node
559 && TREE_CODE (mv3) != ARRAY_TYPE)
560 mv3 = TYPE_MAIN_VARIANT (mv3);
561 if (comptypes (mv3, mv2))
562 {
563 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
564 TREE_VALUE (p2));
565 pedwarn (input_location, OPT_pedantic,
566 "function types not truly compatible in ISO C");
567 goto parm_done;
568 }
569 }
570 }
571 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
572 && TREE_VALUE (p2) != TREE_VALUE (p1))
573 {
574 tree memb;
575 tree mv1 = TREE_VALUE (p1);
576 if (mv1 && mv1 != error_mark_node
577 && TREE_CODE (mv1) != ARRAY_TYPE)
578 mv1 = TYPE_MAIN_VARIANT (mv1);
579 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
580 memb; memb = DECL_CHAIN (memb))
581 {
582 tree mv3 = TREE_TYPE (memb);
583 if (mv3 && mv3 != error_mark_node
584 && TREE_CODE (mv3) != ARRAY_TYPE)
585 mv3 = TYPE_MAIN_VARIANT (mv3);
586 if (comptypes (mv3, mv1))
587 {
588 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
589 TREE_VALUE (p1));
590 pedwarn (input_location, OPT_pedantic,
591 "function types not truly compatible in ISO C");
592 goto parm_done;
593 }
594 }
595 }
596 TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
597 parm_done: ;
598 }
599
600 t1 = build_function_type (valtype, newargs);
601 t1 = qualify_type (t1, t2);
602 /* ... falls through ... */
603 }
604
605 default:
606 return build_type_attribute_variant (t1, attributes);
607 }
608
609 }
610
611 /* Return the type of a conditional expression between pointers to
612 possibly differently qualified versions of compatible types.
613
614 We assume that comp_target_types has already been done and returned
615 nonzero; if that isn't so, this may crash. */
616
617 static tree
618 common_pointer_type (tree t1, tree t2)
619 {
620 tree attributes;
621 tree pointed_to_1, mv1;
622 tree pointed_to_2, mv2;
623 tree target;
624 unsigned target_quals;
625 addr_space_t as1, as2, as_common;
626 int quals1, quals2;
627
628 /* Save time if the two types are the same. */
629
630 if (t1 == t2) return t1;
631
632 /* If one type is nonsense, use the other. */
633 if (t1 == error_mark_node)
634 return t2;
635 if (t2 == error_mark_node)
636 return t1;
637
638 gcc_assert (TREE_CODE (t1) == POINTER_TYPE
639 && TREE_CODE (t2) == POINTER_TYPE);
640
641 /* Merge the attributes. */
642 attributes = targetm.merge_type_attributes (t1, t2);
643
644 /* Find the composite type of the target types, and combine the
645 qualifiers of the two types' targets. Do not lose qualifiers on
646 array element types by taking the TYPE_MAIN_VARIANT. */
647 mv1 = pointed_to_1 = TREE_TYPE (t1);
648 mv2 = pointed_to_2 = TREE_TYPE (t2);
649 if (TREE_CODE (mv1) != ARRAY_TYPE)
650 mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
651 if (TREE_CODE (mv2) != ARRAY_TYPE)
652 mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
653 target = composite_type (mv1, mv2);
654
655 /* For function types do not merge const qualifiers, but drop them
656 if used inconsistently. The middle-end uses these to mark const
657 and noreturn functions. */
658 quals1 = TYPE_QUALS_NO_ADDR_SPACE (pointed_to_1);
659 quals2 = TYPE_QUALS_NO_ADDR_SPACE (pointed_to_2);
660
661 if (TREE_CODE (pointed_to_1) == FUNCTION_TYPE)
662 target_quals = (quals1 & quals2);
663 else
664 target_quals = (quals1 | quals2);
665
666 /* If the two named address spaces are different, determine the common
667 superset address space. This is guaranteed to exist due to the
668 assumption that comp_target_type returned non-zero. */
669 as1 = TYPE_ADDR_SPACE (pointed_to_1);
670 as2 = TYPE_ADDR_SPACE (pointed_to_2);
671 if (!addr_space_superset (as1, as2, &as_common))
672 gcc_unreachable ();
673
674 target_quals |= ENCODE_QUAL_ADDR_SPACE (as_common);
675
676 t1 = build_pointer_type (c_build_qualified_type (target, target_quals));
677 return build_type_attribute_variant (t1, attributes);
678 }
679
680 /* Return the common type for two arithmetic types under the usual
681 arithmetic conversions. The default conversions have already been
682 applied, and enumerated types converted to their compatible integer
683 types. The resulting type is unqualified and has no attributes.
684
685 This is the type for the result of most arithmetic operations
686 if the operands have the given two types. */
687
688 static tree
689 c_common_type (tree t1, tree t2)
690 {
691 enum tree_code code1;
692 enum tree_code code2;
693
694 /* If one type is nonsense, use the other. */
695 if (t1 == error_mark_node)
696 return t2;
697 if (t2 == error_mark_node)
698 return t1;
699
700 if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
701 t1 = TYPE_MAIN_VARIANT (t1);
702
703 if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
704 t2 = TYPE_MAIN_VARIANT (t2);
705
706 if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
707 t1 = build_type_attribute_variant (t1, NULL_TREE);
708
709 if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
710 t2 = build_type_attribute_variant (t2, NULL_TREE);
711
712 /* Save time if the two types are the same. */
713
714 if (t1 == t2) return t1;
715
716 code1 = TREE_CODE (t1);
717 code2 = TREE_CODE (t2);
718
719 gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
720 || code1 == FIXED_POINT_TYPE || code1 == REAL_TYPE
721 || code1 == INTEGER_TYPE);
722 gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
723 || code2 == FIXED_POINT_TYPE || code2 == REAL_TYPE
724 || code2 == INTEGER_TYPE);
725
726 /* When one operand is a decimal float type, the other operand cannot be
727 a generic float type or a complex type. We also disallow vector types
728 here. */
729 if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
730 && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
731 {
732 if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
733 {
734 error ("can%'t mix operands of decimal float and vector types");
735 return error_mark_node;
736 }
737 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
738 {
739 error ("can%'t mix operands of decimal float and complex types");
740 return error_mark_node;
741 }
742 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
743 {
744 error ("can%'t mix operands of decimal float and other float types");
745 return error_mark_node;
746 }
747 }
748
749 /* If one type is a vector type, return that type. (How the usual
750 arithmetic conversions apply to the vector types extension is not
751 precisely specified.) */
752 if (code1 == VECTOR_TYPE)
753 return t1;
754
755 if (code2 == VECTOR_TYPE)
756 return t2;
757
758 /* If one type is complex, form the common type of the non-complex
759 components, then make that complex. Use T1 or T2 if it is the
760 required type. */
761 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
762 {
763 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
764 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
765 tree subtype = c_common_type (subtype1, subtype2);
766
767 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
768 return t1;
769 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
770 return t2;
771 else
772 return build_complex_type (subtype);
773 }
774
775 /* If only one is real, use it as the result. */
776
777 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
778 return t1;
779
780 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
781 return t2;
782
783 /* If both are real and either are decimal floating point types, use
784 the decimal floating point type with the greater precision. */
785
786 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
787 {
788 if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
789 || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
790 return dfloat128_type_node;
791 else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
792 || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
793 return dfloat64_type_node;
794 else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
795 || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
796 return dfloat32_type_node;
797 }
798
799 /* Deal with fixed-point types. */
800 if (code1 == FIXED_POINT_TYPE || code2 == FIXED_POINT_TYPE)
801 {
802 unsigned int unsignedp = 0, satp = 0;
803 enum machine_mode m1, m2;
804 unsigned int fbit1, ibit1, fbit2, ibit2, max_fbit, max_ibit;
805
806 m1 = TYPE_MODE (t1);
807 m2 = TYPE_MODE (t2);
808
809 /* If one input type is saturating, the result type is saturating. */
810 if (TYPE_SATURATING (t1) || TYPE_SATURATING (t2))
811 satp = 1;
812
813 /* If both fixed-point types are unsigned, the result type is unsigned.
814 When mixing fixed-point and integer types, follow the sign of the
815 fixed-point type.
816 Otherwise, the result type is signed. */
817 if ((TYPE_UNSIGNED (t1) && TYPE_UNSIGNED (t2)
818 && code1 == FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE)
819 || (code1 == FIXED_POINT_TYPE && code2 != FIXED_POINT_TYPE
820 && TYPE_UNSIGNED (t1))
821 || (code1 != FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE
822 && TYPE_UNSIGNED (t2)))
823 unsignedp = 1;
824
825 /* The result type is signed. */
826 if (unsignedp == 0)
827 {
828 /* If the input type is unsigned, we need to convert to the
829 signed type. */
830 if (code1 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t1))
831 {
832 enum mode_class mclass = (enum mode_class) 0;
833 if (GET_MODE_CLASS (m1) == MODE_UFRACT)
834 mclass = MODE_FRACT;
835 else if (GET_MODE_CLASS (m1) == MODE_UACCUM)
836 mclass = MODE_ACCUM;
837 else
838 gcc_unreachable ();
839 m1 = mode_for_size (GET_MODE_PRECISION (m1), mclass, 0);
840 }
841 if (code2 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t2))
842 {
843 enum mode_class mclass = (enum mode_class) 0;
844 if (GET_MODE_CLASS (m2) == MODE_UFRACT)
845 mclass = MODE_FRACT;
846 else if (GET_MODE_CLASS (m2) == MODE_UACCUM)
847 mclass = MODE_ACCUM;
848 else
849 gcc_unreachable ();
850 m2 = mode_for_size (GET_MODE_PRECISION (m2), mclass, 0);
851 }
852 }
853
854 if (code1 == FIXED_POINT_TYPE)
855 {
856 fbit1 = GET_MODE_FBIT (m1);
857 ibit1 = GET_MODE_IBIT (m1);
858 }
859 else
860 {
861 fbit1 = 0;
862 /* Signed integers need to subtract one sign bit. */
863 ibit1 = TYPE_PRECISION (t1) - (!TYPE_UNSIGNED (t1));
864 }
865
866 if (code2 == FIXED_POINT_TYPE)
867 {
868 fbit2 = GET_MODE_FBIT (m2);
869 ibit2 = GET_MODE_IBIT (m2);
870 }
871 else
872 {
873 fbit2 = 0;
874 /* Signed integers need to subtract one sign bit. */
875 ibit2 = TYPE_PRECISION (t2) - (!TYPE_UNSIGNED (t2));
876 }
877
878 max_ibit = ibit1 >= ibit2 ? ibit1 : ibit2;
879 max_fbit = fbit1 >= fbit2 ? fbit1 : fbit2;
880 return c_common_fixed_point_type_for_size (max_ibit, max_fbit, unsignedp,
881 satp);
882 }
883
884 /* Both real or both integers; use the one with greater precision. */
885
886 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
887 return t1;
888 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
889 return t2;
890
891 /* Same precision. Prefer long longs to longs to ints when the
892 same precision, following the C99 rules on integer type rank
893 (which are equivalent to the C90 rules for C90 types). */
894
895 if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
896 || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
897 return long_long_unsigned_type_node;
898
899 if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
900 || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
901 {
902 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
903 return long_long_unsigned_type_node;
904 else
905 return long_long_integer_type_node;
906 }
907
908 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
909 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
910 return long_unsigned_type_node;
911
912 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
913 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
914 {
915 /* But preserve unsignedness from the other type,
916 since long cannot hold all the values of an unsigned int. */
917 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
918 return long_unsigned_type_node;
919 else
920 return long_integer_type_node;
921 }
922
923 /* Likewise, prefer long double to double even if same size. */
924 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
925 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
926 return long_double_type_node;
927
928 /* Otherwise prefer the unsigned one. */
929
930 if (TYPE_UNSIGNED (t1))
931 return t1;
932 else
933 return t2;
934 }
935 \f
936 /* Wrapper around c_common_type that is used by c-common.c and other
937 front end optimizations that remove promotions. ENUMERAL_TYPEs
938 are allowed here and are converted to their compatible integer types.
939 BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
940 preferably a non-Boolean type as the common type. */
941 tree
942 common_type (tree t1, tree t2)
943 {
944 if (TREE_CODE (t1) == ENUMERAL_TYPE)
945 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
946 if (TREE_CODE (t2) == ENUMERAL_TYPE)
947 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
948
949 /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */
950 if (TREE_CODE (t1) == BOOLEAN_TYPE
951 && TREE_CODE (t2) == BOOLEAN_TYPE)
952 return boolean_type_node;
953
954 /* If either type is BOOLEAN_TYPE, then return the other. */
955 if (TREE_CODE (t1) == BOOLEAN_TYPE)
956 return t2;
957 if (TREE_CODE (t2) == BOOLEAN_TYPE)
958 return t1;
959
960 return c_common_type (t1, t2);
961 }
962
963 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
964 or various other operations. Return 2 if they are compatible
965 but a warning may be needed if you use them together. */
966
967 int
968 comptypes (tree type1, tree type2)
969 {
970 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
971 int val;
972
973 val = comptypes_internal (type1, type2, NULL, NULL);
974 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
975
976 return val;
977 }
978
979 /* Like comptypes, but if it returns non-zero because enum and int are
980 compatible, it sets *ENUM_AND_INT_P to true. */
981
982 static int
983 comptypes_check_enum_int (tree type1, tree type2, bool *enum_and_int_p)
984 {
985 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
986 int val;
987
988 val = comptypes_internal (type1, type2, enum_and_int_p, NULL);
989 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
990
991 return val;
992 }
993
994 /* Like comptypes, but if it returns nonzero for different types, it
995 sets *DIFFERENT_TYPES_P to true. */
996
997 int
998 comptypes_check_different_types (tree type1, tree type2,
999 bool *different_types_p)
1000 {
1001 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
1002 int val;
1003
1004 val = comptypes_internal (type1, type2, NULL, different_types_p);
1005 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
1006
1007 return val;
1008 }
1009 \f
1010 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
1011 or various other operations. Return 2 if they are compatible
1012 but a warning may be needed if you use them together. If
1013 ENUM_AND_INT_P is not NULL, and one type is an enum and the other a
1014 compatible integer type, then this sets *ENUM_AND_INT_P to true;
1015 *ENUM_AND_INT_P is never set to false. If DIFFERENT_TYPES_P is not
1016 NULL, and the types are compatible but different enough not to be
1017 permitted in C1X typedef redeclarations, then this sets
1018 *DIFFERENT_TYPES_P to true; *DIFFERENT_TYPES_P is never set to
1019 false, but may or may not be set if the types are incompatible.
1020 This differs from comptypes, in that we don't free the seen
1021 types. */
1022
1023 static int
1024 comptypes_internal (const_tree type1, const_tree type2, bool *enum_and_int_p,
1025 bool *different_types_p)
1026 {
1027 const_tree t1 = type1;
1028 const_tree t2 = type2;
1029 int attrval, val;
1030
1031 /* Suppress errors caused by previously reported errors. */
1032
1033 if (t1 == t2 || !t1 || !t2
1034 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
1035 return 1;
1036
1037 /* Enumerated types are compatible with integer types, but this is
1038 not transitive: two enumerated types in the same translation unit
1039 are compatible with each other only if they are the same type. */
1040
1041 if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
1042 {
1043 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
1044 if (TREE_CODE (t2) != VOID_TYPE)
1045 {
1046 if (enum_and_int_p != NULL)
1047 *enum_and_int_p = true;
1048 if (different_types_p != NULL)
1049 *different_types_p = true;
1050 }
1051 }
1052 else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
1053 {
1054 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
1055 if (TREE_CODE (t1) != VOID_TYPE)
1056 {
1057 if (enum_and_int_p != NULL)
1058 *enum_and_int_p = true;
1059 if (different_types_p != NULL)
1060 *different_types_p = true;
1061 }
1062 }
1063
1064 if (t1 == t2)
1065 return 1;
1066
1067 /* Different classes of types can't be compatible. */
1068
1069 if (TREE_CODE (t1) != TREE_CODE (t2))
1070 return 0;
1071
1072 /* Qualifiers must match. C99 6.7.3p9 */
1073
1074 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
1075 return 0;
1076
1077 /* Allow for two different type nodes which have essentially the same
1078 definition. Note that we already checked for equality of the type
1079 qualifiers (just above). */
1080
1081 if (TREE_CODE (t1) != ARRAY_TYPE
1082 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
1083 return 1;
1084
1085 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1086 if (!(attrval = comp_type_attributes (t1, t2)))
1087 return 0;
1088
1089 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1090 val = 0;
1091
1092 switch (TREE_CODE (t1))
1093 {
1094 case POINTER_TYPE:
1095 /* Do not remove mode or aliasing information. */
1096 if (TYPE_MODE (t1) != TYPE_MODE (t2)
1097 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
1098 break;
1099 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
1100 ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2),
1101 enum_and_int_p, different_types_p));
1102 break;
1103
1104 case FUNCTION_TYPE:
1105 val = function_types_compatible_p (t1, t2, enum_and_int_p,
1106 different_types_p);
1107 break;
1108
1109 case ARRAY_TYPE:
1110 {
1111 tree d1 = TYPE_DOMAIN (t1);
1112 tree d2 = TYPE_DOMAIN (t2);
1113 bool d1_variable, d2_variable;
1114 bool d1_zero, d2_zero;
1115 val = 1;
1116
1117 /* Target types must match incl. qualifiers. */
1118 if (TREE_TYPE (t1) != TREE_TYPE (t2)
1119 && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2),
1120 enum_and_int_p,
1121 different_types_p)))
1122 return 0;
1123
1124 if (different_types_p != NULL
1125 && (d1 == 0) != (d2 == 0))
1126 *different_types_p = true;
1127 /* Sizes must match unless one is missing or variable. */
1128 if (d1 == 0 || d2 == 0 || d1 == d2)
1129 break;
1130
1131 d1_zero = !TYPE_MAX_VALUE (d1);
1132 d2_zero = !TYPE_MAX_VALUE (d2);
1133
1134 d1_variable = (!d1_zero
1135 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
1136 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
1137 d2_variable = (!d2_zero
1138 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
1139 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
1140 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
1141 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
1142
1143 if (different_types_p != NULL
1144 && d1_variable != d2_variable)
1145 *different_types_p = true;
1146 if (d1_variable || d2_variable)
1147 break;
1148 if (d1_zero && d2_zero)
1149 break;
1150 if (d1_zero || d2_zero
1151 || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
1152 || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
1153 val = 0;
1154
1155 break;
1156 }
1157
1158 case ENUMERAL_TYPE:
1159 case RECORD_TYPE:
1160 case UNION_TYPE:
1161 if (val != 1 && !same_translation_unit_p (t1, t2))
1162 {
1163 tree a1 = TYPE_ATTRIBUTES (t1);
1164 tree a2 = TYPE_ATTRIBUTES (t2);
1165
1166 if (! attribute_list_contained (a1, a2)
1167 && ! attribute_list_contained (a2, a1))
1168 break;
1169
1170 if (attrval != 2)
1171 return tagged_types_tu_compatible_p (t1, t2, enum_and_int_p,
1172 different_types_p);
1173 val = tagged_types_tu_compatible_p (t1, t2, enum_and_int_p,
1174 different_types_p);
1175 }
1176 break;
1177
1178 case VECTOR_TYPE:
1179 val = (TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
1180 && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2),
1181 enum_and_int_p, different_types_p));
1182 break;
1183
1184 default:
1185 break;
1186 }
1187 return attrval == 2 && val == 1 ? 2 : val;
1188 }
1189
1190 /* Return 1 if TTL and TTR are pointers to types that are equivalent, ignoring
1191 their qualifiers, except for named address spaces. If the pointers point to
1192 different named addresses, then we must determine if one address space is a
1193 subset of the other. */
1194
1195 static int
1196 comp_target_types (location_t location, tree ttl, tree ttr)
1197 {
1198 int val;
1199 tree mvl = TREE_TYPE (ttl);
1200 tree mvr = TREE_TYPE (ttr);
1201 addr_space_t asl = TYPE_ADDR_SPACE (mvl);
1202 addr_space_t asr = TYPE_ADDR_SPACE (mvr);
1203 addr_space_t as_common;
1204 bool enum_and_int_p;
1205
1206 /* Fail if pointers point to incompatible address spaces. */
1207 if (!addr_space_superset (asl, asr, &as_common))
1208 return 0;
1209
1210 /* Do not lose qualifiers on element types of array types that are
1211 pointer targets by taking their TYPE_MAIN_VARIANT. */
1212 if (TREE_CODE (mvl) != ARRAY_TYPE)
1213 mvl = TYPE_MAIN_VARIANT (mvl);
1214 if (TREE_CODE (mvr) != ARRAY_TYPE)
1215 mvr = TYPE_MAIN_VARIANT (mvr);
1216 enum_and_int_p = false;
1217 val = comptypes_check_enum_int (mvl, mvr, &enum_and_int_p);
1218
1219 if (val == 2)
1220 pedwarn (location, OPT_pedantic, "types are not quite compatible");
1221
1222 if (val == 1 && enum_and_int_p && warn_cxx_compat)
1223 warning_at (location, OPT_Wc___compat,
1224 "pointer target types incompatible in C++");
1225
1226 return val;
1227 }
1228 \f
1229 /* Subroutines of `comptypes'. */
1230
1231 /* Determine whether two trees derive from the same translation unit.
1232 If the CONTEXT chain ends in a null, that tree's context is still
1233 being parsed, so if two trees have context chains ending in null,
1234 they're in the same translation unit. */
1235 int
1236 same_translation_unit_p (const_tree t1, const_tree t2)
1237 {
1238 while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
1239 switch (TREE_CODE_CLASS (TREE_CODE (t1)))
1240 {
1241 case tcc_declaration:
1242 t1 = DECL_CONTEXT (t1); break;
1243 case tcc_type:
1244 t1 = TYPE_CONTEXT (t1); break;
1245 case tcc_exceptional:
1246 t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
1247 default: gcc_unreachable ();
1248 }
1249
1250 while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
1251 switch (TREE_CODE_CLASS (TREE_CODE (t2)))
1252 {
1253 case tcc_declaration:
1254 t2 = DECL_CONTEXT (t2); break;
1255 case tcc_type:
1256 t2 = TYPE_CONTEXT (t2); break;
1257 case tcc_exceptional:
1258 t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
1259 default: gcc_unreachable ();
1260 }
1261
1262 return t1 == t2;
1263 }
1264
1265 /* Allocate the seen two types, assuming that they are compatible. */
1266
1267 static struct tagged_tu_seen_cache *
1268 alloc_tagged_tu_seen_cache (const_tree t1, const_tree t2)
1269 {
1270 struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
1271 tu->next = tagged_tu_seen_base;
1272 tu->t1 = t1;
1273 tu->t2 = t2;
1274
1275 tagged_tu_seen_base = tu;
1276
1277 /* The C standard says that two structures in different translation
1278 units are compatible with each other only if the types of their
1279 fields are compatible (among other things). We assume that they
1280 are compatible until proven otherwise when building the cache.
1281 An example where this can occur is:
1282 struct a
1283 {
1284 struct a *next;
1285 };
1286 If we are comparing this against a similar struct in another TU,
1287 and did not assume they were compatible, we end up with an infinite
1288 loop. */
1289 tu->val = 1;
1290 return tu;
1291 }
1292
1293 /* Free the seen types until we get to TU_TIL. */
1294
1295 static void
1296 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1297 {
1298 const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1299 while (tu != tu_til)
1300 {
1301 const struct tagged_tu_seen_cache *const tu1
1302 = (const struct tagged_tu_seen_cache *) tu;
1303 tu = tu1->next;
1304 free (CONST_CAST (struct tagged_tu_seen_cache *, tu1));
1305 }
1306 tagged_tu_seen_base = tu_til;
1307 }
1308
1309 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1310 compatible. If the two types are not the same (which has been
1311 checked earlier), this can only happen when multiple translation
1312 units are being compiled. See C99 6.2.7 paragraph 1 for the exact
1313 rules. ENUM_AND_INT_P and DIFFERENT_TYPES_P are as in
1314 comptypes_internal. */
1315
1316 static int
1317 tagged_types_tu_compatible_p (const_tree t1, const_tree t2,
1318 bool *enum_and_int_p, bool *different_types_p)
1319 {
1320 tree s1, s2;
1321 bool needs_warning = false;
1322
1323 /* We have to verify that the tags of the types are the same. This
1324 is harder than it looks because this may be a typedef, so we have
1325 to go look at the original type. It may even be a typedef of a
1326 typedef...
1327 In the case of compiler-created builtin structs the TYPE_DECL
1328 may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
1329 while (TYPE_NAME (t1)
1330 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1331 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1332 t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1333
1334 while (TYPE_NAME (t2)
1335 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1336 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1337 t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1338
1339 /* C90 didn't have the requirement that the two tags be the same. */
1340 if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1341 return 0;
1342
1343 /* C90 didn't say what happened if one or both of the types were
1344 incomplete; we choose to follow C99 rules here, which is that they
1345 are compatible. */
1346 if (TYPE_SIZE (t1) == NULL
1347 || TYPE_SIZE (t2) == NULL)
1348 return 1;
1349
1350 {
1351 const struct tagged_tu_seen_cache * tts_i;
1352 for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1353 if (tts_i->t1 == t1 && tts_i->t2 == t2)
1354 return tts_i->val;
1355 }
1356
1357 switch (TREE_CODE (t1))
1358 {
1359 case ENUMERAL_TYPE:
1360 {
1361 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1362 /* Speed up the case where the type values are in the same order. */
1363 tree tv1 = TYPE_VALUES (t1);
1364 tree tv2 = TYPE_VALUES (t2);
1365
1366 if (tv1 == tv2)
1367 {
1368 return 1;
1369 }
1370
1371 for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1372 {
1373 if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1374 break;
1375 if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1376 {
1377 tu->val = 0;
1378 return 0;
1379 }
1380 }
1381
1382 if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1383 {
1384 return 1;
1385 }
1386 if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1387 {
1388 tu->val = 0;
1389 return 0;
1390 }
1391
1392 if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1393 {
1394 tu->val = 0;
1395 return 0;
1396 }
1397
1398 for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1399 {
1400 s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1401 if (s2 == NULL
1402 || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1403 {
1404 tu->val = 0;
1405 return 0;
1406 }
1407 }
1408 return 1;
1409 }
1410
1411 case UNION_TYPE:
1412 {
1413 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1414 if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1415 {
1416 tu->val = 0;
1417 return 0;
1418 }
1419
1420 /* Speed up the common case where the fields are in the same order. */
1421 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1422 s1 = DECL_CHAIN (s1), s2 = DECL_CHAIN (s2))
1423 {
1424 int result;
1425
1426 if (DECL_NAME (s1) != DECL_NAME (s2))
1427 break;
1428 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2),
1429 enum_and_int_p, different_types_p);
1430
1431 if (result != 1 && !DECL_NAME (s1))
1432 break;
1433 if (result == 0)
1434 {
1435 tu->val = 0;
1436 return 0;
1437 }
1438 if (result == 2)
1439 needs_warning = true;
1440
1441 if (TREE_CODE (s1) == FIELD_DECL
1442 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1443 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1444 {
1445 tu->val = 0;
1446 return 0;
1447 }
1448 }
1449 if (!s1 && !s2)
1450 {
1451 tu->val = needs_warning ? 2 : 1;
1452 return tu->val;
1453 }
1454
1455 for (s1 = TYPE_FIELDS (t1); s1; s1 = DECL_CHAIN (s1))
1456 {
1457 bool ok = false;
1458
1459 for (s2 = TYPE_FIELDS (t2); s2; s2 = DECL_CHAIN (s2))
1460 if (DECL_NAME (s1) == DECL_NAME (s2))
1461 {
1462 int result;
1463
1464 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2),
1465 enum_and_int_p,
1466 different_types_p);
1467
1468 if (result != 1 && !DECL_NAME (s1))
1469 continue;
1470 if (result == 0)
1471 {
1472 tu->val = 0;
1473 return 0;
1474 }
1475 if (result == 2)
1476 needs_warning = true;
1477
1478 if (TREE_CODE (s1) == FIELD_DECL
1479 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1480 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1481 break;
1482
1483 ok = true;
1484 break;
1485 }
1486 if (!ok)
1487 {
1488 tu->val = 0;
1489 return 0;
1490 }
1491 }
1492 tu->val = needs_warning ? 2 : 10;
1493 return tu->val;
1494 }
1495
1496 case RECORD_TYPE:
1497 {
1498 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1499
1500 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1501 s1 && s2;
1502 s1 = DECL_CHAIN (s1), s2 = DECL_CHAIN (s2))
1503 {
1504 int result;
1505 if (TREE_CODE (s1) != TREE_CODE (s2)
1506 || DECL_NAME (s1) != DECL_NAME (s2))
1507 break;
1508 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2),
1509 enum_and_int_p, different_types_p);
1510 if (result == 0)
1511 break;
1512 if (result == 2)
1513 needs_warning = true;
1514
1515 if (TREE_CODE (s1) == FIELD_DECL
1516 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1517 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1518 break;
1519 }
1520 if (s1 && s2)
1521 tu->val = 0;
1522 else
1523 tu->val = needs_warning ? 2 : 1;
1524 return tu->val;
1525 }
1526
1527 default:
1528 gcc_unreachable ();
1529 }
1530 }
1531
1532 /* Return 1 if two function types F1 and F2 are compatible.
1533 If either type specifies no argument types,
1534 the other must specify a fixed number of self-promoting arg types.
1535 Otherwise, if one type specifies only the number of arguments,
1536 the other must specify that number of self-promoting arg types.
1537 Otherwise, the argument types must match.
1538 ENUM_AND_INT_P and DIFFERENT_TYPES_P are as in comptypes_internal. */
1539
1540 static int
1541 function_types_compatible_p (const_tree f1, const_tree f2,
1542 bool *enum_and_int_p, bool *different_types_p)
1543 {
1544 tree args1, args2;
1545 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1546 int val = 1;
1547 int val1;
1548 tree ret1, ret2;
1549
1550 ret1 = TREE_TYPE (f1);
1551 ret2 = TREE_TYPE (f2);
1552
1553 /* 'volatile' qualifiers on a function's return type used to mean
1554 the function is noreturn. */
1555 if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1556 pedwarn (input_location, 0, "function return types not compatible due to %<volatile%>");
1557 if (TYPE_VOLATILE (ret1))
1558 ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1559 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1560 if (TYPE_VOLATILE (ret2))
1561 ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1562 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1563 val = comptypes_internal (ret1, ret2, enum_and_int_p, different_types_p);
1564 if (val == 0)
1565 return 0;
1566
1567 args1 = TYPE_ARG_TYPES (f1);
1568 args2 = TYPE_ARG_TYPES (f2);
1569
1570 if (different_types_p != NULL
1571 && (args1 == 0) != (args2 == 0))
1572 *different_types_p = true;
1573
1574 /* An unspecified parmlist matches any specified parmlist
1575 whose argument types don't need default promotions. */
1576
1577 if (args1 == 0)
1578 {
1579 if (!self_promoting_args_p (args2))
1580 return 0;
1581 /* If one of these types comes from a non-prototype fn definition,
1582 compare that with the other type's arglist.
1583 If they don't match, ask for a warning (but no error). */
1584 if (TYPE_ACTUAL_ARG_TYPES (f1)
1585 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1),
1586 enum_and_int_p, different_types_p))
1587 val = 2;
1588 return val;
1589 }
1590 if (args2 == 0)
1591 {
1592 if (!self_promoting_args_p (args1))
1593 return 0;
1594 if (TYPE_ACTUAL_ARG_TYPES (f2)
1595 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2),
1596 enum_and_int_p, different_types_p))
1597 val = 2;
1598 return val;
1599 }
1600
1601 /* Both types have argument lists: compare them and propagate results. */
1602 val1 = type_lists_compatible_p (args1, args2, enum_and_int_p,
1603 different_types_p);
1604 return val1 != 1 ? val1 : val;
1605 }
1606
1607 /* Check two lists of types for compatibility, returning 0 for
1608 incompatible, 1 for compatible, or 2 for compatible with
1609 warning. ENUM_AND_INT_P and DIFFERENT_TYPES_P are as in
1610 comptypes_internal. */
1611
1612 static int
1613 type_lists_compatible_p (const_tree args1, const_tree args2,
1614 bool *enum_and_int_p, bool *different_types_p)
1615 {
1616 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1617 int val = 1;
1618 int newval = 0;
1619
1620 while (1)
1621 {
1622 tree a1, mv1, a2, mv2;
1623 if (args1 == 0 && args2 == 0)
1624 return val;
1625 /* If one list is shorter than the other,
1626 they fail to match. */
1627 if (args1 == 0 || args2 == 0)
1628 return 0;
1629 mv1 = a1 = TREE_VALUE (args1);
1630 mv2 = a2 = TREE_VALUE (args2);
1631 if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1632 mv1 = TYPE_MAIN_VARIANT (mv1);
1633 if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1634 mv2 = TYPE_MAIN_VARIANT (mv2);
1635 /* A null pointer instead of a type
1636 means there is supposed to be an argument
1637 but nothing is specified about what type it has.
1638 So match anything that self-promotes. */
1639 if (different_types_p != NULL
1640 && (a1 == 0) != (a2 == 0))
1641 *different_types_p = true;
1642 if (a1 == 0)
1643 {
1644 if (c_type_promotes_to (a2) != a2)
1645 return 0;
1646 }
1647 else if (a2 == 0)
1648 {
1649 if (c_type_promotes_to (a1) != a1)
1650 return 0;
1651 }
1652 /* If one of the lists has an error marker, ignore this arg. */
1653 else if (TREE_CODE (a1) == ERROR_MARK
1654 || TREE_CODE (a2) == ERROR_MARK)
1655 ;
1656 else if (!(newval = comptypes_internal (mv1, mv2, enum_and_int_p,
1657 different_types_p)))
1658 {
1659 if (different_types_p != NULL)
1660 *different_types_p = true;
1661 /* Allow wait (union {union wait *u; int *i} *)
1662 and wait (union wait *) to be compatible. */
1663 if (TREE_CODE (a1) == UNION_TYPE
1664 && (TYPE_NAME (a1) == 0
1665 || TYPE_TRANSPARENT_AGGR (a1))
1666 && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1667 && tree_int_cst_equal (TYPE_SIZE (a1),
1668 TYPE_SIZE (a2)))
1669 {
1670 tree memb;
1671 for (memb = TYPE_FIELDS (a1);
1672 memb; memb = DECL_CHAIN (memb))
1673 {
1674 tree mv3 = TREE_TYPE (memb);
1675 if (mv3 && mv3 != error_mark_node
1676 && TREE_CODE (mv3) != ARRAY_TYPE)
1677 mv3 = TYPE_MAIN_VARIANT (mv3);
1678 if (comptypes_internal (mv3, mv2, enum_and_int_p,
1679 different_types_p))
1680 break;
1681 }
1682 if (memb == 0)
1683 return 0;
1684 }
1685 else if (TREE_CODE (a2) == UNION_TYPE
1686 && (TYPE_NAME (a2) == 0
1687 || TYPE_TRANSPARENT_AGGR (a2))
1688 && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1689 && tree_int_cst_equal (TYPE_SIZE (a2),
1690 TYPE_SIZE (a1)))
1691 {
1692 tree memb;
1693 for (memb = TYPE_FIELDS (a2);
1694 memb; memb = DECL_CHAIN (memb))
1695 {
1696 tree mv3 = TREE_TYPE (memb);
1697 if (mv3 && mv3 != error_mark_node
1698 && TREE_CODE (mv3) != ARRAY_TYPE)
1699 mv3 = TYPE_MAIN_VARIANT (mv3);
1700 if (comptypes_internal (mv3, mv1, enum_and_int_p,
1701 different_types_p))
1702 break;
1703 }
1704 if (memb == 0)
1705 return 0;
1706 }
1707 else
1708 return 0;
1709 }
1710
1711 /* comptypes said ok, but record if it said to warn. */
1712 if (newval > val)
1713 val = newval;
1714
1715 args1 = TREE_CHAIN (args1);
1716 args2 = TREE_CHAIN (args2);
1717 }
1718 }
1719 \f
1720 /* Compute the size to increment a pointer by. */
1721
1722 static tree
1723 c_size_in_bytes (const_tree type)
1724 {
1725 enum tree_code code = TREE_CODE (type);
1726
1727 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1728 return size_one_node;
1729
1730 if (!COMPLETE_OR_VOID_TYPE_P (type))
1731 {
1732 error ("arithmetic on pointer to an incomplete type");
1733 return size_one_node;
1734 }
1735
1736 /* Convert in case a char is more than one unit. */
1737 return size_binop_loc (input_location, CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1738 size_int (TYPE_PRECISION (char_type_node)
1739 / BITS_PER_UNIT));
1740 }
1741 \f
1742 /* Return either DECL or its known constant value (if it has one). */
1743
1744 tree
1745 decl_constant_value (tree decl)
1746 {
1747 if (/* Don't change a variable array bound or initial value to a constant
1748 in a place where a variable is invalid. Note that DECL_INITIAL
1749 isn't valid for a PARM_DECL. */
1750 current_function_decl != 0
1751 && TREE_CODE (decl) != PARM_DECL
1752 && !TREE_THIS_VOLATILE (decl)
1753 && TREE_READONLY (decl)
1754 && DECL_INITIAL (decl) != 0
1755 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1756 /* This is invalid if initial value is not constant.
1757 If it has either a function call, a memory reference,
1758 or a variable, then re-evaluating it could give different results. */
1759 && TREE_CONSTANT (DECL_INITIAL (decl))
1760 /* Check for cases where this is sub-optimal, even though valid. */
1761 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1762 return DECL_INITIAL (decl);
1763 return decl;
1764 }
1765
1766 /* Convert the array expression EXP to a pointer. */
1767 static tree
1768 array_to_pointer_conversion (location_t loc, tree exp)
1769 {
1770 tree orig_exp = exp;
1771 tree type = TREE_TYPE (exp);
1772 tree adr;
1773 tree restype = TREE_TYPE (type);
1774 tree ptrtype;
1775
1776 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1777
1778 STRIP_TYPE_NOPS (exp);
1779
1780 if (TREE_NO_WARNING (orig_exp))
1781 TREE_NO_WARNING (exp) = 1;
1782
1783 ptrtype = build_pointer_type (restype);
1784
1785 if (TREE_CODE (exp) == INDIRECT_REF)
1786 return convert (ptrtype, TREE_OPERAND (exp, 0));
1787
1788 adr = build_unary_op (loc, ADDR_EXPR, exp, 1);
1789 return convert (ptrtype, adr);
1790 }
1791
1792 /* Convert the function expression EXP to a pointer. */
1793 static tree
1794 function_to_pointer_conversion (location_t loc, tree exp)
1795 {
1796 tree orig_exp = exp;
1797
1798 gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1799
1800 STRIP_TYPE_NOPS (exp);
1801
1802 if (TREE_NO_WARNING (orig_exp))
1803 TREE_NO_WARNING (exp) = 1;
1804
1805 return build_unary_op (loc, ADDR_EXPR, exp, 0);
1806 }
1807
1808 /* Mark EXP as read, not just set, for set but not used -Wunused
1809 warning purposes. */
1810
1811 void
1812 mark_exp_read (tree exp)
1813 {
1814 switch (TREE_CODE (exp))
1815 {
1816 case VAR_DECL:
1817 case PARM_DECL:
1818 DECL_READ_P (exp) = 1;
1819 break;
1820 case ARRAY_REF:
1821 case COMPONENT_REF:
1822 case MODIFY_EXPR:
1823 case REALPART_EXPR:
1824 case IMAGPART_EXPR:
1825 CASE_CONVERT:
1826 case ADDR_EXPR:
1827 mark_exp_read (TREE_OPERAND (exp, 0));
1828 break;
1829 case COMPOUND_EXPR:
1830 case C_MAYBE_CONST_EXPR:
1831 mark_exp_read (TREE_OPERAND (exp, 1));
1832 break;
1833 default:
1834 break;
1835 }
1836 }
1837
1838 /* Perform the default conversion of arrays and functions to pointers.
1839 Return the result of converting EXP. For any other expression, just
1840 return EXP.
1841
1842 LOC is the location of the expression. */
1843
1844 struct c_expr
1845 default_function_array_conversion (location_t loc, struct c_expr exp)
1846 {
1847 tree orig_exp = exp.value;
1848 tree type = TREE_TYPE (exp.value);
1849 enum tree_code code = TREE_CODE (type);
1850
1851 switch (code)
1852 {
1853 case ARRAY_TYPE:
1854 {
1855 bool not_lvalue = false;
1856 bool lvalue_array_p;
1857
1858 while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1859 || CONVERT_EXPR_P (exp.value))
1860 && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1861 {
1862 if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1863 not_lvalue = true;
1864 exp.value = TREE_OPERAND (exp.value, 0);
1865 }
1866
1867 if (TREE_NO_WARNING (orig_exp))
1868 TREE_NO_WARNING (exp.value) = 1;
1869
1870 lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1871 if (!flag_isoc99 && !lvalue_array_p)
1872 {
1873 /* Before C99, non-lvalue arrays do not decay to pointers.
1874 Normally, using such an array would be invalid; but it can
1875 be used correctly inside sizeof or as a statement expression.
1876 Thus, do not give an error here; an error will result later. */
1877 return exp;
1878 }
1879
1880 exp.value = array_to_pointer_conversion (loc, exp.value);
1881 }
1882 break;
1883 case FUNCTION_TYPE:
1884 exp.value = function_to_pointer_conversion (loc, exp.value);
1885 break;
1886 default:
1887 break;
1888 }
1889
1890 return exp;
1891 }
1892
1893 struct c_expr
1894 default_function_array_read_conversion (location_t loc, struct c_expr exp)
1895 {
1896 mark_exp_read (exp.value);
1897 return default_function_array_conversion (loc, exp);
1898 }
1899
1900 /* EXP is an expression of integer type. Apply the integer promotions
1901 to it and return the promoted value. */
1902
1903 tree
1904 perform_integral_promotions (tree exp)
1905 {
1906 tree type = TREE_TYPE (exp);
1907 enum tree_code code = TREE_CODE (type);
1908
1909 gcc_assert (INTEGRAL_TYPE_P (type));
1910
1911 /* Normally convert enums to int,
1912 but convert wide enums to something wider. */
1913 if (code == ENUMERAL_TYPE)
1914 {
1915 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1916 TYPE_PRECISION (integer_type_node)),
1917 ((TYPE_PRECISION (type)
1918 >= TYPE_PRECISION (integer_type_node))
1919 && TYPE_UNSIGNED (type)));
1920
1921 return convert (type, exp);
1922 }
1923
1924 /* ??? This should no longer be needed now bit-fields have their
1925 proper types. */
1926 if (TREE_CODE (exp) == COMPONENT_REF
1927 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1928 /* If it's thinner than an int, promote it like a
1929 c_promoting_integer_type_p, otherwise leave it alone. */
1930 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1931 TYPE_PRECISION (integer_type_node)))
1932 return convert (integer_type_node, exp);
1933
1934 if (c_promoting_integer_type_p (type))
1935 {
1936 /* Preserve unsignedness if not really getting any wider. */
1937 if (TYPE_UNSIGNED (type)
1938 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1939 return convert (unsigned_type_node, exp);
1940
1941 return convert (integer_type_node, exp);
1942 }
1943
1944 return exp;
1945 }
1946
1947
1948 /* Perform default promotions for C data used in expressions.
1949 Enumeral types or short or char are converted to int.
1950 In addition, manifest constants symbols are replaced by their values. */
1951
1952 tree
1953 default_conversion (tree exp)
1954 {
1955 tree orig_exp;
1956 tree type = TREE_TYPE (exp);
1957 enum tree_code code = TREE_CODE (type);
1958 tree promoted_type;
1959
1960 mark_exp_read (exp);
1961
1962 /* Functions and arrays have been converted during parsing. */
1963 gcc_assert (code != FUNCTION_TYPE);
1964 if (code == ARRAY_TYPE)
1965 return exp;
1966
1967 /* Constants can be used directly unless they're not loadable. */
1968 if (TREE_CODE (exp) == CONST_DECL)
1969 exp = DECL_INITIAL (exp);
1970
1971 /* Strip no-op conversions. */
1972 orig_exp = exp;
1973 STRIP_TYPE_NOPS (exp);
1974
1975 if (TREE_NO_WARNING (orig_exp))
1976 TREE_NO_WARNING (exp) = 1;
1977
1978 if (code == VOID_TYPE)
1979 {
1980 error ("void value not ignored as it ought to be");
1981 return error_mark_node;
1982 }
1983
1984 exp = require_complete_type (exp);
1985 if (exp == error_mark_node)
1986 return error_mark_node;
1987
1988 promoted_type = targetm.promoted_type (type);
1989 if (promoted_type)
1990 return convert (promoted_type, exp);
1991
1992 if (INTEGRAL_TYPE_P (type))
1993 return perform_integral_promotions (exp);
1994
1995 return exp;
1996 }
1997 \f
1998 /* Look up COMPONENT in a structure or union TYPE.
1999
2000 If the component name is not found, returns NULL_TREE. Otherwise,
2001 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
2002 stepping down the chain to the component, which is in the last
2003 TREE_VALUE of the list. Normally the list is of length one, but if
2004 the component is embedded within (nested) anonymous structures or
2005 unions, the list steps down the chain to the component. */
2006
2007 static tree
2008 lookup_field (tree type, tree component)
2009 {
2010 tree field;
2011
2012 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
2013 to the field elements. Use a binary search on this array to quickly
2014 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
2015 will always be set for structures which have many elements. */
2016
2017 if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
2018 {
2019 int bot, top, half;
2020 tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
2021
2022 field = TYPE_FIELDS (type);
2023 bot = 0;
2024 top = TYPE_LANG_SPECIFIC (type)->s->len;
2025 while (top - bot > 1)
2026 {
2027 half = (top - bot + 1) >> 1;
2028 field = field_array[bot+half];
2029
2030 if (DECL_NAME (field) == NULL_TREE)
2031 {
2032 /* Step through all anon unions in linear fashion. */
2033 while (DECL_NAME (field_array[bot]) == NULL_TREE)
2034 {
2035 field = field_array[bot++];
2036 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
2037 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
2038 {
2039 tree anon = lookup_field (TREE_TYPE (field), component);
2040
2041 if (anon)
2042 return tree_cons (NULL_TREE, field, anon);
2043
2044 /* The Plan 9 compiler permits referring
2045 directly to an anonymous struct/union field
2046 using a typedef name. */
2047 if (flag_plan9_extensions
2048 && TYPE_NAME (TREE_TYPE (field)) != NULL_TREE
2049 && (TREE_CODE (TYPE_NAME (TREE_TYPE (field)))
2050 == TYPE_DECL)
2051 && (DECL_NAME (TYPE_NAME (TREE_TYPE (field)))
2052 == component))
2053 break;
2054 }
2055 }
2056
2057 /* Entire record is only anon unions. */
2058 if (bot > top)
2059 return NULL_TREE;
2060
2061 /* Restart the binary search, with new lower bound. */
2062 continue;
2063 }
2064
2065 if (DECL_NAME (field) == component)
2066 break;
2067 if (DECL_NAME (field) < component)
2068 bot += half;
2069 else
2070 top = bot + half;
2071 }
2072
2073 if (DECL_NAME (field_array[bot]) == component)
2074 field = field_array[bot];
2075 else if (DECL_NAME (field) != component)
2076 return NULL_TREE;
2077 }
2078 else
2079 {
2080 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2081 {
2082 if (DECL_NAME (field) == NULL_TREE
2083 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
2084 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
2085 {
2086 tree anon = lookup_field (TREE_TYPE (field), component);
2087
2088 if (anon)
2089 return tree_cons (NULL_TREE, field, anon);
2090
2091 /* The Plan 9 compiler permits referring directly to an
2092 anonymous struct/union field using a typedef
2093 name. */
2094 if (flag_plan9_extensions
2095 && TYPE_NAME (TREE_TYPE (field)) != NULL_TREE
2096 && TREE_CODE (TYPE_NAME (TREE_TYPE (field))) == TYPE_DECL
2097 && (DECL_NAME (TYPE_NAME (TREE_TYPE (field)))
2098 == component))
2099 break;
2100 }
2101
2102 if (DECL_NAME (field) == component)
2103 break;
2104 }
2105
2106 if (field == NULL_TREE)
2107 return NULL_TREE;
2108 }
2109
2110 return tree_cons (NULL_TREE, field, NULL_TREE);
2111 }
2112
2113 /* Make an expression to refer to the COMPONENT field of structure or
2114 union value DATUM. COMPONENT is an IDENTIFIER_NODE. LOC is the
2115 location of the COMPONENT_REF. */
2116
2117 tree
2118 build_component_ref (location_t loc, tree datum, tree component)
2119 {
2120 tree type = TREE_TYPE (datum);
2121 enum tree_code code = TREE_CODE (type);
2122 tree field = NULL;
2123 tree ref;
2124 bool datum_lvalue = lvalue_p (datum);
2125
2126 if (!objc_is_public (datum, component))
2127 return error_mark_node;
2128
2129 /* Detect Objective-C property syntax object.property. */
2130 if (c_dialect_objc ()
2131 && (ref = objc_maybe_build_component_ref (datum, component)))
2132 return ref;
2133
2134 /* See if there is a field or component with name COMPONENT. */
2135
2136 if (code == RECORD_TYPE || code == UNION_TYPE)
2137 {
2138 if (!COMPLETE_TYPE_P (type))
2139 {
2140 c_incomplete_type_error (NULL_TREE, type);
2141 return error_mark_node;
2142 }
2143
2144 field = lookup_field (type, component);
2145
2146 if (!field)
2147 {
2148 error_at (loc, "%qT has no member named %qE", type, component);
2149 return error_mark_node;
2150 }
2151
2152 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
2153 This might be better solved in future the way the C++ front
2154 end does it - by giving the anonymous entities each a
2155 separate name and type, and then have build_component_ref
2156 recursively call itself. We can't do that here. */
2157 do
2158 {
2159 tree subdatum = TREE_VALUE (field);
2160 int quals;
2161 tree subtype;
2162 bool use_datum_quals;
2163
2164 if (TREE_TYPE (subdatum) == error_mark_node)
2165 return error_mark_node;
2166
2167 /* If this is an rvalue, it does not have qualifiers in C
2168 standard terms and we must avoid propagating such
2169 qualifiers down to a non-lvalue array that is then
2170 converted to a pointer. */
2171 use_datum_quals = (datum_lvalue
2172 || TREE_CODE (TREE_TYPE (subdatum)) != ARRAY_TYPE);
2173
2174 quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
2175 if (use_datum_quals)
2176 quals |= TYPE_QUALS (TREE_TYPE (datum));
2177 subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
2178
2179 ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
2180 NULL_TREE);
2181 SET_EXPR_LOCATION (ref, loc);
2182 if (TREE_READONLY (subdatum)
2183 || (use_datum_quals && TREE_READONLY (datum)))
2184 TREE_READONLY (ref) = 1;
2185 if (TREE_THIS_VOLATILE (subdatum)
2186 || (use_datum_quals && TREE_THIS_VOLATILE (datum)))
2187 TREE_THIS_VOLATILE (ref) = 1;
2188
2189 if (TREE_DEPRECATED (subdatum))
2190 warn_deprecated_use (subdatum, NULL_TREE);
2191
2192 datum = ref;
2193
2194 field = TREE_CHAIN (field);
2195 }
2196 while (field);
2197
2198 return ref;
2199 }
2200 else if (code != ERROR_MARK)
2201 error_at (loc,
2202 "request for member %qE in something not a structure or union",
2203 component);
2204
2205 return error_mark_node;
2206 }
2207 \f
2208 /* Given an expression PTR for a pointer, return an expression
2209 for the value pointed to.
2210 ERRORSTRING is the name of the operator to appear in error messages.
2211
2212 LOC is the location to use for the generated tree. */
2213
2214 tree
2215 build_indirect_ref (location_t loc, tree ptr, ref_operator errstring)
2216 {
2217 tree pointer = default_conversion (ptr);
2218 tree type = TREE_TYPE (pointer);
2219 tree ref;
2220
2221 if (TREE_CODE (type) == POINTER_TYPE)
2222 {
2223 if (CONVERT_EXPR_P (pointer)
2224 || TREE_CODE (pointer) == VIEW_CONVERT_EXPR)
2225 {
2226 /* If a warning is issued, mark it to avoid duplicates from
2227 the backend. This only needs to be done at
2228 warn_strict_aliasing > 2. */
2229 if (warn_strict_aliasing > 2)
2230 if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (pointer, 0)),
2231 type, TREE_OPERAND (pointer, 0)))
2232 TREE_NO_WARNING (pointer) = 1;
2233 }
2234
2235 if (TREE_CODE (pointer) == ADDR_EXPR
2236 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
2237 == TREE_TYPE (type)))
2238 {
2239 ref = TREE_OPERAND (pointer, 0);
2240 protected_set_expr_location (ref, loc);
2241 return ref;
2242 }
2243 else
2244 {
2245 tree t = TREE_TYPE (type);
2246
2247 ref = build1 (INDIRECT_REF, t, pointer);
2248
2249 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
2250 {
2251 error_at (loc, "dereferencing pointer to incomplete type");
2252 return error_mark_node;
2253 }
2254 if (VOID_TYPE_P (t) && c_inhibit_evaluation_warnings == 0)
2255 warning_at (loc, 0, "dereferencing %<void *%> pointer");
2256
2257 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
2258 so that we get the proper error message if the result is used
2259 to assign to. Also, &* is supposed to be a no-op.
2260 And ANSI C seems to specify that the type of the result
2261 should be the const type. */
2262 /* A de-reference of a pointer to const is not a const. It is valid
2263 to change it via some other pointer. */
2264 TREE_READONLY (ref) = TYPE_READONLY (t);
2265 TREE_SIDE_EFFECTS (ref)
2266 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
2267 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
2268 protected_set_expr_location (ref, loc);
2269 return ref;
2270 }
2271 }
2272 else if (TREE_CODE (pointer) != ERROR_MARK)
2273 invalid_indirection_error (loc, type, errstring);
2274
2275 return error_mark_node;
2276 }
2277
2278 /* This handles expressions of the form "a[i]", which denotes
2279 an array reference.
2280
2281 This is logically equivalent in C to *(a+i), but we may do it differently.
2282 If A is a variable or a member, we generate a primitive ARRAY_REF.
2283 This avoids forcing the array out of registers, and can work on
2284 arrays that are not lvalues (for example, members of structures returned
2285 by functions).
2286
2287 For vector types, allow vector[i] but not i[vector], and create
2288 *(((type*)&vectortype) + i) for the expression.
2289
2290 LOC is the location to use for the returned expression. */
2291
2292 tree
2293 build_array_ref (location_t loc, tree array, tree index)
2294 {
2295 tree ret;
2296 bool swapped = false;
2297 if (TREE_TYPE (array) == error_mark_node
2298 || TREE_TYPE (index) == error_mark_node)
2299 return error_mark_node;
2300
2301 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
2302 && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE
2303 /* Allow vector[index] but not index[vector]. */
2304 && TREE_CODE (TREE_TYPE (array)) != VECTOR_TYPE)
2305 {
2306 tree temp;
2307 if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
2308 && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
2309 {
2310 error_at (loc,
2311 "subscripted value is neither array nor pointer nor vector");
2312
2313 return error_mark_node;
2314 }
2315 temp = array;
2316 array = index;
2317 index = temp;
2318 swapped = true;
2319 }
2320
2321 if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
2322 {
2323 error_at (loc, "array subscript is not an integer");
2324 return error_mark_node;
2325 }
2326
2327 if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
2328 {
2329 error_at (loc, "subscripted value is pointer to function");
2330 return error_mark_node;
2331 }
2332
2333 /* ??? Existing practice has been to warn only when the char
2334 index is syntactically the index, not for char[array]. */
2335 if (!swapped)
2336 warn_array_subscript_with_type_char (index);
2337
2338 /* Apply default promotions *after* noticing character types. */
2339 index = default_conversion (index);
2340
2341 gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
2342
2343 /* For vector[index], convert the vector to a
2344 pointer of the underlying type. */
2345 if (TREE_CODE (TREE_TYPE (array)) == VECTOR_TYPE)
2346 {
2347 tree type = TREE_TYPE (array);
2348 tree type1;
2349
2350 if (TREE_CODE (index) == INTEGER_CST)
2351 if (!host_integerp (index, 1)
2352 || ((unsigned HOST_WIDE_INT) tree_low_cst (index, 1)
2353 >= TYPE_VECTOR_SUBPARTS (TREE_TYPE (array))))
2354 warning_at (loc, OPT_Warray_bounds, "index value is out of bound");
2355
2356 c_common_mark_addressable_vec (array);
2357 type = build_qualified_type (TREE_TYPE (type), TYPE_QUALS (type));
2358 type = build_pointer_type (type);
2359 type1 = build_pointer_type (TREE_TYPE (array));
2360 array = build1 (ADDR_EXPR, type1, array);
2361 array = convert (type, array);
2362 }
2363
2364 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
2365 {
2366 tree rval, type;
2367
2368 /* An array that is indexed by a non-constant
2369 cannot be stored in a register; we must be able to do
2370 address arithmetic on its address.
2371 Likewise an array of elements of variable size. */
2372 if (TREE_CODE (index) != INTEGER_CST
2373 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
2374 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
2375 {
2376 if (!c_mark_addressable (array))
2377 return error_mark_node;
2378 }
2379 /* An array that is indexed by a constant value which is not within
2380 the array bounds cannot be stored in a register either; because we
2381 would get a crash in store_bit_field/extract_bit_field when trying
2382 to access a non-existent part of the register. */
2383 if (TREE_CODE (index) == INTEGER_CST
2384 && TYPE_DOMAIN (TREE_TYPE (array))
2385 && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
2386 {
2387 if (!c_mark_addressable (array))
2388 return error_mark_node;
2389 }
2390
2391 if (pedantic)
2392 {
2393 tree foo = array;
2394 while (TREE_CODE (foo) == COMPONENT_REF)
2395 foo = TREE_OPERAND (foo, 0);
2396 if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2397 pedwarn (loc, OPT_pedantic,
2398 "ISO C forbids subscripting %<register%> array");
2399 else if (!flag_isoc99 && !lvalue_p (foo))
2400 pedwarn (loc, OPT_pedantic,
2401 "ISO C90 forbids subscripting non-lvalue array");
2402 }
2403
2404 type = TREE_TYPE (TREE_TYPE (array));
2405 rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2406 /* Array ref is const/volatile if the array elements are
2407 or if the array is. */
2408 TREE_READONLY (rval)
2409 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2410 | TREE_READONLY (array));
2411 TREE_SIDE_EFFECTS (rval)
2412 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2413 | TREE_SIDE_EFFECTS (array));
2414 TREE_THIS_VOLATILE (rval)
2415 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2416 /* This was added by rms on 16 Nov 91.
2417 It fixes vol struct foo *a; a->elts[1]
2418 in an inline function.
2419 Hope it doesn't break something else. */
2420 | TREE_THIS_VOLATILE (array));
2421 ret = require_complete_type (rval);
2422 protected_set_expr_location (ret, loc);
2423 return ret;
2424 }
2425 else
2426 {
2427 tree ar = default_conversion (array);
2428
2429 if (ar == error_mark_node)
2430 return ar;
2431
2432 gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2433 gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2434
2435 return build_indirect_ref
2436 (loc, build_binary_op (loc, PLUS_EXPR, ar, index, 0),
2437 RO_ARRAY_INDEXING);
2438 }
2439 }
2440 \f
2441 /* Build an external reference to identifier ID. FUN indicates
2442 whether this will be used for a function call. LOC is the source
2443 location of the identifier. This sets *TYPE to the type of the
2444 identifier, which is not the same as the type of the returned value
2445 for CONST_DECLs defined as enum constants. If the type of the
2446 identifier is not available, *TYPE is set to NULL. */
2447 tree
2448 build_external_ref (location_t loc, tree id, int fun, tree *type)
2449 {
2450 tree ref;
2451 tree decl = lookup_name (id);
2452
2453 /* In Objective-C, an instance variable (ivar) may be preferred to
2454 whatever lookup_name() found. */
2455 decl = objc_lookup_ivar (decl, id);
2456
2457 *type = NULL;
2458 if (decl && decl != error_mark_node)
2459 {
2460 ref = decl;
2461 *type = TREE_TYPE (ref);
2462 }
2463 else if (fun)
2464 /* Implicit function declaration. */
2465 ref = implicitly_declare (loc, id);
2466 else if (decl == error_mark_node)
2467 /* Don't complain about something that's already been
2468 complained about. */
2469 return error_mark_node;
2470 else
2471 {
2472 undeclared_variable (loc, id);
2473 return error_mark_node;
2474 }
2475
2476 if (TREE_TYPE (ref) == error_mark_node)
2477 return error_mark_node;
2478
2479 if (TREE_DEPRECATED (ref))
2480 warn_deprecated_use (ref, NULL_TREE);
2481
2482 /* Recursive call does not count as usage. */
2483 if (ref != current_function_decl)
2484 {
2485 TREE_USED (ref) = 1;
2486 }
2487
2488 if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2489 {
2490 if (!in_sizeof && !in_typeof)
2491 C_DECL_USED (ref) = 1;
2492 else if (DECL_INITIAL (ref) == 0
2493 && DECL_EXTERNAL (ref)
2494 && !TREE_PUBLIC (ref))
2495 record_maybe_used_decl (ref);
2496 }
2497
2498 if (TREE_CODE (ref) == CONST_DECL)
2499 {
2500 used_types_insert (TREE_TYPE (ref));
2501
2502 if (warn_cxx_compat
2503 && TREE_CODE (TREE_TYPE (ref)) == ENUMERAL_TYPE
2504 && C_TYPE_DEFINED_IN_STRUCT (TREE_TYPE (ref)))
2505 {
2506 warning_at (loc, OPT_Wc___compat,
2507 ("enum constant defined in struct or union "
2508 "is not visible in C++"));
2509 inform (DECL_SOURCE_LOCATION (ref), "enum constant defined here");
2510 }
2511
2512 ref = DECL_INITIAL (ref);
2513 TREE_CONSTANT (ref) = 1;
2514 }
2515 else if (current_function_decl != 0
2516 && !DECL_FILE_SCOPE_P (current_function_decl)
2517 && (TREE_CODE (ref) == VAR_DECL
2518 || TREE_CODE (ref) == PARM_DECL
2519 || TREE_CODE (ref) == FUNCTION_DECL))
2520 {
2521 tree context = decl_function_context (ref);
2522
2523 if (context != 0 && context != current_function_decl)
2524 DECL_NONLOCAL (ref) = 1;
2525 }
2526 /* C99 6.7.4p3: An inline definition of a function with external
2527 linkage ... shall not contain a reference to an identifier with
2528 internal linkage. */
2529 else if (current_function_decl != 0
2530 && DECL_DECLARED_INLINE_P (current_function_decl)
2531 && DECL_EXTERNAL (current_function_decl)
2532 && VAR_OR_FUNCTION_DECL_P (ref)
2533 && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2534 && ! TREE_PUBLIC (ref)
2535 && DECL_CONTEXT (ref) != current_function_decl)
2536 record_inline_static (loc, current_function_decl, ref,
2537 csi_internal);
2538
2539 return ref;
2540 }
2541
2542 /* Record details of decls possibly used inside sizeof or typeof. */
2543 struct maybe_used_decl
2544 {
2545 /* The decl. */
2546 tree decl;
2547 /* The level seen at (in_sizeof + in_typeof). */
2548 int level;
2549 /* The next one at this level or above, or NULL. */
2550 struct maybe_used_decl *next;
2551 };
2552
2553 static struct maybe_used_decl *maybe_used_decls;
2554
2555 /* Record that DECL, an undefined static function reference seen
2556 inside sizeof or typeof, might be used if the operand of sizeof is
2557 a VLA type or the operand of typeof is a variably modified
2558 type. */
2559
2560 static void
2561 record_maybe_used_decl (tree decl)
2562 {
2563 struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2564 t->decl = decl;
2565 t->level = in_sizeof + in_typeof;
2566 t->next = maybe_used_decls;
2567 maybe_used_decls = t;
2568 }
2569
2570 /* Pop the stack of decls possibly used inside sizeof or typeof. If
2571 USED is false, just discard them. If it is true, mark them used
2572 (if no longer inside sizeof or typeof) or move them to the next
2573 level up (if still inside sizeof or typeof). */
2574
2575 void
2576 pop_maybe_used (bool used)
2577 {
2578 struct maybe_used_decl *p = maybe_used_decls;
2579 int cur_level = in_sizeof + in_typeof;
2580 while (p && p->level > cur_level)
2581 {
2582 if (used)
2583 {
2584 if (cur_level == 0)
2585 C_DECL_USED (p->decl) = 1;
2586 else
2587 p->level = cur_level;
2588 }
2589 p = p->next;
2590 }
2591 if (!used || cur_level == 0)
2592 maybe_used_decls = p;
2593 }
2594
2595 /* Return the result of sizeof applied to EXPR. */
2596
2597 struct c_expr
2598 c_expr_sizeof_expr (location_t loc, struct c_expr expr)
2599 {
2600 struct c_expr ret;
2601 if (expr.value == error_mark_node)
2602 {
2603 ret.value = error_mark_node;
2604 ret.original_code = ERROR_MARK;
2605 ret.original_type = NULL;
2606 pop_maybe_used (false);
2607 }
2608 else
2609 {
2610 bool expr_const_operands = true;
2611 tree folded_expr = c_fully_fold (expr.value, require_constant_value,
2612 &expr_const_operands);
2613 ret.value = c_sizeof (loc, TREE_TYPE (folded_expr));
2614 ret.original_code = ERROR_MARK;
2615 ret.original_type = NULL;
2616 if (c_vla_type_p (TREE_TYPE (folded_expr)))
2617 {
2618 /* sizeof is evaluated when given a vla (C99 6.5.3.4p2). */
2619 ret.value = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (ret.value),
2620 folded_expr, ret.value);
2621 C_MAYBE_CONST_EXPR_NON_CONST (ret.value) = !expr_const_operands;
2622 SET_EXPR_LOCATION (ret.value, loc);
2623 }
2624 pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (folded_expr)));
2625 }
2626 return ret;
2627 }
2628
2629 /* Return the result of sizeof applied to T, a structure for the type
2630 name passed to sizeof (rather than the type itself). LOC is the
2631 location of the original expression. */
2632
2633 struct c_expr
2634 c_expr_sizeof_type (location_t loc, struct c_type_name *t)
2635 {
2636 tree type;
2637 struct c_expr ret;
2638 tree type_expr = NULL_TREE;
2639 bool type_expr_const = true;
2640 type = groktypename (t, &type_expr, &type_expr_const);
2641 ret.value = c_sizeof (loc, type);
2642 ret.original_code = ERROR_MARK;
2643 ret.original_type = NULL;
2644 if ((type_expr || TREE_CODE (ret.value) == INTEGER_CST)
2645 && c_vla_type_p (type))
2646 {
2647 /* If the type is a [*] array, it is a VLA but is represented as
2648 having a size of zero. In such a case we must ensure that
2649 the result of sizeof does not get folded to a constant by
2650 c_fully_fold, because if the size is evaluated the result is
2651 not constant and so constraints on zero or negative size
2652 arrays must not be applied when this sizeof call is inside
2653 another array declarator. */
2654 if (!type_expr)
2655 type_expr = integer_zero_node;
2656 ret.value = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (ret.value),
2657 type_expr, ret.value);
2658 C_MAYBE_CONST_EXPR_NON_CONST (ret.value) = !type_expr_const;
2659 }
2660 pop_maybe_used (type != error_mark_node
2661 ? C_TYPE_VARIABLE_SIZE (type) : false);
2662 return ret;
2663 }
2664
2665 /* Build a function call to function FUNCTION with parameters PARAMS.
2666 The function call is at LOC.
2667 PARAMS is a list--a chain of TREE_LIST nodes--in which the
2668 TREE_VALUE of each node is a parameter-expression.
2669 FUNCTION's data type may be a function type or a pointer-to-function. */
2670
2671 tree
2672 build_function_call (location_t loc, tree function, tree params)
2673 {
2674 VEC(tree,gc) *vec;
2675 tree ret;
2676
2677 vec = VEC_alloc (tree, gc, list_length (params));
2678 for (; params; params = TREE_CHAIN (params))
2679 VEC_quick_push (tree, vec, TREE_VALUE (params));
2680 ret = build_function_call_vec (loc, function, vec, NULL);
2681 VEC_free (tree, gc, vec);
2682 return ret;
2683 }
2684
2685 /* Build a function call to function FUNCTION with parameters PARAMS.
2686 ORIGTYPES, if not NULL, is a vector of types; each element is
2687 either NULL or the original type of the corresponding element in
2688 PARAMS. The original type may differ from TREE_TYPE of the
2689 parameter for enums. FUNCTION's data type may be a function type
2690 or pointer-to-function. This function changes the elements of
2691 PARAMS. */
2692
2693 tree
2694 build_function_call_vec (location_t loc, tree function, VEC(tree,gc) *params,
2695 VEC(tree,gc) *origtypes)
2696 {
2697 tree fntype, fundecl = 0;
2698 tree name = NULL_TREE, result;
2699 tree tem;
2700 int nargs;
2701 tree *argarray;
2702
2703
2704 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
2705 STRIP_TYPE_NOPS (function);
2706
2707 /* Convert anything with function type to a pointer-to-function. */
2708 if (TREE_CODE (function) == FUNCTION_DECL)
2709 {
2710 /* Implement type-directed function overloading for builtins.
2711 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2712 handle all the type checking. The result is a complete expression
2713 that implements this function call. */
2714 tem = resolve_overloaded_builtin (loc, function, params);
2715 if (tem)
2716 return tem;
2717
2718 name = DECL_NAME (function);
2719 fundecl = function;
2720 }
2721 if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2722 function = function_to_pointer_conversion (loc, function);
2723
2724 /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2725 expressions, like those used for ObjC messenger dispatches. */
2726 if (!VEC_empty (tree, params))
2727 function = objc_rewrite_function_call (function,
2728 VEC_index (tree, params, 0));
2729
2730 function = c_fully_fold (function, false, NULL);
2731
2732 fntype = TREE_TYPE (function);
2733
2734 if (TREE_CODE (fntype) == ERROR_MARK)
2735 return error_mark_node;
2736
2737 if (!(TREE_CODE (fntype) == POINTER_TYPE
2738 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2739 {
2740 error_at (loc, "called object %qE is not a function", function);
2741 return error_mark_node;
2742 }
2743
2744 if (fundecl && TREE_THIS_VOLATILE (fundecl))
2745 current_function_returns_abnormally = 1;
2746
2747 /* fntype now gets the type of function pointed to. */
2748 fntype = TREE_TYPE (fntype);
2749
2750 /* Convert the parameters to the types declared in the
2751 function prototype, or apply default promotions. */
2752
2753 nargs = convert_arguments (TYPE_ARG_TYPES (fntype), params, origtypes,
2754 function, fundecl);
2755 if (nargs < 0)
2756 return error_mark_node;
2757
2758 /* Check that the function is called through a compatible prototype.
2759 If it is not, replace the call by a trap, wrapped up in a compound
2760 expression if necessary. This has the nice side-effect to prevent
2761 the tree-inliner from generating invalid assignment trees which may
2762 blow up in the RTL expander later. */
2763 if (CONVERT_EXPR_P (function)
2764 && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2765 && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2766 && !comptypes (fntype, TREE_TYPE (tem)))
2767 {
2768 tree return_type = TREE_TYPE (fntype);
2769 tree trap = build_function_call (loc, built_in_decls[BUILT_IN_TRAP],
2770 NULL_TREE);
2771 int i;
2772
2773 /* This situation leads to run-time undefined behavior. We can't,
2774 therefore, simply error unless we can prove that all possible
2775 executions of the program must execute the code. */
2776 if (warning_at (loc, 0, "function called through a non-compatible type"))
2777 /* We can, however, treat "undefined" any way we please.
2778 Call abort to encourage the user to fix the program. */
2779 inform (loc, "if this code is reached, the program will abort");
2780 /* Before the abort, allow the function arguments to exit or
2781 call longjmp. */
2782 for (i = 0; i < nargs; i++)
2783 trap = build2 (COMPOUND_EXPR, void_type_node,
2784 VEC_index (tree, params, i), trap);
2785
2786 if (VOID_TYPE_P (return_type))
2787 {
2788 if (TYPE_QUALS (return_type) != TYPE_UNQUALIFIED)
2789 pedwarn (loc, 0,
2790 "function with qualified void return type called");
2791 return trap;
2792 }
2793 else
2794 {
2795 tree rhs;
2796
2797 if (AGGREGATE_TYPE_P (return_type))
2798 rhs = build_compound_literal (loc, return_type,
2799 build_constructor (return_type, 0),
2800 false);
2801 else
2802 rhs = build_zero_cst (return_type);
2803
2804 return require_complete_type (build2 (COMPOUND_EXPR, return_type,
2805 trap, rhs));
2806 }
2807 }
2808
2809 argarray = VEC_address (tree, params);
2810
2811 /* Check that arguments to builtin functions match the expectations. */
2812 if (fundecl
2813 && DECL_BUILT_IN (fundecl)
2814 && DECL_BUILT_IN_CLASS (fundecl) == BUILT_IN_NORMAL
2815 && !check_builtin_function_arguments (fundecl, nargs, argarray))
2816 return error_mark_node;
2817
2818 /* Check that the arguments to the function are valid. */
2819 check_function_arguments (fntype, nargs, argarray);
2820
2821 if (name != NULL_TREE
2822 && !strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10))
2823 {
2824 if (require_constant_value)
2825 result =
2826 fold_build_call_array_initializer_loc (loc, TREE_TYPE (fntype),
2827 function, nargs, argarray);
2828 else
2829 result = fold_build_call_array_loc (loc, TREE_TYPE (fntype),
2830 function, nargs, argarray);
2831 if (TREE_CODE (result) == NOP_EXPR
2832 && TREE_CODE (TREE_OPERAND (result, 0)) == INTEGER_CST)
2833 STRIP_TYPE_NOPS (result);
2834 }
2835 else
2836 result = build_call_array_loc (loc, TREE_TYPE (fntype),
2837 function, nargs, argarray);
2838
2839 if (VOID_TYPE_P (TREE_TYPE (result)))
2840 {
2841 if (TYPE_QUALS (TREE_TYPE (result)) != TYPE_UNQUALIFIED)
2842 pedwarn (loc, 0,
2843 "function with qualified void return type called");
2844 return result;
2845 }
2846 return require_complete_type (result);
2847 }
2848
2849 /* Build a VEC_SHUFFLE_EXPR if V0, V1 and MASK are not error_mark_nodes
2850 and have vector types, V0 has the same type as V1, and the number of
2851 elements of V0, V1, MASK is the same.
2852
2853 In case V1 is a NULL_TREE it is assumed that __builtin_shuffle was
2854 called with two arguments. In this case implementation passes the
2855 first argument twice in order to share the same tree code. This fact
2856 could enable the mask-values being twice the vector length. This is
2857 an implementation accident and this semantics is not guaranteed to
2858 the user. */
2859 tree
2860 c_build_vec_shuffle_expr (location_t loc, tree v0, tree v1, tree mask)
2861 {
2862 tree vec_shuffle, tmp;
2863 bool wrap = true;
2864 bool maybe_const = false;
2865 bool two_arguments;
2866
2867 if (v1 == NULL_TREE)
2868 {
2869 two_arguments = true;
2870 v1 = v0;
2871 }
2872
2873 if (v0 == error_mark_node || v1 == error_mark_node
2874 || mask == error_mark_node)
2875 return error_mark_node;
2876
2877 if (TREE_CODE (TREE_TYPE (mask)) != VECTOR_TYPE
2878 || TREE_CODE (TREE_TYPE (TREE_TYPE (mask))) != INTEGER_TYPE)
2879 {
2880 error_at (loc, "__builtin_shuffle last argument must "
2881 "be an integer vector");
2882 return error_mark_node;
2883 }
2884
2885 if (TREE_CODE (TREE_TYPE (v0)) != VECTOR_TYPE
2886 || TREE_CODE (TREE_TYPE (v1)) != VECTOR_TYPE)
2887 {
2888 error_at (loc, "__builtin_shuffle arguments must be vectors");
2889 return error_mark_node;
2890 }
2891
2892 if (TYPE_MAIN_VARIANT (TREE_TYPE (v0)) != TYPE_MAIN_VARIANT (TREE_TYPE (v1)))
2893 {
2894 error_at (loc, "__builtin_shuffle argument vectors must be of "
2895 "the same type");
2896 return error_mark_node;
2897 }
2898
2899 if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (v0))
2900 != TYPE_VECTOR_SUBPARTS (TREE_TYPE (mask))
2901 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (v1))
2902 != TYPE_VECTOR_SUBPARTS (TREE_TYPE (mask)))
2903 {
2904 error_at (loc, "__builtin_shuffle number of elements of the "
2905 "argument vector(s) and the mask vector should "
2906 "be the same");
2907 return error_mark_node;
2908 }
2909
2910 if (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (v0))))
2911 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (mask)))))
2912 {
2913 error_at (loc, "__builtin_shuffle argument vector(s) inner type "
2914 "must have the same size as inner type of the mask");
2915 return error_mark_node;
2916 }
2917
2918 /* Avoid C_MAYBE_CONST_EXPRs inside VEC_SHUFFLE_EXPR. */
2919 tmp = c_fully_fold (v0, false, &maybe_const);
2920 v0 = save_expr (tmp);
2921 wrap &= maybe_const;
2922
2923 if (!two_arguments)
2924 {
2925 v1 = c_fully_fold (v1, false, &maybe_const);
2926 wrap &= maybe_const;
2927 }
2928 else
2929 v1 = v0;
2930
2931 mask = c_fully_fold (mask, false, &maybe_const);
2932 wrap &= maybe_const;
2933
2934 vec_shuffle = build3 (VEC_SHUFFLE_EXPR, TREE_TYPE (v0), v0, v1, mask);
2935
2936 if (!wrap)
2937 vec_shuffle = c_wrap_maybe_const (vec_shuffle, true);
2938
2939 return vec_shuffle;
2940 }
2941 \f
2942 /* Convert the argument expressions in the vector VALUES
2943 to the types in the list TYPELIST.
2944
2945 If TYPELIST is exhausted, or when an element has NULL as its type,
2946 perform the default conversions.
2947
2948 ORIGTYPES is the original types of the expressions in VALUES. This
2949 holds the type of enum values which have been converted to integral
2950 types. It may be NULL.
2951
2952 FUNCTION is a tree for the called function. It is used only for
2953 error messages, where it is formatted with %qE.
2954
2955 This is also where warnings about wrong number of args are generated.
2956
2957 Returns the actual number of arguments processed (which may be less
2958 than the length of VALUES in some error situations), or -1 on
2959 failure. */
2960
2961 static int
2962 convert_arguments (tree typelist, VEC(tree,gc) *values,
2963 VEC(tree,gc) *origtypes, tree function, tree fundecl)
2964 {
2965 tree typetail, val;
2966 unsigned int parmnum;
2967 bool error_args = false;
2968 const bool type_generic = fundecl
2969 && lookup_attribute ("type generic", TYPE_ATTRIBUTES(TREE_TYPE (fundecl)));
2970 bool type_generic_remove_excess_precision = false;
2971 tree selector;
2972
2973 /* Change pointer to function to the function itself for
2974 diagnostics. */
2975 if (TREE_CODE (function) == ADDR_EXPR
2976 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2977 function = TREE_OPERAND (function, 0);
2978
2979 /* Handle an ObjC selector specially for diagnostics. */
2980 selector = objc_message_selector ();
2981
2982 /* For type-generic built-in functions, determine whether excess
2983 precision should be removed (classification) or not
2984 (comparison). */
2985 if (type_generic
2986 && DECL_BUILT_IN (fundecl)
2987 && DECL_BUILT_IN_CLASS (fundecl) == BUILT_IN_NORMAL)
2988 {
2989 switch (DECL_FUNCTION_CODE (fundecl))
2990 {
2991 case BUILT_IN_ISFINITE:
2992 case BUILT_IN_ISINF:
2993 case BUILT_IN_ISINF_SIGN:
2994 case BUILT_IN_ISNAN:
2995 case BUILT_IN_ISNORMAL:
2996 case BUILT_IN_FPCLASSIFY:
2997 type_generic_remove_excess_precision = true;
2998 break;
2999
3000 default:
3001 type_generic_remove_excess_precision = false;
3002 break;
3003 }
3004 }
3005
3006 /* Scan the given expressions and types, producing individual
3007 converted arguments. */
3008
3009 for (typetail = typelist, parmnum = 0;
3010 VEC_iterate (tree, values, parmnum, val);
3011 ++parmnum)
3012 {
3013 tree type = typetail ? TREE_VALUE (typetail) : 0;
3014 tree valtype = TREE_TYPE (val);
3015 tree rname = function;
3016 int argnum = parmnum + 1;
3017 const char *invalid_func_diag;
3018 bool excess_precision = false;
3019 bool npc;
3020 tree parmval;
3021
3022 if (type == void_type_node)
3023 {
3024 if (selector)
3025 error_at (input_location,
3026 "too many arguments to method %qE", selector);
3027 else
3028 error_at (input_location,
3029 "too many arguments to function %qE", function);
3030
3031 if (fundecl && !DECL_BUILT_IN (fundecl))
3032 inform (DECL_SOURCE_LOCATION (fundecl), "declared here");
3033 return parmnum;
3034 }
3035
3036 if (selector && argnum > 2)
3037 {
3038 rname = selector;
3039 argnum -= 2;
3040 }
3041
3042 npc = null_pointer_constant_p (val);
3043
3044 /* If there is excess precision and a prototype, convert once to
3045 the required type rather than converting via the semantic
3046 type. Likewise without a prototype a float value represented
3047 as long double should be converted once to double. But for
3048 type-generic classification functions excess precision must
3049 be removed here. */
3050 if (TREE_CODE (val) == EXCESS_PRECISION_EXPR
3051 && (type || !type_generic || !type_generic_remove_excess_precision))
3052 {
3053 val = TREE_OPERAND (val, 0);
3054 excess_precision = true;
3055 }
3056 val = c_fully_fold (val, false, NULL);
3057 STRIP_TYPE_NOPS (val);
3058
3059 val = require_complete_type (val);
3060
3061 if (type != 0)
3062 {
3063 /* Formal parm type is specified by a function prototype. */
3064
3065 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
3066 {
3067 error ("type of formal parameter %d is incomplete", parmnum + 1);
3068 parmval = val;
3069 }
3070 else
3071 {
3072 tree origtype;
3073
3074 /* Optionally warn about conversions that
3075 differ from the default conversions. */
3076 if (warn_traditional_conversion || warn_traditional)
3077 {
3078 unsigned int formal_prec = TYPE_PRECISION (type);
3079
3080 if (INTEGRAL_TYPE_P (type)
3081 && TREE_CODE (valtype) == REAL_TYPE)
3082 warning (0, "passing argument %d of %qE as integer "
3083 "rather than floating due to prototype",
3084 argnum, rname);
3085 if (INTEGRAL_TYPE_P (type)
3086 && TREE_CODE (valtype) == COMPLEX_TYPE)
3087 warning (0, "passing argument %d of %qE as integer "
3088 "rather than complex due to prototype",
3089 argnum, rname);
3090 else if (TREE_CODE (type) == COMPLEX_TYPE
3091 && TREE_CODE (valtype) == REAL_TYPE)
3092 warning (0, "passing argument %d of %qE as complex "
3093 "rather than floating due to prototype",
3094 argnum, rname);
3095 else if (TREE_CODE (type) == REAL_TYPE
3096 && INTEGRAL_TYPE_P (valtype))
3097 warning (0, "passing argument %d of %qE as floating "
3098 "rather than integer due to prototype",
3099 argnum, rname);
3100 else if (TREE_CODE (type) == COMPLEX_TYPE
3101 && INTEGRAL_TYPE_P (valtype))
3102 warning (0, "passing argument %d of %qE as complex "
3103 "rather than integer due to prototype",
3104 argnum, rname);
3105 else if (TREE_CODE (type) == REAL_TYPE
3106 && TREE_CODE (valtype) == COMPLEX_TYPE)
3107 warning (0, "passing argument %d of %qE as floating "
3108 "rather than complex due to prototype",
3109 argnum, rname);
3110 /* ??? At some point, messages should be written about
3111 conversions between complex types, but that's too messy
3112 to do now. */
3113 else if (TREE_CODE (type) == REAL_TYPE
3114 && TREE_CODE (valtype) == REAL_TYPE)
3115 {
3116 /* Warn if any argument is passed as `float',
3117 since without a prototype it would be `double'. */
3118 if (formal_prec == TYPE_PRECISION (float_type_node)
3119 && type != dfloat32_type_node)
3120 warning (0, "passing argument %d of %qE as %<float%> "
3121 "rather than %<double%> due to prototype",
3122 argnum, rname);
3123
3124 /* Warn if mismatch between argument and prototype
3125 for decimal float types. Warn of conversions with
3126 binary float types and of precision narrowing due to
3127 prototype. */
3128 else if (type != valtype
3129 && (type == dfloat32_type_node
3130 || type == dfloat64_type_node
3131 || type == dfloat128_type_node
3132 || valtype == dfloat32_type_node
3133 || valtype == dfloat64_type_node
3134 || valtype == dfloat128_type_node)
3135 && (formal_prec
3136 <= TYPE_PRECISION (valtype)
3137 || (type == dfloat128_type_node
3138 && (valtype
3139 != dfloat64_type_node
3140 && (valtype
3141 != dfloat32_type_node)))
3142 || (type == dfloat64_type_node
3143 && (valtype
3144 != dfloat32_type_node))))
3145 warning (0, "passing argument %d of %qE as %qT "
3146 "rather than %qT due to prototype",
3147 argnum, rname, type, valtype);
3148
3149 }
3150 /* Detect integer changing in width or signedness.
3151 These warnings are only activated with
3152 -Wtraditional-conversion, not with -Wtraditional. */
3153 else if (warn_traditional_conversion && INTEGRAL_TYPE_P (type)
3154 && INTEGRAL_TYPE_P (valtype))
3155 {
3156 tree would_have_been = default_conversion (val);
3157 tree type1 = TREE_TYPE (would_have_been);
3158
3159 if (TREE_CODE (type) == ENUMERAL_TYPE
3160 && (TYPE_MAIN_VARIANT (type)
3161 == TYPE_MAIN_VARIANT (valtype)))
3162 /* No warning if function asks for enum
3163 and the actual arg is that enum type. */
3164 ;
3165 else if (formal_prec != TYPE_PRECISION (type1))
3166 warning (OPT_Wtraditional_conversion,
3167 "passing argument %d of %qE "
3168 "with different width due to prototype",
3169 argnum, rname);
3170 else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
3171 ;
3172 /* Don't complain if the formal parameter type
3173 is an enum, because we can't tell now whether
3174 the value was an enum--even the same enum. */
3175 else if (TREE_CODE (type) == ENUMERAL_TYPE)
3176 ;
3177 else if (TREE_CODE (val) == INTEGER_CST
3178 && int_fits_type_p (val, type))
3179 /* Change in signedness doesn't matter
3180 if a constant value is unaffected. */
3181 ;
3182 /* If the value is extended from a narrower
3183 unsigned type, it doesn't matter whether we
3184 pass it as signed or unsigned; the value
3185 certainly is the same either way. */
3186 else if (TYPE_PRECISION (valtype) < TYPE_PRECISION (type)
3187 && TYPE_UNSIGNED (valtype))
3188 ;
3189 else if (TYPE_UNSIGNED (type))
3190 warning (OPT_Wtraditional_conversion,
3191 "passing argument %d of %qE "
3192 "as unsigned due to prototype",
3193 argnum, rname);
3194 else
3195 warning (OPT_Wtraditional_conversion,
3196 "passing argument %d of %qE "
3197 "as signed due to prototype", argnum, rname);
3198 }
3199 }
3200
3201 /* Possibly restore an EXCESS_PRECISION_EXPR for the
3202 sake of better warnings from convert_and_check. */
3203 if (excess_precision)
3204 val = build1 (EXCESS_PRECISION_EXPR, valtype, val);
3205 origtype = (origtypes == NULL
3206 ? NULL_TREE
3207 : VEC_index (tree, origtypes, parmnum));
3208 parmval = convert_for_assignment (input_location, type, val,
3209 origtype, ic_argpass, npc,
3210 fundecl, function,
3211 parmnum + 1);
3212
3213 if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
3214 && INTEGRAL_TYPE_P (type)
3215 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
3216 parmval = default_conversion (parmval);
3217 }
3218 }
3219 else if (TREE_CODE (valtype) == REAL_TYPE
3220 && (TYPE_PRECISION (valtype)
3221 < TYPE_PRECISION (double_type_node))
3222 && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (valtype)))
3223 {
3224 if (type_generic)
3225 parmval = val;
3226 else
3227 {
3228 /* Convert `float' to `double'. */
3229 if (warn_double_promotion && !c_inhibit_evaluation_warnings)
3230 warning (OPT_Wdouble_promotion,
3231 "implicit conversion from %qT to %qT when passing "
3232 "argument to function",
3233 valtype, double_type_node);
3234 parmval = convert (double_type_node, val);
3235 }
3236 }
3237 else if (excess_precision && !type_generic)
3238 /* A "double" argument with excess precision being passed
3239 without a prototype or in variable arguments. */
3240 parmval = convert (valtype, val);
3241 else if ((invalid_func_diag =
3242 targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
3243 {
3244 error (invalid_func_diag);
3245 return -1;
3246 }
3247 else
3248 /* Convert `short' and `char' to full-size `int'. */
3249 parmval = default_conversion (val);
3250
3251 VEC_replace (tree, values, parmnum, parmval);
3252 if (parmval == error_mark_node)
3253 error_args = true;
3254
3255 if (typetail)
3256 typetail = TREE_CHAIN (typetail);
3257 }
3258
3259 gcc_assert (parmnum == VEC_length (tree, values));
3260
3261 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
3262 {
3263 error_at (input_location,
3264 "too few arguments to function %qE", function);
3265 if (fundecl && !DECL_BUILT_IN (fundecl))
3266 inform (DECL_SOURCE_LOCATION (fundecl), "declared here");
3267 return -1;
3268 }
3269
3270 return error_args ? -1 : (int) parmnum;
3271 }
3272 \f
3273 /* This is the entry point used by the parser to build unary operators
3274 in the input. CODE, a tree_code, specifies the unary operator, and
3275 ARG is the operand. For unary plus, the C parser currently uses
3276 CONVERT_EXPR for code.
3277
3278 LOC is the location to use for the tree generated.
3279 */
3280
3281 struct c_expr
3282 parser_build_unary_op (location_t loc, enum tree_code code, struct c_expr arg)
3283 {
3284 struct c_expr result;
3285
3286 result.value = build_unary_op (loc, code, arg.value, 0);
3287 result.original_code = code;
3288 result.original_type = NULL;
3289
3290 if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value))
3291 overflow_warning (loc, result.value);
3292
3293 return result;
3294 }
3295
3296 /* This is the entry point used by the parser to build binary operators
3297 in the input. CODE, a tree_code, specifies the binary operator, and
3298 ARG1 and ARG2 are the operands. In addition to constructing the
3299 expression, we check for operands that were written with other binary
3300 operators in a way that is likely to confuse the user.
3301
3302 LOCATION is the location of the binary operator. */
3303
3304 struct c_expr
3305 parser_build_binary_op (location_t location, enum tree_code code,
3306 struct c_expr arg1, struct c_expr arg2)
3307 {
3308 struct c_expr result;
3309
3310 enum tree_code code1 = arg1.original_code;
3311 enum tree_code code2 = arg2.original_code;
3312 tree type1 = (arg1.original_type
3313 ? arg1.original_type
3314 : TREE_TYPE (arg1.value));
3315 tree type2 = (arg2.original_type
3316 ? arg2.original_type
3317 : TREE_TYPE (arg2.value));
3318
3319 result.value = build_binary_op (location, code,
3320 arg1.value, arg2.value, 1);
3321 result.original_code = code;
3322 result.original_type = NULL;
3323
3324 if (TREE_CODE (result.value) == ERROR_MARK)
3325 return result;
3326
3327 if (location != UNKNOWN_LOCATION)
3328 protected_set_expr_location (result.value, location);
3329
3330 /* Check for cases such as x+y<<z which users are likely
3331 to misinterpret. */
3332 if (warn_parentheses)
3333 warn_about_parentheses (code, code1, arg1.value, code2, arg2.value);
3334
3335 if (warn_logical_op)
3336 warn_logical_operator (input_location, code, TREE_TYPE (result.value),
3337 code1, arg1.value, code2, arg2.value);
3338
3339 /* Warn about comparisons against string literals, with the exception
3340 of testing for equality or inequality of a string literal with NULL. */
3341 if (code == EQ_EXPR || code == NE_EXPR)
3342 {
3343 if ((code1 == STRING_CST && !integer_zerop (arg2.value))
3344 || (code2 == STRING_CST && !integer_zerop (arg1.value)))
3345 warning_at (location, OPT_Waddress,
3346 "comparison with string literal results in unspecified behavior");
3347 }
3348 else if (TREE_CODE_CLASS (code) == tcc_comparison
3349 && (code1 == STRING_CST || code2 == STRING_CST))
3350 warning_at (location, OPT_Waddress,
3351 "comparison with string literal results in unspecified behavior");
3352
3353 if (TREE_OVERFLOW_P (result.value)
3354 && !TREE_OVERFLOW_P (arg1.value)
3355 && !TREE_OVERFLOW_P (arg2.value))
3356 overflow_warning (location, result.value);
3357
3358 /* Warn about comparisons of different enum types. */
3359 if (warn_enum_compare
3360 && TREE_CODE_CLASS (code) == tcc_comparison
3361 && TREE_CODE (type1) == ENUMERAL_TYPE
3362 && TREE_CODE (type2) == ENUMERAL_TYPE
3363 && TYPE_MAIN_VARIANT (type1) != TYPE_MAIN_VARIANT (type2))
3364 warning_at (location, OPT_Wenum_compare,
3365 "comparison between %qT and %qT",
3366 type1, type2);
3367
3368 return result;
3369 }
3370 \f
3371 /* Return a tree for the difference of pointers OP0 and OP1.
3372 The resulting tree has type int. */
3373
3374 static tree
3375 pointer_diff (location_t loc, tree op0, tree op1)
3376 {
3377 tree restype = ptrdiff_type_node;
3378 tree result, inttype;
3379
3380 addr_space_t as0 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (op0)));
3381 addr_space_t as1 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (op1)));
3382 tree target_type = TREE_TYPE (TREE_TYPE (op0));
3383 tree con0, con1, lit0, lit1;
3384 tree orig_op1 = op1;
3385
3386 /* If the operands point into different address spaces, we need to
3387 explicitly convert them to pointers into the common address space
3388 before we can subtract the numerical address values. */
3389 if (as0 != as1)
3390 {
3391 addr_space_t as_common;
3392 tree common_type;
3393
3394 /* Determine the common superset address space. This is guaranteed
3395 to exist because the caller verified that comp_target_types
3396 returned non-zero. */
3397 if (!addr_space_superset (as0, as1, &as_common))
3398 gcc_unreachable ();
3399
3400 common_type = common_pointer_type (TREE_TYPE (op0), TREE_TYPE (op1));
3401 op0 = convert (common_type, op0);
3402 op1 = convert (common_type, op1);
3403 }
3404
3405 /* Determine integer type to perform computations in. This will usually
3406 be the same as the result type (ptrdiff_t), but may need to be a wider
3407 type if pointers for the address space are wider than ptrdiff_t. */
3408 if (TYPE_PRECISION (restype) < TYPE_PRECISION (TREE_TYPE (op0)))
3409 inttype = lang_hooks.types.type_for_size
3410 (TYPE_PRECISION (TREE_TYPE (op0)), 0);
3411 else
3412 inttype = restype;
3413
3414
3415 if (TREE_CODE (target_type) == VOID_TYPE)
3416 pedwarn (loc, pedantic ? OPT_pedantic : OPT_Wpointer_arith,
3417 "pointer of type %<void *%> used in subtraction");
3418 if (TREE_CODE (target_type) == FUNCTION_TYPE)
3419 pedwarn (loc, pedantic ? OPT_pedantic : OPT_Wpointer_arith,
3420 "pointer to a function used in subtraction");
3421
3422 /* If the conversion to ptrdiff_type does anything like widening or
3423 converting a partial to an integral mode, we get a convert_expression
3424 that is in the way to do any simplifications.
3425 (fold-const.c doesn't know that the extra bits won't be needed.
3426 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
3427 different mode in place.)
3428 So first try to find a common term here 'by hand'; we want to cover
3429 at least the cases that occur in legal static initializers. */
3430 if (CONVERT_EXPR_P (op0)
3431 && (TYPE_PRECISION (TREE_TYPE (op0))
3432 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
3433 con0 = TREE_OPERAND (op0, 0);
3434 else
3435 con0 = op0;
3436 if (CONVERT_EXPR_P (op1)
3437 && (TYPE_PRECISION (TREE_TYPE (op1))
3438 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
3439 con1 = TREE_OPERAND (op1, 0);
3440 else
3441 con1 = op1;
3442
3443 if (TREE_CODE (con0) == PLUS_EXPR)
3444 {
3445 lit0 = TREE_OPERAND (con0, 1);
3446 con0 = TREE_OPERAND (con0, 0);
3447 }
3448 else
3449 lit0 = integer_zero_node;
3450
3451 if (TREE_CODE (con1) == PLUS_EXPR)
3452 {
3453 lit1 = TREE_OPERAND (con1, 1);
3454 con1 = TREE_OPERAND (con1, 0);
3455 }
3456 else
3457 lit1 = integer_zero_node;
3458
3459 if (operand_equal_p (con0, con1, 0))
3460 {
3461 op0 = lit0;
3462 op1 = lit1;
3463 }
3464
3465
3466 /* First do the subtraction as integers;
3467 then drop through to build the divide operator.
3468 Do not do default conversions on the minus operator
3469 in case restype is a short type. */
3470
3471 op0 = build_binary_op (loc,
3472 MINUS_EXPR, convert (inttype, op0),
3473 convert (inttype, op1), 0);
3474 /* This generates an error if op1 is pointer to incomplete type. */
3475 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
3476 error_at (loc, "arithmetic on pointer to an incomplete type");
3477
3478 /* This generates an error if op0 is pointer to incomplete type. */
3479 op1 = c_size_in_bytes (target_type);
3480
3481 /* Divide by the size, in easiest possible way. */
3482 result = fold_build2_loc (loc, EXACT_DIV_EXPR, inttype,
3483 op0, convert (inttype, op1));
3484
3485 /* Convert to final result type if necessary. */
3486 return convert (restype, result);
3487 }
3488 \f
3489 /* Construct and perhaps optimize a tree representation
3490 for a unary operation. CODE, a tree_code, specifies the operation
3491 and XARG is the operand.
3492 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
3493 the default promotions (such as from short to int).
3494 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
3495 allows non-lvalues; this is only used to handle conversion of non-lvalue
3496 arrays to pointers in C99.
3497
3498 LOCATION is the location of the operator. */
3499
3500 tree
3501 build_unary_op (location_t location,
3502 enum tree_code code, tree xarg, int flag)
3503 {
3504 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
3505 tree arg = xarg;
3506 tree argtype = 0;
3507 enum tree_code typecode;
3508 tree val;
3509 tree ret = error_mark_node;
3510 tree eptype = NULL_TREE;
3511 int noconvert = flag;
3512 const char *invalid_op_diag;
3513 bool int_operands;
3514
3515 int_operands = EXPR_INT_CONST_OPERANDS (xarg);
3516 if (int_operands)
3517 arg = remove_c_maybe_const_expr (arg);
3518
3519 if (code != ADDR_EXPR)
3520 arg = require_complete_type (arg);
3521
3522 typecode = TREE_CODE (TREE_TYPE (arg));
3523 if (typecode == ERROR_MARK)
3524 return error_mark_node;
3525 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
3526 typecode = INTEGER_TYPE;
3527
3528 if ((invalid_op_diag
3529 = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
3530 {
3531 error_at (location, invalid_op_diag);
3532 return error_mark_node;
3533 }
3534
3535 if (TREE_CODE (arg) == EXCESS_PRECISION_EXPR)
3536 {
3537 eptype = TREE_TYPE (arg);
3538 arg = TREE_OPERAND (arg, 0);
3539 }
3540
3541 switch (code)
3542 {
3543 case CONVERT_EXPR:
3544 /* This is used for unary plus, because a CONVERT_EXPR
3545 is enough to prevent anybody from looking inside for
3546 associativity, but won't generate any code. */
3547 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
3548 || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE
3549 || typecode == VECTOR_TYPE))
3550 {
3551 error_at (location, "wrong type argument to unary plus");
3552 return error_mark_node;
3553 }
3554 else if (!noconvert)
3555 arg = default_conversion (arg);
3556 arg = non_lvalue_loc (location, arg);
3557 break;
3558
3559 case NEGATE_EXPR:
3560 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
3561 || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE
3562 || typecode == VECTOR_TYPE))
3563 {
3564 error_at (location, "wrong type argument to unary minus");
3565 return error_mark_node;
3566 }
3567 else if (!noconvert)
3568 arg = default_conversion (arg);
3569 break;
3570
3571 case BIT_NOT_EXPR:
3572 /* ~ works on integer types and non float vectors. */
3573 if (typecode == INTEGER_TYPE
3574 || (typecode == VECTOR_TYPE
3575 && !VECTOR_FLOAT_TYPE_P (TREE_TYPE (arg))))
3576 {
3577 if (!noconvert)
3578 arg = default_conversion (arg);
3579 }
3580 else if (typecode == COMPLEX_TYPE)
3581 {
3582 code = CONJ_EXPR;
3583 pedwarn (location, OPT_pedantic,
3584 "ISO C does not support %<~%> for complex conjugation");
3585 if (!noconvert)
3586 arg = default_conversion (arg);
3587 }
3588 else
3589 {
3590 error_at (location, "wrong type argument to bit-complement");
3591 return error_mark_node;
3592 }
3593 break;
3594
3595 case ABS_EXPR:
3596 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
3597 {
3598 error_at (location, "wrong type argument to abs");
3599 return error_mark_node;
3600 }
3601 else if (!noconvert)
3602 arg = default_conversion (arg);
3603 break;
3604
3605 case CONJ_EXPR:
3606 /* Conjugating a real value is a no-op, but allow it anyway. */
3607 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
3608 || typecode == COMPLEX_TYPE))
3609 {
3610 error_at (location, "wrong type argument to conjugation");
3611 return error_mark_node;
3612 }
3613 else if (!noconvert)
3614 arg = default_conversion (arg);
3615 break;
3616
3617 case TRUTH_NOT_EXPR:
3618 if (typecode != INTEGER_TYPE && typecode != FIXED_POINT_TYPE
3619 && typecode != REAL_TYPE && typecode != POINTER_TYPE
3620 && typecode != COMPLEX_TYPE)
3621 {
3622 error_at (location,
3623 "wrong type argument to unary exclamation mark");
3624 return error_mark_node;
3625 }
3626 arg = c_objc_common_truthvalue_conversion (location, arg);
3627 ret = invert_truthvalue_loc (location, arg);
3628 /* If the TRUTH_NOT_EXPR has been folded, reset the location. */
3629 if (EXPR_P (ret) && EXPR_HAS_LOCATION (ret))
3630 location = EXPR_LOCATION (ret);
3631 goto return_build_unary_op;
3632
3633 case REALPART_EXPR:
3634 case IMAGPART_EXPR:
3635 ret = build_real_imag_expr (location, code, arg);
3636 if (ret == error_mark_node)
3637 return error_mark_node;
3638 if (eptype && TREE_CODE (eptype) == COMPLEX_TYPE)
3639 eptype = TREE_TYPE (eptype);
3640 goto return_build_unary_op;
3641
3642 case PREINCREMENT_EXPR:
3643 case POSTINCREMENT_EXPR:
3644 case PREDECREMENT_EXPR:
3645 case POSTDECREMENT_EXPR:
3646
3647 if (TREE_CODE (arg) == C_MAYBE_CONST_EXPR)
3648 {
3649 tree inner = build_unary_op (location, code,
3650 C_MAYBE_CONST_EXPR_EXPR (arg), flag);
3651 if (inner == error_mark_node)
3652 return error_mark_node;
3653 ret = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (inner),
3654 C_MAYBE_CONST_EXPR_PRE (arg), inner);
3655 gcc_assert (!C_MAYBE_CONST_EXPR_INT_OPERANDS (arg));
3656 C_MAYBE_CONST_EXPR_NON_CONST (ret) = 1;
3657 goto return_build_unary_op;
3658 }
3659
3660 /* Complain about anything that is not a true lvalue. In
3661 Objective-C, skip this check for property_refs. */
3662 if (!objc_is_property_ref (arg)
3663 && !lvalue_or_else (location,
3664 arg, ((code == PREINCREMENT_EXPR
3665 || code == POSTINCREMENT_EXPR)
3666 ? lv_increment
3667 : lv_decrement)))
3668 return error_mark_node;
3669
3670 if (warn_cxx_compat && TREE_CODE (TREE_TYPE (arg)) == ENUMERAL_TYPE)
3671 {
3672 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3673 warning_at (location, OPT_Wc___compat,
3674 "increment of enumeration value is invalid in C++");
3675 else
3676 warning_at (location, OPT_Wc___compat,
3677 "decrement of enumeration value is invalid in C++");
3678 }
3679
3680 /* Ensure the argument is fully folded inside any SAVE_EXPR. */
3681 arg = c_fully_fold (arg, false, NULL);
3682
3683 /* Increment or decrement the real part of the value,
3684 and don't change the imaginary part. */
3685 if (typecode == COMPLEX_TYPE)
3686 {
3687 tree real, imag;
3688
3689 pedwarn (location, OPT_pedantic,
3690 "ISO C does not support %<++%> and %<--%> on complex types");
3691
3692 arg = stabilize_reference (arg);
3693 real = build_unary_op (EXPR_LOCATION (arg), REALPART_EXPR, arg, 1);
3694 imag = build_unary_op (EXPR_LOCATION (arg), IMAGPART_EXPR, arg, 1);
3695 real = build_unary_op (EXPR_LOCATION (arg), code, real, 1);
3696 if (real == error_mark_node || imag == error_mark_node)
3697 return error_mark_node;
3698 ret = build2 (COMPLEX_EXPR, TREE_TYPE (arg),
3699 real, imag);
3700 goto return_build_unary_op;
3701 }
3702
3703 /* Report invalid types. */
3704
3705 if (typecode != POINTER_TYPE && typecode != FIXED_POINT_TYPE
3706 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
3707 {
3708 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3709 error_at (location, "wrong type argument to increment");
3710 else
3711 error_at (location, "wrong type argument to decrement");
3712
3713 return error_mark_node;
3714 }
3715
3716 {
3717 tree inc;
3718
3719 argtype = TREE_TYPE (arg);
3720
3721 /* Compute the increment. */
3722
3723 if (typecode == POINTER_TYPE)
3724 {
3725 /* If pointer target is an undefined struct,
3726 we just cannot know how to do the arithmetic. */
3727 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (argtype)))
3728 {
3729 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3730 error_at (location,
3731 "increment of pointer to unknown structure");
3732 else
3733 error_at (location,
3734 "decrement of pointer to unknown structure");
3735 }
3736 else if (TREE_CODE (TREE_TYPE (argtype)) == FUNCTION_TYPE
3737 || TREE_CODE (TREE_TYPE (argtype)) == VOID_TYPE)
3738 {
3739 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3740 pedwarn (location, pedantic ? OPT_pedantic : OPT_Wpointer_arith,
3741 "wrong type argument to increment");
3742 else
3743 pedwarn (location, pedantic ? OPT_pedantic : OPT_Wpointer_arith,
3744 "wrong type argument to decrement");
3745 }
3746
3747 inc = c_size_in_bytes (TREE_TYPE (argtype));
3748 inc = convert_to_ptrofftype_loc (location, inc);
3749 }
3750 else if (FRACT_MODE_P (TYPE_MODE (argtype)))
3751 {
3752 /* For signed fract types, we invert ++ to -- or
3753 -- to ++, and change inc from 1 to -1, because
3754 it is not possible to represent 1 in signed fract constants.
3755 For unsigned fract types, the result always overflows and
3756 we get an undefined (original) or the maximum value. */
3757 if (code == PREINCREMENT_EXPR)
3758 code = PREDECREMENT_EXPR;
3759 else if (code == PREDECREMENT_EXPR)
3760 code = PREINCREMENT_EXPR;
3761 else if (code == POSTINCREMENT_EXPR)
3762 code = POSTDECREMENT_EXPR;
3763 else /* code == POSTDECREMENT_EXPR */
3764 code = POSTINCREMENT_EXPR;
3765
3766 inc = integer_minus_one_node;
3767 inc = convert (argtype, inc);
3768 }
3769 else
3770 {
3771 inc = integer_one_node;
3772 inc = convert (argtype, inc);
3773 }
3774
3775 /* If 'arg' is an Objective-C PROPERTY_REF expression, then we
3776 need to ask Objective-C to build the increment or decrement
3777 expression for it. */
3778 if (objc_is_property_ref (arg))
3779 return objc_build_incr_expr_for_property_ref (location, code,
3780 arg, inc);
3781
3782 /* Report a read-only lvalue. */
3783 if (TYPE_READONLY (argtype))
3784 {
3785 readonly_error (arg,
3786 ((code == PREINCREMENT_EXPR
3787 || code == POSTINCREMENT_EXPR)
3788 ? lv_increment : lv_decrement));
3789 return error_mark_node;
3790 }
3791 else if (TREE_READONLY (arg))
3792 readonly_warning (arg,
3793 ((code == PREINCREMENT_EXPR
3794 || code == POSTINCREMENT_EXPR)
3795 ? lv_increment : lv_decrement));
3796
3797 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3798 val = boolean_increment (code, arg);
3799 else
3800 val = build2 (code, TREE_TYPE (arg), arg, inc);
3801 TREE_SIDE_EFFECTS (val) = 1;
3802 if (TREE_CODE (val) != code)
3803 TREE_NO_WARNING (val) = 1;
3804 ret = val;
3805 goto return_build_unary_op;
3806 }
3807
3808 case ADDR_EXPR:
3809 /* Note that this operation never does default_conversion. */
3810
3811 /* The operand of unary '&' must be an lvalue (which excludes
3812 expressions of type void), or, in C99, the result of a [] or
3813 unary '*' operator. */
3814 if (VOID_TYPE_P (TREE_TYPE (arg))
3815 && TYPE_QUALS (TREE_TYPE (arg)) == TYPE_UNQUALIFIED
3816 && (TREE_CODE (arg) != INDIRECT_REF
3817 || !flag_isoc99))
3818 pedwarn (location, 0, "taking address of expression of type %<void%>");
3819
3820 /* Let &* cancel out to simplify resulting code. */
3821 if (TREE_CODE (arg) == INDIRECT_REF)
3822 {
3823 /* Don't let this be an lvalue. */
3824 if (lvalue_p (TREE_OPERAND (arg, 0)))
3825 return non_lvalue_loc (location, TREE_OPERAND (arg, 0));
3826 ret = TREE_OPERAND (arg, 0);
3827 goto return_build_unary_op;
3828 }
3829
3830 /* For &x[y], return x+y */
3831 if (TREE_CODE (arg) == ARRAY_REF)
3832 {
3833 tree op0 = TREE_OPERAND (arg, 0);
3834 if (!c_mark_addressable (op0))
3835 return error_mark_node;
3836 }
3837
3838 /* Anything not already handled and not a true memory reference
3839 or a non-lvalue array is an error. */
3840 else if (typecode != FUNCTION_TYPE && !flag
3841 && !lvalue_or_else (location, arg, lv_addressof))
3842 return error_mark_node;
3843
3844 /* Move address operations inside C_MAYBE_CONST_EXPR to simplify
3845 folding later. */
3846 if (TREE_CODE (arg) == C_MAYBE_CONST_EXPR)
3847 {
3848 tree inner = build_unary_op (location, code,
3849 C_MAYBE_CONST_EXPR_EXPR (arg), flag);
3850 ret = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (inner),
3851 C_MAYBE_CONST_EXPR_PRE (arg), inner);
3852 gcc_assert (!C_MAYBE_CONST_EXPR_INT_OPERANDS (arg));
3853 C_MAYBE_CONST_EXPR_NON_CONST (ret)
3854 = C_MAYBE_CONST_EXPR_NON_CONST (arg);
3855 goto return_build_unary_op;
3856 }
3857
3858 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3859 argtype = TREE_TYPE (arg);
3860
3861 /* If the lvalue is const or volatile, merge that into the type
3862 to which the address will point. This is only needed
3863 for function types. */
3864 if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3865 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg))
3866 && TREE_CODE (argtype) == FUNCTION_TYPE)
3867 {
3868 int orig_quals = TYPE_QUALS (strip_array_types (argtype));
3869 int quals = orig_quals;
3870
3871 if (TREE_READONLY (arg))
3872 quals |= TYPE_QUAL_CONST;
3873 if (TREE_THIS_VOLATILE (arg))
3874 quals |= TYPE_QUAL_VOLATILE;
3875
3876 argtype = c_build_qualified_type (argtype, quals);
3877 }
3878
3879 if (!c_mark_addressable (arg))
3880 return error_mark_node;
3881
3882 gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3883 || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3884
3885 argtype = build_pointer_type (argtype);
3886
3887 /* ??? Cope with user tricks that amount to offsetof. Delete this
3888 when we have proper support for integer constant expressions. */
3889 val = get_base_address (arg);
3890 if (val && TREE_CODE (val) == INDIRECT_REF
3891 && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3892 {
3893 tree op0 = fold_offsetof (arg, val), op1;
3894
3895 op1 = fold_convert_loc (location, argtype, TREE_OPERAND (val, 0));
3896 ret = fold_build_pointer_plus_loc (location, op1, op0);
3897 goto return_build_unary_op;
3898 }
3899
3900 val = build1 (ADDR_EXPR, argtype, arg);
3901
3902 ret = val;
3903 goto return_build_unary_op;
3904
3905 default:
3906 gcc_unreachable ();
3907 }
3908
3909 if (argtype == 0)
3910 argtype = TREE_TYPE (arg);
3911 if (TREE_CODE (arg) == INTEGER_CST)
3912 ret = (require_constant_value
3913 ? fold_build1_initializer_loc (location, code, argtype, arg)
3914 : fold_build1_loc (location, code, argtype, arg));
3915 else
3916 ret = build1 (code, argtype, arg);
3917 return_build_unary_op:
3918 gcc_assert (ret != error_mark_node);
3919 if (TREE_CODE (ret) == INTEGER_CST && !TREE_OVERFLOW (ret)
3920 && !(TREE_CODE (xarg) == INTEGER_CST && !TREE_OVERFLOW (xarg)))
3921 ret = build1 (NOP_EXPR, TREE_TYPE (ret), ret);
3922 else if (TREE_CODE (ret) != INTEGER_CST && int_operands)
3923 ret = note_integer_operands (ret);
3924 if (eptype)
3925 ret = build1 (EXCESS_PRECISION_EXPR, eptype, ret);
3926 protected_set_expr_location (ret, location);
3927 return ret;
3928 }
3929
3930 /* Return nonzero if REF is an lvalue valid for this language.
3931 Lvalues can be assigned, unless their type has TYPE_READONLY.
3932 Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
3933
3934 bool
3935 lvalue_p (const_tree ref)
3936 {
3937 const enum tree_code code = TREE_CODE (ref);
3938
3939 switch (code)
3940 {
3941 case REALPART_EXPR:
3942 case IMAGPART_EXPR:
3943 case COMPONENT_REF:
3944 return lvalue_p (TREE_OPERAND (ref, 0));
3945
3946 case C_MAYBE_CONST_EXPR:
3947 return lvalue_p (TREE_OPERAND (ref, 1));
3948
3949 case COMPOUND_LITERAL_EXPR:
3950 case STRING_CST:
3951 return 1;
3952
3953 case INDIRECT_REF:
3954 case ARRAY_REF:
3955 case VAR_DECL:
3956 case PARM_DECL:
3957 case RESULT_DECL:
3958 case ERROR_MARK:
3959 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3960 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3961
3962 case BIND_EXPR:
3963 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3964
3965 default:
3966 return 0;
3967 }
3968 }
3969 \f
3970 /* Give a warning for storing in something that is read-only in GCC
3971 terms but not const in ISO C terms. */
3972
3973 static void
3974 readonly_warning (tree arg, enum lvalue_use use)
3975 {
3976 switch (use)
3977 {
3978 case lv_assign:
3979 warning (0, "assignment of read-only location %qE", arg);
3980 break;
3981 case lv_increment:
3982 warning (0, "increment of read-only location %qE", arg);
3983 break;
3984 case lv_decrement:
3985 warning (0, "decrement of read-only location %qE", arg);
3986 break;
3987 default:
3988 gcc_unreachable ();
3989 }
3990 return;
3991 }
3992
3993
3994 /* Return nonzero if REF is an lvalue valid for this language;
3995 otherwise, print an error message and return zero. USE says
3996 how the lvalue is being used and so selects the error message.
3997 LOCATION is the location at which any error should be reported. */
3998
3999 static int
4000 lvalue_or_else (location_t loc, const_tree ref, enum lvalue_use use)
4001 {
4002 int win = lvalue_p (ref);
4003
4004 if (!win)
4005 lvalue_error (loc, use);
4006
4007 return win;
4008 }
4009 \f
4010 /* Mark EXP saying that we need to be able to take the
4011 address of it; it should not be allocated in a register.
4012 Returns true if successful. */
4013
4014 bool
4015 c_mark_addressable (tree exp)
4016 {
4017 tree x = exp;
4018
4019 while (1)
4020 switch (TREE_CODE (x))
4021 {
4022 case COMPONENT_REF:
4023 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
4024 {
4025 error
4026 ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
4027 return false;
4028 }
4029
4030 /* ... fall through ... */
4031
4032 case ADDR_EXPR:
4033 case ARRAY_REF:
4034 case REALPART_EXPR:
4035 case IMAGPART_EXPR:
4036 x = TREE_OPERAND (x, 0);
4037 break;
4038
4039 case COMPOUND_LITERAL_EXPR:
4040 case CONSTRUCTOR:
4041 TREE_ADDRESSABLE (x) = 1;
4042 return true;
4043
4044 case VAR_DECL:
4045 case CONST_DECL:
4046 case PARM_DECL:
4047 case RESULT_DECL:
4048 if (C_DECL_REGISTER (x)
4049 && DECL_NONLOCAL (x))
4050 {
4051 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
4052 {
4053 error
4054 ("global register variable %qD used in nested function", x);
4055 return false;
4056 }
4057 pedwarn (input_location, 0, "register variable %qD used in nested function", x);
4058 }
4059 else if (C_DECL_REGISTER (x))
4060 {
4061 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
4062 error ("address of global register variable %qD requested", x);
4063 else
4064 error ("address of register variable %qD requested", x);
4065 return false;
4066 }
4067
4068 /* drops in */
4069 case FUNCTION_DECL:
4070 TREE_ADDRESSABLE (x) = 1;
4071 /* drops out */
4072 default:
4073 return true;
4074 }
4075 }
4076 \f
4077 /* Convert EXPR to TYPE, warning about conversion problems with
4078 constants. SEMANTIC_TYPE is the type this conversion would use
4079 without excess precision. If SEMANTIC_TYPE is NULL, this function
4080 is equivalent to convert_and_check. This function is a wrapper that
4081 handles conversions that may be different than
4082 the usual ones because of excess precision. */
4083
4084 static tree
4085 ep_convert_and_check (tree type, tree expr, tree semantic_type)
4086 {
4087 if (TREE_TYPE (expr) == type)
4088 return expr;
4089
4090 if (!semantic_type)
4091 return convert_and_check (type, expr);
4092
4093 if (TREE_CODE (TREE_TYPE (expr)) == INTEGER_TYPE
4094 && TREE_TYPE (expr) != semantic_type)
4095 {
4096 /* For integers, we need to check the real conversion, not
4097 the conversion to the excess precision type. */
4098 expr = convert_and_check (semantic_type, expr);
4099 }
4100 /* Result type is the excess precision type, which should be
4101 large enough, so do not check. */
4102 return convert (type, expr);
4103 }
4104
4105 /* Build and return a conditional expression IFEXP ? OP1 : OP2. If
4106 IFEXP_BCP then the condition is a call to __builtin_constant_p, and
4107 if folded to an integer constant then the unselected half may
4108 contain arbitrary operations not normally permitted in constant
4109 expressions. Set the location of the expression to LOC. */
4110
4111 tree
4112 build_conditional_expr (location_t colon_loc, tree ifexp, bool ifexp_bcp,
4113 tree op1, tree op1_original_type, tree op2,
4114 tree op2_original_type)
4115 {
4116 tree type1;
4117 tree type2;
4118 enum tree_code code1;
4119 enum tree_code code2;
4120 tree result_type = NULL;
4121 tree semantic_result_type = NULL;
4122 tree orig_op1 = op1, orig_op2 = op2;
4123 bool int_const, op1_int_operands, op2_int_operands, int_operands;
4124 bool ifexp_int_operands;
4125 tree ret;
4126
4127 op1_int_operands = EXPR_INT_CONST_OPERANDS (orig_op1);
4128 if (op1_int_operands)
4129 op1 = remove_c_maybe_const_expr (op1);
4130 op2_int_operands = EXPR_INT_CONST_OPERANDS (orig_op2);
4131 if (op2_int_operands)
4132 op2 = remove_c_maybe_const_expr (op2);
4133 ifexp_int_operands = EXPR_INT_CONST_OPERANDS (ifexp);
4134 if (ifexp_int_operands)
4135 ifexp = remove_c_maybe_const_expr (ifexp);
4136
4137 /* Promote both alternatives. */
4138
4139 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
4140 op1 = default_conversion (op1);
4141 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
4142 op2 = default_conversion (op2);
4143
4144 if (TREE_CODE (ifexp) == ERROR_MARK
4145 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
4146 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
4147 return error_mark_node;
4148
4149 type1 = TREE_TYPE (op1);
4150 code1 = TREE_CODE (type1);
4151 type2 = TREE_TYPE (op2);
4152 code2 = TREE_CODE (type2);
4153
4154 /* C90 does not permit non-lvalue arrays in conditional expressions.
4155 In C99 they will be pointers by now. */
4156 if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
4157 {
4158 error_at (colon_loc, "non-lvalue array in conditional expression");
4159 return error_mark_node;
4160 }
4161
4162 if ((TREE_CODE (op1) == EXCESS_PRECISION_EXPR
4163 || TREE_CODE (op2) == EXCESS_PRECISION_EXPR)
4164 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
4165 || code1 == COMPLEX_TYPE)
4166 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
4167 || code2 == COMPLEX_TYPE))
4168 {
4169 semantic_result_type = c_common_type (type1, type2);
4170 if (TREE_CODE (op1) == EXCESS_PRECISION_EXPR)
4171 {
4172 op1 = TREE_OPERAND (op1, 0);
4173 type1 = TREE_TYPE (op1);
4174 gcc_assert (TREE_CODE (type1) == code1);
4175 }
4176 if (TREE_CODE (op2) == EXCESS_PRECISION_EXPR)
4177 {
4178 op2 = TREE_OPERAND (op2, 0);
4179 type2 = TREE_TYPE (op2);
4180 gcc_assert (TREE_CODE (type2) == code2);
4181 }
4182 }
4183
4184 if (warn_cxx_compat)
4185 {
4186 tree t1 = op1_original_type ? op1_original_type : TREE_TYPE (orig_op1);
4187 tree t2 = op2_original_type ? op2_original_type : TREE_TYPE (orig_op2);
4188
4189 if (TREE_CODE (t1) == ENUMERAL_TYPE
4190 && TREE_CODE (t2) == ENUMERAL_TYPE
4191 && TYPE_MAIN_VARIANT (t1) != TYPE_MAIN_VARIANT (t2))
4192 warning_at (colon_loc, OPT_Wc___compat,
4193 ("different enum types in conditional is "
4194 "invalid in C++: %qT vs %qT"),
4195 t1, t2);
4196 }
4197
4198 /* Quickly detect the usual case where op1 and op2 have the same type
4199 after promotion. */
4200 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
4201 {
4202 if (type1 == type2)
4203 result_type = type1;
4204 else
4205 result_type = TYPE_MAIN_VARIANT (type1);
4206 }
4207 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
4208 || code1 == COMPLEX_TYPE)
4209 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
4210 || code2 == COMPLEX_TYPE))
4211 {
4212 result_type = c_common_type (type1, type2);
4213 do_warn_double_promotion (result_type, type1, type2,
4214 "implicit conversion from %qT to %qT to "
4215 "match other result of conditional",
4216 colon_loc);
4217
4218 /* If -Wsign-compare, warn here if type1 and type2 have
4219 different signedness. We'll promote the signed to unsigned
4220 and later code won't know it used to be different.
4221 Do this check on the original types, so that explicit casts
4222 will be considered, but default promotions won't. */
4223 if (c_inhibit_evaluation_warnings == 0)
4224 {
4225 int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
4226 int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
4227
4228 if (unsigned_op1 ^ unsigned_op2)
4229 {
4230 bool ovf;
4231
4232 /* Do not warn if the result type is signed, since the
4233 signed type will only be chosen if it can represent
4234 all the values of the unsigned type. */
4235 if (!TYPE_UNSIGNED (result_type))
4236 /* OK */;
4237 else
4238 {
4239 bool op1_maybe_const = true;
4240 bool op2_maybe_const = true;
4241
4242 /* Do not warn if the signed quantity is an
4243 unsuffixed integer literal (or some static
4244 constant expression involving such literals) and
4245 it is non-negative. This warning requires the
4246 operands to be folded for best results, so do
4247 that folding in this case even without
4248 warn_sign_compare to avoid warning options
4249 possibly affecting code generation. */
4250 c_inhibit_evaluation_warnings
4251 += (ifexp == truthvalue_false_node);
4252 op1 = c_fully_fold (op1, require_constant_value,
4253 &op1_maybe_const);
4254 c_inhibit_evaluation_warnings
4255 -= (ifexp == truthvalue_false_node);
4256
4257 c_inhibit_evaluation_warnings
4258 += (ifexp == truthvalue_true_node);
4259 op2 = c_fully_fold (op2, require_constant_value,
4260 &op2_maybe_const);
4261 c_inhibit_evaluation_warnings
4262 -= (ifexp == truthvalue_true_node);
4263
4264 if (warn_sign_compare)
4265 {
4266 if ((unsigned_op2
4267 && tree_expr_nonnegative_warnv_p (op1, &ovf))
4268 || (unsigned_op1
4269 && tree_expr_nonnegative_warnv_p (op2, &ovf)))
4270 /* OK */;
4271 else
4272 warning_at (colon_loc, OPT_Wsign_compare,
4273 ("signed and unsigned type in "
4274 "conditional expression"));
4275 }
4276 if (!op1_maybe_const || TREE_CODE (op1) != INTEGER_CST)
4277 op1 = c_wrap_maybe_const (op1, !op1_maybe_const);
4278 if (!op2_maybe_const || TREE_CODE (op2) != INTEGER_CST)
4279 op2 = c_wrap_maybe_const (op2, !op2_maybe_const);
4280 }
4281 }
4282 }
4283 }
4284 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
4285 {
4286 if (code1 != VOID_TYPE || code2 != VOID_TYPE)
4287 pedwarn (colon_loc, OPT_pedantic,
4288 "ISO C forbids conditional expr with only one void side");
4289 result_type = void_type_node;
4290 }
4291 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
4292 {
4293 addr_space_t as1 = TYPE_ADDR_SPACE (TREE_TYPE (type1));
4294 addr_space_t as2 = TYPE_ADDR_SPACE (TREE_TYPE (type2));
4295 addr_space_t as_common;
4296
4297 if (comp_target_types (colon_loc, type1, type2))
4298 result_type = common_pointer_type (type1, type2);
4299 else if (null_pointer_constant_p (orig_op1))
4300 result_type = type2;
4301 else if (null_pointer_constant_p (orig_op2))
4302 result_type = type1;
4303 else if (!addr_space_superset (as1, as2, &as_common))
4304 {
4305 error_at (colon_loc, "pointers to disjoint address spaces "
4306 "used in conditional expression");
4307 return error_mark_node;
4308 }
4309 else if (VOID_TYPE_P (TREE_TYPE (type1)))
4310 {
4311 if (TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
4312 pedwarn (colon_loc, OPT_pedantic,
4313 "ISO C forbids conditional expr between "
4314 "%<void *%> and function pointer");
4315 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
4316 TREE_TYPE (type2)));
4317 }
4318 else if (VOID_TYPE_P (TREE_TYPE (type2)))
4319 {
4320 if (TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
4321 pedwarn (colon_loc, OPT_pedantic,
4322 "ISO C forbids conditional expr between "
4323 "%<void *%> and function pointer");
4324 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
4325 TREE_TYPE (type1)));
4326 }
4327 /* Objective-C pointer comparisons are a bit more lenient. */
4328 else if (objc_have_common_type (type1, type2, -3, NULL_TREE))
4329 result_type = objc_common_type (type1, type2);
4330 else
4331 {
4332 int qual = ENCODE_QUAL_ADDR_SPACE (as_common);
4333
4334 pedwarn (colon_loc, 0,
4335 "pointer type mismatch in conditional expression");
4336 result_type = build_pointer_type
4337 (build_qualified_type (void_type_node, qual));
4338 }
4339 }
4340 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
4341 {
4342 if (!null_pointer_constant_p (orig_op2))
4343 pedwarn (colon_loc, 0,
4344 "pointer/integer type mismatch in conditional expression");
4345 else
4346 {
4347 op2 = null_pointer_node;
4348 }
4349 result_type = type1;
4350 }
4351 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
4352 {
4353 if (!null_pointer_constant_p (orig_op1))
4354 pedwarn (colon_loc, 0,
4355 "pointer/integer type mismatch in conditional expression");
4356 else
4357 {
4358 op1 = null_pointer_node;
4359 }
4360 result_type = type2;
4361 }
4362
4363 if (!result_type)
4364 {
4365 if (flag_cond_mismatch)
4366 result_type = void_type_node;
4367 else
4368 {
4369 error_at (colon_loc, "type mismatch in conditional expression");
4370 return error_mark_node;
4371 }
4372 }
4373
4374 /* Merge const and volatile flags of the incoming types. */
4375 result_type
4376 = build_type_variant (result_type,
4377 TYPE_READONLY (type1) || TYPE_READONLY (type2),
4378 TYPE_VOLATILE (type1) || TYPE_VOLATILE (type2));
4379
4380 op1 = ep_convert_and_check (result_type, op1, semantic_result_type);
4381 op2 = ep_convert_and_check (result_type, op2, semantic_result_type);
4382
4383 if (ifexp_bcp && ifexp == truthvalue_true_node)
4384 {
4385 op2_int_operands = true;
4386 op1 = c_fully_fold (op1, require_constant_value, NULL);
4387 }
4388 if (ifexp_bcp && ifexp == truthvalue_false_node)
4389 {
4390 op1_int_operands = true;
4391 op2 = c_fully_fold (op2, require_constant_value, NULL);
4392 }
4393 int_const = int_operands = (ifexp_int_operands
4394 && op1_int_operands
4395 && op2_int_operands);
4396 if (int_operands)
4397 {
4398 int_const = ((ifexp == truthvalue_true_node
4399 && TREE_CODE (orig_op1) == INTEGER_CST
4400 && !TREE_OVERFLOW (orig_op1))
4401 || (ifexp == truthvalue_false_node
4402 && TREE_CODE (orig_op2) == INTEGER_CST
4403 && !TREE_OVERFLOW (orig_op2)));
4404 }
4405 if (int_const || (ifexp_bcp && TREE_CODE (ifexp) == INTEGER_CST))
4406 ret = fold_build3_loc (colon_loc, COND_EXPR, result_type, ifexp, op1, op2);
4407 else
4408 {
4409 ret = build3 (COND_EXPR, result_type, ifexp, op1, op2);
4410 if (int_operands)
4411 ret = note_integer_operands (ret);
4412 }
4413 if (semantic_result_type)
4414 ret = build1 (EXCESS_PRECISION_EXPR, semantic_result_type, ret);
4415
4416 protected_set_expr_location (ret, colon_loc);
4417 return ret;
4418 }
4419 \f
4420 /* Return a compound expression that performs two expressions and
4421 returns the value of the second of them.
4422
4423 LOC is the location of the COMPOUND_EXPR. */
4424
4425 tree
4426 build_compound_expr (location_t loc, tree expr1, tree expr2)
4427 {
4428 bool expr1_int_operands, expr2_int_operands;
4429 tree eptype = NULL_TREE;
4430 tree ret;
4431
4432 expr1_int_operands = EXPR_INT_CONST_OPERANDS (expr1);
4433 if (expr1_int_operands)
4434 expr1 = remove_c_maybe_const_expr (expr1);
4435 expr2_int_operands = EXPR_INT_CONST_OPERANDS (expr2);
4436 if (expr2_int_operands)
4437 expr2 = remove_c_maybe_const_expr (expr2);
4438
4439 if (TREE_CODE (expr1) == EXCESS_PRECISION_EXPR)
4440 expr1 = TREE_OPERAND (expr1, 0);
4441 if (TREE_CODE (expr2) == EXCESS_PRECISION_EXPR)
4442 {
4443 eptype = TREE_TYPE (expr2);
4444 expr2 = TREE_OPERAND (expr2, 0);
4445 }
4446
4447 if (!TREE_SIDE_EFFECTS (expr1))
4448 {
4449 /* The left-hand operand of a comma expression is like an expression
4450 statement: with -Wunused, we should warn if it doesn't have
4451 any side-effects, unless it was explicitly cast to (void). */
4452 if (warn_unused_value)
4453 {
4454 if (VOID_TYPE_P (TREE_TYPE (expr1))
4455 && CONVERT_EXPR_P (expr1))
4456 ; /* (void) a, b */
4457 else if (VOID_TYPE_P (TREE_TYPE (expr1))
4458 && TREE_CODE (expr1) == COMPOUND_EXPR
4459 && CONVERT_EXPR_P (TREE_OPERAND (expr1, 1)))
4460 ; /* (void) a, (void) b, c */
4461 else
4462 warning_at (loc, OPT_Wunused_value,
4463 "left-hand operand of comma expression has no effect");
4464 }
4465 }
4466
4467 /* With -Wunused, we should also warn if the left-hand operand does have
4468 side-effects, but computes a value which is not used. For example, in
4469 `foo() + bar(), baz()' the result of the `+' operator is not used,
4470 so we should issue a warning. */
4471 else if (warn_unused_value)
4472 warn_if_unused_value (expr1, loc);
4473
4474 if (expr2 == error_mark_node)
4475 return error_mark_node;
4476
4477 ret = build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
4478
4479 if (flag_isoc99
4480 && expr1_int_operands
4481 && expr2_int_operands)
4482 ret = note_integer_operands (ret);
4483
4484 if (eptype)
4485 ret = build1 (EXCESS_PRECISION_EXPR, eptype, ret);
4486
4487 protected_set_expr_location (ret, loc);
4488 return ret;
4489 }
4490
4491 /* Issue -Wcast-qual warnings when appropriate. TYPE is the type to
4492 which we are casting. OTYPE is the type of the expression being
4493 cast. Both TYPE and OTYPE are pointer types. LOC is the location
4494 of the cast. -Wcast-qual appeared on the command line. Named
4495 address space qualifiers are not handled here, because they result
4496 in different warnings. */
4497
4498 static void
4499 handle_warn_cast_qual (location_t loc, tree type, tree otype)
4500 {
4501 tree in_type = type;
4502 tree in_otype = otype;
4503 int added = 0;
4504 int discarded = 0;
4505 bool is_const;
4506
4507 /* Check that the qualifiers on IN_TYPE are a superset of the
4508 qualifiers of IN_OTYPE. The outermost level of POINTER_TYPE
4509 nodes is uninteresting and we stop as soon as we hit a
4510 non-POINTER_TYPE node on either type. */
4511 do
4512 {
4513 in_otype = TREE_TYPE (in_otype);
4514 in_type = TREE_TYPE (in_type);
4515
4516 /* GNU C allows cv-qualified function types. 'const' means the
4517 function is very pure, 'volatile' means it can't return. We
4518 need to warn when such qualifiers are added, not when they're
4519 taken away. */
4520 if (TREE_CODE (in_otype) == FUNCTION_TYPE
4521 && TREE_CODE (in_type) == FUNCTION_TYPE)
4522 added |= (TYPE_QUALS_NO_ADDR_SPACE (in_type)
4523 & ~TYPE_QUALS_NO_ADDR_SPACE (in_otype));
4524 else
4525 discarded |= (TYPE_QUALS_NO_ADDR_SPACE (in_otype)
4526 & ~TYPE_QUALS_NO_ADDR_SPACE (in_type));
4527 }
4528 while (TREE_CODE (in_type) == POINTER_TYPE
4529 && TREE_CODE (in_otype) == POINTER_TYPE);
4530
4531 if (added)
4532 warning_at (loc, OPT_Wcast_qual,
4533 "cast adds %q#v qualifier to function type", added);
4534
4535 if (discarded)
4536 /* There are qualifiers present in IN_OTYPE that are not present
4537 in IN_TYPE. */
4538 warning_at (loc, OPT_Wcast_qual,
4539 "cast discards %q#v qualifier from pointer target type",
4540 discarded);
4541
4542 if (added || discarded)
4543 return;
4544
4545 /* A cast from **T to const **T is unsafe, because it can cause a
4546 const value to be changed with no additional warning. We only
4547 issue this warning if T is the same on both sides, and we only
4548 issue the warning if there are the same number of pointers on
4549 both sides, as otherwise the cast is clearly unsafe anyhow. A
4550 cast is unsafe when a qualifier is added at one level and const
4551 is not present at all outer levels.
4552
4553 To issue this warning, we check at each level whether the cast
4554 adds new qualifiers not already seen. We don't need to special
4555 case function types, as they won't have the same
4556 TYPE_MAIN_VARIANT. */
4557
4558 if (TYPE_MAIN_VARIANT (in_type) != TYPE_MAIN_VARIANT (in_otype))
4559 return;
4560 if (TREE_CODE (TREE_TYPE (type)) != POINTER_TYPE)
4561 return;
4562
4563 in_type = type;
4564 in_otype = otype;
4565 is_const = TYPE_READONLY (TREE_TYPE (in_type));
4566 do
4567 {
4568 in_type = TREE_TYPE (in_type);
4569 in_otype = TREE_TYPE (in_otype);
4570 if ((TYPE_QUALS (in_type) &~ TYPE_QUALS (in_otype)) != 0
4571 && !is_const)
4572 {
4573 warning_at (loc, OPT_Wcast_qual,
4574 "to be safe all intermediate pointers in cast from "
4575 "%qT to %qT must be %<const%> qualified",
4576 otype, type);
4577 break;
4578 }
4579 if (is_const)
4580 is_const = TYPE_READONLY (in_type);
4581 }
4582 while (TREE_CODE (in_type) == POINTER_TYPE);
4583 }
4584
4585 /* Build an expression representing a cast to type TYPE of expression EXPR.
4586 LOC is the location of the cast-- typically the open paren of the cast. */
4587
4588 tree
4589 build_c_cast (location_t loc, tree type, tree expr)
4590 {
4591 tree value;
4592
4593 if (TREE_CODE (expr) == EXCESS_PRECISION_EXPR)
4594 expr = TREE_OPERAND (expr, 0);
4595
4596 value = expr;
4597
4598 if (type == error_mark_node || expr == error_mark_node)
4599 return error_mark_node;
4600
4601 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
4602 only in <protocol> qualifications. But when constructing cast expressions,
4603 the protocols do matter and must be kept around. */
4604 if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
4605 return build1 (NOP_EXPR, type, expr);
4606
4607 type = TYPE_MAIN_VARIANT (type);
4608
4609 if (TREE_CODE (type) == ARRAY_TYPE)
4610 {
4611 error_at (loc, "cast specifies array type");
4612 return error_mark_node;
4613 }
4614
4615 if (TREE_CODE (type) == FUNCTION_TYPE)
4616 {
4617 error_at (loc, "cast specifies function type");
4618 return error_mark_node;
4619 }
4620
4621 if (!VOID_TYPE_P (type))
4622 {
4623 value = require_complete_type (value);
4624 if (value == error_mark_node)
4625 return error_mark_node;
4626 }
4627
4628 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
4629 {
4630 if (TREE_CODE (type) == RECORD_TYPE
4631 || TREE_CODE (type) == UNION_TYPE)
4632 pedwarn (loc, OPT_pedantic,
4633 "ISO C forbids casting nonscalar to the same type");
4634 }
4635 else if (TREE_CODE (type) == UNION_TYPE)
4636 {
4637 tree field;
4638
4639 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
4640 if (TREE_TYPE (field) != error_mark_node
4641 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
4642 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
4643 break;
4644
4645 if (field)
4646 {
4647 tree t;
4648 bool maybe_const = true;
4649
4650 pedwarn (loc, OPT_pedantic, "ISO C forbids casts to union type");
4651 t = c_fully_fold (value, false, &maybe_const);
4652 t = build_constructor_single (type, field, t);
4653 if (!maybe_const)
4654 t = c_wrap_maybe_const (t, true);
4655 t = digest_init (loc, type, t,
4656 NULL_TREE, false, true, 0);
4657 TREE_CONSTANT (t) = TREE_CONSTANT (value);
4658 return t;
4659 }
4660 error_at (loc, "cast to union type from type not present in union");
4661 return error_mark_node;
4662 }
4663 else
4664 {
4665 tree otype, ovalue;
4666
4667 if (type == void_type_node)
4668 {
4669 tree t = build1 (CONVERT_EXPR, type, value);
4670 SET_EXPR_LOCATION (t, loc);
4671 return t;
4672 }
4673
4674 otype = TREE_TYPE (value);
4675
4676 /* Optionally warn about potentially worrisome casts. */
4677 if (warn_cast_qual
4678 && TREE_CODE (type) == POINTER_TYPE
4679 && TREE_CODE (otype) == POINTER_TYPE)
4680 handle_warn_cast_qual (loc, type, otype);
4681
4682 /* Warn about conversions between pointers to disjoint
4683 address spaces. */
4684 if (TREE_CODE (type) == POINTER_TYPE
4685 && TREE_CODE (otype) == POINTER_TYPE
4686 && !null_pointer_constant_p (value))
4687 {
4688 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
4689 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (otype));
4690 addr_space_t as_common;
4691
4692 if (!addr_space_superset (as_to, as_from, &as_common))
4693 {
4694 if (ADDR_SPACE_GENERIC_P (as_from))
4695 warning_at (loc, 0, "cast to %s address space pointer "
4696 "from disjoint generic address space pointer",
4697 c_addr_space_name (as_to));
4698
4699 else if (ADDR_SPACE_GENERIC_P (as_to))
4700 warning_at (loc, 0, "cast to generic address space pointer "
4701 "from disjoint %s address space pointer",
4702 c_addr_space_name (as_from));
4703
4704 else
4705 warning_at (loc, 0, "cast to %s address space pointer "
4706 "from disjoint %s address space pointer",
4707 c_addr_space_name (as_to),
4708 c_addr_space_name (as_from));
4709 }
4710 }
4711
4712 /* Warn about possible alignment problems. */
4713 if (STRICT_ALIGNMENT
4714 && TREE_CODE (type) == POINTER_TYPE
4715 && TREE_CODE (otype) == POINTER_TYPE
4716 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
4717 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
4718 /* Don't warn about opaque types, where the actual alignment
4719 restriction is unknown. */
4720 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
4721 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
4722 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
4723 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
4724 warning_at (loc, OPT_Wcast_align,
4725 "cast increases required alignment of target type");
4726
4727 if (TREE_CODE (type) == INTEGER_TYPE
4728 && TREE_CODE (otype) == POINTER_TYPE
4729 && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
4730 /* Unlike conversion of integers to pointers, where the
4731 warning is disabled for converting constants because
4732 of cases such as SIG_*, warn about converting constant
4733 pointers to integers. In some cases it may cause unwanted
4734 sign extension, and a warning is appropriate. */
4735 warning_at (loc, OPT_Wpointer_to_int_cast,
4736 "cast from pointer to integer of different size");
4737
4738 if (TREE_CODE (value) == CALL_EXPR
4739 && TREE_CODE (type) != TREE_CODE (otype))
4740 warning_at (loc, OPT_Wbad_function_cast,
4741 "cast from function call of type %qT "
4742 "to non-matching type %qT", otype, type);
4743
4744 if (TREE_CODE (type) == POINTER_TYPE
4745 && TREE_CODE (otype) == INTEGER_TYPE
4746 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
4747 /* Don't warn about converting any constant. */
4748 && !TREE_CONSTANT (value))
4749 warning_at (loc,
4750 OPT_Wint_to_pointer_cast, "cast to pointer from integer "
4751 "of different size");
4752
4753 if (warn_strict_aliasing <= 2)
4754 strict_aliasing_warning (otype, type, expr);
4755
4756 /* If pedantic, warn for conversions between function and object
4757 pointer types, except for converting a null pointer constant
4758 to function pointer type. */
4759 if (pedantic
4760 && TREE_CODE (type) == POINTER_TYPE
4761 && TREE_CODE (otype) == POINTER_TYPE
4762 && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
4763 && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
4764 pedwarn (loc, OPT_pedantic, "ISO C forbids "
4765 "conversion of function pointer to object pointer type");
4766
4767 if (pedantic
4768 && TREE_CODE (type) == POINTER_TYPE
4769 && TREE_CODE (otype) == POINTER_TYPE
4770 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
4771 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
4772 && !null_pointer_constant_p (value))
4773 pedwarn (loc, OPT_pedantic, "ISO C forbids "
4774 "conversion of object pointer to function pointer type");
4775
4776 ovalue = value;
4777 value = convert (type, value);
4778
4779 /* Ignore any integer overflow caused by the cast. */
4780 if (TREE_CODE (value) == INTEGER_CST && !FLOAT_TYPE_P (otype))
4781 {
4782 if (CONSTANT_CLASS_P (ovalue) && TREE_OVERFLOW (ovalue))
4783 {
4784 if (!TREE_OVERFLOW (value))
4785 {
4786 /* Avoid clobbering a shared constant. */
4787 value = copy_node (value);
4788 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
4789 }
4790 }
4791 else if (TREE_OVERFLOW (value))
4792 /* Reset VALUE's overflow flags, ensuring constant sharing. */
4793 value = build_int_cst_wide (TREE_TYPE (value),
4794 TREE_INT_CST_LOW (value),
4795 TREE_INT_CST_HIGH (value));
4796 }
4797 }
4798
4799 /* Don't let a cast be an lvalue. */
4800 if (value == expr)
4801 value = non_lvalue_loc (loc, value);
4802
4803 /* Don't allow the results of casting to floating-point or complex
4804 types be confused with actual constants, or casts involving
4805 integer and pointer types other than direct integer-to-integer
4806 and integer-to-pointer be confused with integer constant
4807 expressions and null pointer constants. */
4808 if (TREE_CODE (value) == REAL_CST
4809 || TREE_CODE (value) == COMPLEX_CST
4810 || (TREE_CODE (value) == INTEGER_CST
4811 && !((TREE_CODE (expr) == INTEGER_CST
4812 && INTEGRAL_TYPE_P (TREE_TYPE (expr)))
4813 || TREE_CODE (expr) == REAL_CST
4814 || TREE_CODE (expr) == COMPLEX_CST)))
4815 value = build1 (NOP_EXPR, type, value);
4816
4817 if (CAN_HAVE_LOCATION_P (value))
4818 SET_EXPR_LOCATION (value, loc);
4819 return value;
4820 }
4821
4822 /* Interpret a cast of expression EXPR to type TYPE. LOC is the
4823 location of the open paren of the cast, or the position of the cast
4824 expr. */
4825 tree
4826 c_cast_expr (location_t loc, struct c_type_name *type_name, tree expr)
4827 {
4828 tree type;
4829 tree type_expr = NULL_TREE;
4830 bool type_expr_const = true;
4831 tree ret;
4832 int saved_wsp = warn_strict_prototypes;
4833
4834 /* This avoids warnings about unprototyped casts on
4835 integers. E.g. "#define SIG_DFL (void(*)())0". */
4836 if (TREE_CODE (expr) == INTEGER_CST)
4837 warn_strict_prototypes = 0;
4838 type = groktypename (type_name, &type_expr, &type_expr_const);
4839 warn_strict_prototypes = saved_wsp;
4840
4841 ret = build_c_cast (loc, type, expr);
4842 if (type_expr)
4843 {
4844 ret = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (ret), type_expr, ret);
4845 C_MAYBE_CONST_EXPR_NON_CONST (ret) = !type_expr_const;
4846 SET_EXPR_LOCATION (ret, loc);
4847 }
4848
4849 if (CAN_HAVE_LOCATION_P (ret) && !EXPR_HAS_LOCATION (ret))
4850 SET_EXPR_LOCATION (ret, loc);
4851
4852 /* C++ does not permits types to be defined in a cast, but it
4853 allows references to incomplete types. */
4854 if (warn_cxx_compat && type_name->specs->typespec_kind == ctsk_tagdef)
4855 warning_at (loc, OPT_Wc___compat,
4856 "defining a type in a cast is invalid in C++");
4857
4858 return ret;
4859 }
4860 \f
4861 /* Build an assignment expression of lvalue LHS from value RHS.
4862 If LHS_ORIGTYPE is not NULL, it is the original type of LHS, which
4863 may differ from TREE_TYPE (LHS) for an enum bitfield.
4864 MODIFYCODE is the code for a binary operator that we use
4865 to combine the old value of LHS with RHS to get the new value.
4866 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.
4867 If RHS_ORIGTYPE is not NULL_TREE, it is the original type of RHS,
4868 which may differ from TREE_TYPE (RHS) for an enum value.
4869
4870 LOCATION is the location of the MODIFYCODE operator.
4871 RHS_LOC is the location of the RHS. */
4872
4873 tree
4874 build_modify_expr (location_t location, tree lhs, tree lhs_origtype,
4875 enum tree_code modifycode,
4876 location_t rhs_loc, tree rhs, tree rhs_origtype)
4877 {
4878 tree result;
4879 tree newrhs;
4880 tree rhs_semantic_type = NULL_TREE;
4881 tree lhstype = TREE_TYPE (lhs);
4882 tree olhstype = lhstype;
4883 bool npc;
4884
4885 /* Types that aren't fully specified cannot be used in assignments. */
4886 lhs = require_complete_type (lhs);
4887
4888 /* Avoid duplicate error messages from operands that had errors. */
4889 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
4890 return error_mark_node;
4891
4892 /* For ObjC properties, defer this check. */
4893 if (!objc_is_property_ref (lhs) && !lvalue_or_else (location, lhs, lv_assign))
4894 return error_mark_node;
4895
4896 if (TREE_CODE (rhs) == EXCESS_PRECISION_EXPR)
4897 {
4898 rhs_semantic_type = TREE_TYPE (rhs);
4899 rhs = TREE_OPERAND (rhs, 0);
4900 }
4901
4902 newrhs = rhs;
4903
4904 if (TREE_CODE (lhs) == C_MAYBE_CONST_EXPR)
4905 {
4906 tree inner = build_modify_expr (location, C_MAYBE_CONST_EXPR_EXPR (lhs),
4907 lhs_origtype, modifycode, rhs_loc, rhs,
4908 rhs_origtype);
4909 if (inner == error_mark_node)
4910 return error_mark_node;
4911 result = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (inner),
4912 C_MAYBE_CONST_EXPR_PRE (lhs), inner);
4913 gcc_assert (!C_MAYBE_CONST_EXPR_INT_OPERANDS (lhs));
4914 C_MAYBE_CONST_EXPR_NON_CONST (result) = 1;
4915 protected_set_expr_location (result, location);
4916 return result;
4917 }
4918
4919 /* If a binary op has been requested, combine the old LHS value with the RHS
4920 producing the value we should actually store into the LHS. */
4921
4922 if (modifycode != NOP_EXPR)
4923 {
4924 lhs = c_fully_fold (lhs, false, NULL);
4925 lhs = stabilize_reference (lhs);
4926 newrhs = build_binary_op (location,
4927 modifycode, lhs, rhs, 1);
4928
4929 /* The original type of the right hand side is no longer
4930 meaningful. */
4931 rhs_origtype = NULL_TREE;
4932 }
4933
4934 if (c_dialect_objc ())
4935 {
4936 /* Check if we are modifying an Objective-C property reference;
4937 if so, we need to generate setter calls. */
4938 result = objc_maybe_build_modify_expr (lhs, newrhs);
4939 if (result)
4940 return result;
4941
4942 /* Else, do the check that we postponed for Objective-C. */
4943 if (!lvalue_or_else (location, lhs, lv_assign))
4944 return error_mark_node;
4945 }
4946
4947 /* Give an error for storing in something that is 'const'. */
4948
4949 if (TYPE_READONLY (lhstype)
4950 || ((TREE_CODE (lhstype) == RECORD_TYPE
4951 || TREE_CODE (lhstype) == UNION_TYPE)
4952 && C_TYPE_FIELDS_READONLY (lhstype)))
4953 {
4954 readonly_error (lhs, lv_assign);
4955 return error_mark_node;
4956 }
4957 else if (TREE_READONLY (lhs))
4958 readonly_warning (lhs, lv_assign);
4959
4960 /* If storing into a structure or union member,
4961 it has probably been given type `int'.
4962 Compute the type that would go with
4963 the actual amount of storage the member occupies. */
4964
4965 if (TREE_CODE (lhs) == COMPONENT_REF
4966 && (TREE_CODE (lhstype) == INTEGER_TYPE
4967 || TREE_CODE (lhstype) == BOOLEAN_TYPE
4968 || TREE_CODE (lhstype) == REAL_TYPE
4969 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
4970 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
4971
4972 /* If storing in a field that is in actuality a short or narrower than one,
4973 we must store in the field in its actual type. */
4974
4975 if (lhstype != TREE_TYPE (lhs))
4976 {
4977 lhs = copy_node (lhs);
4978 TREE_TYPE (lhs) = lhstype;
4979 }
4980
4981 /* Issue -Wc++-compat warnings about an assignment to an enum type
4982 when LHS does not have its original type. This happens for,
4983 e.g., an enum bitfield in a struct. */
4984 if (warn_cxx_compat
4985 && lhs_origtype != NULL_TREE
4986 && lhs_origtype != lhstype
4987 && TREE_CODE (lhs_origtype) == ENUMERAL_TYPE)
4988 {
4989 tree checktype = (rhs_origtype != NULL_TREE
4990 ? rhs_origtype
4991 : TREE_TYPE (rhs));
4992 if (checktype != error_mark_node
4993 && TYPE_MAIN_VARIANT (checktype) != TYPE_MAIN_VARIANT (lhs_origtype))
4994 warning_at (location, OPT_Wc___compat,
4995 "enum conversion in assignment is invalid in C++");
4996 }
4997
4998 /* Convert new value to destination type. Fold it first, then
4999 restore any excess precision information, for the sake of
5000 conversion warnings. */
5001
5002 npc = null_pointer_constant_p (newrhs);
5003 newrhs = c_fully_fold (newrhs, false, NULL);
5004 if (rhs_semantic_type)
5005 newrhs = build1 (EXCESS_PRECISION_EXPR, rhs_semantic_type, newrhs);
5006 newrhs = convert_for_assignment (location, lhstype, newrhs, rhs_origtype,
5007 ic_assign, npc, NULL_TREE, NULL_TREE, 0);
5008 if (TREE_CODE (newrhs) == ERROR_MARK)
5009 return error_mark_node;
5010
5011 /* Emit ObjC write barrier, if necessary. */
5012 if (c_dialect_objc () && flag_objc_gc)
5013 {
5014 result = objc_generate_write_barrier (lhs, modifycode, newrhs);
5015 if (result)
5016 {
5017 protected_set_expr_location (result, location);
5018 return result;
5019 }
5020 }
5021
5022 /* Scan operands. */
5023
5024 result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
5025 TREE_SIDE_EFFECTS (result) = 1;
5026 protected_set_expr_location (result, location);
5027
5028 /* If we got the LHS in a different type for storing in,
5029 convert the result back to the nominal type of LHS
5030 so that the value we return always has the same type
5031 as the LHS argument. */
5032
5033 if (olhstype == TREE_TYPE (result))
5034 return result;
5035
5036 result = convert_for_assignment (location, olhstype, result, rhs_origtype,
5037 ic_assign, false, NULL_TREE, NULL_TREE, 0);
5038 protected_set_expr_location (result, location);
5039 return result;
5040 }
5041 \f
5042 /* Return whether STRUCT_TYPE has an anonymous field with type TYPE.
5043 This is used to implement -fplan9-extensions. */
5044
5045 static bool
5046 find_anonymous_field_with_type (tree struct_type, tree type)
5047 {
5048 tree field;
5049 bool found;
5050
5051 gcc_assert (TREE_CODE (struct_type) == RECORD_TYPE
5052 || TREE_CODE (struct_type) == UNION_TYPE);
5053 found = false;
5054 for (field = TYPE_FIELDS (struct_type);
5055 field != NULL_TREE;
5056 field = TREE_CHAIN (field))
5057 {
5058 if (DECL_NAME (field) == NULL
5059 && comptypes (type, TYPE_MAIN_VARIANT (TREE_TYPE (field))))
5060 {
5061 if (found)
5062 return false;
5063 found = true;
5064 }
5065 else if (DECL_NAME (field) == NULL
5066 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
5067 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
5068 && find_anonymous_field_with_type (TREE_TYPE (field), type))
5069 {
5070 if (found)
5071 return false;
5072 found = true;
5073 }
5074 }
5075 return found;
5076 }
5077
5078 /* RHS is an expression whose type is pointer to struct. If there is
5079 an anonymous field in RHS with type TYPE, then return a pointer to
5080 that field in RHS. This is used with -fplan9-extensions. This
5081 returns NULL if no conversion could be found. */
5082
5083 static tree
5084 convert_to_anonymous_field (location_t location, tree type, tree rhs)
5085 {
5086 tree rhs_struct_type, lhs_main_type;
5087 tree field, found_field;
5088 bool found_sub_field;
5089 tree ret;
5090
5091 gcc_assert (POINTER_TYPE_P (TREE_TYPE (rhs)));
5092 rhs_struct_type = TREE_TYPE (TREE_TYPE (rhs));
5093 gcc_assert (TREE_CODE (rhs_struct_type) == RECORD_TYPE
5094 || TREE_CODE (rhs_struct_type) == UNION_TYPE);
5095
5096 gcc_assert (POINTER_TYPE_P (type));
5097 lhs_main_type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
5098
5099 found_field = NULL_TREE;
5100 found_sub_field = false;
5101 for (field = TYPE_FIELDS (rhs_struct_type);
5102 field != NULL_TREE;
5103 field = TREE_CHAIN (field))
5104 {
5105 if (DECL_NAME (field) != NULL_TREE
5106 || (TREE_CODE (TREE_TYPE (field)) != RECORD_TYPE
5107 && TREE_CODE (TREE_TYPE (field)) != UNION_TYPE))
5108 continue;
5109 if (comptypes (lhs_main_type, TYPE_MAIN_VARIANT (TREE_TYPE (field))))
5110 {
5111 if (found_field != NULL_TREE)
5112 return NULL_TREE;
5113 found_field = field;
5114 }
5115 else if (find_anonymous_field_with_type (TREE_TYPE (field),
5116 lhs_main_type))
5117 {
5118 if (found_field != NULL_TREE)
5119 return NULL_TREE;
5120 found_field = field;
5121 found_sub_field = true;
5122 }
5123 }
5124
5125 if (found_field == NULL_TREE)
5126 return NULL_TREE;
5127
5128 ret = fold_build3_loc (location, COMPONENT_REF, TREE_TYPE (found_field),
5129 build_fold_indirect_ref (rhs), found_field,
5130 NULL_TREE);
5131 ret = build_fold_addr_expr_loc (location, ret);
5132
5133 if (found_sub_field)
5134 {
5135 ret = convert_to_anonymous_field (location, type, ret);
5136 gcc_assert (ret != NULL_TREE);
5137 }
5138
5139 return ret;
5140 }
5141
5142 /* Convert value RHS to type TYPE as preparation for an assignment to
5143 an lvalue of type TYPE. If ORIGTYPE is not NULL_TREE, it is the
5144 original type of RHS; this differs from TREE_TYPE (RHS) for enum
5145 types. NULL_POINTER_CONSTANT says whether RHS was a null pointer
5146 constant before any folding.
5147 The real work of conversion is done by `convert'.
5148 The purpose of this function is to generate error messages
5149 for assignments that are not allowed in C.
5150 ERRTYPE says whether it is argument passing, assignment,
5151 initialization or return.
5152
5153 LOCATION is the location of the RHS.
5154 FUNCTION is a tree for the function being called.
5155 PARMNUM is the number of the argument, for printing in error messages. */
5156
5157 static tree
5158 convert_for_assignment (location_t location, tree type, tree rhs,
5159 tree origtype, enum impl_conv errtype,
5160 bool null_pointer_constant, tree fundecl,
5161 tree function, int parmnum)
5162 {
5163 enum tree_code codel = TREE_CODE (type);
5164 tree orig_rhs = rhs;
5165 tree rhstype;
5166 enum tree_code coder;
5167 tree rname = NULL_TREE;
5168 bool objc_ok = false;
5169
5170 if (errtype == ic_argpass)
5171 {
5172 tree selector;
5173 /* Change pointer to function to the function itself for
5174 diagnostics. */
5175 if (TREE_CODE (function) == ADDR_EXPR
5176 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
5177 function = TREE_OPERAND (function, 0);
5178
5179 /* Handle an ObjC selector specially for diagnostics. */
5180 selector = objc_message_selector ();
5181 rname = function;
5182 if (selector && parmnum > 2)
5183 {
5184 rname = selector;
5185 parmnum -= 2;
5186 }
5187 }
5188
5189 /* This macro is used to emit diagnostics to ensure that all format
5190 strings are complete sentences, visible to gettext and checked at
5191 compile time. */
5192 #define WARN_FOR_ASSIGNMENT(LOCATION, OPT, AR, AS, IN, RE) \
5193 do { \
5194 switch (errtype) \
5195 { \
5196 case ic_argpass: \
5197 if (pedwarn (LOCATION, OPT, AR, parmnum, rname)) \
5198 inform ((fundecl && !DECL_IS_BUILTIN (fundecl)) \
5199 ? DECL_SOURCE_LOCATION (fundecl) : LOCATION, \
5200 "expected %qT but argument is of type %qT", \
5201 type, rhstype); \
5202 break; \
5203 case ic_assign: \
5204 pedwarn (LOCATION, OPT, AS); \
5205 break; \
5206 case ic_init: \
5207 pedwarn_init (LOCATION, OPT, IN); \
5208 break; \
5209 case ic_return: \
5210 pedwarn (LOCATION, OPT, RE); \
5211 break; \
5212 default: \
5213 gcc_unreachable (); \
5214 } \
5215 } while (0)
5216
5217 /* This macro is used to emit diagnostics to ensure that all format
5218 strings are complete sentences, visible to gettext and checked at
5219 compile time. It is the same as WARN_FOR_ASSIGNMENT but with an
5220 extra parameter to enumerate qualifiers. */
5221
5222 #define WARN_FOR_QUALIFIERS(LOCATION, OPT, AR, AS, IN, RE, QUALS) \
5223 do { \
5224 switch (errtype) \
5225 { \
5226 case ic_argpass: \
5227 if (pedwarn (LOCATION, OPT, AR, parmnum, rname, QUALS)) \
5228 inform ((fundecl && !DECL_IS_BUILTIN (fundecl)) \
5229 ? DECL_SOURCE_LOCATION (fundecl) : LOCATION, \
5230 "expected %qT but argument is of type %qT", \
5231 type, rhstype); \
5232 break; \
5233 case ic_assign: \
5234 pedwarn (LOCATION, OPT, AS, QUALS); \
5235 break; \
5236 case ic_init: \
5237 pedwarn (LOCATION, OPT, IN, QUALS); \
5238 break; \
5239 case ic_return: \
5240 pedwarn (LOCATION, OPT, RE, QUALS); \
5241 break; \
5242 default: \
5243 gcc_unreachable (); \
5244 } \
5245 } while (0)
5246
5247 if (TREE_CODE (rhs) == EXCESS_PRECISION_EXPR)
5248 rhs = TREE_OPERAND (rhs, 0);
5249
5250 rhstype = TREE_TYPE (rhs);
5251 coder = TREE_CODE (rhstype);
5252
5253 if (coder == ERROR_MARK)
5254 return error_mark_node;
5255
5256 if (c_dialect_objc ())
5257 {
5258 int parmno;
5259
5260 switch (errtype)
5261 {
5262 case ic_return:
5263 parmno = 0;
5264 break;
5265
5266 case ic_assign:
5267 parmno = -1;
5268 break;
5269
5270 case ic_init:
5271 parmno = -2;
5272 break;
5273
5274 default:
5275 parmno = parmnum;
5276 break;
5277 }
5278
5279 objc_ok = objc_compare_types (type, rhstype, parmno, rname);
5280 }
5281
5282 if (warn_cxx_compat)
5283 {
5284 tree checktype = origtype != NULL_TREE ? origtype : rhstype;
5285 if (checktype != error_mark_node
5286 && TREE_CODE (type) == ENUMERAL_TYPE
5287 && TYPE_MAIN_VARIANT (checktype) != TYPE_MAIN_VARIANT (type))
5288 {
5289 WARN_FOR_ASSIGNMENT (input_location, OPT_Wc___compat,
5290 G_("enum conversion when passing argument "
5291 "%d of %qE is invalid in C++"),
5292 G_("enum conversion in assignment is "
5293 "invalid in C++"),
5294 G_("enum conversion in initialization is "
5295 "invalid in C++"),
5296 G_("enum conversion in return is "
5297 "invalid in C++"));
5298 }
5299 }
5300
5301 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
5302 return rhs;
5303
5304 if (coder == VOID_TYPE)
5305 {
5306 /* Except for passing an argument to an unprototyped function,
5307 this is a constraint violation. When passing an argument to
5308 an unprototyped function, it is compile-time undefined;
5309 making it a constraint in that case was rejected in
5310 DR#252. */
5311 error_at (location, "void value not ignored as it ought to be");
5312 return error_mark_node;
5313 }
5314 rhs = require_complete_type (rhs);
5315 if (rhs == error_mark_node)
5316 return error_mark_node;
5317 /* A type converts to a reference to it.
5318 This code doesn't fully support references, it's just for the
5319 special case of va_start and va_copy. */
5320 if (codel == REFERENCE_TYPE
5321 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
5322 {
5323 if (!lvalue_p (rhs))
5324 {
5325 error_at (location, "cannot pass rvalue to reference parameter");
5326 return error_mark_node;
5327 }
5328 if (!c_mark_addressable (rhs))
5329 return error_mark_node;
5330 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
5331 SET_EXPR_LOCATION (rhs, location);
5332
5333 /* We already know that these two types are compatible, but they
5334 may not be exactly identical. In fact, `TREE_TYPE (type)' is
5335 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
5336 likely to be va_list, a typedef to __builtin_va_list, which
5337 is different enough that it will cause problems later. */
5338 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
5339 {
5340 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
5341 SET_EXPR_LOCATION (rhs, location);
5342 }
5343
5344 rhs = build1 (NOP_EXPR, type, rhs);
5345 SET_EXPR_LOCATION (rhs, location);
5346 return rhs;
5347 }
5348 /* Some types can interconvert without explicit casts. */
5349 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
5350 && vector_types_convertible_p (type, TREE_TYPE (rhs), true))
5351 return convert (type, rhs);
5352 /* Arithmetic types all interconvert, and enum is treated like int. */
5353 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
5354 || codel == FIXED_POINT_TYPE
5355 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
5356 || codel == BOOLEAN_TYPE)
5357 && (coder == INTEGER_TYPE || coder == REAL_TYPE
5358 || coder == FIXED_POINT_TYPE
5359 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
5360 || coder == BOOLEAN_TYPE))
5361 {
5362 tree ret;
5363 bool save = in_late_binary_op;
5364 if (codel == BOOLEAN_TYPE || codel == COMPLEX_TYPE)
5365 in_late_binary_op = true;
5366 ret = convert_and_check (type, orig_rhs);
5367 if (codel == BOOLEAN_TYPE || codel == COMPLEX_TYPE)
5368 in_late_binary_op = save;
5369 return ret;
5370 }
5371
5372 /* Aggregates in different TUs might need conversion. */
5373 if ((codel == RECORD_TYPE || codel == UNION_TYPE)
5374 && codel == coder
5375 && comptypes (type, rhstype))
5376 return convert_and_check (type, rhs);
5377
5378 /* Conversion to a transparent union or record from its member types.
5379 This applies only to function arguments. */
5380 if (((codel == UNION_TYPE || codel == RECORD_TYPE)
5381 && TYPE_TRANSPARENT_AGGR (type))
5382 && errtype == ic_argpass)
5383 {
5384 tree memb, marginal_memb = NULL_TREE;
5385
5386 for (memb = TYPE_FIELDS (type); memb ; memb = DECL_CHAIN (memb))
5387 {
5388 tree memb_type = TREE_TYPE (memb);
5389
5390 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
5391 TYPE_MAIN_VARIANT (rhstype)))
5392 break;
5393
5394 if (TREE_CODE (memb_type) != POINTER_TYPE)
5395 continue;
5396
5397 if (coder == POINTER_TYPE)
5398 {
5399 tree ttl = TREE_TYPE (memb_type);
5400 tree ttr = TREE_TYPE (rhstype);
5401
5402 /* Any non-function converts to a [const][volatile] void *
5403 and vice versa; otherwise, targets must be the same.
5404 Meanwhile, the lhs target must have all the qualifiers of
5405 the rhs. */
5406 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
5407 || comp_target_types (location, memb_type, rhstype))
5408 {
5409 /* If this type won't generate any warnings, use it. */
5410 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
5411 || ((TREE_CODE (ttr) == FUNCTION_TYPE
5412 && TREE_CODE (ttl) == FUNCTION_TYPE)
5413 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
5414 == TYPE_QUALS (ttr))
5415 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
5416 == TYPE_QUALS (ttl))))
5417 break;
5418
5419 /* Keep looking for a better type, but remember this one. */
5420 if (!marginal_memb)
5421 marginal_memb = memb;
5422 }
5423 }
5424
5425 /* Can convert integer zero to any pointer type. */
5426 if (null_pointer_constant)
5427 {
5428 rhs = null_pointer_node;
5429 break;
5430 }
5431 }
5432
5433 if (memb || marginal_memb)
5434 {
5435 if (!memb)
5436 {
5437 /* We have only a marginally acceptable member type;
5438 it needs a warning. */
5439 tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
5440 tree ttr = TREE_TYPE (rhstype);
5441
5442 /* Const and volatile mean something different for function
5443 types, so the usual warnings are not appropriate. */
5444 if (TREE_CODE (ttr) == FUNCTION_TYPE
5445 && TREE_CODE (ttl) == FUNCTION_TYPE)
5446 {
5447 /* Because const and volatile on functions are
5448 restrictions that say the function will not do
5449 certain things, it is okay to use a const or volatile
5450 function where an ordinary one is wanted, but not
5451 vice-versa. */
5452 if (TYPE_QUALS_NO_ADDR_SPACE (ttl)
5453 & ~TYPE_QUALS_NO_ADDR_SPACE (ttr))
5454 WARN_FOR_QUALIFIERS (location, 0,
5455 G_("passing argument %d of %qE "
5456 "makes %q#v qualified function "
5457 "pointer from unqualified"),
5458 G_("assignment makes %q#v qualified "
5459 "function pointer from "
5460 "unqualified"),
5461 G_("initialization makes %q#v qualified "
5462 "function pointer from "
5463 "unqualified"),
5464 G_("return makes %q#v qualified function "
5465 "pointer from unqualified"),
5466 TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr));
5467 }
5468 else if (TYPE_QUALS_NO_ADDR_SPACE (ttr)
5469 & ~TYPE_QUALS_NO_ADDR_SPACE (ttl))
5470 WARN_FOR_QUALIFIERS (location, 0,
5471 G_("passing argument %d of %qE discards "
5472 "%qv qualifier from pointer target type"),
5473 G_("assignment discards %qv qualifier "
5474 "from pointer target type"),
5475 G_("initialization discards %qv qualifier "
5476 "from pointer target type"),
5477 G_("return discards %qv qualifier from "
5478 "pointer target type"),
5479 TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl));
5480
5481 memb = marginal_memb;
5482 }
5483
5484 if (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl))
5485 pedwarn (location, OPT_pedantic,
5486 "ISO C prohibits argument conversion to union type");
5487
5488 rhs = fold_convert_loc (location, TREE_TYPE (memb), rhs);
5489 return build_constructor_single (type, memb, rhs);
5490 }
5491 }
5492
5493 /* Conversions among pointers */
5494 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
5495 && (coder == codel))
5496 {
5497 tree ttl = TREE_TYPE (type);
5498 tree ttr = TREE_TYPE (rhstype);
5499 tree mvl = ttl;
5500 tree mvr = ttr;
5501 bool is_opaque_pointer;
5502 int target_cmp = 0; /* Cache comp_target_types () result. */
5503 addr_space_t asl;
5504 addr_space_t asr;
5505
5506 if (TREE_CODE (mvl) != ARRAY_TYPE)
5507 mvl = TYPE_MAIN_VARIANT (mvl);
5508 if (TREE_CODE (mvr) != ARRAY_TYPE)
5509 mvr = TYPE_MAIN_VARIANT (mvr);
5510 /* Opaque pointers are treated like void pointers. */
5511 is_opaque_pointer = vector_targets_convertible_p (ttl, ttr);
5512
5513 /* The Plan 9 compiler permits a pointer to a struct to be
5514 automatically converted into a pointer to an anonymous field
5515 within the struct. */
5516 if (flag_plan9_extensions
5517 && (TREE_CODE (mvl) == RECORD_TYPE || TREE_CODE(mvl) == UNION_TYPE)
5518 && (TREE_CODE (mvr) == RECORD_TYPE || TREE_CODE(mvr) == UNION_TYPE)
5519 && mvl != mvr)
5520 {
5521 tree new_rhs = convert_to_anonymous_field (location, type, rhs);
5522 if (new_rhs != NULL_TREE)
5523 {
5524 rhs = new_rhs;
5525 rhstype = TREE_TYPE (rhs);
5526 coder = TREE_CODE (rhstype);
5527 ttr = TREE_TYPE (rhstype);
5528 mvr = TYPE_MAIN_VARIANT (ttr);
5529 }
5530 }
5531
5532 /* C++ does not allow the implicit conversion void* -> T*. However,
5533 for the purpose of reducing the number of false positives, we
5534 tolerate the special case of
5535
5536 int *p = NULL;
5537
5538 where NULL is typically defined in C to be '(void *) 0'. */
5539 if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
5540 warning_at (location, OPT_Wc___compat,
5541 "request for implicit conversion "
5542 "from %qT to %qT not permitted in C++", rhstype, type);
5543
5544 /* See if the pointers point to incompatible address spaces. */
5545 asl = TYPE_ADDR_SPACE (ttl);
5546 asr = TYPE_ADDR_SPACE (ttr);
5547 if (!null_pointer_constant_p (rhs)
5548 && asr != asl && !targetm.addr_space.subset_p (asr, asl))
5549 {
5550 switch (errtype)
5551 {
5552 case ic_argpass:
5553 error_at (location, "passing argument %d of %qE from pointer to "
5554 "non-enclosed address space", parmnum, rname);
5555 break;
5556 case ic_assign:
5557 error_at (location, "assignment from pointer to "
5558 "non-enclosed address space");
5559 break;
5560 case ic_init:
5561 error_at (location, "initialization from pointer to "
5562 "non-enclosed address space");
5563 break;
5564 case ic_return:
5565 error_at (location, "return from pointer to "
5566 "non-enclosed address space");
5567 break;
5568 default:
5569 gcc_unreachable ();
5570 }
5571 return error_mark_node;
5572 }
5573
5574 /* Check if the right-hand side has a format attribute but the
5575 left-hand side doesn't. */
5576 if (warn_missing_format_attribute
5577 && check_missing_format_attribute (type, rhstype))
5578 {
5579 switch (errtype)
5580 {
5581 case ic_argpass:
5582 warning_at (location, OPT_Wmissing_format_attribute,
5583 "argument %d of %qE might be "
5584 "a candidate for a format attribute",
5585 parmnum, rname);
5586 break;
5587 case ic_assign:
5588 warning_at (location, OPT_Wmissing_format_attribute,
5589 "assignment left-hand side might be "
5590 "a candidate for a format attribute");
5591 break;
5592 case ic_init:
5593 warning_at (location, OPT_Wmissing_format_attribute,
5594 "initialization left-hand side might be "
5595 "a candidate for a format attribute");
5596 break;
5597 case ic_return:
5598 warning_at (location, OPT_Wmissing_format_attribute,
5599 "return type might be "
5600 "a candidate for a format attribute");
5601 break;
5602 default:
5603 gcc_unreachable ();
5604 }
5605 }
5606
5607 /* Any non-function converts to a [const][volatile] void *
5608 and vice versa; otherwise, targets must be the same.
5609 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
5610 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
5611 || (target_cmp = comp_target_types (location, type, rhstype))
5612 || is_opaque_pointer
5613 || (c_common_unsigned_type (mvl)
5614 == c_common_unsigned_type (mvr)))
5615 {
5616 if (pedantic
5617 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
5618 ||
5619 (VOID_TYPE_P (ttr)
5620 && !null_pointer_constant
5621 && TREE_CODE (ttl) == FUNCTION_TYPE)))
5622 WARN_FOR_ASSIGNMENT (location, OPT_pedantic,
5623 G_("ISO C forbids passing argument %d of "
5624 "%qE between function pointer "
5625 "and %<void *%>"),
5626 G_("ISO C forbids assignment between "
5627 "function pointer and %<void *%>"),
5628 G_("ISO C forbids initialization between "
5629 "function pointer and %<void *%>"),
5630 G_("ISO C forbids return between function "
5631 "pointer and %<void *%>"));
5632 /* Const and volatile mean something different for function types,
5633 so the usual warnings are not appropriate. */
5634 else if (TREE_CODE (ttr) != FUNCTION_TYPE
5635 && TREE_CODE (ttl) != FUNCTION_TYPE)
5636 {
5637 if (TYPE_QUALS_NO_ADDR_SPACE (ttr)
5638 & ~TYPE_QUALS_NO_ADDR_SPACE (ttl))
5639 {
5640 WARN_FOR_QUALIFIERS (location, 0,
5641 G_("passing argument %d of %qE discards "
5642 "%qv qualifier from pointer target type"),
5643 G_("assignment discards %qv qualifier "
5644 "from pointer target type"),
5645 G_("initialization discards %qv qualifier "
5646 "from pointer target type"),
5647 G_("return discards %qv qualifier from "
5648 "pointer target type"),
5649 TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl));
5650 }
5651 /* If this is not a case of ignoring a mismatch in signedness,
5652 no warning. */
5653 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
5654 || target_cmp)
5655 ;
5656 /* If there is a mismatch, do warn. */
5657 else if (warn_pointer_sign)
5658 WARN_FOR_ASSIGNMENT (location, OPT_Wpointer_sign,
5659 G_("pointer targets in passing argument "
5660 "%d of %qE differ in signedness"),
5661 G_("pointer targets in assignment "
5662 "differ in signedness"),
5663 G_("pointer targets in initialization "
5664 "differ in signedness"),
5665 G_("pointer targets in return differ "
5666 "in signedness"));
5667 }
5668 else if (TREE_CODE (ttl) == FUNCTION_TYPE
5669 && TREE_CODE (ttr) == FUNCTION_TYPE)
5670 {
5671 /* Because const and volatile on functions are restrictions
5672 that say the function will not do certain things,
5673 it is okay to use a const or volatile function
5674 where an ordinary one is wanted, but not vice-versa. */
5675 if (TYPE_QUALS_NO_ADDR_SPACE (ttl)
5676 & ~TYPE_QUALS_NO_ADDR_SPACE (ttr))
5677 WARN_FOR_QUALIFIERS (location, 0,
5678 G_("passing argument %d of %qE makes "
5679 "%q#v qualified function pointer "
5680 "from unqualified"),
5681 G_("assignment makes %q#v qualified function "
5682 "pointer from unqualified"),
5683 G_("initialization makes %q#v qualified "
5684 "function pointer from unqualified"),
5685 G_("return makes %q#v qualified function "
5686 "pointer from unqualified"),
5687 TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr));
5688 }
5689 }
5690 else
5691 /* Avoid warning about the volatile ObjC EH puts on decls. */
5692 if (!objc_ok)
5693 WARN_FOR_ASSIGNMENT (location, 0,
5694 G_("passing argument %d of %qE from "
5695 "incompatible pointer type"),
5696 G_("assignment from incompatible pointer type"),
5697 G_("initialization from incompatible "
5698 "pointer type"),
5699 G_("return from incompatible pointer type"));
5700
5701 return convert (type, rhs);
5702 }
5703 else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
5704 {
5705 /* ??? This should not be an error when inlining calls to
5706 unprototyped functions. */
5707 error_at (location, "invalid use of non-lvalue array");
5708 return error_mark_node;
5709 }
5710 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
5711 {
5712 /* An explicit constant 0 can convert to a pointer,
5713 or one that results from arithmetic, even including
5714 a cast to integer type. */
5715 if (!null_pointer_constant)
5716 WARN_FOR_ASSIGNMENT (location, 0,
5717 G_("passing argument %d of %qE makes "
5718 "pointer from integer without a cast"),
5719 G_("assignment makes pointer from integer "
5720 "without a cast"),
5721 G_("initialization makes pointer from "
5722 "integer without a cast"),
5723 G_("return makes pointer from integer "
5724 "without a cast"));
5725
5726 return convert (type, rhs);
5727 }
5728 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
5729 {
5730 WARN_FOR_ASSIGNMENT (location, 0,
5731 G_("passing argument %d of %qE makes integer "
5732 "from pointer without a cast"),
5733 G_("assignment makes integer from pointer "
5734 "without a cast"),
5735 G_("initialization makes integer from pointer "
5736 "without a cast"),
5737 G_("return makes integer from pointer "
5738 "without a cast"));
5739 return convert (type, rhs);
5740 }
5741 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
5742 {
5743 tree ret;
5744 bool save = in_late_binary_op;
5745 in_late_binary_op = true;
5746 ret = convert (type, rhs);
5747 in_late_binary_op = save;
5748 return ret;
5749 }
5750
5751 switch (errtype)
5752 {
5753 case ic_argpass:
5754 error_at (location, "incompatible type for argument %d of %qE", parmnum, rname);
5755 inform ((fundecl && !DECL_IS_BUILTIN (fundecl))
5756 ? DECL_SOURCE_LOCATION (fundecl) : input_location,
5757 "expected %qT but argument is of type %qT", type, rhstype);
5758 break;
5759 case ic_assign:
5760 error_at (location, "incompatible types when assigning to type %qT from "
5761 "type %qT", type, rhstype);
5762 break;
5763 case ic_init:
5764 error_at (location,
5765 "incompatible types when initializing type %qT using type %qT",
5766 type, rhstype);
5767 break;
5768 case ic_return:
5769 error_at (location,
5770 "incompatible types when returning type %qT but %qT was "
5771 "expected", rhstype, type);
5772 break;
5773 default:
5774 gcc_unreachable ();
5775 }
5776
5777 return error_mark_node;
5778 }
5779 \f
5780 /* If VALUE is a compound expr all of whose expressions are constant, then
5781 return its value. Otherwise, return error_mark_node.
5782
5783 This is for handling COMPOUND_EXPRs as initializer elements
5784 which is allowed with a warning when -pedantic is specified. */
5785
5786 static tree
5787 valid_compound_expr_initializer (tree value, tree endtype)
5788 {
5789 if (TREE_CODE (value) == COMPOUND_EXPR)
5790 {
5791 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
5792 == error_mark_node)
5793 return error_mark_node;
5794 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
5795 endtype);
5796 }
5797 else if (!initializer_constant_valid_p (value, endtype))
5798 return error_mark_node;
5799 else
5800 return value;
5801 }
5802 \f
5803 /* Perform appropriate conversions on the initial value of a variable,
5804 store it in the declaration DECL,
5805 and print any error messages that are appropriate.
5806 If ORIGTYPE is not NULL_TREE, it is the original type of INIT.
5807 If the init is invalid, store an ERROR_MARK.
5808
5809 INIT_LOC is the location of the initial value. */
5810
5811 void
5812 store_init_value (location_t init_loc, tree decl, tree init, tree origtype)
5813 {
5814 tree value, type;
5815 bool npc = false;
5816
5817 /* If variable's type was invalidly declared, just ignore it. */
5818
5819 type = TREE_TYPE (decl);
5820 if (TREE_CODE (type) == ERROR_MARK)
5821 return;
5822
5823 /* Digest the specified initializer into an expression. */
5824
5825 if (init)
5826 npc = null_pointer_constant_p (init);
5827 value = digest_init (init_loc, type, init, origtype, npc,
5828 true, TREE_STATIC (decl));
5829
5830 /* Store the expression if valid; else report error. */
5831
5832 if (!in_system_header
5833 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
5834 warning (OPT_Wtraditional, "traditional C rejects automatic "
5835 "aggregate initialization");
5836
5837 DECL_INITIAL (decl) = value;
5838
5839 /* ANSI wants warnings about out-of-range constant initializers. */
5840 STRIP_TYPE_NOPS (value);
5841 if (TREE_STATIC (decl))
5842 constant_expression_warning (value);
5843
5844 /* Check if we need to set array size from compound literal size. */
5845 if (TREE_CODE (type) == ARRAY_TYPE
5846 && TYPE_DOMAIN (type) == 0
5847 && value != error_mark_node)
5848 {
5849 tree inside_init = init;
5850
5851 STRIP_TYPE_NOPS (inside_init);
5852 inside_init = fold (inside_init);
5853
5854 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
5855 {
5856 tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
5857
5858 if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
5859 {
5860 /* For int foo[] = (int [3]){1}; we need to set array size
5861 now since later on array initializer will be just the
5862 brace enclosed list of the compound literal. */
5863 tree etype = strip_array_types (TREE_TYPE (decl));
5864 type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
5865 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
5866 layout_type (type);
5867 layout_decl (cldecl, 0);
5868 TREE_TYPE (decl)
5869 = c_build_qualified_type (type, TYPE_QUALS (etype));
5870 }
5871 }
5872 }
5873 }
5874 \f
5875 /* Methods for storing and printing names for error messages. */
5876
5877 /* Implement a spelling stack that allows components of a name to be pushed
5878 and popped. Each element on the stack is this structure. */
5879
5880 struct spelling
5881 {
5882 int kind;
5883 union
5884 {
5885 unsigned HOST_WIDE_INT i;
5886 const char *s;
5887 } u;
5888 };
5889
5890 #define SPELLING_STRING 1
5891 #define SPELLING_MEMBER 2
5892 #define SPELLING_BOUNDS 3
5893
5894 static struct spelling *spelling; /* Next stack element (unused). */
5895 static struct spelling *spelling_base; /* Spelling stack base. */
5896 static int spelling_size; /* Size of the spelling stack. */
5897
5898 /* Macros to save and restore the spelling stack around push_... functions.
5899 Alternative to SAVE_SPELLING_STACK. */
5900
5901 #define SPELLING_DEPTH() (spelling - spelling_base)
5902 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
5903
5904 /* Push an element on the spelling stack with type KIND and assign VALUE
5905 to MEMBER. */
5906
5907 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
5908 { \
5909 int depth = SPELLING_DEPTH (); \
5910 \
5911 if (depth >= spelling_size) \
5912 { \
5913 spelling_size += 10; \
5914 spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
5915 spelling_size); \
5916 RESTORE_SPELLING_DEPTH (depth); \
5917 } \
5918 \
5919 spelling->kind = (KIND); \
5920 spelling->MEMBER = (VALUE); \
5921 spelling++; \
5922 }
5923
5924 /* Push STRING on the stack. Printed literally. */
5925
5926 static void
5927 push_string (const char *string)
5928 {
5929 PUSH_SPELLING (SPELLING_STRING, string, u.s);
5930 }
5931
5932 /* Push a member name on the stack. Printed as '.' STRING. */
5933
5934 static void
5935 push_member_name (tree decl)
5936 {
5937 const char *const string
5938 = (DECL_NAME (decl)
5939 ? identifier_to_locale (IDENTIFIER_POINTER (DECL_NAME (decl)))
5940 : _("<anonymous>"));
5941 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
5942 }
5943
5944 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
5945
5946 static void
5947 push_array_bounds (unsigned HOST_WIDE_INT bounds)
5948 {
5949 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
5950 }
5951
5952 /* Compute the maximum size in bytes of the printed spelling. */
5953
5954 static int
5955 spelling_length (void)
5956 {
5957 int size = 0;
5958 struct spelling *p;
5959
5960 for (p = spelling_base; p < spelling; p++)
5961 {
5962 if (p->kind == SPELLING_BOUNDS)
5963 size += 25;
5964 else
5965 size += strlen (p->u.s) + 1;
5966 }
5967
5968 return size;
5969 }
5970
5971 /* Print the spelling to BUFFER and return it. */
5972
5973 static char *
5974 print_spelling (char *buffer)
5975 {
5976 char *d = buffer;
5977 struct spelling *p;
5978
5979 for (p = spelling_base; p < spelling; p++)
5980 if (p->kind == SPELLING_BOUNDS)
5981 {
5982 sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
5983 d += strlen (d);
5984 }
5985 else
5986 {
5987 const char *s;
5988 if (p->kind == SPELLING_MEMBER)
5989 *d++ = '.';
5990 for (s = p->u.s; (*d = *s++); d++)
5991 ;
5992 }
5993 *d++ = '\0';
5994 return buffer;
5995 }
5996
5997 /* Issue an error message for a bad initializer component.
5998 GMSGID identifies the message.
5999 The component name is taken from the spelling stack. */
6000
6001 void
6002 error_init (const char *gmsgid)
6003 {
6004 char *ofwhat;
6005
6006 /* The gmsgid may be a format string with %< and %>. */
6007 error (gmsgid);
6008 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
6009 if (*ofwhat)
6010 error ("(near initialization for %qs)", ofwhat);
6011 }
6012
6013 /* Issue a pedantic warning for a bad initializer component. OPT is
6014 the option OPT_* (from options.h) controlling this warning or 0 if
6015 it is unconditionally given. GMSGID identifies the message. The
6016 component name is taken from the spelling stack. */
6017
6018 void
6019 pedwarn_init (location_t location, int opt, const char *gmsgid)
6020 {
6021 char *ofwhat;
6022
6023 /* The gmsgid may be a format string with %< and %>. */
6024 pedwarn (location, opt, gmsgid);
6025 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
6026 if (*ofwhat)
6027 pedwarn (location, opt, "(near initialization for %qs)", ofwhat);
6028 }
6029
6030 /* Issue a warning for a bad initializer component.
6031
6032 OPT is the OPT_W* value corresponding to the warning option that
6033 controls this warning. GMSGID identifies the message. The
6034 component name is taken from the spelling stack. */
6035
6036 static void
6037 warning_init (int opt, const char *gmsgid)
6038 {
6039 char *ofwhat;
6040
6041 /* The gmsgid may be a format string with %< and %>. */
6042 warning (opt, gmsgid);
6043 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
6044 if (*ofwhat)
6045 warning (opt, "(near initialization for %qs)", ofwhat);
6046 }
6047 \f
6048 /* If TYPE is an array type and EXPR is a parenthesized string
6049 constant, warn if pedantic that EXPR is being used to initialize an
6050 object of type TYPE. */
6051
6052 void
6053 maybe_warn_string_init (tree type, struct c_expr expr)
6054 {
6055 if (pedantic
6056 && TREE_CODE (type) == ARRAY_TYPE
6057 && TREE_CODE (expr.value) == STRING_CST
6058 && expr.original_code != STRING_CST)
6059 pedwarn_init (input_location, OPT_pedantic,
6060 "array initialized from parenthesized string constant");
6061 }
6062
6063 /* Digest the parser output INIT as an initializer for type TYPE.
6064 Return a C expression of type TYPE to represent the initial value.
6065
6066 If ORIGTYPE is not NULL_TREE, it is the original type of INIT.
6067
6068 NULL_POINTER_CONSTANT is true if INIT is a null pointer constant.
6069
6070 If INIT is a string constant, STRICT_STRING is true if it is
6071 unparenthesized or we should not warn here for it being parenthesized.
6072 For other types of INIT, STRICT_STRING is not used.
6073
6074 INIT_LOC is the location of the INIT.
6075
6076 REQUIRE_CONSTANT requests an error if non-constant initializers or
6077 elements are seen. */
6078
6079 static tree
6080 digest_init (location_t init_loc, tree type, tree init, tree origtype,
6081 bool null_pointer_constant, bool strict_string,
6082 int require_constant)
6083 {
6084 enum tree_code code = TREE_CODE (type);
6085 tree inside_init = init;
6086 tree semantic_type = NULL_TREE;
6087 bool maybe_const = true;
6088
6089 if (type == error_mark_node
6090 || !init
6091 || init == error_mark_node
6092 || TREE_TYPE (init) == error_mark_node)
6093 return error_mark_node;
6094
6095 STRIP_TYPE_NOPS (inside_init);
6096
6097 if (TREE_CODE (inside_init) == EXCESS_PRECISION_EXPR)
6098 {
6099 semantic_type = TREE_TYPE (inside_init);
6100 inside_init = TREE_OPERAND (inside_init, 0);
6101 }
6102 inside_init = c_fully_fold (inside_init, require_constant, &maybe_const);
6103 inside_init = decl_constant_value_for_optimization (inside_init);
6104
6105 /* Initialization of an array of chars from a string constant
6106 optionally enclosed in braces. */
6107
6108 if (code == ARRAY_TYPE && inside_init
6109 && TREE_CODE (inside_init) == STRING_CST)
6110 {
6111 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
6112 /* Note that an array could be both an array of character type
6113 and an array of wchar_t if wchar_t is signed char or unsigned
6114 char. */
6115 bool char_array = (typ1 == char_type_node
6116 || typ1 == signed_char_type_node
6117 || typ1 == unsigned_char_type_node);
6118 bool wchar_array = !!comptypes (typ1, wchar_type_node);
6119 bool char16_array = !!comptypes (typ1, char16_type_node);
6120 bool char32_array = !!comptypes (typ1, char32_type_node);
6121
6122 if (char_array || wchar_array || char16_array || char32_array)
6123 {
6124 struct c_expr expr;
6125 tree typ2 = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)));
6126 expr.value = inside_init;
6127 expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
6128 expr.original_type = NULL;
6129 maybe_warn_string_init (type, expr);
6130
6131 if (TYPE_DOMAIN (type) && !TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
6132 pedwarn_init (init_loc, OPT_pedantic,
6133 "initialization of a flexible array member");
6134
6135 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
6136 TYPE_MAIN_VARIANT (type)))
6137 return inside_init;
6138
6139 if (char_array)
6140 {
6141 if (typ2 != char_type_node)
6142 {
6143 error_init ("char-array initialized from wide string");
6144 return error_mark_node;
6145 }
6146 }
6147 else
6148 {
6149 if (typ2 == char_type_node)
6150 {
6151 error_init ("wide character array initialized from non-wide "
6152 "string");
6153 return error_mark_node;
6154 }
6155 else if (!comptypes(typ1, typ2))
6156 {
6157 error_init ("wide character array initialized from "
6158 "incompatible wide string");
6159 return error_mark_node;
6160 }
6161 }
6162
6163 TREE_TYPE (inside_init) = type;
6164 if (TYPE_DOMAIN (type) != 0
6165 && TYPE_SIZE (type) != 0
6166 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
6167 {
6168 unsigned HOST_WIDE_INT len = TREE_STRING_LENGTH (inside_init);
6169
6170 /* Subtract the size of a single (possibly wide) character
6171 because it's ok to ignore the terminating null char
6172 that is counted in the length of the constant. */
6173 if (0 > compare_tree_int (TYPE_SIZE_UNIT (type),
6174 (len
6175 - (TYPE_PRECISION (typ1)
6176 / BITS_PER_UNIT))))
6177 pedwarn_init (init_loc, 0,
6178 ("initializer-string for array of chars "
6179 "is too long"));
6180 else if (warn_cxx_compat
6181 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type), len))
6182 warning_at (init_loc, OPT_Wc___compat,
6183 ("initializer-string for array chars "
6184 "is too long for C++"));
6185 }
6186
6187 return inside_init;
6188 }
6189 else if (INTEGRAL_TYPE_P (typ1))
6190 {
6191 error_init ("array of inappropriate type initialized "
6192 "from string constant");
6193 return error_mark_node;
6194 }
6195 }
6196
6197 /* Build a VECTOR_CST from a *constant* vector constructor. If the
6198 vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
6199 below and handle as a constructor. */
6200 if (code == VECTOR_TYPE
6201 && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
6202 && vector_types_convertible_p (TREE_TYPE (inside_init), type, true)
6203 && TREE_CONSTANT (inside_init))
6204 {
6205 if (TREE_CODE (inside_init) == VECTOR_CST
6206 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
6207 TYPE_MAIN_VARIANT (type)))
6208 return inside_init;
6209
6210 if (TREE_CODE (inside_init) == CONSTRUCTOR)
6211 {
6212 unsigned HOST_WIDE_INT ix;
6213 tree value;
6214 bool constant_p = true;
6215
6216 /* Iterate through elements and check if all constructor
6217 elements are *_CSTs. */
6218 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
6219 if (!CONSTANT_CLASS_P (value))
6220 {
6221 constant_p = false;
6222 break;
6223 }
6224
6225 if (constant_p)
6226 return build_vector_from_ctor (type,
6227 CONSTRUCTOR_ELTS (inside_init));
6228 }
6229 }
6230
6231 if (warn_sequence_point)
6232 verify_sequence_points (inside_init);
6233
6234 /* Any type can be initialized
6235 from an expression of the same type, optionally with braces. */
6236
6237 if (inside_init && TREE_TYPE (inside_init) != 0
6238 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
6239 TYPE_MAIN_VARIANT (type))
6240 || (code == ARRAY_TYPE
6241 && comptypes (TREE_TYPE (inside_init), type))
6242 || (code == VECTOR_TYPE
6243 && comptypes (TREE_TYPE (inside_init), type))
6244 || (code == POINTER_TYPE
6245 && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
6246 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
6247 TREE_TYPE (type)))))
6248 {
6249 if (code == POINTER_TYPE)
6250 {
6251 if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
6252 {
6253 if (TREE_CODE (inside_init) == STRING_CST
6254 || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
6255 inside_init = array_to_pointer_conversion
6256 (init_loc, inside_init);
6257 else
6258 {
6259 error_init ("invalid use of non-lvalue array");
6260 return error_mark_node;
6261 }
6262 }
6263 }
6264
6265 if (code == VECTOR_TYPE)
6266 /* Although the types are compatible, we may require a
6267 conversion. */
6268 inside_init = convert (type, inside_init);
6269
6270 if (require_constant
6271 && (code == VECTOR_TYPE || !flag_isoc99)
6272 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
6273 {
6274 /* As an extension, allow initializing objects with static storage
6275 duration with compound literals (which are then treated just as
6276 the brace enclosed list they contain). Also allow this for
6277 vectors, as we can only assign them with compound literals. */
6278 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
6279 inside_init = DECL_INITIAL (decl);
6280 }
6281
6282 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
6283 && TREE_CODE (inside_init) != CONSTRUCTOR)
6284 {
6285 error_init ("array initialized from non-constant array expression");
6286 return error_mark_node;
6287 }
6288
6289 /* Compound expressions can only occur here if -pedantic or
6290 -pedantic-errors is specified. In the later case, we always want
6291 an error. In the former case, we simply want a warning. */
6292 if (require_constant && pedantic
6293 && TREE_CODE (inside_init) == COMPOUND_EXPR)
6294 {
6295 inside_init
6296 = valid_compound_expr_initializer (inside_init,
6297 TREE_TYPE (inside_init));
6298 if (inside_init == error_mark_node)
6299 error_init ("initializer element is not constant");
6300 else
6301 pedwarn_init (init_loc, OPT_pedantic,
6302 "initializer element is not constant");
6303 if (flag_pedantic_errors)
6304 inside_init = error_mark_node;
6305 }
6306 else if (require_constant
6307 && !initializer_constant_valid_p (inside_init,
6308 TREE_TYPE (inside_init)))
6309 {
6310 error_init ("initializer element is not constant");
6311 inside_init = error_mark_node;
6312 }
6313 else if (require_constant && !maybe_const)
6314 pedwarn_init (init_loc, 0,
6315 "initializer element is not a constant expression");
6316
6317 /* Added to enable additional -Wmissing-format-attribute warnings. */
6318 if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
6319 inside_init = convert_for_assignment (init_loc, type, inside_init,
6320 origtype,
6321 ic_init, null_pointer_constant,
6322 NULL_TREE, NULL_TREE, 0);
6323 return inside_init;
6324 }
6325
6326 /* Handle scalar types, including conversions. */
6327
6328 if (code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE
6329 || code == POINTER_TYPE || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
6330 || code == COMPLEX_TYPE || code == VECTOR_TYPE)
6331 {
6332 if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
6333 && (TREE_CODE (init) == STRING_CST
6334 || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
6335 inside_init = init = array_to_pointer_conversion (init_loc, init);
6336 if (semantic_type)
6337 inside_init = build1 (EXCESS_PRECISION_EXPR, semantic_type,
6338 inside_init);
6339 inside_init
6340 = convert_for_assignment (init_loc, type, inside_init, origtype,
6341 ic_init, null_pointer_constant,
6342 NULL_TREE, NULL_TREE, 0);
6343
6344 /* Check to see if we have already given an error message. */
6345 if (inside_init == error_mark_node)
6346 ;
6347 else if (require_constant && !TREE_CONSTANT (inside_init))
6348 {
6349 error_init ("initializer element is not constant");
6350 inside_init = error_mark_node;
6351 }
6352 else if (require_constant
6353 && !initializer_constant_valid_p (inside_init,
6354 TREE_TYPE (inside_init)))
6355 {
6356 error_init ("initializer element is not computable at load time");
6357 inside_init = error_mark_node;
6358 }
6359 else if (require_constant && !maybe_const)
6360 pedwarn_init (init_loc, 0,
6361 "initializer element is not a constant expression");
6362
6363 return inside_init;
6364 }
6365
6366 /* Come here only for records and arrays. */
6367
6368 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
6369 {
6370 error_init ("variable-sized object may not be initialized");
6371 return error_mark_node;
6372 }
6373
6374 error_init ("invalid initializer");
6375 return error_mark_node;
6376 }
6377 \f
6378 /* Handle initializers that use braces. */
6379
6380 /* Type of object we are accumulating a constructor for.
6381 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
6382 static tree constructor_type;
6383
6384 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
6385 left to fill. */
6386 static tree constructor_fields;
6387
6388 /* For an ARRAY_TYPE, this is the specified index
6389 at which to store the next element we get. */
6390 static tree constructor_index;
6391
6392 /* For an ARRAY_TYPE, this is the maximum index. */
6393 static tree constructor_max_index;
6394
6395 /* For a RECORD_TYPE, this is the first field not yet written out. */
6396 static tree constructor_unfilled_fields;
6397
6398 /* For an ARRAY_TYPE, this is the index of the first element
6399 not yet written out. */
6400 static tree constructor_unfilled_index;
6401
6402 /* In a RECORD_TYPE, the byte index of the next consecutive field.
6403 This is so we can generate gaps between fields, when appropriate. */
6404 static tree constructor_bit_index;
6405
6406 /* If we are saving up the elements rather than allocating them,
6407 this is the list of elements so far (in reverse order,
6408 most recent first). */
6409 static VEC(constructor_elt,gc) *constructor_elements;
6410
6411 /* 1 if constructor should be incrementally stored into a constructor chain,
6412 0 if all the elements should be kept in AVL tree. */
6413 static int constructor_incremental;
6414
6415 /* 1 if so far this constructor's elements are all compile-time constants. */
6416 static int constructor_constant;
6417
6418 /* 1 if so far this constructor's elements are all valid address constants. */
6419 static int constructor_simple;
6420
6421 /* 1 if this constructor has an element that cannot be part of a
6422 constant expression. */
6423 static int constructor_nonconst;
6424
6425 /* 1 if this constructor is erroneous so far. */
6426 static int constructor_erroneous;
6427
6428 /* Structure for managing pending initializer elements, organized as an
6429 AVL tree. */
6430
6431 struct init_node
6432 {
6433 struct init_node *left, *right;
6434 struct init_node *parent;
6435 int balance;
6436 tree purpose;
6437 tree value;
6438 tree origtype;
6439 };
6440
6441 /* Tree of pending elements at this constructor level.
6442 These are elements encountered out of order
6443 which belong at places we haven't reached yet in actually
6444 writing the output.
6445 Will never hold tree nodes across GC runs. */
6446 static struct init_node *constructor_pending_elts;
6447
6448 /* The SPELLING_DEPTH of this constructor. */
6449 static int constructor_depth;
6450
6451 /* DECL node for which an initializer is being read.
6452 0 means we are reading a constructor expression
6453 such as (struct foo) {...}. */
6454 static tree constructor_decl;
6455
6456 /* Nonzero if this is an initializer for a top-level decl. */
6457 static int constructor_top_level;
6458
6459 /* Nonzero if there were any member designators in this initializer. */
6460 static int constructor_designated;
6461
6462 /* Nesting depth of designator list. */
6463 static int designator_depth;
6464
6465 /* Nonzero if there were diagnosed errors in this designator list. */
6466 static int designator_erroneous;
6467
6468 \f
6469 /* This stack has a level for each implicit or explicit level of
6470 structuring in the initializer, including the outermost one. It
6471 saves the values of most of the variables above. */
6472
6473 struct constructor_range_stack;
6474
6475 struct constructor_stack
6476 {
6477 struct constructor_stack *next;
6478 tree type;
6479 tree fields;
6480 tree index;
6481 tree max_index;
6482 tree unfilled_index;
6483 tree unfilled_fields;
6484 tree bit_index;
6485 VEC(constructor_elt,gc) *elements;
6486 struct init_node *pending_elts;
6487 int offset;
6488 int depth;
6489 /* If value nonzero, this value should replace the entire
6490 constructor at this level. */
6491 struct c_expr replacement_value;
6492 struct constructor_range_stack *range_stack;
6493 char constant;
6494 char simple;
6495 char nonconst;
6496 char implicit;
6497 char erroneous;
6498 char outer;
6499 char incremental;
6500 char designated;
6501 };
6502
6503 static struct constructor_stack *constructor_stack;
6504
6505 /* This stack represents designators from some range designator up to
6506 the last designator in the list. */
6507
6508 struct constructor_range_stack
6509 {
6510 struct constructor_range_stack *next, *prev;
6511 struct constructor_stack *stack;
6512 tree range_start;
6513 tree index;
6514 tree range_end;
6515 tree fields;
6516 };
6517
6518 static struct constructor_range_stack *constructor_range_stack;
6519
6520 /* This stack records separate initializers that are nested.
6521 Nested initializers can't happen in ANSI C, but GNU C allows them
6522 in cases like { ... (struct foo) { ... } ... }. */
6523
6524 struct initializer_stack
6525 {
6526 struct initializer_stack *next;
6527 tree decl;
6528 struct constructor_stack *constructor_stack;
6529 struct constructor_range_stack *constructor_range_stack;
6530 VEC(constructor_elt,gc) *elements;
6531 struct spelling *spelling;
6532 struct spelling *spelling_base;
6533 int spelling_size;
6534 char top_level;
6535 char require_constant_value;
6536 char require_constant_elements;
6537 };
6538
6539 static struct initializer_stack *initializer_stack;
6540 \f
6541 /* Prepare to parse and output the initializer for variable DECL. */
6542
6543 void
6544 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
6545 {
6546 const char *locus;
6547 struct initializer_stack *p = XNEW (struct initializer_stack);
6548
6549 p->decl = constructor_decl;
6550 p->require_constant_value = require_constant_value;
6551 p->require_constant_elements = require_constant_elements;
6552 p->constructor_stack = constructor_stack;
6553 p->constructor_range_stack = constructor_range_stack;
6554 p->elements = constructor_elements;
6555 p->spelling = spelling;
6556 p->spelling_base = spelling_base;
6557 p->spelling_size = spelling_size;
6558 p->top_level = constructor_top_level;
6559 p->next = initializer_stack;
6560 initializer_stack = p;
6561
6562 constructor_decl = decl;
6563 constructor_designated = 0;
6564 constructor_top_level = top_level;
6565
6566 if (decl != 0 && decl != error_mark_node)
6567 {
6568 require_constant_value = TREE_STATIC (decl);
6569 require_constant_elements
6570 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
6571 /* For a scalar, you can always use any value to initialize,
6572 even within braces. */
6573 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
6574 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
6575 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
6576 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
6577 locus = identifier_to_locale (IDENTIFIER_POINTER (DECL_NAME (decl)));
6578 }
6579 else
6580 {
6581 require_constant_value = 0;
6582 require_constant_elements = 0;
6583 locus = _("(anonymous)");
6584 }
6585
6586 constructor_stack = 0;
6587 constructor_range_stack = 0;
6588
6589 missing_braces_mentioned = 0;
6590
6591 spelling_base = 0;
6592 spelling_size = 0;
6593 RESTORE_SPELLING_DEPTH (0);
6594
6595 if (locus)
6596 push_string (locus);
6597 }
6598
6599 void
6600 finish_init (void)
6601 {
6602 struct initializer_stack *p = initializer_stack;
6603
6604 /* Free the whole constructor stack of this initializer. */
6605 while (constructor_stack)
6606 {
6607 struct constructor_stack *q = constructor_stack;
6608 constructor_stack = q->next;
6609 free (q);
6610 }
6611
6612 gcc_assert (!constructor_range_stack);
6613
6614 /* Pop back to the data of the outer initializer (if any). */
6615 free (spelling_base);
6616
6617 constructor_decl = p->decl;
6618 require_constant_value = p->require_constant_value;
6619 require_constant_elements = p->require_constant_elements;
6620 constructor_stack = p->constructor_stack;
6621 constructor_range_stack = p->constructor_range_stack;
6622 constructor_elements = p->elements;
6623 spelling = p->spelling;
6624 spelling_base = p->spelling_base;
6625 spelling_size = p->spelling_size;
6626 constructor_top_level = p->top_level;
6627 initializer_stack = p->next;
6628 free (p);
6629 }
6630 \f
6631 /* Call here when we see the initializer is surrounded by braces.
6632 This is instead of a call to push_init_level;
6633 it is matched by a call to pop_init_level.
6634
6635 TYPE is the type to initialize, for a constructor expression.
6636 For an initializer for a decl, TYPE is zero. */
6637
6638 void
6639 really_start_incremental_init (tree type)
6640 {
6641 struct constructor_stack *p = XNEW (struct constructor_stack);
6642
6643 if (type == 0)
6644 type = TREE_TYPE (constructor_decl);
6645
6646 if (TREE_CODE (type) == VECTOR_TYPE
6647 && TYPE_VECTOR_OPAQUE (type))
6648 error ("opaque vector types cannot be initialized");
6649
6650 p->type = constructor_type;
6651 p->fields = constructor_fields;
6652 p->index = constructor_index;
6653 p->max_index = constructor_max_index;
6654 p->unfilled_index = constructor_unfilled_index;
6655 p->unfilled_fields = constructor_unfilled_fields;
6656 p->bit_index = constructor_bit_index;
6657 p->elements = constructor_elements;
6658 p->constant = constructor_constant;
6659 p->simple = constructor_simple;
6660 p->nonconst = constructor_nonconst;
6661 p->erroneous = constructor_erroneous;
6662 p->pending_elts = constructor_pending_elts;
6663 p->depth = constructor_depth;
6664 p->replacement_value.value = 0;
6665 p->replacement_value.original_code = ERROR_MARK;
6666 p->replacement_value.original_type = NULL;
6667 p->implicit = 0;
6668 p->range_stack = 0;
6669 p->outer = 0;
6670 p->incremental = constructor_incremental;
6671 p->designated = constructor_designated;
6672 p->next = 0;
6673 constructor_stack = p;
6674
6675 constructor_constant = 1;
6676 constructor_simple = 1;
6677 constructor_nonconst = 0;
6678 constructor_depth = SPELLING_DEPTH ();
6679 constructor_elements = 0;
6680 constructor_pending_elts = 0;
6681 constructor_type = type;
6682 constructor_incremental = 1;
6683 constructor_designated = 0;
6684 designator_depth = 0;
6685 designator_erroneous = 0;
6686
6687 if (TREE_CODE (constructor_type) == RECORD_TYPE
6688 || TREE_CODE (constructor_type) == UNION_TYPE)
6689 {
6690 constructor_fields = TYPE_FIELDS (constructor_type);
6691 /* Skip any nameless bit fields at the beginning. */
6692 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
6693 && DECL_NAME (constructor_fields) == 0)
6694 constructor_fields = DECL_CHAIN (constructor_fields);
6695
6696 constructor_unfilled_fields = constructor_fields;
6697 constructor_bit_index = bitsize_zero_node;
6698 }
6699 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6700 {
6701 if (TYPE_DOMAIN (constructor_type))
6702 {
6703 constructor_max_index
6704 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
6705
6706 /* Detect non-empty initializations of zero-length arrays. */
6707 if (constructor_max_index == NULL_TREE
6708 && TYPE_SIZE (constructor_type))
6709 constructor_max_index = integer_minus_one_node;
6710
6711 /* constructor_max_index needs to be an INTEGER_CST. Attempts
6712 to initialize VLAs will cause a proper error; avoid tree
6713 checking errors as well by setting a safe value. */
6714 if (constructor_max_index
6715 && TREE_CODE (constructor_max_index) != INTEGER_CST)
6716 constructor_max_index = integer_minus_one_node;
6717
6718 constructor_index
6719 = convert (bitsizetype,
6720 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6721 }
6722 else
6723 {
6724 constructor_index = bitsize_zero_node;
6725 constructor_max_index = NULL_TREE;
6726 }
6727
6728 constructor_unfilled_index = constructor_index;
6729 }
6730 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6731 {
6732 /* Vectors are like simple fixed-size arrays. */
6733 constructor_max_index =
6734 bitsize_int (TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
6735 constructor_index = bitsize_zero_node;
6736 constructor_unfilled_index = constructor_index;
6737 }
6738 else
6739 {
6740 /* Handle the case of int x = {5}; */
6741 constructor_fields = constructor_type;
6742 constructor_unfilled_fields = constructor_type;
6743 }
6744 }
6745 \f
6746 /* Push down into a subobject, for initialization.
6747 If this is for an explicit set of braces, IMPLICIT is 0.
6748 If it is because the next element belongs at a lower level,
6749 IMPLICIT is 1 (or 2 if the push is because of designator list). */
6750
6751 void
6752 push_init_level (int implicit, struct obstack * braced_init_obstack)
6753 {
6754 struct constructor_stack *p;
6755 tree value = NULL_TREE;
6756
6757 /* If we've exhausted any levels that didn't have braces,
6758 pop them now. If implicit == 1, this will have been done in
6759 process_init_element; do not repeat it here because in the case
6760 of excess initializers for an empty aggregate this leads to an
6761 infinite cycle of popping a level and immediately recreating
6762 it. */
6763 if (implicit != 1)
6764 {
6765 while (constructor_stack->implicit)
6766 {
6767 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6768 || TREE_CODE (constructor_type) == UNION_TYPE)
6769 && constructor_fields == 0)
6770 process_init_element (pop_init_level (1, braced_init_obstack),
6771 true, braced_init_obstack);
6772 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6773 && constructor_max_index
6774 && tree_int_cst_lt (constructor_max_index,
6775 constructor_index))
6776 process_init_element (pop_init_level (1, braced_init_obstack),
6777 true, braced_init_obstack);
6778 else
6779 break;
6780 }
6781 }
6782
6783 /* Unless this is an explicit brace, we need to preserve previous
6784 content if any. */
6785 if (implicit)
6786 {
6787 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6788 || TREE_CODE (constructor_type) == UNION_TYPE)
6789 && constructor_fields)
6790 value = find_init_member (constructor_fields, braced_init_obstack);
6791 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6792 value = find_init_member (constructor_index, braced_init_obstack);
6793 }
6794
6795 p = XNEW (struct constructor_stack);
6796 p->type = constructor_type;
6797 p->fields = constructor_fields;
6798 p->index = constructor_index;
6799 p->max_index = constructor_max_index;
6800 p->unfilled_index = constructor_unfilled_index;
6801 p->unfilled_fields = constructor_unfilled_fields;
6802 p->bit_index = constructor_bit_index;
6803 p->elements = constructor_elements;
6804 p->constant = constructor_constant;
6805 p->simple = constructor_simple;
6806 p->nonconst = constructor_nonconst;
6807 p->erroneous = constructor_erroneous;
6808 p->pending_elts = constructor_pending_elts;
6809 p->depth = constructor_depth;
6810 p->replacement_value.value = 0;
6811 p->replacement_value.original_code = ERROR_MARK;
6812 p->replacement_value.original_type = NULL;
6813 p->implicit = implicit;
6814 p->outer = 0;
6815 p->incremental = constructor_incremental;
6816 p->designated = constructor_designated;
6817 p->next = constructor_stack;
6818 p->range_stack = 0;
6819 constructor_stack = p;
6820
6821 constructor_constant = 1;
6822 constructor_simple = 1;
6823 constructor_nonconst = 0;
6824 constructor_depth = SPELLING_DEPTH ();
6825 constructor_elements = 0;
6826 constructor_incremental = 1;
6827 constructor_designated = 0;
6828 constructor_pending_elts = 0;
6829 if (!implicit)
6830 {
6831 p->range_stack = constructor_range_stack;
6832 constructor_range_stack = 0;
6833 designator_depth = 0;
6834 designator_erroneous = 0;
6835 }
6836
6837 /* Don't die if an entire brace-pair level is superfluous
6838 in the containing level. */
6839 if (constructor_type == 0)
6840 ;
6841 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6842 || TREE_CODE (constructor_type) == UNION_TYPE)
6843 {
6844 /* Don't die if there are extra init elts at the end. */
6845 if (constructor_fields == 0)
6846 constructor_type = 0;
6847 else
6848 {
6849 constructor_type = TREE_TYPE (constructor_fields);
6850 push_member_name (constructor_fields);
6851 constructor_depth++;
6852 }
6853 }
6854 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6855 {
6856 constructor_type = TREE_TYPE (constructor_type);
6857 push_array_bounds (tree_low_cst (constructor_index, 1));
6858 constructor_depth++;
6859 }
6860
6861 if (constructor_type == 0)
6862 {
6863 error_init ("extra brace group at end of initializer");
6864 constructor_fields = 0;
6865 constructor_unfilled_fields = 0;
6866 return;
6867 }
6868
6869 if (value && TREE_CODE (value) == CONSTRUCTOR)
6870 {
6871 constructor_constant = TREE_CONSTANT (value);
6872 constructor_simple = TREE_STATIC (value);
6873 constructor_nonconst = CONSTRUCTOR_NON_CONST (value);
6874 constructor_elements = CONSTRUCTOR_ELTS (value);
6875 if (!VEC_empty (constructor_elt, constructor_elements)
6876 && (TREE_CODE (constructor_type) == RECORD_TYPE
6877 || TREE_CODE (constructor_type) == ARRAY_TYPE))
6878 set_nonincremental_init (braced_init_obstack);
6879 }
6880
6881 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
6882 {
6883 missing_braces_mentioned = 1;
6884 warning_init (OPT_Wmissing_braces, "missing braces around initializer");
6885 }
6886
6887 if (TREE_CODE (constructor_type) == RECORD_TYPE
6888 || TREE_CODE (constructor_type) == UNION_TYPE)
6889 {
6890 constructor_fields = TYPE_FIELDS (constructor_type);
6891 /* Skip any nameless bit fields at the beginning. */
6892 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
6893 && DECL_NAME (constructor_fields) == 0)
6894 constructor_fields = DECL_CHAIN (constructor_fields);
6895
6896 constructor_unfilled_fields = constructor_fields;
6897 constructor_bit_index = bitsize_zero_node;
6898 }
6899 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6900 {
6901 /* Vectors are like simple fixed-size arrays. */
6902 constructor_max_index =
6903 bitsize_int (TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
6904 constructor_index = bitsize_int (0);
6905 constructor_unfilled_index = constructor_index;
6906 }
6907 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6908 {
6909 if (TYPE_DOMAIN (constructor_type))
6910 {
6911 constructor_max_index
6912 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
6913
6914 /* Detect non-empty initializations of zero-length arrays. */
6915 if (constructor_max_index == NULL_TREE
6916 && TYPE_SIZE (constructor_type))
6917 constructor_max_index = integer_minus_one_node;
6918
6919 /* constructor_max_index needs to be an INTEGER_CST. Attempts
6920 to initialize VLAs will cause a proper error; avoid tree
6921 checking errors as well by setting a safe value. */
6922 if (constructor_max_index
6923 && TREE_CODE (constructor_max_index) != INTEGER_CST)
6924 constructor_max_index = integer_minus_one_node;
6925
6926 constructor_index
6927 = convert (bitsizetype,
6928 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6929 }
6930 else
6931 constructor_index = bitsize_zero_node;
6932
6933 constructor_unfilled_index = constructor_index;
6934 if (value && TREE_CODE (value) == STRING_CST)
6935 {
6936 /* We need to split the char/wchar array into individual
6937 characters, so that we don't have to special case it
6938 everywhere. */
6939 set_nonincremental_init_from_string (value, braced_init_obstack);
6940 }
6941 }
6942 else
6943 {
6944 if (constructor_type != error_mark_node)
6945 warning_init (0, "braces around scalar initializer");
6946 constructor_fields = constructor_type;
6947 constructor_unfilled_fields = constructor_type;
6948 }
6949 }
6950
6951 /* At the end of an implicit or explicit brace level,
6952 finish up that level of constructor. If a single expression
6953 with redundant braces initialized that level, return the
6954 c_expr structure for that expression. Otherwise, the original_code
6955 element is set to ERROR_MARK.
6956 If we were outputting the elements as they are read, return 0 as the value
6957 from inner levels (process_init_element ignores that),
6958 but return error_mark_node as the value from the outermost level
6959 (that's what we want to put in DECL_INITIAL).
6960 Otherwise, return a CONSTRUCTOR expression as the value. */
6961
6962 struct c_expr
6963 pop_init_level (int implicit, struct obstack * braced_init_obstack)
6964 {
6965 struct constructor_stack *p;
6966 struct c_expr ret;
6967 ret.value = 0;
6968 ret.original_code = ERROR_MARK;
6969 ret.original_type = NULL;
6970
6971 if (implicit == 0)
6972 {
6973 /* When we come to an explicit close brace,
6974 pop any inner levels that didn't have explicit braces. */
6975 while (constructor_stack->implicit)
6976 {
6977 process_init_element (pop_init_level (1, braced_init_obstack),
6978 true, braced_init_obstack);
6979 }
6980 gcc_assert (!constructor_range_stack);
6981 }
6982
6983 /* Now output all pending elements. */
6984 constructor_incremental = 1;
6985 output_pending_init_elements (1, braced_init_obstack);
6986
6987 p = constructor_stack;
6988
6989 /* Error for initializing a flexible array member, or a zero-length
6990 array member in an inappropriate context. */
6991 if (constructor_type && constructor_fields
6992 && TREE_CODE (constructor_type) == ARRAY_TYPE
6993 && TYPE_DOMAIN (constructor_type)
6994 && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
6995 {
6996 /* Silently discard empty initializations. The parser will
6997 already have pedwarned for empty brackets. */
6998 if (integer_zerop (constructor_unfilled_index))
6999 constructor_type = NULL_TREE;
7000 else
7001 {
7002 gcc_assert (!TYPE_SIZE (constructor_type));
7003
7004 if (constructor_depth > 2)
7005 error_init ("initialization of flexible array member in a nested context");
7006 else
7007 pedwarn_init (input_location, OPT_pedantic,
7008 "initialization of a flexible array member");
7009
7010 /* We have already issued an error message for the existence
7011 of a flexible array member not at the end of the structure.
7012 Discard the initializer so that we do not die later. */
7013 if (DECL_CHAIN (constructor_fields) != NULL_TREE)
7014 constructor_type = NULL_TREE;
7015 }
7016 }
7017
7018 /* Warn when some struct elements are implicitly initialized to zero. */
7019 if (warn_missing_field_initializers
7020 && constructor_type
7021 && TREE_CODE (constructor_type) == RECORD_TYPE
7022 && constructor_unfilled_fields)
7023 {
7024 bool constructor_zeroinit =
7025 (VEC_length (constructor_elt, constructor_elements) == 1
7026 && integer_zerop
7027 (VEC_index (constructor_elt, constructor_elements, 0)->value));
7028
7029 /* Do not warn for flexible array members or zero-length arrays. */
7030 while (constructor_unfilled_fields
7031 && (!DECL_SIZE (constructor_unfilled_fields)
7032 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
7033 constructor_unfilled_fields = DECL_CHAIN (constructor_unfilled_fields);
7034
7035 if (constructor_unfilled_fields
7036 /* Do not warn if this level of the initializer uses member
7037 designators; it is likely to be deliberate. */
7038 && !constructor_designated
7039 /* Do not warn about initializing with ` = {0}'. */
7040 && !constructor_zeroinit)
7041 {
7042 push_member_name (constructor_unfilled_fields);
7043 warning_init (OPT_Wmissing_field_initializers,
7044 "missing initializer");
7045 RESTORE_SPELLING_DEPTH (constructor_depth);
7046 }
7047 }
7048
7049 /* Pad out the end of the structure. */
7050 if (p->replacement_value.value)
7051 /* If this closes a superfluous brace pair,
7052 just pass out the element between them. */
7053 ret = p->replacement_value;
7054 else if (constructor_type == 0)
7055 ;
7056 else if (TREE_CODE (constructor_type) != RECORD_TYPE
7057 && TREE_CODE (constructor_type) != UNION_TYPE
7058 && TREE_CODE (constructor_type) != ARRAY_TYPE
7059 && TREE_CODE (constructor_type) != VECTOR_TYPE)
7060 {
7061 /* A nonincremental scalar initializer--just return
7062 the element, after verifying there is just one. */
7063 if (VEC_empty (constructor_elt,constructor_elements))
7064 {
7065 if (!constructor_erroneous)
7066 error_init ("empty scalar initializer");
7067 ret.value = error_mark_node;
7068 }
7069 else if (VEC_length (constructor_elt,constructor_elements) != 1)
7070 {
7071 error_init ("extra elements in scalar initializer");
7072 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
7073 }
7074 else
7075 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
7076 }
7077 else
7078 {
7079 if (constructor_erroneous)
7080 ret.value = error_mark_node;
7081 else
7082 {
7083 ret.value = build_constructor (constructor_type,
7084 constructor_elements);
7085 if (constructor_constant)
7086 TREE_CONSTANT (ret.value) = 1;
7087 if (constructor_constant && constructor_simple)
7088 TREE_STATIC (ret.value) = 1;
7089 if (constructor_nonconst)
7090 CONSTRUCTOR_NON_CONST (ret.value) = 1;
7091 }
7092 }
7093
7094 if (ret.value && TREE_CODE (ret.value) != CONSTRUCTOR)
7095 {
7096 if (constructor_nonconst)
7097 ret.original_code = C_MAYBE_CONST_EXPR;
7098 else if (ret.original_code == C_MAYBE_CONST_EXPR)
7099 ret.original_code = ERROR_MARK;
7100 }
7101
7102 constructor_type = p->type;
7103 constructor_fields = p->fields;
7104 constructor_index = p->index;
7105 constructor_max_index = p->max_index;
7106 constructor_unfilled_index = p->unfilled_index;
7107 constructor_unfilled_fields = p->unfilled_fields;
7108 constructor_bit_index = p->bit_index;
7109 constructor_elements = p->elements;
7110 constructor_constant = p->constant;
7111 constructor_simple = p->simple;
7112 constructor_nonconst = p->nonconst;
7113 constructor_erroneous = p->erroneous;
7114 constructor_incremental = p->incremental;
7115 constructor_designated = p->designated;
7116 constructor_pending_elts = p->pending_elts;
7117 constructor_depth = p->depth;
7118 if (!p->implicit)
7119 constructor_range_stack = p->range_stack;
7120 RESTORE_SPELLING_DEPTH (constructor_depth);
7121
7122 constructor_stack = p->next;
7123 free (p);
7124
7125 if (ret.value == 0 && constructor_stack == 0)
7126 ret.value = error_mark_node;
7127 return ret;
7128 }
7129
7130 /* Common handling for both array range and field name designators.
7131 ARRAY argument is nonzero for array ranges. Returns zero for success. */
7132
7133 static int
7134 set_designator (int array, struct obstack * braced_init_obstack)
7135 {
7136 tree subtype;
7137 enum tree_code subcode;
7138
7139 /* Don't die if an entire brace-pair level is superfluous
7140 in the containing level. */
7141 if (constructor_type == 0)
7142 return 1;
7143
7144 /* If there were errors in this designator list already, bail out
7145 silently. */
7146 if (designator_erroneous)
7147 return 1;
7148
7149 if (!designator_depth)
7150 {
7151 gcc_assert (!constructor_range_stack);
7152
7153 /* Designator list starts at the level of closest explicit
7154 braces. */
7155 while (constructor_stack->implicit)
7156 {
7157 process_init_element (pop_init_level (1, braced_init_obstack),
7158 true, braced_init_obstack);
7159 }
7160 constructor_designated = 1;
7161 return 0;
7162 }
7163
7164 switch (TREE_CODE (constructor_type))
7165 {
7166 case RECORD_TYPE:
7167 case UNION_TYPE:
7168 subtype = TREE_TYPE (constructor_fields);
7169 if (subtype != error_mark_node)
7170 subtype = TYPE_MAIN_VARIANT (subtype);
7171 break;
7172 case ARRAY_TYPE:
7173 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
7174 break;
7175 default:
7176 gcc_unreachable ();
7177 }
7178
7179 subcode = TREE_CODE (subtype);
7180 if (array && subcode != ARRAY_TYPE)
7181 {
7182 error_init ("array index in non-array initializer");
7183 return 1;
7184 }
7185 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
7186 {
7187 error_init ("field name not in record or union initializer");
7188 return 1;
7189 }
7190
7191 constructor_designated = 1;
7192 push_init_level (2, braced_init_obstack);
7193 return 0;
7194 }
7195
7196 /* If there are range designators in designator list, push a new designator
7197 to constructor_range_stack. RANGE_END is end of such stack range or
7198 NULL_TREE if there is no range designator at this level. */
7199
7200 static void
7201 push_range_stack (tree range_end, struct obstack * braced_init_obstack)
7202 {
7203 struct constructor_range_stack *p;
7204
7205 p = (struct constructor_range_stack *)
7206 obstack_alloc (braced_init_obstack,
7207 sizeof (struct constructor_range_stack));
7208 p->prev = constructor_range_stack;
7209 p->next = 0;
7210 p->fields = constructor_fields;
7211 p->range_start = constructor_index;
7212 p->index = constructor_index;
7213 p->stack = constructor_stack;
7214 p->range_end = range_end;
7215 if (constructor_range_stack)
7216 constructor_range_stack->next = p;
7217 constructor_range_stack = p;
7218 }
7219
7220 /* Within an array initializer, specify the next index to be initialized.
7221 FIRST is that index. If LAST is nonzero, then initialize a range
7222 of indices, running from FIRST through LAST. */
7223
7224 void
7225 set_init_index (tree first, tree last,
7226 struct obstack * braced_init_obstack)
7227 {
7228 if (set_designator (1, braced_init_obstack))
7229 return;
7230
7231 designator_erroneous = 1;
7232
7233 if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
7234 || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
7235 {
7236 error_init ("array index in initializer not of integer type");
7237 return;
7238 }
7239
7240 if (TREE_CODE (first) != INTEGER_CST)
7241 {
7242 first = c_fully_fold (first, false, NULL);
7243 if (TREE_CODE (first) == INTEGER_CST)
7244 pedwarn_init (input_location, OPT_pedantic,
7245 "array index in initializer is not "
7246 "an integer constant expression");
7247 }
7248
7249 if (last && TREE_CODE (last) != INTEGER_CST)
7250 {
7251 last = c_fully_fold (last, false, NULL);
7252 if (TREE_CODE (last) == INTEGER_CST)
7253 pedwarn_init (input_location, OPT_pedantic,
7254 "array index in initializer is not "
7255 "an integer constant expression");
7256 }
7257
7258 if (TREE_CODE (first) != INTEGER_CST)
7259 error_init ("nonconstant array index in initializer");
7260 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
7261 error_init ("nonconstant array index in initializer");
7262 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
7263 error_init ("array index in non-array initializer");
7264 else if (tree_int_cst_sgn (first) == -1)
7265 error_init ("array index in initializer exceeds array bounds");
7266 else if (constructor_max_index
7267 && tree_int_cst_lt (constructor_max_index, first))
7268 error_init ("array index in initializer exceeds array bounds");
7269 else
7270 {
7271 constant_expression_warning (first);
7272 if (last)
7273 constant_expression_warning (last);
7274 constructor_index = convert (bitsizetype, first);
7275
7276 if (last)
7277 {
7278 if (tree_int_cst_equal (first, last))
7279 last = 0;
7280 else if (tree_int_cst_lt (last, first))
7281 {
7282 error_init ("empty index range in initializer");
7283 last = 0;
7284 }
7285 else
7286 {
7287 last = convert (bitsizetype, last);
7288 if (constructor_max_index != 0
7289 && tree_int_cst_lt (constructor_max_index, last))
7290 {
7291 error_init ("array index range in initializer exceeds array bounds");
7292 last = 0;
7293 }
7294 }
7295 }
7296
7297 designator_depth++;
7298 designator_erroneous = 0;
7299 if (constructor_range_stack || last)
7300 push_range_stack (last, braced_init_obstack);
7301 }
7302 }
7303
7304 /* Within a struct initializer, specify the next field to be initialized. */
7305
7306 void
7307 set_init_label (tree fieldname, struct obstack * braced_init_obstack)
7308 {
7309 tree field;
7310
7311 if (set_designator (0, braced_init_obstack))
7312 return;
7313
7314 designator_erroneous = 1;
7315
7316 if (TREE_CODE (constructor_type) != RECORD_TYPE
7317 && TREE_CODE (constructor_type) != UNION_TYPE)
7318 {
7319 error_init ("field name not in record or union initializer");
7320 return;
7321 }
7322
7323 field = lookup_field (constructor_type, fieldname);
7324
7325 if (field == 0)
7326 error ("unknown field %qE specified in initializer", fieldname);
7327 else
7328 do
7329 {
7330 constructor_fields = TREE_VALUE (field);
7331 designator_depth++;
7332 designator_erroneous = 0;
7333 if (constructor_range_stack)
7334 push_range_stack (NULL_TREE, braced_init_obstack);
7335 field = TREE_CHAIN (field);
7336 if (field)
7337 {
7338 if (set_designator (0, braced_init_obstack))
7339 return;
7340 }
7341 }
7342 while (field != NULL_TREE);
7343 }
7344 \f
7345 /* Add a new initializer to the tree of pending initializers. PURPOSE
7346 identifies the initializer, either array index or field in a structure.
7347 VALUE is the value of that index or field. If ORIGTYPE is not
7348 NULL_TREE, it is the original type of VALUE.
7349
7350 IMPLICIT is true if value comes from pop_init_level (1),
7351 the new initializer has been merged with the existing one
7352 and thus no warnings should be emitted about overriding an
7353 existing initializer. */
7354
7355 static void
7356 add_pending_init (tree purpose, tree value, tree origtype, bool implicit,
7357 struct obstack * braced_init_obstack)
7358 {
7359 struct init_node *p, **q, *r;
7360
7361 q = &constructor_pending_elts;
7362 p = 0;
7363
7364 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
7365 {
7366 while (*q != 0)
7367 {
7368 p = *q;
7369 if (tree_int_cst_lt (purpose, p->purpose))
7370 q = &p->left;
7371 else if (tree_int_cst_lt (p->purpose, purpose))
7372 q = &p->right;
7373 else
7374 {
7375 if (!implicit)
7376 {
7377 if (TREE_SIDE_EFFECTS (p->value))
7378 warning_init (0, "initialized field with side-effects overwritten");
7379 else if (warn_override_init)
7380 warning_init (OPT_Woverride_init, "initialized field overwritten");
7381 }
7382 p->value = value;
7383 p->origtype = origtype;
7384 return;
7385 }
7386 }
7387 }
7388 else
7389 {
7390 tree bitpos;
7391
7392 bitpos = bit_position (purpose);
7393 while (*q != NULL)
7394 {
7395 p = *q;
7396 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
7397 q = &p->left;
7398 else if (p->purpose != purpose)
7399 q = &p->right;
7400 else
7401 {
7402 if (!implicit)
7403 {
7404 if (TREE_SIDE_EFFECTS (p->value))
7405 warning_init (0, "initialized field with side-effects overwritten");
7406 else if (warn_override_init)
7407 warning_init (OPT_Woverride_init, "initialized field overwritten");
7408 }
7409 p->value = value;
7410 p->origtype = origtype;
7411 return;
7412 }
7413 }
7414 }
7415
7416 r = (struct init_node *) obstack_alloc (braced_init_obstack,
7417 sizeof (struct init_node));
7418 r->purpose = purpose;
7419 r->value = value;
7420 r->origtype = origtype;
7421
7422 *q = r;
7423 r->parent = p;
7424 r->left = 0;
7425 r->right = 0;
7426 r->balance = 0;
7427
7428 while (p)
7429 {
7430 struct init_node *s;
7431
7432 if (r == p->left)
7433 {
7434 if (p->balance == 0)
7435 p->balance = -1;
7436 else if (p->balance < 0)
7437 {
7438 if (r->balance < 0)
7439 {
7440 /* L rotation. */
7441 p->left = r->right;
7442 if (p->left)
7443 p->left->parent = p;
7444 r->right = p;
7445
7446 p->balance = 0;
7447 r->balance = 0;
7448
7449 s = p->parent;
7450 p->parent = r;
7451 r->parent = s;
7452 if (s)
7453 {
7454 if (s->left == p)
7455 s->left = r;
7456 else
7457 s->right = r;
7458 }
7459 else
7460 constructor_pending_elts = r;
7461 }
7462 else
7463 {
7464 /* LR rotation. */
7465 struct init_node *t = r->right;
7466
7467 r->right = t->left;
7468 if (r->right)
7469 r->right->parent = r;
7470 t->left = r;
7471
7472 p->left = t->right;
7473 if (p->left)
7474 p->left->parent = p;
7475 t->right = p;
7476
7477 p->balance = t->balance < 0;
7478 r->balance = -(t->balance > 0);
7479 t->balance = 0;
7480
7481 s = p->parent;
7482 p->parent = t;
7483 r->parent = t;
7484 t->parent = s;
7485 if (s)
7486 {
7487 if (s->left == p)
7488 s->left = t;
7489 else
7490 s->right = t;
7491 }
7492 else
7493 constructor_pending_elts = t;
7494 }
7495 break;
7496 }
7497 else
7498 {
7499 /* p->balance == +1; growth of left side balances the node. */
7500 p->balance = 0;
7501 break;
7502 }
7503 }
7504 else /* r == p->right */
7505 {
7506 if (p->balance == 0)
7507 /* Growth propagation from right side. */
7508 p->balance++;
7509 else if (p->balance > 0)
7510 {
7511 if (r->balance > 0)
7512 {
7513 /* R rotation. */
7514 p->right = r->left;
7515 if (p->right)
7516 p->right->parent = p;
7517 r->left = p;
7518
7519 p->balance = 0;
7520 r->balance = 0;
7521
7522 s = p->parent;
7523 p->parent = r;
7524 r->parent = s;
7525 if (s)
7526 {
7527 if (s->left == p)
7528 s->left = r;
7529 else
7530 s->right = r;
7531 }
7532 else
7533 constructor_pending_elts = r;
7534 }
7535 else /* r->balance == -1 */
7536 {
7537 /* RL rotation */
7538 struct init_node *t = r->left;
7539
7540 r->left = t->right;
7541 if (r->left)
7542 r->left->parent = r;
7543 t->right = r;
7544
7545 p->right = t->left;
7546 if (p->right)
7547 p->right->parent = p;
7548 t->left = p;
7549
7550 r->balance = (t->balance < 0);
7551 p->balance = -(t->balance > 0);
7552 t->balance = 0;
7553
7554 s = p->parent;
7555 p->parent = t;
7556 r->parent = t;
7557 t->parent = s;
7558 if (s)
7559 {
7560 if (s->left == p)
7561 s->left = t;
7562 else
7563 s->right = t;
7564 }
7565 else
7566 constructor_pending_elts = t;
7567 }
7568 break;
7569 }
7570 else
7571 {
7572 /* p->balance == -1; growth of right side balances the node. */
7573 p->balance = 0;
7574 break;
7575 }
7576 }
7577
7578 r = p;
7579 p = p->parent;
7580 }
7581 }
7582
7583 /* Build AVL tree from a sorted chain. */
7584
7585 static void
7586 set_nonincremental_init (struct obstack * braced_init_obstack)
7587 {
7588 unsigned HOST_WIDE_INT ix;
7589 tree index, value;
7590
7591 if (TREE_CODE (constructor_type) != RECORD_TYPE
7592 && TREE_CODE (constructor_type) != ARRAY_TYPE)
7593 return;
7594
7595 FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
7596 {
7597 add_pending_init (index, value, NULL_TREE, false,
7598 braced_init_obstack);
7599 }
7600 constructor_elements = 0;
7601 if (TREE_CODE (constructor_type) == RECORD_TYPE)
7602 {
7603 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
7604 /* Skip any nameless bit fields at the beginning. */
7605 while (constructor_unfilled_fields != 0
7606 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
7607 && DECL_NAME (constructor_unfilled_fields) == 0)
7608 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
7609
7610 }
7611 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
7612 {
7613 if (TYPE_DOMAIN (constructor_type))
7614 constructor_unfilled_index
7615 = convert (bitsizetype,
7616 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
7617 else
7618 constructor_unfilled_index = bitsize_zero_node;
7619 }
7620 constructor_incremental = 0;
7621 }
7622
7623 /* Build AVL tree from a string constant. */
7624
7625 static void
7626 set_nonincremental_init_from_string (tree str,
7627 struct obstack * braced_init_obstack)
7628 {
7629 tree value, purpose, type;
7630 HOST_WIDE_INT val[2];
7631 const char *p, *end;
7632 int byte, wchar_bytes, charwidth, bitpos;
7633
7634 gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
7635
7636 wchar_bytes = TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str))) / BITS_PER_UNIT;
7637 charwidth = TYPE_PRECISION (char_type_node);
7638 type = TREE_TYPE (constructor_type);
7639 p = TREE_STRING_POINTER (str);
7640 end = p + TREE_STRING_LENGTH (str);
7641
7642 for (purpose = bitsize_zero_node;
7643 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
7644 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
7645 {
7646 if (wchar_bytes == 1)
7647 {
7648 val[1] = (unsigned char) *p++;
7649 val[0] = 0;
7650 }
7651 else
7652 {
7653 val[0] = 0;
7654 val[1] = 0;
7655 for (byte = 0; byte < wchar_bytes; byte++)
7656 {
7657 if (BYTES_BIG_ENDIAN)
7658 bitpos = (wchar_bytes - byte - 1) * charwidth;
7659 else
7660 bitpos = byte * charwidth;
7661 val[bitpos < HOST_BITS_PER_WIDE_INT]
7662 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
7663 << (bitpos % HOST_BITS_PER_WIDE_INT);
7664 }
7665 }
7666
7667 if (!TYPE_UNSIGNED (type))
7668 {
7669 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
7670 if (bitpos < HOST_BITS_PER_WIDE_INT)
7671 {
7672 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
7673 {
7674 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
7675 val[0] = -1;
7676 }
7677 }
7678 else if (bitpos == HOST_BITS_PER_WIDE_INT)
7679 {
7680 if (val[1] < 0)
7681 val[0] = -1;
7682 }
7683 else if (val[0] & (((HOST_WIDE_INT) 1)
7684 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
7685 val[0] |= ((HOST_WIDE_INT) -1)
7686 << (bitpos - HOST_BITS_PER_WIDE_INT);
7687 }
7688
7689 value = build_int_cst_wide (type, val[1], val[0]);
7690 add_pending_init (purpose, value, NULL_TREE, false,
7691 braced_init_obstack);
7692 }
7693
7694 constructor_incremental = 0;
7695 }
7696
7697 /* Return value of FIELD in pending initializer or zero if the field was
7698 not initialized yet. */
7699
7700 static tree
7701 find_init_member (tree field, struct obstack * braced_init_obstack)
7702 {
7703 struct init_node *p;
7704
7705 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
7706 {
7707 if (constructor_incremental
7708 && tree_int_cst_lt (field, constructor_unfilled_index))
7709 set_nonincremental_init (braced_init_obstack);
7710
7711 p = constructor_pending_elts;
7712 while (p)
7713 {
7714 if (tree_int_cst_lt (field, p->purpose))
7715 p = p->left;
7716 else if (tree_int_cst_lt (p->purpose, field))
7717 p = p->right;
7718 else
7719 return p->value;
7720 }
7721 }
7722 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
7723 {
7724 tree bitpos = bit_position (field);
7725
7726 if (constructor_incremental
7727 && (!constructor_unfilled_fields
7728 || tree_int_cst_lt (bitpos,
7729 bit_position (constructor_unfilled_fields))))
7730 set_nonincremental_init (braced_init_obstack);
7731
7732 p = constructor_pending_elts;
7733 while (p)
7734 {
7735 if (field == p->purpose)
7736 return p->value;
7737 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
7738 p = p->left;
7739 else
7740 p = p->right;
7741 }
7742 }
7743 else if (TREE_CODE (constructor_type) == UNION_TYPE)
7744 {
7745 if (!VEC_empty (constructor_elt, constructor_elements)
7746 && (VEC_last (constructor_elt, constructor_elements)->index
7747 == field))
7748 return VEC_last (constructor_elt, constructor_elements)->value;
7749 }
7750 return 0;
7751 }
7752
7753 /* "Output" the next constructor element.
7754 At top level, really output it to assembler code now.
7755 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
7756 If ORIGTYPE is not NULL_TREE, it is the original type of VALUE.
7757 TYPE is the data type that the containing data type wants here.
7758 FIELD is the field (a FIELD_DECL) or the index that this element fills.
7759 If VALUE is a string constant, STRICT_STRING is true if it is
7760 unparenthesized or we should not warn here for it being parenthesized.
7761 For other types of VALUE, STRICT_STRING is not used.
7762
7763 PENDING if non-nil means output pending elements that belong
7764 right after this element. (PENDING is normally 1;
7765 it is 0 while outputting pending elements, to avoid recursion.)
7766
7767 IMPLICIT is true if value comes from pop_init_level (1),
7768 the new initializer has been merged with the existing one
7769 and thus no warnings should be emitted about overriding an
7770 existing initializer. */
7771
7772 static void
7773 output_init_element (tree value, tree origtype, bool strict_string, tree type,
7774 tree field, int pending, bool implicit,
7775 struct obstack * braced_init_obstack)
7776 {
7777 tree semantic_type = NULL_TREE;
7778 constructor_elt *celt;
7779 bool maybe_const = true;
7780 bool npc;
7781
7782 if (type == error_mark_node || value == error_mark_node)
7783 {
7784 constructor_erroneous = 1;
7785 return;
7786 }
7787 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
7788 && (TREE_CODE (value) == STRING_CST
7789 || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
7790 && !(TREE_CODE (value) == STRING_CST
7791 && TREE_CODE (type) == ARRAY_TYPE
7792 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
7793 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
7794 TYPE_MAIN_VARIANT (type)))
7795 value = array_to_pointer_conversion (input_location, value);
7796
7797 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
7798 && require_constant_value && !flag_isoc99 && pending)
7799 {
7800 /* As an extension, allow initializing objects with static storage
7801 duration with compound literals (which are then treated just as
7802 the brace enclosed list they contain). */
7803 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
7804 value = DECL_INITIAL (decl);
7805 }
7806
7807 npc = null_pointer_constant_p (value);
7808 if (TREE_CODE (value) == EXCESS_PRECISION_EXPR)
7809 {
7810 semantic_type = TREE_TYPE (value);
7811 value = TREE_OPERAND (value, 0);
7812 }
7813 value = c_fully_fold (value, require_constant_value, &maybe_const);
7814
7815 if (value == error_mark_node)
7816 constructor_erroneous = 1;
7817 else if (!TREE_CONSTANT (value))
7818 constructor_constant = 0;
7819 else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
7820 || ((TREE_CODE (constructor_type) == RECORD_TYPE
7821 || TREE_CODE (constructor_type) == UNION_TYPE)
7822 && DECL_C_BIT_FIELD (field)
7823 && TREE_CODE (value) != INTEGER_CST))
7824 constructor_simple = 0;
7825 if (!maybe_const)
7826 constructor_nonconst = 1;
7827
7828 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
7829 {
7830 if (require_constant_value)
7831 {
7832 error_init ("initializer element is not constant");
7833 value = error_mark_node;
7834 }
7835 else if (require_constant_elements)
7836 pedwarn (input_location, 0,
7837 "initializer element is not computable at load time");
7838 }
7839 else if (!maybe_const
7840 && (require_constant_value || require_constant_elements))
7841 pedwarn_init (input_location, 0,
7842 "initializer element is not a constant expression");
7843
7844 /* Issue -Wc++-compat warnings about initializing a bitfield with
7845 enum type. */
7846 if (warn_cxx_compat
7847 && field != NULL_TREE
7848 && TREE_CODE (field) == FIELD_DECL
7849 && DECL_BIT_FIELD_TYPE (field) != NULL_TREE
7850 && (TYPE_MAIN_VARIANT (DECL_BIT_FIELD_TYPE (field))
7851 != TYPE_MAIN_VARIANT (type))
7852 && TREE_CODE (DECL_BIT_FIELD_TYPE (field)) == ENUMERAL_TYPE)
7853 {
7854 tree checktype = origtype != NULL_TREE ? origtype : TREE_TYPE (value);
7855 if (checktype != error_mark_node
7856 && (TYPE_MAIN_VARIANT (checktype)
7857 != TYPE_MAIN_VARIANT (DECL_BIT_FIELD_TYPE (field))))
7858 warning_init (OPT_Wc___compat,
7859 "enum conversion in initialization is invalid in C++");
7860 }
7861
7862 /* If this field is empty (and not at the end of structure),
7863 don't do anything other than checking the initializer. */
7864 if (field
7865 && (TREE_TYPE (field) == error_mark_node
7866 || (COMPLETE_TYPE_P (TREE_TYPE (field))
7867 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
7868 && (TREE_CODE (constructor_type) == ARRAY_TYPE
7869 || DECL_CHAIN (field)))))
7870 return;
7871
7872 if (semantic_type)
7873 value = build1 (EXCESS_PRECISION_EXPR, semantic_type, value);
7874 value = digest_init (input_location, type, value, origtype, npc,
7875 strict_string, require_constant_value);
7876 if (value == error_mark_node)
7877 {
7878 constructor_erroneous = 1;
7879 return;
7880 }
7881 if (require_constant_value || require_constant_elements)
7882 constant_expression_warning (value);
7883
7884 /* If this element doesn't come next in sequence,
7885 put it on constructor_pending_elts. */
7886 if (TREE_CODE (constructor_type) == ARRAY_TYPE
7887 && (!constructor_incremental
7888 || !tree_int_cst_equal (field, constructor_unfilled_index)))
7889 {
7890 if (constructor_incremental
7891 && tree_int_cst_lt (field, constructor_unfilled_index))
7892 set_nonincremental_init (braced_init_obstack);
7893
7894 add_pending_init (field, value, origtype, implicit,
7895 braced_init_obstack);
7896 return;
7897 }
7898 else if (TREE_CODE (constructor_type) == RECORD_TYPE
7899 && (!constructor_incremental
7900 || field != constructor_unfilled_fields))
7901 {
7902 /* We do this for records but not for unions. In a union,
7903 no matter which field is specified, it can be initialized
7904 right away since it starts at the beginning of the union. */
7905 if (constructor_incremental)
7906 {
7907 if (!constructor_unfilled_fields)
7908 set_nonincremental_init (braced_init_obstack);
7909 else
7910 {
7911 tree bitpos, unfillpos;
7912
7913 bitpos = bit_position (field);
7914 unfillpos = bit_position (constructor_unfilled_fields);
7915
7916 if (tree_int_cst_lt (bitpos, unfillpos))
7917 set_nonincremental_init (braced_init_obstack);
7918 }
7919 }
7920
7921 add_pending_init (field, value, origtype, implicit,
7922 braced_init_obstack);
7923 return;
7924 }
7925 else if (TREE_CODE (constructor_type) == UNION_TYPE
7926 && !VEC_empty (constructor_elt, constructor_elements))
7927 {
7928 if (!implicit)
7929 {
7930 if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
7931 constructor_elements)->value))
7932 warning_init (0,
7933 "initialized field with side-effects overwritten");
7934 else if (warn_override_init)
7935 warning_init (OPT_Woverride_init, "initialized field overwritten");
7936 }
7937
7938 /* We can have just one union field set. */
7939 constructor_elements = 0;
7940 }
7941
7942 /* Otherwise, output this element either to
7943 constructor_elements or to the assembler file. */
7944
7945 celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
7946 celt->index = field;
7947 celt->value = value;
7948
7949 /* Advance the variable that indicates sequential elements output. */
7950 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
7951 constructor_unfilled_index
7952 = size_binop_loc (input_location, PLUS_EXPR, constructor_unfilled_index,
7953 bitsize_one_node);
7954 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
7955 {
7956 constructor_unfilled_fields
7957 = DECL_CHAIN (constructor_unfilled_fields);
7958
7959 /* Skip any nameless bit fields. */
7960 while (constructor_unfilled_fields != 0
7961 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
7962 && DECL_NAME (constructor_unfilled_fields) == 0)
7963 constructor_unfilled_fields =
7964 DECL_CHAIN (constructor_unfilled_fields);
7965 }
7966 else if (TREE_CODE (constructor_type) == UNION_TYPE)
7967 constructor_unfilled_fields = 0;
7968
7969 /* Now output any pending elements which have become next. */
7970 if (pending)
7971 output_pending_init_elements (0, braced_init_obstack);
7972 }
7973
7974 /* Output any pending elements which have become next.
7975 As we output elements, constructor_unfilled_{fields,index}
7976 advances, which may cause other elements to become next;
7977 if so, they too are output.
7978
7979 If ALL is 0, we return when there are
7980 no more pending elements to output now.
7981
7982 If ALL is 1, we output space as necessary so that
7983 we can output all the pending elements. */
7984 static void
7985 output_pending_init_elements (int all, struct obstack * braced_init_obstack)
7986 {
7987 struct init_node *elt = constructor_pending_elts;
7988 tree next;
7989
7990 retry:
7991
7992 /* Look through the whole pending tree.
7993 If we find an element that should be output now,
7994 output it. Otherwise, set NEXT to the element
7995 that comes first among those still pending. */
7996
7997 next = 0;
7998 while (elt)
7999 {
8000 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
8001 {
8002 if (tree_int_cst_equal (elt->purpose,
8003 constructor_unfilled_index))
8004 output_init_element (elt->value, elt->origtype, true,
8005 TREE_TYPE (constructor_type),
8006 constructor_unfilled_index, 0, false,
8007 braced_init_obstack);
8008 else if (tree_int_cst_lt (constructor_unfilled_index,
8009 elt->purpose))
8010 {
8011 /* Advance to the next smaller node. */
8012 if (elt->left)
8013 elt = elt->left;
8014 else
8015 {
8016 /* We have reached the smallest node bigger than the
8017 current unfilled index. Fill the space first. */
8018 next = elt->purpose;
8019 break;
8020 }
8021 }
8022 else
8023 {
8024 /* Advance to the next bigger node. */
8025 if (elt->right)
8026 elt = elt->right;
8027 else
8028 {
8029 /* We have reached the biggest node in a subtree. Find
8030 the parent of it, which is the next bigger node. */
8031 while (elt->parent && elt->parent->right == elt)
8032 elt = elt->parent;
8033 elt = elt->parent;
8034 if (elt && tree_int_cst_lt (constructor_unfilled_index,
8035 elt->purpose))
8036 {
8037 next = elt->purpose;
8038 break;
8039 }
8040 }
8041 }
8042 }
8043 else if (TREE_CODE (constructor_type) == RECORD_TYPE
8044 || TREE_CODE (constructor_type) == UNION_TYPE)
8045 {
8046 tree ctor_unfilled_bitpos, elt_bitpos;
8047
8048 /* If the current record is complete we are done. */
8049 if (constructor_unfilled_fields == 0)
8050 break;
8051
8052 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
8053 elt_bitpos = bit_position (elt->purpose);
8054 /* We can't compare fields here because there might be empty
8055 fields in between. */
8056 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
8057 {
8058 constructor_unfilled_fields = elt->purpose;
8059 output_init_element (elt->value, elt->origtype, true,
8060 TREE_TYPE (elt->purpose),
8061 elt->purpose, 0, false,
8062 braced_init_obstack);
8063 }
8064 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
8065 {
8066 /* Advance to the next smaller node. */
8067 if (elt->left)
8068 elt = elt->left;
8069 else
8070 {
8071 /* We have reached the smallest node bigger than the
8072 current unfilled field. Fill the space first. */
8073 next = elt->purpose;
8074 break;
8075 }
8076 }
8077 else
8078 {
8079 /* Advance to the next bigger node. */
8080 if (elt->right)
8081 elt = elt->right;
8082 else
8083 {
8084 /* We have reached the biggest node in a subtree. Find
8085 the parent of it, which is the next bigger node. */
8086 while (elt->parent && elt->parent->right == elt)
8087 elt = elt->parent;
8088 elt = elt->parent;
8089 if (elt
8090 && (tree_int_cst_lt (ctor_unfilled_bitpos,
8091 bit_position (elt->purpose))))
8092 {
8093 next = elt->purpose;
8094 break;
8095 }
8096 }
8097 }
8098 }
8099 }
8100
8101 /* Ordinarily return, but not if we want to output all
8102 and there are elements left. */
8103 if (!(all && next != 0))
8104 return;
8105
8106 /* If it's not incremental, just skip over the gap, so that after
8107 jumping to retry we will output the next successive element. */
8108 if (TREE_CODE (constructor_type) == RECORD_TYPE
8109 || TREE_CODE (constructor_type) == UNION_TYPE)
8110 constructor_unfilled_fields = next;
8111 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
8112 constructor_unfilled_index = next;
8113
8114 /* ELT now points to the node in the pending tree with the next
8115 initializer to output. */
8116 goto retry;
8117 }
8118 \f
8119 /* Add one non-braced element to the current constructor level.
8120 This adjusts the current position within the constructor's type.
8121 This may also start or terminate implicit levels
8122 to handle a partly-braced initializer.
8123
8124 Once this has found the correct level for the new element,
8125 it calls output_init_element.
8126
8127 IMPLICIT is true if value comes from pop_init_level (1),
8128 the new initializer has been merged with the existing one
8129 and thus no warnings should be emitted about overriding an
8130 existing initializer. */
8131
8132 void
8133 process_init_element (struct c_expr value, bool implicit,
8134 struct obstack * braced_init_obstack)
8135 {
8136 tree orig_value = value.value;
8137 int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
8138 bool strict_string = value.original_code == STRING_CST;
8139
8140 designator_depth = 0;
8141 designator_erroneous = 0;
8142
8143 /* Handle superfluous braces around string cst as in
8144 char x[] = {"foo"}; */
8145 if (string_flag
8146 && constructor_type
8147 && TREE_CODE (constructor_type) == ARRAY_TYPE
8148 && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
8149 && integer_zerop (constructor_unfilled_index))
8150 {
8151 if (constructor_stack->replacement_value.value)
8152 error_init ("excess elements in char array initializer");
8153 constructor_stack->replacement_value = value;
8154 return;
8155 }
8156
8157 if (constructor_stack->replacement_value.value != 0)
8158 {
8159 error_init ("excess elements in struct initializer");
8160 return;
8161 }
8162
8163 /* Ignore elements of a brace group if it is entirely superfluous
8164 and has already been diagnosed. */
8165 if (constructor_type == 0)
8166 return;
8167
8168 /* If we've exhausted any levels that didn't have braces,
8169 pop them now. */
8170 while (constructor_stack->implicit)
8171 {
8172 if ((TREE_CODE (constructor_type) == RECORD_TYPE
8173 || TREE_CODE (constructor_type) == UNION_TYPE)
8174 && constructor_fields == 0)
8175 process_init_element (pop_init_level (1, braced_init_obstack),
8176 true, braced_init_obstack);
8177 else if ((TREE_CODE (constructor_type) == ARRAY_TYPE
8178 || TREE_CODE (constructor_type) == VECTOR_TYPE)
8179 && (constructor_max_index == 0
8180 || tree_int_cst_lt (constructor_max_index,
8181 constructor_index)))
8182 process_init_element (pop_init_level (1, braced_init_obstack),
8183 true, braced_init_obstack);
8184 else
8185 break;
8186 }
8187
8188 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
8189 if (constructor_range_stack)
8190 {
8191 /* If value is a compound literal and we'll be just using its
8192 content, don't put it into a SAVE_EXPR. */
8193 if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
8194 || !require_constant_value
8195 || flag_isoc99)
8196 {
8197 tree semantic_type = NULL_TREE;
8198 if (TREE_CODE (value.value) == EXCESS_PRECISION_EXPR)
8199 {
8200 semantic_type = TREE_TYPE (value.value);
8201 value.value = TREE_OPERAND (value.value, 0);
8202 }
8203 value.value = c_save_expr (value.value);
8204 if (semantic_type)
8205 value.value = build1 (EXCESS_PRECISION_EXPR, semantic_type,
8206 value.value);
8207 }
8208 }
8209
8210 while (1)
8211 {
8212 if (TREE_CODE (constructor_type) == RECORD_TYPE)
8213 {
8214 tree fieldtype;
8215 enum tree_code fieldcode;
8216
8217 if (constructor_fields == 0)
8218 {
8219 pedwarn_init (input_location, 0,
8220 "excess elements in struct initializer");
8221 break;
8222 }
8223
8224 fieldtype = TREE_TYPE (constructor_fields);
8225 if (fieldtype != error_mark_node)
8226 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
8227 fieldcode = TREE_CODE (fieldtype);
8228
8229 /* Error for non-static initialization of a flexible array member. */
8230 if (fieldcode == ARRAY_TYPE
8231 && !require_constant_value
8232 && TYPE_SIZE (fieldtype) == NULL_TREE
8233 && DECL_CHAIN (constructor_fields) == NULL_TREE)
8234 {
8235 error_init ("non-static initialization of a flexible array member");
8236 break;
8237 }
8238
8239 /* Accept a string constant to initialize a subarray. */
8240 if (value.value != 0
8241 && fieldcode == ARRAY_TYPE
8242 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
8243 && string_flag)
8244 value.value = orig_value;
8245 /* Otherwise, if we have come to a subaggregate,
8246 and we don't have an element of its type, push into it. */
8247 else if (value.value != 0
8248 && value.value != error_mark_node
8249 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
8250 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
8251 || fieldcode == UNION_TYPE || fieldcode == VECTOR_TYPE))
8252 {
8253 push_init_level (1, braced_init_obstack);
8254 continue;
8255 }
8256
8257 if (value.value)
8258 {
8259 push_member_name (constructor_fields);
8260 output_init_element (value.value, value.original_type,
8261 strict_string, fieldtype,
8262 constructor_fields, 1, implicit,
8263 braced_init_obstack);
8264 RESTORE_SPELLING_DEPTH (constructor_depth);
8265 }
8266 else
8267 /* Do the bookkeeping for an element that was
8268 directly output as a constructor. */
8269 {
8270 /* For a record, keep track of end position of last field. */
8271 if (DECL_SIZE (constructor_fields))
8272 constructor_bit_index
8273 = size_binop_loc (input_location, PLUS_EXPR,
8274 bit_position (constructor_fields),
8275 DECL_SIZE (constructor_fields));
8276
8277 /* If the current field was the first one not yet written out,
8278 it isn't now, so update. */
8279 if (constructor_unfilled_fields == constructor_fields)
8280 {
8281 constructor_unfilled_fields = DECL_CHAIN (constructor_fields);
8282 /* Skip any nameless bit fields. */
8283 while (constructor_unfilled_fields != 0
8284 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
8285 && DECL_NAME (constructor_unfilled_fields) == 0)
8286 constructor_unfilled_fields =
8287 DECL_CHAIN (constructor_unfilled_fields);
8288 }
8289 }
8290
8291 constructor_fields = DECL_CHAIN (constructor_fields);
8292 /* Skip any nameless bit fields at the beginning. */
8293 while (constructor_fields != 0
8294 && DECL_C_BIT_FIELD (constructor_fields)
8295 && DECL_NAME (constructor_fields) == 0)
8296 constructor_fields = DECL_CHAIN (constructor_fields);
8297 }
8298 else if (TREE_CODE (constructor_type) == UNION_TYPE)
8299 {
8300 tree fieldtype;
8301 enum tree_code fieldcode;
8302
8303 if (constructor_fields == 0)
8304 {
8305 pedwarn_init (input_location, 0,
8306 "excess elements in union initializer");
8307 break;
8308 }
8309
8310 fieldtype = TREE_TYPE (constructor_fields);
8311 if (fieldtype != error_mark_node)
8312 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
8313 fieldcode = TREE_CODE (fieldtype);
8314
8315 /* Warn that traditional C rejects initialization of unions.
8316 We skip the warning if the value is zero. This is done
8317 under the assumption that the zero initializer in user
8318 code appears conditioned on e.g. __STDC__ to avoid
8319 "missing initializer" warnings and relies on default
8320 initialization to zero in the traditional C case.
8321 We also skip the warning if the initializer is designated,
8322 again on the assumption that this must be conditional on
8323 __STDC__ anyway (and we've already complained about the
8324 member-designator already). */
8325 if (!in_system_header && !constructor_designated
8326 && !(value.value && (integer_zerop (value.value)
8327 || real_zerop (value.value))))
8328 warning (OPT_Wtraditional, "traditional C rejects initialization "
8329 "of unions");
8330
8331 /* Accept a string constant to initialize a subarray. */
8332 if (value.value != 0
8333 && fieldcode == ARRAY_TYPE
8334 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
8335 && string_flag)
8336 value.value = orig_value;
8337 /* Otherwise, if we have come to a subaggregate,
8338 and we don't have an element of its type, push into it. */
8339 else if (value.value != 0
8340 && value.value != error_mark_node
8341 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
8342 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
8343 || fieldcode == UNION_TYPE || fieldcode == VECTOR_TYPE))
8344 {
8345 push_init_level (1, braced_init_obstack);
8346 continue;
8347 }
8348
8349 if (value.value)
8350 {
8351 push_member_name (constructor_fields);
8352 output_init_element (value.value, value.original_type,
8353 strict_string, fieldtype,
8354 constructor_fields, 1, implicit,
8355 braced_init_obstack);
8356 RESTORE_SPELLING_DEPTH (constructor_depth);
8357 }
8358 else
8359 /* Do the bookkeeping for an element that was
8360 directly output as a constructor. */
8361 {
8362 constructor_bit_index = DECL_SIZE (constructor_fields);
8363 constructor_unfilled_fields = DECL_CHAIN (constructor_fields);
8364 }
8365
8366 constructor_fields = 0;
8367 }
8368 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
8369 {
8370 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
8371 enum tree_code eltcode = TREE_CODE (elttype);
8372
8373 /* Accept a string constant to initialize a subarray. */
8374 if (value.value != 0
8375 && eltcode == ARRAY_TYPE
8376 && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
8377 && string_flag)
8378 value.value = orig_value;
8379 /* Otherwise, if we have come to a subaggregate,
8380 and we don't have an element of its type, push into it. */
8381 else if (value.value != 0
8382 && value.value != error_mark_node
8383 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
8384 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
8385 || eltcode == UNION_TYPE || eltcode == VECTOR_TYPE))
8386 {
8387 push_init_level (1, braced_init_obstack);
8388 continue;
8389 }
8390
8391 if (constructor_max_index != 0
8392 && (tree_int_cst_lt (constructor_max_index, constructor_index)
8393 || integer_all_onesp (constructor_max_index)))
8394 {
8395 pedwarn_init (input_location, 0,
8396 "excess elements in array initializer");
8397 break;
8398 }
8399
8400 /* Now output the actual element. */
8401 if (value.value)
8402 {
8403 push_array_bounds (tree_low_cst (constructor_index, 1));
8404 output_init_element (value.value, value.original_type,
8405 strict_string, elttype,
8406 constructor_index, 1, implicit,
8407 braced_init_obstack);
8408 RESTORE_SPELLING_DEPTH (constructor_depth);
8409 }
8410
8411 constructor_index
8412 = size_binop_loc (input_location, PLUS_EXPR,
8413 constructor_index, bitsize_one_node);
8414
8415 if (!value.value)
8416 /* If we are doing the bookkeeping for an element that was
8417 directly output as a constructor, we must update
8418 constructor_unfilled_index. */
8419 constructor_unfilled_index = constructor_index;
8420 }
8421 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
8422 {
8423 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
8424
8425 /* Do a basic check of initializer size. Note that vectors
8426 always have a fixed size derived from their type. */
8427 if (tree_int_cst_lt (constructor_max_index, constructor_index))
8428 {
8429 pedwarn_init (input_location, 0,
8430 "excess elements in vector initializer");
8431 break;
8432 }
8433
8434 /* Now output the actual element. */
8435 if (value.value)
8436 {
8437 if (TREE_CODE (value.value) == VECTOR_CST)
8438 elttype = TYPE_MAIN_VARIANT (constructor_type);
8439 output_init_element (value.value, value.original_type,
8440 strict_string, elttype,
8441 constructor_index, 1, implicit,
8442 braced_init_obstack);
8443 }
8444
8445 constructor_index
8446 = size_binop_loc (input_location,
8447 PLUS_EXPR, constructor_index, bitsize_one_node);
8448
8449 if (!value.value)
8450 /* If we are doing the bookkeeping for an element that was
8451 directly output as a constructor, we must update
8452 constructor_unfilled_index. */
8453 constructor_unfilled_index = constructor_index;
8454 }
8455
8456 /* Handle the sole element allowed in a braced initializer
8457 for a scalar variable. */
8458 else if (constructor_type != error_mark_node
8459 && constructor_fields == 0)
8460 {
8461 pedwarn_init (input_location, 0,
8462 "excess elements in scalar initializer");
8463 break;
8464 }
8465 else
8466 {
8467 if (value.value)
8468 output_init_element (value.value, value.original_type,
8469 strict_string, constructor_type,
8470 NULL_TREE, 1, implicit,
8471 braced_init_obstack);
8472 constructor_fields = 0;
8473 }
8474
8475 /* Handle range initializers either at this level or anywhere higher
8476 in the designator stack. */
8477 if (constructor_range_stack)
8478 {
8479 struct constructor_range_stack *p, *range_stack;
8480 int finish = 0;
8481
8482 range_stack = constructor_range_stack;
8483 constructor_range_stack = 0;
8484 while (constructor_stack != range_stack->stack)
8485 {
8486 gcc_assert (constructor_stack->implicit);
8487 process_init_element (pop_init_level (1,
8488 braced_init_obstack),
8489 true, braced_init_obstack);
8490 }
8491 for (p = range_stack;
8492 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
8493 p = p->prev)
8494 {
8495 gcc_assert (constructor_stack->implicit);
8496 process_init_element (pop_init_level (1, braced_init_obstack),
8497 true, braced_init_obstack);
8498 }
8499
8500 p->index = size_binop_loc (input_location,
8501 PLUS_EXPR, p->index, bitsize_one_node);
8502 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
8503 finish = 1;
8504
8505 while (1)
8506 {
8507 constructor_index = p->index;
8508 constructor_fields = p->fields;
8509 if (finish && p->range_end && p->index == p->range_start)
8510 {
8511 finish = 0;
8512 p->prev = 0;
8513 }
8514 p = p->next;
8515 if (!p)
8516 break;
8517 push_init_level (2, braced_init_obstack);
8518 p->stack = constructor_stack;
8519 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
8520 p->index = p->range_start;
8521 }
8522
8523 if (!finish)
8524 constructor_range_stack = range_stack;
8525 continue;
8526 }
8527
8528 break;
8529 }
8530
8531 constructor_range_stack = 0;
8532 }
8533 \f
8534 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
8535 (guaranteed to be 'volatile' or null) and ARGS (represented using
8536 an ASM_EXPR node). */
8537 tree
8538 build_asm_stmt (tree cv_qualifier, tree args)
8539 {
8540 if (!ASM_VOLATILE_P (args) && cv_qualifier)
8541 ASM_VOLATILE_P (args) = 1;
8542 return add_stmt (args);
8543 }
8544
8545 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
8546 some INPUTS, and some CLOBBERS. The latter three may be NULL.
8547 SIMPLE indicates whether there was anything at all after the
8548 string in the asm expression -- asm("blah") and asm("blah" : )
8549 are subtly different. We use a ASM_EXPR node to represent this. */
8550 tree
8551 build_asm_expr (location_t loc, tree string, tree outputs, tree inputs,
8552 tree clobbers, tree labels, bool simple)
8553 {
8554 tree tail;
8555 tree args;
8556 int i;
8557 const char *constraint;
8558 const char **oconstraints;
8559 bool allows_mem, allows_reg, is_inout;
8560 int ninputs, noutputs;
8561
8562 ninputs = list_length (inputs);
8563 noutputs = list_length (outputs);
8564 oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
8565
8566 string = resolve_asm_operand_names (string, outputs, inputs, labels);
8567
8568 /* Remove output conversions that change the type but not the mode. */
8569 for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
8570 {
8571 tree output = TREE_VALUE (tail);
8572
8573 /* ??? Really, this should not be here. Users should be using a
8574 proper lvalue, dammit. But there's a long history of using casts
8575 in the output operands. In cases like longlong.h, this becomes a
8576 primitive form of typechecking -- if the cast can be removed, then
8577 the output operand had a type of the proper width; otherwise we'll
8578 get an error. Gross, but ... */
8579 STRIP_NOPS (output);
8580
8581 if (!lvalue_or_else (loc, output, lv_asm))
8582 output = error_mark_node;
8583
8584 if (output != error_mark_node
8585 && (TREE_READONLY (output)
8586 || TYPE_READONLY (TREE_TYPE (output))
8587 || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
8588 || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
8589 && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
8590 readonly_error (output, lv_asm);
8591
8592 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
8593 oconstraints[i] = constraint;
8594
8595 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
8596 &allows_mem, &allows_reg, &is_inout))
8597 {
8598 /* If the operand is going to end up in memory,
8599 mark it addressable. */
8600 if (!allows_reg && !c_mark_addressable (output))
8601 output = error_mark_node;
8602 if (!(!allows_reg && allows_mem)
8603 && output != error_mark_node
8604 && VOID_TYPE_P (TREE_TYPE (output)))
8605 {
8606 error_at (loc, "invalid use of void expression");
8607 output = error_mark_node;
8608 }
8609 }
8610 else
8611 output = error_mark_node;
8612
8613 TREE_VALUE (tail) = output;
8614 }
8615
8616 for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
8617 {
8618 tree input;
8619
8620 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
8621 input = TREE_VALUE (tail);
8622
8623 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
8624 oconstraints, &allows_mem, &allows_reg))
8625 {
8626 /* If the operand is going to end up in memory,
8627 mark it addressable. */
8628 if (!allows_reg && allows_mem)
8629 {
8630 /* Strip the nops as we allow this case. FIXME, this really
8631 should be rejected or made deprecated. */
8632 STRIP_NOPS (input);
8633 if (!c_mark_addressable (input))
8634 input = error_mark_node;
8635 }
8636 else if (input != error_mark_node && VOID_TYPE_P (TREE_TYPE (input)))
8637 {
8638 error_at (loc, "invalid use of void expression");
8639 input = error_mark_node;
8640 }
8641 }
8642 else
8643 input = error_mark_node;
8644
8645 TREE_VALUE (tail) = input;
8646 }
8647
8648 /* ASMs with labels cannot have outputs. This should have been
8649 enforced by the parser. */
8650 gcc_assert (outputs == NULL || labels == NULL);
8651
8652 args = build_stmt (loc, ASM_EXPR, string, outputs, inputs, clobbers, labels);
8653
8654 /* asm statements without outputs, including simple ones, are treated
8655 as volatile. */
8656 ASM_INPUT_P (args) = simple;
8657 ASM_VOLATILE_P (args) = (noutputs == 0);
8658
8659 return args;
8660 }
8661 \f
8662 /* Generate a goto statement to LABEL. LOC is the location of the
8663 GOTO. */
8664
8665 tree
8666 c_finish_goto_label (location_t loc, tree label)
8667 {
8668 tree decl = lookup_label_for_goto (loc, label);
8669 if (!decl)
8670 return NULL_TREE;
8671 TREE_USED (decl) = 1;
8672 {
8673 tree t = build1 (GOTO_EXPR, void_type_node, decl);
8674 SET_EXPR_LOCATION (t, loc);
8675 return add_stmt (t);
8676 }
8677 }
8678
8679 /* Generate a computed goto statement to EXPR. LOC is the location of
8680 the GOTO. */
8681
8682 tree
8683 c_finish_goto_ptr (location_t loc, tree expr)
8684 {
8685 tree t;
8686 pedwarn (loc, OPT_pedantic, "ISO C forbids %<goto *expr;%>");
8687 expr = c_fully_fold (expr, false, NULL);
8688 expr = convert (ptr_type_node, expr);
8689 t = build1 (GOTO_EXPR, void_type_node, expr);
8690 SET_EXPR_LOCATION (t, loc);
8691 return add_stmt (t);
8692 }
8693
8694 /* Generate a C `return' statement. RETVAL is the expression for what
8695 to return, or a null pointer for `return;' with no value. LOC is
8696 the location of the return statement. If ORIGTYPE is not NULL_TREE, it
8697 is the original type of RETVAL. */
8698
8699 tree
8700 c_finish_return (location_t loc, tree retval, tree origtype)
8701 {
8702 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
8703 bool no_warning = false;
8704 bool npc = false;
8705
8706 if (TREE_THIS_VOLATILE (current_function_decl))
8707 warning_at (loc, 0,
8708 "function declared %<noreturn%> has a %<return%> statement");
8709
8710 if (retval)
8711 {
8712 tree semantic_type = NULL_TREE;
8713 npc = null_pointer_constant_p (retval);
8714 if (TREE_CODE (retval) == EXCESS_PRECISION_EXPR)
8715 {
8716 semantic_type = TREE_TYPE (retval);
8717 retval = TREE_OPERAND (retval, 0);
8718 }
8719 retval = c_fully_fold (retval, false, NULL);
8720 if (semantic_type)
8721 retval = build1 (EXCESS_PRECISION_EXPR, semantic_type, retval);
8722 }
8723
8724 if (!retval)
8725 {
8726 current_function_returns_null = 1;
8727 if ((warn_return_type || flag_isoc99)
8728 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
8729 {
8730 pedwarn_c99 (loc, flag_isoc99 ? 0 : OPT_Wreturn_type,
8731 "%<return%> with no value, in "
8732 "function returning non-void");
8733 no_warning = true;
8734 }
8735 }
8736 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
8737 {
8738 current_function_returns_null = 1;
8739 if (TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
8740 pedwarn (loc, 0,
8741 "%<return%> with a value, in function returning void");
8742 else
8743 pedwarn (loc, OPT_pedantic, "ISO C forbids "
8744 "%<return%> with expression, in function returning void");
8745 }
8746 else
8747 {
8748 tree t = convert_for_assignment (loc, valtype, retval, origtype,
8749 ic_return,
8750 npc, NULL_TREE, NULL_TREE, 0);
8751 tree res = DECL_RESULT (current_function_decl);
8752 tree inner;
8753
8754 current_function_returns_value = 1;
8755 if (t == error_mark_node)
8756 return NULL_TREE;
8757
8758 inner = t = convert (TREE_TYPE (res), t);
8759
8760 /* Strip any conversions, additions, and subtractions, and see if
8761 we are returning the address of a local variable. Warn if so. */
8762 while (1)
8763 {
8764 switch (TREE_CODE (inner))
8765 {
8766 CASE_CONVERT:
8767 case NON_LVALUE_EXPR:
8768 case PLUS_EXPR:
8769 case POINTER_PLUS_EXPR:
8770 inner = TREE_OPERAND (inner, 0);
8771 continue;
8772
8773 case MINUS_EXPR:
8774 /* If the second operand of the MINUS_EXPR has a pointer
8775 type (or is converted from it), this may be valid, so
8776 don't give a warning. */
8777 {
8778 tree op1 = TREE_OPERAND (inner, 1);
8779
8780 while (!POINTER_TYPE_P (TREE_TYPE (op1))
8781 && (CONVERT_EXPR_P (op1)
8782 || TREE_CODE (op1) == NON_LVALUE_EXPR))
8783 op1 = TREE_OPERAND (op1, 0);
8784
8785 if (POINTER_TYPE_P (TREE_TYPE (op1)))
8786 break;
8787
8788 inner = TREE_OPERAND (inner, 0);
8789 continue;
8790 }
8791
8792 case ADDR_EXPR:
8793 inner = TREE_OPERAND (inner, 0);
8794
8795 while (REFERENCE_CLASS_P (inner)
8796 && TREE_CODE (inner) != INDIRECT_REF)
8797 inner = TREE_OPERAND (inner, 0);
8798
8799 if (DECL_P (inner)
8800 && !DECL_EXTERNAL (inner)
8801 && !TREE_STATIC (inner)
8802 && DECL_CONTEXT (inner) == current_function_decl)
8803 warning_at (loc,
8804 0, "function returns address of local variable");
8805 break;
8806
8807 default:
8808 break;
8809 }
8810
8811 break;
8812 }
8813
8814 retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
8815 SET_EXPR_LOCATION (retval, loc);
8816
8817 if (warn_sequence_point)
8818 verify_sequence_points (retval);
8819 }
8820
8821 ret_stmt = build_stmt (loc, RETURN_EXPR, retval);
8822 TREE_NO_WARNING (ret_stmt) |= no_warning;
8823 return add_stmt (ret_stmt);
8824 }
8825 \f
8826 struct c_switch {
8827 /* The SWITCH_EXPR being built. */
8828 tree switch_expr;
8829
8830 /* The original type of the testing expression, i.e. before the
8831 default conversion is applied. */
8832 tree orig_type;
8833
8834 /* A splay-tree mapping the low element of a case range to the high
8835 element, or NULL_TREE if there is no high element. Used to
8836 determine whether or not a new case label duplicates an old case
8837 label. We need a tree, rather than simply a hash table, because
8838 of the GNU case range extension. */
8839 splay_tree cases;
8840
8841 /* The bindings at the point of the switch. This is used for
8842 warnings crossing decls when branching to a case label. */
8843 struct c_spot_bindings *bindings;
8844
8845 /* The next node on the stack. */
8846 struct c_switch *next;
8847 };
8848
8849 /* A stack of the currently active switch statements. The innermost
8850 switch statement is on the top of the stack. There is no need to
8851 mark the stack for garbage collection because it is only active
8852 during the processing of the body of a function, and we never
8853 collect at that point. */
8854
8855 struct c_switch *c_switch_stack;
8856
8857 /* Start a C switch statement, testing expression EXP. Return the new
8858 SWITCH_EXPR. SWITCH_LOC is the location of the `switch'.
8859 SWITCH_COND_LOC is the location of the switch's condition. */
8860
8861 tree
8862 c_start_case (location_t switch_loc,
8863 location_t switch_cond_loc,
8864 tree exp)
8865 {
8866 tree orig_type = error_mark_node;
8867 struct c_switch *cs;
8868
8869 if (exp != error_mark_node)
8870 {
8871 orig_type = TREE_TYPE (exp);
8872
8873 if (!INTEGRAL_TYPE_P (orig_type))
8874 {
8875 if (orig_type != error_mark_node)
8876 {
8877 error_at (switch_cond_loc, "switch quantity not an integer");
8878 orig_type = error_mark_node;
8879 }
8880 exp = integer_zero_node;
8881 }
8882 else
8883 {
8884 tree type = TYPE_MAIN_VARIANT (orig_type);
8885
8886 if (!in_system_header
8887 && (type == long_integer_type_node
8888 || type == long_unsigned_type_node))
8889 warning_at (switch_cond_loc,
8890 OPT_Wtraditional, "%<long%> switch expression not "
8891 "converted to %<int%> in ISO C");
8892
8893 exp = c_fully_fold (exp, false, NULL);
8894 exp = default_conversion (exp);
8895
8896 if (warn_sequence_point)
8897 verify_sequence_points (exp);
8898 }
8899 }
8900
8901 /* Add this new SWITCH_EXPR to the stack. */
8902 cs = XNEW (struct c_switch);
8903 cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
8904 SET_EXPR_LOCATION (cs->switch_expr, switch_loc);
8905 cs->orig_type = orig_type;
8906 cs->cases = splay_tree_new (case_compare, NULL, NULL);
8907 cs->bindings = c_get_switch_bindings ();
8908 cs->next = c_switch_stack;
8909 c_switch_stack = cs;
8910
8911 return add_stmt (cs->switch_expr);
8912 }
8913
8914 /* Process a case label at location LOC. */
8915
8916 tree
8917 do_case (location_t loc, tree low_value, tree high_value)
8918 {
8919 tree label = NULL_TREE;
8920
8921 if (low_value && TREE_CODE (low_value) != INTEGER_CST)
8922 {
8923 low_value = c_fully_fold (low_value, false, NULL);
8924 if (TREE_CODE (low_value) == INTEGER_CST)
8925 pedwarn (input_location, OPT_pedantic,
8926 "case label is not an integer constant expression");
8927 }
8928
8929 if (high_value && TREE_CODE (high_value) != INTEGER_CST)
8930 {
8931 high_value = c_fully_fold (high_value, false, NULL);
8932 if (TREE_CODE (high_value) == INTEGER_CST)
8933 pedwarn (input_location, OPT_pedantic,
8934 "case label is not an integer constant expression");
8935 }
8936
8937 if (c_switch_stack == NULL)
8938 {
8939 if (low_value)
8940 error_at (loc, "case label not within a switch statement");
8941 else
8942 error_at (loc, "%<default%> label not within a switch statement");
8943 return NULL_TREE;
8944 }
8945
8946 if (c_check_switch_jump_warnings (c_switch_stack->bindings,
8947 EXPR_LOCATION (c_switch_stack->switch_expr),
8948 loc))
8949 return NULL_TREE;
8950
8951 label = c_add_case_label (loc, c_switch_stack->cases,
8952 SWITCH_COND (c_switch_stack->switch_expr),
8953 c_switch_stack->orig_type,
8954 low_value, high_value);
8955 if (label == error_mark_node)
8956 label = NULL_TREE;
8957 return label;
8958 }
8959
8960 /* Finish the switch statement. */
8961
8962 void
8963 c_finish_case (tree body)
8964 {
8965 struct c_switch *cs = c_switch_stack;
8966 location_t switch_location;
8967
8968 SWITCH_BODY (cs->switch_expr) = body;
8969
8970 /* Emit warnings as needed. */
8971 switch_location = EXPR_LOCATION (cs->switch_expr);
8972 c_do_switch_warnings (cs->cases, switch_location,
8973 TREE_TYPE (cs->switch_expr),
8974 SWITCH_COND (cs->switch_expr));
8975
8976 /* Pop the stack. */
8977 c_switch_stack = cs->next;
8978 splay_tree_delete (cs->cases);
8979 c_release_switch_bindings (cs->bindings);
8980 XDELETE (cs);
8981 }
8982 \f
8983 /* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
8984 THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
8985 may be null. NESTED_IF is true if THEN_BLOCK contains another IF
8986 statement, and was not surrounded with parenthesis. */
8987
8988 void
8989 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
8990 tree else_block, bool nested_if)
8991 {
8992 tree stmt;
8993
8994 /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
8995 if (warn_parentheses && nested_if && else_block == NULL)
8996 {
8997 tree inner_if = then_block;
8998
8999 /* We know from the grammar productions that there is an IF nested
9000 within THEN_BLOCK. Due to labels and c99 conditional declarations,
9001 it might not be exactly THEN_BLOCK, but should be the last
9002 non-container statement within. */
9003 while (1)
9004 switch (TREE_CODE (inner_if))
9005 {
9006 case COND_EXPR:
9007 goto found;
9008 case BIND_EXPR:
9009 inner_if = BIND_EXPR_BODY (inner_if);
9010 break;
9011 case STATEMENT_LIST:
9012 inner_if = expr_last (then_block);
9013 break;
9014 case TRY_FINALLY_EXPR:
9015 case TRY_CATCH_EXPR:
9016 inner_if = TREE_OPERAND (inner_if, 0);
9017 break;
9018 default:
9019 gcc_unreachable ();
9020 }
9021 found:
9022
9023 if (COND_EXPR_ELSE (inner_if))
9024 warning_at (if_locus, OPT_Wparentheses,
9025 "suggest explicit braces to avoid ambiguous %<else%>");
9026 }
9027
9028 stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
9029 SET_EXPR_LOCATION (stmt, if_locus);
9030 add_stmt (stmt);
9031 }
9032
9033 /* Emit a general-purpose loop construct. START_LOCUS is the location of
9034 the beginning of the loop. COND is the loop condition. COND_IS_FIRST
9035 is false for DO loops. INCR is the FOR increment expression. BODY is
9036 the statement controlled by the loop. BLAB is the break label. CLAB is
9037 the continue label. Everything is allowed to be NULL. */
9038
9039 void
9040 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
9041 tree blab, tree clab, bool cond_is_first)
9042 {
9043 tree entry = NULL, exit = NULL, t;
9044
9045 /* If the condition is zero don't generate a loop construct. */
9046 if (cond && integer_zerop (cond))
9047 {
9048 if (cond_is_first)
9049 {
9050 t = build_and_jump (&blab);
9051 SET_EXPR_LOCATION (t, start_locus);
9052 add_stmt (t);
9053 }
9054 }
9055 else
9056 {
9057 tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
9058
9059 /* If we have an exit condition, then we build an IF with gotos either
9060 out of the loop, or to the top of it. If there's no exit condition,
9061 then we just build a jump back to the top. */
9062 exit = build_and_jump (&LABEL_EXPR_LABEL (top));
9063
9064 if (cond && !integer_nonzerop (cond))
9065 {
9066 /* Canonicalize the loop condition to the end. This means
9067 generating a branch to the loop condition. Reuse the
9068 continue label, if possible. */
9069 if (cond_is_first)
9070 {
9071 if (incr || !clab)
9072 {
9073 entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
9074 t = build_and_jump (&LABEL_EXPR_LABEL (entry));
9075 }
9076 else
9077 t = build1 (GOTO_EXPR, void_type_node, clab);
9078 SET_EXPR_LOCATION (t, start_locus);
9079 add_stmt (t);
9080 }
9081
9082 t = build_and_jump (&blab);
9083 if (cond_is_first)
9084 exit = fold_build3_loc (start_locus,
9085 COND_EXPR, void_type_node, cond, exit, t);
9086 else
9087 exit = fold_build3_loc (input_location,
9088 COND_EXPR, void_type_node, cond, exit, t);
9089 }
9090
9091 add_stmt (top);
9092 }
9093
9094 if (body)
9095 add_stmt (body);
9096 if (clab)
9097 add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
9098 if (incr)
9099 add_stmt (incr);
9100 if (entry)
9101 add_stmt (entry);
9102 if (exit)
9103 add_stmt (exit);
9104 if (blab)
9105 add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
9106 }
9107
9108 tree
9109 c_finish_bc_stmt (location_t loc, tree *label_p, bool is_break)
9110 {
9111 bool skip;
9112 tree label = *label_p;
9113
9114 /* In switch statements break is sometimes stylistically used after
9115 a return statement. This can lead to spurious warnings about
9116 control reaching the end of a non-void function when it is
9117 inlined. Note that we are calling block_may_fallthru with
9118 language specific tree nodes; this works because
9119 block_may_fallthru returns true when given something it does not
9120 understand. */
9121 skip = !block_may_fallthru (cur_stmt_list);
9122
9123 if (!label)
9124 {
9125 if (!skip)
9126 *label_p = label = create_artificial_label (loc);
9127 }
9128 else if (TREE_CODE (label) == LABEL_DECL)
9129 ;
9130 else switch (TREE_INT_CST_LOW (label))
9131 {
9132 case 0:
9133 if (is_break)
9134 error_at (loc, "break statement not within loop or switch");
9135 else
9136 error_at (loc, "continue statement not within a loop");
9137 return NULL_TREE;
9138
9139 case 1:
9140 gcc_assert (is_break);
9141 error_at (loc, "break statement used with OpenMP for loop");
9142 return NULL_TREE;
9143
9144 default:
9145 gcc_unreachable ();
9146 }
9147
9148 if (skip)
9149 return NULL_TREE;
9150
9151 if (!is_break)
9152 add_stmt (build_predict_expr (PRED_CONTINUE, NOT_TAKEN));
9153
9154 return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
9155 }
9156
9157 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
9158
9159 static void
9160 emit_side_effect_warnings (location_t loc, tree expr)
9161 {
9162 if (expr == error_mark_node)
9163 ;
9164 else if (!TREE_SIDE_EFFECTS (expr))
9165 {
9166 if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
9167 warning_at (loc, OPT_Wunused_value, "statement with no effect");
9168 }
9169 else
9170 warn_if_unused_value (expr, loc);
9171 }
9172
9173 /* Process an expression as if it were a complete statement. Emit
9174 diagnostics, but do not call ADD_STMT. LOC is the location of the
9175 statement. */
9176
9177 tree
9178 c_process_expr_stmt (location_t loc, tree expr)
9179 {
9180 tree exprv;
9181
9182 if (!expr)
9183 return NULL_TREE;
9184
9185 expr = c_fully_fold (expr, false, NULL);
9186
9187 if (warn_sequence_point)
9188 verify_sequence_points (expr);
9189
9190 if (TREE_TYPE (expr) != error_mark_node
9191 && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
9192 && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
9193 error_at (loc, "expression statement has incomplete type");
9194
9195 /* If we're not processing a statement expression, warn about unused values.
9196 Warnings for statement expressions will be emitted later, once we figure
9197 out which is the result. */
9198 if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
9199 && warn_unused_value)
9200 emit_side_effect_warnings (loc, expr);
9201
9202 exprv = expr;
9203 while (TREE_CODE (exprv) == COMPOUND_EXPR)
9204 exprv = TREE_OPERAND (exprv, 1);
9205 while (CONVERT_EXPR_P (exprv))
9206 exprv = TREE_OPERAND (exprv, 0);
9207 if (DECL_P (exprv)
9208 || handled_component_p (exprv)
9209 || TREE_CODE (exprv) == ADDR_EXPR)
9210 mark_exp_read (exprv);
9211
9212 /* If the expression is not of a type to which we cannot assign a line
9213 number, wrap the thing in a no-op NOP_EXPR. */
9214 if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
9215 {
9216 expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
9217 SET_EXPR_LOCATION (expr, loc);
9218 }
9219
9220 return expr;
9221 }
9222
9223 /* Emit an expression as a statement. LOC is the location of the
9224 expression. */
9225
9226 tree
9227 c_finish_expr_stmt (location_t loc, tree expr)
9228 {
9229 if (expr)
9230 return add_stmt (c_process_expr_stmt (loc, expr));
9231 else
9232 return NULL;
9233 }
9234
9235 /* Do the opposite and emit a statement as an expression. To begin,
9236 create a new binding level and return it. */
9237
9238 tree
9239 c_begin_stmt_expr (void)
9240 {
9241 tree ret;
9242
9243 /* We must force a BLOCK for this level so that, if it is not expanded
9244 later, there is a way to turn off the entire subtree of blocks that
9245 are contained in it. */
9246 keep_next_level ();
9247 ret = c_begin_compound_stmt (true);
9248
9249 c_bindings_start_stmt_expr (c_switch_stack == NULL
9250 ? NULL
9251 : c_switch_stack->bindings);
9252
9253 /* Mark the current statement list as belonging to a statement list. */
9254 STATEMENT_LIST_STMT_EXPR (ret) = 1;
9255
9256 return ret;
9257 }
9258
9259 /* LOC is the location of the compound statement to which this body
9260 belongs. */
9261
9262 tree
9263 c_finish_stmt_expr (location_t loc, tree body)
9264 {
9265 tree last, type, tmp, val;
9266 tree *last_p;
9267
9268 body = c_end_compound_stmt (loc, body, true);
9269
9270 c_bindings_end_stmt_expr (c_switch_stack == NULL
9271 ? NULL
9272 : c_switch_stack->bindings);
9273
9274 /* Locate the last statement in BODY. See c_end_compound_stmt
9275 about always returning a BIND_EXPR. */
9276 last_p = &BIND_EXPR_BODY (body);
9277 last = BIND_EXPR_BODY (body);
9278
9279 continue_searching:
9280 if (TREE_CODE (last) == STATEMENT_LIST)
9281 {
9282 tree_stmt_iterator i;
9283
9284 /* This can happen with degenerate cases like ({ }). No value. */
9285 if (!TREE_SIDE_EFFECTS (last))
9286 return body;
9287
9288 /* If we're supposed to generate side effects warnings, process
9289 all of the statements except the last. */
9290 if (warn_unused_value)
9291 {
9292 for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
9293 {
9294 location_t tloc;
9295 tree t = tsi_stmt (i);
9296
9297 tloc = EXPR_HAS_LOCATION (t) ? EXPR_LOCATION (t) : loc;
9298 emit_side_effect_warnings (tloc, t);
9299 }
9300 }
9301 else
9302 i = tsi_last (last);
9303 last_p = tsi_stmt_ptr (i);
9304 last = *last_p;
9305 }
9306
9307 /* If the end of the list is exception related, then the list was split
9308 by a call to push_cleanup. Continue searching. */
9309 if (TREE_CODE (last) == TRY_FINALLY_EXPR
9310 || TREE_CODE (last) == TRY_CATCH_EXPR)
9311 {
9312 last_p = &TREE_OPERAND (last, 0);
9313 last = *last_p;
9314 goto continue_searching;
9315 }
9316
9317 if (last == error_mark_node)
9318 return last;
9319
9320 /* In the case that the BIND_EXPR is not necessary, return the
9321 expression out from inside it. */
9322 if (last == BIND_EXPR_BODY (body)
9323 && BIND_EXPR_VARS (body) == NULL)
9324 {
9325 /* Even if this looks constant, do not allow it in a constant
9326 expression. */
9327 last = c_wrap_maybe_const (last, true);
9328 /* Do not warn if the return value of a statement expression is
9329 unused. */
9330 TREE_NO_WARNING (last) = 1;
9331 return last;
9332 }
9333
9334 /* Extract the type of said expression. */
9335 type = TREE_TYPE (last);
9336
9337 /* If we're not returning a value at all, then the BIND_EXPR that
9338 we already have is a fine expression to return. */
9339 if (!type || VOID_TYPE_P (type))
9340 return body;
9341
9342 /* Now that we've located the expression containing the value, it seems
9343 silly to make voidify_wrapper_expr repeat the process. Create a
9344 temporary of the appropriate type and stick it in a TARGET_EXPR. */
9345 tmp = create_tmp_var_raw (type, NULL);
9346
9347 /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
9348 tree_expr_nonnegative_p giving up immediately. */
9349 val = last;
9350 if (TREE_CODE (val) == NOP_EXPR
9351 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
9352 val = TREE_OPERAND (val, 0);
9353
9354 *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
9355 SET_EXPR_LOCATION (*last_p, EXPR_LOCATION (last));
9356
9357 {
9358 tree t = build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
9359 SET_EXPR_LOCATION (t, loc);
9360 return t;
9361 }
9362 }
9363 \f
9364 /* Begin and end compound statements. This is as simple as pushing
9365 and popping new statement lists from the tree. */
9366
9367 tree
9368 c_begin_compound_stmt (bool do_scope)
9369 {
9370 tree stmt = push_stmt_list ();
9371 if (do_scope)
9372 push_scope ();
9373 return stmt;
9374 }
9375
9376 /* End a compound statement. STMT is the statement. LOC is the
9377 location of the compound statement-- this is usually the location
9378 of the opening brace. */
9379
9380 tree
9381 c_end_compound_stmt (location_t loc, tree stmt, bool do_scope)
9382 {
9383 tree block = NULL;
9384
9385 if (do_scope)
9386 {
9387 if (c_dialect_objc ())
9388 objc_clear_super_receiver ();
9389 block = pop_scope ();
9390 }
9391
9392 stmt = pop_stmt_list (stmt);
9393 stmt = c_build_bind_expr (loc, block, stmt);
9394
9395 /* If this compound statement is nested immediately inside a statement
9396 expression, then force a BIND_EXPR to be created. Otherwise we'll
9397 do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
9398 STATEMENT_LISTs merge, and thus we can lose track of what statement
9399 was really last. */
9400 if (building_stmt_list_p ()
9401 && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
9402 && TREE_CODE (stmt) != BIND_EXPR)
9403 {
9404 stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
9405 TREE_SIDE_EFFECTS (stmt) = 1;
9406 SET_EXPR_LOCATION (stmt, loc);
9407 }
9408
9409 return stmt;
9410 }
9411
9412 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
9413 when the current scope is exited. EH_ONLY is true when this is not
9414 meant to apply to normal control flow transfer. */
9415
9416 void
9417 push_cleanup (tree decl, tree cleanup, bool eh_only)
9418 {
9419 enum tree_code code;
9420 tree stmt, list;
9421 bool stmt_expr;
9422
9423 code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
9424 stmt = build_stmt (DECL_SOURCE_LOCATION (decl), code, NULL, cleanup);
9425 add_stmt (stmt);
9426 stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
9427 list = push_stmt_list ();
9428 TREE_OPERAND (stmt, 0) = list;
9429 STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
9430 }
9431
9432 /* Convert scalar to vector for the range of operations. */
9433 static enum stv_conv
9434 scalar_to_vector (location_t loc, enum tree_code code, tree op0, tree op1)
9435 {
9436 tree type0 = TREE_TYPE (op0);
9437 tree type1 = TREE_TYPE (op1);
9438 bool integer_only_op = false;
9439 enum stv_conv ret = stv_firstarg;
9440
9441 gcc_assert (TREE_CODE (type0) == VECTOR_TYPE
9442 || TREE_CODE (type1) == VECTOR_TYPE);
9443 switch (code)
9444 {
9445 case RSHIFT_EXPR:
9446 case LSHIFT_EXPR:
9447 if (TREE_CODE (type0) == INTEGER_TYPE
9448 && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE)
9449 {
9450 if (unsafe_conversion_p (TREE_TYPE (type1), op0, false))
9451 {
9452 error_at (loc, "conversion of scalar to vector "
9453 "involves truncation");
9454 return stv_error;
9455 }
9456 else
9457 return stv_firstarg;
9458 }
9459 break;
9460
9461 case BIT_IOR_EXPR:
9462 case BIT_XOR_EXPR:
9463 case BIT_AND_EXPR:
9464 integer_only_op = true;
9465 /* ... fall through ... */
9466
9467 case PLUS_EXPR:
9468 case MINUS_EXPR:
9469 case MULT_EXPR:
9470 case TRUNC_DIV_EXPR:
9471 case TRUNC_MOD_EXPR:
9472 case RDIV_EXPR:
9473 if (TREE_CODE (type0) == VECTOR_TYPE)
9474 {
9475 tree tmp;
9476 ret = stv_secondarg;
9477 /* Swap TYPE0 with TYPE1 and OP0 with OP1 */
9478 tmp = type0; type0 = type1; type1 = tmp;
9479 tmp = op0; op0 = op1; op1 = tmp;
9480 }
9481
9482 if (TREE_CODE (type0) == INTEGER_TYPE
9483 && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE)
9484 {
9485 if (unsafe_conversion_p (TREE_TYPE (type1), op0, false))
9486 {
9487 error_at (loc, "conversion of scalar to vector "
9488 "involves truncation");
9489 return stv_error;
9490 }
9491 return ret;
9492 }
9493 else if (!integer_only_op
9494 /* Allow integer --> real conversion if safe. */
9495 && (TREE_CODE (type0) == REAL_TYPE
9496 || TREE_CODE (type0) == INTEGER_TYPE)
9497 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (type1)))
9498 {
9499 if (unsafe_conversion_p (TREE_TYPE (type1), op0, false))
9500 {
9501 error_at (loc, "conversion of scalar to vector "
9502 "involves truncation");
9503 return stv_error;
9504 }
9505 return ret;
9506 }
9507 default:
9508 break;
9509 }
9510
9511 return stv_nothing;
9512 }
9513 \f
9514 /* Build a binary-operation expression without default conversions.
9515 CODE is the kind of expression to build.
9516 LOCATION is the operator's location.
9517 This function differs from `build' in several ways:
9518 the data type of the result is computed and recorded in it,
9519 warnings are generated if arg data types are invalid,
9520 special handling for addition and subtraction of pointers is known,
9521 and some optimization is done (operations on narrow ints
9522 are done in the narrower type when that gives the same result).
9523 Constant folding is also done before the result is returned.
9524
9525 Note that the operands will never have enumeral types, or function
9526 or array types, because either they will have the default conversions
9527 performed or they have both just been converted to some other type in which
9528 the arithmetic is to be done. */
9529
9530 tree
9531 build_binary_op (location_t location, enum tree_code code,
9532 tree orig_op0, tree orig_op1, int convert_p)
9533 {
9534 tree type0, type1, orig_type0, orig_type1;
9535 tree eptype;
9536 enum tree_code code0, code1;
9537 tree op0, op1;
9538 tree ret = error_mark_node;
9539 const char *invalid_op_diag;
9540 bool op0_int_operands, op1_int_operands;
9541 bool int_const, int_const_or_overflow, int_operands;
9542
9543 /* Expression code to give to the expression when it is built.
9544 Normally this is CODE, which is what the caller asked for,
9545 but in some special cases we change it. */
9546 enum tree_code resultcode = code;
9547
9548 /* Data type in which the computation is to be performed.
9549 In the simplest cases this is the common type of the arguments. */
9550 tree result_type = NULL;
9551
9552 /* When the computation is in excess precision, the type of the
9553 final EXCESS_PRECISION_EXPR. */
9554 tree semantic_result_type = NULL;
9555
9556 /* Nonzero means operands have already been type-converted
9557 in whatever way is necessary.
9558 Zero means they need to be converted to RESULT_TYPE. */
9559 int converted = 0;
9560
9561 /* Nonzero means create the expression with this type, rather than
9562 RESULT_TYPE. */
9563 tree build_type = 0;
9564
9565 /* Nonzero means after finally constructing the expression
9566 convert it to this type. */
9567 tree final_type = 0;
9568
9569 /* Nonzero if this is an operation like MIN or MAX which can
9570 safely be computed in short if both args are promoted shorts.
9571 Also implies COMMON.
9572 -1 indicates a bitwise operation; this makes a difference
9573 in the exact conditions for when it is safe to do the operation
9574 in a narrower mode. */
9575 int shorten = 0;
9576
9577 /* Nonzero if this is a comparison operation;
9578 if both args are promoted shorts, compare the original shorts.
9579 Also implies COMMON. */
9580 int short_compare = 0;
9581
9582 /* Nonzero if this is a right-shift operation, which can be computed on the
9583 original short and then promoted if the operand is a promoted short. */
9584 int short_shift = 0;
9585
9586 /* Nonzero means set RESULT_TYPE to the common type of the args. */
9587 int common = 0;
9588
9589 /* True means types are compatible as far as ObjC is concerned. */
9590 bool objc_ok;
9591
9592 /* True means this is an arithmetic operation that may need excess
9593 precision. */
9594 bool may_need_excess_precision;
9595
9596 /* True means this is a boolean operation that converts both its
9597 operands to truth-values. */
9598 bool boolean_op = false;
9599
9600 if (location == UNKNOWN_LOCATION)
9601 location = input_location;
9602
9603 op0 = orig_op0;
9604 op1 = orig_op1;
9605
9606 op0_int_operands = EXPR_INT_CONST_OPERANDS (orig_op0);
9607 if (op0_int_operands)
9608 op0 = remove_c_maybe_const_expr (op0);
9609 op1_int_operands = EXPR_INT_CONST_OPERANDS (orig_op1);
9610 if (op1_int_operands)
9611 op1 = remove_c_maybe_const_expr (op1);
9612 int_operands = (op0_int_operands && op1_int_operands);
9613 if (int_operands)
9614 {
9615 int_const_or_overflow = (TREE_CODE (orig_op0) == INTEGER_CST
9616 && TREE_CODE (orig_op1) == INTEGER_CST);
9617 int_const = (int_const_or_overflow
9618 && !TREE_OVERFLOW (orig_op0)
9619 && !TREE_OVERFLOW (orig_op1));
9620 }
9621 else
9622 int_const = int_const_or_overflow = false;
9623
9624 /* Do not apply default conversion in mixed vector/scalar expression. */
9625 if (convert_p
9626 && !((TREE_CODE (TREE_TYPE (op0)) == VECTOR_TYPE)
9627 != (TREE_CODE (TREE_TYPE (op1)) == VECTOR_TYPE)))
9628 {
9629 op0 = default_conversion (op0);
9630 op1 = default_conversion (op1);
9631 }
9632
9633 orig_type0 = type0 = TREE_TYPE (op0);
9634 orig_type1 = type1 = TREE_TYPE (op1);
9635
9636 /* The expression codes of the data types of the arguments tell us
9637 whether the arguments are integers, floating, pointers, etc. */
9638 code0 = TREE_CODE (type0);
9639 code1 = TREE_CODE (type1);
9640
9641 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
9642 STRIP_TYPE_NOPS (op0);
9643 STRIP_TYPE_NOPS (op1);
9644
9645 /* If an error was already reported for one of the arguments,
9646 avoid reporting another error. */
9647
9648 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
9649 return error_mark_node;
9650
9651 if ((invalid_op_diag
9652 = targetm.invalid_binary_op (code, type0, type1)))
9653 {
9654 error_at (location, invalid_op_diag);
9655 return error_mark_node;
9656 }
9657
9658 switch (code)
9659 {
9660 case PLUS_EXPR:
9661 case MINUS_EXPR:
9662 case MULT_EXPR:
9663 case TRUNC_DIV_EXPR:
9664 case CEIL_DIV_EXPR:
9665 case FLOOR_DIV_EXPR:
9666 case ROUND_DIV_EXPR:
9667 case EXACT_DIV_EXPR:
9668 may_need_excess_precision = true;
9669 break;
9670 default:
9671 may_need_excess_precision = false;
9672 break;
9673 }
9674 if (TREE_CODE (op0) == EXCESS_PRECISION_EXPR)
9675 {
9676 op0 = TREE_OPERAND (op0, 0);
9677 type0 = TREE_TYPE (op0);
9678 }
9679 else if (may_need_excess_precision
9680 && (eptype = excess_precision_type (type0)) != NULL_TREE)
9681 {
9682 type0 = eptype;
9683 op0 = convert (eptype, op0);
9684 }
9685 if (TREE_CODE (op1) == EXCESS_PRECISION_EXPR)
9686 {
9687 op1 = TREE_OPERAND (op1, 0);
9688 type1 = TREE_TYPE (op1);
9689 }
9690 else if (may_need_excess_precision
9691 && (eptype = excess_precision_type (type1)) != NULL_TREE)
9692 {
9693 type1 = eptype;
9694 op1 = convert (eptype, op1);
9695 }
9696
9697 objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
9698
9699 /* In case when one of the operands of the binary operation is
9700 a vector and another is a scalar -- convert scalar to vector. */
9701 if ((code0 == VECTOR_TYPE) != (code1 == VECTOR_TYPE))
9702 {
9703 enum stv_conv convert_flag = scalar_to_vector (location, code, op0, op1);
9704
9705 switch (convert_flag)
9706 {
9707 case stv_error:
9708 return error_mark_node;
9709 case stv_firstarg:
9710 {
9711 bool maybe_const = true;
9712 tree sc;
9713 sc = c_fully_fold (op0, false, &maybe_const);
9714 sc = save_expr (sc);
9715 sc = convert (TREE_TYPE (type1), sc);
9716 op0 = build_vector_from_val (type1, sc);
9717 if (!maybe_const)
9718 op0 = c_wrap_maybe_const (op0, true);
9719 orig_type0 = type0 = TREE_TYPE (op0);
9720 code0 = TREE_CODE (type0);
9721 converted = 1;
9722 break;
9723 }
9724 case stv_secondarg:
9725 {
9726 bool maybe_const = true;
9727 tree sc;
9728 sc = c_fully_fold (op1, false, &maybe_const);
9729 sc = save_expr (sc);
9730 sc = convert (TREE_TYPE (type0), sc);
9731 op1 = build_vector_from_val (type0, sc);
9732 if (!maybe_const)
9733 op0 = c_wrap_maybe_const (op1, true);
9734 orig_type1 = type1 = TREE_TYPE (op1);
9735 code1 = TREE_CODE (type1);
9736 converted = 1;
9737 break;
9738 }
9739 default:
9740 break;
9741 }
9742 }
9743
9744 switch (code)
9745 {
9746 case PLUS_EXPR:
9747 /* Handle the pointer + int case. */
9748 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
9749 {
9750 ret = pointer_int_sum (location, PLUS_EXPR, op0, op1);
9751 goto return_build_binary_op;
9752 }
9753 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
9754 {
9755 ret = pointer_int_sum (location, PLUS_EXPR, op1, op0);
9756 goto return_build_binary_op;
9757 }
9758 else
9759 common = 1;
9760 break;
9761
9762 case MINUS_EXPR:
9763 /* Subtraction of two similar pointers.
9764 We must subtract them as integers, then divide by object size. */
9765 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
9766 && comp_target_types (location, type0, type1))
9767 {
9768 ret = pointer_diff (location, op0, op1);
9769 goto return_build_binary_op;
9770 }
9771 /* Handle pointer minus int. Just like pointer plus int. */
9772 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
9773 {
9774 ret = pointer_int_sum (location, MINUS_EXPR, op0, op1);
9775 goto return_build_binary_op;
9776 }
9777 else
9778 common = 1;
9779 break;
9780
9781 case MULT_EXPR:
9782 common = 1;
9783 break;
9784
9785 case TRUNC_DIV_EXPR:
9786 case CEIL_DIV_EXPR:
9787 case FLOOR_DIV_EXPR:
9788 case ROUND_DIV_EXPR:
9789 case EXACT_DIV_EXPR:
9790 warn_for_div_by_zero (location, op1);
9791
9792 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
9793 || code0 == FIXED_POINT_TYPE
9794 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
9795 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
9796 || code1 == FIXED_POINT_TYPE
9797 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
9798 {
9799 enum tree_code tcode0 = code0, tcode1 = code1;
9800
9801 if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
9802 tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
9803 if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
9804 tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
9805
9806 if (!((tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE)
9807 || (tcode0 == FIXED_POINT_TYPE && tcode1 == FIXED_POINT_TYPE)))
9808 resultcode = RDIV_EXPR;
9809 else
9810 /* Although it would be tempting to shorten always here, that
9811 loses on some targets, since the modulo instruction is
9812 undefined if the quotient can't be represented in the
9813 computation mode. We shorten only if unsigned or if
9814 dividing by something we know != -1. */
9815 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
9816 || (TREE_CODE (op1) == INTEGER_CST
9817 && !integer_all_onesp (op1)));
9818 common = 1;
9819 }
9820 break;
9821
9822 case BIT_AND_EXPR:
9823 case BIT_IOR_EXPR:
9824 case BIT_XOR_EXPR:
9825 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
9826 shorten = -1;
9827 /* Allow vector types which are not floating point types. */
9828 else if (code0 == VECTOR_TYPE
9829 && code1 == VECTOR_TYPE
9830 && !VECTOR_FLOAT_TYPE_P (type0)
9831 && !VECTOR_FLOAT_TYPE_P (type1))
9832 common = 1;
9833 break;
9834
9835 case TRUNC_MOD_EXPR:
9836 case FLOOR_MOD_EXPR:
9837 warn_for_div_by_zero (location, op1);
9838
9839 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
9840 && TREE_CODE (TREE_TYPE (type0)) == INTEGER_TYPE
9841 && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE)
9842 common = 1;
9843 else if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
9844 {
9845 /* Although it would be tempting to shorten always here, that loses
9846 on some targets, since the modulo instruction is undefined if the
9847 quotient can't be represented in the computation mode. We shorten
9848 only if unsigned or if dividing by something we know != -1. */
9849 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
9850 || (TREE_CODE (op1) == INTEGER_CST
9851 && !integer_all_onesp (op1)));
9852 common = 1;
9853 }
9854 break;
9855
9856 case TRUTH_ANDIF_EXPR:
9857 case TRUTH_ORIF_EXPR:
9858 case TRUTH_AND_EXPR:
9859 case TRUTH_OR_EXPR:
9860 case TRUTH_XOR_EXPR:
9861 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
9862 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
9863 || code0 == FIXED_POINT_TYPE)
9864 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
9865 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
9866 || code1 == FIXED_POINT_TYPE))
9867 {
9868 /* Result of these operations is always an int,
9869 but that does not mean the operands should be
9870 converted to ints! */
9871 result_type = integer_type_node;
9872 op0 = c_common_truthvalue_conversion (location, op0);
9873 op1 = c_common_truthvalue_conversion (location, op1);
9874 converted = 1;
9875 boolean_op = true;
9876 }
9877 if (code == TRUTH_ANDIF_EXPR)
9878 {
9879 int_const_or_overflow = (int_operands
9880 && TREE_CODE (orig_op0) == INTEGER_CST
9881 && (op0 == truthvalue_false_node
9882 || TREE_CODE (orig_op1) == INTEGER_CST));
9883 int_const = (int_const_or_overflow
9884 && !TREE_OVERFLOW (orig_op0)
9885 && (op0 == truthvalue_false_node
9886 || !TREE_OVERFLOW (orig_op1)));
9887 }
9888 else if (code == TRUTH_ORIF_EXPR)
9889 {
9890 int_const_or_overflow = (int_operands
9891 && TREE_CODE (orig_op0) == INTEGER_CST
9892 && (op0 == truthvalue_true_node
9893 || TREE_CODE (orig_op1) == INTEGER_CST));
9894 int_const = (int_const_or_overflow
9895 && !TREE_OVERFLOW (orig_op0)
9896 && (op0 == truthvalue_true_node
9897 || !TREE_OVERFLOW (orig_op1)));
9898 }
9899 break;
9900
9901 /* Shift operations: result has same type as first operand;
9902 always convert second operand to int.
9903 Also set SHORT_SHIFT if shifting rightward. */
9904
9905 case RSHIFT_EXPR:
9906 if (code0 == VECTOR_TYPE && code1 == INTEGER_TYPE
9907 && TREE_CODE (TREE_TYPE (type0)) == INTEGER_TYPE)
9908 {
9909 result_type = type0;
9910 converted = 1;
9911 }
9912 else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
9913 && TREE_CODE (TREE_TYPE (type0)) == INTEGER_TYPE
9914 && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE
9915 && TYPE_VECTOR_SUBPARTS (type0) == TYPE_VECTOR_SUBPARTS (type1))
9916 {
9917 result_type = type0;
9918 converted = 1;
9919 }
9920 else if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE)
9921 && code1 == INTEGER_TYPE)
9922 {
9923 if (TREE_CODE (op1) == INTEGER_CST)
9924 {
9925 if (tree_int_cst_sgn (op1) < 0)
9926 {
9927 int_const = false;
9928 if (c_inhibit_evaluation_warnings == 0)
9929 warning (0, "right shift count is negative");
9930 }
9931 else
9932 {
9933 if (!integer_zerop (op1))
9934 short_shift = 1;
9935
9936 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
9937 {
9938 int_const = false;
9939 if (c_inhibit_evaluation_warnings == 0)
9940 warning (0, "right shift count >= width of type");
9941 }
9942 }
9943 }
9944
9945 /* Use the type of the value to be shifted. */
9946 result_type = type0;
9947 /* Convert the non vector shift-count to an integer, regardless
9948 of size of value being shifted. */
9949 if (TREE_CODE (TREE_TYPE (op1)) != VECTOR_TYPE
9950 && TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
9951 op1 = convert (integer_type_node, op1);
9952 /* Avoid converting op1 to result_type later. */
9953 converted = 1;
9954 }
9955 break;
9956
9957 case LSHIFT_EXPR:
9958 if (code0 == VECTOR_TYPE && code1 == INTEGER_TYPE
9959 && TREE_CODE (TREE_TYPE (type0)) == INTEGER_TYPE)
9960 {
9961 result_type = type0;
9962 converted = 1;
9963 }
9964 else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
9965 && TREE_CODE (TREE_TYPE (type0)) == INTEGER_TYPE
9966 && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE
9967 && TYPE_VECTOR_SUBPARTS (type0) == TYPE_VECTOR_SUBPARTS (type1))
9968 {
9969 result_type = type0;
9970 converted = 1;
9971 }
9972 else if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE)
9973 && code1 == INTEGER_TYPE)
9974 {
9975 if (TREE_CODE (op1) == INTEGER_CST)
9976 {
9977 if (tree_int_cst_sgn (op1) < 0)
9978 {
9979 int_const = false;
9980 if (c_inhibit_evaluation_warnings == 0)
9981 warning (0, "left shift count is negative");
9982 }
9983
9984 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
9985 {
9986 int_const = false;
9987 if (c_inhibit_evaluation_warnings == 0)
9988 warning (0, "left shift count >= width of type");
9989 }
9990 }
9991
9992 /* Use the type of the value to be shifted. */
9993 result_type = type0;
9994 /* Convert the non vector shift-count to an integer, regardless
9995 of size of value being shifted. */
9996 if (TREE_CODE (TREE_TYPE (op1)) != VECTOR_TYPE
9997 && TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
9998 op1 = convert (integer_type_node, op1);
9999 /* Avoid converting op1 to result_type later. */
10000 converted = 1;
10001 }
10002 break;
10003
10004 case EQ_EXPR:
10005 case NE_EXPR:
10006 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
10007 {
10008 tree intt;
10009 if (TREE_TYPE (type0) != TREE_TYPE (type1))
10010 {
10011 error_at (location, "comparing vectors with different "
10012 "element types");
10013 return error_mark_node;
10014 }
10015
10016 if (TYPE_VECTOR_SUBPARTS (type0) != TYPE_VECTOR_SUBPARTS (type1))
10017 {
10018 error_at (location, "comparing vectors with different "
10019 "number of elements");
10020 return error_mark_node;
10021 }
10022
10023 /* Always construct signed integer vector type. */
10024 intt = c_common_type_for_size (GET_MODE_BITSIZE
10025 (TYPE_MODE (TREE_TYPE (type0))), 0);
10026 result_type = build_opaque_vector_type (intt,
10027 TYPE_VECTOR_SUBPARTS (type0));
10028 converted = 1;
10029 break;
10030 }
10031 if (FLOAT_TYPE_P (type0) || FLOAT_TYPE_P (type1))
10032 warning_at (location,
10033 OPT_Wfloat_equal,
10034 "comparing floating point with == or != is unsafe");
10035 /* Result of comparison is always int,
10036 but don't convert the args to int! */
10037 build_type = integer_type_node;
10038 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
10039 || code0 == FIXED_POINT_TYPE || code0 == COMPLEX_TYPE)
10040 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
10041 || code1 == FIXED_POINT_TYPE || code1 == COMPLEX_TYPE))
10042 short_compare = 1;
10043 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
10044 {
10045 if (TREE_CODE (op0) == ADDR_EXPR
10046 && decl_with_nonnull_addr_p (TREE_OPERAND (op0, 0)))
10047 {
10048 if (code == EQ_EXPR)
10049 warning_at (location,
10050 OPT_Waddress,
10051 "the comparison will always evaluate as %<false%> "
10052 "for the address of %qD will never be NULL",
10053 TREE_OPERAND (op0, 0));
10054 else
10055 warning_at (location,
10056 OPT_Waddress,
10057 "the comparison will always evaluate as %<true%> "
10058 "for the address of %qD will never be NULL",
10059 TREE_OPERAND (op0, 0));
10060 }
10061 result_type = type0;
10062 }
10063 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
10064 {
10065 if (TREE_CODE (op1) == ADDR_EXPR
10066 && decl_with_nonnull_addr_p (TREE_OPERAND (op1, 0)))
10067 {
10068 if (code == EQ_EXPR)
10069 warning_at (location,
10070 OPT_Waddress,
10071 "the comparison will always evaluate as %<false%> "
10072 "for the address of %qD will never be NULL",
10073 TREE_OPERAND (op1, 0));
10074 else
10075 warning_at (location,
10076 OPT_Waddress,
10077 "the comparison will always evaluate as %<true%> "
10078 "for the address of %qD will never be NULL",
10079 TREE_OPERAND (op1, 0));
10080 }
10081 result_type = type1;
10082 }
10083 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
10084 {
10085 tree tt0 = TREE_TYPE (type0);
10086 tree tt1 = TREE_TYPE (type1);
10087 addr_space_t as0 = TYPE_ADDR_SPACE (tt0);
10088 addr_space_t as1 = TYPE_ADDR_SPACE (tt1);
10089 addr_space_t as_common = ADDR_SPACE_GENERIC;
10090
10091 /* Anything compares with void *. void * compares with anything.
10092 Otherwise, the targets must be compatible
10093 and both must be object or both incomplete. */
10094 if (comp_target_types (location, type0, type1))
10095 result_type = common_pointer_type (type0, type1);
10096 else if (!addr_space_superset (as0, as1, &as_common))
10097 {
10098 error_at (location, "comparison of pointers to "
10099 "disjoint address spaces");
10100 return error_mark_node;
10101 }
10102 else if (VOID_TYPE_P (tt0))
10103 {
10104 if (pedantic && TREE_CODE (tt1) == FUNCTION_TYPE)
10105 pedwarn (location, OPT_pedantic, "ISO C forbids "
10106 "comparison of %<void *%> with function pointer");
10107 }
10108 else if (VOID_TYPE_P (tt1))
10109 {
10110 if (pedantic && TREE_CODE (tt0) == FUNCTION_TYPE)
10111 pedwarn (location, OPT_pedantic, "ISO C forbids "
10112 "comparison of %<void *%> with function pointer");
10113 }
10114 else
10115 /* Avoid warning about the volatile ObjC EH puts on decls. */
10116 if (!objc_ok)
10117 pedwarn (location, 0,
10118 "comparison of distinct pointer types lacks a cast");
10119
10120 if (result_type == NULL_TREE)
10121 {
10122 int qual = ENCODE_QUAL_ADDR_SPACE (as_common);
10123 result_type = build_pointer_type
10124 (build_qualified_type (void_type_node, qual));
10125 }
10126 }
10127 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
10128 {
10129 result_type = type0;
10130 pedwarn (location, 0, "comparison between pointer and integer");
10131 }
10132 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
10133 {
10134 result_type = type1;
10135 pedwarn (location, 0, "comparison between pointer and integer");
10136 }
10137 break;
10138
10139 case LE_EXPR:
10140 case GE_EXPR:
10141 case LT_EXPR:
10142 case GT_EXPR:
10143 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
10144 {
10145 tree intt;
10146 if (TREE_TYPE (type0) != TREE_TYPE (type1))
10147 {
10148 error_at (location, "comparing vectors with different "
10149 "element types");
10150 return error_mark_node;
10151 }
10152
10153 if (TYPE_VECTOR_SUBPARTS (type0) != TYPE_VECTOR_SUBPARTS (type1))
10154 {
10155 error_at (location, "comparing vectors with different "
10156 "number of elements");
10157 return error_mark_node;
10158 }
10159
10160 /* Always construct signed integer vector type. */
10161 intt = c_common_type_for_size (GET_MODE_BITSIZE
10162 (TYPE_MODE (TREE_TYPE (type0))), 0);
10163 result_type = build_opaque_vector_type (intt,
10164 TYPE_VECTOR_SUBPARTS (type0));
10165 converted = 1;
10166 break;
10167 }
10168 build_type = integer_type_node;
10169 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
10170 || code0 == FIXED_POINT_TYPE)
10171 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
10172 || code1 == FIXED_POINT_TYPE))
10173 short_compare = 1;
10174 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
10175 {
10176 addr_space_t as0 = TYPE_ADDR_SPACE (TREE_TYPE (type0));
10177 addr_space_t as1 = TYPE_ADDR_SPACE (TREE_TYPE (type1));
10178 addr_space_t as_common;
10179
10180 if (comp_target_types (location, type0, type1))
10181 {
10182 result_type = common_pointer_type (type0, type1);
10183 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
10184 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
10185 pedwarn (location, 0,
10186 "comparison of complete and incomplete pointers");
10187 else if (TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
10188 pedwarn (location, OPT_pedantic, "ISO C forbids "
10189 "ordered comparisons of pointers to functions");
10190 else if (null_pointer_constant_p (orig_op0)
10191 || null_pointer_constant_p (orig_op1))
10192 warning_at (location, OPT_Wextra,
10193 "ordered comparison of pointer with null pointer");
10194
10195 }
10196 else if (!addr_space_superset (as0, as1, &as_common))
10197 {
10198 error_at (location, "comparison of pointers to "
10199 "disjoint address spaces");
10200 return error_mark_node;
10201 }
10202 else
10203 {
10204 int qual = ENCODE_QUAL_ADDR_SPACE (as_common);
10205 result_type = build_pointer_type
10206 (build_qualified_type (void_type_node, qual));
10207 pedwarn (location, 0,
10208 "comparison of distinct pointer types lacks a cast");
10209 }
10210 }
10211 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
10212 {
10213 result_type = type0;
10214 if (pedantic)
10215 pedwarn (location, OPT_pedantic,
10216 "ordered comparison of pointer with integer zero");
10217 else if (extra_warnings)
10218 warning_at (location, OPT_Wextra,
10219 "ordered comparison of pointer with integer zero");
10220 }
10221 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
10222 {
10223 result_type = type1;
10224 if (pedantic)
10225 pedwarn (location, OPT_pedantic,
10226 "ordered comparison of pointer with integer zero");
10227 else if (extra_warnings)
10228 warning_at (location, OPT_Wextra,
10229 "ordered comparison of pointer with integer zero");
10230 }
10231 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
10232 {
10233 result_type = type0;
10234 pedwarn (location, 0, "comparison between pointer and integer");
10235 }
10236 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
10237 {
10238 result_type = type1;
10239 pedwarn (location, 0, "comparison between pointer and integer");
10240 }
10241 break;
10242
10243 default:
10244 gcc_unreachable ();
10245 }
10246
10247 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
10248 return error_mark_node;
10249
10250 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
10251 && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
10252 || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
10253 TREE_TYPE (type1))))
10254 {
10255 binary_op_error (location, code, type0, type1);
10256 return error_mark_node;
10257 }
10258
10259 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
10260 || code0 == FIXED_POINT_TYPE || code0 == VECTOR_TYPE)
10261 &&
10262 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
10263 || code1 == FIXED_POINT_TYPE || code1 == VECTOR_TYPE))
10264 {
10265 bool first_complex = (code0 == COMPLEX_TYPE);
10266 bool second_complex = (code1 == COMPLEX_TYPE);
10267 int none_complex = (!first_complex && !second_complex);
10268
10269 if (shorten || common || short_compare)
10270 {
10271 result_type = c_common_type (type0, type1);
10272 do_warn_double_promotion (result_type, type0, type1,
10273 "implicit conversion from %qT to %qT "
10274 "to match other operand of binary "
10275 "expression",
10276 location);
10277 if (result_type == error_mark_node)
10278 return error_mark_node;
10279 }
10280
10281 if (first_complex != second_complex
10282 && (code == PLUS_EXPR
10283 || code == MINUS_EXPR
10284 || code == MULT_EXPR
10285 || (code == TRUNC_DIV_EXPR && first_complex))
10286 && TREE_CODE (TREE_TYPE (result_type)) == REAL_TYPE
10287 && flag_signed_zeros)
10288 {
10289 /* An operation on mixed real/complex operands must be
10290 handled specially, but the language-independent code can
10291 more easily optimize the plain complex arithmetic if
10292 -fno-signed-zeros. */
10293 tree real_type = TREE_TYPE (result_type);
10294 tree real, imag;
10295 if (type0 != orig_type0 || type1 != orig_type1)
10296 {
10297 gcc_assert (may_need_excess_precision && common);
10298 semantic_result_type = c_common_type (orig_type0, orig_type1);
10299 }
10300 if (first_complex)
10301 {
10302 if (TREE_TYPE (op0) != result_type)
10303 op0 = convert_and_check (result_type, op0);
10304 if (TREE_TYPE (op1) != real_type)
10305 op1 = convert_and_check (real_type, op1);
10306 }
10307 else
10308 {
10309 if (TREE_TYPE (op0) != real_type)
10310 op0 = convert_and_check (real_type, op0);
10311 if (TREE_TYPE (op1) != result_type)
10312 op1 = convert_and_check (result_type, op1);
10313 }
10314 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
10315 return error_mark_node;
10316 if (first_complex)
10317 {
10318 op0 = c_save_expr (op0);
10319 real = build_unary_op (EXPR_LOCATION (orig_op0), REALPART_EXPR,
10320 op0, 1);
10321 imag = build_unary_op (EXPR_LOCATION (orig_op0), IMAGPART_EXPR,
10322 op0, 1);
10323 switch (code)
10324 {
10325 case MULT_EXPR:
10326 case TRUNC_DIV_EXPR:
10327 op1 = c_save_expr (op1);
10328 imag = build2 (resultcode, real_type, imag, op1);
10329 /* Fall through. */
10330 case PLUS_EXPR:
10331 case MINUS_EXPR:
10332 real = build2 (resultcode, real_type, real, op1);
10333 break;
10334 default:
10335 gcc_unreachable();
10336 }
10337 }
10338 else
10339 {
10340 op1 = c_save_expr (op1);
10341 real = build_unary_op (EXPR_LOCATION (orig_op1), REALPART_EXPR,
10342 op1, 1);
10343 imag = build_unary_op (EXPR_LOCATION (orig_op1), IMAGPART_EXPR,
10344 op1, 1);
10345 switch (code)
10346 {
10347 case MULT_EXPR:
10348 op0 = c_save_expr (op0);
10349 imag = build2 (resultcode, real_type, op0, imag);
10350 /* Fall through. */
10351 case PLUS_EXPR:
10352 real = build2 (resultcode, real_type, op0, real);
10353 break;
10354 case MINUS_EXPR:
10355 real = build2 (resultcode, real_type, op0, real);
10356 imag = build1 (NEGATE_EXPR, real_type, imag);
10357 break;
10358 default:
10359 gcc_unreachable();
10360 }
10361 }
10362 ret = build2 (COMPLEX_EXPR, result_type, real, imag);
10363 goto return_build_binary_op;
10364 }
10365
10366 /* For certain operations (which identify themselves by shorten != 0)
10367 if both args were extended from the same smaller type,
10368 do the arithmetic in that type and then extend.
10369
10370 shorten !=0 and !=1 indicates a bitwise operation.
10371 For them, this optimization is safe only if
10372 both args are zero-extended or both are sign-extended.
10373 Otherwise, we might change the result.
10374 Eg, (short)-1 | (unsigned short)-1 is (int)-1
10375 but calculated in (unsigned short) it would be (unsigned short)-1. */
10376
10377 if (shorten && none_complex)
10378 {
10379 final_type = result_type;
10380 result_type = shorten_binary_op (result_type, op0, op1,
10381 shorten == -1);
10382 }
10383
10384 /* Shifts can be shortened if shifting right. */
10385
10386 if (short_shift)
10387 {
10388 int unsigned_arg;
10389 tree arg0 = get_narrower (op0, &unsigned_arg);
10390
10391 final_type = result_type;
10392
10393 if (arg0 == op0 && final_type == TREE_TYPE (op0))
10394 unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
10395
10396 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
10397 && tree_int_cst_sgn (op1) > 0
10398 /* We can shorten only if the shift count is less than the
10399 number of bits in the smaller type size. */
10400 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
10401 /* We cannot drop an unsigned shift after sign-extension. */
10402 && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
10403 {
10404 /* Do an unsigned shift if the operand was zero-extended. */
10405 result_type
10406 = c_common_signed_or_unsigned_type (unsigned_arg,
10407 TREE_TYPE (arg0));
10408 /* Convert value-to-be-shifted to that type. */
10409 if (TREE_TYPE (op0) != result_type)
10410 op0 = convert (result_type, op0);
10411 converted = 1;
10412 }
10413 }
10414
10415 /* Comparison operations are shortened too but differently.
10416 They identify themselves by setting short_compare = 1. */
10417
10418 if (short_compare)
10419 {
10420 /* Don't write &op0, etc., because that would prevent op0
10421 from being kept in a register.
10422 Instead, make copies of the our local variables and
10423 pass the copies by reference, then copy them back afterward. */
10424 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
10425 enum tree_code xresultcode = resultcode;
10426 tree val
10427 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
10428
10429 if (val != 0)
10430 {
10431 ret = val;
10432 goto return_build_binary_op;
10433 }
10434
10435 op0 = xop0, op1 = xop1;
10436 converted = 1;
10437 resultcode = xresultcode;
10438
10439 if (c_inhibit_evaluation_warnings == 0)
10440 {
10441 bool op0_maybe_const = true;
10442 bool op1_maybe_const = true;
10443 tree orig_op0_folded, orig_op1_folded;
10444
10445 if (in_late_binary_op)
10446 {
10447 orig_op0_folded = orig_op0;
10448 orig_op1_folded = orig_op1;
10449 }
10450 else
10451 {
10452 /* Fold for the sake of possible warnings, as in
10453 build_conditional_expr. This requires the
10454 "original" values to be folded, not just op0 and
10455 op1. */
10456 c_inhibit_evaluation_warnings++;
10457 op0 = c_fully_fold (op0, require_constant_value,
10458 &op0_maybe_const);
10459 op1 = c_fully_fold (op1, require_constant_value,
10460 &op1_maybe_const);
10461 c_inhibit_evaluation_warnings--;
10462 orig_op0_folded = c_fully_fold (orig_op0,
10463 require_constant_value,
10464 NULL);
10465 orig_op1_folded = c_fully_fold (orig_op1,
10466 require_constant_value,
10467 NULL);
10468 }
10469
10470 if (warn_sign_compare)
10471 warn_for_sign_compare (location, orig_op0_folded,
10472 orig_op1_folded, op0, op1,
10473 result_type, resultcode);
10474 if (!in_late_binary_op && !int_operands)
10475 {
10476 if (!op0_maybe_const || TREE_CODE (op0) != INTEGER_CST)
10477 op0 = c_wrap_maybe_const (op0, !op0_maybe_const);
10478 if (!op1_maybe_const || TREE_CODE (op1) != INTEGER_CST)
10479 op1 = c_wrap_maybe_const (op1, !op1_maybe_const);
10480 }
10481 }
10482 }
10483 }
10484
10485 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
10486 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
10487 Then the expression will be built.
10488 It will be given type FINAL_TYPE if that is nonzero;
10489 otherwise, it will be given type RESULT_TYPE. */
10490
10491 if (!result_type)
10492 {
10493 binary_op_error (location, code, TREE_TYPE (op0), TREE_TYPE (op1));
10494 return error_mark_node;
10495 }
10496
10497 if (build_type == NULL_TREE)
10498 {
10499 build_type = result_type;
10500 if ((type0 != orig_type0 || type1 != orig_type1)
10501 && !boolean_op)
10502 {
10503 gcc_assert (may_need_excess_precision && common);
10504 semantic_result_type = c_common_type (orig_type0, orig_type1);
10505 }
10506 }
10507
10508 if (!converted)
10509 {
10510 op0 = ep_convert_and_check (result_type, op0, semantic_result_type);
10511 op1 = ep_convert_and_check (result_type, op1, semantic_result_type);
10512
10513 /* This can happen if one operand has a vector type, and the other
10514 has a different type. */
10515 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
10516 return error_mark_node;
10517 }
10518
10519 /* Treat expressions in initializers specially as they can't trap. */
10520 if (int_const_or_overflow)
10521 ret = (require_constant_value
10522 ? fold_build2_initializer_loc (location, resultcode, build_type,
10523 op0, op1)
10524 : fold_build2_loc (location, resultcode, build_type, op0, op1));
10525 else
10526 ret = build2 (resultcode, build_type, op0, op1);
10527 if (final_type != 0)
10528 ret = convert (final_type, ret);
10529
10530 return_build_binary_op:
10531 gcc_assert (ret != error_mark_node);
10532 if (TREE_CODE (ret) == INTEGER_CST && !TREE_OVERFLOW (ret) && !int_const)
10533 ret = (int_operands
10534 ? note_integer_operands (ret)
10535 : build1 (NOP_EXPR, TREE_TYPE (ret), ret));
10536 else if (TREE_CODE (ret) != INTEGER_CST && int_operands
10537 && !in_late_binary_op)
10538 ret = note_integer_operands (ret);
10539 if (semantic_result_type)
10540 ret = build1 (EXCESS_PRECISION_EXPR, semantic_result_type, ret);
10541 protected_set_expr_location (ret, location);
10542 return ret;
10543 }
10544
10545
10546 /* Convert EXPR to be a truth-value, validating its type for this
10547 purpose. LOCATION is the source location for the expression. */
10548
10549 tree
10550 c_objc_common_truthvalue_conversion (location_t location, tree expr)
10551 {
10552 bool int_const, int_operands;
10553
10554 switch (TREE_CODE (TREE_TYPE (expr)))
10555 {
10556 case ARRAY_TYPE:
10557 error_at (location, "used array that cannot be converted to pointer where scalar is required");
10558 return error_mark_node;
10559
10560 case RECORD_TYPE:
10561 error_at (location, "used struct type value where scalar is required");
10562 return error_mark_node;
10563
10564 case UNION_TYPE:
10565 error_at (location, "used union type value where scalar is required");
10566 return error_mark_node;
10567
10568 case VOID_TYPE:
10569 error_at (location, "void value not ignored as it ought to be");
10570 return error_mark_node;
10571
10572 case FUNCTION_TYPE:
10573 gcc_unreachable ();
10574
10575 case VECTOR_TYPE:
10576 error_at (location, "used vector type where scalar is required");
10577 return error_mark_node;
10578
10579 default:
10580 break;
10581 }
10582
10583 int_const = (TREE_CODE (expr) == INTEGER_CST && !TREE_OVERFLOW (expr));
10584 int_operands = EXPR_INT_CONST_OPERANDS (expr);
10585 if (int_operands)
10586 expr = remove_c_maybe_const_expr (expr);
10587
10588 /* ??? Should we also give an error for vectors rather than leaving
10589 those to give errors later? */
10590 expr = c_common_truthvalue_conversion (location, expr);
10591
10592 if (TREE_CODE (expr) == INTEGER_CST && int_operands && !int_const)
10593 {
10594 if (TREE_OVERFLOW (expr))
10595 return expr;
10596 else
10597 return note_integer_operands (expr);
10598 }
10599 if (TREE_CODE (expr) == INTEGER_CST && !int_const)
10600 return build1 (NOP_EXPR, TREE_TYPE (expr), expr);
10601 return expr;
10602 }
10603 \f
10604
10605 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
10606 required. */
10607
10608 tree
10609 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED, bool *se)
10610 {
10611 if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
10612 {
10613 tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
10614 /* Executing a compound literal inside a function reinitializes
10615 it. */
10616 if (!TREE_STATIC (decl))
10617 *se = true;
10618 return decl;
10619 }
10620 else
10621 return expr;
10622 }
10623 \f
10624 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
10625
10626 tree
10627 c_begin_omp_parallel (void)
10628 {
10629 tree block;
10630
10631 keep_next_level ();
10632 block = c_begin_compound_stmt (true);
10633
10634 return block;
10635 }
10636
10637 /* Generate OMP_PARALLEL, with CLAUSES and BLOCK as its compound
10638 statement. LOC is the location of the OMP_PARALLEL. */
10639
10640 tree
10641 c_finish_omp_parallel (location_t loc, tree clauses, tree block)
10642 {
10643 tree stmt;
10644
10645 block = c_end_compound_stmt (loc, block, true);
10646
10647 stmt = make_node (OMP_PARALLEL);
10648 TREE_TYPE (stmt) = void_type_node;
10649 OMP_PARALLEL_CLAUSES (stmt) = clauses;
10650 OMP_PARALLEL_BODY (stmt) = block;
10651 SET_EXPR_LOCATION (stmt, loc);
10652
10653 return add_stmt (stmt);
10654 }
10655
10656 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
10657
10658 tree
10659 c_begin_omp_task (void)
10660 {
10661 tree block;
10662
10663 keep_next_level ();
10664 block = c_begin_compound_stmt (true);
10665
10666 return block;
10667 }
10668
10669 /* Generate OMP_TASK, with CLAUSES and BLOCK as its compound
10670 statement. LOC is the location of the #pragma. */
10671
10672 tree
10673 c_finish_omp_task (location_t loc, tree clauses, tree block)
10674 {
10675 tree stmt;
10676
10677 block = c_end_compound_stmt (loc, block, true);
10678
10679 stmt = make_node (OMP_TASK);
10680 TREE_TYPE (stmt) = void_type_node;
10681 OMP_TASK_CLAUSES (stmt) = clauses;
10682 OMP_TASK_BODY (stmt) = block;
10683 SET_EXPR_LOCATION (stmt, loc);
10684
10685 return add_stmt (stmt);
10686 }
10687
10688 /* For all elements of CLAUSES, validate them vs OpenMP constraints.
10689 Remove any elements from the list that are invalid. */
10690
10691 tree
10692 c_finish_omp_clauses (tree clauses)
10693 {
10694 bitmap_head generic_head, firstprivate_head, lastprivate_head;
10695 tree c, t, *pc = &clauses;
10696 const char *name;
10697
10698 bitmap_obstack_initialize (NULL);
10699 bitmap_initialize (&generic_head, &bitmap_default_obstack);
10700 bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
10701 bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
10702
10703 for (pc = &clauses, c = clauses; c ; c = *pc)
10704 {
10705 bool remove = false;
10706 bool need_complete = false;
10707 bool need_implicitly_determined = false;
10708
10709 switch (OMP_CLAUSE_CODE (c))
10710 {
10711 case OMP_CLAUSE_SHARED:
10712 name = "shared";
10713 need_implicitly_determined = true;
10714 goto check_dup_generic;
10715
10716 case OMP_CLAUSE_PRIVATE:
10717 name = "private";
10718 need_complete = true;
10719 need_implicitly_determined = true;
10720 goto check_dup_generic;
10721
10722 case OMP_CLAUSE_REDUCTION:
10723 name = "reduction";
10724 need_implicitly_determined = true;
10725 t = OMP_CLAUSE_DECL (c);
10726 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
10727 || POINTER_TYPE_P (TREE_TYPE (t)))
10728 {
10729 error_at (OMP_CLAUSE_LOCATION (c),
10730 "%qE has invalid type for %<reduction%>", t);
10731 remove = true;
10732 }
10733 else if (FLOAT_TYPE_P (TREE_TYPE (t)))
10734 {
10735 enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
10736 const char *r_name = NULL;
10737
10738 switch (r_code)
10739 {
10740 case PLUS_EXPR:
10741 case MULT_EXPR:
10742 case MINUS_EXPR:
10743 case MIN_EXPR:
10744 case MAX_EXPR:
10745 break;
10746 case BIT_AND_EXPR:
10747 r_name = "&";
10748 break;
10749 case BIT_XOR_EXPR:
10750 r_name = "^";
10751 break;
10752 case BIT_IOR_EXPR:
10753 r_name = "|";
10754 break;
10755 case TRUTH_ANDIF_EXPR:
10756 r_name = "&&";
10757 break;
10758 case TRUTH_ORIF_EXPR:
10759 r_name = "||";
10760 break;
10761 default:
10762 gcc_unreachable ();
10763 }
10764 if (r_name)
10765 {
10766 error_at (OMP_CLAUSE_LOCATION (c),
10767 "%qE has invalid type for %<reduction(%s)%>",
10768 t, r_name);
10769 remove = true;
10770 }
10771 }
10772 goto check_dup_generic;
10773
10774 case OMP_CLAUSE_COPYPRIVATE:
10775 name = "copyprivate";
10776 goto check_dup_generic;
10777
10778 case OMP_CLAUSE_COPYIN:
10779 name = "copyin";
10780 t = OMP_CLAUSE_DECL (c);
10781 if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
10782 {
10783 error_at (OMP_CLAUSE_LOCATION (c),
10784 "%qE must be %<threadprivate%> for %<copyin%>", t);
10785 remove = true;
10786 }
10787 goto check_dup_generic;
10788
10789 check_dup_generic:
10790 t = OMP_CLAUSE_DECL (c);
10791 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
10792 {
10793 error_at (OMP_CLAUSE_LOCATION (c),
10794 "%qE is not a variable in clause %qs", t, name);
10795 remove = true;
10796 }
10797 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
10798 || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
10799 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
10800 {
10801 error_at (OMP_CLAUSE_LOCATION (c),
10802 "%qE appears more than once in data clauses", t);
10803 remove = true;
10804 }
10805 else
10806 bitmap_set_bit (&generic_head, DECL_UID (t));
10807 break;
10808
10809 case OMP_CLAUSE_FIRSTPRIVATE:
10810 name = "firstprivate";
10811 t = OMP_CLAUSE_DECL (c);
10812 need_complete = true;
10813 need_implicitly_determined = true;
10814 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
10815 {
10816 error_at (OMP_CLAUSE_LOCATION (c),
10817 "%qE is not a variable in clause %<firstprivate%>", t);
10818 remove = true;
10819 }
10820 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
10821 || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
10822 {
10823 error_at (OMP_CLAUSE_LOCATION (c),
10824 "%qE appears more than once in data clauses", t);
10825 remove = true;
10826 }
10827 else
10828 bitmap_set_bit (&firstprivate_head, DECL_UID (t));
10829 break;
10830
10831 case OMP_CLAUSE_LASTPRIVATE:
10832 name = "lastprivate";
10833 t = OMP_CLAUSE_DECL (c);
10834 need_complete = true;
10835 need_implicitly_determined = true;
10836 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
10837 {
10838 error_at (OMP_CLAUSE_LOCATION (c),
10839 "%qE is not a variable in clause %<lastprivate%>", t);
10840 remove = true;
10841 }
10842 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
10843 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
10844 {
10845 error_at (OMP_CLAUSE_LOCATION (c),
10846 "%qE appears more than once in data clauses", t);
10847 remove = true;
10848 }
10849 else
10850 bitmap_set_bit (&lastprivate_head, DECL_UID (t));
10851 break;
10852
10853 case OMP_CLAUSE_IF:
10854 case OMP_CLAUSE_NUM_THREADS:
10855 case OMP_CLAUSE_SCHEDULE:
10856 case OMP_CLAUSE_NOWAIT:
10857 case OMP_CLAUSE_ORDERED:
10858 case OMP_CLAUSE_DEFAULT:
10859 case OMP_CLAUSE_UNTIED:
10860 case OMP_CLAUSE_COLLAPSE:
10861 case OMP_CLAUSE_FINAL:
10862 case OMP_CLAUSE_MERGEABLE:
10863 pc = &OMP_CLAUSE_CHAIN (c);
10864 continue;
10865
10866 default:
10867 gcc_unreachable ();
10868 }
10869
10870 if (!remove)
10871 {
10872 t = OMP_CLAUSE_DECL (c);
10873
10874 if (need_complete)
10875 {
10876 t = require_complete_type (t);
10877 if (t == error_mark_node)
10878 remove = true;
10879 }
10880
10881 if (need_implicitly_determined)
10882 {
10883 const char *share_name = NULL;
10884
10885 if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
10886 share_name = "threadprivate";
10887 else switch (c_omp_predetermined_sharing (t))
10888 {
10889 case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
10890 break;
10891 case OMP_CLAUSE_DEFAULT_SHARED:
10892 /* const vars may be specified in firstprivate clause. */
10893 if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_FIRSTPRIVATE
10894 && TREE_READONLY (t))
10895 break;
10896 share_name = "shared";
10897 break;
10898 case OMP_CLAUSE_DEFAULT_PRIVATE:
10899 share_name = "private";
10900 break;
10901 default:
10902 gcc_unreachable ();
10903 }
10904 if (share_name)
10905 {
10906 error_at (OMP_CLAUSE_LOCATION (c),
10907 "%qE is predetermined %qs for %qs",
10908 t, share_name, name);
10909 remove = true;
10910 }
10911 }
10912 }
10913
10914 if (remove)
10915 *pc = OMP_CLAUSE_CHAIN (c);
10916 else
10917 pc = &OMP_CLAUSE_CHAIN (c);
10918 }
10919
10920 bitmap_obstack_release (NULL);
10921 return clauses;
10922 }
10923
10924 /* Make a variant type in the proper way for C/C++, propagating qualifiers
10925 down to the element type of an array. */
10926
10927 tree
10928 c_build_qualified_type (tree type, int type_quals)
10929 {
10930 if (type == error_mark_node)
10931 return type;
10932
10933 if (TREE_CODE (type) == ARRAY_TYPE)
10934 {
10935 tree t;
10936 tree element_type = c_build_qualified_type (TREE_TYPE (type),
10937 type_quals);
10938
10939 /* See if we already have an identically qualified type. */
10940 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
10941 {
10942 if (TYPE_QUALS (strip_array_types (t)) == type_quals
10943 && TYPE_NAME (t) == TYPE_NAME (type)
10944 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
10945 && attribute_list_equal (TYPE_ATTRIBUTES (t),
10946 TYPE_ATTRIBUTES (type)))
10947 break;
10948 }
10949 if (!t)
10950 {
10951 tree domain = TYPE_DOMAIN (type);
10952
10953 t = build_variant_type_copy (type);
10954 TREE_TYPE (t) = element_type;
10955
10956 if (TYPE_STRUCTURAL_EQUALITY_P (element_type)
10957 || (domain && TYPE_STRUCTURAL_EQUALITY_P (domain)))
10958 SET_TYPE_STRUCTURAL_EQUALITY (t);
10959 else if (TYPE_CANONICAL (element_type) != element_type
10960 || (domain && TYPE_CANONICAL (domain) != domain))
10961 {
10962 tree unqualified_canon
10963 = build_array_type (TYPE_CANONICAL (element_type),
10964 domain? TYPE_CANONICAL (domain)
10965 : NULL_TREE);
10966 TYPE_CANONICAL (t)
10967 = c_build_qualified_type (unqualified_canon, type_quals);
10968 }
10969 else
10970 TYPE_CANONICAL (t) = t;
10971 }
10972 return t;
10973 }
10974
10975 /* A restrict-qualified pointer type must be a pointer to object or
10976 incomplete type. Note that the use of POINTER_TYPE_P also allows
10977 REFERENCE_TYPEs, which is appropriate for C++. */
10978 if ((type_quals & TYPE_QUAL_RESTRICT)
10979 && (!POINTER_TYPE_P (type)
10980 || !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type))))
10981 {
10982 error ("invalid use of %<restrict%>");
10983 type_quals &= ~TYPE_QUAL_RESTRICT;
10984 }
10985
10986 return build_qualified_type (type, type_quals);
10987 }
10988
10989 /* Build a VA_ARG_EXPR for the C parser. */
10990
10991 tree
10992 c_build_va_arg (location_t loc, tree expr, tree type)
10993 {
10994 if (warn_cxx_compat && TREE_CODE (type) == ENUMERAL_TYPE)
10995 warning_at (loc, OPT_Wc___compat,
10996 "C++ requires promoted type, not enum type, in %<va_arg%>");
10997 return build_va_arg (loc, expr, type);
10998 }