c-typeck.c (convert_for_assignment): Adjust WARN_FOR_ASSIGNMENT use not updated in...
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* This file is part of the C front end.
24 It contains routines to build C expressions given their operands,
25 including computing the types of the result, C-specific error checks,
26 and some optimization. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "langhooks.h"
35 #include "c-tree.h"
36 #include "tm_p.h"
37 #include "flags.h"
38 #include "output.h"
39 #include "expr.h"
40 #include "toplev.h"
41 #include "intl.h"
42 #include "ggc.h"
43 #include "target.h"
44 #include "tree-iterator.h"
45 #include "gimple.h"
46 #include "tree-flow.h"
47
48 /* Possible cases of implicit bad conversions. Used to select
49 diagnostic messages in convert_for_assignment. */
50 enum impl_conv {
51 ic_argpass,
52 ic_argpass_nonproto,
53 ic_assign,
54 ic_init,
55 ic_return
56 };
57
58 /* The level of nesting inside "__alignof__". */
59 int in_alignof;
60
61 /* The level of nesting inside "sizeof". */
62 int in_sizeof;
63
64 /* The level of nesting inside "typeof". */
65 int in_typeof;
66
67 struct c_label_context_se *label_context_stack_se;
68 struct c_label_context_vm *label_context_stack_vm;
69
70 /* Nonzero if we've already printed a "missing braces around initializer"
71 message within this initializer. */
72 static int missing_braces_mentioned;
73
74 static int require_constant_value;
75 static int require_constant_elements;
76
77 static bool null_pointer_constant_p (const_tree);
78 static tree qualify_type (tree, tree);
79 static int tagged_types_tu_compatible_p (const_tree, const_tree);
80 static int comp_target_types (tree, tree);
81 static int function_types_compatible_p (const_tree, const_tree);
82 static int type_lists_compatible_p (const_tree, const_tree);
83 static tree decl_constant_value_for_broken_optimization (tree);
84 static tree lookup_field (tree, tree);
85 static int convert_arguments (int, tree *, tree, tree, tree, tree);
86 static tree pointer_diff (tree, tree);
87 static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
88 int);
89 static tree valid_compound_expr_initializer (tree, tree);
90 static void push_string (const char *);
91 static void push_member_name (tree);
92 static int spelling_length (void);
93 static char *print_spelling (char *);
94 static void warning_init (int, const char *);
95 static tree digest_init (tree, tree, bool, int);
96 static void output_init_element (tree, bool, tree, tree, int);
97 static void output_pending_init_elements (int);
98 static int set_designator (int);
99 static void push_range_stack (tree);
100 static void add_pending_init (tree, tree);
101 static void set_nonincremental_init (void);
102 static void set_nonincremental_init_from_string (tree);
103 static tree find_init_member (tree);
104 static void readonly_error (tree, enum lvalue_use);
105 static int lvalue_or_else (const_tree, enum lvalue_use);
106 static int lvalue_p (const_tree);
107 static void record_maybe_used_decl (tree);
108 static int comptypes_internal (const_tree, const_tree);
109 \f
110 /* Return true if EXP is a null pointer constant, false otherwise. */
111
112 static bool
113 null_pointer_constant_p (const_tree expr)
114 {
115 /* This should really operate on c_expr structures, but they aren't
116 yet available everywhere required. */
117 tree type = TREE_TYPE (expr);
118 return (TREE_CODE (expr) == INTEGER_CST
119 && !TREE_OVERFLOW (expr)
120 && integer_zerop (expr)
121 && (INTEGRAL_TYPE_P (type)
122 || (TREE_CODE (type) == POINTER_TYPE
123 && VOID_TYPE_P (TREE_TYPE (type))
124 && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
125 }
126 \f/* This is a cache to hold if two types are compatible or not. */
127
128 struct tagged_tu_seen_cache {
129 const struct tagged_tu_seen_cache * next;
130 const_tree t1;
131 const_tree t2;
132 /* The return value of tagged_types_tu_compatible_p if we had seen
133 these two types already. */
134 int val;
135 };
136
137 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
138 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
139
140 /* Do `exp = require_complete_type (exp);' to make sure exp
141 does not have an incomplete type. (That includes void types.) */
142
143 tree
144 require_complete_type (tree value)
145 {
146 tree type = TREE_TYPE (value);
147
148 if (value == error_mark_node || type == error_mark_node)
149 return error_mark_node;
150
151 /* First, detect a valid value with a complete type. */
152 if (COMPLETE_TYPE_P (type))
153 return value;
154
155 c_incomplete_type_error (value, type);
156 return error_mark_node;
157 }
158
159 /* Print an error message for invalid use of an incomplete type.
160 VALUE is the expression that was used (or 0 if that isn't known)
161 and TYPE is the type that was invalid. */
162
163 void
164 c_incomplete_type_error (const_tree value, const_tree type)
165 {
166 const char *type_code_string;
167
168 /* Avoid duplicate error message. */
169 if (TREE_CODE (type) == ERROR_MARK)
170 return;
171
172 if (value != 0 && (TREE_CODE (value) == VAR_DECL
173 || TREE_CODE (value) == PARM_DECL))
174 error ("%qD has an incomplete type", value);
175 else
176 {
177 retry:
178 /* We must print an error message. Be clever about what it says. */
179
180 switch (TREE_CODE (type))
181 {
182 case RECORD_TYPE:
183 type_code_string = "struct";
184 break;
185
186 case UNION_TYPE:
187 type_code_string = "union";
188 break;
189
190 case ENUMERAL_TYPE:
191 type_code_string = "enum";
192 break;
193
194 case VOID_TYPE:
195 error ("invalid use of void expression");
196 return;
197
198 case ARRAY_TYPE:
199 if (TYPE_DOMAIN (type))
200 {
201 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
202 {
203 error ("invalid use of flexible array member");
204 return;
205 }
206 type = TREE_TYPE (type);
207 goto retry;
208 }
209 error ("invalid use of array with unspecified bounds");
210 return;
211
212 default:
213 gcc_unreachable ();
214 }
215
216 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
217 error ("invalid use of undefined type %<%s %E%>",
218 type_code_string, TYPE_NAME (type));
219 else
220 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
221 error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
222 }
223 }
224
225 /* Given a type, apply default promotions wrt unnamed function
226 arguments and return the new type. */
227
228 tree
229 c_type_promotes_to (tree type)
230 {
231 if (TYPE_MAIN_VARIANT (type) == float_type_node)
232 return double_type_node;
233
234 if (c_promoting_integer_type_p (type))
235 {
236 /* Preserve unsignedness if not really getting any wider. */
237 if (TYPE_UNSIGNED (type)
238 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
239 return unsigned_type_node;
240 return integer_type_node;
241 }
242
243 return type;
244 }
245
246 /* Return a variant of TYPE which has all the type qualifiers of LIKE
247 as well as those of TYPE. */
248
249 static tree
250 qualify_type (tree type, tree like)
251 {
252 return c_build_qualified_type (type,
253 TYPE_QUALS (type) | TYPE_QUALS (like));
254 }
255
256 /* Return true iff the given tree T is a variable length array. */
257
258 bool
259 c_vla_type_p (const_tree t)
260 {
261 if (TREE_CODE (t) == ARRAY_TYPE
262 && C_TYPE_VARIABLE_SIZE (t))
263 return true;
264 return false;
265 }
266 \f
267 /* Return the composite type of two compatible types.
268
269 We assume that comptypes has already been done and returned
270 nonzero; if that isn't so, this may crash. In particular, we
271 assume that qualifiers match. */
272
273 tree
274 composite_type (tree t1, tree t2)
275 {
276 enum tree_code code1;
277 enum tree_code code2;
278 tree attributes;
279
280 /* Save time if the two types are the same. */
281
282 if (t1 == t2) return t1;
283
284 /* If one type is nonsense, use the other. */
285 if (t1 == error_mark_node)
286 return t2;
287 if (t2 == error_mark_node)
288 return t1;
289
290 code1 = TREE_CODE (t1);
291 code2 = TREE_CODE (t2);
292
293 /* Merge the attributes. */
294 attributes = targetm.merge_type_attributes (t1, t2);
295
296 /* If one is an enumerated type and the other is the compatible
297 integer type, the composite type might be either of the two
298 (DR#013 question 3). For consistency, use the enumerated type as
299 the composite type. */
300
301 if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
302 return t1;
303 if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
304 return t2;
305
306 gcc_assert (code1 == code2);
307
308 switch (code1)
309 {
310 case POINTER_TYPE:
311 /* For two pointers, do this recursively on the target type. */
312 {
313 tree pointed_to_1 = TREE_TYPE (t1);
314 tree pointed_to_2 = TREE_TYPE (t2);
315 tree target = composite_type (pointed_to_1, pointed_to_2);
316 t1 = build_pointer_type (target);
317 t1 = build_type_attribute_variant (t1, attributes);
318 return qualify_type (t1, t2);
319 }
320
321 case ARRAY_TYPE:
322 {
323 tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
324 int quals;
325 tree unqual_elt;
326 tree d1 = TYPE_DOMAIN (t1);
327 tree d2 = TYPE_DOMAIN (t2);
328 bool d1_variable, d2_variable;
329 bool d1_zero, d2_zero;
330
331 /* We should not have any type quals on arrays at all. */
332 gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
333
334 d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
335 d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
336
337 d1_variable = (!d1_zero
338 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
339 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
340 d2_variable = (!d2_zero
341 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
342 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
343 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
344 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
345
346 /* Save space: see if the result is identical to one of the args. */
347 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
348 && (d2_variable || d2_zero || !d1_variable))
349 return build_type_attribute_variant (t1, attributes);
350 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
351 && (d1_variable || d1_zero || !d2_variable))
352 return build_type_attribute_variant (t2, attributes);
353
354 if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
355 return build_type_attribute_variant (t1, attributes);
356 if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
357 return build_type_attribute_variant (t2, attributes);
358
359 /* Merge the element types, and have a size if either arg has
360 one. We may have qualifiers on the element types. To set
361 up TYPE_MAIN_VARIANT correctly, we need to form the
362 composite of the unqualified types and add the qualifiers
363 back at the end. */
364 quals = TYPE_QUALS (strip_array_types (elt));
365 unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
366 t1 = build_array_type (unqual_elt,
367 TYPE_DOMAIN ((TYPE_DOMAIN (t1)
368 && (d2_variable
369 || d2_zero
370 || !d1_variable))
371 ? t1
372 : t2));
373 t1 = c_build_qualified_type (t1, quals);
374 return build_type_attribute_variant (t1, attributes);
375 }
376
377 case ENUMERAL_TYPE:
378 case RECORD_TYPE:
379 case UNION_TYPE:
380 if (attributes != NULL)
381 {
382 /* Try harder not to create a new aggregate type. */
383 if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
384 return t1;
385 if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
386 return t2;
387 }
388 return build_type_attribute_variant (t1, attributes);
389
390 case FUNCTION_TYPE:
391 /* Function types: prefer the one that specified arg types.
392 If both do, merge the arg types. Also merge the return types. */
393 {
394 tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
395 tree p1 = TYPE_ARG_TYPES (t1);
396 tree p2 = TYPE_ARG_TYPES (t2);
397 int len;
398 tree newargs, n;
399 int i;
400
401 /* Save space: see if the result is identical to one of the args. */
402 if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
403 return build_type_attribute_variant (t1, attributes);
404 if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
405 return build_type_attribute_variant (t2, attributes);
406
407 /* Simple way if one arg fails to specify argument types. */
408 if (TYPE_ARG_TYPES (t1) == 0)
409 {
410 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
411 t1 = build_type_attribute_variant (t1, attributes);
412 return qualify_type (t1, t2);
413 }
414 if (TYPE_ARG_TYPES (t2) == 0)
415 {
416 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
417 t1 = build_type_attribute_variant (t1, attributes);
418 return qualify_type (t1, t2);
419 }
420
421 /* If both args specify argument types, we must merge the two
422 lists, argument by argument. */
423 /* Tell global_bindings_p to return false so that variable_size
424 doesn't die on VLAs in parameter types. */
425 c_override_global_bindings_to_false = true;
426
427 len = list_length (p1);
428 newargs = 0;
429
430 for (i = 0; i < len; i++)
431 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
432
433 n = newargs;
434
435 for (; p1;
436 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
437 {
438 /* A null type means arg type is not specified.
439 Take whatever the other function type has. */
440 if (TREE_VALUE (p1) == 0)
441 {
442 TREE_VALUE (n) = TREE_VALUE (p2);
443 goto parm_done;
444 }
445 if (TREE_VALUE (p2) == 0)
446 {
447 TREE_VALUE (n) = TREE_VALUE (p1);
448 goto parm_done;
449 }
450
451 /* Given wait (union {union wait *u; int *i} *)
452 and wait (union wait *),
453 prefer union wait * as type of parm. */
454 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
455 && TREE_VALUE (p1) != TREE_VALUE (p2))
456 {
457 tree memb;
458 tree mv2 = TREE_VALUE (p2);
459 if (mv2 && mv2 != error_mark_node
460 && TREE_CODE (mv2) != ARRAY_TYPE)
461 mv2 = TYPE_MAIN_VARIANT (mv2);
462 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
463 memb; memb = TREE_CHAIN (memb))
464 {
465 tree mv3 = TREE_TYPE (memb);
466 if (mv3 && mv3 != error_mark_node
467 && TREE_CODE (mv3) != ARRAY_TYPE)
468 mv3 = TYPE_MAIN_VARIANT (mv3);
469 if (comptypes (mv3, mv2))
470 {
471 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
472 TREE_VALUE (p2));
473 pedwarn (input_location, OPT_pedantic,
474 "function types not truly compatible in ISO C");
475 goto parm_done;
476 }
477 }
478 }
479 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
480 && TREE_VALUE (p2) != TREE_VALUE (p1))
481 {
482 tree memb;
483 tree mv1 = TREE_VALUE (p1);
484 if (mv1 && mv1 != error_mark_node
485 && TREE_CODE (mv1) != ARRAY_TYPE)
486 mv1 = TYPE_MAIN_VARIANT (mv1);
487 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
488 memb; memb = TREE_CHAIN (memb))
489 {
490 tree mv3 = TREE_TYPE (memb);
491 if (mv3 && mv3 != error_mark_node
492 && TREE_CODE (mv3) != ARRAY_TYPE)
493 mv3 = TYPE_MAIN_VARIANT (mv3);
494 if (comptypes (mv3, mv1))
495 {
496 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
497 TREE_VALUE (p1));
498 pedwarn (input_location, OPT_pedantic,
499 "function types not truly compatible in ISO C");
500 goto parm_done;
501 }
502 }
503 }
504 TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
505 parm_done: ;
506 }
507
508 c_override_global_bindings_to_false = false;
509 t1 = build_function_type (valtype, newargs);
510 t1 = qualify_type (t1, t2);
511 /* ... falls through ... */
512 }
513
514 default:
515 return build_type_attribute_variant (t1, attributes);
516 }
517
518 }
519
520 /* Return the type of a conditional expression between pointers to
521 possibly differently qualified versions of compatible types.
522
523 We assume that comp_target_types has already been done and returned
524 nonzero; if that isn't so, this may crash. */
525
526 static tree
527 common_pointer_type (tree t1, tree t2)
528 {
529 tree attributes;
530 tree pointed_to_1, mv1;
531 tree pointed_to_2, mv2;
532 tree target;
533 unsigned target_quals;
534
535 /* Save time if the two types are the same. */
536
537 if (t1 == t2) return t1;
538
539 /* If one type is nonsense, use the other. */
540 if (t1 == error_mark_node)
541 return t2;
542 if (t2 == error_mark_node)
543 return t1;
544
545 gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546 && TREE_CODE (t2) == POINTER_TYPE);
547
548 /* Merge the attributes. */
549 attributes = targetm.merge_type_attributes (t1, t2);
550
551 /* Find the composite type of the target types, and combine the
552 qualifiers of the two types' targets. Do not lose qualifiers on
553 array element types by taking the TYPE_MAIN_VARIANT. */
554 mv1 = pointed_to_1 = TREE_TYPE (t1);
555 mv2 = pointed_to_2 = TREE_TYPE (t2);
556 if (TREE_CODE (mv1) != ARRAY_TYPE)
557 mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558 if (TREE_CODE (mv2) != ARRAY_TYPE)
559 mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560 target = composite_type (mv1, mv2);
561
562 /* For function types do not merge const qualifiers, but drop them
563 if used inconsistently. The middle-end uses these to mark const
564 and noreturn functions. */
565 if (TREE_CODE (pointed_to_1) == FUNCTION_TYPE)
566 target_quals = TYPE_QUALS (pointed_to_1) & TYPE_QUALS (pointed_to_2);
567 else
568 target_quals = TYPE_QUALS (pointed_to_1) | TYPE_QUALS (pointed_to_2);
569 t1 = build_pointer_type (c_build_qualified_type (target, target_quals));
570 return build_type_attribute_variant (t1, attributes);
571 }
572
573 /* Return the common type for two arithmetic types under the usual
574 arithmetic conversions. The default conversions have already been
575 applied, and enumerated types converted to their compatible integer
576 types. The resulting type is unqualified and has no attributes.
577
578 This is the type for the result of most arithmetic operations
579 if the operands have the given two types. */
580
581 static tree
582 c_common_type (tree t1, tree t2)
583 {
584 enum tree_code code1;
585 enum tree_code code2;
586
587 /* If one type is nonsense, use the other. */
588 if (t1 == error_mark_node)
589 return t2;
590 if (t2 == error_mark_node)
591 return t1;
592
593 if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
594 t1 = TYPE_MAIN_VARIANT (t1);
595
596 if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
597 t2 = TYPE_MAIN_VARIANT (t2);
598
599 if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
600 t1 = build_type_attribute_variant (t1, NULL_TREE);
601
602 if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
603 t2 = build_type_attribute_variant (t2, NULL_TREE);
604
605 /* Save time if the two types are the same. */
606
607 if (t1 == t2) return t1;
608
609 code1 = TREE_CODE (t1);
610 code2 = TREE_CODE (t2);
611
612 gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
613 || code1 == FIXED_POINT_TYPE || code1 == REAL_TYPE
614 || code1 == INTEGER_TYPE);
615 gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
616 || code2 == FIXED_POINT_TYPE || code2 == REAL_TYPE
617 || code2 == INTEGER_TYPE);
618
619 /* When one operand is a decimal float type, the other operand cannot be
620 a generic float type or a complex type. We also disallow vector types
621 here. */
622 if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
623 && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
624 {
625 if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
626 {
627 error ("can%'t mix operands of decimal float and vector types");
628 return error_mark_node;
629 }
630 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
631 {
632 error ("can%'t mix operands of decimal float and complex types");
633 return error_mark_node;
634 }
635 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
636 {
637 error ("can%'t mix operands of decimal float and other float types");
638 return error_mark_node;
639 }
640 }
641
642 /* If one type is a vector type, return that type. (How the usual
643 arithmetic conversions apply to the vector types extension is not
644 precisely specified.) */
645 if (code1 == VECTOR_TYPE)
646 return t1;
647
648 if (code2 == VECTOR_TYPE)
649 return t2;
650
651 /* If one type is complex, form the common type of the non-complex
652 components, then make that complex. Use T1 or T2 if it is the
653 required type. */
654 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
655 {
656 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
657 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
658 tree subtype = c_common_type (subtype1, subtype2);
659
660 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
661 return t1;
662 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
663 return t2;
664 else
665 return build_complex_type (subtype);
666 }
667
668 /* If only one is real, use it as the result. */
669
670 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
671 return t1;
672
673 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
674 return t2;
675
676 /* If both are real and either are decimal floating point types, use
677 the decimal floating point type with the greater precision. */
678
679 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
680 {
681 if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
682 || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
683 return dfloat128_type_node;
684 else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
685 || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
686 return dfloat64_type_node;
687 else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
688 || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
689 return dfloat32_type_node;
690 }
691
692 /* Deal with fixed-point types. */
693 if (code1 == FIXED_POINT_TYPE || code2 == FIXED_POINT_TYPE)
694 {
695 unsigned int unsignedp = 0, satp = 0;
696 enum machine_mode m1, m2;
697 unsigned int fbit1, ibit1, fbit2, ibit2, max_fbit, max_ibit;
698
699 m1 = TYPE_MODE (t1);
700 m2 = TYPE_MODE (t2);
701
702 /* If one input type is saturating, the result type is saturating. */
703 if (TYPE_SATURATING (t1) || TYPE_SATURATING (t2))
704 satp = 1;
705
706 /* If both fixed-point types are unsigned, the result type is unsigned.
707 When mixing fixed-point and integer types, follow the sign of the
708 fixed-point type.
709 Otherwise, the result type is signed. */
710 if ((TYPE_UNSIGNED (t1) && TYPE_UNSIGNED (t2)
711 && code1 == FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE)
712 || (code1 == FIXED_POINT_TYPE && code2 != FIXED_POINT_TYPE
713 && TYPE_UNSIGNED (t1))
714 || (code1 != FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE
715 && TYPE_UNSIGNED (t2)))
716 unsignedp = 1;
717
718 /* The result type is signed. */
719 if (unsignedp == 0)
720 {
721 /* If the input type is unsigned, we need to convert to the
722 signed type. */
723 if (code1 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t1))
724 {
725 enum mode_class mclass = (enum mode_class) 0;
726 if (GET_MODE_CLASS (m1) == MODE_UFRACT)
727 mclass = MODE_FRACT;
728 else if (GET_MODE_CLASS (m1) == MODE_UACCUM)
729 mclass = MODE_ACCUM;
730 else
731 gcc_unreachable ();
732 m1 = mode_for_size (GET_MODE_PRECISION (m1), mclass, 0);
733 }
734 if (code2 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t2))
735 {
736 enum mode_class mclass = (enum mode_class) 0;
737 if (GET_MODE_CLASS (m2) == MODE_UFRACT)
738 mclass = MODE_FRACT;
739 else if (GET_MODE_CLASS (m2) == MODE_UACCUM)
740 mclass = MODE_ACCUM;
741 else
742 gcc_unreachable ();
743 m2 = mode_for_size (GET_MODE_PRECISION (m2), mclass, 0);
744 }
745 }
746
747 if (code1 == FIXED_POINT_TYPE)
748 {
749 fbit1 = GET_MODE_FBIT (m1);
750 ibit1 = GET_MODE_IBIT (m1);
751 }
752 else
753 {
754 fbit1 = 0;
755 /* Signed integers need to subtract one sign bit. */
756 ibit1 = TYPE_PRECISION (t1) - (!TYPE_UNSIGNED (t1));
757 }
758
759 if (code2 == FIXED_POINT_TYPE)
760 {
761 fbit2 = GET_MODE_FBIT (m2);
762 ibit2 = GET_MODE_IBIT (m2);
763 }
764 else
765 {
766 fbit2 = 0;
767 /* Signed integers need to subtract one sign bit. */
768 ibit2 = TYPE_PRECISION (t2) - (!TYPE_UNSIGNED (t2));
769 }
770
771 max_ibit = ibit1 >= ibit2 ? ibit1 : ibit2;
772 max_fbit = fbit1 >= fbit2 ? fbit1 : fbit2;
773 return c_common_fixed_point_type_for_size (max_ibit, max_fbit, unsignedp,
774 satp);
775 }
776
777 /* Both real or both integers; use the one with greater precision. */
778
779 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
780 return t1;
781 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
782 return t2;
783
784 /* Same precision. Prefer long longs to longs to ints when the
785 same precision, following the C99 rules on integer type rank
786 (which are equivalent to the C90 rules for C90 types). */
787
788 if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
789 || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
790 return long_long_unsigned_type_node;
791
792 if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
793 || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
794 {
795 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
796 return long_long_unsigned_type_node;
797 else
798 return long_long_integer_type_node;
799 }
800
801 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
802 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
803 return long_unsigned_type_node;
804
805 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
806 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
807 {
808 /* But preserve unsignedness from the other type,
809 since long cannot hold all the values of an unsigned int. */
810 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
811 return long_unsigned_type_node;
812 else
813 return long_integer_type_node;
814 }
815
816 /* Likewise, prefer long double to double even if same size. */
817 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
818 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
819 return long_double_type_node;
820
821 /* Otherwise prefer the unsigned one. */
822
823 if (TYPE_UNSIGNED (t1))
824 return t1;
825 else
826 return t2;
827 }
828 \f
829 /* Wrapper around c_common_type that is used by c-common.c and other
830 front end optimizations that remove promotions. ENUMERAL_TYPEs
831 are allowed here and are converted to their compatible integer types.
832 BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
833 preferably a non-Boolean type as the common type. */
834 tree
835 common_type (tree t1, tree t2)
836 {
837 if (TREE_CODE (t1) == ENUMERAL_TYPE)
838 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
839 if (TREE_CODE (t2) == ENUMERAL_TYPE)
840 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
841
842 /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */
843 if (TREE_CODE (t1) == BOOLEAN_TYPE
844 && TREE_CODE (t2) == BOOLEAN_TYPE)
845 return boolean_type_node;
846
847 /* If either type is BOOLEAN_TYPE, then return the other. */
848 if (TREE_CODE (t1) == BOOLEAN_TYPE)
849 return t2;
850 if (TREE_CODE (t2) == BOOLEAN_TYPE)
851 return t1;
852
853 return c_common_type (t1, t2);
854 }
855
856 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
857 or various other operations. Return 2 if they are compatible
858 but a warning may be needed if you use them together. */
859
860 int
861 comptypes (tree type1, tree type2)
862 {
863 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
864 int val;
865
866 val = comptypes_internal (type1, type2);
867 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
868
869 return val;
870 }
871 \f
872 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
873 or various other operations. Return 2 if they are compatible
874 but a warning may be needed if you use them together. This
875 differs from comptypes, in that we don't free the seen types. */
876
877 static int
878 comptypes_internal (const_tree type1, const_tree type2)
879 {
880 const_tree t1 = type1;
881 const_tree t2 = type2;
882 int attrval, val;
883
884 /* Suppress errors caused by previously reported errors. */
885
886 if (t1 == t2 || !t1 || !t2
887 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
888 return 1;
889
890 /* If either type is the internal version of sizetype, return the
891 language version. */
892 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
893 && TYPE_ORIG_SIZE_TYPE (t1))
894 t1 = TYPE_ORIG_SIZE_TYPE (t1);
895
896 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
897 && TYPE_ORIG_SIZE_TYPE (t2))
898 t2 = TYPE_ORIG_SIZE_TYPE (t2);
899
900
901 /* Enumerated types are compatible with integer types, but this is
902 not transitive: two enumerated types in the same translation unit
903 are compatible with each other only if they are the same type. */
904
905 if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
906 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
907 else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
908 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
909
910 if (t1 == t2)
911 return 1;
912
913 /* Different classes of types can't be compatible. */
914
915 if (TREE_CODE (t1) != TREE_CODE (t2))
916 return 0;
917
918 /* Qualifiers must match. C99 6.7.3p9 */
919
920 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
921 return 0;
922
923 /* Allow for two different type nodes which have essentially the same
924 definition. Note that we already checked for equality of the type
925 qualifiers (just above). */
926
927 if (TREE_CODE (t1) != ARRAY_TYPE
928 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
929 return 1;
930
931 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
932 if (!(attrval = targetm.comp_type_attributes (t1, t2)))
933 return 0;
934
935 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
936 val = 0;
937
938 switch (TREE_CODE (t1))
939 {
940 case POINTER_TYPE:
941 /* Do not remove mode or aliasing information. */
942 if (TYPE_MODE (t1) != TYPE_MODE (t2)
943 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
944 break;
945 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
946 ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
947 break;
948
949 case FUNCTION_TYPE:
950 val = function_types_compatible_p (t1, t2);
951 break;
952
953 case ARRAY_TYPE:
954 {
955 tree d1 = TYPE_DOMAIN (t1);
956 tree d2 = TYPE_DOMAIN (t2);
957 bool d1_variable, d2_variable;
958 bool d1_zero, d2_zero;
959 val = 1;
960
961 /* Target types must match incl. qualifiers. */
962 if (TREE_TYPE (t1) != TREE_TYPE (t2)
963 && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
964 return 0;
965
966 /* Sizes must match unless one is missing or variable. */
967 if (d1 == 0 || d2 == 0 || d1 == d2)
968 break;
969
970 d1_zero = !TYPE_MAX_VALUE (d1);
971 d2_zero = !TYPE_MAX_VALUE (d2);
972
973 d1_variable = (!d1_zero
974 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
975 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
976 d2_variable = (!d2_zero
977 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
978 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
979 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
980 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
981
982 if (d1_variable || d2_variable)
983 break;
984 if (d1_zero && d2_zero)
985 break;
986 if (d1_zero || d2_zero
987 || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
988 || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
989 val = 0;
990
991 break;
992 }
993
994 case ENUMERAL_TYPE:
995 case RECORD_TYPE:
996 case UNION_TYPE:
997 if (val != 1 && !same_translation_unit_p (t1, t2))
998 {
999 tree a1 = TYPE_ATTRIBUTES (t1);
1000 tree a2 = TYPE_ATTRIBUTES (t2);
1001
1002 if (! attribute_list_contained (a1, a2)
1003 && ! attribute_list_contained (a2, a1))
1004 break;
1005
1006 if (attrval != 2)
1007 return tagged_types_tu_compatible_p (t1, t2);
1008 val = tagged_types_tu_compatible_p (t1, t2);
1009 }
1010 break;
1011
1012 case VECTOR_TYPE:
1013 val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
1014 && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
1015 break;
1016
1017 default:
1018 break;
1019 }
1020 return attrval == 2 && val == 1 ? 2 : val;
1021 }
1022
1023 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
1024 ignoring their qualifiers. */
1025
1026 static int
1027 comp_target_types (tree ttl, tree ttr)
1028 {
1029 int val;
1030 tree mvl, mvr;
1031
1032 /* Do not lose qualifiers on element types of array types that are
1033 pointer targets by taking their TYPE_MAIN_VARIANT. */
1034 mvl = TREE_TYPE (ttl);
1035 mvr = TREE_TYPE (ttr);
1036 if (TREE_CODE (mvl) != ARRAY_TYPE)
1037 mvl = TYPE_MAIN_VARIANT (mvl);
1038 if (TREE_CODE (mvr) != ARRAY_TYPE)
1039 mvr = TYPE_MAIN_VARIANT (mvr);
1040 val = comptypes (mvl, mvr);
1041
1042 if (val == 2)
1043 pedwarn (input_location, OPT_pedantic, "types are not quite compatible");
1044 return val;
1045 }
1046 \f
1047 /* Subroutines of `comptypes'. */
1048
1049 /* Determine whether two trees derive from the same translation unit.
1050 If the CONTEXT chain ends in a null, that tree's context is still
1051 being parsed, so if two trees have context chains ending in null,
1052 they're in the same translation unit. */
1053 int
1054 same_translation_unit_p (const_tree t1, const_tree t2)
1055 {
1056 while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
1057 switch (TREE_CODE_CLASS (TREE_CODE (t1)))
1058 {
1059 case tcc_declaration:
1060 t1 = DECL_CONTEXT (t1); break;
1061 case tcc_type:
1062 t1 = TYPE_CONTEXT (t1); break;
1063 case tcc_exceptional:
1064 t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
1065 default: gcc_unreachable ();
1066 }
1067
1068 while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
1069 switch (TREE_CODE_CLASS (TREE_CODE (t2)))
1070 {
1071 case tcc_declaration:
1072 t2 = DECL_CONTEXT (t2); break;
1073 case tcc_type:
1074 t2 = TYPE_CONTEXT (t2); break;
1075 case tcc_exceptional:
1076 t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
1077 default: gcc_unreachable ();
1078 }
1079
1080 return t1 == t2;
1081 }
1082
1083 /* Allocate the seen two types, assuming that they are compatible. */
1084
1085 static struct tagged_tu_seen_cache *
1086 alloc_tagged_tu_seen_cache (const_tree t1, const_tree t2)
1087 {
1088 struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
1089 tu->next = tagged_tu_seen_base;
1090 tu->t1 = t1;
1091 tu->t2 = t2;
1092
1093 tagged_tu_seen_base = tu;
1094
1095 /* The C standard says that two structures in different translation
1096 units are compatible with each other only if the types of their
1097 fields are compatible (among other things). We assume that they
1098 are compatible until proven otherwise when building the cache.
1099 An example where this can occur is:
1100 struct a
1101 {
1102 struct a *next;
1103 };
1104 If we are comparing this against a similar struct in another TU,
1105 and did not assume they were compatible, we end up with an infinite
1106 loop. */
1107 tu->val = 1;
1108 return tu;
1109 }
1110
1111 /* Free the seen types until we get to TU_TIL. */
1112
1113 static void
1114 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1115 {
1116 const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1117 while (tu != tu_til)
1118 {
1119 const struct tagged_tu_seen_cache *const tu1
1120 = (const struct tagged_tu_seen_cache *) tu;
1121 tu = tu1->next;
1122 free (CONST_CAST (struct tagged_tu_seen_cache *, tu1));
1123 }
1124 tagged_tu_seen_base = tu_til;
1125 }
1126
1127 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1128 compatible. If the two types are not the same (which has been
1129 checked earlier), this can only happen when multiple translation
1130 units are being compiled. See C99 6.2.7 paragraph 1 for the exact
1131 rules. */
1132
1133 static int
1134 tagged_types_tu_compatible_p (const_tree t1, const_tree t2)
1135 {
1136 tree s1, s2;
1137 bool needs_warning = false;
1138
1139 /* We have to verify that the tags of the types are the same. This
1140 is harder than it looks because this may be a typedef, so we have
1141 to go look at the original type. It may even be a typedef of a
1142 typedef...
1143 In the case of compiler-created builtin structs the TYPE_DECL
1144 may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
1145 while (TYPE_NAME (t1)
1146 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1147 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1148 t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1149
1150 while (TYPE_NAME (t2)
1151 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1152 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1153 t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1154
1155 /* C90 didn't have the requirement that the two tags be the same. */
1156 if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1157 return 0;
1158
1159 /* C90 didn't say what happened if one or both of the types were
1160 incomplete; we choose to follow C99 rules here, which is that they
1161 are compatible. */
1162 if (TYPE_SIZE (t1) == NULL
1163 || TYPE_SIZE (t2) == NULL)
1164 return 1;
1165
1166 {
1167 const struct tagged_tu_seen_cache * tts_i;
1168 for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1169 if (tts_i->t1 == t1 && tts_i->t2 == t2)
1170 return tts_i->val;
1171 }
1172
1173 switch (TREE_CODE (t1))
1174 {
1175 case ENUMERAL_TYPE:
1176 {
1177 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1178 /* Speed up the case where the type values are in the same order. */
1179 tree tv1 = TYPE_VALUES (t1);
1180 tree tv2 = TYPE_VALUES (t2);
1181
1182 if (tv1 == tv2)
1183 {
1184 return 1;
1185 }
1186
1187 for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1188 {
1189 if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1190 break;
1191 if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1192 {
1193 tu->val = 0;
1194 return 0;
1195 }
1196 }
1197
1198 if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1199 {
1200 return 1;
1201 }
1202 if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1203 {
1204 tu->val = 0;
1205 return 0;
1206 }
1207
1208 if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1209 {
1210 tu->val = 0;
1211 return 0;
1212 }
1213
1214 for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1215 {
1216 s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1217 if (s2 == NULL
1218 || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1219 {
1220 tu->val = 0;
1221 return 0;
1222 }
1223 }
1224 return 1;
1225 }
1226
1227 case UNION_TYPE:
1228 {
1229 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1230 if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1231 {
1232 tu->val = 0;
1233 return 0;
1234 }
1235
1236 /* Speed up the common case where the fields are in the same order. */
1237 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1238 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1239 {
1240 int result;
1241
1242 if (DECL_NAME (s1) != DECL_NAME (s2))
1243 break;
1244 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1245
1246 if (result != 1 && !DECL_NAME (s1))
1247 break;
1248 if (result == 0)
1249 {
1250 tu->val = 0;
1251 return 0;
1252 }
1253 if (result == 2)
1254 needs_warning = true;
1255
1256 if (TREE_CODE (s1) == FIELD_DECL
1257 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1258 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1259 {
1260 tu->val = 0;
1261 return 0;
1262 }
1263 }
1264 if (!s1 && !s2)
1265 {
1266 tu->val = needs_warning ? 2 : 1;
1267 return tu->val;
1268 }
1269
1270 for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1271 {
1272 bool ok = false;
1273
1274 for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1275 if (DECL_NAME (s1) == DECL_NAME (s2))
1276 {
1277 int result;
1278
1279 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1280
1281 if (result != 1 && !DECL_NAME (s1))
1282 continue;
1283 if (result == 0)
1284 {
1285 tu->val = 0;
1286 return 0;
1287 }
1288 if (result == 2)
1289 needs_warning = true;
1290
1291 if (TREE_CODE (s1) == FIELD_DECL
1292 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1293 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1294 break;
1295
1296 ok = true;
1297 break;
1298 }
1299 if (!ok)
1300 {
1301 tu->val = 0;
1302 return 0;
1303 }
1304 }
1305 tu->val = needs_warning ? 2 : 10;
1306 return tu->val;
1307 }
1308
1309 case RECORD_TYPE:
1310 {
1311 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1312
1313 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1314 s1 && s2;
1315 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1316 {
1317 int result;
1318 if (TREE_CODE (s1) != TREE_CODE (s2)
1319 || DECL_NAME (s1) != DECL_NAME (s2))
1320 break;
1321 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1322 if (result == 0)
1323 break;
1324 if (result == 2)
1325 needs_warning = true;
1326
1327 if (TREE_CODE (s1) == FIELD_DECL
1328 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1329 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1330 break;
1331 }
1332 if (s1 && s2)
1333 tu->val = 0;
1334 else
1335 tu->val = needs_warning ? 2 : 1;
1336 return tu->val;
1337 }
1338
1339 default:
1340 gcc_unreachable ();
1341 }
1342 }
1343
1344 /* Return 1 if two function types F1 and F2 are compatible.
1345 If either type specifies no argument types,
1346 the other must specify a fixed number of self-promoting arg types.
1347 Otherwise, if one type specifies only the number of arguments,
1348 the other must specify that number of self-promoting arg types.
1349 Otherwise, the argument types must match. */
1350
1351 static int
1352 function_types_compatible_p (const_tree f1, const_tree f2)
1353 {
1354 tree args1, args2;
1355 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1356 int val = 1;
1357 int val1;
1358 tree ret1, ret2;
1359
1360 ret1 = TREE_TYPE (f1);
1361 ret2 = TREE_TYPE (f2);
1362
1363 /* 'volatile' qualifiers on a function's return type used to mean
1364 the function is noreturn. */
1365 if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1366 pedwarn (input_location, 0, "function return types not compatible due to %<volatile%>");
1367 if (TYPE_VOLATILE (ret1))
1368 ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1369 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1370 if (TYPE_VOLATILE (ret2))
1371 ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1372 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1373 val = comptypes_internal (ret1, ret2);
1374 if (val == 0)
1375 return 0;
1376
1377 args1 = TYPE_ARG_TYPES (f1);
1378 args2 = TYPE_ARG_TYPES (f2);
1379
1380 /* An unspecified parmlist matches any specified parmlist
1381 whose argument types don't need default promotions. */
1382
1383 if (args1 == 0)
1384 {
1385 if (!self_promoting_args_p (args2))
1386 return 0;
1387 /* If one of these types comes from a non-prototype fn definition,
1388 compare that with the other type's arglist.
1389 If they don't match, ask for a warning (but no error). */
1390 if (TYPE_ACTUAL_ARG_TYPES (f1)
1391 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1392 val = 2;
1393 return val;
1394 }
1395 if (args2 == 0)
1396 {
1397 if (!self_promoting_args_p (args1))
1398 return 0;
1399 if (TYPE_ACTUAL_ARG_TYPES (f2)
1400 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1401 val = 2;
1402 return val;
1403 }
1404
1405 /* Both types have argument lists: compare them and propagate results. */
1406 val1 = type_lists_compatible_p (args1, args2);
1407 return val1 != 1 ? val1 : val;
1408 }
1409
1410 /* Check two lists of types for compatibility,
1411 returning 0 for incompatible, 1 for compatible,
1412 or 2 for compatible with warning. */
1413
1414 static int
1415 type_lists_compatible_p (const_tree args1, const_tree args2)
1416 {
1417 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1418 int val = 1;
1419 int newval = 0;
1420
1421 while (1)
1422 {
1423 tree a1, mv1, a2, mv2;
1424 if (args1 == 0 && args2 == 0)
1425 return val;
1426 /* If one list is shorter than the other,
1427 they fail to match. */
1428 if (args1 == 0 || args2 == 0)
1429 return 0;
1430 mv1 = a1 = TREE_VALUE (args1);
1431 mv2 = a2 = TREE_VALUE (args2);
1432 if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1433 mv1 = TYPE_MAIN_VARIANT (mv1);
1434 if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1435 mv2 = TYPE_MAIN_VARIANT (mv2);
1436 /* A null pointer instead of a type
1437 means there is supposed to be an argument
1438 but nothing is specified about what type it has.
1439 So match anything that self-promotes. */
1440 if (a1 == 0)
1441 {
1442 if (c_type_promotes_to (a2) != a2)
1443 return 0;
1444 }
1445 else if (a2 == 0)
1446 {
1447 if (c_type_promotes_to (a1) != a1)
1448 return 0;
1449 }
1450 /* If one of the lists has an error marker, ignore this arg. */
1451 else if (TREE_CODE (a1) == ERROR_MARK
1452 || TREE_CODE (a2) == ERROR_MARK)
1453 ;
1454 else if (!(newval = comptypes_internal (mv1, mv2)))
1455 {
1456 /* Allow wait (union {union wait *u; int *i} *)
1457 and wait (union wait *) to be compatible. */
1458 if (TREE_CODE (a1) == UNION_TYPE
1459 && (TYPE_NAME (a1) == 0
1460 || TYPE_TRANSPARENT_UNION (a1))
1461 && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1462 && tree_int_cst_equal (TYPE_SIZE (a1),
1463 TYPE_SIZE (a2)))
1464 {
1465 tree memb;
1466 for (memb = TYPE_FIELDS (a1);
1467 memb; memb = TREE_CHAIN (memb))
1468 {
1469 tree mv3 = TREE_TYPE (memb);
1470 if (mv3 && mv3 != error_mark_node
1471 && TREE_CODE (mv3) != ARRAY_TYPE)
1472 mv3 = TYPE_MAIN_VARIANT (mv3);
1473 if (comptypes_internal (mv3, mv2))
1474 break;
1475 }
1476 if (memb == 0)
1477 return 0;
1478 }
1479 else if (TREE_CODE (a2) == UNION_TYPE
1480 && (TYPE_NAME (a2) == 0
1481 || TYPE_TRANSPARENT_UNION (a2))
1482 && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1483 && tree_int_cst_equal (TYPE_SIZE (a2),
1484 TYPE_SIZE (a1)))
1485 {
1486 tree memb;
1487 for (memb = TYPE_FIELDS (a2);
1488 memb; memb = TREE_CHAIN (memb))
1489 {
1490 tree mv3 = TREE_TYPE (memb);
1491 if (mv3 && mv3 != error_mark_node
1492 && TREE_CODE (mv3) != ARRAY_TYPE)
1493 mv3 = TYPE_MAIN_VARIANT (mv3);
1494 if (comptypes_internal (mv3, mv1))
1495 break;
1496 }
1497 if (memb == 0)
1498 return 0;
1499 }
1500 else
1501 return 0;
1502 }
1503
1504 /* comptypes said ok, but record if it said to warn. */
1505 if (newval > val)
1506 val = newval;
1507
1508 args1 = TREE_CHAIN (args1);
1509 args2 = TREE_CHAIN (args2);
1510 }
1511 }
1512 \f
1513 /* Compute the size to increment a pointer by. */
1514
1515 static tree
1516 c_size_in_bytes (const_tree type)
1517 {
1518 enum tree_code code = TREE_CODE (type);
1519
1520 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1521 return size_one_node;
1522
1523 if (!COMPLETE_OR_VOID_TYPE_P (type))
1524 {
1525 error ("arithmetic on pointer to an incomplete type");
1526 return size_one_node;
1527 }
1528
1529 /* Convert in case a char is more than one unit. */
1530 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1531 size_int (TYPE_PRECISION (char_type_node)
1532 / BITS_PER_UNIT));
1533 }
1534 \f
1535 /* Return either DECL or its known constant value (if it has one). */
1536
1537 tree
1538 decl_constant_value (tree decl)
1539 {
1540 if (/* Don't change a variable array bound or initial value to a constant
1541 in a place where a variable is invalid. Note that DECL_INITIAL
1542 isn't valid for a PARM_DECL. */
1543 current_function_decl != 0
1544 && TREE_CODE (decl) != PARM_DECL
1545 && !TREE_THIS_VOLATILE (decl)
1546 && TREE_READONLY (decl)
1547 && DECL_INITIAL (decl) != 0
1548 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1549 /* This is invalid if initial value is not constant.
1550 If it has either a function call, a memory reference,
1551 or a variable, then re-evaluating it could give different results. */
1552 && TREE_CONSTANT (DECL_INITIAL (decl))
1553 /* Check for cases where this is sub-optimal, even though valid. */
1554 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1555 return DECL_INITIAL (decl);
1556 return decl;
1557 }
1558
1559 /* Return either DECL or its known constant value (if it has one), but
1560 return DECL if pedantic or DECL has mode BLKmode. This is for
1561 bug-compatibility with the old behavior of decl_constant_value
1562 (before GCC 3.0); every use of this function is a bug and it should
1563 be removed before GCC 3.1. It is not appropriate to use pedantic
1564 in a way that affects optimization, and BLKmode is probably not the
1565 right test for avoiding misoptimizations either. */
1566
1567 static tree
1568 decl_constant_value_for_broken_optimization (tree decl)
1569 {
1570 tree ret;
1571
1572 if (pedantic || DECL_MODE (decl) == BLKmode)
1573 return decl;
1574
1575 ret = decl_constant_value (decl);
1576 /* Avoid unwanted tree sharing between the initializer and current
1577 function's body where the tree can be modified e.g. by the
1578 gimplifier. */
1579 if (ret != decl && TREE_STATIC (decl))
1580 ret = unshare_expr (ret);
1581 return ret;
1582 }
1583
1584 /* Convert the array expression EXP to a pointer. */
1585 static tree
1586 array_to_pointer_conversion (tree exp)
1587 {
1588 tree orig_exp = exp;
1589 tree type = TREE_TYPE (exp);
1590 tree adr;
1591 tree restype = TREE_TYPE (type);
1592 tree ptrtype;
1593
1594 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1595
1596 STRIP_TYPE_NOPS (exp);
1597
1598 if (TREE_NO_WARNING (orig_exp))
1599 TREE_NO_WARNING (exp) = 1;
1600
1601 ptrtype = build_pointer_type (restype);
1602
1603 if (TREE_CODE (exp) == INDIRECT_REF)
1604 return convert (ptrtype, TREE_OPERAND (exp, 0));
1605
1606 if (TREE_CODE (exp) == VAR_DECL)
1607 {
1608 /* We are making an ADDR_EXPR of ptrtype. This is a valid
1609 ADDR_EXPR because it's the best way of representing what
1610 happens in C when we take the address of an array and place
1611 it in a pointer to the element type. */
1612 adr = build1 (ADDR_EXPR, ptrtype, exp);
1613 if (!c_mark_addressable (exp))
1614 return error_mark_node;
1615 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
1616 return adr;
1617 }
1618
1619 /* This way is better for a COMPONENT_REF since it can
1620 simplify the offset for a component. */
1621 adr = build_unary_op (ADDR_EXPR, exp, 1);
1622 return convert (ptrtype, adr);
1623 }
1624
1625 /* Convert the function expression EXP to a pointer. */
1626 static tree
1627 function_to_pointer_conversion (tree exp)
1628 {
1629 tree orig_exp = exp;
1630
1631 gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1632
1633 STRIP_TYPE_NOPS (exp);
1634
1635 if (TREE_NO_WARNING (orig_exp))
1636 TREE_NO_WARNING (exp) = 1;
1637
1638 return build_unary_op (ADDR_EXPR, exp, 0);
1639 }
1640
1641 /* Perform the default conversion of arrays and functions to pointers.
1642 Return the result of converting EXP. For any other expression, just
1643 return EXP after removing NOPs. */
1644
1645 struct c_expr
1646 default_function_array_conversion (struct c_expr exp)
1647 {
1648 tree orig_exp = exp.value;
1649 tree type = TREE_TYPE (exp.value);
1650 enum tree_code code = TREE_CODE (type);
1651
1652 switch (code)
1653 {
1654 case ARRAY_TYPE:
1655 {
1656 bool not_lvalue = false;
1657 bool lvalue_array_p;
1658
1659 while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1660 || CONVERT_EXPR_P (exp.value))
1661 && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1662 {
1663 if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1664 not_lvalue = true;
1665 exp.value = TREE_OPERAND (exp.value, 0);
1666 }
1667
1668 if (TREE_NO_WARNING (orig_exp))
1669 TREE_NO_WARNING (exp.value) = 1;
1670
1671 lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1672 if (!flag_isoc99 && !lvalue_array_p)
1673 {
1674 /* Before C99, non-lvalue arrays do not decay to pointers.
1675 Normally, using such an array would be invalid; but it can
1676 be used correctly inside sizeof or as a statement expression.
1677 Thus, do not give an error here; an error will result later. */
1678 return exp;
1679 }
1680
1681 exp.value = array_to_pointer_conversion (exp.value);
1682 }
1683 break;
1684 case FUNCTION_TYPE:
1685 exp.value = function_to_pointer_conversion (exp.value);
1686 break;
1687 default:
1688 STRIP_TYPE_NOPS (exp.value);
1689 if (TREE_NO_WARNING (orig_exp))
1690 TREE_NO_WARNING (exp.value) = 1;
1691 break;
1692 }
1693
1694 return exp;
1695 }
1696
1697
1698 /* EXP is an expression of integer type. Apply the integer promotions
1699 to it and return the promoted value. */
1700
1701 tree
1702 perform_integral_promotions (tree exp)
1703 {
1704 tree type = TREE_TYPE (exp);
1705 enum tree_code code = TREE_CODE (type);
1706
1707 gcc_assert (INTEGRAL_TYPE_P (type));
1708
1709 /* Normally convert enums to int,
1710 but convert wide enums to something wider. */
1711 if (code == ENUMERAL_TYPE)
1712 {
1713 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1714 TYPE_PRECISION (integer_type_node)),
1715 ((TYPE_PRECISION (type)
1716 >= TYPE_PRECISION (integer_type_node))
1717 && TYPE_UNSIGNED (type)));
1718
1719 return convert (type, exp);
1720 }
1721
1722 /* ??? This should no longer be needed now bit-fields have their
1723 proper types. */
1724 if (TREE_CODE (exp) == COMPONENT_REF
1725 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1726 /* If it's thinner than an int, promote it like a
1727 c_promoting_integer_type_p, otherwise leave it alone. */
1728 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1729 TYPE_PRECISION (integer_type_node)))
1730 return convert (integer_type_node, exp);
1731
1732 if (c_promoting_integer_type_p (type))
1733 {
1734 /* Preserve unsignedness if not really getting any wider. */
1735 if (TYPE_UNSIGNED (type)
1736 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1737 return convert (unsigned_type_node, exp);
1738
1739 return convert (integer_type_node, exp);
1740 }
1741
1742 return exp;
1743 }
1744
1745
1746 /* Perform default promotions for C data used in expressions.
1747 Enumeral types or short or char are converted to int.
1748 In addition, manifest constants symbols are replaced by their values. */
1749
1750 tree
1751 default_conversion (tree exp)
1752 {
1753 tree orig_exp;
1754 tree type = TREE_TYPE (exp);
1755 enum tree_code code = TREE_CODE (type);
1756
1757 /* Functions and arrays have been converted during parsing. */
1758 gcc_assert (code != FUNCTION_TYPE);
1759 if (code == ARRAY_TYPE)
1760 return exp;
1761
1762 /* Constants can be used directly unless they're not loadable. */
1763 if (TREE_CODE (exp) == CONST_DECL)
1764 exp = DECL_INITIAL (exp);
1765
1766 /* Replace a nonvolatile const static variable with its value unless
1767 it is an array, in which case we must be sure that taking the
1768 address of the array produces consistent results. */
1769 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1770 {
1771 exp = decl_constant_value_for_broken_optimization (exp);
1772 type = TREE_TYPE (exp);
1773 }
1774
1775 /* Strip no-op conversions. */
1776 orig_exp = exp;
1777 STRIP_TYPE_NOPS (exp);
1778
1779 if (TREE_NO_WARNING (orig_exp))
1780 TREE_NO_WARNING (exp) = 1;
1781
1782 if (code == VOID_TYPE)
1783 {
1784 error ("void value not ignored as it ought to be");
1785 return error_mark_node;
1786 }
1787
1788 exp = require_complete_type (exp);
1789 if (exp == error_mark_node)
1790 return error_mark_node;
1791
1792 if (INTEGRAL_TYPE_P (type))
1793 return perform_integral_promotions (exp);
1794
1795 return exp;
1796 }
1797 \f
1798 /* Look up COMPONENT in a structure or union DECL.
1799
1800 If the component name is not found, returns NULL_TREE. Otherwise,
1801 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1802 stepping down the chain to the component, which is in the last
1803 TREE_VALUE of the list. Normally the list is of length one, but if
1804 the component is embedded within (nested) anonymous structures or
1805 unions, the list steps down the chain to the component. */
1806
1807 static tree
1808 lookup_field (tree decl, tree component)
1809 {
1810 tree type = TREE_TYPE (decl);
1811 tree field;
1812
1813 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1814 to the field elements. Use a binary search on this array to quickly
1815 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1816 will always be set for structures which have many elements. */
1817
1818 if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1819 {
1820 int bot, top, half;
1821 tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1822
1823 field = TYPE_FIELDS (type);
1824 bot = 0;
1825 top = TYPE_LANG_SPECIFIC (type)->s->len;
1826 while (top - bot > 1)
1827 {
1828 half = (top - bot + 1) >> 1;
1829 field = field_array[bot+half];
1830
1831 if (DECL_NAME (field) == NULL_TREE)
1832 {
1833 /* Step through all anon unions in linear fashion. */
1834 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1835 {
1836 field = field_array[bot++];
1837 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1838 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1839 {
1840 tree anon = lookup_field (field, component);
1841
1842 if (anon)
1843 return tree_cons (NULL_TREE, field, anon);
1844 }
1845 }
1846
1847 /* Entire record is only anon unions. */
1848 if (bot > top)
1849 return NULL_TREE;
1850
1851 /* Restart the binary search, with new lower bound. */
1852 continue;
1853 }
1854
1855 if (DECL_NAME (field) == component)
1856 break;
1857 if (DECL_NAME (field) < component)
1858 bot += half;
1859 else
1860 top = bot + half;
1861 }
1862
1863 if (DECL_NAME (field_array[bot]) == component)
1864 field = field_array[bot];
1865 else if (DECL_NAME (field) != component)
1866 return NULL_TREE;
1867 }
1868 else
1869 {
1870 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1871 {
1872 if (DECL_NAME (field) == NULL_TREE
1873 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1874 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1875 {
1876 tree anon = lookup_field (field, component);
1877
1878 if (anon)
1879 return tree_cons (NULL_TREE, field, anon);
1880 }
1881
1882 if (DECL_NAME (field) == component)
1883 break;
1884 }
1885
1886 if (field == NULL_TREE)
1887 return NULL_TREE;
1888 }
1889
1890 return tree_cons (NULL_TREE, field, NULL_TREE);
1891 }
1892
1893 /* Make an expression to refer to the COMPONENT field of
1894 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1895
1896 tree
1897 build_component_ref (tree datum, tree component)
1898 {
1899 tree type = TREE_TYPE (datum);
1900 enum tree_code code = TREE_CODE (type);
1901 tree field = NULL;
1902 tree ref;
1903
1904 if (!objc_is_public (datum, component))
1905 return error_mark_node;
1906
1907 /* See if there is a field or component with name COMPONENT. */
1908
1909 if (code == RECORD_TYPE || code == UNION_TYPE)
1910 {
1911 if (!COMPLETE_TYPE_P (type))
1912 {
1913 c_incomplete_type_error (NULL_TREE, type);
1914 return error_mark_node;
1915 }
1916
1917 field = lookup_field (datum, component);
1918
1919 if (!field)
1920 {
1921 error ("%qT has no member named %qE", type, component);
1922 return error_mark_node;
1923 }
1924
1925 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1926 This might be better solved in future the way the C++ front
1927 end does it - by giving the anonymous entities each a
1928 separate name and type, and then have build_component_ref
1929 recursively call itself. We can't do that here. */
1930 do
1931 {
1932 tree subdatum = TREE_VALUE (field);
1933 int quals;
1934 tree subtype;
1935
1936 if (TREE_TYPE (subdatum) == error_mark_node)
1937 return error_mark_node;
1938
1939 quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1940 quals |= TYPE_QUALS (TREE_TYPE (datum));
1941 subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1942
1943 ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1944 NULL_TREE);
1945 if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1946 TREE_READONLY (ref) = 1;
1947 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1948 TREE_THIS_VOLATILE (ref) = 1;
1949
1950 if (TREE_DEPRECATED (subdatum))
1951 warn_deprecated_use (subdatum);
1952
1953 datum = ref;
1954
1955 field = TREE_CHAIN (field);
1956 }
1957 while (field);
1958
1959 return ref;
1960 }
1961 else if (code != ERROR_MARK)
1962 error ("request for member %qE in something not a structure or union",
1963 component);
1964
1965 return error_mark_node;
1966 }
1967 \f
1968 /* Given an expression PTR for a pointer, return an expression
1969 for the value pointed to.
1970 ERRORSTRING is the name of the operator to appear in error messages. */
1971
1972 tree
1973 build_indirect_ref (tree ptr, const char *errorstring)
1974 {
1975 tree pointer = default_conversion (ptr);
1976 tree type = TREE_TYPE (pointer);
1977
1978 if (TREE_CODE (type) == POINTER_TYPE)
1979 {
1980 if (CONVERT_EXPR_P (pointer)
1981 || TREE_CODE (pointer) == VIEW_CONVERT_EXPR)
1982 {
1983 /* If a warning is issued, mark it to avoid duplicates from
1984 the backend. This only needs to be done at
1985 warn_strict_aliasing > 2. */
1986 if (warn_strict_aliasing > 2)
1987 if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (pointer, 0)),
1988 type, TREE_OPERAND (pointer, 0)))
1989 TREE_NO_WARNING (pointer) = 1;
1990 }
1991
1992 if (TREE_CODE (pointer) == ADDR_EXPR
1993 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1994 == TREE_TYPE (type)))
1995 return TREE_OPERAND (pointer, 0);
1996 else
1997 {
1998 tree t = TREE_TYPE (type);
1999 tree ref;
2000
2001 ref = build1 (INDIRECT_REF, t, pointer);
2002
2003 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
2004 {
2005 error ("dereferencing pointer to incomplete type");
2006 return error_mark_node;
2007 }
2008 if (VOID_TYPE_P (t) && skip_evaluation == 0)
2009 warning (0, "dereferencing %<void *%> pointer");
2010
2011 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
2012 so that we get the proper error message if the result is used
2013 to assign to. Also, &* is supposed to be a no-op.
2014 And ANSI C seems to specify that the type of the result
2015 should be the const type. */
2016 /* A de-reference of a pointer to const is not a const. It is valid
2017 to change it via some other pointer. */
2018 TREE_READONLY (ref) = TYPE_READONLY (t);
2019 TREE_SIDE_EFFECTS (ref)
2020 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
2021 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
2022 return ref;
2023 }
2024 }
2025 else if (TREE_CODE (pointer) != ERROR_MARK)
2026 error ("invalid type argument of %qs (have %qT)", errorstring, type);
2027 return error_mark_node;
2028 }
2029
2030 /* This handles expressions of the form "a[i]", which denotes
2031 an array reference.
2032
2033 This is logically equivalent in C to *(a+i), but we may do it differently.
2034 If A is a variable or a member, we generate a primitive ARRAY_REF.
2035 This avoids forcing the array out of registers, and can work on
2036 arrays that are not lvalues (for example, members of structures returned
2037 by functions). */
2038
2039 tree
2040 build_array_ref (tree array, tree index)
2041 {
2042 bool swapped = false;
2043 if (TREE_TYPE (array) == error_mark_node
2044 || TREE_TYPE (index) == error_mark_node)
2045 return error_mark_node;
2046
2047 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
2048 && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
2049 {
2050 tree temp;
2051 if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
2052 && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
2053 {
2054 error ("subscripted value is neither array nor pointer");
2055 return error_mark_node;
2056 }
2057 temp = array;
2058 array = index;
2059 index = temp;
2060 swapped = true;
2061 }
2062
2063 if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
2064 {
2065 error ("array subscript is not an integer");
2066 return error_mark_node;
2067 }
2068
2069 if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
2070 {
2071 error ("subscripted value is pointer to function");
2072 return error_mark_node;
2073 }
2074
2075 /* ??? Existing practice has been to warn only when the char
2076 index is syntactically the index, not for char[array]. */
2077 if (!swapped)
2078 warn_array_subscript_with_type_char (index);
2079
2080 /* Apply default promotions *after* noticing character types. */
2081 index = default_conversion (index);
2082
2083 gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
2084
2085 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
2086 {
2087 tree rval, type;
2088
2089 /* An array that is indexed by a non-constant
2090 cannot be stored in a register; we must be able to do
2091 address arithmetic on its address.
2092 Likewise an array of elements of variable size. */
2093 if (TREE_CODE (index) != INTEGER_CST
2094 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
2095 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
2096 {
2097 if (!c_mark_addressable (array))
2098 return error_mark_node;
2099 }
2100 /* An array that is indexed by a constant value which is not within
2101 the array bounds cannot be stored in a register either; because we
2102 would get a crash in store_bit_field/extract_bit_field when trying
2103 to access a non-existent part of the register. */
2104 if (TREE_CODE (index) == INTEGER_CST
2105 && TYPE_DOMAIN (TREE_TYPE (array))
2106 && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
2107 {
2108 if (!c_mark_addressable (array))
2109 return error_mark_node;
2110 }
2111
2112 if (pedantic)
2113 {
2114 tree foo = array;
2115 while (TREE_CODE (foo) == COMPONENT_REF)
2116 foo = TREE_OPERAND (foo, 0);
2117 if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2118 pedwarn (input_location, OPT_pedantic,
2119 "ISO C forbids subscripting %<register%> array");
2120 else if (!flag_isoc99 && !lvalue_p (foo))
2121 pedwarn (input_location, OPT_pedantic,
2122 "ISO C90 forbids subscripting non-lvalue array");
2123 }
2124
2125 type = TREE_TYPE (TREE_TYPE (array));
2126 rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2127 /* Array ref is const/volatile if the array elements are
2128 or if the array is. */
2129 TREE_READONLY (rval)
2130 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2131 | TREE_READONLY (array));
2132 TREE_SIDE_EFFECTS (rval)
2133 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2134 | TREE_SIDE_EFFECTS (array));
2135 TREE_THIS_VOLATILE (rval)
2136 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2137 /* This was added by rms on 16 Nov 91.
2138 It fixes vol struct foo *a; a->elts[1]
2139 in an inline function.
2140 Hope it doesn't break something else. */
2141 | TREE_THIS_VOLATILE (array));
2142 return require_complete_type (fold (rval));
2143 }
2144 else
2145 {
2146 tree ar = default_conversion (array);
2147
2148 if (ar == error_mark_node)
2149 return ar;
2150
2151 gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2152 gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2153
2154 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2155 "array indexing");
2156 }
2157 }
2158 \f
2159 /* Build an external reference to identifier ID. FUN indicates
2160 whether this will be used for a function call. LOC is the source
2161 location of the identifier. */
2162 tree
2163 build_external_ref (tree id, int fun, location_t loc)
2164 {
2165 tree ref;
2166 tree decl = lookup_name (id);
2167
2168 /* In Objective-C, an instance variable (ivar) may be preferred to
2169 whatever lookup_name() found. */
2170 decl = objc_lookup_ivar (decl, id);
2171
2172 if (decl && decl != error_mark_node)
2173 ref = decl;
2174 else if (fun)
2175 /* Implicit function declaration. */
2176 ref = implicitly_declare (id);
2177 else if (decl == error_mark_node)
2178 /* Don't complain about something that's already been
2179 complained about. */
2180 return error_mark_node;
2181 else
2182 {
2183 undeclared_variable (id, loc);
2184 return error_mark_node;
2185 }
2186
2187 if (TREE_TYPE (ref) == error_mark_node)
2188 return error_mark_node;
2189
2190 if (TREE_DEPRECATED (ref))
2191 warn_deprecated_use (ref);
2192
2193 /* Recursive call does not count as usage. */
2194 if (ref != current_function_decl)
2195 {
2196 TREE_USED (ref) = 1;
2197 }
2198
2199 if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2200 {
2201 if (!in_sizeof && !in_typeof)
2202 C_DECL_USED (ref) = 1;
2203 else if (DECL_INITIAL (ref) == 0
2204 && DECL_EXTERNAL (ref)
2205 && !TREE_PUBLIC (ref))
2206 record_maybe_used_decl (ref);
2207 }
2208
2209 if (TREE_CODE (ref) == CONST_DECL)
2210 {
2211 used_types_insert (TREE_TYPE (ref));
2212 ref = DECL_INITIAL (ref);
2213 TREE_CONSTANT (ref) = 1;
2214 }
2215 else if (current_function_decl != 0
2216 && !DECL_FILE_SCOPE_P (current_function_decl)
2217 && (TREE_CODE (ref) == VAR_DECL
2218 || TREE_CODE (ref) == PARM_DECL
2219 || TREE_CODE (ref) == FUNCTION_DECL))
2220 {
2221 tree context = decl_function_context (ref);
2222
2223 if (context != 0 && context != current_function_decl)
2224 DECL_NONLOCAL (ref) = 1;
2225 }
2226 /* C99 6.7.4p3: An inline definition of a function with external
2227 linkage ... shall not contain a reference to an identifier with
2228 internal linkage. */
2229 else if (current_function_decl != 0
2230 && DECL_DECLARED_INLINE_P (current_function_decl)
2231 && DECL_EXTERNAL (current_function_decl)
2232 && VAR_OR_FUNCTION_DECL_P (ref)
2233 && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2234 && ! TREE_PUBLIC (ref)
2235 && DECL_CONTEXT (ref) != current_function_decl)
2236 pedwarn (loc, 0, "%qD is static but used in inline function %qD "
2237 "which is not static", ref, current_function_decl);
2238
2239 return ref;
2240 }
2241
2242 /* Record details of decls possibly used inside sizeof or typeof. */
2243 struct maybe_used_decl
2244 {
2245 /* The decl. */
2246 tree decl;
2247 /* The level seen at (in_sizeof + in_typeof). */
2248 int level;
2249 /* The next one at this level or above, or NULL. */
2250 struct maybe_used_decl *next;
2251 };
2252
2253 static struct maybe_used_decl *maybe_used_decls;
2254
2255 /* Record that DECL, an undefined static function reference seen
2256 inside sizeof or typeof, might be used if the operand of sizeof is
2257 a VLA type or the operand of typeof is a variably modified
2258 type. */
2259
2260 static void
2261 record_maybe_used_decl (tree decl)
2262 {
2263 struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2264 t->decl = decl;
2265 t->level = in_sizeof + in_typeof;
2266 t->next = maybe_used_decls;
2267 maybe_used_decls = t;
2268 }
2269
2270 /* Pop the stack of decls possibly used inside sizeof or typeof. If
2271 USED is false, just discard them. If it is true, mark them used
2272 (if no longer inside sizeof or typeof) or move them to the next
2273 level up (if still inside sizeof or typeof). */
2274
2275 void
2276 pop_maybe_used (bool used)
2277 {
2278 struct maybe_used_decl *p = maybe_used_decls;
2279 int cur_level = in_sizeof + in_typeof;
2280 while (p && p->level > cur_level)
2281 {
2282 if (used)
2283 {
2284 if (cur_level == 0)
2285 C_DECL_USED (p->decl) = 1;
2286 else
2287 p->level = cur_level;
2288 }
2289 p = p->next;
2290 }
2291 if (!used || cur_level == 0)
2292 maybe_used_decls = p;
2293 }
2294
2295 /* Return the result of sizeof applied to EXPR. */
2296
2297 struct c_expr
2298 c_expr_sizeof_expr (struct c_expr expr)
2299 {
2300 struct c_expr ret;
2301 if (expr.value == error_mark_node)
2302 {
2303 ret.value = error_mark_node;
2304 ret.original_code = ERROR_MARK;
2305 pop_maybe_used (false);
2306 }
2307 else
2308 {
2309 ret.value = c_sizeof (TREE_TYPE (expr.value));
2310 ret.original_code = ERROR_MARK;
2311 if (c_vla_type_p (TREE_TYPE (expr.value)))
2312 {
2313 /* sizeof is evaluated when given a vla (C99 6.5.3.4p2). */
2314 ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2315 }
2316 pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2317 }
2318 return ret;
2319 }
2320
2321 /* Return the result of sizeof applied to T, a structure for the type
2322 name passed to sizeof (rather than the type itself). */
2323
2324 struct c_expr
2325 c_expr_sizeof_type (struct c_type_name *t)
2326 {
2327 tree type;
2328 struct c_expr ret;
2329 type = groktypename (t);
2330 ret.value = c_sizeof (type);
2331 ret.original_code = ERROR_MARK;
2332 pop_maybe_used (type != error_mark_node
2333 ? C_TYPE_VARIABLE_SIZE (type) : false);
2334 return ret;
2335 }
2336
2337 /* Build a function call to function FUNCTION with parameters PARAMS.
2338 PARAMS is a list--a chain of TREE_LIST nodes--in which the
2339 TREE_VALUE of each node is a parameter-expression.
2340 FUNCTION's data type may be a function type or a pointer-to-function. */
2341
2342 tree
2343 build_function_call (tree function, tree params)
2344 {
2345 tree fntype, fundecl = 0;
2346 tree name = NULL_TREE, result;
2347 tree tem;
2348 int nargs;
2349 tree *argarray;
2350
2351
2352 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
2353 STRIP_TYPE_NOPS (function);
2354
2355 /* Convert anything with function type to a pointer-to-function. */
2356 if (TREE_CODE (function) == FUNCTION_DECL)
2357 {
2358 /* Implement type-directed function overloading for builtins.
2359 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2360 handle all the type checking. The result is a complete expression
2361 that implements this function call. */
2362 tem = resolve_overloaded_builtin (function, params);
2363 if (tem)
2364 return tem;
2365
2366 name = DECL_NAME (function);
2367 fundecl = function;
2368 }
2369 if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2370 function = function_to_pointer_conversion (function);
2371
2372 /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2373 expressions, like those used for ObjC messenger dispatches. */
2374 function = objc_rewrite_function_call (function, params);
2375
2376 fntype = TREE_TYPE (function);
2377
2378 if (TREE_CODE (fntype) == ERROR_MARK)
2379 return error_mark_node;
2380
2381 if (!(TREE_CODE (fntype) == POINTER_TYPE
2382 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2383 {
2384 error ("called object %qE is not a function", function);
2385 return error_mark_node;
2386 }
2387
2388 if (fundecl && TREE_THIS_VOLATILE (fundecl))
2389 current_function_returns_abnormally = 1;
2390
2391 /* fntype now gets the type of function pointed to. */
2392 fntype = TREE_TYPE (fntype);
2393
2394 /* Check that the function is called through a compatible prototype.
2395 If it is not, replace the call by a trap, wrapped up in a compound
2396 expression if necessary. This has the nice side-effect to prevent
2397 the tree-inliner from generating invalid assignment trees which may
2398 blow up in the RTL expander later. */
2399 if (CONVERT_EXPR_P (function)
2400 && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2401 && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2402 && !comptypes (fntype, TREE_TYPE (tem)))
2403 {
2404 tree return_type = TREE_TYPE (fntype);
2405 tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2406 NULL_TREE);
2407
2408 /* This situation leads to run-time undefined behavior. We can't,
2409 therefore, simply error unless we can prove that all possible
2410 executions of the program must execute the code. */
2411 if (warning (0, "function called through a non-compatible type"))
2412 /* We can, however, treat "undefined" any way we please.
2413 Call abort to encourage the user to fix the program. */
2414 inform (input_location, "if this code is reached, the program will abort");
2415
2416 if (VOID_TYPE_P (return_type))
2417 return trap;
2418 else
2419 {
2420 tree rhs;
2421
2422 if (AGGREGATE_TYPE_P (return_type))
2423 rhs = build_compound_literal (return_type,
2424 build_constructor (return_type, 0));
2425 else
2426 rhs = fold_convert (return_type, integer_zero_node);
2427
2428 return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2429 }
2430 }
2431
2432 /* Convert the parameters to the types declared in the
2433 function prototype, or apply default promotions. */
2434
2435 nargs = list_length (params);
2436 argarray = (tree *) alloca (nargs * sizeof (tree));
2437 nargs = convert_arguments (nargs, argarray, TYPE_ARG_TYPES (fntype),
2438 params, function, fundecl);
2439 if (nargs < 0)
2440 return error_mark_node;
2441
2442 /* Check that arguments to builtin functions match the expectations. */
2443 if (fundecl
2444 && DECL_BUILT_IN (fundecl)
2445 && DECL_BUILT_IN_CLASS (fundecl) == BUILT_IN_NORMAL
2446 && !check_builtin_function_arguments (fundecl, nargs, argarray))
2447 return error_mark_node;
2448
2449 /* Check that the arguments to the function are valid. */
2450 check_function_arguments (TYPE_ATTRIBUTES (fntype), nargs, argarray,
2451 TYPE_ARG_TYPES (fntype));
2452
2453 if (require_constant_value)
2454 {
2455 result = fold_build_call_array_initializer (TREE_TYPE (fntype),
2456 function, nargs, argarray);
2457 if (TREE_CONSTANT (result)
2458 && (name == NULL_TREE
2459 || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2460 pedwarn_init (input_location, 0, "initializer element is not constant");
2461 }
2462 else
2463 result = fold_build_call_array (TREE_TYPE (fntype),
2464 function, nargs, argarray);
2465
2466 if (VOID_TYPE_P (TREE_TYPE (result)))
2467 return result;
2468 return require_complete_type (result);
2469 }
2470 \f
2471 /* Convert the argument expressions in the list VALUES
2472 to the types in the list TYPELIST. The resulting arguments are
2473 stored in the array ARGARRAY which has size NARGS.
2474
2475 If TYPELIST is exhausted, or when an element has NULL as its type,
2476 perform the default conversions.
2477
2478 PARMLIST is the chain of parm decls for the function being called.
2479 It may be 0, if that info is not available.
2480 It is used only for generating error messages.
2481
2482 FUNCTION is a tree for the called function. It is used only for
2483 error messages, where it is formatted with %qE.
2484
2485 This is also where warnings about wrong number of args are generated.
2486
2487 VALUES is a chain of TREE_LIST nodes with the elements of the list
2488 in the TREE_VALUE slots of those nodes.
2489
2490 Returns the actual number of arguments processed (which may be less
2491 than NARGS in some error situations), or -1 on failure. */
2492
2493 static int
2494 convert_arguments (int nargs, tree *argarray,
2495 tree typelist, tree values, tree function, tree fundecl)
2496 {
2497 tree typetail, valtail;
2498 int parmnum;
2499 const bool type_generic = fundecl
2500 && lookup_attribute ("type generic", TYPE_ATTRIBUTES(TREE_TYPE (fundecl)));
2501 tree selector;
2502
2503 /* Change pointer to function to the function itself for
2504 diagnostics. */
2505 if (TREE_CODE (function) == ADDR_EXPR
2506 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2507 function = TREE_OPERAND (function, 0);
2508
2509 /* Handle an ObjC selector specially for diagnostics. */
2510 selector = objc_message_selector ();
2511
2512 /* Scan the given expressions and types, producing individual
2513 converted arguments and storing them in ARGARRAY. */
2514
2515 for (valtail = values, typetail = typelist, parmnum = 0;
2516 valtail;
2517 valtail = TREE_CHAIN (valtail), parmnum++)
2518 {
2519 tree type = typetail ? TREE_VALUE (typetail) : 0;
2520 tree val = TREE_VALUE (valtail);
2521 tree rname = function;
2522 int argnum = parmnum + 1;
2523 const char *invalid_func_diag;
2524
2525 if (type == void_type_node)
2526 {
2527 error ("too many arguments to function %qE", function);
2528 return parmnum;
2529 }
2530
2531 if (selector && argnum > 2)
2532 {
2533 rname = selector;
2534 argnum -= 2;
2535 }
2536
2537 STRIP_TYPE_NOPS (val);
2538
2539 val = require_complete_type (val);
2540
2541 if (type != 0)
2542 {
2543 /* Formal parm type is specified by a function prototype. */
2544 tree parmval;
2545
2546 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2547 {
2548 error ("type of formal parameter %d is incomplete", parmnum + 1);
2549 parmval = val;
2550 }
2551 else
2552 {
2553 /* Optionally warn about conversions that
2554 differ from the default conversions. */
2555 if (warn_traditional_conversion || warn_traditional)
2556 {
2557 unsigned int formal_prec = TYPE_PRECISION (type);
2558
2559 if (INTEGRAL_TYPE_P (type)
2560 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2561 warning (0, "passing argument %d of %qE as integer "
2562 "rather than floating due to prototype",
2563 argnum, rname);
2564 if (INTEGRAL_TYPE_P (type)
2565 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2566 warning (0, "passing argument %d of %qE as integer "
2567 "rather than complex due to prototype",
2568 argnum, rname);
2569 else if (TREE_CODE (type) == COMPLEX_TYPE
2570 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2571 warning (0, "passing argument %d of %qE as complex "
2572 "rather than floating due to prototype",
2573 argnum, rname);
2574 else if (TREE_CODE (type) == REAL_TYPE
2575 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2576 warning (0, "passing argument %d of %qE as floating "
2577 "rather than integer due to prototype",
2578 argnum, rname);
2579 else if (TREE_CODE (type) == COMPLEX_TYPE
2580 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2581 warning (0, "passing argument %d of %qE as complex "
2582 "rather than integer due to prototype",
2583 argnum, rname);
2584 else if (TREE_CODE (type) == REAL_TYPE
2585 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2586 warning (0, "passing argument %d of %qE as floating "
2587 "rather than complex due to prototype",
2588 argnum, rname);
2589 /* ??? At some point, messages should be written about
2590 conversions between complex types, but that's too messy
2591 to do now. */
2592 else if (TREE_CODE (type) == REAL_TYPE
2593 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2594 {
2595 /* Warn if any argument is passed as `float',
2596 since without a prototype it would be `double'. */
2597 if (formal_prec == TYPE_PRECISION (float_type_node)
2598 && type != dfloat32_type_node)
2599 warning (0, "passing argument %d of %qE as %<float%> "
2600 "rather than %<double%> due to prototype",
2601 argnum, rname);
2602
2603 /* Warn if mismatch between argument and prototype
2604 for decimal float types. Warn of conversions with
2605 binary float types and of precision narrowing due to
2606 prototype. */
2607 else if (type != TREE_TYPE (val)
2608 && (type == dfloat32_type_node
2609 || type == dfloat64_type_node
2610 || type == dfloat128_type_node
2611 || TREE_TYPE (val) == dfloat32_type_node
2612 || TREE_TYPE (val) == dfloat64_type_node
2613 || TREE_TYPE (val) == dfloat128_type_node)
2614 && (formal_prec
2615 <= TYPE_PRECISION (TREE_TYPE (val))
2616 || (type == dfloat128_type_node
2617 && (TREE_TYPE (val)
2618 != dfloat64_type_node
2619 && (TREE_TYPE (val)
2620 != dfloat32_type_node)))
2621 || (type == dfloat64_type_node
2622 && (TREE_TYPE (val)
2623 != dfloat32_type_node))))
2624 warning (0, "passing argument %d of %qE as %qT "
2625 "rather than %qT due to prototype",
2626 argnum, rname, type, TREE_TYPE (val));
2627
2628 }
2629 /* Detect integer changing in width or signedness.
2630 These warnings are only activated with
2631 -Wtraditional-conversion, not with -Wtraditional. */
2632 else if (warn_traditional_conversion && INTEGRAL_TYPE_P (type)
2633 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2634 {
2635 tree would_have_been = default_conversion (val);
2636 tree type1 = TREE_TYPE (would_have_been);
2637
2638 if (TREE_CODE (type) == ENUMERAL_TYPE
2639 && (TYPE_MAIN_VARIANT (type)
2640 == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2641 /* No warning if function asks for enum
2642 and the actual arg is that enum type. */
2643 ;
2644 else if (formal_prec != TYPE_PRECISION (type1))
2645 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2646 "with different width due to prototype",
2647 argnum, rname);
2648 else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2649 ;
2650 /* Don't complain if the formal parameter type
2651 is an enum, because we can't tell now whether
2652 the value was an enum--even the same enum. */
2653 else if (TREE_CODE (type) == ENUMERAL_TYPE)
2654 ;
2655 else if (TREE_CODE (val) == INTEGER_CST
2656 && int_fits_type_p (val, type))
2657 /* Change in signedness doesn't matter
2658 if a constant value is unaffected. */
2659 ;
2660 /* If the value is extended from a narrower
2661 unsigned type, it doesn't matter whether we
2662 pass it as signed or unsigned; the value
2663 certainly is the same either way. */
2664 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2665 && TYPE_UNSIGNED (TREE_TYPE (val)))
2666 ;
2667 else if (TYPE_UNSIGNED (type))
2668 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2669 "as unsigned due to prototype",
2670 argnum, rname);
2671 else
2672 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2673 "as signed due to prototype", argnum, rname);
2674 }
2675 }
2676
2677 parmval = convert_for_assignment (type, val, ic_argpass,
2678 fundecl, function,
2679 parmnum + 1);
2680
2681 if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2682 && INTEGRAL_TYPE_P (type)
2683 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2684 parmval = default_conversion (parmval);
2685 }
2686 argarray[parmnum] = parmval;
2687 }
2688 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2689 && (TYPE_PRECISION (TREE_TYPE (val))
2690 < TYPE_PRECISION (double_type_node))
2691 && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2692 {
2693 if (type_generic)
2694 argarray[parmnum] = val;
2695 else
2696 /* Convert `float' to `double'. */
2697 argarray[parmnum] = convert (double_type_node, val);
2698 }
2699 else if ((invalid_func_diag =
2700 targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2701 {
2702 error (invalid_func_diag);
2703 return -1;
2704 }
2705 else
2706 /* Convert `short' and `char' to full-size `int'. */
2707 argarray[parmnum] = default_conversion (val);
2708
2709 if (typetail)
2710 typetail = TREE_CHAIN (typetail);
2711 }
2712
2713 gcc_assert (parmnum == nargs);
2714
2715 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2716 {
2717 error ("too few arguments to function %qE", function);
2718 return -1;
2719 }
2720
2721 return parmnum;
2722 }
2723 \f
2724 /* This is the entry point used by the parser to build unary operators
2725 in the input. CODE, a tree_code, specifies the unary operator, and
2726 ARG is the operand. For unary plus, the C parser currently uses
2727 CONVERT_EXPR for code. */
2728
2729 struct c_expr
2730 parser_build_unary_op (enum tree_code code, struct c_expr arg)
2731 {
2732 struct c_expr result;
2733
2734 result.original_code = ERROR_MARK;
2735 result.value = build_unary_op (code, arg.value, 0);
2736
2737 if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value))
2738 overflow_warning (result.value);
2739
2740 return result;
2741 }
2742
2743 /* This is the entry point used by the parser to build binary operators
2744 in the input. CODE, a tree_code, specifies the binary operator, and
2745 ARG1 and ARG2 are the operands. In addition to constructing the
2746 expression, we check for operands that were written with other binary
2747 operators in a way that is likely to confuse the user. */
2748
2749 struct c_expr
2750 parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2751 struct c_expr arg2)
2752 {
2753 struct c_expr result;
2754
2755 enum tree_code code1 = arg1.original_code;
2756 enum tree_code code2 = arg2.original_code;
2757
2758 result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2759 result.original_code = code;
2760
2761 if (TREE_CODE (result.value) == ERROR_MARK)
2762 return result;
2763
2764 /* Check for cases such as x+y<<z which users are likely
2765 to misinterpret. */
2766 if (warn_parentheses)
2767 warn_about_parentheses (code, code1, code2);
2768
2769 if (TREE_CODE_CLASS (code1) != tcc_comparison)
2770 warn_logical_operator (code, arg1.value, arg2.value);
2771
2772 /* Warn about comparisons against string literals, with the exception
2773 of testing for equality or inequality of a string literal with NULL. */
2774 if (code == EQ_EXPR || code == NE_EXPR)
2775 {
2776 if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2777 || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2778 warning (OPT_Waddress, "comparison with string literal results in unspecified behavior");
2779 }
2780 else if (TREE_CODE_CLASS (code) == tcc_comparison
2781 && (code1 == STRING_CST || code2 == STRING_CST))
2782 warning (OPT_Waddress, "comparison with string literal results in unspecified behavior");
2783
2784 if (TREE_OVERFLOW_P (result.value)
2785 && !TREE_OVERFLOW_P (arg1.value)
2786 && !TREE_OVERFLOW_P (arg2.value))
2787 overflow_warning (result.value);
2788
2789 return result;
2790 }
2791 \f
2792 /* Return a tree for the difference of pointers OP0 and OP1.
2793 The resulting tree has type int. */
2794
2795 static tree
2796 pointer_diff (tree op0, tree op1)
2797 {
2798 tree restype = ptrdiff_type_node;
2799
2800 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2801 tree con0, con1, lit0, lit1;
2802 tree orig_op1 = op1;
2803
2804 if (TREE_CODE (target_type) == VOID_TYPE)
2805 pedwarn (input_location, pedantic ? OPT_pedantic : OPT_Wpointer_arith,
2806 "pointer of type %<void *%> used in subtraction");
2807 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2808 pedwarn (input_location, pedantic ? OPT_pedantic : OPT_Wpointer_arith,
2809 "pointer to a function used in subtraction");
2810
2811 /* If the conversion to ptrdiff_type does anything like widening or
2812 converting a partial to an integral mode, we get a convert_expression
2813 that is in the way to do any simplifications.
2814 (fold-const.c doesn't know that the extra bits won't be needed.
2815 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2816 different mode in place.)
2817 So first try to find a common term here 'by hand'; we want to cover
2818 at least the cases that occur in legal static initializers. */
2819 if (CONVERT_EXPR_P (op0)
2820 && (TYPE_PRECISION (TREE_TYPE (op0))
2821 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2822 con0 = TREE_OPERAND (op0, 0);
2823 else
2824 con0 = op0;
2825 if (CONVERT_EXPR_P (op1)
2826 && (TYPE_PRECISION (TREE_TYPE (op1))
2827 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2828 con1 = TREE_OPERAND (op1, 0);
2829 else
2830 con1 = op1;
2831
2832 if (TREE_CODE (con0) == PLUS_EXPR)
2833 {
2834 lit0 = TREE_OPERAND (con0, 1);
2835 con0 = TREE_OPERAND (con0, 0);
2836 }
2837 else
2838 lit0 = integer_zero_node;
2839
2840 if (TREE_CODE (con1) == PLUS_EXPR)
2841 {
2842 lit1 = TREE_OPERAND (con1, 1);
2843 con1 = TREE_OPERAND (con1, 0);
2844 }
2845 else
2846 lit1 = integer_zero_node;
2847
2848 if (operand_equal_p (con0, con1, 0))
2849 {
2850 op0 = lit0;
2851 op1 = lit1;
2852 }
2853
2854
2855 /* First do the subtraction as integers;
2856 then drop through to build the divide operator.
2857 Do not do default conversions on the minus operator
2858 in case restype is a short type. */
2859
2860 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2861 convert (restype, op1), 0);
2862 /* This generates an error if op1 is pointer to incomplete type. */
2863 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2864 error ("arithmetic on pointer to an incomplete type");
2865
2866 /* This generates an error if op0 is pointer to incomplete type. */
2867 op1 = c_size_in_bytes (target_type);
2868
2869 /* Divide by the size, in easiest possible way. */
2870 return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2871 }
2872 \f
2873 /* Construct and perhaps optimize a tree representation
2874 for a unary operation. CODE, a tree_code, specifies the operation
2875 and XARG is the operand.
2876 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2877 the default promotions (such as from short to int).
2878 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2879 allows non-lvalues; this is only used to handle conversion of non-lvalue
2880 arrays to pointers in C99. */
2881
2882 tree
2883 build_unary_op (enum tree_code code, tree xarg, int flag)
2884 {
2885 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2886 tree arg = xarg;
2887 tree argtype = 0;
2888 enum tree_code typecode;
2889 tree val;
2890 int noconvert = flag;
2891 const char *invalid_op_diag;
2892
2893 if (code != ADDR_EXPR)
2894 arg = require_complete_type (arg);
2895
2896 typecode = TREE_CODE (TREE_TYPE (arg));
2897 if (typecode == ERROR_MARK)
2898 return error_mark_node;
2899 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2900 typecode = INTEGER_TYPE;
2901
2902 if ((invalid_op_diag
2903 = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2904 {
2905 error (invalid_op_diag);
2906 return error_mark_node;
2907 }
2908
2909 switch (code)
2910 {
2911 case CONVERT_EXPR:
2912 /* This is used for unary plus, because a CONVERT_EXPR
2913 is enough to prevent anybody from looking inside for
2914 associativity, but won't generate any code. */
2915 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2916 || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE
2917 || typecode == VECTOR_TYPE))
2918 {
2919 error ("wrong type argument to unary plus");
2920 return error_mark_node;
2921 }
2922 else if (!noconvert)
2923 arg = default_conversion (arg);
2924 arg = non_lvalue (arg);
2925 break;
2926
2927 case NEGATE_EXPR:
2928 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2929 || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE
2930 || typecode == VECTOR_TYPE))
2931 {
2932 error ("wrong type argument to unary minus");
2933 return error_mark_node;
2934 }
2935 else if (!noconvert)
2936 arg = default_conversion (arg);
2937 break;
2938
2939 case BIT_NOT_EXPR:
2940 /* ~ works on integer types and non float vectors. */
2941 if (typecode == INTEGER_TYPE
2942 || (typecode == VECTOR_TYPE
2943 && !VECTOR_FLOAT_TYPE_P (TREE_TYPE (arg))))
2944 {
2945 if (!noconvert)
2946 arg = default_conversion (arg);
2947 }
2948 else if (typecode == COMPLEX_TYPE)
2949 {
2950 code = CONJ_EXPR;
2951 pedwarn (input_location, OPT_pedantic,
2952 "ISO C does not support %<~%> for complex conjugation");
2953 if (!noconvert)
2954 arg = default_conversion (arg);
2955 }
2956 else
2957 {
2958 error ("wrong type argument to bit-complement");
2959 return error_mark_node;
2960 }
2961 break;
2962
2963 case ABS_EXPR:
2964 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2965 {
2966 error ("wrong type argument to abs");
2967 return error_mark_node;
2968 }
2969 else if (!noconvert)
2970 arg = default_conversion (arg);
2971 break;
2972
2973 case CONJ_EXPR:
2974 /* Conjugating a real value is a no-op, but allow it anyway. */
2975 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2976 || typecode == COMPLEX_TYPE))
2977 {
2978 error ("wrong type argument to conjugation");
2979 return error_mark_node;
2980 }
2981 else if (!noconvert)
2982 arg = default_conversion (arg);
2983 break;
2984
2985 case TRUTH_NOT_EXPR:
2986 if (typecode != INTEGER_TYPE && typecode != FIXED_POINT_TYPE
2987 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2988 && typecode != COMPLEX_TYPE)
2989 {
2990 error ("wrong type argument to unary exclamation mark");
2991 return error_mark_node;
2992 }
2993 arg = c_objc_common_truthvalue_conversion (arg);
2994 return invert_truthvalue (arg);
2995
2996 case REALPART_EXPR:
2997 if (TREE_CODE (arg) == COMPLEX_CST)
2998 return TREE_REALPART (arg);
2999 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
3000 return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
3001 else
3002 return arg;
3003
3004 case IMAGPART_EXPR:
3005 if (TREE_CODE (arg) == COMPLEX_CST)
3006 return TREE_IMAGPART (arg);
3007 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
3008 return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
3009 else
3010 return convert (TREE_TYPE (arg), integer_zero_node);
3011
3012 case PREINCREMENT_EXPR:
3013 case POSTINCREMENT_EXPR:
3014 case PREDECREMENT_EXPR:
3015 case POSTDECREMENT_EXPR:
3016
3017 /* Increment or decrement the real part of the value,
3018 and don't change the imaginary part. */
3019 if (typecode == COMPLEX_TYPE)
3020 {
3021 tree real, imag;
3022
3023 pedwarn (input_location, OPT_pedantic,
3024 "ISO C does not support %<++%> and %<--%> on complex types");
3025
3026 arg = stabilize_reference (arg);
3027 real = build_unary_op (REALPART_EXPR, arg, 1);
3028 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
3029 real = build_unary_op (code, real, 1);
3030 if (real == error_mark_node || imag == error_mark_node)
3031 return error_mark_node;
3032 return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
3033 real, imag);
3034 }
3035
3036 /* Report invalid types. */
3037
3038 if (typecode != POINTER_TYPE && typecode != FIXED_POINT_TYPE
3039 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
3040 {
3041 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3042 error ("wrong type argument to increment");
3043 else
3044 error ("wrong type argument to decrement");
3045
3046 return error_mark_node;
3047 }
3048
3049 {
3050 tree inc;
3051 tree result_type = TREE_TYPE (arg);
3052
3053 arg = get_unwidened (arg, 0);
3054 argtype = TREE_TYPE (arg);
3055
3056 /* Compute the increment. */
3057
3058 if (typecode == POINTER_TYPE)
3059 {
3060 /* If pointer target is an undefined struct,
3061 we just cannot know how to do the arithmetic. */
3062 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
3063 {
3064 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3065 error ("increment of pointer to unknown structure");
3066 else
3067 error ("decrement of pointer to unknown structure");
3068 }
3069 else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
3070 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
3071 {
3072 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3073 pedwarn (input_location, pedantic ? OPT_pedantic : OPT_Wpointer_arith,
3074 "wrong type argument to increment");
3075 else
3076 pedwarn (input_location, pedantic ? OPT_pedantic : OPT_Wpointer_arith,
3077 "wrong type argument to decrement");
3078 }
3079
3080 inc = c_size_in_bytes (TREE_TYPE (result_type));
3081 inc = fold_convert (sizetype, inc);
3082 }
3083 else if (FRACT_MODE_P (TYPE_MODE (result_type)))
3084 {
3085 /* For signed fract types, we invert ++ to -- or
3086 -- to ++, and change inc from 1 to -1, because
3087 it is not possible to represent 1 in signed fract constants.
3088 For unsigned fract types, the result always overflows and
3089 we get an undefined (original) or the maximum value. */
3090 if (code == PREINCREMENT_EXPR)
3091 code = PREDECREMENT_EXPR;
3092 else if (code == PREDECREMENT_EXPR)
3093 code = PREINCREMENT_EXPR;
3094 else if (code == POSTINCREMENT_EXPR)
3095 code = POSTDECREMENT_EXPR;
3096 else /* code == POSTDECREMENT_EXPR */
3097 code = POSTINCREMENT_EXPR;
3098
3099 inc = integer_minus_one_node;
3100 inc = convert (argtype, inc);
3101 }
3102 else
3103 {
3104 inc = integer_one_node;
3105 inc = convert (argtype, inc);
3106 }
3107
3108 /* Complain about anything else that is not a true lvalue. */
3109 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
3110 || code == POSTINCREMENT_EXPR)
3111 ? lv_increment
3112 : lv_decrement)))
3113 return error_mark_node;
3114
3115 /* Report a read-only lvalue. */
3116 if (TREE_READONLY (arg))
3117 {
3118 readonly_error (arg,
3119 ((code == PREINCREMENT_EXPR
3120 || code == POSTINCREMENT_EXPR)
3121 ? lv_increment : lv_decrement));
3122 return error_mark_node;
3123 }
3124
3125 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3126 val = boolean_increment (code, arg);
3127 else
3128 val = build2 (code, TREE_TYPE (arg), arg, inc);
3129 TREE_SIDE_EFFECTS (val) = 1;
3130 val = convert (result_type, val);
3131 if (TREE_CODE (val) != code)
3132 TREE_NO_WARNING (val) = 1;
3133 return val;
3134 }
3135
3136 case ADDR_EXPR:
3137 /* Note that this operation never does default_conversion. */
3138
3139 /* Let &* cancel out to simplify resulting code. */
3140 if (TREE_CODE (arg) == INDIRECT_REF)
3141 {
3142 /* Don't let this be an lvalue. */
3143 if (lvalue_p (TREE_OPERAND (arg, 0)))
3144 return non_lvalue (TREE_OPERAND (arg, 0));
3145 return TREE_OPERAND (arg, 0);
3146 }
3147
3148 /* For &x[y], return x+y */
3149 if (TREE_CODE (arg) == ARRAY_REF)
3150 {
3151 tree op0 = TREE_OPERAND (arg, 0);
3152 if (!c_mark_addressable (op0))
3153 return error_mark_node;
3154 return build_binary_op (PLUS_EXPR,
3155 (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3156 ? array_to_pointer_conversion (op0)
3157 : op0),
3158 TREE_OPERAND (arg, 1), 1);
3159 }
3160
3161 /* Anything not already handled and not a true memory reference
3162 or a non-lvalue array is an error. */
3163 else if (typecode != FUNCTION_TYPE && !flag
3164 && !lvalue_or_else (arg, lv_addressof))
3165 return error_mark_node;
3166
3167 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3168 argtype = TREE_TYPE (arg);
3169
3170 /* If the lvalue is const or volatile, merge that into the type
3171 to which the address will point. Note that you can't get a
3172 restricted pointer by taking the address of something, so we
3173 only have to deal with `const' and `volatile' here. */
3174 if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3175 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3176 argtype = c_build_type_variant (argtype,
3177 TREE_READONLY (arg),
3178 TREE_THIS_VOLATILE (arg));
3179
3180 if (!c_mark_addressable (arg))
3181 return error_mark_node;
3182
3183 gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3184 || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3185
3186 argtype = build_pointer_type (argtype);
3187
3188 /* ??? Cope with user tricks that amount to offsetof. Delete this
3189 when we have proper support for integer constant expressions. */
3190 val = get_base_address (arg);
3191 if (val && TREE_CODE (val) == INDIRECT_REF
3192 && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3193 {
3194 tree op0 = fold_convert (sizetype, fold_offsetof (arg, val)), op1;
3195
3196 op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3197 return fold_build2 (POINTER_PLUS_EXPR, argtype, op1, op0);
3198 }
3199
3200 val = build1 (ADDR_EXPR, argtype, arg);
3201
3202 return val;
3203
3204 default:
3205 gcc_unreachable ();
3206 }
3207
3208 if (argtype == 0)
3209 argtype = TREE_TYPE (arg);
3210 return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3211 : fold_build1 (code, argtype, arg);
3212 }
3213
3214 /* Return nonzero if REF is an lvalue valid for this language.
3215 Lvalues can be assigned, unless their type has TYPE_READONLY.
3216 Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
3217
3218 static int
3219 lvalue_p (const_tree ref)
3220 {
3221 const enum tree_code code = TREE_CODE (ref);
3222
3223 switch (code)
3224 {
3225 case REALPART_EXPR:
3226 case IMAGPART_EXPR:
3227 case COMPONENT_REF:
3228 return lvalue_p (TREE_OPERAND (ref, 0));
3229
3230 case COMPOUND_LITERAL_EXPR:
3231 case STRING_CST:
3232 return 1;
3233
3234 case INDIRECT_REF:
3235 case ARRAY_REF:
3236 case VAR_DECL:
3237 case PARM_DECL:
3238 case RESULT_DECL:
3239 case ERROR_MARK:
3240 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3241 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3242
3243 case BIND_EXPR:
3244 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3245
3246 default:
3247 return 0;
3248 }
3249 }
3250 \f
3251 /* Give an error for storing in something that is 'const'. */
3252
3253 static void
3254 readonly_error (tree arg, enum lvalue_use use)
3255 {
3256 gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3257 || use == lv_asm);
3258 /* Using this macro rather than (for example) arrays of messages
3259 ensures that all the format strings are checked at compile
3260 time. */
3261 #define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A) \
3262 : (use == lv_increment ? (I) \
3263 : (use == lv_decrement ? (D) : (AS))))
3264 if (TREE_CODE (arg) == COMPONENT_REF)
3265 {
3266 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3267 readonly_error (TREE_OPERAND (arg, 0), use);
3268 else
3269 error (READONLY_MSG (G_("assignment of read-only member %qD"),
3270 G_("increment of read-only member %qD"),
3271 G_("decrement of read-only member %qD"),
3272 G_("read-only member %qD used as %<asm%> output")),
3273 TREE_OPERAND (arg, 1));
3274 }
3275 else if (TREE_CODE (arg) == VAR_DECL)
3276 error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3277 G_("increment of read-only variable %qD"),
3278 G_("decrement of read-only variable %qD"),
3279 G_("read-only variable %qD used as %<asm%> output")),
3280 arg);
3281 else
3282 error (READONLY_MSG (G_("assignment of read-only location %qE"),
3283 G_("increment of read-only location %qE"),
3284 G_("decrement of read-only location %qE"),
3285 G_("read-only location %qE used as %<asm%> output")),
3286 arg);
3287 }
3288
3289
3290 /* Return nonzero if REF is an lvalue valid for this language;
3291 otherwise, print an error message and return zero. USE says
3292 how the lvalue is being used and so selects the error message. */
3293
3294 static int
3295 lvalue_or_else (const_tree ref, enum lvalue_use use)
3296 {
3297 int win = lvalue_p (ref);
3298
3299 if (!win)
3300 lvalue_error (use);
3301
3302 return win;
3303 }
3304 \f
3305 /* Mark EXP saying that we need to be able to take the
3306 address of it; it should not be allocated in a register.
3307 Returns true if successful. */
3308
3309 bool
3310 c_mark_addressable (tree exp)
3311 {
3312 tree x = exp;
3313
3314 while (1)
3315 switch (TREE_CODE (x))
3316 {
3317 case COMPONENT_REF:
3318 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3319 {
3320 error
3321 ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3322 return false;
3323 }
3324
3325 /* ... fall through ... */
3326
3327 case ADDR_EXPR:
3328 case ARRAY_REF:
3329 case REALPART_EXPR:
3330 case IMAGPART_EXPR:
3331 x = TREE_OPERAND (x, 0);
3332 break;
3333
3334 case COMPOUND_LITERAL_EXPR:
3335 case CONSTRUCTOR:
3336 TREE_ADDRESSABLE (x) = 1;
3337 return true;
3338
3339 case VAR_DECL:
3340 case CONST_DECL:
3341 case PARM_DECL:
3342 case RESULT_DECL:
3343 if (C_DECL_REGISTER (x)
3344 && DECL_NONLOCAL (x))
3345 {
3346 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3347 {
3348 error
3349 ("global register variable %qD used in nested function", x);
3350 return false;
3351 }
3352 pedwarn (input_location, 0, "register variable %qD used in nested function", x);
3353 }
3354 else if (C_DECL_REGISTER (x))
3355 {
3356 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3357 error ("address of global register variable %qD requested", x);
3358 else
3359 error ("address of register variable %qD requested", x);
3360 return false;
3361 }
3362
3363 /* drops in */
3364 case FUNCTION_DECL:
3365 TREE_ADDRESSABLE (x) = 1;
3366 /* drops out */
3367 default:
3368 return true;
3369 }
3370 }
3371 \f
3372 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3373
3374 tree
3375 build_conditional_expr (tree ifexp, tree op1, tree op2)
3376 {
3377 tree type1;
3378 tree type2;
3379 enum tree_code code1;
3380 enum tree_code code2;
3381 tree result_type = NULL;
3382 tree orig_op1 = op1, orig_op2 = op2;
3383
3384 /* Promote both alternatives. */
3385
3386 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3387 op1 = default_conversion (op1);
3388 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3389 op2 = default_conversion (op2);
3390
3391 if (TREE_CODE (ifexp) == ERROR_MARK
3392 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3393 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3394 return error_mark_node;
3395
3396 type1 = TREE_TYPE (op1);
3397 code1 = TREE_CODE (type1);
3398 type2 = TREE_TYPE (op2);
3399 code2 = TREE_CODE (type2);
3400
3401 /* C90 does not permit non-lvalue arrays in conditional expressions.
3402 In C99 they will be pointers by now. */
3403 if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3404 {
3405 error ("non-lvalue array in conditional expression");
3406 return error_mark_node;
3407 }
3408
3409 /* Quickly detect the usual case where op1 and op2 have the same type
3410 after promotion. */
3411 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3412 {
3413 if (type1 == type2)
3414 result_type = type1;
3415 else
3416 result_type = TYPE_MAIN_VARIANT (type1);
3417 }
3418 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3419 || code1 == COMPLEX_TYPE)
3420 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3421 || code2 == COMPLEX_TYPE))
3422 {
3423 result_type = c_common_type (type1, type2);
3424
3425 /* If -Wsign-compare, warn here if type1 and type2 have
3426 different signedness. We'll promote the signed to unsigned
3427 and later code won't know it used to be different.
3428 Do this check on the original types, so that explicit casts
3429 will be considered, but default promotions won't. */
3430 if (warn_sign_compare && !skip_evaluation)
3431 {
3432 int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3433 int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3434
3435 if (unsigned_op1 ^ unsigned_op2)
3436 {
3437 bool ovf;
3438
3439 /* Do not warn if the result type is signed, since the
3440 signed type will only be chosen if it can represent
3441 all the values of the unsigned type. */
3442 if (!TYPE_UNSIGNED (result_type))
3443 /* OK */;
3444 /* Do not warn if the signed quantity is an unsuffixed
3445 integer literal (or some static constant expression
3446 involving such literals) and it is non-negative. */
3447 else if ((unsigned_op2
3448 && tree_expr_nonnegative_warnv_p (op1, &ovf))
3449 || (unsigned_op1
3450 && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3451 /* OK */;
3452 else
3453 warning (OPT_Wsign_compare, "signed and unsigned type in conditional expression");
3454 }
3455 }
3456 }
3457 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3458 {
3459 if (code1 != VOID_TYPE || code2 != VOID_TYPE)
3460 pedwarn (input_location, OPT_pedantic,
3461 "ISO C forbids conditional expr with only one void side");
3462 result_type = void_type_node;
3463 }
3464 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3465 {
3466 if (comp_target_types (type1, type2))
3467 result_type = common_pointer_type (type1, type2);
3468 else if (null_pointer_constant_p (orig_op1))
3469 result_type = qualify_type (type2, type1);
3470 else if (null_pointer_constant_p (orig_op2))
3471 result_type = qualify_type (type1, type2);
3472 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3473 {
3474 if (TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3475 pedwarn (input_location, OPT_pedantic,
3476 "ISO C forbids conditional expr between "
3477 "%<void *%> and function pointer");
3478 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3479 TREE_TYPE (type2)));
3480 }
3481 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3482 {
3483 if (TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3484 pedwarn (input_location, OPT_pedantic,
3485 "ISO C forbids conditional expr between "
3486 "%<void *%> and function pointer");
3487 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3488 TREE_TYPE (type1)));
3489 }
3490 else
3491 {
3492 pedwarn (input_location, 0,
3493 "pointer type mismatch in conditional expression");
3494 result_type = build_pointer_type (void_type_node);
3495 }
3496 }
3497 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3498 {
3499 if (!null_pointer_constant_p (orig_op2))
3500 pedwarn (input_location, 0,
3501 "pointer/integer type mismatch in conditional expression");
3502 else
3503 {
3504 op2 = null_pointer_node;
3505 }
3506 result_type = type1;
3507 }
3508 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3509 {
3510 if (!null_pointer_constant_p (orig_op1))
3511 pedwarn (input_location, 0,
3512 "pointer/integer type mismatch in conditional expression");
3513 else
3514 {
3515 op1 = null_pointer_node;
3516 }
3517 result_type = type2;
3518 }
3519
3520 if (!result_type)
3521 {
3522 if (flag_cond_mismatch)
3523 result_type = void_type_node;
3524 else
3525 {
3526 error ("type mismatch in conditional expression");
3527 return error_mark_node;
3528 }
3529 }
3530
3531 /* Merge const and volatile flags of the incoming types. */
3532 result_type
3533 = build_type_variant (result_type,
3534 TREE_READONLY (op1) || TREE_READONLY (op2),
3535 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3536
3537 if (result_type != TREE_TYPE (op1))
3538 op1 = convert_and_check (result_type, op1);
3539 if (result_type != TREE_TYPE (op2))
3540 op2 = convert_and_check (result_type, op2);
3541
3542 return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3543 }
3544 \f
3545 /* Return a compound expression that performs two expressions and
3546 returns the value of the second of them. */
3547
3548 tree
3549 build_compound_expr (tree expr1, tree expr2)
3550 {
3551 if (!TREE_SIDE_EFFECTS (expr1))
3552 {
3553 /* The left-hand operand of a comma expression is like an expression
3554 statement: with -Wunused, we should warn if it doesn't have
3555 any side-effects, unless it was explicitly cast to (void). */
3556 if (warn_unused_value)
3557 {
3558 if (VOID_TYPE_P (TREE_TYPE (expr1))
3559 && CONVERT_EXPR_P (expr1))
3560 ; /* (void) a, b */
3561 else if (VOID_TYPE_P (TREE_TYPE (expr1))
3562 && TREE_CODE (expr1) == COMPOUND_EXPR
3563 && CONVERT_EXPR_P (TREE_OPERAND (expr1, 1)))
3564 ; /* (void) a, (void) b, c */
3565 else
3566 warning (OPT_Wunused_value,
3567 "left-hand operand of comma expression has no effect");
3568 }
3569 }
3570
3571 /* With -Wunused, we should also warn if the left-hand operand does have
3572 side-effects, but computes a value which is not used. For example, in
3573 `foo() + bar(), baz()' the result of the `+' operator is not used,
3574 so we should issue a warning. */
3575 else if (warn_unused_value)
3576 warn_if_unused_value (expr1, input_location);
3577
3578 if (expr2 == error_mark_node)
3579 return error_mark_node;
3580
3581 return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3582 }
3583
3584 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3585
3586 tree
3587 build_c_cast (tree type, tree expr)
3588 {
3589 tree value = expr;
3590
3591 if (type == error_mark_node || expr == error_mark_node)
3592 return error_mark_node;
3593
3594 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3595 only in <protocol> qualifications. But when constructing cast expressions,
3596 the protocols do matter and must be kept around. */
3597 if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3598 return build1 (NOP_EXPR, type, expr);
3599
3600 type = TYPE_MAIN_VARIANT (type);
3601
3602 if (TREE_CODE (type) == ARRAY_TYPE)
3603 {
3604 error ("cast specifies array type");
3605 return error_mark_node;
3606 }
3607
3608 if (TREE_CODE (type) == FUNCTION_TYPE)
3609 {
3610 error ("cast specifies function type");
3611 return error_mark_node;
3612 }
3613
3614 if (!VOID_TYPE_P (type))
3615 {
3616 value = require_complete_type (value);
3617 if (value == error_mark_node)
3618 return error_mark_node;
3619 }
3620
3621 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3622 {
3623 if (TREE_CODE (type) == RECORD_TYPE
3624 || TREE_CODE (type) == UNION_TYPE)
3625 pedwarn (input_location, OPT_pedantic,
3626 "ISO C forbids casting nonscalar to the same type");
3627 }
3628 else if (TREE_CODE (type) == UNION_TYPE)
3629 {
3630 tree field;
3631
3632 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3633 if (TREE_TYPE (field) != error_mark_node
3634 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3635 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3636 break;
3637
3638 if (field)
3639 {
3640 tree t;
3641
3642 pedwarn (input_location, OPT_pedantic,
3643 "ISO C forbids casts to union type");
3644 t = digest_init (type,
3645 build_constructor_single (type, field, value),
3646 true, 0);
3647 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3648 return t;
3649 }
3650 error ("cast to union type from type not present in union");
3651 return error_mark_node;
3652 }
3653 else
3654 {
3655 tree otype, ovalue;
3656
3657 if (type == void_type_node)
3658 return build1 (CONVERT_EXPR, type, value);
3659
3660 otype = TREE_TYPE (value);
3661
3662 /* Optionally warn about potentially worrisome casts. */
3663
3664 if (warn_cast_qual
3665 && TREE_CODE (type) == POINTER_TYPE
3666 && TREE_CODE (otype) == POINTER_TYPE)
3667 {
3668 tree in_type = type;
3669 tree in_otype = otype;
3670 int added = 0;
3671 int discarded = 0;
3672
3673 /* Check that the qualifiers on IN_TYPE are a superset of
3674 the qualifiers of IN_OTYPE. The outermost level of
3675 POINTER_TYPE nodes is uninteresting and we stop as soon
3676 as we hit a non-POINTER_TYPE node on either type. */
3677 do
3678 {
3679 in_otype = TREE_TYPE (in_otype);
3680 in_type = TREE_TYPE (in_type);
3681
3682 /* GNU C allows cv-qualified function types. 'const'
3683 means the function is very pure, 'volatile' means it
3684 can't return. We need to warn when such qualifiers
3685 are added, not when they're taken away. */
3686 if (TREE_CODE (in_otype) == FUNCTION_TYPE
3687 && TREE_CODE (in_type) == FUNCTION_TYPE)
3688 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3689 else
3690 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3691 }
3692 while (TREE_CODE (in_type) == POINTER_TYPE
3693 && TREE_CODE (in_otype) == POINTER_TYPE);
3694
3695 if (added)
3696 warning (OPT_Wcast_qual, "cast adds new qualifiers to function type");
3697
3698 if (discarded)
3699 /* There are qualifiers present in IN_OTYPE that are not
3700 present in IN_TYPE. */
3701 warning (OPT_Wcast_qual, "cast discards qualifiers from pointer target type");
3702 }
3703
3704 /* Warn about possible alignment problems. */
3705 if (STRICT_ALIGNMENT
3706 && TREE_CODE (type) == POINTER_TYPE
3707 && TREE_CODE (otype) == POINTER_TYPE
3708 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3709 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3710 /* Don't warn about opaque types, where the actual alignment
3711 restriction is unknown. */
3712 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3713 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3714 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3715 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3716 warning (OPT_Wcast_align,
3717 "cast increases required alignment of target type");
3718
3719 if (TREE_CODE (type) == INTEGER_TYPE
3720 && TREE_CODE (otype) == POINTER_TYPE
3721 && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3722 /* Unlike conversion of integers to pointers, where the
3723 warning is disabled for converting constants because
3724 of cases such as SIG_*, warn about converting constant
3725 pointers to integers. In some cases it may cause unwanted
3726 sign extension, and a warning is appropriate. */
3727 warning (OPT_Wpointer_to_int_cast,
3728 "cast from pointer to integer of different size");
3729
3730 if (TREE_CODE (value) == CALL_EXPR
3731 && TREE_CODE (type) != TREE_CODE (otype))
3732 warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3733 "to non-matching type %qT", otype, type);
3734
3735 if (TREE_CODE (type) == POINTER_TYPE
3736 && TREE_CODE (otype) == INTEGER_TYPE
3737 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3738 /* Don't warn about converting any constant. */
3739 && !TREE_CONSTANT (value))
3740 warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3741 "of different size");
3742
3743 if (warn_strict_aliasing <= 2)
3744 strict_aliasing_warning (otype, type, expr);
3745
3746 /* If pedantic, warn for conversions between function and object
3747 pointer types, except for converting a null pointer constant
3748 to function pointer type. */
3749 if (pedantic
3750 && TREE_CODE (type) == POINTER_TYPE
3751 && TREE_CODE (otype) == POINTER_TYPE
3752 && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3753 && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3754 pedwarn (input_location, OPT_pedantic, "ISO C forbids "
3755 "conversion of function pointer to object pointer type");
3756
3757 if (pedantic
3758 && TREE_CODE (type) == POINTER_TYPE
3759 && TREE_CODE (otype) == POINTER_TYPE
3760 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3761 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3762 && !null_pointer_constant_p (value))
3763 pedwarn (input_location, OPT_pedantic, "ISO C forbids "
3764 "conversion of object pointer to function pointer type");
3765
3766 ovalue = value;
3767 value = convert (type, value);
3768
3769 /* Ignore any integer overflow caused by the cast. */
3770 if (TREE_CODE (value) == INTEGER_CST)
3771 {
3772 if (CONSTANT_CLASS_P (ovalue) && TREE_OVERFLOW (ovalue))
3773 {
3774 if (!TREE_OVERFLOW (value))
3775 {
3776 /* Avoid clobbering a shared constant. */
3777 value = copy_node (value);
3778 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3779 }
3780 }
3781 else if (TREE_OVERFLOW (value))
3782 /* Reset VALUE's overflow flags, ensuring constant sharing. */
3783 value = build_int_cst_wide (TREE_TYPE (value),
3784 TREE_INT_CST_LOW (value),
3785 TREE_INT_CST_HIGH (value));
3786 }
3787 }
3788
3789 /* Don't let a cast be an lvalue. */
3790 if (value == expr)
3791 value = non_lvalue (value);
3792
3793 return value;
3794 }
3795
3796 /* Interpret a cast of expression EXPR to type TYPE. */
3797 tree
3798 c_cast_expr (struct c_type_name *type_name, tree expr)
3799 {
3800 tree type;
3801 int saved_wsp = warn_strict_prototypes;
3802
3803 /* This avoids warnings about unprototyped casts on
3804 integers. E.g. "#define SIG_DFL (void(*)())0". */
3805 if (TREE_CODE (expr) == INTEGER_CST)
3806 warn_strict_prototypes = 0;
3807 type = groktypename (type_name);
3808 warn_strict_prototypes = saved_wsp;
3809
3810 return build_c_cast (type, expr);
3811 }
3812 \f
3813 /* Build an assignment expression of lvalue LHS from value RHS.
3814 MODIFYCODE is the code for a binary operator that we use
3815 to combine the old value of LHS with RHS to get the new value.
3816 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3817
3818 tree
3819 build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3820 {
3821 tree result;
3822 tree newrhs;
3823 tree lhstype = TREE_TYPE (lhs);
3824 tree olhstype = lhstype;
3825
3826 /* Types that aren't fully specified cannot be used in assignments. */
3827 lhs = require_complete_type (lhs);
3828
3829 /* Avoid duplicate error messages from operands that had errors. */
3830 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3831 return error_mark_node;
3832
3833 if (!lvalue_or_else (lhs, lv_assign))
3834 return error_mark_node;
3835
3836 STRIP_TYPE_NOPS (rhs);
3837
3838 newrhs = rhs;
3839
3840 /* If a binary op has been requested, combine the old LHS value with the RHS
3841 producing the value we should actually store into the LHS. */
3842
3843 if (modifycode != NOP_EXPR)
3844 {
3845 lhs = stabilize_reference (lhs);
3846 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3847 }
3848
3849 /* Give an error for storing in something that is 'const'. */
3850
3851 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3852 || ((TREE_CODE (lhstype) == RECORD_TYPE
3853 || TREE_CODE (lhstype) == UNION_TYPE)
3854 && C_TYPE_FIELDS_READONLY (lhstype)))
3855 {
3856 readonly_error (lhs, lv_assign);
3857 return error_mark_node;
3858 }
3859
3860 /* If storing into a structure or union member,
3861 it has probably been given type `int'.
3862 Compute the type that would go with
3863 the actual amount of storage the member occupies. */
3864
3865 if (TREE_CODE (lhs) == COMPONENT_REF
3866 && (TREE_CODE (lhstype) == INTEGER_TYPE
3867 || TREE_CODE (lhstype) == BOOLEAN_TYPE
3868 || TREE_CODE (lhstype) == REAL_TYPE
3869 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3870 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3871
3872 /* If storing in a field that is in actuality a short or narrower than one,
3873 we must store in the field in its actual type. */
3874
3875 if (lhstype != TREE_TYPE (lhs))
3876 {
3877 lhs = copy_node (lhs);
3878 TREE_TYPE (lhs) = lhstype;
3879 }
3880
3881 /* Convert new value to destination type. */
3882
3883 newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3884 NULL_TREE, NULL_TREE, 0);
3885 if (TREE_CODE (newrhs) == ERROR_MARK)
3886 return error_mark_node;
3887
3888 /* Emit ObjC write barrier, if necessary. */
3889 if (c_dialect_objc () && flag_objc_gc)
3890 {
3891 result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3892 if (result)
3893 return result;
3894 }
3895
3896 /* Scan operands. */
3897
3898 result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3899 TREE_SIDE_EFFECTS (result) = 1;
3900
3901 /* If we got the LHS in a different type for storing in,
3902 convert the result back to the nominal type of LHS
3903 so that the value we return always has the same type
3904 as the LHS argument. */
3905
3906 if (olhstype == TREE_TYPE (result))
3907 return result;
3908 return convert_for_assignment (olhstype, result, ic_assign,
3909 NULL_TREE, NULL_TREE, 0);
3910 }
3911 \f
3912 /* Convert value RHS to type TYPE as preparation for an assignment
3913 to an lvalue of type TYPE.
3914 The real work of conversion is done by `convert'.
3915 The purpose of this function is to generate error messages
3916 for assignments that are not allowed in C.
3917 ERRTYPE says whether it is argument passing, assignment,
3918 initialization or return.
3919
3920 FUNCTION is a tree for the function being called.
3921 PARMNUM is the number of the argument, for printing in error messages. */
3922
3923 static tree
3924 convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3925 tree fundecl, tree function, int parmnum)
3926 {
3927 enum tree_code codel = TREE_CODE (type);
3928 tree rhstype;
3929 enum tree_code coder;
3930 tree rname = NULL_TREE;
3931 bool objc_ok = false;
3932
3933 if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3934 {
3935 tree selector;
3936 /* Change pointer to function to the function itself for
3937 diagnostics. */
3938 if (TREE_CODE (function) == ADDR_EXPR
3939 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3940 function = TREE_OPERAND (function, 0);
3941
3942 /* Handle an ObjC selector specially for diagnostics. */
3943 selector = objc_message_selector ();
3944 rname = function;
3945 if (selector && parmnum > 2)
3946 {
3947 rname = selector;
3948 parmnum -= 2;
3949 }
3950 }
3951
3952 /* This macro is used to emit diagnostics to ensure that all format
3953 strings are complete sentences, visible to gettext and checked at
3954 compile time. */
3955 #define WARN_FOR_ASSIGNMENT(LOCATION, OPT, AR, AS, IN, RE) \
3956 do { \
3957 switch (errtype) \
3958 { \
3959 case ic_argpass: \
3960 pedwarn (LOCATION, OPT, AR, parmnum, rname); \
3961 break; \
3962 case ic_argpass_nonproto: \
3963 warning (OPT, AR, parmnum, rname); \
3964 break; \
3965 case ic_assign: \
3966 pedwarn (LOCATION, OPT, AS); \
3967 break; \
3968 case ic_init: \
3969 pedwarn (LOCATION, OPT, IN); \
3970 break; \
3971 case ic_return: \
3972 pedwarn (LOCATION, OPT, RE); \
3973 break; \
3974 default: \
3975 gcc_unreachable (); \
3976 } \
3977 } while (0)
3978
3979 STRIP_TYPE_NOPS (rhs);
3980
3981 if (optimize && TREE_CODE (rhs) == VAR_DECL
3982 && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3983 rhs = decl_constant_value_for_broken_optimization (rhs);
3984
3985 rhstype = TREE_TYPE (rhs);
3986 coder = TREE_CODE (rhstype);
3987
3988 if (coder == ERROR_MARK)
3989 return error_mark_node;
3990
3991 if (c_dialect_objc ())
3992 {
3993 int parmno;
3994
3995 switch (errtype)
3996 {
3997 case ic_return:
3998 parmno = 0;
3999 break;
4000
4001 case ic_assign:
4002 parmno = -1;
4003 break;
4004
4005 case ic_init:
4006 parmno = -2;
4007 break;
4008
4009 default:
4010 parmno = parmnum;
4011 break;
4012 }
4013
4014 objc_ok = objc_compare_types (type, rhstype, parmno, rname);
4015 }
4016
4017 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
4018 return rhs;
4019
4020 if (coder == VOID_TYPE)
4021 {
4022 /* Except for passing an argument to an unprototyped function,
4023 this is a constraint violation. When passing an argument to
4024 an unprototyped function, it is compile-time undefined;
4025 making it a constraint in that case was rejected in
4026 DR#252. */
4027 error ("void value not ignored as it ought to be");
4028 return error_mark_node;
4029 }
4030 rhs = require_complete_type (rhs);
4031 if (rhs == error_mark_node)
4032 return error_mark_node;
4033 /* A type converts to a reference to it.
4034 This code doesn't fully support references, it's just for the
4035 special case of va_start and va_copy. */
4036 if (codel == REFERENCE_TYPE
4037 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
4038 {
4039 if (!lvalue_p (rhs))
4040 {
4041 error ("cannot pass rvalue to reference parameter");
4042 return error_mark_node;
4043 }
4044 if (!c_mark_addressable (rhs))
4045 return error_mark_node;
4046 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
4047
4048 /* We already know that these two types are compatible, but they
4049 may not be exactly identical. In fact, `TREE_TYPE (type)' is
4050 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
4051 likely to be va_list, a typedef to __builtin_va_list, which
4052 is different enough that it will cause problems later. */
4053 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
4054 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
4055
4056 rhs = build1 (NOP_EXPR, type, rhs);
4057 return rhs;
4058 }
4059 /* Some types can interconvert without explicit casts. */
4060 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
4061 && vector_types_convertible_p (type, TREE_TYPE (rhs), true))
4062 return convert (type, rhs);
4063 /* Arithmetic types all interconvert, and enum is treated like int. */
4064 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
4065 || codel == FIXED_POINT_TYPE
4066 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
4067 || codel == BOOLEAN_TYPE)
4068 && (coder == INTEGER_TYPE || coder == REAL_TYPE
4069 || coder == FIXED_POINT_TYPE
4070 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
4071 || coder == BOOLEAN_TYPE))
4072 return convert_and_check (type, rhs);
4073
4074 /* Aggregates in different TUs might need conversion. */
4075 if ((codel == RECORD_TYPE || codel == UNION_TYPE)
4076 && codel == coder
4077 && comptypes (type, rhstype))
4078 return convert_and_check (type, rhs);
4079
4080 /* Conversion to a transparent union from its member types.
4081 This applies only to function arguments. */
4082 if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
4083 && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
4084 {
4085 tree memb, marginal_memb = NULL_TREE;
4086
4087 for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
4088 {
4089 tree memb_type = TREE_TYPE (memb);
4090
4091 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
4092 TYPE_MAIN_VARIANT (rhstype)))
4093 break;
4094
4095 if (TREE_CODE (memb_type) != POINTER_TYPE)
4096 continue;
4097
4098 if (coder == POINTER_TYPE)
4099 {
4100 tree ttl = TREE_TYPE (memb_type);
4101 tree ttr = TREE_TYPE (rhstype);
4102
4103 /* Any non-function converts to a [const][volatile] void *
4104 and vice versa; otherwise, targets must be the same.
4105 Meanwhile, the lhs target must have all the qualifiers of
4106 the rhs. */
4107 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4108 || comp_target_types (memb_type, rhstype))
4109 {
4110 /* If this type won't generate any warnings, use it. */
4111 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
4112 || ((TREE_CODE (ttr) == FUNCTION_TYPE
4113 && TREE_CODE (ttl) == FUNCTION_TYPE)
4114 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4115 == TYPE_QUALS (ttr))
4116 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4117 == TYPE_QUALS (ttl))))
4118 break;
4119
4120 /* Keep looking for a better type, but remember this one. */
4121 if (!marginal_memb)
4122 marginal_memb = memb;
4123 }
4124 }
4125
4126 /* Can convert integer zero to any pointer type. */
4127 if (null_pointer_constant_p (rhs))
4128 {
4129 rhs = null_pointer_node;
4130 break;
4131 }
4132 }
4133
4134 if (memb || marginal_memb)
4135 {
4136 if (!memb)
4137 {
4138 /* We have only a marginally acceptable member type;
4139 it needs a warning. */
4140 tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
4141 tree ttr = TREE_TYPE (rhstype);
4142
4143 /* Const and volatile mean something different for function
4144 types, so the usual warnings are not appropriate. */
4145 if (TREE_CODE (ttr) == FUNCTION_TYPE
4146 && TREE_CODE (ttl) == FUNCTION_TYPE)
4147 {
4148 /* Because const and volatile on functions are
4149 restrictions that say the function will not do
4150 certain things, it is okay to use a const or volatile
4151 function where an ordinary one is wanted, but not
4152 vice-versa. */
4153 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4154 WARN_FOR_ASSIGNMENT (input_location, 0,
4155 G_("passing argument %d of %qE "
4156 "makes qualified function "
4157 "pointer from unqualified"),
4158 G_("assignment makes qualified "
4159 "function pointer from "
4160 "unqualified"),
4161 G_("initialization makes qualified "
4162 "function pointer from "
4163 "unqualified"),
4164 G_("return makes qualified function "
4165 "pointer from unqualified"));
4166 }
4167 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4168 WARN_FOR_ASSIGNMENT (input_location, 0,
4169 G_("passing argument %d of %qE discards "
4170 "qualifiers from pointer target type"),
4171 G_("assignment discards qualifiers "
4172 "from pointer target type"),
4173 G_("initialization discards qualifiers "
4174 "from pointer target type"),
4175 G_("return discards qualifiers from "
4176 "pointer target type"));
4177
4178 memb = marginal_memb;
4179 }
4180
4181 if (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl))
4182 pedwarn (input_location, OPT_pedantic,
4183 "ISO C prohibits argument conversion to union type");
4184
4185 rhs = fold_convert (TREE_TYPE (memb), rhs);
4186 return build_constructor_single (type, memb, rhs);
4187 }
4188 }
4189
4190 /* Conversions among pointers */
4191 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4192 && (coder == codel))
4193 {
4194 tree ttl = TREE_TYPE (type);
4195 tree ttr = TREE_TYPE (rhstype);
4196 tree mvl = ttl;
4197 tree mvr = ttr;
4198 bool is_opaque_pointer;
4199 int target_cmp = 0; /* Cache comp_target_types () result. */
4200
4201 if (TREE_CODE (mvl) != ARRAY_TYPE)
4202 mvl = TYPE_MAIN_VARIANT (mvl);
4203 if (TREE_CODE (mvr) != ARRAY_TYPE)
4204 mvr = TYPE_MAIN_VARIANT (mvr);
4205 /* Opaque pointers are treated like void pointers. */
4206 is_opaque_pointer = vector_targets_convertible_p (ttl, ttr);
4207
4208 /* C++ does not allow the implicit conversion void* -> T*. However,
4209 for the purpose of reducing the number of false positives, we
4210 tolerate the special case of
4211
4212 int *p = NULL;
4213
4214 where NULL is typically defined in C to be '(void *) 0'. */
4215 if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4216 warning (OPT_Wc___compat, "request for implicit conversion from "
4217 "%qT to %qT not permitted in C++", rhstype, type);
4218
4219 /* Check if the right-hand side has a format attribute but the
4220 left-hand side doesn't. */
4221 if (warn_missing_format_attribute
4222 && check_missing_format_attribute (type, rhstype))
4223 {
4224 switch (errtype)
4225 {
4226 case ic_argpass:
4227 case ic_argpass_nonproto:
4228 warning (OPT_Wmissing_format_attribute,
4229 "argument %d of %qE might be "
4230 "a candidate for a format attribute",
4231 parmnum, rname);
4232 break;
4233 case ic_assign:
4234 warning (OPT_Wmissing_format_attribute,
4235 "assignment left-hand side might be "
4236 "a candidate for a format attribute");
4237 break;
4238 case ic_init:
4239 warning (OPT_Wmissing_format_attribute,
4240 "initialization left-hand side might be "
4241 "a candidate for a format attribute");
4242 break;
4243 case ic_return:
4244 warning (OPT_Wmissing_format_attribute,
4245 "return type might be "
4246 "a candidate for a format attribute");
4247 break;
4248 default:
4249 gcc_unreachable ();
4250 }
4251 }
4252
4253 /* Any non-function converts to a [const][volatile] void *
4254 and vice versa; otherwise, targets must be the same.
4255 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4256 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4257 || (target_cmp = comp_target_types (type, rhstype))
4258 || is_opaque_pointer
4259 || (c_common_unsigned_type (mvl)
4260 == c_common_unsigned_type (mvr)))
4261 {
4262 if (pedantic
4263 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4264 ||
4265 (VOID_TYPE_P (ttr)
4266 && !null_pointer_constant_p (rhs)
4267 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4268 WARN_FOR_ASSIGNMENT (input_location, OPT_pedantic,
4269 G_("ISO C forbids passing argument %d of "
4270 "%qE between function pointer "
4271 "and %<void *%>"),
4272 G_("ISO C forbids assignment between "
4273 "function pointer and %<void *%>"),
4274 G_("ISO C forbids initialization between "
4275 "function pointer and %<void *%>"),
4276 G_("ISO C forbids return between function "
4277 "pointer and %<void *%>"));
4278 /* Const and volatile mean something different for function types,
4279 so the usual warnings are not appropriate. */
4280 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4281 && TREE_CODE (ttl) != FUNCTION_TYPE)
4282 {
4283 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4284 {
4285 /* Types differing only by the presence of the 'volatile'
4286 qualifier are acceptable if the 'volatile' has been added
4287 in by the Objective-C EH machinery. */
4288 if (!objc_type_quals_match (ttl, ttr))
4289 WARN_FOR_ASSIGNMENT (input_location, 0,
4290 G_("passing argument %d of %qE discards "
4291 "qualifiers from pointer target type"),
4292 G_("assignment discards qualifiers "
4293 "from pointer target type"),
4294 G_("initialization discards qualifiers "
4295 "from pointer target type"),
4296 G_("return discards qualifiers from "
4297 "pointer target type"));
4298 }
4299 /* If this is not a case of ignoring a mismatch in signedness,
4300 no warning. */
4301 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4302 || target_cmp)
4303 ;
4304 /* If there is a mismatch, do warn. */
4305 else if (warn_pointer_sign)
4306 WARN_FOR_ASSIGNMENT (input_location, OPT_Wpointer_sign,
4307 G_("pointer targets in passing argument "
4308 "%d of %qE differ in signedness"),
4309 G_("pointer targets in assignment "
4310 "differ in signedness"),
4311 G_("pointer targets in initialization "
4312 "differ in signedness"),
4313 G_("pointer targets in return differ "
4314 "in signedness"));
4315 }
4316 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4317 && TREE_CODE (ttr) == FUNCTION_TYPE)
4318 {
4319 /* Because const and volatile on functions are restrictions
4320 that say the function will not do certain things,
4321 it is okay to use a const or volatile function
4322 where an ordinary one is wanted, but not vice-versa. */
4323 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4324 WARN_FOR_ASSIGNMENT (input_location, 0,
4325 G_("passing argument %d of %qE makes "
4326 "qualified function pointer "
4327 "from unqualified"),
4328 G_("assignment makes qualified function "
4329 "pointer from unqualified"),
4330 G_("initialization makes qualified "
4331 "function pointer from unqualified"),
4332 G_("return makes qualified function "
4333 "pointer from unqualified"));
4334 }
4335 }
4336 else
4337 /* Avoid warning about the volatile ObjC EH puts on decls. */
4338 if (!objc_ok)
4339 WARN_FOR_ASSIGNMENT (input_location, 0,
4340 G_("passing argument %d of %qE from "
4341 "incompatible pointer type"),
4342 G_("assignment from incompatible pointer type"),
4343 G_("initialization from incompatible "
4344 "pointer type"),
4345 G_("return from incompatible pointer type"));
4346
4347 return convert (type, rhs);
4348 }
4349 else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4350 {
4351 /* ??? This should not be an error when inlining calls to
4352 unprototyped functions. */
4353 error ("invalid use of non-lvalue array");
4354 return error_mark_node;
4355 }
4356 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4357 {
4358 /* An explicit constant 0 can convert to a pointer,
4359 or one that results from arithmetic, even including
4360 a cast to integer type. */
4361 if (!null_pointer_constant_p (rhs))
4362 WARN_FOR_ASSIGNMENT (input_location, 0,
4363 G_("passing argument %d of %qE makes "
4364 "pointer from integer without a cast"),
4365 G_("assignment makes pointer from integer "
4366 "without a cast"),
4367 G_("initialization makes pointer from "
4368 "integer without a cast"),
4369 G_("return makes pointer from integer "
4370 "without a cast"));
4371
4372 return convert (type, rhs);
4373 }
4374 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4375 {
4376 WARN_FOR_ASSIGNMENT (input_location, 0,
4377 G_("passing argument %d of %qE makes integer "
4378 "from pointer without a cast"),
4379 G_("assignment makes integer from pointer "
4380 "without a cast"),
4381 G_("initialization makes integer from pointer "
4382 "without a cast"),
4383 G_("return makes integer from pointer "
4384 "without a cast"));
4385 return convert (type, rhs);
4386 }
4387 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4388 return convert (type, rhs);
4389
4390 switch (errtype)
4391 {
4392 case ic_argpass:
4393 case ic_argpass_nonproto:
4394 /* ??? This should not be an error when inlining calls to
4395 unprototyped functions. */
4396 error ("incompatible type for argument %d of %qE", parmnum, rname);
4397 break;
4398 case ic_assign:
4399 error ("incompatible types in assignment");
4400 break;
4401 case ic_init:
4402 error ("incompatible types in initialization");
4403 break;
4404 case ic_return:
4405 error ("incompatible types in return");
4406 break;
4407 default:
4408 gcc_unreachable ();
4409 }
4410
4411 return error_mark_node;
4412 }
4413 \f
4414 /* If VALUE is a compound expr all of whose expressions are constant, then
4415 return its value. Otherwise, return error_mark_node.
4416
4417 This is for handling COMPOUND_EXPRs as initializer elements
4418 which is allowed with a warning when -pedantic is specified. */
4419
4420 static tree
4421 valid_compound_expr_initializer (tree value, tree endtype)
4422 {
4423 if (TREE_CODE (value) == COMPOUND_EXPR)
4424 {
4425 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4426 == error_mark_node)
4427 return error_mark_node;
4428 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4429 endtype);
4430 }
4431 else if (!initializer_constant_valid_p (value, endtype))
4432 return error_mark_node;
4433 else
4434 return value;
4435 }
4436 \f
4437 /* Perform appropriate conversions on the initial value of a variable,
4438 store it in the declaration DECL,
4439 and print any error messages that are appropriate.
4440 If the init is invalid, store an ERROR_MARK. */
4441
4442 void
4443 store_init_value (tree decl, tree init)
4444 {
4445 tree value, type;
4446
4447 /* If variable's type was invalidly declared, just ignore it. */
4448
4449 type = TREE_TYPE (decl);
4450 if (TREE_CODE (type) == ERROR_MARK)
4451 return;
4452
4453 /* Digest the specified initializer into an expression. */
4454
4455 value = digest_init (type, init, true, TREE_STATIC (decl));
4456
4457 /* Store the expression if valid; else report error. */
4458
4459 if (!in_system_header
4460 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4461 warning (OPT_Wtraditional, "traditional C rejects automatic "
4462 "aggregate initialization");
4463
4464 DECL_INITIAL (decl) = value;
4465
4466 /* ANSI wants warnings about out-of-range constant initializers. */
4467 STRIP_TYPE_NOPS (value);
4468 if (TREE_STATIC (decl))
4469 constant_expression_warning (value);
4470
4471 /* Check if we need to set array size from compound literal size. */
4472 if (TREE_CODE (type) == ARRAY_TYPE
4473 && TYPE_DOMAIN (type) == 0
4474 && value != error_mark_node)
4475 {
4476 tree inside_init = init;
4477
4478 STRIP_TYPE_NOPS (inside_init);
4479 inside_init = fold (inside_init);
4480
4481 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4482 {
4483 tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4484
4485 if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4486 {
4487 /* For int foo[] = (int [3]){1}; we need to set array size
4488 now since later on array initializer will be just the
4489 brace enclosed list of the compound literal. */
4490 type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4491 TREE_TYPE (decl) = type;
4492 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4493 layout_type (type);
4494 layout_decl (cldecl, 0);
4495 }
4496 }
4497 }
4498 }
4499 \f
4500 /* Methods for storing and printing names for error messages. */
4501
4502 /* Implement a spelling stack that allows components of a name to be pushed
4503 and popped. Each element on the stack is this structure. */
4504
4505 struct spelling
4506 {
4507 int kind;
4508 union
4509 {
4510 unsigned HOST_WIDE_INT i;
4511 const char *s;
4512 } u;
4513 };
4514
4515 #define SPELLING_STRING 1
4516 #define SPELLING_MEMBER 2
4517 #define SPELLING_BOUNDS 3
4518
4519 static struct spelling *spelling; /* Next stack element (unused). */
4520 static struct spelling *spelling_base; /* Spelling stack base. */
4521 static int spelling_size; /* Size of the spelling stack. */
4522
4523 /* Macros to save and restore the spelling stack around push_... functions.
4524 Alternative to SAVE_SPELLING_STACK. */
4525
4526 #define SPELLING_DEPTH() (spelling - spelling_base)
4527 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4528
4529 /* Push an element on the spelling stack with type KIND and assign VALUE
4530 to MEMBER. */
4531
4532 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4533 { \
4534 int depth = SPELLING_DEPTH (); \
4535 \
4536 if (depth >= spelling_size) \
4537 { \
4538 spelling_size += 10; \
4539 spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
4540 spelling_size); \
4541 RESTORE_SPELLING_DEPTH (depth); \
4542 } \
4543 \
4544 spelling->kind = (KIND); \
4545 spelling->MEMBER = (VALUE); \
4546 spelling++; \
4547 }
4548
4549 /* Push STRING on the stack. Printed literally. */
4550
4551 static void
4552 push_string (const char *string)
4553 {
4554 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4555 }
4556
4557 /* Push a member name on the stack. Printed as '.' STRING. */
4558
4559 static void
4560 push_member_name (tree decl)
4561 {
4562 const char *const string
4563 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4564 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4565 }
4566
4567 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4568
4569 static void
4570 push_array_bounds (unsigned HOST_WIDE_INT bounds)
4571 {
4572 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4573 }
4574
4575 /* Compute the maximum size in bytes of the printed spelling. */
4576
4577 static int
4578 spelling_length (void)
4579 {
4580 int size = 0;
4581 struct spelling *p;
4582
4583 for (p = spelling_base; p < spelling; p++)
4584 {
4585 if (p->kind == SPELLING_BOUNDS)
4586 size += 25;
4587 else
4588 size += strlen (p->u.s) + 1;
4589 }
4590
4591 return size;
4592 }
4593
4594 /* Print the spelling to BUFFER and return it. */
4595
4596 static char *
4597 print_spelling (char *buffer)
4598 {
4599 char *d = buffer;
4600 struct spelling *p;
4601
4602 for (p = spelling_base; p < spelling; p++)
4603 if (p->kind == SPELLING_BOUNDS)
4604 {
4605 sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4606 d += strlen (d);
4607 }
4608 else
4609 {
4610 const char *s;
4611 if (p->kind == SPELLING_MEMBER)
4612 *d++ = '.';
4613 for (s = p->u.s; (*d = *s++); d++)
4614 ;
4615 }
4616 *d++ = '\0';
4617 return buffer;
4618 }
4619
4620 /* Issue an error message for a bad initializer component.
4621 MSGID identifies the message.
4622 The component name is taken from the spelling stack. */
4623
4624 void
4625 error_init (const char *msgid)
4626 {
4627 char *ofwhat;
4628
4629 error ("%s", _(msgid));
4630 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4631 if (*ofwhat)
4632 error ("(near initialization for %qs)", ofwhat);
4633 }
4634
4635 /* Issue a pedantic warning for a bad initializer component. OPT is
4636 the option OPT_* (from options.h) controlling this warning or 0 if
4637 it is unconditionally given. MSGID identifies the message. The
4638 component name is taken from the spelling stack. */
4639
4640 void
4641 pedwarn_init (location_t location, int opt, const char *msgid)
4642 {
4643 char *ofwhat;
4644
4645 pedwarn (location, opt, "%s", _(msgid));
4646 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4647 if (*ofwhat)
4648 pedwarn (location, opt, "(near initialization for %qs)", ofwhat);
4649 }
4650
4651 /* Issue a warning for a bad initializer component.
4652
4653 OPT is the OPT_W* value corresponding to the warning option that
4654 controls this warning. MSGID identifies the message. The
4655 component name is taken from the spelling stack. */
4656
4657 static void
4658 warning_init (int opt, const char *msgid)
4659 {
4660 char *ofwhat;
4661
4662 warning (opt, "%s", _(msgid));
4663 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4664 if (*ofwhat)
4665 warning (opt, "(near initialization for %qs)", ofwhat);
4666 }
4667 \f
4668 /* If TYPE is an array type and EXPR is a parenthesized string
4669 constant, warn if pedantic that EXPR is being used to initialize an
4670 object of type TYPE. */
4671
4672 void
4673 maybe_warn_string_init (tree type, struct c_expr expr)
4674 {
4675 if (pedantic
4676 && TREE_CODE (type) == ARRAY_TYPE
4677 && TREE_CODE (expr.value) == STRING_CST
4678 && expr.original_code != STRING_CST)
4679 pedwarn_init (input_location, OPT_pedantic,
4680 "array initialized from parenthesized string constant");
4681 }
4682
4683 /* Digest the parser output INIT as an initializer for type TYPE.
4684 Return a C expression of type TYPE to represent the initial value.
4685
4686 If INIT is a string constant, STRICT_STRING is true if it is
4687 unparenthesized or we should not warn here for it being parenthesized.
4688 For other types of INIT, STRICT_STRING is not used.
4689
4690 REQUIRE_CONSTANT requests an error if non-constant initializers or
4691 elements are seen. */
4692
4693 static tree
4694 digest_init (tree type, tree init, bool strict_string, int require_constant)
4695 {
4696 enum tree_code code = TREE_CODE (type);
4697 tree inside_init = init;
4698
4699 if (type == error_mark_node
4700 || !init
4701 || init == error_mark_node
4702 || TREE_TYPE (init) == error_mark_node)
4703 return error_mark_node;
4704
4705 STRIP_TYPE_NOPS (inside_init);
4706
4707 inside_init = fold (inside_init);
4708
4709 /* Initialization of an array of chars from a string constant
4710 optionally enclosed in braces. */
4711
4712 if (code == ARRAY_TYPE && inside_init
4713 && TREE_CODE (inside_init) == STRING_CST)
4714 {
4715 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4716 /* Note that an array could be both an array of character type
4717 and an array of wchar_t if wchar_t is signed char or unsigned
4718 char. */
4719 bool char_array = (typ1 == char_type_node
4720 || typ1 == signed_char_type_node
4721 || typ1 == unsigned_char_type_node);
4722 bool wchar_array = !!comptypes (typ1, wchar_type_node);
4723 bool char16_array = !!comptypes (typ1, char16_type_node);
4724 bool char32_array = !!comptypes (typ1, char32_type_node);
4725
4726 if (char_array || wchar_array || char16_array || char32_array)
4727 {
4728 struct c_expr expr;
4729 tree typ2 = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)));
4730 expr.value = inside_init;
4731 expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4732 maybe_warn_string_init (type, expr);
4733
4734 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4735 TYPE_MAIN_VARIANT (type)))
4736 return inside_init;
4737
4738 if (char_array)
4739 {
4740 if (typ2 != char_type_node)
4741 {
4742 error_init ("char-array initialized from wide string");
4743 return error_mark_node;
4744 }
4745 }
4746 else
4747 {
4748 if (typ2 == char_type_node)
4749 {
4750 error_init ("wide character array initialized from non-wide "
4751 "string");
4752 return error_mark_node;
4753 }
4754 else if (!comptypes(typ1, typ2))
4755 {
4756 error_init ("wide character array initialized from "
4757 "incompatible wide string");
4758 return error_mark_node;
4759 }
4760 }
4761
4762 TREE_TYPE (inside_init) = type;
4763 if (TYPE_DOMAIN (type) != 0
4764 && TYPE_SIZE (type) != 0
4765 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4766 /* Subtract the size of a single (possibly wide) character
4767 because it's ok to ignore the terminating null char
4768 that is counted in the length of the constant. */
4769 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4770 TREE_STRING_LENGTH (inside_init)
4771 - (TYPE_PRECISION (typ1)
4772 / BITS_PER_UNIT)))
4773 pedwarn_init (input_location, 0,
4774 "initializer-string for array of chars is too long");
4775
4776 return inside_init;
4777 }
4778 else if (INTEGRAL_TYPE_P (typ1))
4779 {
4780 error_init ("array of inappropriate type initialized "
4781 "from string constant");
4782 return error_mark_node;
4783 }
4784 }
4785
4786 /* Build a VECTOR_CST from a *constant* vector constructor. If the
4787 vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4788 below and handle as a constructor. */
4789 if (code == VECTOR_TYPE
4790 && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4791 && vector_types_convertible_p (TREE_TYPE (inside_init), type, true)
4792 && TREE_CONSTANT (inside_init))
4793 {
4794 if (TREE_CODE (inside_init) == VECTOR_CST
4795 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4796 TYPE_MAIN_VARIANT (type)))
4797 return inside_init;
4798
4799 if (TREE_CODE (inside_init) == CONSTRUCTOR)
4800 {
4801 unsigned HOST_WIDE_INT ix;
4802 tree value;
4803 bool constant_p = true;
4804
4805 /* Iterate through elements and check if all constructor
4806 elements are *_CSTs. */
4807 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4808 if (!CONSTANT_CLASS_P (value))
4809 {
4810 constant_p = false;
4811 break;
4812 }
4813
4814 if (constant_p)
4815 return build_vector_from_ctor (type,
4816 CONSTRUCTOR_ELTS (inside_init));
4817 }
4818 }
4819
4820 if (warn_sequence_point)
4821 verify_sequence_points (inside_init);
4822
4823 /* Any type can be initialized
4824 from an expression of the same type, optionally with braces. */
4825
4826 if (inside_init && TREE_TYPE (inside_init) != 0
4827 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4828 TYPE_MAIN_VARIANT (type))
4829 || (code == ARRAY_TYPE
4830 && comptypes (TREE_TYPE (inside_init), type))
4831 || (code == VECTOR_TYPE
4832 && comptypes (TREE_TYPE (inside_init), type))
4833 || (code == POINTER_TYPE
4834 && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4835 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4836 TREE_TYPE (type)))))
4837 {
4838 if (code == POINTER_TYPE)
4839 {
4840 if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4841 {
4842 if (TREE_CODE (inside_init) == STRING_CST
4843 || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4844 inside_init = array_to_pointer_conversion (inside_init);
4845 else
4846 {
4847 error_init ("invalid use of non-lvalue array");
4848 return error_mark_node;
4849 }
4850 }
4851 }
4852
4853 if (code == VECTOR_TYPE)
4854 /* Although the types are compatible, we may require a
4855 conversion. */
4856 inside_init = convert (type, inside_init);
4857
4858 if (require_constant
4859 && (code == VECTOR_TYPE || !flag_isoc99)
4860 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4861 {
4862 /* As an extension, allow initializing objects with static storage
4863 duration with compound literals (which are then treated just as
4864 the brace enclosed list they contain). Also allow this for
4865 vectors, as we can only assign them with compound literals. */
4866 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4867 inside_init = DECL_INITIAL (decl);
4868 }
4869
4870 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4871 && TREE_CODE (inside_init) != CONSTRUCTOR)
4872 {
4873 error_init ("array initialized from non-constant array expression");
4874 return error_mark_node;
4875 }
4876
4877 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4878 inside_init = decl_constant_value_for_broken_optimization (inside_init);
4879
4880 /* Compound expressions can only occur here if -pedantic or
4881 -pedantic-errors is specified. In the later case, we always want
4882 an error. In the former case, we simply want a warning. */
4883 if (require_constant && pedantic
4884 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4885 {
4886 inside_init
4887 = valid_compound_expr_initializer (inside_init,
4888 TREE_TYPE (inside_init));
4889 if (inside_init == error_mark_node)
4890 error_init ("initializer element is not constant");
4891 else
4892 pedwarn_init (input_location, OPT_pedantic,
4893 "initializer element is not constant");
4894 if (flag_pedantic_errors)
4895 inside_init = error_mark_node;
4896 }
4897 else if (require_constant
4898 && !initializer_constant_valid_p (inside_init,
4899 TREE_TYPE (inside_init)))
4900 {
4901 error_init ("initializer element is not constant");
4902 inside_init = error_mark_node;
4903 }
4904
4905 /* Added to enable additional -Wmissing-format-attribute warnings. */
4906 if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4907 inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4908 NULL_TREE, 0);
4909 return inside_init;
4910 }
4911
4912 /* Handle scalar types, including conversions. */
4913
4914 if (code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE
4915 || code == POINTER_TYPE || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
4916 || code == COMPLEX_TYPE || code == VECTOR_TYPE)
4917 {
4918 if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4919 && (TREE_CODE (init) == STRING_CST
4920 || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4921 init = array_to_pointer_conversion (init);
4922 inside_init
4923 = convert_for_assignment (type, init, ic_init,
4924 NULL_TREE, NULL_TREE, 0);
4925
4926 /* Check to see if we have already given an error message. */
4927 if (inside_init == error_mark_node)
4928 ;
4929 else if (require_constant && !TREE_CONSTANT (inside_init))
4930 {
4931 error_init ("initializer element is not constant");
4932 inside_init = error_mark_node;
4933 }
4934 else if (require_constant
4935 && !initializer_constant_valid_p (inside_init,
4936 TREE_TYPE (inside_init)))
4937 {
4938 error_init ("initializer element is not computable at load time");
4939 inside_init = error_mark_node;
4940 }
4941
4942 return inside_init;
4943 }
4944
4945 /* Come here only for records and arrays. */
4946
4947 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4948 {
4949 error_init ("variable-sized object may not be initialized");
4950 return error_mark_node;
4951 }
4952
4953 error_init ("invalid initializer");
4954 return error_mark_node;
4955 }
4956 \f
4957 /* Handle initializers that use braces. */
4958
4959 /* Type of object we are accumulating a constructor for.
4960 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4961 static tree constructor_type;
4962
4963 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4964 left to fill. */
4965 static tree constructor_fields;
4966
4967 /* For an ARRAY_TYPE, this is the specified index
4968 at which to store the next element we get. */
4969 static tree constructor_index;
4970
4971 /* For an ARRAY_TYPE, this is the maximum index. */
4972 static tree constructor_max_index;
4973
4974 /* For a RECORD_TYPE, this is the first field not yet written out. */
4975 static tree constructor_unfilled_fields;
4976
4977 /* For an ARRAY_TYPE, this is the index of the first element
4978 not yet written out. */
4979 static tree constructor_unfilled_index;
4980
4981 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4982 This is so we can generate gaps between fields, when appropriate. */
4983 static tree constructor_bit_index;
4984
4985 /* If we are saving up the elements rather than allocating them,
4986 this is the list of elements so far (in reverse order,
4987 most recent first). */
4988 static VEC(constructor_elt,gc) *constructor_elements;
4989
4990 /* 1 if constructor should be incrementally stored into a constructor chain,
4991 0 if all the elements should be kept in AVL tree. */
4992 static int constructor_incremental;
4993
4994 /* 1 if so far this constructor's elements are all compile-time constants. */
4995 static int constructor_constant;
4996
4997 /* 1 if so far this constructor's elements are all valid address constants. */
4998 static int constructor_simple;
4999
5000 /* 1 if this constructor is erroneous so far. */
5001 static int constructor_erroneous;
5002
5003 /* Structure for managing pending initializer elements, organized as an
5004 AVL tree. */
5005
5006 struct init_node
5007 {
5008 struct init_node *left, *right;
5009 struct init_node *parent;
5010 int balance;
5011 tree purpose;
5012 tree value;
5013 };
5014
5015 /* Tree of pending elements at this constructor level.
5016 These are elements encountered out of order
5017 which belong at places we haven't reached yet in actually
5018 writing the output.
5019 Will never hold tree nodes across GC runs. */
5020 static struct init_node *constructor_pending_elts;
5021
5022 /* The SPELLING_DEPTH of this constructor. */
5023 static int constructor_depth;
5024
5025 /* DECL node for which an initializer is being read.
5026 0 means we are reading a constructor expression
5027 such as (struct foo) {...}. */
5028 static tree constructor_decl;
5029
5030 /* Nonzero if this is an initializer for a top-level decl. */
5031 static int constructor_top_level;
5032
5033 /* Nonzero if there were any member designators in this initializer. */
5034 static int constructor_designated;
5035
5036 /* Nesting depth of designator list. */
5037 static int designator_depth;
5038
5039 /* Nonzero if there were diagnosed errors in this designator list. */
5040 static int designator_erroneous;
5041
5042 \f
5043 /* This stack has a level for each implicit or explicit level of
5044 structuring in the initializer, including the outermost one. It
5045 saves the values of most of the variables above. */
5046
5047 struct constructor_range_stack;
5048
5049 struct constructor_stack
5050 {
5051 struct constructor_stack *next;
5052 tree type;
5053 tree fields;
5054 tree index;
5055 tree max_index;
5056 tree unfilled_index;
5057 tree unfilled_fields;
5058 tree bit_index;
5059 VEC(constructor_elt,gc) *elements;
5060 struct init_node *pending_elts;
5061 int offset;
5062 int depth;
5063 /* If value nonzero, this value should replace the entire
5064 constructor at this level. */
5065 struct c_expr replacement_value;
5066 struct constructor_range_stack *range_stack;
5067 char constant;
5068 char simple;
5069 char implicit;
5070 char erroneous;
5071 char outer;
5072 char incremental;
5073 char designated;
5074 };
5075
5076 static struct constructor_stack *constructor_stack;
5077
5078 /* This stack represents designators from some range designator up to
5079 the last designator in the list. */
5080
5081 struct constructor_range_stack
5082 {
5083 struct constructor_range_stack *next, *prev;
5084 struct constructor_stack *stack;
5085 tree range_start;
5086 tree index;
5087 tree range_end;
5088 tree fields;
5089 };
5090
5091 static struct constructor_range_stack *constructor_range_stack;
5092
5093 /* This stack records separate initializers that are nested.
5094 Nested initializers can't happen in ANSI C, but GNU C allows them
5095 in cases like { ... (struct foo) { ... } ... }. */
5096
5097 struct initializer_stack
5098 {
5099 struct initializer_stack *next;
5100 tree decl;
5101 struct constructor_stack *constructor_stack;
5102 struct constructor_range_stack *constructor_range_stack;
5103 VEC(constructor_elt,gc) *elements;
5104 struct spelling *spelling;
5105 struct spelling *spelling_base;
5106 int spelling_size;
5107 char top_level;
5108 char require_constant_value;
5109 char require_constant_elements;
5110 };
5111
5112 static struct initializer_stack *initializer_stack;
5113 \f
5114 /* Prepare to parse and output the initializer for variable DECL. */
5115
5116 void
5117 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
5118 {
5119 const char *locus;
5120 struct initializer_stack *p = XNEW (struct initializer_stack);
5121
5122 p->decl = constructor_decl;
5123 p->require_constant_value = require_constant_value;
5124 p->require_constant_elements = require_constant_elements;
5125 p->constructor_stack = constructor_stack;
5126 p->constructor_range_stack = constructor_range_stack;
5127 p->elements = constructor_elements;
5128 p->spelling = spelling;
5129 p->spelling_base = spelling_base;
5130 p->spelling_size = spelling_size;
5131 p->top_level = constructor_top_level;
5132 p->next = initializer_stack;
5133 initializer_stack = p;
5134
5135 constructor_decl = decl;
5136 constructor_designated = 0;
5137 constructor_top_level = top_level;
5138
5139 if (decl != 0 && decl != error_mark_node)
5140 {
5141 require_constant_value = TREE_STATIC (decl);
5142 require_constant_elements
5143 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
5144 /* For a scalar, you can always use any value to initialize,
5145 even within braces. */
5146 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
5147 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5148 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
5149 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5150 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
5151 }
5152 else
5153 {
5154 require_constant_value = 0;
5155 require_constant_elements = 0;
5156 locus = "(anonymous)";
5157 }
5158
5159 constructor_stack = 0;
5160 constructor_range_stack = 0;
5161
5162 missing_braces_mentioned = 0;
5163
5164 spelling_base = 0;
5165 spelling_size = 0;
5166 RESTORE_SPELLING_DEPTH (0);
5167
5168 if (locus)
5169 push_string (locus);
5170 }
5171
5172 void
5173 finish_init (void)
5174 {
5175 struct initializer_stack *p = initializer_stack;
5176
5177 /* Free the whole constructor stack of this initializer. */
5178 while (constructor_stack)
5179 {
5180 struct constructor_stack *q = constructor_stack;
5181 constructor_stack = q->next;
5182 free (q);
5183 }
5184
5185 gcc_assert (!constructor_range_stack);
5186
5187 /* Pop back to the data of the outer initializer (if any). */
5188 free (spelling_base);
5189
5190 constructor_decl = p->decl;
5191 require_constant_value = p->require_constant_value;
5192 require_constant_elements = p->require_constant_elements;
5193 constructor_stack = p->constructor_stack;
5194 constructor_range_stack = p->constructor_range_stack;
5195 constructor_elements = p->elements;
5196 spelling = p->spelling;
5197 spelling_base = p->spelling_base;
5198 spelling_size = p->spelling_size;
5199 constructor_top_level = p->top_level;
5200 initializer_stack = p->next;
5201 free (p);
5202 }
5203 \f
5204 /* Call here when we see the initializer is surrounded by braces.
5205 This is instead of a call to push_init_level;
5206 it is matched by a call to pop_init_level.
5207
5208 TYPE is the type to initialize, for a constructor expression.
5209 For an initializer for a decl, TYPE is zero. */
5210
5211 void
5212 really_start_incremental_init (tree type)
5213 {
5214 struct constructor_stack *p = XNEW (struct constructor_stack);
5215
5216 if (type == 0)
5217 type = TREE_TYPE (constructor_decl);
5218
5219 if (targetm.vector_opaque_p (type))
5220 error ("opaque vector types cannot be initialized");
5221
5222 p->type = constructor_type;
5223 p->fields = constructor_fields;
5224 p->index = constructor_index;
5225 p->max_index = constructor_max_index;
5226 p->unfilled_index = constructor_unfilled_index;
5227 p->unfilled_fields = constructor_unfilled_fields;
5228 p->bit_index = constructor_bit_index;
5229 p->elements = constructor_elements;
5230 p->constant = constructor_constant;
5231 p->simple = constructor_simple;
5232 p->erroneous = constructor_erroneous;
5233 p->pending_elts = constructor_pending_elts;
5234 p->depth = constructor_depth;
5235 p->replacement_value.value = 0;
5236 p->replacement_value.original_code = ERROR_MARK;
5237 p->implicit = 0;
5238 p->range_stack = 0;
5239 p->outer = 0;
5240 p->incremental = constructor_incremental;
5241 p->designated = constructor_designated;
5242 p->next = 0;
5243 constructor_stack = p;
5244
5245 constructor_constant = 1;
5246 constructor_simple = 1;
5247 constructor_depth = SPELLING_DEPTH ();
5248 constructor_elements = 0;
5249 constructor_pending_elts = 0;
5250 constructor_type = type;
5251 constructor_incremental = 1;
5252 constructor_designated = 0;
5253 designator_depth = 0;
5254 designator_erroneous = 0;
5255
5256 if (TREE_CODE (constructor_type) == RECORD_TYPE
5257 || TREE_CODE (constructor_type) == UNION_TYPE)
5258 {
5259 constructor_fields = TYPE_FIELDS (constructor_type);
5260 /* Skip any nameless bit fields at the beginning. */
5261 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5262 && DECL_NAME (constructor_fields) == 0)
5263 constructor_fields = TREE_CHAIN (constructor_fields);
5264
5265 constructor_unfilled_fields = constructor_fields;
5266 constructor_bit_index = bitsize_zero_node;
5267 }
5268 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5269 {
5270 if (TYPE_DOMAIN (constructor_type))
5271 {
5272 constructor_max_index
5273 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5274
5275 /* Detect non-empty initializations of zero-length arrays. */
5276 if (constructor_max_index == NULL_TREE
5277 && TYPE_SIZE (constructor_type))
5278 constructor_max_index = build_int_cst (NULL_TREE, -1);
5279
5280 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5281 to initialize VLAs will cause a proper error; avoid tree
5282 checking errors as well by setting a safe value. */
5283 if (constructor_max_index
5284 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5285 constructor_max_index = build_int_cst (NULL_TREE, -1);
5286
5287 constructor_index
5288 = convert (bitsizetype,
5289 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5290 }
5291 else
5292 {
5293 constructor_index = bitsize_zero_node;
5294 constructor_max_index = NULL_TREE;
5295 }
5296
5297 constructor_unfilled_index = constructor_index;
5298 }
5299 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5300 {
5301 /* Vectors are like simple fixed-size arrays. */
5302 constructor_max_index =
5303 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5304 constructor_index = bitsize_zero_node;
5305 constructor_unfilled_index = constructor_index;
5306 }
5307 else
5308 {
5309 /* Handle the case of int x = {5}; */
5310 constructor_fields = constructor_type;
5311 constructor_unfilled_fields = constructor_type;
5312 }
5313 }
5314 \f
5315 /* Push down into a subobject, for initialization.
5316 If this is for an explicit set of braces, IMPLICIT is 0.
5317 If it is because the next element belongs at a lower level,
5318 IMPLICIT is 1 (or 2 if the push is because of designator list). */
5319
5320 void
5321 push_init_level (int implicit)
5322 {
5323 struct constructor_stack *p;
5324 tree value = NULL_TREE;
5325
5326 /* If we've exhausted any levels that didn't have braces,
5327 pop them now. If implicit == 1, this will have been done in
5328 process_init_element; do not repeat it here because in the case
5329 of excess initializers for an empty aggregate this leads to an
5330 infinite cycle of popping a level and immediately recreating
5331 it. */
5332 if (implicit != 1)
5333 {
5334 while (constructor_stack->implicit)
5335 {
5336 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5337 || TREE_CODE (constructor_type) == UNION_TYPE)
5338 && constructor_fields == 0)
5339 process_init_element (pop_init_level (1));
5340 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5341 && constructor_max_index
5342 && tree_int_cst_lt (constructor_max_index,
5343 constructor_index))
5344 process_init_element (pop_init_level (1));
5345 else
5346 break;
5347 }
5348 }
5349
5350 /* Unless this is an explicit brace, we need to preserve previous
5351 content if any. */
5352 if (implicit)
5353 {
5354 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5355 || TREE_CODE (constructor_type) == UNION_TYPE)
5356 && constructor_fields)
5357 value = find_init_member (constructor_fields);
5358 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5359 value = find_init_member (constructor_index);
5360 }
5361
5362 p = XNEW (struct constructor_stack);
5363 p->type = constructor_type;
5364 p->fields = constructor_fields;
5365 p->index = constructor_index;
5366 p->max_index = constructor_max_index;
5367 p->unfilled_index = constructor_unfilled_index;
5368 p->unfilled_fields = constructor_unfilled_fields;
5369 p->bit_index = constructor_bit_index;
5370 p->elements = constructor_elements;
5371 p->constant = constructor_constant;
5372 p->simple = constructor_simple;
5373 p->erroneous = constructor_erroneous;
5374 p->pending_elts = constructor_pending_elts;
5375 p->depth = constructor_depth;
5376 p->replacement_value.value = 0;
5377 p->replacement_value.original_code = ERROR_MARK;
5378 p->implicit = implicit;
5379 p->outer = 0;
5380 p->incremental = constructor_incremental;
5381 p->designated = constructor_designated;
5382 p->next = constructor_stack;
5383 p->range_stack = 0;
5384 constructor_stack = p;
5385
5386 constructor_constant = 1;
5387 constructor_simple = 1;
5388 constructor_depth = SPELLING_DEPTH ();
5389 constructor_elements = 0;
5390 constructor_incremental = 1;
5391 constructor_designated = 0;
5392 constructor_pending_elts = 0;
5393 if (!implicit)
5394 {
5395 p->range_stack = constructor_range_stack;
5396 constructor_range_stack = 0;
5397 designator_depth = 0;
5398 designator_erroneous = 0;
5399 }
5400
5401 /* Don't die if an entire brace-pair level is superfluous
5402 in the containing level. */
5403 if (constructor_type == 0)
5404 ;
5405 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5406 || TREE_CODE (constructor_type) == UNION_TYPE)
5407 {
5408 /* Don't die if there are extra init elts at the end. */
5409 if (constructor_fields == 0)
5410 constructor_type = 0;
5411 else
5412 {
5413 constructor_type = TREE_TYPE (constructor_fields);
5414 push_member_name (constructor_fields);
5415 constructor_depth++;
5416 }
5417 }
5418 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5419 {
5420 constructor_type = TREE_TYPE (constructor_type);
5421 push_array_bounds (tree_low_cst (constructor_index, 1));
5422 constructor_depth++;
5423 }
5424
5425 if (constructor_type == 0)
5426 {
5427 error_init ("extra brace group at end of initializer");
5428 constructor_fields = 0;
5429 constructor_unfilled_fields = 0;
5430 return;
5431 }
5432
5433 if (value && TREE_CODE (value) == CONSTRUCTOR)
5434 {
5435 constructor_constant = TREE_CONSTANT (value);
5436 constructor_simple = TREE_STATIC (value);
5437 constructor_elements = CONSTRUCTOR_ELTS (value);
5438 if (!VEC_empty (constructor_elt, constructor_elements)
5439 && (TREE_CODE (constructor_type) == RECORD_TYPE
5440 || TREE_CODE (constructor_type) == ARRAY_TYPE))
5441 set_nonincremental_init ();
5442 }
5443
5444 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5445 {
5446 missing_braces_mentioned = 1;
5447 warning_init (OPT_Wmissing_braces, "missing braces around initializer");
5448 }
5449
5450 if (TREE_CODE (constructor_type) == RECORD_TYPE
5451 || TREE_CODE (constructor_type) == UNION_TYPE)
5452 {
5453 constructor_fields = TYPE_FIELDS (constructor_type);
5454 /* Skip any nameless bit fields at the beginning. */
5455 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5456 && DECL_NAME (constructor_fields) == 0)
5457 constructor_fields = TREE_CHAIN (constructor_fields);
5458
5459 constructor_unfilled_fields = constructor_fields;
5460 constructor_bit_index = bitsize_zero_node;
5461 }
5462 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5463 {
5464 /* Vectors are like simple fixed-size arrays. */
5465 constructor_max_index =
5466 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5467 constructor_index = convert (bitsizetype, integer_zero_node);
5468 constructor_unfilled_index = constructor_index;
5469 }
5470 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5471 {
5472 if (TYPE_DOMAIN (constructor_type))
5473 {
5474 constructor_max_index
5475 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5476
5477 /* Detect non-empty initializations of zero-length arrays. */
5478 if (constructor_max_index == NULL_TREE
5479 && TYPE_SIZE (constructor_type))
5480 constructor_max_index = build_int_cst (NULL_TREE, -1);
5481
5482 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5483 to initialize VLAs will cause a proper error; avoid tree
5484 checking errors as well by setting a safe value. */
5485 if (constructor_max_index
5486 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5487 constructor_max_index = build_int_cst (NULL_TREE, -1);
5488
5489 constructor_index
5490 = convert (bitsizetype,
5491 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5492 }
5493 else
5494 constructor_index = bitsize_zero_node;
5495
5496 constructor_unfilled_index = constructor_index;
5497 if (value && TREE_CODE (value) == STRING_CST)
5498 {
5499 /* We need to split the char/wchar array into individual
5500 characters, so that we don't have to special case it
5501 everywhere. */
5502 set_nonincremental_init_from_string (value);
5503 }
5504 }
5505 else
5506 {
5507 if (constructor_type != error_mark_node)
5508 warning_init (0, "braces around scalar initializer");
5509 constructor_fields = constructor_type;
5510 constructor_unfilled_fields = constructor_type;
5511 }
5512 }
5513
5514 /* At the end of an implicit or explicit brace level,
5515 finish up that level of constructor. If a single expression
5516 with redundant braces initialized that level, return the
5517 c_expr structure for that expression. Otherwise, the original_code
5518 element is set to ERROR_MARK.
5519 If we were outputting the elements as they are read, return 0 as the value
5520 from inner levels (process_init_element ignores that),
5521 but return error_mark_node as the value from the outermost level
5522 (that's what we want to put in DECL_INITIAL).
5523 Otherwise, return a CONSTRUCTOR expression as the value. */
5524
5525 struct c_expr
5526 pop_init_level (int implicit)
5527 {
5528 struct constructor_stack *p;
5529 struct c_expr ret;
5530 ret.value = 0;
5531 ret.original_code = ERROR_MARK;
5532
5533 if (implicit == 0)
5534 {
5535 /* When we come to an explicit close brace,
5536 pop any inner levels that didn't have explicit braces. */
5537 while (constructor_stack->implicit)
5538 process_init_element (pop_init_level (1));
5539
5540 gcc_assert (!constructor_range_stack);
5541 }
5542
5543 /* Now output all pending elements. */
5544 constructor_incremental = 1;
5545 output_pending_init_elements (1);
5546
5547 p = constructor_stack;
5548
5549 /* Error for initializing a flexible array member, or a zero-length
5550 array member in an inappropriate context. */
5551 if (constructor_type && constructor_fields
5552 && TREE_CODE (constructor_type) == ARRAY_TYPE
5553 && TYPE_DOMAIN (constructor_type)
5554 && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5555 {
5556 /* Silently discard empty initializations. The parser will
5557 already have pedwarned for empty brackets. */
5558 if (integer_zerop (constructor_unfilled_index))
5559 constructor_type = NULL_TREE;
5560 else
5561 {
5562 gcc_assert (!TYPE_SIZE (constructor_type));
5563
5564 if (constructor_depth > 2)
5565 error_init ("initialization of flexible array member in a nested context");
5566 else
5567 pedwarn_init (input_location, OPT_pedantic,
5568 "initialization of a flexible array member");
5569
5570 /* We have already issued an error message for the existence
5571 of a flexible array member not at the end of the structure.
5572 Discard the initializer so that we do not die later. */
5573 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5574 constructor_type = NULL_TREE;
5575 }
5576 }
5577
5578 /* Warn when some struct elements are implicitly initialized to zero. */
5579 if (warn_missing_field_initializers
5580 && constructor_type
5581 && TREE_CODE (constructor_type) == RECORD_TYPE
5582 && constructor_unfilled_fields)
5583 {
5584 /* Do not warn for flexible array members or zero-length arrays. */
5585 while (constructor_unfilled_fields
5586 && (!DECL_SIZE (constructor_unfilled_fields)
5587 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5588 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5589
5590 /* Do not warn if this level of the initializer uses member
5591 designators; it is likely to be deliberate. */
5592 if (constructor_unfilled_fields && !constructor_designated)
5593 {
5594 push_member_name (constructor_unfilled_fields);
5595 warning_init (OPT_Wmissing_field_initializers,
5596 "missing initializer");
5597 RESTORE_SPELLING_DEPTH (constructor_depth);
5598 }
5599 }
5600
5601 /* Pad out the end of the structure. */
5602 if (p->replacement_value.value)
5603 /* If this closes a superfluous brace pair,
5604 just pass out the element between them. */
5605 ret = p->replacement_value;
5606 else if (constructor_type == 0)
5607 ;
5608 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5609 && TREE_CODE (constructor_type) != UNION_TYPE
5610 && TREE_CODE (constructor_type) != ARRAY_TYPE
5611 && TREE_CODE (constructor_type) != VECTOR_TYPE)
5612 {
5613 /* A nonincremental scalar initializer--just return
5614 the element, after verifying there is just one. */
5615 if (VEC_empty (constructor_elt,constructor_elements))
5616 {
5617 if (!constructor_erroneous)
5618 error_init ("empty scalar initializer");
5619 ret.value = error_mark_node;
5620 }
5621 else if (VEC_length (constructor_elt,constructor_elements) != 1)
5622 {
5623 error_init ("extra elements in scalar initializer");
5624 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5625 }
5626 else
5627 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5628 }
5629 else
5630 {
5631 if (constructor_erroneous)
5632 ret.value = error_mark_node;
5633 else
5634 {
5635 ret.value = build_constructor (constructor_type,
5636 constructor_elements);
5637 if (constructor_constant)
5638 TREE_CONSTANT (ret.value) = 1;
5639 if (constructor_constant && constructor_simple)
5640 TREE_STATIC (ret.value) = 1;
5641 }
5642 }
5643
5644 constructor_type = p->type;
5645 constructor_fields = p->fields;
5646 constructor_index = p->index;
5647 constructor_max_index = p->max_index;
5648 constructor_unfilled_index = p->unfilled_index;
5649 constructor_unfilled_fields = p->unfilled_fields;
5650 constructor_bit_index = p->bit_index;
5651 constructor_elements = p->elements;
5652 constructor_constant = p->constant;
5653 constructor_simple = p->simple;
5654 constructor_erroneous = p->erroneous;
5655 constructor_incremental = p->incremental;
5656 constructor_designated = p->designated;
5657 constructor_pending_elts = p->pending_elts;
5658 constructor_depth = p->depth;
5659 if (!p->implicit)
5660 constructor_range_stack = p->range_stack;
5661 RESTORE_SPELLING_DEPTH (constructor_depth);
5662
5663 constructor_stack = p->next;
5664 free (p);
5665
5666 if (ret.value == 0 && constructor_stack == 0)
5667 ret.value = error_mark_node;
5668 return ret;
5669 }
5670
5671 /* Common handling for both array range and field name designators.
5672 ARRAY argument is nonzero for array ranges. Returns zero for success. */
5673
5674 static int
5675 set_designator (int array)
5676 {
5677 tree subtype;
5678 enum tree_code subcode;
5679
5680 /* Don't die if an entire brace-pair level is superfluous
5681 in the containing level. */
5682 if (constructor_type == 0)
5683 return 1;
5684
5685 /* If there were errors in this designator list already, bail out
5686 silently. */
5687 if (designator_erroneous)
5688 return 1;
5689
5690 if (!designator_depth)
5691 {
5692 gcc_assert (!constructor_range_stack);
5693
5694 /* Designator list starts at the level of closest explicit
5695 braces. */
5696 while (constructor_stack->implicit)
5697 process_init_element (pop_init_level (1));
5698 constructor_designated = 1;
5699 return 0;
5700 }
5701
5702 switch (TREE_CODE (constructor_type))
5703 {
5704 case RECORD_TYPE:
5705 case UNION_TYPE:
5706 subtype = TREE_TYPE (constructor_fields);
5707 if (subtype != error_mark_node)
5708 subtype = TYPE_MAIN_VARIANT (subtype);
5709 break;
5710 case ARRAY_TYPE:
5711 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5712 break;
5713 default:
5714 gcc_unreachable ();
5715 }
5716
5717 subcode = TREE_CODE (subtype);
5718 if (array && subcode != ARRAY_TYPE)
5719 {
5720 error_init ("array index in non-array initializer");
5721 return 1;
5722 }
5723 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5724 {
5725 error_init ("field name not in record or union initializer");
5726 return 1;
5727 }
5728
5729 constructor_designated = 1;
5730 push_init_level (2);
5731 return 0;
5732 }
5733
5734 /* If there are range designators in designator list, push a new designator
5735 to constructor_range_stack. RANGE_END is end of such stack range or
5736 NULL_TREE if there is no range designator at this level. */
5737
5738 static void
5739 push_range_stack (tree range_end)
5740 {
5741 struct constructor_range_stack *p;
5742
5743 p = GGC_NEW (struct constructor_range_stack);
5744 p->prev = constructor_range_stack;
5745 p->next = 0;
5746 p->fields = constructor_fields;
5747 p->range_start = constructor_index;
5748 p->index = constructor_index;
5749 p->stack = constructor_stack;
5750 p->range_end = range_end;
5751 if (constructor_range_stack)
5752 constructor_range_stack->next = p;
5753 constructor_range_stack = p;
5754 }
5755
5756 /* Within an array initializer, specify the next index to be initialized.
5757 FIRST is that index. If LAST is nonzero, then initialize a range
5758 of indices, running from FIRST through LAST. */
5759
5760 void
5761 set_init_index (tree first, tree last)
5762 {
5763 if (set_designator (1))
5764 return;
5765
5766 designator_erroneous = 1;
5767
5768 if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5769 || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5770 {
5771 error_init ("array index in initializer not of integer type");
5772 return;
5773 }
5774
5775 if (TREE_CODE (first) != INTEGER_CST)
5776 error_init ("nonconstant array index in initializer");
5777 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5778 error_init ("nonconstant array index in initializer");
5779 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5780 error_init ("array index in non-array initializer");
5781 else if (tree_int_cst_sgn (first) == -1)
5782 error_init ("array index in initializer exceeds array bounds");
5783 else if (constructor_max_index
5784 && tree_int_cst_lt (constructor_max_index, first))
5785 error_init ("array index in initializer exceeds array bounds");
5786 else
5787 {
5788 constructor_index = convert (bitsizetype, first);
5789
5790 if (last)
5791 {
5792 if (tree_int_cst_equal (first, last))
5793 last = 0;
5794 else if (tree_int_cst_lt (last, first))
5795 {
5796 error_init ("empty index range in initializer");
5797 last = 0;
5798 }
5799 else
5800 {
5801 last = convert (bitsizetype, last);
5802 if (constructor_max_index != 0
5803 && tree_int_cst_lt (constructor_max_index, last))
5804 {
5805 error_init ("array index range in initializer exceeds array bounds");
5806 last = 0;
5807 }
5808 }
5809 }
5810
5811 designator_depth++;
5812 designator_erroneous = 0;
5813 if (constructor_range_stack || last)
5814 push_range_stack (last);
5815 }
5816 }
5817
5818 /* Within a struct initializer, specify the next field to be initialized. */
5819
5820 void
5821 set_init_label (tree fieldname)
5822 {
5823 tree tail;
5824
5825 if (set_designator (0))
5826 return;
5827
5828 designator_erroneous = 1;
5829
5830 if (TREE_CODE (constructor_type) != RECORD_TYPE
5831 && TREE_CODE (constructor_type) != UNION_TYPE)
5832 {
5833 error_init ("field name not in record or union initializer");
5834 return;
5835 }
5836
5837 for (tail = TYPE_FIELDS (constructor_type); tail;
5838 tail = TREE_CHAIN (tail))
5839 {
5840 if (DECL_NAME (tail) == fieldname)
5841 break;
5842 }
5843
5844 if (tail == 0)
5845 error ("unknown field %qE specified in initializer", fieldname);
5846 else
5847 {
5848 constructor_fields = tail;
5849 designator_depth++;
5850 designator_erroneous = 0;
5851 if (constructor_range_stack)
5852 push_range_stack (NULL_TREE);
5853 }
5854 }
5855 \f
5856 /* Add a new initializer to the tree of pending initializers. PURPOSE
5857 identifies the initializer, either array index or field in a structure.
5858 VALUE is the value of that index or field. */
5859
5860 static void
5861 add_pending_init (tree purpose, tree value)
5862 {
5863 struct init_node *p, **q, *r;
5864
5865 q = &constructor_pending_elts;
5866 p = 0;
5867
5868 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5869 {
5870 while (*q != 0)
5871 {
5872 p = *q;
5873 if (tree_int_cst_lt (purpose, p->purpose))
5874 q = &p->left;
5875 else if (tree_int_cst_lt (p->purpose, purpose))
5876 q = &p->right;
5877 else
5878 {
5879 if (TREE_SIDE_EFFECTS (p->value))
5880 warning_init (0, "initialized field with side-effects overwritten");
5881 else if (warn_override_init)
5882 warning_init (OPT_Woverride_init, "initialized field overwritten");
5883 p->value = value;
5884 return;
5885 }
5886 }
5887 }
5888 else
5889 {
5890 tree bitpos;
5891
5892 bitpos = bit_position (purpose);
5893 while (*q != NULL)
5894 {
5895 p = *q;
5896 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5897 q = &p->left;
5898 else if (p->purpose != purpose)
5899 q = &p->right;
5900 else
5901 {
5902 if (TREE_SIDE_EFFECTS (p->value))
5903 warning_init (0, "initialized field with side-effects overwritten");
5904 else if (warn_override_init)
5905 warning_init (OPT_Woverride_init, "initialized field overwritten");
5906 p->value = value;
5907 return;
5908 }
5909 }
5910 }
5911
5912 r = GGC_NEW (struct init_node);
5913 r->purpose = purpose;
5914 r->value = value;
5915
5916 *q = r;
5917 r->parent = p;
5918 r->left = 0;
5919 r->right = 0;
5920 r->balance = 0;
5921
5922 while (p)
5923 {
5924 struct init_node *s;
5925
5926 if (r == p->left)
5927 {
5928 if (p->balance == 0)
5929 p->balance = -1;
5930 else if (p->balance < 0)
5931 {
5932 if (r->balance < 0)
5933 {
5934 /* L rotation. */
5935 p->left = r->right;
5936 if (p->left)
5937 p->left->parent = p;
5938 r->right = p;
5939
5940 p->balance = 0;
5941 r->balance = 0;
5942
5943 s = p->parent;
5944 p->parent = r;
5945 r->parent = s;
5946 if (s)
5947 {
5948 if (s->left == p)
5949 s->left = r;
5950 else
5951 s->right = r;
5952 }
5953 else
5954 constructor_pending_elts = r;
5955 }
5956 else
5957 {
5958 /* LR rotation. */
5959 struct init_node *t = r->right;
5960
5961 r->right = t->left;
5962 if (r->right)
5963 r->right->parent = r;
5964 t->left = r;
5965
5966 p->left = t->right;
5967 if (p->left)
5968 p->left->parent = p;
5969 t->right = p;
5970
5971 p->balance = t->balance < 0;
5972 r->balance = -(t->balance > 0);
5973 t->balance = 0;
5974
5975 s = p->parent;
5976 p->parent = t;
5977 r->parent = t;
5978 t->parent = s;
5979 if (s)
5980 {
5981 if (s->left == p)
5982 s->left = t;
5983 else
5984 s->right = t;
5985 }
5986 else
5987 constructor_pending_elts = t;
5988 }
5989 break;
5990 }
5991 else
5992 {
5993 /* p->balance == +1; growth of left side balances the node. */
5994 p->balance = 0;
5995 break;
5996 }
5997 }
5998 else /* r == p->right */
5999 {
6000 if (p->balance == 0)
6001 /* Growth propagation from right side. */
6002 p->balance++;
6003 else if (p->balance > 0)
6004 {
6005 if (r->balance > 0)
6006 {
6007 /* R rotation. */
6008 p->right = r->left;
6009 if (p->right)
6010 p->right->parent = p;
6011 r->left = p;
6012
6013 p->balance = 0;
6014 r->balance = 0;
6015
6016 s = p->parent;
6017 p->parent = r;
6018 r->parent = s;
6019 if (s)
6020 {
6021 if (s->left == p)
6022 s->left = r;
6023 else
6024 s->right = r;
6025 }
6026 else
6027 constructor_pending_elts = r;
6028 }
6029 else /* r->balance == -1 */
6030 {
6031 /* RL rotation */
6032 struct init_node *t = r->left;
6033
6034 r->left = t->right;
6035 if (r->left)
6036 r->left->parent = r;
6037 t->right = r;
6038
6039 p->right = t->left;
6040 if (p->right)
6041 p->right->parent = p;
6042 t->left = p;
6043
6044 r->balance = (t->balance < 0);
6045 p->balance = -(t->balance > 0);
6046 t->balance = 0;
6047
6048 s = p->parent;
6049 p->parent = t;
6050 r->parent = t;
6051 t->parent = s;
6052 if (s)
6053 {
6054 if (s->left == p)
6055 s->left = t;
6056 else
6057 s->right = t;
6058 }
6059 else
6060 constructor_pending_elts = t;
6061 }
6062 break;
6063 }
6064 else
6065 {
6066 /* p->balance == -1; growth of right side balances the node. */
6067 p->balance = 0;
6068 break;
6069 }
6070 }
6071
6072 r = p;
6073 p = p->parent;
6074 }
6075 }
6076
6077 /* Build AVL tree from a sorted chain. */
6078
6079 static void
6080 set_nonincremental_init (void)
6081 {
6082 unsigned HOST_WIDE_INT ix;
6083 tree index, value;
6084
6085 if (TREE_CODE (constructor_type) != RECORD_TYPE
6086 && TREE_CODE (constructor_type) != ARRAY_TYPE)
6087 return;
6088
6089 FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
6090 add_pending_init (index, value);
6091 constructor_elements = 0;
6092 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6093 {
6094 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
6095 /* Skip any nameless bit fields at the beginning. */
6096 while (constructor_unfilled_fields != 0
6097 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6098 && DECL_NAME (constructor_unfilled_fields) == 0)
6099 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
6100
6101 }
6102 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6103 {
6104 if (TYPE_DOMAIN (constructor_type))
6105 constructor_unfilled_index
6106 = convert (bitsizetype,
6107 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6108 else
6109 constructor_unfilled_index = bitsize_zero_node;
6110 }
6111 constructor_incremental = 0;
6112 }
6113
6114 /* Build AVL tree from a string constant. */
6115
6116 static void
6117 set_nonincremental_init_from_string (tree str)
6118 {
6119 tree value, purpose, type;
6120 HOST_WIDE_INT val[2];
6121 const char *p, *end;
6122 int byte, wchar_bytes, charwidth, bitpos;
6123
6124 gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
6125
6126 wchar_bytes = TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str))) / BITS_PER_UNIT;
6127 charwidth = TYPE_PRECISION (char_type_node);
6128 type = TREE_TYPE (constructor_type);
6129 p = TREE_STRING_POINTER (str);
6130 end = p + TREE_STRING_LENGTH (str);
6131
6132 for (purpose = bitsize_zero_node;
6133 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
6134 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
6135 {
6136 if (wchar_bytes == 1)
6137 {
6138 val[1] = (unsigned char) *p++;
6139 val[0] = 0;
6140 }
6141 else
6142 {
6143 val[0] = 0;
6144 val[1] = 0;
6145 for (byte = 0; byte < wchar_bytes; byte++)
6146 {
6147 if (BYTES_BIG_ENDIAN)
6148 bitpos = (wchar_bytes - byte - 1) * charwidth;
6149 else
6150 bitpos = byte * charwidth;
6151 val[bitpos < HOST_BITS_PER_WIDE_INT]
6152 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
6153 << (bitpos % HOST_BITS_PER_WIDE_INT);
6154 }
6155 }
6156
6157 if (!TYPE_UNSIGNED (type))
6158 {
6159 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
6160 if (bitpos < HOST_BITS_PER_WIDE_INT)
6161 {
6162 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
6163 {
6164 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6165 val[0] = -1;
6166 }
6167 }
6168 else if (bitpos == HOST_BITS_PER_WIDE_INT)
6169 {
6170 if (val[1] < 0)
6171 val[0] = -1;
6172 }
6173 else if (val[0] & (((HOST_WIDE_INT) 1)
6174 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6175 val[0] |= ((HOST_WIDE_INT) -1)
6176 << (bitpos - HOST_BITS_PER_WIDE_INT);
6177 }
6178
6179 value = build_int_cst_wide (type, val[1], val[0]);
6180 add_pending_init (purpose, value);
6181 }
6182
6183 constructor_incremental = 0;
6184 }
6185
6186 /* Return value of FIELD in pending initializer or zero if the field was
6187 not initialized yet. */
6188
6189 static tree
6190 find_init_member (tree field)
6191 {
6192 struct init_node *p;
6193
6194 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6195 {
6196 if (constructor_incremental
6197 && tree_int_cst_lt (field, constructor_unfilled_index))
6198 set_nonincremental_init ();
6199
6200 p = constructor_pending_elts;
6201 while (p)
6202 {
6203 if (tree_int_cst_lt (field, p->purpose))
6204 p = p->left;
6205 else if (tree_int_cst_lt (p->purpose, field))
6206 p = p->right;
6207 else
6208 return p->value;
6209 }
6210 }
6211 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6212 {
6213 tree bitpos = bit_position (field);
6214
6215 if (constructor_incremental
6216 && (!constructor_unfilled_fields
6217 || tree_int_cst_lt (bitpos,
6218 bit_position (constructor_unfilled_fields))))
6219 set_nonincremental_init ();
6220
6221 p = constructor_pending_elts;
6222 while (p)
6223 {
6224 if (field == p->purpose)
6225 return p->value;
6226 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6227 p = p->left;
6228 else
6229 p = p->right;
6230 }
6231 }
6232 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6233 {
6234 if (!VEC_empty (constructor_elt, constructor_elements)
6235 && (VEC_last (constructor_elt, constructor_elements)->index
6236 == field))
6237 return VEC_last (constructor_elt, constructor_elements)->value;
6238 }
6239 return 0;
6240 }
6241
6242 /* "Output" the next constructor element.
6243 At top level, really output it to assembler code now.
6244 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6245 TYPE is the data type that the containing data type wants here.
6246 FIELD is the field (a FIELD_DECL) or the index that this element fills.
6247 If VALUE is a string constant, STRICT_STRING is true if it is
6248 unparenthesized or we should not warn here for it being parenthesized.
6249 For other types of VALUE, STRICT_STRING is not used.
6250
6251 PENDING if non-nil means output pending elements that belong
6252 right after this element. (PENDING is normally 1;
6253 it is 0 while outputting pending elements, to avoid recursion.) */
6254
6255 static void
6256 output_init_element (tree value, bool strict_string, tree type, tree field,
6257 int pending)
6258 {
6259 constructor_elt *celt;
6260
6261 if (type == error_mark_node || value == error_mark_node)
6262 {
6263 constructor_erroneous = 1;
6264 return;
6265 }
6266 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6267 && (TREE_CODE (value) == STRING_CST
6268 || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6269 && !(TREE_CODE (value) == STRING_CST
6270 && TREE_CODE (type) == ARRAY_TYPE
6271 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6272 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6273 TYPE_MAIN_VARIANT (type)))
6274 value = array_to_pointer_conversion (value);
6275
6276 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6277 && require_constant_value && !flag_isoc99 && pending)
6278 {
6279 /* As an extension, allow initializing objects with static storage
6280 duration with compound literals (which are then treated just as
6281 the brace enclosed list they contain). */
6282 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6283 value = DECL_INITIAL (decl);
6284 }
6285
6286 if (value == error_mark_node)
6287 constructor_erroneous = 1;
6288 else if (!TREE_CONSTANT (value))
6289 constructor_constant = 0;
6290 else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6291 || ((TREE_CODE (constructor_type) == RECORD_TYPE
6292 || TREE_CODE (constructor_type) == UNION_TYPE)
6293 && DECL_C_BIT_FIELD (field)
6294 && TREE_CODE (value) != INTEGER_CST))
6295 constructor_simple = 0;
6296
6297 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6298 {
6299 if (require_constant_value)
6300 {
6301 error_init ("initializer element is not constant");
6302 value = error_mark_node;
6303 }
6304 else if (require_constant_elements)
6305 pedwarn (input_location, 0,
6306 "initializer element is not computable at load time");
6307 }
6308
6309 /* If this field is empty (and not at the end of structure),
6310 don't do anything other than checking the initializer. */
6311 if (field
6312 && (TREE_TYPE (field) == error_mark_node
6313 || (COMPLETE_TYPE_P (TREE_TYPE (field))
6314 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6315 && (TREE_CODE (constructor_type) == ARRAY_TYPE
6316 || TREE_CHAIN (field)))))
6317 return;
6318
6319 value = digest_init (type, value, strict_string, require_constant_value);
6320 if (value == error_mark_node)
6321 {
6322 constructor_erroneous = 1;
6323 return;
6324 }
6325
6326 /* If this element doesn't come next in sequence,
6327 put it on constructor_pending_elts. */
6328 if (TREE_CODE (constructor_type) == ARRAY_TYPE
6329 && (!constructor_incremental
6330 || !tree_int_cst_equal (field, constructor_unfilled_index)))
6331 {
6332 if (constructor_incremental
6333 && tree_int_cst_lt (field, constructor_unfilled_index))
6334 set_nonincremental_init ();
6335
6336 add_pending_init (field, value);
6337 return;
6338 }
6339 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6340 && (!constructor_incremental
6341 || field != constructor_unfilled_fields))
6342 {
6343 /* We do this for records but not for unions. In a union,
6344 no matter which field is specified, it can be initialized
6345 right away since it starts at the beginning of the union. */
6346 if (constructor_incremental)
6347 {
6348 if (!constructor_unfilled_fields)
6349 set_nonincremental_init ();
6350 else
6351 {
6352 tree bitpos, unfillpos;
6353
6354 bitpos = bit_position (field);
6355 unfillpos = bit_position (constructor_unfilled_fields);
6356
6357 if (tree_int_cst_lt (bitpos, unfillpos))
6358 set_nonincremental_init ();
6359 }
6360 }
6361
6362 add_pending_init (field, value);
6363 return;
6364 }
6365 else if (TREE_CODE (constructor_type) == UNION_TYPE
6366 && !VEC_empty (constructor_elt, constructor_elements))
6367 {
6368 if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6369 constructor_elements)->value))
6370 warning_init (0, "initialized field with side-effects overwritten");
6371 else if (warn_override_init)
6372 warning_init (OPT_Woverride_init, "initialized field overwritten");
6373
6374 /* We can have just one union field set. */
6375 constructor_elements = 0;
6376 }
6377
6378 /* Otherwise, output this element either to
6379 constructor_elements or to the assembler file. */
6380
6381 celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6382 celt->index = field;
6383 celt->value = value;
6384
6385 /* Advance the variable that indicates sequential elements output. */
6386 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6387 constructor_unfilled_index
6388 = size_binop (PLUS_EXPR, constructor_unfilled_index,
6389 bitsize_one_node);
6390 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6391 {
6392 constructor_unfilled_fields
6393 = TREE_CHAIN (constructor_unfilled_fields);
6394
6395 /* Skip any nameless bit fields. */
6396 while (constructor_unfilled_fields != 0
6397 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6398 && DECL_NAME (constructor_unfilled_fields) == 0)
6399 constructor_unfilled_fields =
6400 TREE_CHAIN (constructor_unfilled_fields);
6401 }
6402 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6403 constructor_unfilled_fields = 0;
6404
6405 /* Now output any pending elements which have become next. */
6406 if (pending)
6407 output_pending_init_elements (0);
6408 }
6409
6410 /* Output any pending elements which have become next.
6411 As we output elements, constructor_unfilled_{fields,index}
6412 advances, which may cause other elements to become next;
6413 if so, they too are output.
6414
6415 If ALL is 0, we return when there are
6416 no more pending elements to output now.
6417
6418 If ALL is 1, we output space as necessary so that
6419 we can output all the pending elements. */
6420
6421 static void
6422 output_pending_init_elements (int all)
6423 {
6424 struct init_node *elt = constructor_pending_elts;
6425 tree next;
6426
6427 retry:
6428
6429 /* Look through the whole pending tree.
6430 If we find an element that should be output now,
6431 output it. Otherwise, set NEXT to the element
6432 that comes first among those still pending. */
6433
6434 next = 0;
6435 while (elt)
6436 {
6437 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6438 {
6439 if (tree_int_cst_equal (elt->purpose,
6440 constructor_unfilled_index))
6441 output_init_element (elt->value, true,
6442 TREE_TYPE (constructor_type),
6443 constructor_unfilled_index, 0);
6444 else if (tree_int_cst_lt (constructor_unfilled_index,
6445 elt->purpose))
6446 {
6447 /* Advance to the next smaller node. */
6448 if (elt->left)
6449 elt = elt->left;
6450 else
6451 {
6452 /* We have reached the smallest node bigger than the
6453 current unfilled index. Fill the space first. */
6454 next = elt->purpose;
6455 break;
6456 }
6457 }
6458 else
6459 {
6460 /* Advance to the next bigger node. */
6461 if (elt->right)
6462 elt = elt->right;
6463 else
6464 {
6465 /* We have reached the biggest node in a subtree. Find
6466 the parent of it, which is the next bigger node. */
6467 while (elt->parent && elt->parent->right == elt)
6468 elt = elt->parent;
6469 elt = elt->parent;
6470 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6471 elt->purpose))
6472 {
6473 next = elt->purpose;
6474 break;
6475 }
6476 }
6477 }
6478 }
6479 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6480 || TREE_CODE (constructor_type) == UNION_TYPE)
6481 {
6482 tree ctor_unfilled_bitpos, elt_bitpos;
6483
6484 /* If the current record is complete we are done. */
6485 if (constructor_unfilled_fields == 0)
6486 break;
6487
6488 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6489 elt_bitpos = bit_position (elt->purpose);
6490 /* We can't compare fields here because there might be empty
6491 fields in between. */
6492 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6493 {
6494 constructor_unfilled_fields = elt->purpose;
6495 output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6496 elt->purpose, 0);
6497 }
6498 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6499 {
6500 /* Advance to the next smaller node. */
6501 if (elt->left)
6502 elt = elt->left;
6503 else
6504 {
6505 /* We have reached the smallest node bigger than the
6506 current unfilled field. Fill the space first. */
6507 next = elt->purpose;
6508 break;
6509 }
6510 }
6511 else
6512 {
6513 /* Advance to the next bigger node. */
6514 if (elt->right)
6515 elt = elt->right;
6516 else
6517 {
6518 /* We have reached the biggest node in a subtree. Find
6519 the parent of it, which is the next bigger node. */
6520 while (elt->parent && elt->parent->right == elt)
6521 elt = elt->parent;
6522 elt = elt->parent;
6523 if (elt
6524 && (tree_int_cst_lt (ctor_unfilled_bitpos,
6525 bit_position (elt->purpose))))
6526 {
6527 next = elt->purpose;
6528 break;
6529 }
6530 }
6531 }
6532 }
6533 }
6534
6535 /* Ordinarily return, but not if we want to output all
6536 and there are elements left. */
6537 if (!(all && next != 0))
6538 return;
6539
6540 /* If it's not incremental, just skip over the gap, so that after
6541 jumping to retry we will output the next successive element. */
6542 if (TREE_CODE (constructor_type) == RECORD_TYPE
6543 || TREE_CODE (constructor_type) == UNION_TYPE)
6544 constructor_unfilled_fields = next;
6545 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6546 constructor_unfilled_index = next;
6547
6548 /* ELT now points to the node in the pending tree with the next
6549 initializer to output. */
6550 goto retry;
6551 }
6552 \f
6553 /* Add one non-braced element to the current constructor level.
6554 This adjusts the current position within the constructor's type.
6555 This may also start or terminate implicit levels
6556 to handle a partly-braced initializer.
6557
6558 Once this has found the correct level for the new element,
6559 it calls output_init_element. */
6560
6561 void
6562 process_init_element (struct c_expr value)
6563 {
6564 tree orig_value = value.value;
6565 int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6566 bool strict_string = value.original_code == STRING_CST;
6567
6568 designator_depth = 0;
6569 designator_erroneous = 0;
6570
6571 /* Handle superfluous braces around string cst as in
6572 char x[] = {"foo"}; */
6573 if (string_flag
6574 && constructor_type
6575 && TREE_CODE (constructor_type) == ARRAY_TYPE
6576 && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6577 && integer_zerop (constructor_unfilled_index))
6578 {
6579 if (constructor_stack->replacement_value.value)
6580 error_init ("excess elements in char array initializer");
6581 constructor_stack->replacement_value = value;
6582 return;
6583 }
6584
6585 if (constructor_stack->replacement_value.value != 0)
6586 {
6587 error_init ("excess elements in struct initializer");
6588 return;
6589 }
6590
6591 /* Ignore elements of a brace group if it is entirely superfluous
6592 and has already been diagnosed. */
6593 if (constructor_type == 0)
6594 return;
6595
6596 /* If we've exhausted any levels that didn't have braces,
6597 pop them now. */
6598 while (constructor_stack->implicit)
6599 {
6600 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6601 || TREE_CODE (constructor_type) == UNION_TYPE)
6602 && constructor_fields == 0)
6603 process_init_element (pop_init_level (1));
6604 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6605 && (constructor_max_index == 0
6606 || tree_int_cst_lt (constructor_max_index,
6607 constructor_index)))
6608 process_init_element (pop_init_level (1));
6609 else
6610 break;
6611 }
6612
6613 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
6614 if (constructor_range_stack)
6615 {
6616 /* If value is a compound literal and we'll be just using its
6617 content, don't put it into a SAVE_EXPR. */
6618 if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6619 || !require_constant_value
6620 || flag_isoc99)
6621 value.value = save_expr (value.value);
6622 }
6623
6624 while (1)
6625 {
6626 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6627 {
6628 tree fieldtype;
6629 enum tree_code fieldcode;
6630
6631 if (constructor_fields == 0)
6632 {
6633 pedwarn_init (input_location, 0,
6634 "excess elements in struct initializer");
6635 break;
6636 }
6637
6638 fieldtype = TREE_TYPE (constructor_fields);
6639 if (fieldtype != error_mark_node)
6640 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6641 fieldcode = TREE_CODE (fieldtype);
6642
6643 /* Error for non-static initialization of a flexible array member. */
6644 if (fieldcode == ARRAY_TYPE
6645 && !require_constant_value
6646 && TYPE_SIZE (fieldtype) == NULL_TREE
6647 && TREE_CHAIN (constructor_fields) == NULL_TREE)
6648 {
6649 error_init ("non-static initialization of a flexible array member");
6650 break;
6651 }
6652
6653 /* Accept a string constant to initialize a subarray. */
6654 if (value.value != 0
6655 && fieldcode == ARRAY_TYPE
6656 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6657 && string_flag)
6658 value.value = orig_value;
6659 /* Otherwise, if we have come to a subaggregate,
6660 and we don't have an element of its type, push into it. */
6661 else if (value.value != 0
6662 && value.value != error_mark_node
6663 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6664 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6665 || fieldcode == UNION_TYPE))
6666 {
6667 push_init_level (1);
6668 continue;
6669 }
6670
6671 if (value.value)
6672 {
6673 push_member_name (constructor_fields);
6674 output_init_element (value.value, strict_string,
6675 fieldtype, constructor_fields, 1);
6676 RESTORE_SPELLING_DEPTH (constructor_depth);
6677 }
6678 else
6679 /* Do the bookkeeping for an element that was
6680 directly output as a constructor. */
6681 {
6682 /* For a record, keep track of end position of last field. */
6683 if (DECL_SIZE (constructor_fields))
6684 constructor_bit_index
6685 = size_binop (PLUS_EXPR,
6686 bit_position (constructor_fields),
6687 DECL_SIZE (constructor_fields));
6688
6689 /* If the current field was the first one not yet written out,
6690 it isn't now, so update. */
6691 if (constructor_unfilled_fields == constructor_fields)
6692 {
6693 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6694 /* Skip any nameless bit fields. */
6695 while (constructor_unfilled_fields != 0
6696 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6697 && DECL_NAME (constructor_unfilled_fields) == 0)
6698 constructor_unfilled_fields =
6699 TREE_CHAIN (constructor_unfilled_fields);
6700 }
6701 }
6702
6703 constructor_fields = TREE_CHAIN (constructor_fields);
6704 /* Skip any nameless bit fields at the beginning. */
6705 while (constructor_fields != 0
6706 && DECL_C_BIT_FIELD (constructor_fields)
6707 && DECL_NAME (constructor_fields) == 0)
6708 constructor_fields = TREE_CHAIN (constructor_fields);
6709 }
6710 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6711 {
6712 tree fieldtype;
6713 enum tree_code fieldcode;
6714
6715 if (constructor_fields == 0)
6716 {
6717 pedwarn_init (input_location, 0,
6718 "excess elements in union initializer");
6719 break;
6720 }
6721
6722 fieldtype = TREE_TYPE (constructor_fields);
6723 if (fieldtype != error_mark_node)
6724 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6725 fieldcode = TREE_CODE (fieldtype);
6726
6727 /* Warn that traditional C rejects initialization of unions.
6728 We skip the warning if the value is zero. This is done
6729 under the assumption that the zero initializer in user
6730 code appears conditioned on e.g. __STDC__ to avoid
6731 "missing initializer" warnings and relies on default
6732 initialization to zero in the traditional C case.
6733 We also skip the warning if the initializer is designated,
6734 again on the assumption that this must be conditional on
6735 __STDC__ anyway (and we've already complained about the
6736 member-designator already). */
6737 if (!in_system_header && !constructor_designated
6738 && !(value.value && (integer_zerop (value.value)
6739 || real_zerop (value.value))))
6740 warning (OPT_Wtraditional, "traditional C rejects initialization "
6741 "of unions");
6742
6743 /* Accept a string constant to initialize a subarray. */
6744 if (value.value != 0
6745 && fieldcode == ARRAY_TYPE
6746 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6747 && string_flag)
6748 value.value = orig_value;
6749 /* Otherwise, if we have come to a subaggregate,
6750 and we don't have an element of its type, push into it. */
6751 else if (value.value != 0
6752 && value.value != error_mark_node
6753 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6754 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6755 || fieldcode == UNION_TYPE))
6756 {
6757 push_init_level (1);
6758 continue;
6759 }
6760
6761 if (value.value)
6762 {
6763 push_member_name (constructor_fields);
6764 output_init_element (value.value, strict_string,
6765 fieldtype, constructor_fields, 1);
6766 RESTORE_SPELLING_DEPTH (constructor_depth);
6767 }
6768 else
6769 /* Do the bookkeeping for an element that was
6770 directly output as a constructor. */
6771 {
6772 constructor_bit_index = DECL_SIZE (constructor_fields);
6773 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6774 }
6775
6776 constructor_fields = 0;
6777 }
6778 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6779 {
6780 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6781 enum tree_code eltcode = TREE_CODE (elttype);
6782
6783 /* Accept a string constant to initialize a subarray. */
6784 if (value.value != 0
6785 && eltcode == ARRAY_TYPE
6786 && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6787 && string_flag)
6788 value.value = orig_value;
6789 /* Otherwise, if we have come to a subaggregate,
6790 and we don't have an element of its type, push into it. */
6791 else if (value.value != 0
6792 && value.value != error_mark_node
6793 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6794 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6795 || eltcode == UNION_TYPE))
6796 {
6797 push_init_level (1);
6798 continue;
6799 }
6800
6801 if (constructor_max_index != 0
6802 && (tree_int_cst_lt (constructor_max_index, constructor_index)
6803 || integer_all_onesp (constructor_max_index)))
6804 {
6805 pedwarn_init (input_location, 0,
6806 "excess elements in array initializer");
6807 break;
6808 }
6809
6810 /* Now output the actual element. */
6811 if (value.value)
6812 {
6813 push_array_bounds (tree_low_cst (constructor_index, 1));
6814 output_init_element (value.value, strict_string,
6815 elttype, constructor_index, 1);
6816 RESTORE_SPELLING_DEPTH (constructor_depth);
6817 }
6818
6819 constructor_index
6820 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6821
6822 if (!value.value)
6823 /* If we are doing the bookkeeping for an element that was
6824 directly output as a constructor, we must update
6825 constructor_unfilled_index. */
6826 constructor_unfilled_index = constructor_index;
6827 }
6828 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6829 {
6830 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6831
6832 /* Do a basic check of initializer size. Note that vectors
6833 always have a fixed size derived from their type. */
6834 if (tree_int_cst_lt (constructor_max_index, constructor_index))
6835 {
6836 pedwarn_init (input_location, 0,
6837 "excess elements in vector initializer");
6838 break;
6839 }
6840
6841 /* Now output the actual element. */
6842 if (value.value)
6843 output_init_element (value.value, strict_string,
6844 elttype, constructor_index, 1);
6845
6846 constructor_index
6847 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6848
6849 if (!value.value)
6850 /* If we are doing the bookkeeping for an element that was
6851 directly output as a constructor, we must update
6852 constructor_unfilled_index. */
6853 constructor_unfilled_index = constructor_index;
6854 }
6855
6856 /* Handle the sole element allowed in a braced initializer
6857 for a scalar variable. */
6858 else if (constructor_type != error_mark_node
6859 && constructor_fields == 0)
6860 {
6861 pedwarn_init (input_location, 0,
6862 "excess elements in scalar initializer");
6863 break;
6864 }
6865 else
6866 {
6867 if (value.value)
6868 output_init_element (value.value, strict_string,
6869 constructor_type, NULL_TREE, 1);
6870 constructor_fields = 0;
6871 }
6872
6873 /* Handle range initializers either at this level or anywhere higher
6874 in the designator stack. */
6875 if (constructor_range_stack)
6876 {
6877 struct constructor_range_stack *p, *range_stack;
6878 int finish = 0;
6879
6880 range_stack = constructor_range_stack;
6881 constructor_range_stack = 0;
6882 while (constructor_stack != range_stack->stack)
6883 {
6884 gcc_assert (constructor_stack->implicit);
6885 process_init_element (pop_init_level (1));
6886 }
6887 for (p = range_stack;
6888 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6889 p = p->prev)
6890 {
6891 gcc_assert (constructor_stack->implicit);
6892 process_init_element (pop_init_level (1));
6893 }
6894
6895 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6896 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6897 finish = 1;
6898
6899 while (1)
6900 {
6901 constructor_index = p->index;
6902 constructor_fields = p->fields;
6903 if (finish && p->range_end && p->index == p->range_start)
6904 {
6905 finish = 0;
6906 p->prev = 0;
6907 }
6908 p = p->next;
6909 if (!p)
6910 break;
6911 push_init_level (2);
6912 p->stack = constructor_stack;
6913 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6914 p->index = p->range_start;
6915 }
6916
6917 if (!finish)
6918 constructor_range_stack = range_stack;
6919 continue;
6920 }
6921
6922 break;
6923 }
6924
6925 constructor_range_stack = 0;
6926 }
6927 \f
6928 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
6929 (guaranteed to be 'volatile' or null) and ARGS (represented using
6930 an ASM_EXPR node). */
6931 tree
6932 build_asm_stmt (tree cv_qualifier, tree args)
6933 {
6934 if (!ASM_VOLATILE_P (args) && cv_qualifier)
6935 ASM_VOLATILE_P (args) = 1;
6936 return add_stmt (args);
6937 }
6938
6939 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6940 some INPUTS, and some CLOBBERS. The latter three may be NULL.
6941 SIMPLE indicates whether there was anything at all after the
6942 string in the asm expression -- asm("blah") and asm("blah" : )
6943 are subtly different. We use a ASM_EXPR node to represent this. */
6944 tree
6945 build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6946 bool simple)
6947 {
6948 tree tail;
6949 tree args;
6950 int i;
6951 const char *constraint;
6952 const char **oconstraints;
6953 bool allows_mem, allows_reg, is_inout;
6954 int ninputs, noutputs;
6955
6956 ninputs = list_length (inputs);
6957 noutputs = list_length (outputs);
6958 oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6959
6960 string = resolve_asm_operand_names (string, outputs, inputs);
6961
6962 /* Remove output conversions that change the type but not the mode. */
6963 for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6964 {
6965 tree output = TREE_VALUE (tail);
6966
6967 /* ??? Really, this should not be here. Users should be using a
6968 proper lvalue, dammit. But there's a long history of using casts
6969 in the output operands. In cases like longlong.h, this becomes a
6970 primitive form of typechecking -- if the cast can be removed, then
6971 the output operand had a type of the proper width; otherwise we'll
6972 get an error. Gross, but ... */
6973 STRIP_NOPS (output);
6974
6975 if (!lvalue_or_else (output, lv_asm))
6976 output = error_mark_node;
6977
6978 if (output != error_mark_node
6979 && (TREE_READONLY (output)
6980 || TYPE_READONLY (TREE_TYPE (output))
6981 || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6982 || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6983 && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6984 readonly_error (output, lv_asm);
6985
6986 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6987 oconstraints[i] = constraint;
6988
6989 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6990 &allows_mem, &allows_reg, &is_inout))
6991 {
6992 /* If the operand is going to end up in memory,
6993 mark it addressable. */
6994 if (!allows_reg && !c_mark_addressable (output))
6995 output = error_mark_node;
6996 }
6997 else
6998 output = error_mark_node;
6999
7000 TREE_VALUE (tail) = output;
7001 }
7002
7003 for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
7004 {
7005 tree input;
7006
7007 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
7008 input = TREE_VALUE (tail);
7009
7010 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
7011 oconstraints, &allows_mem, &allows_reg))
7012 {
7013 /* If the operand is going to end up in memory,
7014 mark it addressable. */
7015 if (!allows_reg && allows_mem)
7016 {
7017 /* Strip the nops as we allow this case. FIXME, this really
7018 should be rejected or made deprecated. */
7019 STRIP_NOPS (input);
7020 if (!c_mark_addressable (input))
7021 input = error_mark_node;
7022 }
7023 }
7024 else
7025 input = error_mark_node;
7026
7027 TREE_VALUE (tail) = input;
7028 }
7029
7030 args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
7031
7032 /* asm statements without outputs, including simple ones, are treated
7033 as volatile. */
7034 ASM_INPUT_P (args) = simple;
7035 ASM_VOLATILE_P (args) = (noutputs == 0);
7036
7037 return args;
7038 }
7039 \f
7040 /* Generate a goto statement to LABEL. */
7041
7042 tree
7043 c_finish_goto_label (tree label)
7044 {
7045 tree decl = lookup_label (label);
7046 if (!decl)
7047 return NULL_TREE;
7048
7049 if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
7050 {
7051 error ("jump into statement expression");
7052 return NULL_TREE;
7053 }
7054
7055 if (C_DECL_UNJUMPABLE_VM (decl))
7056 {
7057 error ("jump into scope of identifier with variably modified type");
7058 return NULL_TREE;
7059 }
7060
7061 if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
7062 {
7063 /* No jump from outside this statement expression context, so
7064 record that there is a jump from within this context. */
7065 struct c_label_list *nlist;
7066 nlist = XOBNEW (&parser_obstack, struct c_label_list);
7067 nlist->next = label_context_stack_se->labels_used;
7068 nlist->label = decl;
7069 label_context_stack_se->labels_used = nlist;
7070 }
7071
7072 if (!C_DECL_UNDEFINABLE_VM (decl))
7073 {
7074 /* No jump from outside this context context of identifiers with
7075 variably modified type, so record that there is a jump from
7076 within this context. */
7077 struct c_label_list *nlist;
7078 nlist = XOBNEW (&parser_obstack, struct c_label_list);
7079 nlist->next = label_context_stack_vm->labels_used;
7080 nlist->label = decl;
7081 label_context_stack_vm->labels_used = nlist;
7082 }
7083
7084 TREE_USED (decl) = 1;
7085 return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
7086 }
7087
7088 /* Generate a computed goto statement to EXPR. */
7089
7090 tree
7091 c_finish_goto_ptr (tree expr)
7092 {
7093 pedwarn (input_location, OPT_pedantic, "ISO C forbids %<goto *expr;%>");
7094 expr = convert (ptr_type_node, expr);
7095 return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
7096 }
7097
7098 /* Generate a C `return' statement. RETVAL is the expression for what
7099 to return, or a null pointer for `return;' with no value. */
7100
7101 tree
7102 c_finish_return (tree retval)
7103 {
7104 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
7105 bool no_warning = false;
7106
7107 if (TREE_THIS_VOLATILE (current_function_decl))
7108 warning (0, "function declared %<noreturn%> has a %<return%> statement");
7109
7110 if (!retval)
7111 {
7112 current_function_returns_null = 1;
7113 if ((warn_return_type || flag_isoc99)
7114 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
7115 {
7116 pedwarn_c99 (input_location, flag_isoc99 ? 0 : OPT_Wreturn_type,
7117 "%<return%> with no value, in "
7118 "function returning non-void");
7119 no_warning = true;
7120 }
7121 }
7122 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
7123 {
7124 current_function_returns_null = 1;
7125 if (TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
7126 pedwarn (input_location, 0,
7127 "%<return%> with a value, in function returning void");
7128 else
7129 pedwarn (input_location, OPT_pedantic, "ISO C forbids "
7130 "%<return%> with expression, in function returning void");
7131 }
7132 else
7133 {
7134 tree t = convert_for_assignment (valtype, retval, ic_return,
7135 NULL_TREE, NULL_TREE, 0);
7136 tree res = DECL_RESULT (current_function_decl);
7137 tree inner;
7138
7139 current_function_returns_value = 1;
7140 if (t == error_mark_node)
7141 return NULL_TREE;
7142
7143 inner = t = convert (TREE_TYPE (res), t);
7144
7145 /* Strip any conversions, additions, and subtractions, and see if
7146 we are returning the address of a local variable. Warn if so. */
7147 while (1)
7148 {
7149 switch (TREE_CODE (inner))
7150 {
7151 CASE_CONVERT: case NON_LVALUE_EXPR:
7152 case PLUS_EXPR:
7153 inner = TREE_OPERAND (inner, 0);
7154 continue;
7155
7156 case MINUS_EXPR:
7157 /* If the second operand of the MINUS_EXPR has a pointer
7158 type (or is converted from it), this may be valid, so
7159 don't give a warning. */
7160 {
7161 tree op1 = TREE_OPERAND (inner, 1);
7162
7163 while (!POINTER_TYPE_P (TREE_TYPE (op1))
7164 && (CONVERT_EXPR_P (op1)
7165 || TREE_CODE (op1) == NON_LVALUE_EXPR))
7166 op1 = TREE_OPERAND (op1, 0);
7167
7168 if (POINTER_TYPE_P (TREE_TYPE (op1)))
7169 break;
7170
7171 inner = TREE_OPERAND (inner, 0);
7172 continue;
7173 }
7174
7175 case ADDR_EXPR:
7176 inner = TREE_OPERAND (inner, 0);
7177
7178 while (REFERENCE_CLASS_P (inner)
7179 && TREE_CODE (inner) != INDIRECT_REF)
7180 inner = TREE_OPERAND (inner, 0);
7181
7182 if (DECL_P (inner)
7183 && !DECL_EXTERNAL (inner)
7184 && !TREE_STATIC (inner)
7185 && DECL_CONTEXT (inner) == current_function_decl)
7186 warning (0, "function returns address of local variable");
7187 break;
7188
7189 default:
7190 break;
7191 }
7192
7193 break;
7194 }
7195
7196 retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7197
7198 if (warn_sequence_point)
7199 verify_sequence_points (retval);
7200 }
7201
7202 ret_stmt = build_stmt (RETURN_EXPR, retval);
7203 TREE_NO_WARNING (ret_stmt) |= no_warning;
7204 return add_stmt (ret_stmt);
7205 }
7206 \f
7207 struct c_switch {
7208 /* The SWITCH_EXPR being built. */
7209 tree switch_expr;
7210
7211 /* The original type of the testing expression, i.e. before the
7212 default conversion is applied. */
7213 tree orig_type;
7214
7215 /* A splay-tree mapping the low element of a case range to the high
7216 element, or NULL_TREE if there is no high element. Used to
7217 determine whether or not a new case label duplicates an old case
7218 label. We need a tree, rather than simply a hash table, because
7219 of the GNU case range extension. */
7220 splay_tree cases;
7221
7222 /* Number of nested statement expressions within this switch
7223 statement; if nonzero, case and default labels may not
7224 appear. */
7225 unsigned int blocked_stmt_expr;
7226
7227 /* Scope of outermost declarations of identifiers with variably
7228 modified type within this switch statement; if nonzero, case and
7229 default labels may not appear. */
7230 unsigned int blocked_vm;
7231
7232 /* The next node on the stack. */
7233 struct c_switch *next;
7234 };
7235
7236 /* A stack of the currently active switch statements. The innermost
7237 switch statement is on the top of the stack. There is no need to
7238 mark the stack for garbage collection because it is only active
7239 during the processing of the body of a function, and we never
7240 collect at that point. */
7241
7242 struct c_switch *c_switch_stack;
7243
7244 /* Start a C switch statement, testing expression EXP. Return the new
7245 SWITCH_EXPR. */
7246
7247 tree
7248 c_start_case (tree exp)
7249 {
7250 tree orig_type = error_mark_node;
7251 struct c_switch *cs;
7252
7253 if (exp != error_mark_node)
7254 {
7255 orig_type = TREE_TYPE (exp);
7256
7257 if (!INTEGRAL_TYPE_P (orig_type))
7258 {
7259 if (orig_type != error_mark_node)
7260 {
7261 error ("switch quantity not an integer");
7262 orig_type = error_mark_node;
7263 }
7264 exp = integer_zero_node;
7265 }
7266 else
7267 {
7268 tree type = TYPE_MAIN_VARIANT (orig_type);
7269
7270 if (!in_system_header
7271 && (type == long_integer_type_node
7272 || type == long_unsigned_type_node))
7273 warning (OPT_Wtraditional, "%<long%> switch expression not "
7274 "converted to %<int%> in ISO C");
7275
7276 exp = default_conversion (exp);
7277
7278 if (warn_sequence_point)
7279 verify_sequence_points (exp);
7280 }
7281 }
7282
7283 /* Add this new SWITCH_EXPR to the stack. */
7284 cs = XNEW (struct c_switch);
7285 cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7286 cs->orig_type = orig_type;
7287 cs->cases = splay_tree_new (case_compare, NULL, NULL);
7288 cs->blocked_stmt_expr = 0;
7289 cs->blocked_vm = 0;
7290 cs->next = c_switch_stack;
7291 c_switch_stack = cs;
7292
7293 return add_stmt (cs->switch_expr);
7294 }
7295
7296 /* Process a case label. */
7297
7298 tree
7299 do_case (tree low_value, tree high_value)
7300 {
7301 tree label = NULL_TREE;
7302
7303 if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7304 && !c_switch_stack->blocked_vm)
7305 {
7306 label = c_add_case_label (c_switch_stack->cases,
7307 SWITCH_COND (c_switch_stack->switch_expr),
7308 c_switch_stack->orig_type,
7309 low_value, high_value);
7310 if (label == error_mark_node)
7311 label = NULL_TREE;
7312 }
7313 else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7314 {
7315 if (low_value)
7316 error ("case label in statement expression not containing "
7317 "enclosing switch statement");
7318 else
7319 error ("%<default%> label in statement expression not containing "
7320 "enclosing switch statement");
7321 }
7322 else if (c_switch_stack && c_switch_stack->blocked_vm)
7323 {
7324 if (low_value)
7325 error ("case label in scope of identifier with variably modified "
7326 "type not containing enclosing switch statement");
7327 else
7328 error ("%<default%> label in scope of identifier with variably "
7329 "modified type not containing enclosing switch statement");
7330 }
7331 else if (low_value)
7332 error ("case label not within a switch statement");
7333 else
7334 error ("%<default%> label not within a switch statement");
7335
7336 return label;
7337 }
7338
7339 /* Finish the switch statement. */
7340
7341 void
7342 c_finish_case (tree body)
7343 {
7344 struct c_switch *cs = c_switch_stack;
7345 location_t switch_location;
7346
7347 SWITCH_BODY (cs->switch_expr) = body;
7348
7349 /* We must not be within a statement expression nested in the switch
7350 at this point; we might, however, be within the scope of an
7351 identifier with variably modified type nested in the switch. */
7352 gcc_assert (!cs->blocked_stmt_expr);
7353
7354 /* Emit warnings as needed. */
7355 if (EXPR_HAS_LOCATION (cs->switch_expr))
7356 switch_location = EXPR_LOCATION (cs->switch_expr);
7357 else
7358 switch_location = input_location;
7359 c_do_switch_warnings (cs->cases, switch_location,
7360 TREE_TYPE (cs->switch_expr),
7361 SWITCH_COND (cs->switch_expr));
7362
7363 /* Pop the stack. */
7364 c_switch_stack = cs->next;
7365 splay_tree_delete (cs->cases);
7366 XDELETE (cs);
7367 }
7368 \f
7369 /* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
7370 THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7371 may be null. NESTED_IF is true if THEN_BLOCK contains another IF
7372 statement, and was not surrounded with parenthesis. */
7373
7374 void
7375 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7376 tree else_block, bool nested_if)
7377 {
7378 tree stmt;
7379
7380 /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
7381 if (warn_parentheses && nested_if && else_block == NULL)
7382 {
7383 tree inner_if = then_block;
7384
7385 /* We know from the grammar productions that there is an IF nested
7386 within THEN_BLOCK. Due to labels and c99 conditional declarations,
7387 it might not be exactly THEN_BLOCK, but should be the last
7388 non-container statement within. */
7389 while (1)
7390 switch (TREE_CODE (inner_if))
7391 {
7392 case COND_EXPR:
7393 goto found;
7394 case BIND_EXPR:
7395 inner_if = BIND_EXPR_BODY (inner_if);
7396 break;
7397 case STATEMENT_LIST:
7398 inner_if = expr_last (then_block);
7399 break;
7400 case TRY_FINALLY_EXPR:
7401 case TRY_CATCH_EXPR:
7402 inner_if = TREE_OPERAND (inner_if, 0);
7403 break;
7404 default:
7405 gcc_unreachable ();
7406 }
7407 found:
7408
7409 if (COND_EXPR_ELSE (inner_if))
7410 warning (OPT_Wparentheses,
7411 "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7412 &if_locus);
7413 }
7414
7415 empty_if_body_warning (then_block, else_block);
7416
7417 stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7418 SET_EXPR_LOCATION (stmt, if_locus);
7419 add_stmt (stmt);
7420 }
7421
7422 /* Emit a general-purpose loop construct. START_LOCUS is the location of
7423 the beginning of the loop. COND is the loop condition. COND_IS_FIRST
7424 is false for DO loops. INCR is the FOR increment expression. BODY is
7425 the statement controlled by the loop. BLAB is the break label. CLAB is
7426 the continue label. Everything is allowed to be NULL. */
7427
7428 void
7429 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7430 tree blab, tree clab, bool cond_is_first)
7431 {
7432 tree entry = NULL, exit = NULL, t;
7433
7434 /* If the condition is zero don't generate a loop construct. */
7435 if (cond && integer_zerop (cond))
7436 {
7437 if (cond_is_first)
7438 {
7439 t = build_and_jump (&blab);
7440 SET_EXPR_LOCATION (t, start_locus);
7441 add_stmt (t);
7442 }
7443 }
7444 else
7445 {
7446 tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7447
7448 /* If we have an exit condition, then we build an IF with gotos either
7449 out of the loop, or to the top of it. If there's no exit condition,
7450 then we just build a jump back to the top. */
7451 exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7452
7453 if (cond && !integer_nonzerop (cond))
7454 {
7455 /* Canonicalize the loop condition to the end. This means
7456 generating a branch to the loop condition. Reuse the
7457 continue label, if possible. */
7458 if (cond_is_first)
7459 {
7460 if (incr || !clab)
7461 {
7462 entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7463 t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7464 }
7465 else
7466 t = build1 (GOTO_EXPR, void_type_node, clab);
7467 SET_EXPR_LOCATION (t, start_locus);
7468 add_stmt (t);
7469 }
7470
7471 t = build_and_jump (&blab);
7472 exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7473 if (cond_is_first)
7474 SET_EXPR_LOCATION (exit, start_locus);
7475 else
7476 SET_EXPR_LOCATION (exit, input_location);
7477 }
7478
7479 add_stmt (top);
7480 }
7481
7482 if (body)
7483 add_stmt (body);
7484 if (clab)
7485 add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7486 if (incr)
7487 add_stmt (incr);
7488 if (entry)
7489 add_stmt (entry);
7490 if (exit)
7491 add_stmt (exit);
7492 if (blab)
7493 add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7494 }
7495
7496 tree
7497 c_finish_bc_stmt (tree *label_p, bool is_break)
7498 {
7499 bool skip;
7500 tree label = *label_p;
7501
7502 /* In switch statements break is sometimes stylistically used after
7503 a return statement. This can lead to spurious warnings about
7504 control reaching the end of a non-void function when it is
7505 inlined. Note that we are calling block_may_fallthru with
7506 language specific tree nodes; this works because
7507 block_may_fallthru returns true when given something it does not
7508 understand. */
7509 skip = !block_may_fallthru (cur_stmt_list);
7510
7511 if (!label)
7512 {
7513 if (!skip)
7514 *label_p = label = create_artificial_label ();
7515 }
7516 else if (TREE_CODE (label) == LABEL_DECL)
7517 ;
7518 else switch (TREE_INT_CST_LOW (label))
7519 {
7520 case 0:
7521 if (is_break)
7522 error ("break statement not within loop or switch");
7523 else
7524 error ("continue statement not within a loop");
7525 return NULL_TREE;
7526
7527 case 1:
7528 gcc_assert (is_break);
7529 error ("break statement used with OpenMP for loop");
7530 return NULL_TREE;
7531
7532 default:
7533 gcc_unreachable ();
7534 }
7535
7536 if (skip)
7537 return NULL_TREE;
7538
7539 if (!is_break)
7540 add_stmt (build_predict_expr (PRED_CONTINUE, NOT_TAKEN));
7541
7542 return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7543 }
7544
7545 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
7546
7547 static void
7548 emit_side_effect_warnings (tree expr)
7549 {
7550 if (expr == error_mark_node)
7551 ;
7552 else if (!TREE_SIDE_EFFECTS (expr))
7553 {
7554 if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7555 warning (OPT_Wunused_value, "%Hstatement with no effect",
7556 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7557 }
7558 else
7559 warn_if_unused_value (expr, input_location);
7560 }
7561
7562 /* Process an expression as if it were a complete statement. Emit
7563 diagnostics, but do not call ADD_STMT. */
7564
7565 tree
7566 c_process_expr_stmt (tree expr)
7567 {
7568 if (!expr)
7569 return NULL_TREE;
7570
7571 if (warn_sequence_point)
7572 verify_sequence_points (expr);
7573
7574 if (TREE_TYPE (expr) != error_mark_node
7575 && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7576 && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7577 error ("expression statement has incomplete type");
7578
7579 /* If we're not processing a statement expression, warn about unused values.
7580 Warnings for statement expressions will be emitted later, once we figure
7581 out which is the result. */
7582 if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7583 && warn_unused_value)
7584 emit_side_effect_warnings (expr);
7585
7586 /* If the expression is not of a type to which we cannot assign a line
7587 number, wrap the thing in a no-op NOP_EXPR. */
7588 if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7589 expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7590
7591 if (CAN_HAVE_LOCATION_P (expr))
7592 SET_EXPR_LOCATION (expr, input_location);
7593
7594 return expr;
7595 }
7596
7597 /* Emit an expression as a statement. */
7598
7599 tree
7600 c_finish_expr_stmt (tree expr)
7601 {
7602 if (expr)
7603 return add_stmt (c_process_expr_stmt (expr));
7604 else
7605 return NULL;
7606 }
7607
7608 /* Do the opposite and emit a statement as an expression. To begin,
7609 create a new binding level and return it. */
7610
7611 tree
7612 c_begin_stmt_expr (void)
7613 {
7614 tree ret;
7615 struct c_label_context_se *nstack;
7616 struct c_label_list *glist;
7617
7618 /* We must force a BLOCK for this level so that, if it is not expanded
7619 later, there is a way to turn off the entire subtree of blocks that
7620 are contained in it. */
7621 keep_next_level ();
7622 ret = c_begin_compound_stmt (true);
7623 if (c_switch_stack)
7624 {
7625 c_switch_stack->blocked_stmt_expr++;
7626 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7627 }
7628 for (glist = label_context_stack_se->labels_used;
7629 glist != NULL;
7630 glist = glist->next)
7631 {
7632 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7633 }
7634 nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7635 nstack->labels_def = NULL;
7636 nstack->labels_used = NULL;
7637 nstack->next = label_context_stack_se;
7638 label_context_stack_se = nstack;
7639
7640 /* Mark the current statement list as belonging to a statement list. */
7641 STATEMENT_LIST_STMT_EXPR (ret) = 1;
7642
7643 return ret;
7644 }
7645
7646 tree
7647 c_finish_stmt_expr (tree body)
7648 {
7649 tree last, type, tmp, val;
7650 tree *last_p;
7651 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7652
7653 body = c_end_compound_stmt (body, true);
7654 if (c_switch_stack)
7655 {
7656 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7657 c_switch_stack->blocked_stmt_expr--;
7658 }
7659 /* It is no longer possible to jump to labels defined within this
7660 statement expression. */
7661 for (dlist = label_context_stack_se->labels_def;
7662 dlist != NULL;
7663 dlist = dlist->next)
7664 {
7665 C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7666 }
7667 /* It is again possible to define labels with a goto just outside
7668 this statement expression. */
7669 for (glist = label_context_stack_se->next->labels_used;
7670 glist != NULL;
7671 glist = glist->next)
7672 {
7673 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7674 glist_prev = glist;
7675 }
7676 if (glist_prev != NULL)
7677 glist_prev->next = label_context_stack_se->labels_used;
7678 else
7679 label_context_stack_se->next->labels_used
7680 = label_context_stack_se->labels_used;
7681 label_context_stack_se = label_context_stack_se->next;
7682
7683 /* Locate the last statement in BODY. See c_end_compound_stmt
7684 about always returning a BIND_EXPR. */
7685 last_p = &BIND_EXPR_BODY (body);
7686 last = BIND_EXPR_BODY (body);
7687
7688 continue_searching:
7689 if (TREE_CODE (last) == STATEMENT_LIST)
7690 {
7691 tree_stmt_iterator i;
7692
7693 /* This can happen with degenerate cases like ({ }). No value. */
7694 if (!TREE_SIDE_EFFECTS (last))
7695 return body;
7696
7697 /* If we're supposed to generate side effects warnings, process
7698 all of the statements except the last. */
7699 if (warn_unused_value)
7700 {
7701 for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7702 emit_side_effect_warnings (tsi_stmt (i));
7703 }
7704 else
7705 i = tsi_last (last);
7706 last_p = tsi_stmt_ptr (i);
7707 last = *last_p;
7708 }
7709
7710 /* If the end of the list is exception related, then the list was split
7711 by a call to push_cleanup. Continue searching. */
7712 if (TREE_CODE (last) == TRY_FINALLY_EXPR
7713 || TREE_CODE (last) == TRY_CATCH_EXPR)
7714 {
7715 last_p = &TREE_OPERAND (last, 0);
7716 last = *last_p;
7717 goto continue_searching;
7718 }
7719
7720 /* In the case that the BIND_EXPR is not necessary, return the
7721 expression out from inside it. */
7722 if (last == error_mark_node
7723 || (last == BIND_EXPR_BODY (body)
7724 && BIND_EXPR_VARS (body) == NULL))
7725 {
7726 /* Do not warn if the return value of a statement expression is
7727 unused. */
7728 if (CAN_HAVE_LOCATION_P (last))
7729 TREE_NO_WARNING (last) = 1;
7730 return last;
7731 }
7732
7733 /* Extract the type of said expression. */
7734 type = TREE_TYPE (last);
7735
7736 /* If we're not returning a value at all, then the BIND_EXPR that
7737 we already have is a fine expression to return. */
7738 if (!type || VOID_TYPE_P (type))
7739 return body;
7740
7741 /* Now that we've located the expression containing the value, it seems
7742 silly to make voidify_wrapper_expr repeat the process. Create a
7743 temporary of the appropriate type and stick it in a TARGET_EXPR. */
7744 tmp = create_tmp_var_raw (type, NULL);
7745
7746 /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
7747 tree_expr_nonnegative_p giving up immediately. */
7748 val = last;
7749 if (TREE_CODE (val) == NOP_EXPR
7750 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7751 val = TREE_OPERAND (val, 0);
7752
7753 *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7754 SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7755
7756 return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7757 }
7758
7759 /* Begin the scope of an identifier of variably modified type, scope
7760 number SCOPE. Jumping from outside this scope to inside it is not
7761 permitted. */
7762
7763 void
7764 c_begin_vm_scope (unsigned int scope)
7765 {
7766 struct c_label_context_vm *nstack;
7767 struct c_label_list *glist;
7768
7769 gcc_assert (scope > 0);
7770
7771 /* At file_scope, we don't have to do any processing. */
7772 if (label_context_stack_vm == NULL)
7773 return;
7774
7775 if (c_switch_stack && !c_switch_stack->blocked_vm)
7776 c_switch_stack->blocked_vm = scope;
7777 for (glist = label_context_stack_vm->labels_used;
7778 glist != NULL;
7779 glist = glist->next)
7780 {
7781 C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7782 }
7783 nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7784 nstack->labels_def = NULL;
7785 nstack->labels_used = NULL;
7786 nstack->scope = scope;
7787 nstack->next = label_context_stack_vm;
7788 label_context_stack_vm = nstack;
7789 }
7790
7791 /* End a scope which may contain identifiers of variably modified
7792 type, scope number SCOPE. */
7793
7794 void
7795 c_end_vm_scope (unsigned int scope)
7796 {
7797 if (label_context_stack_vm == NULL)
7798 return;
7799 if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7800 c_switch_stack->blocked_vm = 0;
7801 /* We may have a number of nested scopes of identifiers with
7802 variably modified type, all at this depth. Pop each in turn. */
7803 while (label_context_stack_vm->scope == scope)
7804 {
7805 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7806
7807 /* It is no longer possible to jump to labels defined within this
7808 scope. */
7809 for (dlist = label_context_stack_vm->labels_def;
7810 dlist != NULL;
7811 dlist = dlist->next)
7812 {
7813 C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7814 }
7815 /* It is again possible to define labels with a goto just outside
7816 this scope. */
7817 for (glist = label_context_stack_vm->next->labels_used;
7818 glist != NULL;
7819 glist = glist->next)
7820 {
7821 C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7822 glist_prev = glist;
7823 }
7824 if (glist_prev != NULL)
7825 glist_prev->next = label_context_stack_vm->labels_used;
7826 else
7827 label_context_stack_vm->next->labels_used
7828 = label_context_stack_vm->labels_used;
7829 label_context_stack_vm = label_context_stack_vm->next;
7830 }
7831 }
7832 \f
7833 /* Begin and end compound statements. This is as simple as pushing
7834 and popping new statement lists from the tree. */
7835
7836 tree
7837 c_begin_compound_stmt (bool do_scope)
7838 {
7839 tree stmt = push_stmt_list ();
7840 if (do_scope)
7841 push_scope ();
7842 return stmt;
7843 }
7844
7845 tree
7846 c_end_compound_stmt (tree stmt, bool do_scope)
7847 {
7848 tree block = NULL;
7849
7850 if (do_scope)
7851 {
7852 if (c_dialect_objc ())
7853 objc_clear_super_receiver ();
7854 block = pop_scope ();
7855 }
7856
7857 stmt = pop_stmt_list (stmt);
7858 stmt = c_build_bind_expr (block, stmt);
7859
7860 /* If this compound statement is nested immediately inside a statement
7861 expression, then force a BIND_EXPR to be created. Otherwise we'll
7862 do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
7863 STATEMENT_LISTs merge, and thus we can lose track of what statement
7864 was really last. */
7865 if (cur_stmt_list
7866 && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7867 && TREE_CODE (stmt) != BIND_EXPR)
7868 {
7869 stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7870 TREE_SIDE_EFFECTS (stmt) = 1;
7871 }
7872
7873 return stmt;
7874 }
7875
7876 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
7877 when the current scope is exited. EH_ONLY is true when this is not
7878 meant to apply to normal control flow transfer. */
7879
7880 void
7881 push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7882 {
7883 enum tree_code code;
7884 tree stmt, list;
7885 bool stmt_expr;
7886
7887 code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7888 stmt = build_stmt (code, NULL, cleanup);
7889 add_stmt (stmt);
7890 stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7891 list = push_stmt_list ();
7892 TREE_OPERAND (stmt, 0) = list;
7893 STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7894 }
7895 \f
7896 /* Build a binary-operation expression without default conversions.
7897 CODE is the kind of expression to build.
7898 This function differs from `build' in several ways:
7899 the data type of the result is computed and recorded in it,
7900 warnings are generated if arg data types are invalid,
7901 special handling for addition and subtraction of pointers is known,
7902 and some optimization is done (operations on narrow ints
7903 are done in the narrower type when that gives the same result).
7904 Constant folding is also done before the result is returned.
7905
7906 Note that the operands will never have enumeral types, or function
7907 or array types, because either they will have the default conversions
7908 performed or they have both just been converted to some other type in which
7909 the arithmetic is to be done. */
7910
7911 tree
7912 build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7913 int convert_p)
7914 {
7915 tree type0, type1;
7916 enum tree_code code0, code1;
7917 tree op0, op1;
7918 const char *invalid_op_diag;
7919
7920 /* Expression code to give to the expression when it is built.
7921 Normally this is CODE, which is what the caller asked for,
7922 but in some special cases we change it. */
7923 enum tree_code resultcode = code;
7924
7925 /* Data type in which the computation is to be performed.
7926 In the simplest cases this is the common type of the arguments. */
7927 tree result_type = NULL;
7928
7929 /* Nonzero means operands have already been type-converted
7930 in whatever way is necessary.
7931 Zero means they need to be converted to RESULT_TYPE. */
7932 int converted = 0;
7933
7934 /* Nonzero means create the expression with this type, rather than
7935 RESULT_TYPE. */
7936 tree build_type = 0;
7937
7938 /* Nonzero means after finally constructing the expression
7939 convert it to this type. */
7940 tree final_type = 0;
7941
7942 /* Nonzero if this is an operation like MIN or MAX which can
7943 safely be computed in short if both args are promoted shorts.
7944 Also implies COMMON.
7945 -1 indicates a bitwise operation; this makes a difference
7946 in the exact conditions for when it is safe to do the operation
7947 in a narrower mode. */
7948 int shorten = 0;
7949
7950 /* Nonzero if this is a comparison operation;
7951 if both args are promoted shorts, compare the original shorts.
7952 Also implies COMMON. */
7953 int short_compare = 0;
7954
7955 /* Nonzero if this is a right-shift operation, which can be computed on the
7956 original short and then promoted if the operand is a promoted short. */
7957 int short_shift = 0;
7958
7959 /* Nonzero means set RESULT_TYPE to the common type of the args. */
7960 int common = 0;
7961
7962 /* True means types are compatible as far as ObjC is concerned. */
7963 bool objc_ok;
7964
7965 if (convert_p)
7966 {
7967 op0 = default_conversion (orig_op0);
7968 op1 = default_conversion (orig_op1);
7969 }
7970 else
7971 {
7972 op0 = orig_op0;
7973 op1 = orig_op1;
7974 }
7975
7976 type0 = TREE_TYPE (op0);
7977 type1 = TREE_TYPE (op1);
7978
7979 /* The expression codes of the data types of the arguments tell us
7980 whether the arguments are integers, floating, pointers, etc. */
7981 code0 = TREE_CODE (type0);
7982 code1 = TREE_CODE (type1);
7983
7984 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
7985 STRIP_TYPE_NOPS (op0);
7986 STRIP_TYPE_NOPS (op1);
7987
7988 /* If an error was already reported for one of the arguments,
7989 avoid reporting another error. */
7990
7991 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7992 return error_mark_node;
7993
7994 if ((invalid_op_diag
7995 = targetm.invalid_binary_op (code, type0, type1)))
7996 {
7997 error (invalid_op_diag);
7998 return error_mark_node;
7999 }
8000
8001 objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
8002
8003 switch (code)
8004 {
8005 case PLUS_EXPR:
8006 /* Handle the pointer + int case. */
8007 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8008 return pointer_int_sum (PLUS_EXPR, op0, op1);
8009 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
8010 return pointer_int_sum (PLUS_EXPR, op1, op0);
8011 else
8012 common = 1;
8013 break;
8014
8015 case MINUS_EXPR:
8016 /* Subtraction of two similar pointers.
8017 We must subtract them as integers, then divide by object size. */
8018 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
8019 && comp_target_types (type0, type1))
8020 return pointer_diff (op0, op1);
8021 /* Handle pointer minus int. Just like pointer plus int. */
8022 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8023 return pointer_int_sum (MINUS_EXPR, op0, op1);
8024 else
8025 common = 1;
8026 break;
8027
8028 case MULT_EXPR:
8029 common = 1;
8030 break;
8031
8032 case TRUNC_DIV_EXPR:
8033 case CEIL_DIV_EXPR:
8034 case FLOOR_DIV_EXPR:
8035 case ROUND_DIV_EXPR:
8036 case EXACT_DIV_EXPR:
8037 warn_for_div_by_zero (op1);
8038
8039 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8040 || code0 == FIXED_POINT_TYPE
8041 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
8042 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8043 || code1 == FIXED_POINT_TYPE
8044 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
8045 {
8046 enum tree_code tcode0 = code0, tcode1 = code1;
8047
8048 if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
8049 tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
8050 if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
8051 tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
8052
8053 if (!((tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE)
8054 || (tcode0 == FIXED_POINT_TYPE && tcode1 == FIXED_POINT_TYPE)))
8055 resultcode = RDIV_EXPR;
8056 else
8057 /* Although it would be tempting to shorten always here, that
8058 loses on some targets, since the modulo instruction is
8059 undefined if the quotient can't be represented in the
8060 computation mode. We shorten only if unsigned or if
8061 dividing by something we know != -1. */
8062 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
8063 || (TREE_CODE (op1) == INTEGER_CST
8064 && !integer_all_onesp (op1)));
8065 common = 1;
8066 }
8067 break;
8068
8069 case BIT_AND_EXPR:
8070 case BIT_IOR_EXPR:
8071 case BIT_XOR_EXPR:
8072 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8073 shorten = -1;
8074 /* Allow vector types which are not floating point types. */
8075 else if (code0 == VECTOR_TYPE
8076 && code1 == VECTOR_TYPE
8077 && !VECTOR_FLOAT_TYPE_P (type0)
8078 && !VECTOR_FLOAT_TYPE_P (type1))
8079 common = 1;
8080 break;
8081
8082 case TRUNC_MOD_EXPR:
8083 case FLOOR_MOD_EXPR:
8084 warn_for_div_by_zero (op1);
8085
8086 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8087 {
8088 /* Although it would be tempting to shorten always here, that loses
8089 on some targets, since the modulo instruction is undefined if the
8090 quotient can't be represented in the computation mode. We shorten
8091 only if unsigned or if dividing by something we know != -1. */
8092 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
8093 || (TREE_CODE (op1) == INTEGER_CST
8094 && !integer_all_onesp (op1)));
8095 common = 1;
8096 }
8097 break;
8098
8099 case TRUTH_ANDIF_EXPR:
8100 case TRUTH_ORIF_EXPR:
8101 case TRUTH_AND_EXPR:
8102 case TRUTH_OR_EXPR:
8103 case TRUTH_XOR_EXPR:
8104 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
8105 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8106 || code0 == FIXED_POINT_TYPE)
8107 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
8108 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8109 || code1 == FIXED_POINT_TYPE))
8110 {
8111 /* Result of these operations is always an int,
8112 but that does not mean the operands should be
8113 converted to ints! */
8114 result_type = integer_type_node;
8115 op0 = c_common_truthvalue_conversion (op0);
8116 op1 = c_common_truthvalue_conversion (op1);
8117 converted = 1;
8118 }
8119 break;
8120
8121 /* Shift operations: result has same type as first operand;
8122 always convert second operand to int.
8123 Also set SHORT_SHIFT if shifting rightward. */
8124
8125 case RSHIFT_EXPR:
8126 if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE)
8127 && code1 == INTEGER_TYPE)
8128 {
8129 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8130 {
8131 if (tree_int_cst_sgn (op1) < 0)
8132 warning (0, "right shift count is negative");
8133 else
8134 {
8135 if (!integer_zerop (op1))
8136 short_shift = 1;
8137
8138 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8139 warning (0, "right shift count >= width of type");
8140 }
8141 }
8142
8143 /* Use the type of the value to be shifted. */
8144 result_type = type0;
8145 /* Convert the shift-count to an integer, regardless of size
8146 of value being shifted. */
8147 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8148 op1 = convert (integer_type_node, op1);
8149 /* Avoid converting op1 to result_type later. */
8150 converted = 1;
8151 }
8152 break;
8153
8154 case LSHIFT_EXPR:
8155 if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE)
8156 && code1 == INTEGER_TYPE)
8157 {
8158 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
8159 {
8160 if (tree_int_cst_sgn (op1) < 0)
8161 warning (0, "left shift count is negative");
8162
8163 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
8164 warning (0, "left shift count >= width of type");
8165 }
8166
8167 /* Use the type of the value to be shifted. */
8168 result_type = type0;
8169 /* Convert the shift-count to an integer, regardless of size
8170 of value being shifted. */
8171 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
8172 op1 = convert (integer_type_node, op1);
8173 /* Avoid converting op1 to result_type later. */
8174 converted = 1;
8175 }
8176 break;
8177
8178 case EQ_EXPR:
8179 case NE_EXPR:
8180 if (FLOAT_TYPE_P (type0) || FLOAT_TYPE_P (type1))
8181 warning (OPT_Wfloat_equal,
8182 "comparing floating point with == or != is unsafe");
8183 /* Result of comparison is always int,
8184 but don't convert the args to int! */
8185 build_type = integer_type_node;
8186 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8187 || code0 == FIXED_POINT_TYPE || code0 == COMPLEX_TYPE)
8188 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8189 || code1 == FIXED_POINT_TYPE || code1 == COMPLEX_TYPE))
8190 short_compare = 1;
8191 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8192 {
8193 tree tt0 = TREE_TYPE (type0);
8194 tree tt1 = TREE_TYPE (type1);
8195 /* Anything compares with void *. void * compares with anything.
8196 Otherwise, the targets must be compatible
8197 and both must be object or both incomplete. */
8198 if (comp_target_types (type0, type1))
8199 result_type = common_pointer_type (type0, type1);
8200 else if (VOID_TYPE_P (tt0))
8201 {
8202 /* op0 != orig_op0 detects the case of something
8203 whose value is 0 but which isn't a valid null ptr const. */
8204 if (pedantic && !null_pointer_constant_p (orig_op0)
8205 && TREE_CODE (tt1) == FUNCTION_TYPE)
8206 pedwarn (input_location, OPT_pedantic, "ISO C forbids "
8207 "comparison of %<void *%> with function pointer");
8208 }
8209 else if (VOID_TYPE_P (tt1))
8210 {
8211 if (pedantic && !null_pointer_constant_p (orig_op1)
8212 && TREE_CODE (tt0) == FUNCTION_TYPE)
8213 pedwarn (input_location, OPT_pedantic, "ISO C forbids "
8214 "comparison of %<void *%> with function pointer");
8215 }
8216 else
8217 /* Avoid warning about the volatile ObjC EH puts on decls. */
8218 if (!objc_ok)
8219 pedwarn (input_location, 0,
8220 "comparison of distinct pointer types lacks a cast");
8221
8222 if (result_type == NULL_TREE)
8223 result_type = ptr_type_node;
8224 }
8225 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8226 {
8227 if (TREE_CODE (op0) == ADDR_EXPR
8228 && decl_with_nonnull_addr_p (TREE_OPERAND (op0, 0)))
8229 warning (OPT_Waddress, "the address of %qD will never be NULL",
8230 TREE_OPERAND (op0, 0));
8231 result_type = type0;
8232 }
8233 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8234 {
8235 if (TREE_CODE (op1) == ADDR_EXPR
8236 && decl_with_nonnull_addr_p (TREE_OPERAND (op1, 0)))
8237 warning (OPT_Waddress, "the address of %qD will never be NULL",
8238 TREE_OPERAND (op1, 0));
8239 result_type = type1;
8240 }
8241 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8242 {
8243 result_type = type0;
8244 pedwarn (input_location, 0, "comparison between pointer and integer");
8245 }
8246 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8247 {
8248 result_type = type1;
8249 pedwarn (input_location, 0, "comparison between pointer and integer");
8250 }
8251 break;
8252
8253 case LE_EXPR:
8254 case GE_EXPR:
8255 case LT_EXPR:
8256 case GT_EXPR:
8257 build_type = integer_type_node;
8258 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8259 || code0 == FIXED_POINT_TYPE)
8260 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8261 || code1 == FIXED_POINT_TYPE))
8262 short_compare = 1;
8263 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8264 {
8265 if (comp_target_types (type0, type1))
8266 {
8267 result_type = common_pointer_type (type0, type1);
8268 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8269 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8270 pedwarn (input_location, 0,
8271 "comparison of complete and incomplete pointers");
8272 else if (TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8273 pedwarn (input_location, OPT_pedantic, "ISO C forbids "
8274 "ordered comparisons of pointers to functions");
8275 }
8276 else
8277 {
8278 result_type = ptr_type_node;
8279 pedwarn (input_location, 0,
8280 "comparison of distinct pointer types lacks a cast");
8281 }
8282 }
8283 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8284 {
8285 result_type = type0;
8286 if (pedantic)
8287 pedwarn (input_location, OPT_pedantic,
8288 "ordered comparison of pointer with integer zero");
8289 else if (extra_warnings)
8290 warning (OPT_Wextra,
8291 "ordered comparison of pointer with integer zero");
8292 }
8293 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8294 {
8295 result_type = type1;
8296 pedwarn (input_location, OPT_pedantic,
8297 "ordered comparison of pointer with integer zero");
8298 }
8299 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8300 {
8301 result_type = type0;
8302 pedwarn (input_location, 0, "comparison between pointer and integer");
8303 }
8304 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8305 {
8306 result_type = type1;
8307 pedwarn (input_location, 0, "comparison between pointer and integer");
8308 }
8309 break;
8310
8311 default:
8312 gcc_unreachable ();
8313 }
8314
8315 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8316 return error_mark_node;
8317
8318 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8319 && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8320 || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8321 TREE_TYPE (type1))))
8322 {
8323 binary_op_error (code, type0, type1);
8324 return error_mark_node;
8325 }
8326
8327 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8328 || code0 == FIXED_POINT_TYPE || code0 == VECTOR_TYPE)
8329 &&
8330 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8331 || code1 == FIXED_POINT_TYPE || code1 == VECTOR_TYPE))
8332 {
8333 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8334
8335 if (shorten || common || short_compare)
8336 {
8337 result_type = c_common_type (type0, type1);
8338 if (result_type == error_mark_node)
8339 return error_mark_node;
8340 }
8341
8342 /* For certain operations (which identify themselves by shorten != 0)
8343 if both args were extended from the same smaller type,
8344 do the arithmetic in that type and then extend.
8345
8346 shorten !=0 and !=1 indicates a bitwise operation.
8347 For them, this optimization is safe only if
8348 both args are zero-extended or both are sign-extended.
8349 Otherwise, we might change the result.
8350 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8351 but calculated in (unsigned short) it would be (unsigned short)-1. */
8352
8353 if (shorten && none_complex)
8354 {
8355 final_type = result_type;
8356 result_type = shorten_binary_op (result_type, op0, op1,
8357 shorten == -1);
8358 }
8359
8360 /* Shifts can be shortened if shifting right. */
8361
8362 if (short_shift)
8363 {
8364 int unsigned_arg;
8365 tree arg0 = get_narrower (op0, &unsigned_arg);
8366
8367 final_type = result_type;
8368
8369 if (arg0 == op0 && final_type == TREE_TYPE (op0))
8370 unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8371
8372 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8373 /* We can shorten only if the shift count is less than the
8374 number of bits in the smaller type size. */
8375 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8376 /* We cannot drop an unsigned shift after sign-extension. */
8377 && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8378 {
8379 /* Do an unsigned shift if the operand was zero-extended. */
8380 result_type
8381 = c_common_signed_or_unsigned_type (unsigned_arg,
8382 TREE_TYPE (arg0));
8383 /* Convert value-to-be-shifted to that type. */
8384 if (TREE_TYPE (op0) != result_type)
8385 op0 = convert (result_type, op0);
8386 converted = 1;
8387 }
8388 }
8389
8390 /* Comparison operations are shortened too but differently.
8391 They identify themselves by setting short_compare = 1. */
8392
8393 if (short_compare)
8394 {
8395 /* Don't write &op0, etc., because that would prevent op0
8396 from being kept in a register.
8397 Instead, make copies of the our local variables and
8398 pass the copies by reference, then copy them back afterward. */
8399 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8400 enum tree_code xresultcode = resultcode;
8401 tree val
8402 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8403
8404 if (val != 0)
8405 return val;
8406
8407 op0 = xop0, op1 = xop1;
8408 converted = 1;
8409 resultcode = xresultcode;
8410
8411 if (warn_sign_compare && !skip_evaluation)
8412 {
8413 warn_for_sign_compare (orig_op0, orig_op1, op0, op1,
8414 result_type, resultcode);
8415 }
8416 }
8417 }
8418
8419 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8420 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8421 Then the expression will be built.
8422 It will be given type FINAL_TYPE if that is nonzero;
8423 otherwise, it will be given type RESULT_TYPE. */
8424
8425 if (!result_type)
8426 {
8427 binary_op_error (code, TREE_TYPE (op0), TREE_TYPE (op1));
8428 return error_mark_node;
8429 }
8430
8431 if (!converted)
8432 {
8433 if (TREE_TYPE (op0) != result_type)
8434 op0 = convert_and_check (result_type, op0);
8435 if (TREE_TYPE (op1) != result_type)
8436 op1 = convert_and_check (result_type, op1);
8437
8438 /* This can happen if one operand has a vector type, and the other
8439 has a different type. */
8440 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8441 return error_mark_node;
8442 }
8443
8444 if (build_type == NULL_TREE)
8445 build_type = result_type;
8446
8447 {
8448 /* Treat expressions in initializers specially as they can't trap. */
8449 tree result = require_constant_value ? fold_build2_initializer (resultcode,
8450 build_type,
8451 op0, op1)
8452 : fold_build2 (resultcode, build_type,
8453 op0, op1);
8454
8455 if (final_type != 0)
8456 result = convert (final_type, result);
8457 return result;
8458 }
8459 }
8460
8461
8462 /* Convert EXPR to be a truth-value, validating its type for this
8463 purpose. */
8464
8465 tree
8466 c_objc_common_truthvalue_conversion (tree expr)
8467 {
8468 switch (TREE_CODE (TREE_TYPE (expr)))
8469 {
8470 case ARRAY_TYPE:
8471 error ("used array that cannot be converted to pointer where scalar is required");
8472 return error_mark_node;
8473
8474 case RECORD_TYPE:
8475 error ("used struct type value where scalar is required");
8476 return error_mark_node;
8477
8478 case UNION_TYPE:
8479 error ("used union type value where scalar is required");
8480 return error_mark_node;
8481
8482 case FUNCTION_TYPE:
8483 gcc_unreachable ();
8484
8485 default:
8486 break;
8487 }
8488
8489 /* ??? Should we also give an error for void and vectors rather than
8490 leaving those to give errors later? */
8491 return c_common_truthvalue_conversion (expr);
8492 }
8493 \f
8494
8495 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8496 required. */
8497
8498 tree
8499 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED, bool *se)
8500 {
8501 if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8502 {
8503 tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8504 /* Executing a compound literal inside a function reinitializes
8505 it. */
8506 if (!TREE_STATIC (decl))
8507 *se = true;
8508 return decl;
8509 }
8510 else
8511 return expr;
8512 }
8513 \f
8514 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
8515
8516 tree
8517 c_begin_omp_parallel (void)
8518 {
8519 tree block;
8520
8521 keep_next_level ();
8522 block = c_begin_compound_stmt (true);
8523
8524 return block;
8525 }
8526
8527 /* Generate OMP_PARALLEL, with CLAUSES and BLOCK as its compound statement. */
8528
8529 tree
8530 c_finish_omp_parallel (tree clauses, tree block)
8531 {
8532 tree stmt;
8533
8534 block = c_end_compound_stmt (block, true);
8535
8536 stmt = make_node (OMP_PARALLEL);
8537 TREE_TYPE (stmt) = void_type_node;
8538 OMP_PARALLEL_CLAUSES (stmt) = clauses;
8539 OMP_PARALLEL_BODY (stmt) = block;
8540
8541 return add_stmt (stmt);
8542 }
8543
8544 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
8545
8546 tree
8547 c_begin_omp_task (void)
8548 {
8549 tree block;
8550
8551 keep_next_level ();
8552 block = c_begin_compound_stmt (true);
8553
8554 return block;
8555 }
8556
8557 /* Generate OMP_TASK, with CLAUSES and BLOCK as its compound statement. */
8558
8559 tree
8560 c_finish_omp_task (tree clauses, tree block)
8561 {
8562 tree stmt;
8563
8564 block = c_end_compound_stmt (block, true);
8565
8566 stmt = make_node (OMP_TASK);
8567 TREE_TYPE (stmt) = void_type_node;
8568 OMP_TASK_CLAUSES (stmt) = clauses;
8569 OMP_TASK_BODY (stmt) = block;
8570
8571 return add_stmt (stmt);
8572 }
8573
8574 /* For all elements of CLAUSES, validate them vs OpenMP constraints.
8575 Remove any elements from the list that are invalid. */
8576
8577 tree
8578 c_finish_omp_clauses (tree clauses)
8579 {
8580 bitmap_head generic_head, firstprivate_head, lastprivate_head;
8581 tree c, t, *pc = &clauses;
8582 const char *name;
8583
8584 bitmap_obstack_initialize (NULL);
8585 bitmap_initialize (&generic_head, &bitmap_default_obstack);
8586 bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8587 bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8588
8589 for (pc = &clauses, c = clauses; c ; c = *pc)
8590 {
8591 bool remove = false;
8592 bool need_complete = false;
8593 bool need_implicitly_determined = false;
8594
8595 switch (OMP_CLAUSE_CODE (c))
8596 {
8597 case OMP_CLAUSE_SHARED:
8598 name = "shared";
8599 need_implicitly_determined = true;
8600 goto check_dup_generic;
8601
8602 case OMP_CLAUSE_PRIVATE:
8603 name = "private";
8604 need_complete = true;
8605 need_implicitly_determined = true;
8606 goto check_dup_generic;
8607
8608 case OMP_CLAUSE_REDUCTION:
8609 name = "reduction";
8610 need_implicitly_determined = true;
8611 t = OMP_CLAUSE_DECL (c);
8612 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8613 || POINTER_TYPE_P (TREE_TYPE (t)))
8614 {
8615 error ("%qE has invalid type for %<reduction%>", t);
8616 remove = true;
8617 }
8618 else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8619 {
8620 enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8621 const char *r_name = NULL;
8622
8623 switch (r_code)
8624 {
8625 case PLUS_EXPR:
8626 case MULT_EXPR:
8627 case MINUS_EXPR:
8628 break;
8629 case BIT_AND_EXPR:
8630 r_name = "&";
8631 break;
8632 case BIT_XOR_EXPR:
8633 r_name = "^";
8634 break;
8635 case BIT_IOR_EXPR:
8636 r_name = "|";
8637 break;
8638 case TRUTH_ANDIF_EXPR:
8639 r_name = "&&";
8640 break;
8641 case TRUTH_ORIF_EXPR:
8642 r_name = "||";
8643 break;
8644 default:
8645 gcc_unreachable ();
8646 }
8647 if (r_name)
8648 {
8649 error ("%qE has invalid type for %<reduction(%s)%>",
8650 t, r_name);
8651 remove = true;
8652 }
8653 }
8654 goto check_dup_generic;
8655
8656 case OMP_CLAUSE_COPYPRIVATE:
8657 name = "copyprivate";
8658 goto check_dup_generic;
8659
8660 case OMP_CLAUSE_COPYIN:
8661 name = "copyin";
8662 t = OMP_CLAUSE_DECL (c);
8663 if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8664 {
8665 error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8666 remove = true;
8667 }
8668 goto check_dup_generic;
8669
8670 check_dup_generic:
8671 t = OMP_CLAUSE_DECL (c);
8672 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8673 {
8674 error ("%qE is not a variable in clause %qs", t, name);
8675 remove = true;
8676 }
8677 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8678 || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8679 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8680 {
8681 error ("%qE appears more than once in data clauses", t);
8682 remove = true;
8683 }
8684 else
8685 bitmap_set_bit (&generic_head, DECL_UID (t));
8686 break;
8687
8688 case OMP_CLAUSE_FIRSTPRIVATE:
8689 name = "firstprivate";
8690 t = OMP_CLAUSE_DECL (c);
8691 need_complete = true;
8692 need_implicitly_determined = true;
8693 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8694 {
8695 error ("%qE is not a variable in clause %<firstprivate%>", t);
8696 remove = true;
8697 }
8698 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8699 || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8700 {
8701 error ("%qE appears more than once in data clauses", t);
8702 remove = true;
8703 }
8704 else
8705 bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8706 break;
8707
8708 case OMP_CLAUSE_LASTPRIVATE:
8709 name = "lastprivate";
8710 t = OMP_CLAUSE_DECL (c);
8711 need_complete = true;
8712 need_implicitly_determined = true;
8713 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8714 {
8715 error ("%qE is not a variable in clause %<lastprivate%>", t);
8716 remove = true;
8717 }
8718 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8719 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8720 {
8721 error ("%qE appears more than once in data clauses", t);
8722 remove = true;
8723 }
8724 else
8725 bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8726 break;
8727
8728 case OMP_CLAUSE_IF:
8729 case OMP_CLAUSE_NUM_THREADS:
8730 case OMP_CLAUSE_SCHEDULE:
8731 case OMP_CLAUSE_NOWAIT:
8732 case OMP_CLAUSE_ORDERED:
8733 case OMP_CLAUSE_DEFAULT:
8734 case OMP_CLAUSE_UNTIED:
8735 case OMP_CLAUSE_COLLAPSE:
8736 pc = &OMP_CLAUSE_CHAIN (c);
8737 continue;
8738
8739 default:
8740 gcc_unreachable ();
8741 }
8742
8743 if (!remove)
8744 {
8745 t = OMP_CLAUSE_DECL (c);
8746
8747 if (need_complete)
8748 {
8749 t = require_complete_type (t);
8750 if (t == error_mark_node)
8751 remove = true;
8752 }
8753
8754 if (need_implicitly_determined)
8755 {
8756 const char *share_name = NULL;
8757
8758 if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8759 share_name = "threadprivate";
8760 else switch (c_omp_predetermined_sharing (t))
8761 {
8762 case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8763 break;
8764 case OMP_CLAUSE_DEFAULT_SHARED:
8765 share_name = "shared";
8766 break;
8767 case OMP_CLAUSE_DEFAULT_PRIVATE:
8768 share_name = "private";
8769 break;
8770 default:
8771 gcc_unreachable ();
8772 }
8773 if (share_name)
8774 {
8775 error ("%qE is predetermined %qs for %qs",
8776 t, share_name, name);
8777 remove = true;
8778 }
8779 }
8780 }
8781
8782 if (remove)
8783 *pc = OMP_CLAUSE_CHAIN (c);
8784 else
8785 pc = &OMP_CLAUSE_CHAIN (c);
8786 }
8787
8788 bitmap_obstack_release (NULL);
8789 return clauses;
8790 }
8791
8792 /* Make a variant type in the proper way for C/C++, propagating qualifiers
8793 down to the element type of an array. */
8794
8795 tree
8796 c_build_qualified_type (tree type, int type_quals)
8797 {
8798 if (type == error_mark_node)
8799 return type;
8800
8801 if (TREE_CODE (type) == ARRAY_TYPE)
8802 {
8803 tree t;
8804 tree element_type = c_build_qualified_type (TREE_TYPE (type),
8805 type_quals);
8806
8807 /* See if we already have an identically qualified type. */
8808 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
8809 {
8810 if (TYPE_QUALS (strip_array_types (t)) == type_quals
8811 && TYPE_NAME (t) == TYPE_NAME (type)
8812 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
8813 && attribute_list_equal (TYPE_ATTRIBUTES (t),
8814 TYPE_ATTRIBUTES (type)))
8815 break;
8816 }
8817 if (!t)
8818 {
8819 tree domain = TYPE_DOMAIN (type);
8820
8821 t = build_variant_type_copy (type);
8822 TREE_TYPE (t) = element_type;
8823
8824 if (TYPE_STRUCTURAL_EQUALITY_P (element_type)
8825 || (domain && TYPE_STRUCTURAL_EQUALITY_P (domain)))
8826 SET_TYPE_STRUCTURAL_EQUALITY (t);
8827 else if (TYPE_CANONICAL (element_type) != element_type
8828 || (domain && TYPE_CANONICAL (domain) != domain))
8829 {
8830 tree unqualified_canon
8831 = build_array_type (TYPE_CANONICAL (element_type),
8832 domain? TYPE_CANONICAL (domain)
8833 : NULL_TREE);
8834 TYPE_CANONICAL (t)
8835 = c_build_qualified_type (unqualified_canon, type_quals);
8836 }
8837 else
8838 TYPE_CANONICAL (t) = t;
8839 }
8840 return t;
8841 }
8842
8843 /* A restrict-qualified pointer type must be a pointer to object or
8844 incomplete type. Note that the use of POINTER_TYPE_P also allows
8845 REFERENCE_TYPEs, which is appropriate for C++. */
8846 if ((type_quals & TYPE_QUAL_RESTRICT)
8847 && (!POINTER_TYPE_P (type)
8848 || !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type))))
8849 {
8850 error ("invalid use of %<restrict%>");
8851 type_quals &= ~TYPE_QUAL_RESTRICT;
8852 }
8853
8854 return build_qualified_type (type, type_quals);
8855 }