446da51acdf4dc86affa771074f28201c15dfbc4
[gcc.git] / gcc / caller-save.c
1 /* Save and restore call-clobbered registers which are live across a call.
2 Copyright (C) 1989, 1992, 1994, 1995, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "insn-config.h"
29 #include "flags.h"
30 #include "hard-reg-set.h"
31 #include "recog.h"
32 #include "basic-block.h"
33 #include "df.h"
34 #include "reload.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "diagnostic-core.h"
38 #include "toplev.h"
39 #include "tm_p.h"
40 #include "addresses.h"
41 #include "output.h"
42 #include "ggc.h"
43
44 #define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
45
46 #define regno_save_mode \
47 (this_target_reload->x_regno_save_mode)
48 #define cached_reg_save_code \
49 (this_target_reload->x_cached_reg_save_code)
50 #define cached_reg_restore_code \
51 (this_target_reload->x_cached_reg_restore_code)
52
53 /* For each hard register, a place on the stack where it can be saved,
54 if needed. */
55
56 static rtx
57 regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
58
59 /* The number of elements in the subsequent array. */
60 static int save_slots_num;
61
62 /* Allocated slots so far. */
63 static rtx save_slots[FIRST_PSEUDO_REGISTER];
64
65 /* Set of hard regs currently residing in save area (during insn scan). */
66
67 static HARD_REG_SET hard_regs_saved;
68
69 /* Number of registers currently in hard_regs_saved. */
70
71 static int n_regs_saved;
72
73 /* Computed by mark_referenced_regs, all regs referenced in a given
74 insn. */
75 static HARD_REG_SET referenced_regs;
76
77
78 typedef void refmarker_fn (rtx *loc, enum machine_mode mode, int hardregno,
79 void *mark_arg);
80
81 static int reg_save_code (int, enum machine_mode);
82 static int reg_restore_code (int, enum machine_mode);
83
84 struct saved_hard_reg;
85 static void initiate_saved_hard_regs (void);
86 static struct saved_hard_reg *new_saved_hard_reg (int, int);
87 static void finish_saved_hard_regs (void);
88 static int saved_hard_reg_compare_func (const void *, const void *);
89
90 static void mark_set_regs (rtx, const_rtx, void *);
91 static void mark_referenced_regs (rtx *, refmarker_fn *mark, void *mark_arg);
92 static refmarker_fn mark_reg_as_referenced;
93 static refmarker_fn replace_reg_with_saved_mem;
94 static int insert_save (struct insn_chain *, int, int, HARD_REG_SET *,
95 enum machine_mode *);
96 static int insert_restore (struct insn_chain *, int, int, int,
97 enum machine_mode *);
98 static struct insn_chain *insert_one_insn (struct insn_chain *, int, int,
99 rtx);
100 static void add_stored_regs (rtx, const_rtx, void *);
101
102 \f
103
104 static GTY(()) rtx savepat;
105 static GTY(()) rtx restpat;
106 static GTY(()) rtx test_reg;
107 static GTY(()) rtx test_mem;
108 static GTY(()) rtx saveinsn;
109 static GTY(()) rtx restinsn;
110
111 /* Return the INSN_CODE used to save register REG in mode MODE. */
112 static int
113 reg_save_code (int reg, enum machine_mode mode)
114 {
115 bool ok;
116 if (cached_reg_save_code[reg][mode])
117 return cached_reg_save_code[reg][mode];
118 if (!HARD_REGNO_MODE_OK (reg, mode))
119 {
120 cached_reg_save_code[reg][mode] = -1;
121 cached_reg_restore_code[reg][mode] = -1;
122 return -1;
123 }
124
125 /* Update the register number and modes of the register
126 and memory operand. */
127 SET_REGNO_RAW (test_reg, reg);
128 PUT_MODE (test_reg, mode);
129 PUT_MODE (test_mem, mode);
130
131 /* Force re-recognition of the modified insns. */
132 INSN_CODE (saveinsn) = -1;
133 INSN_CODE (restinsn) = -1;
134
135 cached_reg_save_code[reg][mode] = recog_memoized (saveinsn);
136 cached_reg_restore_code[reg][mode] = recog_memoized (restinsn);
137
138 /* Now extract both insns and see if we can meet their
139 constraints. */
140 ok = (cached_reg_save_code[reg][mode] != -1
141 && cached_reg_restore_code[reg][mode] != -1);
142 if (ok)
143 {
144 extract_insn (saveinsn);
145 ok = constrain_operands (1);
146 extract_insn (restinsn);
147 ok &= constrain_operands (1);
148 }
149
150 if (! ok)
151 {
152 cached_reg_save_code[reg][mode] = -1;
153 cached_reg_restore_code[reg][mode] = -1;
154 }
155 gcc_assert (cached_reg_save_code[reg][mode]);
156 return cached_reg_save_code[reg][mode];
157 }
158
159 /* Return the INSN_CODE used to restore register REG in mode MODE. */
160 static int
161 reg_restore_code (int reg, enum machine_mode mode)
162 {
163 if (cached_reg_restore_code[reg][mode])
164 return cached_reg_restore_code[reg][mode];
165 /* Populate our cache. */
166 reg_save_code (reg, mode);
167 return cached_reg_restore_code[reg][mode];
168 }
169 \f
170 /* Initialize for caller-save.
171
172 Look at all the hard registers that are used by a call and for which
173 reginfo.c has not already excluded from being used across a call.
174
175 Ensure that we can find a mode to save the register and that there is a
176 simple insn to save and restore the register. This latter check avoids
177 problems that would occur if we tried to save the MQ register of some
178 machines directly into memory. */
179
180 void
181 init_caller_save (void)
182 {
183 rtx addr_reg;
184 int offset;
185 rtx address;
186 int i, j;
187
188 if (caller_save_initialized_p)
189 return;
190
191 caller_save_initialized_p = true;
192
193 CLEAR_HARD_REG_SET (no_caller_save_reg_set);
194 /* First find all the registers that we need to deal with and all
195 the modes that they can have. If we can't find a mode to use,
196 we can't have the register live over calls. */
197
198 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
199 {
200 if (call_used_regs[i]
201 && !TEST_HARD_REG_BIT (call_fixed_reg_set, i))
202 {
203 for (j = 1; j <= MOVE_MAX_WORDS; j++)
204 {
205 regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j,
206 VOIDmode);
207 if (regno_save_mode[i][j] == VOIDmode && j == 1)
208 {
209 SET_HARD_REG_BIT (call_fixed_reg_set, i);
210 }
211 }
212 }
213 else
214 regno_save_mode[i][1] = VOIDmode;
215 }
216
217 /* The following code tries to approximate the conditions under which
218 we can easily save and restore a register without scratch registers or
219 other complexities. It will usually work, except under conditions where
220 the validity of an insn operand is dependent on the address offset.
221 No such cases are currently known.
222
223 We first find a typical offset from some BASE_REG_CLASS register.
224 This address is chosen by finding the first register in the class
225 and by finding the smallest power of two that is a valid offset from
226 that register in every mode we will use to save registers. */
227
228 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
229 if (TEST_HARD_REG_BIT
230 (reg_class_contents
231 [(int) base_reg_class (regno_save_mode[i][1], PLUS, CONST_INT)], i))
232 break;
233
234 gcc_assert (i < FIRST_PSEUDO_REGISTER);
235
236 addr_reg = gen_rtx_REG (Pmode, i);
237
238 for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
239 {
240 address = gen_rtx_PLUS (Pmode, addr_reg, GEN_INT (offset));
241
242 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
243 if (regno_save_mode[i][1] != VOIDmode
244 && ! strict_memory_address_p (regno_save_mode[i][1], address))
245 break;
246
247 if (i == FIRST_PSEUDO_REGISTER)
248 break;
249 }
250
251 /* If we didn't find a valid address, we must use register indirect. */
252 if (offset == 0)
253 address = addr_reg;
254
255 /* Next we try to form an insn to save and restore the register. We
256 see if such an insn is recognized and meets its constraints.
257
258 To avoid lots of unnecessary RTL allocation, we construct all the RTL
259 once, then modify the memory and register operands in-place. */
260
261 test_reg = gen_rtx_REG (VOIDmode, 0);
262 test_mem = gen_rtx_MEM (VOIDmode, address);
263 savepat = gen_rtx_SET (VOIDmode, test_mem, test_reg);
264 restpat = gen_rtx_SET (VOIDmode, test_reg, test_mem);
265
266 saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, savepat, 0, -1, 0);
267 restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, restpat, 0, -1, 0);
268
269 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
270 for (j = 1; j <= MOVE_MAX_WORDS; j++)
271 if (reg_save_code (i,regno_save_mode[i][j]) == -1)
272 {
273 regno_save_mode[i][j] = VOIDmode;
274 if (j == 1)
275 {
276 SET_HARD_REG_BIT (call_fixed_reg_set, i);
277 if (call_used_regs[i])
278 SET_HARD_REG_BIT (no_caller_save_reg_set, i);
279 }
280 }
281 }
282
283 \f
284
285 /* Initialize save areas by showing that we haven't allocated any yet. */
286
287 void
288 init_save_areas (void)
289 {
290 int i, j;
291
292 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
293 for (j = 1; j <= MOVE_MAX_WORDS; j++)
294 regno_save_mem[i][j] = 0;
295 save_slots_num = 0;
296
297 }
298
299 /* The structure represents a hard register which should be saved
300 through the call. It is used when the integrated register
301 allocator (IRA) is used and sharing save slots is on. */
302 struct saved_hard_reg
303 {
304 /* Order number starting with 0. */
305 int num;
306 /* The hard regno. */
307 int hard_regno;
308 /* Execution frequency of all calls through which given hard
309 register should be saved. */
310 int call_freq;
311 /* Stack slot reserved to save the hard register through calls. */
312 rtx slot;
313 /* True if it is first hard register in the chain of hard registers
314 sharing the same stack slot. */
315 int first_p;
316 /* Order number of the next hard register structure with the same
317 slot in the chain. -1 represents end of the chain. */
318 int next;
319 };
320
321 /* Map: hard register number to the corresponding structure. */
322 static struct saved_hard_reg *hard_reg_map[FIRST_PSEUDO_REGISTER];
323
324 /* The number of all structures representing hard registers should be
325 saved, in order words, the number of used elements in the following
326 array. */
327 static int saved_regs_num;
328
329 /* Pointers to all the structures. Index is the order number of the
330 corresponding structure. */
331 static struct saved_hard_reg *all_saved_regs[FIRST_PSEUDO_REGISTER];
332
333 /* First called function for work with saved hard registers. */
334 static void
335 initiate_saved_hard_regs (void)
336 {
337 int i;
338
339 saved_regs_num = 0;
340 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
341 hard_reg_map[i] = NULL;
342 }
343
344 /* Allocate and return new saved hard register with given REGNO and
345 CALL_FREQ. */
346 static struct saved_hard_reg *
347 new_saved_hard_reg (int regno, int call_freq)
348 {
349 struct saved_hard_reg *saved_reg;
350
351 saved_reg
352 = (struct saved_hard_reg *) xmalloc (sizeof (struct saved_hard_reg));
353 hard_reg_map[regno] = all_saved_regs[saved_regs_num] = saved_reg;
354 saved_reg->num = saved_regs_num++;
355 saved_reg->hard_regno = regno;
356 saved_reg->call_freq = call_freq;
357 saved_reg->first_p = FALSE;
358 saved_reg->next = -1;
359 return saved_reg;
360 }
361
362 /* Free memory allocated for the saved hard registers. */
363 static void
364 finish_saved_hard_regs (void)
365 {
366 int i;
367
368 for (i = 0; i < saved_regs_num; i++)
369 free (all_saved_regs[i]);
370 }
371
372 /* The function is used to sort the saved hard register structures
373 according their frequency. */
374 static int
375 saved_hard_reg_compare_func (const void *v1p, const void *v2p)
376 {
377 const struct saved_hard_reg *p1 = *(struct saved_hard_reg * const *) v1p;
378 const struct saved_hard_reg *p2 = *(struct saved_hard_reg * const *) v2p;
379
380 if (flag_omit_frame_pointer)
381 {
382 if (p1->call_freq - p2->call_freq != 0)
383 return p1->call_freq - p2->call_freq;
384 }
385 else if (p2->call_freq - p1->call_freq != 0)
386 return p2->call_freq - p1->call_freq;
387
388 return p1->num - p2->num;
389 }
390
391 /* Allocate save areas for any hard registers that might need saving.
392 We take a conservative approach here and look for call-clobbered hard
393 registers that are assigned to pseudos that cross calls. This may
394 overestimate slightly (especially if some of these registers are later
395 used as spill registers), but it should not be significant.
396
397 For IRA we use priority coloring to decrease stack slots needed for
398 saving hard registers through calls. We build conflicts for them
399 to do coloring.
400
401 Future work:
402
403 In the fallback case we should iterate backwards across all possible
404 modes for the save, choosing the largest available one instead of
405 falling back to the smallest mode immediately. (eg TF -> DF -> SF).
406
407 We do not try to use "move multiple" instructions that exist
408 on some machines (such as the 68k moveml). It could be a win to try
409 and use them when possible. The hard part is doing it in a way that is
410 machine independent since they might be saving non-consecutive
411 registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
412
413 void
414 setup_save_areas (void)
415 {
416 int i, j, k;
417 unsigned int r;
418 HARD_REG_SET hard_regs_used;
419
420 /* Allocate space in the save area for the largest multi-register
421 pseudos first, then work backwards to single register
422 pseudos. */
423
424 /* Find and record all call-used hard-registers in this function. */
425 CLEAR_HARD_REG_SET (hard_regs_used);
426 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
427 if (reg_renumber[i] >= 0 && REG_N_CALLS_CROSSED (i) > 0)
428 {
429 unsigned int regno = reg_renumber[i];
430 unsigned int endregno
431 = end_hard_regno (GET_MODE (regno_reg_rtx[i]), regno);
432 for (r = regno; r < endregno; r++)
433 if (call_used_regs[r])
434 SET_HARD_REG_BIT (hard_regs_used, r);
435 }
436
437 if (optimize && flag_ira_share_save_slots)
438 {
439 rtx insn, slot;
440 struct insn_chain *chain, *next;
441 char *saved_reg_conflicts;
442 unsigned int regno;
443 int next_k, freq;
444 struct saved_hard_reg *saved_reg, *saved_reg2, *saved_reg3;
445 int call_saved_regs_num;
446 struct saved_hard_reg *call_saved_regs[FIRST_PSEUDO_REGISTER];
447 HARD_REG_SET hard_regs_to_save, used_regs, this_insn_sets;
448 reg_set_iterator rsi;
449 int best_slot_num;
450 int prev_save_slots_num;
451 rtx prev_save_slots[FIRST_PSEUDO_REGISTER];
452
453 initiate_saved_hard_regs ();
454 /* Create hard reg saved regs. */
455 for (chain = reload_insn_chain; chain != 0; chain = next)
456 {
457 insn = chain->insn;
458 next = chain->next;
459 if (!CALL_P (insn)
460 || find_reg_note (insn, REG_NORETURN, NULL))
461 continue;
462 freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn));
463 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
464 &chain->live_throughout);
465 COPY_HARD_REG_SET (used_regs, call_used_reg_set);
466
467 /* Record all registers set in this call insn. These don't
468 need to be saved. N.B. the call insn might set a subreg
469 of a multi-hard-reg pseudo; then the pseudo is considered
470 live during the call, but the subreg that is set
471 isn't. */
472 CLEAR_HARD_REG_SET (this_insn_sets);
473 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
474 /* Sibcalls are considered to set the return value. */
475 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
476 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
477
478 AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
479 AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
480 AND_HARD_REG_SET (hard_regs_to_save, used_regs);
481 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
482 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
483 {
484 if (hard_reg_map[regno] != NULL)
485 hard_reg_map[regno]->call_freq += freq;
486 else
487 saved_reg = new_saved_hard_reg (regno, freq);
488 }
489 /* Look through all live pseudos, mark their hard registers. */
490 EXECUTE_IF_SET_IN_REG_SET
491 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
492 {
493 int r = reg_renumber[regno];
494 int bound;
495
496 if (r < 0)
497 continue;
498
499 bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
500 for (; r < bound; r++)
501 if (TEST_HARD_REG_BIT (used_regs, r))
502 {
503 if (hard_reg_map[r] != NULL)
504 hard_reg_map[r]->call_freq += freq;
505 else
506 saved_reg = new_saved_hard_reg (r, freq);
507 SET_HARD_REG_BIT (hard_regs_to_save, r);
508 }
509 }
510 }
511 /* Find saved hard register conflicts. */
512 saved_reg_conflicts = (char *) xmalloc (saved_regs_num * saved_regs_num);
513 memset (saved_reg_conflicts, 0, saved_regs_num * saved_regs_num);
514 for (chain = reload_insn_chain; chain != 0; chain = next)
515 {
516 call_saved_regs_num = 0;
517 insn = chain->insn;
518 next = chain->next;
519 if (!CALL_P (insn)
520 || find_reg_note (insn, REG_NORETURN, NULL))
521 continue;
522 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
523 &chain->live_throughout);
524 COPY_HARD_REG_SET (used_regs, call_used_reg_set);
525
526 /* Record all registers set in this call insn. These don't
527 need to be saved. N.B. the call insn might set a subreg
528 of a multi-hard-reg pseudo; then the pseudo is considered
529 live during the call, but the subreg that is set
530 isn't. */
531 CLEAR_HARD_REG_SET (this_insn_sets);
532 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
533 /* Sibcalls are considered to set the return value,
534 compare df-scan.c:df_get_call_refs. */
535 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
536 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
537
538 AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
539 AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
540 AND_HARD_REG_SET (hard_regs_to_save, used_regs);
541 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
542 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
543 {
544 gcc_assert (hard_reg_map[regno] != NULL);
545 call_saved_regs[call_saved_regs_num++] = hard_reg_map[regno];
546 }
547 /* Look through all live pseudos, mark their hard registers. */
548 EXECUTE_IF_SET_IN_REG_SET
549 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
550 {
551 int r = reg_renumber[regno];
552 int bound;
553
554 if (r < 0)
555 continue;
556
557 bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
558 for (; r < bound; r++)
559 if (TEST_HARD_REG_BIT (used_regs, r))
560 call_saved_regs[call_saved_regs_num++] = hard_reg_map[r];
561 }
562 for (i = 0; i < call_saved_regs_num; i++)
563 {
564 saved_reg = call_saved_regs[i];
565 for (j = 0; j < call_saved_regs_num; j++)
566 if (i != j)
567 {
568 saved_reg2 = call_saved_regs[j];
569 saved_reg_conflicts[saved_reg->num * saved_regs_num
570 + saved_reg2->num]
571 = saved_reg_conflicts[saved_reg2->num * saved_regs_num
572 + saved_reg->num]
573 = TRUE;
574 }
575 }
576 }
577 /* Sort saved hard regs. */
578 qsort (all_saved_regs, saved_regs_num, sizeof (struct saved_hard_reg *),
579 saved_hard_reg_compare_func);
580 /* Initiate slots available from the previous reload
581 iteration. */
582 prev_save_slots_num = save_slots_num;
583 memcpy (prev_save_slots, save_slots, save_slots_num * sizeof (rtx));
584 save_slots_num = 0;
585 /* Allocate stack slots for the saved hard registers. */
586 for (i = 0; i < saved_regs_num; i++)
587 {
588 saved_reg = all_saved_regs[i];
589 regno = saved_reg->hard_regno;
590 for (j = 0; j < i; j++)
591 {
592 saved_reg2 = all_saved_regs[j];
593 if (! saved_reg2->first_p)
594 continue;
595 slot = saved_reg2->slot;
596 for (k = j; k >= 0; k = next_k)
597 {
598 saved_reg3 = all_saved_regs[k];
599 next_k = saved_reg3->next;
600 if (saved_reg_conflicts[saved_reg->num * saved_regs_num
601 + saved_reg3->num])
602 break;
603 }
604 if (k < 0
605 && (GET_MODE_SIZE (regno_save_mode[regno][1])
606 <= GET_MODE_SIZE (regno_save_mode
607 [saved_reg2->hard_regno][1])))
608 {
609 saved_reg->slot
610 = adjust_address_nv
611 (slot, regno_save_mode[saved_reg->hard_regno][1], 0);
612 regno_save_mem[regno][1] = saved_reg->slot;
613 saved_reg->next = saved_reg2->next;
614 saved_reg2->next = i;
615 if (dump_file != NULL)
616 fprintf (dump_file, "%d uses slot of %d\n",
617 regno, saved_reg2->hard_regno);
618 break;
619 }
620 }
621 if (j == i)
622 {
623 saved_reg->first_p = TRUE;
624 for (best_slot_num = -1, j = 0; j < prev_save_slots_num; j++)
625 {
626 slot = prev_save_slots[j];
627 if (slot == NULL_RTX)
628 continue;
629 if (GET_MODE_SIZE (regno_save_mode[regno][1])
630 <= GET_MODE_SIZE (GET_MODE (slot))
631 && best_slot_num < 0)
632 best_slot_num = j;
633 if (GET_MODE (slot) == regno_save_mode[regno][1])
634 break;
635 }
636 if (best_slot_num >= 0)
637 {
638 saved_reg->slot = prev_save_slots[best_slot_num];
639 saved_reg->slot
640 = adjust_address_nv
641 (saved_reg->slot,
642 regno_save_mode[saved_reg->hard_regno][1], 0);
643 if (dump_file != NULL)
644 fprintf (dump_file,
645 "%d uses a slot from prev iteration\n", regno);
646 prev_save_slots[best_slot_num] = NULL_RTX;
647 if (best_slot_num + 1 == prev_save_slots_num)
648 prev_save_slots_num--;
649 }
650 else
651 {
652 saved_reg->slot
653 = assign_stack_local_1
654 (regno_save_mode[regno][1],
655 GET_MODE_SIZE (regno_save_mode[regno][1]), 0, true);
656 if (dump_file != NULL)
657 fprintf (dump_file, "%d uses a new slot\n", regno);
658 }
659 regno_save_mem[regno][1] = saved_reg->slot;
660 save_slots[save_slots_num++] = saved_reg->slot;
661 }
662 }
663 free (saved_reg_conflicts);
664 finish_saved_hard_regs ();
665 }
666 else
667 {
668 /* Now run through all the call-used hard-registers and allocate
669 space for them in the caller-save area. Try to allocate space
670 in a manner which allows multi-register saves/restores to be done. */
671
672 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
673 for (j = MOVE_MAX_WORDS; j > 0; j--)
674 {
675 int do_save = 1;
676
677 /* If no mode exists for this size, try another. Also break out
678 if we have already saved this hard register. */
679 if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
680 continue;
681
682 /* See if any register in this group has been saved. */
683 for (k = 0; k < j; k++)
684 if (regno_save_mem[i + k][1])
685 {
686 do_save = 0;
687 break;
688 }
689 if (! do_save)
690 continue;
691
692 for (k = 0; k < j; k++)
693 if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
694 {
695 do_save = 0;
696 break;
697 }
698 if (! do_save)
699 continue;
700
701 /* We have found an acceptable mode to store in. Since
702 hard register is always saved in the widest mode
703 available, the mode may be wider than necessary, it is
704 OK to reduce the alignment of spill space. We will
705 verify that it is equal to or greater than required
706 when we restore and save the hard register in
707 insert_restore and insert_save. */
708 regno_save_mem[i][j]
709 = assign_stack_local_1 (regno_save_mode[i][j],
710 GET_MODE_SIZE (regno_save_mode[i][j]),
711 0, true);
712
713 /* Setup single word save area just in case... */
714 for (k = 0; k < j; k++)
715 /* This should not depend on WORDS_BIG_ENDIAN.
716 The order of words in regs is the same as in memory. */
717 regno_save_mem[i + k][1]
718 = adjust_address_nv (regno_save_mem[i][j],
719 regno_save_mode[i + k][1],
720 k * UNITS_PER_WORD);
721 }
722 }
723
724 /* Now loop again and set the alias set of any save areas we made to
725 the alias set used to represent frame objects. */
726 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
727 for (j = MOVE_MAX_WORDS; j > 0; j--)
728 if (regno_save_mem[i][j] != 0)
729 set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
730 }
731
732 \f
733
734 /* Find the places where hard regs are live across calls and save them. */
735
736 void
737 save_call_clobbered_regs (void)
738 {
739 struct insn_chain *chain, *next, *last = NULL;
740 enum machine_mode save_mode [FIRST_PSEUDO_REGISTER];
741
742 /* Computed in mark_set_regs, holds all registers set by the current
743 instruction. */
744 HARD_REG_SET this_insn_sets;
745
746 CLEAR_HARD_REG_SET (hard_regs_saved);
747 n_regs_saved = 0;
748
749 for (chain = reload_insn_chain; chain != 0; chain = next)
750 {
751 rtx insn = chain->insn;
752 enum rtx_code code = GET_CODE (insn);
753
754 next = chain->next;
755
756 gcc_assert (!chain->is_caller_save_insn);
757
758 if (NONDEBUG_INSN_P (insn))
759 {
760 /* If some registers have been saved, see if INSN references
761 any of them. We must restore them before the insn if so. */
762
763 if (n_regs_saved)
764 {
765 int regno;
766 HARD_REG_SET this_insn_sets;
767
768 if (code == JUMP_INSN)
769 /* Restore all registers if this is a JUMP_INSN. */
770 COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
771 else
772 {
773 CLEAR_HARD_REG_SET (referenced_regs);
774 mark_referenced_regs (&PATTERN (insn),
775 mark_reg_as_referenced, NULL);
776 AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
777 }
778
779 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
780 if (TEST_HARD_REG_BIT (referenced_regs, regno))
781 regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS,
782 save_mode);
783 /* If a saved register is set after the call, this means we no
784 longer should restore it. This can happen when parts of a
785 multi-word pseudo do not conflict with other pseudos, so
786 IRA may allocate the same hard register for both. One may
787 be live across the call, while the other is set
788 afterwards. */
789 CLEAR_HARD_REG_SET (this_insn_sets);
790 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
791 AND_COMPL_HARD_REG_SET (hard_regs_saved, this_insn_sets);
792 }
793
794 if (code == CALL_INSN
795 && ! SIBLING_CALL_P (insn)
796 && ! find_reg_note (insn, REG_NORETURN, NULL))
797 {
798 unsigned regno;
799 HARD_REG_SET hard_regs_to_save;
800 reg_set_iterator rsi;
801
802 /* Use the register life information in CHAIN to compute which
803 regs are live during the call. */
804 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
805 &chain->live_throughout);
806 /* Save hard registers always in the widest mode available. */
807 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
808 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
809 save_mode [regno] = regno_save_mode [regno][1];
810 else
811 save_mode [regno] = VOIDmode;
812
813 /* Look through all live pseudos, mark their hard registers
814 and choose proper mode for saving. */
815 EXECUTE_IF_SET_IN_REG_SET
816 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
817 {
818 int r = reg_renumber[regno];
819 int nregs;
820 enum machine_mode mode;
821
822 if (r < 0)
823 continue;
824 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
825 mode = HARD_REGNO_CALLER_SAVE_MODE
826 (r, nregs, PSEUDO_REGNO_MODE (regno));
827 if (GET_MODE_BITSIZE (mode)
828 > GET_MODE_BITSIZE (save_mode[r]))
829 save_mode[r] = mode;
830 while (nregs-- > 0)
831 SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
832 }
833
834 /* Record all registers set in this call insn. These don't need
835 to be saved. N.B. the call insn might set a subreg of a
836 multi-hard-reg pseudo; then the pseudo is considered live
837 during the call, but the subreg that is set isn't. */
838 CLEAR_HARD_REG_SET (this_insn_sets);
839 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
840
841 /* Compute which hard regs must be saved before this call. */
842 AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
843 AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
844 AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
845 AND_HARD_REG_SET (hard_regs_to_save, call_used_reg_set);
846
847 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
848 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
849 regno += insert_save (chain, 1, regno, &hard_regs_to_save, save_mode);
850
851 /* Must recompute n_regs_saved. */
852 n_regs_saved = 0;
853 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
854 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
855 n_regs_saved++;
856 }
857 last = chain;
858 }
859 else if (DEBUG_INSN_P (insn) && n_regs_saved)
860 mark_referenced_regs (&PATTERN (insn),
861 replace_reg_with_saved_mem,
862 save_mode);
863
864 if (chain->next == 0 || chain->next->block != chain->block)
865 {
866 int regno;
867 /* At the end of the basic block, we must restore any registers that
868 remain saved. If the last insn in the block is a JUMP_INSN, put
869 the restore before the insn, otherwise, put it after the insn. */
870
871 if (DEBUG_INSN_P (insn) && last && last->block == chain->block)
872 {
873 rtx ins, prev;
874 basic_block bb = BLOCK_FOR_INSN (insn);
875
876 /* When adding hard reg restores after a DEBUG_INSN, move
877 all notes between last real insn and this DEBUG_INSN after
878 the DEBUG_INSN, otherwise we could get code
879 -g/-g0 differences. */
880 for (ins = PREV_INSN (insn); ins != last->insn; ins = prev)
881 {
882 prev = PREV_INSN (ins);
883 if (NOTE_P (ins))
884 {
885 NEXT_INSN (prev) = NEXT_INSN (ins);
886 PREV_INSN (NEXT_INSN (ins)) = prev;
887 PREV_INSN (ins) = insn;
888 NEXT_INSN (ins) = NEXT_INSN (insn);
889 NEXT_INSN (insn) = ins;
890 if (NEXT_INSN (ins))
891 PREV_INSN (NEXT_INSN (ins)) = ins;
892 if (BB_END (bb) == insn)
893 BB_END (bb) = ins;
894 }
895 else
896 gcc_assert (DEBUG_INSN_P (ins));
897 }
898 }
899 last = NULL;
900
901 if (n_regs_saved)
902 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
903 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
904 regno += insert_restore (chain, JUMP_P (insn),
905 regno, MOVE_MAX_WORDS, save_mode);
906 }
907 }
908 }
909
910 /* Here from note_stores, or directly from save_call_clobbered_regs, when
911 an insn stores a value in a register.
912 Set the proper bit or bits in this_insn_sets. All pseudos that have
913 been assigned hard regs have had their register number changed already,
914 so we can ignore pseudos. */
915 static void
916 mark_set_regs (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *data)
917 {
918 int regno, endregno, i;
919 HARD_REG_SET *this_insn_sets = (HARD_REG_SET *) data;
920
921 if (GET_CODE (reg) == SUBREG)
922 {
923 rtx inner = SUBREG_REG (reg);
924 if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
925 return;
926 regno = subreg_regno (reg);
927 endregno = regno + subreg_nregs (reg);
928 }
929 else if (REG_P (reg)
930 && REGNO (reg) < FIRST_PSEUDO_REGISTER)
931 {
932 regno = REGNO (reg);
933 endregno = END_HARD_REGNO (reg);
934 }
935 else
936 return;
937
938 for (i = regno; i < endregno; i++)
939 SET_HARD_REG_BIT (*this_insn_sets, i);
940 }
941
942 /* Here from note_stores when an insn stores a value in a register.
943 Set the proper bit or bits in the passed regset. All pseudos that have
944 been assigned hard regs have had their register number changed already,
945 so we can ignore pseudos. */
946 static void
947 add_stored_regs (rtx reg, const_rtx setter, void *data)
948 {
949 int regno, endregno, i;
950 enum machine_mode mode = GET_MODE (reg);
951 int offset = 0;
952
953 if (GET_CODE (setter) == CLOBBER)
954 return;
955
956 if (GET_CODE (reg) == SUBREG
957 && REG_P (SUBREG_REG (reg))
958 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
959 {
960 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
961 GET_MODE (SUBREG_REG (reg)),
962 SUBREG_BYTE (reg),
963 GET_MODE (reg));
964 regno = REGNO (SUBREG_REG (reg)) + offset;
965 endregno = regno + subreg_nregs (reg);
966 }
967 else
968 {
969 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
970 return;
971
972 regno = REGNO (reg) + offset;
973 endregno = end_hard_regno (mode, regno);
974 }
975
976 for (i = regno; i < endregno; i++)
977 SET_REGNO_REG_SET ((regset) data, i);
978 }
979
980 /* Walk X and record all referenced registers in REFERENCED_REGS. */
981 static void
982 mark_referenced_regs (rtx *loc, refmarker_fn *mark, void *arg)
983 {
984 enum rtx_code code = GET_CODE (*loc);
985 const char *fmt;
986 int i, j;
987
988 if (code == SET)
989 mark_referenced_regs (&SET_SRC (*loc), mark, arg);
990 if (code == SET || code == CLOBBER)
991 {
992 loc = &SET_DEST (*loc);
993 code = GET_CODE (*loc);
994 if ((code == REG && REGNO (*loc) < FIRST_PSEUDO_REGISTER)
995 || code == PC || code == CC0
996 || (code == SUBREG && REG_P (SUBREG_REG (*loc))
997 && REGNO (SUBREG_REG (*loc)) < FIRST_PSEUDO_REGISTER
998 /* If we're setting only part of a multi-word register,
999 we shall mark it as referenced, because the words
1000 that are not being set should be restored. */
1001 && ((GET_MODE_SIZE (GET_MODE (*loc))
1002 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc))))
1003 || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc)))
1004 <= UNITS_PER_WORD))))
1005 return;
1006 }
1007 if (code == MEM || code == SUBREG)
1008 {
1009 loc = &XEXP (*loc, 0);
1010 code = GET_CODE (*loc);
1011 }
1012
1013 if (code == REG)
1014 {
1015 int regno = REGNO (*loc);
1016 int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
1017 : reg_renumber[regno]);
1018
1019 if (hardregno >= 0)
1020 mark (loc, GET_MODE (*loc), hardregno, arg);
1021 else if (arg)
1022 /* ??? Will we ever end up with an equiv expression in a debug
1023 insn, that would have required restoring a reg, or will
1024 reload take care of it for us? */
1025 return;
1026 /* If this is a pseudo that did not get a hard register, scan its
1027 memory location, since it might involve the use of another
1028 register, which might be saved. */
1029 else if (reg_equiv_mem[regno] != 0)
1030 mark_referenced_regs (&XEXP (reg_equiv_mem[regno], 0), mark, arg);
1031 else if (reg_equiv_address[regno] != 0)
1032 mark_referenced_regs (&reg_equiv_address[regno], mark, arg);
1033 return;
1034 }
1035
1036 fmt = GET_RTX_FORMAT (code);
1037 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1038 {
1039 if (fmt[i] == 'e')
1040 mark_referenced_regs (&XEXP (*loc, i), mark, arg);
1041 else if (fmt[i] == 'E')
1042 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
1043 mark_referenced_regs (&XVECEXP (*loc, i, j), mark, arg);
1044 }
1045 }
1046
1047 /* Parameter function for mark_referenced_regs() that adds registers
1048 present in the insn and in equivalent mems and addresses to
1049 referenced_regs. */
1050
1051 static void
1052 mark_reg_as_referenced (rtx *loc ATTRIBUTE_UNUSED,
1053 enum machine_mode mode,
1054 int hardregno,
1055 void *arg ATTRIBUTE_UNUSED)
1056 {
1057 add_to_hard_reg_set (&referenced_regs, mode, hardregno);
1058 }
1059
1060 /* Parameter function for mark_referenced_regs() that replaces
1061 registers referenced in a debug_insn that would have been restored,
1062 should it be a non-debug_insn, with their save locations. */
1063
1064 static void
1065 replace_reg_with_saved_mem (rtx *loc,
1066 enum machine_mode mode,
1067 int regno,
1068 void *arg)
1069 {
1070 unsigned int i, nregs = hard_regno_nregs [regno][mode];
1071 rtx mem;
1072 enum machine_mode *save_mode = (enum machine_mode *)arg;
1073
1074 for (i = 0; i < nregs; i++)
1075 if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1076 break;
1077
1078 /* If none of the registers in the range would need restoring, we're
1079 all set. */
1080 if (i == nregs)
1081 return;
1082
1083 while (++i < nregs)
1084 if (!TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1085 break;
1086
1087 if (i == nregs
1088 && regno_save_mem[regno][nregs])
1089 {
1090 mem = copy_rtx (regno_save_mem[regno][nregs]);
1091
1092 if (nregs == (unsigned int) hard_regno_nregs[regno][save_mode[regno]])
1093 mem = adjust_address_nv (mem, save_mode[regno], 0);
1094
1095 if (GET_MODE (mem) != mode)
1096 {
1097 /* This is gen_lowpart_if_possible(), but without validating
1098 the newly-formed address. */
1099 int offset = 0;
1100
1101 if (WORDS_BIG_ENDIAN)
1102 offset = (MAX (GET_MODE_SIZE (GET_MODE (mem)), UNITS_PER_WORD)
1103 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1104 if (BYTES_BIG_ENDIAN)
1105 /* Adjust the address so that the address-after-the-data is
1106 unchanged. */
1107 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1108 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (mem))));
1109
1110 mem = adjust_address_nv (mem, mode, offset);
1111 }
1112 }
1113 else
1114 {
1115 mem = gen_rtx_CONCATN (mode, rtvec_alloc (nregs));
1116 for (i = 0; i < nregs; i++)
1117 if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1118 {
1119 gcc_assert (regno_save_mem[regno + i][1]);
1120 XVECEXP (mem, 0, i) = copy_rtx (regno_save_mem[regno + i][1]);
1121 }
1122 else
1123 {
1124 gcc_assert (save_mode[regno] != VOIDmode);
1125 XVECEXP (mem, 0, i) = gen_rtx_REG (save_mode [regno],
1126 regno + i);
1127 }
1128 }
1129
1130 gcc_assert (GET_MODE (mem) == mode);
1131 *loc = mem;
1132 }
1133
1134 \f
1135 /* Insert a sequence of insns to restore. Place these insns in front of
1136 CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
1137 the maximum number of registers which should be restored during this call.
1138 It should never be less than 1 since we only work with entire registers.
1139
1140 Note that we have verified in init_caller_save that we can do this
1141 with a simple SET, so use it. Set INSN_CODE to what we save there
1142 since the address might not be valid so the insn might not be recognized.
1143 These insns will be reloaded and have register elimination done by
1144 find_reload, so we need not worry about that here.
1145
1146 Return the extra number of registers saved. */
1147
1148 static int
1149 insert_restore (struct insn_chain *chain, int before_p, int regno,
1150 int maxrestore, enum machine_mode *save_mode)
1151 {
1152 int i, k;
1153 rtx pat = NULL_RTX;
1154 int code;
1155 unsigned int numregs = 0;
1156 struct insn_chain *new_chain;
1157 rtx mem;
1158
1159 /* A common failure mode if register status is not correct in the
1160 RTL is for this routine to be called with a REGNO we didn't
1161 expect to save. That will cause us to write an insn with a (nil)
1162 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1163 later, check for this common case here instead. This will remove
1164 one step in debugging such problems. */
1165 gcc_assert (regno_save_mem[regno][1]);
1166
1167 /* Get the pattern to emit and update our status.
1168
1169 See if we can restore `maxrestore' registers at once. Work
1170 backwards to the single register case. */
1171 for (i = maxrestore; i > 0; i--)
1172 {
1173 int j;
1174 int ok = 1;
1175
1176 if (regno_save_mem[regno][i] == 0)
1177 continue;
1178
1179 for (j = 0; j < i; j++)
1180 if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
1181 {
1182 ok = 0;
1183 break;
1184 }
1185 /* Must do this one restore at a time. */
1186 if (! ok)
1187 continue;
1188
1189 numregs = i;
1190 break;
1191 }
1192
1193 mem = regno_save_mem [regno][numregs];
1194 if (save_mode [regno] != VOIDmode
1195 && save_mode [regno] != GET_MODE (mem)
1196 && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
1197 /* Check that insn to restore REGNO in save_mode[regno] is
1198 correct. */
1199 && reg_save_code (regno, save_mode[regno]) >= 0)
1200 mem = adjust_address_nv (mem, save_mode[regno], 0);
1201 else
1202 mem = copy_rtx (mem);
1203
1204 /* Verify that the alignment of spill space is equal to or greater
1205 than required. */
1206 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1207 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1208
1209 pat = gen_rtx_SET (VOIDmode,
1210 gen_rtx_REG (GET_MODE (mem),
1211 regno), mem);
1212 code = reg_restore_code (regno, GET_MODE (mem));
1213 new_chain = insert_one_insn (chain, before_p, code, pat);
1214
1215 /* Clear status for all registers we restored. */
1216 for (k = 0; k < i; k++)
1217 {
1218 CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
1219 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1220 n_regs_saved--;
1221 }
1222
1223 /* Tell our callers how many extra registers we saved/restored. */
1224 return numregs - 1;
1225 }
1226
1227 /* Like insert_restore above, but save registers instead. */
1228
1229 static int
1230 insert_save (struct insn_chain *chain, int before_p, int regno,
1231 HARD_REG_SET (*to_save), enum machine_mode *save_mode)
1232 {
1233 int i;
1234 unsigned int k;
1235 rtx pat = NULL_RTX;
1236 int code;
1237 unsigned int numregs = 0;
1238 struct insn_chain *new_chain;
1239 rtx mem;
1240
1241 /* A common failure mode if register status is not correct in the
1242 RTL is for this routine to be called with a REGNO we didn't
1243 expect to save. That will cause us to write an insn with a (nil)
1244 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1245 later, check for this common case here. This will remove one
1246 step in debugging such problems. */
1247 gcc_assert (regno_save_mem[regno][1]);
1248
1249 /* Get the pattern to emit and update our status.
1250
1251 See if we can save several registers with a single instruction.
1252 Work backwards to the single register case. */
1253 for (i = MOVE_MAX_WORDS; i > 0; i--)
1254 {
1255 int j;
1256 int ok = 1;
1257 if (regno_save_mem[regno][i] == 0)
1258 continue;
1259
1260 for (j = 0; j < i; j++)
1261 if (! TEST_HARD_REG_BIT (*to_save, regno + j))
1262 {
1263 ok = 0;
1264 break;
1265 }
1266 /* Must do this one save at a time. */
1267 if (! ok)
1268 continue;
1269
1270 numregs = i;
1271 break;
1272 }
1273
1274 mem = regno_save_mem [regno][numregs];
1275 if (save_mode [regno] != VOIDmode
1276 && save_mode [regno] != GET_MODE (mem)
1277 && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
1278 /* Check that insn to save REGNO in save_mode[regno] is
1279 correct. */
1280 && reg_save_code (regno, save_mode[regno]) >= 0)
1281 mem = adjust_address_nv (mem, save_mode[regno], 0);
1282 else
1283 mem = copy_rtx (mem);
1284
1285 /* Verify that the alignment of spill space is equal to or greater
1286 than required. */
1287 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1288 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1289
1290 pat = gen_rtx_SET (VOIDmode, mem,
1291 gen_rtx_REG (GET_MODE (mem),
1292 regno));
1293 code = reg_save_code (regno, GET_MODE (mem));
1294 new_chain = insert_one_insn (chain, before_p, code, pat);
1295
1296 /* Set hard_regs_saved and dead_or_set for all the registers we saved. */
1297 for (k = 0; k < numregs; k++)
1298 {
1299 SET_HARD_REG_BIT (hard_regs_saved, regno + k);
1300 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1301 n_regs_saved++;
1302 }
1303
1304 /* Tell our callers how many extra registers we saved/restored. */
1305 return numregs - 1;
1306 }
1307
1308 /* A for_each_rtx callback used by add_used_regs. Add the hard-register
1309 equivalent of each REG to regset DATA. */
1310
1311 static int
1312 add_used_regs_1 (rtx *loc, void *data)
1313 {
1314 int regno, i;
1315 regset live;
1316 rtx x;
1317
1318 x = *loc;
1319 live = (regset) data;
1320 if (REG_P (x))
1321 {
1322 regno = REGNO (x);
1323 if (!HARD_REGISTER_NUM_P (regno))
1324 regno = reg_renumber[regno];
1325 if (regno >= 0)
1326 for (i = hard_regno_nregs[regno][GET_MODE (x)] - 1; i >= 0; i--)
1327 SET_REGNO_REG_SET (live, regno + i);
1328 }
1329 return 0;
1330 }
1331
1332 /* A note_uses callback used by insert_one_insn. Add the hard-register
1333 equivalent of each REG to regset DATA. */
1334
1335 static void
1336 add_used_regs (rtx *loc, void *data)
1337 {
1338 for_each_rtx (loc, add_used_regs_1, data);
1339 }
1340
1341 /* Emit a new caller-save insn and set the code. */
1342 static struct insn_chain *
1343 insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat)
1344 {
1345 rtx insn = chain->insn;
1346 struct insn_chain *new_chain;
1347
1348 #ifdef HAVE_cc0
1349 /* If INSN references CC0, put our insns in front of the insn that sets
1350 CC0. This is always safe, since the only way we could be passed an
1351 insn that references CC0 is for a restore, and doing a restore earlier
1352 isn't a problem. We do, however, assume here that CALL_INSNs don't
1353 reference CC0. Guard against non-INSN's like CODE_LABEL. */
1354
1355 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
1356 && before_p
1357 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
1358 chain = chain->prev, insn = chain->insn;
1359 #endif
1360
1361 new_chain = new_insn_chain ();
1362 if (before_p)
1363 {
1364 rtx link;
1365
1366 new_chain->prev = chain->prev;
1367 if (new_chain->prev != 0)
1368 new_chain->prev->next = new_chain;
1369 else
1370 reload_insn_chain = new_chain;
1371
1372 chain->prev = new_chain;
1373 new_chain->next = chain;
1374 new_chain->insn = emit_insn_before (pat, insn);
1375 /* ??? It would be nice if we could exclude the already / still saved
1376 registers from the live sets. */
1377 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1378 note_uses (&PATTERN (chain->insn), add_used_regs,
1379 &new_chain->live_throughout);
1380 /* If CHAIN->INSN is a call, then the registers which contain
1381 the arguments to the function are live in the new insn. */
1382 if (CALL_P (chain->insn))
1383 for (link = CALL_INSN_FUNCTION_USAGE (chain->insn);
1384 link != NULL_RTX;
1385 link = XEXP (link, 1))
1386 note_uses (&XEXP (link, 0), add_used_regs,
1387 &new_chain->live_throughout);
1388
1389 CLEAR_REG_SET (&new_chain->dead_or_set);
1390 if (chain->insn == BB_HEAD (BASIC_BLOCK (chain->block)))
1391 BB_HEAD (BASIC_BLOCK (chain->block)) = new_chain->insn;
1392 }
1393 else
1394 {
1395 new_chain->next = chain->next;
1396 if (new_chain->next != 0)
1397 new_chain->next->prev = new_chain;
1398 chain->next = new_chain;
1399 new_chain->prev = chain;
1400 new_chain->insn = emit_insn_after (pat, insn);
1401 /* ??? It would be nice if we could exclude the already / still saved
1402 registers from the live sets, and observe REG_UNUSED notes. */
1403 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1404 /* Registers that are set in CHAIN->INSN live in the new insn.
1405 (Unless there is a REG_UNUSED note for them, but we don't
1406 look for them here.) */
1407 note_stores (PATTERN (chain->insn), add_stored_regs,
1408 &new_chain->live_throughout);
1409 CLEAR_REG_SET (&new_chain->dead_or_set);
1410 if (chain->insn == BB_END (BASIC_BLOCK (chain->block)))
1411 BB_END (BASIC_BLOCK (chain->block)) = new_chain->insn;
1412 }
1413 new_chain->block = chain->block;
1414 new_chain->is_caller_save_insn = 1;
1415
1416 INSN_CODE (new_chain->insn) = code;
1417 return new_chain;
1418 }
1419 #include "gt-caller-save.h"