re PR debug/66691 (ICE on valid code at -O3 with -g enabled in simplify_subreg, at...
[gcc.git] / gcc / caller-save.c
1 /* Save and restore call-clobbered registers which are live across a call.
2 Copyright (C) 1989-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "regs.h"
26 #include "insn-config.h"
27 #include "flags.h"
28 #include "hard-reg-set.h"
29 #include "recog.h"
30 #include "predict.h"
31 #include "function.h"
32 #include "dominance.h"
33 #include "cfg.h"
34 #include "basic-block.h"
35 #include "df.h"
36 #include "reload.h"
37 #include "symtab.h"
38 #include "alias.h"
39 #include "tree.h"
40 #include "expmed.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "calls.h"
44 #include "emit-rtl.h"
45 #include "varasm.h"
46 #include "stmt.h"
47 #include "expr.h"
48 #include "diagnostic-core.h"
49 #include "tm_p.h"
50 #include "addresses.h"
51 #include "dumpfile.h"
52 #include "rtl-iter.h"
53
54 #define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
55
56 #define regno_save_mode \
57 (this_target_reload->x_regno_save_mode)
58 #define cached_reg_save_code \
59 (this_target_reload->x_cached_reg_save_code)
60 #define cached_reg_restore_code \
61 (this_target_reload->x_cached_reg_restore_code)
62
63 /* For each hard register, a place on the stack where it can be saved,
64 if needed. */
65
66 static rtx
67 regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
68
69 /* The number of elements in the subsequent array. */
70 static int save_slots_num;
71
72 /* Allocated slots so far. */
73 static rtx save_slots[FIRST_PSEUDO_REGISTER];
74
75 /* Set of hard regs currently residing in save area (during insn scan). */
76
77 static HARD_REG_SET hard_regs_saved;
78
79 /* Number of registers currently in hard_regs_saved. */
80
81 static int n_regs_saved;
82
83 /* Computed by mark_referenced_regs, all regs referenced in a given
84 insn. */
85 static HARD_REG_SET referenced_regs;
86
87
88 typedef void refmarker_fn (rtx *loc, machine_mode mode, int hardregno,
89 void *mark_arg);
90
91 static int reg_save_code (int, machine_mode);
92 static int reg_restore_code (int, machine_mode);
93
94 struct saved_hard_reg;
95 static void initiate_saved_hard_regs (void);
96 static void new_saved_hard_reg (int, int);
97 static void finish_saved_hard_regs (void);
98 static int saved_hard_reg_compare_func (const void *, const void *);
99
100 static void mark_set_regs (rtx, const_rtx, void *);
101 static void mark_referenced_regs (rtx *, refmarker_fn *mark, void *mark_arg);
102 static refmarker_fn mark_reg_as_referenced;
103 static refmarker_fn replace_reg_with_saved_mem;
104 static int insert_save (struct insn_chain *, int, int, HARD_REG_SET *,
105 machine_mode *);
106 static int insert_restore (struct insn_chain *, int, int, int,
107 machine_mode *);
108 static struct insn_chain *insert_one_insn (struct insn_chain *, int, int,
109 rtx);
110 static void add_stored_regs (rtx, const_rtx, void *);
111
112 \f
113
114 static GTY(()) rtx savepat;
115 static GTY(()) rtx restpat;
116 static GTY(()) rtx test_reg;
117 static GTY(()) rtx test_mem;
118 static GTY(()) rtx_insn *saveinsn;
119 static GTY(()) rtx_insn *restinsn;
120
121 /* Return the INSN_CODE used to save register REG in mode MODE. */
122 static int
123 reg_save_code (int reg, machine_mode mode)
124 {
125 bool ok;
126 if (cached_reg_save_code[reg][mode])
127 return cached_reg_save_code[reg][mode];
128 if (!HARD_REGNO_MODE_OK (reg, mode))
129 {
130 /* Depending on how HARD_REGNO_MODE_OK is defined, range propagation
131 might deduce here that reg >= FIRST_PSEUDO_REGISTER. So the assert
132 below silences a warning. */
133 gcc_assert (reg < FIRST_PSEUDO_REGISTER);
134 cached_reg_save_code[reg][mode] = -1;
135 cached_reg_restore_code[reg][mode] = -1;
136 return -1;
137 }
138
139 /* Update the register number and modes of the register
140 and memory operand. */
141 set_mode_and_regno (test_reg, mode, reg);
142 PUT_MODE (test_mem, mode);
143
144 /* Force re-recognition of the modified insns. */
145 INSN_CODE (saveinsn) = -1;
146 INSN_CODE (restinsn) = -1;
147
148 cached_reg_save_code[reg][mode] = recog_memoized (saveinsn);
149 cached_reg_restore_code[reg][mode] = recog_memoized (restinsn);
150
151 /* Now extract both insns and see if we can meet their
152 constraints. We don't know here whether the save and restore will
153 be in size- or speed-tuned code, so just use the set of enabled
154 alternatives. */
155 ok = (cached_reg_save_code[reg][mode] != -1
156 && cached_reg_restore_code[reg][mode] != -1);
157 if (ok)
158 {
159 extract_insn (saveinsn);
160 ok = constrain_operands (1, get_enabled_alternatives (saveinsn));
161 extract_insn (restinsn);
162 ok &= constrain_operands (1, get_enabled_alternatives (restinsn));
163 }
164
165 if (! ok)
166 {
167 cached_reg_save_code[reg][mode] = -1;
168 cached_reg_restore_code[reg][mode] = -1;
169 }
170 gcc_assert (cached_reg_save_code[reg][mode]);
171 return cached_reg_save_code[reg][mode];
172 }
173
174 /* Return the INSN_CODE used to restore register REG in mode MODE. */
175 static int
176 reg_restore_code (int reg, machine_mode mode)
177 {
178 if (cached_reg_restore_code[reg][mode])
179 return cached_reg_restore_code[reg][mode];
180 /* Populate our cache. */
181 reg_save_code (reg, mode);
182 return cached_reg_restore_code[reg][mode];
183 }
184 \f
185 /* Initialize for caller-save.
186
187 Look at all the hard registers that are used by a call and for which
188 reginfo.c has not already excluded from being used across a call.
189
190 Ensure that we can find a mode to save the register and that there is a
191 simple insn to save and restore the register. This latter check avoids
192 problems that would occur if we tried to save the MQ register of some
193 machines directly into memory. */
194
195 void
196 init_caller_save (void)
197 {
198 rtx addr_reg;
199 int offset;
200 rtx address;
201 int i, j;
202
203 if (caller_save_initialized_p)
204 return;
205
206 caller_save_initialized_p = true;
207
208 CLEAR_HARD_REG_SET (no_caller_save_reg_set);
209 /* First find all the registers that we need to deal with and all
210 the modes that they can have. If we can't find a mode to use,
211 we can't have the register live over calls. */
212
213 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
214 {
215 if (call_used_regs[i]
216 && !TEST_HARD_REG_BIT (call_fixed_reg_set, i))
217 {
218 for (j = 1; j <= MOVE_MAX_WORDS; j++)
219 {
220 regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j,
221 VOIDmode);
222 if (regno_save_mode[i][j] == VOIDmode && j == 1)
223 {
224 SET_HARD_REG_BIT (call_fixed_reg_set, i);
225 }
226 }
227 }
228 else
229 regno_save_mode[i][1] = VOIDmode;
230 }
231
232 /* The following code tries to approximate the conditions under which
233 we can easily save and restore a register without scratch registers or
234 other complexities. It will usually work, except under conditions where
235 the validity of an insn operand is dependent on the address offset.
236 No such cases are currently known.
237
238 We first find a typical offset from some BASE_REG_CLASS register.
239 This address is chosen by finding the first register in the class
240 and by finding the smallest power of two that is a valid offset from
241 that register in every mode we will use to save registers. */
242
243 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
244 if (TEST_HARD_REG_BIT
245 (reg_class_contents
246 [(int) base_reg_class (regno_save_mode[i][1], ADDR_SPACE_GENERIC,
247 PLUS, CONST_INT)], i))
248 break;
249
250 gcc_assert (i < FIRST_PSEUDO_REGISTER);
251
252 addr_reg = gen_rtx_REG (Pmode, i);
253
254 for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
255 {
256 address = gen_rtx_PLUS (Pmode, addr_reg, gen_int_mode (offset, Pmode));
257
258 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
259 if (regno_save_mode[i][1] != VOIDmode
260 && ! strict_memory_address_p (regno_save_mode[i][1], address))
261 break;
262
263 if (i == FIRST_PSEUDO_REGISTER)
264 break;
265 }
266
267 /* If we didn't find a valid address, we must use register indirect. */
268 if (offset == 0)
269 address = addr_reg;
270
271 /* Next we try to form an insn to save and restore the register. We
272 see if such an insn is recognized and meets its constraints.
273
274 To avoid lots of unnecessary RTL allocation, we construct all the RTL
275 once, then modify the memory and register operands in-place. */
276
277 test_reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
278 test_mem = gen_rtx_MEM (word_mode, address);
279 savepat = gen_rtx_SET (test_mem, test_reg);
280 restpat = gen_rtx_SET (test_reg, test_mem);
281
282 saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, savepat, 0, -1, 0);
283 restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, restpat, 0, -1, 0);
284
285 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
286 for (j = 1; j <= MOVE_MAX_WORDS; j++)
287 if (reg_save_code (i,regno_save_mode[i][j]) == -1)
288 {
289 regno_save_mode[i][j] = VOIDmode;
290 if (j == 1)
291 {
292 SET_HARD_REG_BIT (call_fixed_reg_set, i);
293 if (call_used_regs[i])
294 SET_HARD_REG_BIT (no_caller_save_reg_set, i);
295 }
296 }
297 }
298
299 \f
300
301 /* Initialize save areas by showing that we haven't allocated any yet. */
302
303 void
304 init_save_areas (void)
305 {
306 int i, j;
307
308 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
309 for (j = 1; j <= MOVE_MAX_WORDS; j++)
310 regno_save_mem[i][j] = 0;
311 save_slots_num = 0;
312
313 }
314
315 /* The structure represents a hard register which should be saved
316 through the call. It is used when the integrated register
317 allocator (IRA) is used and sharing save slots is on. */
318 struct saved_hard_reg
319 {
320 /* Order number starting with 0. */
321 int num;
322 /* The hard regno. */
323 int hard_regno;
324 /* Execution frequency of all calls through which given hard
325 register should be saved. */
326 int call_freq;
327 /* Stack slot reserved to save the hard register through calls. */
328 rtx slot;
329 /* True if it is first hard register in the chain of hard registers
330 sharing the same stack slot. */
331 int first_p;
332 /* Order number of the next hard register structure with the same
333 slot in the chain. -1 represents end of the chain. */
334 int next;
335 };
336
337 /* Map: hard register number to the corresponding structure. */
338 static struct saved_hard_reg *hard_reg_map[FIRST_PSEUDO_REGISTER];
339
340 /* The number of all structures representing hard registers should be
341 saved, in order words, the number of used elements in the following
342 array. */
343 static int saved_regs_num;
344
345 /* Pointers to all the structures. Index is the order number of the
346 corresponding structure. */
347 static struct saved_hard_reg *all_saved_regs[FIRST_PSEUDO_REGISTER];
348
349 /* First called function for work with saved hard registers. */
350 static void
351 initiate_saved_hard_regs (void)
352 {
353 int i;
354
355 saved_regs_num = 0;
356 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
357 hard_reg_map[i] = NULL;
358 }
359
360 /* Allocate and return new saved hard register with given REGNO and
361 CALL_FREQ. */
362 static void
363 new_saved_hard_reg (int regno, int call_freq)
364 {
365 struct saved_hard_reg *saved_reg;
366
367 saved_reg
368 = (struct saved_hard_reg *) xmalloc (sizeof (struct saved_hard_reg));
369 hard_reg_map[regno] = all_saved_regs[saved_regs_num] = saved_reg;
370 saved_reg->num = saved_regs_num++;
371 saved_reg->hard_regno = regno;
372 saved_reg->call_freq = call_freq;
373 saved_reg->first_p = FALSE;
374 saved_reg->next = -1;
375 }
376
377 /* Free memory allocated for the saved hard registers. */
378 static void
379 finish_saved_hard_regs (void)
380 {
381 int i;
382
383 for (i = 0; i < saved_regs_num; i++)
384 free (all_saved_regs[i]);
385 }
386
387 /* The function is used to sort the saved hard register structures
388 according their frequency. */
389 static int
390 saved_hard_reg_compare_func (const void *v1p, const void *v2p)
391 {
392 const struct saved_hard_reg *p1 = *(struct saved_hard_reg * const *) v1p;
393 const struct saved_hard_reg *p2 = *(struct saved_hard_reg * const *) v2p;
394
395 if (flag_omit_frame_pointer)
396 {
397 if (p1->call_freq - p2->call_freq != 0)
398 return p1->call_freq - p2->call_freq;
399 }
400 else if (p2->call_freq - p1->call_freq != 0)
401 return p2->call_freq - p1->call_freq;
402
403 return p1->num - p2->num;
404 }
405
406 /* Allocate save areas for any hard registers that might need saving.
407 We take a conservative approach here and look for call-clobbered hard
408 registers that are assigned to pseudos that cross calls. This may
409 overestimate slightly (especially if some of these registers are later
410 used as spill registers), but it should not be significant.
411
412 For IRA we use priority coloring to decrease stack slots needed for
413 saving hard registers through calls. We build conflicts for them
414 to do coloring.
415
416 Future work:
417
418 In the fallback case we should iterate backwards across all possible
419 modes for the save, choosing the largest available one instead of
420 falling back to the smallest mode immediately. (eg TF -> DF -> SF).
421
422 We do not try to use "move multiple" instructions that exist
423 on some machines (such as the 68k moveml). It could be a win to try
424 and use them when possible. The hard part is doing it in a way that is
425 machine independent since they might be saving non-consecutive
426 registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
427
428 void
429 setup_save_areas (void)
430 {
431 int i, j, k, freq;
432 HARD_REG_SET hard_regs_used;
433 struct saved_hard_reg *saved_reg;
434 rtx_insn *insn;
435 struct insn_chain *chain, *next;
436 unsigned int regno;
437 HARD_REG_SET hard_regs_to_save, used_regs, this_insn_sets;
438 reg_set_iterator rsi;
439
440 CLEAR_HARD_REG_SET (hard_regs_used);
441
442 /* Find every CALL_INSN and record which hard regs are live across the
443 call into HARD_REG_MAP and HARD_REGS_USED. */
444 initiate_saved_hard_regs ();
445 /* Create hard reg saved regs. */
446 for (chain = reload_insn_chain; chain != 0; chain = next)
447 {
448 rtx cheap;
449
450 insn = chain->insn;
451 next = chain->next;
452 if (!CALL_P (insn)
453 || find_reg_note (insn, REG_NORETURN, NULL))
454 continue;
455 freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn));
456 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
457 &chain->live_throughout);
458 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
459
460 /* Record all registers set in this call insn. These don't
461 need to be saved. N.B. the call insn might set a subreg
462 of a multi-hard-reg pseudo; then the pseudo is considered
463 live during the call, but the subreg that is set
464 isn't. */
465 CLEAR_HARD_REG_SET (this_insn_sets);
466 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
467 /* Sibcalls are considered to set the return value. */
468 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
469 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
470
471 AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
472 AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
473 AND_HARD_REG_SET (hard_regs_to_save, used_regs);
474 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
475 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
476 {
477 if (hard_reg_map[regno] != NULL)
478 hard_reg_map[regno]->call_freq += freq;
479 else
480 new_saved_hard_reg (regno, freq);
481 SET_HARD_REG_BIT (hard_regs_used, regno);
482 }
483 cheap = find_reg_note (insn, REG_RETURNED, NULL);
484 if (cheap)
485 cheap = XEXP (cheap, 0);
486 /* Look through all live pseudos, mark their hard registers. */
487 EXECUTE_IF_SET_IN_REG_SET
488 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
489 {
490 int r = reg_renumber[regno];
491 int bound;
492
493 if (r < 0 || regno_reg_rtx[regno] == cheap)
494 continue;
495
496 bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
497 for (; r < bound; r++)
498 if (TEST_HARD_REG_BIT (used_regs, r))
499 {
500 if (hard_reg_map[r] != NULL)
501 hard_reg_map[r]->call_freq += freq;
502 else
503 new_saved_hard_reg (r, freq);
504 SET_HARD_REG_BIT (hard_regs_to_save, r);
505 SET_HARD_REG_BIT (hard_regs_used, r);
506 }
507 }
508 }
509
510 /* If requested, figure out which hard regs can share save slots. */
511 if (optimize && flag_ira_share_save_slots)
512 {
513 rtx slot;
514 char *saved_reg_conflicts;
515 int next_k;
516 struct saved_hard_reg *saved_reg2, *saved_reg3;
517 int call_saved_regs_num;
518 struct saved_hard_reg *call_saved_regs[FIRST_PSEUDO_REGISTER];
519 int best_slot_num;
520 int prev_save_slots_num;
521 rtx prev_save_slots[FIRST_PSEUDO_REGISTER];
522
523 /* Find saved hard register conflicts. */
524 saved_reg_conflicts = (char *) xmalloc (saved_regs_num * saved_regs_num);
525 memset (saved_reg_conflicts, 0, saved_regs_num * saved_regs_num);
526 for (chain = reload_insn_chain; chain != 0; chain = next)
527 {
528 rtx cheap;
529 call_saved_regs_num = 0;
530 insn = chain->insn;
531 next = chain->next;
532 if (!CALL_P (insn)
533 || find_reg_note (insn, REG_NORETURN, NULL))
534 continue;
535
536 cheap = find_reg_note (insn, REG_RETURNED, NULL);
537 if (cheap)
538 cheap = XEXP (cheap, 0);
539
540 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
541 &chain->live_throughout);
542 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
543
544 /* Record all registers set in this call insn. These don't
545 need to be saved. N.B. the call insn might set a subreg
546 of a multi-hard-reg pseudo; then the pseudo is considered
547 live during the call, but the subreg that is set
548 isn't. */
549 CLEAR_HARD_REG_SET (this_insn_sets);
550 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
551 /* Sibcalls are considered to set the return value,
552 compare df-scan.c:df_get_call_refs. */
553 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
554 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
555
556 AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
557 AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
558 AND_HARD_REG_SET (hard_regs_to_save, used_regs);
559 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
560 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
561 {
562 gcc_assert (hard_reg_map[regno] != NULL);
563 call_saved_regs[call_saved_regs_num++] = hard_reg_map[regno];
564 }
565 /* Look through all live pseudos, mark their hard registers. */
566 EXECUTE_IF_SET_IN_REG_SET
567 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
568 {
569 int r = reg_renumber[regno];
570 int bound;
571
572 if (r < 0 || regno_reg_rtx[regno] == cheap)
573 continue;
574
575 bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
576 for (; r < bound; r++)
577 if (TEST_HARD_REG_BIT (used_regs, r))
578 call_saved_regs[call_saved_regs_num++] = hard_reg_map[r];
579 }
580 for (i = 0; i < call_saved_regs_num; i++)
581 {
582 saved_reg = call_saved_regs[i];
583 for (j = 0; j < call_saved_regs_num; j++)
584 if (i != j)
585 {
586 saved_reg2 = call_saved_regs[j];
587 saved_reg_conflicts[saved_reg->num * saved_regs_num
588 + saved_reg2->num]
589 = saved_reg_conflicts[saved_reg2->num * saved_regs_num
590 + saved_reg->num]
591 = TRUE;
592 }
593 }
594 }
595 /* Sort saved hard regs. */
596 qsort (all_saved_regs, saved_regs_num, sizeof (struct saved_hard_reg *),
597 saved_hard_reg_compare_func);
598 /* Initiate slots available from the previous reload
599 iteration. */
600 prev_save_slots_num = save_slots_num;
601 memcpy (prev_save_slots, save_slots, save_slots_num * sizeof (rtx));
602 save_slots_num = 0;
603 /* Allocate stack slots for the saved hard registers. */
604 for (i = 0; i < saved_regs_num; i++)
605 {
606 saved_reg = all_saved_regs[i];
607 regno = saved_reg->hard_regno;
608 for (j = 0; j < i; j++)
609 {
610 saved_reg2 = all_saved_regs[j];
611 if (! saved_reg2->first_p)
612 continue;
613 slot = saved_reg2->slot;
614 for (k = j; k >= 0; k = next_k)
615 {
616 saved_reg3 = all_saved_regs[k];
617 next_k = saved_reg3->next;
618 if (saved_reg_conflicts[saved_reg->num * saved_regs_num
619 + saved_reg3->num])
620 break;
621 }
622 if (k < 0
623 && (GET_MODE_SIZE (regno_save_mode[regno][1])
624 <= GET_MODE_SIZE (regno_save_mode
625 [saved_reg2->hard_regno][1])))
626 {
627 saved_reg->slot
628 = adjust_address_nv
629 (slot, regno_save_mode[saved_reg->hard_regno][1], 0);
630 regno_save_mem[regno][1] = saved_reg->slot;
631 saved_reg->next = saved_reg2->next;
632 saved_reg2->next = i;
633 if (dump_file != NULL)
634 fprintf (dump_file, "%d uses slot of %d\n",
635 regno, saved_reg2->hard_regno);
636 break;
637 }
638 }
639 if (j == i)
640 {
641 saved_reg->first_p = TRUE;
642 for (best_slot_num = -1, j = 0; j < prev_save_slots_num; j++)
643 {
644 slot = prev_save_slots[j];
645 if (slot == NULL_RTX)
646 continue;
647 if (GET_MODE_SIZE (regno_save_mode[regno][1])
648 <= GET_MODE_SIZE (GET_MODE (slot))
649 && best_slot_num < 0)
650 best_slot_num = j;
651 if (GET_MODE (slot) == regno_save_mode[regno][1])
652 break;
653 }
654 if (best_slot_num >= 0)
655 {
656 saved_reg->slot = prev_save_slots[best_slot_num];
657 saved_reg->slot
658 = adjust_address_nv
659 (saved_reg->slot,
660 regno_save_mode[saved_reg->hard_regno][1], 0);
661 if (dump_file != NULL)
662 fprintf (dump_file,
663 "%d uses a slot from prev iteration\n", regno);
664 prev_save_slots[best_slot_num] = NULL_RTX;
665 if (best_slot_num + 1 == prev_save_slots_num)
666 prev_save_slots_num--;
667 }
668 else
669 {
670 saved_reg->slot
671 = assign_stack_local_1
672 (regno_save_mode[regno][1],
673 GET_MODE_SIZE (regno_save_mode[regno][1]), 0,
674 ASLK_REDUCE_ALIGN);
675 if (dump_file != NULL)
676 fprintf (dump_file, "%d uses a new slot\n", regno);
677 }
678 regno_save_mem[regno][1] = saved_reg->slot;
679 save_slots[save_slots_num++] = saved_reg->slot;
680 }
681 }
682 free (saved_reg_conflicts);
683 finish_saved_hard_regs ();
684 }
685 else
686 {
687 /* We are not sharing slots.
688
689 Run through all the call-used hard-registers and allocate
690 space for each in the caller-save area. Try to allocate space
691 in a manner which allows multi-register saves/restores to be done. */
692
693 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
694 for (j = MOVE_MAX_WORDS; j > 0; j--)
695 {
696 int do_save = 1;
697
698 /* If no mode exists for this size, try another. Also break out
699 if we have already saved this hard register. */
700 if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
701 continue;
702
703 /* See if any register in this group has been saved. */
704 for (k = 0; k < j; k++)
705 if (regno_save_mem[i + k][1])
706 {
707 do_save = 0;
708 break;
709 }
710 if (! do_save)
711 continue;
712
713 for (k = 0; k < j; k++)
714 if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
715 {
716 do_save = 0;
717 break;
718 }
719 if (! do_save)
720 continue;
721
722 /* We have found an acceptable mode to store in. Since
723 hard register is always saved in the widest mode
724 available, the mode may be wider than necessary, it is
725 OK to reduce the alignment of spill space. We will
726 verify that it is equal to or greater than required
727 when we restore and save the hard register in
728 insert_restore and insert_save. */
729 regno_save_mem[i][j]
730 = assign_stack_local_1 (regno_save_mode[i][j],
731 GET_MODE_SIZE (regno_save_mode[i][j]),
732 0, ASLK_REDUCE_ALIGN);
733
734 /* Setup single word save area just in case... */
735 for (k = 0; k < j; k++)
736 /* This should not depend on WORDS_BIG_ENDIAN.
737 The order of words in regs is the same as in memory. */
738 regno_save_mem[i + k][1]
739 = adjust_address_nv (regno_save_mem[i][j],
740 regno_save_mode[i + k][1],
741 k * UNITS_PER_WORD);
742 }
743 }
744
745 /* Now loop again and set the alias set of any save areas we made to
746 the alias set used to represent frame objects. */
747 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
748 for (j = MOVE_MAX_WORDS; j > 0; j--)
749 if (regno_save_mem[i][j] != 0)
750 set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
751 }
752
753 \f
754
755 /* Find the places where hard regs are live across calls and save them. */
756
757 void
758 save_call_clobbered_regs (void)
759 {
760 struct insn_chain *chain, *next, *last = NULL;
761 machine_mode save_mode [FIRST_PSEUDO_REGISTER];
762
763 /* Computed in mark_set_regs, holds all registers set by the current
764 instruction. */
765 HARD_REG_SET this_insn_sets;
766
767 CLEAR_HARD_REG_SET (hard_regs_saved);
768 n_regs_saved = 0;
769
770 for (chain = reload_insn_chain; chain != 0; chain = next)
771 {
772 rtx_insn *insn = chain->insn;
773 enum rtx_code code = GET_CODE (insn);
774
775 next = chain->next;
776
777 gcc_assert (!chain->is_caller_save_insn);
778
779 if (NONDEBUG_INSN_P (insn))
780 {
781 /* If some registers have been saved, see if INSN references
782 any of them. We must restore them before the insn if so. */
783
784 if (n_regs_saved)
785 {
786 int regno;
787 HARD_REG_SET this_insn_sets;
788
789 if (code == JUMP_INSN)
790 /* Restore all registers if this is a JUMP_INSN. */
791 COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
792 else
793 {
794 CLEAR_HARD_REG_SET (referenced_regs);
795 mark_referenced_regs (&PATTERN (insn),
796 mark_reg_as_referenced, NULL);
797 AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
798 }
799
800 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
801 if (TEST_HARD_REG_BIT (referenced_regs, regno))
802 regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS,
803 save_mode);
804 /* If a saved register is set after the call, this means we no
805 longer should restore it. This can happen when parts of a
806 multi-word pseudo do not conflict with other pseudos, so
807 IRA may allocate the same hard register for both. One may
808 be live across the call, while the other is set
809 afterwards. */
810 CLEAR_HARD_REG_SET (this_insn_sets);
811 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
812 AND_COMPL_HARD_REG_SET (hard_regs_saved, this_insn_sets);
813 }
814
815 if (code == CALL_INSN
816 && ! SIBLING_CALL_P (insn)
817 && ! find_reg_note (insn, REG_NORETURN, NULL))
818 {
819 unsigned regno;
820 HARD_REG_SET hard_regs_to_save;
821 HARD_REG_SET call_def_reg_set;
822 reg_set_iterator rsi;
823 rtx cheap;
824
825 cheap = find_reg_note (insn, REG_RETURNED, NULL);
826 if (cheap)
827 cheap = XEXP (cheap, 0);
828
829 /* Use the register life information in CHAIN to compute which
830 regs are live during the call. */
831 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
832 &chain->live_throughout);
833 /* Save hard registers always in the widest mode available. */
834 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
835 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
836 save_mode [regno] = regno_save_mode [regno][1];
837 else
838 save_mode [regno] = VOIDmode;
839
840 /* Look through all live pseudos, mark their hard registers
841 and choose proper mode for saving. */
842 EXECUTE_IF_SET_IN_REG_SET
843 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
844 {
845 int r = reg_renumber[regno];
846 int nregs;
847 machine_mode mode;
848
849 if (r < 0 || regno_reg_rtx[regno] == cheap)
850 continue;
851 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
852 mode = HARD_REGNO_CALLER_SAVE_MODE
853 (r, nregs, PSEUDO_REGNO_MODE (regno));
854 if (GET_MODE_BITSIZE (mode)
855 > GET_MODE_BITSIZE (save_mode[r]))
856 save_mode[r] = mode;
857 while (nregs-- > 0)
858 SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
859 }
860
861 /* Record all registers set in this call insn. These don't need
862 to be saved. N.B. the call insn might set a subreg of a
863 multi-hard-reg pseudo; then the pseudo is considered live
864 during the call, but the subreg that is set isn't. */
865 CLEAR_HARD_REG_SET (this_insn_sets);
866 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
867
868 /* Compute which hard regs must be saved before this call. */
869 AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
870 AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
871 AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
872 get_call_reg_set_usage (insn, &call_def_reg_set,
873 call_used_reg_set);
874 AND_HARD_REG_SET (hard_regs_to_save, call_def_reg_set);
875
876 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
877 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
878 regno += insert_save (chain, 1, regno, &hard_regs_to_save, save_mode);
879
880 /* Must recompute n_regs_saved. */
881 n_regs_saved = 0;
882 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
883 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
884 n_regs_saved++;
885
886 if (cheap
887 && HARD_REGISTER_P (cheap)
888 && TEST_HARD_REG_BIT (call_used_reg_set, REGNO (cheap)))
889 {
890 rtx dest, newpat;
891 rtx pat = PATTERN (insn);
892 if (GET_CODE (pat) == PARALLEL)
893 pat = XVECEXP (pat, 0, 0);
894 dest = SET_DEST (pat);
895 /* For multiple return values dest is PARALLEL.
896 Currently we handle only single return value case. */
897 if (REG_P (dest))
898 {
899 newpat = gen_rtx_SET (cheap, copy_rtx (dest));
900 chain = insert_one_insn (chain, 0, -1, newpat);
901 }
902 }
903 }
904 last = chain;
905 }
906 else if (DEBUG_INSN_P (insn) && n_regs_saved)
907 mark_referenced_regs (&PATTERN (insn),
908 replace_reg_with_saved_mem,
909 save_mode);
910
911 if (chain->next == 0 || chain->next->block != chain->block)
912 {
913 int regno;
914 /* At the end of the basic block, we must restore any registers that
915 remain saved. If the last insn in the block is a JUMP_INSN, put
916 the restore before the insn, otherwise, put it after the insn. */
917
918 if (n_regs_saved
919 && DEBUG_INSN_P (insn)
920 && last
921 && last->block == chain->block)
922 {
923 rtx_insn *ins, *prev;
924 basic_block bb = BLOCK_FOR_INSN (insn);
925
926 /* When adding hard reg restores after a DEBUG_INSN, move
927 all notes between last real insn and this DEBUG_INSN after
928 the DEBUG_INSN, otherwise we could get code
929 -g/-g0 differences. */
930 for (ins = PREV_INSN (insn); ins != last->insn; ins = prev)
931 {
932 prev = PREV_INSN (ins);
933 if (NOTE_P (ins))
934 {
935 SET_NEXT_INSN (prev) = NEXT_INSN (ins);
936 SET_PREV_INSN (NEXT_INSN (ins)) = prev;
937 SET_PREV_INSN (ins) = insn;
938 SET_NEXT_INSN (ins) = NEXT_INSN (insn);
939 SET_NEXT_INSN (insn) = ins;
940 if (NEXT_INSN (ins))
941 SET_PREV_INSN (NEXT_INSN (ins)) = ins;
942 if (BB_END (bb) == insn)
943 BB_END (bb) = ins;
944 }
945 else
946 gcc_assert (DEBUG_INSN_P (ins));
947 }
948 }
949 last = NULL;
950
951 if (n_regs_saved)
952 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
953 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
954 regno += insert_restore (chain, JUMP_P (insn),
955 regno, MOVE_MAX_WORDS, save_mode);
956 }
957 }
958 }
959
960 /* Here from note_stores, or directly from save_call_clobbered_regs, when
961 an insn stores a value in a register.
962 Set the proper bit or bits in this_insn_sets. All pseudos that have
963 been assigned hard regs have had their register number changed already,
964 so we can ignore pseudos. */
965 static void
966 mark_set_regs (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *data)
967 {
968 int regno, endregno, i;
969 HARD_REG_SET *this_insn_sets = (HARD_REG_SET *) data;
970
971 if (GET_CODE (reg) == SUBREG)
972 {
973 rtx inner = SUBREG_REG (reg);
974 if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
975 return;
976 regno = subreg_regno (reg);
977 endregno = regno + subreg_nregs (reg);
978 }
979 else if (REG_P (reg)
980 && REGNO (reg) < FIRST_PSEUDO_REGISTER)
981 {
982 regno = REGNO (reg);
983 endregno = END_REGNO (reg);
984 }
985 else
986 return;
987
988 for (i = regno; i < endregno; i++)
989 SET_HARD_REG_BIT (*this_insn_sets, i);
990 }
991
992 /* Here from note_stores when an insn stores a value in a register.
993 Set the proper bit or bits in the passed regset. All pseudos that have
994 been assigned hard regs have had their register number changed already,
995 so we can ignore pseudos. */
996 static void
997 add_stored_regs (rtx reg, const_rtx setter, void *data)
998 {
999 int regno, endregno, i;
1000 machine_mode mode = GET_MODE (reg);
1001 int offset = 0;
1002
1003 if (GET_CODE (setter) == CLOBBER)
1004 return;
1005
1006 if (GET_CODE (reg) == SUBREG
1007 && REG_P (SUBREG_REG (reg))
1008 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
1009 {
1010 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
1011 GET_MODE (SUBREG_REG (reg)),
1012 SUBREG_BYTE (reg),
1013 GET_MODE (reg));
1014 regno = REGNO (SUBREG_REG (reg)) + offset;
1015 endregno = regno + subreg_nregs (reg);
1016 }
1017 else
1018 {
1019 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
1020 return;
1021
1022 regno = REGNO (reg) + offset;
1023 endregno = end_hard_regno (mode, regno);
1024 }
1025
1026 for (i = regno; i < endregno; i++)
1027 SET_REGNO_REG_SET ((regset) data, i);
1028 }
1029
1030 /* Walk X and record all referenced registers in REFERENCED_REGS. */
1031 static void
1032 mark_referenced_regs (rtx *loc, refmarker_fn *mark, void *arg)
1033 {
1034 enum rtx_code code = GET_CODE (*loc);
1035 const char *fmt;
1036 int i, j;
1037
1038 if (code == SET)
1039 mark_referenced_regs (&SET_SRC (*loc), mark, arg);
1040 if (code == SET || code == CLOBBER)
1041 {
1042 loc = &SET_DEST (*loc);
1043 code = GET_CODE (*loc);
1044 if ((code == REG && REGNO (*loc) < FIRST_PSEUDO_REGISTER)
1045 || code == PC || code == CC0
1046 || (code == SUBREG && REG_P (SUBREG_REG (*loc))
1047 && REGNO (SUBREG_REG (*loc)) < FIRST_PSEUDO_REGISTER
1048 /* If we're setting only part of a multi-word register,
1049 we shall mark it as referenced, because the words
1050 that are not being set should be restored. */
1051 && ((GET_MODE_SIZE (GET_MODE (*loc))
1052 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc))))
1053 || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc)))
1054 <= UNITS_PER_WORD))))
1055 return;
1056 }
1057 if (code == MEM || code == SUBREG)
1058 {
1059 loc = &XEXP (*loc, 0);
1060 code = GET_CODE (*loc);
1061 }
1062
1063 if (code == REG)
1064 {
1065 int regno = REGNO (*loc);
1066 int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
1067 : reg_renumber[regno]);
1068
1069 if (hardregno >= 0)
1070 mark (loc, GET_MODE (*loc), hardregno, arg);
1071 else if (arg)
1072 /* ??? Will we ever end up with an equiv expression in a debug
1073 insn, that would have required restoring a reg, or will
1074 reload take care of it for us? */
1075 return;
1076 /* If this is a pseudo that did not get a hard register, scan its
1077 memory location, since it might involve the use of another
1078 register, which might be saved. */
1079 else if (reg_equiv_mem (regno) != 0)
1080 mark_referenced_regs (&XEXP (reg_equiv_mem (regno), 0), mark, arg);
1081 else if (reg_equiv_address (regno) != 0)
1082 mark_referenced_regs (&reg_equiv_address (regno), mark, arg);
1083 return;
1084 }
1085
1086 fmt = GET_RTX_FORMAT (code);
1087 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1088 {
1089 if (fmt[i] == 'e')
1090 mark_referenced_regs (&XEXP (*loc, i), mark, arg);
1091 else if (fmt[i] == 'E')
1092 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
1093 mark_referenced_regs (&XVECEXP (*loc, i, j), mark, arg);
1094 }
1095 }
1096
1097 /* Parameter function for mark_referenced_regs() that adds registers
1098 present in the insn and in equivalent mems and addresses to
1099 referenced_regs. */
1100
1101 static void
1102 mark_reg_as_referenced (rtx *loc ATTRIBUTE_UNUSED,
1103 machine_mode mode,
1104 int hardregno,
1105 void *arg ATTRIBUTE_UNUSED)
1106 {
1107 add_to_hard_reg_set (&referenced_regs, mode, hardregno);
1108 }
1109
1110 /* Parameter function for mark_referenced_regs() that replaces
1111 registers referenced in a debug_insn that would have been restored,
1112 should it be a non-debug_insn, with their save locations. */
1113
1114 static void
1115 replace_reg_with_saved_mem (rtx *loc,
1116 machine_mode mode,
1117 int regno,
1118 void *arg)
1119 {
1120 unsigned int i, nregs = hard_regno_nregs [regno][mode];
1121 rtx mem;
1122 machine_mode *save_mode = (machine_mode *)arg;
1123
1124 for (i = 0; i < nregs; i++)
1125 if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1126 break;
1127
1128 /* If none of the registers in the range would need restoring, we're
1129 all set. */
1130 if (i == nregs)
1131 return;
1132
1133 while (++i < nregs)
1134 if (!TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1135 break;
1136
1137 if (i == nregs
1138 && regno_save_mem[regno][nregs])
1139 {
1140 mem = copy_rtx (regno_save_mem[regno][nregs]);
1141
1142 if (nregs == (unsigned int) hard_regno_nregs[regno][save_mode[regno]])
1143 mem = adjust_address_nv (mem, save_mode[regno], 0);
1144
1145 if (GET_MODE (mem) != mode)
1146 {
1147 /* This is gen_lowpart_if_possible(), but without validating
1148 the newly-formed address. */
1149 int offset = 0;
1150
1151 if (WORDS_BIG_ENDIAN)
1152 offset = (MAX (GET_MODE_SIZE (GET_MODE (mem)), UNITS_PER_WORD)
1153 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1154 if (BYTES_BIG_ENDIAN)
1155 /* Adjust the address so that the address-after-the-data is
1156 unchanged. */
1157 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1158 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (mem))));
1159
1160 mem = adjust_address_nv (mem, mode, offset);
1161 }
1162 }
1163 else
1164 {
1165 mem = gen_rtx_CONCATN (mode, rtvec_alloc (nregs));
1166 for (i = 0; i < nregs; i++)
1167 if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1168 {
1169 gcc_assert (regno_save_mem[regno + i][1]);
1170 XVECEXP (mem, 0, i) = copy_rtx (regno_save_mem[regno + i][1]);
1171 }
1172 else
1173 {
1174 machine_mode smode = save_mode[regno];
1175 gcc_assert (smode != VOIDmode);
1176 if (hard_regno_nregs [regno][smode] > 1)
1177 smode = mode_for_size (GET_MODE_SIZE (mode) / nregs,
1178 GET_MODE_CLASS (mode), 0);
1179 XVECEXP (mem, 0, i) = gen_rtx_REG (smode, regno + i);
1180 }
1181 }
1182
1183 gcc_assert (GET_MODE (mem) == mode);
1184 *loc = mem;
1185 }
1186
1187 \f
1188 /* Insert a sequence of insns to restore. Place these insns in front of
1189 CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
1190 the maximum number of registers which should be restored during this call.
1191 It should never be less than 1 since we only work with entire registers.
1192
1193 Note that we have verified in init_caller_save that we can do this
1194 with a simple SET, so use it. Set INSN_CODE to what we save there
1195 since the address might not be valid so the insn might not be recognized.
1196 These insns will be reloaded and have register elimination done by
1197 find_reload, so we need not worry about that here.
1198
1199 Return the extra number of registers saved. */
1200
1201 static int
1202 insert_restore (struct insn_chain *chain, int before_p, int regno,
1203 int maxrestore, machine_mode *save_mode)
1204 {
1205 int i, k;
1206 rtx pat = NULL_RTX;
1207 int code;
1208 unsigned int numregs = 0;
1209 struct insn_chain *new_chain;
1210 rtx mem;
1211
1212 /* A common failure mode if register status is not correct in the
1213 RTL is for this routine to be called with a REGNO we didn't
1214 expect to save. That will cause us to write an insn with a (nil)
1215 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1216 later, check for this common case here instead. This will remove
1217 one step in debugging such problems. */
1218 gcc_assert (regno_save_mem[regno][1]);
1219
1220 /* Get the pattern to emit and update our status.
1221
1222 See if we can restore `maxrestore' registers at once. Work
1223 backwards to the single register case. */
1224 for (i = maxrestore; i > 0; i--)
1225 {
1226 int j;
1227 int ok = 1;
1228
1229 if (regno_save_mem[regno][i] == 0)
1230 continue;
1231
1232 for (j = 0; j < i; j++)
1233 if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
1234 {
1235 ok = 0;
1236 break;
1237 }
1238 /* Must do this one restore at a time. */
1239 if (! ok)
1240 continue;
1241
1242 numregs = i;
1243 break;
1244 }
1245
1246 mem = regno_save_mem [regno][numregs];
1247 if (save_mode [regno] != VOIDmode
1248 && save_mode [regno] != GET_MODE (mem)
1249 && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
1250 /* Check that insn to restore REGNO in save_mode[regno] is
1251 correct. */
1252 && reg_save_code (regno, save_mode[regno]) >= 0)
1253 mem = adjust_address_nv (mem, save_mode[regno], 0);
1254 else
1255 mem = copy_rtx (mem);
1256
1257 /* Verify that the alignment of spill space is equal to or greater
1258 than required. */
1259 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1260 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1261
1262 pat = gen_rtx_SET (gen_rtx_REG (GET_MODE (mem), regno), mem);
1263 code = reg_restore_code (regno, GET_MODE (mem));
1264 new_chain = insert_one_insn (chain, before_p, code, pat);
1265
1266 /* Clear status for all registers we restored. */
1267 for (k = 0; k < i; k++)
1268 {
1269 CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
1270 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1271 n_regs_saved--;
1272 }
1273
1274 /* Tell our callers how many extra registers we saved/restored. */
1275 return numregs - 1;
1276 }
1277
1278 /* Like insert_restore above, but save registers instead. */
1279
1280 static int
1281 insert_save (struct insn_chain *chain, int before_p, int regno,
1282 HARD_REG_SET (*to_save), machine_mode *save_mode)
1283 {
1284 int i;
1285 unsigned int k;
1286 rtx pat = NULL_RTX;
1287 int code;
1288 unsigned int numregs = 0;
1289 struct insn_chain *new_chain;
1290 rtx mem;
1291
1292 /* A common failure mode if register status is not correct in the
1293 RTL is for this routine to be called with a REGNO we didn't
1294 expect to save. That will cause us to write an insn with a (nil)
1295 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1296 later, check for this common case here. This will remove one
1297 step in debugging such problems. */
1298 gcc_assert (regno_save_mem[regno][1]);
1299
1300 /* Get the pattern to emit and update our status.
1301
1302 See if we can save several registers with a single instruction.
1303 Work backwards to the single register case. */
1304 for (i = MOVE_MAX_WORDS; i > 0; i--)
1305 {
1306 int j;
1307 int ok = 1;
1308 if (regno_save_mem[regno][i] == 0)
1309 continue;
1310
1311 for (j = 0; j < i; j++)
1312 if (! TEST_HARD_REG_BIT (*to_save, regno + j))
1313 {
1314 ok = 0;
1315 break;
1316 }
1317 /* Must do this one save at a time. */
1318 if (! ok)
1319 continue;
1320
1321 numregs = i;
1322 break;
1323 }
1324
1325 mem = regno_save_mem [regno][numregs];
1326 if (save_mode [regno] != VOIDmode
1327 && save_mode [regno] != GET_MODE (mem)
1328 && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
1329 /* Check that insn to save REGNO in save_mode[regno] is
1330 correct. */
1331 && reg_save_code (regno, save_mode[regno]) >= 0)
1332 mem = adjust_address_nv (mem, save_mode[regno], 0);
1333 else
1334 mem = copy_rtx (mem);
1335
1336 /* Verify that the alignment of spill space is equal to or greater
1337 than required. */
1338 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1339 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1340
1341 pat = gen_rtx_SET (mem, gen_rtx_REG (GET_MODE (mem), regno));
1342 code = reg_save_code (regno, GET_MODE (mem));
1343 new_chain = insert_one_insn (chain, before_p, code, pat);
1344
1345 /* Set hard_regs_saved and dead_or_set for all the registers we saved. */
1346 for (k = 0; k < numregs; k++)
1347 {
1348 SET_HARD_REG_BIT (hard_regs_saved, regno + k);
1349 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1350 n_regs_saved++;
1351 }
1352
1353 /* Tell our callers how many extra registers we saved/restored. */
1354 return numregs - 1;
1355 }
1356
1357 /* A note_uses callback used by insert_one_insn. Add the hard-register
1358 equivalent of each REG to regset DATA. */
1359
1360 static void
1361 add_used_regs (rtx *loc, void *data)
1362 {
1363 subrtx_iterator::array_type array;
1364 FOR_EACH_SUBRTX (iter, array, *loc, NONCONST)
1365 {
1366 const_rtx x = *iter;
1367 if (REG_P (x))
1368 {
1369 unsigned int regno = REGNO (x);
1370 if (HARD_REGISTER_NUM_P (regno))
1371 bitmap_set_range ((regset) data, regno,
1372 hard_regno_nregs[regno][GET_MODE (x)]);
1373 else
1374 gcc_checking_assert (reg_renumber[regno] < 0);
1375 }
1376 }
1377 }
1378
1379 /* Emit a new caller-save insn and set the code. */
1380 static struct insn_chain *
1381 insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat)
1382 {
1383 rtx_insn *insn = chain->insn;
1384 struct insn_chain *new_chain;
1385
1386 /* If INSN references CC0, put our insns in front of the insn that sets
1387 CC0. This is always safe, since the only way we could be passed an
1388 insn that references CC0 is for a restore, and doing a restore earlier
1389 isn't a problem. We do, however, assume here that CALL_INSNs don't
1390 reference CC0. Guard against non-INSN's like CODE_LABEL. */
1391
1392 if (HAVE_cc0 && (NONJUMP_INSN_P (insn) || JUMP_P (insn))
1393 && before_p
1394 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
1395 chain = chain->prev, insn = chain->insn;
1396
1397 new_chain = new_insn_chain ();
1398 if (before_p)
1399 {
1400 rtx link;
1401
1402 new_chain->prev = chain->prev;
1403 if (new_chain->prev != 0)
1404 new_chain->prev->next = new_chain;
1405 else
1406 reload_insn_chain = new_chain;
1407
1408 chain->prev = new_chain;
1409 new_chain->next = chain;
1410 new_chain->insn = emit_insn_before (pat, insn);
1411 /* ??? It would be nice if we could exclude the already / still saved
1412 registers from the live sets. */
1413 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1414 note_uses (&PATTERN (chain->insn), add_used_regs,
1415 &new_chain->live_throughout);
1416 /* If CHAIN->INSN is a call, then the registers which contain
1417 the arguments to the function are live in the new insn. */
1418 if (CALL_P (chain->insn))
1419 for (link = CALL_INSN_FUNCTION_USAGE (chain->insn);
1420 link != NULL_RTX;
1421 link = XEXP (link, 1))
1422 note_uses (&XEXP (link, 0), add_used_regs,
1423 &new_chain->live_throughout);
1424
1425 CLEAR_REG_SET (&new_chain->dead_or_set);
1426 if (chain->insn == BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
1427 BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
1428 }
1429 else
1430 {
1431 new_chain->next = chain->next;
1432 if (new_chain->next != 0)
1433 new_chain->next->prev = new_chain;
1434 chain->next = new_chain;
1435 new_chain->prev = chain;
1436 new_chain->insn = emit_insn_after (pat, insn);
1437 /* ??? It would be nice if we could exclude the already / still saved
1438 registers from the live sets, and observe REG_UNUSED notes. */
1439 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1440 /* Registers that are set in CHAIN->INSN live in the new insn.
1441 (Unless there is a REG_UNUSED note for them, but we don't
1442 look for them here.) */
1443 note_stores (PATTERN (chain->insn), add_stored_regs,
1444 &new_chain->live_throughout);
1445 CLEAR_REG_SET (&new_chain->dead_or_set);
1446 if (chain->insn == BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)))
1447 BB_END (BASIC_BLOCK_FOR_FN (cfun, chain->block)) = new_chain->insn;
1448 }
1449 new_chain->block = chain->block;
1450 new_chain->is_caller_save_insn = 1;
1451
1452 INSN_CODE (new_chain->insn) = code;
1453 return new_chain;
1454 }
1455 #include "gt-caller-save.h"