Remove previous Berg change.
[gcc.git] / gcc / caller-save.c
1 /* Save and restore call-clobbered registers which are live across a call.
2 Copyright (C) 1989, 1992, 1994 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "config.h"
21 #include "rtl.h"
22 #include "insn-config.h"
23 #include "flags.h"
24 #include "regs.h"
25 #include "hard-reg-set.h"
26 #include "recog.h"
27 #include "basic-block.h"
28 #include "reload.h"
29 #include "expr.h"
30
31 #ifndef MAX_MOVE_MAX
32 #define MAX_MOVE_MAX MOVE_MAX
33 #endif
34
35 #ifndef MAX_UNITS_PER_WORD
36 #define MAX_UNITS_PER_WORD UNITS_PER_WORD
37 #endif
38
39 /* Modes for each hard register that we can save. The smallest mode is wide
40 enough to save the entire contents of the register. When saving the
41 register because it is live we first try to save in multi-register modes.
42 If that is not possible the save is done one register at a time. */
43
44 static enum machine_mode
45 regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MAX_UNITS_PER_WORD + 1];
46
47 /* For each hard register, a place on the stack where it can be saved,
48 if needed. */
49
50 static rtx
51 regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MAX_UNITS_PER_WORD + 1];
52
53 /* We will only make a register eligible for caller-save if it can be
54 saved in its widest mode with a simple SET insn as long as the memory
55 address is valid. We record the INSN_CODE is those insns here since
56 when we emit them, the addresses might not be valid, so they might not
57 be recognized. */
58
59 static enum insn_code
60 reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MAX_UNITS_PER_WORD + 1];
61 static enum insn_code
62 reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MAX_UNITS_PER_WORD + 1];
63
64 /* Set of hard regs currently live (during scan of all insns). */
65
66 static HARD_REG_SET hard_regs_live;
67
68 /* Set of hard regs currently residing in save area (during insn scan). */
69
70 static HARD_REG_SET hard_regs_saved;
71
72 /* Set of hard regs which need to be restored before referenced. */
73
74 static HARD_REG_SET hard_regs_need_restore;
75
76 /* Number of registers currently in hard_regs_saved. */
77
78 int n_regs_saved;
79
80 static enum machine_mode choose_hard_reg_mode PROTO((int, int));
81 static void set_reg_live PROTO((rtx, rtx));
82 static void clear_reg_live PROTO((rtx));
83 static void restore_referenced_regs PROTO((rtx, rtx, enum machine_mode));
84 static int insert_save_restore PROTO((rtx, int, int,
85 enum machine_mode, int));
86 \f
87 /* Return a machine mode that is legitimate for hard reg REGNO and large
88 enough to save nregs. If we can't find one, return VOIDmode. */
89
90 static enum machine_mode
91 choose_hard_reg_mode (regno, nregs)
92 int regno;
93 int nregs;
94 {
95 enum machine_mode found_mode = VOIDmode, mode;
96
97 /* We first look for the largest integer mode that can be validly
98 held in REGNO. If none, we look for the largest floating-point mode.
99 If we still didn't find a valid mode, try CCmode. */
100
101 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
102 mode = GET_MODE_WIDER_MODE (mode))
103 if (HARD_REGNO_NREGS (regno, mode) == nregs
104 && HARD_REGNO_MODE_OK (regno, mode))
105 found_mode = mode;
106
107 if (found_mode != VOIDmode)
108 return found_mode;
109
110 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
111 mode = GET_MODE_WIDER_MODE (mode))
112 if (HARD_REGNO_NREGS (regno, mode) == nregs
113 && HARD_REGNO_MODE_OK (regno, mode))
114 found_mode = mode;
115
116 if (found_mode != VOIDmode)
117 return found_mode;
118
119 if (HARD_REGNO_NREGS (regno, CCmode) == nregs
120 && HARD_REGNO_MODE_OK (regno, CCmode))
121 return CCmode;
122
123 /* We can't find a mode valid for this register. */
124 return VOIDmode;
125 }
126 \f
127 /* Initialize for caller-save.
128
129 Look at all the hard registers that are used by a call and for which
130 regclass.c has not already excluded from being used across a call.
131
132 Ensure that we can find a mode to save the register and that there is a
133 simple insn to save and restore the register. This latter check avoids
134 problems that would occur if we tried to save the MQ register of some
135 machines directly into memory. */
136
137 void
138 init_caller_save ()
139 {
140 char *first_obj = (char *) oballoc (0);
141 rtx addr_reg;
142 int offset;
143 rtx address;
144 int i, j;
145
146 /* First find all the registers that we need to deal with and all
147 the modes that they can have. If we can't find a mode to use,
148 we can't have the register live over calls. */
149
150 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
151 {
152 if (call_used_regs[i] && ! call_fixed_regs[i])
153 {
154 for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
155 {
156 regno_save_mode[i][j] = choose_hard_reg_mode (i, j);
157 if (regno_save_mode[i][j] == VOIDmode && j == 1)
158 {
159 call_fixed_regs[i] = 1;
160 SET_HARD_REG_BIT (call_fixed_reg_set, i);
161 }
162 }
163 }
164 else
165 regno_save_mode[i][1] = VOIDmode;
166 }
167
168 /* The following code tries to approximate the conditions under which
169 we can easily save and restore a register without scratch registers or
170 other complexities. It will usually work, except under conditions where
171 the validity of an insn operand is dependent on the address offset.
172 No such cases are currently known.
173
174 We first find a typical offset from some BASE_REG_CLASS register.
175 This address is chosen by finding the first register in the class
176 and by finding the smallest power of two that is a valid offset from
177 that register in every mode we will use to save registers. */
178
179 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
180 if (TEST_HARD_REG_BIT (reg_class_contents[(int) BASE_REG_CLASS], i))
181 break;
182
183 if (i == FIRST_PSEUDO_REGISTER)
184 abort ();
185
186 addr_reg = gen_rtx (REG, Pmode, i);
187
188 for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
189 {
190 address = gen_rtx (PLUS, Pmode, addr_reg, GEN_INT (offset));
191
192 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
193 if (regno_save_mode[i][1] != VOIDmode
194 && ! strict_memory_address_p (regno_save_mode[i][1], address))
195 break;
196
197 if (i == FIRST_PSEUDO_REGISTER)
198 break;
199 }
200
201 /* If we didn't find a valid address, we must use register indirect. */
202 if (offset == 0)
203 address = addr_reg;
204
205 /* Next we try to form an insn to save and restore the register. We
206 see if such an insn is recognized and meets its constraints. */
207
208 start_sequence ();
209
210 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
211 for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
212 if (regno_save_mode[i][j] != VOIDmode)
213 {
214 rtx mem = gen_rtx (MEM, regno_save_mode[i][j], address);
215 rtx reg = gen_rtx (REG, regno_save_mode[i][j], i);
216 rtx savepat = gen_rtx (SET, VOIDmode, mem, reg);
217 rtx restpat = gen_rtx (SET, VOIDmode, reg, mem);
218 rtx saveinsn = emit_insn (savepat);
219 rtx restinsn = emit_insn (restpat);
220 int ok;
221
222 reg_save_code[i][j] = recog_memoized (saveinsn);
223 reg_restore_code[i][j] = recog_memoized (restinsn);
224
225 /* Now extract both insns and see if we can meet their constraints. */
226 ok = (reg_save_code[i][j] != -1 && reg_restore_code[i][j] != -1);
227 if (ok)
228 {
229 insn_extract (saveinsn);
230 ok = constrain_operands (reg_save_code[i][j], 1);
231 insn_extract (restinsn);
232 ok &= constrain_operands (reg_restore_code[i][j], 1);
233 }
234
235 if (! ok)
236 {
237 regno_save_mode[i][j] = VOIDmode;
238 if (j == 1)
239 {
240 call_fixed_regs[i] = 1;
241 SET_HARD_REG_BIT (call_fixed_reg_set, i);
242 }
243 }
244 }
245
246 end_sequence ();
247
248 obfree (first_obj);
249 }
250 \f
251 /* Initialize save areas by showing that we haven't allocated any yet. */
252
253 void
254 init_save_areas ()
255 {
256 int i, j;
257
258 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
259 for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
260 regno_save_mem[i][j] = 0;
261 }
262
263 /* Allocate save areas for any hard registers that might need saving.
264 We take a conservative approach here and look for call-clobbered hard
265 registers that are assigned to pseudos that cross calls. This may
266 overestimate slightly (especially if some of these registers are later
267 used as spill registers), but it should not be significant.
268
269 Then perform register elimination in the addresses of the save area
270 locations; return 1 if all eliminated addresses are strictly valid.
271 We assume that our caller has set up the elimination table to the
272 worst (largest) possible offsets.
273
274 Set *PCHANGED to 1 if we had to allocate some memory for the save area.
275
276 Future work:
277
278 In the fallback case we should iterate backwards across all possible
279 modes for the save, choosing the largest available one instead of
280 falling back to the smallest mode immediately. (eg TF -> DF -> SF).
281
282 We do not try to use "move multiple" instructions that exist
283 on some machines (such as the 68k moveml). It could be a win to try
284 and use them when possible. The hard part is doing it in a way that is
285 machine independent since they might be saving non-consecutive
286 registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
287
288 int
289 setup_save_areas (pchanged)
290 int *pchanged;
291 {
292 int i, j, k;
293 HARD_REG_SET hard_regs_used;
294 int ok = 1;
295
296
297 /* Allocate space in the save area for the largest multi-register
298 pseudos first, then work backwards to single register
299 pseudos. */
300
301 /* Find and record all call-used hard-registers in this function. */
302 CLEAR_HARD_REG_SET (hard_regs_used);
303 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
304 if (reg_renumber[i] >= 0 && reg_n_calls_crossed[i] > 0)
305 {
306 int regno = reg_renumber[i];
307 int endregno
308 = regno + HARD_REGNO_NREGS (regno, GET_MODE (regno_reg_rtx[i]));
309 int nregs = endregno - regno;
310
311 for (j = 0; j < nregs; j++)
312 {
313 if (call_used_regs[regno+j])
314 SET_HARD_REG_BIT (hard_regs_used, regno+j);
315 }
316 }
317
318 /* Now run through all the call-used hard-registers and allocate
319 space for them in the caller-save area. Try to allocate space
320 in a manner which allows multi-register saves/restores to be done. */
321
322 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
323 for (j = MOVE_MAX / UNITS_PER_WORD; j > 0; j--)
324 {
325 int ok = 1;
326 int do_save;
327
328 /* If no mode exists for this size, try another. Also break out
329 if we have already saved this hard register. */
330 if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
331 continue;
332
333 /* See if any register in this group has been saved. */
334 do_save = 1;
335 for (k = 0; k < j; k++)
336 if (regno_save_mem[i + k][1])
337 {
338 do_save = 0;
339 break;
340 }
341 if (! do_save)
342 continue;
343
344 for (k = 0; k < j; k++)
345 {
346 int regno = i + k;
347 ok &= (TEST_HARD_REG_BIT (hard_regs_used, regno) != 0);
348 }
349
350 /* We have found an acceptable mode to store in. */
351 if (ok)
352 {
353
354 regno_save_mem[i][j]
355 = assign_stack_local (regno_save_mode[i][j],
356 GET_MODE_SIZE (regno_save_mode[i][j]), 0);
357
358 /* Setup single word save area just in case... */
359 for (k = 0; k < j; k++)
360 {
361 /* This should not depend on WORDS_BIG_ENDIAN.
362 The order of words in regs is the same as in memory. */
363 rtx temp = gen_rtx (MEM, regno_save_mode[i+k][1],
364 XEXP (regno_save_mem[i][j], 0));
365
366 regno_save_mem[i+k][1]
367 = adj_offsettable_operand (temp, k * UNITS_PER_WORD);
368 }
369 *pchanged = 1;
370 }
371 }
372
373 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
374 for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++)
375 if (regno_save_mem[i][j] != 0)
376 ok &= strict_memory_address_p (GET_MODE (regno_save_mem[i][j]),
377 XEXP (eliminate_regs (regno_save_mem[i][j], 0, NULL_RTX), 0));
378
379 return ok;
380 }
381 \f
382 /* Find the places where hard regs are live across calls and save them.
383
384 INSN_MODE is the mode to assign to any insns that we add. This is used
385 by reload to determine whether or not reloads or register eliminations
386 need be done on these insns. */
387
388 void
389 save_call_clobbered_regs (insn_mode)
390 enum machine_mode insn_mode;
391 {
392 rtx insn;
393 int b;
394
395 for (b = 0; b < n_basic_blocks; b++)
396 {
397 regset regs_live = basic_block_live_at_start[b];
398 rtx prev_block_last = PREV_INSN (basic_block_head[b]);
399 REGSET_ELT_TYPE bit;
400 int offset, i, j;
401 int regno;
402
403 /* Compute hard regs live at start of block -- this is the
404 real hard regs marked live, plus live pseudo regs that
405 have been renumbered to hard regs. No registers have yet been
406 saved because we restore all of them before the end of the basic
407 block. */
408
409 #ifdef HARD_REG_SET
410 hard_regs_live = *regs_live;
411 #else
412 COPY_HARD_REG_SET (hard_regs_live, regs_live);
413 #endif
414
415 CLEAR_HARD_REG_SET (hard_regs_saved);
416 CLEAR_HARD_REG_SET (hard_regs_need_restore);
417 n_regs_saved = 0;
418
419 for (offset = 0, i = 0; offset < regset_size; offset++)
420 {
421 if (regs_live[offset] == 0)
422 i += REGSET_ELT_BITS;
423 else
424 for (bit = 1; bit && i < max_regno; bit <<= 1, i++)
425 if ((regs_live[offset] & bit)
426 && (regno = reg_renumber[i]) >= 0)
427 for (j = regno;
428 j < regno + HARD_REGNO_NREGS (regno,
429 PSEUDO_REGNO_MODE (i));
430 j++)
431 SET_HARD_REG_BIT (hard_regs_live, j);
432
433 }
434
435 /* Now scan the insns in the block, keeping track of what hard
436 regs are live as we go. When we see a call, save the live
437 call-clobbered hard regs. */
438
439 for (insn = basic_block_head[b]; ; insn = NEXT_INSN (insn))
440 {
441 RTX_CODE code = GET_CODE (insn);
442
443 if (GET_RTX_CLASS (code) == 'i')
444 {
445 rtx link;
446
447 /* If some registers have been saved, see if INSN references
448 any of them. We must restore them before the insn if so. */
449
450 if (n_regs_saved)
451 restore_referenced_regs (PATTERN (insn), insn, insn_mode);
452
453 /* NB: the normal procedure is to first enliven any
454 registers set by insn, then deaden any registers that
455 had their last use at insn. This is incorrect now,
456 since multiple pseudos may have been mapped to the
457 same hard reg, and the death notes are ambiguous. So
458 it must be done in the other, safe, order. */
459
460 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
461 if (REG_NOTE_KIND (link) == REG_DEAD)
462 clear_reg_live (XEXP (link, 0));
463
464 /* When we reach a call, we need to save all registers that are
465 live, call-used, not fixed, and not already saved. We must
466 test at this point because registers that die in a CALL_INSN
467 are not live across the call and likewise for registers that
468 are born in the CALL_INSN. */
469
470 if (code == CALL_INSN)
471 {
472 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
473 if (call_used_regs[regno] && ! call_fixed_regs[regno]
474 && TEST_HARD_REG_BIT (hard_regs_live, regno)
475 && ! TEST_HARD_REG_BIT (hard_regs_saved, regno))
476 regno += insert_save_restore (insn, 1, regno,
477 insn_mode, 0);
478 #ifdef HARD_REG_SET
479 hard_regs_need_restore = hard_regs_saved;
480 #else
481 COPY_HARD_REG_SET (hard_regs_need_restore,
482 hard_regs_saved);
483 #endif
484
485 /* Must recompute n_regs_saved. */
486 n_regs_saved = 0;
487 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
488 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
489 n_regs_saved++;
490
491 }
492
493 note_stores (PATTERN (insn), set_reg_live);
494
495 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
496 if (REG_NOTE_KIND (link) == REG_UNUSED)
497 clear_reg_live (XEXP (link, 0));
498 }
499
500 if (insn == basic_block_end[b])
501 break;
502 }
503
504 /* At the end of the basic block, we must restore any registers that
505 remain saved. If the last insn in the block is a JUMP_INSN, put
506 the restore before the insn, otherwise, put it after the insn. */
507
508 if (n_regs_saved)
509 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
510 if (TEST_HARD_REG_BIT (hard_regs_need_restore, regno))
511 regno += insert_save_restore ((GET_CODE (insn) == JUMP_INSN
512 ? insn : NEXT_INSN (insn)), 0,
513 regno, insn_mode, MOVE_MAX / UNITS_PER_WORD);
514
515 /* If we added any insns at the start of the block, update the start
516 of the block to point at those insns. */
517 basic_block_head[b] = NEXT_INSN (prev_block_last);
518 }
519 }
520
521 /* Here from note_stores when an insn stores a value in a register.
522 Set the proper bit or bits in hard_regs_live. All pseudos that have
523 been assigned hard regs have had their register number changed already,
524 so we can ignore pseudos. */
525
526 static void
527 set_reg_live (reg, setter)
528 rtx reg, setter;
529 {
530 register int regno, endregno, i;
531 enum machine_mode mode = GET_MODE (reg);
532 int word = 0;
533
534 if (GET_CODE (reg) == SUBREG)
535 {
536 word = SUBREG_WORD (reg);
537 reg = SUBREG_REG (reg);
538 }
539
540 if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
541 return;
542
543 regno = REGNO (reg) + word;
544 endregno = regno + HARD_REGNO_NREGS (regno, mode);
545
546 for (i = regno; i < endregno; i++)
547 {
548 SET_HARD_REG_BIT (hard_regs_live, i);
549 CLEAR_HARD_REG_BIT (hard_regs_saved, i);
550 CLEAR_HARD_REG_BIT (hard_regs_need_restore, i);
551 }
552 }
553
554 /* Here when a REG_DEAD note records the last use of a reg. Clear
555 the appropriate bit or bits in hard_regs_live. Again we can ignore
556 pseudos. */
557
558 static void
559 clear_reg_live (reg)
560 rtx reg;
561 {
562 register int regno, endregno, i;
563
564 if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
565 return;
566
567 regno = REGNO (reg);
568 endregno= regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
569
570 for (i = regno; i < endregno; i++)
571 {
572 CLEAR_HARD_REG_BIT (hard_regs_live, i);
573 CLEAR_HARD_REG_BIT (hard_regs_need_restore, i);
574 CLEAR_HARD_REG_BIT (hard_regs_saved, i);
575 }
576 }
577 \f
578 /* If any register currently residing in the save area is referenced in X,
579 which is part of INSN, emit code to restore the register in front of INSN.
580 INSN_MODE is the mode to assign to any insns that we add. */
581
582 static void
583 restore_referenced_regs (x, insn, insn_mode)
584 rtx x;
585 rtx insn;
586 enum machine_mode insn_mode;
587 {
588 enum rtx_code code = GET_CODE (x);
589 char *fmt;
590 int i, j;
591
592 if (code == CLOBBER)
593 return;
594
595 if (code == REG)
596 {
597 int regno = REGNO (x);
598
599 /* If this is a pseudo, scan its memory location, since it might
600 involve the use of another register, which might be saved. */
601
602 if (regno >= FIRST_PSEUDO_REGISTER
603 && reg_equiv_mem[regno] != 0)
604 restore_referenced_regs (XEXP (reg_equiv_mem[regno], 0),
605 insn, insn_mode);
606 else if (regno >= FIRST_PSEUDO_REGISTER
607 && reg_equiv_address[regno] != 0)
608 restore_referenced_regs (reg_equiv_address[regno],
609 insn, insn_mode);
610
611 /* Otherwise if this is a hard register, restore any piece of it that
612 is currently saved. */
613
614 else if (regno < FIRST_PSEUDO_REGISTER)
615 {
616 int numregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
617 /* Save at most SAVEREGS at a time. This can not be larger than
618 MOVE_MAX, because that causes insert_save_restore to fail. */
619 int saveregs = MIN (numregs, MOVE_MAX / UNITS_PER_WORD);
620 int endregno = regno + numregs;
621
622 for (i = regno; i < endregno; i++)
623 if (TEST_HARD_REG_BIT (hard_regs_need_restore, i))
624 i += insert_save_restore (insn, 0, i, insn_mode, saveregs);
625 }
626
627 return;
628 }
629
630 fmt = GET_RTX_FORMAT (code);
631 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
632 {
633 if (fmt[i] == 'e')
634 restore_referenced_regs (XEXP (x, i), insn, insn_mode);
635 else if (fmt[i] == 'E')
636 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
637 restore_referenced_regs (XVECEXP (x, i, j), insn, insn_mode);
638 }
639 }
640 \f
641 /* Insert a sequence of insns to save or restore, SAVE_P says which,
642 REGNO. Place these insns in front of INSN. INSN_MODE is the mode
643 to assign to these insns. MAXRESTORE is the maximum number of registers
644 which should be restored during this call (when SAVE_P == 0). It should
645 never be less than 1 since we only work with entire registers.
646
647 Note that we have verified in init_caller_save that we can do this
648 with a simple SET, so use it. Set INSN_CODE to what we save there
649 since the address might not be valid so the insn might not be recognized.
650 These insns will be reloaded and have register elimination done by
651 find_reload, so we need not worry about that here.
652
653 Return the extra number of registers saved. */
654
655 static int
656 insert_save_restore (insn, save_p, regno, insn_mode, maxrestore)
657 rtx insn;
658 int save_p;
659 int regno;
660 enum machine_mode insn_mode;
661 int maxrestore;
662 {
663 rtx pat;
664 enum insn_code code;
665 int i, numregs;
666
667 /* A common failure mode if register status is not correct in the RTL
668 is for this routine to be called with a REGNO we didn't expect to
669 save. That will cause us to write an insn with a (nil) SET_DEST
670 or SET_SRC. Instead of doing so and causing a crash later, check
671 for this common case and abort here instead. This will remove one
672 step in debugging such problems. */
673
674 if (regno_save_mem[regno][1] == 0)
675 abort ();
676
677 /* If INSN is a CALL_INSN, we must insert our insns before any
678 USE insns in front of the CALL_INSN. */
679
680 if (GET_CODE (insn) == CALL_INSN)
681 while (GET_CODE (PREV_INSN (insn)) == INSN
682 && GET_CODE (PATTERN (PREV_INSN (insn))) == USE)
683 insn = PREV_INSN (insn);
684
685 #ifdef HAVE_cc0
686 /* If INSN references CC0, put our insns in front of the insn that sets
687 CC0. This is always safe, since the only way we could be passed an
688 insn that references CC0 is for a restore, and doing a restore earlier
689 isn't a problem. We do, however, assume here that CALL_INSNs don't
690 reference CC0. Guard against non-INSN's like CODE_LABEL. */
691
692 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
693 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
694 insn = prev_nonnote_insn (insn);
695 #endif
696
697 /* Get the pattern to emit and update our status. */
698 if (save_p)
699 {
700 int i, j, k;
701 int ok;
702
703 /* See if we can save several registers with a single instruction.
704 Work backwards to the single register case. */
705 for (i = MOVE_MAX / UNITS_PER_WORD; i > 0; i--)
706 {
707 ok = 1;
708 if (regno_save_mem[regno][i] != 0)
709 for (j = 0; j < i; j++)
710 {
711 if (! call_used_regs[regno + j] || call_fixed_regs[regno + j]
712 || ! TEST_HARD_REG_BIT (hard_regs_live, regno + j)
713 || TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
714 ok = 0;
715 }
716 else
717 continue;
718
719 /* Must do this one save at a time */
720 if (! ok)
721 continue;
722
723 pat = gen_rtx (SET, VOIDmode, regno_save_mem[regno][i],
724 gen_rtx (REG, GET_MODE (regno_save_mem[regno][i]), regno));
725 code = reg_save_code[regno][i];
726
727 /* Set hard_regs_saved for all the registers we saved. */
728 for (k = 0; k < i; k++)
729 {
730 SET_HARD_REG_BIT (hard_regs_saved, regno + k);
731 SET_HARD_REG_BIT (hard_regs_need_restore, regno + k);
732 n_regs_saved++;
733 }
734
735 numregs = i;
736 break;
737 }
738 }
739 else
740 {
741 int i, j, k;
742 int ok;
743
744 /* See if we can restore `maxrestore' registers at once. Work
745 backwards to the single register case. */
746 for (i = maxrestore; i > 0; i--)
747 {
748 ok = 1;
749 if (regno_save_mem[regno][i])
750 for (j = 0; j < i; j++)
751 {
752 if (! TEST_HARD_REG_BIT (hard_regs_need_restore, regno + j))
753 ok = 0;
754 }
755 else
756 continue;
757
758 /* Must do this one restore at a time */
759 if (! ok)
760 continue;
761
762 pat = gen_rtx (SET, VOIDmode,
763 gen_rtx (REG, GET_MODE (regno_save_mem[regno][i]),
764 regno),
765 regno_save_mem[regno][i]);
766 code = reg_restore_code[regno][i];
767
768
769 /* Clear status for all registers we restored. */
770 for (k = 0; k < i; k++)
771 {
772 CLEAR_HARD_REG_BIT (hard_regs_need_restore, regno + k);
773 n_regs_saved--;
774 }
775
776 numregs = i;
777 break;
778 }
779 }
780 /* Emit the insn and set the code and mode. */
781
782 insn = emit_insn_before (pat, insn);
783 PUT_MODE (insn, insn_mode);
784 INSN_CODE (insn) = code;
785
786 /* Tell our callers how many extra registers we saved/restored */
787 return numregs - 1;
788 }