Fix dg-warning in gcc.dg/alias-8.c
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "hash-set.h"
26 #include "machmode.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "wide-int.h"
33 #include "inchash.h"
34 #include "tree.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "stringpool.h"
39 #include "attribs.h"
40 #include "predict.h"
41 #include "hashtab.h"
42 #include "hard-reg-set.h"
43 #include "function.h"
44 #include "basic-block.h"
45 #include "tree-ssa-alias.h"
46 #include "internal-fn.h"
47 #include "gimple-expr.h"
48 #include "is-a.h"
49 #include "gimple.h"
50 #include "flags.h"
51 #include "statistics.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "insn-config.h"
55 #include "expmed.h"
56 #include "dojump.h"
57 #include "explow.h"
58 #include "calls.h"
59 #include "emit-rtl.h"
60 #include "stmt.h"
61 #include "expr.h"
62 #include "insn-codes.h"
63 #include "optabs.h"
64 #include "libfuncs.h"
65 #include "regs.h"
66 #include "diagnostic-core.h"
67 #include "output.h"
68 #include "tm_p.h"
69 #include "timevar.h"
70 #include "sbitmap.h"
71 #include "bitmap.h"
72 #include "langhooks.h"
73 #include "target.h"
74 #include "hash-map.h"
75 #include "plugin-api.h"
76 #include "ipa-ref.h"
77 #include "cgraph.h"
78 #include "except.h"
79 #include "dbgcnt.h"
80 #include "rtl-iter.h"
81 #include "tree-chkp.h"
82 #include "rtl-chkp.h"
83
84
85 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
86 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
87
88 /* Data structure and subroutines used within expand_call. */
89
90 struct arg_data
91 {
92 /* Tree node for this argument. */
93 tree tree_value;
94 /* Mode for value; TYPE_MODE unless promoted. */
95 machine_mode mode;
96 /* Current RTL value for argument, or 0 if it isn't precomputed. */
97 rtx value;
98 /* Initially-compute RTL value for argument; only for const functions. */
99 rtx initial_value;
100 /* Register to pass this argument in, 0 if passed on stack, or an
101 PARALLEL if the arg is to be copied into multiple non-contiguous
102 registers. */
103 rtx reg;
104 /* Register to pass this argument in when generating tail call sequence.
105 This is not the same register as for normal calls on machines with
106 register windows. */
107 rtx tail_call_reg;
108 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
109 form for emit_group_move. */
110 rtx parallel_value;
111 /* If value is passed in neither reg nor stack, this field holds a number
112 of a special slot to be used. */
113 rtx special_slot;
114 /* For pointer bounds hold an index of parm bounds are bound to. -1 if
115 there is no such pointer. */
116 int pointer_arg;
117 /* If pointer_arg refers a structure, then pointer_offset holds an offset
118 of a pointer in this structure. */
119 int pointer_offset;
120 /* If REG was promoted from the actual mode of the argument expression,
121 indicates whether the promotion is sign- or zero-extended. */
122 int unsignedp;
123 /* Number of bytes to put in registers. 0 means put the whole arg
124 in registers. Also 0 if not passed in registers. */
125 int partial;
126 /* Nonzero if argument must be passed on stack.
127 Note that some arguments may be passed on the stack
128 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
129 pass_on_stack identifies arguments that *cannot* go in registers. */
130 int pass_on_stack;
131 /* Some fields packaged up for locate_and_pad_parm. */
132 struct locate_and_pad_arg_data locate;
133 /* Location on the stack at which parameter should be stored. The store
134 has already been done if STACK == VALUE. */
135 rtx stack;
136 /* Location on the stack of the start of this argument slot. This can
137 differ from STACK if this arg pads downward. This location is known
138 to be aligned to TARGET_FUNCTION_ARG_BOUNDARY. */
139 rtx stack_slot;
140 /* Place that this stack area has been saved, if needed. */
141 rtx save_area;
142 /* If an argument's alignment does not permit direct copying into registers,
143 copy in smaller-sized pieces into pseudos. These are stored in a
144 block pointed to by this field. The next field says how many
145 word-sized pseudos we made. */
146 rtx *aligned_regs;
147 int n_aligned_regs;
148 };
149
150 /* A vector of one char per byte of stack space. A byte if nonzero if
151 the corresponding stack location has been used.
152 This vector is used to prevent a function call within an argument from
153 clobbering any stack already set up. */
154 static char *stack_usage_map;
155
156 /* Size of STACK_USAGE_MAP. */
157 static int highest_outgoing_arg_in_use;
158
159 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
160 stack location's tail call argument has been already stored into the stack.
161 This bitmap is used to prevent sibling call optimization if function tries
162 to use parent's incoming argument slots when they have been already
163 overwritten with tail call arguments. */
164 static sbitmap stored_args_map;
165
166 /* stack_arg_under_construction is nonzero when an argument may be
167 initialized with a constructor call (including a C function that
168 returns a BLKmode struct) and expand_call must take special action
169 to make sure the object being constructed does not overlap the
170 argument list for the constructor call. */
171 static int stack_arg_under_construction;
172
173 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
174 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
175 cumulative_args_t);
176 static void precompute_register_parameters (int, struct arg_data *, int *);
177 static void store_bounds (struct arg_data *, struct arg_data *);
178 static int store_one_arg (struct arg_data *, rtx, int, int, int);
179 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
180 static int finalize_must_preallocate (int, int, struct arg_data *,
181 struct args_size *);
182 static void precompute_arguments (int, struct arg_data *);
183 static int compute_argument_block_size (int, struct args_size *, tree, tree, int);
184 static void initialize_argument_information (int, struct arg_data *,
185 struct args_size *, int,
186 tree, tree,
187 tree, tree, cumulative_args_t, int,
188 rtx *, int *, int *, int *,
189 bool *, bool);
190 static void compute_argument_addresses (struct arg_data *, rtx, int);
191 static rtx rtx_for_function_call (tree, tree);
192 static void load_register_parameters (struct arg_data *, int, rtx *, int,
193 int, int *);
194 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
195 machine_mode, int, va_list);
196 static int special_function_p (const_tree, int);
197 static int check_sibcall_argument_overlap_1 (rtx);
198 static int check_sibcall_argument_overlap (rtx_insn *, struct arg_data *, int);
199
200 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
201 unsigned int);
202 static tree split_complex_types (tree);
203
204 #ifdef REG_PARM_STACK_SPACE
205 static rtx save_fixed_argument_area (int, rtx, int *, int *);
206 static void restore_fixed_argument_area (rtx, rtx, int, int);
207 #endif
208 \f
209 /* Force FUNEXP into a form suitable for the address of a CALL,
210 and return that as an rtx. Also load the static chain register
211 if FNDECL is a nested function.
212
213 CALL_FUSAGE points to a variable holding the prospective
214 CALL_INSN_FUNCTION_USAGE information. */
215
216 rtx
217 prepare_call_address (tree fndecl_or_type, rtx funexp, rtx static_chain_value,
218 rtx *call_fusage, int reg_parm_seen, int sibcallp)
219 {
220 /* Make a valid memory address and copy constants through pseudo-regs,
221 but not for a constant address if -fno-function-cse. */
222 if (GET_CODE (funexp) != SYMBOL_REF)
223 /* If we are using registers for parameters, force the
224 function address into a register now. */
225 funexp = ((reg_parm_seen
226 && targetm.small_register_classes_for_mode_p (FUNCTION_MODE))
227 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
228 : memory_address (FUNCTION_MODE, funexp));
229 else if (flag_pic && !flag_plt && fndecl_or_type
230 && TREE_CODE (fndecl_or_type) == FUNCTION_DECL
231 && !targetm.binds_local_p (fndecl_or_type))
232 {
233 funexp = force_reg (Pmode, funexp);
234 }
235 else if (! sibcallp)
236 {
237 if (!NO_FUNCTION_CSE && optimize && ! flag_no_function_cse)
238 funexp = force_reg (Pmode, funexp);
239 }
240
241 if (static_chain_value != 0
242 && (TREE_CODE (fndecl_or_type) != FUNCTION_DECL
243 || DECL_STATIC_CHAIN (fndecl_or_type)))
244 {
245 rtx chain;
246
247 chain = targetm.calls.static_chain (fndecl_or_type, false);
248 static_chain_value = convert_memory_address (Pmode, static_chain_value);
249
250 emit_move_insn (chain, static_chain_value);
251 if (REG_P (chain))
252 use_reg (call_fusage, chain);
253 }
254
255 return funexp;
256 }
257
258 /* Generate instructions to call function FUNEXP,
259 and optionally pop the results.
260 The CALL_INSN is the first insn generated.
261
262 FNDECL is the declaration node of the function. This is given to the
263 hook TARGET_RETURN_POPS_ARGS to determine whether this function pops
264 its own args.
265
266 FUNTYPE is the data type of the function. This is given to the hook
267 TARGET_RETURN_POPS_ARGS to determine whether this function pops its
268 own args. We used to allow an identifier for library functions, but
269 that doesn't work when the return type is an aggregate type and the
270 calling convention says that the pointer to this aggregate is to be
271 popped by the callee.
272
273 STACK_SIZE is the number of bytes of arguments on the stack,
274 ROUNDED_STACK_SIZE is that number rounded up to
275 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
276 both to put into the call insn and to generate explicit popping
277 code if necessary.
278
279 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
280 It is zero if this call doesn't want a structure value.
281
282 NEXT_ARG_REG is the rtx that results from executing
283 targetm.calls.function_arg (&args_so_far, VOIDmode, void_type_node, true)
284 just after all the args have had their registers assigned.
285 This could be whatever you like, but normally it is the first
286 arg-register beyond those used for args in this call,
287 or 0 if all the arg-registers are used in this call.
288 It is passed on to `gen_call' so you can put this info in the call insn.
289
290 VALREG is a hard register in which a value is returned,
291 or 0 if the call does not return a value.
292
293 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
294 the args to this call were processed.
295 We restore `inhibit_defer_pop' to that value.
296
297 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
298 denote registers used by the called function. */
299
300 static void
301 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
302 tree funtype ATTRIBUTE_UNUSED,
303 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
304 HOST_WIDE_INT rounded_stack_size,
305 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
306 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
307 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
308 cumulative_args_t args_so_far ATTRIBUTE_UNUSED)
309 {
310 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
311 rtx_insn *call_insn;
312 rtx call, funmem;
313 int already_popped = 0;
314 HOST_WIDE_INT n_popped
315 = targetm.calls.return_pops_args (fndecl, funtype, stack_size);
316
317 #ifdef CALL_POPS_ARGS
318 n_popped += CALL_POPS_ARGS (*get_cumulative_args (args_so_far));
319 #endif
320
321 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
322 and we don't want to load it into a register as an optimization,
323 because prepare_call_address already did it if it should be done. */
324 if (GET_CODE (funexp) != SYMBOL_REF)
325 funexp = memory_address (FUNCTION_MODE, funexp);
326
327 funmem = gen_rtx_MEM (FUNCTION_MODE, funexp);
328 if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL)
329 {
330 tree t = fndecl;
331
332 /* Although a built-in FUNCTION_DECL and its non-__builtin
333 counterpart compare equal and get a shared mem_attrs, they
334 produce different dump output in compare-debug compilations,
335 if an entry gets garbage collected in one compilation, then
336 adds a different (but equivalent) entry, while the other
337 doesn't run the garbage collector at the same spot and then
338 shares the mem_attr with the equivalent entry. */
339 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL)
340 {
341 tree t2 = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
342 if (t2)
343 t = t2;
344 }
345
346 set_mem_expr (funmem, t);
347 }
348 else if (fntree)
349 set_mem_expr (funmem, build_simple_mem_ref (CALL_EXPR_FN (fntree)));
350
351 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
352 if ((ecf_flags & ECF_SIBCALL)
353 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
354 && (n_popped > 0 || stack_size == 0))
355 {
356 rtx n_pop = GEN_INT (n_popped);
357 rtx pat;
358
359 /* If this subroutine pops its own args, record that in the call insn
360 if possible, for the sake of frame pointer elimination. */
361
362 if (valreg)
363 pat = GEN_SIBCALL_VALUE_POP (valreg, funmem, rounded_stack_size_rtx,
364 next_arg_reg, n_pop);
365 else
366 pat = GEN_SIBCALL_POP (funmem, rounded_stack_size_rtx, next_arg_reg,
367 n_pop);
368
369 emit_call_insn (pat);
370 already_popped = 1;
371 }
372 else
373 #endif
374
375 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
376 /* If the target has "call" or "call_value" insns, then prefer them
377 if no arguments are actually popped. If the target does not have
378 "call" or "call_value" insns, then we must use the popping versions
379 even if the call has no arguments to pop. */
380 #if defined (HAVE_call) && defined (HAVE_call_value)
381 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
382 && n_popped > 0)
383 #else
384 if (HAVE_call_pop && HAVE_call_value_pop)
385 #endif
386 {
387 rtx n_pop = GEN_INT (n_popped);
388 rtx pat;
389
390 /* If this subroutine pops its own args, record that in the call insn
391 if possible, for the sake of frame pointer elimination. */
392
393 if (valreg)
394 pat = GEN_CALL_VALUE_POP (valreg, funmem, rounded_stack_size_rtx,
395 next_arg_reg, n_pop);
396 else
397 pat = GEN_CALL_POP (funmem, rounded_stack_size_rtx, next_arg_reg,
398 n_pop);
399
400 emit_call_insn (pat);
401 already_popped = 1;
402 }
403 else
404 #endif
405
406 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
407 if ((ecf_flags & ECF_SIBCALL)
408 && HAVE_sibcall && HAVE_sibcall_value)
409 {
410 if (valreg)
411 emit_call_insn (GEN_SIBCALL_VALUE (valreg, funmem,
412 rounded_stack_size_rtx,
413 next_arg_reg, NULL_RTX));
414 else
415 emit_call_insn (GEN_SIBCALL (funmem, rounded_stack_size_rtx,
416 next_arg_reg,
417 GEN_INT (struct_value_size)));
418 }
419 else
420 #endif
421
422 #if defined (HAVE_call) && defined (HAVE_call_value)
423 if (HAVE_call && HAVE_call_value)
424 {
425 if (valreg)
426 emit_call_insn (GEN_CALL_VALUE (valreg, funmem, rounded_stack_size_rtx,
427 next_arg_reg, NULL_RTX));
428 else
429 emit_call_insn (GEN_CALL (funmem, rounded_stack_size_rtx, next_arg_reg,
430 GEN_INT (struct_value_size)));
431 }
432 else
433 #endif
434 gcc_unreachable ();
435
436 /* Find the call we just emitted. */
437 call_insn = last_call_insn ();
438
439 /* Some target create a fresh MEM instead of reusing the one provided
440 above. Set its MEM_EXPR. */
441 call = get_call_rtx_from (call_insn);
442 if (call
443 && MEM_EXPR (XEXP (call, 0)) == NULL_TREE
444 && MEM_EXPR (funmem) != NULL_TREE)
445 set_mem_expr (XEXP (call, 0), MEM_EXPR (funmem));
446
447 /* Mark instrumented calls. */
448 if (call && fntree)
449 CALL_EXPR_WITH_BOUNDS_P (call) = CALL_WITH_BOUNDS_P (fntree);
450
451 /* Put the register usage information there. */
452 add_function_usage_to (call_insn, call_fusage);
453
454 /* If this is a const call, then set the insn's unchanging bit. */
455 if (ecf_flags & ECF_CONST)
456 RTL_CONST_CALL_P (call_insn) = 1;
457
458 /* If this is a pure call, then set the insn's unchanging bit. */
459 if (ecf_flags & ECF_PURE)
460 RTL_PURE_CALL_P (call_insn) = 1;
461
462 /* If this is a const call, then set the insn's unchanging bit. */
463 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
464 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
465
466 /* Create a nothrow REG_EH_REGION note, if needed. */
467 make_reg_eh_region_note (call_insn, ecf_flags, 0);
468
469 if (ecf_flags & ECF_NORETURN)
470 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
471
472 if (ecf_flags & ECF_RETURNS_TWICE)
473 {
474 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
475 cfun->calls_setjmp = 1;
476 }
477
478 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
479
480 /* Restore this now, so that we do defer pops for this call's args
481 if the context of the call as a whole permits. */
482 inhibit_defer_pop = old_inhibit_defer_pop;
483
484 if (n_popped > 0)
485 {
486 if (!already_popped)
487 CALL_INSN_FUNCTION_USAGE (call_insn)
488 = gen_rtx_EXPR_LIST (VOIDmode,
489 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
490 CALL_INSN_FUNCTION_USAGE (call_insn));
491 rounded_stack_size -= n_popped;
492 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
493 stack_pointer_delta -= n_popped;
494
495 add_reg_note (call_insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
496
497 /* If popup is needed, stack realign must use DRAP */
498 if (SUPPORTS_STACK_ALIGNMENT)
499 crtl->need_drap = true;
500 }
501 /* For noreturn calls when not accumulating outgoing args force
502 REG_ARGS_SIZE note to prevent crossjumping of calls with different
503 args sizes. */
504 else if (!ACCUMULATE_OUTGOING_ARGS && (ecf_flags & ECF_NORETURN) != 0)
505 add_reg_note (call_insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
506
507 if (!ACCUMULATE_OUTGOING_ARGS)
508 {
509 /* If returning from the subroutine does not automatically pop the args,
510 we need an instruction to pop them sooner or later.
511 Perhaps do it now; perhaps just record how much space to pop later.
512
513 If returning from the subroutine does pop the args, indicate that the
514 stack pointer will be changed. */
515
516 if (rounded_stack_size != 0)
517 {
518 if (ecf_flags & ECF_NORETURN)
519 /* Just pretend we did the pop. */
520 stack_pointer_delta -= rounded_stack_size;
521 else if (flag_defer_pop && inhibit_defer_pop == 0
522 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
523 pending_stack_adjust += rounded_stack_size;
524 else
525 adjust_stack (rounded_stack_size_rtx);
526 }
527 }
528 /* When we accumulate outgoing args, we must avoid any stack manipulations.
529 Restore the stack pointer to its original value now. Usually
530 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
531 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
532 popping variants of functions exist as well.
533
534 ??? We may optimize similar to defer_pop above, but it is
535 probably not worthwhile.
536
537 ??? It will be worthwhile to enable combine_stack_adjustments even for
538 such machines. */
539 else if (n_popped)
540 anti_adjust_stack (GEN_INT (n_popped));
541 }
542
543 /* Determine if the function identified by NAME and FNDECL is one with
544 special properties we wish to know about.
545
546 For example, if the function might return more than one time (setjmp), then
547 set RETURNS_TWICE to a nonzero value.
548
549 Similarly set NORETURN if the function is in the longjmp family.
550
551 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
552 space from the stack such as alloca. */
553
554 static int
555 special_function_p (const_tree fndecl, int flags)
556 {
557 tree name_decl = DECL_NAME (fndecl);
558
559 /* For instrumentation clones we want to derive flags
560 from the original name. */
561 if (cgraph_node::get (fndecl)
562 && cgraph_node::get (fndecl)->instrumentation_clone)
563 name_decl = DECL_NAME (cgraph_node::get (fndecl)->orig_decl);
564
565 if (fndecl && name_decl
566 && IDENTIFIER_LENGTH (name_decl) <= 17
567 /* Exclude functions not at the file scope, or not `extern',
568 since they are not the magic functions we would otherwise
569 think they are.
570 FIXME: this should be handled with attributes, not with this
571 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
572 because you can declare fork() inside a function if you
573 wish. */
574 && (DECL_CONTEXT (fndecl) == NULL_TREE
575 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
576 && TREE_PUBLIC (fndecl))
577 {
578 const char *name = IDENTIFIER_POINTER (name_decl);
579 const char *tname = name;
580
581 /* We assume that alloca will always be called by name. It
582 makes no sense to pass it as a pointer-to-function to
583 anything that does not understand its behavior. */
584 if (((IDENTIFIER_LENGTH (name_decl) == 6
585 && name[0] == 'a'
586 && ! strcmp (name, "alloca"))
587 || (IDENTIFIER_LENGTH (name_decl) == 16
588 && name[0] == '_'
589 && ! strcmp (name, "__builtin_alloca"))))
590 flags |= ECF_MAY_BE_ALLOCA;
591
592 /* Disregard prefix _, __, __x or __builtin_. */
593 if (name[0] == '_')
594 {
595 if (name[1] == '_'
596 && name[2] == 'b'
597 && !strncmp (name + 3, "uiltin_", 7))
598 tname += 10;
599 else if (name[1] == '_' && name[2] == 'x')
600 tname += 3;
601 else if (name[1] == '_')
602 tname += 2;
603 else
604 tname += 1;
605 }
606
607 if (tname[0] == 's')
608 {
609 if ((tname[1] == 'e'
610 && (! strcmp (tname, "setjmp")
611 || ! strcmp (tname, "setjmp_syscall")))
612 || (tname[1] == 'i'
613 && ! strcmp (tname, "sigsetjmp"))
614 || (tname[1] == 'a'
615 && ! strcmp (tname, "savectx")))
616 flags |= ECF_RETURNS_TWICE | ECF_LEAF;
617
618 if (tname[1] == 'i'
619 && ! strcmp (tname, "siglongjmp"))
620 flags |= ECF_NORETURN;
621 }
622 else if ((tname[0] == 'q' && tname[1] == 's'
623 && ! strcmp (tname, "qsetjmp"))
624 || (tname[0] == 'v' && tname[1] == 'f'
625 && ! strcmp (tname, "vfork"))
626 || (tname[0] == 'g' && tname[1] == 'e'
627 && !strcmp (tname, "getcontext")))
628 flags |= ECF_RETURNS_TWICE | ECF_LEAF;
629
630 else if (tname[0] == 'l' && tname[1] == 'o'
631 && ! strcmp (tname, "longjmp"))
632 flags |= ECF_NORETURN;
633 }
634
635 return flags;
636 }
637
638 /* Similar to special_function_p; return a set of ERF_ flags for the
639 function FNDECL. */
640 static int
641 decl_return_flags (tree fndecl)
642 {
643 tree attr;
644 tree type = TREE_TYPE (fndecl);
645 if (!type)
646 return 0;
647
648 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
649 if (!attr)
650 return 0;
651
652 attr = TREE_VALUE (TREE_VALUE (attr));
653 if (!attr || TREE_STRING_LENGTH (attr) < 1)
654 return 0;
655
656 switch (TREE_STRING_POINTER (attr)[0])
657 {
658 case '1':
659 case '2':
660 case '3':
661 case '4':
662 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
663
664 case 'm':
665 return ERF_NOALIAS;
666
667 case '.':
668 default:
669 return 0;
670 }
671 }
672
673 /* Return nonzero when FNDECL represents a call to setjmp. */
674
675 int
676 setjmp_call_p (const_tree fndecl)
677 {
678 if (DECL_IS_RETURNS_TWICE (fndecl))
679 return ECF_RETURNS_TWICE;
680 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
681 }
682
683
684 /* Return true if STMT is an alloca call. */
685
686 bool
687 gimple_alloca_call_p (const_gimple stmt)
688 {
689 tree fndecl;
690
691 if (!is_gimple_call (stmt))
692 return false;
693
694 fndecl = gimple_call_fndecl (stmt);
695 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
696 return true;
697
698 return false;
699 }
700
701 /* Return true when exp contains alloca call. */
702
703 bool
704 alloca_call_p (const_tree exp)
705 {
706 tree fndecl;
707 if (TREE_CODE (exp) == CALL_EXPR
708 && (fndecl = get_callee_fndecl (exp))
709 && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
710 return true;
711 return false;
712 }
713
714 /* Return TRUE if FNDECL is either a TM builtin or a TM cloned
715 function. Return FALSE otherwise. */
716
717 static bool
718 is_tm_builtin (const_tree fndecl)
719 {
720 if (fndecl == NULL)
721 return false;
722
723 if (decl_is_tm_clone (fndecl))
724 return true;
725
726 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
727 {
728 switch (DECL_FUNCTION_CODE (fndecl))
729 {
730 case BUILT_IN_TM_COMMIT:
731 case BUILT_IN_TM_COMMIT_EH:
732 case BUILT_IN_TM_ABORT:
733 case BUILT_IN_TM_IRREVOCABLE:
734 case BUILT_IN_TM_GETTMCLONE_IRR:
735 case BUILT_IN_TM_MEMCPY:
736 case BUILT_IN_TM_MEMMOVE:
737 case BUILT_IN_TM_MEMSET:
738 CASE_BUILT_IN_TM_STORE (1):
739 CASE_BUILT_IN_TM_STORE (2):
740 CASE_BUILT_IN_TM_STORE (4):
741 CASE_BUILT_IN_TM_STORE (8):
742 CASE_BUILT_IN_TM_STORE (FLOAT):
743 CASE_BUILT_IN_TM_STORE (DOUBLE):
744 CASE_BUILT_IN_TM_STORE (LDOUBLE):
745 CASE_BUILT_IN_TM_STORE (M64):
746 CASE_BUILT_IN_TM_STORE (M128):
747 CASE_BUILT_IN_TM_STORE (M256):
748 CASE_BUILT_IN_TM_LOAD (1):
749 CASE_BUILT_IN_TM_LOAD (2):
750 CASE_BUILT_IN_TM_LOAD (4):
751 CASE_BUILT_IN_TM_LOAD (8):
752 CASE_BUILT_IN_TM_LOAD (FLOAT):
753 CASE_BUILT_IN_TM_LOAD (DOUBLE):
754 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
755 CASE_BUILT_IN_TM_LOAD (M64):
756 CASE_BUILT_IN_TM_LOAD (M128):
757 CASE_BUILT_IN_TM_LOAD (M256):
758 case BUILT_IN_TM_LOG:
759 case BUILT_IN_TM_LOG_1:
760 case BUILT_IN_TM_LOG_2:
761 case BUILT_IN_TM_LOG_4:
762 case BUILT_IN_TM_LOG_8:
763 case BUILT_IN_TM_LOG_FLOAT:
764 case BUILT_IN_TM_LOG_DOUBLE:
765 case BUILT_IN_TM_LOG_LDOUBLE:
766 case BUILT_IN_TM_LOG_M64:
767 case BUILT_IN_TM_LOG_M128:
768 case BUILT_IN_TM_LOG_M256:
769 return true;
770 default:
771 break;
772 }
773 }
774 return false;
775 }
776
777 /* Detect flags (function attributes) from the function decl or type node. */
778
779 int
780 flags_from_decl_or_type (const_tree exp)
781 {
782 int flags = 0;
783
784 if (DECL_P (exp))
785 {
786 /* The function exp may have the `malloc' attribute. */
787 if (DECL_IS_MALLOC (exp))
788 flags |= ECF_MALLOC;
789
790 /* The function exp may have the `returns_twice' attribute. */
791 if (DECL_IS_RETURNS_TWICE (exp))
792 flags |= ECF_RETURNS_TWICE;
793
794 /* Process the pure and const attributes. */
795 if (TREE_READONLY (exp))
796 flags |= ECF_CONST;
797 if (DECL_PURE_P (exp))
798 flags |= ECF_PURE;
799 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
800 flags |= ECF_LOOPING_CONST_OR_PURE;
801
802 if (DECL_IS_NOVOPS (exp))
803 flags |= ECF_NOVOPS;
804 if (lookup_attribute ("leaf", DECL_ATTRIBUTES (exp)))
805 flags |= ECF_LEAF;
806
807 if (TREE_NOTHROW (exp))
808 flags |= ECF_NOTHROW;
809
810 if (flag_tm)
811 {
812 if (is_tm_builtin (exp))
813 flags |= ECF_TM_BUILTIN;
814 else if ((flags & (ECF_CONST|ECF_NOVOPS)) != 0
815 || lookup_attribute ("transaction_pure",
816 TYPE_ATTRIBUTES (TREE_TYPE (exp))))
817 flags |= ECF_TM_PURE;
818 }
819
820 flags = special_function_p (exp, flags);
821 }
822 else if (TYPE_P (exp))
823 {
824 if (TYPE_READONLY (exp))
825 flags |= ECF_CONST;
826
827 if (flag_tm
828 && ((flags & ECF_CONST) != 0
829 || lookup_attribute ("transaction_pure", TYPE_ATTRIBUTES (exp))))
830 flags |= ECF_TM_PURE;
831 }
832 else
833 gcc_unreachable ();
834
835 if (TREE_THIS_VOLATILE (exp))
836 {
837 flags |= ECF_NORETURN;
838 if (flags & (ECF_CONST|ECF_PURE))
839 flags |= ECF_LOOPING_CONST_OR_PURE;
840 }
841
842 return flags;
843 }
844
845 /* Detect flags from a CALL_EXPR. */
846
847 int
848 call_expr_flags (const_tree t)
849 {
850 int flags;
851 tree decl = get_callee_fndecl (t);
852
853 if (decl)
854 flags = flags_from_decl_or_type (decl);
855 else if (CALL_EXPR_FN (t) == NULL_TREE)
856 flags = internal_fn_flags (CALL_EXPR_IFN (t));
857 else
858 {
859 t = TREE_TYPE (CALL_EXPR_FN (t));
860 if (t && TREE_CODE (t) == POINTER_TYPE)
861 flags = flags_from_decl_or_type (TREE_TYPE (t));
862 else
863 flags = 0;
864 }
865
866 return flags;
867 }
868
869 /* Precompute all register parameters as described by ARGS, storing values
870 into fields within the ARGS array.
871
872 NUM_ACTUALS indicates the total number elements in the ARGS array.
873
874 Set REG_PARM_SEEN if we encounter a register parameter. */
875
876 static void
877 precompute_register_parameters (int num_actuals, struct arg_data *args,
878 int *reg_parm_seen)
879 {
880 int i;
881
882 *reg_parm_seen = 0;
883
884 for (i = 0; i < num_actuals; i++)
885 if (args[i].reg != 0 && ! args[i].pass_on_stack)
886 {
887 *reg_parm_seen = 1;
888
889 if (args[i].value == 0)
890 {
891 push_temp_slots ();
892 args[i].value = expand_normal (args[i].tree_value);
893 preserve_temp_slots (args[i].value);
894 pop_temp_slots ();
895 }
896
897 /* If we are to promote the function arg to a wider mode,
898 do it now. */
899
900 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
901 args[i].value
902 = convert_modes (args[i].mode,
903 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
904 args[i].value, args[i].unsignedp);
905
906 /* If the value is a non-legitimate constant, force it into a
907 pseudo now. TLS symbols sometimes need a call to resolve. */
908 if (CONSTANT_P (args[i].value)
909 && !targetm.legitimate_constant_p (args[i].mode, args[i].value))
910 args[i].value = force_reg (args[i].mode, args[i].value);
911
912 /* If we're going to have to load the value by parts, pull the
913 parts into pseudos. The part extraction process can involve
914 non-trivial computation. */
915 if (GET_CODE (args[i].reg) == PARALLEL)
916 {
917 tree type = TREE_TYPE (args[i].tree_value);
918 args[i].parallel_value
919 = emit_group_load_into_temps (args[i].reg, args[i].value,
920 type, int_size_in_bytes (type));
921 }
922
923 /* If the value is expensive, and we are inside an appropriately
924 short loop, put the value into a pseudo and then put the pseudo
925 into the hard reg.
926
927 For small register classes, also do this if this call uses
928 register parameters. This is to avoid reload conflicts while
929 loading the parameters registers. */
930
931 else if ((! (REG_P (args[i].value)
932 || (GET_CODE (args[i].value) == SUBREG
933 && REG_P (SUBREG_REG (args[i].value)))))
934 && args[i].mode != BLKmode
935 && set_src_cost (args[i].value, optimize_insn_for_speed_p ())
936 > COSTS_N_INSNS (1)
937 && ((*reg_parm_seen
938 && targetm.small_register_classes_for_mode_p (args[i].mode))
939 || optimize))
940 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
941 }
942 }
943
944 #ifdef REG_PARM_STACK_SPACE
945
946 /* The argument list is the property of the called routine and it
947 may clobber it. If the fixed area has been used for previous
948 parameters, we must save and restore it. */
949
950 static rtx
951 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
952 {
953 int low;
954 int high;
955
956 /* Compute the boundary of the area that needs to be saved, if any. */
957 high = reg_parm_stack_space;
958 if (ARGS_GROW_DOWNWARD)
959 high += 1;
960
961 if (high > highest_outgoing_arg_in_use)
962 high = highest_outgoing_arg_in_use;
963
964 for (low = 0; low < high; low++)
965 if (stack_usage_map[low] != 0)
966 {
967 int num_to_save;
968 machine_mode save_mode;
969 int delta;
970 rtx addr;
971 rtx stack_area;
972 rtx save_area;
973
974 while (stack_usage_map[--high] == 0)
975 ;
976
977 *low_to_save = low;
978 *high_to_save = high;
979
980 num_to_save = high - low + 1;
981 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
982
983 /* If we don't have the required alignment, must do this
984 in BLKmode. */
985 if ((low & (MIN (GET_MODE_SIZE (save_mode),
986 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
987 save_mode = BLKmode;
988
989 if (ARGS_GROW_DOWNWARD)
990 delta = -high;
991 else
992 delta = low;
993
994 addr = plus_constant (Pmode, argblock, delta);
995 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
996
997 set_mem_align (stack_area, PARM_BOUNDARY);
998 if (save_mode == BLKmode)
999 {
1000 save_area = assign_stack_temp (BLKmode, num_to_save);
1001 emit_block_move (validize_mem (save_area), stack_area,
1002 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
1003 }
1004 else
1005 {
1006 save_area = gen_reg_rtx (save_mode);
1007 emit_move_insn (save_area, stack_area);
1008 }
1009
1010 return save_area;
1011 }
1012
1013 return NULL_RTX;
1014 }
1015
1016 static void
1017 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
1018 {
1019 machine_mode save_mode = GET_MODE (save_area);
1020 int delta;
1021 rtx addr, stack_area;
1022
1023 if (ARGS_GROW_DOWNWARD)
1024 delta = -high_to_save;
1025 else
1026 delta = low_to_save;
1027
1028 addr = plus_constant (Pmode, argblock, delta);
1029 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1030 set_mem_align (stack_area, PARM_BOUNDARY);
1031
1032 if (save_mode != BLKmode)
1033 emit_move_insn (stack_area, save_area);
1034 else
1035 emit_block_move (stack_area, validize_mem (save_area),
1036 GEN_INT (high_to_save - low_to_save + 1),
1037 BLOCK_OP_CALL_PARM);
1038 }
1039 #endif /* REG_PARM_STACK_SPACE */
1040
1041 /* If any elements in ARGS refer to parameters that are to be passed in
1042 registers, but not in memory, and whose alignment does not permit a
1043 direct copy into registers. Copy the values into a group of pseudos
1044 which we will later copy into the appropriate hard registers.
1045
1046 Pseudos for each unaligned argument will be stored into the array
1047 args[argnum].aligned_regs. The caller is responsible for deallocating
1048 the aligned_regs array if it is nonzero. */
1049
1050 static void
1051 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
1052 {
1053 int i, j;
1054
1055 for (i = 0; i < num_actuals; i++)
1056 if (args[i].reg != 0 && ! args[i].pass_on_stack
1057 && GET_CODE (args[i].reg) != PARALLEL
1058 && args[i].mode == BLKmode
1059 && MEM_P (args[i].value)
1060 && (MEM_ALIGN (args[i].value)
1061 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
1062 {
1063 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1064 int endian_correction = 0;
1065
1066 if (args[i].partial)
1067 {
1068 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
1069 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
1070 }
1071 else
1072 {
1073 args[i].n_aligned_regs
1074 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1075 }
1076
1077 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
1078
1079 /* Structures smaller than a word are normally aligned to the
1080 least significant byte. On a BYTES_BIG_ENDIAN machine,
1081 this means we must skip the empty high order bytes when
1082 calculating the bit offset. */
1083 if (bytes < UNITS_PER_WORD
1084 #ifdef BLOCK_REG_PADDING
1085 && (BLOCK_REG_PADDING (args[i].mode,
1086 TREE_TYPE (args[i].tree_value), 1)
1087 == downward)
1088 #else
1089 && BYTES_BIG_ENDIAN
1090 #endif
1091 )
1092 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
1093
1094 for (j = 0; j < args[i].n_aligned_regs; j++)
1095 {
1096 rtx reg = gen_reg_rtx (word_mode);
1097 rtx word = operand_subword_force (args[i].value, j, BLKmode);
1098 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
1099
1100 args[i].aligned_regs[j] = reg;
1101 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
1102 word_mode, word_mode);
1103
1104 /* There is no need to restrict this code to loading items
1105 in TYPE_ALIGN sized hunks. The bitfield instructions can
1106 load up entire word sized registers efficiently.
1107
1108 ??? This may not be needed anymore.
1109 We use to emit a clobber here but that doesn't let later
1110 passes optimize the instructions we emit. By storing 0 into
1111 the register later passes know the first AND to zero out the
1112 bitfield being set in the register is unnecessary. The store
1113 of 0 will be deleted as will at least the first AND. */
1114
1115 emit_move_insn (reg, const0_rtx);
1116
1117 bytes -= bitsize / BITS_PER_UNIT;
1118 store_bit_field (reg, bitsize, endian_correction, 0, 0,
1119 word_mode, word);
1120 }
1121 }
1122 }
1123
1124 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
1125 CALL_EXPR EXP.
1126
1127 NUM_ACTUALS is the total number of parameters.
1128
1129 N_NAMED_ARGS is the total number of named arguments.
1130
1131 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
1132 value, or null.
1133
1134 FNDECL is the tree code for the target of this call (if known)
1135
1136 ARGS_SO_FAR holds state needed by the target to know where to place
1137 the next argument.
1138
1139 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
1140 for arguments which are passed in registers.
1141
1142 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
1143 and may be modified by this routine.
1144
1145 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
1146 flags which may may be modified by this routine.
1147
1148 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
1149 that requires allocation of stack space.
1150
1151 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
1152 the thunked-to function. */
1153
1154 static void
1155 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
1156 struct arg_data *args,
1157 struct args_size *args_size,
1158 int n_named_args ATTRIBUTE_UNUSED,
1159 tree exp, tree struct_value_addr_value,
1160 tree fndecl, tree fntype,
1161 cumulative_args_t args_so_far,
1162 int reg_parm_stack_space,
1163 rtx *old_stack_level, int *old_pending_adj,
1164 int *must_preallocate, int *ecf_flags,
1165 bool *may_tailcall, bool call_from_thunk_p)
1166 {
1167 CUMULATIVE_ARGS *args_so_far_pnt = get_cumulative_args (args_so_far);
1168 location_t loc = EXPR_LOCATION (exp);
1169
1170 /* Count arg position in order args appear. */
1171 int argpos;
1172
1173 int i;
1174
1175 args_size->constant = 0;
1176 args_size->var = 0;
1177
1178 bitmap_obstack_initialize (NULL);
1179
1180 /* In this loop, we consider args in the order they are written.
1181 We fill up ARGS from the back. */
1182
1183 i = num_actuals - 1;
1184 {
1185 int j = i, ptr_arg = -1;
1186 call_expr_arg_iterator iter;
1187 tree arg;
1188 bitmap slots = NULL;
1189
1190 if (struct_value_addr_value)
1191 {
1192 args[j].tree_value = struct_value_addr_value;
1193 j--;
1194
1195 /* If we pass structure address then we need to
1196 create bounds for it. Since created bounds is
1197 a call statement, we expand it right here to avoid
1198 fixing all other places where it may be expanded. */
1199 if (CALL_WITH_BOUNDS_P (exp))
1200 {
1201 args[j].value = gen_reg_rtx (targetm.chkp_bound_mode ());
1202 args[j].tree_value
1203 = chkp_make_bounds_for_struct_addr (struct_value_addr_value);
1204 expand_expr_real (args[j].tree_value, args[j].value, VOIDmode,
1205 EXPAND_NORMAL, 0, false);
1206 args[j].pointer_arg = j + 1;
1207 j--;
1208 }
1209 }
1210 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
1211 {
1212 tree argtype = TREE_TYPE (arg);
1213
1214 /* Remember last param with pointer and associate it
1215 with following pointer bounds. */
1216 if (CALL_WITH_BOUNDS_P (exp)
1217 && chkp_type_has_pointer (argtype))
1218 {
1219 if (slots)
1220 BITMAP_FREE (slots);
1221 ptr_arg = j;
1222 if (!BOUNDED_TYPE_P (argtype))
1223 {
1224 slots = BITMAP_ALLOC (NULL);
1225 chkp_find_bound_slots (argtype, slots);
1226 }
1227 }
1228 else if (POINTER_BOUNDS_TYPE_P (argtype))
1229 {
1230 /* We expect bounds in instrumented calls only.
1231 Otherwise it is a sign we lost flag due to some optimization
1232 and may emit call args incorrectly. */
1233 gcc_assert (CALL_WITH_BOUNDS_P (exp));
1234
1235 /* For structures look for the next available pointer. */
1236 if (ptr_arg != -1 && slots)
1237 {
1238 unsigned bnd_no = bitmap_first_set_bit (slots);
1239 args[j].pointer_offset =
1240 bnd_no * POINTER_SIZE / BITS_PER_UNIT;
1241
1242 bitmap_clear_bit (slots, bnd_no);
1243
1244 /* Check we have no more pointers in the structure. */
1245 if (bitmap_empty_p (slots))
1246 BITMAP_FREE (slots);
1247 }
1248 args[j].pointer_arg = ptr_arg;
1249
1250 /* Check we covered all pointers in the previous
1251 non bounds arg. */
1252 if (!slots)
1253 ptr_arg = -1;
1254 }
1255 else
1256 ptr_arg = -1;
1257
1258 if (targetm.calls.split_complex_arg
1259 && argtype
1260 && TREE_CODE (argtype) == COMPLEX_TYPE
1261 && targetm.calls.split_complex_arg (argtype))
1262 {
1263 tree subtype = TREE_TYPE (argtype);
1264 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
1265 j--;
1266 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
1267 }
1268 else
1269 args[j].tree_value = arg;
1270 j--;
1271 }
1272
1273 if (slots)
1274 BITMAP_FREE (slots);
1275 }
1276
1277 bitmap_obstack_release (NULL);
1278
1279 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1280 for (argpos = 0; argpos < num_actuals; i--, argpos++)
1281 {
1282 tree type = TREE_TYPE (args[i].tree_value);
1283 int unsignedp;
1284 machine_mode mode;
1285
1286 /* Replace erroneous argument with constant zero. */
1287 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1288 args[i].tree_value = integer_zero_node, type = integer_type_node;
1289
1290 /* If TYPE is a transparent union or record, pass things the way
1291 we would pass the first field of the union or record. We have
1292 already verified that the modes are the same. */
1293 if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
1294 && TYPE_TRANSPARENT_AGGR (type))
1295 type = TREE_TYPE (first_field (type));
1296
1297 /* Decide where to pass this arg.
1298
1299 args[i].reg is nonzero if all or part is passed in registers.
1300
1301 args[i].partial is nonzero if part but not all is passed in registers,
1302 and the exact value says how many bytes are passed in registers.
1303
1304 args[i].pass_on_stack is nonzero if the argument must at least be
1305 computed on the stack. It may then be loaded back into registers
1306 if args[i].reg is nonzero.
1307
1308 These decisions are driven by the FUNCTION_... macros and must agree
1309 with those made by function.c. */
1310
1311 /* See if this argument should be passed by invisible reference. */
1312 if (pass_by_reference (args_so_far_pnt, TYPE_MODE (type),
1313 type, argpos < n_named_args))
1314 {
1315 bool callee_copies;
1316 tree base = NULL_TREE;
1317
1318 callee_copies
1319 = reference_callee_copied (args_so_far_pnt, TYPE_MODE (type),
1320 type, argpos < n_named_args);
1321
1322 /* If we're compiling a thunk, pass through invisible references
1323 instead of making a copy. */
1324 if (call_from_thunk_p
1325 || (callee_copies
1326 && !TREE_ADDRESSABLE (type)
1327 && (base = get_base_address (args[i].tree_value))
1328 && TREE_CODE (base) != SSA_NAME
1329 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1330 {
1331 /* We may have turned the parameter value into an SSA name.
1332 Go back to the original parameter so we can take the
1333 address. */
1334 if (TREE_CODE (args[i].tree_value) == SSA_NAME)
1335 {
1336 gcc_assert (SSA_NAME_IS_DEFAULT_DEF (args[i].tree_value));
1337 args[i].tree_value = SSA_NAME_VAR (args[i].tree_value);
1338 gcc_assert (TREE_CODE (args[i].tree_value) == PARM_DECL);
1339 }
1340 /* Argument setup code may have copied the value to register. We
1341 revert that optimization now because the tail call code must
1342 use the original location. */
1343 if (TREE_CODE (args[i].tree_value) == PARM_DECL
1344 && !MEM_P (DECL_RTL (args[i].tree_value))
1345 && DECL_INCOMING_RTL (args[i].tree_value)
1346 && MEM_P (DECL_INCOMING_RTL (args[i].tree_value)))
1347 set_decl_rtl (args[i].tree_value,
1348 DECL_INCOMING_RTL (args[i].tree_value));
1349
1350 mark_addressable (args[i].tree_value);
1351
1352 /* We can't use sibcalls if a callee-copied argument is
1353 stored in the current function's frame. */
1354 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1355 *may_tailcall = false;
1356
1357 args[i].tree_value = build_fold_addr_expr_loc (loc,
1358 args[i].tree_value);
1359 type = TREE_TYPE (args[i].tree_value);
1360
1361 if (*ecf_flags & ECF_CONST)
1362 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
1363 }
1364 else
1365 {
1366 /* We make a copy of the object and pass the address to the
1367 function being called. */
1368 rtx copy;
1369
1370 if (!COMPLETE_TYPE_P (type)
1371 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
1372 || (flag_stack_check == GENERIC_STACK_CHECK
1373 && compare_tree_int (TYPE_SIZE_UNIT (type),
1374 STACK_CHECK_MAX_VAR_SIZE) > 0))
1375 {
1376 /* This is a variable-sized object. Make space on the stack
1377 for it. */
1378 rtx size_rtx = expr_size (args[i].tree_value);
1379
1380 if (*old_stack_level == 0)
1381 {
1382 emit_stack_save (SAVE_BLOCK, old_stack_level);
1383 *old_pending_adj = pending_stack_adjust;
1384 pending_stack_adjust = 0;
1385 }
1386
1387 /* We can pass TRUE as the 4th argument because we just
1388 saved the stack pointer and will restore it right after
1389 the call. */
1390 copy = allocate_dynamic_stack_space (size_rtx,
1391 TYPE_ALIGN (type),
1392 TYPE_ALIGN (type),
1393 true);
1394 copy = gen_rtx_MEM (BLKmode, copy);
1395 set_mem_attributes (copy, type, 1);
1396 }
1397 else
1398 copy = assign_temp (type, 1, 0);
1399
1400 store_expr (args[i].tree_value, copy, 0, false);
1401
1402 /* Just change the const function to pure and then let
1403 the next test clear the pure based on
1404 callee_copies. */
1405 if (*ecf_flags & ECF_CONST)
1406 {
1407 *ecf_flags &= ~ECF_CONST;
1408 *ecf_flags |= ECF_PURE;
1409 }
1410
1411 if (!callee_copies && *ecf_flags & ECF_PURE)
1412 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
1413
1414 args[i].tree_value
1415 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
1416 type = TREE_TYPE (args[i].tree_value);
1417 *may_tailcall = false;
1418 }
1419 }
1420
1421 unsignedp = TYPE_UNSIGNED (type);
1422 mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
1423 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
1424
1425 args[i].unsignedp = unsignedp;
1426 args[i].mode = mode;
1427
1428 args[i].reg = targetm.calls.function_arg (args_so_far, mode, type,
1429 argpos < n_named_args);
1430
1431 if (args[i].reg && CONST_INT_P (args[i].reg))
1432 {
1433 args[i].special_slot = args[i].reg;
1434 args[i].reg = NULL;
1435 }
1436
1437 /* If this is a sibling call and the machine has register windows, the
1438 register window has to be unwinded before calling the routine, so
1439 arguments have to go into the incoming registers. */
1440 if (targetm.calls.function_incoming_arg != targetm.calls.function_arg)
1441 args[i].tail_call_reg
1442 = targetm.calls.function_incoming_arg (args_so_far, mode, type,
1443 argpos < n_named_args);
1444 else
1445 args[i].tail_call_reg = args[i].reg;
1446
1447 if (args[i].reg)
1448 args[i].partial
1449 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1450 argpos < n_named_args);
1451
1452 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1453
1454 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1455 it means that we are to pass this arg in the register(s) designated
1456 by the PARALLEL, but also to pass it in the stack. */
1457 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1458 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1459 args[i].pass_on_stack = 1;
1460
1461 /* If this is an addressable type, we must preallocate the stack
1462 since we must evaluate the object into its final location.
1463
1464 If this is to be passed in both registers and the stack, it is simpler
1465 to preallocate. */
1466 if (TREE_ADDRESSABLE (type)
1467 || (args[i].pass_on_stack && args[i].reg != 0))
1468 *must_preallocate = 1;
1469
1470 /* No stack allocation and padding for bounds. */
1471 if (POINTER_BOUNDS_P (args[i].tree_value))
1472 ;
1473 /* Compute the stack-size of this argument. */
1474 else if (args[i].reg == 0 || args[i].partial != 0
1475 || reg_parm_stack_space > 0
1476 || args[i].pass_on_stack)
1477 locate_and_pad_parm (mode, type,
1478 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1479 1,
1480 #else
1481 args[i].reg != 0,
1482 #endif
1483 reg_parm_stack_space,
1484 args[i].pass_on_stack ? 0 : args[i].partial,
1485 fndecl, args_size, &args[i].locate);
1486 #ifdef BLOCK_REG_PADDING
1487 else
1488 /* The argument is passed entirely in registers. See at which
1489 end it should be padded. */
1490 args[i].locate.where_pad =
1491 BLOCK_REG_PADDING (mode, type,
1492 int_size_in_bytes (type) <= UNITS_PER_WORD);
1493 #endif
1494
1495 /* Update ARGS_SIZE, the total stack space for args so far. */
1496
1497 args_size->constant += args[i].locate.size.constant;
1498 if (args[i].locate.size.var)
1499 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1500
1501 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1502 have been used, etc. */
1503
1504 targetm.calls.function_arg_advance (args_so_far, TYPE_MODE (type),
1505 type, argpos < n_named_args);
1506 }
1507 }
1508
1509 /* Update ARGS_SIZE to contain the total size for the argument block.
1510 Return the original constant component of the argument block's size.
1511
1512 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1513 for arguments passed in registers. */
1514
1515 static int
1516 compute_argument_block_size (int reg_parm_stack_space,
1517 struct args_size *args_size,
1518 tree fndecl ATTRIBUTE_UNUSED,
1519 tree fntype ATTRIBUTE_UNUSED,
1520 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1521 {
1522 int unadjusted_args_size = args_size->constant;
1523
1524 /* For accumulate outgoing args mode we don't need to align, since the frame
1525 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1526 backends from generating misaligned frame sizes. */
1527 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1528 preferred_stack_boundary = STACK_BOUNDARY;
1529
1530 /* Compute the actual size of the argument block required. The variable
1531 and constant sizes must be combined, the size may have to be rounded,
1532 and there may be a minimum required size. */
1533
1534 if (args_size->var)
1535 {
1536 args_size->var = ARGS_SIZE_TREE (*args_size);
1537 args_size->constant = 0;
1538
1539 preferred_stack_boundary /= BITS_PER_UNIT;
1540 if (preferred_stack_boundary > 1)
1541 {
1542 /* We don't handle this case yet. To handle it correctly we have
1543 to add the delta, round and subtract the delta.
1544 Currently no machine description requires this support. */
1545 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1546 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1547 }
1548
1549 if (reg_parm_stack_space > 0)
1550 {
1551 args_size->var
1552 = size_binop (MAX_EXPR, args_size->var,
1553 ssize_int (reg_parm_stack_space));
1554
1555 /* The area corresponding to register parameters is not to count in
1556 the size of the block we need. So make the adjustment. */
1557 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1558 args_size->var
1559 = size_binop (MINUS_EXPR, args_size->var,
1560 ssize_int (reg_parm_stack_space));
1561 }
1562 }
1563 else
1564 {
1565 preferred_stack_boundary /= BITS_PER_UNIT;
1566 if (preferred_stack_boundary < 1)
1567 preferred_stack_boundary = 1;
1568 args_size->constant = (((args_size->constant
1569 + stack_pointer_delta
1570 + preferred_stack_boundary - 1)
1571 / preferred_stack_boundary
1572 * preferred_stack_boundary)
1573 - stack_pointer_delta);
1574
1575 args_size->constant = MAX (args_size->constant,
1576 reg_parm_stack_space);
1577
1578 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1579 args_size->constant -= reg_parm_stack_space;
1580 }
1581 return unadjusted_args_size;
1582 }
1583
1584 /* Precompute parameters as needed for a function call.
1585
1586 FLAGS is mask of ECF_* constants.
1587
1588 NUM_ACTUALS is the number of arguments.
1589
1590 ARGS is an array containing information for each argument; this
1591 routine fills in the INITIAL_VALUE and VALUE fields for each
1592 precomputed argument. */
1593
1594 static void
1595 precompute_arguments (int num_actuals, struct arg_data *args)
1596 {
1597 int i;
1598
1599 /* If this is a libcall, then precompute all arguments so that we do not
1600 get extraneous instructions emitted as part of the libcall sequence. */
1601
1602 /* If we preallocated the stack space, and some arguments must be passed
1603 on the stack, then we must precompute any parameter which contains a
1604 function call which will store arguments on the stack.
1605 Otherwise, evaluating the parameter may clobber previous parameters
1606 which have already been stored into the stack. (we have code to avoid
1607 such case by saving the outgoing stack arguments, but it results in
1608 worse code) */
1609 if (!ACCUMULATE_OUTGOING_ARGS)
1610 return;
1611
1612 for (i = 0; i < num_actuals; i++)
1613 {
1614 tree type;
1615 machine_mode mode;
1616
1617 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
1618 continue;
1619
1620 /* If this is an addressable type, we cannot pre-evaluate it. */
1621 type = TREE_TYPE (args[i].tree_value);
1622 gcc_assert (!TREE_ADDRESSABLE (type));
1623
1624 args[i].initial_value = args[i].value
1625 = expand_normal (args[i].tree_value);
1626
1627 mode = TYPE_MODE (type);
1628 if (mode != args[i].mode)
1629 {
1630 int unsignedp = args[i].unsignedp;
1631 args[i].value
1632 = convert_modes (args[i].mode, mode,
1633 args[i].value, args[i].unsignedp);
1634
1635 /* CSE will replace this only if it contains args[i].value
1636 pseudo, so convert it down to the declared mode using
1637 a SUBREG. */
1638 if (REG_P (args[i].value)
1639 && GET_MODE_CLASS (args[i].mode) == MODE_INT
1640 && promote_mode (type, mode, &unsignedp) != args[i].mode)
1641 {
1642 args[i].initial_value
1643 = gen_lowpart_SUBREG (mode, args[i].value);
1644 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1645 SUBREG_PROMOTED_SET (args[i].initial_value, args[i].unsignedp);
1646 }
1647 }
1648 }
1649 }
1650
1651 /* Given the current state of MUST_PREALLOCATE and information about
1652 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1653 compute and return the final value for MUST_PREALLOCATE. */
1654
1655 static int
1656 finalize_must_preallocate (int must_preallocate, int num_actuals,
1657 struct arg_data *args, struct args_size *args_size)
1658 {
1659 /* See if we have or want to preallocate stack space.
1660
1661 If we would have to push a partially-in-regs parm
1662 before other stack parms, preallocate stack space instead.
1663
1664 If the size of some parm is not a multiple of the required stack
1665 alignment, we must preallocate.
1666
1667 If the total size of arguments that would otherwise create a copy in
1668 a temporary (such as a CALL) is more than half the total argument list
1669 size, preallocation is faster.
1670
1671 Another reason to preallocate is if we have a machine (like the m88k)
1672 where stack alignment is required to be maintained between every
1673 pair of insns, not just when the call is made. However, we assume here
1674 that such machines either do not have push insns (and hence preallocation
1675 would occur anyway) or the problem is taken care of with
1676 PUSH_ROUNDING. */
1677
1678 if (! must_preallocate)
1679 {
1680 int partial_seen = 0;
1681 int copy_to_evaluate_size = 0;
1682 int i;
1683
1684 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1685 {
1686 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1687 partial_seen = 1;
1688 else if (partial_seen && args[i].reg == 0)
1689 must_preallocate = 1;
1690 /* We preallocate in case there are bounds passed
1691 in the bounds table to have precomputed address
1692 for bounds association. */
1693 else if (POINTER_BOUNDS_P (args[i].tree_value)
1694 && !args[i].reg)
1695 must_preallocate = 1;
1696
1697 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1698 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1699 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1700 || TREE_CODE (args[i].tree_value) == COND_EXPR
1701 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1702 copy_to_evaluate_size
1703 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1704 }
1705
1706 if (copy_to_evaluate_size * 2 >= args_size->constant
1707 && args_size->constant > 0)
1708 must_preallocate = 1;
1709 }
1710 return must_preallocate;
1711 }
1712
1713 /* If we preallocated stack space, compute the address of each argument
1714 and store it into the ARGS array.
1715
1716 We need not ensure it is a valid memory address here; it will be
1717 validized when it is used.
1718
1719 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1720
1721 static void
1722 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1723 {
1724 if (argblock)
1725 {
1726 rtx arg_reg = argblock;
1727 int i, arg_offset = 0;
1728
1729 if (GET_CODE (argblock) == PLUS)
1730 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1731
1732 for (i = 0; i < num_actuals; i++)
1733 {
1734 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1735 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1736 rtx addr;
1737 unsigned int align, boundary;
1738 unsigned int units_on_stack = 0;
1739 machine_mode partial_mode = VOIDmode;
1740
1741 /* Skip this parm if it will not be passed on the stack. */
1742 if (! args[i].pass_on_stack
1743 && args[i].reg != 0
1744 && args[i].partial == 0)
1745 continue;
1746
1747 /* Pointer Bounds are never passed on the stack. */
1748 if (POINTER_BOUNDS_P (args[i].tree_value))
1749 continue;
1750
1751 if (CONST_INT_P (offset))
1752 addr = plus_constant (Pmode, arg_reg, INTVAL (offset));
1753 else
1754 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1755
1756 addr = plus_constant (Pmode, addr, arg_offset);
1757
1758 if (args[i].partial != 0)
1759 {
1760 /* Only part of the parameter is being passed on the stack.
1761 Generate a simple memory reference of the correct size. */
1762 units_on_stack = args[i].locate.size.constant;
1763 partial_mode = mode_for_size (units_on_stack * BITS_PER_UNIT,
1764 MODE_INT, 1);
1765 args[i].stack = gen_rtx_MEM (partial_mode, addr);
1766 set_mem_size (args[i].stack, units_on_stack);
1767 }
1768 else
1769 {
1770 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1771 set_mem_attributes (args[i].stack,
1772 TREE_TYPE (args[i].tree_value), 1);
1773 }
1774 align = BITS_PER_UNIT;
1775 boundary = args[i].locate.boundary;
1776 if (args[i].locate.where_pad != downward)
1777 align = boundary;
1778 else if (CONST_INT_P (offset))
1779 {
1780 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1781 align = align & -align;
1782 }
1783 set_mem_align (args[i].stack, align);
1784
1785 if (CONST_INT_P (slot_offset))
1786 addr = plus_constant (Pmode, arg_reg, INTVAL (slot_offset));
1787 else
1788 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1789
1790 addr = plus_constant (Pmode, addr, arg_offset);
1791
1792 if (args[i].partial != 0)
1793 {
1794 /* Only part of the parameter is being passed on the stack.
1795 Generate a simple memory reference of the correct size.
1796 */
1797 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
1798 set_mem_size (args[i].stack_slot, units_on_stack);
1799 }
1800 else
1801 {
1802 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1803 set_mem_attributes (args[i].stack_slot,
1804 TREE_TYPE (args[i].tree_value), 1);
1805 }
1806 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1807
1808 /* Function incoming arguments may overlap with sibling call
1809 outgoing arguments and we cannot allow reordering of reads
1810 from function arguments with stores to outgoing arguments
1811 of sibling calls. */
1812 set_mem_alias_set (args[i].stack, 0);
1813 set_mem_alias_set (args[i].stack_slot, 0);
1814 }
1815 }
1816 }
1817
1818 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1819 in a call instruction.
1820
1821 FNDECL is the tree node for the target function. For an indirect call
1822 FNDECL will be NULL_TREE.
1823
1824 ADDR is the operand 0 of CALL_EXPR for this call. */
1825
1826 static rtx
1827 rtx_for_function_call (tree fndecl, tree addr)
1828 {
1829 rtx funexp;
1830
1831 /* Get the function to call, in the form of RTL. */
1832 if (fndecl)
1833 {
1834 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
1835 TREE_USED (fndecl) = 1;
1836
1837 /* Get a SYMBOL_REF rtx for the function address. */
1838 funexp = XEXP (DECL_RTL (fndecl), 0);
1839 }
1840 else
1841 /* Generate an rtx (probably a pseudo-register) for the address. */
1842 {
1843 push_temp_slots ();
1844 funexp = expand_normal (addr);
1845 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1846 }
1847 return funexp;
1848 }
1849
1850 /* Internal state for internal_arg_pointer_based_exp and its helpers. */
1851 static struct
1852 {
1853 /* Last insn that has been scanned by internal_arg_pointer_based_exp_scan,
1854 or NULL_RTX if none has been scanned yet. */
1855 rtx_insn *scan_start;
1856 /* Vector indexed by REGNO - FIRST_PSEUDO_REGISTER, recording if a pseudo is
1857 based on crtl->args.internal_arg_pointer. The element is NULL_RTX if the
1858 pseudo isn't based on it, a CONST_INT offset if the pseudo is based on it
1859 with fixed offset, or PC if this is with variable or unknown offset. */
1860 vec<rtx> cache;
1861 } internal_arg_pointer_exp_state;
1862
1863 static rtx internal_arg_pointer_based_exp (const_rtx, bool);
1864
1865 /* Helper function for internal_arg_pointer_based_exp. Scan insns in
1866 the tail call sequence, starting with first insn that hasn't been
1867 scanned yet, and note for each pseudo on the LHS whether it is based
1868 on crtl->args.internal_arg_pointer or not, and what offset from that
1869 that pointer it has. */
1870
1871 static void
1872 internal_arg_pointer_based_exp_scan (void)
1873 {
1874 rtx_insn *insn, *scan_start = internal_arg_pointer_exp_state.scan_start;
1875
1876 if (scan_start == NULL_RTX)
1877 insn = get_insns ();
1878 else
1879 insn = NEXT_INSN (scan_start);
1880
1881 while (insn)
1882 {
1883 rtx set = single_set (insn);
1884 if (set && REG_P (SET_DEST (set)) && !HARD_REGISTER_P (SET_DEST (set)))
1885 {
1886 rtx val = NULL_RTX;
1887 unsigned int idx = REGNO (SET_DEST (set)) - FIRST_PSEUDO_REGISTER;
1888 /* Punt on pseudos set multiple times. */
1889 if (idx < internal_arg_pointer_exp_state.cache.length ()
1890 && (internal_arg_pointer_exp_state.cache[idx]
1891 != NULL_RTX))
1892 val = pc_rtx;
1893 else
1894 val = internal_arg_pointer_based_exp (SET_SRC (set), false);
1895 if (val != NULL_RTX)
1896 {
1897 if (idx >= internal_arg_pointer_exp_state.cache.length ())
1898 internal_arg_pointer_exp_state.cache
1899 .safe_grow_cleared (idx + 1);
1900 internal_arg_pointer_exp_state.cache[idx] = val;
1901 }
1902 }
1903 if (NEXT_INSN (insn) == NULL_RTX)
1904 scan_start = insn;
1905 insn = NEXT_INSN (insn);
1906 }
1907
1908 internal_arg_pointer_exp_state.scan_start = scan_start;
1909 }
1910
1911 /* Compute whether RTL is based on crtl->args.internal_arg_pointer. Return
1912 NULL_RTX if RTL isn't based on it, a CONST_INT offset if RTL is based on
1913 it with fixed offset, or PC if this is with variable or unknown offset.
1914 TOPLEVEL is true if the function is invoked at the topmost level. */
1915
1916 static rtx
1917 internal_arg_pointer_based_exp (const_rtx rtl, bool toplevel)
1918 {
1919 if (CONSTANT_P (rtl))
1920 return NULL_RTX;
1921
1922 if (rtl == crtl->args.internal_arg_pointer)
1923 return const0_rtx;
1924
1925 if (REG_P (rtl) && HARD_REGISTER_P (rtl))
1926 return NULL_RTX;
1927
1928 if (GET_CODE (rtl) == PLUS && CONST_INT_P (XEXP (rtl, 1)))
1929 {
1930 rtx val = internal_arg_pointer_based_exp (XEXP (rtl, 0), toplevel);
1931 if (val == NULL_RTX || val == pc_rtx)
1932 return val;
1933 return plus_constant (Pmode, val, INTVAL (XEXP (rtl, 1)));
1934 }
1935
1936 /* When called at the topmost level, scan pseudo assignments in between the
1937 last scanned instruction in the tail call sequence and the latest insn
1938 in that sequence. */
1939 if (toplevel)
1940 internal_arg_pointer_based_exp_scan ();
1941
1942 if (REG_P (rtl))
1943 {
1944 unsigned int idx = REGNO (rtl) - FIRST_PSEUDO_REGISTER;
1945 if (idx < internal_arg_pointer_exp_state.cache.length ())
1946 return internal_arg_pointer_exp_state.cache[idx];
1947
1948 return NULL_RTX;
1949 }
1950
1951 subrtx_iterator::array_type array;
1952 FOR_EACH_SUBRTX (iter, array, rtl, NONCONST)
1953 {
1954 const_rtx x = *iter;
1955 if (REG_P (x) && internal_arg_pointer_based_exp (x, false) != NULL_RTX)
1956 return pc_rtx;
1957 if (MEM_P (x))
1958 iter.skip_subrtxes ();
1959 }
1960
1961 return NULL_RTX;
1962 }
1963
1964 /* Return true if and only if SIZE storage units (usually bytes)
1965 starting from address ADDR overlap with already clobbered argument
1966 area. This function is used to determine if we should give up a
1967 sibcall. */
1968
1969 static bool
1970 mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
1971 {
1972 HOST_WIDE_INT i;
1973 rtx val;
1974
1975 if (bitmap_empty_p (stored_args_map))
1976 return false;
1977 val = internal_arg_pointer_based_exp (addr, true);
1978 if (val == NULL_RTX)
1979 return false;
1980 else if (val == pc_rtx)
1981 return true;
1982 else
1983 i = INTVAL (val);
1984
1985 if (STACK_GROWS_DOWNWARD)
1986 i -= crtl->args.pretend_args_size;
1987 else
1988 i += crtl->args.pretend_args_size;
1989
1990
1991 if (ARGS_GROW_DOWNWARD)
1992 i = -i - size;
1993
1994 if (size > 0)
1995 {
1996 unsigned HOST_WIDE_INT k;
1997
1998 for (k = 0; k < size; k++)
1999 if (i + k < SBITMAP_SIZE (stored_args_map)
2000 && bitmap_bit_p (stored_args_map, i + k))
2001 return true;
2002 }
2003
2004 return false;
2005 }
2006
2007 /* Do the register loads required for any wholly-register parms or any
2008 parms which are passed both on the stack and in a register. Their
2009 expressions were already evaluated.
2010
2011 Mark all register-parms as living through the call, putting these USE
2012 insns in the CALL_INSN_FUNCTION_USAGE field.
2013
2014 When IS_SIBCALL, perform the check_sibcall_argument_overlap
2015 checking, setting *SIBCALL_FAILURE if appropriate. */
2016
2017 static void
2018 load_register_parameters (struct arg_data *args, int num_actuals,
2019 rtx *call_fusage, int flags, int is_sibcall,
2020 int *sibcall_failure)
2021 {
2022 int i, j;
2023
2024 for (i = 0; i < num_actuals; i++)
2025 {
2026 rtx reg = ((flags & ECF_SIBCALL)
2027 ? args[i].tail_call_reg : args[i].reg);
2028 if (reg)
2029 {
2030 int partial = args[i].partial;
2031 int nregs;
2032 int size = 0;
2033 rtx_insn *before_arg = get_last_insn ();
2034 /* Set non-negative if we must move a word at a time, even if
2035 just one word (e.g, partial == 4 && mode == DFmode). Set
2036 to -1 if we just use a normal move insn. This value can be
2037 zero if the argument is a zero size structure. */
2038 nregs = -1;
2039 if (GET_CODE (reg) == PARALLEL)
2040 ;
2041 else if (partial)
2042 {
2043 gcc_assert (partial % UNITS_PER_WORD == 0);
2044 nregs = partial / UNITS_PER_WORD;
2045 }
2046 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
2047 {
2048 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
2049 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
2050 }
2051 else
2052 size = GET_MODE_SIZE (args[i].mode);
2053
2054 /* Handle calls that pass values in multiple non-contiguous
2055 locations. The Irix 6 ABI has examples of this. */
2056
2057 if (GET_CODE (reg) == PARALLEL)
2058 emit_group_move (reg, args[i].parallel_value);
2059
2060 /* If simple case, just do move. If normal partial, store_one_arg
2061 has already loaded the register for us. In all other cases,
2062 load the register(s) from memory. */
2063
2064 else if (nregs == -1)
2065 {
2066 emit_move_insn (reg, args[i].value);
2067 #ifdef BLOCK_REG_PADDING
2068 /* Handle case where we have a value that needs shifting
2069 up to the msb. eg. a QImode value and we're padding
2070 upward on a BYTES_BIG_ENDIAN machine. */
2071 if (size < UNITS_PER_WORD
2072 && (args[i].locate.where_pad
2073 == (BYTES_BIG_ENDIAN ? upward : downward)))
2074 {
2075 rtx x;
2076 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2077
2078 /* Assigning REG here rather than a temp makes CALL_FUSAGE
2079 report the whole reg as used. Strictly speaking, the
2080 call only uses SIZE bytes at the msb end, but it doesn't
2081 seem worth generating rtl to say that. */
2082 reg = gen_rtx_REG (word_mode, REGNO (reg));
2083 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
2084 if (x != reg)
2085 emit_move_insn (reg, x);
2086 }
2087 #endif
2088 }
2089
2090 /* If we have pre-computed the values to put in the registers in
2091 the case of non-aligned structures, copy them in now. */
2092
2093 else if (args[i].n_aligned_regs != 0)
2094 for (j = 0; j < args[i].n_aligned_regs; j++)
2095 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
2096 args[i].aligned_regs[j]);
2097
2098 else if (partial == 0 || args[i].pass_on_stack)
2099 {
2100 rtx mem = validize_mem (copy_rtx (args[i].value));
2101
2102 /* Check for overlap with already clobbered argument area,
2103 providing that this has non-zero size. */
2104 if (is_sibcall
2105 && (size == 0
2106 || mem_overlaps_already_clobbered_arg_p
2107 (XEXP (args[i].value, 0), size)))
2108 *sibcall_failure = 1;
2109
2110 if (size % UNITS_PER_WORD == 0
2111 || MEM_ALIGN (mem) % BITS_PER_WORD == 0)
2112 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
2113 else
2114 {
2115 if (nregs > 1)
2116 move_block_to_reg (REGNO (reg), mem, nregs - 1,
2117 args[i].mode);
2118 rtx dest = gen_rtx_REG (word_mode, REGNO (reg) + nregs - 1);
2119 unsigned int bitoff = (nregs - 1) * BITS_PER_WORD;
2120 unsigned int bitsize = size * BITS_PER_UNIT - bitoff;
2121 rtx x = extract_bit_field (mem, bitsize, bitoff, 1,
2122 dest, word_mode, word_mode);
2123 if (BYTES_BIG_ENDIAN)
2124 x = expand_shift (LSHIFT_EXPR, word_mode, x,
2125 BITS_PER_WORD - bitsize, dest, 1);
2126 if (x != dest)
2127 emit_move_insn (dest, x);
2128 }
2129
2130 /* Handle a BLKmode that needs shifting. */
2131 if (nregs == 1 && size < UNITS_PER_WORD
2132 #ifdef BLOCK_REG_PADDING
2133 && args[i].locate.where_pad == downward
2134 #else
2135 && BYTES_BIG_ENDIAN
2136 #endif
2137 )
2138 {
2139 rtx dest = gen_rtx_REG (word_mode, REGNO (reg));
2140 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2141 enum tree_code dir = (BYTES_BIG_ENDIAN
2142 ? RSHIFT_EXPR : LSHIFT_EXPR);
2143 rtx x;
2144
2145 x = expand_shift (dir, word_mode, dest, shift, dest, 1);
2146 if (x != dest)
2147 emit_move_insn (dest, x);
2148 }
2149 }
2150
2151 /* When a parameter is a block, and perhaps in other cases, it is
2152 possible that it did a load from an argument slot that was
2153 already clobbered. */
2154 if (is_sibcall
2155 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
2156 *sibcall_failure = 1;
2157
2158 /* Handle calls that pass values in multiple non-contiguous
2159 locations. The Irix 6 ABI has examples of this. */
2160 if (GET_CODE (reg) == PARALLEL)
2161 use_group_regs (call_fusage, reg);
2162 else if (nregs == -1)
2163 use_reg_mode (call_fusage, reg,
2164 TYPE_MODE (TREE_TYPE (args[i].tree_value)));
2165 else if (nregs > 0)
2166 use_regs (call_fusage, REGNO (reg), nregs);
2167 }
2168 }
2169 }
2170
2171 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
2172 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
2173 bytes, then we would need to push some additional bytes to pad the
2174 arguments. So, we compute an adjust to the stack pointer for an
2175 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
2176 bytes. Then, when the arguments are pushed the stack will be perfectly
2177 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
2178 be popped after the call. Returns the adjustment. */
2179
2180 static int
2181 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
2182 struct args_size *args_size,
2183 unsigned int preferred_unit_stack_boundary)
2184 {
2185 /* The number of bytes to pop so that the stack will be
2186 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
2187 HOST_WIDE_INT adjustment;
2188 /* The alignment of the stack after the arguments are pushed, if we
2189 just pushed the arguments without adjust the stack here. */
2190 unsigned HOST_WIDE_INT unadjusted_alignment;
2191
2192 unadjusted_alignment
2193 = ((stack_pointer_delta + unadjusted_args_size)
2194 % preferred_unit_stack_boundary);
2195
2196 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
2197 as possible -- leaving just enough left to cancel out the
2198 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
2199 PENDING_STACK_ADJUST is non-negative, and congruent to
2200 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
2201
2202 /* Begin by trying to pop all the bytes. */
2203 unadjusted_alignment
2204 = (unadjusted_alignment
2205 - (pending_stack_adjust % preferred_unit_stack_boundary));
2206 adjustment = pending_stack_adjust;
2207 /* Push enough additional bytes that the stack will be aligned
2208 after the arguments are pushed. */
2209 if (preferred_unit_stack_boundary > 1)
2210 {
2211 if (unadjusted_alignment > 0)
2212 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
2213 else
2214 adjustment += unadjusted_alignment;
2215 }
2216
2217 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
2218 bytes after the call. The right number is the entire
2219 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
2220 by the arguments in the first place. */
2221 args_size->constant
2222 = pending_stack_adjust - adjustment + unadjusted_args_size;
2223
2224 return adjustment;
2225 }
2226
2227 /* Scan X expression if it does not dereference any argument slots
2228 we already clobbered by tail call arguments (as noted in stored_args_map
2229 bitmap).
2230 Return nonzero if X expression dereferences such argument slots,
2231 zero otherwise. */
2232
2233 static int
2234 check_sibcall_argument_overlap_1 (rtx x)
2235 {
2236 RTX_CODE code;
2237 int i, j;
2238 const char *fmt;
2239
2240 if (x == NULL_RTX)
2241 return 0;
2242
2243 code = GET_CODE (x);
2244
2245 /* We need not check the operands of the CALL expression itself. */
2246 if (code == CALL)
2247 return 0;
2248
2249 if (code == MEM)
2250 return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
2251 GET_MODE_SIZE (GET_MODE (x)));
2252
2253 /* Scan all subexpressions. */
2254 fmt = GET_RTX_FORMAT (code);
2255 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2256 {
2257 if (*fmt == 'e')
2258 {
2259 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
2260 return 1;
2261 }
2262 else if (*fmt == 'E')
2263 {
2264 for (j = 0; j < XVECLEN (x, i); j++)
2265 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
2266 return 1;
2267 }
2268 }
2269 return 0;
2270 }
2271
2272 /* Scan sequence after INSN if it does not dereference any argument slots
2273 we already clobbered by tail call arguments (as noted in stored_args_map
2274 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
2275 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
2276 should be 0). Return nonzero if sequence after INSN dereferences such argument
2277 slots, zero otherwise. */
2278
2279 static int
2280 check_sibcall_argument_overlap (rtx_insn *insn, struct arg_data *arg,
2281 int mark_stored_args_map)
2282 {
2283 int low, high;
2284
2285 if (insn == NULL_RTX)
2286 insn = get_insns ();
2287 else
2288 insn = NEXT_INSN (insn);
2289
2290 for (; insn; insn = NEXT_INSN (insn))
2291 if (INSN_P (insn)
2292 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
2293 break;
2294
2295 if (mark_stored_args_map)
2296 {
2297 if (ARGS_GROW_DOWNWARD)
2298 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
2299 else
2300 low = arg->locate.slot_offset.constant;
2301
2302 for (high = low + arg->locate.size.constant; low < high; low++)
2303 bitmap_set_bit (stored_args_map, low);
2304 }
2305 return insn != NULL_RTX;
2306 }
2307
2308 /* Given that a function returns a value of mode MODE at the most
2309 significant end of hard register VALUE, shift VALUE left or right
2310 as specified by LEFT_P. Return true if some action was needed. */
2311
2312 bool
2313 shift_return_value (machine_mode mode, bool left_p, rtx value)
2314 {
2315 HOST_WIDE_INT shift;
2316
2317 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
2318 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
2319 if (shift == 0)
2320 return false;
2321
2322 /* Use ashr rather than lshr for right shifts. This is for the benefit
2323 of the MIPS port, which requires SImode values to be sign-extended
2324 when stored in 64-bit registers. */
2325 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
2326 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
2327 gcc_unreachable ();
2328 return true;
2329 }
2330
2331 /* If X is a likely-spilled register value, copy it to a pseudo
2332 register and return that register. Return X otherwise. */
2333
2334 static rtx
2335 avoid_likely_spilled_reg (rtx x)
2336 {
2337 rtx new_rtx;
2338
2339 if (REG_P (x)
2340 && HARD_REGISTER_P (x)
2341 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2342 {
2343 /* Make sure that we generate a REG rather than a CONCAT.
2344 Moves into CONCATs can need nontrivial instructions,
2345 and the whole point of this function is to avoid
2346 using the hard register directly in such a situation. */
2347 generating_concat_p = 0;
2348 new_rtx = gen_reg_rtx (GET_MODE (x));
2349 generating_concat_p = 1;
2350 emit_move_insn (new_rtx, x);
2351 return new_rtx;
2352 }
2353 return x;
2354 }
2355
2356 /* Generate all the code for a CALL_EXPR exp
2357 and return an rtx for its value.
2358 Store the value in TARGET (specified as an rtx) if convenient.
2359 If the value is stored in TARGET then TARGET is returned.
2360 If IGNORE is nonzero, then we ignore the value of the function call. */
2361
2362 rtx
2363 expand_call (tree exp, rtx target, int ignore)
2364 {
2365 /* Nonzero if we are currently expanding a call. */
2366 static int currently_expanding_call = 0;
2367
2368 /* RTX for the function to be called. */
2369 rtx funexp;
2370 /* Sequence of insns to perform a normal "call". */
2371 rtx_insn *normal_call_insns = NULL;
2372 /* Sequence of insns to perform a tail "call". */
2373 rtx_insn *tail_call_insns = NULL;
2374 /* Data type of the function. */
2375 tree funtype;
2376 tree type_arg_types;
2377 tree rettype;
2378 /* Declaration of the function being called,
2379 or 0 if the function is computed (not known by name). */
2380 tree fndecl = 0;
2381 /* The type of the function being called. */
2382 tree fntype;
2383 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
2384 int pass;
2385
2386 /* Register in which non-BLKmode value will be returned,
2387 or 0 if no value or if value is BLKmode. */
2388 rtx valreg;
2389 /* Register(s) in which bounds are returned. */
2390 rtx valbnd = NULL;
2391 /* Address where we should return a BLKmode value;
2392 0 if value not BLKmode. */
2393 rtx structure_value_addr = 0;
2394 /* Nonzero if that address is being passed by treating it as
2395 an extra, implicit first parameter. Otherwise,
2396 it is passed by being copied directly into struct_value_rtx. */
2397 int structure_value_addr_parm = 0;
2398 /* Holds the value of implicit argument for the struct value. */
2399 tree structure_value_addr_value = NULL_TREE;
2400 /* Size of aggregate value wanted, or zero if none wanted
2401 or if we are using the non-reentrant PCC calling convention
2402 or expecting the value in registers. */
2403 HOST_WIDE_INT struct_value_size = 0;
2404 /* Nonzero if called function returns an aggregate in memory PCC style,
2405 by returning the address of where to find it. */
2406 int pcc_struct_value = 0;
2407 rtx struct_value = 0;
2408
2409 /* Number of actual parameters in this call, including struct value addr. */
2410 int num_actuals;
2411 /* Number of named args. Args after this are anonymous ones
2412 and they must all go on the stack. */
2413 int n_named_args;
2414 /* Number of complex actual arguments that need to be split. */
2415 int num_complex_actuals = 0;
2416
2417 /* Vector of information about each argument.
2418 Arguments are numbered in the order they will be pushed,
2419 not the order they are written. */
2420 struct arg_data *args;
2421
2422 /* Total size in bytes of all the stack-parms scanned so far. */
2423 struct args_size args_size;
2424 struct args_size adjusted_args_size;
2425 /* Size of arguments before any adjustments (such as rounding). */
2426 int unadjusted_args_size;
2427 /* Data on reg parms scanned so far. */
2428 CUMULATIVE_ARGS args_so_far_v;
2429 cumulative_args_t args_so_far;
2430 /* Nonzero if a reg parm has been scanned. */
2431 int reg_parm_seen;
2432 /* Nonzero if this is an indirect function call. */
2433
2434 /* Nonzero if we must avoid push-insns in the args for this call.
2435 If stack space is allocated for register parameters, but not by the
2436 caller, then it is preallocated in the fixed part of the stack frame.
2437 So the entire argument block must then be preallocated (i.e., we
2438 ignore PUSH_ROUNDING in that case). */
2439
2440 int must_preallocate = !PUSH_ARGS;
2441
2442 /* Size of the stack reserved for parameter registers. */
2443 int reg_parm_stack_space = 0;
2444
2445 /* Address of space preallocated for stack parms
2446 (on machines that lack push insns), or 0 if space not preallocated. */
2447 rtx argblock = 0;
2448
2449 /* Mask of ECF_ and ERF_ flags. */
2450 int flags = 0;
2451 int return_flags = 0;
2452 #ifdef REG_PARM_STACK_SPACE
2453 /* Define the boundary of the register parm stack space that needs to be
2454 saved, if any. */
2455 int low_to_save, high_to_save;
2456 rtx save_area = 0; /* Place that it is saved */
2457 #endif
2458
2459 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
2460 char *initial_stack_usage_map = stack_usage_map;
2461 char *stack_usage_map_buf = NULL;
2462
2463 int old_stack_allocated;
2464
2465 /* State variables to track stack modifications. */
2466 rtx old_stack_level = 0;
2467 int old_stack_arg_under_construction = 0;
2468 int old_pending_adj = 0;
2469 int old_inhibit_defer_pop = inhibit_defer_pop;
2470
2471 /* Some stack pointer alterations we make are performed via
2472 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
2473 which we then also need to save/restore along the way. */
2474 int old_stack_pointer_delta = 0;
2475
2476 rtx call_fusage;
2477 tree addr = CALL_EXPR_FN (exp);
2478 int i;
2479 /* The alignment of the stack, in bits. */
2480 unsigned HOST_WIDE_INT preferred_stack_boundary;
2481 /* The alignment of the stack, in bytes. */
2482 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
2483 /* The static chain value to use for this call. */
2484 rtx static_chain_value;
2485 /* See if this is "nothrow" function call. */
2486 if (TREE_NOTHROW (exp))
2487 flags |= ECF_NOTHROW;
2488
2489 /* See if we can find a DECL-node for the actual function, and get the
2490 function attributes (flags) from the function decl or type node. */
2491 fndecl = get_callee_fndecl (exp);
2492 if (fndecl)
2493 {
2494 fntype = TREE_TYPE (fndecl);
2495 flags |= flags_from_decl_or_type (fndecl);
2496 return_flags |= decl_return_flags (fndecl);
2497 }
2498 else
2499 {
2500 fntype = TREE_TYPE (TREE_TYPE (addr));
2501 flags |= flags_from_decl_or_type (fntype);
2502 }
2503 rettype = TREE_TYPE (exp);
2504
2505 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
2506
2507 /* Warn if this value is an aggregate type,
2508 regardless of which calling convention we are using for it. */
2509 if (AGGREGATE_TYPE_P (rettype))
2510 warning (OPT_Waggregate_return, "function call has aggregate value");
2511
2512 /* If the result of a non looping pure or const function call is
2513 ignored (or void), and none of its arguments are volatile, we can
2514 avoid expanding the call and just evaluate the arguments for
2515 side-effects. */
2516 if ((flags & (ECF_CONST | ECF_PURE))
2517 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
2518 && (ignore || target == const0_rtx
2519 || TYPE_MODE (rettype) == VOIDmode))
2520 {
2521 bool volatilep = false;
2522 tree arg;
2523 call_expr_arg_iterator iter;
2524
2525 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2526 if (TREE_THIS_VOLATILE (arg))
2527 {
2528 volatilep = true;
2529 break;
2530 }
2531
2532 if (! volatilep)
2533 {
2534 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2535 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
2536 return const0_rtx;
2537 }
2538 }
2539
2540 #ifdef REG_PARM_STACK_SPACE
2541 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
2542 #endif
2543
2544 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2545 && reg_parm_stack_space > 0 && PUSH_ARGS)
2546 must_preallocate = 1;
2547
2548 /* Set up a place to return a structure. */
2549
2550 /* Cater to broken compilers. */
2551 if (aggregate_value_p (exp, fntype))
2552 {
2553 /* This call returns a big structure. */
2554 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2555
2556 #ifdef PCC_STATIC_STRUCT_RETURN
2557 {
2558 pcc_struct_value = 1;
2559 }
2560 #else /* not PCC_STATIC_STRUCT_RETURN */
2561 {
2562 struct_value_size = int_size_in_bytes (rettype);
2563
2564 /* Even if it is semantically safe to use the target as the return
2565 slot, it may be not sufficiently aligned for the return type. */
2566 if (CALL_EXPR_RETURN_SLOT_OPT (exp)
2567 && target
2568 && MEM_P (target)
2569 && !(MEM_ALIGN (target) < TYPE_ALIGN (rettype)
2570 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (rettype),
2571 MEM_ALIGN (target))))
2572 structure_value_addr = XEXP (target, 0);
2573 else
2574 {
2575 /* For variable-sized objects, we must be called with a target
2576 specified. If we were to allocate space on the stack here,
2577 we would have no way of knowing when to free it. */
2578 rtx d = assign_temp (rettype, 1, 1);
2579 structure_value_addr = XEXP (d, 0);
2580 target = 0;
2581 }
2582 }
2583 #endif /* not PCC_STATIC_STRUCT_RETURN */
2584 }
2585
2586 /* Figure out the amount to which the stack should be aligned. */
2587 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2588 if (fndecl)
2589 {
2590 struct cgraph_rtl_info *i = cgraph_node::rtl_info (fndecl);
2591 /* Without automatic stack alignment, we can't increase preferred
2592 stack boundary. With automatic stack alignment, it is
2593 unnecessary since unless we can guarantee that all callers will
2594 align the outgoing stack properly, callee has to align its
2595 stack anyway. */
2596 if (i
2597 && i->preferred_incoming_stack_boundary
2598 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
2599 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2600 }
2601
2602 /* Operand 0 is a pointer-to-function; get the type of the function. */
2603 funtype = TREE_TYPE (addr);
2604 gcc_assert (POINTER_TYPE_P (funtype));
2605 funtype = TREE_TYPE (funtype);
2606
2607 /* Count whether there are actual complex arguments that need to be split
2608 into their real and imaginary parts. Munge the type_arg_types
2609 appropriately here as well. */
2610 if (targetm.calls.split_complex_arg)
2611 {
2612 call_expr_arg_iterator iter;
2613 tree arg;
2614 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2615 {
2616 tree type = TREE_TYPE (arg);
2617 if (type && TREE_CODE (type) == COMPLEX_TYPE
2618 && targetm.calls.split_complex_arg (type))
2619 num_complex_actuals++;
2620 }
2621 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2622 }
2623 else
2624 type_arg_types = TYPE_ARG_TYPES (funtype);
2625
2626 if (flags & ECF_MAY_BE_ALLOCA)
2627 cfun->calls_alloca = 1;
2628
2629 /* If struct_value_rtx is 0, it means pass the address
2630 as if it were an extra parameter. Put the argument expression
2631 in structure_value_addr_value. */
2632 if (structure_value_addr && struct_value == 0)
2633 {
2634 /* If structure_value_addr is a REG other than
2635 virtual_outgoing_args_rtx, we can use always use it. If it
2636 is not a REG, we must always copy it into a register.
2637 If it is virtual_outgoing_args_rtx, we must copy it to another
2638 register in some cases. */
2639 rtx temp = (!REG_P (structure_value_addr)
2640 || (ACCUMULATE_OUTGOING_ARGS
2641 && stack_arg_under_construction
2642 && structure_value_addr == virtual_outgoing_args_rtx)
2643 ? copy_addr_to_reg (convert_memory_address
2644 (Pmode, structure_value_addr))
2645 : structure_value_addr);
2646
2647 structure_value_addr_value =
2648 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
2649 structure_value_addr_parm = CALL_WITH_BOUNDS_P (exp) ? 2 : 1;
2650 }
2651
2652 /* Count the arguments and set NUM_ACTUALS. */
2653 num_actuals =
2654 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
2655
2656 /* Compute number of named args.
2657 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2658
2659 if (type_arg_types != 0)
2660 n_named_args
2661 = (list_length (type_arg_types)
2662 /* Count the struct value address, if it is passed as a parm. */
2663 + structure_value_addr_parm);
2664 else
2665 /* If we know nothing, treat all args as named. */
2666 n_named_args = num_actuals;
2667
2668 /* Start updating where the next arg would go.
2669
2670 On some machines (such as the PA) indirect calls have a different
2671 calling convention than normal calls. The fourth argument in
2672 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2673 or not. */
2674 INIT_CUMULATIVE_ARGS (args_so_far_v, funtype, NULL_RTX, fndecl, n_named_args);
2675 args_so_far = pack_cumulative_args (&args_so_far_v);
2676
2677 /* Now possibly adjust the number of named args.
2678 Normally, don't include the last named arg if anonymous args follow.
2679 We do include the last named arg if
2680 targetm.calls.strict_argument_naming() returns nonzero.
2681 (If no anonymous args follow, the result of list_length is actually
2682 one too large. This is harmless.)
2683
2684 If targetm.calls.pretend_outgoing_varargs_named() returns
2685 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2686 this machine will be able to place unnamed args that were passed
2687 in registers into the stack. So treat all args as named. This
2688 allows the insns emitting for a specific argument list to be
2689 independent of the function declaration.
2690
2691 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2692 we do not have any reliable way to pass unnamed args in
2693 registers, so we must force them into memory. */
2694
2695 if (type_arg_types != 0
2696 && targetm.calls.strict_argument_naming (args_so_far))
2697 ;
2698 else if (type_arg_types != 0
2699 && ! targetm.calls.pretend_outgoing_varargs_named (args_so_far))
2700 /* Don't include the last named arg. */
2701 --n_named_args;
2702 else
2703 /* Treat all args as named. */
2704 n_named_args = num_actuals;
2705
2706 /* Make a vector to hold all the information about each arg. */
2707 args = XALLOCAVEC (struct arg_data, num_actuals);
2708 memset (args, 0, num_actuals * sizeof (struct arg_data));
2709
2710 /* Build up entries in the ARGS array, compute the size of the
2711 arguments into ARGS_SIZE, etc. */
2712 initialize_argument_information (num_actuals, args, &args_size,
2713 n_named_args, exp,
2714 structure_value_addr_value, fndecl, fntype,
2715 args_so_far, reg_parm_stack_space,
2716 &old_stack_level, &old_pending_adj,
2717 &must_preallocate, &flags,
2718 &try_tail_call, CALL_FROM_THUNK_P (exp));
2719
2720 if (args_size.var)
2721 must_preallocate = 1;
2722
2723 /* Now make final decision about preallocating stack space. */
2724 must_preallocate = finalize_must_preallocate (must_preallocate,
2725 num_actuals, args,
2726 &args_size);
2727
2728 /* If the structure value address will reference the stack pointer, we
2729 must stabilize it. We don't need to do this if we know that we are
2730 not going to adjust the stack pointer in processing this call. */
2731
2732 if (structure_value_addr
2733 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2734 || reg_mentioned_p (virtual_outgoing_args_rtx,
2735 structure_value_addr))
2736 && (args_size.var
2737 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2738 structure_value_addr = copy_to_reg (structure_value_addr);
2739
2740 /* Tail calls can make things harder to debug, and we've traditionally
2741 pushed these optimizations into -O2. Don't try if we're already
2742 expanding a call, as that means we're an argument. Don't try if
2743 there's cleanups, as we know there's code to follow the call. */
2744
2745 if (currently_expanding_call++ != 0
2746 || !flag_optimize_sibling_calls
2747 || args_size.var
2748 || dbg_cnt (tail_call) == false)
2749 try_tail_call = 0;
2750
2751 /* Rest of purposes for tail call optimizations to fail. */
2752 if (
2753 #ifdef HAVE_sibcall_epilogue
2754 !HAVE_sibcall_epilogue
2755 #else
2756 1
2757 #endif
2758 || !try_tail_call
2759 /* Doing sibling call optimization needs some work, since
2760 structure_value_addr can be allocated on the stack.
2761 It does not seem worth the effort since few optimizable
2762 sibling calls will return a structure. */
2763 || structure_value_addr != NULL_RTX
2764 #ifdef REG_PARM_STACK_SPACE
2765 /* If outgoing reg parm stack space changes, we can not do sibcall. */
2766 || (OUTGOING_REG_PARM_STACK_SPACE (funtype)
2767 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl)))
2768 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (current_function_decl))
2769 #endif
2770 /* Check whether the target is able to optimize the call
2771 into a sibcall. */
2772 || !targetm.function_ok_for_sibcall (fndecl, exp)
2773 /* Functions that do not return exactly once may not be sibcall
2774 optimized. */
2775 || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2776 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2777 /* If the called function is nested in the current one, it might access
2778 some of the caller's arguments, but could clobber them beforehand if
2779 the argument areas are shared. */
2780 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2781 /* If this function requires more stack slots than the current
2782 function, we cannot change it into a sibling call.
2783 crtl->args.pretend_args_size is not part of the
2784 stack allocated by our caller. */
2785 || args_size.constant > (crtl->args.size
2786 - crtl->args.pretend_args_size)
2787 /* If the callee pops its own arguments, then it must pop exactly
2788 the same number of arguments as the current function. */
2789 || (targetm.calls.return_pops_args (fndecl, funtype, args_size.constant)
2790 != targetm.calls.return_pops_args (current_function_decl,
2791 TREE_TYPE (current_function_decl),
2792 crtl->args.size))
2793 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2794 try_tail_call = 0;
2795
2796 /* Check if caller and callee disagree in promotion of function
2797 return value. */
2798 if (try_tail_call)
2799 {
2800 machine_mode caller_mode, caller_promoted_mode;
2801 machine_mode callee_mode, callee_promoted_mode;
2802 int caller_unsignedp, callee_unsignedp;
2803 tree caller_res = DECL_RESULT (current_function_decl);
2804
2805 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
2806 caller_mode = DECL_MODE (caller_res);
2807 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
2808 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
2809 caller_promoted_mode
2810 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
2811 &caller_unsignedp,
2812 TREE_TYPE (current_function_decl), 1);
2813 callee_promoted_mode
2814 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
2815 &callee_unsignedp,
2816 funtype, 1);
2817 if (caller_mode != VOIDmode
2818 && (caller_promoted_mode != callee_promoted_mode
2819 || ((caller_mode != caller_promoted_mode
2820 || callee_mode != callee_promoted_mode)
2821 && (caller_unsignedp != callee_unsignedp
2822 || GET_MODE_BITSIZE (caller_mode)
2823 < GET_MODE_BITSIZE (callee_mode)))))
2824 try_tail_call = 0;
2825 }
2826
2827 /* Ensure current function's preferred stack boundary is at least
2828 what we need. Stack alignment may also increase preferred stack
2829 boundary. */
2830 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
2831 crtl->preferred_stack_boundary = preferred_stack_boundary;
2832 else
2833 preferred_stack_boundary = crtl->preferred_stack_boundary;
2834
2835 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2836
2837 /* We want to make two insn chains; one for a sibling call, the other
2838 for a normal call. We will select one of the two chains after
2839 initial RTL generation is complete. */
2840 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2841 {
2842 int sibcall_failure = 0;
2843 /* We want to emit any pending stack adjustments before the tail
2844 recursion "call". That way we know any adjustment after the tail
2845 recursion call can be ignored if we indeed use the tail
2846 call expansion. */
2847 saved_pending_stack_adjust save;
2848 rtx_insn *insns, *before_call, *after_args;
2849 rtx next_arg_reg;
2850
2851 if (pass == 0)
2852 {
2853 /* State variables we need to save and restore between
2854 iterations. */
2855 save_pending_stack_adjust (&save);
2856 }
2857 if (pass)
2858 flags &= ~ECF_SIBCALL;
2859 else
2860 flags |= ECF_SIBCALL;
2861
2862 /* Other state variables that we must reinitialize each time
2863 through the loop (that are not initialized by the loop itself). */
2864 argblock = 0;
2865 call_fusage = 0;
2866
2867 /* Start a new sequence for the normal call case.
2868
2869 From this point on, if the sibling call fails, we want to set
2870 sibcall_failure instead of continuing the loop. */
2871 start_sequence ();
2872
2873 /* Don't let pending stack adjusts add up to too much.
2874 Also, do all pending adjustments now if there is any chance
2875 this might be a call to alloca or if we are expanding a sibling
2876 call sequence.
2877 Also do the adjustments before a throwing call, otherwise
2878 exception handling can fail; PR 19225. */
2879 if (pending_stack_adjust >= 32
2880 || (pending_stack_adjust > 0
2881 && (flags & ECF_MAY_BE_ALLOCA))
2882 || (pending_stack_adjust > 0
2883 && flag_exceptions && !(flags & ECF_NOTHROW))
2884 || pass == 0)
2885 do_pending_stack_adjust ();
2886
2887 /* Precompute any arguments as needed. */
2888 if (pass)
2889 precompute_arguments (num_actuals, args);
2890
2891 /* Now we are about to start emitting insns that can be deleted
2892 if a libcall is deleted. */
2893 if (pass && (flags & ECF_MALLOC))
2894 start_sequence ();
2895
2896 if (pass == 0 && crtl->stack_protect_guard)
2897 stack_protect_epilogue ();
2898
2899 adjusted_args_size = args_size;
2900 /* Compute the actual size of the argument block required. The variable
2901 and constant sizes must be combined, the size may have to be rounded,
2902 and there may be a minimum required size. When generating a sibcall
2903 pattern, do not round up, since we'll be re-using whatever space our
2904 caller provided. */
2905 unadjusted_args_size
2906 = compute_argument_block_size (reg_parm_stack_space,
2907 &adjusted_args_size,
2908 fndecl, fntype,
2909 (pass == 0 ? 0
2910 : preferred_stack_boundary));
2911
2912 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2913
2914 /* The argument block when performing a sibling call is the
2915 incoming argument block. */
2916 if (pass == 0)
2917 {
2918 argblock = crtl->args.internal_arg_pointer;
2919 if (STACK_GROWS_DOWNWARD)
2920 argblock
2921 = plus_constant (Pmode, argblock, crtl->args.pretend_args_size);
2922 else
2923 argblock
2924 = plus_constant (Pmode, argblock, -crtl->args.pretend_args_size);
2925
2926 stored_args_map = sbitmap_alloc (args_size.constant);
2927 bitmap_clear (stored_args_map);
2928 }
2929
2930 /* If we have no actual push instructions, or shouldn't use them,
2931 make space for all args right now. */
2932 else if (adjusted_args_size.var != 0)
2933 {
2934 if (old_stack_level == 0)
2935 {
2936 emit_stack_save (SAVE_BLOCK, &old_stack_level);
2937 old_stack_pointer_delta = stack_pointer_delta;
2938 old_pending_adj = pending_stack_adjust;
2939 pending_stack_adjust = 0;
2940 /* stack_arg_under_construction says whether a stack arg is
2941 being constructed at the old stack level. Pushing the stack
2942 gets a clean outgoing argument block. */
2943 old_stack_arg_under_construction = stack_arg_under_construction;
2944 stack_arg_under_construction = 0;
2945 }
2946 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2947 if (flag_stack_usage_info)
2948 current_function_has_unbounded_dynamic_stack_size = 1;
2949 }
2950 else
2951 {
2952 /* Note that we must go through the motions of allocating an argument
2953 block even if the size is zero because we may be storing args
2954 in the area reserved for register arguments, which may be part of
2955 the stack frame. */
2956
2957 int needed = adjusted_args_size.constant;
2958
2959 /* Store the maximum argument space used. It will be pushed by
2960 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2961 checking). */
2962
2963 if (needed > crtl->outgoing_args_size)
2964 crtl->outgoing_args_size = needed;
2965
2966 if (must_preallocate)
2967 {
2968 if (ACCUMULATE_OUTGOING_ARGS)
2969 {
2970 /* Since the stack pointer will never be pushed, it is
2971 possible for the evaluation of a parm to clobber
2972 something we have already written to the stack.
2973 Since most function calls on RISC machines do not use
2974 the stack, this is uncommon, but must work correctly.
2975
2976 Therefore, we save any area of the stack that was already
2977 written and that we are using. Here we set up to do this
2978 by making a new stack usage map from the old one. The
2979 actual save will be done by store_one_arg.
2980
2981 Another approach might be to try to reorder the argument
2982 evaluations to avoid this conflicting stack usage. */
2983
2984 /* Since we will be writing into the entire argument area,
2985 the map must be allocated for its entire size, not just
2986 the part that is the responsibility of the caller. */
2987 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2988 needed += reg_parm_stack_space;
2989
2990 if (ARGS_GROW_DOWNWARD)
2991 highest_outgoing_arg_in_use
2992 = MAX (initial_highest_arg_in_use, needed + 1);
2993 else
2994 highest_outgoing_arg_in_use
2995 = MAX (initial_highest_arg_in_use, needed);
2996
2997 free (stack_usage_map_buf);
2998 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
2999 stack_usage_map = stack_usage_map_buf;
3000
3001 if (initial_highest_arg_in_use)
3002 memcpy (stack_usage_map, initial_stack_usage_map,
3003 initial_highest_arg_in_use);
3004
3005 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3006 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3007 (highest_outgoing_arg_in_use
3008 - initial_highest_arg_in_use));
3009 needed = 0;
3010
3011 /* The address of the outgoing argument list must not be
3012 copied to a register here, because argblock would be left
3013 pointing to the wrong place after the call to
3014 allocate_dynamic_stack_space below. */
3015
3016 argblock = virtual_outgoing_args_rtx;
3017 }
3018 else
3019 {
3020 if (inhibit_defer_pop == 0)
3021 {
3022 /* Try to reuse some or all of the pending_stack_adjust
3023 to get this space. */
3024 needed
3025 = (combine_pending_stack_adjustment_and_call
3026 (unadjusted_args_size,
3027 &adjusted_args_size,
3028 preferred_unit_stack_boundary));
3029
3030 /* combine_pending_stack_adjustment_and_call computes
3031 an adjustment before the arguments are allocated.
3032 Account for them and see whether or not the stack
3033 needs to go up or down. */
3034 needed = unadjusted_args_size - needed;
3035
3036 if (needed < 0)
3037 {
3038 /* We're releasing stack space. */
3039 /* ??? We can avoid any adjustment at all if we're
3040 already aligned. FIXME. */
3041 pending_stack_adjust = -needed;
3042 do_pending_stack_adjust ();
3043 needed = 0;
3044 }
3045 else
3046 /* We need to allocate space. We'll do that in
3047 push_block below. */
3048 pending_stack_adjust = 0;
3049 }
3050
3051 /* Special case this because overhead of `push_block' in
3052 this case is non-trivial. */
3053 if (needed == 0)
3054 argblock = virtual_outgoing_args_rtx;
3055 else
3056 {
3057 argblock = push_block (GEN_INT (needed), 0, 0);
3058 if (ARGS_GROW_DOWNWARD)
3059 argblock = plus_constant (Pmode, argblock, needed);
3060 }
3061
3062 /* We only really need to call `copy_to_reg' in the case
3063 where push insns are going to be used to pass ARGBLOCK
3064 to a function call in ARGS. In that case, the stack
3065 pointer changes value from the allocation point to the
3066 call point, and hence the value of
3067 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
3068 as well always do it. */
3069 argblock = copy_to_reg (argblock);
3070 }
3071 }
3072 }
3073
3074 if (ACCUMULATE_OUTGOING_ARGS)
3075 {
3076 /* The save/restore code in store_one_arg handles all
3077 cases except one: a constructor call (including a C
3078 function returning a BLKmode struct) to initialize
3079 an argument. */
3080 if (stack_arg_under_construction)
3081 {
3082 rtx push_size
3083 = GEN_INT (adjusted_args_size.constant
3084 + (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype
3085 : TREE_TYPE (fndecl))) ? 0
3086 : reg_parm_stack_space));
3087 if (old_stack_level == 0)
3088 {
3089 emit_stack_save (SAVE_BLOCK, &old_stack_level);
3090 old_stack_pointer_delta = stack_pointer_delta;
3091 old_pending_adj = pending_stack_adjust;
3092 pending_stack_adjust = 0;
3093 /* stack_arg_under_construction says whether a stack
3094 arg is being constructed at the old stack level.
3095 Pushing the stack gets a clean outgoing argument
3096 block. */
3097 old_stack_arg_under_construction
3098 = stack_arg_under_construction;
3099 stack_arg_under_construction = 0;
3100 /* Make a new map for the new argument list. */
3101 free (stack_usage_map_buf);
3102 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
3103 stack_usage_map = stack_usage_map_buf;
3104 highest_outgoing_arg_in_use = 0;
3105 }
3106 /* We can pass TRUE as the 4th argument because we just
3107 saved the stack pointer and will restore it right after
3108 the call. */
3109 allocate_dynamic_stack_space (push_size, 0,
3110 BIGGEST_ALIGNMENT, true);
3111 }
3112
3113 /* If argument evaluation might modify the stack pointer,
3114 copy the address of the argument list to a register. */
3115 for (i = 0; i < num_actuals; i++)
3116 if (args[i].pass_on_stack)
3117 {
3118 argblock = copy_addr_to_reg (argblock);
3119 break;
3120 }
3121 }
3122
3123 compute_argument_addresses (args, argblock, num_actuals);
3124
3125 /* Perform stack alignment before the first push (the last arg). */
3126 if (argblock == 0
3127 && adjusted_args_size.constant > reg_parm_stack_space
3128 && adjusted_args_size.constant != unadjusted_args_size)
3129 {
3130 /* When the stack adjustment is pending, we get better code
3131 by combining the adjustments. */
3132 if (pending_stack_adjust
3133 && ! inhibit_defer_pop)
3134 {
3135 pending_stack_adjust
3136 = (combine_pending_stack_adjustment_and_call
3137 (unadjusted_args_size,
3138 &adjusted_args_size,
3139 preferred_unit_stack_boundary));
3140 do_pending_stack_adjust ();
3141 }
3142 else if (argblock == 0)
3143 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
3144 - unadjusted_args_size));
3145 }
3146 /* Now that the stack is properly aligned, pops can't safely
3147 be deferred during the evaluation of the arguments. */
3148 NO_DEFER_POP;
3149
3150 /* Record the maximum pushed stack space size. We need to delay
3151 doing it this far to take into account the optimization done
3152 by combine_pending_stack_adjustment_and_call. */
3153 if (flag_stack_usage_info
3154 && !ACCUMULATE_OUTGOING_ARGS
3155 && pass
3156 && adjusted_args_size.var == 0)
3157 {
3158 int pushed = adjusted_args_size.constant + pending_stack_adjust;
3159 if (pushed > current_function_pushed_stack_size)
3160 current_function_pushed_stack_size = pushed;
3161 }
3162
3163 funexp = rtx_for_function_call (fndecl, addr);
3164
3165 /* Precompute all register parameters. It isn't safe to compute anything
3166 once we have started filling any specific hard regs. */
3167 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
3168
3169 if (CALL_EXPR_STATIC_CHAIN (exp))
3170 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
3171 else
3172 static_chain_value = 0;
3173
3174 #ifdef REG_PARM_STACK_SPACE
3175 /* Save the fixed argument area if it's part of the caller's frame and
3176 is clobbered by argument setup for this call. */
3177 if (ACCUMULATE_OUTGOING_ARGS && pass)
3178 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3179 &low_to_save, &high_to_save);
3180 #endif
3181
3182 /* Now store (and compute if necessary) all non-register parms.
3183 These come before register parms, since they can require block-moves,
3184 which could clobber the registers used for register parms.
3185 Parms which have partial registers are not stored here,
3186 but we do preallocate space here if they want that. */
3187
3188 for (i = 0; i < num_actuals; i++)
3189 {
3190 /* Delay bounds until all other args are stored. */
3191 if (POINTER_BOUNDS_P (args[i].tree_value))
3192 continue;
3193 else if (args[i].reg == 0 || args[i].pass_on_stack)
3194 {
3195 rtx_insn *before_arg = get_last_insn ();
3196
3197 /* We don't allow passing huge (> 2^30 B) arguments
3198 by value. It would cause an overflow later on. */
3199 if (adjusted_args_size.constant
3200 >= (1 << (HOST_BITS_PER_INT - 2)))
3201 {
3202 sorry ("passing too large argument on stack");
3203 continue;
3204 }
3205
3206 if (store_one_arg (&args[i], argblock, flags,
3207 adjusted_args_size.var != 0,
3208 reg_parm_stack_space)
3209 || (pass == 0
3210 && check_sibcall_argument_overlap (before_arg,
3211 &args[i], 1)))
3212 sibcall_failure = 1;
3213 }
3214
3215 if (args[i].stack)
3216 call_fusage
3217 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[i].tree_value)),
3218 gen_rtx_USE (VOIDmode, args[i].stack),
3219 call_fusage);
3220 }
3221
3222 /* If we have a parm that is passed in registers but not in memory
3223 and whose alignment does not permit a direct copy into registers,
3224 make a group of pseudos that correspond to each register that we
3225 will later fill. */
3226 if (STRICT_ALIGNMENT)
3227 store_unaligned_arguments_into_pseudos (args, num_actuals);
3228
3229 /* Now store any partially-in-registers parm.
3230 This is the last place a block-move can happen. */
3231 if (reg_parm_seen)
3232 for (i = 0; i < num_actuals; i++)
3233 if (args[i].partial != 0 && ! args[i].pass_on_stack)
3234 {
3235 rtx_insn *before_arg = get_last_insn ();
3236
3237 /* On targets with weird calling conventions (e.g. PA) it's
3238 hard to ensure that all cases of argument overlap between
3239 stack and registers work. Play it safe and bail out. */
3240 if (ARGS_GROW_DOWNWARD && !STACK_GROWS_DOWNWARD)
3241 {
3242 sibcall_failure = 1;
3243 break;
3244 }
3245
3246 if (store_one_arg (&args[i], argblock, flags,
3247 adjusted_args_size.var != 0,
3248 reg_parm_stack_space)
3249 || (pass == 0
3250 && check_sibcall_argument_overlap (before_arg,
3251 &args[i], 1)))
3252 sibcall_failure = 1;
3253 }
3254
3255 bool any_regs = false;
3256 for (i = 0; i < num_actuals; i++)
3257 if (args[i].reg != NULL_RTX)
3258 {
3259 any_regs = true;
3260 targetm.calls.call_args (args[i].reg, funtype);
3261 }
3262 if (!any_regs)
3263 targetm.calls.call_args (pc_rtx, funtype);
3264
3265 /* Figure out the register where the value, if any, will come back. */
3266 valreg = 0;
3267 valbnd = 0;
3268 if (TYPE_MODE (rettype) != VOIDmode
3269 && ! structure_value_addr)
3270 {
3271 if (pcc_struct_value)
3272 {
3273 valreg = hard_function_value (build_pointer_type (rettype),
3274 fndecl, NULL, (pass == 0));
3275 if (CALL_WITH_BOUNDS_P (exp))
3276 valbnd = targetm.calls.
3277 chkp_function_value_bounds (build_pointer_type (rettype),
3278 fndecl, (pass == 0));
3279 }
3280 else
3281 {
3282 valreg = hard_function_value (rettype, fndecl, fntype,
3283 (pass == 0));
3284 if (CALL_WITH_BOUNDS_P (exp))
3285 valbnd = targetm.calls.chkp_function_value_bounds (rettype,
3286 fndecl,
3287 (pass == 0));
3288 }
3289
3290 /* If VALREG is a PARALLEL whose first member has a zero
3291 offset, use that. This is for targets such as m68k that
3292 return the same value in multiple places. */
3293 if (GET_CODE (valreg) == PARALLEL)
3294 {
3295 rtx elem = XVECEXP (valreg, 0, 0);
3296 rtx where = XEXP (elem, 0);
3297 rtx offset = XEXP (elem, 1);
3298 if (offset == const0_rtx
3299 && GET_MODE (where) == GET_MODE (valreg))
3300 valreg = where;
3301 }
3302 }
3303
3304 /* Store all bounds not passed in registers. */
3305 for (i = 0; i < num_actuals; i++)
3306 {
3307 if (POINTER_BOUNDS_P (args[i].tree_value)
3308 && !args[i].reg)
3309 store_bounds (&args[i],
3310 args[i].pointer_arg == -1
3311 ? NULL
3312 : &args[args[i].pointer_arg]);
3313 }
3314
3315 /* If register arguments require space on the stack and stack space
3316 was not preallocated, allocate stack space here for arguments
3317 passed in registers. */
3318 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
3319 && !ACCUMULATE_OUTGOING_ARGS
3320 && must_preallocate == 0 && reg_parm_stack_space > 0)
3321 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
3322
3323 /* Pass the function the address in which to return a
3324 structure value. */
3325 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
3326 {
3327 structure_value_addr
3328 = convert_memory_address (Pmode, structure_value_addr);
3329 emit_move_insn (struct_value,
3330 force_reg (Pmode,
3331 force_operand (structure_value_addr,
3332 NULL_RTX)));
3333
3334 if (REG_P (struct_value))
3335 use_reg (&call_fusage, struct_value);
3336 }
3337
3338 after_args = get_last_insn ();
3339 funexp = prepare_call_address (fndecl ? fndecl : fntype, funexp,
3340 static_chain_value, &call_fusage,
3341 reg_parm_seen, pass == 0);
3342
3343 load_register_parameters (args, num_actuals, &call_fusage, flags,
3344 pass == 0, &sibcall_failure);
3345
3346 /* Save a pointer to the last insn before the call, so that we can
3347 later safely search backwards to find the CALL_INSN. */
3348 before_call = get_last_insn ();
3349
3350 /* Set up next argument register. For sibling calls on machines
3351 with register windows this should be the incoming register. */
3352 if (pass == 0)
3353 next_arg_reg = targetm.calls.function_incoming_arg (args_so_far,
3354 VOIDmode,
3355 void_type_node,
3356 true);
3357 else
3358 next_arg_reg = targetm.calls.function_arg (args_so_far,
3359 VOIDmode, void_type_node,
3360 true);
3361
3362 if (pass == 1 && (return_flags & ERF_RETURNS_ARG))
3363 {
3364 int arg_nr = return_flags & ERF_RETURN_ARG_MASK;
3365 arg_nr = num_actuals - arg_nr - 1;
3366 if (arg_nr >= 0
3367 && arg_nr < num_actuals
3368 && args[arg_nr].reg
3369 && valreg
3370 && REG_P (valreg)
3371 && GET_MODE (args[arg_nr].reg) == GET_MODE (valreg))
3372 call_fusage
3373 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[arg_nr].tree_value)),
3374 gen_rtx_SET (valreg, args[arg_nr].reg),
3375 call_fusage);
3376 }
3377 /* All arguments and registers used for the call must be set up by
3378 now! */
3379
3380 /* Stack must be properly aligned now. */
3381 gcc_assert (!pass
3382 || !(stack_pointer_delta % preferred_unit_stack_boundary));
3383
3384 /* Generate the actual call instruction. */
3385 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
3386 adjusted_args_size.constant, struct_value_size,
3387 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
3388 flags, args_so_far);
3389
3390 if (flag_ipa_ra)
3391 {
3392 rtx_call_insn *last;
3393 rtx datum = NULL_RTX;
3394 if (fndecl != NULL_TREE)
3395 {
3396 datum = XEXP (DECL_RTL (fndecl), 0);
3397 gcc_assert (datum != NULL_RTX
3398 && GET_CODE (datum) == SYMBOL_REF);
3399 }
3400 last = last_call_insn ();
3401 add_reg_note (last, REG_CALL_DECL, datum);
3402 }
3403
3404 /* If the call setup or the call itself overlaps with anything
3405 of the argument setup we probably clobbered our call address.
3406 In that case we can't do sibcalls. */
3407 if (pass == 0
3408 && check_sibcall_argument_overlap (after_args, 0, 0))
3409 sibcall_failure = 1;
3410
3411 /* If a non-BLKmode value is returned at the most significant end
3412 of a register, shift the register right by the appropriate amount
3413 and update VALREG accordingly. BLKmode values are handled by the
3414 group load/store machinery below. */
3415 if (!structure_value_addr
3416 && !pcc_struct_value
3417 && TYPE_MODE (rettype) != VOIDmode
3418 && TYPE_MODE (rettype) != BLKmode
3419 && REG_P (valreg)
3420 && targetm.calls.return_in_msb (rettype))
3421 {
3422 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
3423 sibcall_failure = 1;
3424 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
3425 }
3426
3427 if (pass && (flags & ECF_MALLOC))
3428 {
3429 rtx temp = gen_reg_rtx (GET_MODE (valreg));
3430 rtx_insn *last, *insns;
3431
3432 /* The return value from a malloc-like function is a pointer. */
3433 if (TREE_CODE (rettype) == POINTER_TYPE)
3434 mark_reg_pointer (temp, MALLOC_ABI_ALIGNMENT);
3435
3436 emit_move_insn (temp, valreg);
3437
3438 /* The return value from a malloc-like function can not alias
3439 anything else. */
3440 last = get_last_insn ();
3441 add_reg_note (last, REG_NOALIAS, temp);
3442
3443 /* Write out the sequence. */
3444 insns = get_insns ();
3445 end_sequence ();
3446 emit_insn (insns);
3447 valreg = temp;
3448 }
3449
3450 /* For calls to `setjmp', etc., inform
3451 function.c:setjmp_warnings that it should complain if
3452 nonvolatile values are live. For functions that cannot
3453 return, inform flow that control does not fall through. */
3454
3455 if ((flags & ECF_NORETURN) || pass == 0)
3456 {
3457 /* The barrier must be emitted
3458 immediately after the CALL_INSN. Some ports emit more
3459 than just a CALL_INSN above, so we must search for it here. */
3460
3461 rtx_insn *last = get_last_insn ();
3462 while (!CALL_P (last))
3463 {
3464 last = PREV_INSN (last);
3465 /* There was no CALL_INSN? */
3466 gcc_assert (last != before_call);
3467 }
3468
3469 emit_barrier_after (last);
3470
3471 /* Stack adjustments after a noreturn call are dead code.
3472 However when NO_DEFER_POP is in effect, we must preserve
3473 stack_pointer_delta. */
3474 if (inhibit_defer_pop == 0)
3475 {
3476 stack_pointer_delta = old_stack_allocated;
3477 pending_stack_adjust = 0;
3478 }
3479 }
3480
3481 /* If value type not void, return an rtx for the value. */
3482
3483 if (TYPE_MODE (rettype) == VOIDmode
3484 || ignore)
3485 target = const0_rtx;
3486 else if (structure_value_addr)
3487 {
3488 if (target == 0 || !MEM_P (target))
3489 {
3490 target
3491 = gen_rtx_MEM (TYPE_MODE (rettype),
3492 memory_address (TYPE_MODE (rettype),
3493 structure_value_addr));
3494 set_mem_attributes (target, rettype, 1);
3495 }
3496 }
3497 else if (pcc_struct_value)
3498 {
3499 /* This is the special C++ case where we need to
3500 know what the true target was. We take care to
3501 never use this value more than once in one expression. */
3502 target = gen_rtx_MEM (TYPE_MODE (rettype),
3503 copy_to_reg (valreg));
3504 set_mem_attributes (target, rettype, 1);
3505 }
3506 /* Handle calls that return values in multiple non-contiguous locations.
3507 The Irix 6 ABI has examples of this. */
3508 else if (GET_CODE (valreg) == PARALLEL)
3509 {
3510 if (target == 0)
3511 target = emit_group_move_into_temps (valreg);
3512 else if (rtx_equal_p (target, valreg))
3513 ;
3514 else if (GET_CODE (target) == PARALLEL)
3515 /* Handle the result of a emit_group_move_into_temps
3516 call in the previous pass. */
3517 emit_group_move (target, valreg);
3518 else
3519 emit_group_store (target, valreg, rettype,
3520 int_size_in_bytes (rettype));
3521 }
3522 else if (target
3523 && GET_MODE (target) == TYPE_MODE (rettype)
3524 && GET_MODE (target) == GET_MODE (valreg))
3525 {
3526 bool may_overlap = false;
3527
3528 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
3529 reg to a plain register. */
3530 if (!REG_P (target) || HARD_REGISTER_P (target))
3531 valreg = avoid_likely_spilled_reg (valreg);
3532
3533 /* If TARGET is a MEM in the argument area, and we have
3534 saved part of the argument area, then we can't store
3535 directly into TARGET as it may get overwritten when we
3536 restore the argument save area below. Don't work too
3537 hard though and simply force TARGET to a register if it
3538 is a MEM; the optimizer is quite likely to sort it out. */
3539 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
3540 for (i = 0; i < num_actuals; i++)
3541 if (args[i].save_area)
3542 {
3543 may_overlap = true;
3544 break;
3545 }
3546
3547 if (may_overlap)
3548 target = copy_to_reg (valreg);
3549 else
3550 {
3551 /* TARGET and VALREG cannot be equal at this point
3552 because the latter would not have
3553 REG_FUNCTION_VALUE_P true, while the former would if
3554 it were referring to the same register.
3555
3556 If they refer to the same register, this move will be
3557 a no-op, except when function inlining is being
3558 done. */
3559 emit_move_insn (target, valreg);
3560
3561 /* If we are setting a MEM, this code must be executed.
3562 Since it is emitted after the call insn, sibcall
3563 optimization cannot be performed in that case. */
3564 if (MEM_P (target))
3565 sibcall_failure = 1;
3566 }
3567 }
3568 else
3569 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
3570
3571 /* If we promoted this return value, make the proper SUBREG.
3572 TARGET might be const0_rtx here, so be careful. */
3573 if (REG_P (target)
3574 && TYPE_MODE (rettype) != BLKmode
3575 && GET_MODE (target) != TYPE_MODE (rettype))
3576 {
3577 tree type = rettype;
3578 int unsignedp = TYPE_UNSIGNED (type);
3579 int offset = 0;
3580 machine_mode pmode;
3581
3582 /* Ensure we promote as expected, and get the new unsignedness. */
3583 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
3584 funtype, 1);
3585 gcc_assert (GET_MODE (target) == pmode);
3586
3587 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
3588 && (GET_MODE_SIZE (GET_MODE (target))
3589 > GET_MODE_SIZE (TYPE_MODE (type))))
3590 {
3591 offset = GET_MODE_SIZE (GET_MODE (target))
3592 - GET_MODE_SIZE (TYPE_MODE (type));
3593 if (! BYTES_BIG_ENDIAN)
3594 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
3595 else if (! WORDS_BIG_ENDIAN)
3596 offset %= UNITS_PER_WORD;
3597 }
3598
3599 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
3600 SUBREG_PROMOTED_VAR_P (target) = 1;
3601 SUBREG_PROMOTED_SET (target, unsignedp);
3602 }
3603
3604 /* If size of args is variable or this was a constructor call for a stack
3605 argument, restore saved stack-pointer value. */
3606
3607 if (old_stack_level)
3608 {
3609 rtx_insn *prev = get_last_insn ();
3610
3611 emit_stack_restore (SAVE_BLOCK, old_stack_level);
3612 stack_pointer_delta = old_stack_pointer_delta;
3613
3614 fixup_args_size_notes (prev, get_last_insn (), stack_pointer_delta);
3615
3616 pending_stack_adjust = old_pending_adj;
3617 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3618 stack_arg_under_construction = old_stack_arg_under_construction;
3619 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3620 stack_usage_map = initial_stack_usage_map;
3621 sibcall_failure = 1;
3622 }
3623 else if (ACCUMULATE_OUTGOING_ARGS && pass)
3624 {
3625 #ifdef REG_PARM_STACK_SPACE
3626 if (save_area)
3627 restore_fixed_argument_area (save_area, argblock,
3628 high_to_save, low_to_save);
3629 #endif
3630
3631 /* If we saved any argument areas, restore them. */
3632 for (i = 0; i < num_actuals; i++)
3633 if (args[i].save_area)
3634 {
3635 machine_mode save_mode = GET_MODE (args[i].save_area);
3636 rtx stack_area
3637 = gen_rtx_MEM (save_mode,
3638 memory_address (save_mode,
3639 XEXP (args[i].stack_slot, 0)));
3640
3641 if (save_mode != BLKmode)
3642 emit_move_insn (stack_area, args[i].save_area);
3643 else
3644 emit_block_move (stack_area, args[i].save_area,
3645 GEN_INT (args[i].locate.size.constant),
3646 BLOCK_OP_CALL_PARM);
3647 }
3648
3649 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3650 stack_usage_map = initial_stack_usage_map;
3651 }
3652
3653 /* If this was alloca, record the new stack level. */
3654 if (flags & ECF_MAY_BE_ALLOCA)
3655 record_new_stack_level ();
3656
3657 /* Free up storage we no longer need. */
3658 for (i = 0; i < num_actuals; ++i)
3659 free (args[i].aligned_regs);
3660
3661 targetm.calls.end_call_args ();
3662
3663 insns = get_insns ();
3664 end_sequence ();
3665
3666 if (pass == 0)
3667 {
3668 tail_call_insns = insns;
3669
3670 /* Restore the pending stack adjustment now that we have
3671 finished generating the sibling call sequence. */
3672
3673 restore_pending_stack_adjust (&save);
3674
3675 /* Prepare arg structure for next iteration. */
3676 for (i = 0; i < num_actuals; i++)
3677 {
3678 args[i].value = 0;
3679 args[i].aligned_regs = 0;
3680 args[i].stack = 0;
3681 }
3682
3683 sbitmap_free (stored_args_map);
3684 internal_arg_pointer_exp_state.scan_start = NULL;
3685 internal_arg_pointer_exp_state.cache.release ();
3686 }
3687 else
3688 {
3689 normal_call_insns = insns;
3690
3691 /* Verify that we've deallocated all the stack we used. */
3692 gcc_assert ((flags & ECF_NORETURN)
3693 || (old_stack_allocated
3694 == stack_pointer_delta - pending_stack_adjust));
3695 }
3696
3697 /* If something prevents making this a sibling call,
3698 zero out the sequence. */
3699 if (sibcall_failure)
3700 tail_call_insns = NULL;
3701 else
3702 break;
3703 }
3704
3705 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3706 arguments too, as argument area is now clobbered by the call. */
3707 if (tail_call_insns)
3708 {
3709 emit_insn (tail_call_insns);
3710 crtl->tail_call_emit = true;
3711 }
3712 else
3713 emit_insn (normal_call_insns);
3714
3715 currently_expanding_call--;
3716
3717 free (stack_usage_map_buf);
3718
3719 /* Join result with returned bounds so caller may use them if needed. */
3720 target = chkp_join_splitted_slot (target, valbnd);
3721
3722 return target;
3723 }
3724
3725 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3726 this function's incoming arguments.
3727
3728 At the start of RTL generation we know the only REG_EQUIV notes
3729 in the rtl chain are those for incoming arguments, so we can look
3730 for REG_EQUIV notes between the start of the function and the
3731 NOTE_INSN_FUNCTION_BEG.
3732
3733 This is (slight) overkill. We could keep track of the highest
3734 argument we clobber and be more selective in removing notes, but it
3735 does not seem to be worth the effort. */
3736
3737 void
3738 fixup_tail_calls (void)
3739 {
3740 rtx_insn *insn;
3741
3742 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3743 {
3744 rtx note;
3745
3746 /* There are never REG_EQUIV notes for the incoming arguments
3747 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
3748 if (NOTE_P (insn)
3749 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3750 break;
3751
3752 note = find_reg_note (insn, REG_EQUIV, 0);
3753 if (note)
3754 remove_note (insn, note);
3755 note = find_reg_note (insn, REG_EQUIV, 0);
3756 gcc_assert (!note);
3757 }
3758 }
3759
3760 /* Traverse a list of TYPES and expand all complex types into their
3761 components. */
3762 static tree
3763 split_complex_types (tree types)
3764 {
3765 tree p;
3766
3767 /* Before allocating memory, check for the common case of no complex. */
3768 for (p = types; p; p = TREE_CHAIN (p))
3769 {
3770 tree type = TREE_VALUE (p);
3771 if (TREE_CODE (type) == COMPLEX_TYPE
3772 && targetm.calls.split_complex_arg (type))
3773 goto found;
3774 }
3775 return types;
3776
3777 found:
3778 types = copy_list (types);
3779
3780 for (p = types; p; p = TREE_CHAIN (p))
3781 {
3782 tree complex_type = TREE_VALUE (p);
3783
3784 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3785 && targetm.calls.split_complex_arg (complex_type))
3786 {
3787 tree next, imag;
3788
3789 /* Rewrite complex type with component type. */
3790 TREE_VALUE (p) = TREE_TYPE (complex_type);
3791 next = TREE_CHAIN (p);
3792
3793 /* Add another component type for the imaginary part. */
3794 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3795 TREE_CHAIN (p) = imag;
3796 TREE_CHAIN (imag) = next;
3797
3798 /* Skip the newly created node. */
3799 p = TREE_CHAIN (p);
3800 }
3801 }
3802
3803 return types;
3804 }
3805 \f
3806 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3807 The RETVAL parameter specifies whether return value needs to be saved, other
3808 parameters are documented in the emit_library_call function below. */
3809
3810 static rtx
3811 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3812 enum libcall_type fn_type,
3813 machine_mode outmode, int nargs, va_list p)
3814 {
3815 /* Total size in bytes of all the stack-parms scanned so far. */
3816 struct args_size args_size;
3817 /* Size of arguments before any adjustments (such as rounding). */
3818 struct args_size original_args_size;
3819 int argnum;
3820 rtx fun;
3821 /* Todo, choose the correct decl type of orgfun. Sadly this information
3822 isn't present here, so we default to native calling abi here. */
3823 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3824 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3825 int count;
3826 rtx argblock = 0;
3827 CUMULATIVE_ARGS args_so_far_v;
3828 cumulative_args_t args_so_far;
3829 struct arg
3830 {
3831 rtx value;
3832 machine_mode mode;
3833 rtx reg;
3834 int partial;
3835 struct locate_and_pad_arg_data locate;
3836 rtx save_area;
3837 };
3838 struct arg *argvec;
3839 int old_inhibit_defer_pop = inhibit_defer_pop;
3840 rtx call_fusage = 0;
3841 rtx mem_value = 0;
3842 rtx valreg;
3843 int pcc_struct_value = 0;
3844 int struct_value_size = 0;
3845 int flags;
3846 int reg_parm_stack_space = 0;
3847 int needed;
3848 rtx_insn *before_call;
3849 bool have_push_fusage;
3850 tree tfom; /* type_for_mode (outmode, 0) */
3851
3852 #ifdef REG_PARM_STACK_SPACE
3853 /* Define the boundary of the register parm stack space that needs to be
3854 save, if any. */
3855 int low_to_save = 0, high_to_save = 0;
3856 rtx save_area = 0; /* Place that it is saved. */
3857 #endif
3858
3859 /* Size of the stack reserved for parameter registers. */
3860 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3861 char *initial_stack_usage_map = stack_usage_map;
3862 char *stack_usage_map_buf = NULL;
3863
3864 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3865
3866 #ifdef REG_PARM_STACK_SPACE
3867 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3868 #endif
3869
3870 /* By default, library functions can not throw. */
3871 flags = ECF_NOTHROW;
3872
3873 switch (fn_type)
3874 {
3875 case LCT_NORMAL:
3876 break;
3877 case LCT_CONST:
3878 flags |= ECF_CONST;
3879 break;
3880 case LCT_PURE:
3881 flags |= ECF_PURE;
3882 break;
3883 case LCT_NORETURN:
3884 flags |= ECF_NORETURN;
3885 break;
3886 case LCT_THROW:
3887 flags = ECF_NORETURN;
3888 break;
3889 case LCT_RETURNS_TWICE:
3890 flags = ECF_RETURNS_TWICE;
3891 break;
3892 }
3893 fun = orgfun;
3894
3895 /* Ensure current function's preferred stack boundary is at least
3896 what we need. */
3897 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3898 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3899
3900 /* If this kind of value comes back in memory,
3901 decide where in memory it should come back. */
3902 if (outmode != VOIDmode)
3903 {
3904 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3905 if (aggregate_value_p (tfom, 0))
3906 {
3907 #ifdef PCC_STATIC_STRUCT_RETURN
3908 rtx pointer_reg
3909 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
3910 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3911 pcc_struct_value = 1;
3912 if (value == 0)
3913 value = gen_reg_rtx (outmode);
3914 #else /* not PCC_STATIC_STRUCT_RETURN */
3915 struct_value_size = GET_MODE_SIZE (outmode);
3916 if (value != 0 && MEM_P (value))
3917 mem_value = value;
3918 else
3919 mem_value = assign_temp (tfom, 1, 1);
3920 #endif
3921 /* This call returns a big structure. */
3922 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3923 }
3924 }
3925 else
3926 tfom = void_type_node;
3927
3928 /* ??? Unfinished: must pass the memory address as an argument. */
3929
3930 /* Copy all the libcall-arguments out of the varargs data
3931 and into a vector ARGVEC.
3932
3933 Compute how to pass each argument. We only support a very small subset
3934 of the full argument passing conventions to limit complexity here since
3935 library functions shouldn't have many args. */
3936
3937 argvec = XALLOCAVEC (struct arg, nargs + 1);
3938 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3939
3940 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3941 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far_v, outmode, fun);
3942 #else
3943 INIT_CUMULATIVE_ARGS (args_so_far_v, NULL_TREE, fun, 0, nargs);
3944 #endif
3945 args_so_far = pack_cumulative_args (&args_so_far_v);
3946
3947 args_size.constant = 0;
3948 args_size.var = 0;
3949
3950 count = 0;
3951
3952 push_temp_slots ();
3953
3954 /* If there's a structure value address to be passed,
3955 either pass it in the special place, or pass it as an extra argument. */
3956 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3957 {
3958 rtx addr = XEXP (mem_value, 0);
3959
3960 nargs++;
3961
3962 /* Make sure it is a reasonable operand for a move or push insn. */
3963 if (!REG_P (addr) && !MEM_P (addr)
3964 && !(CONSTANT_P (addr)
3965 && targetm.legitimate_constant_p (Pmode, addr)))
3966 addr = force_operand (addr, NULL_RTX);
3967
3968 argvec[count].value = addr;
3969 argvec[count].mode = Pmode;
3970 argvec[count].partial = 0;
3971
3972 argvec[count].reg = targetm.calls.function_arg (args_so_far,
3973 Pmode, NULL_TREE, true);
3974 gcc_assert (targetm.calls.arg_partial_bytes (args_so_far, Pmode,
3975 NULL_TREE, 1) == 0);
3976
3977 locate_and_pad_parm (Pmode, NULL_TREE,
3978 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3979 1,
3980 #else
3981 argvec[count].reg != 0,
3982 #endif
3983 reg_parm_stack_space, 0,
3984 NULL_TREE, &args_size, &argvec[count].locate);
3985
3986 if (argvec[count].reg == 0 || argvec[count].partial != 0
3987 || reg_parm_stack_space > 0)
3988 args_size.constant += argvec[count].locate.size.constant;
3989
3990 targetm.calls.function_arg_advance (args_so_far, Pmode, (tree) 0, true);
3991
3992 count++;
3993 }
3994
3995 for (; count < nargs; count++)
3996 {
3997 rtx val = va_arg (p, rtx);
3998 machine_mode mode = (machine_mode) va_arg (p, int);
3999 int unsigned_p = 0;
4000
4001 /* We cannot convert the arg value to the mode the library wants here;
4002 must do it earlier where we know the signedness of the arg. */
4003 gcc_assert (mode != BLKmode
4004 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
4005
4006 /* Make sure it is a reasonable operand for a move or push insn. */
4007 if (!REG_P (val) && !MEM_P (val)
4008 && !(CONSTANT_P (val) && targetm.legitimate_constant_p (mode, val)))
4009 val = force_operand (val, NULL_RTX);
4010
4011 if (pass_by_reference (&args_so_far_v, mode, NULL_TREE, 1))
4012 {
4013 rtx slot;
4014 int must_copy
4015 = !reference_callee_copied (&args_so_far_v, mode, NULL_TREE, 1);
4016
4017 /* If this was a CONST function, it is now PURE since it now
4018 reads memory. */
4019 if (flags & ECF_CONST)
4020 {
4021 flags &= ~ECF_CONST;
4022 flags |= ECF_PURE;
4023 }
4024
4025 if (MEM_P (val) && !must_copy)
4026 {
4027 tree val_expr = MEM_EXPR (val);
4028 if (val_expr)
4029 mark_addressable (val_expr);
4030 slot = val;
4031 }
4032 else
4033 {
4034 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
4035 1, 1);
4036 emit_move_insn (slot, val);
4037 }
4038
4039 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
4040 gen_rtx_USE (VOIDmode, slot),
4041 call_fusage);
4042 if (must_copy)
4043 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
4044 gen_rtx_CLOBBER (VOIDmode,
4045 slot),
4046 call_fusage);
4047
4048 mode = Pmode;
4049 val = force_operand (XEXP (slot, 0), NULL_RTX);
4050 }
4051
4052 mode = promote_function_mode (NULL_TREE, mode, &unsigned_p, NULL_TREE, 0);
4053 argvec[count].mode = mode;
4054 argvec[count].value = convert_modes (mode, GET_MODE (val), val, unsigned_p);
4055 argvec[count].reg = targetm.calls.function_arg (args_so_far, mode,
4056 NULL_TREE, true);
4057
4058 argvec[count].partial
4059 = targetm.calls.arg_partial_bytes (args_so_far, mode, NULL_TREE, 1);
4060
4061 if (argvec[count].reg == 0
4062 || argvec[count].partial != 0
4063 || reg_parm_stack_space > 0)
4064 {
4065 locate_and_pad_parm (mode, NULL_TREE,
4066 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4067 1,
4068 #else
4069 argvec[count].reg != 0,
4070 #endif
4071 reg_parm_stack_space, argvec[count].partial,
4072 NULL_TREE, &args_size, &argvec[count].locate);
4073 args_size.constant += argvec[count].locate.size.constant;
4074 gcc_assert (!argvec[count].locate.size.var);
4075 }
4076 #ifdef BLOCK_REG_PADDING
4077 else
4078 /* The argument is passed entirely in registers. See at which
4079 end it should be padded. */
4080 argvec[count].locate.where_pad =
4081 BLOCK_REG_PADDING (mode, NULL_TREE,
4082 GET_MODE_SIZE (mode) <= UNITS_PER_WORD);
4083 #endif
4084
4085 targetm.calls.function_arg_advance (args_so_far, mode, (tree) 0, true);
4086 }
4087
4088 /* If this machine requires an external definition for library
4089 functions, write one out. */
4090 assemble_external_libcall (fun);
4091
4092 original_args_size = args_size;
4093 args_size.constant = (((args_size.constant
4094 + stack_pointer_delta
4095 + STACK_BYTES - 1)
4096 / STACK_BYTES
4097 * STACK_BYTES)
4098 - stack_pointer_delta);
4099
4100 args_size.constant = MAX (args_size.constant,
4101 reg_parm_stack_space);
4102
4103 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
4104 args_size.constant -= reg_parm_stack_space;
4105
4106 if (args_size.constant > crtl->outgoing_args_size)
4107 crtl->outgoing_args_size = args_size.constant;
4108
4109 if (flag_stack_usage_info && !ACCUMULATE_OUTGOING_ARGS)
4110 {
4111 int pushed = args_size.constant + pending_stack_adjust;
4112 if (pushed > current_function_pushed_stack_size)
4113 current_function_pushed_stack_size = pushed;
4114 }
4115
4116 if (ACCUMULATE_OUTGOING_ARGS)
4117 {
4118 /* Since the stack pointer will never be pushed, it is possible for
4119 the evaluation of a parm to clobber something we have already
4120 written to the stack. Since most function calls on RISC machines
4121 do not use the stack, this is uncommon, but must work correctly.
4122
4123 Therefore, we save any area of the stack that was already written
4124 and that we are using. Here we set up to do this by making a new
4125 stack usage map from the old one.
4126
4127 Another approach might be to try to reorder the argument
4128 evaluations to avoid this conflicting stack usage. */
4129
4130 needed = args_size.constant;
4131
4132 /* Since we will be writing into the entire argument area, the
4133 map must be allocated for its entire size, not just the part that
4134 is the responsibility of the caller. */
4135 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
4136 needed += reg_parm_stack_space;
4137
4138 if (ARGS_GROW_DOWNWARD)
4139 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
4140 needed + 1);
4141 else
4142 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use, needed);
4143
4144 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
4145 stack_usage_map = stack_usage_map_buf;
4146
4147 if (initial_highest_arg_in_use)
4148 memcpy (stack_usage_map, initial_stack_usage_map,
4149 initial_highest_arg_in_use);
4150
4151 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
4152 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
4153 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
4154 needed = 0;
4155
4156 /* We must be careful to use virtual regs before they're instantiated,
4157 and real regs afterwards. Loop optimization, for example, can create
4158 new libcalls after we've instantiated the virtual regs, and if we
4159 use virtuals anyway, they won't match the rtl patterns. */
4160
4161 if (virtuals_instantiated)
4162 argblock = plus_constant (Pmode, stack_pointer_rtx,
4163 STACK_POINTER_OFFSET);
4164 else
4165 argblock = virtual_outgoing_args_rtx;
4166 }
4167 else
4168 {
4169 if (!PUSH_ARGS)
4170 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
4171 }
4172
4173 /* We push args individually in reverse order, perform stack alignment
4174 before the first push (the last arg). */
4175 if (argblock == 0)
4176 anti_adjust_stack (GEN_INT (args_size.constant
4177 - original_args_size.constant));
4178
4179 argnum = nargs - 1;
4180
4181 #ifdef REG_PARM_STACK_SPACE
4182 if (ACCUMULATE_OUTGOING_ARGS)
4183 {
4184 /* The argument list is the property of the called routine and it
4185 may clobber it. If the fixed area has been used for previous
4186 parameters, we must save and restore it. */
4187 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
4188 &low_to_save, &high_to_save);
4189 }
4190 #endif
4191
4192 /* When expanding a normal call, args are stored in push order,
4193 which is the reverse of what we have here. */
4194 bool any_regs = false;
4195 for (int i = nargs; i-- > 0; )
4196 if (argvec[i].reg != NULL_RTX)
4197 {
4198 targetm.calls.call_args (argvec[i].reg, NULL_TREE);
4199 any_regs = true;
4200 }
4201 if (!any_regs)
4202 targetm.calls.call_args (pc_rtx, NULL_TREE);
4203
4204 /* Push the args that need to be pushed. */
4205
4206 have_push_fusage = false;
4207
4208 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
4209 are to be pushed. */
4210 for (count = 0; count < nargs; count++, argnum--)
4211 {
4212 machine_mode mode = argvec[argnum].mode;
4213 rtx val = argvec[argnum].value;
4214 rtx reg = argvec[argnum].reg;
4215 int partial = argvec[argnum].partial;
4216 unsigned int parm_align = argvec[argnum].locate.boundary;
4217 int lower_bound = 0, upper_bound = 0, i;
4218
4219 if (! (reg != 0 && partial == 0))
4220 {
4221 rtx use;
4222
4223 if (ACCUMULATE_OUTGOING_ARGS)
4224 {
4225 /* If this is being stored into a pre-allocated, fixed-size,
4226 stack area, save any previous data at that location. */
4227
4228 if (ARGS_GROW_DOWNWARD)
4229 {
4230 /* stack_slot is negative, but we want to index stack_usage_map
4231 with positive values. */
4232 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
4233 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
4234 }
4235 else
4236 {
4237 lower_bound = argvec[argnum].locate.slot_offset.constant;
4238 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
4239 }
4240
4241 i = lower_bound;
4242 /* Don't worry about things in the fixed argument area;
4243 it has already been saved. */
4244 if (i < reg_parm_stack_space)
4245 i = reg_parm_stack_space;
4246 while (i < upper_bound && stack_usage_map[i] == 0)
4247 i++;
4248
4249 if (i < upper_bound)
4250 {
4251 /* We need to make a save area. */
4252 unsigned int size
4253 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
4254 machine_mode save_mode
4255 = mode_for_size (size, MODE_INT, 1);
4256 rtx adr
4257 = plus_constant (Pmode, argblock,
4258 argvec[argnum].locate.offset.constant);
4259 rtx stack_area
4260 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
4261
4262 if (save_mode == BLKmode)
4263 {
4264 argvec[argnum].save_area
4265 = assign_stack_temp (BLKmode,
4266 argvec[argnum].locate.size.constant
4267 );
4268
4269 emit_block_move (validize_mem
4270 (copy_rtx (argvec[argnum].save_area)),
4271 stack_area,
4272 GEN_INT (argvec[argnum].locate.size.constant),
4273 BLOCK_OP_CALL_PARM);
4274 }
4275 else
4276 {
4277 argvec[argnum].save_area = gen_reg_rtx (save_mode);
4278
4279 emit_move_insn (argvec[argnum].save_area, stack_area);
4280 }
4281 }
4282 }
4283
4284 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
4285 partial, reg, 0, argblock,
4286 GEN_INT (argvec[argnum].locate.offset.constant),
4287 reg_parm_stack_space,
4288 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad), false);
4289
4290 /* Now mark the segment we just used. */
4291 if (ACCUMULATE_OUTGOING_ARGS)
4292 for (i = lower_bound; i < upper_bound; i++)
4293 stack_usage_map[i] = 1;
4294
4295 NO_DEFER_POP;
4296
4297 /* Indicate argument access so that alias.c knows that these
4298 values are live. */
4299 if (argblock)
4300 use = plus_constant (Pmode, argblock,
4301 argvec[argnum].locate.offset.constant);
4302 else if (have_push_fusage)
4303 continue;
4304 else
4305 {
4306 /* When arguments are pushed, trying to tell alias.c where
4307 exactly this argument is won't work, because the
4308 auto-increment causes confusion. So we merely indicate
4309 that we access something with a known mode somewhere on
4310 the stack. */
4311 use = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4312 gen_rtx_SCRATCH (Pmode));
4313 have_push_fusage = true;
4314 }
4315 use = gen_rtx_MEM (argvec[argnum].mode, use);
4316 use = gen_rtx_USE (VOIDmode, use);
4317 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
4318 }
4319 }
4320
4321 argnum = nargs - 1;
4322
4323 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
4324
4325 /* Now load any reg parms into their regs. */
4326
4327 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
4328 are to be pushed. */
4329 for (count = 0; count < nargs; count++, argnum--)
4330 {
4331 machine_mode mode = argvec[argnum].mode;
4332 rtx val = argvec[argnum].value;
4333 rtx reg = argvec[argnum].reg;
4334 int partial = argvec[argnum].partial;
4335 #ifdef BLOCK_REG_PADDING
4336 int size = 0;
4337 #endif
4338
4339 /* Handle calls that pass values in multiple non-contiguous
4340 locations. The PA64 has examples of this for library calls. */
4341 if (reg != 0 && GET_CODE (reg) == PARALLEL)
4342 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
4343 else if (reg != 0 && partial == 0)
4344 {
4345 emit_move_insn (reg, val);
4346 #ifdef BLOCK_REG_PADDING
4347 size = GET_MODE_SIZE (argvec[argnum].mode);
4348
4349 /* Copied from load_register_parameters. */
4350
4351 /* Handle case where we have a value that needs shifting
4352 up to the msb. eg. a QImode value and we're padding
4353 upward on a BYTES_BIG_ENDIAN machine. */
4354 if (size < UNITS_PER_WORD
4355 && (argvec[argnum].locate.where_pad
4356 == (BYTES_BIG_ENDIAN ? upward : downward)))
4357 {
4358 rtx x;
4359 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
4360
4361 /* Assigning REG here rather than a temp makes CALL_FUSAGE
4362 report the whole reg as used. Strictly speaking, the
4363 call only uses SIZE bytes at the msb end, but it doesn't
4364 seem worth generating rtl to say that. */
4365 reg = gen_rtx_REG (word_mode, REGNO (reg));
4366 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
4367 if (x != reg)
4368 emit_move_insn (reg, x);
4369 }
4370 #endif
4371 }
4372
4373 NO_DEFER_POP;
4374 }
4375
4376 /* Any regs containing parms remain in use through the call. */
4377 for (count = 0; count < nargs; count++)
4378 {
4379 rtx reg = argvec[count].reg;
4380 if (reg != 0 && GET_CODE (reg) == PARALLEL)
4381 use_group_regs (&call_fusage, reg);
4382 else if (reg != 0)
4383 {
4384 int partial = argvec[count].partial;
4385 if (partial)
4386 {
4387 int nregs;
4388 gcc_assert (partial % UNITS_PER_WORD == 0);
4389 nregs = partial / UNITS_PER_WORD;
4390 use_regs (&call_fusage, REGNO (reg), nregs);
4391 }
4392 else
4393 use_reg (&call_fusage, reg);
4394 }
4395 }
4396
4397 /* Pass the function the address in which to return a structure value. */
4398 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
4399 {
4400 emit_move_insn (struct_value,
4401 force_reg (Pmode,
4402 force_operand (XEXP (mem_value, 0),
4403 NULL_RTX)));
4404 if (REG_P (struct_value))
4405 use_reg (&call_fusage, struct_value);
4406 }
4407
4408 /* Don't allow popping to be deferred, since then
4409 cse'ing of library calls could delete a call and leave the pop. */
4410 NO_DEFER_POP;
4411 valreg = (mem_value == 0 && outmode != VOIDmode
4412 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
4413
4414 /* Stack must be properly aligned now. */
4415 gcc_assert (!(stack_pointer_delta
4416 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
4417
4418 before_call = get_last_insn ();
4419
4420 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
4421 will set inhibit_defer_pop to that value. */
4422 /* The return type is needed to decide how many bytes the function pops.
4423 Signedness plays no role in that, so for simplicity, we pretend it's
4424 always signed. We also assume that the list of arguments passed has
4425 no impact, so we pretend it is unknown. */
4426
4427 emit_call_1 (fun, NULL,
4428 get_identifier (XSTR (orgfun, 0)),
4429 build_function_type (tfom, NULL_TREE),
4430 original_args_size.constant, args_size.constant,
4431 struct_value_size,
4432 targetm.calls.function_arg (args_so_far,
4433 VOIDmode, void_type_node, true),
4434 valreg,
4435 old_inhibit_defer_pop + 1, call_fusage, flags, args_so_far);
4436
4437 if (flag_ipa_ra)
4438 {
4439 rtx last, datum = orgfun;
4440 gcc_assert (GET_CODE (datum) == SYMBOL_REF);
4441 last = last_call_insn ();
4442 add_reg_note (last, REG_CALL_DECL, datum);
4443 }
4444
4445 /* Right-shift returned value if necessary. */
4446 if (!pcc_struct_value
4447 && TYPE_MODE (tfom) != BLKmode
4448 && targetm.calls.return_in_msb (tfom))
4449 {
4450 shift_return_value (TYPE_MODE (tfom), false, valreg);
4451 valreg = gen_rtx_REG (TYPE_MODE (tfom), REGNO (valreg));
4452 }
4453
4454 targetm.calls.end_call_args ();
4455
4456 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
4457 that it should complain if nonvolatile values are live. For
4458 functions that cannot return, inform flow that control does not
4459 fall through. */
4460 if (flags & ECF_NORETURN)
4461 {
4462 /* The barrier note must be emitted
4463 immediately after the CALL_INSN. Some ports emit more than
4464 just a CALL_INSN above, so we must search for it here. */
4465 rtx_insn *last = get_last_insn ();
4466 while (!CALL_P (last))
4467 {
4468 last = PREV_INSN (last);
4469 /* There was no CALL_INSN? */
4470 gcc_assert (last != before_call);
4471 }
4472
4473 emit_barrier_after (last);
4474 }
4475
4476 /* Consider that "regular" libcalls, i.e. all of them except for LCT_THROW
4477 and LCT_RETURNS_TWICE, cannot perform non-local gotos. */
4478 if (flags & ECF_NOTHROW)
4479 {
4480 rtx_insn *last = get_last_insn ();
4481 while (!CALL_P (last))
4482 {
4483 last = PREV_INSN (last);
4484 /* There was no CALL_INSN? */
4485 gcc_assert (last != before_call);
4486 }
4487
4488 make_reg_eh_region_note_nothrow_nononlocal (last);
4489 }
4490
4491 /* Now restore inhibit_defer_pop to its actual original value. */
4492 OK_DEFER_POP;
4493
4494 pop_temp_slots ();
4495
4496 /* Copy the value to the right place. */
4497 if (outmode != VOIDmode && retval)
4498 {
4499 if (mem_value)
4500 {
4501 if (value == 0)
4502 value = mem_value;
4503 if (value != mem_value)
4504 emit_move_insn (value, mem_value);
4505 }
4506 else if (GET_CODE (valreg) == PARALLEL)
4507 {
4508 if (value == 0)
4509 value = gen_reg_rtx (outmode);
4510 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
4511 }
4512 else
4513 {
4514 /* Convert to the proper mode if a promotion has been active. */
4515 if (GET_MODE (valreg) != outmode)
4516 {
4517 int unsignedp = TYPE_UNSIGNED (tfom);
4518
4519 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
4520 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
4521 == GET_MODE (valreg));
4522 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
4523 }
4524
4525 if (value != 0)
4526 emit_move_insn (value, valreg);
4527 else
4528 value = valreg;
4529 }
4530 }
4531
4532 if (ACCUMULATE_OUTGOING_ARGS)
4533 {
4534 #ifdef REG_PARM_STACK_SPACE
4535 if (save_area)
4536 restore_fixed_argument_area (save_area, argblock,
4537 high_to_save, low_to_save);
4538 #endif
4539
4540 /* If we saved any argument areas, restore them. */
4541 for (count = 0; count < nargs; count++)
4542 if (argvec[count].save_area)
4543 {
4544 machine_mode save_mode = GET_MODE (argvec[count].save_area);
4545 rtx adr = plus_constant (Pmode, argblock,
4546 argvec[count].locate.offset.constant);
4547 rtx stack_area = gen_rtx_MEM (save_mode,
4548 memory_address (save_mode, adr));
4549
4550 if (save_mode == BLKmode)
4551 emit_block_move (stack_area,
4552 validize_mem
4553 (copy_rtx (argvec[count].save_area)),
4554 GEN_INT (argvec[count].locate.size.constant),
4555 BLOCK_OP_CALL_PARM);
4556 else
4557 emit_move_insn (stack_area, argvec[count].save_area);
4558 }
4559
4560 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4561 stack_usage_map = initial_stack_usage_map;
4562 }
4563
4564 free (stack_usage_map_buf);
4565
4566 return value;
4567
4568 }
4569 \f
4570 /* Output a library call to function FUN (a SYMBOL_REF rtx)
4571 (emitting the queue unless NO_QUEUE is nonzero),
4572 for a value of mode OUTMODE,
4573 with NARGS different arguments, passed as alternating rtx values
4574 and machine_modes to convert them to.
4575
4576 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
4577 `const' calls, LCT_PURE for `pure' calls, or other LCT_ value for
4578 other types of library calls. */
4579
4580 void
4581 emit_library_call (rtx orgfun, enum libcall_type fn_type,
4582 machine_mode outmode, int nargs, ...)
4583 {
4584 va_list p;
4585
4586 va_start (p, nargs);
4587 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
4588 va_end (p);
4589 }
4590 \f
4591 /* Like emit_library_call except that an extra argument, VALUE,
4592 comes second and says where to store the result.
4593 (If VALUE is zero, this function chooses a convenient way
4594 to return the value.
4595
4596 This function returns an rtx for where the value is to be found.
4597 If VALUE is nonzero, VALUE is returned. */
4598
4599 rtx
4600 emit_library_call_value (rtx orgfun, rtx value,
4601 enum libcall_type fn_type,
4602 machine_mode outmode, int nargs, ...)
4603 {
4604 rtx result;
4605 va_list p;
4606
4607 va_start (p, nargs);
4608 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
4609 nargs, p);
4610 va_end (p);
4611
4612 return result;
4613 }
4614 \f
4615
4616 /* Store pointer bounds argument ARG into Bounds Table entry
4617 associated with PARM. */
4618 static void
4619 store_bounds (struct arg_data *arg, struct arg_data *parm)
4620 {
4621 rtx slot = NULL, ptr = NULL, addr = NULL;
4622
4623 /* We may pass bounds not associated with any pointer. */
4624 if (!parm)
4625 {
4626 gcc_assert (arg->special_slot);
4627 slot = arg->special_slot;
4628 ptr = const0_rtx;
4629 }
4630 /* Find pointer associated with bounds and where it is
4631 passed. */
4632 else
4633 {
4634 if (!parm->reg)
4635 {
4636 gcc_assert (!arg->special_slot);
4637
4638 addr = adjust_address (parm->stack, Pmode, arg->pointer_offset);
4639 }
4640 else if (REG_P (parm->reg))
4641 {
4642 gcc_assert (arg->special_slot);
4643 slot = arg->special_slot;
4644
4645 if (MEM_P (parm->value))
4646 addr = adjust_address (parm->value, Pmode, arg->pointer_offset);
4647 else if (REG_P (parm->value))
4648 ptr = gen_rtx_SUBREG (Pmode, parm->value, arg->pointer_offset);
4649 else
4650 {
4651 gcc_assert (!arg->pointer_offset);
4652 ptr = parm->value;
4653 }
4654 }
4655 else
4656 {
4657 gcc_assert (GET_CODE (parm->reg) == PARALLEL);
4658
4659 gcc_assert (arg->special_slot);
4660 slot = arg->special_slot;
4661
4662 if (parm->parallel_value)
4663 ptr = chkp_get_value_with_offs (parm->parallel_value,
4664 GEN_INT (arg->pointer_offset));
4665 else
4666 gcc_unreachable ();
4667 }
4668 }
4669
4670 /* Expand bounds. */
4671 if (!arg->value)
4672 arg->value = expand_normal (arg->tree_value);
4673
4674 targetm.calls.store_bounds_for_arg (ptr, addr, arg->value, slot);
4675 }
4676
4677 /* Store a single argument for a function call
4678 into the register or memory area where it must be passed.
4679 *ARG describes the argument value and where to pass it.
4680
4681 ARGBLOCK is the address of the stack-block for all the arguments,
4682 or 0 on a machine where arguments are pushed individually.
4683
4684 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
4685 so must be careful about how the stack is used.
4686
4687 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
4688 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
4689 that we need not worry about saving and restoring the stack.
4690
4691 FNDECL is the declaration of the function we are calling.
4692
4693 Return nonzero if this arg should cause sibcall failure,
4694 zero otherwise. */
4695
4696 static int
4697 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
4698 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
4699 {
4700 tree pval = arg->tree_value;
4701 rtx reg = 0;
4702 int partial = 0;
4703 int used = 0;
4704 int i, lower_bound = 0, upper_bound = 0;
4705 int sibcall_failure = 0;
4706
4707 if (TREE_CODE (pval) == ERROR_MARK)
4708 return 1;
4709
4710 /* Push a new temporary level for any temporaries we make for
4711 this argument. */
4712 push_temp_slots ();
4713
4714 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
4715 {
4716 /* If this is being stored into a pre-allocated, fixed-size, stack area,
4717 save any previous data at that location. */
4718 if (argblock && ! variable_size && arg->stack)
4719 {
4720 if (ARGS_GROW_DOWNWARD)
4721 {
4722 /* stack_slot is negative, but we want to index stack_usage_map
4723 with positive values. */
4724 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4725 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
4726 else
4727 upper_bound = 0;
4728
4729 lower_bound = upper_bound - arg->locate.size.constant;
4730 }
4731 else
4732 {
4733 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4734 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
4735 else
4736 lower_bound = 0;
4737
4738 upper_bound = lower_bound + arg->locate.size.constant;
4739 }
4740
4741 i = lower_bound;
4742 /* Don't worry about things in the fixed argument area;
4743 it has already been saved. */
4744 if (i < reg_parm_stack_space)
4745 i = reg_parm_stack_space;
4746 while (i < upper_bound && stack_usage_map[i] == 0)
4747 i++;
4748
4749 if (i < upper_bound)
4750 {
4751 /* We need to make a save area. */
4752 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
4753 machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
4754 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
4755 rtx stack_area = gen_rtx_MEM (save_mode, adr);
4756
4757 if (save_mode == BLKmode)
4758 {
4759 arg->save_area
4760 = assign_temp (TREE_TYPE (arg->tree_value), 1, 1);
4761 preserve_temp_slots (arg->save_area);
4762 emit_block_move (validize_mem (copy_rtx (arg->save_area)),
4763 stack_area,
4764 GEN_INT (arg->locate.size.constant),
4765 BLOCK_OP_CALL_PARM);
4766 }
4767 else
4768 {
4769 arg->save_area = gen_reg_rtx (save_mode);
4770 emit_move_insn (arg->save_area, stack_area);
4771 }
4772 }
4773 }
4774 }
4775
4776 /* If this isn't going to be placed on both the stack and in registers,
4777 set up the register and number of words. */
4778 if (! arg->pass_on_stack)
4779 {
4780 if (flags & ECF_SIBCALL)
4781 reg = arg->tail_call_reg;
4782 else
4783 reg = arg->reg;
4784 partial = arg->partial;
4785 }
4786
4787 /* Being passed entirely in a register. We shouldn't be called in
4788 this case. */
4789 gcc_assert (reg == 0 || partial != 0);
4790
4791 /* If this arg needs special alignment, don't load the registers
4792 here. */
4793 if (arg->n_aligned_regs != 0)
4794 reg = 0;
4795
4796 /* If this is being passed partially in a register, we can't evaluate
4797 it directly into its stack slot. Otherwise, we can. */
4798 if (arg->value == 0)
4799 {
4800 /* stack_arg_under_construction is nonzero if a function argument is
4801 being evaluated directly into the outgoing argument list and
4802 expand_call must take special action to preserve the argument list
4803 if it is called recursively.
4804
4805 For scalar function arguments stack_usage_map is sufficient to
4806 determine which stack slots must be saved and restored. Scalar
4807 arguments in general have pass_on_stack == 0.
4808
4809 If this argument is initialized by a function which takes the
4810 address of the argument (a C++ constructor or a C function
4811 returning a BLKmode structure), then stack_usage_map is
4812 insufficient and expand_call must push the stack around the
4813 function call. Such arguments have pass_on_stack == 1.
4814
4815 Note that it is always safe to set stack_arg_under_construction,
4816 but this generates suboptimal code if set when not needed. */
4817
4818 if (arg->pass_on_stack)
4819 stack_arg_under_construction++;
4820
4821 arg->value = expand_expr (pval,
4822 (partial
4823 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4824 ? NULL_RTX : arg->stack,
4825 VOIDmode, EXPAND_STACK_PARM);
4826
4827 /* If we are promoting object (or for any other reason) the mode
4828 doesn't agree, convert the mode. */
4829
4830 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4831 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4832 arg->value, arg->unsignedp);
4833
4834 if (arg->pass_on_stack)
4835 stack_arg_under_construction--;
4836 }
4837
4838 /* Check for overlap with already clobbered argument area. */
4839 if ((flags & ECF_SIBCALL)
4840 && MEM_P (arg->value)
4841 && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
4842 arg->locate.size.constant))
4843 sibcall_failure = 1;
4844
4845 /* Don't allow anything left on stack from computation
4846 of argument to alloca. */
4847 if (flags & ECF_MAY_BE_ALLOCA)
4848 do_pending_stack_adjust ();
4849
4850 if (arg->value == arg->stack)
4851 /* If the value is already in the stack slot, we are done. */
4852 ;
4853 else if (arg->mode != BLKmode)
4854 {
4855 int size;
4856 unsigned int parm_align;
4857
4858 /* Argument is a scalar, not entirely passed in registers.
4859 (If part is passed in registers, arg->partial says how much
4860 and emit_push_insn will take care of putting it there.)
4861
4862 Push it, and if its size is less than the
4863 amount of space allocated to it,
4864 also bump stack pointer by the additional space.
4865 Note that in C the default argument promotions
4866 will prevent such mismatches. */
4867
4868 size = GET_MODE_SIZE (arg->mode);
4869 /* Compute how much space the push instruction will push.
4870 On many machines, pushing a byte will advance the stack
4871 pointer by a halfword. */
4872 #ifdef PUSH_ROUNDING
4873 size = PUSH_ROUNDING (size);
4874 #endif
4875 used = size;
4876
4877 /* Compute how much space the argument should get:
4878 round up to a multiple of the alignment for arguments. */
4879 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4880 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4881 / (PARM_BOUNDARY / BITS_PER_UNIT))
4882 * (PARM_BOUNDARY / BITS_PER_UNIT));
4883
4884 /* Compute the alignment of the pushed argument. */
4885 parm_align = arg->locate.boundary;
4886 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4887 {
4888 int pad = used - size;
4889 if (pad)
4890 {
4891 unsigned int pad_align = (pad & -pad) * BITS_PER_UNIT;
4892 parm_align = MIN (parm_align, pad_align);
4893 }
4894 }
4895
4896 /* This isn't already where we want it on the stack, so put it there.
4897 This can either be done with push or copy insns. */
4898 if (!emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4899 parm_align, partial, reg, used - size, argblock,
4900 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4901 ARGS_SIZE_RTX (arg->locate.alignment_pad), true))
4902 sibcall_failure = 1;
4903
4904 /* Unless this is a partially-in-register argument, the argument is now
4905 in the stack. */
4906 if (partial == 0)
4907 arg->value = arg->stack;
4908 }
4909 else
4910 {
4911 /* BLKmode, at least partly to be pushed. */
4912
4913 unsigned int parm_align;
4914 int excess;
4915 rtx size_rtx;
4916
4917 /* Pushing a nonscalar.
4918 If part is passed in registers, PARTIAL says how much
4919 and emit_push_insn will take care of putting it there. */
4920
4921 /* Round its size up to a multiple
4922 of the allocation unit for arguments. */
4923
4924 if (arg->locate.size.var != 0)
4925 {
4926 excess = 0;
4927 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4928 }
4929 else
4930 {
4931 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4932 for BLKmode is careful to avoid it. */
4933 excess = (arg->locate.size.constant
4934 - int_size_in_bytes (TREE_TYPE (pval))
4935 + partial);
4936 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4937 NULL_RTX, TYPE_MODE (sizetype),
4938 EXPAND_NORMAL);
4939 }
4940
4941 parm_align = arg->locate.boundary;
4942
4943 /* When an argument is padded down, the block is aligned to
4944 PARM_BOUNDARY, but the actual argument isn't. */
4945 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4946 {
4947 if (arg->locate.size.var)
4948 parm_align = BITS_PER_UNIT;
4949 else if (excess)
4950 {
4951 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4952 parm_align = MIN (parm_align, excess_align);
4953 }
4954 }
4955
4956 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4957 {
4958 /* emit_push_insn might not work properly if arg->value and
4959 argblock + arg->locate.offset areas overlap. */
4960 rtx x = arg->value;
4961 int i = 0;
4962
4963 if (XEXP (x, 0) == crtl->args.internal_arg_pointer
4964 || (GET_CODE (XEXP (x, 0)) == PLUS
4965 && XEXP (XEXP (x, 0), 0) ==
4966 crtl->args.internal_arg_pointer
4967 && CONST_INT_P (XEXP (XEXP (x, 0), 1))))
4968 {
4969 if (XEXP (x, 0) != crtl->args.internal_arg_pointer)
4970 i = INTVAL (XEXP (XEXP (x, 0), 1));
4971
4972 /* expand_call should ensure this. */
4973 gcc_assert (!arg->locate.offset.var
4974 && arg->locate.size.var == 0
4975 && CONST_INT_P (size_rtx));
4976
4977 if (arg->locate.offset.constant > i)
4978 {
4979 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4980 sibcall_failure = 1;
4981 }
4982 else if (arg->locate.offset.constant < i)
4983 {
4984 /* Use arg->locate.size.constant instead of size_rtx
4985 because we only care about the part of the argument
4986 on the stack. */
4987 if (i < (arg->locate.offset.constant
4988 + arg->locate.size.constant))
4989 sibcall_failure = 1;
4990 }
4991 else
4992 {
4993 /* Even though they appear to be at the same location,
4994 if part of the outgoing argument is in registers,
4995 they aren't really at the same location. Check for
4996 this by making sure that the incoming size is the
4997 same as the outgoing size. */
4998 if (arg->locate.size.constant != INTVAL (size_rtx))
4999 sibcall_failure = 1;
5000 }
5001 }
5002 }
5003
5004 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
5005 parm_align, partial, reg, excess, argblock,
5006 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
5007 ARGS_SIZE_RTX (arg->locate.alignment_pad), false);
5008
5009 /* Unless this is a partially-in-register argument, the argument is now
5010 in the stack.
5011
5012 ??? Unlike the case above, in which we want the actual
5013 address of the data, so that we can load it directly into a
5014 register, here we want the address of the stack slot, so that
5015 it's properly aligned for word-by-word copying or something
5016 like that. It's not clear that this is always correct. */
5017 if (partial == 0)
5018 arg->value = arg->stack_slot;
5019 }
5020
5021 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
5022 {
5023 tree type = TREE_TYPE (arg->tree_value);
5024 arg->parallel_value
5025 = emit_group_load_into_temps (arg->reg, arg->value, type,
5026 int_size_in_bytes (type));
5027 }
5028
5029 /* Mark all slots this store used. */
5030 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
5031 && argblock && ! variable_size && arg->stack)
5032 for (i = lower_bound; i < upper_bound; i++)
5033 stack_usage_map[i] = 1;
5034
5035 /* Once we have pushed something, pops can't safely
5036 be deferred during the rest of the arguments. */
5037 NO_DEFER_POP;
5038
5039 /* Free any temporary slots made in processing this argument. */
5040 pop_temp_slots ();
5041
5042 return sibcall_failure;
5043 }
5044
5045 /* Nonzero if we do not know how to pass TYPE solely in registers. */
5046
5047 bool
5048 must_pass_in_stack_var_size (machine_mode mode ATTRIBUTE_UNUSED,
5049 const_tree type)
5050 {
5051 if (!type)
5052 return false;
5053
5054 /* If the type has variable size... */
5055 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5056 return true;
5057
5058 /* If the type is marked as addressable (it is required
5059 to be constructed into the stack)... */
5060 if (TREE_ADDRESSABLE (type))
5061 return true;
5062
5063 return false;
5064 }
5065
5066 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
5067 takes trailing padding of a structure into account. */
5068 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
5069
5070 bool
5071 must_pass_in_stack_var_size_or_pad (machine_mode mode, const_tree type)
5072 {
5073 if (!type)
5074 return false;
5075
5076 /* If the type has variable size... */
5077 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5078 return true;
5079
5080 /* If the type is marked as addressable (it is required
5081 to be constructed into the stack)... */
5082 if (TREE_ADDRESSABLE (type))
5083 return true;
5084
5085 /* If the padding and mode of the type is such that a copy into
5086 a register would put it into the wrong part of the register. */
5087 if (mode == BLKmode
5088 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
5089 && (FUNCTION_ARG_PADDING (mode, type)
5090 == (BYTES_BIG_ENDIAN ? upward : downward)))
5091 return true;
5092
5093 return false;
5094 }