gfortran.h (gfc_default_*_kind): Remove prototypes, add extern variable declaration...
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "flags.h"
29 #include "expr.h"
30 #include "optabs.h"
31 #include "libfuncs.h"
32 #include "function.h"
33 #include "regs.h"
34 #include "toplev.h"
35 #include "output.h"
36 #include "tm_p.h"
37 #include "timevar.h"
38 #include "sbitmap.h"
39 #include "langhooks.h"
40 #include "target.h"
41 #include "cgraph.h"
42 #include "except.h"
43
44 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
45 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
46
47 /* Data structure and subroutines used within expand_call. */
48
49 struct arg_data
50 {
51 /* Tree node for this argument. */
52 tree tree_value;
53 /* Mode for value; TYPE_MODE unless promoted. */
54 enum machine_mode mode;
55 /* Current RTL value for argument, or 0 if it isn't precomputed. */
56 rtx value;
57 /* Initially-compute RTL value for argument; only for const functions. */
58 rtx initial_value;
59 /* Register to pass this argument in, 0 if passed on stack, or an
60 PARALLEL if the arg is to be copied into multiple non-contiguous
61 registers. */
62 rtx reg;
63 /* Register to pass this argument in when generating tail call sequence.
64 This is not the same register as for normal calls on machines with
65 register windows. */
66 rtx tail_call_reg;
67 /* If REG was promoted from the actual mode of the argument expression,
68 indicates whether the promotion is sign- or zero-extended. */
69 int unsignedp;
70 /* Number of registers to use. 0 means put the whole arg in registers.
71 Also 0 if not passed in registers. */
72 int partial;
73 /* Nonzero if argument must be passed on stack.
74 Note that some arguments may be passed on the stack
75 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
76 pass_on_stack identifies arguments that *cannot* go in registers. */
77 int pass_on_stack;
78 /* Some fields packaged up for locate_and_pad_parm. */
79 struct locate_and_pad_arg_data locate;
80 /* Location on the stack at which parameter should be stored. The store
81 has already been done if STACK == VALUE. */
82 rtx stack;
83 /* Location on the stack of the start of this argument slot. This can
84 differ from STACK if this arg pads downward. This location is known
85 to be aligned to FUNCTION_ARG_BOUNDARY. */
86 rtx stack_slot;
87 /* Place that this stack area has been saved, if needed. */
88 rtx save_area;
89 /* If an argument's alignment does not permit direct copying into registers,
90 copy in smaller-sized pieces into pseudos. These are stored in a
91 block pointed to by this field. The next field says how many
92 word-sized pseudos we made. */
93 rtx *aligned_regs;
94 int n_aligned_regs;
95 };
96
97 /* A vector of one char per byte of stack space. A byte if nonzero if
98 the corresponding stack location has been used.
99 This vector is used to prevent a function call within an argument from
100 clobbering any stack already set up. */
101 static char *stack_usage_map;
102
103 /* Size of STACK_USAGE_MAP. */
104 static int highest_outgoing_arg_in_use;
105
106 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
107 stack location's tail call argument has been already stored into the stack.
108 This bitmap is used to prevent sibling call optimization if function tries
109 to use parent's incoming argument slots when they have been already
110 overwritten with tail call arguments. */
111 static sbitmap stored_args_map;
112
113 /* stack_arg_under_construction is nonzero when an argument may be
114 initialized with a constructor call (including a C function that
115 returns a BLKmode struct) and expand_call must take special action
116 to make sure the object being constructed does not overlap the
117 argument list for the constructor call. */
118 int stack_arg_under_construction;
119
120 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
121 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
122 CUMULATIVE_ARGS *);
123 static void precompute_register_parameters (int, struct arg_data *, int *);
124 static int store_one_arg (struct arg_data *, rtx, int, int, int);
125 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
126 static int finalize_must_preallocate (int, int, struct arg_data *,
127 struct args_size *);
128 static void precompute_arguments (int, int, struct arg_data *);
129 static int compute_argument_block_size (int, struct args_size *, int);
130 static void initialize_argument_information (int, struct arg_data *,
131 struct args_size *, int, tree,
132 tree, CUMULATIVE_ARGS *, int,
133 rtx *, int *, int *, int *,
134 bool *, bool);
135 static void compute_argument_addresses (struct arg_data *, rtx, int);
136 static rtx rtx_for_function_call (tree, tree);
137 static void load_register_parameters (struct arg_data *, int, rtx *, int,
138 int, int *);
139 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
140 enum machine_mode, int, va_list);
141 static int special_function_p (tree, int);
142 static int check_sibcall_argument_overlap_1 (rtx);
143 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
144
145 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
146 unsigned int);
147 static bool shift_returned_value (tree, rtx *);
148
149 #ifdef REG_PARM_STACK_SPACE
150 static rtx save_fixed_argument_area (int, rtx, int *, int *);
151 static void restore_fixed_argument_area (rtx, rtx, int, int);
152 #endif
153 \f
154 /* Force FUNEXP into a form suitable for the address of a CALL,
155 and return that as an rtx. Also load the static chain register
156 if FNDECL is a nested function.
157
158 CALL_FUSAGE points to a variable holding the prospective
159 CALL_INSN_FUNCTION_USAGE information. */
160
161 rtx
162 prepare_call_address (rtx funexp, rtx static_chain_value,
163 rtx *call_fusage, int reg_parm_seen, int sibcallp)
164 {
165 /* Make a valid memory address and copy constants through pseudo-regs,
166 but not for a constant address if -fno-function-cse. */
167 if (GET_CODE (funexp) != SYMBOL_REF)
168 /* If we are using registers for parameters, force the
169 function address into a register now. */
170 funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
171 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
172 : memory_address (FUNCTION_MODE, funexp));
173 else if (! sibcallp)
174 {
175 #ifndef NO_FUNCTION_CSE
176 if (optimize && ! flag_no_function_cse)
177 funexp = force_reg (Pmode, funexp);
178 #endif
179 }
180
181 if (static_chain_value != 0)
182 {
183 static_chain_value = convert_memory_address (Pmode, static_chain_value);
184 emit_move_insn (static_chain_rtx, static_chain_value);
185
186 if (REG_P (static_chain_rtx))
187 use_reg (call_fusage, static_chain_rtx);
188 }
189
190 return funexp;
191 }
192
193 /* Generate instructions to call function FUNEXP,
194 and optionally pop the results.
195 The CALL_INSN is the first insn generated.
196
197 FNDECL is the declaration node of the function. This is given to the
198 macro RETURN_POPS_ARGS to determine whether this function pops its own args.
199
200 FUNTYPE is the data type of the function. This is given to the macro
201 RETURN_POPS_ARGS to determine whether this function pops its own args.
202 We used to allow an identifier for library functions, but that doesn't
203 work when the return type is an aggregate type and the calling convention
204 says that the pointer to this aggregate is to be popped by the callee.
205
206 STACK_SIZE is the number of bytes of arguments on the stack,
207 ROUNDED_STACK_SIZE is that number rounded up to
208 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
209 both to put into the call insn and to generate explicit popping
210 code if necessary.
211
212 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
213 It is zero if this call doesn't want a structure value.
214
215 NEXT_ARG_REG is the rtx that results from executing
216 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
217 just after all the args have had their registers assigned.
218 This could be whatever you like, but normally it is the first
219 arg-register beyond those used for args in this call,
220 or 0 if all the arg-registers are used in this call.
221 It is passed on to `gen_call' so you can put this info in the call insn.
222
223 VALREG is a hard register in which a value is returned,
224 or 0 if the call does not return a value.
225
226 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
227 the args to this call were processed.
228 We restore `inhibit_defer_pop' to that value.
229
230 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
231 denote registers used by the called function. */
232
233 static void
234 emit_call_1 (rtx funexp, tree fntree, tree fndecl ATTRIBUTE_UNUSED,
235 tree funtype ATTRIBUTE_UNUSED,
236 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
237 HOST_WIDE_INT rounded_stack_size,
238 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
239 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
240 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
241 CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
242 {
243 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
244 rtx call_insn;
245 int already_popped = 0;
246 HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
247 #if defined (HAVE_call) && defined (HAVE_call_value)
248 rtx struct_value_size_rtx;
249 struct_value_size_rtx = GEN_INT (struct_value_size);
250 #endif
251
252 #ifdef CALL_POPS_ARGS
253 n_popped += CALL_POPS_ARGS (* args_so_far);
254 #endif
255
256 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
257 and we don't want to load it into a register as an optimization,
258 because prepare_call_address already did it if it should be done. */
259 if (GET_CODE (funexp) != SYMBOL_REF)
260 funexp = memory_address (FUNCTION_MODE, funexp);
261
262 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
263 if ((ecf_flags & ECF_SIBCALL)
264 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
265 && (n_popped > 0 || stack_size == 0))
266 {
267 rtx n_pop = GEN_INT (n_popped);
268 rtx pat;
269
270 /* If this subroutine pops its own args, record that in the call insn
271 if possible, for the sake of frame pointer elimination. */
272
273 if (valreg)
274 pat = GEN_SIBCALL_VALUE_POP (valreg,
275 gen_rtx_MEM (FUNCTION_MODE, funexp),
276 rounded_stack_size_rtx, next_arg_reg,
277 n_pop);
278 else
279 pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
280 rounded_stack_size_rtx, next_arg_reg, n_pop);
281
282 emit_call_insn (pat);
283 already_popped = 1;
284 }
285 else
286 #endif
287
288 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
289 /* If the target has "call" or "call_value" insns, then prefer them
290 if no arguments are actually popped. If the target does not have
291 "call" or "call_value" insns, then we must use the popping versions
292 even if the call has no arguments to pop. */
293 #if defined (HAVE_call) && defined (HAVE_call_value)
294 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
295 && n_popped > 0 && ! (ecf_flags & ECF_SP_DEPRESSED))
296 #else
297 if (HAVE_call_pop && HAVE_call_value_pop)
298 #endif
299 {
300 rtx n_pop = GEN_INT (n_popped);
301 rtx pat;
302
303 /* If this subroutine pops its own args, record that in the call insn
304 if possible, for the sake of frame pointer elimination. */
305
306 if (valreg)
307 pat = GEN_CALL_VALUE_POP (valreg,
308 gen_rtx_MEM (FUNCTION_MODE, funexp),
309 rounded_stack_size_rtx, next_arg_reg, n_pop);
310 else
311 pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
312 rounded_stack_size_rtx, next_arg_reg, n_pop);
313
314 emit_call_insn (pat);
315 already_popped = 1;
316 }
317 else
318 #endif
319
320 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
321 if ((ecf_flags & ECF_SIBCALL)
322 && HAVE_sibcall && HAVE_sibcall_value)
323 {
324 if (valreg)
325 emit_call_insn (GEN_SIBCALL_VALUE (valreg,
326 gen_rtx_MEM (FUNCTION_MODE, funexp),
327 rounded_stack_size_rtx,
328 next_arg_reg, NULL_RTX));
329 else
330 emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
331 rounded_stack_size_rtx, next_arg_reg,
332 struct_value_size_rtx));
333 }
334 else
335 #endif
336
337 #if defined (HAVE_call) && defined (HAVE_call_value)
338 if (HAVE_call && HAVE_call_value)
339 {
340 if (valreg)
341 emit_call_insn (GEN_CALL_VALUE (valreg,
342 gen_rtx_MEM (FUNCTION_MODE, funexp),
343 rounded_stack_size_rtx, next_arg_reg,
344 NULL_RTX));
345 else
346 emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
347 rounded_stack_size_rtx, next_arg_reg,
348 struct_value_size_rtx));
349 }
350 else
351 #endif
352 abort ();
353
354 /* Find the call we just emitted. */
355 call_insn = last_call_insn ();
356
357 /* Mark memory as used for "pure" function call. */
358 if (ecf_flags & ECF_PURE)
359 call_fusage
360 = gen_rtx_EXPR_LIST
361 (VOIDmode,
362 gen_rtx_USE (VOIDmode,
363 gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))),
364 call_fusage);
365
366 /* Put the register usage information there. */
367 add_function_usage_to (call_insn, call_fusage);
368
369 /* If this is a const call, then set the insn's unchanging bit. */
370 if (ecf_flags & (ECF_CONST | ECF_PURE))
371 CONST_OR_PURE_CALL_P (call_insn) = 1;
372
373 /* If this call can't throw, attach a REG_EH_REGION reg note to that
374 effect. */
375 if (ecf_flags & ECF_NOTHROW)
376 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, const0_rtx,
377 REG_NOTES (call_insn));
378 else
379 {
380 int rn = lookup_stmt_eh_region (fntree);
381
382 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't
383 throw, which we already took care of. */
384 if (rn > 0)
385 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
386 REG_NOTES (call_insn));
387 note_current_region_may_contain_throw ();
388 }
389
390 if (ecf_flags & ECF_NORETURN)
391 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_NORETURN, const0_rtx,
392 REG_NOTES (call_insn));
393 if (ecf_flags & ECF_ALWAYS_RETURN)
394 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_ALWAYS_RETURN, const0_rtx,
395 REG_NOTES (call_insn));
396
397 if (ecf_flags & ECF_RETURNS_TWICE)
398 {
399 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_SETJMP, const0_rtx,
400 REG_NOTES (call_insn));
401 current_function_calls_setjmp = 1;
402 }
403
404 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
405
406 /* Restore this now, so that we do defer pops for this call's args
407 if the context of the call as a whole permits. */
408 inhibit_defer_pop = old_inhibit_defer_pop;
409
410 if (n_popped > 0)
411 {
412 if (!already_popped)
413 CALL_INSN_FUNCTION_USAGE (call_insn)
414 = gen_rtx_EXPR_LIST (VOIDmode,
415 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
416 CALL_INSN_FUNCTION_USAGE (call_insn));
417 rounded_stack_size -= n_popped;
418 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
419 stack_pointer_delta -= n_popped;
420 }
421
422 if (!ACCUMULATE_OUTGOING_ARGS)
423 {
424 /* If returning from the subroutine does not automatically pop the args,
425 we need an instruction to pop them sooner or later.
426 Perhaps do it now; perhaps just record how much space to pop later.
427
428 If returning from the subroutine does pop the args, indicate that the
429 stack pointer will be changed. */
430
431 if (rounded_stack_size != 0)
432 {
433 if (ecf_flags & (ECF_SP_DEPRESSED | ECF_NORETURN | ECF_LONGJMP))
434 /* Just pretend we did the pop. */
435 stack_pointer_delta -= rounded_stack_size;
436 else if (flag_defer_pop && inhibit_defer_pop == 0
437 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
438 pending_stack_adjust += rounded_stack_size;
439 else
440 adjust_stack (rounded_stack_size_rtx);
441 }
442 }
443 /* When we accumulate outgoing args, we must avoid any stack manipulations.
444 Restore the stack pointer to its original value now. Usually
445 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
446 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
447 popping variants of functions exist as well.
448
449 ??? We may optimize similar to defer_pop above, but it is
450 probably not worthwhile.
451
452 ??? It will be worthwhile to enable combine_stack_adjustments even for
453 such machines. */
454 else if (n_popped)
455 anti_adjust_stack (GEN_INT (n_popped));
456 }
457
458 /* Determine if the function identified by NAME and FNDECL is one with
459 special properties we wish to know about.
460
461 For example, if the function might return more than one time (setjmp), then
462 set RETURNS_TWICE to a nonzero value.
463
464 Similarly set LONGJMP for if the function is in the longjmp family.
465
466 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
467 space from the stack such as alloca. */
468
469 static int
470 special_function_p (tree fndecl, int flags)
471 {
472 if (fndecl && DECL_NAME (fndecl)
473 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
474 /* Exclude functions not at the file scope, or not `extern',
475 since they are not the magic functions we would otherwise
476 think they are.
477 FIXME: this should be handled with attributes, not with this
478 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
479 because you can declare fork() inside a function if you
480 wish. */
481 && (DECL_CONTEXT (fndecl) == NULL_TREE
482 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
483 && TREE_PUBLIC (fndecl))
484 {
485 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
486 const char *tname = name;
487
488 /* We assume that alloca will always be called by name. It
489 makes no sense to pass it as a pointer-to-function to
490 anything that does not understand its behavior. */
491 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
492 && name[0] == 'a'
493 && ! strcmp (name, "alloca"))
494 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
495 && name[0] == '_'
496 && ! strcmp (name, "__builtin_alloca"))))
497 flags |= ECF_MAY_BE_ALLOCA;
498
499 /* Disregard prefix _, __ or __x. */
500 if (name[0] == '_')
501 {
502 if (name[1] == '_' && name[2] == 'x')
503 tname += 3;
504 else if (name[1] == '_')
505 tname += 2;
506 else
507 tname += 1;
508 }
509
510 if (tname[0] == 's')
511 {
512 if ((tname[1] == 'e'
513 && (! strcmp (tname, "setjmp")
514 || ! strcmp (tname, "setjmp_syscall")))
515 || (tname[1] == 'i'
516 && ! strcmp (tname, "sigsetjmp"))
517 || (tname[1] == 'a'
518 && ! strcmp (tname, "savectx")))
519 flags |= ECF_RETURNS_TWICE;
520
521 if (tname[1] == 'i'
522 && ! strcmp (tname, "siglongjmp"))
523 flags |= ECF_LONGJMP;
524 }
525 else if ((tname[0] == 'q' && tname[1] == 's'
526 && ! strcmp (tname, "qsetjmp"))
527 || (tname[0] == 'v' && tname[1] == 'f'
528 && ! strcmp (tname, "vfork")))
529 flags |= ECF_RETURNS_TWICE;
530
531 else if (tname[0] == 'l' && tname[1] == 'o'
532 && ! strcmp (tname, "longjmp"))
533 flags |= ECF_LONGJMP;
534 }
535
536 return flags;
537 }
538
539 /* Return nonzero when tree represent call to longjmp. */
540
541 int
542 setjmp_call_p (tree fndecl)
543 {
544 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
545 }
546
547 /* Return true when exp contains alloca call. */
548 bool
549 alloca_call_p (tree exp)
550 {
551 if (TREE_CODE (exp) == CALL_EXPR
552 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
553 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
554 == FUNCTION_DECL)
555 && (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
556 0) & ECF_MAY_BE_ALLOCA))
557 return true;
558 return false;
559 }
560
561 /* Detect flags (function attributes) from the function decl or type node. */
562
563 int
564 flags_from_decl_or_type (tree exp)
565 {
566 int flags = 0;
567 tree type = exp;
568
569 if (DECL_P (exp))
570 {
571 struct cgraph_rtl_info *i = cgraph_rtl_info (exp);
572 type = TREE_TYPE (exp);
573
574 if (i)
575 {
576 if (i->pure_function)
577 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
578 if (i->const_function)
579 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
580 }
581
582 /* The function exp may have the `malloc' attribute. */
583 if (DECL_IS_MALLOC (exp))
584 flags |= ECF_MALLOC;
585
586 /* The function exp may have the `pure' attribute. */
587 if (DECL_IS_PURE (exp))
588 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
589
590 if (TREE_NOTHROW (exp))
591 flags |= ECF_NOTHROW;
592
593 if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
594 flags |= ECF_LIBCALL_BLOCK | ECF_CONST;
595
596 flags = special_function_p (exp, flags);
597 }
598 else if (TYPE_P (exp) && TYPE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
599 flags |= ECF_CONST;
600
601 if (TREE_THIS_VOLATILE (exp))
602 flags |= ECF_NORETURN;
603
604 /* Mark if the function returns with the stack pointer depressed. We
605 cannot consider it pure or constant in that case. */
606 if (TREE_CODE (type) == FUNCTION_TYPE && TYPE_RETURNS_STACK_DEPRESSED (type))
607 {
608 flags |= ECF_SP_DEPRESSED;
609 flags &= ~(ECF_PURE | ECF_CONST | ECF_LIBCALL_BLOCK);
610 }
611
612 return flags;
613 }
614
615 /* Detect flags from a CALL_EXPR. */
616
617 int
618 call_expr_flags (tree t)
619 {
620 int flags;
621 tree decl = get_callee_fndecl (t);
622
623 if (decl)
624 flags = flags_from_decl_or_type (decl);
625 else
626 {
627 t = TREE_TYPE (TREE_OPERAND (t, 0));
628 if (t && TREE_CODE (t) == POINTER_TYPE)
629 flags = flags_from_decl_or_type (TREE_TYPE (t));
630 else
631 flags = 0;
632 }
633
634 return flags;
635 }
636
637 /* Precompute all register parameters as described by ARGS, storing values
638 into fields within the ARGS array.
639
640 NUM_ACTUALS indicates the total number elements in the ARGS array.
641
642 Set REG_PARM_SEEN if we encounter a register parameter. */
643
644 static void
645 precompute_register_parameters (int num_actuals, struct arg_data *args, int *reg_parm_seen)
646 {
647 int i;
648
649 *reg_parm_seen = 0;
650
651 for (i = 0; i < num_actuals; i++)
652 if (args[i].reg != 0 && ! args[i].pass_on_stack)
653 {
654 *reg_parm_seen = 1;
655
656 if (args[i].value == 0)
657 {
658 push_temp_slots ();
659 args[i].value = expand_expr (args[i].tree_value, NULL_RTX,
660 VOIDmode, 0);
661 preserve_temp_slots (args[i].value);
662 pop_temp_slots ();
663 }
664
665 /* If the value is a non-legitimate constant, force it into a
666 pseudo now. TLS symbols sometimes need a call to resolve. */
667 if (CONSTANT_P (args[i].value)
668 && !LEGITIMATE_CONSTANT_P (args[i].value))
669 args[i].value = force_reg (args[i].mode, args[i].value);
670
671 /* If we are to promote the function arg to a wider mode,
672 do it now. */
673
674 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
675 args[i].value
676 = convert_modes (args[i].mode,
677 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
678 args[i].value, args[i].unsignedp);
679
680 /* If the value is expensive, and we are inside an appropriately
681 short loop, put the value into a pseudo and then put the pseudo
682 into the hard reg.
683
684 For small register classes, also do this if this call uses
685 register parameters. This is to avoid reload conflicts while
686 loading the parameters registers. */
687
688 if ((! (REG_P (args[i].value)
689 || (GET_CODE (args[i].value) == SUBREG
690 && REG_P (SUBREG_REG (args[i].value)))))
691 && args[i].mode != BLKmode
692 && rtx_cost (args[i].value, SET) > COSTS_N_INSNS (1)
693 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
694 || optimize))
695 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
696 }
697 }
698
699 #ifdef REG_PARM_STACK_SPACE
700
701 /* The argument list is the property of the called routine and it
702 may clobber it. If the fixed area has been used for previous
703 parameters, we must save and restore it. */
704
705 static rtx
706 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
707 {
708 int low;
709 int high;
710
711 /* Compute the boundary of the area that needs to be saved, if any. */
712 high = reg_parm_stack_space;
713 #ifdef ARGS_GROW_DOWNWARD
714 high += 1;
715 #endif
716 if (high > highest_outgoing_arg_in_use)
717 high = highest_outgoing_arg_in_use;
718
719 for (low = 0; low < high; low++)
720 if (stack_usage_map[low] != 0)
721 {
722 int num_to_save;
723 enum machine_mode save_mode;
724 int delta;
725 rtx stack_area;
726 rtx save_area;
727
728 while (stack_usage_map[--high] == 0)
729 ;
730
731 *low_to_save = low;
732 *high_to_save = high;
733
734 num_to_save = high - low + 1;
735 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
736
737 /* If we don't have the required alignment, must do this
738 in BLKmode. */
739 if ((low & (MIN (GET_MODE_SIZE (save_mode),
740 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
741 save_mode = BLKmode;
742
743 #ifdef ARGS_GROW_DOWNWARD
744 delta = -high;
745 #else
746 delta = low;
747 #endif
748 stack_area = gen_rtx_MEM (save_mode,
749 memory_address (save_mode,
750 plus_constant (argblock,
751 delta)));
752
753 set_mem_align (stack_area, PARM_BOUNDARY);
754 if (save_mode == BLKmode)
755 {
756 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
757 emit_block_move (validize_mem (save_area), stack_area,
758 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
759 }
760 else
761 {
762 save_area = gen_reg_rtx (save_mode);
763 emit_move_insn (save_area, stack_area);
764 }
765
766 return save_area;
767 }
768
769 return NULL_RTX;
770 }
771
772 static void
773 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
774 {
775 enum machine_mode save_mode = GET_MODE (save_area);
776 int delta;
777 rtx stack_area;
778
779 #ifdef ARGS_GROW_DOWNWARD
780 delta = -high_to_save;
781 #else
782 delta = low_to_save;
783 #endif
784 stack_area = gen_rtx_MEM (save_mode,
785 memory_address (save_mode,
786 plus_constant (argblock, delta)));
787 set_mem_align (stack_area, PARM_BOUNDARY);
788
789 if (save_mode != BLKmode)
790 emit_move_insn (stack_area, save_area);
791 else
792 emit_block_move (stack_area, validize_mem (save_area),
793 GEN_INT (high_to_save - low_to_save + 1),
794 BLOCK_OP_CALL_PARM);
795 }
796 #endif /* REG_PARM_STACK_SPACE */
797
798 /* If any elements in ARGS refer to parameters that are to be passed in
799 registers, but not in memory, and whose alignment does not permit a
800 direct copy into registers. Copy the values into a group of pseudos
801 which we will later copy into the appropriate hard registers.
802
803 Pseudos for each unaligned argument will be stored into the array
804 args[argnum].aligned_regs. The caller is responsible for deallocating
805 the aligned_regs array if it is nonzero. */
806
807 static void
808 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
809 {
810 int i, j;
811
812 for (i = 0; i < num_actuals; i++)
813 if (args[i].reg != 0 && ! args[i].pass_on_stack
814 && args[i].mode == BLKmode
815 && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
816 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
817 {
818 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
819 int nregs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
820 int endian_correction = 0;
821
822 args[i].n_aligned_regs = args[i].partial ? args[i].partial : nregs;
823 args[i].aligned_regs = xmalloc (sizeof (rtx) * args[i].n_aligned_regs);
824
825 /* Structures smaller than a word are normally aligned to the
826 least significant byte. On a BYTES_BIG_ENDIAN machine,
827 this means we must skip the empty high order bytes when
828 calculating the bit offset. */
829 if (bytes < UNITS_PER_WORD
830 #ifdef BLOCK_REG_PADDING
831 && (BLOCK_REG_PADDING (args[i].mode,
832 TREE_TYPE (args[i].tree_value), 1)
833 == downward)
834 #else
835 && BYTES_BIG_ENDIAN
836 #endif
837 )
838 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
839
840 for (j = 0; j < args[i].n_aligned_regs; j++)
841 {
842 rtx reg = gen_reg_rtx (word_mode);
843 rtx word = operand_subword_force (args[i].value, j, BLKmode);
844 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
845
846 args[i].aligned_regs[j] = reg;
847 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
848 word_mode, word_mode);
849
850 /* There is no need to restrict this code to loading items
851 in TYPE_ALIGN sized hunks. The bitfield instructions can
852 load up entire word sized registers efficiently.
853
854 ??? This may not be needed anymore.
855 We use to emit a clobber here but that doesn't let later
856 passes optimize the instructions we emit. By storing 0 into
857 the register later passes know the first AND to zero out the
858 bitfield being set in the register is unnecessary. The store
859 of 0 will be deleted as will at least the first AND. */
860
861 emit_move_insn (reg, const0_rtx);
862
863 bytes -= bitsize / BITS_PER_UNIT;
864 store_bit_field (reg, bitsize, endian_correction, word_mode,
865 word);
866 }
867 }
868 }
869
870 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
871 ACTPARMS.
872
873 NUM_ACTUALS is the total number of parameters.
874
875 N_NAMED_ARGS is the total number of named arguments.
876
877 FNDECL is the tree code for the target of this call (if known)
878
879 ARGS_SO_FAR holds state needed by the target to know where to place
880 the next argument.
881
882 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
883 for arguments which are passed in registers.
884
885 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
886 and may be modified by this routine.
887
888 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
889 flags which may may be modified by this routine.
890
891 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
892 that requires allocation of stack space.
893
894 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
895 the thunked-to function. */
896
897 static void
898 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
899 struct arg_data *args,
900 struct args_size *args_size,
901 int n_named_args ATTRIBUTE_UNUSED,
902 tree actparms, tree fndecl,
903 CUMULATIVE_ARGS *args_so_far,
904 int reg_parm_stack_space,
905 rtx *old_stack_level, int *old_pending_adj,
906 int *must_preallocate, int *ecf_flags,
907 bool *may_tailcall, bool call_from_thunk_p)
908 {
909 /* 1 if scanning parms front to back, -1 if scanning back to front. */
910 int inc;
911
912 /* Count arg position in order args appear. */
913 int argpos;
914
915 int i;
916 tree p;
917
918 args_size->constant = 0;
919 args_size->var = 0;
920
921 /* In this loop, we consider args in the order they are written.
922 We fill up ARGS from the front or from the back if necessary
923 so that in any case the first arg to be pushed ends up at the front. */
924
925 if (PUSH_ARGS_REVERSED)
926 {
927 i = num_actuals - 1, inc = -1;
928 /* In this case, must reverse order of args
929 so that we compute and push the last arg first. */
930 }
931 else
932 {
933 i = 0, inc = 1;
934 }
935
936 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
937 for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++)
938 {
939 tree type = TREE_TYPE (TREE_VALUE (p));
940 int unsignedp;
941 enum machine_mode mode;
942
943 args[i].tree_value = TREE_VALUE (p);
944
945 /* Replace erroneous argument with constant zero. */
946 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
947 args[i].tree_value = integer_zero_node, type = integer_type_node;
948
949 /* If TYPE is a transparent union, pass things the way we would
950 pass the first field of the union. We have already verified that
951 the modes are the same. */
952 if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
953 type = TREE_TYPE (TYPE_FIELDS (type));
954
955 /* Decide where to pass this arg.
956
957 args[i].reg is nonzero if all or part is passed in registers.
958
959 args[i].partial is nonzero if part but not all is passed in registers,
960 and the exact value says how many words are passed in registers.
961
962 args[i].pass_on_stack is nonzero if the argument must at least be
963 computed on the stack. It may then be loaded back into registers
964 if args[i].reg is nonzero.
965
966 These decisions are driven by the FUNCTION_... macros and must agree
967 with those made by function.c. */
968
969 /* See if this argument should be passed by invisible reference. */
970 if (pass_by_reference (args_so_far, TYPE_MODE (type),
971 type, argpos < n_named_args))
972 {
973 /* If we're compiling a thunk, pass through invisible
974 references instead of making a copy. */
975 if (call_from_thunk_p
976 || (FUNCTION_ARG_CALLEE_COPIES (*args_so_far, TYPE_MODE (type),
977 type, argpos < n_named_args)
978 /* If it's in a register, we must make a copy of it too. */
979 /* ??? Is this a sufficient test? Is there a better one? */
980 && !(TREE_CODE (args[i].tree_value) == VAR_DECL
981 && REG_P (DECL_RTL (args[i].tree_value)))
982 && ! TREE_ADDRESSABLE (type))
983 )
984 {
985 /* C++ uses a TARGET_EXPR to indicate that we want to make a
986 new object from the argument. If we are passing by
987 invisible reference, the callee will do that for us, so we
988 can strip off the TARGET_EXPR. This is not always safe,
989 but it is safe in the only case where this is a useful
990 optimization; namely, when the argument is a plain object.
991 In that case, the frontend is just asking the backend to
992 make a bitwise copy of the argument. */
993
994 if (TREE_CODE (args[i].tree_value) == TARGET_EXPR
995 && (DECL_P (TREE_OPERAND (args[i].tree_value, 1)))
996 && ! REG_P (DECL_RTL (TREE_OPERAND (args[i].tree_value, 1))))
997 args[i].tree_value = TREE_OPERAND (args[i].tree_value, 1);
998
999 /* We can't use sibcalls if a callee-copied argument is stored
1000 in the current function's frame. */
1001 if (!call_from_thunk_p
1002 && (!DECL_P (args[i].tree_value)
1003 || !TREE_STATIC (args[i].tree_value)))
1004 *may_tailcall = false;
1005
1006 args[i].tree_value = build1 (ADDR_EXPR,
1007 build_pointer_type (type),
1008 args[i].tree_value);
1009 type = build_pointer_type (type);
1010 }
1011 else if (TREE_CODE (args[i].tree_value) == TARGET_EXPR)
1012 {
1013 /* In the V3 C++ ABI, parameters are destroyed in the caller.
1014 We implement this by passing the address of the temporary
1015 rather than expanding it into another allocated slot. */
1016 args[i].tree_value = build1 (ADDR_EXPR,
1017 build_pointer_type (type),
1018 args[i].tree_value);
1019 type = build_pointer_type (type);
1020 *may_tailcall = false;
1021 }
1022 else
1023 {
1024 /* We make a copy of the object and pass the address to the
1025 function being called. */
1026 rtx copy;
1027
1028 if (!COMPLETE_TYPE_P (type)
1029 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
1030 || (flag_stack_check && ! STACK_CHECK_BUILTIN
1031 && (0 < compare_tree_int (TYPE_SIZE_UNIT (type),
1032 STACK_CHECK_MAX_VAR_SIZE))))
1033 {
1034 /* This is a variable-sized object. Make space on the stack
1035 for it. */
1036 rtx size_rtx = expr_size (TREE_VALUE (p));
1037
1038 if (*old_stack_level == 0)
1039 {
1040 emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
1041 *old_pending_adj = pending_stack_adjust;
1042 pending_stack_adjust = 0;
1043 }
1044
1045 copy = gen_rtx_MEM (BLKmode,
1046 allocate_dynamic_stack_space
1047 (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
1048 set_mem_attributes (copy, type, 1);
1049 }
1050 else
1051 copy = assign_temp (type, 0, 1, 0);
1052
1053 store_expr (args[i].tree_value, copy, 0);
1054 *ecf_flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1055
1056 args[i].tree_value = build1 (ADDR_EXPR,
1057 build_pointer_type (type),
1058 make_tree (type, copy));
1059 type = build_pointer_type (type);
1060 *may_tailcall = false;
1061 }
1062 }
1063
1064 mode = TYPE_MODE (type);
1065 unsignedp = TYPE_UNSIGNED (type);
1066
1067 if (targetm.calls.promote_function_args (fndecl ? TREE_TYPE (fndecl) : 0))
1068 mode = promote_mode (type, mode, &unsignedp, 1);
1069
1070 args[i].unsignedp = unsignedp;
1071 args[i].mode = mode;
1072
1073 args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
1074 argpos < n_named_args);
1075 #ifdef FUNCTION_INCOMING_ARG
1076 /* If this is a sibling call and the machine has register windows, the
1077 register window has to be unwinded before calling the routine, so
1078 arguments have to go into the incoming registers. */
1079 args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
1080 argpos < n_named_args);
1081 #else
1082 args[i].tail_call_reg = args[i].reg;
1083 #endif
1084
1085 if (args[i].reg)
1086 args[i].partial
1087 = FUNCTION_ARG_PARTIAL_NREGS (*args_so_far, mode, type,
1088 argpos < n_named_args);
1089
1090 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1091
1092 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1093 it means that we are to pass this arg in the register(s) designated
1094 by the PARALLEL, but also to pass it in the stack. */
1095 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1096 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1097 args[i].pass_on_stack = 1;
1098
1099 /* If this is an addressable type, we must preallocate the stack
1100 since we must evaluate the object into its final location.
1101
1102 If this is to be passed in both registers and the stack, it is simpler
1103 to preallocate. */
1104 if (TREE_ADDRESSABLE (type)
1105 || (args[i].pass_on_stack && args[i].reg != 0))
1106 *must_preallocate = 1;
1107
1108 /* If this is an addressable type, we cannot pre-evaluate it. Thus,
1109 we cannot consider this function call constant. */
1110 if (TREE_ADDRESSABLE (type))
1111 *ecf_flags &= ~ECF_LIBCALL_BLOCK;
1112
1113 /* Compute the stack-size of this argument. */
1114 if (args[i].reg == 0 || args[i].partial != 0
1115 || reg_parm_stack_space > 0
1116 || args[i].pass_on_stack)
1117 locate_and_pad_parm (mode, type,
1118 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1119 1,
1120 #else
1121 args[i].reg != 0,
1122 #endif
1123 args[i].pass_on_stack ? 0 : args[i].partial,
1124 fndecl, args_size, &args[i].locate);
1125 #ifdef BLOCK_REG_PADDING
1126 else
1127 /* The argument is passed entirely in registers. See at which
1128 end it should be padded. */
1129 args[i].locate.where_pad =
1130 BLOCK_REG_PADDING (mode, type,
1131 int_size_in_bytes (type) <= UNITS_PER_WORD);
1132 #endif
1133
1134 /* Update ARGS_SIZE, the total stack space for args so far. */
1135
1136 args_size->constant += args[i].locate.size.constant;
1137 if (args[i].locate.size.var)
1138 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1139
1140 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1141 have been used, etc. */
1142
1143 FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
1144 argpos < n_named_args);
1145 }
1146 }
1147
1148 /* Update ARGS_SIZE to contain the total size for the argument block.
1149 Return the original constant component of the argument block's size.
1150
1151 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1152 for arguments passed in registers. */
1153
1154 static int
1155 compute_argument_block_size (int reg_parm_stack_space,
1156 struct args_size *args_size,
1157 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1158 {
1159 int unadjusted_args_size = args_size->constant;
1160
1161 /* For accumulate outgoing args mode we don't need to align, since the frame
1162 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1163 backends from generating misaligned frame sizes. */
1164 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1165 preferred_stack_boundary = STACK_BOUNDARY;
1166
1167 /* Compute the actual size of the argument block required. The variable
1168 and constant sizes must be combined, the size may have to be rounded,
1169 and there may be a minimum required size. */
1170
1171 if (args_size->var)
1172 {
1173 args_size->var = ARGS_SIZE_TREE (*args_size);
1174 args_size->constant = 0;
1175
1176 preferred_stack_boundary /= BITS_PER_UNIT;
1177 if (preferred_stack_boundary > 1)
1178 {
1179 /* We don't handle this case yet. To handle it correctly we have
1180 to add the delta, round and subtract the delta.
1181 Currently no machine description requires this support. */
1182 if (stack_pointer_delta & (preferred_stack_boundary - 1))
1183 abort ();
1184 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1185 }
1186
1187 if (reg_parm_stack_space > 0)
1188 {
1189 args_size->var
1190 = size_binop (MAX_EXPR, args_size->var,
1191 ssize_int (reg_parm_stack_space));
1192
1193 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1194 /* The area corresponding to register parameters is not to count in
1195 the size of the block we need. So make the adjustment. */
1196 args_size->var
1197 = size_binop (MINUS_EXPR, args_size->var,
1198 ssize_int (reg_parm_stack_space));
1199 #endif
1200 }
1201 }
1202 else
1203 {
1204 preferred_stack_boundary /= BITS_PER_UNIT;
1205 if (preferred_stack_boundary < 1)
1206 preferred_stack_boundary = 1;
1207 args_size->constant = (((args_size->constant
1208 + stack_pointer_delta
1209 + preferred_stack_boundary - 1)
1210 / preferred_stack_boundary
1211 * preferred_stack_boundary)
1212 - stack_pointer_delta);
1213
1214 args_size->constant = MAX (args_size->constant,
1215 reg_parm_stack_space);
1216
1217 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1218 args_size->constant -= reg_parm_stack_space;
1219 #endif
1220 }
1221 return unadjusted_args_size;
1222 }
1223
1224 /* Precompute parameters as needed for a function call.
1225
1226 FLAGS is mask of ECF_* constants.
1227
1228 NUM_ACTUALS is the number of arguments.
1229
1230 ARGS is an array containing information for each argument; this
1231 routine fills in the INITIAL_VALUE and VALUE fields for each
1232 precomputed argument. */
1233
1234 static void
1235 precompute_arguments (int flags, int num_actuals, struct arg_data *args)
1236 {
1237 int i;
1238
1239 /* If this is a libcall, then precompute all arguments so that we do not
1240 get extraneous instructions emitted as part of the libcall sequence. */
1241 if ((flags & ECF_LIBCALL_BLOCK) == 0)
1242 return;
1243
1244 for (i = 0; i < num_actuals; i++)
1245 {
1246 enum machine_mode mode;
1247
1248 /* If this is an addressable type, we cannot pre-evaluate it. */
1249 if (TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)))
1250 abort ();
1251
1252 args[i].initial_value = args[i].value
1253 = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0);
1254
1255 mode = TYPE_MODE (TREE_TYPE (args[i].tree_value));
1256 if (mode != args[i].mode)
1257 {
1258 args[i].value
1259 = convert_modes (args[i].mode, mode,
1260 args[i].value, args[i].unsignedp);
1261 #if defined(PROMOTE_FUNCTION_MODE) && !defined(PROMOTE_MODE)
1262 /* CSE will replace this only if it contains args[i].value
1263 pseudo, so convert it down to the declared mode using
1264 a SUBREG. */
1265 if (REG_P (args[i].value)
1266 && GET_MODE_CLASS (args[i].mode) == MODE_INT)
1267 {
1268 args[i].initial_value
1269 = gen_lowpart_SUBREG (mode, args[i].value);
1270 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1271 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1272 args[i].unsignedp);
1273 }
1274 #endif
1275 }
1276 }
1277 }
1278
1279 /* Given the current state of MUST_PREALLOCATE and information about
1280 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1281 compute and return the final value for MUST_PREALLOCATE. */
1282
1283 static int
1284 finalize_must_preallocate (int must_preallocate, int num_actuals, struct arg_data *args, struct args_size *args_size)
1285 {
1286 /* See if we have or want to preallocate stack space.
1287
1288 If we would have to push a partially-in-regs parm
1289 before other stack parms, preallocate stack space instead.
1290
1291 If the size of some parm is not a multiple of the required stack
1292 alignment, we must preallocate.
1293
1294 If the total size of arguments that would otherwise create a copy in
1295 a temporary (such as a CALL) is more than half the total argument list
1296 size, preallocation is faster.
1297
1298 Another reason to preallocate is if we have a machine (like the m88k)
1299 where stack alignment is required to be maintained between every
1300 pair of insns, not just when the call is made. However, we assume here
1301 that such machines either do not have push insns (and hence preallocation
1302 would occur anyway) or the problem is taken care of with
1303 PUSH_ROUNDING. */
1304
1305 if (! must_preallocate)
1306 {
1307 int partial_seen = 0;
1308 int copy_to_evaluate_size = 0;
1309 int i;
1310
1311 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1312 {
1313 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1314 partial_seen = 1;
1315 else if (partial_seen && args[i].reg == 0)
1316 must_preallocate = 1;
1317
1318 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1319 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1320 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1321 || TREE_CODE (args[i].tree_value) == COND_EXPR
1322 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1323 copy_to_evaluate_size
1324 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1325 }
1326
1327 if (copy_to_evaluate_size * 2 >= args_size->constant
1328 && args_size->constant > 0)
1329 must_preallocate = 1;
1330 }
1331 return must_preallocate;
1332 }
1333
1334 /* If we preallocated stack space, compute the address of each argument
1335 and store it into the ARGS array.
1336
1337 We need not ensure it is a valid memory address here; it will be
1338 validized when it is used.
1339
1340 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1341
1342 static void
1343 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1344 {
1345 if (argblock)
1346 {
1347 rtx arg_reg = argblock;
1348 int i, arg_offset = 0;
1349
1350 if (GET_CODE (argblock) == PLUS)
1351 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1352
1353 for (i = 0; i < num_actuals; i++)
1354 {
1355 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1356 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1357 rtx addr;
1358
1359 /* Skip this parm if it will not be passed on the stack. */
1360 if (! args[i].pass_on_stack && args[i].reg != 0)
1361 continue;
1362
1363 if (GET_CODE (offset) == CONST_INT)
1364 addr = plus_constant (arg_reg, INTVAL (offset));
1365 else
1366 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1367
1368 addr = plus_constant (addr, arg_offset);
1369 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1370 set_mem_align (args[i].stack, PARM_BOUNDARY);
1371 set_mem_attributes (args[i].stack,
1372 TREE_TYPE (args[i].tree_value), 1);
1373
1374 if (GET_CODE (slot_offset) == CONST_INT)
1375 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1376 else
1377 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1378
1379 addr = plus_constant (addr, arg_offset);
1380 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1381 set_mem_align (args[i].stack_slot, PARM_BOUNDARY);
1382 set_mem_attributes (args[i].stack_slot,
1383 TREE_TYPE (args[i].tree_value), 1);
1384
1385 /* Function incoming arguments may overlap with sibling call
1386 outgoing arguments and we cannot allow reordering of reads
1387 from function arguments with stores to outgoing arguments
1388 of sibling calls. */
1389 set_mem_alias_set (args[i].stack, 0);
1390 set_mem_alias_set (args[i].stack_slot, 0);
1391 }
1392 }
1393 }
1394
1395 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1396 in a call instruction.
1397
1398 FNDECL is the tree node for the target function. For an indirect call
1399 FNDECL will be NULL_TREE.
1400
1401 ADDR is the operand 0 of CALL_EXPR for this call. */
1402
1403 static rtx
1404 rtx_for_function_call (tree fndecl, tree addr)
1405 {
1406 rtx funexp;
1407
1408 /* Get the function to call, in the form of RTL. */
1409 if (fndecl)
1410 {
1411 /* If this is the first use of the function, see if we need to
1412 make an external definition for it. */
1413 if (! TREE_USED (fndecl))
1414 {
1415 assemble_external (fndecl);
1416 TREE_USED (fndecl) = 1;
1417 }
1418
1419 /* Get a SYMBOL_REF rtx for the function address. */
1420 funexp = XEXP (DECL_RTL (fndecl), 0);
1421 }
1422 else
1423 /* Generate an rtx (probably a pseudo-register) for the address. */
1424 {
1425 push_temp_slots ();
1426 funexp = expand_expr (addr, NULL_RTX, VOIDmode, 0);
1427 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1428 }
1429 return funexp;
1430 }
1431
1432 /* Do the register loads required for any wholly-register parms or any
1433 parms which are passed both on the stack and in a register. Their
1434 expressions were already evaluated.
1435
1436 Mark all register-parms as living through the call, putting these USE
1437 insns in the CALL_INSN_FUNCTION_USAGE field.
1438
1439 When IS_SIBCALL, perform the check_sibcall_overlap_argument_overlap
1440 checking, setting *SIBCALL_FAILURE if appropriate. */
1441
1442 static void
1443 load_register_parameters (struct arg_data *args, int num_actuals,
1444 rtx *call_fusage, int flags, int is_sibcall,
1445 int *sibcall_failure)
1446 {
1447 int i, j;
1448
1449 for (i = 0; i < num_actuals; i++)
1450 {
1451 rtx reg = ((flags & ECF_SIBCALL)
1452 ? args[i].tail_call_reg : args[i].reg);
1453 if (reg)
1454 {
1455 int partial = args[i].partial;
1456 int nregs;
1457 int size = 0;
1458 rtx before_arg = get_last_insn ();
1459 /* Set to non-negative if must move a word at a time, even if just
1460 one word (e.g, partial == 1 && mode == DFmode). Set to -1 if
1461 we just use a normal move insn. This value can be zero if the
1462 argument is a zero size structure with no fields. */
1463 nregs = -1;
1464 if (partial)
1465 nregs = partial;
1466 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1467 {
1468 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1469 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1470 }
1471 else
1472 size = GET_MODE_SIZE (args[i].mode);
1473
1474 /* Handle calls that pass values in multiple non-contiguous
1475 locations. The Irix 6 ABI has examples of this. */
1476
1477 if (GET_CODE (reg) == PARALLEL)
1478 {
1479 tree type = TREE_TYPE (args[i].tree_value);
1480 emit_group_load (reg, args[i].value, type,
1481 int_size_in_bytes (type));
1482 }
1483
1484 /* If simple case, just do move. If normal partial, store_one_arg
1485 has already loaded the register for us. In all other cases,
1486 load the register(s) from memory. */
1487
1488 else if (nregs == -1)
1489 {
1490 emit_move_insn (reg, args[i].value);
1491 #ifdef BLOCK_REG_PADDING
1492 /* Handle case where we have a value that needs shifting
1493 up to the msb. eg. a QImode value and we're padding
1494 upward on a BYTES_BIG_ENDIAN machine. */
1495 if (size < UNITS_PER_WORD
1496 && (args[i].locate.where_pad
1497 == (BYTES_BIG_ENDIAN ? upward : downward)))
1498 {
1499 rtx x;
1500 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1501
1502 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1503 report the whole reg as used. Strictly speaking, the
1504 call only uses SIZE bytes at the msb end, but it doesn't
1505 seem worth generating rtl to say that. */
1506 reg = gen_rtx_REG (word_mode, REGNO (reg));
1507 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
1508 build_int_cst (NULL_TREE, shift),
1509 reg, 1);
1510 if (x != reg)
1511 emit_move_insn (reg, x);
1512 }
1513 #endif
1514 }
1515
1516 /* If we have pre-computed the values to put in the registers in
1517 the case of non-aligned structures, copy them in now. */
1518
1519 else if (args[i].n_aligned_regs != 0)
1520 for (j = 0; j < args[i].n_aligned_regs; j++)
1521 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1522 args[i].aligned_regs[j]);
1523
1524 else if (partial == 0 || args[i].pass_on_stack)
1525 {
1526 rtx mem = validize_mem (args[i].value);
1527
1528 /* Handle a BLKmode that needs shifting. */
1529 if (nregs == 1 && size < UNITS_PER_WORD
1530 #ifdef BLOCK_REG_PADDING
1531 && args[i].locate.where_pad == downward
1532 #else
1533 && BYTES_BIG_ENDIAN
1534 #endif
1535 )
1536 {
1537 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1538 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1539 rtx x = gen_reg_rtx (word_mode);
1540 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1541 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1542 : LSHIFT_EXPR;
1543
1544 emit_move_insn (x, tem);
1545 x = expand_shift (dir, word_mode, x,
1546 build_int_cst (NULL_TREE, shift),
1547 ri, 1);
1548 if (x != ri)
1549 emit_move_insn (ri, x);
1550 }
1551 else
1552 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1553 }
1554
1555 /* When a parameter is a block, and perhaps in other cases, it is
1556 possible that it did a load from an argument slot that was
1557 already clobbered. */
1558 if (is_sibcall
1559 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1560 *sibcall_failure = 1;
1561
1562 /* Handle calls that pass values in multiple non-contiguous
1563 locations. The Irix 6 ABI has examples of this. */
1564 if (GET_CODE (reg) == PARALLEL)
1565 use_group_regs (call_fusage, reg);
1566 else if (nregs == -1)
1567 use_reg (call_fusage, reg);
1568 else
1569 use_regs (call_fusage, REGNO (reg), nregs == 0 ? 1 : nregs);
1570 }
1571 }
1572 }
1573
1574 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1575 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1576 bytes, then we would need to push some additional bytes to pad the
1577 arguments. So, we compute an adjust to the stack pointer for an
1578 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1579 bytes. Then, when the arguments are pushed the stack will be perfectly
1580 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1581 be popped after the call. Returns the adjustment. */
1582
1583 static int
1584 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1585 struct args_size *args_size,
1586 unsigned int preferred_unit_stack_boundary)
1587 {
1588 /* The number of bytes to pop so that the stack will be
1589 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1590 HOST_WIDE_INT adjustment;
1591 /* The alignment of the stack after the arguments are pushed, if we
1592 just pushed the arguments without adjust the stack here. */
1593 unsigned HOST_WIDE_INT unadjusted_alignment;
1594
1595 unadjusted_alignment
1596 = ((stack_pointer_delta + unadjusted_args_size)
1597 % preferred_unit_stack_boundary);
1598
1599 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1600 as possible -- leaving just enough left to cancel out the
1601 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1602 PENDING_STACK_ADJUST is non-negative, and congruent to
1603 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1604
1605 /* Begin by trying to pop all the bytes. */
1606 unadjusted_alignment
1607 = (unadjusted_alignment
1608 - (pending_stack_adjust % preferred_unit_stack_boundary));
1609 adjustment = pending_stack_adjust;
1610 /* Push enough additional bytes that the stack will be aligned
1611 after the arguments are pushed. */
1612 if (preferred_unit_stack_boundary > 1)
1613 {
1614 if (unadjusted_alignment > 0)
1615 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1616 else
1617 adjustment += unadjusted_alignment;
1618 }
1619
1620 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1621 bytes after the call. The right number is the entire
1622 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1623 by the arguments in the first place. */
1624 args_size->constant
1625 = pending_stack_adjust - adjustment + unadjusted_args_size;
1626
1627 return adjustment;
1628 }
1629
1630 /* Scan X expression if it does not dereference any argument slots
1631 we already clobbered by tail call arguments (as noted in stored_args_map
1632 bitmap).
1633 Return nonzero if X expression dereferences such argument slots,
1634 zero otherwise. */
1635
1636 static int
1637 check_sibcall_argument_overlap_1 (rtx x)
1638 {
1639 RTX_CODE code;
1640 int i, j;
1641 unsigned int k;
1642 const char *fmt;
1643
1644 if (x == NULL_RTX)
1645 return 0;
1646
1647 code = GET_CODE (x);
1648
1649 if (code == MEM)
1650 {
1651 if (XEXP (x, 0) == current_function_internal_arg_pointer)
1652 i = 0;
1653 else if (GET_CODE (XEXP (x, 0)) == PLUS
1654 && XEXP (XEXP (x, 0), 0) ==
1655 current_function_internal_arg_pointer
1656 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1657 i = INTVAL (XEXP (XEXP (x, 0), 1));
1658 else
1659 return 1;
1660
1661 #ifdef ARGS_GROW_DOWNWARD
1662 i = -i - GET_MODE_SIZE (GET_MODE (x));
1663 #endif
1664
1665 for (k = 0; k < GET_MODE_SIZE (GET_MODE (x)); k++)
1666 if (i + k < stored_args_map->n_bits
1667 && TEST_BIT (stored_args_map, i + k))
1668 return 1;
1669
1670 return 0;
1671 }
1672
1673 /* Scan all subexpressions. */
1674 fmt = GET_RTX_FORMAT (code);
1675 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1676 {
1677 if (*fmt == 'e')
1678 {
1679 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1680 return 1;
1681 }
1682 else if (*fmt == 'E')
1683 {
1684 for (j = 0; j < XVECLEN (x, i); j++)
1685 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1686 return 1;
1687 }
1688 }
1689 return 0;
1690 }
1691
1692 /* Scan sequence after INSN if it does not dereference any argument slots
1693 we already clobbered by tail call arguments (as noted in stored_args_map
1694 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1695 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1696 should be 0). Return nonzero if sequence after INSN dereferences such argument
1697 slots, zero otherwise. */
1698
1699 static int
1700 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1701 {
1702 int low, high;
1703
1704 if (insn == NULL_RTX)
1705 insn = get_insns ();
1706 else
1707 insn = NEXT_INSN (insn);
1708
1709 for (; insn; insn = NEXT_INSN (insn))
1710 if (INSN_P (insn)
1711 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1712 break;
1713
1714 if (mark_stored_args_map)
1715 {
1716 #ifdef ARGS_GROW_DOWNWARD
1717 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1718 #else
1719 low = arg->locate.slot_offset.constant;
1720 #endif
1721
1722 for (high = low + arg->locate.size.constant; low < high; low++)
1723 SET_BIT (stored_args_map, low);
1724 }
1725 return insn != NULL_RTX;
1726 }
1727
1728 /* If function value *VALUE was returned at the most significant end of a
1729 register, shift it towards the least significant end and convert it to
1730 TYPE's mode. Return true and update *VALUE if some action was needed.
1731
1732 TYPE is the type of the function's return value, which is known not
1733 to have mode BLKmode. */
1734
1735 static bool
1736 shift_returned_value (tree type, rtx *value)
1737 {
1738 if (targetm.calls.return_in_msb (type))
1739 {
1740 HOST_WIDE_INT shift;
1741
1742 shift = (GET_MODE_BITSIZE (GET_MODE (*value))
1743 - BITS_PER_UNIT * int_size_in_bytes (type));
1744 if (shift > 0)
1745 {
1746 /* Shift the value into the low part of the register. */
1747 *value = expand_binop (GET_MODE (*value), lshr_optab, *value,
1748 GEN_INT (shift), 0, 1, OPTAB_WIDEN);
1749
1750 /* Truncate it to the type's mode, or its integer equivalent.
1751 This is subject to TRULY_NOOP_TRUNCATION. */
1752 *value = convert_to_mode (int_mode_for_mode (TYPE_MODE (type)),
1753 *value, 0);
1754
1755 /* Now convert it to the final form. */
1756 *value = gen_lowpart (TYPE_MODE (type), *value);
1757 return true;
1758 }
1759 }
1760 return false;
1761 }
1762
1763 /* Remove all REG_EQUIV notes found in the insn chain. */
1764
1765 static void
1766 purge_reg_equiv_notes (void)
1767 {
1768 rtx insn;
1769
1770 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1771 {
1772 while (1)
1773 {
1774 rtx note = find_reg_note (insn, REG_EQUIV, 0);
1775 if (note)
1776 {
1777 /* Remove the note and keep looking at the notes for
1778 this insn. */
1779 remove_note (insn, note);
1780 continue;
1781 }
1782 break;
1783 }
1784 }
1785 }
1786
1787 /* Generate all the code for a function call
1788 and return an rtx for its value.
1789 Store the value in TARGET (specified as an rtx) if convenient.
1790 If the value is stored in TARGET then TARGET is returned.
1791 If IGNORE is nonzero, then we ignore the value of the function call. */
1792
1793 rtx
1794 expand_call (tree exp, rtx target, int ignore)
1795 {
1796 /* Nonzero if we are currently expanding a call. */
1797 static int currently_expanding_call = 0;
1798
1799 /* List of actual parameters. */
1800 tree actparms = TREE_OPERAND (exp, 1);
1801 /* RTX for the function to be called. */
1802 rtx funexp;
1803 /* Sequence of insns to perform a normal "call". */
1804 rtx normal_call_insns = NULL_RTX;
1805 /* Sequence of insns to perform a tail "call". */
1806 rtx tail_call_insns = NULL_RTX;
1807 /* Data type of the function. */
1808 tree funtype;
1809 tree type_arg_types;
1810 /* Declaration of the function being called,
1811 or 0 if the function is computed (not known by name). */
1812 tree fndecl = 0;
1813 /* The type of the function being called. */
1814 tree fntype;
1815 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1816 int pass;
1817
1818 /* Register in which non-BLKmode value will be returned,
1819 or 0 if no value or if value is BLKmode. */
1820 rtx valreg;
1821 /* Address where we should return a BLKmode value;
1822 0 if value not BLKmode. */
1823 rtx structure_value_addr = 0;
1824 /* Nonzero if that address is being passed by treating it as
1825 an extra, implicit first parameter. Otherwise,
1826 it is passed by being copied directly into struct_value_rtx. */
1827 int structure_value_addr_parm = 0;
1828 /* Size of aggregate value wanted, or zero if none wanted
1829 or if we are using the non-reentrant PCC calling convention
1830 or expecting the value in registers. */
1831 HOST_WIDE_INT struct_value_size = 0;
1832 /* Nonzero if called function returns an aggregate in memory PCC style,
1833 by returning the address of where to find it. */
1834 int pcc_struct_value = 0;
1835 rtx struct_value = 0;
1836
1837 /* Number of actual parameters in this call, including struct value addr. */
1838 int num_actuals;
1839 /* Number of named args. Args after this are anonymous ones
1840 and they must all go on the stack. */
1841 int n_named_args;
1842
1843 /* Vector of information about each argument.
1844 Arguments are numbered in the order they will be pushed,
1845 not the order they are written. */
1846 struct arg_data *args;
1847
1848 /* Total size in bytes of all the stack-parms scanned so far. */
1849 struct args_size args_size;
1850 struct args_size adjusted_args_size;
1851 /* Size of arguments before any adjustments (such as rounding). */
1852 int unadjusted_args_size;
1853 /* Data on reg parms scanned so far. */
1854 CUMULATIVE_ARGS args_so_far;
1855 /* Nonzero if a reg parm has been scanned. */
1856 int reg_parm_seen;
1857 /* Nonzero if this is an indirect function call. */
1858
1859 /* Nonzero if we must avoid push-insns in the args for this call.
1860 If stack space is allocated for register parameters, but not by the
1861 caller, then it is preallocated in the fixed part of the stack frame.
1862 So the entire argument block must then be preallocated (i.e., we
1863 ignore PUSH_ROUNDING in that case). */
1864
1865 int must_preallocate = !PUSH_ARGS;
1866
1867 /* Size of the stack reserved for parameter registers. */
1868 int reg_parm_stack_space = 0;
1869
1870 /* Address of space preallocated for stack parms
1871 (on machines that lack push insns), or 0 if space not preallocated. */
1872 rtx argblock = 0;
1873
1874 /* Mask of ECF_ flags. */
1875 int flags = 0;
1876 #ifdef REG_PARM_STACK_SPACE
1877 /* Define the boundary of the register parm stack space that needs to be
1878 saved, if any. */
1879 int low_to_save, high_to_save;
1880 rtx save_area = 0; /* Place that it is saved */
1881 #endif
1882
1883 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
1884 char *initial_stack_usage_map = stack_usage_map;
1885
1886 int old_stack_allocated;
1887
1888 /* State variables to track stack modifications. */
1889 rtx old_stack_level = 0;
1890 int old_stack_arg_under_construction = 0;
1891 int old_pending_adj = 0;
1892 int old_inhibit_defer_pop = inhibit_defer_pop;
1893
1894 /* Some stack pointer alterations we make are performed via
1895 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
1896 which we then also need to save/restore along the way. */
1897 int old_stack_pointer_delta = 0;
1898
1899 rtx call_fusage;
1900 tree p = TREE_OPERAND (exp, 0);
1901 tree addr = TREE_OPERAND (exp, 0);
1902 int i;
1903 /* The alignment of the stack, in bits. */
1904 unsigned HOST_WIDE_INT preferred_stack_boundary;
1905 /* The alignment of the stack, in bytes. */
1906 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
1907 /* The static chain value to use for this call. */
1908 rtx static_chain_value;
1909 /* See if this is "nothrow" function call. */
1910 if (TREE_NOTHROW (exp))
1911 flags |= ECF_NOTHROW;
1912
1913 /* See if we can find a DECL-node for the actual function, and get the
1914 function attributes (flags) from the function decl or type node. */
1915 fndecl = get_callee_fndecl (exp);
1916 if (fndecl)
1917 {
1918 fntype = TREE_TYPE (fndecl);
1919 flags |= flags_from_decl_or_type (fndecl);
1920 }
1921 else
1922 {
1923 fntype = TREE_TYPE (TREE_TYPE (p));
1924 flags |= flags_from_decl_or_type (fntype);
1925 }
1926
1927 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
1928
1929 /* Warn if this value is an aggregate type,
1930 regardless of which calling convention we are using for it. */
1931 if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (exp)))
1932 warning ("function call has aggregate value");
1933
1934 /* If the result of a pure or const function call is ignored (or void),
1935 and none of its arguments are volatile, we can avoid expanding the
1936 call and just evaluate the arguments for side-effects. */
1937 if ((flags & (ECF_CONST | ECF_PURE))
1938 && (ignore || target == const0_rtx
1939 || TYPE_MODE (TREE_TYPE (exp)) == VOIDmode))
1940 {
1941 bool volatilep = false;
1942 tree arg;
1943
1944 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
1945 if (TREE_THIS_VOLATILE (TREE_VALUE (arg)))
1946 {
1947 volatilep = true;
1948 break;
1949 }
1950
1951 if (! volatilep)
1952 {
1953 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
1954 expand_expr (TREE_VALUE (arg), const0_rtx,
1955 VOIDmode, EXPAND_NORMAL);
1956 return const0_rtx;
1957 }
1958 }
1959
1960 #ifdef REG_PARM_STACK_SPACE
1961 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
1962 #endif
1963
1964 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1965 if (reg_parm_stack_space > 0 && PUSH_ARGS)
1966 must_preallocate = 1;
1967 #endif
1968
1969 /* Set up a place to return a structure. */
1970
1971 /* Cater to broken compilers. */
1972 if (aggregate_value_p (exp, fndecl))
1973 {
1974 /* This call returns a big structure. */
1975 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1976
1977 #ifdef PCC_STATIC_STRUCT_RETURN
1978 {
1979 pcc_struct_value = 1;
1980 }
1981 #else /* not PCC_STATIC_STRUCT_RETURN */
1982 {
1983 struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
1984
1985 if (CALL_EXPR_HAS_RETURN_SLOT_ADDR (exp))
1986 {
1987 /* The structure value address arg is already in actparms.
1988 Pull it out. It might be nice to just leave it there, but
1989 we need to set structure_value_addr. */
1990 tree return_arg = TREE_VALUE (actparms);
1991 actparms = TREE_CHAIN (actparms);
1992 structure_value_addr = expand_expr (return_arg, NULL_RTX,
1993 VOIDmode, EXPAND_NORMAL);
1994 }
1995 else if (target && MEM_P (target))
1996 structure_value_addr = XEXP (target, 0);
1997 else
1998 {
1999 /* For variable-sized objects, we must be called with a target
2000 specified. If we were to allocate space on the stack here,
2001 we would have no way of knowing when to free it. */
2002 rtx d = assign_temp (TREE_TYPE (exp), 1, 1, 1);
2003
2004 mark_temp_addr_taken (d);
2005 structure_value_addr = XEXP (d, 0);
2006 target = 0;
2007 }
2008 }
2009 #endif /* not PCC_STATIC_STRUCT_RETURN */
2010 }
2011
2012 /* Figure out the amount to which the stack should be aligned. */
2013 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2014 if (fndecl)
2015 {
2016 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2017 if (i && i->preferred_incoming_stack_boundary)
2018 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2019 }
2020
2021 /* Operand 0 is a pointer-to-function; get the type of the function. */
2022 funtype = TREE_TYPE (addr);
2023 if (! POINTER_TYPE_P (funtype))
2024 abort ();
2025 funtype = TREE_TYPE (funtype);
2026
2027 /* Munge the tree to split complex arguments into their imaginary
2028 and real parts. */
2029 if (targetm.calls.split_complex_arg)
2030 {
2031 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2032 actparms = split_complex_values (actparms);
2033 }
2034 else
2035 type_arg_types = TYPE_ARG_TYPES (funtype);
2036
2037 if (flags & ECF_MAY_BE_ALLOCA)
2038 current_function_calls_alloca = 1;
2039
2040 /* If struct_value_rtx is 0, it means pass the address
2041 as if it were an extra parameter. */
2042 if (structure_value_addr && struct_value == 0)
2043 {
2044 /* If structure_value_addr is a REG other than
2045 virtual_outgoing_args_rtx, we can use always use it. If it
2046 is not a REG, we must always copy it into a register.
2047 If it is virtual_outgoing_args_rtx, we must copy it to another
2048 register in some cases. */
2049 rtx temp = (!REG_P (structure_value_addr)
2050 || (ACCUMULATE_OUTGOING_ARGS
2051 && stack_arg_under_construction
2052 && structure_value_addr == virtual_outgoing_args_rtx)
2053 ? copy_addr_to_reg (convert_memory_address
2054 (Pmode, structure_value_addr))
2055 : structure_value_addr);
2056
2057 actparms
2058 = tree_cons (error_mark_node,
2059 make_tree (build_pointer_type (TREE_TYPE (funtype)),
2060 temp),
2061 actparms);
2062 structure_value_addr_parm = 1;
2063 }
2064
2065 /* Count the arguments and set NUM_ACTUALS. */
2066 for (p = actparms, num_actuals = 0; p; p = TREE_CHAIN (p))
2067 num_actuals++;
2068
2069 /* Compute number of named args.
2070 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2071
2072 if (type_arg_types != 0)
2073 n_named_args
2074 = (list_length (type_arg_types)
2075 /* Count the struct value address, if it is passed as a parm. */
2076 + structure_value_addr_parm);
2077 else
2078 /* If we know nothing, treat all args as named. */
2079 n_named_args = num_actuals;
2080
2081 /* Start updating where the next arg would go.
2082
2083 On some machines (such as the PA) indirect calls have a different
2084 calling convention than normal calls. The fourth argument in
2085 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2086 or not. */
2087 INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
2088
2089 /* Now possibly adjust the number of named args.
2090 Normally, don't include the last named arg if anonymous args follow.
2091 We do include the last named arg if
2092 targetm.calls.strict_argument_naming() returns nonzero.
2093 (If no anonymous args follow, the result of list_length is actually
2094 one too large. This is harmless.)
2095
2096 If targetm.calls.pretend_outgoing_varargs_named() returns
2097 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2098 this machine will be able to place unnamed args that were passed
2099 in registers into the stack. So treat all args as named. This
2100 allows the insns emitting for a specific argument list to be
2101 independent of the function declaration.
2102
2103 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2104 we do not have any reliable way to pass unnamed args in
2105 registers, so we must force them into memory. */
2106
2107 if (type_arg_types != 0
2108 && targetm.calls.strict_argument_naming (&args_so_far))
2109 ;
2110 else if (type_arg_types != 0
2111 && ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
2112 /* Don't include the last named arg. */
2113 --n_named_args;
2114 else
2115 /* Treat all args as named. */
2116 n_named_args = num_actuals;
2117
2118 /* Make a vector to hold all the information about each arg. */
2119 args = alloca (num_actuals * sizeof (struct arg_data));
2120 memset (args, 0, num_actuals * sizeof (struct arg_data));
2121
2122 /* Build up entries in the ARGS array, compute the size of the
2123 arguments into ARGS_SIZE, etc. */
2124 initialize_argument_information (num_actuals, args, &args_size,
2125 n_named_args, actparms, fndecl,
2126 &args_so_far, reg_parm_stack_space,
2127 &old_stack_level, &old_pending_adj,
2128 &must_preallocate, &flags,
2129 &try_tail_call, CALL_FROM_THUNK_P (exp));
2130
2131 if (args_size.var)
2132 {
2133 /* If this function requires a variable-sized argument list, don't
2134 try to make a cse'able block for this call. We may be able to
2135 do this eventually, but it is too complicated to keep track of
2136 what insns go in the cse'able block and which don't. */
2137
2138 flags &= ~ECF_LIBCALL_BLOCK;
2139 must_preallocate = 1;
2140 }
2141
2142 /* Now make final decision about preallocating stack space. */
2143 must_preallocate = finalize_must_preallocate (must_preallocate,
2144 num_actuals, args,
2145 &args_size);
2146
2147 /* If the structure value address will reference the stack pointer, we
2148 must stabilize it. We don't need to do this if we know that we are
2149 not going to adjust the stack pointer in processing this call. */
2150
2151 if (structure_value_addr
2152 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2153 || reg_mentioned_p (virtual_outgoing_args_rtx,
2154 structure_value_addr))
2155 && (args_size.var
2156 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2157 structure_value_addr = copy_to_reg (structure_value_addr);
2158
2159 /* Tail calls can make things harder to debug, and we've traditionally
2160 pushed these optimizations into -O2. Don't try if we're already
2161 expanding a call, as that means we're an argument. Don't try if
2162 there's cleanups, as we know there's code to follow the call. */
2163
2164 if (currently_expanding_call++ != 0
2165 || !flag_optimize_sibling_calls
2166 || args_size.var
2167 || lookup_stmt_eh_region (exp) >= 0)
2168 try_tail_call = 0;
2169
2170 /* Rest of purposes for tail call optimizations to fail. */
2171 if (
2172 #ifdef HAVE_sibcall_epilogue
2173 !HAVE_sibcall_epilogue
2174 #else
2175 1
2176 #endif
2177 || !try_tail_call
2178 /* Doing sibling call optimization needs some work, since
2179 structure_value_addr can be allocated on the stack.
2180 It does not seem worth the effort since few optimizable
2181 sibling calls will return a structure. */
2182 || structure_value_addr != NULL_RTX
2183 /* Check whether the target is able to optimize the call
2184 into a sibcall. */
2185 || !targetm.function_ok_for_sibcall (fndecl, exp)
2186 /* Functions that do not return exactly once may not be sibcall
2187 optimized. */
2188 || (flags & (ECF_RETURNS_TWICE | ECF_LONGJMP | ECF_NORETURN))
2189 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2190 /* If the called function is nested in the current one, it might access
2191 some of the caller's arguments, but could clobber them beforehand if
2192 the argument areas are shared. */
2193 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2194 /* If this function requires more stack slots than the current
2195 function, we cannot change it into a sibling call. */
2196 || args_size.constant > current_function_args_size
2197 /* If the callee pops its own arguments, then it must pop exactly
2198 the same number of arguments as the current function. */
2199 || (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
2200 != RETURN_POPS_ARGS (current_function_decl,
2201 TREE_TYPE (current_function_decl),
2202 current_function_args_size))
2203 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2204 try_tail_call = 0;
2205
2206 /* Ensure current function's preferred stack boundary is at least
2207 what we need. We don't have to increase alignment for recursive
2208 functions. */
2209 if (cfun->preferred_stack_boundary < preferred_stack_boundary
2210 && fndecl != current_function_decl)
2211 cfun->preferred_stack_boundary = preferred_stack_boundary;
2212 if (fndecl == current_function_decl)
2213 cfun->recursive_call_emit = true;
2214
2215 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2216
2217 /* We want to make two insn chains; one for a sibling call, the other
2218 for a normal call. We will select one of the two chains after
2219 initial RTL generation is complete. */
2220 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2221 {
2222 int sibcall_failure = 0;
2223 /* We want to emit any pending stack adjustments before the tail
2224 recursion "call". That way we know any adjustment after the tail
2225 recursion call can be ignored if we indeed use the tail
2226 call expansion. */
2227 int save_pending_stack_adjust = 0;
2228 int save_stack_pointer_delta = 0;
2229 rtx insns;
2230 rtx before_call, next_arg_reg;
2231
2232 if (pass == 0)
2233 {
2234 /* State variables we need to save and restore between
2235 iterations. */
2236 save_pending_stack_adjust = pending_stack_adjust;
2237 save_stack_pointer_delta = stack_pointer_delta;
2238 }
2239 if (pass)
2240 flags &= ~ECF_SIBCALL;
2241 else
2242 flags |= ECF_SIBCALL;
2243
2244 /* Other state variables that we must reinitialize each time
2245 through the loop (that are not initialized by the loop itself). */
2246 argblock = 0;
2247 call_fusage = 0;
2248
2249 /* Start a new sequence for the normal call case.
2250
2251 From this point on, if the sibling call fails, we want to set
2252 sibcall_failure instead of continuing the loop. */
2253 start_sequence ();
2254
2255 /* Don't let pending stack adjusts add up to too much.
2256 Also, do all pending adjustments now if there is any chance
2257 this might be a call to alloca or if we are expanding a sibling
2258 call sequence or if we are calling a function that is to return
2259 with stack pointer depressed. */
2260 if (pending_stack_adjust >= 32
2261 || (pending_stack_adjust > 0
2262 && (flags & (ECF_MAY_BE_ALLOCA | ECF_SP_DEPRESSED)))
2263 || pass == 0)
2264 do_pending_stack_adjust ();
2265
2266 /* When calling a const function, we must pop the stack args right away,
2267 so that the pop is deleted or moved with the call. */
2268 if (pass && (flags & ECF_LIBCALL_BLOCK))
2269 NO_DEFER_POP;
2270
2271 /* Precompute any arguments as needed. */
2272 if (pass)
2273 precompute_arguments (flags, num_actuals, args);
2274
2275 /* Now we are about to start emitting insns that can be deleted
2276 if a libcall is deleted. */
2277 if (pass && (flags & (ECF_LIBCALL_BLOCK | ECF_MALLOC)))
2278 start_sequence ();
2279
2280 adjusted_args_size = args_size;
2281 /* Compute the actual size of the argument block required. The variable
2282 and constant sizes must be combined, the size may have to be rounded,
2283 and there may be a minimum required size. When generating a sibcall
2284 pattern, do not round up, since we'll be re-using whatever space our
2285 caller provided. */
2286 unadjusted_args_size
2287 = compute_argument_block_size (reg_parm_stack_space,
2288 &adjusted_args_size,
2289 (pass == 0 ? 0
2290 : preferred_stack_boundary));
2291
2292 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2293
2294 /* The argument block when performing a sibling call is the
2295 incoming argument block. */
2296 if (pass == 0)
2297 {
2298 argblock = virtual_incoming_args_rtx;
2299 argblock
2300 #ifdef STACK_GROWS_DOWNWARD
2301 = plus_constant (argblock, current_function_pretend_args_size);
2302 #else
2303 = plus_constant (argblock, -current_function_pretend_args_size);
2304 #endif
2305 stored_args_map = sbitmap_alloc (args_size.constant);
2306 sbitmap_zero (stored_args_map);
2307 }
2308
2309 /* If we have no actual push instructions, or shouldn't use them,
2310 make space for all args right now. */
2311 else if (adjusted_args_size.var != 0)
2312 {
2313 if (old_stack_level == 0)
2314 {
2315 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
2316 old_stack_pointer_delta = stack_pointer_delta;
2317 old_pending_adj = pending_stack_adjust;
2318 pending_stack_adjust = 0;
2319 /* stack_arg_under_construction says whether a stack arg is
2320 being constructed at the old stack level. Pushing the stack
2321 gets a clean outgoing argument block. */
2322 old_stack_arg_under_construction = stack_arg_under_construction;
2323 stack_arg_under_construction = 0;
2324 }
2325 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2326 }
2327 else
2328 {
2329 /* Note that we must go through the motions of allocating an argument
2330 block even if the size is zero because we may be storing args
2331 in the area reserved for register arguments, which may be part of
2332 the stack frame. */
2333
2334 int needed = adjusted_args_size.constant;
2335
2336 /* Store the maximum argument space used. It will be pushed by
2337 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2338 checking). */
2339
2340 if (needed > current_function_outgoing_args_size)
2341 current_function_outgoing_args_size = needed;
2342
2343 if (must_preallocate)
2344 {
2345 if (ACCUMULATE_OUTGOING_ARGS)
2346 {
2347 /* Since the stack pointer will never be pushed, it is
2348 possible for the evaluation of a parm to clobber
2349 something we have already written to the stack.
2350 Since most function calls on RISC machines do not use
2351 the stack, this is uncommon, but must work correctly.
2352
2353 Therefore, we save any area of the stack that was already
2354 written and that we are using. Here we set up to do this
2355 by making a new stack usage map from the old one. The
2356 actual save will be done by store_one_arg.
2357
2358 Another approach might be to try to reorder the argument
2359 evaluations to avoid this conflicting stack usage. */
2360
2361 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2362 /* Since we will be writing into the entire argument area,
2363 the map must be allocated for its entire size, not just
2364 the part that is the responsibility of the caller. */
2365 needed += reg_parm_stack_space;
2366 #endif
2367
2368 #ifdef ARGS_GROW_DOWNWARD
2369 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2370 needed + 1);
2371 #else
2372 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2373 needed);
2374 #endif
2375 stack_usage_map = alloca (highest_outgoing_arg_in_use);
2376
2377 if (initial_highest_arg_in_use)
2378 memcpy (stack_usage_map, initial_stack_usage_map,
2379 initial_highest_arg_in_use);
2380
2381 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2382 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2383 (highest_outgoing_arg_in_use
2384 - initial_highest_arg_in_use));
2385 needed = 0;
2386
2387 /* The address of the outgoing argument list must not be
2388 copied to a register here, because argblock would be left
2389 pointing to the wrong place after the call to
2390 allocate_dynamic_stack_space below. */
2391
2392 argblock = virtual_outgoing_args_rtx;
2393 }
2394 else
2395 {
2396 if (inhibit_defer_pop == 0)
2397 {
2398 /* Try to reuse some or all of the pending_stack_adjust
2399 to get this space. */
2400 needed
2401 = (combine_pending_stack_adjustment_and_call
2402 (unadjusted_args_size,
2403 &adjusted_args_size,
2404 preferred_unit_stack_boundary));
2405
2406 /* combine_pending_stack_adjustment_and_call computes
2407 an adjustment before the arguments are allocated.
2408 Account for them and see whether or not the stack
2409 needs to go up or down. */
2410 needed = unadjusted_args_size - needed;
2411
2412 if (needed < 0)
2413 {
2414 /* We're releasing stack space. */
2415 /* ??? We can avoid any adjustment at all if we're
2416 already aligned. FIXME. */
2417 pending_stack_adjust = -needed;
2418 do_pending_stack_adjust ();
2419 needed = 0;
2420 }
2421 else
2422 /* We need to allocate space. We'll do that in
2423 push_block below. */
2424 pending_stack_adjust = 0;
2425 }
2426
2427 /* Special case this because overhead of `push_block' in
2428 this case is non-trivial. */
2429 if (needed == 0)
2430 argblock = virtual_outgoing_args_rtx;
2431 else
2432 {
2433 argblock = push_block (GEN_INT (needed), 0, 0);
2434 #ifdef ARGS_GROW_DOWNWARD
2435 argblock = plus_constant (argblock, needed);
2436 #endif
2437 }
2438
2439 /* We only really need to call `copy_to_reg' in the case
2440 where push insns are going to be used to pass ARGBLOCK
2441 to a function call in ARGS. In that case, the stack
2442 pointer changes value from the allocation point to the
2443 call point, and hence the value of
2444 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2445 as well always do it. */
2446 argblock = copy_to_reg (argblock);
2447 }
2448 }
2449 }
2450
2451 if (ACCUMULATE_OUTGOING_ARGS)
2452 {
2453 /* The save/restore code in store_one_arg handles all
2454 cases except one: a constructor call (including a C
2455 function returning a BLKmode struct) to initialize
2456 an argument. */
2457 if (stack_arg_under_construction)
2458 {
2459 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2460 rtx push_size = GEN_INT (reg_parm_stack_space
2461 + adjusted_args_size.constant);
2462 #else
2463 rtx push_size = GEN_INT (adjusted_args_size.constant);
2464 #endif
2465 if (old_stack_level == 0)
2466 {
2467 emit_stack_save (SAVE_BLOCK, &old_stack_level,
2468 NULL_RTX);
2469 old_stack_pointer_delta = stack_pointer_delta;
2470 old_pending_adj = pending_stack_adjust;
2471 pending_stack_adjust = 0;
2472 /* stack_arg_under_construction says whether a stack
2473 arg is being constructed at the old stack level.
2474 Pushing the stack gets a clean outgoing argument
2475 block. */
2476 old_stack_arg_under_construction
2477 = stack_arg_under_construction;
2478 stack_arg_under_construction = 0;
2479 /* Make a new map for the new argument list. */
2480 stack_usage_map = alloca (highest_outgoing_arg_in_use);
2481 memset (stack_usage_map, 0, highest_outgoing_arg_in_use);
2482 highest_outgoing_arg_in_use = 0;
2483 }
2484 allocate_dynamic_stack_space (push_size, NULL_RTX,
2485 BITS_PER_UNIT);
2486 }
2487
2488 /* If argument evaluation might modify the stack pointer,
2489 copy the address of the argument list to a register. */
2490 for (i = 0; i < num_actuals; i++)
2491 if (args[i].pass_on_stack)
2492 {
2493 argblock = copy_addr_to_reg (argblock);
2494 break;
2495 }
2496 }
2497
2498 compute_argument_addresses (args, argblock, num_actuals);
2499
2500 /* If we push args individually in reverse order, perform stack alignment
2501 before the first push (the last arg). */
2502 if (PUSH_ARGS_REVERSED && argblock == 0
2503 && adjusted_args_size.constant != unadjusted_args_size)
2504 {
2505 /* When the stack adjustment is pending, we get better code
2506 by combining the adjustments. */
2507 if (pending_stack_adjust
2508 && ! (flags & ECF_LIBCALL_BLOCK)
2509 && ! inhibit_defer_pop)
2510 {
2511 pending_stack_adjust
2512 = (combine_pending_stack_adjustment_and_call
2513 (unadjusted_args_size,
2514 &adjusted_args_size,
2515 preferred_unit_stack_boundary));
2516 do_pending_stack_adjust ();
2517 }
2518 else if (argblock == 0)
2519 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2520 - unadjusted_args_size));
2521 }
2522 /* Now that the stack is properly aligned, pops can't safely
2523 be deferred during the evaluation of the arguments. */
2524 NO_DEFER_POP;
2525
2526 funexp = rtx_for_function_call (fndecl, addr);
2527
2528 /* Figure out the register where the value, if any, will come back. */
2529 valreg = 0;
2530 if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
2531 && ! structure_value_addr)
2532 {
2533 if (pcc_struct_value)
2534 valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
2535 fndecl, (pass == 0));
2536 else
2537 valreg = hard_function_value (TREE_TYPE (exp), fndecl, (pass == 0));
2538 }
2539
2540 /* Precompute all register parameters. It isn't safe to compute anything
2541 once we have started filling any specific hard regs. */
2542 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2543
2544 if (TREE_OPERAND (exp, 2))
2545 static_chain_value = expand_expr (TREE_OPERAND (exp, 2),
2546 NULL_RTX, VOIDmode, 0);
2547 else
2548 static_chain_value = 0;
2549
2550 #ifdef REG_PARM_STACK_SPACE
2551 /* Save the fixed argument area if it's part of the caller's frame and
2552 is clobbered by argument setup for this call. */
2553 if (ACCUMULATE_OUTGOING_ARGS && pass)
2554 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2555 &low_to_save, &high_to_save);
2556 #endif
2557
2558 /* Now store (and compute if necessary) all non-register parms.
2559 These come before register parms, since they can require block-moves,
2560 which could clobber the registers used for register parms.
2561 Parms which have partial registers are not stored here,
2562 but we do preallocate space here if they want that. */
2563
2564 for (i = 0; i < num_actuals; i++)
2565 if (args[i].reg == 0 || args[i].pass_on_stack)
2566 {
2567 rtx before_arg = get_last_insn ();
2568
2569 if (store_one_arg (&args[i], argblock, flags,
2570 adjusted_args_size.var != 0,
2571 reg_parm_stack_space)
2572 || (pass == 0
2573 && check_sibcall_argument_overlap (before_arg,
2574 &args[i], 1)))
2575 sibcall_failure = 1;
2576
2577 if (flags & ECF_CONST
2578 && args[i].stack
2579 && args[i].value == args[i].stack)
2580 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2581 gen_rtx_USE (VOIDmode,
2582 args[i].value),
2583 call_fusage);
2584 }
2585
2586 /* If we have a parm that is passed in registers but not in memory
2587 and whose alignment does not permit a direct copy into registers,
2588 make a group of pseudos that correspond to each register that we
2589 will later fill. */
2590 if (STRICT_ALIGNMENT)
2591 store_unaligned_arguments_into_pseudos (args, num_actuals);
2592
2593 /* Now store any partially-in-registers parm.
2594 This is the last place a block-move can happen. */
2595 if (reg_parm_seen)
2596 for (i = 0; i < num_actuals; i++)
2597 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2598 {
2599 rtx before_arg = get_last_insn ();
2600
2601 if (store_one_arg (&args[i], argblock, flags,
2602 adjusted_args_size.var != 0,
2603 reg_parm_stack_space)
2604 || (pass == 0
2605 && check_sibcall_argument_overlap (before_arg,
2606 &args[i], 1)))
2607 sibcall_failure = 1;
2608 }
2609
2610 /* If we pushed args in forward order, perform stack alignment
2611 after pushing the last arg. */
2612 if (!PUSH_ARGS_REVERSED && argblock == 0)
2613 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2614 - unadjusted_args_size));
2615
2616 /* If register arguments require space on the stack and stack space
2617 was not preallocated, allocate stack space here for arguments
2618 passed in registers. */
2619 #ifdef OUTGOING_REG_PARM_STACK_SPACE
2620 if (!ACCUMULATE_OUTGOING_ARGS
2621 && must_preallocate == 0 && reg_parm_stack_space > 0)
2622 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2623 #endif
2624
2625 /* Pass the function the address in which to return a
2626 structure value. */
2627 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2628 {
2629 structure_value_addr
2630 = convert_memory_address (Pmode, structure_value_addr);
2631 emit_move_insn (struct_value,
2632 force_reg (Pmode,
2633 force_operand (structure_value_addr,
2634 NULL_RTX)));
2635
2636 if (REG_P (struct_value))
2637 use_reg (&call_fusage, struct_value);
2638 }
2639
2640 funexp = prepare_call_address (funexp, static_chain_value,
2641 &call_fusage, reg_parm_seen, pass == 0);
2642
2643 load_register_parameters (args, num_actuals, &call_fusage, flags,
2644 pass == 0, &sibcall_failure);
2645
2646 /* Save a pointer to the last insn before the call, so that we can
2647 later safely search backwards to find the CALL_INSN. */
2648 before_call = get_last_insn ();
2649
2650 /* Set up next argument register. For sibling calls on machines
2651 with register windows this should be the incoming register. */
2652 #ifdef FUNCTION_INCOMING_ARG
2653 if (pass == 0)
2654 next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
2655 void_type_node, 1);
2656 else
2657 #endif
2658 next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
2659 void_type_node, 1);
2660
2661 /* All arguments and registers used for the call must be set up by
2662 now! */
2663
2664 /* Stack must be properly aligned now. */
2665 if (pass && stack_pointer_delta % preferred_unit_stack_boundary)
2666 abort ();
2667
2668 /* Generate the actual call instruction. */
2669 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2670 adjusted_args_size.constant, struct_value_size,
2671 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2672 flags, & args_so_far);
2673
2674 /* If call is cse'able, make appropriate pair of reg-notes around it.
2675 Test valreg so we don't crash; may safely ignore `const'
2676 if return type is void. Disable for PARALLEL return values, because
2677 we have no way to move such values into a pseudo register. */
2678 if (pass && (flags & ECF_LIBCALL_BLOCK))
2679 {
2680 rtx insns;
2681 rtx insn;
2682 bool failed = valreg == 0 || GET_CODE (valreg) == PARALLEL;
2683
2684 insns = get_insns ();
2685
2686 /* Expansion of block moves possibly introduced a loop that may
2687 not appear inside libcall block. */
2688 for (insn = insns; insn; insn = NEXT_INSN (insn))
2689 if (JUMP_P (insn))
2690 failed = true;
2691
2692 if (failed)
2693 {
2694 end_sequence ();
2695 emit_insn (insns);
2696 }
2697 else
2698 {
2699 rtx note = 0;
2700 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2701
2702 /* Mark the return value as a pointer if needed. */
2703 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2704 mark_reg_pointer (temp,
2705 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp))));
2706
2707 end_sequence ();
2708 if (flag_unsafe_math_optimizations
2709 && fndecl
2710 && DECL_BUILT_IN (fndecl)
2711 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRT
2712 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTF
2713 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTL))
2714 note = gen_rtx_fmt_e (SQRT,
2715 GET_MODE (temp),
2716 args[0].initial_value);
2717 else
2718 {
2719 /* Construct an "equal form" for the value which
2720 mentions all the arguments in order as well as
2721 the function name. */
2722 for (i = 0; i < num_actuals; i++)
2723 note = gen_rtx_EXPR_LIST (VOIDmode,
2724 args[i].initial_value, note);
2725 note = gen_rtx_EXPR_LIST (VOIDmode, funexp, note);
2726
2727 if (flags & ECF_PURE)
2728 note = gen_rtx_EXPR_LIST (VOIDmode,
2729 gen_rtx_USE (VOIDmode,
2730 gen_rtx_MEM (BLKmode,
2731 gen_rtx_SCRATCH (VOIDmode))),
2732 note);
2733 }
2734 emit_libcall_block (insns, temp, valreg, note);
2735
2736 valreg = temp;
2737 }
2738 }
2739 else if (pass && (flags & ECF_MALLOC))
2740 {
2741 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2742 rtx last, insns;
2743
2744 /* The return value from a malloc-like function is a pointer. */
2745 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2746 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2747
2748 emit_move_insn (temp, valreg);
2749
2750 /* The return value from a malloc-like function can not alias
2751 anything else. */
2752 last = get_last_insn ();
2753 REG_NOTES (last) =
2754 gen_rtx_EXPR_LIST (REG_NOALIAS, temp, REG_NOTES (last));
2755
2756 /* Write out the sequence. */
2757 insns = get_insns ();
2758 end_sequence ();
2759 emit_insn (insns);
2760 valreg = temp;
2761 }
2762
2763 /* For calls to `setjmp', etc., inform flow.c it should complain
2764 if nonvolatile values are live. For functions that cannot return,
2765 inform flow that control does not fall through. */
2766
2767 if ((flags & (ECF_NORETURN | ECF_LONGJMP)) || pass == 0)
2768 {
2769 /* The barrier must be emitted
2770 immediately after the CALL_INSN. Some ports emit more
2771 than just a CALL_INSN above, so we must search for it here. */
2772
2773 rtx last = get_last_insn ();
2774 while (!CALL_P (last))
2775 {
2776 last = PREV_INSN (last);
2777 /* There was no CALL_INSN? */
2778 if (last == before_call)
2779 abort ();
2780 }
2781
2782 emit_barrier_after (last);
2783
2784 /* Stack adjustments after a noreturn call are dead code.
2785 However when NO_DEFER_POP is in effect, we must preserve
2786 stack_pointer_delta. */
2787 if (inhibit_defer_pop == 0)
2788 {
2789 stack_pointer_delta = old_stack_allocated;
2790 pending_stack_adjust = 0;
2791 }
2792 }
2793
2794 if (flags & ECF_LONGJMP)
2795 current_function_calls_longjmp = 1;
2796
2797 /* If value type not void, return an rtx for the value. */
2798
2799 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
2800 || ignore)
2801 target = const0_rtx;
2802 else if (structure_value_addr)
2803 {
2804 if (target == 0 || !MEM_P (target))
2805 {
2806 target
2807 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2808 memory_address (TYPE_MODE (TREE_TYPE (exp)),
2809 structure_value_addr));
2810 set_mem_attributes (target, exp, 1);
2811 }
2812 }
2813 else if (pcc_struct_value)
2814 {
2815 /* This is the special C++ case where we need to
2816 know what the true target was. We take care to
2817 never use this value more than once in one expression. */
2818 target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2819 copy_to_reg (valreg));
2820 set_mem_attributes (target, exp, 1);
2821 }
2822 /* Handle calls that return values in multiple non-contiguous locations.
2823 The Irix 6 ABI has examples of this. */
2824 else if (GET_CODE (valreg) == PARALLEL)
2825 {
2826 if (target == 0)
2827 {
2828 /* This will only be assigned once, so it can be readonly. */
2829 tree nt = build_qualified_type (TREE_TYPE (exp),
2830 (TYPE_QUALS (TREE_TYPE (exp))
2831 | TYPE_QUAL_CONST));
2832
2833 target = assign_temp (nt, 0, 1, 1);
2834 preserve_temp_slots (target);
2835 }
2836
2837 if (! rtx_equal_p (target, valreg))
2838 emit_group_store (target, valreg, TREE_TYPE (exp),
2839 int_size_in_bytes (TREE_TYPE (exp)));
2840
2841 /* We can not support sibling calls for this case. */
2842 sibcall_failure = 1;
2843 }
2844 else if (target
2845 && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
2846 && GET_MODE (target) == GET_MODE (valreg))
2847 {
2848 /* TARGET and VALREG cannot be equal at this point because the
2849 latter would not have REG_FUNCTION_VALUE_P true, while the
2850 former would if it were referring to the same register.
2851
2852 If they refer to the same register, this move will be a no-op,
2853 except when function inlining is being done. */
2854 emit_move_insn (target, valreg);
2855
2856 /* If we are setting a MEM, this code must be executed. Since it is
2857 emitted after the call insn, sibcall optimization cannot be
2858 performed in that case. */
2859 if (MEM_P (target))
2860 sibcall_failure = 1;
2861 }
2862 else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
2863 {
2864 target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp));
2865
2866 /* We can not support sibling calls for this case. */
2867 sibcall_failure = 1;
2868 }
2869 else
2870 {
2871 if (shift_returned_value (TREE_TYPE (exp), &valreg))
2872 sibcall_failure = 1;
2873
2874 target = copy_to_reg (valreg);
2875 }
2876
2877 if (targetm.calls.promote_function_return(funtype))
2878 {
2879 /* If we promoted this return value, make the proper SUBREG. TARGET
2880 might be const0_rtx here, so be careful. */
2881 if (REG_P (target)
2882 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2883 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
2884 {
2885 tree type = TREE_TYPE (exp);
2886 int unsignedp = TYPE_UNSIGNED (type);
2887 int offset = 0;
2888
2889 /* If we don't promote as expected, something is wrong. */
2890 if (GET_MODE (target)
2891 != promote_mode (type, TYPE_MODE (type), &unsignedp, 1))
2892 abort ();
2893
2894 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
2895 && GET_MODE_SIZE (GET_MODE (target))
2896 > GET_MODE_SIZE (TYPE_MODE (type)))
2897 {
2898 offset = GET_MODE_SIZE (GET_MODE (target))
2899 - GET_MODE_SIZE (TYPE_MODE (type));
2900 if (! BYTES_BIG_ENDIAN)
2901 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
2902 else if (! WORDS_BIG_ENDIAN)
2903 offset %= UNITS_PER_WORD;
2904 }
2905 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
2906 SUBREG_PROMOTED_VAR_P (target) = 1;
2907 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
2908 }
2909 }
2910
2911 /* If size of args is variable or this was a constructor call for a stack
2912 argument, restore saved stack-pointer value. */
2913
2914 if (old_stack_level && ! (flags & ECF_SP_DEPRESSED))
2915 {
2916 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
2917 stack_pointer_delta = old_stack_pointer_delta;
2918 pending_stack_adjust = old_pending_adj;
2919 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2920 stack_arg_under_construction = old_stack_arg_under_construction;
2921 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
2922 stack_usage_map = initial_stack_usage_map;
2923 sibcall_failure = 1;
2924 }
2925 else if (ACCUMULATE_OUTGOING_ARGS && pass)
2926 {
2927 #ifdef REG_PARM_STACK_SPACE
2928 if (save_area)
2929 restore_fixed_argument_area (save_area, argblock,
2930 high_to_save, low_to_save);
2931 #endif
2932
2933 /* If we saved any argument areas, restore them. */
2934 for (i = 0; i < num_actuals; i++)
2935 if (args[i].save_area)
2936 {
2937 enum machine_mode save_mode = GET_MODE (args[i].save_area);
2938 rtx stack_area
2939 = gen_rtx_MEM (save_mode,
2940 memory_address (save_mode,
2941 XEXP (args[i].stack_slot, 0)));
2942
2943 if (save_mode != BLKmode)
2944 emit_move_insn (stack_area, args[i].save_area);
2945 else
2946 emit_block_move (stack_area, args[i].save_area,
2947 GEN_INT (args[i].locate.size.constant),
2948 BLOCK_OP_CALL_PARM);
2949 }
2950
2951 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
2952 stack_usage_map = initial_stack_usage_map;
2953 }
2954
2955 /* If this was alloca, record the new stack level for nonlocal gotos.
2956 Check for the handler slots since we might not have a save area
2957 for non-local gotos. */
2958
2959 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
2960 update_nonlocal_goto_save_area ();
2961
2962 /* Free up storage we no longer need. */
2963 for (i = 0; i < num_actuals; ++i)
2964 if (args[i].aligned_regs)
2965 free (args[i].aligned_regs);
2966
2967 insns = get_insns ();
2968 end_sequence ();
2969
2970 if (pass == 0)
2971 {
2972 tail_call_insns = insns;
2973
2974 /* Restore the pending stack adjustment now that we have
2975 finished generating the sibling call sequence. */
2976
2977 pending_stack_adjust = save_pending_stack_adjust;
2978 stack_pointer_delta = save_stack_pointer_delta;
2979
2980 /* Prepare arg structure for next iteration. */
2981 for (i = 0; i < num_actuals; i++)
2982 {
2983 args[i].value = 0;
2984 args[i].aligned_regs = 0;
2985 args[i].stack = 0;
2986 }
2987
2988 sbitmap_free (stored_args_map);
2989 }
2990 else
2991 {
2992 normal_call_insns = insns;
2993
2994 /* Verify that we've deallocated all the stack we used. */
2995 if (! (flags & (ECF_NORETURN | ECF_LONGJMP))
2996 && old_stack_allocated != stack_pointer_delta
2997 - pending_stack_adjust)
2998 abort ();
2999 }
3000
3001 /* If something prevents making this a sibling call,
3002 zero out the sequence. */
3003 if (sibcall_failure)
3004 tail_call_insns = NULL_RTX;
3005 else
3006 break;
3007 }
3008
3009 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3010 arguments too, as argument area is now clobbered by the call. */
3011 if (tail_call_insns)
3012 {
3013 emit_insn (tail_call_insns);
3014 cfun->tail_call_emit = true;
3015 }
3016 else
3017 emit_insn (normal_call_insns);
3018
3019 currently_expanding_call--;
3020
3021 /* If this function returns with the stack pointer depressed, ensure
3022 this block saves and restores the stack pointer, show it was
3023 changed, and adjust for any outgoing arg space. */
3024 if (flags & ECF_SP_DEPRESSED)
3025 {
3026 clear_pending_stack_adjust ();
3027 emit_insn (gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx));
3028 emit_move_insn (virtual_stack_dynamic_rtx, stack_pointer_rtx);
3029 }
3030
3031 return target;
3032 }
3033
3034 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3035 this function's incoming arguments.
3036
3037 At the start of RTL generation we know the only REG_EQUIV notes
3038 in the rtl chain are those for incoming arguments, so we can safely
3039 flush any REG_EQUIV note.
3040
3041 This is (slight) overkill. We could keep track of the highest
3042 argument we clobber and be more selective in removing notes, but it
3043 does not seem to be worth the effort. */
3044 void
3045 fixup_tail_calls (void)
3046 {
3047 purge_reg_equiv_notes ();
3048 }
3049
3050 /* Traverse an argument list in VALUES and expand all complex
3051 arguments into their components. */
3052 tree
3053 split_complex_values (tree values)
3054 {
3055 tree p;
3056
3057 /* Before allocating memory, check for the common case of no complex. */
3058 for (p = values; p; p = TREE_CHAIN (p))
3059 {
3060 tree type = TREE_TYPE (TREE_VALUE (p));
3061 if (type && TREE_CODE (type) == COMPLEX_TYPE
3062 && targetm.calls.split_complex_arg (type))
3063 goto found;
3064 }
3065 return values;
3066
3067 found:
3068 values = copy_list (values);
3069
3070 for (p = values; p; p = TREE_CHAIN (p))
3071 {
3072 tree complex_value = TREE_VALUE (p);
3073 tree complex_type;
3074
3075 complex_type = TREE_TYPE (complex_value);
3076 if (!complex_type)
3077 continue;
3078
3079 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3080 && targetm.calls.split_complex_arg (complex_type))
3081 {
3082 tree subtype;
3083 tree real, imag, next;
3084
3085 subtype = TREE_TYPE (complex_type);
3086 complex_value = save_expr (complex_value);
3087 real = build1 (REALPART_EXPR, subtype, complex_value);
3088 imag = build1 (IMAGPART_EXPR, subtype, complex_value);
3089
3090 TREE_VALUE (p) = real;
3091 next = TREE_CHAIN (p);
3092 imag = build_tree_list (NULL_TREE, imag);
3093 TREE_CHAIN (p) = imag;
3094 TREE_CHAIN (imag) = next;
3095
3096 /* Skip the newly created node. */
3097 p = TREE_CHAIN (p);
3098 }
3099 }
3100
3101 return values;
3102 }
3103
3104 /* Traverse a list of TYPES and expand all complex types into their
3105 components. */
3106 tree
3107 split_complex_types (tree types)
3108 {
3109 tree p;
3110
3111 /* Before allocating memory, check for the common case of no complex. */
3112 for (p = types; p; p = TREE_CHAIN (p))
3113 {
3114 tree type = TREE_VALUE (p);
3115 if (TREE_CODE (type) == COMPLEX_TYPE
3116 && targetm.calls.split_complex_arg (type))
3117 goto found;
3118 }
3119 return types;
3120
3121 found:
3122 types = copy_list (types);
3123
3124 for (p = types; p; p = TREE_CHAIN (p))
3125 {
3126 tree complex_type = TREE_VALUE (p);
3127
3128 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3129 && targetm.calls.split_complex_arg (complex_type))
3130 {
3131 tree next, imag;
3132
3133 /* Rewrite complex type with component type. */
3134 TREE_VALUE (p) = TREE_TYPE (complex_type);
3135 next = TREE_CHAIN (p);
3136
3137 /* Add another component type for the imaginary part. */
3138 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3139 TREE_CHAIN (p) = imag;
3140 TREE_CHAIN (imag) = next;
3141
3142 /* Skip the newly created node. */
3143 p = TREE_CHAIN (p);
3144 }
3145 }
3146
3147 return types;
3148 }
3149 \f
3150 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3151 The RETVAL parameter specifies whether return value needs to be saved, other
3152 parameters are documented in the emit_library_call function below. */
3153
3154 static rtx
3155 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3156 enum libcall_type fn_type,
3157 enum machine_mode outmode, int nargs, va_list p)
3158 {
3159 /* Total size in bytes of all the stack-parms scanned so far. */
3160 struct args_size args_size;
3161 /* Size of arguments before any adjustments (such as rounding). */
3162 struct args_size original_args_size;
3163 int argnum;
3164 rtx fun;
3165 int inc;
3166 int count;
3167 rtx argblock = 0;
3168 CUMULATIVE_ARGS args_so_far;
3169 struct arg
3170 {
3171 rtx value;
3172 enum machine_mode mode;
3173 rtx reg;
3174 int partial;
3175 struct locate_and_pad_arg_data locate;
3176 rtx save_area;
3177 };
3178 struct arg *argvec;
3179 int old_inhibit_defer_pop = inhibit_defer_pop;
3180 rtx call_fusage = 0;
3181 rtx mem_value = 0;
3182 rtx valreg;
3183 int pcc_struct_value = 0;
3184 int struct_value_size = 0;
3185 int flags;
3186 int reg_parm_stack_space = 0;
3187 int needed;
3188 rtx before_call;
3189 tree tfom; /* type_for_mode (outmode, 0) */
3190
3191 #ifdef REG_PARM_STACK_SPACE
3192 /* Define the boundary of the register parm stack space that needs to be
3193 save, if any. */
3194 int low_to_save, high_to_save;
3195 rtx save_area = 0; /* Place that it is saved. */
3196 #endif
3197
3198 /* Size of the stack reserved for parameter registers. */
3199 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3200 char *initial_stack_usage_map = stack_usage_map;
3201
3202 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3203
3204 #ifdef REG_PARM_STACK_SPACE
3205 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3206 #endif
3207
3208 /* By default, library functions can not throw. */
3209 flags = ECF_NOTHROW;
3210
3211 switch (fn_type)
3212 {
3213 case LCT_NORMAL:
3214 break;
3215 case LCT_CONST:
3216 flags |= ECF_CONST;
3217 break;
3218 case LCT_PURE:
3219 flags |= ECF_PURE;
3220 break;
3221 case LCT_CONST_MAKE_BLOCK:
3222 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
3223 break;
3224 case LCT_PURE_MAKE_BLOCK:
3225 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
3226 break;
3227 case LCT_NORETURN:
3228 flags |= ECF_NORETURN;
3229 break;
3230 case LCT_THROW:
3231 flags = ECF_NORETURN;
3232 break;
3233 case LCT_ALWAYS_RETURN:
3234 flags = ECF_ALWAYS_RETURN;
3235 break;
3236 case LCT_RETURNS_TWICE:
3237 flags = ECF_RETURNS_TWICE;
3238 break;
3239 }
3240 fun = orgfun;
3241
3242 /* Ensure current function's preferred stack boundary is at least
3243 what we need. */
3244 if (cfun->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3245 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3246
3247 /* If this kind of value comes back in memory,
3248 decide where in memory it should come back. */
3249 if (outmode != VOIDmode)
3250 {
3251 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3252 if (aggregate_value_p (tfom, 0))
3253 {
3254 #ifdef PCC_STATIC_STRUCT_RETURN
3255 rtx pointer_reg
3256 = hard_function_value (build_pointer_type (tfom), 0, 0);
3257 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3258 pcc_struct_value = 1;
3259 if (value == 0)
3260 value = gen_reg_rtx (outmode);
3261 #else /* not PCC_STATIC_STRUCT_RETURN */
3262 struct_value_size = GET_MODE_SIZE (outmode);
3263 if (value != 0 && MEM_P (value))
3264 mem_value = value;
3265 else
3266 mem_value = assign_temp (tfom, 0, 1, 1);
3267 #endif
3268 /* This call returns a big structure. */
3269 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3270 }
3271 }
3272 else
3273 tfom = void_type_node;
3274
3275 /* ??? Unfinished: must pass the memory address as an argument. */
3276
3277 /* Copy all the libcall-arguments out of the varargs data
3278 and into a vector ARGVEC.
3279
3280 Compute how to pass each argument. We only support a very small subset
3281 of the full argument passing conventions to limit complexity here since
3282 library functions shouldn't have many args. */
3283
3284 argvec = alloca ((nargs + 1) * sizeof (struct arg));
3285 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3286
3287 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3288 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
3289 #else
3290 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
3291 #endif
3292
3293 args_size.constant = 0;
3294 args_size.var = 0;
3295
3296 count = 0;
3297
3298 /* Now we are about to start emitting insns that can be deleted
3299 if a libcall is deleted. */
3300 if (flags & ECF_LIBCALL_BLOCK)
3301 start_sequence ();
3302
3303 push_temp_slots ();
3304
3305 /* If there's a structure value address to be passed,
3306 either pass it in the special place, or pass it as an extra argument. */
3307 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3308 {
3309 rtx addr = XEXP (mem_value, 0);
3310 nargs++;
3311
3312 /* Make sure it is a reasonable operand for a move or push insn. */
3313 if (!REG_P (addr) && !MEM_P (addr)
3314 && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
3315 addr = force_operand (addr, NULL_RTX);
3316
3317 argvec[count].value = addr;
3318 argvec[count].mode = Pmode;
3319 argvec[count].partial = 0;
3320
3321 argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
3322 if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far, Pmode, NULL_TREE, 1))
3323 abort ();
3324
3325 locate_and_pad_parm (Pmode, NULL_TREE,
3326 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3327 1,
3328 #else
3329 argvec[count].reg != 0,
3330 #endif
3331 0, NULL_TREE, &args_size, &argvec[count].locate);
3332
3333 if (argvec[count].reg == 0 || argvec[count].partial != 0
3334 || reg_parm_stack_space > 0)
3335 args_size.constant += argvec[count].locate.size.constant;
3336
3337 FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
3338
3339 count++;
3340 }
3341
3342 for (; count < nargs; count++)
3343 {
3344 rtx val = va_arg (p, rtx);
3345 enum machine_mode mode = va_arg (p, enum machine_mode);
3346
3347 /* We cannot convert the arg value to the mode the library wants here;
3348 must do it earlier where we know the signedness of the arg. */
3349 if (mode == BLKmode
3350 || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode))
3351 abort ();
3352
3353 /* Make sure it is a reasonable operand for a move or push insn. */
3354 if (!REG_P (val) && !MEM_P (val)
3355 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
3356 val = force_operand (val, NULL_RTX);
3357
3358 if (pass_by_reference (&args_so_far, mode, NULL_TREE, 1))
3359 {
3360 rtx slot;
3361 int must_copy = ! FUNCTION_ARG_CALLEE_COPIES (args_so_far, mode,
3362 NULL_TREE, 1);
3363
3364 /* loop.c won't look at CALL_INSN_FUNCTION_USAGE of const/pure
3365 functions, so we have to pretend this isn't such a function. */
3366 if (flags & ECF_LIBCALL_BLOCK)
3367 {
3368 rtx insns = get_insns ();
3369 end_sequence ();
3370 emit_insn (insns);
3371 }
3372 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3373
3374 /* If this was a CONST function, it is now PURE since
3375 it now reads memory. */
3376 if (flags & ECF_CONST)
3377 {
3378 flags &= ~ECF_CONST;
3379 flags |= ECF_PURE;
3380 }
3381
3382 if (GET_MODE (val) == MEM && ! must_copy)
3383 slot = val;
3384 else if (must_copy)
3385 {
3386 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3387 0, 1, 1);
3388 emit_move_insn (slot, val);
3389 }
3390 else
3391 {
3392 tree type = lang_hooks.types.type_for_mode (mode, 0);
3393
3394 slot
3395 = gen_rtx_MEM (mode,
3396 expand_expr (build1 (ADDR_EXPR,
3397 build_pointer_type (type),
3398 make_tree (type, val)),
3399 NULL_RTX, VOIDmode, 0));
3400 }
3401
3402 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3403 gen_rtx_USE (VOIDmode, slot),
3404 call_fusage);
3405 if (must_copy)
3406 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3407 gen_rtx_CLOBBER (VOIDmode,
3408 slot),
3409 call_fusage);
3410
3411 mode = Pmode;
3412 val = force_operand (XEXP (slot, 0), NULL_RTX);
3413 }
3414
3415 argvec[count].value = val;
3416 argvec[count].mode = mode;
3417
3418 argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
3419
3420 argvec[count].partial
3421 = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1);
3422
3423 locate_and_pad_parm (mode, NULL_TREE,
3424 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3425 1,
3426 #else
3427 argvec[count].reg != 0,
3428 #endif
3429 argvec[count].partial,
3430 NULL_TREE, &args_size, &argvec[count].locate);
3431
3432 if (argvec[count].locate.size.var)
3433 abort ();
3434
3435 if (argvec[count].reg == 0 || argvec[count].partial != 0
3436 || reg_parm_stack_space > 0)
3437 args_size.constant += argvec[count].locate.size.constant;
3438
3439 FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
3440 }
3441
3442 /* If this machine requires an external definition for library
3443 functions, write one out. */
3444 assemble_external_libcall (fun);
3445
3446 original_args_size = args_size;
3447 args_size.constant = (((args_size.constant
3448 + stack_pointer_delta
3449 + STACK_BYTES - 1)
3450 / STACK_BYTES
3451 * STACK_BYTES)
3452 - stack_pointer_delta);
3453
3454 args_size.constant = MAX (args_size.constant,
3455 reg_parm_stack_space);
3456
3457 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3458 args_size.constant -= reg_parm_stack_space;
3459 #endif
3460
3461 if (args_size.constant > current_function_outgoing_args_size)
3462 current_function_outgoing_args_size = args_size.constant;
3463
3464 if (ACCUMULATE_OUTGOING_ARGS)
3465 {
3466 /* Since the stack pointer will never be pushed, it is possible for
3467 the evaluation of a parm to clobber something we have already
3468 written to the stack. Since most function calls on RISC machines
3469 do not use the stack, this is uncommon, but must work correctly.
3470
3471 Therefore, we save any area of the stack that was already written
3472 and that we are using. Here we set up to do this by making a new
3473 stack usage map from the old one.
3474
3475 Another approach might be to try to reorder the argument
3476 evaluations to avoid this conflicting stack usage. */
3477
3478 needed = args_size.constant;
3479
3480 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3481 /* Since we will be writing into the entire argument area, the
3482 map must be allocated for its entire size, not just the part that
3483 is the responsibility of the caller. */
3484 needed += reg_parm_stack_space;
3485 #endif
3486
3487 #ifdef ARGS_GROW_DOWNWARD
3488 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3489 needed + 1);
3490 #else
3491 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3492 needed);
3493 #endif
3494 stack_usage_map = alloca (highest_outgoing_arg_in_use);
3495
3496 if (initial_highest_arg_in_use)
3497 memcpy (stack_usage_map, initial_stack_usage_map,
3498 initial_highest_arg_in_use);
3499
3500 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3501 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3502 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3503 needed = 0;
3504
3505 /* We must be careful to use virtual regs before they're instantiated,
3506 and real regs afterwards. Loop optimization, for example, can create
3507 new libcalls after we've instantiated the virtual regs, and if we
3508 use virtuals anyway, they won't match the rtl patterns. */
3509
3510 if (virtuals_instantiated)
3511 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3512 else
3513 argblock = virtual_outgoing_args_rtx;
3514 }
3515 else
3516 {
3517 if (!PUSH_ARGS)
3518 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3519 }
3520
3521 /* If we push args individually in reverse order, perform stack alignment
3522 before the first push (the last arg). */
3523 if (argblock == 0 && PUSH_ARGS_REVERSED)
3524 anti_adjust_stack (GEN_INT (args_size.constant
3525 - original_args_size.constant));
3526
3527 if (PUSH_ARGS_REVERSED)
3528 {
3529 inc = -1;
3530 argnum = nargs - 1;
3531 }
3532 else
3533 {
3534 inc = 1;
3535 argnum = 0;
3536 }
3537
3538 #ifdef REG_PARM_STACK_SPACE
3539 if (ACCUMULATE_OUTGOING_ARGS)
3540 {
3541 /* The argument list is the property of the called routine and it
3542 may clobber it. If the fixed area has been used for previous
3543 parameters, we must save and restore it. */
3544 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3545 &low_to_save, &high_to_save);
3546 }
3547 #endif
3548
3549 /* Push the args that need to be pushed. */
3550
3551 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3552 are to be pushed. */
3553 for (count = 0; count < nargs; count++, argnum += inc)
3554 {
3555 enum machine_mode mode = argvec[argnum].mode;
3556 rtx val = argvec[argnum].value;
3557 rtx reg = argvec[argnum].reg;
3558 int partial = argvec[argnum].partial;
3559 int lower_bound = 0, upper_bound = 0, i;
3560
3561 if (! (reg != 0 && partial == 0))
3562 {
3563 if (ACCUMULATE_OUTGOING_ARGS)
3564 {
3565 /* If this is being stored into a pre-allocated, fixed-size,
3566 stack area, save any previous data at that location. */
3567
3568 #ifdef ARGS_GROW_DOWNWARD
3569 /* stack_slot is negative, but we want to index stack_usage_map
3570 with positive values. */
3571 upper_bound = -argvec[argnum].locate.offset.constant + 1;
3572 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3573 #else
3574 lower_bound = argvec[argnum].locate.offset.constant;
3575 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3576 #endif
3577
3578 i = lower_bound;
3579 /* Don't worry about things in the fixed argument area;
3580 it has already been saved. */
3581 if (i < reg_parm_stack_space)
3582 i = reg_parm_stack_space;
3583 while (i < upper_bound && stack_usage_map[i] == 0)
3584 i++;
3585
3586 if (i < upper_bound)
3587 {
3588 /* We need to make a save area. */
3589 unsigned int size
3590 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3591 enum machine_mode save_mode
3592 = mode_for_size (size, MODE_INT, 1);
3593 rtx adr
3594 = plus_constant (argblock,
3595 argvec[argnum].locate.offset.constant);
3596 rtx stack_area
3597 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3598
3599 if (save_mode == BLKmode)
3600 {
3601 argvec[argnum].save_area
3602 = assign_stack_temp (BLKmode,
3603 argvec[argnum].locate.size.constant,
3604 0);
3605
3606 emit_block_move (validize_mem (argvec[argnum].save_area),
3607 stack_area,
3608 GEN_INT (argvec[argnum].locate.size.constant),
3609 BLOCK_OP_CALL_PARM);
3610 }
3611 else
3612 {
3613 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3614
3615 emit_move_insn (argvec[argnum].save_area, stack_area);
3616 }
3617 }
3618 }
3619
3620 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, PARM_BOUNDARY,
3621 partial, reg, 0, argblock,
3622 GEN_INT (argvec[argnum].locate.offset.constant),
3623 reg_parm_stack_space,
3624 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3625
3626 /* Now mark the segment we just used. */
3627 if (ACCUMULATE_OUTGOING_ARGS)
3628 for (i = lower_bound; i < upper_bound; i++)
3629 stack_usage_map[i] = 1;
3630
3631 NO_DEFER_POP;
3632 }
3633 }
3634
3635 /* If we pushed args in forward order, perform stack alignment
3636 after pushing the last arg. */
3637 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3638 anti_adjust_stack (GEN_INT (args_size.constant
3639 - original_args_size.constant));
3640
3641 if (PUSH_ARGS_REVERSED)
3642 argnum = nargs - 1;
3643 else
3644 argnum = 0;
3645
3646 fun = prepare_call_address (fun, NULL, &call_fusage, 0, 0);
3647
3648 /* Now load any reg parms into their regs. */
3649
3650 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3651 are to be pushed. */
3652 for (count = 0; count < nargs; count++, argnum += inc)
3653 {
3654 enum machine_mode mode = argvec[argnum].mode;
3655 rtx val = argvec[argnum].value;
3656 rtx reg = argvec[argnum].reg;
3657 int partial = argvec[argnum].partial;
3658
3659 /* Handle calls that pass values in multiple non-contiguous
3660 locations. The PA64 has examples of this for library calls. */
3661 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3662 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3663 else if (reg != 0 && partial == 0)
3664 emit_move_insn (reg, val);
3665
3666 NO_DEFER_POP;
3667 }
3668
3669 /* Any regs containing parms remain in use through the call. */
3670 for (count = 0; count < nargs; count++)
3671 {
3672 rtx reg = argvec[count].reg;
3673 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3674 use_group_regs (&call_fusage, reg);
3675 else if (reg != 0)
3676 use_reg (&call_fusage, reg);
3677 }
3678
3679 /* Pass the function the address in which to return a structure value. */
3680 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3681 {
3682 emit_move_insn (struct_value,
3683 force_reg (Pmode,
3684 force_operand (XEXP (mem_value, 0),
3685 NULL_RTX)));
3686 if (REG_P (struct_value))
3687 use_reg (&call_fusage, struct_value);
3688 }
3689
3690 /* Don't allow popping to be deferred, since then
3691 cse'ing of library calls could delete a call and leave the pop. */
3692 NO_DEFER_POP;
3693 valreg = (mem_value == 0 && outmode != VOIDmode
3694 ? hard_libcall_value (outmode) : NULL_RTX);
3695
3696 /* Stack must be properly aligned now. */
3697 if (stack_pointer_delta & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1))
3698 abort ();
3699
3700 before_call = get_last_insn ();
3701
3702 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3703 will set inhibit_defer_pop to that value. */
3704 /* The return type is needed to decide how many bytes the function pops.
3705 Signedness plays no role in that, so for simplicity, we pretend it's
3706 always signed. We also assume that the list of arguments passed has
3707 no impact, so we pretend it is unknown. */
3708
3709 emit_call_1 (fun, NULL,
3710 get_identifier (XSTR (orgfun, 0)),
3711 build_function_type (tfom, NULL_TREE),
3712 original_args_size.constant, args_size.constant,
3713 struct_value_size,
3714 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
3715 valreg,
3716 old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
3717
3718 /* For calls to `setjmp', etc., inform flow.c it should complain
3719 if nonvolatile values are live. For functions that cannot return,
3720 inform flow that control does not fall through. */
3721
3722 if (flags & (ECF_NORETURN | ECF_LONGJMP))
3723 {
3724 /* The barrier note must be emitted
3725 immediately after the CALL_INSN. Some ports emit more than
3726 just a CALL_INSN above, so we must search for it here. */
3727
3728 rtx last = get_last_insn ();
3729 while (!CALL_P (last))
3730 {
3731 last = PREV_INSN (last);
3732 /* There was no CALL_INSN? */
3733 if (last == before_call)
3734 abort ();
3735 }
3736
3737 emit_barrier_after (last);
3738 }
3739
3740 /* Now restore inhibit_defer_pop to its actual original value. */
3741 OK_DEFER_POP;
3742
3743 /* If call is cse'able, make appropriate pair of reg-notes around it.
3744 Test valreg so we don't crash; may safely ignore `const'
3745 if return type is void. Disable for PARALLEL return values, because
3746 we have no way to move such values into a pseudo register. */
3747 if (flags & ECF_LIBCALL_BLOCK)
3748 {
3749 rtx insns;
3750
3751 if (valreg == 0)
3752 {
3753 insns = get_insns ();
3754 end_sequence ();
3755 emit_insn (insns);
3756 }
3757 else
3758 {
3759 rtx note = 0;
3760 rtx temp;
3761 int i;
3762
3763 if (GET_CODE (valreg) == PARALLEL)
3764 {
3765 temp = gen_reg_rtx (outmode);
3766 emit_group_store (temp, valreg, NULL_TREE,
3767 GET_MODE_SIZE (outmode));
3768 valreg = temp;
3769 }
3770
3771 temp = gen_reg_rtx (GET_MODE (valreg));
3772
3773 /* Construct an "equal form" for the value which mentions all the
3774 arguments in order as well as the function name. */
3775 for (i = 0; i < nargs; i++)
3776 note = gen_rtx_EXPR_LIST (VOIDmode, argvec[i].value, note);
3777 note = gen_rtx_EXPR_LIST (VOIDmode, fun, note);
3778
3779 insns = get_insns ();
3780 end_sequence ();
3781
3782 if (flags & ECF_PURE)
3783 note = gen_rtx_EXPR_LIST (VOIDmode,
3784 gen_rtx_USE (VOIDmode,
3785 gen_rtx_MEM (BLKmode,
3786 gen_rtx_SCRATCH (VOIDmode))),
3787 note);
3788
3789 emit_libcall_block (insns, temp, valreg, note);
3790
3791 valreg = temp;
3792 }
3793 }
3794 pop_temp_slots ();
3795
3796 /* Copy the value to the right place. */
3797 if (outmode != VOIDmode && retval)
3798 {
3799 if (mem_value)
3800 {
3801 if (value == 0)
3802 value = mem_value;
3803 if (value != mem_value)
3804 emit_move_insn (value, mem_value);
3805 }
3806 else if (GET_CODE (valreg) == PARALLEL)
3807 {
3808 if (value == 0)
3809 value = gen_reg_rtx (outmode);
3810 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
3811 }
3812 else if (value != 0)
3813 emit_move_insn (value, valreg);
3814 else
3815 value = valreg;
3816 }
3817
3818 if (ACCUMULATE_OUTGOING_ARGS)
3819 {
3820 #ifdef REG_PARM_STACK_SPACE
3821 if (save_area)
3822 restore_fixed_argument_area (save_area, argblock,
3823 high_to_save, low_to_save);
3824 #endif
3825
3826 /* If we saved any argument areas, restore them. */
3827 for (count = 0; count < nargs; count++)
3828 if (argvec[count].save_area)
3829 {
3830 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
3831 rtx adr = plus_constant (argblock,
3832 argvec[count].locate.offset.constant);
3833 rtx stack_area = gen_rtx_MEM (save_mode,
3834 memory_address (save_mode, adr));
3835
3836 if (save_mode == BLKmode)
3837 emit_block_move (stack_area,
3838 validize_mem (argvec[count].save_area),
3839 GEN_INT (argvec[count].locate.size.constant),
3840 BLOCK_OP_CALL_PARM);
3841 else
3842 emit_move_insn (stack_area, argvec[count].save_area);
3843 }
3844
3845 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3846 stack_usage_map = initial_stack_usage_map;
3847 }
3848
3849 return value;
3850
3851 }
3852 \f
3853 /* Output a library call to function FUN (a SYMBOL_REF rtx)
3854 (emitting the queue unless NO_QUEUE is nonzero),
3855 for a value of mode OUTMODE,
3856 with NARGS different arguments, passed as alternating rtx values
3857 and machine_modes to convert them to.
3858
3859 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for `const'
3860 calls, LCT_PURE for `pure' calls, LCT_CONST_MAKE_BLOCK for `const' calls
3861 which should be enclosed in REG_LIBCALL/REG_RETVAL notes,
3862 LCT_PURE_MAKE_BLOCK for `purep' calls which should be enclosed in
3863 REG_LIBCALL/REG_RETVAL notes with extra (use (memory (scratch)),
3864 or other LCT_ value for other types of library calls. */
3865
3866 void
3867 emit_library_call (rtx orgfun, enum libcall_type fn_type,
3868 enum machine_mode outmode, int nargs, ...)
3869 {
3870 va_list p;
3871
3872 va_start (p, nargs);
3873 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
3874 va_end (p);
3875 }
3876 \f
3877 /* Like emit_library_call except that an extra argument, VALUE,
3878 comes second and says where to store the result.
3879 (If VALUE is zero, this function chooses a convenient way
3880 to return the value.
3881
3882 This function returns an rtx for where the value is to be found.
3883 If VALUE is nonzero, VALUE is returned. */
3884
3885 rtx
3886 emit_library_call_value (rtx orgfun, rtx value,
3887 enum libcall_type fn_type,
3888 enum machine_mode outmode, int nargs, ...)
3889 {
3890 rtx result;
3891 va_list p;
3892
3893 va_start (p, nargs);
3894 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
3895 nargs, p);
3896 va_end (p);
3897
3898 return result;
3899 }
3900 \f
3901 /* Store a single argument for a function call
3902 into the register or memory area where it must be passed.
3903 *ARG describes the argument value and where to pass it.
3904
3905 ARGBLOCK is the address of the stack-block for all the arguments,
3906 or 0 on a machine where arguments are pushed individually.
3907
3908 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
3909 so must be careful about how the stack is used.
3910
3911 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
3912 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
3913 that we need not worry about saving and restoring the stack.
3914
3915 FNDECL is the declaration of the function we are calling.
3916
3917 Return nonzero if this arg should cause sibcall failure,
3918 zero otherwise. */
3919
3920 static int
3921 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
3922 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
3923 {
3924 tree pval = arg->tree_value;
3925 rtx reg = 0;
3926 int partial = 0;
3927 int used = 0;
3928 int i, lower_bound = 0, upper_bound = 0;
3929 int sibcall_failure = 0;
3930
3931 if (TREE_CODE (pval) == ERROR_MARK)
3932 return 1;
3933
3934 /* Push a new temporary level for any temporaries we make for
3935 this argument. */
3936 push_temp_slots ();
3937
3938 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
3939 {
3940 /* If this is being stored into a pre-allocated, fixed-size, stack area,
3941 save any previous data at that location. */
3942 if (argblock && ! variable_size && arg->stack)
3943 {
3944 #ifdef ARGS_GROW_DOWNWARD
3945 /* stack_slot is negative, but we want to index stack_usage_map
3946 with positive values. */
3947 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
3948 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
3949 else
3950 upper_bound = 0;
3951
3952 lower_bound = upper_bound - arg->locate.size.constant;
3953 #else
3954 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
3955 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
3956 else
3957 lower_bound = 0;
3958
3959 upper_bound = lower_bound + arg->locate.size.constant;
3960 #endif
3961
3962 i = lower_bound;
3963 /* Don't worry about things in the fixed argument area;
3964 it has already been saved. */
3965 if (i < reg_parm_stack_space)
3966 i = reg_parm_stack_space;
3967 while (i < upper_bound && stack_usage_map[i] == 0)
3968 i++;
3969
3970 if (i < upper_bound)
3971 {
3972 /* We need to make a save area. */
3973 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
3974 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
3975 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
3976 rtx stack_area = gen_rtx_MEM (save_mode, adr);
3977
3978 if (save_mode == BLKmode)
3979 {
3980 tree ot = TREE_TYPE (arg->tree_value);
3981 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
3982 | TYPE_QUAL_CONST));
3983
3984 arg->save_area = assign_temp (nt, 0, 1, 1);
3985 preserve_temp_slots (arg->save_area);
3986 emit_block_move (validize_mem (arg->save_area), stack_area,
3987 expr_size (arg->tree_value),
3988 BLOCK_OP_CALL_PARM);
3989 }
3990 else
3991 {
3992 arg->save_area = gen_reg_rtx (save_mode);
3993 emit_move_insn (arg->save_area, stack_area);
3994 }
3995 }
3996 }
3997 }
3998
3999 /* If this isn't going to be placed on both the stack and in registers,
4000 set up the register and number of words. */
4001 if (! arg->pass_on_stack)
4002 {
4003 if (flags & ECF_SIBCALL)
4004 reg = arg->tail_call_reg;
4005 else
4006 reg = arg->reg;
4007 partial = arg->partial;
4008 }
4009
4010 if (reg != 0 && partial == 0)
4011 /* Being passed entirely in a register. We shouldn't be called in
4012 this case. */
4013 abort ();
4014
4015 /* If this arg needs special alignment, don't load the registers
4016 here. */
4017 if (arg->n_aligned_regs != 0)
4018 reg = 0;
4019
4020 /* If this is being passed partially in a register, we can't evaluate
4021 it directly into its stack slot. Otherwise, we can. */
4022 if (arg->value == 0)
4023 {
4024 /* stack_arg_under_construction is nonzero if a function argument is
4025 being evaluated directly into the outgoing argument list and
4026 expand_call must take special action to preserve the argument list
4027 if it is called recursively.
4028
4029 For scalar function arguments stack_usage_map is sufficient to
4030 determine which stack slots must be saved and restored. Scalar
4031 arguments in general have pass_on_stack == 0.
4032
4033 If this argument is initialized by a function which takes the
4034 address of the argument (a C++ constructor or a C function
4035 returning a BLKmode structure), then stack_usage_map is
4036 insufficient and expand_call must push the stack around the
4037 function call. Such arguments have pass_on_stack == 1.
4038
4039 Note that it is always safe to set stack_arg_under_construction,
4040 but this generates suboptimal code if set when not needed. */
4041
4042 if (arg->pass_on_stack)
4043 stack_arg_under_construction++;
4044
4045 arg->value = expand_expr (pval,
4046 (partial
4047 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4048 ? NULL_RTX : arg->stack,
4049 VOIDmode, EXPAND_STACK_PARM);
4050
4051 /* If we are promoting object (or for any other reason) the mode
4052 doesn't agree, convert the mode. */
4053
4054 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4055 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4056 arg->value, arg->unsignedp);
4057
4058 if (arg->pass_on_stack)
4059 stack_arg_under_construction--;
4060 }
4061
4062 /* Don't allow anything left on stack from computation
4063 of argument to alloca. */
4064 if (flags & ECF_MAY_BE_ALLOCA)
4065 do_pending_stack_adjust ();
4066
4067 if (arg->value == arg->stack)
4068 /* If the value is already in the stack slot, we are done. */
4069 ;
4070 else if (arg->mode != BLKmode)
4071 {
4072 int size;
4073
4074 /* Argument is a scalar, not entirely passed in registers.
4075 (If part is passed in registers, arg->partial says how much
4076 and emit_push_insn will take care of putting it there.)
4077
4078 Push it, and if its size is less than the
4079 amount of space allocated to it,
4080 also bump stack pointer by the additional space.
4081 Note that in C the default argument promotions
4082 will prevent such mismatches. */
4083
4084 size = GET_MODE_SIZE (arg->mode);
4085 /* Compute how much space the push instruction will push.
4086 On many machines, pushing a byte will advance the stack
4087 pointer by a halfword. */
4088 #ifdef PUSH_ROUNDING
4089 size = PUSH_ROUNDING (size);
4090 #endif
4091 used = size;
4092
4093 /* Compute how much space the argument should get:
4094 round up to a multiple of the alignment for arguments. */
4095 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4096 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4097 / (PARM_BOUNDARY / BITS_PER_UNIT))
4098 * (PARM_BOUNDARY / BITS_PER_UNIT));
4099
4100 /* This isn't already where we want it on the stack, so put it there.
4101 This can either be done with push or copy insns. */
4102 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4103 PARM_BOUNDARY, partial, reg, used - size, argblock,
4104 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4105 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4106
4107 /* Unless this is a partially-in-register argument, the argument is now
4108 in the stack. */
4109 if (partial == 0)
4110 arg->value = arg->stack;
4111 }
4112 else
4113 {
4114 /* BLKmode, at least partly to be pushed. */
4115
4116 unsigned int parm_align;
4117 int excess;
4118 rtx size_rtx;
4119
4120 /* Pushing a nonscalar.
4121 If part is passed in registers, PARTIAL says how much
4122 and emit_push_insn will take care of putting it there. */
4123
4124 /* Round its size up to a multiple
4125 of the allocation unit for arguments. */
4126
4127 if (arg->locate.size.var != 0)
4128 {
4129 excess = 0;
4130 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4131 }
4132 else
4133 {
4134 /* PUSH_ROUNDING has no effect on us, because
4135 emit_push_insn for BLKmode is careful to avoid it. */
4136 if (reg && GET_CODE (reg) == PARALLEL)
4137 {
4138 /* Use the size of the elt to compute excess. */
4139 rtx elt = XEXP (XVECEXP (reg, 0, 0), 0);
4140 excess = (arg->locate.size.constant
4141 - int_size_in_bytes (TREE_TYPE (pval))
4142 + partial * GET_MODE_SIZE (GET_MODE (elt)));
4143 }
4144 else
4145 excess = (arg->locate.size.constant
4146 - int_size_in_bytes (TREE_TYPE (pval))
4147 + partial * UNITS_PER_WORD);
4148 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4149 NULL_RTX, TYPE_MODE (sizetype), 0);
4150 }
4151
4152 /* Some types will require stricter alignment, which will be
4153 provided for elsewhere in argument layout. */
4154 parm_align = MAX (PARM_BOUNDARY, TYPE_ALIGN (TREE_TYPE (pval)));
4155
4156 /* When an argument is padded down, the block is aligned to
4157 PARM_BOUNDARY, but the actual argument isn't. */
4158 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4159 {
4160 if (arg->locate.size.var)
4161 parm_align = BITS_PER_UNIT;
4162 else if (excess)
4163 {
4164 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4165 parm_align = MIN (parm_align, excess_align);
4166 }
4167 }
4168
4169 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4170 {
4171 /* emit_push_insn might not work properly if arg->value and
4172 argblock + arg->locate.offset areas overlap. */
4173 rtx x = arg->value;
4174 int i = 0;
4175
4176 if (XEXP (x, 0) == current_function_internal_arg_pointer
4177 || (GET_CODE (XEXP (x, 0)) == PLUS
4178 && XEXP (XEXP (x, 0), 0) ==
4179 current_function_internal_arg_pointer
4180 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
4181 {
4182 if (XEXP (x, 0) != current_function_internal_arg_pointer)
4183 i = INTVAL (XEXP (XEXP (x, 0), 1));
4184
4185 /* expand_call should ensure this. */
4186 if (arg->locate.offset.var || GET_CODE (size_rtx) != CONST_INT)
4187 abort ();
4188
4189 if (arg->locate.offset.constant > i)
4190 {
4191 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4192 sibcall_failure = 1;
4193 }
4194 else if (arg->locate.offset.constant < i)
4195 {
4196 if (i < arg->locate.offset.constant + INTVAL (size_rtx))
4197 sibcall_failure = 1;
4198 }
4199 }
4200 }
4201
4202 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4203 parm_align, partial, reg, excess, argblock,
4204 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4205 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4206
4207 /* Unless this is a partially-in-register argument, the argument is now
4208 in the stack.
4209
4210 ??? Unlike the case above, in which we want the actual
4211 address of the data, so that we can load it directly into a
4212 register, here we want the address of the stack slot, so that
4213 it's properly aligned for word-by-word copying or something
4214 like that. It's not clear that this is always correct. */
4215 if (partial == 0)
4216 arg->value = arg->stack_slot;
4217 }
4218
4219 /* Mark all slots this store used. */
4220 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4221 && argblock && ! variable_size && arg->stack)
4222 for (i = lower_bound; i < upper_bound; i++)
4223 stack_usage_map[i] = 1;
4224
4225 /* Once we have pushed something, pops can't safely
4226 be deferred during the rest of the arguments. */
4227 NO_DEFER_POP;
4228
4229 /* Free any temporary slots made in processing this argument. Show
4230 that we might have taken the address of something and pushed that
4231 as an operand. */
4232 preserve_temp_slots (NULL_RTX);
4233 free_temp_slots ();
4234 pop_temp_slots ();
4235
4236 return sibcall_failure;
4237 }
4238
4239 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4240
4241 bool
4242 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4243 tree type)
4244 {
4245 if (!type)
4246 return false;
4247
4248 /* If the type has variable size... */
4249 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4250 return true;
4251
4252 /* If the type is marked as addressable (it is required
4253 to be constructed into the stack)... */
4254 if (TREE_ADDRESSABLE (type))
4255 return true;
4256
4257 return false;
4258 }
4259
4260 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4261 takes trailing padding of a structure into account. */
4262 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4263
4264 bool
4265 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, tree type)
4266 {
4267 if (!type)
4268 return false;
4269
4270 /* If the type has variable size... */
4271 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4272 return true;
4273
4274 /* If the type is marked as addressable (it is required
4275 to be constructed into the stack)... */
4276 if (TREE_ADDRESSABLE (type))
4277 return true;
4278
4279 /* If the padding and mode of the type is such that a copy into
4280 a register would put it into the wrong part of the register. */
4281 if (mode == BLKmode
4282 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4283 && (FUNCTION_ARG_PADDING (mode, type)
4284 == (BYTES_BIG_ENDIAN ? upward : downward)))
4285 return true;
4286
4287 return false;
4288 }