382de7fcdebedbc74b76ebc940c70a9c0905677d
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "flags.h"
30 #include "expr.h"
31 #include "optabs.h"
32 #include "libfuncs.h"
33 #include "function.h"
34 #include "regs.h"
35 #include "diagnostic-core.h"
36 #include "output.h"
37 #include "tm_p.h"
38 #include "timevar.h"
39 #include "sbitmap.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "cgraph.h"
43 #include "except.h"
44 #include "dbgcnt.h"
45 #include "tree-flow.h"
46
47 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
48 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
49
50 /* Data structure and subroutines used within expand_call. */
51
52 struct arg_data
53 {
54 /* Tree node for this argument. */
55 tree tree_value;
56 /* Mode for value; TYPE_MODE unless promoted. */
57 enum machine_mode mode;
58 /* Current RTL value for argument, or 0 if it isn't precomputed. */
59 rtx value;
60 /* Initially-compute RTL value for argument; only for const functions. */
61 rtx initial_value;
62 /* Register to pass this argument in, 0 if passed on stack, or an
63 PARALLEL if the arg is to be copied into multiple non-contiguous
64 registers. */
65 rtx reg;
66 /* Register to pass this argument in when generating tail call sequence.
67 This is not the same register as for normal calls on machines with
68 register windows. */
69 rtx tail_call_reg;
70 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
71 form for emit_group_move. */
72 rtx parallel_value;
73 /* If REG was promoted from the actual mode of the argument expression,
74 indicates whether the promotion is sign- or zero-extended. */
75 int unsignedp;
76 /* Number of bytes to put in registers. 0 means put the whole arg
77 in registers. Also 0 if not passed in registers. */
78 int partial;
79 /* Nonzero if argument must be passed on stack.
80 Note that some arguments may be passed on the stack
81 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
82 pass_on_stack identifies arguments that *cannot* go in registers. */
83 int pass_on_stack;
84 /* Some fields packaged up for locate_and_pad_parm. */
85 struct locate_and_pad_arg_data locate;
86 /* Location on the stack at which parameter should be stored. The store
87 has already been done if STACK == VALUE. */
88 rtx stack;
89 /* Location on the stack of the start of this argument slot. This can
90 differ from STACK if this arg pads downward. This location is known
91 to be aligned to TARGET_FUNCTION_ARG_BOUNDARY. */
92 rtx stack_slot;
93 /* Place that this stack area has been saved, if needed. */
94 rtx save_area;
95 /* If an argument's alignment does not permit direct copying into registers,
96 copy in smaller-sized pieces into pseudos. These are stored in a
97 block pointed to by this field. The next field says how many
98 word-sized pseudos we made. */
99 rtx *aligned_regs;
100 int n_aligned_regs;
101 };
102
103 /* A vector of one char per byte of stack space. A byte if nonzero if
104 the corresponding stack location has been used.
105 This vector is used to prevent a function call within an argument from
106 clobbering any stack already set up. */
107 static char *stack_usage_map;
108
109 /* Size of STACK_USAGE_MAP. */
110 static int highest_outgoing_arg_in_use;
111
112 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
113 stack location's tail call argument has been already stored into the stack.
114 This bitmap is used to prevent sibling call optimization if function tries
115 to use parent's incoming argument slots when they have been already
116 overwritten with tail call arguments. */
117 static sbitmap stored_args_map;
118
119 /* stack_arg_under_construction is nonzero when an argument may be
120 initialized with a constructor call (including a C function that
121 returns a BLKmode struct) and expand_call must take special action
122 to make sure the object being constructed does not overlap the
123 argument list for the constructor call. */
124 static int stack_arg_under_construction;
125
126 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
127 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
128 cumulative_args_t);
129 static void precompute_register_parameters (int, struct arg_data *, int *);
130 static int store_one_arg (struct arg_data *, rtx, int, int, int);
131 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
132 static int finalize_must_preallocate (int, int, struct arg_data *,
133 struct args_size *);
134 static void precompute_arguments (int, struct arg_data *);
135 static int compute_argument_block_size (int, struct args_size *, tree, tree, int);
136 static void initialize_argument_information (int, struct arg_data *,
137 struct args_size *, int,
138 tree, tree,
139 tree, tree, cumulative_args_t, int,
140 rtx *, int *, int *, int *,
141 bool *, bool);
142 static void compute_argument_addresses (struct arg_data *, rtx, int);
143 static rtx rtx_for_function_call (tree, tree);
144 static void load_register_parameters (struct arg_data *, int, rtx *, int,
145 int, int *);
146 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
147 enum machine_mode, int, va_list);
148 static int special_function_p (const_tree, int);
149 static int check_sibcall_argument_overlap_1 (rtx);
150 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
151
152 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
153 unsigned int);
154 static tree split_complex_types (tree);
155
156 #ifdef REG_PARM_STACK_SPACE
157 static rtx save_fixed_argument_area (int, rtx, int *, int *);
158 static void restore_fixed_argument_area (rtx, rtx, int, int);
159 #endif
160 \f
161 /* Force FUNEXP into a form suitable for the address of a CALL,
162 and return that as an rtx. Also load the static chain register
163 if FNDECL is a nested function.
164
165 CALL_FUSAGE points to a variable holding the prospective
166 CALL_INSN_FUNCTION_USAGE information. */
167
168 rtx
169 prepare_call_address (tree fndecl, rtx funexp, rtx static_chain_value,
170 rtx *call_fusage, int reg_parm_seen, int sibcallp)
171 {
172 /* Make a valid memory address and copy constants through pseudo-regs,
173 but not for a constant address if -fno-function-cse. */
174 if (GET_CODE (funexp) != SYMBOL_REF)
175 /* If we are using registers for parameters, force the
176 function address into a register now. */
177 funexp = ((reg_parm_seen
178 && targetm.small_register_classes_for_mode_p (FUNCTION_MODE))
179 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
180 : memory_address (FUNCTION_MODE, funexp));
181 else if (! sibcallp)
182 {
183 #ifndef NO_FUNCTION_CSE
184 if (optimize && ! flag_no_function_cse)
185 funexp = force_reg (Pmode, funexp);
186 #endif
187 }
188
189 if (static_chain_value != 0)
190 {
191 rtx chain;
192
193 gcc_assert (fndecl);
194 chain = targetm.calls.static_chain (fndecl, false);
195 static_chain_value = convert_memory_address (Pmode, static_chain_value);
196
197 emit_move_insn (chain, static_chain_value);
198 if (REG_P (chain))
199 use_reg (call_fusage, chain);
200 }
201
202 return funexp;
203 }
204
205 /* Generate instructions to call function FUNEXP,
206 and optionally pop the results.
207 The CALL_INSN is the first insn generated.
208
209 FNDECL is the declaration node of the function. This is given to the
210 hook TARGET_RETURN_POPS_ARGS to determine whether this function pops
211 its own args.
212
213 FUNTYPE is the data type of the function. This is given to the hook
214 TARGET_RETURN_POPS_ARGS to determine whether this function pops its
215 own args. We used to allow an identifier for library functions, but
216 that doesn't work when the return type is an aggregate type and the
217 calling convention says that the pointer to this aggregate is to be
218 popped by the callee.
219
220 STACK_SIZE is the number of bytes of arguments on the stack,
221 ROUNDED_STACK_SIZE is that number rounded up to
222 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
223 both to put into the call insn and to generate explicit popping
224 code if necessary.
225
226 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
227 It is zero if this call doesn't want a structure value.
228
229 NEXT_ARG_REG is the rtx that results from executing
230 targetm.calls.function_arg (&args_so_far, VOIDmode, void_type_node, true)
231 just after all the args have had their registers assigned.
232 This could be whatever you like, but normally it is the first
233 arg-register beyond those used for args in this call,
234 or 0 if all the arg-registers are used in this call.
235 It is passed on to `gen_call' so you can put this info in the call insn.
236
237 VALREG is a hard register in which a value is returned,
238 or 0 if the call does not return a value.
239
240 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
241 the args to this call were processed.
242 We restore `inhibit_defer_pop' to that value.
243
244 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
245 denote registers used by the called function. */
246
247 static void
248 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
249 tree funtype ATTRIBUTE_UNUSED,
250 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
251 HOST_WIDE_INT rounded_stack_size,
252 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
253 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
254 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
255 cumulative_args_t args_so_far ATTRIBUTE_UNUSED)
256 {
257 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
258 rtx call_insn, call, funmem;
259 int already_popped = 0;
260 HOST_WIDE_INT n_popped
261 = targetm.calls.return_pops_args (fndecl, funtype, stack_size);
262
263 #ifdef CALL_POPS_ARGS
264 n_popped += CALL_POPS_ARGS (*get_cumulative_args (args_so_far));
265 #endif
266
267 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
268 and we don't want to load it into a register as an optimization,
269 because prepare_call_address already did it if it should be done. */
270 if (GET_CODE (funexp) != SYMBOL_REF)
271 funexp = memory_address (FUNCTION_MODE, funexp);
272
273 funmem = gen_rtx_MEM (FUNCTION_MODE, funexp);
274 if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL)
275 {
276 tree t = fndecl;
277
278 /* Although a built-in FUNCTION_DECL and its non-__builtin
279 counterpart compare equal and get a shared mem_attrs, they
280 produce different dump output in compare-debug compilations,
281 if an entry gets garbage collected in one compilation, then
282 adds a different (but equivalent) entry, while the other
283 doesn't run the garbage collector at the same spot and then
284 shares the mem_attr with the equivalent entry. */
285 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL)
286 {
287 tree t2 = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
288 if (t2)
289 t = t2;
290 }
291
292 set_mem_expr (funmem, t);
293 }
294 else if (fntree)
295 set_mem_expr (funmem, build_simple_mem_ref (CALL_EXPR_FN (fntree)));
296
297 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
298 if ((ecf_flags & ECF_SIBCALL)
299 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
300 && (n_popped > 0 || stack_size == 0))
301 {
302 rtx n_pop = GEN_INT (n_popped);
303 rtx pat;
304
305 /* If this subroutine pops its own args, record that in the call insn
306 if possible, for the sake of frame pointer elimination. */
307
308 if (valreg)
309 pat = GEN_SIBCALL_VALUE_POP (valreg, funmem, rounded_stack_size_rtx,
310 next_arg_reg, n_pop);
311 else
312 pat = GEN_SIBCALL_POP (funmem, rounded_stack_size_rtx, next_arg_reg,
313 n_pop);
314
315 emit_call_insn (pat);
316 already_popped = 1;
317 }
318 else
319 #endif
320
321 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
322 /* If the target has "call" or "call_value" insns, then prefer them
323 if no arguments are actually popped. If the target does not have
324 "call" or "call_value" insns, then we must use the popping versions
325 even if the call has no arguments to pop. */
326 #if defined (HAVE_call) && defined (HAVE_call_value)
327 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
328 && n_popped > 0)
329 #else
330 if (HAVE_call_pop && HAVE_call_value_pop)
331 #endif
332 {
333 rtx n_pop = GEN_INT (n_popped);
334 rtx pat;
335
336 /* If this subroutine pops its own args, record that in the call insn
337 if possible, for the sake of frame pointer elimination. */
338
339 if (valreg)
340 pat = GEN_CALL_VALUE_POP (valreg, funmem, rounded_stack_size_rtx,
341 next_arg_reg, n_pop);
342 else
343 pat = GEN_CALL_POP (funmem, rounded_stack_size_rtx, next_arg_reg,
344 n_pop);
345
346 emit_call_insn (pat);
347 already_popped = 1;
348 }
349 else
350 #endif
351
352 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
353 if ((ecf_flags & ECF_SIBCALL)
354 && HAVE_sibcall && HAVE_sibcall_value)
355 {
356 if (valreg)
357 emit_call_insn (GEN_SIBCALL_VALUE (valreg, funmem,
358 rounded_stack_size_rtx,
359 next_arg_reg, NULL_RTX));
360 else
361 emit_call_insn (GEN_SIBCALL (funmem, rounded_stack_size_rtx,
362 next_arg_reg,
363 GEN_INT (struct_value_size)));
364 }
365 else
366 #endif
367
368 #if defined (HAVE_call) && defined (HAVE_call_value)
369 if (HAVE_call && HAVE_call_value)
370 {
371 if (valreg)
372 emit_call_insn (GEN_CALL_VALUE (valreg, funmem, rounded_stack_size_rtx,
373 next_arg_reg, NULL_RTX));
374 else
375 emit_call_insn (GEN_CALL (funmem, rounded_stack_size_rtx, next_arg_reg,
376 GEN_INT (struct_value_size)));
377 }
378 else
379 #endif
380 gcc_unreachable ();
381
382 /* Find the call we just emitted. */
383 call_insn = last_call_insn ();
384
385 /* Some target create a fresh MEM instead of reusing the one provided
386 above. Set its MEM_EXPR. */
387 call = PATTERN (call_insn);
388 if (GET_CODE (call) == PARALLEL)
389 call = XVECEXP (call, 0, 0);
390 if (GET_CODE (call) == SET)
391 call = SET_SRC (call);
392 if (GET_CODE (call) == CALL
393 && MEM_P (XEXP (call, 0))
394 && MEM_EXPR (XEXP (call, 0)) == NULL_TREE
395 && MEM_EXPR (funmem) != NULL_TREE)
396 set_mem_expr (XEXP (call, 0), MEM_EXPR (funmem));
397
398 /* Put the register usage information there. */
399 add_function_usage_to (call_insn, call_fusage);
400
401 /* If this is a const call, then set the insn's unchanging bit. */
402 if (ecf_flags & ECF_CONST)
403 RTL_CONST_CALL_P (call_insn) = 1;
404
405 /* If this is a pure call, then set the insn's unchanging bit. */
406 if (ecf_flags & ECF_PURE)
407 RTL_PURE_CALL_P (call_insn) = 1;
408
409 /* If this is a const call, then set the insn's unchanging bit. */
410 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
411 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
412
413 /* Create a nothrow REG_EH_REGION note, if needed. */
414 make_reg_eh_region_note (call_insn, ecf_flags, 0);
415
416 if (ecf_flags & ECF_NORETURN)
417 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
418
419 if (ecf_flags & ECF_RETURNS_TWICE)
420 {
421 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
422 cfun->calls_setjmp = 1;
423 }
424
425 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
426
427 /* Restore this now, so that we do defer pops for this call's args
428 if the context of the call as a whole permits. */
429 inhibit_defer_pop = old_inhibit_defer_pop;
430
431 if (n_popped > 0)
432 {
433 if (!already_popped)
434 CALL_INSN_FUNCTION_USAGE (call_insn)
435 = gen_rtx_EXPR_LIST (VOIDmode,
436 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
437 CALL_INSN_FUNCTION_USAGE (call_insn));
438 rounded_stack_size -= n_popped;
439 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
440 stack_pointer_delta -= n_popped;
441
442 add_reg_note (call_insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
443
444 /* If popup is needed, stack realign must use DRAP */
445 if (SUPPORTS_STACK_ALIGNMENT)
446 crtl->need_drap = true;
447 }
448
449 if (!ACCUMULATE_OUTGOING_ARGS)
450 {
451 /* If returning from the subroutine does not automatically pop the args,
452 we need an instruction to pop them sooner or later.
453 Perhaps do it now; perhaps just record how much space to pop later.
454
455 If returning from the subroutine does pop the args, indicate that the
456 stack pointer will be changed. */
457
458 if (rounded_stack_size != 0)
459 {
460 if (ecf_flags & ECF_NORETURN)
461 /* Just pretend we did the pop. */
462 stack_pointer_delta -= rounded_stack_size;
463 else if (flag_defer_pop && inhibit_defer_pop == 0
464 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
465 pending_stack_adjust += rounded_stack_size;
466 else
467 adjust_stack (rounded_stack_size_rtx);
468 }
469 }
470 /* When we accumulate outgoing args, we must avoid any stack manipulations.
471 Restore the stack pointer to its original value now. Usually
472 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
473 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
474 popping variants of functions exist as well.
475
476 ??? We may optimize similar to defer_pop above, but it is
477 probably not worthwhile.
478
479 ??? It will be worthwhile to enable combine_stack_adjustments even for
480 such machines. */
481 else if (n_popped)
482 anti_adjust_stack (GEN_INT (n_popped));
483 }
484
485 /* Determine if the function identified by NAME and FNDECL is one with
486 special properties we wish to know about.
487
488 For example, if the function might return more than one time (setjmp), then
489 set RETURNS_TWICE to a nonzero value.
490
491 Similarly set NORETURN if the function is in the longjmp family.
492
493 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
494 space from the stack such as alloca. */
495
496 static int
497 special_function_p (const_tree fndecl, int flags)
498 {
499 if (fndecl && DECL_NAME (fndecl)
500 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
501 /* Exclude functions not at the file scope, or not `extern',
502 since they are not the magic functions we would otherwise
503 think they are.
504 FIXME: this should be handled with attributes, not with this
505 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
506 because you can declare fork() inside a function if you
507 wish. */
508 && (DECL_CONTEXT (fndecl) == NULL_TREE
509 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
510 && TREE_PUBLIC (fndecl))
511 {
512 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
513 const char *tname = name;
514
515 /* We assume that alloca will always be called by name. It
516 makes no sense to pass it as a pointer-to-function to
517 anything that does not understand its behavior. */
518 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
519 && name[0] == 'a'
520 && ! strcmp (name, "alloca"))
521 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
522 && name[0] == '_'
523 && ! strcmp (name, "__builtin_alloca"))))
524 flags |= ECF_MAY_BE_ALLOCA;
525
526 /* Disregard prefix _, __, __x or __builtin_. */
527 if (name[0] == '_')
528 {
529 if (name[1] == '_'
530 && name[2] == 'b'
531 && !strncmp (name + 3, "uiltin_", 7))
532 tname += 10;
533 else if (name[1] == '_' && name[2] == 'x')
534 tname += 3;
535 else if (name[1] == '_')
536 tname += 2;
537 else
538 tname += 1;
539 }
540
541 if (tname[0] == 's')
542 {
543 if ((tname[1] == 'e'
544 && (! strcmp (tname, "setjmp")
545 || ! strcmp (tname, "setjmp_syscall")))
546 || (tname[1] == 'i'
547 && ! strcmp (tname, "sigsetjmp"))
548 || (tname[1] == 'a'
549 && ! strcmp (tname, "savectx")))
550 flags |= ECF_RETURNS_TWICE;
551
552 if (tname[1] == 'i'
553 && ! strcmp (tname, "siglongjmp"))
554 flags |= ECF_NORETURN;
555 }
556 else if ((tname[0] == 'q' && tname[1] == 's'
557 && ! strcmp (tname, "qsetjmp"))
558 || (tname[0] == 'v' && tname[1] == 'f'
559 && ! strcmp (tname, "vfork"))
560 || (tname[0] == 'g' && tname[1] == 'e'
561 && !strcmp (tname, "getcontext")))
562 flags |= ECF_RETURNS_TWICE;
563
564 else if (tname[0] == 'l' && tname[1] == 'o'
565 && ! strcmp (tname, "longjmp"))
566 flags |= ECF_NORETURN;
567 }
568
569 return flags;
570 }
571
572 /* Return nonzero when FNDECL represents a call to setjmp. */
573
574 int
575 setjmp_call_p (const_tree fndecl)
576 {
577 if (DECL_IS_RETURNS_TWICE (fndecl))
578 return ECF_RETURNS_TWICE;
579 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
580 }
581
582
583 /* Return true if STMT is an alloca call. */
584
585 bool
586 gimple_alloca_call_p (const_gimple stmt)
587 {
588 tree fndecl;
589
590 if (!is_gimple_call (stmt))
591 return false;
592
593 fndecl = gimple_call_fndecl (stmt);
594 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
595 return true;
596
597 return false;
598 }
599
600 /* Return true when exp contains alloca call. */
601
602 bool
603 alloca_call_p (const_tree exp)
604 {
605 if (TREE_CODE (exp) == CALL_EXPR
606 && TREE_CODE (CALL_EXPR_FN (exp)) == ADDR_EXPR
607 && (TREE_CODE (TREE_OPERAND (CALL_EXPR_FN (exp), 0)) == FUNCTION_DECL)
608 && (special_function_p (TREE_OPERAND (CALL_EXPR_FN (exp), 0), 0)
609 & ECF_MAY_BE_ALLOCA))
610 return true;
611 return false;
612 }
613
614 /* Return TRUE if FNDECL is either a TM builtin or a TM cloned
615 function. Return FALSE otherwise. */
616
617 static bool
618 is_tm_builtin (const_tree fndecl)
619 {
620 if (fndecl == NULL)
621 return false;
622
623 if (decl_is_tm_clone (fndecl))
624 return true;
625
626 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
627 {
628 switch (DECL_FUNCTION_CODE (fndecl))
629 {
630 case BUILT_IN_TM_COMMIT:
631 case BUILT_IN_TM_COMMIT_EH:
632 case BUILT_IN_TM_ABORT:
633 case BUILT_IN_TM_IRREVOCABLE:
634 case BUILT_IN_TM_GETTMCLONE_IRR:
635 case BUILT_IN_TM_MEMCPY:
636 case BUILT_IN_TM_MEMMOVE:
637 case BUILT_IN_TM_MEMSET:
638 CASE_BUILT_IN_TM_STORE (1):
639 CASE_BUILT_IN_TM_STORE (2):
640 CASE_BUILT_IN_TM_STORE (4):
641 CASE_BUILT_IN_TM_STORE (8):
642 CASE_BUILT_IN_TM_STORE (FLOAT):
643 CASE_BUILT_IN_TM_STORE (DOUBLE):
644 CASE_BUILT_IN_TM_STORE (LDOUBLE):
645 CASE_BUILT_IN_TM_STORE (M64):
646 CASE_BUILT_IN_TM_STORE (M128):
647 CASE_BUILT_IN_TM_STORE (M256):
648 CASE_BUILT_IN_TM_LOAD (1):
649 CASE_BUILT_IN_TM_LOAD (2):
650 CASE_BUILT_IN_TM_LOAD (4):
651 CASE_BUILT_IN_TM_LOAD (8):
652 CASE_BUILT_IN_TM_LOAD (FLOAT):
653 CASE_BUILT_IN_TM_LOAD (DOUBLE):
654 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
655 CASE_BUILT_IN_TM_LOAD (M64):
656 CASE_BUILT_IN_TM_LOAD (M128):
657 CASE_BUILT_IN_TM_LOAD (M256):
658 case BUILT_IN_TM_LOG:
659 case BUILT_IN_TM_LOG_1:
660 case BUILT_IN_TM_LOG_2:
661 case BUILT_IN_TM_LOG_4:
662 case BUILT_IN_TM_LOG_8:
663 case BUILT_IN_TM_LOG_FLOAT:
664 case BUILT_IN_TM_LOG_DOUBLE:
665 case BUILT_IN_TM_LOG_LDOUBLE:
666 case BUILT_IN_TM_LOG_M64:
667 case BUILT_IN_TM_LOG_M128:
668 case BUILT_IN_TM_LOG_M256:
669 return true;
670 default:
671 break;
672 }
673 }
674 return false;
675 }
676
677 /* Detect flags (function attributes) from the function decl or type node. */
678
679 int
680 flags_from_decl_or_type (const_tree exp)
681 {
682 int flags = 0;
683
684 if (DECL_P (exp))
685 {
686 /* The function exp may have the `malloc' attribute. */
687 if (DECL_IS_MALLOC (exp))
688 flags |= ECF_MALLOC;
689
690 /* The function exp may have the `returns_twice' attribute. */
691 if (DECL_IS_RETURNS_TWICE (exp))
692 flags |= ECF_RETURNS_TWICE;
693
694 /* Process the pure and const attributes. */
695 if (TREE_READONLY (exp))
696 flags |= ECF_CONST;
697 if (DECL_PURE_P (exp))
698 flags |= ECF_PURE;
699 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
700 flags |= ECF_LOOPING_CONST_OR_PURE;
701
702 if (DECL_IS_NOVOPS (exp))
703 flags |= ECF_NOVOPS;
704 if (lookup_attribute ("leaf", DECL_ATTRIBUTES (exp)))
705 flags |= ECF_LEAF;
706
707 if (TREE_NOTHROW (exp))
708 flags |= ECF_NOTHROW;
709
710 if (flag_tm)
711 {
712 if (is_tm_builtin (exp))
713 flags |= ECF_TM_BUILTIN;
714 else if ((flags & ECF_CONST) != 0
715 || lookup_attribute ("transaction_pure",
716 TYPE_ATTRIBUTES (TREE_TYPE (exp))))
717 flags |= ECF_TM_PURE;
718 }
719
720 flags = special_function_p (exp, flags);
721 }
722 else if (TYPE_P (exp))
723 {
724 if (TYPE_READONLY (exp))
725 flags |= ECF_CONST;
726
727 if (flag_tm
728 && ((flags & ECF_CONST) != 0
729 || lookup_attribute ("transaction_pure", TYPE_ATTRIBUTES (exp))))
730 flags |= ECF_TM_PURE;
731 }
732
733 if (TREE_THIS_VOLATILE (exp))
734 {
735 flags |= ECF_NORETURN;
736 if (flags & (ECF_CONST|ECF_PURE))
737 flags |= ECF_LOOPING_CONST_OR_PURE;
738 }
739
740 return flags;
741 }
742
743 /* Detect flags from a CALL_EXPR. */
744
745 int
746 call_expr_flags (const_tree t)
747 {
748 int flags;
749 tree decl = get_callee_fndecl (t);
750
751 if (decl)
752 flags = flags_from_decl_or_type (decl);
753 else
754 {
755 t = TREE_TYPE (CALL_EXPR_FN (t));
756 if (t && TREE_CODE (t) == POINTER_TYPE)
757 flags = flags_from_decl_or_type (TREE_TYPE (t));
758 else
759 flags = 0;
760 }
761
762 return flags;
763 }
764
765 /* Precompute all register parameters as described by ARGS, storing values
766 into fields within the ARGS array.
767
768 NUM_ACTUALS indicates the total number elements in the ARGS array.
769
770 Set REG_PARM_SEEN if we encounter a register parameter. */
771
772 static void
773 precompute_register_parameters (int num_actuals, struct arg_data *args,
774 int *reg_parm_seen)
775 {
776 int i;
777
778 *reg_parm_seen = 0;
779
780 for (i = 0; i < num_actuals; i++)
781 if (args[i].reg != 0 && ! args[i].pass_on_stack)
782 {
783 *reg_parm_seen = 1;
784
785 if (args[i].value == 0)
786 {
787 push_temp_slots ();
788 args[i].value = expand_normal (args[i].tree_value);
789 preserve_temp_slots (args[i].value);
790 pop_temp_slots ();
791 }
792
793 /* If we are to promote the function arg to a wider mode,
794 do it now. */
795
796 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
797 args[i].value
798 = convert_modes (args[i].mode,
799 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
800 args[i].value, args[i].unsignedp);
801
802 /* If the value is a non-legitimate constant, force it into a
803 pseudo now. TLS symbols sometimes need a call to resolve. */
804 if (CONSTANT_P (args[i].value)
805 && !targetm.legitimate_constant_p (args[i].mode, args[i].value))
806 args[i].value = force_reg (args[i].mode, args[i].value);
807
808 /* If we're going to have to load the value by parts, pull the
809 parts into pseudos. The part extraction process can involve
810 non-trivial computation. */
811 if (GET_CODE (args[i].reg) == PARALLEL)
812 {
813 tree type = TREE_TYPE (args[i].tree_value);
814 args[i].parallel_value
815 = emit_group_load_into_temps (args[i].reg, args[i].value,
816 type, int_size_in_bytes (type));
817 }
818
819 /* If the value is expensive, and we are inside an appropriately
820 short loop, put the value into a pseudo and then put the pseudo
821 into the hard reg.
822
823 For small register classes, also do this if this call uses
824 register parameters. This is to avoid reload conflicts while
825 loading the parameters registers. */
826
827 else if ((! (REG_P (args[i].value)
828 || (GET_CODE (args[i].value) == SUBREG
829 && REG_P (SUBREG_REG (args[i].value)))))
830 && args[i].mode != BLKmode
831 && set_src_cost (args[i].value, optimize_insn_for_speed_p ())
832 > COSTS_N_INSNS (1)
833 && ((*reg_parm_seen
834 && targetm.small_register_classes_for_mode_p (args[i].mode))
835 || optimize))
836 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
837 }
838 }
839
840 #ifdef REG_PARM_STACK_SPACE
841
842 /* The argument list is the property of the called routine and it
843 may clobber it. If the fixed area has been used for previous
844 parameters, we must save and restore it. */
845
846 static rtx
847 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
848 {
849 int low;
850 int high;
851
852 /* Compute the boundary of the area that needs to be saved, if any. */
853 high = reg_parm_stack_space;
854 #ifdef ARGS_GROW_DOWNWARD
855 high += 1;
856 #endif
857 if (high > highest_outgoing_arg_in_use)
858 high = highest_outgoing_arg_in_use;
859
860 for (low = 0; low < high; low++)
861 if (stack_usage_map[low] != 0)
862 {
863 int num_to_save;
864 enum machine_mode save_mode;
865 int delta;
866 rtx stack_area;
867 rtx save_area;
868
869 while (stack_usage_map[--high] == 0)
870 ;
871
872 *low_to_save = low;
873 *high_to_save = high;
874
875 num_to_save = high - low + 1;
876 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
877
878 /* If we don't have the required alignment, must do this
879 in BLKmode. */
880 if ((low & (MIN (GET_MODE_SIZE (save_mode),
881 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
882 save_mode = BLKmode;
883
884 #ifdef ARGS_GROW_DOWNWARD
885 delta = -high;
886 #else
887 delta = low;
888 #endif
889 stack_area = gen_rtx_MEM (save_mode,
890 memory_address (save_mode,
891 plus_constant (argblock,
892 delta)));
893
894 set_mem_align (stack_area, PARM_BOUNDARY);
895 if (save_mode == BLKmode)
896 {
897 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
898 emit_block_move (validize_mem (save_area), stack_area,
899 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
900 }
901 else
902 {
903 save_area = gen_reg_rtx (save_mode);
904 emit_move_insn (save_area, stack_area);
905 }
906
907 return save_area;
908 }
909
910 return NULL_RTX;
911 }
912
913 static void
914 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
915 {
916 enum machine_mode save_mode = GET_MODE (save_area);
917 int delta;
918 rtx stack_area;
919
920 #ifdef ARGS_GROW_DOWNWARD
921 delta = -high_to_save;
922 #else
923 delta = low_to_save;
924 #endif
925 stack_area = gen_rtx_MEM (save_mode,
926 memory_address (save_mode,
927 plus_constant (argblock, delta)));
928 set_mem_align (stack_area, PARM_BOUNDARY);
929
930 if (save_mode != BLKmode)
931 emit_move_insn (stack_area, save_area);
932 else
933 emit_block_move (stack_area, validize_mem (save_area),
934 GEN_INT (high_to_save - low_to_save + 1),
935 BLOCK_OP_CALL_PARM);
936 }
937 #endif /* REG_PARM_STACK_SPACE */
938
939 /* If any elements in ARGS refer to parameters that are to be passed in
940 registers, but not in memory, and whose alignment does not permit a
941 direct copy into registers. Copy the values into a group of pseudos
942 which we will later copy into the appropriate hard registers.
943
944 Pseudos for each unaligned argument will be stored into the array
945 args[argnum].aligned_regs. The caller is responsible for deallocating
946 the aligned_regs array if it is nonzero. */
947
948 static void
949 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
950 {
951 int i, j;
952
953 for (i = 0; i < num_actuals; i++)
954 if (args[i].reg != 0 && ! args[i].pass_on_stack
955 && args[i].mode == BLKmode
956 && MEM_P (args[i].value)
957 && (MEM_ALIGN (args[i].value)
958 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
959 {
960 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
961 int endian_correction = 0;
962
963 if (args[i].partial)
964 {
965 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
966 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
967 }
968 else
969 {
970 args[i].n_aligned_regs
971 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
972 }
973
974 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
975
976 /* Structures smaller than a word are normally aligned to the
977 least significant byte. On a BYTES_BIG_ENDIAN machine,
978 this means we must skip the empty high order bytes when
979 calculating the bit offset. */
980 if (bytes < UNITS_PER_WORD
981 #ifdef BLOCK_REG_PADDING
982 && (BLOCK_REG_PADDING (args[i].mode,
983 TREE_TYPE (args[i].tree_value), 1)
984 == downward)
985 #else
986 && BYTES_BIG_ENDIAN
987 #endif
988 )
989 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
990
991 for (j = 0; j < args[i].n_aligned_regs; j++)
992 {
993 rtx reg = gen_reg_rtx (word_mode);
994 rtx word = operand_subword_force (args[i].value, j, BLKmode);
995 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
996
997 args[i].aligned_regs[j] = reg;
998 word = extract_bit_field (word, bitsize, 0, 1, false, NULL_RTX,
999 word_mode, word_mode);
1000
1001 /* There is no need to restrict this code to loading items
1002 in TYPE_ALIGN sized hunks. The bitfield instructions can
1003 load up entire word sized registers efficiently.
1004
1005 ??? This may not be needed anymore.
1006 We use to emit a clobber here but that doesn't let later
1007 passes optimize the instructions we emit. By storing 0 into
1008 the register later passes know the first AND to zero out the
1009 bitfield being set in the register is unnecessary. The store
1010 of 0 will be deleted as will at least the first AND. */
1011
1012 emit_move_insn (reg, const0_rtx);
1013
1014 bytes -= bitsize / BITS_PER_UNIT;
1015 store_bit_field (reg, bitsize, endian_correction, 0, 0,
1016 word_mode, word);
1017 }
1018 }
1019 }
1020
1021 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
1022 CALL_EXPR EXP.
1023
1024 NUM_ACTUALS is the total number of parameters.
1025
1026 N_NAMED_ARGS is the total number of named arguments.
1027
1028 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
1029 value, or null.
1030
1031 FNDECL is the tree code for the target of this call (if known)
1032
1033 ARGS_SO_FAR holds state needed by the target to know where to place
1034 the next argument.
1035
1036 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
1037 for arguments which are passed in registers.
1038
1039 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
1040 and may be modified by this routine.
1041
1042 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
1043 flags which may may be modified by this routine.
1044
1045 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
1046 that requires allocation of stack space.
1047
1048 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
1049 the thunked-to function. */
1050
1051 static void
1052 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
1053 struct arg_data *args,
1054 struct args_size *args_size,
1055 int n_named_args ATTRIBUTE_UNUSED,
1056 tree exp, tree struct_value_addr_value,
1057 tree fndecl, tree fntype,
1058 cumulative_args_t args_so_far,
1059 int reg_parm_stack_space,
1060 rtx *old_stack_level, int *old_pending_adj,
1061 int *must_preallocate, int *ecf_flags,
1062 bool *may_tailcall, bool call_from_thunk_p)
1063 {
1064 CUMULATIVE_ARGS *args_so_far_pnt = get_cumulative_args (args_so_far);
1065 location_t loc = EXPR_LOCATION (exp);
1066 /* 1 if scanning parms front to back, -1 if scanning back to front. */
1067 int inc;
1068
1069 /* Count arg position in order args appear. */
1070 int argpos;
1071
1072 int i;
1073
1074 args_size->constant = 0;
1075 args_size->var = 0;
1076
1077 /* In this loop, we consider args in the order they are written.
1078 We fill up ARGS from the front or from the back if necessary
1079 so that in any case the first arg to be pushed ends up at the front. */
1080
1081 if (PUSH_ARGS_REVERSED)
1082 {
1083 i = num_actuals - 1, inc = -1;
1084 /* In this case, must reverse order of args
1085 so that we compute and push the last arg first. */
1086 }
1087 else
1088 {
1089 i = 0, inc = 1;
1090 }
1091
1092 /* First fill in the actual arguments in the ARGS array, splitting
1093 complex arguments if necessary. */
1094 {
1095 int j = i;
1096 call_expr_arg_iterator iter;
1097 tree arg;
1098
1099 if (struct_value_addr_value)
1100 {
1101 args[j].tree_value = struct_value_addr_value;
1102 j += inc;
1103 }
1104 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
1105 {
1106 tree argtype = TREE_TYPE (arg);
1107 if (targetm.calls.split_complex_arg
1108 && argtype
1109 && TREE_CODE (argtype) == COMPLEX_TYPE
1110 && targetm.calls.split_complex_arg (argtype))
1111 {
1112 tree subtype = TREE_TYPE (argtype);
1113 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
1114 j += inc;
1115 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
1116 }
1117 else
1118 args[j].tree_value = arg;
1119 j += inc;
1120 }
1121 }
1122
1123 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1124 for (argpos = 0; argpos < num_actuals; i += inc, argpos++)
1125 {
1126 tree type = TREE_TYPE (args[i].tree_value);
1127 int unsignedp;
1128 enum machine_mode mode;
1129
1130 /* Replace erroneous argument with constant zero. */
1131 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1132 args[i].tree_value = integer_zero_node, type = integer_type_node;
1133
1134 /* If TYPE is a transparent union or record, pass things the way
1135 we would pass the first field of the union or record. We have
1136 already verified that the modes are the same. */
1137 if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
1138 && TYPE_TRANSPARENT_AGGR (type))
1139 type = TREE_TYPE (first_field (type));
1140
1141 /* Decide where to pass this arg.
1142
1143 args[i].reg is nonzero if all or part is passed in registers.
1144
1145 args[i].partial is nonzero if part but not all is passed in registers,
1146 and the exact value says how many bytes are passed in registers.
1147
1148 args[i].pass_on_stack is nonzero if the argument must at least be
1149 computed on the stack. It may then be loaded back into registers
1150 if args[i].reg is nonzero.
1151
1152 These decisions are driven by the FUNCTION_... macros and must agree
1153 with those made by function.c. */
1154
1155 /* See if this argument should be passed by invisible reference. */
1156 if (pass_by_reference (args_so_far_pnt, TYPE_MODE (type),
1157 type, argpos < n_named_args))
1158 {
1159 bool callee_copies;
1160 tree base;
1161
1162 callee_copies
1163 = reference_callee_copied (args_so_far_pnt, TYPE_MODE (type),
1164 type, argpos < n_named_args);
1165
1166 /* If we're compiling a thunk, pass through invisible references
1167 instead of making a copy. */
1168 if (call_from_thunk_p
1169 || (callee_copies
1170 && !TREE_ADDRESSABLE (type)
1171 && (base = get_base_address (args[i].tree_value))
1172 && TREE_CODE (base) != SSA_NAME
1173 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1174 {
1175 mark_addressable (args[i].tree_value);
1176
1177 /* We can't use sibcalls if a callee-copied argument is
1178 stored in the current function's frame. */
1179 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1180 *may_tailcall = false;
1181
1182 args[i].tree_value = build_fold_addr_expr_loc (loc,
1183 args[i].tree_value);
1184 type = TREE_TYPE (args[i].tree_value);
1185
1186 if (*ecf_flags & ECF_CONST)
1187 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
1188 }
1189 else
1190 {
1191 /* We make a copy of the object and pass the address to the
1192 function being called. */
1193 rtx copy;
1194
1195 if (!COMPLETE_TYPE_P (type)
1196 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
1197 || (flag_stack_check == GENERIC_STACK_CHECK
1198 && compare_tree_int (TYPE_SIZE_UNIT (type),
1199 STACK_CHECK_MAX_VAR_SIZE) > 0))
1200 {
1201 /* This is a variable-sized object. Make space on the stack
1202 for it. */
1203 rtx size_rtx = expr_size (args[i].tree_value);
1204
1205 if (*old_stack_level == 0)
1206 {
1207 emit_stack_save (SAVE_BLOCK, old_stack_level);
1208 *old_pending_adj = pending_stack_adjust;
1209 pending_stack_adjust = 0;
1210 }
1211
1212 /* We can pass TRUE as the 4th argument because we just
1213 saved the stack pointer and will restore it right after
1214 the call. */
1215 copy = allocate_dynamic_stack_space (size_rtx,
1216 TYPE_ALIGN (type),
1217 TYPE_ALIGN (type),
1218 true);
1219 copy = gen_rtx_MEM (BLKmode, copy);
1220 set_mem_attributes (copy, type, 1);
1221 }
1222 else
1223 copy = assign_temp (type, 0, 1, 0);
1224
1225 store_expr (args[i].tree_value, copy, 0, false);
1226
1227 /* Just change the const function to pure and then let
1228 the next test clear the pure based on
1229 callee_copies. */
1230 if (*ecf_flags & ECF_CONST)
1231 {
1232 *ecf_flags &= ~ECF_CONST;
1233 *ecf_flags |= ECF_PURE;
1234 }
1235
1236 if (!callee_copies && *ecf_flags & ECF_PURE)
1237 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
1238
1239 args[i].tree_value
1240 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
1241 type = TREE_TYPE (args[i].tree_value);
1242 *may_tailcall = false;
1243 }
1244 }
1245
1246 unsignedp = TYPE_UNSIGNED (type);
1247 mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
1248 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
1249
1250 args[i].unsignedp = unsignedp;
1251 args[i].mode = mode;
1252
1253 args[i].reg = targetm.calls.function_arg (args_so_far, mode, type,
1254 argpos < n_named_args);
1255
1256 /* If this is a sibling call and the machine has register windows, the
1257 register window has to be unwinded before calling the routine, so
1258 arguments have to go into the incoming registers. */
1259 if (targetm.calls.function_incoming_arg != targetm.calls.function_arg)
1260 args[i].tail_call_reg
1261 = targetm.calls.function_incoming_arg (args_so_far, mode, type,
1262 argpos < n_named_args);
1263 else
1264 args[i].tail_call_reg = args[i].reg;
1265
1266 if (args[i].reg)
1267 args[i].partial
1268 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1269 argpos < n_named_args);
1270
1271 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1272
1273 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1274 it means that we are to pass this arg in the register(s) designated
1275 by the PARALLEL, but also to pass it in the stack. */
1276 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1277 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1278 args[i].pass_on_stack = 1;
1279
1280 /* If this is an addressable type, we must preallocate the stack
1281 since we must evaluate the object into its final location.
1282
1283 If this is to be passed in both registers and the stack, it is simpler
1284 to preallocate. */
1285 if (TREE_ADDRESSABLE (type)
1286 || (args[i].pass_on_stack && args[i].reg != 0))
1287 *must_preallocate = 1;
1288
1289 /* Compute the stack-size of this argument. */
1290 if (args[i].reg == 0 || args[i].partial != 0
1291 || reg_parm_stack_space > 0
1292 || args[i].pass_on_stack)
1293 locate_and_pad_parm (mode, type,
1294 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1295 1,
1296 #else
1297 args[i].reg != 0,
1298 #endif
1299 args[i].pass_on_stack ? 0 : args[i].partial,
1300 fndecl, args_size, &args[i].locate);
1301 #ifdef BLOCK_REG_PADDING
1302 else
1303 /* The argument is passed entirely in registers. See at which
1304 end it should be padded. */
1305 args[i].locate.where_pad =
1306 BLOCK_REG_PADDING (mode, type,
1307 int_size_in_bytes (type) <= UNITS_PER_WORD);
1308 #endif
1309
1310 /* Update ARGS_SIZE, the total stack space for args so far. */
1311
1312 args_size->constant += args[i].locate.size.constant;
1313 if (args[i].locate.size.var)
1314 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1315
1316 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1317 have been used, etc. */
1318
1319 targetm.calls.function_arg_advance (args_so_far, TYPE_MODE (type),
1320 type, argpos < n_named_args);
1321 }
1322 }
1323
1324 /* Update ARGS_SIZE to contain the total size for the argument block.
1325 Return the original constant component of the argument block's size.
1326
1327 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1328 for arguments passed in registers. */
1329
1330 static int
1331 compute_argument_block_size (int reg_parm_stack_space,
1332 struct args_size *args_size,
1333 tree fndecl ATTRIBUTE_UNUSED,
1334 tree fntype ATTRIBUTE_UNUSED,
1335 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1336 {
1337 int unadjusted_args_size = args_size->constant;
1338
1339 /* For accumulate outgoing args mode we don't need to align, since the frame
1340 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1341 backends from generating misaligned frame sizes. */
1342 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1343 preferred_stack_boundary = STACK_BOUNDARY;
1344
1345 /* Compute the actual size of the argument block required. The variable
1346 and constant sizes must be combined, the size may have to be rounded,
1347 and there may be a minimum required size. */
1348
1349 if (args_size->var)
1350 {
1351 args_size->var = ARGS_SIZE_TREE (*args_size);
1352 args_size->constant = 0;
1353
1354 preferred_stack_boundary /= BITS_PER_UNIT;
1355 if (preferred_stack_boundary > 1)
1356 {
1357 /* We don't handle this case yet. To handle it correctly we have
1358 to add the delta, round and subtract the delta.
1359 Currently no machine description requires this support. */
1360 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1361 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1362 }
1363
1364 if (reg_parm_stack_space > 0)
1365 {
1366 args_size->var
1367 = size_binop (MAX_EXPR, args_size->var,
1368 ssize_int (reg_parm_stack_space));
1369
1370 /* The area corresponding to register parameters is not to count in
1371 the size of the block we need. So make the adjustment. */
1372 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1373 args_size->var
1374 = size_binop (MINUS_EXPR, args_size->var,
1375 ssize_int (reg_parm_stack_space));
1376 }
1377 }
1378 else
1379 {
1380 preferred_stack_boundary /= BITS_PER_UNIT;
1381 if (preferred_stack_boundary < 1)
1382 preferred_stack_boundary = 1;
1383 args_size->constant = (((args_size->constant
1384 + stack_pointer_delta
1385 + preferred_stack_boundary - 1)
1386 / preferred_stack_boundary
1387 * preferred_stack_boundary)
1388 - stack_pointer_delta);
1389
1390 args_size->constant = MAX (args_size->constant,
1391 reg_parm_stack_space);
1392
1393 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1394 args_size->constant -= reg_parm_stack_space;
1395 }
1396 return unadjusted_args_size;
1397 }
1398
1399 /* Precompute parameters as needed for a function call.
1400
1401 FLAGS is mask of ECF_* constants.
1402
1403 NUM_ACTUALS is the number of arguments.
1404
1405 ARGS is an array containing information for each argument; this
1406 routine fills in the INITIAL_VALUE and VALUE fields for each
1407 precomputed argument. */
1408
1409 static void
1410 precompute_arguments (int num_actuals, struct arg_data *args)
1411 {
1412 int i;
1413
1414 /* If this is a libcall, then precompute all arguments so that we do not
1415 get extraneous instructions emitted as part of the libcall sequence. */
1416
1417 /* If we preallocated the stack space, and some arguments must be passed
1418 on the stack, then we must precompute any parameter which contains a
1419 function call which will store arguments on the stack.
1420 Otherwise, evaluating the parameter may clobber previous parameters
1421 which have already been stored into the stack. (we have code to avoid
1422 such case by saving the outgoing stack arguments, but it results in
1423 worse code) */
1424 if (!ACCUMULATE_OUTGOING_ARGS)
1425 return;
1426
1427 for (i = 0; i < num_actuals; i++)
1428 {
1429 tree type;
1430 enum machine_mode mode;
1431
1432 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
1433 continue;
1434
1435 /* If this is an addressable type, we cannot pre-evaluate it. */
1436 type = TREE_TYPE (args[i].tree_value);
1437 gcc_assert (!TREE_ADDRESSABLE (type));
1438
1439 args[i].initial_value = args[i].value
1440 = expand_normal (args[i].tree_value);
1441
1442 mode = TYPE_MODE (type);
1443 if (mode != args[i].mode)
1444 {
1445 int unsignedp = args[i].unsignedp;
1446 args[i].value
1447 = convert_modes (args[i].mode, mode,
1448 args[i].value, args[i].unsignedp);
1449
1450 /* CSE will replace this only if it contains args[i].value
1451 pseudo, so convert it down to the declared mode using
1452 a SUBREG. */
1453 if (REG_P (args[i].value)
1454 && GET_MODE_CLASS (args[i].mode) == MODE_INT
1455 && promote_mode (type, mode, &unsignedp) != args[i].mode)
1456 {
1457 args[i].initial_value
1458 = gen_lowpart_SUBREG (mode, args[i].value);
1459 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1460 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1461 args[i].unsignedp);
1462 }
1463 }
1464 }
1465 }
1466
1467 /* Given the current state of MUST_PREALLOCATE and information about
1468 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1469 compute and return the final value for MUST_PREALLOCATE. */
1470
1471 static int
1472 finalize_must_preallocate (int must_preallocate, int num_actuals,
1473 struct arg_data *args, struct args_size *args_size)
1474 {
1475 /* See if we have or want to preallocate stack space.
1476
1477 If we would have to push a partially-in-regs parm
1478 before other stack parms, preallocate stack space instead.
1479
1480 If the size of some parm is not a multiple of the required stack
1481 alignment, we must preallocate.
1482
1483 If the total size of arguments that would otherwise create a copy in
1484 a temporary (such as a CALL) is more than half the total argument list
1485 size, preallocation is faster.
1486
1487 Another reason to preallocate is if we have a machine (like the m88k)
1488 where stack alignment is required to be maintained between every
1489 pair of insns, not just when the call is made. However, we assume here
1490 that such machines either do not have push insns (and hence preallocation
1491 would occur anyway) or the problem is taken care of with
1492 PUSH_ROUNDING. */
1493
1494 if (! must_preallocate)
1495 {
1496 int partial_seen = 0;
1497 int copy_to_evaluate_size = 0;
1498 int i;
1499
1500 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1501 {
1502 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1503 partial_seen = 1;
1504 else if (partial_seen && args[i].reg == 0)
1505 must_preallocate = 1;
1506
1507 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1508 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1509 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1510 || TREE_CODE (args[i].tree_value) == COND_EXPR
1511 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1512 copy_to_evaluate_size
1513 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1514 }
1515
1516 if (copy_to_evaluate_size * 2 >= args_size->constant
1517 && args_size->constant > 0)
1518 must_preallocate = 1;
1519 }
1520 return must_preallocate;
1521 }
1522
1523 /* If we preallocated stack space, compute the address of each argument
1524 and store it into the ARGS array.
1525
1526 We need not ensure it is a valid memory address here; it will be
1527 validized when it is used.
1528
1529 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1530
1531 static void
1532 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1533 {
1534 if (argblock)
1535 {
1536 rtx arg_reg = argblock;
1537 int i, arg_offset = 0;
1538
1539 if (GET_CODE (argblock) == PLUS)
1540 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1541
1542 for (i = 0; i < num_actuals; i++)
1543 {
1544 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1545 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1546 rtx addr;
1547 unsigned int align, boundary;
1548 unsigned int units_on_stack = 0;
1549 enum machine_mode partial_mode = VOIDmode;
1550
1551 /* Skip this parm if it will not be passed on the stack. */
1552 if (! args[i].pass_on_stack
1553 && args[i].reg != 0
1554 && args[i].partial == 0)
1555 continue;
1556
1557 if (CONST_INT_P (offset))
1558 addr = plus_constant (arg_reg, INTVAL (offset));
1559 else
1560 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1561
1562 addr = plus_constant (addr, arg_offset);
1563
1564 if (args[i].partial != 0)
1565 {
1566 /* Only part of the parameter is being passed on the stack.
1567 Generate a simple memory reference of the correct size. */
1568 units_on_stack = args[i].locate.size.constant;
1569 partial_mode = mode_for_size (units_on_stack * BITS_PER_UNIT,
1570 MODE_INT, 1);
1571 args[i].stack = gen_rtx_MEM (partial_mode, addr);
1572 set_mem_size (args[i].stack, units_on_stack);
1573 }
1574 else
1575 {
1576 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1577 set_mem_attributes (args[i].stack,
1578 TREE_TYPE (args[i].tree_value), 1);
1579 }
1580 align = BITS_PER_UNIT;
1581 boundary = args[i].locate.boundary;
1582 if (args[i].locate.where_pad != downward)
1583 align = boundary;
1584 else if (CONST_INT_P (offset))
1585 {
1586 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1587 align = align & -align;
1588 }
1589 set_mem_align (args[i].stack, align);
1590
1591 if (CONST_INT_P (slot_offset))
1592 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1593 else
1594 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1595
1596 addr = plus_constant (addr, arg_offset);
1597
1598 if (args[i].partial != 0)
1599 {
1600 /* Only part of the parameter is being passed on the stack.
1601 Generate a simple memory reference of the correct size.
1602 */
1603 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
1604 set_mem_size (args[i].stack_slot, units_on_stack);
1605 }
1606 else
1607 {
1608 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1609 set_mem_attributes (args[i].stack_slot,
1610 TREE_TYPE (args[i].tree_value), 1);
1611 }
1612 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1613
1614 /* Function incoming arguments may overlap with sibling call
1615 outgoing arguments and we cannot allow reordering of reads
1616 from function arguments with stores to outgoing arguments
1617 of sibling calls. */
1618 set_mem_alias_set (args[i].stack, 0);
1619 set_mem_alias_set (args[i].stack_slot, 0);
1620 }
1621 }
1622 }
1623
1624 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1625 in a call instruction.
1626
1627 FNDECL is the tree node for the target function. For an indirect call
1628 FNDECL will be NULL_TREE.
1629
1630 ADDR is the operand 0 of CALL_EXPR for this call. */
1631
1632 static rtx
1633 rtx_for_function_call (tree fndecl, tree addr)
1634 {
1635 rtx funexp;
1636
1637 /* Get the function to call, in the form of RTL. */
1638 if (fndecl)
1639 {
1640 /* If this is the first use of the function, see if we need to
1641 make an external definition for it. */
1642 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
1643 {
1644 assemble_external (fndecl);
1645 TREE_USED (fndecl) = 1;
1646 }
1647
1648 /* Get a SYMBOL_REF rtx for the function address. */
1649 funexp = XEXP (DECL_RTL (fndecl), 0);
1650 }
1651 else
1652 /* Generate an rtx (probably a pseudo-register) for the address. */
1653 {
1654 push_temp_slots ();
1655 funexp = expand_normal (addr);
1656 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1657 }
1658 return funexp;
1659 }
1660
1661 /* Return true if and only if SIZE storage units (usually bytes)
1662 starting from address ADDR overlap with already clobbered argument
1663 area. This function is used to determine if we should give up a
1664 sibcall. */
1665
1666 static bool
1667 mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
1668 {
1669 HOST_WIDE_INT i;
1670
1671 if (addr == crtl->args.internal_arg_pointer)
1672 i = 0;
1673 else if (GET_CODE (addr) == PLUS
1674 && XEXP (addr, 0) == crtl->args.internal_arg_pointer
1675 && CONST_INT_P (XEXP (addr, 1)))
1676 i = INTVAL (XEXP (addr, 1));
1677 /* Return true for arg pointer based indexed addressing. */
1678 else if (GET_CODE (addr) == PLUS
1679 && (XEXP (addr, 0) == crtl->args.internal_arg_pointer
1680 || XEXP (addr, 1) == crtl->args.internal_arg_pointer))
1681 return true;
1682 /* If the address comes in a register, we have no idea of its origin so
1683 give up and conservatively return true. */
1684 else if (REG_P(addr))
1685 return true;
1686 else
1687 return false;
1688
1689 #ifdef ARGS_GROW_DOWNWARD
1690 i = -i - size;
1691 #endif
1692 if (size > 0)
1693 {
1694 unsigned HOST_WIDE_INT k;
1695
1696 for (k = 0; k < size; k++)
1697 if (i + k < stored_args_map->n_bits
1698 && TEST_BIT (stored_args_map, i + k))
1699 return true;
1700 }
1701
1702 return false;
1703 }
1704
1705 /* Do the register loads required for any wholly-register parms or any
1706 parms which are passed both on the stack and in a register. Their
1707 expressions were already evaluated.
1708
1709 Mark all register-parms as living through the call, putting these USE
1710 insns in the CALL_INSN_FUNCTION_USAGE field.
1711
1712 When IS_SIBCALL, perform the check_sibcall_argument_overlap
1713 checking, setting *SIBCALL_FAILURE if appropriate. */
1714
1715 static void
1716 load_register_parameters (struct arg_data *args, int num_actuals,
1717 rtx *call_fusage, int flags, int is_sibcall,
1718 int *sibcall_failure)
1719 {
1720 int i, j;
1721
1722 for (i = 0; i < num_actuals; i++)
1723 {
1724 rtx reg = ((flags & ECF_SIBCALL)
1725 ? args[i].tail_call_reg : args[i].reg);
1726 if (reg)
1727 {
1728 int partial = args[i].partial;
1729 int nregs;
1730 int size = 0;
1731 rtx before_arg = get_last_insn ();
1732 /* Set non-negative if we must move a word at a time, even if
1733 just one word (e.g, partial == 4 && mode == DFmode). Set
1734 to -1 if we just use a normal move insn. This value can be
1735 zero if the argument is a zero size structure. */
1736 nregs = -1;
1737 if (GET_CODE (reg) == PARALLEL)
1738 ;
1739 else if (partial)
1740 {
1741 gcc_assert (partial % UNITS_PER_WORD == 0);
1742 nregs = partial / UNITS_PER_WORD;
1743 }
1744 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1745 {
1746 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1747 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1748 }
1749 else
1750 size = GET_MODE_SIZE (args[i].mode);
1751
1752 /* Handle calls that pass values in multiple non-contiguous
1753 locations. The Irix 6 ABI has examples of this. */
1754
1755 if (GET_CODE (reg) == PARALLEL)
1756 emit_group_move (reg, args[i].parallel_value);
1757
1758 /* If simple case, just do move. If normal partial, store_one_arg
1759 has already loaded the register for us. In all other cases,
1760 load the register(s) from memory. */
1761
1762 else if (nregs == -1)
1763 {
1764 emit_move_insn (reg, args[i].value);
1765 #ifdef BLOCK_REG_PADDING
1766 /* Handle case where we have a value that needs shifting
1767 up to the msb. eg. a QImode value and we're padding
1768 upward on a BYTES_BIG_ENDIAN machine. */
1769 if (size < UNITS_PER_WORD
1770 && (args[i].locate.where_pad
1771 == (BYTES_BIG_ENDIAN ? upward : downward)))
1772 {
1773 rtx x;
1774 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1775
1776 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1777 report the whole reg as used. Strictly speaking, the
1778 call only uses SIZE bytes at the msb end, but it doesn't
1779 seem worth generating rtl to say that. */
1780 reg = gen_rtx_REG (word_mode, REGNO (reg));
1781 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
1782 if (x != reg)
1783 emit_move_insn (reg, x);
1784 }
1785 #endif
1786 }
1787
1788 /* If we have pre-computed the values to put in the registers in
1789 the case of non-aligned structures, copy them in now. */
1790
1791 else if (args[i].n_aligned_regs != 0)
1792 for (j = 0; j < args[i].n_aligned_regs; j++)
1793 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1794 args[i].aligned_regs[j]);
1795
1796 else if (partial == 0 || args[i].pass_on_stack)
1797 {
1798 rtx mem = validize_mem (args[i].value);
1799
1800 /* Check for overlap with already clobbered argument area,
1801 providing that this has non-zero size. */
1802 if (is_sibcall
1803 && (size == 0
1804 || mem_overlaps_already_clobbered_arg_p
1805 (XEXP (args[i].value, 0), size)))
1806 *sibcall_failure = 1;
1807
1808 /* Handle a BLKmode that needs shifting. */
1809 if (nregs == 1 && size < UNITS_PER_WORD
1810 #ifdef BLOCK_REG_PADDING
1811 && args[i].locate.where_pad == downward
1812 #else
1813 && BYTES_BIG_ENDIAN
1814 #endif
1815 )
1816 {
1817 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1818 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1819 rtx x = gen_reg_rtx (word_mode);
1820 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1821 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1822 : LSHIFT_EXPR;
1823
1824 emit_move_insn (x, tem);
1825 x = expand_shift (dir, word_mode, x, shift, ri, 1);
1826 if (x != ri)
1827 emit_move_insn (ri, x);
1828 }
1829 else
1830 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1831 }
1832
1833 /* When a parameter is a block, and perhaps in other cases, it is
1834 possible that it did a load from an argument slot that was
1835 already clobbered. */
1836 if (is_sibcall
1837 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1838 *sibcall_failure = 1;
1839
1840 /* Handle calls that pass values in multiple non-contiguous
1841 locations. The Irix 6 ABI has examples of this. */
1842 if (GET_CODE (reg) == PARALLEL)
1843 use_group_regs (call_fusage, reg);
1844 else if (nregs == -1)
1845 use_reg_mode (call_fusage, reg,
1846 TYPE_MODE (TREE_TYPE (args[i].tree_value)));
1847 else if (nregs > 0)
1848 use_regs (call_fusage, REGNO (reg), nregs);
1849 }
1850 }
1851 }
1852
1853 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1854 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1855 bytes, then we would need to push some additional bytes to pad the
1856 arguments. So, we compute an adjust to the stack pointer for an
1857 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1858 bytes. Then, when the arguments are pushed the stack will be perfectly
1859 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1860 be popped after the call. Returns the adjustment. */
1861
1862 static int
1863 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1864 struct args_size *args_size,
1865 unsigned int preferred_unit_stack_boundary)
1866 {
1867 /* The number of bytes to pop so that the stack will be
1868 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1869 HOST_WIDE_INT adjustment;
1870 /* The alignment of the stack after the arguments are pushed, if we
1871 just pushed the arguments without adjust the stack here. */
1872 unsigned HOST_WIDE_INT unadjusted_alignment;
1873
1874 unadjusted_alignment
1875 = ((stack_pointer_delta + unadjusted_args_size)
1876 % preferred_unit_stack_boundary);
1877
1878 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1879 as possible -- leaving just enough left to cancel out the
1880 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1881 PENDING_STACK_ADJUST is non-negative, and congruent to
1882 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1883
1884 /* Begin by trying to pop all the bytes. */
1885 unadjusted_alignment
1886 = (unadjusted_alignment
1887 - (pending_stack_adjust % preferred_unit_stack_boundary));
1888 adjustment = pending_stack_adjust;
1889 /* Push enough additional bytes that the stack will be aligned
1890 after the arguments are pushed. */
1891 if (preferred_unit_stack_boundary > 1)
1892 {
1893 if (unadjusted_alignment > 0)
1894 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1895 else
1896 adjustment += unadjusted_alignment;
1897 }
1898
1899 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1900 bytes after the call. The right number is the entire
1901 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1902 by the arguments in the first place. */
1903 args_size->constant
1904 = pending_stack_adjust - adjustment + unadjusted_args_size;
1905
1906 return adjustment;
1907 }
1908
1909 /* Scan X expression if it does not dereference any argument slots
1910 we already clobbered by tail call arguments (as noted in stored_args_map
1911 bitmap).
1912 Return nonzero if X expression dereferences such argument slots,
1913 zero otherwise. */
1914
1915 static int
1916 check_sibcall_argument_overlap_1 (rtx x)
1917 {
1918 RTX_CODE code;
1919 int i, j;
1920 const char *fmt;
1921
1922 if (x == NULL_RTX)
1923 return 0;
1924
1925 code = GET_CODE (x);
1926
1927 /* We need not check the operands of the CALL expression itself. */
1928 if (code == CALL)
1929 return 0;
1930
1931 if (code == MEM)
1932 return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
1933 GET_MODE_SIZE (GET_MODE (x)));
1934
1935 /* Scan all subexpressions. */
1936 fmt = GET_RTX_FORMAT (code);
1937 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1938 {
1939 if (*fmt == 'e')
1940 {
1941 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1942 return 1;
1943 }
1944 else if (*fmt == 'E')
1945 {
1946 for (j = 0; j < XVECLEN (x, i); j++)
1947 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1948 return 1;
1949 }
1950 }
1951 return 0;
1952 }
1953
1954 /* Scan sequence after INSN if it does not dereference any argument slots
1955 we already clobbered by tail call arguments (as noted in stored_args_map
1956 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1957 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1958 should be 0). Return nonzero if sequence after INSN dereferences such argument
1959 slots, zero otherwise. */
1960
1961 static int
1962 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1963 {
1964 int low, high;
1965
1966 if (insn == NULL_RTX)
1967 insn = get_insns ();
1968 else
1969 insn = NEXT_INSN (insn);
1970
1971 for (; insn; insn = NEXT_INSN (insn))
1972 if (INSN_P (insn)
1973 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1974 break;
1975
1976 if (mark_stored_args_map)
1977 {
1978 #ifdef ARGS_GROW_DOWNWARD
1979 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1980 #else
1981 low = arg->locate.slot_offset.constant;
1982 #endif
1983
1984 for (high = low + arg->locate.size.constant; low < high; low++)
1985 SET_BIT (stored_args_map, low);
1986 }
1987 return insn != NULL_RTX;
1988 }
1989
1990 /* Given that a function returns a value of mode MODE at the most
1991 significant end of hard register VALUE, shift VALUE left or right
1992 as specified by LEFT_P. Return true if some action was needed. */
1993
1994 bool
1995 shift_return_value (enum machine_mode mode, bool left_p, rtx value)
1996 {
1997 HOST_WIDE_INT shift;
1998
1999 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
2000 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
2001 if (shift == 0)
2002 return false;
2003
2004 /* Use ashr rather than lshr for right shifts. This is for the benefit
2005 of the MIPS port, which requires SImode values to be sign-extended
2006 when stored in 64-bit registers. */
2007 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
2008 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
2009 gcc_unreachable ();
2010 return true;
2011 }
2012
2013 /* If X is a likely-spilled register value, copy it to a pseudo
2014 register and return that register. Return X otherwise. */
2015
2016 static rtx
2017 avoid_likely_spilled_reg (rtx x)
2018 {
2019 rtx new_rtx;
2020
2021 if (REG_P (x)
2022 && HARD_REGISTER_P (x)
2023 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2024 {
2025 /* Make sure that we generate a REG rather than a CONCAT.
2026 Moves into CONCATs can need nontrivial instructions,
2027 and the whole point of this function is to avoid
2028 using the hard register directly in such a situation. */
2029 generating_concat_p = 0;
2030 new_rtx = gen_reg_rtx (GET_MODE (x));
2031 generating_concat_p = 1;
2032 emit_move_insn (new_rtx, x);
2033 return new_rtx;
2034 }
2035 return x;
2036 }
2037
2038 /* Generate all the code for a CALL_EXPR exp
2039 and return an rtx for its value.
2040 Store the value in TARGET (specified as an rtx) if convenient.
2041 If the value is stored in TARGET then TARGET is returned.
2042 If IGNORE is nonzero, then we ignore the value of the function call. */
2043
2044 rtx
2045 expand_call (tree exp, rtx target, int ignore)
2046 {
2047 /* Nonzero if we are currently expanding a call. */
2048 static int currently_expanding_call = 0;
2049
2050 /* RTX for the function to be called. */
2051 rtx funexp;
2052 /* Sequence of insns to perform a normal "call". */
2053 rtx normal_call_insns = NULL_RTX;
2054 /* Sequence of insns to perform a tail "call". */
2055 rtx tail_call_insns = NULL_RTX;
2056 /* Data type of the function. */
2057 tree funtype;
2058 tree type_arg_types;
2059 tree rettype;
2060 /* Declaration of the function being called,
2061 or 0 if the function is computed (not known by name). */
2062 tree fndecl = 0;
2063 /* The type of the function being called. */
2064 tree fntype;
2065 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
2066 int pass;
2067
2068 /* Register in which non-BLKmode value will be returned,
2069 or 0 if no value or if value is BLKmode. */
2070 rtx valreg;
2071 /* Address where we should return a BLKmode value;
2072 0 if value not BLKmode. */
2073 rtx structure_value_addr = 0;
2074 /* Nonzero if that address is being passed by treating it as
2075 an extra, implicit first parameter. Otherwise,
2076 it is passed by being copied directly into struct_value_rtx. */
2077 int structure_value_addr_parm = 0;
2078 /* Holds the value of implicit argument for the struct value. */
2079 tree structure_value_addr_value = NULL_TREE;
2080 /* Size of aggregate value wanted, or zero if none wanted
2081 or if we are using the non-reentrant PCC calling convention
2082 or expecting the value in registers. */
2083 HOST_WIDE_INT struct_value_size = 0;
2084 /* Nonzero if called function returns an aggregate in memory PCC style,
2085 by returning the address of where to find it. */
2086 int pcc_struct_value = 0;
2087 rtx struct_value = 0;
2088
2089 /* Number of actual parameters in this call, including struct value addr. */
2090 int num_actuals;
2091 /* Number of named args. Args after this are anonymous ones
2092 and they must all go on the stack. */
2093 int n_named_args;
2094 /* Number of complex actual arguments that need to be split. */
2095 int num_complex_actuals = 0;
2096
2097 /* Vector of information about each argument.
2098 Arguments are numbered in the order they will be pushed,
2099 not the order they are written. */
2100 struct arg_data *args;
2101
2102 /* Total size in bytes of all the stack-parms scanned so far. */
2103 struct args_size args_size;
2104 struct args_size adjusted_args_size;
2105 /* Size of arguments before any adjustments (such as rounding). */
2106 int unadjusted_args_size;
2107 /* Data on reg parms scanned so far. */
2108 CUMULATIVE_ARGS args_so_far_v;
2109 cumulative_args_t args_so_far;
2110 /* Nonzero if a reg parm has been scanned. */
2111 int reg_parm_seen;
2112 /* Nonzero if this is an indirect function call. */
2113
2114 /* Nonzero if we must avoid push-insns in the args for this call.
2115 If stack space is allocated for register parameters, but not by the
2116 caller, then it is preallocated in the fixed part of the stack frame.
2117 So the entire argument block must then be preallocated (i.e., we
2118 ignore PUSH_ROUNDING in that case). */
2119
2120 int must_preallocate = !PUSH_ARGS;
2121
2122 /* Size of the stack reserved for parameter registers. */
2123 int reg_parm_stack_space = 0;
2124
2125 /* Address of space preallocated for stack parms
2126 (on machines that lack push insns), or 0 if space not preallocated. */
2127 rtx argblock = 0;
2128
2129 /* Mask of ECF_ flags. */
2130 int flags = 0;
2131 #ifdef REG_PARM_STACK_SPACE
2132 /* Define the boundary of the register parm stack space that needs to be
2133 saved, if any. */
2134 int low_to_save, high_to_save;
2135 rtx save_area = 0; /* Place that it is saved */
2136 #endif
2137
2138 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
2139 char *initial_stack_usage_map = stack_usage_map;
2140 char *stack_usage_map_buf = NULL;
2141
2142 int old_stack_allocated;
2143
2144 /* State variables to track stack modifications. */
2145 rtx old_stack_level = 0;
2146 int old_stack_arg_under_construction = 0;
2147 int old_pending_adj = 0;
2148 int old_inhibit_defer_pop = inhibit_defer_pop;
2149
2150 /* Some stack pointer alterations we make are performed via
2151 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
2152 which we then also need to save/restore along the way. */
2153 int old_stack_pointer_delta = 0;
2154
2155 rtx call_fusage;
2156 tree addr = CALL_EXPR_FN (exp);
2157 int i;
2158 /* The alignment of the stack, in bits. */
2159 unsigned HOST_WIDE_INT preferred_stack_boundary;
2160 /* The alignment of the stack, in bytes. */
2161 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
2162 /* The static chain value to use for this call. */
2163 rtx static_chain_value;
2164 /* See if this is "nothrow" function call. */
2165 if (TREE_NOTHROW (exp))
2166 flags |= ECF_NOTHROW;
2167
2168 /* See if we can find a DECL-node for the actual function, and get the
2169 function attributes (flags) from the function decl or type node. */
2170 fndecl = get_callee_fndecl (exp);
2171 if (fndecl)
2172 {
2173 fntype = TREE_TYPE (fndecl);
2174 flags |= flags_from_decl_or_type (fndecl);
2175 }
2176 else
2177 {
2178 fntype = TREE_TYPE (TREE_TYPE (addr));
2179 flags |= flags_from_decl_or_type (fntype);
2180 }
2181 rettype = TREE_TYPE (exp);
2182
2183 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
2184
2185 /* Warn if this value is an aggregate type,
2186 regardless of which calling convention we are using for it. */
2187 if (AGGREGATE_TYPE_P (rettype))
2188 warning (OPT_Waggregate_return, "function call has aggregate value");
2189
2190 /* If the result of a non looping pure or const function call is
2191 ignored (or void), and none of its arguments are volatile, we can
2192 avoid expanding the call and just evaluate the arguments for
2193 side-effects. */
2194 if ((flags & (ECF_CONST | ECF_PURE))
2195 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
2196 && (ignore || target == const0_rtx
2197 || TYPE_MODE (rettype) == VOIDmode))
2198 {
2199 bool volatilep = false;
2200 tree arg;
2201 call_expr_arg_iterator iter;
2202
2203 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2204 if (TREE_THIS_VOLATILE (arg))
2205 {
2206 volatilep = true;
2207 break;
2208 }
2209
2210 if (! volatilep)
2211 {
2212 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2213 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
2214 return const0_rtx;
2215 }
2216 }
2217
2218 #ifdef REG_PARM_STACK_SPACE
2219 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
2220 #endif
2221
2222 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2223 && reg_parm_stack_space > 0 && PUSH_ARGS)
2224 must_preallocate = 1;
2225
2226 /* Set up a place to return a structure. */
2227
2228 /* Cater to broken compilers. */
2229 if (aggregate_value_p (exp, fntype))
2230 {
2231 /* This call returns a big structure. */
2232 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2233
2234 #ifdef PCC_STATIC_STRUCT_RETURN
2235 {
2236 pcc_struct_value = 1;
2237 }
2238 #else /* not PCC_STATIC_STRUCT_RETURN */
2239 {
2240 struct_value_size = int_size_in_bytes (rettype);
2241
2242 if (target && MEM_P (target) && CALL_EXPR_RETURN_SLOT_OPT (exp))
2243 structure_value_addr = XEXP (target, 0);
2244 else
2245 {
2246 /* For variable-sized objects, we must be called with a target
2247 specified. If we were to allocate space on the stack here,
2248 we would have no way of knowing when to free it. */
2249 rtx d = assign_temp (rettype, 0, 1, 1);
2250
2251 mark_temp_addr_taken (d);
2252 structure_value_addr = XEXP (d, 0);
2253 target = 0;
2254 }
2255 }
2256 #endif /* not PCC_STATIC_STRUCT_RETURN */
2257 }
2258
2259 /* Figure out the amount to which the stack should be aligned. */
2260 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2261 if (fndecl)
2262 {
2263 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2264 /* Without automatic stack alignment, we can't increase preferred
2265 stack boundary. With automatic stack alignment, it is
2266 unnecessary since unless we can guarantee that all callers will
2267 align the outgoing stack properly, callee has to align its
2268 stack anyway. */
2269 if (i
2270 && i->preferred_incoming_stack_boundary
2271 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
2272 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2273 }
2274
2275 /* Operand 0 is a pointer-to-function; get the type of the function. */
2276 funtype = TREE_TYPE (addr);
2277 gcc_assert (POINTER_TYPE_P (funtype));
2278 funtype = TREE_TYPE (funtype);
2279
2280 /* Count whether there are actual complex arguments that need to be split
2281 into their real and imaginary parts. Munge the type_arg_types
2282 appropriately here as well. */
2283 if (targetm.calls.split_complex_arg)
2284 {
2285 call_expr_arg_iterator iter;
2286 tree arg;
2287 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2288 {
2289 tree type = TREE_TYPE (arg);
2290 if (type && TREE_CODE (type) == COMPLEX_TYPE
2291 && targetm.calls.split_complex_arg (type))
2292 num_complex_actuals++;
2293 }
2294 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2295 }
2296 else
2297 type_arg_types = TYPE_ARG_TYPES (funtype);
2298
2299 if (flags & ECF_MAY_BE_ALLOCA)
2300 cfun->calls_alloca = 1;
2301
2302 /* If struct_value_rtx is 0, it means pass the address
2303 as if it were an extra parameter. Put the argument expression
2304 in structure_value_addr_value. */
2305 if (structure_value_addr && struct_value == 0)
2306 {
2307 /* If structure_value_addr is a REG other than
2308 virtual_outgoing_args_rtx, we can use always use it. If it
2309 is not a REG, we must always copy it into a register.
2310 If it is virtual_outgoing_args_rtx, we must copy it to another
2311 register in some cases. */
2312 rtx temp = (!REG_P (structure_value_addr)
2313 || (ACCUMULATE_OUTGOING_ARGS
2314 && stack_arg_under_construction
2315 && structure_value_addr == virtual_outgoing_args_rtx)
2316 ? copy_addr_to_reg (convert_memory_address
2317 (Pmode, structure_value_addr))
2318 : structure_value_addr);
2319
2320 structure_value_addr_value =
2321 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
2322 structure_value_addr_parm = 1;
2323 }
2324
2325 /* Count the arguments and set NUM_ACTUALS. */
2326 num_actuals =
2327 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
2328
2329 /* Compute number of named args.
2330 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2331
2332 if (type_arg_types != 0)
2333 n_named_args
2334 = (list_length (type_arg_types)
2335 /* Count the struct value address, if it is passed as a parm. */
2336 + structure_value_addr_parm);
2337 else
2338 /* If we know nothing, treat all args as named. */
2339 n_named_args = num_actuals;
2340
2341 /* Start updating where the next arg would go.
2342
2343 On some machines (such as the PA) indirect calls have a different
2344 calling convention than normal calls. The fourth argument in
2345 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2346 or not. */
2347 INIT_CUMULATIVE_ARGS (args_so_far_v, funtype, NULL_RTX, fndecl, n_named_args);
2348 args_so_far = pack_cumulative_args (&args_so_far_v);
2349
2350 /* Now possibly adjust the number of named args.
2351 Normally, don't include the last named arg if anonymous args follow.
2352 We do include the last named arg if
2353 targetm.calls.strict_argument_naming() returns nonzero.
2354 (If no anonymous args follow, the result of list_length is actually
2355 one too large. This is harmless.)
2356
2357 If targetm.calls.pretend_outgoing_varargs_named() returns
2358 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2359 this machine will be able to place unnamed args that were passed
2360 in registers into the stack. So treat all args as named. This
2361 allows the insns emitting for a specific argument list to be
2362 independent of the function declaration.
2363
2364 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2365 we do not have any reliable way to pass unnamed args in
2366 registers, so we must force them into memory. */
2367
2368 if (type_arg_types != 0
2369 && targetm.calls.strict_argument_naming (args_so_far))
2370 ;
2371 else if (type_arg_types != 0
2372 && ! targetm.calls.pretend_outgoing_varargs_named (args_so_far))
2373 /* Don't include the last named arg. */
2374 --n_named_args;
2375 else
2376 /* Treat all args as named. */
2377 n_named_args = num_actuals;
2378
2379 /* Make a vector to hold all the information about each arg. */
2380 args = XALLOCAVEC (struct arg_data, num_actuals);
2381 memset (args, 0, num_actuals * sizeof (struct arg_data));
2382
2383 /* Build up entries in the ARGS array, compute the size of the
2384 arguments into ARGS_SIZE, etc. */
2385 initialize_argument_information (num_actuals, args, &args_size,
2386 n_named_args, exp,
2387 structure_value_addr_value, fndecl, fntype,
2388 args_so_far, reg_parm_stack_space,
2389 &old_stack_level, &old_pending_adj,
2390 &must_preallocate, &flags,
2391 &try_tail_call, CALL_FROM_THUNK_P (exp));
2392
2393 if (args_size.var)
2394 must_preallocate = 1;
2395
2396 /* Now make final decision about preallocating stack space. */
2397 must_preallocate = finalize_must_preallocate (must_preallocate,
2398 num_actuals, args,
2399 &args_size);
2400
2401 /* If the structure value address will reference the stack pointer, we
2402 must stabilize it. We don't need to do this if we know that we are
2403 not going to adjust the stack pointer in processing this call. */
2404
2405 if (structure_value_addr
2406 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2407 || reg_mentioned_p (virtual_outgoing_args_rtx,
2408 structure_value_addr))
2409 && (args_size.var
2410 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2411 structure_value_addr = copy_to_reg (structure_value_addr);
2412
2413 /* Tail calls can make things harder to debug, and we've traditionally
2414 pushed these optimizations into -O2. Don't try if we're already
2415 expanding a call, as that means we're an argument. Don't try if
2416 there's cleanups, as we know there's code to follow the call. */
2417
2418 if (currently_expanding_call++ != 0
2419 || !flag_optimize_sibling_calls
2420 || args_size.var
2421 || dbg_cnt (tail_call) == false)
2422 try_tail_call = 0;
2423
2424 /* Rest of purposes for tail call optimizations to fail. */
2425 if (
2426 #ifdef HAVE_sibcall_epilogue
2427 !HAVE_sibcall_epilogue
2428 #else
2429 1
2430 #endif
2431 || !try_tail_call
2432 /* Doing sibling call optimization needs some work, since
2433 structure_value_addr can be allocated on the stack.
2434 It does not seem worth the effort since few optimizable
2435 sibling calls will return a structure. */
2436 || structure_value_addr != NULL_RTX
2437 #ifdef REG_PARM_STACK_SPACE
2438 /* If outgoing reg parm stack space changes, we can not do sibcall. */
2439 || (OUTGOING_REG_PARM_STACK_SPACE (funtype)
2440 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl)))
2441 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (fndecl))
2442 #endif
2443 /* Check whether the target is able to optimize the call
2444 into a sibcall. */
2445 || !targetm.function_ok_for_sibcall (fndecl, exp)
2446 /* Functions that do not return exactly once may not be sibcall
2447 optimized. */
2448 || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2449 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2450 /* If the called function is nested in the current one, it might access
2451 some of the caller's arguments, but could clobber them beforehand if
2452 the argument areas are shared. */
2453 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2454 /* If this function requires more stack slots than the current
2455 function, we cannot change it into a sibling call.
2456 crtl->args.pretend_args_size is not part of the
2457 stack allocated by our caller. */
2458 || args_size.constant > (crtl->args.size
2459 - crtl->args.pretend_args_size)
2460 /* If the callee pops its own arguments, then it must pop exactly
2461 the same number of arguments as the current function. */
2462 || (targetm.calls.return_pops_args (fndecl, funtype, args_size.constant)
2463 != targetm.calls.return_pops_args (current_function_decl,
2464 TREE_TYPE (current_function_decl),
2465 crtl->args.size))
2466 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2467 try_tail_call = 0;
2468
2469 /* Check if caller and callee disagree in promotion of function
2470 return value. */
2471 if (try_tail_call)
2472 {
2473 enum machine_mode caller_mode, caller_promoted_mode;
2474 enum machine_mode callee_mode, callee_promoted_mode;
2475 int caller_unsignedp, callee_unsignedp;
2476 tree caller_res = DECL_RESULT (current_function_decl);
2477
2478 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
2479 caller_mode = DECL_MODE (caller_res);
2480 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
2481 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
2482 caller_promoted_mode
2483 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
2484 &caller_unsignedp,
2485 TREE_TYPE (current_function_decl), 1);
2486 callee_promoted_mode
2487 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
2488 &callee_unsignedp,
2489 funtype, 1);
2490 if (caller_mode != VOIDmode
2491 && (caller_promoted_mode != callee_promoted_mode
2492 || ((caller_mode != caller_promoted_mode
2493 || callee_mode != callee_promoted_mode)
2494 && (caller_unsignedp != callee_unsignedp
2495 || GET_MODE_BITSIZE (caller_mode)
2496 < GET_MODE_BITSIZE (callee_mode)))))
2497 try_tail_call = 0;
2498 }
2499
2500 /* Ensure current function's preferred stack boundary is at least
2501 what we need. Stack alignment may also increase preferred stack
2502 boundary. */
2503 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
2504 crtl->preferred_stack_boundary = preferred_stack_boundary;
2505 else
2506 preferred_stack_boundary = crtl->preferred_stack_boundary;
2507
2508 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2509
2510 /* We want to make two insn chains; one for a sibling call, the other
2511 for a normal call. We will select one of the two chains after
2512 initial RTL generation is complete. */
2513 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2514 {
2515 int sibcall_failure = 0;
2516 /* We want to emit any pending stack adjustments before the tail
2517 recursion "call". That way we know any adjustment after the tail
2518 recursion call can be ignored if we indeed use the tail
2519 call expansion. */
2520 int save_pending_stack_adjust = 0;
2521 int save_stack_pointer_delta = 0;
2522 rtx insns;
2523 rtx before_call, next_arg_reg, after_args;
2524
2525 if (pass == 0)
2526 {
2527 /* State variables we need to save and restore between
2528 iterations. */
2529 save_pending_stack_adjust = pending_stack_adjust;
2530 save_stack_pointer_delta = stack_pointer_delta;
2531 }
2532 if (pass)
2533 flags &= ~ECF_SIBCALL;
2534 else
2535 flags |= ECF_SIBCALL;
2536
2537 /* Other state variables that we must reinitialize each time
2538 through the loop (that are not initialized by the loop itself). */
2539 argblock = 0;
2540 call_fusage = 0;
2541
2542 /* Start a new sequence for the normal call case.
2543
2544 From this point on, if the sibling call fails, we want to set
2545 sibcall_failure instead of continuing the loop. */
2546 start_sequence ();
2547
2548 /* Don't let pending stack adjusts add up to too much.
2549 Also, do all pending adjustments now if there is any chance
2550 this might be a call to alloca or if we are expanding a sibling
2551 call sequence.
2552 Also do the adjustments before a throwing call, otherwise
2553 exception handling can fail; PR 19225. */
2554 if (pending_stack_adjust >= 32
2555 || (pending_stack_adjust > 0
2556 && (flags & ECF_MAY_BE_ALLOCA))
2557 || (pending_stack_adjust > 0
2558 && flag_exceptions && !(flags & ECF_NOTHROW))
2559 || pass == 0)
2560 do_pending_stack_adjust ();
2561
2562 /* Precompute any arguments as needed. */
2563 if (pass)
2564 precompute_arguments (num_actuals, args);
2565
2566 /* Now we are about to start emitting insns that can be deleted
2567 if a libcall is deleted. */
2568 if (pass && (flags & ECF_MALLOC))
2569 start_sequence ();
2570
2571 if (pass == 0 && crtl->stack_protect_guard)
2572 stack_protect_epilogue ();
2573
2574 adjusted_args_size = args_size;
2575 /* Compute the actual size of the argument block required. The variable
2576 and constant sizes must be combined, the size may have to be rounded,
2577 and there may be a minimum required size. When generating a sibcall
2578 pattern, do not round up, since we'll be re-using whatever space our
2579 caller provided. */
2580 unadjusted_args_size
2581 = compute_argument_block_size (reg_parm_stack_space,
2582 &adjusted_args_size,
2583 fndecl, fntype,
2584 (pass == 0 ? 0
2585 : preferred_stack_boundary));
2586
2587 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2588
2589 /* The argument block when performing a sibling call is the
2590 incoming argument block. */
2591 if (pass == 0)
2592 {
2593 argblock = crtl->args.internal_arg_pointer;
2594 argblock
2595 #ifdef STACK_GROWS_DOWNWARD
2596 = plus_constant (argblock, crtl->args.pretend_args_size);
2597 #else
2598 = plus_constant (argblock, -crtl->args.pretend_args_size);
2599 #endif
2600 stored_args_map = sbitmap_alloc (args_size.constant);
2601 sbitmap_zero (stored_args_map);
2602 }
2603
2604 /* If we have no actual push instructions, or shouldn't use them,
2605 make space for all args right now. */
2606 else if (adjusted_args_size.var != 0)
2607 {
2608 if (old_stack_level == 0)
2609 {
2610 emit_stack_save (SAVE_BLOCK, &old_stack_level);
2611 old_stack_pointer_delta = stack_pointer_delta;
2612 old_pending_adj = pending_stack_adjust;
2613 pending_stack_adjust = 0;
2614 /* stack_arg_under_construction says whether a stack arg is
2615 being constructed at the old stack level. Pushing the stack
2616 gets a clean outgoing argument block. */
2617 old_stack_arg_under_construction = stack_arg_under_construction;
2618 stack_arg_under_construction = 0;
2619 }
2620 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2621 if (flag_stack_usage_info)
2622 current_function_has_unbounded_dynamic_stack_size = 1;
2623 }
2624 else
2625 {
2626 /* Note that we must go through the motions of allocating an argument
2627 block even if the size is zero because we may be storing args
2628 in the area reserved for register arguments, which may be part of
2629 the stack frame. */
2630
2631 int needed = adjusted_args_size.constant;
2632
2633 /* Store the maximum argument space used. It will be pushed by
2634 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2635 checking). */
2636
2637 if (needed > crtl->outgoing_args_size)
2638 crtl->outgoing_args_size = needed;
2639
2640 if (must_preallocate)
2641 {
2642 if (ACCUMULATE_OUTGOING_ARGS)
2643 {
2644 /* Since the stack pointer will never be pushed, it is
2645 possible for the evaluation of a parm to clobber
2646 something we have already written to the stack.
2647 Since most function calls on RISC machines do not use
2648 the stack, this is uncommon, but must work correctly.
2649
2650 Therefore, we save any area of the stack that was already
2651 written and that we are using. Here we set up to do this
2652 by making a new stack usage map from the old one. The
2653 actual save will be done by store_one_arg.
2654
2655 Another approach might be to try to reorder the argument
2656 evaluations to avoid this conflicting stack usage. */
2657
2658 /* Since we will be writing into the entire argument area,
2659 the map must be allocated for its entire size, not just
2660 the part that is the responsibility of the caller. */
2661 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2662 needed += reg_parm_stack_space;
2663
2664 #ifdef ARGS_GROW_DOWNWARD
2665 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2666 needed + 1);
2667 #else
2668 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2669 needed);
2670 #endif
2671 free (stack_usage_map_buf);
2672 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
2673 stack_usage_map = stack_usage_map_buf;
2674
2675 if (initial_highest_arg_in_use)
2676 memcpy (stack_usage_map, initial_stack_usage_map,
2677 initial_highest_arg_in_use);
2678
2679 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2680 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2681 (highest_outgoing_arg_in_use
2682 - initial_highest_arg_in_use));
2683 needed = 0;
2684
2685 /* The address of the outgoing argument list must not be
2686 copied to a register here, because argblock would be left
2687 pointing to the wrong place after the call to
2688 allocate_dynamic_stack_space below. */
2689
2690 argblock = virtual_outgoing_args_rtx;
2691 }
2692 else
2693 {
2694 if (inhibit_defer_pop == 0)
2695 {
2696 /* Try to reuse some or all of the pending_stack_adjust
2697 to get this space. */
2698 needed
2699 = (combine_pending_stack_adjustment_and_call
2700 (unadjusted_args_size,
2701 &adjusted_args_size,
2702 preferred_unit_stack_boundary));
2703
2704 /* combine_pending_stack_adjustment_and_call computes
2705 an adjustment before the arguments are allocated.
2706 Account for them and see whether or not the stack
2707 needs to go up or down. */
2708 needed = unadjusted_args_size - needed;
2709
2710 if (needed < 0)
2711 {
2712 /* We're releasing stack space. */
2713 /* ??? We can avoid any adjustment at all if we're
2714 already aligned. FIXME. */
2715 pending_stack_adjust = -needed;
2716 do_pending_stack_adjust ();
2717 needed = 0;
2718 }
2719 else
2720 /* We need to allocate space. We'll do that in
2721 push_block below. */
2722 pending_stack_adjust = 0;
2723 }
2724
2725 /* Special case this because overhead of `push_block' in
2726 this case is non-trivial. */
2727 if (needed == 0)
2728 argblock = virtual_outgoing_args_rtx;
2729 else
2730 {
2731 argblock = push_block (GEN_INT (needed), 0, 0);
2732 #ifdef ARGS_GROW_DOWNWARD
2733 argblock = plus_constant (argblock, needed);
2734 #endif
2735 }
2736
2737 /* We only really need to call `copy_to_reg' in the case
2738 where push insns are going to be used to pass ARGBLOCK
2739 to a function call in ARGS. In that case, the stack
2740 pointer changes value from the allocation point to the
2741 call point, and hence the value of
2742 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2743 as well always do it. */
2744 argblock = copy_to_reg (argblock);
2745 }
2746 }
2747 }
2748
2749 if (ACCUMULATE_OUTGOING_ARGS)
2750 {
2751 /* The save/restore code in store_one_arg handles all
2752 cases except one: a constructor call (including a C
2753 function returning a BLKmode struct) to initialize
2754 an argument. */
2755 if (stack_arg_under_construction)
2756 {
2757 rtx push_size
2758 = GEN_INT (adjusted_args_size.constant
2759 + (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype
2760 : TREE_TYPE (fndecl))) ? 0
2761 : reg_parm_stack_space));
2762 if (old_stack_level == 0)
2763 {
2764 emit_stack_save (SAVE_BLOCK, &old_stack_level);
2765 old_stack_pointer_delta = stack_pointer_delta;
2766 old_pending_adj = pending_stack_adjust;
2767 pending_stack_adjust = 0;
2768 /* stack_arg_under_construction says whether a stack
2769 arg is being constructed at the old stack level.
2770 Pushing the stack gets a clean outgoing argument
2771 block. */
2772 old_stack_arg_under_construction
2773 = stack_arg_under_construction;
2774 stack_arg_under_construction = 0;
2775 /* Make a new map for the new argument list. */
2776 free (stack_usage_map_buf);
2777 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
2778 stack_usage_map = stack_usage_map_buf;
2779 highest_outgoing_arg_in_use = 0;
2780 }
2781 /* We can pass TRUE as the 4th argument because we just
2782 saved the stack pointer and will restore it right after
2783 the call. */
2784 allocate_dynamic_stack_space (push_size, 0,
2785 BIGGEST_ALIGNMENT, true);
2786 }
2787
2788 /* If argument evaluation might modify the stack pointer,
2789 copy the address of the argument list to a register. */
2790 for (i = 0; i < num_actuals; i++)
2791 if (args[i].pass_on_stack)
2792 {
2793 argblock = copy_addr_to_reg (argblock);
2794 break;
2795 }
2796 }
2797
2798 compute_argument_addresses (args, argblock, num_actuals);
2799
2800 /* If we push args individually in reverse order, perform stack alignment
2801 before the first push (the last arg). */
2802 if (PUSH_ARGS_REVERSED && argblock == 0
2803 && adjusted_args_size.constant != unadjusted_args_size)
2804 {
2805 /* When the stack adjustment is pending, we get better code
2806 by combining the adjustments. */
2807 if (pending_stack_adjust
2808 && ! inhibit_defer_pop)
2809 {
2810 pending_stack_adjust
2811 = (combine_pending_stack_adjustment_and_call
2812 (unadjusted_args_size,
2813 &adjusted_args_size,
2814 preferred_unit_stack_boundary));
2815 do_pending_stack_adjust ();
2816 }
2817 else if (argblock == 0)
2818 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2819 - unadjusted_args_size));
2820 }
2821 /* Now that the stack is properly aligned, pops can't safely
2822 be deferred during the evaluation of the arguments. */
2823 NO_DEFER_POP;
2824
2825 /* Record the maximum pushed stack space size. We need to delay
2826 doing it this far to take into account the optimization done
2827 by combine_pending_stack_adjustment_and_call. */
2828 if (flag_stack_usage_info
2829 && !ACCUMULATE_OUTGOING_ARGS
2830 && pass
2831 && adjusted_args_size.var == 0)
2832 {
2833 int pushed = adjusted_args_size.constant + pending_stack_adjust;
2834 if (pushed > current_function_pushed_stack_size)
2835 current_function_pushed_stack_size = pushed;
2836 }
2837
2838 funexp = rtx_for_function_call (fndecl, addr);
2839
2840 /* Figure out the register where the value, if any, will come back. */
2841 valreg = 0;
2842 if (TYPE_MODE (rettype) != VOIDmode
2843 && ! structure_value_addr)
2844 {
2845 if (pcc_struct_value)
2846 valreg = hard_function_value (build_pointer_type (rettype),
2847 fndecl, NULL, (pass == 0));
2848 else
2849 valreg = hard_function_value (rettype, fndecl, fntype,
2850 (pass == 0));
2851
2852 /* If VALREG is a PARALLEL whose first member has a zero
2853 offset, use that. This is for targets such as m68k that
2854 return the same value in multiple places. */
2855 if (GET_CODE (valreg) == PARALLEL)
2856 {
2857 rtx elem = XVECEXP (valreg, 0, 0);
2858 rtx where = XEXP (elem, 0);
2859 rtx offset = XEXP (elem, 1);
2860 if (offset == const0_rtx
2861 && GET_MODE (where) == GET_MODE (valreg))
2862 valreg = where;
2863 }
2864 }
2865
2866 /* Precompute all register parameters. It isn't safe to compute anything
2867 once we have started filling any specific hard regs. */
2868 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2869
2870 if (CALL_EXPR_STATIC_CHAIN (exp))
2871 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
2872 else
2873 static_chain_value = 0;
2874
2875 #ifdef REG_PARM_STACK_SPACE
2876 /* Save the fixed argument area if it's part of the caller's frame and
2877 is clobbered by argument setup for this call. */
2878 if (ACCUMULATE_OUTGOING_ARGS && pass)
2879 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2880 &low_to_save, &high_to_save);
2881 #endif
2882
2883 /* Now store (and compute if necessary) all non-register parms.
2884 These come before register parms, since they can require block-moves,
2885 which could clobber the registers used for register parms.
2886 Parms which have partial registers are not stored here,
2887 but we do preallocate space here if they want that. */
2888
2889 for (i = 0; i < num_actuals; i++)
2890 {
2891 if (args[i].reg == 0 || args[i].pass_on_stack)
2892 {
2893 rtx before_arg = get_last_insn ();
2894
2895 if (store_one_arg (&args[i], argblock, flags,
2896 adjusted_args_size.var != 0,
2897 reg_parm_stack_space)
2898 || (pass == 0
2899 && check_sibcall_argument_overlap (before_arg,
2900 &args[i], 1)))
2901 sibcall_failure = 1;
2902 }
2903
2904 if (args[i].stack)
2905 call_fusage
2906 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[i].tree_value)),
2907 gen_rtx_USE (VOIDmode, args[i].stack),
2908 call_fusage);
2909 }
2910
2911 /* If we have a parm that is passed in registers but not in memory
2912 and whose alignment does not permit a direct copy into registers,
2913 make a group of pseudos that correspond to each register that we
2914 will later fill. */
2915 if (STRICT_ALIGNMENT)
2916 store_unaligned_arguments_into_pseudos (args, num_actuals);
2917
2918 /* Now store any partially-in-registers parm.
2919 This is the last place a block-move can happen. */
2920 if (reg_parm_seen)
2921 for (i = 0; i < num_actuals; i++)
2922 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2923 {
2924 rtx before_arg = get_last_insn ();
2925
2926 if (store_one_arg (&args[i], argblock, flags,
2927 adjusted_args_size.var != 0,
2928 reg_parm_stack_space)
2929 || (pass == 0
2930 && check_sibcall_argument_overlap (before_arg,
2931 &args[i], 1)))
2932 sibcall_failure = 1;
2933 }
2934
2935 /* If we pushed args in forward order, perform stack alignment
2936 after pushing the last arg. */
2937 if (!PUSH_ARGS_REVERSED && argblock == 0)
2938 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2939 - unadjusted_args_size));
2940
2941 /* If register arguments require space on the stack and stack space
2942 was not preallocated, allocate stack space here for arguments
2943 passed in registers. */
2944 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2945 && !ACCUMULATE_OUTGOING_ARGS
2946 && must_preallocate == 0 && reg_parm_stack_space > 0)
2947 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2948
2949 /* Pass the function the address in which to return a
2950 structure value. */
2951 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2952 {
2953 structure_value_addr
2954 = convert_memory_address (Pmode, structure_value_addr);
2955 emit_move_insn (struct_value,
2956 force_reg (Pmode,
2957 force_operand (structure_value_addr,
2958 NULL_RTX)));
2959
2960 if (REG_P (struct_value))
2961 use_reg (&call_fusage, struct_value);
2962 }
2963
2964 after_args = get_last_insn ();
2965 funexp = prepare_call_address (fndecl, funexp, static_chain_value,
2966 &call_fusage, reg_parm_seen, pass == 0);
2967
2968 load_register_parameters (args, num_actuals, &call_fusage, flags,
2969 pass == 0, &sibcall_failure);
2970
2971 /* Save a pointer to the last insn before the call, so that we can
2972 later safely search backwards to find the CALL_INSN. */
2973 before_call = get_last_insn ();
2974
2975 /* Set up next argument register. For sibling calls on machines
2976 with register windows this should be the incoming register. */
2977 if (pass == 0)
2978 next_arg_reg = targetm.calls.function_incoming_arg (args_so_far,
2979 VOIDmode,
2980 void_type_node,
2981 true);
2982 else
2983 next_arg_reg = targetm.calls.function_arg (args_so_far,
2984 VOIDmode, void_type_node,
2985 true);
2986
2987 /* All arguments and registers used for the call must be set up by
2988 now! */
2989
2990 /* Stack must be properly aligned now. */
2991 gcc_assert (!pass
2992 || !(stack_pointer_delta % preferred_unit_stack_boundary));
2993
2994 /* Generate the actual call instruction. */
2995 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2996 adjusted_args_size.constant, struct_value_size,
2997 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2998 flags, args_so_far);
2999
3000 /* If the call setup or the call itself overlaps with anything
3001 of the argument setup we probably clobbered our call address.
3002 In that case we can't do sibcalls. */
3003 if (pass == 0
3004 && check_sibcall_argument_overlap (after_args, 0, 0))
3005 sibcall_failure = 1;
3006
3007 /* If a non-BLKmode value is returned at the most significant end
3008 of a register, shift the register right by the appropriate amount
3009 and update VALREG accordingly. BLKmode values are handled by the
3010 group load/store machinery below. */
3011 if (!structure_value_addr
3012 && !pcc_struct_value
3013 && TYPE_MODE (rettype) != BLKmode
3014 && targetm.calls.return_in_msb (rettype))
3015 {
3016 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
3017 sibcall_failure = 1;
3018 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
3019 }
3020
3021 if (pass && (flags & ECF_MALLOC))
3022 {
3023 rtx temp = gen_reg_rtx (GET_MODE (valreg));
3024 rtx last, insns;
3025
3026 /* The return value from a malloc-like function is a pointer. */
3027 if (TREE_CODE (rettype) == POINTER_TYPE)
3028 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
3029
3030 emit_move_insn (temp, valreg);
3031
3032 /* The return value from a malloc-like function can not alias
3033 anything else. */
3034 last = get_last_insn ();
3035 add_reg_note (last, REG_NOALIAS, temp);
3036
3037 /* Write out the sequence. */
3038 insns = get_insns ();
3039 end_sequence ();
3040 emit_insn (insns);
3041 valreg = temp;
3042 }
3043
3044 /* For calls to `setjmp', etc., inform
3045 function.c:setjmp_warnings that it should complain if
3046 nonvolatile values are live. For functions that cannot
3047 return, inform flow that control does not fall through. */
3048
3049 if ((flags & ECF_NORETURN) || pass == 0)
3050 {
3051 /* The barrier must be emitted
3052 immediately after the CALL_INSN. Some ports emit more
3053 than just a CALL_INSN above, so we must search for it here. */
3054
3055 rtx last = get_last_insn ();
3056 while (!CALL_P (last))
3057 {
3058 last = PREV_INSN (last);
3059 /* There was no CALL_INSN? */
3060 gcc_assert (last != before_call);
3061 }
3062
3063 emit_barrier_after (last);
3064
3065 /* Stack adjustments after a noreturn call are dead code.
3066 However when NO_DEFER_POP is in effect, we must preserve
3067 stack_pointer_delta. */
3068 if (inhibit_defer_pop == 0)
3069 {
3070 stack_pointer_delta = old_stack_allocated;
3071 pending_stack_adjust = 0;
3072 }
3073 }
3074
3075 /* If value type not void, return an rtx for the value. */
3076
3077 if (TYPE_MODE (rettype) == VOIDmode
3078 || ignore)
3079 target = const0_rtx;
3080 else if (structure_value_addr)
3081 {
3082 if (target == 0 || !MEM_P (target))
3083 {
3084 target
3085 = gen_rtx_MEM (TYPE_MODE (rettype),
3086 memory_address (TYPE_MODE (rettype),
3087 structure_value_addr));
3088 set_mem_attributes (target, rettype, 1);
3089 }
3090 }
3091 else if (pcc_struct_value)
3092 {
3093 /* This is the special C++ case where we need to
3094 know what the true target was. We take care to
3095 never use this value more than once in one expression. */
3096 target = gen_rtx_MEM (TYPE_MODE (rettype),
3097 copy_to_reg (valreg));
3098 set_mem_attributes (target, rettype, 1);
3099 }
3100 /* Handle calls that return values in multiple non-contiguous locations.
3101 The Irix 6 ABI has examples of this. */
3102 else if (GET_CODE (valreg) == PARALLEL)
3103 {
3104 if (target == 0)
3105 {
3106 /* This will only be assigned once, so it can be readonly. */
3107 tree nt = build_qualified_type (rettype,
3108 (TYPE_QUALS (rettype)
3109 | TYPE_QUAL_CONST));
3110
3111 target = assign_temp (nt, 0, 1, 1);
3112 }
3113
3114 if (! rtx_equal_p (target, valreg))
3115 emit_group_store (target, valreg, rettype,
3116 int_size_in_bytes (rettype));
3117
3118 /* We can not support sibling calls for this case. */
3119 sibcall_failure = 1;
3120 }
3121 else if (target
3122 && GET_MODE (target) == TYPE_MODE (rettype)
3123 && GET_MODE (target) == GET_MODE (valreg))
3124 {
3125 bool may_overlap = false;
3126
3127 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
3128 reg to a plain register. */
3129 if (!REG_P (target) || HARD_REGISTER_P (target))
3130 valreg = avoid_likely_spilled_reg (valreg);
3131
3132 /* If TARGET is a MEM in the argument area, and we have
3133 saved part of the argument area, then we can't store
3134 directly into TARGET as it may get overwritten when we
3135 restore the argument save area below. Don't work too
3136 hard though and simply force TARGET to a register if it
3137 is a MEM; the optimizer is quite likely to sort it out. */
3138 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
3139 for (i = 0; i < num_actuals; i++)
3140 if (args[i].save_area)
3141 {
3142 may_overlap = true;
3143 break;
3144 }
3145
3146 if (may_overlap)
3147 target = copy_to_reg (valreg);
3148 else
3149 {
3150 /* TARGET and VALREG cannot be equal at this point
3151 because the latter would not have
3152 REG_FUNCTION_VALUE_P true, while the former would if
3153 it were referring to the same register.
3154
3155 If they refer to the same register, this move will be
3156 a no-op, except when function inlining is being
3157 done. */
3158 emit_move_insn (target, valreg);
3159
3160 /* If we are setting a MEM, this code must be executed.
3161 Since it is emitted after the call insn, sibcall
3162 optimization cannot be performed in that case. */
3163 if (MEM_P (target))
3164 sibcall_failure = 1;
3165 }
3166 }
3167 else if (TYPE_MODE (rettype) == BLKmode)
3168 {
3169 rtx val = valreg;
3170 if (GET_MODE (val) != BLKmode)
3171 val = avoid_likely_spilled_reg (val);
3172 target = copy_blkmode_from_reg (target, val, rettype);
3173
3174 /* We can not support sibling calls for this case. */
3175 sibcall_failure = 1;
3176 }
3177 else
3178 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
3179
3180 /* If we promoted this return value, make the proper SUBREG.
3181 TARGET might be const0_rtx here, so be careful. */
3182 if (REG_P (target)
3183 && TYPE_MODE (rettype) != BLKmode
3184 && GET_MODE (target) != TYPE_MODE (rettype))
3185 {
3186 tree type = rettype;
3187 int unsignedp = TYPE_UNSIGNED (type);
3188 int offset = 0;
3189 enum machine_mode pmode;
3190
3191 /* Ensure we promote as expected, and get the new unsignedness. */
3192 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
3193 funtype, 1);
3194 gcc_assert (GET_MODE (target) == pmode);
3195
3196 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
3197 && (GET_MODE_SIZE (GET_MODE (target))
3198 > GET_MODE_SIZE (TYPE_MODE (type))))
3199 {
3200 offset = GET_MODE_SIZE (GET_MODE (target))
3201 - GET_MODE_SIZE (TYPE_MODE (type));
3202 if (! BYTES_BIG_ENDIAN)
3203 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
3204 else if (! WORDS_BIG_ENDIAN)
3205 offset %= UNITS_PER_WORD;
3206 }
3207
3208 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
3209 SUBREG_PROMOTED_VAR_P (target) = 1;
3210 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
3211 }
3212
3213 /* If size of args is variable or this was a constructor call for a stack
3214 argument, restore saved stack-pointer value. */
3215
3216 if (old_stack_level)
3217 {
3218 rtx prev = get_last_insn ();
3219
3220 emit_stack_restore (SAVE_BLOCK, old_stack_level);
3221 stack_pointer_delta = old_stack_pointer_delta;
3222
3223 fixup_args_size_notes (prev, get_last_insn (), stack_pointer_delta);
3224
3225 pending_stack_adjust = old_pending_adj;
3226 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3227 stack_arg_under_construction = old_stack_arg_under_construction;
3228 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3229 stack_usage_map = initial_stack_usage_map;
3230 sibcall_failure = 1;
3231 }
3232 else if (ACCUMULATE_OUTGOING_ARGS && pass)
3233 {
3234 #ifdef REG_PARM_STACK_SPACE
3235 if (save_area)
3236 restore_fixed_argument_area (save_area, argblock,
3237 high_to_save, low_to_save);
3238 #endif
3239
3240 /* If we saved any argument areas, restore them. */
3241 for (i = 0; i < num_actuals; i++)
3242 if (args[i].save_area)
3243 {
3244 enum machine_mode save_mode = GET_MODE (args[i].save_area);
3245 rtx stack_area
3246 = gen_rtx_MEM (save_mode,
3247 memory_address (save_mode,
3248 XEXP (args[i].stack_slot, 0)));
3249
3250 if (save_mode != BLKmode)
3251 emit_move_insn (stack_area, args[i].save_area);
3252 else
3253 emit_block_move (stack_area, args[i].save_area,
3254 GEN_INT (args[i].locate.size.constant),
3255 BLOCK_OP_CALL_PARM);
3256 }
3257
3258 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3259 stack_usage_map = initial_stack_usage_map;
3260 }
3261
3262 /* If this was alloca, record the new stack level for nonlocal gotos.
3263 Check for the handler slots since we might not have a save area
3264 for non-local gotos. */
3265
3266 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
3267 update_nonlocal_goto_save_area ();
3268
3269 /* Free up storage we no longer need. */
3270 for (i = 0; i < num_actuals; ++i)
3271 free (args[i].aligned_regs);
3272
3273 insns = get_insns ();
3274 end_sequence ();
3275
3276 if (pass == 0)
3277 {
3278 tail_call_insns = insns;
3279
3280 /* Restore the pending stack adjustment now that we have
3281 finished generating the sibling call sequence. */
3282
3283 pending_stack_adjust = save_pending_stack_adjust;
3284 stack_pointer_delta = save_stack_pointer_delta;
3285
3286 /* Prepare arg structure for next iteration. */
3287 for (i = 0; i < num_actuals; i++)
3288 {
3289 args[i].value = 0;
3290 args[i].aligned_regs = 0;
3291 args[i].stack = 0;
3292 }
3293
3294 sbitmap_free (stored_args_map);
3295 }
3296 else
3297 {
3298 normal_call_insns = insns;
3299
3300 /* Verify that we've deallocated all the stack we used. */
3301 gcc_assert ((flags & ECF_NORETURN)
3302 || (old_stack_allocated
3303 == stack_pointer_delta - pending_stack_adjust));
3304 }
3305
3306 /* If something prevents making this a sibling call,
3307 zero out the sequence. */
3308 if (sibcall_failure)
3309 tail_call_insns = NULL_RTX;
3310 else
3311 break;
3312 }
3313
3314 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3315 arguments too, as argument area is now clobbered by the call. */
3316 if (tail_call_insns)
3317 {
3318 emit_insn (tail_call_insns);
3319 crtl->tail_call_emit = true;
3320 }
3321 else
3322 emit_insn (normal_call_insns);
3323
3324 currently_expanding_call--;
3325
3326 free (stack_usage_map_buf);
3327
3328 return target;
3329 }
3330
3331 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3332 this function's incoming arguments.
3333
3334 At the start of RTL generation we know the only REG_EQUIV notes
3335 in the rtl chain are those for incoming arguments, so we can look
3336 for REG_EQUIV notes between the start of the function and the
3337 NOTE_INSN_FUNCTION_BEG.
3338
3339 This is (slight) overkill. We could keep track of the highest
3340 argument we clobber and be more selective in removing notes, but it
3341 does not seem to be worth the effort. */
3342
3343 void
3344 fixup_tail_calls (void)
3345 {
3346 rtx insn;
3347
3348 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3349 {
3350 rtx note;
3351
3352 /* There are never REG_EQUIV notes for the incoming arguments
3353 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
3354 if (NOTE_P (insn)
3355 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3356 break;
3357
3358 note = find_reg_note (insn, REG_EQUIV, 0);
3359 if (note)
3360 remove_note (insn, note);
3361 note = find_reg_note (insn, REG_EQUIV, 0);
3362 gcc_assert (!note);
3363 }
3364 }
3365
3366 /* Traverse a list of TYPES and expand all complex types into their
3367 components. */
3368 static tree
3369 split_complex_types (tree types)
3370 {
3371 tree p;
3372
3373 /* Before allocating memory, check for the common case of no complex. */
3374 for (p = types; p; p = TREE_CHAIN (p))
3375 {
3376 tree type = TREE_VALUE (p);
3377 if (TREE_CODE (type) == COMPLEX_TYPE
3378 && targetm.calls.split_complex_arg (type))
3379 goto found;
3380 }
3381 return types;
3382
3383 found:
3384 types = copy_list (types);
3385
3386 for (p = types; p; p = TREE_CHAIN (p))
3387 {
3388 tree complex_type = TREE_VALUE (p);
3389
3390 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3391 && targetm.calls.split_complex_arg (complex_type))
3392 {
3393 tree next, imag;
3394
3395 /* Rewrite complex type with component type. */
3396 TREE_VALUE (p) = TREE_TYPE (complex_type);
3397 next = TREE_CHAIN (p);
3398
3399 /* Add another component type for the imaginary part. */
3400 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3401 TREE_CHAIN (p) = imag;
3402 TREE_CHAIN (imag) = next;
3403
3404 /* Skip the newly created node. */
3405 p = TREE_CHAIN (p);
3406 }
3407 }
3408
3409 return types;
3410 }
3411 \f
3412 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3413 The RETVAL parameter specifies whether return value needs to be saved, other
3414 parameters are documented in the emit_library_call function below. */
3415
3416 static rtx
3417 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3418 enum libcall_type fn_type,
3419 enum machine_mode outmode, int nargs, va_list p)
3420 {
3421 /* Total size in bytes of all the stack-parms scanned so far. */
3422 struct args_size args_size;
3423 /* Size of arguments before any adjustments (such as rounding). */
3424 struct args_size original_args_size;
3425 int argnum;
3426 rtx fun;
3427 /* Todo, choose the correct decl type of orgfun. Sadly this information
3428 isn't present here, so we default to native calling abi here. */
3429 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3430 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3431 int inc;
3432 int count;
3433 rtx argblock = 0;
3434 CUMULATIVE_ARGS args_so_far_v;
3435 cumulative_args_t args_so_far;
3436 struct arg
3437 {
3438 rtx value;
3439 enum machine_mode mode;
3440 rtx reg;
3441 int partial;
3442 struct locate_and_pad_arg_data locate;
3443 rtx save_area;
3444 };
3445 struct arg *argvec;
3446 int old_inhibit_defer_pop = inhibit_defer_pop;
3447 rtx call_fusage = 0;
3448 rtx mem_value = 0;
3449 rtx valreg;
3450 int pcc_struct_value = 0;
3451 int struct_value_size = 0;
3452 int flags;
3453 int reg_parm_stack_space = 0;
3454 int needed;
3455 rtx before_call;
3456 tree tfom; /* type_for_mode (outmode, 0) */
3457
3458 #ifdef REG_PARM_STACK_SPACE
3459 /* Define the boundary of the register parm stack space that needs to be
3460 save, if any. */
3461 int low_to_save = 0, high_to_save = 0;
3462 rtx save_area = 0; /* Place that it is saved. */
3463 #endif
3464
3465 /* Size of the stack reserved for parameter registers. */
3466 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3467 char *initial_stack_usage_map = stack_usage_map;
3468 char *stack_usage_map_buf = NULL;
3469
3470 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3471
3472 #ifdef REG_PARM_STACK_SPACE
3473 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3474 #endif
3475
3476 /* By default, library functions can not throw. */
3477 flags = ECF_NOTHROW;
3478
3479 switch (fn_type)
3480 {
3481 case LCT_NORMAL:
3482 break;
3483 case LCT_CONST:
3484 flags |= ECF_CONST;
3485 break;
3486 case LCT_PURE:
3487 flags |= ECF_PURE;
3488 break;
3489 case LCT_NORETURN:
3490 flags |= ECF_NORETURN;
3491 break;
3492 case LCT_THROW:
3493 flags = ECF_NORETURN;
3494 break;
3495 case LCT_RETURNS_TWICE:
3496 flags = ECF_RETURNS_TWICE;
3497 break;
3498 }
3499 fun = orgfun;
3500
3501 /* Ensure current function's preferred stack boundary is at least
3502 what we need. */
3503 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3504 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3505
3506 /* If this kind of value comes back in memory,
3507 decide where in memory it should come back. */
3508 if (outmode != VOIDmode)
3509 {
3510 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3511 if (aggregate_value_p (tfom, 0))
3512 {
3513 #ifdef PCC_STATIC_STRUCT_RETURN
3514 rtx pointer_reg
3515 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
3516 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3517 pcc_struct_value = 1;
3518 if (value == 0)
3519 value = gen_reg_rtx (outmode);
3520 #else /* not PCC_STATIC_STRUCT_RETURN */
3521 struct_value_size = GET_MODE_SIZE (outmode);
3522 if (value != 0 && MEM_P (value))
3523 mem_value = value;
3524 else
3525 mem_value = assign_temp (tfom, 0, 1, 1);
3526 #endif
3527 /* This call returns a big structure. */
3528 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3529 }
3530 }
3531 else
3532 tfom = void_type_node;
3533
3534 /* ??? Unfinished: must pass the memory address as an argument. */
3535
3536 /* Copy all the libcall-arguments out of the varargs data
3537 and into a vector ARGVEC.
3538
3539 Compute how to pass each argument. We only support a very small subset
3540 of the full argument passing conventions to limit complexity here since
3541 library functions shouldn't have many args. */
3542
3543 argvec = XALLOCAVEC (struct arg, nargs + 1);
3544 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3545
3546 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3547 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far_v, outmode, fun);
3548 #else
3549 INIT_CUMULATIVE_ARGS (args_so_far_v, NULL_TREE, fun, 0, nargs);
3550 #endif
3551 args_so_far = pack_cumulative_args (&args_so_far_v);
3552
3553 args_size.constant = 0;
3554 args_size.var = 0;
3555
3556 count = 0;
3557
3558 push_temp_slots ();
3559
3560 /* If there's a structure value address to be passed,
3561 either pass it in the special place, or pass it as an extra argument. */
3562 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3563 {
3564 rtx addr = XEXP (mem_value, 0);
3565
3566 nargs++;
3567
3568 /* Make sure it is a reasonable operand for a move or push insn. */
3569 if (!REG_P (addr) && !MEM_P (addr)
3570 && !(CONSTANT_P (addr)
3571 && targetm.legitimate_constant_p (Pmode, addr)))
3572 addr = force_operand (addr, NULL_RTX);
3573
3574 argvec[count].value = addr;
3575 argvec[count].mode = Pmode;
3576 argvec[count].partial = 0;
3577
3578 argvec[count].reg = targetm.calls.function_arg (args_so_far,
3579 Pmode, NULL_TREE, true);
3580 gcc_assert (targetm.calls.arg_partial_bytes (args_so_far, Pmode,
3581 NULL_TREE, 1) == 0);
3582
3583 locate_and_pad_parm (Pmode, NULL_TREE,
3584 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3585 1,
3586 #else
3587 argvec[count].reg != 0,
3588 #endif
3589 0, NULL_TREE, &args_size, &argvec[count].locate);
3590
3591 if (argvec[count].reg == 0 || argvec[count].partial != 0
3592 || reg_parm_stack_space > 0)
3593 args_size.constant += argvec[count].locate.size.constant;
3594
3595 targetm.calls.function_arg_advance (args_so_far, Pmode, (tree) 0, true);
3596
3597 count++;
3598 }
3599
3600 for (; count < nargs; count++)
3601 {
3602 rtx val = va_arg (p, rtx);
3603 enum machine_mode mode = (enum machine_mode) va_arg (p, int);
3604 int unsigned_p = 0;
3605
3606 /* We cannot convert the arg value to the mode the library wants here;
3607 must do it earlier where we know the signedness of the arg. */
3608 gcc_assert (mode != BLKmode
3609 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3610
3611 /* Make sure it is a reasonable operand for a move or push insn. */
3612 if (!REG_P (val) && !MEM_P (val)
3613 && !(CONSTANT_P (val) && targetm.legitimate_constant_p (mode, val)))
3614 val = force_operand (val, NULL_RTX);
3615
3616 if (pass_by_reference (&args_so_far_v, mode, NULL_TREE, 1))
3617 {
3618 rtx slot;
3619 int must_copy
3620 = !reference_callee_copied (&args_so_far_v, mode, NULL_TREE, 1);
3621
3622 /* If this was a CONST function, it is now PURE since it now
3623 reads memory. */
3624 if (flags & ECF_CONST)
3625 {
3626 flags &= ~ECF_CONST;
3627 flags |= ECF_PURE;
3628 }
3629
3630 if (MEM_P (val) && !must_copy)
3631 {
3632 tree val_expr = MEM_EXPR (val);
3633 if (val_expr)
3634 mark_addressable (val_expr);
3635 slot = val;
3636 }
3637 else
3638 {
3639 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3640 0, 1, 1);
3641 emit_move_insn (slot, val);
3642 }
3643
3644 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3645 gen_rtx_USE (VOIDmode, slot),
3646 call_fusage);
3647 if (must_copy)
3648 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3649 gen_rtx_CLOBBER (VOIDmode,
3650 slot),
3651 call_fusage);
3652
3653 mode = Pmode;
3654 val = force_operand (XEXP (slot, 0), NULL_RTX);
3655 }
3656
3657 mode = promote_function_mode (NULL_TREE, mode, &unsigned_p, NULL_TREE, 0);
3658 argvec[count].mode = mode;
3659 argvec[count].value = convert_modes (mode, GET_MODE (val), val, unsigned_p);
3660 argvec[count].reg = targetm.calls.function_arg (args_so_far, mode,
3661 NULL_TREE, true);
3662
3663 argvec[count].partial
3664 = targetm.calls.arg_partial_bytes (args_so_far, mode, NULL_TREE, 1);
3665
3666 if (argvec[count].reg == 0
3667 || argvec[count].partial != 0
3668 || reg_parm_stack_space > 0)
3669 {
3670 locate_and_pad_parm (mode, NULL_TREE,
3671 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3672 1,
3673 #else
3674 argvec[count].reg != 0,
3675 #endif
3676 argvec[count].partial,
3677 NULL_TREE, &args_size, &argvec[count].locate);
3678 args_size.constant += argvec[count].locate.size.constant;
3679 gcc_assert (!argvec[count].locate.size.var);
3680 }
3681 #ifdef BLOCK_REG_PADDING
3682 else
3683 /* The argument is passed entirely in registers. See at which
3684 end it should be padded. */
3685 argvec[count].locate.where_pad =
3686 BLOCK_REG_PADDING (mode, NULL_TREE,
3687 GET_MODE_SIZE (mode) <= UNITS_PER_WORD);
3688 #endif
3689
3690 targetm.calls.function_arg_advance (args_so_far, mode, (tree) 0, true);
3691 }
3692
3693 /* If this machine requires an external definition for library
3694 functions, write one out. */
3695 assemble_external_libcall (fun);
3696
3697 original_args_size = args_size;
3698 args_size.constant = (((args_size.constant
3699 + stack_pointer_delta
3700 + STACK_BYTES - 1)
3701 / STACK_BYTES
3702 * STACK_BYTES)
3703 - stack_pointer_delta);
3704
3705 args_size.constant = MAX (args_size.constant,
3706 reg_parm_stack_space);
3707
3708 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3709 args_size.constant -= reg_parm_stack_space;
3710
3711 if (args_size.constant > crtl->outgoing_args_size)
3712 crtl->outgoing_args_size = args_size.constant;
3713
3714 if (flag_stack_usage_info && !ACCUMULATE_OUTGOING_ARGS)
3715 {
3716 int pushed = args_size.constant + pending_stack_adjust;
3717 if (pushed > current_function_pushed_stack_size)
3718 current_function_pushed_stack_size = pushed;
3719 }
3720
3721 if (ACCUMULATE_OUTGOING_ARGS)
3722 {
3723 /* Since the stack pointer will never be pushed, it is possible for
3724 the evaluation of a parm to clobber something we have already
3725 written to the stack. Since most function calls on RISC machines
3726 do not use the stack, this is uncommon, but must work correctly.
3727
3728 Therefore, we save any area of the stack that was already written
3729 and that we are using. Here we set up to do this by making a new
3730 stack usage map from the old one.
3731
3732 Another approach might be to try to reorder the argument
3733 evaluations to avoid this conflicting stack usage. */
3734
3735 needed = args_size.constant;
3736
3737 /* Since we will be writing into the entire argument area, the
3738 map must be allocated for its entire size, not just the part that
3739 is the responsibility of the caller. */
3740 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3741 needed += reg_parm_stack_space;
3742
3743 #ifdef ARGS_GROW_DOWNWARD
3744 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3745 needed + 1);
3746 #else
3747 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3748 needed);
3749 #endif
3750 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3751 stack_usage_map = stack_usage_map_buf;
3752
3753 if (initial_highest_arg_in_use)
3754 memcpy (stack_usage_map, initial_stack_usage_map,
3755 initial_highest_arg_in_use);
3756
3757 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3758 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3759 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3760 needed = 0;
3761
3762 /* We must be careful to use virtual regs before they're instantiated,
3763 and real regs afterwards. Loop optimization, for example, can create
3764 new libcalls after we've instantiated the virtual regs, and if we
3765 use virtuals anyway, they won't match the rtl patterns. */
3766
3767 if (virtuals_instantiated)
3768 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3769 else
3770 argblock = virtual_outgoing_args_rtx;
3771 }
3772 else
3773 {
3774 if (!PUSH_ARGS)
3775 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3776 }
3777
3778 /* If we push args individually in reverse order, perform stack alignment
3779 before the first push (the last arg). */
3780 if (argblock == 0 && PUSH_ARGS_REVERSED)
3781 anti_adjust_stack (GEN_INT (args_size.constant
3782 - original_args_size.constant));
3783
3784 if (PUSH_ARGS_REVERSED)
3785 {
3786 inc = -1;
3787 argnum = nargs - 1;
3788 }
3789 else
3790 {
3791 inc = 1;
3792 argnum = 0;
3793 }
3794
3795 #ifdef REG_PARM_STACK_SPACE
3796 if (ACCUMULATE_OUTGOING_ARGS)
3797 {
3798 /* The argument list is the property of the called routine and it
3799 may clobber it. If the fixed area has been used for previous
3800 parameters, we must save and restore it. */
3801 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3802 &low_to_save, &high_to_save);
3803 }
3804 #endif
3805
3806 /* Push the args that need to be pushed. */
3807
3808 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3809 are to be pushed. */
3810 for (count = 0; count < nargs; count++, argnum += inc)
3811 {
3812 enum machine_mode mode = argvec[argnum].mode;
3813 rtx val = argvec[argnum].value;
3814 rtx reg = argvec[argnum].reg;
3815 int partial = argvec[argnum].partial;
3816 unsigned int parm_align = argvec[argnum].locate.boundary;
3817 int lower_bound = 0, upper_bound = 0, i;
3818
3819 if (! (reg != 0 && partial == 0))
3820 {
3821 rtx use;
3822
3823 if (ACCUMULATE_OUTGOING_ARGS)
3824 {
3825 /* If this is being stored into a pre-allocated, fixed-size,
3826 stack area, save any previous data at that location. */
3827
3828 #ifdef ARGS_GROW_DOWNWARD
3829 /* stack_slot is negative, but we want to index stack_usage_map
3830 with positive values. */
3831 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
3832 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3833 #else
3834 lower_bound = argvec[argnum].locate.slot_offset.constant;
3835 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3836 #endif
3837
3838 i = lower_bound;
3839 /* Don't worry about things in the fixed argument area;
3840 it has already been saved. */
3841 if (i < reg_parm_stack_space)
3842 i = reg_parm_stack_space;
3843 while (i < upper_bound && stack_usage_map[i] == 0)
3844 i++;
3845
3846 if (i < upper_bound)
3847 {
3848 /* We need to make a save area. */
3849 unsigned int size
3850 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3851 enum machine_mode save_mode
3852 = mode_for_size (size, MODE_INT, 1);
3853 rtx adr
3854 = plus_constant (argblock,
3855 argvec[argnum].locate.offset.constant);
3856 rtx stack_area
3857 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3858
3859 if (save_mode == BLKmode)
3860 {
3861 argvec[argnum].save_area
3862 = assign_stack_temp (BLKmode,
3863 argvec[argnum].locate.size.constant,
3864 0);
3865
3866 emit_block_move (validize_mem (argvec[argnum].save_area),
3867 stack_area,
3868 GEN_INT (argvec[argnum].locate.size.constant),
3869 BLOCK_OP_CALL_PARM);
3870 }
3871 else
3872 {
3873 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3874
3875 emit_move_insn (argvec[argnum].save_area, stack_area);
3876 }
3877 }
3878 }
3879
3880 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
3881 partial, reg, 0, argblock,
3882 GEN_INT (argvec[argnum].locate.offset.constant),
3883 reg_parm_stack_space,
3884 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3885
3886 /* Now mark the segment we just used. */
3887 if (ACCUMULATE_OUTGOING_ARGS)
3888 for (i = lower_bound; i < upper_bound; i++)
3889 stack_usage_map[i] = 1;
3890
3891 NO_DEFER_POP;
3892
3893 /* Indicate argument access so that alias.c knows that these
3894 values are live. */
3895 if (argblock)
3896 use = plus_constant (argblock,
3897 argvec[argnum].locate.offset.constant);
3898 else
3899 /* When arguments are pushed, trying to tell alias.c where
3900 exactly this argument is won't work, because the
3901 auto-increment causes confusion. So we merely indicate
3902 that we access something with a known mode somewhere on
3903 the stack. */
3904 use = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3905 gen_rtx_SCRATCH (Pmode));
3906 use = gen_rtx_MEM (argvec[argnum].mode, use);
3907 use = gen_rtx_USE (VOIDmode, use);
3908 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
3909 }
3910 }
3911
3912 /* If we pushed args in forward order, perform stack alignment
3913 after pushing the last arg. */
3914 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3915 anti_adjust_stack (GEN_INT (args_size.constant
3916 - original_args_size.constant));
3917
3918 if (PUSH_ARGS_REVERSED)
3919 argnum = nargs - 1;
3920 else
3921 argnum = 0;
3922
3923 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
3924
3925 /* Now load any reg parms into their regs. */
3926
3927 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3928 are to be pushed. */
3929 for (count = 0; count < nargs; count++, argnum += inc)
3930 {
3931 enum machine_mode mode = argvec[argnum].mode;
3932 rtx val = argvec[argnum].value;
3933 rtx reg = argvec[argnum].reg;
3934 int partial = argvec[argnum].partial;
3935 #ifdef BLOCK_REG_PADDING
3936 int size = 0;
3937 #endif
3938
3939 /* Handle calls that pass values in multiple non-contiguous
3940 locations. The PA64 has examples of this for library calls. */
3941 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3942 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3943 else if (reg != 0 && partial == 0)
3944 {
3945 emit_move_insn (reg, val);
3946 #ifdef BLOCK_REG_PADDING
3947 size = GET_MODE_SIZE (argvec[argnum].mode);
3948
3949 /* Copied from load_register_parameters. */
3950
3951 /* Handle case where we have a value that needs shifting
3952 up to the msb. eg. a QImode value and we're padding
3953 upward on a BYTES_BIG_ENDIAN machine. */
3954 if (size < UNITS_PER_WORD
3955 && (argvec[argnum].locate.where_pad
3956 == (BYTES_BIG_ENDIAN ? upward : downward)))
3957 {
3958 rtx x;
3959 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3960
3961 /* Assigning REG here rather than a temp makes CALL_FUSAGE
3962 report the whole reg as used. Strictly speaking, the
3963 call only uses SIZE bytes at the msb end, but it doesn't
3964 seem worth generating rtl to say that. */
3965 reg = gen_rtx_REG (word_mode, REGNO (reg));
3966 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
3967 if (x != reg)
3968 emit_move_insn (reg, x);
3969 }
3970 #endif
3971 }
3972
3973 NO_DEFER_POP;
3974 }
3975
3976 /* Any regs containing parms remain in use through the call. */
3977 for (count = 0; count < nargs; count++)
3978 {
3979 rtx reg = argvec[count].reg;
3980 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3981 use_group_regs (&call_fusage, reg);
3982 else if (reg != 0)
3983 {
3984 int partial = argvec[count].partial;
3985 if (partial)
3986 {
3987 int nregs;
3988 gcc_assert (partial % UNITS_PER_WORD == 0);
3989 nregs = partial / UNITS_PER_WORD;
3990 use_regs (&call_fusage, REGNO (reg), nregs);
3991 }
3992 else
3993 use_reg (&call_fusage, reg);
3994 }
3995 }
3996
3997 /* Pass the function the address in which to return a structure value. */
3998 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3999 {
4000 emit_move_insn (struct_value,
4001 force_reg (Pmode,
4002 force_operand (XEXP (mem_value, 0),
4003 NULL_RTX)));
4004 if (REG_P (struct_value))
4005 use_reg (&call_fusage, struct_value);
4006 }
4007
4008 /* Don't allow popping to be deferred, since then
4009 cse'ing of library calls could delete a call and leave the pop. */
4010 NO_DEFER_POP;
4011 valreg = (mem_value == 0 && outmode != VOIDmode
4012 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
4013
4014 /* Stack must be properly aligned now. */
4015 gcc_assert (!(stack_pointer_delta
4016 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
4017
4018 before_call = get_last_insn ();
4019
4020 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
4021 will set inhibit_defer_pop to that value. */
4022 /* The return type is needed to decide how many bytes the function pops.
4023 Signedness plays no role in that, so for simplicity, we pretend it's
4024 always signed. We also assume that the list of arguments passed has
4025 no impact, so we pretend it is unknown. */
4026
4027 emit_call_1 (fun, NULL,
4028 get_identifier (XSTR (orgfun, 0)),
4029 build_function_type (tfom, NULL_TREE),
4030 original_args_size.constant, args_size.constant,
4031 struct_value_size,
4032 targetm.calls.function_arg (args_so_far,
4033 VOIDmode, void_type_node, true),
4034 valreg,
4035 old_inhibit_defer_pop + 1, call_fusage, flags, args_so_far);
4036
4037 /* Right-shift returned value if necessary. */
4038 if (!pcc_struct_value
4039 && TYPE_MODE (tfom) != BLKmode
4040 && targetm.calls.return_in_msb (tfom))
4041 {
4042 shift_return_value (TYPE_MODE (tfom), false, valreg);
4043 valreg = gen_rtx_REG (TYPE_MODE (tfom), REGNO (valreg));
4044 }
4045
4046 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
4047 that it should complain if nonvolatile values are live. For
4048 functions that cannot return, inform flow that control does not
4049 fall through. */
4050
4051 if (flags & ECF_NORETURN)
4052 {
4053 /* The barrier note must be emitted
4054 immediately after the CALL_INSN. Some ports emit more than
4055 just a CALL_INSN above, so we must search for it here. */
4056
4057 rtx last = get_last_insn ();
4058 while (!CALL_P (last))
4059 {
4060 last = PREV_INSN (last);
4061 /* There was no CALL_INSN? */
4062 gcc_assert (last != before_call);
4063 }
4064
4065 emit_barrier_after (last);
4066 }
4067
4068 /* Now restore inhibit_defer_pop to its actual original value. */
4069 OK_DEFER_POP;
4070
4071 pop_temp_slots ();
4072
4073 /* Copy the value to the right place. */
4074 if (outmode != VOIDmode && retval)
4075 {
4076 if (mem_value)
4077 {
4078 if (value == 0)
4079 value = mem_value;
4080 if (value != mem_value)
4081 emit_move_insn (value, mem_value);
4082 }
4083 else if (GET_CODE (valreg) == PARALLEL)
4084 {
4085 if (value == 0)
4086 value = gen_reg_rtx (outmode);
4087 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
4088 }
4089 else
4090 {
4091 /* Convert to the proper mode if a promotion has been active. */
4092 if (GET_MODE (valreg) != outmode)
4093 {
4094 int unsignedp = TYPE_UNSIGNED (tfom);
4095
4096 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
4097 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
4098 == GET_MODE (valreg));
4099 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
4100 }
4101
4102 if (value != 0)
4103 emit_move_insn (value, valreg);
4104 else
4105 value = valreg;
4106 }
4107 }
4108
4109 if (ACCUMULATE_OUTGOING_ARGS)
4110 {
4111 #ifdef REG_PARM_STACK_SPACE
4112 if (save_area)
4113 restore_fixed_argument_area (save_area, argblock,
4114 high_to_save, low_to_save);
4115 #endif
4116
4117 /* If we saved any argument areas, restore them. */
4118 for (count = 0; count < nargs; count++)
4119 if (argvec[count].save_area)
4120 {
4121 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
4122 rtx adr = plus_constant (argblock,
4123 argvec[count].locate.offset.constant);
4124 rtx stack_area = gen_rtx_MEM (save_mode,
4125 memory_address (save_mode, adr));
4126
4127 if (save_mode == BLKmode)
4128 emit_block_move (stack_area,
4129 validize_mem (argvec[count].save_area),
4130 GEN_INT (argvec[count].locate.size.constant),
4131 BLOCK_OP_CALL_PARM);
4132 else
4133 emit_move_insn (stack_area, argvec[count].save_area);
4134 }
4135
4136 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4137 stack_usage_map = initial_stack_usage_map;
4138 }
4139
4140 free (stack_usage_map_buf);
4141
4142 return value;
4143
4144 }
4145 \f
4146 /* Output a library call to function FUN (a SYMBOL_REF rtx)
4147 (emitting the queue unless NO_QUEUE is nonzero),
4148 for a value of mode OUTMODE,
4149 with NARGS different arguments, passed as alternating rtx values
4150 and machine_modes to convert them to.
4151
4152 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
4153 `const' calls, LCT_PURE for `pure' calls, or other LCT_ value for
4154 other types of library calls. */
4155
4156 void
4157 emit_library_call (rtx orgfun, enum libcall_type fn_type,
4158 enum machine_mode outmode, int nargs, ...)
4159 {
4160 va_list p;
4161
4162 va_start (p, nargs);
4163 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
4164 va_end (p);
4165 }
4166 \f
4167 /* Like emit_library_call except that an extra argument, VALUE,
4168 comes second and says where to store the result.
4169 (If VALUE is zero, this function chooses a convenient way
4170 to return the value.
4171
4172 This function returns an rtx for where the value is to be found.
4173 If VALUE is nonzero, VALUE is returned. */
4174
4175 rtx
4176 emit_library_call_value (rtx orgfun, rtx value,
4177 enum libcall_type fn_type,
4178 enum machine_mode outmode, int nargs, ...)
4179 {
4180 rtx result;
4181 va_list p;
4182
4183 va_start (p, nargs);
4184 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
4185 nargs, p);
4186 va_end (p);
4187
4188 return result;
4189 }
4190 \f
4191 /* Store a single argument for a function call
4192 into the register or memory area where it must be passed.
4193 *ARG describes the argument value and where to pass it.
4194
4195 ARGBLOCK is the address of the stack-block for all the arguments,
4196 or 0 on a machine where arguments are pushed individually.
4197
4198 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
4199 so must be careful about how the stack is used.
4200
4201 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
4202 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
4203 that we need not worry about saving and restoring the stack.
4204
4205 FNDECL is the declaration of the function we are calling.
4206
4207 Return nonzero if this arg should cause sibcall failure,
4208 zero otherwise. */
4209
4210 static int
4211 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
4212 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
4213 {
4214 tree pval = arg->tree_value;
4215 rtx reg = 0;
4216 int partial = 0;
4217 int used = 0;
4218 int i, lower_bound = 0, upper_bound = 0;
4219 int sibcall_failure = 0;
4220
4221 if (TREE_CODE (pval) == ERROR_MARK)
4222 return 1;
4223
4224 /* Push a new temporary level for any temporaries we make for
4225 this argument. */
4226 push_temp_slots ();
4227
4228 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
4229 {
4230 /* If this is being stored into a pre-allocated, fixed-size, stack area,
4231 save any previous data at that location. */
4232 if (argblock && ! variable_size && arg->stack)
4233 {
4234 #ifdef ARGS_GROW_DOWNWARD
4235 /* stack_slot is negative, but we want to index stack_usage_map
4236 with positive values. */
4237 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4238 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
4239 else
4240 upper_bound = 0;
4241
4242 lower_bound = upper_bound - arg->locate.size.constant;
4243 #else
4244 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4245 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
4246 else
4247 lower_bound = 0;
4248
4249 upper_bound = lower_bound + arg->locate.size.constant;
4250 #endif
4251
4252 i = lower_bound;
4253 /* Don't worry about things in the fixed argument area;
4254 it has already been saved. */
4255 if (i < reg_parm_stack_space)
4256 i = reg_parm_stack_space;
4257 while (i < upper_bound && stack_usage_map[i] == 0)
4258 i++;
4259
4260 if (i < upper_bound)
4261 {
4262 /* We need to make a save area. */
4263 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
4264 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
4265 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
4266 rtx stack_area = gen_rtx_MEM (save_mode, adr);
4267
4268 if (save_mode == BLKmode)
4269 {
4270 tree ot = TREE_TYPE (arg->tree_value);
4271 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
4272 | TYPE_QUAL_CONST));
4273
4274 arg->save_area = assign_temp (nt, 0, 1, 1);
4275 preserve_temp_slots (arg->save_area);
4276 emit_block_move (validize_mem (arg->save_area), stack_area,
4277 GEN_INT (arg->locate.size.constant),
4278 BLOCK_OP_CALL_PARM);
4279 }
4280 else
4281 {
4282 arg->save_area = gen_reg_rtx (save_mode);
4283 emit_move_insn (arg->save_area, stack_area);
4284 }
4285 }
4286 }
4287 }
4288
4289 /* If this isn't going to be placed on both the stack and in registers,
4290 set up the register and number of words. */
4291 if (! arg->pass_on_stack)
4292 {
4293 if (flags & ECF_SIBCALL)
4294 reg = arg->tail_call_reg;
4295 else
4296 reg = arg->reg;
4297 partial = arg->partial;
4298 }
4299
4300 /* Being passed entirely in a register. We shouldn't be called in
4301 this case. */
4302 gcc_assert (reg == 0 || partial != 0);
4303
4304 /* If this arg needs special alignment, don't load the registers
4305 here. */
4306 if (arg->n_aligned_regs != 0)
4307 reg = 0;
4308
4309 /* If this is being passed partially in a register, we can't evaluate
4310 it directly into its stack slot. Otherwise, we can. */
4311 if (arg->value == 0)
4312 {
4313 /* stack_arg_under_construction is nonzero if a function argument is
4314 being evaluated directly into the outgoing argument list and
4315 expand_call must take special action to preserve the argument list
4316 if it is called recursively.
4317
4318 For scalar function arguments stack_usage_map is sufficient to
4319 determine which stack slots must be saved and restored. Scalar
4320 arguments in general have pass_on_stack == 0.
4321
4322 If this argument is initialized by a function which takes the
4323 address of the argument (a C++ constructor or a C function
4324 returning a BLKmode structure), then stack_usage_map is
4325 insufficient and expand_call must push the stack around the
4326 function call. Such arguments have pass_on_stack == 1.
4327
4328 Note that it is always safe to set stack_arg_under_construction,
4329 but this generates suboptimal code if set when not needed. */
4330
4331 if (arg->pass_on_stack)
4332 stack_arg_under_construction++;
4333
4334 arg->value = expand_expr (pval,
4335 (partial
4336 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4337 ? NULL_RTX : arg->stack,
4338 VOIDmode, EXPAND_STACK_PARM);
4339
4340 /* If we are promoting object (or for any other reason) the mode
4341 doesn't agree, convert the mode. */
4342
4343 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4344 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4345 arg->value, arg->unsignedp);
4346
4347 if (arg->pass_on_stack)
4348 stack_arg_under_construction--;
4349 }
4350
4351 /* Check for overlap with already clobbered argument area. */
4352 if ((flags & ECF_SIBCALL)
4353 && MEM_P (arg->value)
4354 && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
4355 arg->locate.size.constant))
4356 sibcall_failure = 1;
4357
4358 /* Don't allow anything left on stack from computation
4359 of argument to alloca. */
4360 if (flags & ECF_MAY_BE_ALLOCA)
4361 do_pending_stack_adjust ();
4362
4363 if (arg->value == arg->stack)
4364 /* If the value is already in the stack slot, we are done. */
4365 ;
4366 else if (arg->mode != BLKmode)
4367 {
4368 int size;
4369 unsigned int parm_align;
4370
4371 /* Argument is a scalar, not entirely passed in registers.
4372 (If part is passed in registers, arg->partial says how much
4373 and emit_push_insn will take care of putting it there.)
4374
4375 Push it, and if its size is less than the
4376 amount of space allocated to it,
4377 also bump stack pointer by the additional space.
4378 Note that in C the default argument promotions
4379 will prevent such mismatches. */
4380
4381 size = GET_MODE_SIZE (arg->mode);
4382 /* Compute how much space the push instruction will push.
4383 On many machines, pushing a byte will advance the stack
4384 pointer by a halfword. */
4385 #ifdef PUSH_ROUNDING
4386 size = PUSH_ROUNDING (size);
4387 #endif
4388 used = size;
4389
4390 /* Compute how much space the argument should get:
4391 round up to a multiple of the alignment for arguments. */
4392 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4393 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4394 / (PARM_BOUNDARY / BITS_PER_UNIT))
4395 * (PARM_BOUNDARY / BITS_PER_UNIT));
4396
4397 /* Compute the alignment of the pushed argument. */
4398 parm_align = arg->locate.boundary;
4399 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4400 {
4401 int pad = used - size;
4402 if (pad)
4403 {
4404 unsigned int pad_align = (pad & -pad) * BITS_PER_UNIT;
4405 parm_align = MIN (parm_align, pad_align);
4406 }
4407 }
4408
4409 /* This isn't already where we want it on the stack, so put it there.
4410 This can either be done with push or copy insns. */
4411 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4412 parm_align, partial, reg, used - size, argblock,
4413 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4414 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4415
4416 /* Unless this is a partially-in-register argument, the argument is now
4417 in the stack. */
4418 if (partial == 0)
4419 arg->value = arg->stack;
4420 }
4421 else
4422 {
4423 /* BLKmode, at least partly to be pushed. */
4424
4425 unsigned int parm_align;
4426 int excess;
4427 rtx size_rtx;
4428
4429 /* Pushing a nonscalar.
4430 If part is passed in registers, PARTIAL says how much
4431 and emit_push_insn will take care of putting it there. */
4432
4433 /* Round its size up to a multiple
4434 of the allocation unit for arguments. */
4435
4436 if (arg->locate.size.var != 0)
4437 {
4438 excess = 0;
4439 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4440 }
4441 else
4442 {
4443 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4444 for BLKmode is careful to avoid it. */
4445 excess = (arg->locate.size.constant
4446 - int_size_in_bytes (TREE_TYPE (pval))
4447 + partial);
4448 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4449 NULL_RTX, TYPE_MODE (sizetype),
4450 EXPAND_NORMAL);
4451 }
4452
4453 parm_align = arg->locate.boundary;
4454
4455 /* When an argument is padded down, the block is aligned to
4456 PARM_BOUNDARY, but the actual argument isn't. */
4457 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4458 {
4459 if (arg->locate.size.var)
4460 parm_align = BITS_PER_UNIT;
4461 else if (excess)
4462 {
4463 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4464 parm_align = MIN (parm_align, excess_align);
4465 }
4466 }
4467
4468 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4469 {
4470 /* emit_push_insn might not work properly if arg->value and
4471 argblock + arg->locate.offset areas overlap. */
4472 rtx x = arg->value;
4473 int i = 0;
4474
4475 if (XEXP (x, 0) == crtl->args.internal_arg_pointer
4476 || (GET_CODE (XEXP (x, 0)) == PLUS
4477 && XEXP (XEXP (x, 0), 0) ==
4478 crtl->args.internal_arg_pointer
4479 && CONST_INT_P (XEXP (XEXP (x, 0), 1))))
4480 {
4481 if (XEXP (x, 0) != crtl->args.internal_arg_pointer)
4482 i = INTVAL (XEXP (XEXP (x, 0), 1));
4483
4484 /* expand_call should ensure this. */
4485 gcc_assert (!arg->locate.offset.var
4486 && arg->locate.size.var == 0
4487 && CONST_INT_P (size_rtx));
4488
4489 if (arg->locate.offset.constant > i)
4490 {
4491 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4492 sibcall_failure = 1;
4493 }
4494 else if (arg->locate.offset.constant < i)
4495 {
4496 /* Use arg->locate.size.constant instead of size_rtx
4497 because we only care about the part of the argument
4498 on the stack. */
4499 if (i < (arg->locate.offset.constant
4500 + arg->locate.size.constant))
4501 sibcall_failure = 1;
4502 }
4503 else
4504 {
4505 /* Even though they appear to be at the same location,
4506 if part of the outgoing argument is in registers,
4507 they aren't really at the same location. Check for
4508 this by making sure that the incoming size is the
4509 same as the outgoing size. */
4510 if (arg->locate.size.constant != INTVAL (size_rtx))
4511 sibcall_failure = 1;
4512 }
4513 }
4514 }
4515
4516 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4517 parm_align, partial, reg, excess, argblock,
4518 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4519 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4520
4521 /* Unless this is a partially-in-register argument, the argument is now
4522 in the stack.
4523
4524 ??? Unlike the case above, in which we want the actual
4525 address of the data, so that we can load it directly into a
4526 register, here we want the address of the stack slot, so that
4527 it's properly aligned for word-by-word copying or something
4528 like that. It's not clear that this is always correct. */
4529 if (partial == 0)
4530 arg->value = arg->stack_slot;
4531 }
4532
4533 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
4534 {
4535 tree type = TREE_TYPE (arg->tree_value);
4536 arg->parallel_value
4537 = emit_group_load_into_temps (arg->reg, arg->value, type,
4538 int_size_in_bytes (type));
4539 }
4540
4541 /* Mark all slots this store used. */
4542 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4543 && argblock && ! variable_size && arg->stack)
4544 for (i = lower_bound; i < upper_bound; i++)
4545 stack_usage_map[i] = 1;
4546
4547 /* Once we have pushed something, pops can't safely
4548 be deferred during the rest of the arguments. */
4549 NO_DEFER_POP;
4550
4551 /* Free any temporary slots made in processing this argument. Show
4552 that we might have taken the address of something and pushed that
4553 as an operand. */
4554 preserve_temp_slots (NULL_RTX);
4555 free_temp_slots ();
4556 pop_temp_slots ();
4557
4558 return sibcall_failure;
4559 }
4560
4561 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4562
4563 bool
4564 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4565 const_tree type)
4566 {
4567 if (!type)
4568 return false;
4569
4570 /* If the type has variable size... */
4571 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4572 return true;
4573
4574 /* If the type is marked as addressable (it is required
4575 to be constructed into the stack)... */
4576 if (TREE_ADDRESSABLE (type))
4577 return true;
4578
4579 return false;
4580 }
4581
4582 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4583 takes trailing padding of a structure into account. */
4584 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4585
4586 bool
4587 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, const_tree type)
4588 {
4589 if (!type)
4590 return false;
4591
4592 /* If the type has variable size... */
4593 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4594 return true;
4595
4596 /* If the type is marked as addressable (it is required
4597 to be constructed into the stack)... */
4598 if (TREE_ADDRESSABLE (type))
4599 return true;
4600
4601 /* If the padding and mode of the type is such that a copy into
4602 a register would put it into the wrong part of the register. */
4603 if (mode == BLKmode
4604 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4605 && (FUNCTION_ARG_PADDING (mode, type)
4606 == (BYTES_BIG_ENDIAN ? upward : downward)))
4607 return true;
4608
4609 return false;
4610 }