real.h (struct real_format): Split the signbit field into two two fields, signbit_ro...
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "expr.h"
31 #include "optabs.h"
32 #include "libfuncs.h"
33 #include "function.h"
34 #include "regs.h"
35 #include "toplev.h"
36 #include "output.h"
37 #include "tm_p.h"
38 #include "timevar.h"
39 #include "sbitmap.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "cgraph.h"
43 #include "except.h"
44
45 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
46 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
47
48 /* Data structure and subroutines used within expand_call. */
49
50 struct arg_data
51 {
52 /* Tree node for this argument. */
53 tree tree_value;
54 /* Mode for value; TYPE_MODE unless promoted. */
55 enum machine_mode mode;
56 /* Current RTL value for argument, or 0 if it isn't precomputed. */
57 rtx value;
58 /* Initially-compute RTL value for argument; only for const functions. */
59 rtx initial_value;
60 /* Register to pass this argument in, 0 if passed on stack, or an
61 PARALLEL if the arg is to be copied into multiple non-contiguous
62 registers. */
63 rtx reg;
64 /* Register to pass this argument in when generating tail call sequence.
65 This is not the same register as for normal calls on machines with
66 register windows. */
67 rtx tail_call_reg;
68 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
69 form for emit_group_move. */
70 rtx parallel_value;
71 /* If REG was promoted from the actual mode of the argument expression,
72 indicates whether the promotion is sign- or zero-extended. */
73 int unsignedp;
74 /* Number of registers to use. 0 means put the whole arg in registers.
75 Also 0 if not passed in registers. */
76 int partial;
77 /* Nonzero if argument must be passed on stack.
78 Note that some arguments may be passed on the stack
79 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
80 pass_on_stack identifies arguments that *cannot* go in registers. */
81 int pass_on_stack;
82 /* Some fields packaged up for locate_and_pad_parm. */
83 struct locate_and_pad_arg_data locate;
84 /* Location on the stack at which parameter should be stored. The store
85 has already been done if STACK == VALUE. */
86 rtx stack;
87 /* Location on the stack of the start of this argument slot. This can
88 differ from STACK if this arg pads downward. This location is known
89 to be aligned to FUNCTION_ARG_BOUNDARY. */
90 rtx stack_slot;
91 /* Place that this stack area has been saved, if needed. */
92 rtx save_area;
93 /* If an argument's alignment does not permit direct copying into registers,
94 copy in smaller-sized pieces into pseudos. These are stored in a
95 block pointed to by this field. The next field says how many
96 word-sized pseudos we made. */
97 rtx *aligned_regs;
98 int n_aligned_regs;
99 };
100
101 /* A vector of one char per byte of stack space. A byte if nonzero if
102 the corresponding stack location has been used.
103 This vector is used to prevent a function call within an argument from
104 clobbering any stack already set up. */
105 static char *stack_usage_map;
106
107 /* Size of STACK_USAGE_MAP. */
108 static int highest_outgoing_arg_in_use;
109
110 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
111 stack location's tail call argument has been already stored into the stack.
112 This bitmap is used to prevent sibling call optimization if function tries
113 to use parent's incoming argument slots when they have been already
114 overwritten with tail call arguments. */
115 static sbitmap stored_args_map;
116
117 /* stack_arg_under_construction is nonzero when an argument may be
118 initialized with a constructor call (including a C function that
119 returns a BLKmode struct) and expand_call must take special action
120 to make sure the object being constructed does not overlap the
121 argument list for the constructor call. */
122 static int stack_arg_under_construction;
123
124 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
125 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
126 CUMULATIVE_ARGS *);
127 static void precompute_register_parameters (int, struct arg_data *, int *);
128 static int store_one_arg (struct arg_data *, rtx, int, int, int);
129 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
130 static int finalize_must_preallocate (int, int, struct arg_data *,
131 struct args_size *);
132 static void precompute_arguments (int, int, struct arg_data *);
133 static int compute_argument_block_size (int, struct args_size *, int);
134 static void initialize_argument_information (int, struct arg_data *,
135 struct args_size *, int, tree,
136 tree, CUMULATIVE_ARGS *, int,
137 rtx *, int *, int *, int *,
138 bool *, bool);
139 static void compute_argument_addresses (struct arg_data *, rtx, int);
140 static rtx rtx_for_function_call (tree, tree);
141 static void load_register_parameters (struct arg_data *, int, rtx *, int,
142 int, int *);
143 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
144 enum machine_mode, int, va_list);
145 static int special_function_p (tree, int);
146 static int check_sibcall_argument_overlap_1 (rtx);
147 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
148
149 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
150 unsigned int);
151 static tree split_complex_values (tree);
152 static tree split_complex_types (tree);
153
154 #ifdef REG_PARM_STACK_SPACE
155 static rtx save_fixed_argument_area (int, rtx, int *, int *);
156 static void restore_fixed_argument_area (rtx, rtx, int, int);
157 #endif
158 \f
159 /* Force FUNEXP into a form suitable for the address of a CALL,
160 and return that as an rtx. Also load the static chain register
161 if FNDECL is a nested function.
162
163 CALL_FUSAGE points to a variable holding the prospective
164 CALL_INSN_FUNCTION_USAGE information. */
165
166 rtx
167 prepare_call_address (rtx funexp, rtx static_chain_value,
168 rtx *call_fusage, int reg_parm_seen, int sibcallp)
169 {
170 /* Make a valid memory address and copy constants through pseudo-regs,
171 but not for a constant address if -fno-function-cse. */
172 if (GET_CODE (funexp) != SYMBOL_REF)
173 /* If we are using registers for parameters, force the
174 function address into a register now. */
175 funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
176 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
177 : memory_address (FUNCTION_MODE, funexp));
178 else if (! sibcallp)
179 {
180 #ifndef NO_FUNCTION_CSE
181 if (optimize && ! flag_no_function_cse)
182 funexp = force_reg (Pmode, funexp);
183 #endif
184 }
185
186 if (static_chain_value != 0)
187 {
188 static_chain_value = convert_memory_address (Pmode, static_chain_value);
189 emit_move_insn (static_chain_rtx, static_chain_value);
190
191 if (REG_P (static_chain_rtx))
192 use_reg (call_fusage, static_chain_rtx);
193 }
194
195 return funexp;
196 }
197
198 /* Generate instructions to call function FUNEXP,
199 and optionally pop the results.
200 The CALL_INSN is the first insn generated.
201
202 FNDECL is the declaration node of the function. This is given to the
203 macro RETURN_POPS_ARGS to determine whether this function pops its own args.
204
205 FUNTYPE is the data type of the function. This is given to the macro
206 RETURN_POPS_ARGS to determine whether this function pops its own args.
207 We used to allow an identifier for library functions, but that doesn't
208 work when the return type is an aggregate type and the calling convention
209 says that the pointer to this aggregate is to be popped by the callee.
210
211 STACK_SIZE is the number of bytes of arguments on the stack,
212 ROUNDED_STACK_SIZE is that number rounded up to
213 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
214 both to put into the call insn and to generate explicit popping
215 code if necessary.
216
217 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
218 It is zero if this call doesn't want a structure value.
219
220 NEXT_ARG_REG is the rtx that results from executing
221 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
222 just after all the args have had their registers assigned.
223 This could be whatever you like, but normally it is the first
224 arg-register beyond those used for args in this call,
225 or 0 if all the arg-registers are used in this call.
226 It is passed on to `gen_call' so you can put this info in the call insn.
227
228 VALREG is a hard register in which a value is returned,
229 or 0 if the call does not return a value.
230
231 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
232 the args to this call were processed.
233 We restore `inhibit_defer_pop' to that value.
234
235 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
236 denote registers used by the called function. */
237
238 static void
239 emit_call_1 (rtx funexp, tree fntree, tree fndecl ATTRIBUTE_UNUSED,
240 tree funtype ATTRIBUTE_UNUSED,
241 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
242 HOST_WIDE_INT rounded_stack_size,
243 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
244 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
245 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
246 CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
247 {
248 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
249 rtx call_insn;
250 int already_popped = 0;
251 HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
252 #if defined (HAVE_call) && defined (HAVE_call_value)
253 rtx struct_value_size_rtx;
254 struct_value_size_rtx = GEN_INT (struct_value_size);
255 #endif
256
257 #ifdef CALL_POPS_ARGS
258 n_popped += CALL_POPS_ARGS (* args_so_far);
259 #endif
260
261 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
262 and we don't want to load it into a register as an optimization,
263 because prepare_call_address already did it if it should be done. */
264 if (GET_CODE (funexp) != SYMBOL_REF)
265 funexp = memory_address (FUNCTION_MODE, funexp);
266
267 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
268 if ((ecf_flags & ECF_SIBCALL)
269 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
270 && (n_popped > 0 || stack_size == 0))
271 {
272 rtx n_pop = GEN_INT (n_popped);
273 rtx pat;
274
275 /* If this subroutine pops its own args, record that in the call insn
276 if possible, for the sake of frame pointer elimination. */
277
278 if (valreg)
279 pat = GEN_SIBCALL_VALUE_POP (valreg,
280 gen_rtx_MEM (FUNCTION_MODE, funexp),
281 rounded_stack_size_rtx, next_arg_reg,
282 n_pop);
283 else
284 pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
285 rounded_stack_size_rtx, next_arg_reg, n_pop);
286
287 emit_call_insn (pat);
288 already_popped = 1;
289 }
290 else
291 #endif
292
293 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
294 /* If the target has "call" or "call_value" insns, then prefer them
295 if no arguments are actually popped. If the target does not have
296 "call" or "call_value" insns, then we must use the popping versions
297 even if the call has no arguments to pop. */
298 #if defined (HAVE_call) && defined (HAVE_call_value)
299 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
300 && n_popped > 0 && ! (ecf_flags & ECF_SP_DEPRESSED))
301 #else
302 if (HAVE_call_pop && HAVE_call_value_pop)
303 #endif
304 {
305 rtx n_pop = GEN_INT (n_popped);
306 rtx pat;
307
308 /* If this subroutine pops its own args, record that in the call insn
309 if possible, for the sake of frame pointer elimination. */
310
311 if (valreg)
312 pat = GEN_CALL_VALUE_POP (valreg,
313 gen_rtx_MEM (FUNCTION_MODE, funexp),
314 rounded_stack_size_rtx, next_arg_reg, n_pop);
315 else
316 pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
317 rounded_stack_size_rtx, next_arg_reg, n_pop);
318
319 emit_call_insn (pat);
320 already_popped = 1;
321 }
322 else
323 #endif
324
325 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
326 if ((ecf_flags & ECF_SIBCALL)
327 && HAVE_sibcall && HAVE_sibcall_value)
328 {
329 if (valreg)
330 emit_call_insn (GEN_SIBCALL_VALUE (valreg,
331 gen_rtx_MEM (FUNCTION_MODE, funexp),
332 rounded_stack_size_rtx,
333 next_arg_reg, NULL_RTX));
334 else
335 emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
336 rounded_stack_size_rtx, next_arg_reg,
337 struct_value_size_rtx));
338 }
339 else
340 #endif
341
342 #if defined (HAVE_call) && defined (HAVE_call_value)
343 if (HAVE_call && HAVE_call_value)
344 {
345 if (valreg)
346 emit_call_insn (GEN_CALL_VALUE (valreg,
347 gen_rtx_MEM (FUNCTION_MODE, funexp),
348 rounded_stack_size_rtx, next_arg_reg,
349 NULL_RTX));
350 else
351 emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
352 rounded_stack_size_rtx, next_arg_reg,
353 struct_value_size_rtx));
354 }
355 else
356 #endif
357 gcc_unreachable ();
358
359 /* Find the call we just emitted. */
360 call_insn = last_call_insn ();
361
362 /* Mark memory as used for "pure" function call. */
363 if (ecf_flags & ECF_PURE)
364 call_fusage
365 = gen_rtx_EXPR_LIST
366 (VOIDmode,
367 gen_rtx_USE (VOIDmode,
368 gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))),
369 call_fusage);
370
371 /* Put the register usage information there. */
372 add_function_usage_to (call_insn, call_fusage);
373
374 /* If this is a const call, then set the insn's unchanging bit. */
375 if (ecf_flags & (ECF_CONST | ECF_PURE))
376 CONST_OR_PURE_CALL_P (call_insn) = 1;
377
378 /* If this call can't throw, attach a REG_EH_REGION reg note to that
379 effect. */
380 if (ecf_flags & ECF_NOTHROW)
381 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, const0_rtx,
382 REG_NOTES (call_insn));
383 else
384 {
385 int rn = lookup_stmt_eh_region (fntree);
386
387 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't
388 throw, which we already took care of. */
389 if (rn > 0)
390 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
391 REG_NOTES (call_insn));
392 note_current_region_may_contain_throw ();
393 }
394
395 if (ecf_flags & ECF_NORETURN)
396 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_NORETURN, const0_rtx,
397 REG_NOTES (call_insn));
398
399 if (ecf_flags & ECF_RETURNS_TWICE)
400 {
401 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_SETJMP, const0_rtx,
402 REG_NOTES (call_insn));
403 current_function_calls_setjmp = 1;
404 }
405
406 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
407
408 /* Restore this now, so that we do defer pops for this call's args
409 if the context of the call as a whole permits. */
410 inhibit_defer_pop = old_inhibit_defer_pop;
411
412 if (n_popped > 0)
413 {
414 if (!already_popped)
415 CALL_INSN_FUNCTION_USAGE (call_insn)
416 = gen_rtx_EXPR_LIST (VOIDmode,
417 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
418 CALL_INSN_FUNCTION_USAGE (call_insn));
419 rounded_stack_size -= n_popped;
420 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
421 stack_pointer_delta -= n_popped;
422 }
423
424 if (!ACCUMULATE_OUTGOING_ARGS)
425 {
426 /* If returning from the subroutine does not automatically pop the args,
427 we need an instruction to pop them sooner or later.
428 Perhaps do it now; perhaps just record how much space to pop later.
429
430 If returning from the subroutine does pop the args, indicate that the
431 stack pointer will be changed. */
432
433 if (rounded_stack_size != 0)
434 {
435 if (ecf_flags & (ECF_SP_DEPRESSED | ECF_NORETURN))
436 /* Just pretend we did the pop. */
437 stack_pointer_delta -= rounded_stack_size;
438 else if (flag_defer_pop && inhibit_defer_pop == 0
439 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
440 pending_stack_adjust += rounded_stack_size;
441 else
442 adjust_stack (rounded_stack_size_rtx);
443 }
444 }
445 /* When we accumulate outgoing args, we must avoid any stack manipulations.
446 Restore the stack pointer to its original value now. Usually
447 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
448 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
449 popping variants of functions exist as well.
450
451 ??? We may optimize similar to defer_pop above, but it is
452 probably not worthwhile.
453
454 ??? It will be worthwhile to enable combine_stack_adjustments even for
455 such machines. */
456 else if (n_popped)
457 anti_adjust_stack (GEN_INT (n_popped));
458 }
459
460 /* Determine if the function identified by NAME and FNDECL is one with
461 special properties we wish to know about.
462
463 For example, if the function might return more than one time (setjmp), then
464 set RETURNS_TWICE to a nonzero value.
465
466 Similarly set LONGJMP for if the function is in the longjmp family.
467
468 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
469 space from the stack such as alloca. */
470
471 static int
472 special_function_p (tree fndecl, int flags)
473 {
474 if (fndecl && DECL_NAME (fndecl)
475 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
476 /* Exclude functions not at the file scope, or not `extern',
477 since they are not the magic functions we would otherwise
478 think they are.
479 FIXME: this should be handled with attributes, not with this
480 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
481 because you can declare fork() inside a function if you
482 wish. */
483 && (DECL_CONTEXT (fndecl) == NULL_TREE
484 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
485 && TREE_PUBLIC (fndecl))
486 {
487 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
488 const char *tname = name;
489
490 /* We assume that alloca will always be called by name. It
491 makes no sense to pass it as a pointer-to-function to
492 anything that does not understand its behavior. */
493 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
494 && name[0] == 'a'
495 && ! strcmp (name, "alloca"))
496 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
497 && name[0] == '_'
498 && ! strcmp (name, "__builtin_alloca"))))
499 flags |= ECF_MAY_BE_ALLOCA;
500
501 /* Disregard prefix _, __ or __x. */
502 if (name[0] == '_')
503 {
504 if (name[1] == '_' && name[2] == 'x')
505 tname += 3;
506 else if (name[1] == '_')
507 tname += 2;
508 else
509 tname += 1;
510 }
511
512 if (tname[0] == 's')
513 {
514 if ((tname[1] == 'e'
515 && (! strcmp (tname, "setjmp")
516 || ! strcmp (tname, "setjmp_syscall")))
517 || (tname[1] == 'i'
518 && ! strcmp (tname, "sigsetjmp"))
519 || (tname[1] == 'a'
520 && ! strcmp (tname, "savectx")))
521 flags |= ECF_RETURNS_TWICE;
522
523 if (tname[1] == 'i'
524 && ! strcmp (tname, "siglongjmp"))
525 flags |= ECF_NORETURN;
526 }
527 else if ((tname[0] == 'q' && tname[1] == 's'
528 && ! strcmp (tname, "qsetjmp"))
529 || (tname[0] == 'v' && tname[1] == 'f'
530 && ! strcmp (tname, "vfork")))
531 flags |= ECF_RETURNS_TWICE;
532
533 else if (tname[0] == 'l' && tname[1] == 'o'
534 && ! strcmp (tname, "longjmp"))
535 flags |= ECF_NORETURN;
536 }
537
538 return flags;
539 }
540
541 /* Return nonzero when tree represent call to longjmp. */
542
543 int
544 setjmp_call_p (tree fndecl)
545 {
546 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
547 }
548
549 /* Return true when exp contains alloca call. */
550 bool
551 alloca_call_p (tree exp)
552 {
553 if (TREE_CODE (exp) == CALL_EXPR
554 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
555 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
556 == FUNCTION_DECL)
557 && (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
558 0) & ECF_MAY_BE_ALLOCA))
559 return true;
560 return false;
561 }
562
563 /* Detect flags (function attributes) from the function decl or type node. */
564
565 int
566 flags_from_decl_or_type (tree exp)
567 {
568 int flags = 0;
569 tree type = exp;
570
571 if (DECL_P (exp))
572 {
573 struct cgraph_rtl_info *i = cgraph_rtl_info (exp);
574 type = TREE_TYPE (exp);
575
576 if (i)
577 {
578 if (i->pure_function)
579 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
580 if (i->const_function)
581 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
582 }
583
584 /* The function exp may have the `malloc' attribute. */
585 if (DECL_IS_MALLOC (exp))
586 flags |= ECF_MALLOC;
587
588 /* The function exp may have the `returns_twice' attribute. */
589 if (DECL_IS_RETURNS_TWICE (exp))
590 flags |= ECF_RETURNS_TWICE;
591
592 /* The function exp may have the `pure' attribute. */
593 if (DECL_IS_PURE (exp))
594 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
595
596 if (DECL_IS_NOVOPS (exp))
597 flags |= ECF_NOVOPS;
598
599 if (TREE_NOTHROW (exp))
600 flags |= ECF_NOTHROW;
601
602 if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
603 flags |= ECF_LIBCALL_BLOCK | ECF_CONST;
604
605 flags = special_function_p (exp, flags);
606 }
607 else if (TYPE_P (exp) && TYPE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
608 flags |= ECF_CONST;
609
610 if (TREE_THIS_VOLATILE (exp))
611 flags |= ECF_NORETURN;
612
613 /* Mark if the function returns with the stack pointer depressed. We
614 cannot consider it pure or constant in that case. */
615 if (TREE_CODE (type) == FUNCTION_TYPE && TYPE_RETURNS_STACK_DEPRESSED (type))
616 {
617 flags |= ECF_SP_DEPRESSED;
618 flags &= ~(ECF_PURE | ECF_CONST | ECF_LIBCALL_BLOCK);
619 }
620
621 return flags;
622 }
623
624 /* Detect flags from a CALL_EXPR. */
625
626 int
627 call_expr_flags (tree t)
628 {
629 int flags;
630 tree decl = get_callee_fndecl (t);
631
632 if (decl)
633 flags = flags_from_decl_or_type (decl);
634 else
635 {
636 t = TREE_TYPE (TREE_OPERAND (t, 0));
637 if (t && TREE_CODE (t) == POINTER_TYPE)
638 flags = flags_from_decl_or_type (TREE_TYPE (t));
639 else
640 flags = 0;
641 }
642
643 return flags;
644 }
645
646 /* Precompute all register parameters as described by ARGS, storing values
647 into fields within the ARGS array.
648
649 NUM_ACTUALS indicates the total number elements in the ARGS array.
650
651 Set REG_PARM_SEEN if we encounter a register parameter. */
652
653 static void
654 precompute_register_parameters (int num_actuals, struct arg_data *args,
655 int *reg_parm_seen)
656 {
657 int i;
658
659 *reg_parm_seen = 0;
660
661 for (i = 0; i < num_actuals; i++)
662 if (args[i].reg != 0 && ! args[i].pass_on_stack)
663 {
664 *reg_parm_seen = 1;
665
666 if (args[i].value == 0)
667 {
668 push_temp_slots ();
669 args[i].value = expand_expr (args[i].tree_value, NULL_RTX,
670 VOIDmode, 0);
671 preserve_temp_slots (args[i].value);
672 pop_temp_slots ();
673 }
674
675 /* If the value is a non-legitimate constant, force it into a
676 pseudo now. TLS symbols sometimes need a call to resolve. */
677 if (CONSTANT_P (args[i].value)
678 && !LEGITIMATE_CONSTANT_P (args[i].value))
679 args[i].value = force_reg (args[i].mode, args[i].value);
680
681 /* If we are to promote the function arg to a wider mode,
682 do it now. */
683
684 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
685 args[i].value
686 = convert_modes (args[i].mode,
687 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
688 args[i].value, args[i].unsignedp);
689
690 /* If we're going to have to load the value by parts, pull the
691 parts into pseudos. The part extraction process can involve
692 non-trivial computation. */
693 if (GET_CODE (args[i].reg) == PARALLEL)
694 {
695 tree type = TREE_TYPE (args[i].tree_value);
696 args[i].parallel_value
697 = emit_group_load_into_temps (args[i].reg, args[i].value,
698 type, int_size_in_bytes (type));
699 }
700
701 /* If the value is expensive, and we are inside an appropriately
702 short loop, put the value into a pseudo and then put the pseudo
703 into the hard reg.
704
705 For small register classes, also do this if this call uses
706 register parameters. This is to avoid reload conflicts while
707 loading the parameters registers. */
708
709 else if ((! (REG_P (args[i].value)
710 || (GET_CODE (args[i].value) == SUBREG
711 && REG_P (SUBREG_REG (args[i].value)))))
712 && args[i].mode != BLKmode
713 && rtx_cost (args[i].value, SET) > COSTS_N_INSNS (1)
714 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
715 || optimize))
716 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
717 }
718 }
719
720 #ifdef REG_PARM_STACK_SPACE
721
722 /* The argument list is the property of the called routine and it
723 may clobber it. If the fixed area has been used for previous
724 parameters, we must save and restore it. */
725
726 static rtx
727 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
728 {
729 int low;
730 int high;
731
732 /* Compute the boundary of the area that needs to be saved, if any. */
733 high = reg_parm_stack_space;
734 #ifdef ARGS_GROW_DOWNWARD
735 high += 1;
736 #endif
737 if (high > highest_outgoing_arg_in_use)
738 high = highest_outgoing_arg_in_use;
739
740 for (low = 0; low < high; low++)
741 if (stack_usage_map[low] != 0)
742 {
743 int num_to_save;
744 enum machine_mode save_mode;
745 int delta;
746 rtx stack_area;
747 rtx save_area;
748
749 while (stack_usage_map[--high] == 0)
750 ;
751
752 *low_to_save = low;
753 *high_to_save = high;
754
755 num_to_save = high - low + 1;
756 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
757
758 /* If we don't have the required alignment, must do this
759 in BLKmode. */
760 if ((low & (MIN (GET_MODE_SIZE (save_mode),
761 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
762 save_mode = BLKmode;
763
764 #ifdef ARGS_GROW_DOWNWARD
765 delta = -high;
766 #else
767 delta = low;
768 #endif
769 stack_area = gen_rtx_MEM (save_mode,
770 memory_address (save_mode,
771 plus_constant (argblock,
772 delta)));
773
774 set_mem_align (stack_area, PARM_BOUNDARY);
775 if (save_mode == BLKmode)
776 {
777 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
778 emit_block_move (validize_mem (save_area), stack_area,
779 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
780 }
781 else
782 {
783 save_area = gen_reg_rtx (save_mode);
784 emit_move_insn (save_area, stack_area);
785 }
786
787 return save_area;
788 }
789
790 return NULL_RTX;
791 }
792
793 static void
794 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
795 {
796 enum machine_mode save_mode = GET_MODE (save_area);
797 int delta;
798 rtx stack_area;
799
800 #ifdef ARGS_GROW_DOWNWARD
801 delta = -high_to_save;
802 #else
803 delta = low_to_save;
804 #endif
805 stack_area = gen_rtx_MEM (save_mode,
806 memory_address (save_mode,
807 plus_constant (argblock, delta)));
808 set_mem_align (stack_area, PARM_BOUNDARY);
809
810 if (save_mode != BLKmode)
811 emit_move_insn (stack_area, save_area);
812 else
813 emit_block_move (stack_area, validize_mem (save_area),
814 GEN_INT (high_to_save - low_to_save + 1),
815 BLOCK_OP_CALL_PARM);
816 }
817 #endif /* REG_PARM_STACK_SPACE */
818
819 /* If any elements in ARGS refer to parameters that are to be passed in
820 registers, but not in memory, and whose alignment does not permit a
821 direct copy into registers. Copy the values into a group of pseudos
822 which we will later copy into the appropriate hard registers.
823
824 Pseudos for each unaligned argument will be stored into the array
825 args[argnum].aligned_regs. The caller is responsible for deallocating
826 the aligned_regs array if it is nonzero. */
827
828 static void
829 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
830 {
831 int i, j;
832
833 for (i = 0; i < num_actuals; i++)
834 if (args[i].reg != 0 && ! args[i].pass_on_stack
835 && args[i].mode == BLKmode
836 && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
837 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
838 {
839 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
840 int endian_correction = 0;
841
842 if (args[i].partial)
843 {
844 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
845 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
846 }
847 else
848 {
849 args[i].n_aligned_regs
850 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
851 }
852
853 args[i].aligned_regs = xmalloc (sizeof (rtx) * args[i].n_aligned_regs);
854
855 /* Structures smaller than a word are normally aligned to the
856 least significant byte. On a BYTES_BIG_ENDIAN machine,
857 this means we must skip the empty high order bytes when
858 calculating the bit offset. */
859 if (bytes < UNITS_PER_WORD
860 #ifdef BLOCK_REG_PADDING
861 && (BLOCK_REG_PADDING (args[i].mode,
862 TREE_TYPE (args[i].tree_value), 1)
863 == downward)
864 #else
865 && BYTES_BIG_ENDIAN
866 #endif
867 )
868 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
869
870 for (j = 0; j < args[i].n_aligned_regs; j++)
871 {
872 rtx reg = gen_reg_rtx (word_mode);
873 rtx word = operand_subword_force (args[i].value, j, BLKmode);
874 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
875
876 args[i].aligned_regs[j] = reg;
877 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
878 word_mode, word_mode);
879
880 /* There is no need to restrict this code to loading items
881 in TYPE_ALIGN sized hunks. The bitfield instructions can
882 load up entire word sized registers efficiently.
883
884 ??? This may not be needed anymore.
885 We use to emit a clobber here but that doesn't let later
886 passes optimize the instructions we emit. By storing 0 into
887 the register later passes know the first AND to zero out the
888 bitfield being set in the register is unnecessary. The store
889 of 0 will be deleted as will at least the first AND. */
890
891 emit_move_insn (reg, const0_rtx);
892
893 bytes -= bitsize / BITS_PER_UNIT;
894 store_bit_field (reg, bitsize, endian_correction, word_mode,
895 word);
896 }
897 }
898 }
899
900 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
901 ACTPARMS.
902
903 NUM_ACTUALS is the total number of parameters.
904
905 N_NAMED_ARGS is the total number of named arguments.
906
907 FNDECL is the tree code for the target of this call (if known)
908
909 ARGS_SO_FAR holds state needed by the target to know where to place
910 the next argument.
911
912 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
913 for arguments which are passed in registers.
914
915 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
916 and may be modified by this routine.
917
918 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
919 flags which may may be modified by this routine.
920
921 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
922 that requires allocation of stack space.
923
924 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
925 the thunked-to function. */
926
927 static void
928 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
929 struct arg_data *args,
930 struct args_size *args_size,
931 int n_named_args ATTRIBUTE_UNUSED,
932 tree actparms, tree fndecl,
933 CUMULATIVE_ARGS *args_so_far,
934 int reg_parm_stack_space,
935 rtx *old_stack_level, int *old_pending_adj,
936 int *must_preallocate, int *ecf_flags,
937 bool *may_tailcall, bool call_from_thunk_p)
938 {
939 /* 1 if scanning parms front to back, -1 if scanning back to front. */
940 int inc;
941
942 /* Count arg position in order args appear. */
943 int argpos;
944
945 int i;
946 tree p;
947
948 args_size->constant = 0;
949 args_size->var = 0;
950
951 /* In this loop, we consider args in the order they are written.
952 We fill up ARGS from the front or from the back if necessary
953 so that in any case the first arg to be pushed ends up at the front. */
954
955 if (PUSH_ARGS_REVERSED)
956 {
957 i = num_actuals - 1, inc = -1;
958 /* In this case, must reverse order of args
959 so that we compute and push the last arg first. */
960 }
961 else
962 {
963 i = 0, inc = 1;
964 }
965
966 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
967 for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++)
968 {
969 tree type = TREE_TYPE (TREE_VALUE (p));
970 int unsignedp;
971 enum machine_mode mode;
972
973 args[i].tree_value = TREE_VALUE (p);
974
975 /* Replace erroneous argument with constant zero. */
976 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
977 args[i].tree_value = integer_zero_node, type = integer_type_node;
978
979 /* If TYPE is a transparent union, pass things the way we would
980 pass the first field of the union. We have already verified that
981 the modes are the same. */
982 if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
983 type = TREE_TYPE (TYPE_FIELDS (type));
984
985 /* Decide where to pass this arg.
986
987 args[i].reg is nonzero if all or part is passed in registers.
988
989 args[i].partial is nonzero if part but not all is passed in registers,
990 and the exact value says how many bytes are passed in registers.
991
992 args[i].pass_on_stack is nonzero if the argument must at least be
993 computed on the stack. It may then be loaded back into registers
994 if args[i].reg is nonzero.
995
996 These decisions are driven by the FUNCTION_... macros and must agree
997 with those made by function.c. */
998
999 /* See if this argument should be passed by invisible reference. */
1000 if (pass_by_reference (args_so_far, TYPE_MODE (type),
1001 type, argpos < n_named_args))
1002 {
1003 bool callee_copies;
1004 tree base;
1005
1006 callee_copies
1007 = reference_callee_copied (args_so_far, TYPE_MODE (type),
1008 type, argpos < n_named_args);
1009
1010 /* If we're compiling a thunk, pass through invisible references
1011 instead of making a copy. */
1012 if (call_from_thunk_p
1013 || (callee_copies
1014 && !TREE_ADDRESSABLE (type)
1015 && (base = get_base_address (args[i].tree_value))
1016 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1017 {
1018 /* We can't use sibcalls if a callee-copied argument is
1019 stored in the current function's frame. */
1020 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1021 *may_tailcall = false;
1022
1023 args[i].tree_value = build_fold_addr_expr (args[i].tree_value);
1024 type = TREE_TYPE (args[i].tree_value);
1025
1026 *ecf_flags &= ~(ECF_CONST | ECF_LIBCALL_BLOCK);
1027 }
1028 else
1029 {
1030 /* We make a copy of the object and pass the address to the
1031 function being called. */
1032 rtx copy;
1033
1034 if (!COMPLETE_TYPE_P (type)
1035 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
1036 || (flag_stack_check && ! STACK_CHECK_BUILTIN
1037 && (0 < compare_tree_int (TYPE_SIZE_UNIT (type),
1038 STACK_CHECK_MAX_VAR_SIZE))))
1039 {
1040 /* This is a variable-sized object. Make space on the stack
1041 for it. */
1042 rtx size_rtx = expr_size (TREE_VALUE (p));
1043
1044 if (*old_stack_level == 0)
1045 {
1046 emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
1047 *old_pending_adj = pending_stack_adjust;
1048 pending_stack_adjust = 0;
1049 }
1050
1051 copy = gen_rtx_MEM (BLKmode,
1052 allocate_dynamic_stack_space
1053 (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
1054 set_mem_attributes (copy, type, 1);
1055 }
1056 else
1057 copy = assign_temp (type, 0, 1, 0);
1058
1059 store_expr (args[i].tree_value, copy, 0);
1060
1061 if (callee_copies)
1062 *ecf_flags &= ~(ECF_CONST | ECF_LIBCALL_BLOCK);
1063 else
1064 *ecf_flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1065
1066 args[i].tree_value
1067 = build_fold_addr_expr (make_tree (type, copy));
1068 type = TREE_TYPE (args[i].tree_value);
1069 *may_tailcall = false;
1070 }
1071 }
1072
1073 mode = TYPE_MODE (type);
1074 unsignedp = TYPE_UNSIGNED (type);
1075
1076 if (targetm.calls.promote_function_args (fndecl ? TREE_TYPE (fndecl) : 0))
1077 mode = promote_mode (type, mode, &unsignedp, 1);
1078
1079 args[i].unsignedp = unsignedp;
1080 args[i].mode = mode;
1081
1082 args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
1083 argpos < n_named_args);
1084 #ifdef FUNCTION_INCOMING_ARG
1085 /* If this is a sibling call and the machine has register windows, the
1086 register window has to be unwinded before calling the routine, so
1087 arguments have to go into the incoming registers. */
1088 args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
1089 argpos < n_named_args);
1090 #else
1091 args[i].tail_call_reg = args[i].reg;
1092 #endif
1093
1094 if (args[i].reg)
1095 args[i].partial
1096 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1097 argpos < n_named_args);
1098
1099 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1100
1101 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1102 it means that we are to pass this arg in the register(s) designated
1103 by the PARALLEL, but also to pass it in the stack. */
1104 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1105 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1106 args[i].pass_on_stack = 1;
1107
1108 /* If this is an addressable type, we must preallocate the stack
1109 since we must evaluate the object into its final location.
1110
1111 If this is to be passed in both registers and the stack, it is simpler
1112 to preallocate. */
1113 if (TREE_ADDRESSABLE (type)
1114 || (args[i].pass_on_stack && args[i].reg != 0))
1115 *must_preallocate = 1;
1116
1117 /* If this is an addressable type, we cannot pre-evaluate it. Thus,
1118 we cannot consider this function call constant. */
1119 if (TREE_ADDRESSABLE (type))
1120 *ecf_flags &= ~ECF_LIBCALL_BLOCK;
1121
1122 /* Compute the stack-size of this argument. */
1123 if (args[i].reg == 0 || args[i].partial != 0
1124 || reg_parm_stack_space > 0
1125 || args[i].pass_on_stack)
1126 locate_and_pad_parm (mode, type,
1127 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1128 1,
1129 #else
1130 args[i].reg != 0,
1131 #endif
1132 args[i].pass_on_stack ? 0 : args[i].partial,
1133 fndecl, args_size, &args[i].locate);
1134 #ifdef BLOCK_REG_PADDING
1135 else
1136 /* The argument is passed entirely in registers. See at which
1137 end it should be padded. */
1138 args[i].locate.where_pad =
1139 BLOCK_REG_PADDING (mode, type,
1140 int_size_in_bytes (type) <= UNITS_PER_WORD);
1141 #endif
1142
1143 /* Update ARGS_SIZE, the total stack space for args so far. */
1144
1145 args_size->constant += args[i].locate.size.constant;
1146 if (args[i].locate.size.var)
1147 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1148
1149 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1150 have been used, etc. */
1151
1152 FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
1153 argpos < n_named_args);
1154 }
1155 }
1156
1157 /* Update ARGS_SIZE to contain the total size for the argument block.
1158 Return the original constant component of the argument block's size.
1159
1160 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1161 for arguments passed in registers. */
1162
1163 static int
1164 compute_argument_block_size (int reg_parm_stack_space,
1165 struct args_size *args_size,
1166 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1167 {
1168 int unadjusted_args_size = args_size->constant;
1169
1170 /* For accumulate outgoing args mode we don't need to align, since the frame
1171 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1172 backends from generating misaligned frame sizes. */
1173 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1174 preferred_stack_boundary = STACK_BOUNDARY;
1175
1176 /* Compute the actual size of the argument block required. The variable
1177 and constant sizes must be combined, the size may have to be rounded,
1178 and there may be a minimum required size. */
1179
1180 if (args_size->var)
1181 {
1182 args_size->var = ARGS_SIZE_TREE (*args_size);
1183 args_size->constant = 0;
1184
1185 preferred_stack_boundary /= BITS_PER_UNIT;
1186 if (preferred_stack_boundary > 1)
1187 {
1188 /* We don't handle this case yet. To handle it correctly we have
1189 to add the delta, round and subtract the delta.
1190 Currently no machine description requires this support. */
1191 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1192 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1193 }
1194
1195 if (reg_parm_stack_space > 0)
1196 {
1197 args_size->var
1198 = size_binop (MAX_EXPR, args_size->var,
1199 ssize_int (reg_parm_stack_space));
1200
1201 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1202 /* The area corresponding to register parameters is not to count in
1203 the size of the block we need. So make the adjustment. */
1204 args_size->var
1205 = size_binop (MINUS_EXPR, args_size->var,
1206 ssize_int (reg_parm_stack_space));
1207 #endif
1208 }
1209 }
1210 else
1211 {
1212 preferred_stack_boundary /= BITS_PER_UNIT;
1213 if (preferred_stack_boundary < 1)
1214 preferred_stack_boundary = 1;
1215 args_size->constant = (((args_size->constant
1216 + stack_pointer_delta
1217 + preferred_stack_boundary - 1)
1218 / preferred_stack_boundary
1219 * preferred_stack_boundary)
1220 - stack_pointer_delta);
1221
1222 args_size->constant = MAX (args_size->constant,
1223 reg_parm_stack_space);
1224
1225 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1226 args_size->constant -= reg_parm_stack_space;
1227 #endif
1228 }
1229 return unadjusted_args_size;
1230 }
1231
1232 /* Precompute parameters as needed for a function call.
1233
1234 FLAGS is mask of ECF_* constants.
1235
1236 NUM_ACTUALS is the number of arguments.
1237
1238 ARGS is an array containing information for each argument; this
1239 routine fills in the INITIAL_VALUE and VALUE fields for each
1240 precomputed argument. */
1241
1242 static void
1243 precompute_arguments (int flags, int num_actuals, struct arg_data *args)
1244 {
1245 int i;
1246
1247 /* If this is a libcall, then precompute all arguments so that we do not
1248 get extraneous instructions emitted as part of the libcall sequence. */
1249 if ((flags & ECF_LIBCALL_BLOCK) == 0)
1250 return;
1251
1252 for (i = 0; i < num_actuals; i++)
1253 {
1254 enum machine_mode mode;
1255
1256 /* If this is an addressable type, we cannot pre-evaluate it. */
1257 gcc_assert (!TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)));
1258
1259 args[i].initial_value = args[i].value
1260 = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0);
1261
1262 mode = TYPE_MODE (TREE_TYPE (args[i].tree_value));
1263 if (mode != args[i].mode)
1264 {
1265 args[i].value
1266 = convert_modes (args[i].mode, mode,
1267 args[i].value, args[i].unsignedp);
1268 #if defined(PROMOTE_FUNCTION_MODE) && !defined(PROMOTE_MODE)
1269 /* CSE will replace this only if it contains args[i].value
1270 pseudo, so convert it down to the declared mode using
1271 a SUBREG. */
1272 if (REG_P (args[i].value)
1273 && GET_MODE_CLASS (args[i].mode) == MODE_INT)
1274 {
1275 args[i].initial_value
1276 = gen_lowpart_SUBREG (mode, args[i].value);
1277 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1278 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1279 args[i].unsignedp);
1280 }
1281 #endif
1282 }
1283 }
1284 }
1285
1286 /* Given the current state of MUST_PREALLOCATE and information about
1287 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1288 compute and return the final value for MUST_PREALLOCATE. */
1289
1290 static int
1291 finalize_must_preallocate (int must_preallocate, int num_actuals, struct arg_data *args, struct args_size *args_size)
1292 {
1293 /* See if we have or want to preallocate stack space.
1294
1295 If we would have to push a partially-in-regs parm
1296 before other stack parms, preallocate stack space instead.
1297
1298 If the size of some parm is not a multiple of the required stack
1299 alignment, we must preallocate.
1300
1301 If the total size of arguments that would otherwise create a copy in
1302 a temporary (such as a CALL) is more than half the total argument list
1303 size, preallocation is faster.
1304
1305 Another reason to preallocate is if we have a machine (like the m88k)
1306 where stack alignment is required to be maintained between every
1307 pair of insns, not just when the call is made. However, we assume here
1308 that such machines either do not have push insns (and hence preallocation
1309 would occur anyway) or the problem is taken care of with
1310 PUSH_ROUNDING. */
1311
1312 if (! must_preallocate)
1313 {
1314 int partial_seen = 0;
1315 int copy_to_evaluate_size = 0;
1316 int i;
1317
1318 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1319 {
1320 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1321 partial_seen = 1;
1322 else if (partial_seen && args[i].reg == 0)
1323 must_preallocate = 1;
1324
1325 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1326 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1327 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1328 || TREE_CODE (args[i].tree_value) == COND_EXPR
1329 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1330 copy_to_evaluate_size
1331 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1332 }
1333
1334 if (copy_to_evaluate_size * 2 >= args_size->constant
1335 && args_size->constant > 0)
1336 must_preallocate = 1;
1337 }
1338 return must_preallocate;
1339 }
1340
1341 /* If we preallocated stack space, compute the address of each argument
1342 and store it into the ARGS array.
1343
1344 We need not ensure it is a valid memory address here; it will be
1345 validized when it is used.
1346
1347 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1348
1349 static void
1350 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1351 {
1352 if (argblock)
1353 {
1354 rtx arg_reg = argblock;
1355 int i, arg_offset = 0;
1356
1357 if (GET_CODE (argblock) == PLUS)
1358 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1359
1360 for (i = 0; i < num_actuals; i++)
1361 {
1362 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1363 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1364 rtx addr;
1365 unsigned int align, boundary;
1366
1367 /* Skip this parm if it will not be passed on the stack. */
1368 if (! args[i].pass_on_stack && args[i].reg != 0)
1369 continue;
1370
1371 if (GET_CODE (offset) == CONST_INT)
1372 addr = plus_constant (arg_reg, INTVAL (offset));
1373 else
1374 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1375
1376 addr = plus_constant (addr, arg_offset);
1377 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1378 set_mem_attributes (args[i].stack,
1379 TREE_TYPE (args[i].tree_value), 1);
1380 align = BITS_PER_UNIT;
1381 boundary = args[i].locate.boundary;
1382 if (args[i].locate.where_pad != downward)
1383 align = boundary;
1384 else if (GET_CODE (offset) == CONST_INT)
1385 {
1386 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1387 align = align & -align;
1388 }
1389 set_mem_align (args[i].stack, align);
1390
1391 if (GET_CODE (slot_offset) == CONST_INT)
1392 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1393 else
1394 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1395
1396 addr = plus_constant (addr, arg_offset);
1397 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1398 set_mem_attributes (args[i].stack_slot,
1399 TREE_TYPE (args[i].tree_value), 1);
1400 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1401
1402 /* Function incoming arguments may overlap with sibling call
1403 outgoing arguments and we cannot allow reordering of reads
1404 from function arguments with stores to outgoing arguments
1405 of sibling calls. */
1406 set_mem_alias_set (args[i].stack, 0);
1407 set_mem_alias_set (args[i].stack_slot, 0);
1408 }
1409 }
1410 }
1411
1412 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1413 in a call instruction.
1414
1415 FNDECL is the tree node for the target function. For an indirect call
1416 FNDECL will be NULL_TREE.
1417
1418 ADDR is the operand 0 of CALL_EXPR for this call. */
1419
1420 static rtx
1421 rtx_for_function_call (tree fndecl, tree addr)
1422 {
1423 rtx funexp;
1424
1425 /* Get the function to call, in the form of RTL. */
1426 if (fndecl)
1427 {
1428 /* If this is the first use of the function, see if we need to
1429 make an external definition for it. */
1430 if (! TREE_USED (fndecl))
1431 {
1432 assemble_external (fndecl);
1433 TREE_USED (fndecl) = 1;
1434 }
1435
1436 /* Get a SYMBOL_REF rtx for the function address. */
1437 funexp = XEXP (DECL_RTL (fndecl), 0);
1438 }
1439 else
1440 /* Generate an rtx (probably a pseudo-register) for the address. */
1441 {
1442 push_temp_slots ();
1443 funexp = expand_expr (addr, NULL_RTX, VOIDmode, 0);
1444 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1445 }
1446 return funexp;
1447 }
1448
1449 /* Do the register loads required for any wholly-register parms or any
1450 parms which are passed both on the stack and in a register. Their
1451 expressions were already evaluated.
1452
1453 Mark all register-parms as living through the call, putting these USE
1454 insns in the CALL_INSN_FUNCTION_USAGE field.
1455
1456 When IS_SIBCALL, perform the check_sibcall_overlap_argument_overlap
1457 checking, setting *SIBCALL_FAILURE if appropriate. */
1458
1459 static void
1460 load_register_parameters (struct arg_data *args, int num_actuals,
1461 rtx *call_fusage, int flags, int is_sibcall,
1462 int *sibcall_failure)
1463 {
1464 int i, j;
1465
1466 for (i = 0; i < num_actuals; i++)
1467 {
1468 rtx reg = ((flags & ECF_SIBCALL)
1469 ? args[i].tail_call_reg : args[i].reg);
1470 if (reg)
1471 {
1472 int partial = args[i].partial;
1473 int nregs;
1474 int size = 0;
1475 rtx before_arg = get_last_insn ();
1476 /* Set to non-negative if must move a word at a time, even if just
1477 one word (e.g, partial == 1 && mode == DFmode). Set to -1 if
1478 we just use a normal move insn. This value can be zero if the
1479 argument is a zero size structure with no fields. */
1480 nregs = -1;
1481 if (GET_CODE (reg) == PARALLEL)
1482 ;
1483 else if (partial)
1484 {
1485 gcc_assert (partial % UNITS_PER_WORD == 0);
1486 nregs = partial / UNITS_PER_WORD;
1487 }
1488 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1489 {
1490 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1491 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1492 }
1493 else
1494 size = GET_MODE_SIZE (args[i].mode);
1495
1496 /* Handle calls that pass values in multiple non-contiguous
1497 locations. The Irix 6 ABI has examples of this. */
1498
1499 if (GET_CODE (reg) == PARALLEL)
1500 emit_group_move (reg, args[i].parallel_value);
1501
1502 /* If simple case, just do move. If normal partial, store_one_arg
1503 has already loaded the register for us. In all other cases,
1504 load the register(s) from memory. */
1505
1506 else if (nregs == -1)
1507 {
1508 emit_move_insn (reg, args[i].value);
1509 #ifdef BLOCK_REG_PADDING
1510 /* Handle case where we have a value that needs shifting
1511 up to the msb. eg. a QImode value and we're padding
1512 upward on a BYTES_BIG_ENDIAN machine. */
1513 if (size < UNITS_PER_WORD
1514 && (args[i].locate.where_pad
1515 == (BYTES_BIG_ENDIAN ? upward : downward)))
1516 {
1517 rtx x;
1518 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1519
1520 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1521 report the whole reg as used. Strictly speaking, the
1522 call only uses SIZE bytes at the msb end, but it doesn't
1523 seem worth generating rtl to say that. */
1524 reg = gen_rtx_REG (word_mode, REGNO (reg));
1525 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
1526 build_int_cst (NULL_TREE, shift),
1527 reg, 1);
1528 if (x != reg)
1529 emit_move_insn (reg, x);
1530 }
1531 #endif
1532 }
1533
1534 /* If we have pre-computed the values to put in the registers in
1535 the case of non-aligned structures, copy them in now. */
1536
1537 else if (args[i].n_aligned_regs != 0)
1538 for (j = 0; j < args[i].n_aligned_regs; j++)
1539 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1540 args[i].aligned_regs[j]);
1541
1542 else if (partial == 0 || args[i].pass_on_stack)
1543 {
1544 rtx mem = validize_mem (args[i].value);
1545
1546 /* Handle a BLKmode that needs shifting. */
1547 if (nregs == 1 && size < UNITS_PER_WORD
1548 #ifdef BLOCK_REG_PADDING
1549 && args[i].locate.where_pad == downward
1550 #else
1551 && BYTES_BIG_ENDIAN
1552 #endif
1553 )
1554 {
1555 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1556 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1557 rtx x = gen_reg_rtx (word_mode);
1558 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1559 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1560 : LSHIFT_EXPR;
1561
1562 emit_move_insn (x, tem);
1563 x = expand_shift (dir, word_mode, x,
1564 build_int_cst (NULL_TREE, shift),
1565 ri, 1);
1566 if (x != ri)
1567 emit_move_insn (ri, x);
1568 }
1569 else
1570 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1571 }
1572
1573 /* When a parameter is a block, and perhaps in other cases, it is
1574 possible that it did a load from an argument slot that was
1575 already clobbered. */
1576 if (is_sibcall
1577 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1578 *sibcall_failure = 1;
1579
1580 /* Handle calls that pass values in multiple non-contiguous
1581 locations. The Irix 6 ABI has examples of this. */
1582 if (GET_CODE (reg) == PARALLEL)
1583 use_group_regs (call_fusage, reg);
1584 else if (nregs == -1)
1585 use_reg (call_fusage, reg);
1586 else if (nregs > 0)
1587 use_regs (call_fusage, REGNO (reg), nregs);
1588 }
1589 }
1590 }
1591
1592 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1593 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1594 bytes, then we would need to push some additional bytes to pad the
1595 arguments. So, we compute an adjust to the stack pointer for an
1596 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1597 bytes. Then, when the arguments are pushed the stack will be perfectly
1598 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1599 be popped after the call. Returns the adjustment. */
1600
1601 static int
1602 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1603 struct args_size *args_size,
1604 unsigned int preferred_unit_stack_boundary)
1605 {
1606 /* The number of bytes to pop so that the stack will be
1607 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1608 HOST_WIDE_INT adjustment;
1609 /* The alignment of the stack after the arguments are pushed, if we
1610 just pushed the arguments without adjust the stack here. */
1611 unsigned HOST_WIDE_INT unadjusted_alignment;
1612
1613 unadjusted_alignment
1614 = ((stack_pointer_delta + unadjusted_args_size)
1615 % preferred_unit_stack_boundary);
1616
1617 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1618 as possible -- leaving just enough left to cancel out the
1619 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1620 PENDING_STACK_ADJUST is non-negative, and congruent to
1621 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1622
1623 /* Begin by trying to pop all the bytes. */
1624 unadjusted_alignment
1625 = (unadjusted_alignment
1626 - (pending_stack_adjust % preferred_unit_stack_boundary));
1627 adjustment = pending_stack_adjust;
1628 /* Push enough additional bytes that the stack will be aligned
1629 after the arguments are pushed. */
1630 if (preferred_unit_stack_boundary > 1)
1631 {
1632 if (unadjusted_alignment > 0)
1633 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1634 else
1635 adjustment += unadjusted_alignment;
1636 }
1637
1638 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1639 bytes after the call. The right number is the entire
1640 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1641 by the arguments in the first place. */
1642 args_size->constant
1643 = pending_stack_adjust - adjustment + unadjusted_args_size;
1644
1645 return adjustment;
1646 }
1647
1648 /* Scan X expression if it does not dereference any argument slots
1649 we already clobbered by tail call arguments (as noted in stored_args_map
1650 bitmap).
1651 Return nonzero if X expression dereferences such argument slots,
1652 zero otherwise. */
1653
1654 static int
1655 check_sibcall_argument_overlap_1 (rtx x)
1656 {
1657 RTX_CODE code;
1658 int i, j;
1659 unsigned int k;
1660 const char *fmt;
1661
1662 if (x == NULL_RTX)
1663 return 0;
1664
1665 code = GET_CODE (x);
1666
1667 if (code == MEM)
1668 {
1669 if (XEXP (x, 0) == current_function_internal_arg_pointer)
1670 i = 0;
1671 else if (GET_CODE (XEXP (x, 0)) == PLUS
1672 && XEXP (XEXP (x, 0), 0) ==
1673 current_function_internal_arg_pointer
1674 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1675 i = INTVAL (XEXP (XEXP (x, 0), 1));
1676 else
1677 return 0;
1678
1679 #ifdef ARGS_GROW_DOWNWARD
1680 i = -i - GET_MODE_SIZE (GET_MODE (x));
1681 #endif
1682
1683 for (k = 0; k < GET_MODE_SIZE (GET_MODE (x)); k++)
1684 if (i + k < stored_args_map->n_bits
1685 && TEST_BIT (stored_args_map, i + k))
1686 return 1;
1687
1688 return 0;
1689 }
1690
1691 /* Scan all subexpressions. */
1692 fmt = GET_RTX_FORMAT (code);
1693 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1694 {
1695 if (*fmt == 'e')
1696 {
1697 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1698 return 1;
1699 }
1700 else if (*fmt == 'E')
1701 {
1702 for (j = 0; j < XVECLEN (x, i); j++)
1703 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1704 return 1;
1705 }
1706 }
1707 return 0;
1708 }
1709
1710 /* Scan sequence after INSN if it does not dereference any argument slots
1711 we already clobbered by tail call arguments (as noted in stored_args_map
1712 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1713 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1714 should be 0). Return nonzero if sequence after INSN dereferences such argument
1715 slots, zero otherwise. */
1716
1717 static int
1718 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1719 {
1720 int low, high;
1721
1722 if (insn == NULL_RTX)
1723 insn = get_insns ();
1724 else
1725 insn = NEXT_INSN (insn);
1726
1727 for (; insn; insn = NEXT_INSN (insn))
1728 if (INSN_P (insn)
1729 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1730 break;
1731
1732 if (mark_stored_args_map)
1733 {
1734 #ifdef ARGS_GROW_DOWNWARD
1735 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1736 #else
1737 low = arg->locate.slot_offset.constant;
1738 #endif
1739
1740 for (high = low + arg->locate.size.constant; low < high; low++)
1741 SET_BIT (stored_args_map, low);
1742 }
1743 return insn != NULL_RTX;
1744 }
1745
1746 /* Given that a function returns a value of mode MODE at the most
1747 significant end of hard register VALUE, shift VALUE left or right
1748 as specified by LEFT_P. Return true if some action was needed. */
1749
1750 bool
1751 shift_return_value (enum machine_mode mode, bool left_p, rtx value)
1752 {
1753 HOST_WIDE_INT shift;
1754
1755 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
1756 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
1757 if (shift == 0)
1758 return false;
1759
1760 /* Use ashr rather than lshr for right shifts. This is for the benefit
1761 of the MIPS port, which requires SImode values to be sign-extended
1762 when stored in 64-bit registers. */
1763 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
1764 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
1765 gcc_unreachable ();
1766 return true;
1767 }
1768
1769 /* Remove all REG_EQUIV notes found in the insn chain. */
1770
1771 static void
1772 purge_reg_equiv_notes (void)
1773 {
1774 rtx insn;
1775
1776 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1777 {
1778 while (1)
1779 {
1780 rtx note = find_reg_note (insn, REG_EQUIV, 0);
1781 if (note)
1782 {
1783 /* Remove the note and keep looking at the notes for
1784 this insn. */
1785 remove_note (insn, note);
1786 continue;
1787 }
1788 break;
1789 }
1790 }
1791 }
1792
1793 /* Generate all the code for a function call
1794 and return an rtx for its value.
1795 Store the value in TARGET (specified as an rtx) if convenient.
1796 If the value is stored in TARGET then TARGET is returned.
1797 If IGNORE is nonzero, then we ignore the value of the function call. */
1798
1799 rtx
1800 expand_call (tree exp, rtx target, int ignore)
1801 {
1802 /* Nonzero if we are currently expanding a call. */
1803 static int currently_expanding_call = 0;
1804
1805 /* List of actual parameters. */
1806 tree actparms = TREE_OPERAND (exp, 1);
1807 /* RTX for the function to be called. */
1808 rtx funexp;
1809 /* Sequence of insns to perform a normal "call". */
1810 rtx normal_call_insns = NULL_RTX;
1811 /* Sequence of insns to perform a tail "call". */
1812 rtx tail_call_insns = NULL_RTX;
1813 /* Data type of the function. */
1814 tree funtype;
1815 tree type_arg_types;
1816 /* Declaration of the function being called,
1817 or 0 if the function is computed (not known by name). */
1818 tree fndecl = 0;
1819 /* The type of the function being called. */
1820 tree fntype;
1821 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1822 int pass;
1823
1824 /* Register in which non-BLKmode value will be returned,
1825 or 0 if no value or if value is BLKmode. */
1826 rtx valreg;
1827 /* Address where we should return a BLKmode value;
1828 0 if value not BLKmode. */
1829 rtx structure_value_addr = 0;
1830 /* Nonzero if that address is being passed by treating it as
1831 an extra, implicit first parameter. Otherwise,
1832 it is passed by being copied directly into struct_value_rtx. */
1833 int structure_value_addr_parm = 0;
1834 /* Size of aggregate value wanted, or zero if none wanted
1835 or if we are using the non-reentrant PCC calling convention
1836 or expecting the value in registers. */
1837 HOST_WIDE_INT struct_value_size = 0;
1838 /* Nonzero if called function returns an aggregate in memory PCC style,
1839 by returning the address of where to find it. */
1840 int pcc_struct_value = 0;
1841 rtx struct_value = 0;
1842
1843 /* Number of actual parameters in this call, including struct value addr. */
1844 int num_actuals;
1845 /* Number of named args. Args after this are anonymous ones
1846 and they must all go on the stack. */
1847 int n_named_args;
1848
1849 /* Vector of information about each argument.
1850 Arguments are numbered in the order they will be pushed,
1851 not the order they are written. */
1852 struct arg_data *args;
1853
1854 /* Total size in bytes of all the stack-parms scanned so far. */
1855 struct args_size args_size;
1856 struct args_size adjusted_args_size;
1857 /* Size of arguments before any adjustments (such as rounding). */
1858 int unadjusted_args_size;
1859 /* Data on reg parms scanned so far. */
1860 CUMULATIVE_ARGS args_so_far;
1861 /* Nonzero if a reg parm has been scanned. */
1862 int reg_parm_seen;
1863 /* Nonzero if this is an indirect function call. */
1864
1865 /* Nonzero if we must avoid push-insns in the args for this call.
1866 If stack space is allocated for register parameters, but not by the
1867 caller, then it is preallocated in the fixed part of the stack frame.
1868 So the entire argument block must then be preallocated (i.e., we
1869 ignore PUSH_ROUNDING in that case). */
1870
1871 int must_preallocate = !PUSH_ARGS;
1872
1873 /* Size of the stack reserved for parameter registers. */
1874 int reg_parm_stack_space = 0;
1875
1876 /* Address of space preallocated for stack parms
1877 (on machines that lack push insns), or 0 if space not preallocated. */
1878 rtx argblock = 0;
1879
1880 /* Mask of ECF_ flags. */
1881 int flags = 0;
1882 #ifdef REG_PARM_STACK_SPACE
1883 /* Define the boundary of the register parm stack space that needs to be
1884 saved, if any. */
1885 int low_to_save, high_to_save;
1886 rtx save_area = 0; /* Place that it is saved */
1887 #endif
1888
1889 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
1890 char *initial_stack_usage_map = stack_usage_map;
1891
1892 int old_stack_allocated;
1893
1894 /* State variables to track stack modifications. */
1895 rtx old_stack_level = 0;
1896 int old_stack_arg_under_construction = 0;
1897 int old_pending_adj = 0;
1898 int old_inhibit_defer_pop = inhibit_defer_pop;
1899
1900 /* Some stack pointer alterations we make are performed via
1901 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
1902 which we then also need to save/restore along the way. */
1903 int old_stack_pointer_delta = 0;
1904
1905 rtx call_fusage;
1906 tree p = TREE_OPERAND (exp, 0);
1907 tree addr = TREE_OPERAND (exp, 0);
1908 int i;
1909 /* The alignment of the stack, in bits. */
1910 unsigned HOST_WIDE_INT preferred_stack_boundary;
1911 /* The alignment of the stack, in bytes. */
1912 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
1913 /* The static chain value to use for this call. */
1914 rtx static_chain_value;
1915 /* See if this is "nothrow" function call. */
1916 if (TREE_NOTHROW (exp))
1917 flags |= ECF_NOTHROW;
1918
1919 /* See if we can find a DECL-node for the actual function, and get the
1920 function attributes (flags) from the function decl or type node. */
1921 fndecl = get_callee_fndecl (exp);
1922 if (fndecl)
1923 {
1924 fntype = TREE_TYPE (fndecl);
1925 flags |= flags_from_decl_or_type (fndecl);
1926 }
1927 else
1928 {
1929 fntype = TREE_TYPE (TREE_TYPE (p));
1930 flags |= flags_from_decl_or_type (fntype);
1931 }
1932
1933 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
1934
1935 /* Warn if this value is an aggregate type,
1936 regardless of which calling convention we are using for it. */
1937 if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (exp)))
1938 warning ("function call has aggregate value");
1939
1940 /* If the result of a pure or const function call is ignored (or void),
1941 and none of its arguments are volatile, we can avoid expanding the
1942 call and just evaluate the arguments for side-effects. */
1943 if ((flags & (ECF_CONST | ECF_PURE))
1944 && (ignore || target == const0_rtx
1945 || TYPE_MODE (TREE_TYPE (exp)) == VOIDmode))
1946 {
1947 bool volatilep = false;
1948 tree arg;
1949
1950 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
1951 if (TREE_THIS_VOLATILE (TREE_VALUE (arg)))
1952 {
1953 volatilep = true;
1954 break;
1955 }
1956
1957 if (! volatilep)
1958 {
1959 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
1960 expand_expr (TREE_VALUE (arg), const0_rtx,
1961 VOIDmode, EXPAND_NORMAL);
1962 return const0_rtx;
1963 }
1964 }
1965
1966 #ifdef REG_PARM_STACK_SPACE
1967 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
1968 #endif
1969
1970 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1971 if (reg_parm_stack_space > 0 && PUSH_ARGS)
1972 must_preallocate = 1;
1973 #endif
1974
1975 /* Set up a place to return a structure. */
1976
1977 /* Cater to broken compilers. */
1978 if (aggregate_value_p (exp, fndecl))
1979 {
1980 /* This call returns a big structure. */
1981 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1982
1983 #ifdef PCC_STATIC_STRUCT_RETURN
1984 {
1985 pcc_struct_value = 1;
1986 }
1987 #else /* not PCC_STATIC_STRUCT_RETURN */
1988 {
1989 struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
1990
1991 if (CALL_EXPR_HAS_RETURN_SLOT_ADDR (exp))
1992 {
1993 /* The structure value address arg is already in actparms.
1994 Pull it out. It might be nice to just leave it there, but
1995 we need to set structure_value_addr. */
1996 tree return_arg = TREE_VALUE (actparms);
1997 actparms = TREE_CHAIN (actparms);
1998 structure_value_addr = expand_expr (return_arg, NULL_RTX,
1999 VOIDmode, EXPAND_NORMAL);
2000 }
2001 else if (target && MEM_P (target))
2002 structure_value_addr = XEXP (target, 0);
2003 else
2004 {
2005 /* For variable-sized objects, we must be called with a target
2006 specified. If we were to allocate space on the stack here,
2007 we would have no way of knowing when to free it. */
2008 rtx d = assign_temp (TREE_TYPE (exp), 1, 1, 1);
2009
2010 mark_temp_addr_taken (d);
2011 structure_value_addr = XEXP (d, 0);
2012 target = 0;
2013 }
2014 }
2015 #endif /* not PCC_STATIC_STRUCT_RETURN */
2016 }
2017
2018 /* Figure out the amount to which the stack should be aligned. */
2019 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2020 if (fndecl)
2021 {
2022 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2023 if (i && i->preferred_incoming_stack_boundary)
2024 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2025 }
2026
2027 /* Operand 0 is a pointer-to-function; get the type of the function. */
2028 funtype = TREE_TYPE (addr);
2029 gcc_assert (POINTER_TYPE_P (funtype));
2030 funtype = TREE_TYPE (funtype);
2031
2032 /* Munge the tree to split complex arguments into their imaginary
2033 and real parts. */
2034 if (targetm.calls.split_complex_arg)
2035 {
2036 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2037 actparms = split_complex_values (actparms);
2038 }
2039 else
2040 type_arg_types = TYPE_ARG_TYPES (funtype);
2041
2042 if (flags & ECF_MAY_BE_ALLOCA)
2043 current_function_calls_alloca = 1;
2044
2045 /* If struct_value_rtx is 0, it means pass the address
2046 as if it were an extra parameter. */
2047 if (structure_value_addr && struct_value == 0)
2048 {
2049 /* If structure_value_addr is a REG other than
2050 virtual_outgoing_args_rtx, we can use always use it. If it
2051 is not a REG, we must always copy it into a register.
2052 If it is virtual_outgoing_args_rtx, we must copy it to another
2053 register in some cases. */
2054 rtx temp = (!REG_P (structure_value_addr)
2055 || (ACCUMULATE_OUTGOING_ARGS
2056 && stack_arg_under_construction
2057 && structure_value_addr == virtual_outgoing_args_rtx)
2058 ? copy_addr_to_reg (convert_memory_address
2059 (Pmode, structure_value_addr))
2060 : structure_value_addr);
2061
2062 actparms
2063 = tree_cons (error_mark_node,
2064 make_tree (build_pointer_type (TREE_TYPE (funtype)),
2065 temp),
2066 actparms);
2067 structure_value_addr_parm = 1;
2068 }
2069
2070 /* Count the arguments and set NUM_ACTUALS. */
2071 for (p = actparms, num_actuals = 0; p; p = TREE_CHAIN (p))
2072 num_actuals++;
2073
2074 /* Compute number of named args.
2075 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2076
2077 if (type_arg_types != 0)
2078 n_named_args
2079 = (list_length (type_arg_types)
2080 /* Count the struct value address, if it is passed as a parm. */
2081 + structure_value_addr_parm);
2082 else
2083 /* If we know nothing, treat all args as named. */
2084 n_named_args = num_actuals;
2085
2086 /* Start updating where the next arg would go.
2087
2088 On some machines (such as the PA) indirect calls have a different
2089 calling convention than normal calls. The fourth argument in
2090 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2091 or not. */
2092 INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
2093
2094 /* Now possibly adjust the number of named args.
2095 Normally, don't include the last named arg if anonymous args follow.
2096 We do include the last named arg if
2097 targetm.calls.strict_argument_naming() returns nonzero.
2098 (If no anonymous args follow, the result of list_length is actually
2099 one too large. This is harmless.)
2100
2101 If targetm.calls.pretend_outgoing_varargs_named() returns
2102 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2103 this machine will be able to place unnamed args that were passed
2104 in registers into the stack. So treat all args as named. This
2105 allows the insns emitting for a specific argument list to be
2106 independent of the function declaration.
2107
2108 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2109 we do not have any reliable way to pass unnamed args in
2110 registers, so we must force them into memory. */
2111
2112 if (type_arg_types != 0
2113 && targetm.calls.strict_argument_naming (&args_so_far))
2114 ;
2115 else if (type_arg_types != 0
2116 && ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
2117 /* Don't include the last named arg. */
2118 --n_named_args;
2119 else
2120 /* Treat all args as named. */
2121 n_named_args = num_actuals;
2122
2123 /* Make a vector to hold all the information about each arg. */
2124 args = alloca (num_actuals * sizeof (struct arg_data));
2125 memset (args, 0, num_actuals * sizeof (struct arg_data));
2126
2127 /* Build up entries in the ARGS array, compute the size of the
2128 arguments into ARGS_SIZE, etc. */
2129 initialize_argument_information (num_actuals, args, &args_size,
2130 n_named_args, actparms, fndecl,
2131 &args_so_far, reg_parm_stack_space,
2132 &old_stack_level, &old_pending_adj,
2133 &must_preallocate, &flags,
2134 &try_tail_call, CALL_FROM_THUNK_P (exp));
2135
2136 if (args_size.var)
2137 {
2138 /* If this function requires a variable-sized argument list, don't
2139 try to make a cse'able block for this call. We may be able to
2140 do this eventually, but it is too complicated to keep track of
2141 what insns go in the cse'able block and which don't. */
2142
2143 flags &= ~ECF_LIBCALL_BLOCK;
2144 must_preallocate = 1;
2145 }
2146
2147 /* Now make final decision about preallocating stack space. */
2148 must_preallocate = finalize_must_preallocate (must_preallocate,
2149 num_actuals, args,
2150 &args_size);
2151
2152 /* If the structure value address will reference the stack pointer, we
2153 must stabilize it. We don't need to do this if we know that we are
2154 not going to adjust the stack pointer in processing this call. */
2155
2156 if (structure_value_addr
2157 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2158 || reg_mentioned_p (virtual_outgoing_args_rtx,
2159 structure_value_addr))
2160 && (args_size.var
2161 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2162 structure_value_addr = copy_to_reg (structure_value_addr);
2163
2164 /* Tail calls can make things harder to debug, and we've traditionally
2165 pushed these optimizations into -O2. Don't try if we're already
2166 expanding a call, as that means we're an argument. Don't try if
2167 there's cleanups, as we know there's code to follow the call. */
2168
2169 if (currently_expanding_call++ != 0
2170 || !flag_optimize_sibling_calls
2171 || args_size.var
2172 || lookup_stmt_eh_region (exp) >= 0)
2173 try_tail_call = 0;
2174
2175 /* Rest of purposes for tail call optimizations to fail. */
2176 if (
2177 #ifdef HAVE_sibcall_epilogue
2178 !HAVE_sibcall_epilogue
2179 #else
2180 1
2181 #endif
2182 || !try_tail_call
2183 /* Doing sibling call optimization needs some work, since
2184 structure_value_addr can be allocated on the stack.
2185 It does not seem worth the effort since few optimizable
2186 sibling calls will return a structure. */
2187 || structure_value_addr != NULL_RTX
2188 /* Check whether the target is able to optimize the call
2189 into a sibcall. */
2190 || !targetm.function_ok_for_sibcall (fndecl, exp)
2191 /* Functions that do not return exactly once may not be sibcall
2192 optimized. */
2193 || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2194 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2195 /* If the called function is nested in the current one, it might access
2196 some of the caller's arguments, but could clobber them beforehand if
2197 the argument areas are shared. */
2198 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2199 /* If this function requires more stack slots than the current
2200 function, we cannot change it into a sibling call. */
2201 || args_size.constant > current_function_args_size
2202 /* If the callee pops its own arguments, then it must pop exactly
2203 the same number of arguments as the current function. */
2204 || (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
2205 != RETURN_POPS_ARGS (current_function_decl,
2206 TREE_TYPE (current_function_decl),
2207 current_function_args_size))
2208 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2209 try_tail_call = 0;
2210
2211 /* Ensure current function's preferred stack boundary is at least
2212 what we need. We don't have to increase alignment for recursive
2213 functions. */
2214 if (cfun->preferred_stack_boundary < preferred_stack_boundary
2215 && fndecl != current_function_decl)
2216 cfun->preferred_stack_boundary = preferred_stack_boundary;
2217 if (fndecl == current_function_decl)
2218 cfun->recursive_call_emit = true;
2219
2220 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2221
2222 /* We want to make two insn chains; one for a sibling call, the other
2223 for a normal call. We will select one of the two chains after
2224 initial RTL generation is complete. */
2225 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2226 {
2227 int sibcall_failure = 0;
2228 /* We want to emit any pending stack adjustments before the tail
2229 recursion "call". That way we know any adjustment after the tail
2230 recursion call can be ignored if we indeed use the tail
2231 call expansion. */
2232 int save_pending_stack_adjust = 0;
2233 int save_stack_pointer_delta = 0;
2234 rtx insns;
2235 rtx before_call, next_arg_reg;
2236
2237 if (pass == 0)
2238 {
2239 /* State variables we need to save and restore between
2240 iterations. */
2241 save_pending_stack_adjust = pending_stack_adjust;
2242 save_stack_pointer_delta = stack_pointer_delta;
2243 }
2244 if (pass)
2245 flags &= ~ECF_SIBCALL;
2246 else
2247 flags |= ECF_SIBCALL;
2248
2249 /* Other state variables that we must reinitialize each time
2250 through the loop (that are not initialized by the loop itself). */
2251 argblock = 0;
2252 call_fusage = 0;
2253
2254 /* Start a new sequence for the normal call case.
2255
2256 From this point on, if the sibling call fails, we want to set
2257 sibcall_failure instead of continuing the loop. */
2258 start_sequence ();
2259
2260 /* Don't let pending stack adjusts add up to too much.
2261 Also, do all pending adjustments now if there is any chance
2262 this might be a call to alloca or if we are expanding a sibling
2263 call sequence or if we are calling a function that is to return
2264 with stack pointer depressed. */
2265 if (pending_stack_adjust >= 32
2266 || (pending_stack_adjust > 0
2267 && (flags & (ECF_MAY_BE_ALLOCA | ECF_SP_DEPRESSED)))
2268 || pass == 0)
2269 do_pending_stack_adjust ();
2270
2271 /* When calling a const function, we must pop the stack args right away,
2272 so that the pop is deleted or moved with the call. */
2273 if (pass && (flags & ECF_LIBCALL_BLOCK))
2274 NO_DEFER_POP;
2275
2276 /* Precompute any arguments as needed. */
2277 if (pass)
2278 precompute_arguments (flags, num_actuals, args);
2279
2280 /* Now we are about to start emitting insns that can be deleted
2281 if a libcall is deleted. */
2282 if (pass && (flags & (ECF_LIBCALL_BLOCK | ECF_MALLOC)))
2283 start_sequence ();
2284
2285 adjusted_args_size = args_size;
2286 /* Compute the actual size of the argument block required. The variable
2287 and constant sizes must be combined, the size may have to be rounded,
2288 and there may be a minimum required size. When generating a sibcall
2289 pattern, do not round up, since we'll be re-using whatever space our
2290 caller provided. */
2291 unadjusted_args_size
2292 = compute_argument_block_size (reg_parm_stack_space,
2293 &adjusted_args_size,
2294 (pass == 0 ? 0
2295 : preferred_stack_boundary));
2296
2297 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2298
2299 /* The argument block when performing a sibling call is the
2300 incoming argument block. */
2301 if (pass == 0)
2302 {
2303 argblock = virtual_incoming_args_rtx;
2304 argblock
2305 #ifdef STACK_GROWS_DOWNWARD
2306 = plus_constant (argblock, current_function_pretend_args_size);
2307 #else
2308 = plus_constant (argblock, -current_function_pretend_args_size);
2309 #endif
2310 stored_args_map = sbitmap_alloc (args_size.constant);
2311 sbitmap_zero (stored_args_map);
2312 }
2313
2314 /* If we have no actual push instructions, or shouldn't use them,
2315 make space for all args right now. */
2316 else if (adjusted_args_size.var != 0)
2317 {
2318 if (old_stack_level == 0)
2319 {
2320 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
2321 old_stack_pointer_delta = stack_pointer_delta;
2322 old_pending_adj = pending_stack_adjust;
2323 pending_stack_adjust = 0;
2324 /* stack_arg_under_construction says whether a stack arg is
2325 being constructed at the old stack level. Pushing the stack
2326 gets a clean outgoing argument block. */
2327 old_stack_arg_under_construction = stack_arg_under_construction;
2328 stack_arg_under_construction = 0;
2329 }
2330 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2331 }
2332 else
2333 {
2334 /* Note that we must go through the motions of allocating an argument
2335 block even if the size is zero because we may be storing args
2336 in the area reserved for register arguments, which may be part of
2337 the stack frame. */
2338
2339 int needed = adjusted_args_size.constant;
2340
2341 /* Store the maximum argument space used. It will be pushed by
2342 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2343 checking). */
2344
2345 if (needed > current_function_outgoing_args_size)
2346 current_function_outgoing_args_size = needed;
2347
2348 if (must_preallocate)
2349 {
2350 if (ACCUMULATE_OUTGOING_ARGS)
2351 {
2352 /* Since the stack pointer will never be pushed, it is
2353 possible for the evaluation of a parm to clobber
2354 something we have already written to the stack.
2355 Since most function calls on RISC machines do not use
2356 the stack, this is uncommon, but must work correctly.
2357
2358 Therefore, we save any area of the stack that was already
2359 written and that we are using. Here we set up to do this
2360 by making a new stack usage map from the old one. The
2361 actual save will be done by store_one_arg.
2362
2363 Another approach might be to try to reorder the argument
2364 evaluations to avoid this conflicting stack usage. */
2365
2366 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2367 /* Since we will be writing into the entire argument area,
2368 the map must be allocated for its entire size, not just
2369 the part that is the responsibility of the caller. */
2370 needed += reg_parm_stack_space;
2371 #endif
2372
2373 #ifdef ARGS_GROW_DOWNWARD
2374 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2375 needed + 1);
2376 #else
2377 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2378 needed);
2379 #endif
2380 stack_usage_map = alloca (highest_outgoing_arg_in_use);
2381
2382 if (initial_highest_arg_in_use)
2383 memcpy (stack_usage_map, initial_stack_usage_map,
2384 initial_highest_arg_in_use);
2385
2386 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2387 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2388 (highest_outgoing_arg_in_use
2389 - initial_highest_arg_in_use));
2390 needed = 0;
2391
2392 /* The address of the outgoing argument list must not be
2393 copied to a register here, because argblock would be left
2394 pointing to the wrong place after the call to
2395 allocate_dynamic_stack_space below. */
2396
2397 argblock = virtual_outgoing_args_rtx;
2398 }
2399 else
2400 {
2401 if (inhibit_defer_pop == 0)
2402 {
2403 /* Try to reuse some or all of the pending_stack_adjust
2404 to get this space. */
2405 needed
2406 = (combine_pending_stack_adjustment_and_call
2407 (unadjusted_args_size,
2408 &adjusted_args_size,
2409 preferred_unit_stack_boundary));
2410
2411 /* combine_pending_stack_adjustment_and_call computes
2412 an adjustment before the arguments are allocated.
2413 Account for them and see whether or not the stack
2414 needs to go up or down. */
2415 needed = unadjusted_args_size - needed;
2416
2417 if (needed < 0)
2418 {
2419 /* We're releasing stack space. */
2420 /* ??? We can avoid any adjustment at all if we're
2421 already aligned. FIXME. */
2422 pending_stack_adjust = -needed;
2423 do_pending_stack_adjust ();
2424 needed = 0;
2425 }
2426 else
2427 /* We need to allocate space. We'll do that in
2428 push_block below. */
2429 pending_stack_adjust = 0;
2430 }
2431
2432 /* Special case this because overhead of `push_block' in
2433 this case is non-trivial. */
2434 if (needed == 0)
2435 argblock = virtual_outgoing_args_rtx;
2436 else
2437 {
2438 argblock = push_block (GEN_INT (needed), 0, 0);
2439 #ifdef ARGS_GROW_DOWNWARD
2440 argblock = plus_constant (argblock, needed);
2441 #endif
2442 }
2443
2444 /* We only really need to call `copy_to_reg' in the case
2445 where push insns are going to be used to pass ARGBLOCK
2446 to a function call in ARGS. In that case, the stack
2447 pointer changes value from the allocation point to the
2448 call point, and hence the value of
2449 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2450 as well always do it. */
2451 argblock = copy_to_reg (argblock);
2452 }
2453 }
2454 }
2455
2456 if (ACCUMULATE_OUTGOING_ARGS)
2457 {
2458 /* The save/restore code in store_one_arg handles all
2459 cases except one: a constructor call (including a C
2460 function returning a BLKmode struct) to initialize
2461 an argument. */
2462 if (stack_arg_under_construction)
2463 {
2464 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2465 rtx push_size = GEN_INT (reg_parm_stack_space
2466 + adjusted_args_size.constant);
2467 #else
2468 rtx push_size = GEN_INT (adjusted_args_size.constant);
2469 #endif
2470 if (old_stack_level == 0)
2471 {
2472 emit_stack_save (SAVE_BLOCK, &old_stack_level,
2473 NULL_RTX);
2474 old_stack_pointer_delta = stack_pointer_delta;
2475 old_pending_adj = pending_stack_adjust;
2476 pending_stack_adjust = 0;
2477 /* stack_arg_under_construction says whether a stack
2478 arg is being constructed at the old stack level.
2479 Pushing the stack gets a clean outgoing argument
2480 block. */
2481 old_stack_arg_under_construction
2482 = stack_arg_under_construction;
2483 stack_arg_under_construction = 0;
2484 /* Make a new map for the new argument list. */
2485 stack_usage_map = alloca (highest_outgoing_arg_in_use);
2486 memset (stack_usage_map, 0, highest_outgoing_arg_in_use);
2487 highest_outgoing_arg_in_use = 0;
2488 }
2489 allocate_dynamic_stack_space (push_size, NULL_RTX,
2490 BITS_PER_UNIT);
2491 }
2492
2493 /* If argument evaluation might modify the stack pointer,
2494 copy the address of the argument list to a register. */
2495 for (i = 0; i < num_actuals; i++)
2496 if (args[i].pass_on_stack)
2497 {
2498 argblock = copy_addr_to_reg (argblock);
2499 break;
2500 }
2501 }
2502
2503 compute_argument_addresses (args, argblock, num_actuals);
2504
2505 /* If we push args individually in reverse order, perform stack alignment
2506 before the first push (the last arg). */
2507 if (PUSH_ARGS_REVERSED && argblock == 0
2508 && adjusted_args_size.constant != unadjusted_args_size)
2509 {
2510 /* When the stack adjustment is pending, we get better code
2511 by combining the adjustments. */
2512 if (pending_stack_adjust
2513 && ! (flags & ECF_LIBCALL_BLOCK)
2514 && ! inhibit_defer_pop)
2515 {
2516 pending_stack_adjust
2517 = (combine_pending_stack_adjustment_and_call
2518 (unadjusted_args_size,
2519 &adjusted_args_size,
2520 preferred_unit_stack_boundary));
2521 do_pending_stack_adjust ();
2522 }
2523 else if (argblock == 0)
2524 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2525 - unadjusted_args_size));
2526 }
2527 /* Now that the stack is properly aligned, pops can't safely
2528 be deferred during the evaluation of the arguments. */
2529 NO_DEFER_POP;
2530
2531 funexp = rtx_for_function_call (fndecl, addr);
2532
2533 /* Figure out the register where the value, if any, will come back. */
2534 valreg = 0;
2535 if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
2536 && ! structure_value_addr)
2537 {
2538 if (pcc_struct_value)
2539 valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
2540 fndecl, (pass == 0));
2541 else
2542 valreg = hard_function_value (TREE_TYPE (exp), fndecl, (pass == 0));
2543 }
2544
2545 /* Precompute all register parameters. It isn't safe to compute anything
2546 once we have started filling any specific hard regs. */
2547 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2548
2549 if (TREE_OPERAND (exp, 2))
2550 static_chain_value = expand_expr (TREE_OPERAND (exp, 2),
2551 NULL_RTX, VOIDmode, 0);
2552 else
2553 static_chain_value = 0;
2554
2555 #ifdef REG_PARM_STACK_SPACE
2556 /* Save the fixed argument area if it's part of the caller's frame and
2557 is clobbered by argument setup for this call. */
2558 if (ACCUMULATE_OUTGOING_ARGS && pass)
2559 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2560 &low_to_save, &high_to_save);
2561 #endif
2562
2563 /* Now store (and compute if necessary) all non-register parms.
2564 These come before register parms, since they can require block-moves,
2565 which could clobber the registers used for register parms.
2566 Parms which have partial registers are not stored here,
2567 but we do preallocate space here if they want that. */
2568
2569 for (i = 0; i < num_actuals; i++)
2570 if (args[i].reg == 0 || args[i].pass_on_stack)
2571 {
2572 rtx before_arg = get_last_insn ();
2573
2574 if (store_one_arg (&args[i], argblock, flags,
2575 adjusted_args_size.var != 0,
2576 reg_parm_stack_space)
2577 || (pass == 0
2578 && check_sibcall_argument_overlap (before_arg,
2579 &args[i], 1)))
2580 sibcall_failure = 1;
2581
2582 if (flags & ECF_CONST
2583 && args[i].stack
2584 && args[i].value == args[i].stack)
2585 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2586 gen_rtx_USE (VOIDmode,
2587 args[i].value),
2588 call_fusage);
2589 }
2590
2591 /* If we have a parm that is passed in registers but not in memory
2592 and whose alignment does not permit a direct copy into registers,
2593 make a group of pseudos that correspond to each register that we
2594 will later fill. */
2595 if (STRICT_ALIGNMENT)
2596 store_unaligned_arguments_into_pseudos (args, num_actuals);
2597
2598 /* Now store any partially-in-registers parm.
2599 This is the last place a block-move can happen. */
2600 if (reg_parm_seen)
2601 for (i = 0; i < num_actuals; i++)
2602 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2603 {
2604 rtx before_arg = get_last_insn ();
2605
2606 if (store_one_arg (&args[i], argblock, flags,
2607 adjusted_args_size.var != 0,
2608 reg_parm_stack_space)
2609 || (pass == 0
2610 && check_sibcall_argument_overlap (before_arg,
2611 &args[i], 1)))
2612 sibcall_failure = 1;
2613 }
2614
2615 /* If we pushed args in forward order, perform stack alignment
2616 after pushing the last arg. */
2617 if (!PUSH_ARGS_REVERSED && argblock == 0)
2618 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2619 - unadjusted_args_size));
2620
2621 /* If register arguments require space on the stack and stack space
2622 was not preallocated, allocate stack space here for arguments
2623 passed in registers. */
2624 #ifdef OUTGOING_REG_PARM_STACK_SPACE
2625 if (!ACCUMULATE_OUTGOING_ARGS
2626 && must_preallocate == 0 && reg_parm_stack_space > 0)
2627 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2628 #endif
2629
2630 /* Pass the function the address in which to return a
2631 structure value. */
2632 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2633 {
2634 structure_value_addr
2635 = convert_memory_address (Pmode, structure_value_addr);
2636 emit_move_insn (struct_value,
2637 force_reg (Pmode,
2638 force_operand (structure_value_addr,
2639 NULL_RTX)));
2640
2641 if (REG_P (struct_value))
2642 use_reg (&call_fusage, struct_value);
2643 }
2644
2645 funexp = prepare_call_address (funexp, static_chain_value,
2646 &call_fusage, reg_parm_seen, pass == 0);
2647
2648 load_register_parameters (args, num_actuals, &call_fusage, flags,
2649 pass == 0, &sibcall_failure);
2650
2651 /* Save a pointer to the last insn before the call, so that we can
2652 later safely search backwards to find the CALL_INSN. */
2653 before_call = get_last_insn ();
2654
2655 /* Set up next argument register. For sibling calls on machines
2656 with register windows this should be the incoming register. */
2657 #ifdef FUNCTION_INCOMING_ARG
2658 if (pass == 0)
2659 next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
2660 void_type_node, 1);
2661 else
2662 #endif
2663 next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
2664 void_type_node, 1);
2665
2666 /* All arguments and registers used for the call must be set up by
2667 now! */
2668
2669 /* Stack must be properly aligned now. */
2670 gcc_assert (!pass
2671 || !(stack_pointer_delta % preferred_unit_stack_boundary));
2672
2673 /* Generate the actual call instruction. */
2674 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2675 adjusted_args_size.constant, struct_value_size,
2676 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2677 flags, & args_so_far);
2678
2679 /* If a non-BLKmode value is returned at the most significant end
2680 of a register, shift the register right by the appropriate amount
2681 and update VALREG accordingly. BLKmode values are handled by the
2682 group load/store machinery below. */
2683 if (!structure_value_addr
2684 && !pcc_struct_value
2685 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2686 && targetm.calls.return_in_msb (TREE_TYPE (exp)))
2687 {
2688 if (shift_return_value (TYPE_MODE (TREE_TYPE (exp)), false, valreg))
2689 sibcall_failure = 1;
2690 valreg = gen_rtx_REG (TYPE_MODE (TREE_TYPE (exp)), REGNO (valreg));
2691 }
2692
2693 /* If call is cse'able, make appropriate pair of reg-notes around it.
2694 Test valreg so we don't crash; may safely ignore `const'
2695 if return type is void. Disable for PARALLEL return values, because
2696 we have no way to move such values into a pseudo register. */
2697 if (pass && (flags & ECF_LIBCALL_BLOCK))
2698 {
2699 rtx insns;
2700 rtx insn;
2701 bool failed = valreg == 0 || GET_CODE (valreg) == PARALLEL;
2702
2703 insns = get_insns ();
2704
2705 /* Expansion of block moves possibly introduced a loop that may
2706 not appear inside libcall block. */
2707 for (insn = insns; insn; insn = NEXT_INSN (insn))
2708 if (JUMP_P (insn))
2709 failed = true;
2710
2711 if (failed)
2712 {
2713 end_sequence ();
2714 emit_insn (insns);
2715 }
2716 else
2717 {
2718 rtx note = 0;
2719 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2720
2721 /* Mark the return value as a pointer if needed. */
2722 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2723 mark_reg_pointer (temp,
2724 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp))));
2725
2726 end_sequence ();
2727 if (flag_unsafe_math_optimizations
2728 && fndecl
2729 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2730 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRT
2731 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTF
2732 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTL))
2733 note = gen_rtx_fmt_e (SQRT,
2734 GET_MODE (temp),
2735 args[0].initial_value);
2736 else
2737 {
2738 /* Construct an "equal form" for the value which
2739 mentions all the arguments in order as well as
2740 the function name. */
2741 for (i = 0; i < num_actuals; i++)
2742 note = gen_rtx_EXPR_LIST (VOIDmode,
2743 args[i].initial_value, note);
2744 note = gen_rtx_EXPR_LIST (VOIDmode, funexp, note);
2745
2746 if (flags & ECF_PURE)
2747 note = gen_rtx_EXPR_LIST (VOIDmode,
2748 gen_rtx_USE (VOIDmode,
2749 gen_rtx_MEM (BLKmode,
2750 gen_rtx_SCRATCH (VOIDmode))),
2751 note);
2752 }
2753 emit_libcall_block (insns, temp, valreg, note);
2754
2755 valreg = temp;
2756 }
2757 }
2758 else if (pass && (flags & ECF_MALLOC))
2759 {
2760 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2761 rtx last, insns;
2762
2763 /* The return value from a malloc-like function is a pointer. */
2764 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2765 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2766
2767 emit_move_insn (temp, valreg);
2768
2769 /* The return value from a malloc-like function can not alias
2770 anything else. */
2771 last = get_last_insn ();
2772 REG_NOTES (last) =
2773 gen_rtx_EXPR_LIST (REG_NOALIAS, temp, REG_NOTES (last));
2774
2775 /* Write out the sequence. */
2776 insns = get_insns ();
2777 end_sequence ();
2778 emit_insn (insns);
2779 valreg = temp;
2780 }
2781
2782 /* For calls to `setjmp', etc., inform flow.c it should complain
2783 if nonvolatile values are live. For functions that cannot return,
2784 inform flow that control does not fall through. */
2785
2786 if ((flags & ECF_NORETURN) || pass == 0)
2787 {
2788 /* The barrier must be emitted
2789 immediately after the CALL_INSN. Some ports emit more
2790 than just a CALL_INSN above, so we must search for it here. */
2791
2792 rtx last = get_last_insn ();
2793 while (!CALL_P (last))
2794 {
2795 last = PREV_INSN (last);
2796 /* There was no CALL_INSN? */
2797 gcc_assert (last != before_call);
2798 }
2799
2800 emit_barrier_after (last);
2801
2802 /* Stack adjustments after a noreturn call are dead code.
2803 However when NO_DEFER_POP is in effect, we must preserve
2804 stack_pointer_delta. */
2805 if (inhibit_defer_pop == 0)
2806 {
2807 stack_pointer_delta = old_stack_allocated;
2808 pending_stack_adjust = 0;
2809 }
2810 }
2811
2812 /* If value type not void, return an rtx for the value. */
2813
2814 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
2815 || ignore)
2816 target = const0_rtx;
2817 else if (structure_value_addr)
2818 {
2819 if (target == 0 || !MEM_P (target))
2820 {
2821 target
2822 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2823 memory_address (TYPE_MODE (TREE_TYPE (exp)),
2824 structure_value_addr));
2825 set_mem_attributes (target, exp, 1);
2826 }
2827 }
2828 else if (pcc_struct_value)
2829 {
2830 /* This is the special C++ case where we need to
2831 know what the true target was. We take care to
2832 never use this value more than once in one expression. */
2833 target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2834 copy_to_reg (valreg));
2835 set_mem_attributes (target, exp, 1);
2836 }
2837 /* Handle calls that return values in multiple non-contiguous locations.
2838 The Irix 6 ABI has examples of this. */
2839 else if (GET_CODE (valreg) == PARALLEL)
2840 {
2841 if (target == 0)
2842 {
2843 /* This will only be assigned once, so it can be readonly. */
2844 tree nt = build_qualified_type (TREE_TYPE (exp),
2845 (TYPE_QUALS (TREE_TYPE (exp))
2846 | TYPE_QUAL_CONST));
2847
2848 target = assign_temp (nt, 0, 1, 1);
2849 }
2850
2851 if (! rtx_equal_p (target, valreg))
2852 emit_group_store (target, valreg, TREE_TYPE (exp),
2853 int_size_in_bytes (TREE_TYPE (exp)));
2854
2855 /* We can not support sibling calls for this case. */
2856 sibcall_failure = 1;
2857 }
2858 else if (target
2859 && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
2860 && GET_MODE (target) == GET_MODE (valreg))
2861 {
2862 /* TARGET and VALREG cannot be equal at this point because the
2863 latter would not have REG_FUNCTION_VALUE_P true, while the
2864 former would if it were referring to the same register.
2865
2866 If they refer to the same register, this move will be a no-op,
2867 except when function inlining is being done. */
2868 emit_move_insn (target, valreg);
2869
2870 /* If we are setting a MEM, this code must be executed. Since it is
2871 emitted after the call insn, sibcall optimization cannot be
2872 performed in that case. */
2873 if (MEM_P (target))
2874 sibcall_failure = 1;
2875 }
2876 else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
2877 {
2878 target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp));
2879
2880 /* We can not support sibling calls for this case. */
2881 sibcall_failure = 1;
2882 }
2883 else
2884 target = copy_to_reg (valreg);
2885
2886 if (targetm.calls.promote_function_return(funtype))
2887 {
2888 /* If we promoted this return value, make the proper SUBREG.
2889 TARGET might be const0_rtx here, so be careful. */
2890 if (REG_P (target)
2891 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2892 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
2893 {
2894 tree type = TREE_TYPE (exp);
2895 int unsignedp = TYPE_UNSIGNED (type);
2896 int offset = 0;
2897 enum machine_mode pmode;
2898
2899 pmode = promote_mode (type, TYPE_MODE (type), &unsignedp, 1);
2900 /* If we don't promote as expected, something is wrong. */
2901 gcc_assert (GET_MODE (target) == pmode);
2902
2903 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
2904 && (GET_MODE_SIZE (GET_MODE (target))
2905 > GET_MODE_SIZE (TYPE_MODE (type))))
2906 {
2907 offset = GET_MODE_SIZE (GET_MODE (target))
2908 - GET_MODE_SIZE (TYPE_MODE (type));
2909 if (! BYTES_BIG_ENDIAN)
2910 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
2911 else if (! WORDS_BIG_ENDIAN)
2912 offset %= UNITS_PER_WORD;
2913 }
2914 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
2915 SUBREG_PROMOTED_VAR_P (target) = 1;
2916 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
2917 }
2918 }
2919
2920 /* If size of args is variable or this was a constructor call for a stack
2921 argument, restore saved stack-pointer value. */
2922
2923 if (old_stack_level && ! (flags & ECF_SP_DEPRESSED))
2924 {
2925 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
2926 stack_pointer_delta = old_stack_pointer_delta;
2927 pending_stack_adjust = old_pending_adj;
2928 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2929 stack_arg_under_construction = old_stack_arg_under_construction;
2930 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
2931 stack_usage_map = initial_stack_usage_map;
2932 sibcall_failure = 1;
2933 }
2934 else if (ACCUMULATE_OUTGOING_ARGS && pass)
2935 {
2936 #ifdef REG_PARM_STACK_SPACE
2937 if (save_area)
2938 restore_fixed_argument_area (save_area, argblock,
2939 high_to_save, low_to_save);
2940 #endif
2941
2942 /* If we saved any argument areas, restore them. */
2943 for (i = 0; i < num_actuals; i++)
2944 if (args[i].save_area)
2945 {
2946 enum machine_mode save_mode = GET_MODE (args[i].save_area);
2947 rtx stack_area
2948 = gen_rtx_MEM (save_mode,
2949 memory_address (save_mode,
2950 XEXP (args[i].stack_slot, 0)));
2951
2952 if (save_mode != BLKmode)
2953 emit_move_insn (stack_area, args[i].save_area);
2954 else
2955 emit_block_move (stack_area, args[i].save_area,
2956 GEN_INT (args[i].locate.size.constant),
2957 BLOCK_OP_CALL_PARM);
2958 }
2959
2960 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
2961 stack_usage_map = initial_stack_usage_map;
2962 }
2963
2964 /* If this was alloca, record the new stack level for nonlocal gotos.
2965 Check for the handler slots since we might not have a save area
2966 for non-local gotos. */
2967
2968 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
2969 update_nonlocal_goto_save_area ();
2970
2971 /* Free up storage we no longer need. */
2972 for (i = 0; i < num_actuals; ++i)
2973 if (args[i].aligned_regs)
2974 free (args[i].aligned_regs);
2975
2976 insns = get_insns ();
2977 end_sequence ();
2978
2979 if (pass == 0)
2980 {
2981 tail_call_insns = insns;
2982
2983 /* Restore the pending stack adjustment now that we have
2984 finished generating the sibling call sequence. */
2985
2986 pending_stack_adjust = save_pending_stack_adjust;
2987 stack_pointer_delta = save_stack_pointer_delta;
2988
2989 /* Prepare arg structure for next iteration. */
2990 for (i = 0; i < num_actuals; i++)
2991 {
2992 args[i].value = 0;
2993 args[i].aligned_regs = 0;
2994 args[i].stack = 0;
2995 }
2996
2997 sbitmap_free (stored_args_map);
2998 }
2999 else
3000 {
3001 normal_call_insns = insns;
3002
3003 /* Verify that we've deallocated all the stack we used. */
3004 gcc_assert ((flags & ECF_NORETURN)
3005 || (old_stack_allocated
3006 == stack_pointer_delta - pending_stack_adjust));
3007 }
3008
3009 /* If something prevents making this a sibling call,
3010 zero out the sequence. */
3011 if (sibcall_failure)
3012 tail_call_insns = NULL_RTX;
3013 else
3014 break;
3015 }
3016
3017 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3018 arguments too, as argument area is now clobbered by the call. */
3019 if (tail_call_insns)
3020 {
3021 emit_insn (tail_call_insns);
3022 cfun->tail_call_emit = true;
3023 }
3024 else
3025 emit_insn (normal_call_insns);
3026
3027 currently_expanding_call--;
3028
3029 /* If this function returns with the stack pointer depressed, ensure
3030 this block saves and restores the stack pointer, show it was
3031 changed, and adjust for any outgoing arg space. */
3032 if (flags & ECF_SP_DEPRESSED)
3033 {
3034 clear_pending_stack_adjust ();
3035 emit_insn (gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx));
3036 emit_move_insn (virtual_stack_dynamic_rtx, stack_pointer_rtx);
3037 }
3038
3039 return target;
3040 }
3041
3042 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3043 this function's incoming arguments.
3044
3045 At the start of RTL generation we know the only REG_EQUIV notes
3046 in the rtl chain are those for incoming arguments, so we can safely
3047 flush any REG_EQUIV note.
3048
3049 This is (slight) overkill. We could keep track of the highest
3050 argument we clobber and be more selective in removing notes, but it
3051 does not seem to be worth the effort. */
3052 void
3053 fixup_tail_calls (void)
3054 {
3055 purge_reg_equiv_notes ();
3056 }
3057
3058 /* Traverse an argument list in VALUES and expand all complex
3059 arguments into their components. */
3060 static tree
3061 split_complex_values (tree values)
3062 {
3063 tree p;
3064
3065 /* Before allocating memory, check for the common case of no complex. */
3066 for (p = values; p; p = TREE_CHAIN (p))
3067 {
3068 tree type = TREE_TYPE (TREE_VALUE (p));
3069 if (type && TREE_CODE (type) == COMPLEX_TYPE
3070 && targetm.calls.split_complex_arg (type))
3071 goto found;
3072 }
3073 return values;
3074
3075 found:
3076 values = copy_list (values);
3077
3078 for (p = values; p; p = TREE_CHAIN (p))
3079 {
3080 tree complex_value = TREE_VALUE (p);
3081 tree complex_type;
3082
3083 complex_type = TREE_TYPE (complex_value);
3084 if (!complex_type)
3085 continue;
3086
3087 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3088 && targetm.calls.split_complex_arg (complex_type))
3089 {
3090 tree subtype;
3091 tree real, imag, next;
3092
3093 subtype = TREE_TYPE (complex_type);
3094 complex_value = save_expr (complex_value);
3095 real = build1 (REALPART_EXPR, subtype, complex_value);
3096 imag = build1 (IMAGPART_EXPR, subtype, complex_value);
3097
3098 TREE_VALUE (p) = real;
3099 next = TREE_CHAIN (p);
3100 imag = build_tree_list (NULL_TREE, imag);
3101 TREE_CHAIN (p) = imag;
3102 TREE_CHAIN (imag) = next;
3103
3104 /* Skip the newly created node. */
3105 p = TREE_CHAIN (p);
3106 }
3107 }
3108
3109 return values;
3110 }
3111
3112 /* Traverse a list of TYPES and expand all complex types into their
3113 components. */
3114 static tree
3115 split_complex_types (tree types)
3116 {
3117 tree p;
3118
3119 /* Before allocating memory, check for the common case of no complex. */
3120 for (p = types; p; p = TREE_CHAIN (p))
3121 {
3122 tree type = TREE_VALUE (p);
3123 if (TREE_CODE (type) == COMPLEX_TYPE
3124 && targetm.calls.split_complex_arg (type))
3125 goto found;
3126 }
3127 return types;
3128
3129 found:
3130 types = copy_list (types);
3131
3132 for (p = types; p; p = TREE_CHAIN (p))
3133 {
3134 tree complex_type = TREE_VALUE (p);
3135
3136 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3137 && targetm.calls.split_complex_arg (complex_type))
3138 {
3139 tree next, imag;
3140
3141 /* Rewrite complex type with component type. */
3142 TREE_VALUE (p) = TREE_TYPE (complex_type);
3143 next = TREE_CHAIN (p);
3144
3145 /* Add another component type for the imaginary part. */
3146 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3147 TREE_CHAIN (p) = imag;
3148 TREE_CHAIN (imag) = next;
3149
3150 /* Skip the newly created node. */
3151 p = TREE_CHAIN (p);
3152 }
3153 }
3154
3155 return types;
3156 }
3157 \f
3158 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3159 The RETVAL parameter specifies whether return value needs to be saved, other
3160 parameters are documented in the emit_library_call function below. */
3161
3162 static rtx
3163 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3164 enum libcall_type fn_type,
3165 enum machine_mode outmode, int nargs, va_list p)
3166 {
3167 /* Total size in bytes of all the stack-parms scanned so far. */
3168 struct args_size args_size;
3169 /* Size of arguments before any adjustments (such as rounding). */
3170 struct args_size original_args_size;
3171 int argnum;
3172 rtx fun;
3173 int inc;
3174 int count;
3175 rtx argblock = 0;
3176 CUMULATIVE_ARGS args_so_far;
3177 struct arg
3178 {
3179 rtx value;
3180 enum machine_mode mode;
3181 rtx reg;
3182 int partial;
3183 struct locate_and_pad_arg_data locate;
3184 rtx save_area;
3185 };
3186 struct arg *argvec;
3187 int old_inhibit_defer_pop = inhibit_defer_pop;
3188 rtx call_fusage = 0;
3189 rtx mem_value = 0;
3190 rtx valreg;
3191 int pcc_struct_value = 0;
3192 int struct_value_size = 0;
3193 int flags;
3194 int reg_parm_stack_space = 0;
3195 int needed;
3196 rtx before_call;
3197 tree tfom; /* type_for_mode (outmode, 0) */
3198
3199 #ifdef REG_PARM_STACK_SPACE
3200 /* Define the boundary of the register parm stack space that needs to be
3201 save, if any. */
3202 int low_to_save, high_to_save;
3203 rtx save_area = 0; /* Place that it is saved. */
3204 #endif
3205
3206 /* Size of the stack reserved for parameter registers. */
3207 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3208 char *initial_stack_usage_map = stack_usage_map;
3209
3210 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3211
3212 #ifdef REG_PARM_STACK_SPACE
3213 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3214 #endif
3215
3216 /* By default, library functions can not throw. */
3217 flags = ECF_NOTHROW;
3218
3219 switch (fn_type)
3220 {
3221 case LCT_NORMAL:
3222 break;
3223 case LCT_CONST:
3224 flags |= ECF_CONST;
3225 break;
3226 case LCT_PURE:
3227 flags |= ECF_PURE;
3228 break;
3229 case LCT_CONST_MAKE_BLOCK:
3230 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
3231 break;
3232 case LCT_PURE_MAKE_BLOCK:
3233 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
3234 break;
3235 case LCT_NORETURN:
3236 flags |= ECF_NORETURN;
3237 break;
3238 case LCT_THROW:
3239 flags = ECF_NORETURN;
3240 break;
3241 case LCT_RETURNS_TWICE:
3242 flags = ECF_RETURNS_TWICE;
3243 break;
3244 }
3245 fun = orgfun;
3246
3247 /* Ensure current function's preferred stack boundary is at least
3248 what we need. */
3249 if (cfun->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3250 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3251
3252 /* If this kind of value comes back in memory,
3253 decide where in memory it should come back. */
3254 if (outmode != VOIDmode)
3255 {
3256 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3257 if (aggregate_value_p (tfom, 0))
3258 {
3259 #ifdef PCC_STATIC_STRUCT_RETURN
3260 rtx pointer_reg
3261 = hard_function_value (build_pointer_type (tfom), 0, 0);
3262 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3263 pcc_struct_value = 1;
3264 if (value == 0)
3265 value = gen_reg_rtx (outmode);
3266 #else /* not PCC_STATIC_STRUCT_RETURN */
3267 struct_value_size = GET_MODE_SIZE (outmode);
3268 if (value != 0 && MEM_P (value))
3269 mem_value = value;
3270 else
3271 mem_value = assign_temp (tfom, 0, 1, 1);
3272 #endif
3273 /* This call returns a big structure. */
3274 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3275 }
3276 }
3277 else
3278 tfom = void_type_node;
3279
3280 /* ??? Unfinished: must pass the memory address as an argument. */
3281
3282 /* Copy all the libcall-arguments out of the varargs data
3283 and into a vector ARGVEC.
3284
3285 Compute how to pass each argument. We only support a very small subset
3286 of the full argument passing conventions to limit complexity here since
3287 library functions shouldn't have many args. */
3288
3289 argvec = alloca ((nargs + 1) * sizeof (struct arg));
3290 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3291
3292 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3293 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
3294 #else
3295 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
3296 #endif
3297
3298 args_size.constant = 0;
3299 args_size.var = 0;
3300
3301 count = 0;
3302
3303 /* Now we are about to start emitting insns that can be deleted
3304 if a libcall is deleted. */
3305 if (flags & ECF_LIBCALL_BLOCK)
3306 start_sequence ();
3307
3308 push_temp_slots ();
3309
3310 /* If there's a structure value address to be passed,
3311 either pass it in the special place, or pass it as an extra argument. */
3312 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3313 {
3314 rtx addr = XEXP (mem_value, 0);
3315
3316 nargs++;
3317
3318 /* Make sure it is a reasonable operand for a move or push insn. */
3319 if (!REG_P (addr) && !MEM_P (addr)
3320 && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
3321 addr = force_operand (addr, NULL_RTX);
3322
3323 argvec[count].value = addr;
3324 argvec[count].mode = Pmode;
3325 argvec[count].partial = 0;
3326
3327 argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
3328 gcc_assert (targetm.calls.arg_partial_bytes (&args_so_far, Pmode,
3329 NULL_TREE, 1) == 0);
3330
3331 locate_and_pad_parm (Pmode, NULL_TREE,
3332 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3333 1,
3334 #else
3335 argvec[count].reg != 0,
3336 #endif
3337 0, NULL_TREE, &args_size, &argvec[count].locate);
3338
3339 if (argvec[count].reg == 0 || argvec[count].partial != 0
3340 || reg_parm_stack_space > 0)
3341 args_size.constant += argvec[count].locate.size.constant;
3342
3343 FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
3344
3345 count++;
3346 }
3347
3348 for (; count < nargs; count++)
3349 {
3350 rtx val = va_arg (p, rtx);
3351 enum machine_mode mode = va_arg (p, enum machine_mode);
3352
3353 /* We cannot convert the arg value to the mode the library wants here;
3354 must do it earlier where we know the signedness of the arg. */
3355 gcc_assert (mode != BLKmode
3356 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3357
3358 /* Make sure it is a reasonable operand for a move or push insn. */
3359 if (!REG_P (val) && !MEM_P (val)
3360 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
3361 val = force_operand (val, NULL_RTX);
3362
3363 if (pass_by_reference (&args_so_far, mode, NULL_TREE, 1))
3364 {
3365 rtx slot;
3366 int must_copy
3367 = !reference_callee_copied (&args_so_far, mode, NULL_TREE, 1);
3368
3369 /* loop.c won't look at CALL_INSN_FUNCTION_USAGE of const/pure
3370 functions, so we have to pretend this isn't such a function. */
3371 if (flags & ECF_LIBCALL_BLOCK)
3372 {
3373 rtx insns = get_insns ();
3374 end_sequence ();
3375 emit_insn (insns);
3376 }
3377 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3378
3379 /* If this was a CONST function, it is now PURE since
3380 it now reads memory. */
3381 if (flags & ECF_CONST)
3382 {
3383 flags &= ~ECF_CONST;
3384 flags |= ECF_PURE;
3385 }
3386
3387 if (GET_MODE (val) == MEM && !must_copy)
3388 slot = val;
3389 else
3390 {
3391 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3392 0, 1, 1);
3393 emit_move_insn (slot, val);
3394 }
3395
3396 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3397 gen_rtx_USE (VOIDmode, slot),
3398 call_fusage);
3399 if (must_copy)
3400 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3401 gen_rtx_CLOBBER (VOIDmode,
3402 slot),
3403 call_fusage);
3404
3405 mode = Pmode;
3406 val = force_operand (XEXP (slot, 0), NULL_RTX);
3407 }
3408
3409 argvec[count].value = val;
3410 argvec[count].mode = mode;
3411
3412 argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
3413
3414 argvec[count].partial
3415 = targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL_TREE, 1);
3416
3417 locate_and_pad_parm (mode, NULL_TREE,
3418 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3419 1,
3420 #else
3421 argvec[count].reg != 0,
3422 #endif
3423 argvec[count].partial,
3424 NULL_TREE, &args_size, &argvec[count].locate);
3425
3426 gcc_assert (!argvec[count].locate.size.var);
3427
3428 if (argvec[count].reg == 0 || argvec[count].partial != 0
3429 || reg_parm_stack_space > 0)
3430 args_size.constant += argvec[count].locate.size.constant;
3431
3432 FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
3433 }
3434
3435 /* If this machine requires an external definition for library
3436 functions, write one out. */
3437 assemble_external_libcall (fun);
3438
3439 original_args_size = args_size;
3440 args_size.constant = (((args_size.constant
3441 + stack_pointer_delta
3442 + STACK_BYTES - 1)
3443 / STACK_BYTES
3444 * STACK_BYTES)
3445 - stack_pointer_delta);
3446
3447 args_size.constant = MAX (args_size.constant,
3448 reg_parm_stack_space);
3449
3450 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3451 args_size.constant -= reg_parm_stack_space;
3452 #endif
3453
3454 if (args_size.constant > current_function_outgoing_args_size)
3455 current_function_outgoing_args_size = args_size.constant;
3456
3457 if (ACCUMULATE_OUTGOING_ARGS)
3458 {
3459 /* Since the stack pointer will never be pushed, it is possible for
3460 the evaluation of a parm to clobber something we have already
3461 written to the stack. Since most function calls on RISC machines
3462 do not use the stack, this is uncommon, but must work correctly.
3463
3464 Therefore, we save any area of the stack that was already written
3465 and that we are using. Here we set up to do this by making a new
3466 stack usage map from the old one.
3467
3468 Another approach might be to try to reorder the argument
3469 evaluations to avoid this conflicting stack usage. */
3470
3471 needed = args_size.constant;
3472
3473 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3474 /* Since we will be writing into the entire argument area, the
3475 map must be allocated for its entire size, not just the part that
3476 is the responsibility of the caller. */
3477 needed += reg_parm_stack_space;
3478 #endif
3479
3480 #ifdef ARGS_GROW_DOWNWARD
3481 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3482 needed + 1);
3483 #else
3484 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3485 needed);
3486 #endif
3487 stack_usage_map = alloca (highest_outgoing_arg_in_use);
3488
3489 if (initial_highest_arg_in_use)
3490 memcpy (stack_usage_map, initial_stack_usage_map,
3491 initial_highest_arg_in_use);
3492
3493 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3494 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3495 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3496 needed = 0;
3497
3498 /* We must be careful to use virtual regs before they're instantiated,
3499 and real regs afterwards. Loop optimization, for example, can create
3500 new libcalls after we've instantiated the virtual regs, and if we
3501 use virtuals anyway, they won't match the rtl patterns. */
3502
3503 if (virtuals_instantiated)
3504 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3505 else
3506 argblock = virtual_outgoing_args_rtx;
3507 }
3508 else
3509 {
3510 if (!PUSH_ARGS)
3511 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3512 }
3513
3514 /* If we push args individually in reverse order, perform stack alignment
3515 before the first push (the last arg). */
3516 if (argblock == 0 && PUSH_ARGS_REVERSED)
3517 anti_adjust_stack (GEN_INT (args_size.constant
3518 - original_args_size.constant));
3519
3520 if (PUSH_ARGS_REVERSED)
3521 {
3522 inc = -1;
3523 argnum = nargs - 1;
3524 }
3525 else
3526 {
3527 inc = 1;
3528 argnum = 0;
3529 }
3530
3531 #ifdef REG_PARM_STACK_SPACE
3532 if (ACCUMULATE_OUTGOING_ARGS)
3533 {
3534 /* The argument list is the property of the called routine and it
3535 may clobber it. If the fixed area has been used for previous
3536 parameters, we must save and restore it. */
3537 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3538 &low_to_save, &high_to_save);
3539 }
3540 #endif
3541
3542 /* Push the args that need to be pushed. */
3543
3544 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3545 are to be pushed. */
3546 for (count = 0; count < nargs; count++, argnum += inc)
3547 {
3548 enum machine_mode mode = argvec[argnum].mode;
3549 rtx val = argvec[argnum].value;
3550 rtx reg = argvec[argnum].reg;
3551 int partial = argvec[argnum].partial;
3552 int lower_bound = 0, upper_bound = 0, i;
3553
3554 if (! (reg != 0 && partial == 0))
3555 {
3556 if (ACCUMULATE_OUTGOING_ARGS)
3557 {
3558 /* If this is being stored into a pre-allocated, fixed-size,
3559 stack area, save any previous data at that location. */
3560
3561 #ifdef ARGS_GROW_DOWNWARD
3562 /* stack_slot is negative, but we want to index stack_usage_map
3563 with positive values. */
3564 upper_bound = -argvec[argnum].locate.offset.constant + 1;
3565 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3566 #else
3567 lower_bound = argvec[argnum].locate.offset.constant;
3568 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3569 #endif
3570
3571 i = lower_bound;
3572 /* Don't worry about things in the fixed argument area;
3573 it has already been saved. */
3574 if (i < reg_parm_stack_space)
3575 i = reg_parm_stack_space;
3576 while (i < upper_bound && stack_usage_map[i] == 0)
3577 i++;
3578
3579 if (i < upper_bound)
3580 {
3581 /* We need to make a save area. */
3582 unsigned int size
3583 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3584 enum machine_mode save_mode
3585 = mode_for_size (size, MODE_INT, 1);
3586 rtx adr
3587 = plus_constant (argblock,
3588 argvec[argnum].locate.offset.constant);
3589 rtx stack_area
3590 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3591
3592 if (save_mode == BLKmode)
3593 {
3594 argvec[argnum].save_area
3595 = assign_stack_temp (BLKmode,
3596 argvec[argnum].locate.size.constant,
3597 0);
3598
3599 emit_block_move (validize_mem (argvec[argnum].save_area),
3600 stack_area,
3601 GEN_INT (argvec[argnum].locate.size.constant),
3602 BLOCK_OP_CALL_PARM);
3603 }
3604 else
3605 {
3606 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3607
3608 emit_move_insn (argvec[argnum].save_area, stack_area);
3609 }
3610 }
3611 }
3612
3613 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, PARM_BOUNDARY,
3614 partial, reg, 0, argblock,
3615 GEN_INT (argvec[argnum].locate.offset.constant),
3616 reg_parm_stack_space,
3617 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3618
3619 /* Now mark the segment we just used. */
3620 if (ACCUMULATE_OUTGOING_ARGS)
3621 for (i = lower_bound; i < upper_bound; i++)
3622 stack_usage_map[i] = 1;
3623
3624 NO_DEFER_POP;
3625 }
3626 }
3627
3628 /* If we pushed args in forward order, perform stack alignment
3629 after pushing the last arg. */
3630 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3631 anti_adjust_stack (GEN_INT (args_size.constant
3632 - original_args_size.constant));
3633
3634 if (PUSH_ARGS_REVERSED)
3635 argnum = nargs - 1;
3636 else
3637 argnum = 0;
3638
3639 fun = prepare_call_address (fun, NULL, &call_fusage, 0, 0);
3640
3641 /* Now load any reg parms into their regs. */
3642
3643 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3644 are to be pushed. */
3645 for (count = 0; count < nargs; count++, argnum += inc)
3646 {
3647 enum machine_mode mode = argvec[argnum].mode;
3648 rtx val = argvec[argnum].value;
3649 rtx reg = argvec[argnum].reg;
3650 int partial = argvec[argnum].partial;
3651
3652 /* Handle calls that pass values in multiple non-contiguous
3653 locations. The PA64 has examples of this for library calls. */
3654 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3655 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3656 else if (reg != 0 && partial == 0)
3657 emit_move_insn (reg, val);
3658
3659 NO_DEFER_POP;
3660 }
3661
3662 /* Any regs containing parms remain in use through the call. */
3663 for (count = 0; count < nargs; count++)
3664 {
3665 rtx reg = argvec[count].reg;
3666 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3667 use_group_regs (&call_fusage, reg);
3668 else if (reg != 0)
3669 use_reg (&call_fusage, reg);
3670 }
3671
3672 /* Pass the function the address in which to return a structure value. */
3673 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3674 {
3675 emit_move_insn (struct_value,
3676 force_reg (Pmode,
3677 force_operand (XEXP (mem_value, 0),
3678 NULL_RTX)));
3679 if (REG_P (struct_value))
3680 use_reg (&call_fusage, struct_value);
3681 }
3682
3683 /* Don't allow popping to be deferred, since then
3684 cse'ing of library calls could delete a call and leave the pop. */
3685 NO_DEFER_POP;
3686 valreg = (mem_value == 0 && outmode != VOIDmode
3687 ? hard_libcall_value (outmode) : NULL_RTX);
3688
3689 /* Stack must be properly aligned now. */
3690 gcc_assert (!(stack_pointer_delta
3691 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
3692
3693 before_call = get_last_insn ();
3694
3695 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3696 will set inhibit_defer_pop to that value. */
3697 /* The return type is needed to decide how many bytes the function pops.
3698 Signedness plays no role in that, so for simplicity, we pretend it's
3699 always signed. We also assume that the list of arguments passed has
3700 no impact, so we pretend it is unknown. */
3701
3702 emit_call_1 (fun, NULL,
3703 get_identifier (XSTR (orgfun, 0)),
3704 build_function_type (tfom, NULL_TREE),
3705 original_args_size.constant, args_size.constant,
3706 struct_value_size,
3707 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
3708 valreg,
3709 old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
3710
3711 /* For calls to `setjmp', etc., inform flow.c it should complain
3712 if nonvolatile values are live. For functions that cannot return,
3713 inform flow that control does not fall through. */
3714
3715 if (flags & ECF_NORETURN)
3716 {
3717 /* The barrier note must be emitted
3718 immediately after the CALL_INSN. Some ports emit more than
3719 just a CALL_INSN above, so we must search for it here. */
3720
3721 rtx last = get_last_insn ();
3722 while (!CALL_P (last))
3723 {
3724 last = PREV_INSN (last);
3725 /* There was no CALL_INSN? */
3726 gcc_assert (last != before_call);
3727 }
3728
3729 emit_barrier_after (last);
3730 }
3731
3732 /* Now restore inhibit_defer_pop to its actual original value. */
3733 OK_DEFER_POP;
3734
3735 /* If call is cse'able, make appropriate pair of reg-notes around it.
3736 Test valreg so we don't crash; may safely ignore `const'
3737 if return type is void. Disable for PARALLEL return values, because
3738 we have no way to move such values into a pseudo register. */
3739 if (flags & ECF_LIBCALL_BLOCK)
3740 {
3741 rtx insns;
3742
3743 if (valreg == 0)
3744 {
3745 insns = get_insns ();
3746 end_sequence ();
3747 emit_insn (insns);
3748 }
3749 else
3750 {
3751 rtx note = 0;
3752 rtx temp;
3753 int i;
3754
3755 if (GET_CODE (valreg) == PARALLEL)
3756 {
3757 temp = gen_reg_rtx (outmode);
3758 emit_group_store (temp, valreg, NULL_TREE,
3759 GET_MODE_SIZE (outmode));
3760 valreg = temp;
3761 }
3762
3763 temp = gen_reg_rtx (GET_MODE (valreg));
3764
3765 /* Construct an "equal form" for the value which mentions all the
3766 arguments in order as well as the function name. */
3767 for (i = 0; i < nargs; i++)
3768 note = gen_rtx_EXPR_LIST (VOIDmode, argvec[i].value, note);
3769 note = gen_rtx_EXPR_LIST (VOIDmode, fun, note);
3770
3771 insns = get_insns ();
3772 end_sequence ();
3773
3774 if (flags & ECF_PURE)
3775 note = gen_rtx_EXPR_LIST (VOIDmode,
3776 gen_rtx_USE (VOIDmode,
3777 gen_rtx_MEM (BLKmode,
3778 gen_rtx_SCRATCH (VOIDmode))),
3779 note);
3780
3781 emit_libcall_block (insns, temp, valreg, note);
3782
3783 valreg = temp;
3784 }
3785 }
3786 pop_temp_slots ();
3787
3788 /* Copy the value to the right place. */
3789 if (outmode != VOIDmode && retval)
3790 {
3791 if (mem_value)
3792 {
3793 if (value == 0)
3794 value = mem_value;
3795 if (value != mem_value)
3796 emit_move_insn (value, mem_value);
3797 }
3798 else if (GET_CODE (valreg) == PARALLEL)
3799 {
3800 if (value == 0)
3801 value = gen_reg_rtx (outmode);
3802 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
3803 }
3804 else if (value != 0)
3805 emit_move_insn (value, valreg);
3806 else
3807 value = valreg;
3808 }
3809
3810 if (ACCUMULATE_OUTGOING_ARGS)
3811 {
3812 #ifdef REG_PARM_STACK_SPACE
3813 if (save_area)
3814 restore_fixed_argument_area (save_area, argblock,
3815 high_to_save, low_to_save);
3816 #endif
3817
3818 /* If we saved any argument areas, restore them. */
3819 for (count = 0; count < nargs; count++)
3820 if (argvec[count].save_area)
3821 {
3822 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
3823 rtx adr = plus_constant (argblock,
3824 argvec[count].locate.offset.constant);
3825 rtx stack_area = gen_rtx_MEM (save_mode,
3826 memory_address (save_mode, adr));
3827
3828 if (save_mode == BLKmode)
3829 emit_block_move (stack_area,
3830 validize_mem (argvec[count].save_area),
3831 GEN_INT (argvec[count].locate.size.constant),
3832 BLOCK_OP_CALL_PARM);
3833 else
3834 emit_move_insn (stack_area, argvec[count].save_area);
3835 }
3836
3837 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3838 stack_usage_map = initial_stack_usage_map;
3839 }
3840
3841 return value;
3842
3843 }
3844 \f
3845 /* Output a library call to function FUN (a SYMBOL_REF rtx)
3846 (emitting the queue unless NO_QUEUE is nonzero),
3847 for a value of mode OUTMODE,
3848 with NARGS different arguments, passed as alternating rtx values
3849 and machine_modes to convert them to.
3850
3851 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for `const'
3852 calls, LCT_PURE for `pure' calls, LCT_CONST_MAKE_BLOCK for `const' calls
3853 which should be enclosed in REG_LIBCALL/REG_RETVAL notes,
3854 LCT_PURE_MAKE_BLOCK for `purep' calls which should be enclosed in
3855 REG_LIBCALL/REG_RETVAL notes with extra (use (memory (scratch)),
3856 or other LCT_ value for other types of library calls. */
3857
3858 void
3859 emit_library_call (rtx orgfun, enum libcall_type fn_type,
3860 enum machine_mode outmode, int nargs, ...)
3861 {
3862 va_list p;
3863
3864 va_start (p, nargs);
3865 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
3866 va_end (p);
3867 }
3868 \f
3869 /* Like emit_library_call except that an extra argument, VALUE,
3870 comes second and says where to store the result.
3871 (If VALUE is zero, this function chooses a convenient way
3872 to return the value.
3873
3874 This function returns an rtx for where the value is to be found.
3875 If VALUE is nonzero, VALUE is returned. */
3876
3877 rtx
3878 emit_library_call_value (rtx orgfun, rtx value,
3879 enum libcall_type fn_type,
3880 enum machine_mode outmode, int nargs, ...)
3881 {
3882 rtx result;
3883 va_list p;
3884
3885 va_start (p, nargs);
3886 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
3887 nargs, p);
3888 va_end (p);
3889
3890 return result;
3891 }
3892 \f
3893 /* Store a single argument for a function call
3894 into the register or memory area where it must be passed.
3895 *ARG describes the argument value and where to pass it.
3896
3897 ARGBLOCK is the address of the stack-block for all the arguments,
3898 or 0 on a machine where arguments are pushed individually.
3899
3900 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
3901 so must be careful about how the stack is used.
3902
3903 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
3904 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
3905 that we need not worry about saving and restoring the stack.
3906
3907 FNDECL is the declaration of the function we are calling.
3908
3909 Return nonzero if this arg should cause sibcall failure,
3910 zero otherwise. */
3911
3912 static int
3913 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
3914 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
3915 {
3916 tree pval = arg->tree_value;
3917 rtx reg = 0;
3918 int partial = 0;
3919 int used = 0;
3920 int i, lower_bound = 0, upper_bound = 0;
3921 int sibcall_failure = 0;
3922
3923 if (TREE_CODE (pval) == ERROR_MARK)
3924 return 1;
3925
3926 /* Push a new temporary level for any temporaries we make for
3927 this argument. */
3928 push_temp_slots ();
3929
3930 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
3931 {
3932 /* If this is being stored into a pre-allocated, fixed-size, stack area,
3933 save any previous data at that location. */
3934 if (argblock && ! variable_size && arg->stack)
3935 {
3936 #ifdef ARGS_GROW_DOWNWARD
3937 /* stack_slot is negative, but we want to index stack_usage_map
3938 with positive values. */
3939 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
3940 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
3941 else
3942 upper_bound = 0;
3943
3944 lower_bound = upper_bound - arg->locate.size.constant;
3945 #else
3946 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
3947 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
3948 else
3949 lower_bound = 0;
3950
3951 upper_bound = lower_bound + arg->locate.size.constant;
3952 #endif
3953
3954 i = lower_bound;
3955 /* Don't worry about things in the fixed argument area;
3956 it has already been saved. */
3957 if (i < reg_parm_stack_space)
3958 i = reg_parm_stack_space;
3959 while (i < upper_bound && stack_usage_map[i] == 0)
3960 i++;
3961
3962 if (i < upper_bound)
3963 {
3964 /* We need to make a save area. */
3965 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
3966 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
3967 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
3968 rtx stack_area = gen_rtx_MEM (save_mode, adr);
3969
3970 if (save_mode == BLKmode)
3971 {
3972 tree ot = TREE_TYPE (arg->tree_value);
3973 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
3974 | TYPE_QUAL_CONST));
3975
3976 arg->save_area = assign_temp (nt, 0, 1, 1);
3977 preserve_temp_slots (arg->save_area);
3978 emit_block_move (validize_mem (arg->save_area), stack_area,
3979 expr_size (arg->tree_value),
3980 BLOCK_OP_CALL_PARM);
3981 }
3982 else
3983 {
3984 arg->save_area = gen_reg_rtx (save_mode);
3985 emit_move_insn (arg->save_area, stack_area);
3986 }
3987 }
3988 }
3989 }
3990
3991 /* If this isn't going to be placed on both the stack and in registers,
3992 set up the register and number of words. */
3993 if (! arg->pass_on_stack)
3994 {
3995 if (flags & ECF_SIBCALL)
3996 reg = arg->tail_call_reg;
3997 else
3998 reg = arg->reg;
3999 partial = arg->partial;
4000 }
4001
4002 /* Being passed entirely in a register. We shouldn't be called in
4003 this case. */
4004 gcc_assert (reg == 0 || partial != 0);
4005
4006 /* If this arg needs special alignment, don't load the registers
4007 here. */
4008 if (arg->n_aligned_regs != 0)
4009 reg = 0;
4010
4011 /* If this is being passed partially in a register, we can't evaluate
4012 it directly into its stack slot. Otherwise, we can. */
4013 if (arg->value == 0)
4014 {
4015 /* stack_arg_under_construction is nonzero if a function argument is
4016 being evaluated directly into the outgoing argument list and
4017 expand_call must take special action to preserve the argument list
4018 if it is called recursively.
4019
4020 For scalar function arguments stack_usage_map is sufficient to
4021 determine which stack slots must be saved and restored. Scalar
4022 arguments in general have pass_on_stack == 0.
4023
4024 If this argument is initialized by a function which takes the
4025 address of the argument (a C++ constructor or a C function
4026 returning a BLKmode structure), then stack_usage_map is
4027 insufficient and expand_call must push the stack around the
4028 function call. Such arguments have pass_on_stack == 1.
4029
4030 Note that it is always safe to set stack_arg_under_construction,
4031 but this generates suboptimal code if set when not needed. */
4032
4033 if (arg->pass_on_stack)
4034 stack_arg_under_construction++;
4035
4036 arg->value = expand_expr (pval,
4037 (partial
4038 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4039 ? NULL_RTX : arg->stack,
4040 VOIDmode, EXPAND_STACK_PARM);
4041
4042 /* If we are promoting object (or for any other reason) the mode
4043 doesn't agree, convert the mode. */
4044
4045 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4046 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4047 arg->value, arg->unsignedp);
4048
4049 if (arg->pass_on_stack)
4050 stack_arg_under_construction--;
4051 }
4052
4053 /* Don't allow anything left on stack from computation
4054 of argument to alloca. */
4055 if (flags & ECF_MAY_BE_ALLOCA)
4056 do_pending_stack_adjust ();
4057
4058 if (arg->value == arg->stack)
4059 /* If the value is already in the stack slot, we are done. */
4060 ;
4061 else if (arg->mode != BLKmode)
4062 {
4063 int size;
4064
4065 /* Argument is a scalar, not entirely passed in registers.
4066 (If part is passed in registers, arg->partial says how much
4067 and emit_push_insn will take care of putting it there.)
4068
4069 Push it, and if its size is less than the
4070 amount of space allocated to it,
4071 also bump stack pointer by the additional space.
4072 Note that in C the default argument promotions
4073 will prevent such mismatches. */
4074
4075 size = GET_MODE_SIZE (arg->mode);
4076 /* Compute how much space the push instruction will push.
4077 On many machines, pushing a byte will advance the stack
4078 pointer by a halfword. */
4079 #ifdef PUSH_ROUNDING
4080 size = PUSH_ROUNDING (size);
4081 #endif
4082 used = size;
4083
4084 /* Compute how much space the argument should get:
4085 round up to a multiple of the alignment for arguments. */
4086 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4087 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4088 / (PARM_BOUNDARY / BITS_PER_UNIT))
4089 * (PARM_BOUNDARY / BITS_PER_UNIT));
4090
4091 /* This isn't already where we want it on the stack, so put it there.
4092 This can either be done with push or copy insns. */
4093 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4094 PARM_BOUNDARY, partial, reg, used - size, argblock,
4095 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4096 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4097
4098 /* Unless this is a partially-in-register argument, the argument is now
4099 in the stack. */
4100 if (partial == 0)
4101 arg->value = arg->stack;
4102 }
4103 else
4104 {
4105 /* BLKmode, at least partly to be pushed. */
4106
4107 unsigned int parm_align;
4108 int excess;
4109 rtx size_rtx;
4110
4111 /* Pushing a nonscalar.
4112 If part is passed in registers, PARTIAL says how much
4113 and emit_push_insn will take care of putting it there. */
4114
4115 /* Round its size up to a multiple
4116 of the allocation unit for arguments. */
4117
4118 if (arg->locate.size.var != 0)
4119 {
4120 excess = 0;
4121 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4122 }
4123 else
4124 {
4125 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4126 for BLKmode is careful to avoid it. */
4127 excess = (arg->locate.size.constant
4128 - int_size_in_bytes (TREE_TYPE (pval))
4129 + partial);
4130 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4131 NULL_RTX, TYPE_MODE (sizetype), 0);
4132 }
4133
4134 parm_align = arg->locate.boundary;
4135
4136 /* When an argument is padded down, the block is aligned to
4137 PARM_BOUNDARY, but the actual argument isn't. */
4138 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4139 {
4140 if (arg->locate.size.var)
4141 parm_align = BITS_PER_UNIT;
4142 else if (excess)
4143 {
4144 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4145 parm_align = MIN (parm_align, excess_align);
4146 }
4147 }
4148
4149 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4150 {
4151 /* emit_push_insn might not work properly if arg->value and
4152 argblock + arg->locate.offset areas overlap. */
4153 rtx x = arg->value;
4154 int i = 0;
4155
4156 if (XEXP (x, 0) == current_function_internal_arg_pointer
4157 || (GET_CODE (XEXP (x, 0)) == PLUS
4158 && XEXP (XEXP (x, 0), 0) ==
4159 current_function_internal_arg_pointer
4160 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
4161 {
4162 if (XEXP (x, 0) != current_function_internal_arg_pointer)
4163 i = INTVAL (XEXP (XEXP (x, 0), 1));
4164
4165 /* expand_call should ensure this. */
4166 gcc_assert (!arg->locate.offset.var
4167 && GET_CODE (size_rtx) == CONST_INT);
4168
4169 if (arg->locate.offset.constant > i)
4170 {
4171 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4172 sibcall_failure = 1;
4173 }
4174 else if (arg->locate.offset.constant < i)
4175 {
4176 if (i < arg->locate.offset.constant + INTVAL (size_rtx))
4177 sibcall_failure = 1;
4178 }
4179 }
4180 }
4181
4182 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4183 parm_align, partial, reg, excess, argblock,
4184 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4185 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4186
4187 /* Unless this is a partially-in-register argument, the argument is now
4188 in the stack.
4189
4190 ??? Unlike the case above, in which we want the actual
4191 address of the data, so that we can load it directly into a
4192 register, here we want the address of the stack slot, so that
4193 it's properly aligned for word-by-word copying or something
4194 like that. It's not clear that this is always correct. */
4195 if (partial == 0)
4196 arg->value = arg->stack_slot;
4197 }
4198
4199 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
4200 {
4201 tree type = TREE_TYPE (arg->tree_value);
4202 arg->parallel_value
4203 = emit_group_load_into_temps (arg->reg, arg->value, type,
4204 int_size_in_bytes (type));
4205 }
4206
4207 /* Mark all slots this store used. */
4208 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4209 && argblock && ! variable_size && arg->stack)
4210 for (i = lower_bound; i < upper_bound; i++)
4211 stack_usage_map[i] = 1;
4212
4213 /* Once we have pushed something, pops can't safely
4214 be deferred during the rest of the arguments. */
4215 NO_DEFER_POP;
4216
4217 /* Free any temporary slots made in processing this argument. Show
4218 that we might have taken the address of something and pushed that
4219 as an operand. */
4220 preserve_temp_slots (NULL_RTX);
4221 free_temp_slots ();
4222 pop_temp_slots ();
4223
4224 return sibcall_failure;
4225 }
4226
4227 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4228
4229 bool
4230 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4231 tree type)
4232 {
4233 if (!type)
4234 return false;
4235
4236 /* If the type has variable size... */
4237 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4238 return true;
4239
4240 /* If the type is marked as addressable (it is required
4241 to be constructed into the stack)... */
4242 if (TREE_ADDRESSABLE (type))
4243 return true;
4244
4245 return false;
4246 }
4247
4248 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4249 takes trailing padding of a structure into account. */
4250 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4251
4252 bool
4253 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, tree type)
4254 {
4255 if (!type)
4256 return false;
4257
4258 /* If the type has variable size... */
4259 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4260 return true;
4261
4262 /* If the type is marked as addressable (it is required
4263 to be constructed into the stack)... */
4264 if (TREE_ADDRESSABLE (type))
4265 return true;
4266
4267 /* If the padding and mode of the type is such that a copy into
4268 a register would put it into the wrong part of the register. */
4269 if (mode == BLKmode
4270 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4271 && (FUNCTION_ARG_PADDING (mode, type)
4272 == (BYTES_BIG_ENDIAN ? upward : downward)))
4273 return true;
4274
4275 return false;
4276 }