Update FSF address.
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "expr.h"
31 #include "optabs.h"
32 #include "libfuncs.h"
33 #include "function.h"
34 #include "regs.h"
35 #include "toplev.h"
36 #include "output.h"
37 #include "tm_p.h"
38 #include "timevar.h"
39 #include "sbitmap.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "cgraph.h"
43 #include "except.h"
44
45 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
46 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
47
48 /* Data structure and subroutines used within expand_call. */
49
50 struct arg_data
51 {
52 /* Tree node for this argument. */
53 tree tree_value;
54 /* Mode for value; TYPE_MODE unless promoted. */
55 enum machine_mode mode;
56 /* Current RTL value for argument, or 0 if it isn't precomputed. */
57 rtx value;
58 /* Initially-compute RTL value for argument; only for const functions. */
59 rtx initial_value;
60 /* Register to pass this argument in, 0 if passed on stack, or an
61 PARALLEL if the arg is to be copied into multiple non-contiguous
62 registers. */
63 rtx reg;
64 /* Register to pass this argument in when generating tail call sequence.
65 This is not the same register as for normal calls on machines with
66 register windows. */
67 rtx tail_call_reg;
68 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
69 form for emit_group_move. */
70 rtx parallel_value;
71 /* If REG was promoted from the actual mode of the argument expression,
72 indicates whether the promotion is sign- or zero-extended. */
73 int unsignedp;
74 /* Number of bytes to put in registers. 0 means put the whole arg
75 in registers. Also 0 if not passed in registers. */
76 int partial;
77 /* Nonzero if argument must be passed on stack.
78 Note that some arguments may be passed on the stack
79 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
80 pass_on_stack identifies arguments that *cannot* go in registers. */
81 int pass_on_stack;
82 /* Some fields packaged up for locate_and_pad_parm. */
83 struct locate_and_pad_arg_data locate;
84 /* Location on the stack at which parameter should be stored. The store
85 has already been done if STACK == VALUE. */
86 rtx stack;
87 /* Location on the stack of the start of this argument slot. This can
88 differ from STACK if this arg pads downward. This location is known
89 to be aligned to FUNCTION_ARG_BOUNDARY. */
90 rtx stack_slot;
91 /* Place that this stack area has been saved, if needed. */
92 rtx save_area;
93 /* If an argument's alignment does not permit direct copying into registers,
94 copy in smaller-sized pieces into pseudos. These are stored in a
95 block pointed to by this field. The next field says how many
96 word-sized pseudos we made. */
97 rtx *aligned_regs;
98 int n_aligned_regs;
99 };
100
101 /* A vector of one char per byte of stack space. A byte if nonzero if
102 the corresponding stack location has been used.
103 This vector is used to prevent a function call within an argument from
104 clobbering any stack already set up. */
105 static char *stack_usage_map;
106
107 /* Size of STACK_USAGE_MAP. */
108 static int highest_outgoing_arg_in_use;
109
110 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
111 stack location's tail call argument has been already stored into the stack.
112 This bitmap is used to prevent sibling call optimization if function tries
113 to use parent's incoming argument slots when they have been already
114 overwritten with tail call arguments. */
115 static sbitmap stored_args_map;
116
117 /* stack_arg_under_construction is nonzero when an argument may be
118 initialized with a constructor call (including a C function that
119 returns a BLKmode struct) and expand_call must take special action
120 to make sure the object being constructed does not overlap the
121 argument list for the constructor call. */
122 static int stack_arg_under_construction;
123
124 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
125 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
126 CUMULATIVE_ARGS *);
127 static void precompute_register_parameters (int, struct arg_data *, int *);
128 static int store_one_arg (struct arg_data *, rtx, int, int, int);
129 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
130 static int finalize_must_preallocate (int, int, struct arg_data *,
131 struct args_size *);
132 static void precompute_arguments (int, int, struct arg_data *);
133 static int compute_argument_block_size (int, struct args_size *, int);
134 static void initialize_argument_information (int, struct arg_data *,
135 struct args_size *, int, tree,
136 tree, CUMULATIVE_ARGS *, int,
137 rtx *, int *, int *, int *,
138 bool *, bool);
139 static void compute_argument_addresses (struct arg_data *, rtx, int);
140 static rtx rtx_for_function_call (tree, tree);
141 static void load_register_parameters (struct arg_data *, int, rtx *, int,
142 int, int *);
143 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
144 enum machine_mode, int, va_list);
145 static int special_function_p (tree, int);
146 static int check_sibcall_argument_overlap_1 (rtx);
147 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
148
149 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
150 unsigned int);
151 static tree split_complex_values (tree);
152 static tree split_complex_types (tree);
153
154 #ifdef REG_PARM_STACK_SPACE
155 static rtx save_fixed_argument_area (int, rtx, int *, int *);
156 static void restore_fixed_argument_area (rtx, rtx, int, int);
157 #endif
158 \f
159 /* Force FUNEXP into a form suitable for the address of a CALL,
160 and return that as an rtx. Also load the static chain register
161 if FNDECL is a nested function.
162
163 CALL_FUSAGE points to a variable holding the prospective
164 CALL_INSN_FUNCTION_USAGE information. */
165
166 rtx
167 prepare_call_address (rtx funexp, rtx static_chain_value,
168 rtx *call_fusage, int reg_parm_seen, int sibcallp)
169 {
170 /* Make a valid memory address and copy constants through pseudo-regs,
171 but not for a constant address if -fno-function-cse. */
172 if (GET_CODE (funexp) != SYMBOL_REF)
173 /* If we are using registers for parameters, force the
174 function address into a register now. */
175 funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
176 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
177 : memory_address (FUNCTION_MODE, funexp));
178 else if (! sibcallp)
179 {
180 #ifndef NO_FUNCTION_CSE
181 if (optimize && ! flag_no_function_cse)
182 funexp = force_reg (Pmode, funexp);
183 #endif
184 }
185
186 if (static_chain_value != 0)
187 {
188 static_chain_value = convert_memory_address (Pmode, static_chain_value);
189 emit_move_insn (static_chain_rtx, static_chain_value);
190
191 if (REG_P (static_chain_rtx))
192 use_reg (call_fusage, static_chain_rtx);
193 }
194
195 return funexp;
196 }
197
198 /* Generate instructions to call function FUNEXP,
199 and optionally pop the results.
200 The CALL_INSN is the first insn generated.
201
202 FNDECL is the declaration node of the function. This is given to the
203 macro RETURN_POPS_ARGS to determine whether this function pops its own args.
204
205 FUNTYPE is the data type of the function. This is given to the macro
206 RETURN_POPS_ARGS to determine whether this function pops its own args.
207 We used to allow an identifier for library functions, but that doesn't
208 work when the return type is an aggregate type and the calling convention
209 says that the pointer to this aggregate is to be popped by the callee.
210
211 STACK_SIZE is the number of bytes of arguments on the stack,
212 ROUNDED_STACK_SIZE is that number rounded up to
213 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
214 both to put into the call insn and to generate explicit popping
215 code if necessary.
216
217 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
218 It is zero if this call doesn't want a structure value.
219
220 NEXT_ARG_REG is the rtx that results from executing
221 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
222 just after all the args have had their registers assigned.
223 This could be whatever you like, but normally it is the first
224 arg-register beyond those used for args in this call,
225 or 0 if all the arg-registers are used in this call.
226 It is passed on to `gen_call' so you can put this info in the call insn.
227
228 VALREG is a hard register in which a value is returned,
229 or 0 if the call does not return a value.
230
231 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
232 the args to this call were processed.
233 We restore `inhibit_defer_pop' to that value.
234
235 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
236 denote registers used by the called function. */
237
238 static void
239 emit_call_1 (rtx funexp, tree fntree, tree fndecl ATTRIBUTE_UNUSED,
240 tree funtype ATTRIBUTE_UNUSED,
241 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
242 HOST_WIDE_INT rounded_stack_size,
243 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
244 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
245 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
246 CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
247 {
248 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
249 rtx call_insn;
250 int already_popped = 0;
251 HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
252 #if defined (HAVE_call) && defined (HAVE_call_value)
253 rtx struct_value_size_rtx;
254 struct_value_size_rtx = GEN_INT (struct_value_size);
255 #endif
256
257 #ifdef CALL_POPS_ARGS
258 n_popped += CALL_POPS_ARGS (* args_so_far);
259 #endif
260
261 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
262 and we don't want to load it into a register as an optimization,
263 because prepare_call_address already did it if it should be done. */
264 if (GET_CODE (funexp) != SYMBOL_REF)
265 funexp = memory_address (FUNCTION_MODE, funexp);
266
267 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
268 if ((ecf_flags & ECF_SIBCALL)
269 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
270 && (n_popped > 0 || stack_size == 0))
271 {
272 rtx n_pop = GEN_INT (n_popped);
273 rtx pat;
274
275 /* If this subroutine pops its own args, record that in the call insn
276 if possible, for the sake of frame pointer elimination. */
277
278 if (valreg)
279 pat = GEN_SIBCALL_VALUE_POP (valreg,
280 gen_rtx_MEM (FUNCTION_MODE, funexp),
281 rounded_stack_size_rtx, next_arg_reg,
282 n_pop);
283 else
284 pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
285 rounded_stack_size_rtx, next_arg_reg, n_pop);
286
287 emit_call_insn (pat);
288 already_popped = 1;
289 }
290 else
291 #endif
292
293 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
294 /* If the target has "call" or "call_value" insns, then prefer them
295 if no arguments are actually popped. If the target does not have
296 "call" or "call_value" insns, then we must use the popping versions
297 even if the call has no arguments to pop. */
298 #if defined (HAVE_call) && defined (HAVE_call_value)
299 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
300 && n_popped > 0 && ! (ecf_flags & ECF_SP_DEPRESSED))
301 #else
302 if (HAVE_call_pop && HAVE_call_value_pop)
303 #endif
304 {
305 rtx n_pop = GEN_INT (n_popped);
306 rtx pat;
307
308 /* If this subroutine pops its own args, record that in the call insn
309 if possible, for the sake of frame pointer elimination. */
310
311 if (valreg)
312 pat = GEN_CALL_VALUE_POP (valreg,
313 gen_rtx_MEM (FUNCTION_MODE, funexp),
314 rounded_stack_size_rtx, next_arg_reg, n_pop);
315 else
316 pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
317 rounded_stack_size_rtx, next_arg_reg, n_pop);
318
319 emit_call_insn (pat);
320 already_popped = 1;
321 }
322 else
323 #endif
324
325 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
326 if ((ecf_flags & ECF_SIBCALL)
327 && HAVE_sibcall && HAVE_sibcall_value)
328 {
329 if (valreg)
330 emit_call_insn (GEN_SIBCALL_VALUE (valreg,
331 gen_rtx_MEM (FUNCTION_MODE, funexp),
332 rounded_stack_size_rtx,
333 next_arg_reg, NULL_RTX));
334 else
335 emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
336 rounded_stack_size_rtx, next_arg_reg,
337 struct_value_size_rtx));
338 }
339 else
340 #endif
341
342 #if defined (HAVE_call) && defined (HAVE_call_value)
343 if (HAVE_call && HAVE_call_value)
344 {
345 if (valreg)
346 emit_call_insn (GEN_CALL_VALUE (valreg,
347 gen_rtx_MEM (FUNCTION_MODE, funexp),
348 rounded_stack_size_rtx, next_arg_reg,
349 NULL_RTX));
350 else
351 emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
352 rounded_stack_size_rtx, next_arg_reg,
353 struct_value_size_rtx));
354 }
355 else
356 #endif
357 gcc_unreachable ();
358
359 /* Find the call we just emitted. */
360 call_insn = last_call_insn ();
361
362 /* Mark memory as used for "pure" function call. */
363 if (ecf_flags & ECF_PURE)
364 call_fusage
365 = gen_rtx_EXPR_LIST
366 (VOIDmode,
367 gen_rtx_USE (VOIDmode,
368 gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))),
369 call_fusage);
370
371 /* Put the register usage information there. */
372 add_function_usage_to (call_insn, call_fusage);
373
374 /* If this is a const call, then set the insn's unchanging bit. */
375 if (ecf_flags & (ECF_CONST | ECF_PURE))
376 CONST_OR_PURE_CALL_P (call_insn) = 1;
377
378 /* If this call can't throw, attach a REG_EH_REGION reg note to that
379 effect. */
380 if (ecf_flags & ECF_NOTHROW)
381 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, const0_rtx,
382 REG_NOTES (call_insn));
383 else
384 {
385 int rn = lookup_stmt_eh_region (fntree);
386
387 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't
388 throw, which we already took care of. */
389 if (rn > 0)
390 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
391 REG_NOTES (call_insn));
392 note_current_region_may_contain_throw ();
393 }
394
395 if (ecf_flags & ECF_NORETURN)
396 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_NORETURN, const0_rtx,
397 REG_NOTES (call_insn));
398
399 if (ecf_flags & ECF_RETURNS_TWICE)
400 {
401 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_SETJMP, const0_rtx,
402 REG_NOTES (call_insn));
403 current_function_calls_setjmp = 1;
404 }
405
406 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
407
408 /* Restore this now, so that we do defer pops for this call's args
409 if the context of the call as a whole permits. */
410 inhibit_defer_pop = old_inhibit_defer_pop;
411
412 if (n_popped > 0)
413 {
414 if (!already_popped)
415 CALL_INSN_FUNCTION_USAGE (call_insn)
416 = gen_rtx_EXPR_LIST (VOIDmode,
417 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
418 CALL_INSN_FUNCTION_USAGE (call_insn));
419 rounded_stack_size -= n_popped;
420 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
421 stack_pointer_delta -= n_popped;
422 }
423
424 if (!ACCUMULATE_OUTGOING_ARGS)
425 {
426 /* If returning from the subroutine does not automatically pop the args,
427 we need an instruction to pop them sooner or later.
428 Perhaps do it now; perhaps just record how much space to pop later.
429
430 If returning from the subroutine does pop the args, indicate that the
431 stack pointer will be changed. */
432
433 if (rounded_stack_size != 0)
434 {
435 if (ecf_flags & (ECF_SP_DEPRESSED | ECF_NORETURN))
436 /* Just pretend we did the pop. */
437 stack_pointer_delta -= rounded_stack_size;
438 else if (flag_defer_pop && inhibit_defer_pop == 0
439 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
440 pending_stack_adjust += rounded_stack_size;
441 else
442 adjust_stack (rounded_stack_size_rtx);
443 }
444 }
445 /* When we accumulate outgoing args, we must avoid any stack manipulations.
446 Restore the stack pointer to its original value now. Usually
447 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
448 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
449 popping variants of functions exist as well.
450
451 ??? We may optimize similar to defer_pop above, but it is
452 probably not worthwhile.
453
454 ??? It will be worthwhile to enable combine_stack_adjustments even for
455 such machines. */
456 else if (n_popped)
457 anti_adjust_stack (GEN_INT (n_popped));
458 }
459
460 /* Determine if the function identified by NAME and FNDECL is one with
461 special properties we wish to know about.
462
463 For example, if the function might return more than one time (setjmp), then
464 set RETURNS_TWICE to a nonzero value.
465
466 Similarly set NORETURN if the function is in the longjmp family.
467
468 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
469 space from the stack such as alloca. */
470
471 static int
472 special_function_p (tree fndecl, int flags)
473 {
474 if (fndecl && DECL_NAME (fndecl)
475 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
476 /* Exclude functions not at the file scope, or not `extern',
477 since they are not the magic functions we would otherwise
478 think they are.
479 FIXME: this should be handled with attributes, not with this
480 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
481 because you can declare fork() inside a function if you
482 wish. */
483 && (DECL_CONTEXT (fndecl) == NULL_TREE
484 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
485 && TREE_PUBLIC (fndecl))
486 {
487 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
488 const char *tname = name;
489
490 /* We assume that alloca will always be called by name. It
491 makes no sense to pass it as a pointer-to-function to
492 anything that does not understand its behavior. */
493 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
494 && name[0] == 'a'
495 && ! strcmp (name, "alloca"))
496 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
497 && name[0] == '_'
498 && ! strcmp (name, "__builtin_alloca"))))
499 flags |= ECF_MAY_BE_ALLOCA;
500
501 /* Disregard prefix _, __ or __x. */
502 if (name[0] == '_')
503 {
504 if (name[1] == '_' && name[2] == 'x')
505 tname += 3;
506 else if (name[1] == '_')
507 tname += 2;
508 else
509 tname += 1;
510 }
511
512 if (tname[0] == 's')
513 {
514 if ((tname[1] == 'e'
515 && (! strcmp (tname, "setjmp")
516 || ! strcmp (tname, "setjmp_syscall")))
517 || (tname[1] == 'i'
518 && ! strcmp (tname, "sigsetjmp"))
519 || (tname[1] == 'a'
520 && ! strcmp (tname, "savectx")))
521 flags |= ECF_RETURNS_TWICE;
522
523 if (tname[1] == 'i'
524 && ! strcmp (tname, "siglongjmp"))
525 flags |= ECF_NORETURN;
526 }
527 else if ((tname[0] == 'q' && tname[1] == 's'
528 && ! strcmp (tname, "qsetjmp"))
529 || (tname[0] == 'v' && tname[1] == 'f'
530 && ! strcmp (tname, "vfork")))
531 flags |= ECF_RETURNS_TWICE;
532
533 else if (tname[0] == 'l' && tname[1] == 'o'
534 && ! strcmp (tname, "longjmp"))
535 flags |= ECF_NORETURN;
536 }
537
538 return flags;
539 }
540
541 /* Return nonzero when FNDECL represents a call to setjmp. */
542
543 int
544 setjmp_call_p (tree fndecl)
545 {
546 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
547 }
548
549 /* Return true when exp contains alloca call. */
550 bool
551 alloca_call_p (tree exp)
552 {
553 if (TREE_CODE (exp) == CALL_EXPR
554 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
555 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
556 == FUNCTION_DECL)
557 && (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
558 0) & ECF_MAY_BE_ALLOCA))
559 return true;
560 return false;
561 }
562
563 /* Detect flags (function attributes) from the function decl or type node. */
564
565 int
566 flags_from_decl_or_type (tree exp)
567 {
568 int flags = 0;
569 tree type = exp;
570
571 if (DECL_P (exp))
572 {
573 struct cgraph_rtl_info *i = cgraph_rtl_info (exp);
574 type = TREE_TYPE (exp);
575
576 if (i)
577 {
578 if (i->pure_function)
579 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
580 if (i->const_function)
581 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
582 }
583
584 /* The function exp may have the `malloc' attribute. */
585 if (DECL_IS_MALLOC (exp))
586 flags |= ECF_MALLOC;
587
588 /* The function exp may have the `returns_twice' attribute. */
589 if (DECL_IS_RETURNS_TWICE (exp))
590 flags |= ECF_RETURNS_TWICE;
591
592 /* The function exp may have the `pure' attribute. */
593 if (DECL_IS_PURE (exp))
594 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
595
596 if (DECL_IS_NOVOPS (exp))
597 flags |= ECF_NOVOPS;
598
599 if (TREE_NOTHROW (exp))
600 flags |= ECF_NOTHROW;
601
602 if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
603 flags |= ECF_LIBCALL_BLOCK | ECF_CONST;
604
605 flags = special_function_p (exp, flags);
606 }
607 else if (TYPE_P (exp) && TYPE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
608 flags |= ECF_CONST;
609
610 if (TREE_THIS_VOLATILE (exp))
611 flags |= ECF_NORETURN;
612
613 /* Mark if the function returns with the stack pointer depressed. We
614 cannot consider it pure or constant in that case. */
615 if (TREE_CODE (type) == FUNCTION_TYPE && TYPE_RETURNS_STACK_DEPRESSED (type))
616 {
617 flags |= ECF_SP_DEPRESSED;
618 flags &= ~(ECF_PURE | ECF_CONST | ECF_LIBCALL_BLOCK);
619 }
620
621 return flags;
622 }
623
624 /* Detect flags from a CALL_EXPR. */
625
626 int
627 call_expr_flags (tree t)
628 {
629 int flags;
630 tree decl = get_callee_fndecl (t);
631
632 if (decl)
633 flags = flags_from_decl_or_type (decl);
634 else
635 {
636 t = TREE_TYPE (TREE_OPERAND (t, 0));
637 if (t && TREE_CODE (t) == POINTER_TYPE)
638 flags = flags_from_decl_or_type (TREE_TYPE (t));
639 else
640 flags = 0;
641 }
642
643 return flags;
644 }
645
646 /* Precompute all register parameters as described by ARGS, storing values
647 into fields within the ARGS array.
648
649 NUM_ACTUALS indicates the total number elements in the ARGS array.
650
651 Set REG_PARM_SEEN if we encounter a register parameter. */
652
653 static void
654 precompute_register_parameters (int num_actuals, struct arg_data *args,
655 int *reg_parm_seen)
656 {
657 int i;
658
659 *reg_parm_seen = 0;
660
661 for (i = 0; i < num_actuals; i++)
662 if (args[i].reg != 0 && ! args[i].pass_on_stack)
663 {
664 *reg_parm_seen = 1;
665
666 if (args[i].value == 0)
667 {
668 push_temp_slots ();
669 args[i].value = expand_expr (args[i].tree_value, NULL_RTX,
670 VOIDmode, 0);
671 preserve_temp_slots (args[i].value);
672 pop_temp_slots ();
673 }
674
675 /* If the value is a non-legitimate constant, force it into a
676 pseudo now. TLS symbols sometimes need a call to resolve. */
677 if (CONSTANT_P (args[i].value)
678 && !LEGITIMATE_CONSTANT_P (args[i].value))
679 args[i].value = force_reg (args[i].mode, args[i].value);
680
681 /* If we are to promote the function arg to a wider mode,
682 do it now. */
683
684 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
685 args[i].value
686 = convert_modes (args[i].mode,
687 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
688 args[i].value, args[i].unsignedp);
689
690 /* If we're going to have to load the value by parts, pull the
691 parts into pseudos. The part extraction process can involve
692 non-trivial computation. */
693 if (GET_CODE (args[i].reg) == PARALLEL)
694 {
695 tree type = TREE_TYPE (args[i].tree_value);
696 args[i].parallel_value
697 = emit_group_load_into_temps (args[i].reg, args[i].value,
698 type, int_size_in_bytes (type));
699 }
700
701 /* If the value is expensive, and we are inside an appropriately
702 short loop, put the value into a pseudo and then put the pseudo
703 into the hard reg.
704
705 For small register classes, also do this if this call uses
706 register parameters. This is to avoid reload conflicts while
707 loading the parameters registers. */
708
709 else if ((! (REG_P (args[i].value)
710 || (GET_CODE (args[i].value) == SUBREG
711 && REG_P (SUBREG_REG (args[i].value)))))
712 && args[i].mode != BLKmode
713 && rtx_cost (args[i].value, SET) > COSTS_N_INSNS (1)
714 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
715 || optimize))
716 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
717 }
718 }
719
720 #ifdef REG_PARM_STACK_SPACE
721
722 /* The argument list is the property of the called routine and it
723 may clobber it. If the fixed area has been used for previous
724 parameters, we must save and restore it. */
725
726 static rtx
727 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
728 {
729 int low;
730 int high;
731
732 /* Compute the boundary of the area that needs to be saved, if any. */
733 high = reg_parm_stack_space;
734 #ifdef ARGS_GROW_DOWNWARD
735 high += 1;
736 #endif
737 if (high > highest_outgoing_arg_in_use)
738 high = highest_outgoing_arg_in_use;
739
740 for (low = 0; low < high; low++)
741 if (stack_usage_map[low] != 0)
742 {
743 int num_to_save;
744 enum machine_mode save_mode;
745 int delta;
746 rtx stack_area;
747 rtx save_area;
748
749 while (stack_usage_map[--high] == 0)
750 ;
751
752 *low_to_save = low;
753 *high_to_save = high;
754
755 num_to_save = high - low + 1;
756 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
757
758 /* If we don't have the required alignment, must do this
759 in BLKmode. */
760 if ((low & (MIN (GET_MODE_SIZE (save_mode),
761 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
762 save_mode = BLKmode;
763
764 #ifdef ARGS_GROW_DOWNWARD
765 delta = -high;
766 #else
767 delta = low;
768 #endif
769 stack_area = gen_rtx_MEM (save_mode,
770 memory_address (save_mode,
771 plus_constant (argblock,
772 delta)));
773
774 set_mem_align (stack_area, PARM_BOUNDARY);
775 if (save_mode == BLKmode)
776 {
777 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
778 emit_block_move (validize_mem (save_area), stack_area,
779 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
780 }
781 else
782 {
783 save_area = gen_reg_rtx (save_mode);
784 emit_move_insn (save_area, stack_area);
785 }
786
787 return save_area;
788 }
789
790 return NULL_RTX;
791 }
792
793 static void
794 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
795 {
796 enum machine_mode save_mode = GET_MODE (save_area);
797 int delta;
798 rtx stack_area;
799
800 #ifdef ARGS_GROW_DOWNWARD
801 delta = -high_to_save;
802 #else
803 delta = low_to_save;
804 #endif
805 stack_area = gen_rtx_MEM (save_mode,
806 memory_address (save_mode,
807 plus_constant (argblock, delta)));
808 set_mem_align (stack_area, PARM_BOUNDARY);
809
810 if (save_mode != BLKmode)
811 emit_move_insn (stack_area, save_area);
812 else
813 emit_block_move (stack_area, validize_mem (save_area),
814 GEN_INT (high_to_save - low_to_save + 1),
815 BLOCK_OP_CALL_PARM);
816 }
817 #endif /* REG_PARM_STACK_SPACE */
818
819 /* If any elements in ARGS refer to parameters that are to be passed in
820 registers, but not in memory, and whose alignment does not permit a
821 direct copy into registers. Copy the values into a group of pseudos
822 which we will later copy into the appropriate hard registers.
823
824 Pseudos for each unaligned argument will be stored into the array
825 args[argnum].aligned_regs. The caller is responsible for deallocating
826 the aligned_regs array if it is nonzero. */
827
828 static void
829 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
830 {
831 int i, j;
832
833 for (i = 0; i < num_actuals; i++)
834 if (args[i].reg != 0 && ! args[i].pass_on_stack
835 && args[i].mode == BLKmode
836 && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
837 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
838 {
839 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
840 int endian_correction = 0;
841
842 if (args[i].partial)
843 {
844 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
845 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
846 }
847 else
848 {
849 args[i].n_aligned_regs
850 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
851 }
852
853 args[i].aligned_regs = xmalloc (sizeof (rtx) * args[i].n_aligned_regs);
854
855 /* Structures smaller than a word are normally aligned to the
856 least significant byte. On a BYTES_BIG_ENDIAN machine,
857 this means we must skip the empty high order bytes when
858 calculating the bit offset. */
859 if (bytes < UNITS_PER_WORD
860 #ifdef BLOCK_REG_PADDING
861 && (BLOCK_REG_PADDING (args[i].mode,
862 TREE_TYPE (args[i].tree_value), 1)
863 == downward)
864 #else
865 && BYTES_BIG_ENDIAN
866 #endif
867 )
868 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
869
870 for (j = 0; j < args[i].n_aligned_regs; j++)
871 {
872 rtx reg = gen_reg_rtx (word_mode);
873 rtx word = operand_subword_force (args[i].value, j, BLKmode);
874 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
875
876 args[i].aligned_regs[j] = reg;
877 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
878 word_mode, word_mode);
879
880 /* There is no need to restrict this code to loading items
881 in TYPE_ALIGN sized hunks. The bitfield instructions can
882 load up entire word sized registers efficiently.
883
884 ??? This may not be needed anymore.
885 We use to emit a clobber here but that doesn't let later
886 passes optimize the instructions we emit. By storing 0 into
887 the register later passes know the first AND to zero out the
888 bitfield being set in the register is unnecessary. The store
889 of 0 will be deleted as will at least the first AND. */
890
891 emit_move_insn (reg, const0_rtx);
892
893 bytes -= bitsize / BITS_PER_UNIT;
894 store_bit_field (reg, bitsize, endian_correction, word_mode,
895 word);
896 }
897 }
898 }
899
900 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
901 ACTPARMS.
902
903 NUM_ACTUALS is the total number of parameters.
904
905 N_NAMED_ARGS is the total number of named arguments.
906
907 FNDECL is the tree code for the target of this call (if known)
908
909 ARGS_SO_FAR holds state needed by the target to know where to place
910 the next argument.
911
912 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
913 for arguments which are passed in registers.
914
915 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
916 and may be modified by this routine.
917
918 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
919 flags which may may be modified by this routine.
920
921 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
922 that requires allocation of stack space.
923
924 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
925 the thunked-to function. */
926
927 static void
928 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
929 struct arg_data *args,
930 struct args_size *args_size,
931 int n_named_args ATTRIBUTE_UNUSED,
932 tree actparms, tree fndecl,
933 CUMULATIVE_ARGS *args_so_far,
934 int reg_parm_stack_space,
935 rtx *old_stack_level, int *old_pending_adj,
936 int *must_preallocate, int *ecf_flags,
937 bool *may_tailcall, bool call_from_thunk_p)
938 {
939 /* 1 if scanning parms front to back, -1 if scanning back to front. */
940 int inc;
941
942 /* Count arg position in order args appear. */
943 int argpos;
944
945 int i;
946 tree p;
947
948 args_size->constant = 0;
949 args_size->var = 0;
950
951 /* In this loop, we consider args in the order they are written.
952 We fill up ARGS from the front or from the back if necessary
953 so that in any case the first arg to be pushed ends up at the front. */
954
955 if (PUSH_ARGS_REVERSED)
956 {
957 i = num_actuals - 1, inc = -1;
958 /* In this case, must reverse order of args
959 so that we compute and push the last arg first. */
960 }
961 else
962 {
963 i = 0, inc = 1;
964 }
965
966 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
967 for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++)
968 {
969 tree type = TREE_TYPE (TREE_VALUE (p));
970 int unsignedp;
971 enum machine_mode mode;
972
973 args[i].tree_value = TREE_VALUE (p);
974
975 /* Replace erroneous argument with constant zero. */
976 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
977 args[i].tree_value = integer_zero_node, type = integer_type_node;
978
979 /* If TYPE is a transparent union, pass things the way we would
980 pass the first field of the union. We have already verified that
981 the modes are the same. */
982 if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
983 type = TREE_TYPE (TYPE_FIELDS (type));
984
985 /* Decide where to pass this arg.
986
987 args[i].reg is nonzero if all or part is passed in registers.
988
989 args[i].partial is nonzero if part but not all is passed in registers,
990 and the exact value says how many bytes are passed in registers.
991
992 args[i].pass_on_stack is nonzero if the argument must at least be
993 computed on the stack. It may then be loaded back into registers
994 if args[i].reg is nonzero.
995
996 These decisions are driven by the FUNCTION_... macros and must agree
997 with those made by function.c. */
998
999 /* See if this argument should be passed by invisible reference. */
1000 if (pass_by_reference (args_so_far, TYPE_MODE (type),
1001 type, argpos < n_named_args))
1002 {
1003 bool callee_copies;
1004 tree base;
1005
1006 callee_copies
1007 = reference_callee_copied (args_so_far, TYPE_MODE (type),
1008 type, argpos < n_named_args);
1009
1010 /* If we're compiling a thunk, pass through invisible references
1011 instead of making a copy. */
1012 if (call_from_thunk_p
1013 || (callee_copies
1014 && !TREE_ADDRESSABLE (type)
1015 && (base = get_base_address (args[i].tree_value))
1016 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1017 {
1018 /* We can't use sibcalls if a callee-copied argument is
1019 stored in the current function's frame. */
1020 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1021 *may_tailcall = false;
1022
1023 args[i].tree_value = build_fold_addr_expr (args[i].tree_value);
1024 type = TREE_TYPE (args[i].tree_value);
1025
1026 *ecf_flags &= ~(ECF_CONST | ECF_LIBCALL_BLOCK);
1027 }
1028 else
1029 {
1030 /* We make a copy of the object and pass the address to the
1031 function being called. */
1032 rtx copy;
1033
1034 if (!COMPLETE_TYPE_P (type)
1035 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
1036 || (flag_stack_check && ! STACK_CHECK_BUILTIN
1037 && (0 < compare_tree_int (TYPE_SIZE_UNIT (type),
1038 STACK_CHECK_MAX_VAR_SIZE))))
1039 {
1040 /* This is a variable-sized object. Make space on the stack
1041 for it. */
1042 rtx size_rtx = expr_size (TREE_VALUE (p));
1043
1044 if (*old_stack_level == 0)
1045 {
1046 emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
1047 *old_pending_adj = pending_stack_adjust;
1048 pending_stack_adjust = 0;
1049 }
1050
1051 copy = gen_rtx_MEM (BLKmode,
1052 allocate_dynamic_stack_space
1053 (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
1054 set_mem_attributes (copy, type, 1);
1055 }
1056 else
1057 copy = assign_temp (type, 0, 1, 0);
1058
1059 store_expr (args[i].tree_value, copy, 0);
1060
1061 if (callee_copies)
1062 *ecf_flags &= ~(ECF_CONST | ECF_LIBCALL_BLOCK);
1063 else
1064 *ecf_flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1065
1066 args[i].tree_value
1067 = build_fold_addr_expr (make_tree (type, copy));
1068 type = TREE_TYPE (args[i].tree_value);
1069 *may_tailcall = false;
1070 }
1071 }
1072
1073 mode = TYPE_MODE (type);
1074 unsignedp = TYPE_UNSIGNED (type);
1075
1076 if (targetm.calls.promote_function_args (fndecl ? TREE_TYPE (fndecl) : 0))
1077 mode = promote_mode (type, mode, &unsignedp, 1);
1078
1079 args[i].unsignedp = unsignedp;
1080 args[i].mode = mode;
1081
1082 args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
1083 argpos < n_named_args);
1084 #ifdef FUNCTION_INCOMING_ARG
1085 /* If this is a sibling call and the machine has register windows, the
1086 register window has to be unwinded before calling the routine, so
1087 arguments have to go into the incoming registers. */
1088 args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
1089 argpos < n_named_args);
1090 #else
1091 args[i].tail_call_reg = args[i].reg;
1092 #endif
1093
1094 if (args[i].reg)
1095 args[i].partial
1096 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1097 argpos < n_named_args);
1098
1099 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1100
1101 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1102 it means that we are to pass this arg in the register(s) designated
1103 by the PARALLEL, but also to pass it in the stack. */
1104 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1105 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1106 args[i].pass_on_stack = 1;
1107
1108 /* If this is an addressable type, we must preallocate the stack
1109 since we must evaluate the object into its final location.
1110
1111 If this is to be passed in both registers and the stack, it is simpler
1112 to preallocate. */
1113 if (TREE_ADDRESSABLE (type)
1114 || (args[i].pass_on_stack && args[i].reg != 0))
1115 *must_preallocate = 1;
1116
1117 /* If this is an addressable type, we cannot pre-evaluate it. Thus,
1118 we cannot consider this function call constant. */
1119 if (TREE_ADDRESSABLE (type))
1120 *ecf_flags &= ~ECF_LIBCALL_BLOCK;
1121
1122 /* Compute the stack-size of this argument. */
1123 if (args[i].reg == 0 || args[i].partial != 0
1124 || reg_parm_stack_space > 0
1125 || args[i].pass_on_stack)
1126 locate_and_pad_parm (mode, type,
1127 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1128 1,
1129 #else
1130 args[i].reg != 0,
1131 #endif
1132 args[i].pass_on_stack ? 0 : args[i].partial,
1133 fndecl, args_size, &args[i].locate);
1134 #ifdef BLOCK_REG_PADDING
1135 else
1136 /* The argument is passed entirely in registers. See at which
1137 end it should be padded. */
1138 args[i].locate.where_pad =
1139 BLOCK_REG_PADDING (mode, type,
1140 int_size_in_bytes (type) <= UNITS_PER_WORD);
1141 #endif
1142
1143 /* Update ARGS_SIZE, the total stack space for args so far. */
1144
1145 args_size->constant += args[i].locate.size.constant;
1146 if (args[i].locate.size.var)
1147 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1148
1149 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1150 have been used, etc. */
1151
1152 FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
1153 argpos < n_named_args);
1154 }
1155 }
1156
1157 /* Update ARGS_SIZE to contain the total size for the argument block.
1158 Return the original constant component of the argument block's size.
1159
1160 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1161 for arguments passed in registers. */
1162
1163 static int
1164 compute_argument_block_size (int reg_parm_stack_space,
1165 struct args_size *args_size,
1166 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1167 {
1168 int unadjusted_args_size = args_size->constant;
1169
1170 /* For accumulate outgoing args mode we don't need to align, since the frame
1171 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1172 backends from generating misaligned frame sizes. */
1173 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1174 preferred_stack_boundary = STACK_BOUNDARY;
1175
1176 /* Compute the actual size of the argument block required. The variable
1177 and constant sizes must be combined, the size may have to be rounded,
1178 and there may be a minimum required size. */
1179
1180 if (args_size->var)
1181 {
1182 args_size->var = ARGS_SIZE_TREE (*args_size);
1183 args_size->constant = 0;
1184
1185 preferred_stack_boundary /= BITS_PER_UNIT;
1186 if (preferred_stack_boundary > 1)
1187 {
1188 /* We don't handle this case yet. To handle it correctly we have
1189 to add the delta, round and subtract the delta.
1190 Currently no machine description requires this support. */
1191 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1192 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1193 }
1194
1195 if (reg_parm_stack_space > 0)
1196 {
1197 args_size->var
1198 = size_binop (MAX_EXPR, args_size->var,
1199 ssize_int (reg_parm_stack_space));
1200
1201 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1202 /* The area corresponding to register parameters is not to count in
1203 the size of the block we need. So make the adjustment. */
1204 args_size->var
1205 = size_binop (MINUS_EXPR, args_size->var,
1206 ssize_int (reg_parm_stack_space));
1207 #endif
1208 }
1209 }
1210 else
1211 {
1212 preferred_stack_boundary /= BITS_PER_UNIT;
1213 if (preferred_stack_boundary < 1)
1214 preferred_stack_boundary = 1;
1215 args_size->constant = (((args_size->constant
1216 + stack_pointer_delta
1217 + preferred_stack_boundary - 1)
1218 / preferred_stack_boundary
1219 * preferred_stack_boundary)
1220 - stack_pointer_delta);
1221
1222 args_size->constant = MAX (args_size->constant,
1223 reg_parm_stack_space);
1224
1225 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1226 args_size->constant -= reg_parm_stack_space;
1227 #endif
1228 }
1229 return unadjusted_args_size;
1230 }
1231
1232 /* Precompute parameters as needed for a function call.
1233
1234 FLAGS is mask of ECF_* constants.
1235
1236 NUM_ACTUALS is the number of arguments.
1237
1238 ARGS is an array containing information for each argument; this
1239 routine fills in the INITIAL_VALUE and VALUE fields for each
1240 precomputed argument. */
1241
1242 static void
1243 precompute_arguments (int flags, int num_actuals, struct arg_data *args)
1244 {
1245 int i;
1246
1247 /* If this is a libcall, then precompute all arguments so that we do not
1248 get extraneous instructions emitted as part of the libcall sequence. */
1249 if ((flags & ECF_LIBCALL_BLOCK) == 0)
1250 return;
1251
1252 for (i = 0; i < num_actuals; i++)
1253 {
1254 enum machine_mode mode;
1255
1256 /* If this is an addressable type, we cannot pre-evaluate it. */
1257 gcc_assert (!TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)));
1258
1259 args[i].initial_value = args[i].value
1260 = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0);
1261
1262 mode = TYPE_MODE (TREE_TYPE (args[i].tree_value));
1263 if (mode != args[i].mode)
1264 {
1265 args[i].value
1266 = convert_modes (args[i].mode, mode,
1267 args[i].value, args[i].unsignedp);
1268 #if defined(PROMOTE_FUNCTION_MODE) && !defined(PROMOTE_MODE)
1269 /* CSE will replace this only if it contains args[i].value
1270 pseudo, so convert it down to the declared mode using
1271 a SUBREG. */
1272 if (REG_P (args[i].value)
1273 && GET_MODE_CLASS (args[i].mode) == MODE_INT)
1274 {
1275 args[i].initial_value
1276 = gen_lowpart_SUBREG (mode, args[i].value);
1277 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1278 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1279 args[i].unsignedp);
1280 }
1281 #endif
1282 }
1283 }
1284 }
1285
1286 /* Given the current state of MUST_PREALLOCATE and information about
1287 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1288 compute and return the final value for MUST_PREALLOCATE. */
1289
1290 static int
1291 finalize_must_preallocate (int must_preallocate, int num_actuals, struct arg_data *args, struct args_size *args_size)
1292 {
1293 /* See if we have or want to preallocate stack space.
1294
1295 If we would have to push a partially-in-regs parm
1296 before other stack parms, preallocate stack space instead.
1297
1298 If the size of some parm is not a multiple of the required stack
1299 alignment, we must preallocate.
1300
1301 If the total size of arguments that would otherwise create a copy in
1302 a temporary (such as a CALL) is more than half the total argument list
1303 size, preallocation is faster.
1304
1305 Another reason to preallocate is if we have a machine (like the m88k)
1306 where stack alignment is required to be maintained between every
1307 pair of insns, not just when the call is made. However, we assume here
1308 that such machines either do not have push insns (and hence preallocation
1309 would occur anyway) or the problem is taken care of with
1310 PUSH_ROUNDING. */
1311
1312 if (! must_preallocate)
1313 {
1314 int partial_seen = 0;
1315 int copy_to_evaluate_size = 0;
1316 int i;
1317
1318 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1319 {
1320 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1321 partial_seen = 1;
1322 else if (partial_seen && args[i].reg == 0)
1323 must_preallocate = 1;
1324
1325 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1326 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1327 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1328 || TREE_CODE (args[i].tree_value) == COND_EXPR
1329 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1330 copy_to_evaluate_size
1331 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1332 }
1333
1334 if (copy_to_evaluate_size * 2 >= args_size->constant
1335 && args_size->constant > 0)
1336 must_preallocate = 1;
1337 }
1338 return must_preallocate;
1339 }
1340
1341 /* If we preallocated stack space, compute the address of each argument
1342 and store it into the ARGS array.
1343
1344 We need not ensure it is a valid memory address here; it will be
1345 validized when it is used.
1346
1347 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1348
1349 static void
1350 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1351 {
1352 if (argblock)
1353 {
1354 rtx arg_reg = argblock;
1355 int i, arg_offset = 0;
1356
1357 if (GET_CODE (argblock) == PLUS)
1358 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1359
1360 for (i = 0; i < num_actuals; i++)
1361 {
1362 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1363 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1364 rtx addr;
1365 unsigned int align, boundary;
1366
1367 /* Skip this parm if it will not be passed on the stack. */
1368 if (! args[i].pass_on_stack && args[i].reg != 0)
1369 continue;
1370
1371 if (GET_CODE (offset) == CONST_INT)
1372 addr = plus_constant (arg_reg, INTVAL (offset));
1373 else
1374 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1375
1376 addr = plus_constant (addr, arg_offset);
1377 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1378 set_mem_attributes (args[i].stack,
1379 TREE_TYPE (args[i].tree_value), 1);
1380 align = BITS_PER_UNIT;
1381 boundary = args[i].locate.boundary;
1382 if (args[i].locate.where_pad != downward)
1383 align = boundary;
1384 else if (GET_CODE (offset) == CONST_INT)
1385 {
1386 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1387 align = align & -align;
1388 }
1389 set_mem_align (args[i].stack, align);
1390
1391 if (GET_CODE (slot_offset) == CONST_INT)
1392 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1393 else
1394 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1395
1396 addr = plus_constant (addr, arg_offset);
1397 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1398 set_mem_attributes (args[i].stack_slot,
1399 TREE_TYPE (args[i].tree_value), 1);
1400 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1401
1402 /* Function incoming arguments may overlap with sibling call
1403 outgoing arguments and we cannot allow reordering of reads
1404 from function arguments with stores to outgoing arguments
1405 of sibling calls. */
1406 set_mem_alias_set (args[i].stack, 0);
1407 set_mem_alias_set (args[i].stack_slot, 0);
1408 }
1409 }
1410 }
1411
1412 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1413 in a call instruction.
1414
1415 FNDECL is the tree node for the target function. For an indirect call
1416 FNDECL will be NULL_TREE.
1417
1418 ADDR is the operand 0 of CALL_EXPR for this call. */
1419
1420 static rtx
1421 rtx_for_function_call (tree fndecl, tree addr)
1422 {
1423 rtx funexp;
1424
1425 /* Get the function to call, in the form of RTL. */
1426 if (fndecl)
1427 {
1428 /* If this is the first use of the function, see if we need to
1429 make an external definition for it. */
1430 if (! TREE_USED (fndecl))
1431 {
1432 assemble_external (fndecl);
1433 TREE_USED (fndecl) = 1;
1434 }
1435
1436 /* Get a SYMBOL_REF rtx for the function address. */
1437 funexp = XEXP (DECL_RTL (fndecl), 0);
1438 }
1439 else
1440 /* Generate an rtx (probably a pseudo-register) for the address. */
1441 {
1442 push_temp_slots ();
1443 funexp = expand_expr (addr, NULL_RTX, VOIDmode, 0);
1444 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1445 }
1446 return funexp;
1447 }
1448
1449 /* Do the register loads required for any wholly-register parms or any
1450 parms which are passed both on the stack and in a register. Their
1451 expressions were already evaluated.
1452
1453 Mark all register-parms as living through the call, putting these USE
1454 insns in the CALL_INSN_FUNCTION_USAGE field.
1455
1456 When IS_SIBCALL, perform the check_sibcall_overlap_argument_overlap
1457 checking, setting *SIBCALL_FAILURE if appropriate. */
1458
1459 static void
1460 load_register_parameters (struct arg_data *args, int num_actuals,
1461 rtx *call_fusage, int flags, int is_sibcall,
1462 int *sibcall_failure)
1463 {
1464 int i, j;
1465
1466 for (i = 0; i < num_actuals; i++)
1467 {
1468 rtx reg = ((flags & ECF_SIBCALL)
1469 ? args[i].tail_call_reg : args[i].reg);
1470 if (reg)
1471 {
1472 int partial = args[i].partial;
1473 int nregs;
1474 int size = 0;
1475 rtx before_arg = get_last_insn ();
1476 /* Set non-negative if we must move a word at a time, even if
1477 just one word (e.g, partial == 4 && mode == DFmode). Set
1478 to -1 if we just use a normal move insn. This value can be
1479 zero if the argument is a zero size structure. */
1480 nregs = -1;
1481 if (GET_CODE (reg) == PARALLEL)
1482 ;
1483 else if (partial)
1484 {
1485 gcc_assert (partial % UNITS_PER_WORD == 0);
1486 nregs = partial / UNITS_PER_WORD;
1487 }
1488 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1489 {
1490 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1491 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1492 }
1493 else
1494 size = GET_MODE_SIZE (args[i].mode);
1495
1496 /* Handle calls that pass values in multiple non-contiguous
1497 locations. The Irix 6 ABI has examples of this. */
1498
1499 if (GET_CODE (reg) == PARALLEL)
1500 emit_group_move (reg, args[i].parallel_value);
1501
1502 /* If simple case, just do move. If normal partial, store_one_arg
1503 has already loaded the register for us. In all other cases,
1504 load the register(s) from memory. */
1505
1506 else if (nregs == -1)
1507 {
1508 emit_move_insn (reg, args[i].value);
1509 #ifdef BLOCK_REG_PADDING
1510 /* Handle case where we have a value that needs shifting
1511 up to the msb. eg. a QImode value and we're padding
1512 upward on a BYTES_BIG_ENDIAN machine. */
1513 if (size < UNITS_PER_WORD
1514 && (args[i].locate.where_pad
1515 == (BYTES_BIG_ENDIAN ? upward : downward)))
1516 {
1517 rtx x;
1518 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1519
1520 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1521 report the whole reg as used. Strictly speaking, the
1522 call only uses SIZE bytes at the msb end, but it doesn't
1523 seem worth generating rtl to say that. */
1524 reg = gen_rtx_REG (word_mode, REGNO (reg));
1525 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
1526 build_int_cst (NULL_TREE, shift),
1527 reg, 1);
1528 if (x != reg)
1529 emit_move_insn (reg, x);
1530 }
1531 #endif
1532 }
1533
1534 /* If we have pre-computed the values to put in the registers in
1535 the case of non-aligned structures, copy them in now. */
1536
1537 else if (args[i].n_aligned_regs != 0)
1538 for (j = 0; j < args[i].n_aligned_regs; j++)
1539 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1540 args[i].aligned_regs[j]);
1541
1542 else if (partial == 0 || args[i].pass_on_stack)
1543 {
1544 rtx mem = validize_mem (args[i].value);
1545
1546 /* Handle a BLKmode that needs shifting. */
1547 if (nregs == 1 && size < UNITS_PER_WORD
1548 #ifdef BLOCK_REG_PADDING
1549 && args[i].locate.where_pad == downward
1550 #else
1551 && BYTES_BIG_ENDIAN
1552 #endif
1553 )
1554 {
1555 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1556 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1557 rtx x = gen_reg_rtx (word_mode);
1558 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1559 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1560 : LSHIFT_EXPR;
1561
1562 emit_move_insn (x, tem);
1563 x = expand_shift (dir, word_mode, x,
1564 build_int_cst (NULL_TREE, shift),
1565 ri, 1);
1566 if (x != ri)
1567 emit_move_insn (ri, x);
1568 }
1569 else
1570 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1571 }
1572
1573 /* When a parameter is a block, and perhaps in other cases, it is
1574 possible that it did a load from an argument slot that was
1575 already clobbered. */
1576 if (is_sibcall
1577 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1578 *sibcall_failure = 1;
1579
1580 /* Handle calls that pass values in multiple non-contiguous
1581 locations. The Irix 6 ABI has examples of this. */
1582 if (GET_CODE (reg) == PARALLEL)
1583 use_group_regs (call_fusage, reg);
1584 else if (nregs == -1)
1585 use_reg (call_fusage, reg);
1586 else if (nregs > 0)
1587 use_regs (call_fusage, REGNO (reg), nregs);
1588 }
1589 }
1590 }
1591
1592 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1593 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1594 bytes, then we would need to push some additional bytes to pad the
1595 arguments. So, we compute an adjust to the stack pointer for an
1596 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1597 bytes. Then, when the arguments are pushed the stack will be perfectly
1598 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1599 be popped after the call. Returns the adjustment. */
1600
1601 static int
1602 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1603 struct args_size *args_size,
1604 unsigned int preferred_unit_stack_boundary)
1605 {
1606 /* The number of bytes to pop so that the stack will be
1607 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1608 HOST_WIDE_INT adjustment;
1609 /* The alignment of the stack after the arguments are pushed, if we
1610 just pushed the arguments without adjust the stack here. */
1611 unsigned HOST_WIDE_INT unadjusted_alignment;
1612
1613 unadjusted_alignment
1614 = ((stack_pointer_delta + unadjusted_args_size)
1615 % preferred_unit_stack_boundary);
1616
1617 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1618 as possible -- leaving just enough left to cancel out the
1619 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1620 PENDING_STACK_ADJUST is non-negative, and congruent to
1621 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1622
1623 /* Begin by trying to pop all the bytes. */
1624 unadjusted_alignment
1625 = (unadjusted_alignment
1626 - (pending_stack_adjust % preferred_unit_stack_boundary));
1627 adjustment = pending_stack_adjust;
1628 /* Push enough additional bytes that the stack will be aligned
1629 after the arguments are pushed. */
1630 if (preferred_unit_stack_boundary > 1)
1631 {
1632 if (unadjusted_alignment > 0)
1633 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1634 else
1635 adjustment += unadjusted_alignment;
1636 }
1637
1638 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1639 bytes after the call. The right number is the entire
1640 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1641 by the arguments in the first place. */
1642 args_size->constant
1643 = pending_stack_adjust - adjustment + unadjusted_args_size;
1644
1645 return adjustment;
1646 }
1647
1648 /* Scan X expression if it does not dereference any argument slots
1649 we already clobbered by tail call arguments (as noted in stored_args_map
1650 bitmap).
1651 Return nonzero if X expression dereferences such argument slots,
1652 zero otherwise. */
1653
1654 static int
1655 check_sibcall_argument_overlap_1 (rtx x)
1656 {
1657 RTX_CODE code;
1658 int i, j;
1659 unsigned int k;
1660 const char *fmt;
1661
1662 if (x == NULL_RTX)
1663 return 0;
1664
1665 code = GET_CODE (x);
1666
1667 if (code == MEM)
1668 {
1669 if (XEXP (x, 0) == current_function_internal_arg_pointer)
1670 i = 0;
1671 else if (GET_CODE (XEXP (x, 0)) == PLUS
1672 && XEXP (XEXP (x, 0), 0) ==
1673 current_function_internal_arg_pointer
1674 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1675 i = INTVAL (XEXP (XEXP (x, 0), 1));
1676 else
1677 return 0;
1678
1679 #ifdef ARGS_GROW_DOWNWARD
1680 i = -i - GET_MODE_SIZE (GET_MODE (x));
1681 #endif
1682
1683 for (k = 0; k < GET_MODE_SIZE (GET_MODE (x)); k++)
1684 if (i + k < stored_args_map->n_bits
1685 && TEST_BIT (stored_args_map, i + k))
1686 return 1;
1687
1688 return 0;
1689 }
1690
1691 /* Scan all subexpressions. */
1692 fmt = GET_RTX_FORMAT (code);
1693 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1694 {
1695 if (*fmt == 'e')
1696 {
1697 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1698 return 1;
1699 }
1700 else if (*fmt == 'E')
1701 {
1702 for (j = 0; j < XVECLEN (x, i); j++)
1703 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1704 return 1;
1705 }
1706 }
1707 return 0;
1708 }
1709
1710 /* Scan sequence after INSN if it does not dereference any argument slots
1711 we already clobbered by tail call arguments (as noted in stored_args_map
1712 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1713 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1714 should be 0). Return nonzero if sequence after INSN dereferences such argument
1715 slots, zero otherwise. */
1716
1717 static int
1718 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1719 {
1720 int low, high;
1721
1722 if (insn == NULL_RTX)
1723 insn = get_insns ();
1724 else
1725 insn = NEXT_INSN (insn);
1726
1727 for (; insn; insn = NEXT_INSN (insn))
1728 if (INSN_P (insn)
1729 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1730 break;
1731
1732 if (mark_stored_args_map)
1733 {
1734 #ifdef ARGS_GROW_DOWNWARD
1735 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1736 #else
1737 low = arg->locate.slot_offset.constant;
1738 #endif
1739
1740 for (high = low + arg->locate.size.constant; low < high; low++)
1741 SET_BIT (stored_args_map, low);
1742 }
1743 return insn != NULL_RTX;
1744 }
1745
1746 /* Given that a function returns a value of mode MODE at the most
1747 significant end of hard register VALUE, shift VALUE left or right
1748 as specified by LEFT_P. Return true if some action was needed. */
1749
1750 bool
1751 shift_return_value (enum machine_mode mode, bool left_p, rtx value)
1752 {
1753 HOST_WIDE_INT shift;
1754
1755 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
1756 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
1757 if (shift == 0)
1758 return false;
1759
1760 /* Use ashr rather than lshr for right shifts. This is for the benefit
1761 of the MIPS port, which requires SImode values to be sign-extended
1762 when stored in 64-bit registers. */
1763 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
1764 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
1765 gcc_unreachable ();
1766 return true;
1767 }
1768
1769 /* Generate all the code for a function call
1770 and return an rtx for its value.
1771 Store the value in TARGET (specified as an rtx) if convenient.
1772 If the value is stored in TARGET then TARGET is returned.
1773 If IGNORE is nonzero, then we ignore the value of the function call. */
1774
1775 rtx
1776 expand_call (tree exp, rtx target, int ignore)
1777 {
1778 /* Nonzero if we are currently expanding a call. */
1779 static int currently_expanding_call = 0;
1780
1781 /* List of actual parameters. */
1782 tree actparms = TREE_OPERAND (exp, 1);
1783 /* RTX for the function to be called. */
1784 rtx funexp;
1785 /* Sequence of insns to perform a normal "call". */
1786 rtx normal_call_insns = NULL_RTX;
1787 /* Sequence of insns to perform a tail "call". */
1788 rtx tail_call_insns = NULL_RTX;
1789 /* Data type of the function. */
1790 tree funtype;
1791 tree type_arg_types;
1792 /* Declaration of the function being called,
1793 or 0 if the function is computed (not known by name). */
1794 tree fndecl = 0;
1795 /* The type of the function being called. */
1796 tree fntype;
1797 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1798 int pass;
1799
1800 /* Register in which non-BLKmode value will be returned,
1801 or 0 if no value or if value is BLKmode. */
1802 rtx valreg;
1803 /* Address where we should return a BLKmode value;
1804 0 if value not BLKmode. */
1805 rtx structure_value_addr = 0;
1806 /* Nonzero if that address is being passed by treating it as
1807 an extra, implicit first parameter. Otherwise,
1808 it is passed by being copied directly into struct_value_rtx. */
1809 int structure_value_addr_parm = 0;
1810 /* Size of aggregate value wanted, or zero if none wanted
1811 or if we are using the non-reentrant PCC calling convention
1812 or expecting the value in registers. */
1813 HOST_WIDE_INT struct_value_size = 0;
1814 /* Nonzero if called function returns an aggregate in memory PCC style,
1815 by returning the address of where to find it. */
1816 int pcc_struct_value = 0;
1817 rtx struct_value = 0;
1818
1819 /* Number of actual parameters in this call, including struct value addr. */
1820 int num_actuals;
1821 /* Number of named args. Args after this are anonymous ones
1822 and they must all go on the stack. */
1823 int n_named_args;
1824
1825 /* Vector of information about each argument.
1826 Arguments are numbered in the order they will be pushed,
1827 not the order they are written. */
1828 struct arg_data *args;
1829
1830 /* Total size in bytes of all the stack-parms scanned so far. */
1831 struct args_size args_size;
1832 struct args_size adjusted_args_size;
1833 /* Size of arguments before any adjustments (such as rounding). */
1834 int unadjusted_args_size;
1835 /* Data on reg parms scanned so far. */
1836 CUMULATIVE_ARGS args_so_far;
1837 /* Nonzero if a reg parm has been scanned. */
1838 int reg_parm_seen;
1839 /* Nonzero if this is an indirect function call. */
1840
1841 /* Nonzero if we must avoid push-insns in the args for this call.
1842 If stack space is allocated for register parameters, but not by the
1843 caller, then it is preallocated in the fixed part of the stack frame.
1844 So the entire argument block must then be preallocated (i.e., we
1845 ignore PUSH_ROUNDING in that case). */
1846
1847 int must_preallocate = !PUSH_ARGS;
1848
1849 /* Size of the stack reserved for parameter registers. */
1850 int reg_parm_stack_space = 0;
1851
1852 /* Address of space preallocated for stack parms
1853 (on machines that lack push insns), or 0 if space not preallocated. */
1854 rtx argblock = 0;
1855
1856 /* Mask of ECF_ flags. */
1857 int flags = 0;
1858 #ifdef REG_PARM_STACK_SPACE
1859 /* Define the boundary of the register parm stack space that needs to be
1860 saved, if any. */
1861 int low_to_save, high_to_save;
1862 rtx save_area = 0; /* Place that it is saved */
1863 #endif
1864
1865 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
1866 char *initial_stack_usage_map = stack_usage_map;
1867
1868 int old_stack_allocated;
1869
1870 /* State variables to track stack modifications. */
1871 rtx old_stack_level = 0;
1872 int old_stack_arg_under_construction = 0;
1873 int old_pending_adj = 0;
1874 int old_inhibit_defer_pop = inhibit_defer_pop;
1875
1876 /* Some stack pointer alterations we make are performed via
1877 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
1878 which we then also need to save/restore along the way. */
1879 int old_stack_pointer_delta = 0;
1880
1881 rtx call_fusage;
1882 tree p = TREE_OPERAND (exp, 0);
1883 tree addr = TREE_OPERAND (exp, 0);
1884 int i;
1885 /* The alignment of the stack, in bits. */
1886 unsigned HOST_WIDE_INT preferred_stack_boundary;
1887 /* The alignment of the stack, in bytes. */
1888 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
1889 /* The static chain value to use for this call. */
1890 rtx static_chain_value;
1891 /* See if this is "nothrow" function call. */
1892 if (TREE_NOTHROW (exp))
1893 flags |= ECF_NOTHROW;
1894
1895 /* See if we can find a DECL-node for the actual function, and get the
1896 function attributes (flags) from the function decl or type node. */
1897 fndecl = get_callee_fndecl (exp);
1898 if (fndecl)
1899 {
1900 fntype = TREE_TYPE (fndecl);
1901 flags |= flags_from_decl_or_type (fndecl);
1902 }
1903 else
1904 {
1905 fntype = TREE_TYPE (TREE_TYPE (p));
1906 flags |= flags_from_decl_or_type (fntype);
1907 }
1908
1909 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
1910
1911 /* Warn if this value is an aggregate type,
1912 regardless of which calling convention we are using for it. */
1913 if (AGGREGATE_TYPE_P (TREE_TYPE (exp)))
1914 warning (OPT_Waggregate_return, "function call has aggregate value");
1915
1916 /* If the result of a pure or const function call is ignored (or void),
1917 and none of its arguments are volatile, we can avoid expanding the
1918 call and just evaluate the arguments for side-effects. */
1919 if ((flags & (ECF_CONST | ECF_PURE))
1920 && (ignore || target == const0_rtx
1921 || TYPE_MODE (TREE_TYPE (exp)) == VOIDmode))
1922 {
1923 bool volatilep = false;
1924 tree arg;
1925
1926 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
1927 if (TREE_THIS_VOLATILE (TREE_VALUE (arg)))
1928 {
1929 volatilep = true;
1930 break;
1931 }
1932
1933 if (! volatilep)
1934 {
1935 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
1936 expand_expr (TREE_VALUE (arg), const0_rtx,
1937 VOIDmode, EXPAND_NORMAL);
1938 return const0_rtx;
1939 }
1940 }
1941
1942 #ifdef REG_PARM_STACK_SPACE
1943 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
1944 #endif
1945
1946 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1947 if (reg_parm_stack_space > 0 && PUSH_ARGS)
1948 must_preallocate = 1;
1949 #endif
1950
1951 /* Set up a place to return a structure. */
1952
1953 /* Cater to broken compilers. */
1954 if (aggregate_value_p (exp, fndecl))
1955 {
1956 /* This call returns a big structure. */
1957 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1958
1959 #ifdef PCC_STATIC_STRUCT_RETURN
1960 {
1961 pcc_struct_value = 1;
1962 }
1963 #else /* not PCC_STATIC_STRUCT_RETURN */
1964 {
1965 struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
1966
1967 if (target && MEM_P (target) && CALL_EXPR_RETURN_SLOT_OPT (exp))
1968 structure_value_addr = XEXP (target, 0);
1969 else
1970 {
1971 /* For variable-sized objects, we must be called with a target
1972 specified. If we were to allocate space on the stack here,
1973 we would have no way of knowing when to free it. */
1974 rtx d = assign_temp (TREE_TYPE (exp), 1, 1, 1);
1975
1976 mark_temp_addr_taken (d);
1977 structure_value_addr = XEXP (d, 0);
1978 target = 0;
1979 }
1980 }
1981 #endif /* not PCC_STATIC_STRUCT_RETURN */
1982 }
1983
1984 /* Figure out the amount to which the stack should be aligned. */
1985 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1986 if (fndecl)
1987 {
1988 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
1989 if (i && i->preferred_incoming_stack_boundary)
1990 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
1991 }
1992
1993 /* Operand 0 is a pointer-to-function; get the type of the function. */
1994 funtype = TREE_TYPE (addr);
1995 gcc_assert (POINTER_TYPE_P (funtype));
1996 funtype = TREE_TYPE (funtype);
1997
1998 /* Munge the tree to split complex arguments into their imaginary
1999 and real parts. */
2000 if (targetm.calls.split_complex_arg)
2001 {
2002 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2003 actparms = split_complex_values (actparms);
2004 }
2005 else
2006 type_arg_types = TYPE_ARG_TYPES (funtype);
2007
2008 if (flags & ECF_MAY_BE_ALLOCA)
2009 current_function_calls_alloca = 1;
2010
2011 /* If struct_value_rtx is 0, it means pass the address
2012 as if it were an extra parameter. */
2013 if (structure_value_addr && struct_value == 0)
2014 {
2015 /* If structure_value_addr is a REG other than
2016 virtual_outgoing_args_rtx, we can use always use it. If it
2017 is not a REG, we must always copy it into a register.
2018 If it is virtual_outgoing_args_rtx, we must copy it to another
2019 register in some cases. */
2020 rtx temp = (!REG_P (structure_value_addr)
2021 || (ACCUMULATE_OUTGOING_ARGS
2022 && stack_arg_under_construction
2023 && structure_value_addr == virtual_outgoing_args_rtx)
2024 ? copy_addr_to_reg (convert_memory_address
2025 (Pmode, structure_value_addr))
2026 : structure_value_addr);
2027
2028 actparms
2029 = tree_cons (error_mark_node,
2030 make_tree (build_pointer_type (TREE_TYPE (funtype)),
2031 temp),
2032 actparms);
2033 structure_value_addr_parm = 1;
2034 }
2035
2036 /* Count the arguments and set NUM_ACTUALS. */
2037 for (p = actparms, num_actuals = 0; p; p = TREE_CHAIN (p))
2038 num_actuals++;
2039
2040 /* Compute number of named args.
2041 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2042
2043 if (type_arg_types != 0)
2044 n_named_args
2045 = (list_length (type_arg_types)
2046 /* Count the struct value address, if it is passed as a parm. */
2047 + structure_value_addr_parm);
2048 else
2049 /* If we know nothing, treat all args as named. */
2050 n_named_args = num_actuals;
2051
2052 /* Start updating where the next arg would go.
2053
2054 On some machines (such as the PA) indirect calls have a different
2055 calling convention than normal calls. The fourth argument in
2056 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2057 or not. */
2058 INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
2059
2060 /* Now possibly adjust the number of named args.
2061 Normally, don't include the last named arg if anonymous args follow.
2062 We do include the last named arg if
2063 targetm.calls.strict_argument_naming() returns nonzero.
2064 (If no anonymous args follow, the result of list_length is actually
2065 one too large. This is harmless.)
2066
2067 If targetm.calls.pretend_outgoing_varargs_named() returns
2068 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2069 this machine will be able to place unnamed args that were passed
2070 in registers into the stack. So treat all args as named. This
2071 allows the insns emitting for a specific argument list to be
2072 independent of the function declaration.
2073
2074 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2075 we do not have any reliable way to pass unnamed args in
2076 registers, so we must force them into memory. */
2077
2078 if (type_arg_types != 0
2079 && targetm.calls.strict_argument_naming (&args_so_far))
2080 ;
2081 else if (type_arg_types != 0
2082 && ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
2083 /* Don't include the last named arg. */
2084 --n_named_args;
2085 else
2086 /* Treat all args as named. */
2087 n_named_args = num_actuals;
2088
2089 /* Make a vector to hold all the information about each arg. */
2090 args = alloca (num_actuals * sizeof (struct arg_data));
2091 memset (args, 0, num_actuals * sizeof (struct arg_data));
2092
2093 /* Build up entries in the ARGS array, compute the size of the
2094 arguments into ARGS_SIZE, etc. */
2095 initialize_argument_information (num_actuals, args, &args_size,
2096 n_named_args, actparms, fndecl,
2097 &args_so_far, reg_parm_stack_space,
2098 &old_stack_level, &old_pending_adj,
2099 &must_preallocate, &flags,
2100 &try_tail_call, CALL_FROM_THUNK_P (exp));
2101
2102 if (args_size.var)
2103 {
2104 /* If this function requires a variable-sized argument list, don't
2105 try to make a cse'able block for this call. We may be able to
2106 do this eventually, but it is too complicated to keep track of
2107 what insns go in the cse'able block and which don't. */
2108
2109 flags &= ~ECF_LIBCALL_BLOCK;
2110 must_preallocate = 1;
2111 }
2112
2113 /* Now make final decision about preallocating stack space. */
2114 must_preallocate = finalize_must_preallocate (must_preallocate,
2115 num_actuals, args,
2116 &args_size);
2117
2118 /* If the structure value address will reference the stack pointer, we
2119 must stabilize it. We don't need to do this if we know that we are
2120 not going to adjust the stack pointer in processing this call. */
2121
2122 if (structure_value_addr
2123 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2124 || reg_mentioned_p (virtual_outgoing_args_rtx,
2125 structure_value_addr))
2126 && (args_size.var
2127 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2128 structure_value_addr = copy_to_reg (structure_value_addr);
2129
2130 /* Tail calls can make things harder to debug, and we've traditionally
2131 pushed these optimizations into -O2. Don't try if we're already
2132 expanding a call, as that means we're an argument. Don't try if
2133 there's cleanups, as we know there's code to follow the call. */
2134
2135 if (currently_expanding_call++ != 0
2136 || !flag_optimize_sibling_calls
2137 || args_size.var
2138 || lookup_stmt_eh_region (exp) >= 0)
2139 try_tail_call = 0;
2140
2141 /* Rest of purposes for tail call optimizations to fail. */
2142 if (
2143 #ifdef HAVE_sibcall_epilogue
2144 !HAVE_sibcall_epilogue
2145 #else
2146 1
2147 #endif
2148 || !try_tail_call
2149 /* Doing sibling call optimization needs some work, since
2150 structure_value_addr can be allocated on the stack.
2151 It does not seem worth the effort since few optimizable
2152 sibling calls will return a structure. */
2153 || structure_value_addr != NULL_RTX
2154 /* Check whether the target is able to optimize the call
2155 into a sibcall. */
2156 || !targetm.function_ok_for_sibcall (fndecl, exp)
2157 /* Functions that do not return exactly once may not be sibcall
2158 optimized. */
2159 || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2160 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2161 /* If the called function is nested in the current one, it might access
2162 some of the caller's arguments, but could clobber them beforehand if
2163 the argument areas are shared. */
2164 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2165 /* If this function requires more stack slots than the current
2166 function, we cannot change it into a sibling call.
2167 current_function_pretend_args_size is not part of the
2168 stack allocated by our caller. */
2169 || args_size.constant > (current_function_args_size
2170 - current_function_pretend_args_size)
2171 /* If the callee pops its own arguments, then it must pop exactly
2172 the same number of arguments as the current function. */
2173 || (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
2174 != RETURN_POPS_ARGS (current_function_decl,
2175 TREE_TYPE (current_function_decl),
2176 current_function_args_size))
2177 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2178 try_tail_call = 0;
2179
2180 /* Ensure current function's preferred stack boundary is at least
2181 what we need. We don't have to increase alignment for recursive
2182 functions. */
2183 if (cfun->preferred_stack_boundary < preferred_stack_boundary
2184 && fndecl != current_function_decl)
2185 cfun->preferred_stack_boundary = preferred_stack_boundary;
2186 if (fndecl == current_function_decl)
2187 cfun->recursive_call_emit = true;
2188
2189 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2190
2191 /* We want to make two insn chains; one for a sibling call, the other
2192 for a normal call. We will select one of the two chains after
2193 initial RTL generation is complete. */
2194 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2195 {
2196 int sibcall_failure = 0;
2197 /* We want to emit any pending stack adjustments before the tail
2198 recursion "call". That way we know any adjustment after the tail
2199 recursion call can be ignored if we indeed use the tail
2200 call expansion. */
2201 int save_pending_stack_adjust = 0;
2202 int save_stack_pointer_delta = 0;
2203 rtx insns;
2204 rtx before_call, next_arg_reg;
2205
2206 if (pass == 0)
2207 {
2208 /* State variables we need to save and restore between
2209 iterations. */
2210 save_pending_stack_adjust = pending_stack_adjust;
2211 save_stack_pointer_delta = stack_pointer_delta;
2212 }
2213 if (pass)
2214 flags &= ~ECF_SIBCALL;
2215 else
2216 flags |= ECF_SIBCALL;
2217
2218 /* Other state variables that we must reinitialize each time
2219 through the loop (that are not initialized by the loop itself). */
2220 argblock = 0;
2221 call_fusage = 0;
2222
2223 /* Start a new sequence for the normal call case.
2224
2225 From this point on, if the sibling call fails, we want to set
2226 sibcall_failure instead of continuing the loop. */
2227 start_sequence ();
2228
2229 /* Don't let pending stack adjusts add up to too much.
2230 Also, do all pending adjustments now if there is any chance
2231 this might be a call to alloca or if we are expanding a sibling
2232 call sequence or if we are calling a function that is to return
2233 with stack pointer depressed.
2234 Also do the adjustments before a throwing call, otherwise
2235 exception handling can fail; PR 19225. */
2236 if (pending_stack_adjust >= 32
2237 || (pending_stack_adjust > 0
2238 && (flags & (ECF_MAY_BE_ALLOCA | ECF_SP_DEPRESSED)))
2239 || (pending_stack_adjust > 0
2240 && flag_exceptions && !(flags & ECF_NOTHROW))
2241 || pass == 0)
2242 do_pending_stack_adjust ();
2243
2244 /* When calling a const function, we must pop the stack args right away,
2245 so that the pop is deleted or moved with the call. */
2246 if (pass && (flags & ECF_LIBCALL_BLOCK))
2247 NO_DEFER_POP;
2248
2249 /* Precompute any arguments as needed. */
2250 if (pass)
2251 precompute_arguments (flags, num_actuals, args);
2252
2253 /* Now we are about to start emitting insns that can be deleted
2254 if a libcall is deleted. */
2255 if (pass && (flags & (ECF_LIBCALL_BLOCK | ECF_MALLOC)))
2256 start_sequence ();
2257
2258 adjusted_args_size = args_size;
2259 /* Compute the actual size of the argument block required. The variable
2260 and constant sizes must be combined, the size may have to be rounded,
2261 and there may be a minimum required size. When generating a sibcall
2262 pattern, do not round up, since we'll be re-using whatever space our
2263 caller provided. */
2264 unadjusted_args_size
2265 = compute_argument_block_size (reg_parm_stack_space,
2266 &adjusted_args_size,
2267 (pass == 0 ? 0
2268 : preferred_stack_boundary));
2269
2270 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2271
2272 /* The argument block when performing a sibling call is the
2273 incoming argument block. */
2274 if (pass == 0)
2275 {
2276 argblock = virtual_incoming_args_rtx;
2277 argblock
2278 #ifdef STACK_GROWS_DOWNWARD
2279 = plus_constant (argblock, current_function_pretend_args_size);
2280 #else
2281 = plus_constant (argblock, -current_function_pretend_args_size);
2282 #endif
2283 stored_args_map = sbitmap_alloc (args_size.constant);
2284 sbitmap_zero (stored_args_map);
2285 }
2286
2287 /* If we have no actual push instructions, or shouldn't use them,
2288 make space for all args right now. */
2289 else if (adjusted_args_size.var != 0)
2290 {
2291 if (old_stack_level == 0)
2292 {
2293 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
2294 old_stack_pointer_delta = stack_pointer_delta;
2295 old_pending_adj = pending_stack_adjust;
2296 pending_stack_adjust = 0;
2297 /* stack_arg_under_construction says whether a stack arg is
2298 being constructed at the old stack level. Pushing the stack
2299 gets a clean outgoing argument block. */
2300 old_stack_arg_under_construction = stack_arg_under_construction;
2301 stack_arg_under_construction = 0;
2302 }
2303 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2304 }
2305 else
2306 {
2307 /* Note that we must go through the motions of allocating an argument
2308 block even if the size is zero because we may be storing args
2309 in the area reserved for register arguments, which may be part of
2310 the stack frame. */
2311
2312 int needed = adjusted_args_size.constant;
2313
2314 /* Store the maximum argument space used. It will be pushed by
2315 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2316 checking). */
2317
2318 if (needed > current_function_outgoing_args_size)
2319 current_function_outgoing_args_size = needed;
2320
2321 if (must_preallocate)
2322 {
2323 if (ACCUMULATE_OUTGOING_ARGS)
2324 {
2325 /* Since the stack pointer will never be pushed, it is
2326 possible for the evaluation of a parm to clobber
2327 something we have already written to the stack.
2328 Since most function calls on RISC machines do not use
2329 the stack, this is uncommon, but must work correctly.
2330
2331 Therefore, we save any area of the stack that was already
2332 written and that we are using. Here we set up to do this
2333 by making a new stack usage map from the old one. The
2334 actual save will be done by store_one_arg.
2335
2336 Another approach might be to try to reorder the argument
2337 evaluations to avoid this conflicting stack usage. */
2338
2339 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2340 /* Since we will be writing into the entire argument area,
2341 the map must be allocated for its entire size, not just
2342 the part that is the responsibility of the caller. */
2343 needed += reg_parm_stack_space;
2344 #endif
2345
2346 #ifdef ARGS_GROW_DOWNWARD
2347 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2348 needed + 1);
2349 #else
2350 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2351 needed);
2352 #endif
2353 stack_usage_map = alloca (highest_outgoing_arg_in_use);
2354
2355 if (initial_highest_arg_in_use)
2356 memcpy (stack_usage_map, initial_stack_usage_map,
2357 initial_highest_arg_in_use);
2358
2359 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2360 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2361 (highest_outgoing_arg_in_use
2362 - initial_highest_arg_in_use));
2363 needed = 0;
2364
2365 /* The address of the outgoing argument list must not be
2366 copied to a register here, because argblock would be left
2367 pointing to the wrong place after the call to
2368 allocate_dynamic_stack_space below. */
2369
2370 argblock = virtual_outgoing_args_rtx;
2371 }
2372 else
2373 {
2374 if (inhibit_defer_pop == 0)
2375 {
2376 /* Try to reuse some or all of the pending_stack_adjust
2377 to get this space. */
2378 needed
2379 = (combine_pending_stack_adjustment_and_call
2380 (unadjusted_args_size,
2381 &adjusted_args_size,
2382 preferred_unit_stack_boundary));
2383
2384 /* combine_pending_stack_adjustment_and_call computes
2385 an adjustment before the arguments are allocated.
2386 Account for them and see whether or not the stack
2387 needs to go up or down. */
2388 needed = unadjusted_args_size - needed;
2389
2390 if (needed < 0)
2391 {
2392 /* We're releasing stack space. */
2393 /* ??? We can avoid any adjustment at all if we're
2394 already aligned. FIXME. */
2395 pending_stack_adjust = -needed;
2396 do_pending_stack_adjust ();
2397 needed = 0;
2398 }
2399 else
2400 /* We need to allocate space. We'll do that in
2401 push_block below. */
2402 pending_stack_adjust = 0;
2403 }
2404
2405 /* Special case this because overhead of `push_block' in
2406 this case is non-trivial. */
2407 if (needed == 0)
2408 argblock = virtual_outgoing_args_rtx;
2409 else
2410 {
2411 argblock = push_block (GEN_INT (needed), 0, 0);
2412 #ifdef ARGS_GROW_DOWNWARD
2413 argblock = plus_constant (argblock, needed);
2414 #endif
2415 }
2416
2417 /* We only really need to call `copy_to_reg' in the case
2418 where push insns are going to be used to pass ARGBLOCK
2419 to a function call in ARGS. In that case, the stack
2420 pointer changes value from the allocation point to the
2421 call point, and hence the value of
2422 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2423 as well always do it. */
2424 argblock = copy_to_reg (argblock);
2425 }
2426 }
2427 }
2428
2429 if (ACCUMULATE_OUTGOING_ARGS)
2430 {
2431 /* The save/restore code in store_one_arg handles all
2432 cases except one: a constructor call (including a C
2433 function returning a BLKmode struct) to initialize
2434 an argument. */
2435 if (stack_arg_under_construction)
2436 {
2437 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2438 rtx push_size = GEN_INT (reg_parm_stack_space
2439 + adjusted_args_size.constant);
2440 #else
2441 rtx push_size = GEN_INT (adjusted_args_size.constant);
2442 #endif
2443 if (old_stack_level == 0)
2444 {
2445 emit_stack_save (SAVE_BLOCK, &old_stack_level,
2446 NULL_RTX);
2447 old_stack_pointer_delta = stack_pointer_delta;
2448 old_pending_adj = pending_stack_adjust;
2449 pending_stack_adjust = 0;
2450 /* stack_arg_under_construction says whether a stack
2451 arg is being constructed at the old stack level.
2452 Pushing the stack gets a clean outgoing argument
2453 block. */
2454 old_stack_arg_under_construction
2455 = stack_arg_under_construction;
2456 stack_arg_under_construction = 0;
2457 /* Make a new map for the new argument list. */
2458 stack_usage_map = alloca (highest_outgoing_arg_in_use);
2459 memset (stack_usage_map, 0, highest_outgoing_arg_in_use);
2460 highest_outgoing_arg_in_use = 0;
2461 }
2462 allocate_dynamic_stack_space (push_size, NULL_RTX,
2463 BITS_PER_UNIT);
2464 }
2465
2466 /* If argument evaluation might modify the stack pointer,
2467 copy the address of the argument list to a register. */
2468 for (i = 0; i < num_actuals; i++)
2469 if (args[i].pass_on_stack)
2470 {
2471 argblock = copy_addr_to_reg (argblock);
2472 break;
2473 }
2474 }
2475
2476 compute_argument_addresses (args, argblock, num_actuals);
2477
2478 /* If we push args individually in reverse order, perform stack alignment
2479 before the first push (the last arg). */
2480 if (PUSH_ARGS_REVERSED && argblock == 0
2481 && adjusted_args_size.constant != unadjusted_args_size)
2482 {
2483 /* When the stack adjustment is pending, we get better code
2484 by combining the adjustments. */
2485 if (pending_stack_adjust
2486 && ! (flags & ECF_LIBCALL_BLOCK)
2487 && ! inhibit_defer_pop)
2488 {
2489 pending_stack_adjust
2490 = (combine_pending_stack_adjustment_and_call
2491 (unadjusted_args_size,
2492 &adjusted_args_size,
2493 preferred_unit_stack_boundary));
2494 do_pending_stack_adjust ();
2495 }
2496 else if (argblock == 0)
2497 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2498 - unadjusted_args_size));
2499 }
2500 /* Now that the stack is properly aligned, pops can't safely
2501 be deferred during the evaluation of the arguments. */
2502 NO_DEFER_POP;
2503
2504 funexp = rtx_for_function_call (fndecl, addr);
2505
2506 /* Figure out the register where the value, if any, will come back. */
2507 valreg = 0;
2508 if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
2509 && ! structure_value_addr)
2510 {
2511 if (pcc_struct_value)
2512 valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
2513 fndecl, (pass == 0));
2514 else
2515 valreg = hard_function_value (TREE_TYPE (exp), fndecl, (pass == 0));
2516 }
2517
2518 /* Precompute all register parameters. It isn't safe to compute anything
2519 once we have started filling any specific hard regs. */
2520 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2521
2522 if (TREE_OPERAND (exp, 2))
2523 static_chain_value = expand_expr (TREE_OPERAND (exp, 2),
2524 NULL_RTX, VOIDmode, 0);
2525 else
2526 static_chain_value = 0;
2527
2528 #ifdef REG_PARM_STACK_SPACE
2529 /* Save the fixed argument area if it's part of the caller's frame and
2530 is clobbered by argument setup for this call. */
2531 if (ACCUMULATE_OUTGOING_ARGS && pass)
2532 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2533 &low_to_save, &high_to_save);
2534 #endif
2535
2536 /* Now store (and compute if necessary) all non-register parms.
2537 These come before register parms, since they can require block-moves,
2538 which could clobber the registers used for register parms.
2539 Parms which have partial registers are not stored here,
2540 but we do preallocate space here if they want that. */
2541
2542 for (i = 0; i < num_actuals; i++)
2543 if (args[i].reg == 0 || args[i].pass_on_stack)
2544 {
2545 rtx before_arg = get_last_insn ();
2546
2547 if (store_one_arg (&args[i], argblock, flags,
2548 adjusted_args_size.var != 0,
2549 reg_parm_stack_space)
2550 || (pass == 0
2551 && check_sibcall_argument_overlap (before_arg,
2552 &args[i], 1)))
2553 sibcall_failure = 1;
2554
2555 if (flags & ECF_CONST
2556 && args[i].stack
2557 && args[i].value == args[i].stack)
2558 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2559 gen_rtx_USE (VOIDmode,
2560 args[i].value),
2561 call_fusage);
2562 }
2563
2564 /* If we have a parm that is passed in registers but not in memory
2565 and whose alignment does not permit a direct copy into registers,
2566 make a group of pseudos that correspond to each register that we
2567 will later fill. */
2568 if (STRICT_ALIGNMENT)
2569 store_unaligned_arguments_into_pseudos (args, num_actuals);
2570
2571 /* Now store any partially-in-registers parm.
2572 This is the last place a block-move can happen. */
2573 if (reg_parm_seen)
2574 for (i = 0; i < num_actuals; i++)
2575 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2576 {
2577 rtx before_arg = get_last_insn ();
2578
2579 if (store_one_arg (&args[i], argblock, flags,
2580 adjusted_args_size.var != 0,
2581 reg_parm_stack_space)
2582 || (pass == 0
2583 && check_sibcall_argument_overlap (before_arg,
2584 &args[i], 1)))
2585 sibcall_failure = 1;
2586 }
2587
2588 /* If we pushed args in forward order, perform stack alignment
2589 after pushing the last arg. */
2590 if (!PUSH_ARGS_REVERSED && argblock == 0)
2591 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2592 - unadjusted_args_size));
2593
2594 /* If register arguments require space on the stack and stack space
2595 was not preallocated, allocate stack space here for arguments
2596 passed in registers. */
2597 #ifdef OUTGOING_REG_PARM_STACK_SPACE
2598 if (!ACCUMULATE_OUTGOING_ARGS
2599 && must_preallocate == 0 && reg_parm_stack_space > 0)
2600 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2601 #endif
2602
2603 /* Pass the function the address in which to return a
2604 structure value. */
2605 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2606 {
2607 structure_value_addr
2608 = convert_memory_address (Pmode, structure_value_addr);
2609 emit_move_insn (struct_value,
2610 force_reg (Pmode,
2611 force_operand (structure_value_addr,
2612 NULL_RTX)));
2613
2614 if (REG_P (struct_value))
2615 use_reg (&call_fusage, struct_value);
2616 }
2617
2618 funexp = prepare_call_address (funexp, static_chain_value,
2619 &call_fusage, reg_parm_seen, pass == 0);
2620
2621 load_register_parameters (args, num_actuals, &call_fusage, flags,
2622 pass == 0, &sibcall_failure);
2623
2624 /* Save a pointer to the last insn before the call, so that we can
2625 later safely search backwards to find the CALL_INSN. */
2626 before_call = get_last_insn ();
2627
2628 /* Set up next argument register. For sibling calls on machines
2629 with register windows this should be the incoming register. */
2630 #ifdef FUNCTION_INCOMING_ARG
2631 if (pass == 0)
2632 next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
2633 void_type_node, 1);
2634 else
2635 #endif
2636 next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
2637 void_type_node, 1);
2638
2639 /* All arguments and registers used for the call must be set up by
2640 now! */
2641
2642 /* Stack must be properly aligned now. */
2643 gcc_assert (!pass
2644 || !(stack_pointer_delta % preferred_unit_stack_boundary));
2645
2646 /* Generate the actual call instruction. */
2647 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2648 adjusted_args_size.constant, struct_value_size,
2649 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2650 flags, & args_so_far);
2651
2652 /* If a non-BLKmode value is returned at the most significant end
2653 of a register, shift the register right by the appropriate amount
2654 and update VALREG accordingly. BLKmode values are handled by the
2655 group load/store machinery below. */
2656 if (!structure_value_addr
2657 && !pcc_struct_value
2658 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2659 && targetm.calls.return_in_msb (TREE_TYPE (exp)))
2660 {
2661 if (shift_return_value (TYPE_MODE (TREE_TYPE (exp)), false, valreg))
2662 sibcall_failure = 1;
2663 valreg = gen_rtx_REG (TYPE_MODE (TREE_TYPE (exp)), REGNO (valreg));
2664 }
2665
2666 /* If call is cse'able, make appropriate pair of reg-notes around it.
2667 Test valreg so we don't crash; may safely ignore `const'
2668 if return type is void. Disable for PARALLEL return values, because
2669 we have no way to move such values into a pseudo register. */
2670 if (pass && (flags & ECF_LIBCALL_BLOCK))
2671 {
2672 rtx insns;
2673 rtx insn;
2674 bool failed = valreg == 0 || GET_CODE (valreg) == PARALLEL;
2675
2676 insns = get_insns ();
2677
2678 /* Expansion of block moves possibly introduced a loop that may
2679 not appear inside libcall block. */
2680 for (insn = insns; insn; insn = NEXT_INSN (insn))
2681 if (JUMP_P (insn))
2682 failed = true;
2683
2684 if (failed)
2685 {
2686 end_sequence ();
2687 emit_insn (insns);
2688 }
2689 else
2690 {
2691 rtx note = 0;
2692 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2693
2694 /* Mark the return value as a pointer if needed. */
2695 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2696 mark_reg_pointer (temp,
2697 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp))));
2698
2699 end_sequence ();
2700 if (flag_unsafe_math_optimizations
2701 && fndecl
2702 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2703 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRT
2704 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTF
2705 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTL))
2706 note = gen_rtx_fmt_e (SQRT,
2707 GET_MODE (temp),
2708 args[0].initial_value);
2709 else
2710 {
2711 /* Construct an "equal form" for the value which
2712 mentions all the arguments in order as well as
2713 the function name. */
2714 for (i = 0; i < num_actuals; i++)
2715 note = gen_rtx_EXPR_LIST (VOIDmode,
2716 args[i].initial_value, note);
2717 note = gen_rtx_EXPR_LIST (VOIDmode, funexp, note);
2718
2719 if (flags & ECF_PURE)
2720 note = gen_rtx_EXPR_LIST (VOIDmode,
2721 gen_rtx_USE (VOIDmode,
2722 gen_rtx_MEM (BLKmode,
2723 gen_rtx_SCRATCH (VOIDmode))),
2724 note);
2725 }
2726 emit_libcall_block (insns, temp, valreg, note);
2727
2728 valreg = temp;
2729 }
2730 }
2731 else if (pass && (flags & ECF_MALLOC))
2732 {
2733 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2734 rtx last, insns;
2735
2736 /* The return value from a malloc-like function is a pointer. */
2737 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2738 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2739
2740 emit_move_insn (temp, valreg);
2741
2742 /* The return value from a malloc-like function can not alias
2743 anything else. */
2744 last = get_last_insn ();
2745 REG_NOTES (last) =
2746 gen_rtx_EXPR_LIST (REG_NOALIAS, temp, REG_NOTES (last));
2747
2748 /* Write out the sequence. */
2749 insns = get_insns ();
2750 end_sequence ();
2751 emit_insn (insns);
2752 valreg = temp;
2753 }
2754
2755 /* For calls to `setjmp', etc., inform flow.c it should complain
2756 if nonvolatile values are live. For functions that cannot return,
2757 inform flow that control does not fall through. */
2758
2759 if ((flags & ECF_NORETURN) || pass == 0)
2760 {
2761 /* The barrier must be emitted
2762 immediately after the CALL_INSN. Some ports emit more
2763 than just a CALL_INSN above, so we must search for it here. */
2764
2765 rtx last = get_last_insn ();
2766 while (!CALL_P (last))
2767 {
2768 last = PREV_INSN (last);
2769 /* There was no CALL_INSN? */
2770 gcc_assert (last != before_call);
2771 }
2772
2773 emit_barrier_after (last);
2774
2775 /* Stack adjustments after a noreturn call are dead code.
2776 However when NO_DEFER_POP is in effect, we must preserve
2777 stack_pointer_delta. */
2778 if (inhibit_defer_pop == 0)
2779 {
2780 stack_pointer_delta = old_stack_allocated;
2781 pending_stack_adjust = 0;
2782 }
2783 }
2784
2785 /* If value type not void, return an rtx for the value. */
2786
2787 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
2788 || ignore)
2789 target = const0_rtx;
2790 else if (structure_value_addr)
2791 {
2792 if (target == 0 || !MEM_P (target))
2793 {
2794 target
2795 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2796 memory_address (TYPE_MODE (TREE_TYPE (exp)),
2797 structure_value_addr));
2798 set_mem_attributes (target, exp, 1);
2799 }
2800 }
2801 else if (pcc_struct_value)
2802 {
2803 /* This is the special C++ case where we need to
2804 know what the true target was. We take care to
2805 never use this value more than once in one expression. */
2806 target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2807 copy_to_reg (valreg));
2808 set_mem_attributes (target, exp, 1);
2809 }
2810 /* Handle calls that return values in multiple non-contiguous locations.
2811 The Irix 6 ABI has examples of this. */
2812 else if (GET_CODE (valreg) == PARALLEL)
2813 {
2814 if (target == 0)
2815 {
2816 /* This will only be assigned once, so it can be readonly. */
2817 tree nt = build_qualified_type (TREE_TYPE (exp),
2818 (TYPE_QUALS (TREE_TYPE (exp))
2819 | TYPE_QUAL_CONST));
2820
2821 target = assign_temp (nt, 0, 1, 1);
2822 }
2823
2824 if (! rtx_equal_p (target, valreg))
2825 emit_group_store (target, valreg, TREE_TYPE (exp),
2826 int_size_in_bytes (TREE_TYPE (exp)));
2827
2828 /* We can not support sibling calls for this case. */
2829 sibcall_failure = 1;
2830 }
2831 else if (target
2832 && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
2833 && GET_MODE (target) == GET_MODE (valreg))
2834 {
2835 /* TARGET and VALREG cannot be equal at this point because the
2836 latter would not have REG_FUNCTION_VALUE_P true, while the
2837 former would if it were referring to the same register.
2838
2839 If they refer to the same register, this move will be a no-op,
2840 except when function inlining is being done. */
2841 emit_move_insn (target, valreg);
2842
2843 /* If we are setting a MEM, this code must be executed. Since it is
2844 emitted after the call insn, sibcall optimization cannot be
2845 performed in that case. */
2846 if (MEM_P (target))
2847 sibcall_failure = 1;
2848 }
2849 else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
2850 {
2851 target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp));
2852
2853 /* We can not support sibling calls for this case. */
2854 sibcall_failure = 1;
2855 }
2856 else
2857 target = copy_to_reg (valreg);
2858
2859 if (targetm.calls.promote_function_return(funtype))
2860 {
2861 /* If we promoted this return value, make the proper SUBREG.
2862 TARGET might be const0_rtx here, so be careful. */
2863 if (REG_P (target)
2864 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2865 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
2866 {
2867 tree type = TREE_TYPE (exp);
2868 int unsignedp = TYPE_UNSIGNED (type);
2869 int offset = 0;
2870 enum machine_mode pmode;
2871
2872 pmode = promote_mode (type, TYPE_MODE (type), &unsignedp, 1);
2873 /* If we don't promote as expected, something is wrong. */
2874 gcc_assert (GET_MODE (target) == pmode);
2875
2876 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
2877 && (GET_MODE_SIZE (GET_MODE (target))
2878 > GET_MODE_SIZE (TYPE_MODE (type))))
2879 {
2880 offset = GET_MODE_SIZE (GET_MODE (target))
2881 - GET_MODE_SIZE (TYPE_MODE (type));
2882 if (! BYTES_BIG_ENDIAN)
2883 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
2884 else if (! WORDS_BIG_ENDIAN)
2885 offset %= UNITS_PER_WORD;
2886 }
2887 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
2888 SUBREG_PROMOTED_VAR_P (target) = 1;
2889 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
2890 }
2891 }
2892
2893 /* If size of args is variable or this was a constructor call for a stack
2894 argument, restore saved stack-pointer value. */
2895
2896 if (old_stack_level && ! (flags & ECF_SP_DEPRESSED))
2897 {
2898 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
2899 stack_pointer_delta = old_stack_pointer_delta;
2900 pending_stack_adjust = old_pending_adj;
2901 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2902 stack_arg_under_construction = old_stack_arg_under_construction;
2903 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
2904 stack_usage_map = initial_stack_usage_map;
2905 sibcall_failure = 1;
2906 }
2907 else if (ACCUMULATE_OUTGOING_ARGS && pass)
2908 {
2909 #ifdef REG_PARM_STACK_SPACE
2910 if (save_area)
2911 restore_fixed_argument_area (save_area, argblock,
2912 high_to_save, low_to_save);
2913 #endif
2914
2915 /* If we saved any argument areas, restore them. */
2916 for (i = 0; i < num_actuals; i++)
2917 if (args[i].save_area)
2918 {
2919 enum machine_mode save_mode = GET_MODE (args[i].save_area);
2920 rtx stack_area
2921 = gen_rtx_MEM (save_mode,
2922 memory_address (save_mode,
2923 XEXP (args[i].stack_slot, 0)));
2924
2925 if (save_mode != BLKmode)
2926 emit_move_insn (stack_area, args[i].save_area);
2927 else
2928 emit_block_move (stack_area, args[i].save_area,
2929 GEN_INT (args[i].locate.size.constant),
2930 BLOCK_OP_CALL_PARM);
2931 }
2932
2933 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
2934 stack_usage_map = initial_stack_usage_map;
2935 }
2936
2937 /* If this was alloca, record the new stack level for nonlocal gotos.
2938 Check for the handler slots since we might not have a save area
2939 for non-local gotos. */
2940
2941 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
2942 update_nonlocal_goto_save_area ();
2943
2944 /* Free up storage we no longer need. */
2945 for (i = 0; i < num_actuals; ++i)
2946 if (args[i].aligned_regs)
2947 free (args[i].aligned_regs);
2948
2949 insns = get_insns ();
2950 end_sequence ();
2951
2952 if (pass == 0)
2953 {
2954 tail_call_insns = insns;
2955
2956 /* Restore the pending stack adjustment now that we have
2957 finished generating the sibling call sequence. */
2958
2959 pending_stack_adjust = save_pending_stack_adjust;
2960 stack_pointer_delta = save_stack_pointer_delta;
2961
2962 /* Prepare arg structure for next iteration. */
2963 for (i = 0; i < num_actuals; i++)
2964 {
2965 args[i].value = 0;
2966 args[i].aligned_regs = 0;
2967 args[i].stack = 0;
2968 }
2969
2970 sbitmap_free (stored_args_map);
2971 }
2972 else
2973 {
2974 normal_call_insns = insns;
2975
2976 /* Verify that we've deallocated all the stack we used. */
2977 gcc_assert ((flags & ECF_NORETURN)
2978 || (old_stack_allocated
2979 == stack_pointer_delta - pending_stack_adjust));
2980 }
2981
2982 /* If something prevents making this a sibling call,
2983 zero out the sequence. */
2984 if (sibcall_failure)
2985 tail_call_insns = NULL_RTX;
2986 else
2987 break;
2988 }
2989
2990 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
2991 arguments too, as argument area is now clobbered by the call. */
2992 if (tail_call_insns)
2993 {
2994 emit_insn (tail_call_insns);
2995 cfun->tail_call_emit = true;
2996 }
2997 else
2998 emit_insn (normal_call_insns);
2999
3000 currently_expanding_call--;
3001
3002 /* If this function returns with the stack pointer depressed, ensure
3003 this block saves and restores the stack pointer, show it was
3004 changed, and adjust for any outgoing arg space. */
3005 if (flags & ECF_SP_DEPRESSED)
3006 {
3007 clear_pending_stack_adjust ();
3008 emit_insn (gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx));
3009 emit_move_insn (virtual_stack_dynamic_rtx, stack_pointer_rtx);
3010 }
3011
3012 return target;
3013 }
3014
3015 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3016 this function's incoming arguments.
3017
3018 At the start of RTL generation we know the only REG_EQUIV notes
3019 in the rtl chain are those for incoming arguments, so we can look
3020 for REG_EQUIV notes between the start of the function and the
3021 NOTE_INSN_FUNCTION_BEG.
3022
3023 This is (slight) overkill. We could keep track of the highest
3024 argument we clobber and be more selective in removing notes, but it
3025 does not seem to be worth the effort. */
3026
3027 void
3028 fixup_tail_calls (void)
3029 {
3030 rtx insn;
3031
3032 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3033 {
3034 /* There are never REG_EQUIV notes for the incoming arguments
3035 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
3036 if (NOTE_P (insn)
3037 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
3038 break;
3039
3040 while (1)
3041 {
3042 rtx note = find_reg_note (insn, REG_EQUIV, 0);
3043 if (note)
3044 {
3045 /* Remove the note and keep looking at the notes for
3046 this insn. */
3047 remove_note (insn, note);
3048 continue;
3049 }
3050 break;
3051 }
3052 }
3053 }
3054
3055 /* Traverse an argument list in VALUES and expand all complex
3056 arguments into their components. */
3057 static tree
3058 split_complex_values (tree values)
3059 {
3060 tree p;
3061
3062 /* Before allocating memory, check for the common case of no complex. */
3063 for (p = values; p; p = TREE_CHAIN (p))
3064 {
3065 tree type = TREE_TYPE (TREE_VALUE (p));
3066 if (type && TREE_CODE (type) == COMPLEX_TYPE
3067 && targetm.calls.split_complex_arg (type))
3068 goto found;
3069 }
3070 return values;
3071
3072 found:
3073 values = copy_list (values);
3074
3075 for (p = values; p; p = TREE_CHAIN (p))
3076 {
3077 tree complex_value = TREE_VALUE (p);
3078 tree complex_type;
3079
3080 complex_type = TREE_TYPE (complex_value);
3081 if (!complex_type)
3082 continue;
3083
3084 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3085 && targetm.calls.split_complex_arg (complex_type))
3086 {
3087 tree subtype;
3088 tree real, imag, next;
3089
3090 subtype = TREE_TYPE (complex_type);
3091 complex_value = save_expr (complex_value);
3092 real = build1 (REALPART_EXPR, subtype, complex_value);
3093 imag = build1 (IMAGPART_EXPR, subtype, complex_value);
3094
3095 TREE_VALUE (p) = real;
3096 next = TREE_CHAIN (p);
3097 imag = build_tree_list (NULL_TREE, imag);
3098 TREE_CHAIN (p) = imag;
3099 TREE_CHAIN (imag) = next;
3100
3101 /* Skip the newly created node. */
3102 p = TREE_CHAIN (p);
3103 }
3104 }
3105
3106 return values;
3107 }
3108
3109 /* Traverse a list of TYPES and expand all complex types into their
3110 components. */
3111 static tree
3112 split_complex_types (tree types)
3113 {
3114 tree p;
3115
3116 /* Before allocating memory, check for the common case of no complex. */
3117 for (p = types; p; p = TREE_CHAIN (p))
3118 {
3119 tree type = TREE_VALUE (p);
3120 if (TREE_CODE (type) == COMPLEX_TYPE
3121 && targetm.calls.split_complex_arg (type))
3122 goto found;
3123 }
3124 return types;
3125
3126 found:
3127 types = copy_list (types);
3128
3129 for (p = types; p; p = TREE_CHAIN (p))
3130 {
3131 tree complex_type = TREE_VALUE (p);
3132
3133 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3134 && targetm.calls.split_complex_arg (complex_type))
3135 {
3136 tree next, imag;
3137
3138 /* Rewrite complex type with component type. */
3139 TREE_VALUE (p) = TREE_TYPE (complex_type);
3140 next = TREE_CHAIN (p);
3141
3142 /* Add another component type for the imaginary part. */
3143 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3144 TREE_CHAIN (p) = imag;
3145 TREE_CHAIN (imag) = next;
3146
3147 /* Skip the newly created node. */
3148 p = TREE_CHAIN (p);
3149 }
3150 }
3151
3152 return types;
3153 }
3154 \f
3155 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3156 The RETVAL parameter specifies whether return value needs to be saved, other
3157 parameters are documented in the emit_library_call function below. */
3158
3159 static rtx
3160 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3161 enum libcall_type fn_type,
3162 enum machine_mode outmode, int nargs, va_list p)
3163 {
3164 /* Total size in bytes of all the stack-parms scanned so far. */
3165 struct args_size args_size;
3166 /* Size of arguments before any adjustments (such as rounding). */
3167 struct args_size original_args_size;
3168 int argnum;
3169 rtx fun;
3170 int inc;
3171 int count;
3172 rtx argblock = 0;
3173 CUMULATIVE_ARGS args_so_far;
3174 struct arg
3175 {
3176 rtx value;
3177 enum machine_mode mode;
3178 rtx reg;
3179 int partial;
3180 struct locate_and_pad_arg_data locate;
3181 rtx save_area;
3182 };
3183 struct arg *argvec;
3184 int old_inhibit_defer_pop = inhibit_defer_pop;
3185 rtx call_fusage = 0;
3186 rtx mem_value = 0;
3187 rtx valreg;
3188 int pcc_struct_value = 0;
3189 int struct_value_size = 0;
3190 int flags;
3191 int reg_parm_stack_space = 0;
3192 int needed;
3193 rtx before_call;
3194 tree tfom; /* type_for_mode (outmode, 0) */
3195
3196 #ifdef REG_PARM_STACK_SPACE
3197 /* Define the boundary of the register parm stack space that needs to be
3198 save, if any. */
3199 int low_to_save, high_to_save;
3200 rtx save_area = 0; /* Place that it is saved. */
3201 #endif
3202
3203 /* Size of the stack reserved for parameter registers. */
3204 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3205 char *initial_stack_usage_map = stack_usage_map;
3206
3207 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3208
3209 #ifdef REG_PARM_STACK_SPACE
3210 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3211 #endif
3212
3213 /* By default, library functions can not throw. */
3214 flags = ECF_NOTHROW;
3215
3216 switch (fn_type)
3217 {
3218 case LCT_NORMAL:
3219 break;
3220 case LCT_CONST:
3221 flags |= ECF_CONST;
3222 break;
3223 case LCT_PURE:
3224 flags |= ECF_PURE;
3225 break;
3226 case LCT_CONST_MAKE_BLOCK:
3227 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
3228 break;
3229 case LCT_PURE_MAKE_BLOCK:
3230 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
3231 break;
3232 case LCT_NORETURN:
3233 flags |= ECF_NORETURN;
3234 break;
3235 case LCT_THROW:
3236 flags = ECF_NORETURN;
3237 break;
3238 case LCT_RETURNS_TWICE:
3239 flags = ECF_RETURNS_TWICE;
3240 break;
3241 }
3242 fun = orgfun;
3243
3244 /* Ensure current function's preferred stack boundary is at least
3245 what we need. */
3246 if (cfun->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3247 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3248
3249 /* If this kind of value comes back in memory,
3250 decide where in memory it should come back. */
3251 if (outmode != VOIDmode)
3252 {
3253 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3254 if (aggregate_value_p (tfom, 0))
3255 {
3256 #ifdef PCC_STATIC_STRUCT_RETURN
3257 rtx pointer_reg
3258 = hard_function_value (build_pointer_type (tfom), 0, 0);
3259 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3260 pcc_struct_value = 1;
3261 if (value == 0)
3262 value = gen_reg_rtx (outmode);
3263 #else /* not PCC_STATIC_STRUCT_RETURN */
3264 struct_value_size = GET_MODE_SIZE (outmode);
3265 if (value != 0 && MEM_P (value))
3266 mem_value = value;
3267 else
3268 mem_value = assign_temp (tfom, 0, 1, 1);
3269 #endif
3270 /* This call returns a big structure. */
3271 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3272 }
3273 }
3274 else
3275 tfom = void_type_node;
3276
3277 /* ??? Unfinished: must pass the memory address as an argument. */
3278
3279 /* Copy all the libcall-arguments out of the varargs data
3280 and into a vector ARGVEC.
3281
3282 Compute how to pass each argument. We only support a very small subset
3283 of the full argument passing conventions to limit complexity here since
3284 library functions shouldn't have many args. */
3285
3286 argvec = alloca ((nargs + 1) * sizeof (struct arg));
3287 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3288
3289 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3290 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
3291 #else
3292 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
3293 #endif
3294
3295 args_size.constant = 0;
3296 args_size.var = 0;
3297
3298 count = 0;
3299
3300 /* Now we are about to start emitting insns that can be deleted
3301 if a libcall is deleted. */
3302 if (flags & ECF_LIBCALL_BLOCK)
3303 start_sequence ();
3304
3305 push_temp_slots ();
3306
3307 /* If there's a structure value address to be passed,
3308 either pass it in the special place, or pass it as an extra argument. */
3309 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3310 {
3311 rtx addr = XEXP (mem_value, 0);
3312
3313 nargs++;
3314
3315 /* Make sure it is a reasonable operand for a move or push insn. */
3316 if (!REG_P (addr) && !MEM_P (addr)
3317 && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
3318 addr = force_operand (addr, NULL_RTX);
3319
3320 argvec[count].value = addr;
3321 argvec[count].mode = Pmode;
3322 argvec[count].partial = 0;
3323
3324 argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
3325 gcc_assert (targetm.calls.arg_partial_bytes (&args_so_far, Pmode,
3326 NULL_TREE, 1) == 0);
3327
3328 locate_and_pad_parm (Pmode, NULL_TREE,
3329 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3330 1,
3331 #else
3332 argvec[count].reg != 0,
3333 #endif
3334 0, NULL_TREE, &args_size, &argvec[count].locate);
3335
3336 if (argvec[count].reg == 0 || argvec[count].partial != 0
3337 || reg_parm_stack_space > 0)
3338 args_size.constant += argvec[count].locate.size.constant;
3339
3340 FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
3341
3342 count++;
3343 }
3344
3345 for (; count < nargs; count++)
3346 {
3347 rtx val = va_arg (p, rtx);
3348 enum machine_mode mode = va_arg (p, enum machine_mode);
3349
3350 /* We cannot convert the arg value to the mode the library wants here;
3351 must do it earlier where we know the signedness of the arg. */
3352 gcc_assert (mode != BLKmode
3353 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3354
3355 /* Make sure it is a reasonable operand for a move or push insn. */
3356 if (!REG_P (val) && !MEM_P (val)
3357 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
3358 val = force_operand (val, NULL_RTX);
3359
3360 if (pass_by_reference (&args_so_far, mode, NULL_TREE, 1))
3361 {
3362 rtx slot;
3363 int must_copy
3364 = !reference_callee_copied (&args_so_far, mode, NULL_TREE, 1);
3365
3366 /* loop.c won't look at CALL_INSN_FUNCTION_USAGE of const/pure
3367 functions, so we have to pretend this isn't such a function. */
3368 if (flags & ECF_LIBCALL_BLOCK)
3369 {
3370 rtx insns = get_insns ();
3371 end_sequence ();
3372 emit_insn (insns);
3373 }
3374 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3375
3376 /* If this was a CONST function, it is now PURE since
3377 it now reads memory. */
3378 if (flags & ECF_CONST)
3379 {
3380 flags &= ~ECF_CONST;
3381 flags |= ECF_PURE;
3382 }
3383
3384 if (GET_MODE (val) == MEM && !must_copy)
3385 slot = val;
3386 else
3387 {
3388 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3389 0, 1, 1);
3390 emit_move_insn (slot, val);
3391 }
3392
3393 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3394 gen_rtx_USE (VOIDmode, slot),
3395 call_fusage);
3396 if (must_copy)
3397 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3398 gen_rtx_CLOBBER (VOIDmode,
3399 slot),
3400 call_fusage);
3401
3402 mode = Pmode;
3403 val = force_operand (XEXP (slot, 0), NULL_RTX);
3404 }
3405
3406 argvec[count].value = val;
3407 argvec[count].mode = mode;
3408
3409 argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
3410
3411 argvec[count].partial
3412 = targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL_TREE, 1);
3413
3414 locate_and_pad_parm (mode, NULL_TREE,
3415 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3416 1,
3417 #else
3418 argvec[count].reg != 0,
3419 #endif
3420 argvec[count].partial,
3421 NULL_TREE, &args_size, &argvec[count].locate);
3422
3423 gcc_assert (!argvec[count].locate.size.var);
3424
3425 if (argvec[count].reg == 0 || argvec[count].partial != 0
3426 || reg_parm_stack_space > 0)
3427 args_size.constant += argvec[count].locate.size.constant;
3428
3429 FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
3430 }
3431
3432 /* If this machine requires an external definition for library
3433 functions, write one out. */
3434 assemble_external_libcall (fun);
3435
3436 original_args_size = args_size;
3437 args_size.constant = (((args_size.constant
3438 + stack_pointer_delta
3439 + STACK_BYTES - 1)
3440 / STACK_BYTES
3441 * STACK_BYTES)
3442 - stack_pointer_delta);
3443
3444 args_size.constant = MAX (args_size.constant,
3445 reg_parm_stack_space);
3446
3447 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3448 args_size.constant -= reg_parm_stack_space;
3449 #endif
3450
3451 if (args_size.constant > current_function_outgoing_args_size)
3452 current_function_outgoing_args_size = args_size.constant;
3453
3454 if (ACCUMULATE_OUTGOING_ARGS)
3455 {
3456 /* Since the stack pointer will never be pushed, it is possible for
3457 the evaluation of a parm to clobber something we have already
3458 written to the stack. Since most function calls on RISC machines
3459 do not use the stack, this is uncommon, but must work correctly.
3460
3461 Therefore, we save any area of the stack that was already written
3462 and that we are using. Here we set up to do this by making a new
3463 stack usage map from the old one.
3464
3465 Another approach might be to try to reorder the argument
3466 evaluations to avoid this conflicting stack usage. */
3467
3468 needed = args_size.constant;
3469
3470 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3471 /* Since we will be writing into the entire argument area, the
3472 map must be allocated for its entire size, not just the part that
3473 is the responsibility of the caller. */
3474 needed += reg_parm_stack_space;
3475 #endif
3476
3477 #ifdef ARGS_GROW_DOWNWARD
3478 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3479 needed + 1);
3480 #else
3481 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3482 needed);
3483 #endif
3484 stack_usage_map = alloca (highest_outgoing_arg_in_use);
3485
3486 if (initial_highest_arg_in_use)
3487 memcpy (stack_usage_map, initial_stack_usage_map,
3488 initial_highest_arg_in_use);
3489
3490 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3491 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3492 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3493 needed = 0;
3494
3495 /* We must be careful to use virtual regs before they're instantiated,
3496 and real regs afterwards. Loop optimization, for example, can create
3497 new libcalls after we've instantiated the virtual regs, and if we
3498 use virtuals anyway, they won't match the rtl patterns. */
3499
3500 if (virtuals_instantiated)
3501 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3502 else
3503 argblock = virtual_outgoing_args_rtx;
3504 }
3505 else
3506 {
3507 if (!PUSH_ARGS)
3508 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3509 }
3510
3511 /* If we push args individually in reverse order, perform stack alignment
3512 before the first push (the last arg). */
3513 if (argblock == 0 && PUSH_ARGS_REVERSED)
3514 anti_adjust_stack (GEN_INT (args_size.constant
3515 - original_args_size.constant));
3516
3517 if (PUSH_ARGS_REVERSED)
3518 {
3519 inc = -1;
3520 argnum = nargs - 1;
3521 }
3522 else
3523 {
3524 inc = 1;
3525 argnum = 0;
3526 }
3527
3528 #ifdef REG_PARM_STACK_SPACE
3529 if (ACCUMULATE_OUTGOING_ARGS)
3530 {
3531 /* The argument list is the property of the called routine and it
3532 may clobber it. If the fixed area has been used for previous
3533 parameters, we must save and restore it. */
3534 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3535 &low_to_save, &high_to_save);
3536 }
3537 #endif
3538
3539 /* Push the args that need to be pushed. */
3540
3541 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3542 are to be pushed. */
3543 for (count = 0; count < nargs; count++, argnum += inc)
3544 {
3545 enum machine_mode mode = argvec[argnum].mode;
3546 rtx val = argvec[argnum].value;
3547 rtx reg = argvec[argnum].reg;
3548 int partial = argvec[argnum].partial;
3549 int lower_bound = 0, upper_bound = 0, i;
3550
3551 if (! (reg != 0 && partial == 0))
3552 {
3553 if (ACCUMULATE_OUTGOING_ARGS)
3554 {
3555 /* If this is being stored into a pre-allocated, fixed-size,
3556 stack area, save any previous data at that location. */
3557
3558 #ifdef ARGS_GROW_DOWNWARD
3559 /* stack_slot is negative, but we want to index stack_usage_map
3560 with positive values. */
3561 upper_bound = -argvec[argnum].locate.offset.constant + 1;
3562 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3563 #else
3564 lower_bound = argvec[argnum].locate.offset.constant;
3565 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3566 #endif
3567
3568 i = lower_bound;
3569 /* Don't worry about things in the fixed argument area;
3570 it has already been saved. */
3571 if (i < reg_parm_stack_space)
3572 i = reg_parm_stack_space;
3573 while (i < upper_bound && stack_usage_map[i] == 0)
3574 i++;
3575
3576 if (i < upper_bound)
3577 {
3578 /* We need to make a save area. */
3579 unsigned int size
3580 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3581 enum machine_mode save_mode
3582 = mode_for_size (size, MODE_INT, 1);
3583 rtx adr
3584 = plus_constant (argblock,
3585 argvec[argnum].locate.offset.constant);
3586 rtx stack_area
3587 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3588
3589 if (save_mode == BLKmode)
3590 {
3591 argvec[argnum].save_area
3592 = assign_stack_temp (BLKmode,
3593 argvec[argnum].locate.size.constant,
3594 0);
3595
3596 emit_block_move (validize_mem (argvec[argnum].save_area),
3597 stack_area,
3598 GEN_INT (argvec[argnum].locate.size.constant),
3599 BLOCK_OP_CALL_PARM);
3600 }
3601 else
3602 {
3603 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3604
3605 emit_move_insn (argvec[argnum].save_area, stack_area);
3606 }
3607 }
3608 }
3609
3610 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, PARM_BOUNDARY,
3611 partial, reg, 0, argblock,
3612 GEN_INT (argvec[argnum].locate.offset.constant),
3613 reg_parm_stack_space,
3614 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3615
3616 /* Now mark the segment we just used. */
3617 if (ACCUMULATE_OUTGOING_ARGS)
3618 for (i = lower_bound; i < upper_bound; i++)
3619 stack_usage_map[i] = 1;
3620
3621 NO_DEFER_POP;
3622 }
3623 }
3624
3625 /* If we pushed args in forward order, perform stack alignment
3626 after pushing the last arg. */
3627 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3628 anti_adjust_stack (GEN_INT (args_size.constant
3629 - original_args_size.constant));
3630
3631 if (PUSH_ARGS_REVERSED)
3632 argnum = nargs - 1;
3633 else
3634 argnum = 0;
3635
3636 fun = prepare_call_address (fun, NULL, &call_fusage, 0, 0);
3637
3638 /* Now load any reg parms into their regs. */
3639
3640 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3641 are to be pushed. */
3642 for (count = 0; count < nargs; count++, argnum += inc)
3643 {
3644 enum machine_mode mode = argvec[argnum].mode;
3645 rtx val = argvec[argnum].value;
3646 rtx reg = argvec[argnum].reg;
3647 int partial = argvec[argnum].partial;
3648
3649 /* Handle calls that pass values in multiple non-contiguous
3650 locations. The PA64 has examples of this for library calls. */
3651 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3652 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3653 else if (reg != 0 && partial == 0)
3654 emit_move_insn (reg, val);
3655
3656 NO_DEFER_POP;
3657 }
3658
3659 /* Any regs containing parms remain in use through the call. */
3660 for (count = 0; count < nargs; count++)
3661 {
3662 rtx reg = argvec[count].reg;
3663 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3664 use_group_regs (&call_fusage, reg);
3665 else if (reg != 0)
3666 use_reg (&call_fusage, reg);
3667 }
3668
3669 /* Pass the function the address in which to return a structure value. */
3670 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3671 {
3672 emit_move_insn (struct_value,
3673 force_reg (Pmode,
3674 force_operand (XEXP (mem_value, 0),
3675 NULL_RTX)));
3676 if (REG_P (struct_value))
3677 use_reg (&call_fusage, struct_value);
3678 }
3679
3680 /* Don't allow popping to be deferred, since then
3681 cse'ing of library calls could delete a call and leave the pop. */
3682 NO_DEFER_POP;
3683 valreg = (mem_value == 0 && outmode != VOIDmode
3684 ? hard_libcall_value (outmode) : NULL_RTX);
3685
3686 /* Stack must be properly aligned now. */
3687 gcc_assert (!(stack_pointer_delta
3688 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
3689
3690 before_call = get_last_insn ();
3691
3692 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3693 will set inhibit_defer_pop to that value. */
3694 /* The return type is needed to decide how many bytes the function pops.
3695 Signedness plays no role in that, so for simplicity, we pretend it's
3696 always signed. We also assume that the list of arguments passed has
3697 no impact, so we pretend it is unknown. */
3698
3699 emit_call_1 (fun, NULL,
3700 get_identifier (XSTR (orgfun, 0)),
3701 build_function_type (tfom, NULL_TREE),
3702 original_args_size.constant, args_size.constant,
3703 struct_value_size,
3704 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
3705 valreg,
3706 old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
3707
3708 /* For calls to `setjmp', etc., inform flow.c it should complain
3709 if nonvolatile values are live. For functions that cannot return,
3710 inform flow that control does not fall through. */
3711
3712 if (flags & ECF_NORETURN)
3713 {
3714 /* The barrier note must be emitted
3715 immediately after the CALL_INSN. Some ports emit more than
3716 just a CALL_INSN above, so we must search for it here. */
3717
3718 rtx last = get_last_insn ();
3719 while (!CALL_P (last))
3720 {
3721 last = PREV_INSN (last);
3722 /* There was no CALL_INSN? */
3723 gcc_assert (last != before_call);
3724 }
3725
3726 emit_barrier_after (last);
3727 }
3728
3729 /* Now restore inhibit_defer_pop to its actual original value. */
3730 OK_DEFER_POP;
3731
3732 /* If call is cse'able, make appropriate pair of reg-notes around it.
3733 Test valreg so we don't crash; may safely ignore `const'
3734 if return type is void. Disable for PARALLEL return values, because
3735 we have no way to move such values into a pseudo register. */
3736 if (flags & ECF_LIBCALL_BLOCK)
3737 {
3738 rtx insns;
3739
3740 if (valreg == 0)
3741 {
3742 insns = get_insns ();
3743 end_sequence ();
3744 emit_insn (insns);
3745 }
3746 else
3747 {
3748 rtx note = 0;
3749 rtx temp;
3750 int i;
3751
3752 if (GET_CODE (valreg) == PARALLEL)
3753 {
3754 temp = gen_reg_rtx (outmode);
3755 emit_group_store (temp, valreg, NULL_TREE,
3756 GET_MODE_SIZE (outmode));
3757 valreg = temp;
3758 }
3759
3760 temp = gen_reg_rtx (GET_MODE (valreg));
3761
3762 /* Construct an "equal form" for the value which mentions all the
3763 arguments in order as well as the function name. */
3764 for (i = 0; i < nargs; i++)
3765 note = gen_rtx_EXPR_LIST (VOIDmode, argvec[i].value, note);
3766 note = gen_rtx_EXPR_LIST (VOIDmode, fun, note);
3767
3768 insns = get_insns ();
3769 end_sequence ();
3770
3771 if (flags & ECF_PURE)
3772 note = gen_rtx_EXPR_LIST (VOIDmode,
3773 gen_rtx_USE (VOIDmode,
3774 gen_rtx_MEM (BLKmode,
3775 gen_rtx_SCRATCH (VOIDmode))),
3776 note);
3777
3778 emit_libcall_block (insns, temp, valreg, note);
3779
3780 valreg = temp;
3781 }
3782 }
3783 pop_temp_slots ();
3784
3785 /* Copy the value to the right place. */
3786 if (outmode != VOIDmode && retval)
3787 {
3788 if (mem_value)
3789 {
3790 if (value == 0)
3791 value = mem_value;
3792 if (value != mem_value)
3793 emit_move_insn (value, mem_value);
3794 }
3795 else if (GET_CODE (valreg) == PARALLEL)
3796 {
3797 if (value == 0)
3798 value = gen_reg_rtx (outmode);
3799 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
3800 }
3801 else if (value != 0)
3802 emit_move_insn (value, valreg);
3803 else
3804 value = valreg;
3805 }
3806
3807 if (ACCUMULATE_OUTGOING_ARGS)
3808 {
3809 #ifdef REG_PARM_STACK_SPACE
3810 if (save_area)
3811 restore_fixed_argument_area (save_area, argblock,
3812 high_to_save, low_to_save);
3813 #endif
3814
3815 /* If we saved any argument areas, restore them. */
3816 for (count = 0; count < nargs; count++)
3817 if (argvec[count].save_area)
3818 {
3819 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
3820 rtx adr = plus_constant (argblock,
3821 argvec[count].locate.offset.constant);
3822 rtx stack_area = gen_rtx_MEM (save_mode,
3823 memory_address (save_mode, adr));
3824
3825 if (save_mode == BLKmode)
3826 emit_block_move (stack_area,
3827 validize_mem (argvec[count].save_area),
3828 GEN_INT (argvec[count].locate.size.constant),
3829 BLOCK_OP_CALL_PARM);
3830 else
3831 emit_move_insn (stack_area, argvec[count].save_area);
3832 }
3833
3834 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3835 stack_usage_map = initial_stack_usage_map;
3836 }
3837
3838 return value;
3839
3840 }
3841 \f
3842 /* Output a library call to function FUN (a SYMBOL_REF rtx)
3843 (emitting the queue unless NO_QUEUE is nonzero),
3844 for a value of mode OUTMODE,
3845 with NARGS different arguments, passed as alternating rtx values
3846 and machine_modes to convert them to.
3847
3848 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for `const'
3849 calls, LCT_PURE for `pure' calls, LCT_CONST_MAKE_BLOCK for `const' calls
3850 which should be enclosed in REG_LIBCALL/REG_RETVAL notes,
3851 LCT_PURE_MAKE_BLOCK for `purep' calls which should be enclosed in
3852 REG_LIBCALL/REG_RETVAL notes with extra (use (memory (scratch)),
3853 or other LCT_ value for other types of library calls. */
3854
3855 void
3856 emit_library_call (rtx orgfun, enum libcall_type fn_type,
3857 enum machine_mode outmode, int nargs, ...)
3858 {
3859 va_list p;
3860
3861 va_start (p, nargs);
3862 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
3863 va_end (p);
3864 }
3865 \f
3866 /* Like emit_library_call except that an extra argument, VALUE,
3867 comes second and says where to store the result.
3868 (If VALUE is zero, this function chooses a convenient way
3869 to return the value.
3870
3871 This function returns an rtx for where the value is to be found.
3872 If VALUE is nonzero, VALUE is returned. */
3873
3874 rtx
3875 emit_library_call_value (rtx orgfun, rtx value,
3876 enum libcall_type fn_type,
3877 enum machine_mode outmode, int nargs, ...)
3878 {
3879 rtx result;
3880 va_list p;
3881
3882 va_start (p, nargs);
3883 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
3884 nargs, p);
3885 va_end (p);
3886
3887 return result;
3888 }
3889 \f
3890 /* Store a single argument for a function call
3891 into the register or memory area where it must be passed.
3892 *ARG describes the argument value and where to pass it.
3893
3894 ARGBLOCK is the address of the stack-block for all the arguments,
3895 or 0 on a machine where arguments are pushed individually.
3896
3897 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
3898 so must be careful about how the stack is used.
3899
3900 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
3901 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
3902 that we need not worry about saving and restoring the stack.
3903
3904 FNDECL is the declaration of the function we are calling.
3905
3906 Return nonzero if this arg should cause sibcall failure,
3907 zero otherwise. */
3908
3909 static int
3910 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
3911 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
3912 {
3913 tree pval = arg->tree_value;
3914 rtx reg = 0;
3915 int partial = 0;
3916 int used = 0;
3917 int i, lower_bound = 0, upper_bound = 0;
3918 int sibcall_failure = 0;
3919
3920 if (TREE_CODE (pval) == ERROR_MARK)
3921 return 1;
3922
3923 /* Push a new temporary level for any temporaries we make for
3924 this argument. */
3925 push_temp_slots ();
3926
3927 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
3928 {
3929 /* If this is being stored into a pre-allocated, fixed-size, stack area,
3930 save any previous data at that location. */
3931 if (argblock && ! variable_size && arg->stack)
3932 {
3933 #ifdef ARGS_GROW_DOWNWARD
3934 /* stack_slot is negative, but we want to index stack_usage_map
3935 with positive values. */
3936 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
3937 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
3938 else
3939 upper_bound = 0;
3940
3941 lower_bound = upper_bound - arg->locate.size.constant;
3942 #else
3943 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
3944 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
3945 else
3946 lower_bound = 0;
3947
3948 upper_bound = lower_bound + arg->locate.size.constant;
3949 #endif
3950
3951 i = lower_bound;
3952 /* Don't worry about things in the fixed argument area;
3953 it has already been saved. */
3954 if (i < reg_parm_stack_space)
3955 i = reg_parm_stack_space;
3956 while (i < upper_bound && stack_usage_map[i] == 0)
3957 i++;
3958
3959 if (i < upper_bound)
3960 {
3961 /* We need to make a save area. */
3962 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
3963 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
3964 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
3965 rtx stack_area = gen_rtx_MEM (save_mode, adr);
3966
3967 if (save_mode == BLKmode)
3968 {
3969 tree ot = TREE_TYPE (arg->tree_value);
3970 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
3971 | TYPE_QUAL_CONST));
3972
3973 arg->save_area = assign_temp (nt, 0, 1, 1);
3974 preserve_temp_slots (arg->save_area);
3975 emit_block_move (validize_mem (arg->save_area), stack_area,
3976 expr_size (arg->tree_value),
3977 BLOCK_OP_CALL_PARM);
3978 }
3979 else
3980 {
3981 arg->save_area = gen_reg_rtx (save_mode);
3982 emit_move_insn (arg->save_area, stack_area);
3983 }
3984 }
3985 }
3986 }
3987
3988 /* If this isn't going to be placed on both the stack and in registers,
3989 set up the register and number of words. */
3990 if (! arg->pass_on_stack)
3991 {
3992 if (flags & ECF_SIBCALL)
3993 reg = arg->tail_call_reg;
3994 else
3995 reg = arg->reg;
3996 partial = arg->partial;
3997 }
3998
3999 /* Being passed entirely in a register. We shouldn't be called in
4000 this case. */
4001 gcc_assert (reg == 0 || partial != 0);
4002
4003 /* If this arg needs special alignment, don't load the registers
4004 here. */
4005 if (arg->n_aligned_regs != 0)
4006 reg = 0;
4007
4008 /* If this is being passed partially in a register, we can't evaluate
4009 it directly into its stack slot. Otherwise, we can. */
4010 if (arg->value == 0)
4011 {
4012 /* stack_arg_under_construction is nonzero if a function argument is
4013 being evaluated directly into the outgoing argument list and
4014 expand_call must take special action to preserve the argument list
4015 if it is called recursively.
4016
4017 For scalar function arguments stack_usage_map is sufficient to
4018 determine which stack slots must be saved and restored. Scalar
4019 arguments in general have pass_on_stack == 0.
4020
4021 If this argument is initialized by a function which takes the
4022 address of the argument (a C++ constructor or a C function
4023 returning a BLKmode structure), then stack_usage_map is
4024 insufficient and expand_call must push the stack around the
4025 function call. Such arguments have pass_on_stack == 1.
4026
4027 Note that it is always safe to set stack_arg_under_construction,
4028 but this generates suboptimal code if set when not needed. */
4029
4030 if (arg->pass_on_stack)
4031 stack_arg_under_construction++;
4032
4033 arg->value = expand_expr (pval,
4034 (partial
4035 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4036 ? NULL_RTX : arg->stack,
4037 VOIDmode, EXPAND_STACK_PARM);
4038
4039 /* If we are promoting object (or for any other reason) the mode
4040 doesn't agree, convert the mode. */
4041
4042 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4043 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4044 arg->value, arg->unsignedp);
4045
4046 if (arg->pass_on_stack)
4047 stack_arg_under_construction--;
4048 }
4049
4050 /* Don't allow anything left on stack from computation
4051 of argument to alloca. */
4052 if (flags & ECF_MAY_BE_ALLOCA)
4053 do_pending_stack_adjust ();
4054
4055 if (arg->value == arg->stack)
4056 /* If the value is already in the stack slot, we are done. */
4057 ;
4058 else if (arg->mode != BLKmode)
4059 {
4060 int size;
4061
4062 /* Argument is a scalar, not entirely passed in registers.
4063 (If part is passed in registers, arg->partial says how much
4064 and emit_push_insn will take care of putting it there.)
4065
4066 Push it, and if its size is less than the
4067 amount of space allocated to it,
4068 also bump stack pointer by the additional space.
4069 Note that in C the default argument promotions
4070 will prevent such mismatches. */
4071
4072 size = GET_MODE_SIZE (arg->mode);
4073 /* Compute how much space the push instruction will push.
4074 On many machines, pushing a byte will advance the stack
4075 pointer by a halfword. */
4076 #ifdef PUSH_ROUNDING
4077 size = PUSH_ROUNDING (size);
4078 #endif
4079 used = size;
4080
4081 /* Compute how much space the argument should get:
4082 round up to a multiple of the alignment for arguments. */
4083 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4084 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4085 / (PARM_BOUNDARY / BITS_PER_UNIT))
4086 * (PARM_BOUNDARY / BITS_PER_UNIT));
4087
4088 /* This isn't already where we want it on the stack, so put it there.
4089 This can either be done with push or copy insns. */
4090 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4091 PARM_BOUNDARY, partial, reg, used - size, argblock,
4092 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4093 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4094
4095 /* Unless this is a partially-in-register argument, the argument is now
4096 in the stack. */
4097 if (partial == 0)
4098 arg->value = arg->stack;
4099 }
4100 else
4101 {
4102 /* BLKmode, at least partly to be pushed. */
4103
4104 unsigned int parm_align;
4105 int excess;
4106 rtx size_rtx;
4107
4108 /* Pushing a nonscalar.
4109 If part is passed in registers, PARTIAL says how much
4110 and emit_push_insn will take care of putting it there. */
4111
4112 /* Round its size up to a multiple
4113 of the allocation unit for arguments. */
4114
4115 if (arg->locate.size.var != 0)
4116 {
4117 excess = 0;
4118 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4119 }
4120 else
4121 {
4122 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4123 for BLKmode is careful to avoid it. */
4124 excess = (arg->locate.size.constant
4125 - int_size_in_bytes (TREE_TYPE (pval))
4126 + partial);
4127 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4128 NULL_RTX, TYPE_MODE (sizetype), 0);
4129 }
4130
4131 parm_align = arg->locate.boundary;
4132
4133 /* When an argument is padded down, the block is aligned to
4134 PARM_BOUNDARY, but the actual argument isn't. */
4135 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4136 {
4137 if (arg->locate.size.var)
4138 parm_align = BITS_PER_UNIT;
4139 else if (excess)
4140 {
4141 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4142 parm_align = MIN (parm_align, excess_align);
4143 }
4144 }
4145
4146 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4147 {
4148 /* emit_push_insn might not work properly if arg->value and
4149 argblock + arg->locate.offset areas overlap. */
4150 rtx x = arg->value;
4151 int i = 0;
4152
4153 if (XEXP (x, 0) == current_function_internal_arg_pointer
4154 || (GET_CODE (XEXP (x, 0)) == PLUS
4155 && XEXP (XEXP (x, 0), 0) ==
4156 current_function_internal_arg_pointer
4157 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
4158 {
4159 if (XEXP (x, 0) != current_function_internal_arg_pointer)
4160 i = INTVAL (XEXP (XEXP (x, 0), 1));
4161
4162 /* expand_call should ensure this. */
4163 gcc_assert (!arg->locate.offset.var
4164 && GET_CODE (size_rtx) == CONST_INT);
4165
4166 if (arg->locate.offset.constant > i)
4167 {
4168 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4169 sibcall_failure = 1;
4170 }
4171 else if (arg->locate.offset.constant < i)
4172 {
4173 if (i < arg->locate.offset.constant + INTVAL (size_rtx))
4174 sibcall_failure = 1;
4175 }
4176 }
4177 }
4178
4179 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4180 parm_align, partial, reg, excess, argblock,
4181 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4182 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4183
4184 /* Unless this is a partially-in-register argument, the argument is now
4185 in the stack.
4186
4187 ??? Unlike the case above, in which we want the actual
4188 address of the data, so that we can load it directly into a
4189 register, here we want the address of the stack slot, so that
4190 it's properly aligned for word-by-word copying or something
4191 like that. It's not clear that this is always correct. */
4192 if (partial == 0)
4193 arg->value = arg->stack_slot;
4194 }
4195
4196 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
4197 {
4198 tree type = TREE_TYPE (arg->tree_value);
4199 arg->parallel_value
4200 = emit_group_load_into_temps (arg->reg, arg->value, type,
4201 int_size_in_bytes (type));
4202 }
4203
4204 /* Mark all slots this store used. */
4205 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4206 && argblock && ! variable_size && arg->stack)
4207 for (i = lower_bound; i < upper_bound; i++)
4208 stack_usage_map[i] = 1;
4209
4210 /* Once we have pushed something, pops can't safely
4211 be deferred during the rest of the arguments. */
4212 NO_DEFER_POP;
4213
4214 /* Free any temporary slots made in processing this argument. Show
4215 that we might have taken the address of something and pushed that
4216 as an operand. */
4217 preserve_temp_slots (NULL_RTX);
4218 free_temp_slots ();
4219 pop_temp_slots ();
4220
4221 return sibcall_failure;
4222 }
4223
4224 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4225
4226 bool
4227 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4228 tree type)
4229 {
4230 if (!type)
4231 return false;
4232
4233 /* If the type has variable size... */
4234 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4235 return true;
4236
4237 /* If the type is marked as addressable (it is required
4238 to be constructed into the stack)... */
4239 if (TREE_ADDRESSABLE (type))
4240 return true;
4241
4242 return false;
4243 }
4244
4245 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4246 takes trailing padding of a structure into account. */
4247 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4248
4249 bool
4250 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, tree type)
4251 {
4252 if (!type)
4253 return false;
4254
4255 /* If the type has variable size... */
4256 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4257 return true;
4258
4259 /* If the type is marked as addressable (it is required
4260 to be constructed into the stack)... */
4261 if (TREE_ADDRESSABLE (type))
4262 return true;
4263
4264 /* If the padding and mode of the type is such that a copy into
4265 a register would put it into the wrong part of the register. */
4266 if (mode == BLKmode
4267 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4268 && (FUNCTION_ARG_PADDING (mode, type)
4269 == (BYTES_BIG_ENDIAN ? upward : downward)))
4270 return true;
4271
4272 return false;
4273 }