tree.h: Include vec.h
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "flags.h"
29 #include "expr.h"
30 #include "optabs.h"
31 #include "libfuncs.h"
32 #include "function.h"
33 #include "regs.h"
34 #include "toplev.h"
35 #include "output.h"
36 #include "tm_p.h"
37 #include "timevar.h"
38 #include "sbitmap.h"
39 #include "langhooks.h"
40 #include "target.h"
41 #include "cgraph.h"
42 #include "except.h"
43
44 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
45 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
46
47 /* Data structure and subroutines used within expand_call. */
48
49 struct arg_data
50 {
51 /* Tree node for this argument. */
52 tree tree_value;
53 /* Mode for value; TYPE_MODE unless promoted. */
54 enum machine_mode mode;
55 /* Current RTL value for argument, or 0 if it isn't precomputed. */
56 rtx value;
57 /* Initially-compute RTL value for argument; only for const functions. */
58 rtx initial_value;
59 /* Register to pass this argument in, 0 if passed on stack, or an
60 PARALLEL if the arg is to be copied into multiple non-contiguous
61 registers. */
62 rtx reg;
63 /* Register to pass this argument in when generating tail call sequence.
64 This is not the same register as for normal calls on machines with
65 register windows. */
66 rtx tail_call_reg;
67 /* If REG was promoted from the actual mode of the argument expression,
68 indicates whether the promotion is sign- or zero-extended. */
69 int unsignedp;
70 /* Number of registers to use. 0 means put the whole arg in registers.
71 Also 0 if not passed in registers. */
72 int partial;
73 /* Nonzero if argument must be passed on stack.
74 Note that some arguments may be passed on the stack
75 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
76 pass_on_stack identifies arguments that *cannot* go in registers. */
77 int pass_on_stack;
78 /* Some fields packaged up for locate_and_pad_parm. */
79 struct locate_and_pad_arg_data locate;
80 /* Location on the stack at which parameter should be stored. The store
81 has already been done if STACK == VALUE. */
82 rtx stack;
83 /* Location on the stack of the start of this argument slot. This can
84 differ from STACK if this arg pads downward. This location is known
85 to be aligned to FUNCTION_ARG_BOUNDARY. */
86 rtx stack_slot;
87 /* Place that this stack area has been saved, if needed. */
88 rtx save_area;
89 /* If an argument's alignment does not permit direct copying into registers,
90 copy in smaller-sized pieces into pseudos. These are stored in a
91 block pointed to by this field. The next field says how many
92 word-sized pseudos we made. */
93 rtx *aligned_regs;
94 int n_aligned_regs;
95 };
96
97 /* A vector of one char per byte of stack space. A byte if nonzero if
98 the corresponding stack location has been used.
99 This vector is used to prevent a function call within an argument from
100 clobbering any stack already set up. */
101 static char *stack_usage_map;
102
103 /* Size of STACK_USAGE_MAP. */
104 static int highest_outgoing_arg_in_use;
105
106 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
107 stack location's tail call argument has been already stored into the stack.
108 This bitmap is used to prevent sibling call optimization if function tries
109 to use parent's incoming argument slots when they have been already
110 overwritten with tail call arguments. */
111 static sbitmap stored_args_map;
112
113 /* stack_arg_under_construction is nonzero when an argument may be
114 initialized with a constructor call (including a C function that
115 returns a BLKmode struct) and expand_call must take special action
116 to make sure the object being constructed does not overlap the
117 argument list for the constructor call. */
118 int stack_arg_under_construction;
119
120 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
121 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
122 CUMULATIVE_ARGS *);
123 static void precompute_register_parameters (int, struct arg_data *, int *);
124 static int store_one_arg (struct arg_data *, rtx, int, int, int);
125 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
126 static int finalize_must_preallocate (int, int, struct arg_data *,
127 struct args_size *);
128 static void precompute_arguments (int, int, struct arg_data *);
129 static int compute_argument_block_size (int, struct args_size *, int);
130 static void initialize_argument_information (int, struct arg_data *,
131 struct args_size *, int, tree,
132 tree, CUMULATIVE_ARGS *, int,
133 rtx *, int *, int *, int *,
134 bool *, bool);
135 static void compute_argument_addresses (struct arg_data *, rtx, int);
136 static rtx rtx_for_function_call (tree, tree);
137 static void load_register_parameters (struct arg_data *, int, rtx *, int,
138 int, int *);
139 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
140 enum machine_mode, int, va_list);
141 static int special_function_p (tree, int);
142 static int check_sibcall_argument_overlap_1 (rtx);
143 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
144
145 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
146 int);
147 static tree fix_unsafe_tree (tree);
148 static bool shift_returned_value (tree, rtx *);
149
150 #ifdef REG_PARM_STACK_SPACE
151 static rtx save_fixed_argument_area (int, rtx, int *, int *);
152 static void restore_fixed_argument_area (rtx, rtx, int, int);
153 #endif
154 \f
155 /* Force FUNEXP into a form suitable for the address of a CALL,
156 and return that as an rtx. Also load the static chain register
157 if FNDECL is a nested function.
158
159 CALL_FUSAGE points to a variable holding the prospective
160 CALL_INSN_FUNCTION_USAGE information. */
161
162 rtx
163 prepare_call_address (rtx funexp, rtx static_chain_value,
164 rtx *call_fusage, int reg_parm_seen, int sibcallp)
165 {
166 /* Make a valid memory address and copy constants through pseudo-regs,
167 but not for a constant address if -fno-function-cse. */
168 if (GET_CODE (funexp) != SYMBOL_REF)
169 /* If we are using registers for parameters, force the
170 function address into a register now. */
171 funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
172 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
173 : memory_address (FUNCTION_MODE, funexp));
174 else if (! sibcallp)
175 {
176 #ifndef NO_FUNCTION_CSE
177 if (optimize && ! flag_no_function_cse)
178 funexp = force_reg (Pmode, funexp);
179 #endif
180 }
181
182 if (static_chain_value != 0)
183 {
184 static_chain_value = convert_memory_address (Pmode, static_chain_value);
185 emit_move_insn (static_chain_rtx, static_chain_value);
186
187 if (REG_P (static_chain_rtx))
188 use_reg (call_fusage, static_chain_rtx);
189 }
190
191 return funexp;
192 }
193
194 /* Generate instructions to call function FUNEXP,
195 and optionally pop the results.
196 The CALL_INSN is the first insn generated.
197
198 FNDECL is the declaration node of the function. This is given to the
199 macro RETURN_POPS_ARGS to determine whether this function pops its own args.
200
201 FUNTYPE is the data type of the function. This is given to the macro
202 RETURN_POPS_ARGS to determine whether this function pops its own args.
203 We used to allow an identifier for library functions, but that doesn't
204 work when the return type is an aggregate type and the calling convention
205 says that the pointer to this aggregate is to be popped by the callee.
206
207 STACK_SIZE is the number of bytes of arguments on the stack,
208 ROUNDED_STACK_SIZE is that number rounded up to
209 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
210 both to put into the call insn and to generate explicit popping
211 code if necessary.
212
213 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
214 It is zero if this call doesn't want a structure value.
215
216 NEXT_ARG_REG is the rtx that results from executing
217 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
218 just after all the args have had their registers assigned.
219 This could be whatever you like, but normally it is the first
220 arg-register beyond those used for args in this call,
221 or 0 if all the arg-registers are used in this call.
222 It is passed on to `gen_call' so you can put this info in the call insn.
223
224 VALREG is a hard register in which a value is returned,
225 or 0 if the call does not return a value.
226
227 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
228 the args to this call were processed.
229 We restore `inhibit_defer_pop' to that value.
230
231 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
232 denote registers used by the called function. */
233
234 static void
235 emit_call_1 (rtx funexp, tree fntree, tree fndecl ATTRIBUTE_UNUSED,
236 tree funtype ATTRIBUTE_UNUSED,
237 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
238 HOST_WIDE_INT rounded_stack_size,
239 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
240 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
241 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
242 CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
243 {
244 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
245 rtx call_insn;
246 int already_popped = 0;
247 HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
248 #if defined (HAVE_call) && defined (HAVE_call_value)
249 rtx struct_value_size_rtx;
250 struct_value_size_rtx = GEN_INT (struct_value_size);
251 #endif
252
253 #ifdef CALL_POPS_ARGS
254 n_popped += CALL_POPS_ARGS (* args_so_far);
255 #endif
256
257 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
258 and we don't want to load it into a register as an optimization,
259 because prepare_call_address already did it if it should be done. */
260 if (GET_CODE (funexp) != SYMBOL_REF)
261 funexp = memory_address (FUNCTION_MODE, funexp);
262
263 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
264 if ((ecf_flags & ECF_SIBCALL)
265 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
266 && (n_popped > 0 || stack_size == 0))
267 {
268 rtx n_pop = GEN_INT (n_popped);
269 rtx pat;
270
271 /* If this subroutine pops its own args, record that in the call insn
272 if possible, for the sake of frame pointer elimination. */
273
274 if (valreg)
275 pat = GEN_SIBCALL_VALUE_POP (valreg,
276 gen_rtx_MEM (FUNCTION_MODE, funexp),
277 rounded_stack_size_rtx, next_arg_reg,
278 n_pop);
279 else
280 pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
281 rounded_stack_size_rtx, next_arg_reg, n_pop);
282
283 emit_call_insn (pat);
284 already_popped = 1;
285 }
286 else
287 #endif
288
289 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
290 /* If the target has "call" or "call_value" insns, then prefer them
291 if no arguments are actually popped. If the target does not have
292 "call" or "call_value" insns, then we must use the popping versions
293 even if the call has no arguments to pop. */
294 #if defined (HAVE_call) && defined (HAVE_call_value)
295 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
296 && n_popped > 0 && ! (ecf_flags & ECF_SP_DEPRESSED))
297 #else
298 if (HAVE_call_pop && HAVE_call_value_pop)
299 #endif
300 {
301 rtx n_pop = GEN_INT (n_popped);
302 rtx pat;
303
304 /* If this subroutine pops its own args, record that in the call insn
305 if possible, for the sake of frame pointer elimination. */
306
307 if (valreg)
308 pat = GEN_CALL_VALUE_POP (valreg,
309 gen_rtx_MEM (FUNCTION_MODE, funexp),
310 rounded_stack_size_rtx, next_arg_reg, n_pop);
311 else
312 pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
313 rounded_stack_size_rtx, next_arg_reg, n_pop);
314
315 emit_call_insn (pat);
316 already_popped = 1;
317 }
318 else
319 #endif
320
321 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
322 if ((ecf_flags & ECF_SIBCALL)
323 && HAVE_sibcall && HAVE_sibcall_value)
324 {
325 if (valreg)
326 emit_call_insn (GEN_SIBCALL_VALUE (valreg,
327 gen_rtx_MEM (FUNCTION_MODE, funexp),
328 rounded_stack_size_rtx,
329 next_arg_reg, NULL_RTX));
330 else
331 emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
332 rounded_stack_size_rtx, next_arg_reg,
333 struct_value_size_rtx));
334 }
335 else
336 #endif
337
338 #if defined (HAVE_call) && defined (HAVE_call_value)
339 if (HAVE_call && HAVE_call_value)
340 {
341 if (valreg)
342 emit_call_insn (GEN_CALL_VALUE (valreg,
343 gen_rtx_MEM (FUNCTION_MODE, funexp),
344 rounded_stack_size_rtx, next_arg_reg,
345 NULL_RTX));
346 else
347 emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
348 rounded_stack_size_rtx, next_arg_reg,
349 struct_value_size_rtx));
350 }
351 else
352 #endif
353 abort ();
354
355 /* Find the call we just emitted. */
356 call_insn = last_call_insn ();
357
358 /* Mark memory as used for "pure" function call. */
359 if (ecf_flags & ECF_PURE)
360 call_fusage
361 = gen_rtx_EXPR_LIST
362 (VOIDmode,
363 gen_rtx_USE (VOIDmode,
364 gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))),
365 call_fusage);
366
367 /* Put the register usage information there. */
368 add_function_usage_to (call_insn, call_fusage);
369
370 /* If this is a const call, then set the insn's unchanging bit. */
371 if (ecf_flags & (ECF_CONST | ECF_PURE))
372 CONST_OR_PURE_CALL_P (call_insn) = 1;
373
374 /* If this call can't throw, attach a REG_EH_REGION reg note to that
375 effect. */
376 if (ecf_flags & ECF_NOTHROW)
377 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, const0_rtx,
378 REG_NOTES (call_insn));
379 else
380 {
381 int rn = lookup_stmt_eh_region (fntree);
382
383 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't
384 throw, which we already took care of. */
385 if (rn > 0)
386 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
387 REG_NOTES (call_insn));
388 note_current_region_may_contain_throw ();
389 }
390
391 if (ecf_flags & ECF_NORETURN)
392 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_NORETURN, const0_rtx,
393 REG_NOTES (call_insn));
394 if (ecf_flags & ECF_ALWAYS_RETURN)
395 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_ALWAYS_RETURN, const0_rtx,
396 REG_NOTES (call_insn));
397
398 if (ecf_flags & ECF_RETURNS_TWICE)
399 {
400 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_SETJMP, const0_rtx,
401 REG_NOTES (call_insn));
402 current_function_calls_setjmp = 1;
403 }
404
405 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
406
407 /* Restore this now, so that we do defer pops for this call's args
408 if the context of the call as a whole permits. */
409 inhibit_defer_pop = old_inhibit_defer_pop;
410
411 if (n_popped > 0)
412 {
413 if (!already_popped)
414 CALL_INSN_FUNCTION_USAGE (call_insn)
415 = gen_rtx_EXPR_LIST (VOIDmode,
416 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
417 CALL_INSN_FUNCTION_USAGE (call_insn));
418 rounded_stack_size -= n_popped;
419 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
420 stack_pointer_delta -= n_popped;
421 }
422
423 if (!ACCUMULATE_OUTGOING_ARGS)
424 {
425 /* If returning from the subroutine does not automatically pop the args,
426 we need an instruction to pop them sooner or later.
427 Perhaps do it now; perhaps just record how much space to pop later.
428
429 If returning from the subroutine does pop the args, indicate that the
430 stack pointer will be changed. */
431
432 if (rounded_stack_size != 0)
433 {
434 if (ecf_flags & (ECF_SP_DEPRESSED | ECF_NORETURN | ECF_LONGJMP))
435 /* Just pretend we did the pop. */
436 stack_pointer_delta -= rounded_stack_size;
437 else if (flag_defer_pop && inhibit_defer_pop == 0
438 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
439 pending_stack_adjust += rounded_stack_size;
440 else
441 adjust_stack (rounded_stack_size_rtx);
442 }
443 }
444 /* When we accumulate outgoing args, we must avoid any stack manipulations.
445 Restore the stack pointer to its original value now. Usually
446 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
447 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
448 popping variants of functions exist as well.
449
450 ??? We may optimize similar to defer_pop above, but it is
451 probably not worthwhile.
452
453 ??? It will be worthwhile to enable combine_stack_adjustments even for
454 such machines. */
455 else if (n_popped)
456 anti_adjust_stack (GEN_INT (n_popped));
457 }
458
459 /* Determine if the function identified by NAME and FNDECL is one with
460 special properties we wish to know about.
461
462 For example, if the function might return more than one time (setjmp), then
463 set RETURNS_TWICE to a nonzero value.
464
465 Similarly set LONGJMP for if the function is in the longjmp family.
466
467 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
468 space from the stack such as alloca. */
469
470 static int
471 special_function_p (tree fndecl, int flags)
472 {
473 if (fndecl && DECL_NAME (fndecl)
474 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
475 /* Exclude functions not at the file scope, or not `extern',
476 since they are not the magic functions we would otherwise
477 think they are.
478 FIXME: this should be handled with attributes, not with this
479 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
480 because you can declare fork() inside a function if you
481 wish. */
482 && (DECL_CONTEXT (fndecl) == NULL_TREE
483 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
484 && TREE_PUBLIC (fndecl))
485 {
486 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
487 const char *tname = name;
488
489 /* We assume that alloca will always be called by name. It
490 makes no sense to pass it as a pointer-to-function to
491 anything that does not understand its behavior. */
492 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
493 && name[0] == 'a'
494 && ! strcmp (name, "alloca"))
495 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
496 && name[0] == '_'
497 && ! strcmp (name, "__builtin_alloca"))))
498 flags |= ECF_MAY_BE_ALLOCA;
499
500 /* Disregard prefix _, __ or __x. */
501 if (name[0] == '_')
502 {
503 if (name[1] == '_' && name[2] == 'x')
504 tname += 3;
505 else if (name[1] == '_')
506 tname += 2;
507 else
508 tname += 1;
509 }
510
511 if (tname[0] == 's')
512 {
513 if ((tname[1] == 'e'
514 && (! strcmp (tname, "setjmp")
515 || ! strcmp (tname, "setjmp_syscall")))
516 || (tname[1] == 'i'
517 && ! strcmp (tname, "sigsetjmp"))
518 || (tname[1] == 'a'
519 && ! strcmp (tname, "savectx")))
520 flags |= ECF_RETURNS_TWICE;
521
522 if (tname[1] == 'i'
523 && ! strcmp (tname, "siglongjmp"))
524 flags |= ECF_LONGJMP;
525 }
526 else if ((tname[0] == 'q' && tname[1] == 's'
527 && ! strcmp (tname, "qsetjmp"))
528 || (tname[0] == 'v' && tname[1] == 'f'
529 && ! strcmp (tname, "vfork")))
530 flags |= ECF_RETURNS_TWICE;
531
532 else if (tname[0] == 'l' && tname[1] == 'o'
533 && ! strcmp (tname, "longjmp"))
534 flags |= ECF_LONGJMP;
535 }
536
537 return flags;
538 }
539
540 /* Return nonzero when tree represent call to longjmp. */
541
542 int
543 setjmp_call_p (tree fndecl)
544 {
545 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
546 }
547
548 /* Return true when exp contains alloca call. */
549 bool
550 alloca_call_p (tree exp)
551 {
552 if (TREE_CODE (exp) == CALL_EXPR
553 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
554 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
555 == FUNCTION_DECL)
556 && (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
557 0) & ECF_MAY_BE_ALLOCA))
558 return true;
559 return false;
560 }
561
562 /* Detect flags (function attributes) from the function decl or type node. */
563
564 int
565 flags_from_decl_or_type (tree exp)
566 {
567 int flags = 0;
568 tree type = exp;
569
570 if (DECL_P (exp))
571 {
572 struct cgraph_rtl_info *i = cgraph_rtl_info (exp);
573 type = TREE_TYPE (exp);
574
575 if (i)
576 {
577 if (i->pure_function)
578 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
579 if (i->const_function)
580 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
581 }
582
583 /* The function exp may have the `malloc' attribute. */
584 if (DECL_IS_MALLOC (exp))
585 flags |= ECF_MALLOC;
586
587 /* The function exp may have the `pure' attribute. */
588 if (DECL_IS_PURE (exp))
589 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
590
591 if (TREE_NOTHROW (exp))
592 flags |= ECF_NOTHROW;
593
594 if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
595 flags |= ECF_LIBCALL_BLOCK | ECF_CONST;
596
597 flags = special_function_p (exp, flags);
598 }
599 else if (TYPE_P (exp) && TYPE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
600 flags |= ECF_CONST;
601
602 if (TREE_THIS_VOLATILE (exp))
603 flags |= ECF_NORETURN;
604
605 /* Mark if the function returns with the stack pointer depressed. We
606 cannot consider it pure or constant in that case. */
607 if (TREE_CODE (type) == FUNCTION_TYPE && TYPE_RETURNS_STACK_DEPRESSED (type))
608 {
609 flags |= ECF_SP_DEPRESSED;
610 flags &= ~(ECF_PURE | ECF_CONST | ECF_LIBCALL_BLOCK);
611 }
612
613 return flags;
614 }
615
616 /* Detect flags from a CALL_EXPR. */
617
618 int
619 call_expr_flags (tree t)
620 {
621 int flags;
622 tree decl = get_callee_fndecl (t);
623
624 if (decl)
625 flags = flags_from_decl_or_type (decl);
626 else
627 {
628 t = TREE_TYPE (TREE_OPERAND (t, 0));
629 if (t && TREE_CODE (t) == POINTER_TYPE)
630 flags = flags_from_decl_or_type (TREE_TYPE (t));
631 else
632 flags = 0;
633 }
634
635 return flags;
636 }
637
638 /* Precompute all register parameters as described by ARGS, storing values
639 into fields within the ARGS array.
640
641 NUM_ACTUALS indicates the total number elements in the ARGS array.
642
643 Set REG_PARM_SEEN if we encounter a register parameter. */
644
645 static void
646 precompute_register_parameters (int num_actuals, struct arg_data *args, int *reg_parm_seen)
647 {
648 int i;
649
650 *reg_parm_seen = 0;
651
652 for (i = 0; i < num_actuals; i++)
653 if (args[i].reg != 0 && ! args[i].pass_on_stack)
654 {
655 *reg_parm_seen = 1;
656
657 if (args[i].value == 0)
658 {
659 push_temp_slots ();
660 args[i].value = expand_expr (args[i].tree_value, NULL_RTX,
661 VOIDmode, 0);
662 preserve_temp_slots (args[i].value);
663 pop_temp_slots ();
664 }
665
666 /* If the value is a non-legitimate constant, force it into a
667 pseudo now. TLS symbols sometimes need a call to resolve. */
668 if (CONSTANT_P (args[i].value)
669 && !LEGITIMATE_CONSTANT_P (args[i].value))
670 args[i].value = force_reg (args[i].mode, args[i].value);
671
672 /* If we are to promote the function arg to a wider mode,
673 do it now. */
674
675 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
676 args[i].value
677 = convert_modes (args[i].mode,
678 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
679 args[i].value, args[i].unsignedp);
680
681 /* If the value is expensive, and we are inside an appropriately
682 short loop, put the value into a pseudo and then put the pseudo
683 into the hard reg.
684
685 For small register classes, also do this if this call uses
686 register parameters. This is to avoid reload conflicts while
687 loading the parameters registers. */
688
689 if ((! (REG_P (args[i].value)
690 || (GET_CODE (args[i].value) == SUBREG
691 && REG_P (SUBREG_REG (args[i].value)))))
692 && args[i].mode != BLKmode
693 && rtx_cost (args[i].value, SET) > COSTS_N_INSNS (1)
694 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
695 || preserve_subexpressions_p ()))
696 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
697 }
698 }
699
700 #ifdef REG_PARM_STACK_SPACE
701
702 /* The argument list is the property of the called routine and it
703 may clobber it. If the fixed area has been used for previous
704 parameters, we must save and restore it. */
705
706 static rtx
707 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
708 {
709 int low;
710 int high;
711
712 /* Compute the boundary of the area that needs to be saved, if any. */
713 high = reg_parm_stack_space;
714 #ifdef ARGS_GROW_DOWNWARD
715 high += 1;
716 #endif
717 if (high > highest_outgoing_arg_in_use)
718 high = highest_outgoing_arg_in_use;
719
720 for (low = 0; low < high; low++)
721 if (stack_usage_map[low] != 0)
722 {
723 int num_to_save;
724 enum machine_mode save_mode;
725 int delta;
726 rtx stack_area;
727 rtx save_area;
728
729 while (stack_usage_map[--high] == 0)
730 ;
731
732 *low_to_save = low;
733 *high_to_save = high;
734
735 num_to_save = high - low + 1;
736 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
737
738 /* If we don't have the required alignment, must do this
739 in BLKmode. */
740 if ((low & (MIN (GET_MODE_SIZE (save_mode),
741 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
742 save_mode = BLKmode;
743
744 #ifdef ARGS_GROW_DOWNWARD
745 delta = -high;
746 #else
747 delta = low;
748 #endif
749 stack_area = gen_rtx_MEM (save_mode,
750 memory_address (save_mode,
751 plus_constant (argblock,
752 delta)));
753
754 set_mem_align (stack_area, PARM_BOUNDARY);
755 if (save_mode == BLKmode)
756 {
757 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
758 emit_block_move (validize_mem (save_area), stack_area,
759 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
760 }
761 else
762 {
763 save_area = gen_reg_rtx (save_mode);
764 emit_move_insn (save_area, stack_area);
765 }
766
767 return save_area;
768 }
769
770 return NULL_RTX;
771 }
772
773 static void
774 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
775 {
776 enum machine_mode save_mode = GET_MODE (save_area);
777 int delta;
778 rtx stack_area;
779
780 #ifdef ARGS_GROW_DOWNWARD
781 delta = -high_to_save;
782 #else
783 delta = low_to_save;
784 #endif
785 stack_area = gen_rtx_MEM (save_mode,
786 memory_address (save_mode,
787 plus_constant (argblock, delta)));
788 set_mem_align (stack_area, PARM_BOUNDARY);
789
790 if (save_mode != BLKmode)
791 emit_move_insn (stack_area, save_area);
792 else
793 emit_block_move (stack_area, validize_mem (save_area),
794 GEN_INT (high_to_save - low_to_save + 1),
795 BLOCK_OP_CALL_PARM);
796 }
797 #endif /* REG_PARM_STACK_SPACE */
798
799 /* If any elements in ARGS refer to parameters that are to be passed in
800 registers, but not in memory, and whose alignment does not permit a
801 direct copy into registers. Copy the values into a group of pseudos
802 which we will later copy into the appropriate hard registers.
803
804 Pseudos for each unaligned argument will be stored into the array
805 args[argnum].aligned_regs. The caller is responsible for deallocating
806 the aligned_regs array if it is nonzero. */
807
808 static void
809 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
810 {
811 int i, j;
812
813 for (i = 0; i < num_actuals; i++)
814 if (args[i].reg != 0 && ! args[i].pass_on_stack
815 && args[i].mode == BLKmode
816 && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
817 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
818 {
819 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
820 int nregs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
821 int endian_correction = 0;
822
823 args[i].n_aligned_regs = args[i].partial ? args[i].partial : nregs;
824 args[i].aligned_regs = xmalloc (sizeof (rtx) * args[i].n_aligned_regs);
825
826 /* Structures smaller than a word are normally aligned to the
827 least significant byte. On a BYTES_BIG_ENDIAN machine,
828 this means we must skip the empty high order bytes when
829 calculating the bit offset. */
830 if (bytes < UNITS_PER_WORD
831 #ifdef BLOCK_REG_PADDING
832 && (BLOCK_REG_PADDING (args[i].mode,
833 TREE_TYPE (args[i].tree_value), 1)
834 == downward)
835 #else
836 && BYTES_BIG_ENDIAN
837 #endif
838 )
839 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
840
841 for (j = 0; j < args[i].n_aligned_regs; j++)
842 {
843 rtx reg = gen_reg_rtx (word_mode);
844 rtx word = operand_subword_force (args[i].value, j, BLKmode);
845 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
846
847 args[i].aligned_regs[j] = reg;
848 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
849 word_mode, word_mode);
850
851 /* There is no need to restrict this code to loading items
852 in TYPE_ALIGN sized hunks. The bitfield instructions can
853 load up entire word sized registers efficiently.
854
855 ??? This may not be needed anymore.
856 We use to emit a clobber here but that doesn't let later
857 passes optimize the instructions we emit. By storing 0 into
858 the register later passes know the first AND to zero out the
859 bitfield being set in the register is unnecessary. The store
860 of 0 will be deleted as will at least the first AND. */
861
862 emit_move_insn (reg, const0_rtx);
863
864 bytes -= bitsize / BITS_PER_UNIT;
865 store_bit_field (reg, bitsize, endian_correction, word_mode,
866 word);
867 }
868 }
869 }
870
871 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
872 ACTPARMS.
873
874 NUM_ACTUALS is the total number of parameters.
875
876 N_NAMED_ARGS is the total number of named arguments.
877
878 FNDECL is the tree code for the target of this call (if known)
879
880 ARGS_SO_FAR holds state needed by the target to know where to place
881 the next argument.
882
883 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
884 for arguments which are passed in registers.
885
886 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
887 and may be modified by this routine.
888
889 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
890 flags which may may be modified by this routine.
891
892 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
893 that requires allocation of stack space.
894
895 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
896 the thunked-to function. */
897
898 static void
899 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
900 struct arg_data *args,
901 struct args_size *args_size,
902 int n_named_args ATTRIBUTE_UNUSED,
903 tree actparms, tree fndecl,
904 CUMULATIVE_ARGS *args_so_far,
905 int reg_parm_stack_space,
906 rtx *old_stack_level, int *old_pending_adj,
907 int *must_preallocate, int *ecf_flags,
908 bool *may_tailcall, bool call_from_thunk_p)
909 {
910 /* 1 if scanning parms front to back, -1 if scanning back to front. */
911 int inc;
912
913 /* Count arg position in order args appear. */
914 int argpos;
915
916 int i;
917 tree p;
918
919 args_size->constant = 0;
920 args_size->var = 0;
921
922 /* In this loop, we consider args in the order they are written.
923 We fill up ARGS from the front or from the back if necessary
924 so that in any case the first arg to be pushed ends up at the front. */
925
926 if (PUSH_ARGS_REVERSED)
927 {
928 i = num_actuals - 1, inc = -1;
929 /* In this case, must reverse order of args
930 so that we compute and push the last arg first. */
931 }
932 else
933 {
934 i = 0, inc = 1;
935 }
936
937 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
938 for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++)
939 {
940 tree type = TREE_TYPE (TREE_VALUE (p));
941 int unsignedp;
942 enum machine_mode mode;
943
944 args[i].tree_value = TREE_VALUE (p);
945
946 /* Replace erroneous argument with constant zero. */
947 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
948 args[i].tree_value = integer_zero_node, type = integer_type_node;
949
950 /* If TYPE is a transparent union, pass things the way we would
951 pass the first field of the union. We have already verified that
952 the modes are the same. */
953 if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
954 type = TREE_TYPE (TYPE_FIELDS (type));
955
956 /* Decide where to pass this arg.
957
958 args[i].reg is nonzero if all or part is passed in registers.
959
960 args[i].partial is nonzero if part but not all is passed in registers,
961 and the exact value says how many words are passed in registers.
962
963 args[i].pass_on_stack is nonzero if the argument must at least be
964 computed on the stack. It may then be loaded back into registers
965 if args[i].reg is nonzero.
966
967 These decisions are driven by the FUNCTION_... macros and must agree
968 with those made by function.c. */
969
970 /* See if this argument should be passed by invisible reference. */
971 if (pass_by_reference (args_so_far, TYPE_MODE (type),
972 type, argpos < n_named_args))
973 {
974 /* If we're compiling a thunk, pass through invisible
975 references instead of making a copy. */
976 if (call_from_thunk_p
977 || (FUNCTION_ARG_CALLEE_COPIES (*args_so_far, TYPE_MODE (type),
978 type, argpos < n_named_args)
979 /* If it's in a register, we must make a copy of it too. */
980 /* ??? Is this a sufficient test? Is there a better one? */
981 && !(TREE_CODE (args[i].tree_value) == VAR_DECL
982 && REG_P (DECL_RTL (args[i].tree_value)))
983 && ! TREE_ADDRESSABLE (type))
984 )
985 {
986 /* C++ uses a TARGET_EXPR to indicate that we want to make a
987 new object from the argument. If we are passing by
988 invisible reference, the callee will do that for us, so we
989 can strip off the TARGET_EXPR. This is not always safe,
990 but it is safe in the only case where this is a useful
991 optimization; namely, when the argument is a plain object.
992 In that case, the frontend is just asking the backend to
993 make a bitwise copy of the argument. */
994
995 if (TREE_CODE (args[i].tree_value) == TARGET_EXPR
996 && (DECL_P (TREE_OPERAND (args[i].tree_value, 1)))
997 && ! REG_P (DECL_RTL (TREE_OPERAND (args[i].tree_value, 1))))
998 args[i].tree_value = TREE_OPERAND (args[i].tree_value, 1);
999
1000 /* We can't use sibcalls if a callee-copied argument is stored
1001 in the current function's frame. */
1002 if (!call_from_thunk_p
1003 && (!DECL_P (args[i].tree_value)
1004 || !TREE_STATIC (args[i].tree_value)))
1005 *may_tailcall = false;
1006
1007 args[i].tree_value = build1 (ADDR_EXPR,
1008 build_pointer_type (type),
1009 args[i].tree_value);
1010 type = build_pointer_type (type);
1011 }
1012 else if (TREE_CODE (args[i].tree_value) == TARGET_EXPR)
1013 {
1014 /* In the V3 C++ ABI, parameters are destroyed in the caller.
1015 We implement this by passing the address of the temporary
1016 rather than expanding it into another allocated slot. */
1017 args[i].tree_value = build1 (ADDR_EXPR,
1018 build_pointer_type (type),
1019 args[i].tree_value);
1020 type = build_pointer_type (type);
1021 *may_tailcall = false;
1022 }
1023 else
1024 {
1025 /* We make a copy of the object and pass the address to the
1026 function being called. */
1027 rtx copy;
1028
1029 if (!COMPLETE_TYPE_P (type)
1030 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
1031 || (flag_stack_check && ! STACK_CHECK_BUILTIN
1032 && (0 < compare_tree_int (TYPE_SIZE_UNIT (type),
1033 STACK_CHECK_MAX_VAR_SIZE))))
1034 {
1035 /* This is a variable-sized object. Make space on the stack
1036 for it. */
1037 rtx size_rtx = expr_size (TREE_VALUE (p));
1038
1039 if (*old_stack_level == 0)
1040 {
1041 emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
1042 *old_pending_adj = pending_stack_adjust;
1043 pending_stack_adjust = 0;
1044 }
1045
1046 copy = gen_rtx_MEM (BLKmode,
1047 allocate_dynamic_stack_space
1048 (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
1049 set_mem_attributes (copy, type, 1);
1050 }
1051 else
1052 copy = assign_temp (type, 0, 1, 0);
1053
1054 store_expr (args[i].tree_value, copy, 0);
1055 *ecf_flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1056
1057 args[i].tree_value = build1 (ADDR_EXPR,
1058 build_pointer_type (type),
1059 make_tree (type, copy));
1060 type = build_pointer_type (type);
1061 *may_tailcall = false;
1062 }
1063 }
1064
1065 mode = TYPE_MODE (type);
1066 unsignedp = TYPE_UNSIGNED (type);
1067
1068 if (targetm.calls.promote_function_args (fndecl ? TREE_TYPE (fndecl) : 0))
1069 mode = promote_mode (type, mode, &unsignedp, 1);
1070
1071 args[i].unsignedp = unsignedp;
1072 args[i].mode = mode;
1073
1074 args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
1075 argpos < n_named_args);
1076 #ifdef FUNCTION_INCOMING_ARG
1077 /* If this is a sibling call and the machine has register windows, the
1078 register window has to be unwinded before calling the routine, so
1079 arguments have to go into the incoming registers. */
1080 args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
1081 argpos < n_named_args);
1082 #else
1083 args[i].tail_call_reg = args[i].reg;
1084 #endif
1085
1086 if (args[i].reg)
1087 args[i].partial
1088 = FUNCTION_ARG_PARTIAL_NREGS (*args_so_far, mode, type,
1089 argpos < n_named_args);
1090
1091 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1092
1093 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1094 it means that we are to pass this arg in the register(s) designated
1095 by the PARALLEL, but also to pass it in the stack. */
1096 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1097 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1098 args[i].pass_on_stack = 1;
1099
1100 /* If this is an addressable type, we must preallocate the stack
1101 since we must evaluate the object into its final location.
1102
1103 If this is to be passed in both registers and the stack, it is simpler
1104 to preallocate. */
1105 if (TREE_ADDRESSABLE (type)
1106 || (args[i].pass_on_stack && args[i].reg != 0))
1107 *must_preallocate = 1;
1108
1109 /* If this is an addressable type, we cannot pre-evaluate it. Thus,
1110 we cannot consider this function call constant. */
1111 if (TREE_ADDRESSABLE (type))
1112 *ecf_flags &= ~ECF_LIBCALL_BLOCK;
1113
1114 /* Compute the stack-size of this argument. */
1115 if (args[i].reg == 0 || args[i].partial != 0
1116 || reg_parm_stack_space > 0
1117 || args[i].pass_on_stack)
1118 locate_and_pad_parm (mode, type,
1119 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1120 1,
1121 #else
1122 args[i].reg != 0,
1123 #endif
1124 args[i].pass_on_stack ? 0 : args[i].partial,
1125 fndecl, args_size, &args[i].locate);
1126 #ifdef BLOCK_REG_PADDING
1127 else
1128 /* The argument is passed entirely in registers. See at which
1129 end it should be padded. */
1130 args[i].locate.where_pad =
1131 BLOCK_REG_PADDING (mode, type,
1132 int_size_in_bytes (type) <= UNITS_PER_WORD);
1133 #endif
1134
1135 /* Update ARGS_SIZE, the total stack space for args so far. */
1136
1137 args_size->constant += args[i].locate.size.constant;
1138 if (args[i].locate.size.var)
1139 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1140
1141 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1142 have been used, etc. */
1143
1144 FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
1145 argpos < n_named_args);
1146 }
1147 }
1148
1149 /* Update ARGS_SIZE to contain the total size for the argument block.
1150 Return the original constant component of the argument block's size.
1151
1152 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1153 for arguments passed in registers. */
1154
1155 static int
1156 compute_argument_block_size (int reg_parm_stack_space,
1157 struct args_size *args_size,
1158 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1159 {
1160 int unadjusted_args_size = args_size->constant;
1161
1162 /* For accumulate outgoing args mode we don't need to align, since the frame
1163 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1164 backends from generating misaligned frame sizes. */
1165 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1166 preferred_stack_boundary = STACK_BOUNDARY;
1167
1168 /* Compute the actual size of the argument block required. The variable
1169 and constant sizes must be combined, the size may have to be rounded,
1170 and there may be a minimum required size. */
1171
1172 if (args_size->var)
1173 {
1174 args_size->var = ARGS_SIZE_TREE (*args_size);
1175 args_size->constant = 0;
1176
1177 preferred_stack_boundary /= BITS_PER_UNIT;
1178 if (preferred_stack_boundary > 1)
1179 {
1180 /* We don't handle this case yet. To handle it correctly we have
1181 to add the delta, round and subtract the delta.
1182 Currently no machine description requires this support. */
1183 if (stack_pointer_delta & (preferred_stack_boundary - 1))
1184 abort ();
1185 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1186 }
1187
1188 if (reg_parm_stack_space > 0)
1189 {
1190 args_size->var
1191 = size_binop (MAX_EXPR, args_size->var,
1192 ssize_int (reg_parm_stack_space));
1193
1194 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1195 /* The area corresponding to register parameters is not to count in
1196 the size of the block we need. So make the adjustment. */
1197 args_size->var
1198 = size_binop (MINUS_EXPR, args_size->var,
1199 ssize_int (reg_parm_stack_space));
1200 #endif
1201 }
1202 }
1203 else
1204 {
1205 preferred_stack_boundary /= BITS_PER_UNIT;
1206 if (preferred_stack_boundary < 1)
1207 preferred_stack_boundary = 1;
1208 args_size->constant = (((args_size->constant
1209 + stack_pointer_delta
1210 + preferred_stack_boundary - 1)
1211 / preferred_stack_boundary
1212 * preferred_stack_boundary)
1213 - stack_pointer_delta);
1214
1215 args_size->constant = MAX (args_size->constant,
1216 reg_parm_stack_space);
1217
1218 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1219 args_size->constant -= reg_parm_stack_space;
1220 #endif
1221 }
1222 return unadjusted_args_size;
1223 }
1224
1225 /* Precompute parameters as needed for a function call.
1226
1227 FLAGS is mask of ECF_* constants.
1228
1229 NUM_ACTUALS is the number of arguments.
1230
1231 ARGS is an array containing information for each argument; this
1232 routine fills in the INITIAL_VALUE and VALUE fields for each
1233 precomputed argument. */
1234
1235 static void
1236 precompute_arguments (int flags, int num_actuals, struct arg_data *args)
1237 {
1238 int i;
1239
1240 /* If this is a libcall, then precompute all arguments so that we do not
1241 get extraneous instructions emitted as part of the libcall sequence. */
1242 if ((flags & ECF_LIBCALL_BLOCK) == 0)
1243 return;
1244
1245 for (i = 0; i < num_actuals; i++)
1246 {
1247 enum machine_mode mode;
1248
1249 /* If this is an addressable type, we cannot pre-evaluate it. */
1250 if (TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)))
1251 abort ();
1252
1253 args[i].initial_value = args[i].value
1254 = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0);
1255
1256 mode = TYPE_MODE (TREE_TYPE (args[i].tree_value));
1257 if (mode != args[i].mode)
1258 {
1259 args[i].value
1260 = convert_modes (args[i].mode, mode,
1261 args[i].value, args[i].unsignedp);
1262 #if defined(PROMOTE_FUNCTION_MODE) && !defined(PROMOTE_MODE)
1263 /* CSE will replace this only if it contains args[i].value
1264 pseudo, so convert it down to the declared mode using
1265 a SUBREG. */
1266 if (REG_P (args[i].value)
1267 && GET_MODE_CLASS (args[i].mode) == MODE_INT)
1268 {
1269 args[i].initial_value
1270 = gen_lowpart_SUBREG (mode, args[i].value);
1271 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1272 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1273 args[i].unsignedp);
1274 }
1275 #endif
1276 }
1277 }
1278 }
1279
1280 /* Given the current state of MUST_PREALLOCATE and information about
1281 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1282 compute and return the final value for MUST_PREALLOCATE. */
1283
1284 static int
1285 finalize_must_preallocate (int must_preallocate, int num_actuals, struct arg_data *args, struct args_size *args_size)
1286 {
1287 /* See if we have or want to preallocate stack space.
1288
1289 If we would have to push a partially-in-regs parm
1290 before other stack parms, preallocate stack space instead.
1291
1292 If the size of some parm is not a multiple of the required stack
1293 alignment, we must preallocate.
1294
1295 If the total size of arguments that would otherwise create a copy in
1296 a temporary (such as a CALL) is more than half the total argument list
1297 size, preallocation is faster.
1298
1299 Another reason to preallocate is if we have a machine (like the m88k)
1300 where stack alignment is required to be maintained between every
1301 pair of insns, not just when the call is made. However, we assume here
1302 that such machines either do not have push insns (and hence preallocation
1303 would occur anyway) or the problem is taken care of with
1304 PUSH_ROUNDING. */
1305
1306 if (! must_preallocate)
1307 {
1308 int partial_seen = 0;
1309 int copy_to_evaluate_size = 0;
1310 int i;
1311
1312 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1313 {
1314 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1315 partial_seen = 1;
1316 else if (partial_seen && args[i].reg == 0)
1317 must_preallocate = 1;
1318
1319 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1320 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1321 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1322 || TREE_CODE (args[i].tree_value) == COND_EXPR
1323 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1324 copy_to_evaluate_size
1325 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1326 }
1327
1328 if (copy_to_evaluate_size * 2 >= args_size->constant
1329 && args_size->constant > 0)
1330 must_preallocate = 1;
1331 }
1332 return must_preallocate;
1333 }
1334
1335 /* If we preallocated stack space, compute the address of each argument
1336 and store it into the ARGS array.
1337
1338 We need not ensure it is a valid memory address here; it will be
1339 validized when it is used.
1340
1341 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1342
1343 static void
1344 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1345 {
1346 if (argblock)
1347 {
1348 rtx arg_reg = argblock;
1349 int i, arg_offset = 0;
1350
1351 if (GET_CODE (argblock) == PLUS)
1352 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1353
1354 for (i = 0; i < num_actuals; i++)
1355 {
1356 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1357 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1358 rtx addr;
1359
1360 /* Skip this parm if it will not be passed on the stack. */
1361 if (! args[i].pass_on_stack && args[i].reg != 0)
1362 continue;
1363
1364 if (GET_CODE (offset) == CONST_INT)
1365 addr = plus_constant (arg_reg, INTVAL (offset));
1366 else
1367 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1368
1369 addr = plus_constant (addr, arg_offset);
1370 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1371 set_mem_align (args[i].stack, PARM_BOUNDARY);
1372 set_mem_attributes (args[i].stack,
1373 TREE_TYPE (args[i].tree_value), 1);
1374
1375 if (GET_CODE (slot_offset) == CONST_INT)
1376 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1377 else
1378 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1379
1380 addr = plus_constant (addr, arg_offset);
1381 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1382 set_mem_align (args[i].stack_slot, PARM_BOUNDARY);
1383 set_mem_attributes (args[i].stack_slot,
1384 TREE_TYPE (args[i].tree_value), 1);
1385
1386 /* Function incoming arguments may overlap with sibling call
1387 outgoing arguments and we cannot allow reordering of reads
1388 from function arguments with stores to outgoing arguments
1389 of sibling calls. */
1390 set_mem_alias_set (args[i].stack, 0);
1391 set_mem_alias_set (args[i].stack_slot, 0);
1392 }
1393 }
1394 }
1395
1396 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1397 in a call instruction.
1398
1399 FNDECL is the tree node for the target function. For an indirect call
1400 FNDECL will be NULL_TREE.
1401
1402 ADDR is the operand 0 of CALL_EXPR for this call. */
1403
1404 static rtx
1405 rtx_for_function_call (tree fndecl, tree addr)
1406 {
1407 rtx funexp;
1408
1409 /* Get the function to call, in the form of RTL. */
1410 if (fndecl)
1411 {
1412 /* If this is the first use of the function, see if we need to
1413 make an external definition for it. */
1414 if (! TREE_USED (fndecl))
1415 {
1416 assemble_external (fndecl);
1417 TREE_USED (fndecl) = 1;
1418 }
1419
1420 /* Get a SYMBOL_REF rtx for the function address. */
1421 funexp = XEXP (DECL_RTL (fndecl), 0);
1422 }
1423 else
1424 /* Generate an rtx (probably a pseudo-register) for the address. */
1425 {
1426 push_temp_slots ();
1427 funexp = expand_expr (addr, NULL_RTX, VOIDmode, 0);
1428 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1429 }
1430 return funexp;
1431 }
1432
1433 /* Do the register loads required for any wholly-register parms or any
1434 parms which are passed both on the stack and in a register. Their
1435 expressions were already evaluated.
1436
1437 Mark all register-parms as living through the call, putting these USE
1438 insns in the CALL_INSN_FUNCTION_USAGE field.
1439
1440 When IS_SIBCALL, perform the check_sibcall_overlap_argument_overlap
1441 checking, setting *SIBCALL_FAILURE if appropriate. */
1442
1443 static void
1444 load_register_parameters (struct arg_data *args, int num_actuals,
1445 rtx *call_fusage, int flags, int is_sibcall,
1446 int *sibcall_failure)
1447 {
1448 int i, j;
1449
1450 for (i = 0; i < num_actuals; i++)
1451 {
1452 rtx reg = ((flags & ECF_SIBCALL)
1453 ? args[i].tail_call_reg : args[i].reg);
1454 if (reg)
1455 {
1456 int partial = args[i].partial;
1457 int nregs;
1458 int size = 0;
1459 rtx before_arg = get_last_insn ();
1460 /* Set to non-negative if must move a word at a time, even if just
1461 one word (e.g, partial == 1 && mode == DFmode). Set to -1 if
1462 we just use a normal move insn. This value can be zero if the
1463 argument is a zero size structure with no fields. */
1464 nregs = -1;
1465 if (partial)
1466 nregs = partial;
1467 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1468 {
1469 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1470 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1471 }
1472 else
1473 size = GET_MODE_SIZE (args[i].mode);
1474
1475 /* Handle calls that pass values in multiple non-contiguous
1476 locations. The Irix 6 ABI has examples of this. */
1477
1478 if (GET_CODE (reg) == PARALLEL)
1479 {
1480 tree type = TREE_TYPE (args[i].tree_value);
1481 emit_group_load (reg, args[i].value, type,
1482 int_size_in_bytes (type));
1483 }
1484
1485 /* If simple case, just do move. If normal partial, store_one_arg
1486 has already loaded the register for us. In all other cases,
1487 load the register(s) from memory. */
1488
1489 else if (nregs == -1)
1490 {
1491 emit_move_insn (reg, args[i].value);
1492 #ifdef BLOCK_REG_PADDING
1493 /* Handle case where we have a value that needs shifting
1494 up to the msb. eg. a QImode value and we're padding
1495 upward on a BYTES_BIG_ENDIAN machine. */
1496 if (size < UNITS_PER_WORD
1497 && (args[i].locate.where_pad
1498 == (BYTES_BIG_ENDIAN ? upward : downward)))
1499 {
1500 rtx x;
1501 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1502
1503 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1504 report the whole reg as used. Strictly speaking, the
1505 call only uses SIZE bytes at the msb end, but it doesn't
1506 seem worth generating rtl to say that. */
1507 reg = gen_rtx_REG (word_mode, REGNO (reg));
1508 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
1509 build_int_2 (shift, 0), reg, 1);
1510 if (x != reg)
1511 emit_move_insn (reg, x);
1512 }
1513 #endif
1514 }
1515
1516 /* If we have pre-computed the values to put in the registers in
1517 the case of non-aligned structures, copy them in now. */
1518
1519 else if (args[i].n_aligned_regs != 0)
1520 for (j = 0; j < args[i].n_aligned_regs; j++)
1521 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1522 args[i].aligned_regs[j]);
1523
1524 else if (partial == 0 || args[i].pass_on_stack)
1525 {
1526 rtx mem = validize_mem (args[i].value);
1527
1528 /* Handle a BLKmode that needs shifting. */
1529 if (nregs == 1 && size < UNITS_PER_WORD
1530 #ifdef BLOCK_REG_PADDING
1531 && args[i].locate.where_pad == downward
1532 #else
1533 && BYTES_BIG_ENDIAN
1534 #endif
1535 )
1536 {
1537 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1538 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1539 rtx x = gen_reg_rtx (word_mode);
1540 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1541 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1542 : LSHIFT_EXPR;
1543
1544 emit_move_insn (x, tem);
1545 x = expand_shift (dir, word_mode, x,
1546 build_int_2 (shift, 0), ri, 1);
1547 if (x != ri)
1548 emit_move_insn (ri, x);
1549 }
1550 else
1551 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1552 }
1553
1554 /* When a parameter is a block, and perhaps in other cases, it is
1555 possible that it did a load from an argument slot that was
1556 already clobbered. */
1557 if (is_sibcall
1558 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1559 *sibcall_failure = 1;
1560
1561 /* Handle calls that pass values in multiple non-contiguous
1562 locations. The Irix 6 ABI has examples of this. */
1563 if (GET_CODE (reg) == PARALLEL)
1564 use_group_regs (call_fusage, reg);
1565 else if (nregs == -1)
1566 use_reg (call_fusage, reg);
1567 else
1568 use_regs (call_fusage, REGNO (reg), nregs == 0 ? 1 : nregs);
1569 }
1570 }
1571 }
1572
1573 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1574 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1575 bytes, then we would need to push some additional bytes to pad the
1576 arguments. So, we compute an adjust to the stack pointer for an
1577 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1578 bytes. Then, when the arguments are pushed the stack will be perfectly
1579 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1580 be popped after the call. Returns the adjustment. */
1581
1582 static int
1583 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1584 struct args_size *args_size,
1585 int preferred_unit_stack_boundary)
1586 {
1587 /* The number of bytes to pop so that the stack will be
1588 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1589 HOST_WIDE_INT adjustment;
1590 /* The alignment of the stack after the arguments are pushed, if we
1591 just pushed the arguments without adjust the stack here. */
1592 HOST_WIDE_INT unadjusted_alignment;
1593
1594 unadjusted_alignment
1595 = ((stack_pointer_delta + unadjusted_args_size)
1596 % preferred_unit_stack_boundary);
1597
1598 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1599 as possible -- leaving just enough left to cancel out the
1600 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1601 PENDING_STACK_ADJUST is non-negative, and congruent to
1602 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1603
1604 /* Begin by trying to pop all the bytes. */
1605 unadjusted_alignment
1606 = (unadjusted_alignment
1607 - (pending_stack_adjust % preferred_unit_stack_boundary));
1608 adjustment = pending_stack_adjust;
1609 /* Push enough additional bytes that the stack will be aligned
1610 after the arguments are pushed. */
1611 if (preferred_unit_stack_boundary > 1)
1612 {
1613 if (unadjusted_alignment > 0)
1614 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1615 else
1616 adjustment += unadjusted_alignment;
1617 }
1618
1619 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1620 bytes after the call. The right number is the entire
1621 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1622 by the arguments in the first place. */
1623 args_size->constant
1624 = pending_stack_adjust - adjustment + unadjusted_args_size;
1625
1626 return adjustment;
1627 }
1628
1629 /* Scan X expression if it does not dereference any argument slots
1630 we already clobbered by tail call arguments (as noted in stored_args_map
1631 bitmap).
1632 Return nonzero if X expression dereferences such argument slots,
1633 zero otherwise. */
1634
1635 static int
1636 check_sibcall_argument_overlap_1 (rtx x)
1637 {
1638 RTX_CODE code;
1639 int i, j;
1640 unsigned int k;
1641 const char *fmt;
1642
1643 if (x == NULL_RTX)
1644 return 0;
1645
1646 code = GET_CODE (x);
1647
1648 if (code == MEM)
1649 {
1650 if (XEXP (x, 0) == current_function_internal_arg_pointer)
1651 i = 0;
1652 else if (GET_CODE (XEXP (x, 0)) == PLUS
1653 && XEXP (XEXP (x, 0), 0) ==
1654 current_function_internal_arg_pointer
1655 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1656 i = INTVAL (XEXP (XEXP (x, 0), 1));
1657 else
1658 return 1;
1659
1660 #ifdef ARGS_GROW_DOWNWARD
1661 i = -i - GET_MODE_SIZE (GET_MODE (x));
1662 #endif
1663
1664 for (k = 0; k < GET_MODE_SIZE (GET_MODE (x)); k++)
1665 if (i + k < stored_args_map->n_bits
1666 && TEST_BIT (stored_args_map, i + k))
1667 return 1;
1668
1669 return 0;
1670 }
1671
1672 /* Scan all subexpressions. */
1673 fmt = GET_RTX_FORMAT (code);
1674 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1675 {
1676 if (*fmt == 'e')
1677 {
1678 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1679 return 1;
1680 }
1681 else if (*fmt == 'E')
1682 {
1683 for (j = 0; j < XVECLEN (x, i); j++)
1684 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1685 return 1;
1686 }
1687 }
1688 return 0;
1689 }
1690
1691 /* Scan sequence after INSN if it does not dereference any argument slots
1692 we already clobbered by tail call arguments (as noted in stored_args_map
1693 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1694 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1695 should be 0). Return nonzero if sequence after INSN dereferences such argument
1696 slots, zero otherwise. */
1697
1698 static int
1699 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1700 {
1701 int low, high;
1702
1703 if (insn == NULL_RTX)
1704 insn = get_insns ();
1705 else
1706 insn = NEXT_INSN (insn);
1707
1708 for (; insn; insn = NEXT_INSN (insn))
1709 if (INSN_P (insn)
1710 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1711 break;
1712
1713 if (mark_stored_args_map)
1714 {
1715 #ifdef ARGS_GROW_DOWNWARD
1716 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1717 #else
1718 low = arg->locate.slot_offset.constant;
1719 #endif
1720
1721 for (high = low + arg->locate.size.constant; low < high; low++)
1722 SET_BIT (stored_args_map, low);
1723 }
1724 return insn != NULL_RTX;
1725 }
1726
1727 static tree
1728 fix_unsafe_tree (tree t)
1729 {
1730 switch (unsafe_for_reeval (t))
1731 {
1732 case 0: /* Safe. */
1733 break;
1734
1735 case 1: /* Mildly unsafe. */
1736 t = unsave_expr (t);
1737 break;
1738
1739 case 2: /* Wildly unsafe. */
1740 {
1741 tree var = build_decl (VAR_DECL, NULL_TREE,
1742 TREE_TYPE (t));
1743 SET_DECL_RTL (var,
1744 expand_expr (t, NULL_RTX, VOIDmode, EXPAND_NORMAL));
1745 t = var;
1746 }
1747 break;
1748
1749 default:
1750 abort ();
1751 }
1752 return t;
1753 }
1754
1755
1756 /* If function value *VALUE was returned at the most significant end of a
1757 register, shift it towards the least significant end and convert it to
1758 TYPE's mode. Return true and update *VALUE if some action was needed.
1759
1760 TYPE is the type of the function's return value, which is known not
1761 to have mode BLKmode. */
1762
1763 static bool
1764 shift_returned_value (tree type, rtx *value)
1765 {
1766 if (targetm.calls.return_in_msb (type))
1767 {
1768 HOST_WIDE_INT shift;
1769
1770 shift = (GET_MODE_BITSIZE (GET_MODE (*value))
1771 - BITS_PER_UNIT * int_size_in_bytes (type));
1772 if (shift > 0)
1773 {
1774 /* Shift the value into the low part of the register. */
1775 *value = expand_binop (GET_MODE (*value), lshr_optab, *value,
1776 GEN_INT (shift), 0, 1, OPTAB_WIDEN);
1777
1778 /* Truncate it to the type's mode, or its integer equivalent.
1779 This is subject to TRULY_NOOP_TRUNCATION. */
1780 *value = convert_to_mode (int_mode_for_mode (TYPE_MODE (type)),
1781 *value, 0);
1782
1783 /* Now convert it to the final form. */
1784 *value = gen_lowpart (TYPE_MODE (type), *value);
1785 return true;
1786 }
1787 }
1788 return false;
1789 }
1790
1791 /* Remove all REG_EQUIV notes found in the insn chain. */
1792
1793 static void
1794 purge_reg_equiv_notes (void)
1795 {
1796 rtx insn;
1797
1798 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1799 {
1800 while (1)
1801 {
1802 rtx note = find_reg_note (insn, REG_EQUIV, 0);
1803 if (note)
1804 {
1805 /* Remove the note and keep looking at the notes for
1806 this insn. */
1807 remove_note (insn, note);
1808 continue;
1809 }
1810 break;
1811 }
1812 }
1813 }
1814
1815 /* Clear RTX_UNCHANGING_P flag of incoming argument MEMs. */
1816
1817 static void
1818 purge_mem_unchanging_flag (rtx x)
1819 {
1820 RTX_CODE code;
1821 int i, j;
1822 const char *fmt;
1823
1824 if (x == NULL_RTX)
1825 return;
1826
1827 code = GET_CODE (x);
1828
1829 if (code == MEM)
1830 {
1831 if (RTX_UNCHANGING_P (x)
1832 && (XEXP (x, 0) == current_function_internal_arg_pointer
1833 || (GET_CODE (XEXP (x, 0)) == PLUS
1834 && XEXP (XEXP (x, 0), 0) ==
1835 current_function_internal_arg_pointer
1836 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
1837 RTX_UNCHANGING_P (x) = 0;
1838 return;
1839 }
1840
1841 /* Scan all subexpressions. */
1842 fmt = GET_RTX_FORMAT (code);
1843 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1844 {
1845 if (*fmt == 'e')
1846 purge_mem_unchanging_flag (XEXP (x, i));
1847 else if (*fmt == 'E')
1848 for (j = 0; j < XVECLEN (x, i); j++)
1849 purge_mem_unchanging_flag (XVECEXP (x, i, j));
1850 }
1851 }
1852
1853
1854 /* Generate all the code for a function call
1855 and return an rtx for its value.
1856 Store the value in TARGET (specified as an rtx) if convenient.
1857 If the value is stored in TARGET then TARGET is returned.
1858 If IGNORE is nonzero, then we ignore the value of the function call. */
1859
1860 rtx
1861 expand_call (tree exp, rtx target, int ignore)
1862 {
1863 /* Nonzero if we are currently expanding a call. */
1864 static int currently_expanding_call = 0;
1865
1866 /* List of actual parameters. */
1867 tree actparms = TREE_OPERAND (exp, 1);
1868 /* RTX for the function to be called. */
1869 rtx funexp;
1870 /* Sequence of insns to perform a normal "call". */
1871 rtx normal_call_insns = NULL_RTX;
1872 /* Sequence of insns to perform a tail "call". */
1873 rtx tail_call_insns = NULL_RTX;
1874 /* Data type of the function. */
1875 tree funtype;
1876 tree type_arg_types;
1877 /* Declaration of the function being called,
1878 or 0 if the function is computed (not known by name). */
1879 tree fndecl = 0;
1880 /* The type of the function being called. */
1881 tree fntype;
1882 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1883 int pass;
1884
1885 /* Register in which non-BLKmode value will be returned,
1886 or 0 if no value or if value is BLKmode. */
1887 rtx valreg;
1888 /* Address where we should return a BLKmode value;
1889 0 if value not BLKmode. */
1890 rtx structure_value_addr = 0;
1891 /* Nonzero if that address is being passed by treating it as
1892 an extra, implicit first parameter. Otherwise,
1893 it is passed by being copied directly into struct_value_rtx. */
1894 int structure_value_addr_parm = 0;
1895 /* Size of aggregate value wanted, or zero if none wanted
1896 or if we are using the non-reentrant PCC calling convention
1897 or expecting the value in registers. */
1898 HOST_WIDE_INT struct_value_size = 0;
1899 /* Nonzero if called function returns an aggregate in memory PCC style,
1900 by returning the address of where to find it. */
1901 int pcc_struct_value = 0;
1902 rtx struct_value = 0;
1903
1904 /* Number of actual parameters in this call, including struct value addr. */
1905 int num_actuals;
1906 /* Number of named args. Args after this are anonymous ones
1907 and they must all go on the stack. */
1908 int n_named_args;
1909
1910 /* Vector of information about each argument.
1911 Arguments are numbered in the order they will be pushed,
1912 not the order they are written. */
1913 struct arg_data *args;
1914
1915 /* Total size in bytes of all the stack-parms scanned so far. */
1916 struct args_size args_size;
1917 struct args_size adjusted_args_size;
1918 /* Size of arguments before any adjustments (such as rounding). */
1919 int unadjusted_args_size;
1920 /* Data on reg parms scanned so far. */
1921 CUMULATIVE_ARGS args_so_far;
1922 /* Nonzero if a reg parm has been scanned. */
1923 int reg_parm_seen;
1924 /* Nonzero if this is an indirect function call. */
1925
1926 /* Nonzero if we must avoid push-insns in the args for this call.
1927 If stack space is allocated for register parameters, but not by the
1928 caller, then it is preallocated in the fixed part of the stack frame.
1929 So the entire argument block must then be preallocated (i.e., we
1930 ignore PUSH_ROUNDING in that case). */
1931
1932 int must_preallocate = !PUSH_ARGS;
1933
1934 /* Size of the stack reserved for parameter registers. */
1935 int reg_parm_stack_space = 0;
1936
1937 /* Address of space preallocated for stack parms
1938 (on machines that lack push insns), or 0 if space not preallocated. */
1939 rtx argblock = 0;
1940
1941 /* Mask of ECF_ flags. */
1942 int flags = 0;
1943 #ifdef REG_PARM_STACK_SPACE
1944 /* Define the boundary of the register parm stack space that needs to be
1945 saved, if any. */
1946 int low_to_save, high_to_save;
1947 rtx save_area = 0; /* Place that it is saved */
1948 #endif
1949
1950 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
1951 char *initial_stack_usage_map = stack_usage_map;
1952
1953 int old_stack_allocated;
1954
1955 /* State variables to track stack modifications. */
1956 rtx old_stack_level = 0;
1957 int old_stack_arg_under_construction = 0;
1958 int old_pending_adj = 0;
1959 int old_inhibit_defer_pop = inhibit_defer_pop;
1960
1961 /* Some stack pointer alterations we make are performed via
1962 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
1963 which we then also need to save/restore along the way. */
1964 int old_stack_pointer_delta = 0;
1965
1966 rtx call_fusage;
1967 tree p = TREE_OPERAND (exp, 0);
1968 tree addr = TREE_OPERAND (exp, 0);
1969 int i;
1970 /* The alignment of the stack, in bits. */
1971 HOST_WIDE_INT preferred_stack_boundary;
1972 /* The alignment of the stack, in bytes. */
1973 HOST_WIDE_INT preferred_unit_stack_boundary;
1974 /* The static chain value to use for this call. */
1975 rtx static_chain_value;
1976 /* See if this is "nothrow" function call. */
1977 if (TREE_NOTHROW (exp))
1978 flags |= ECF_NOTHROW;
1979
1980 /* See if we can find a DECL-node for the actual function, and get the
1981 function attributes (flags) from the function decl or type node. */
1982 fndecl = get_callee_fndecl (exp);
1983 if (fndecl)
1984 {
1985 fntype = TREE_TYPE (fndecl);
1986 flags |= flags_from_decl_or_type (fndecl);
1987 }
1988 else
1989 {
1990 fntype = TREE_TYPE (TREE_TYPE (p));
1991 flags |= flags_from_decl_or_type (fntype);
1992 }
1993
1994 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
1995
1996 /* Warn if this value is an aggregate type,
1997 regardless of which calling convention we are using for it. */
1998 if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (exp)))
1999 warning ("function call has aggregate value");
2000
2001 /* If the result of a pure or const function call is ignored (or void),
2002 and none of its arguments are volatile, we can avoid expanding the
2003 call and just evaluate the arguments for side-effects. */
2004 if ((flags & (ECF_CONST | ECF_PURE))
2005 && (ignore || target == const0_rtx
2006 || TYPE_MODE (TREE_TYPE (exp)) == VOIDmode))
2007 {
2008 bool volatilep = false;
2009 tree arg;
2010
2011 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
2012 if (TREE_THIS_VOLATILE (TREE_VALUE (arg)))
2013 {
2014 volatilep = true;
2015 break;
2016 }
2017
2018 if (! volatilep)
2019 {
2020 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
2021 expand_expr (TREE_VALUE (arg), const0_rtx,
2022 VOIDmode, EXPAND_NORMAL);
2023 return const0_rtx;
2024 }
2025 }
2026
2027 #ifdef REG_PARM_STACK_SPACE
2028 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
2029 #endif
2030
2031 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2032 if (reg_parm_stack_space > 0 && PUSH_ARGS)
2033 must_preallocate = 1;
2034 #endif
2035
2036 /* Set up a place to return a structure. */
2037
2038 /* Cater to broken compilers. */
2039 if (aggregate_value_p (exp, fndecl))
2040 {
2041 /* This call returns a big structure. */
2042 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
2043
2044 #ifdef PCC_STATIC_STRUCT_RETURN
2045 {
2046 pcc_struct_value = 1;
2047 }
2048 #else /* not PCC_STATIC_STRUCT_RETURN */
2049 {
2050 struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
2051
2052 if (CALL_EXPR_HAS_RETURN_SLOT_ADDR (exp))
2053 {
2054 /* The structure value address arg is already in actparms.
2055 Pull it out. It might be nice to just leave it there, but
2056 we need to set structure_value_addr. */
2057 tree return_arg = TREE_VALUE (actparms);
2058 actparms = TREE_CHAIN (actparms);
2059 structure_value_addr = expand_expr (return_arg, NULL_RTX,
2060 VOIDmode, EXPAND_NORMAL);
2061 }
2062 else if (target && MEM_P (target))
2063 structure_value_addr = XEXP (target, 0);
2064 else
2065 {
2066 /* For variable-sized objects, we must be called with a target
2067 specified. If we were to allocate space on the stack here,
2068 we would have no way of knowing when to free it. */
2069 rtx d = assign_temp (TREE_TYPE (exp), 1, 1, 1);
2070
2071 mark_temp_addr_taken (d);
2072 structure_value_addr = XEXP (d, 0);
2073 target = 0;
2074 }
2075 }
2076 #endif /* not PCC_STATIC_STRUCT_RETURN */
2077 }
2078
2079 /* Figure out the amount to which the stack should be aligned. */
2080 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2081 if (fndecl)
2082 {
2083 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2084 if (i && i->preferred_incoming_stack_boundary)
2085 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2086 }
2087
2088 /* Operand 0 is a pointer-to-function; get the type of the function. */
2089 funtype = TREE_TYPE (addr);
2090 if (! POINTER_TYPE_P (funtype))
2091 abort ();
2092 funtype = TREE_TYPE (funtype);
2093
2094 /* Munge the tree to split complex arguments into their imaginary
2095 and real parts. */
2096 if (targetm.calls.split_complex_arg)
2097 {
2098 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2099 actparms = split_complex_values (actparms);
2100 }
2101 else
2102 type_arg_types = TYPE_ARG_TYPES (funtype);
2103
2104 if (flags & ECF_MAY_BE_ALLOCA)
2105 current_function_calls_alloca = 1;
2106
2107 /* If struct_value_rtx is 0, it means pass the address
2108 as if it were an extra parameter. */
2109 if (structure_value_addr && struct_value == 0)
2110 {
2111 /* If structure_value_addr is a REG other than
2112 virtual_outgoing_args_rtx, we can use always use it. If it
2113 is not a REG, we must always copy it into a register.
2114 If it is virtual_outgoing_args_rtx, we must copy it to another
2115 register in some cases. */
2116 rtx temp = (!REG_P (structure_value_addr)
2117 || (ACCUMULATE_OUTGOING_ARGS
2118 && stack_arg_under_construction
2119 && structure_value_addr == virtual_outgoing_args_rtx)
2120 ? copy_addr_to_reg (convert_memory_address
2121 (Pmode, structure_value_addr))
2122 : structure_value_addr);
2123
2124 actparms
2125 = tree_cons (error_mark_node,
2126 make_tree (build_pointer_type (TREE_TYPE (funtype)),
2127 temp),
2128 actparms);
2129 structure_value_addr_parm = 1;
2130 }
2131
2132 /* Count the arguments and set NUM_ACTUALS. */
2133 for (p = actparms, num_actuals = 0; p; p = TREE_CHAIN (p))
2134 num_actuals++;
2135
2136 /* Compute number of named args.
2137 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2138
2139 if (type_arg_types != 0)
2140 n_named_args
2141 = (list_length (type_arg_types)
2142 /* Count the struct value address, if it is passed as a parm. */
2143 + structure_value_addr_parm);
2144 else
2145 /* If we know nothing, treat all args as named. */
2146 n_named_args = num_actuals;
2147
2148 /* Start updating where the next arg would go.
2149
2150 On some machines (such as the PA) indirect calls have a different
2151 calling convention than normal calls. The fourth argument in
2152 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2153 or not. */
2154 INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
2155
2156 /* Now possibly adjust the number of named args.
2157 Normally, don't include the last named arg if anonymous args follow.
2158 We do include the last named arg if
2159 targetm.calls.strict_argument_naming() returns nonzero.
2160 (If no anonymous args follow, the result of list_length is actually
2161 one too large. This is harmless.)
2162
2163 If targetm.calls.pretend_outgoing_varargs_named() returns
2164 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2165 this machine will be able to place unnamed args that were passed
2166 in registers into the stack. So treat all args as named. This
2167 allows the insns emitting for a specific argument list to be
2168 independent of the function declaration.
2169
2170 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2171 we do not have any reliable way to pass unnamed args in
2172 registers, so we must force them into memory. */
2173
2174 if (type_arg_types != 0
2175 && targetm.calls.strict_argument_naming (&args_so_far))
2176 ;
2177 else if (type_arg_types != 0
2178 && ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
2179 /* Don't include the last named arg. */
2180 --n_named_args;
2181 else
2182 /* Treat all args as named. */
2183 n_named_args = num_actuals;
2184
2185 /* Make a vector to hold all the information about each arg. */
2186 args = alloca (num_actuals * sizeof (struct arg_data));
2187 memset (args, 0, num_actuals * sizeof (struct arg_data));
2188
2189 /* Build up entries in the ARGS array, compute the size of the
2190 arguments into ARGS_SIZE, etc. */
2191 initialize_argument_information (num_actuals, args, &args_size,
2192 n_named_args, actparms, fndecl,
2193 &args_so_far, reg_parm_stack_space,
2194 &old_stack_level, &old_pending_adj,
2195 &must_preallocate, &flags,
2196 &try_tail_call, CALL_FROM_THUNK_P (exp));
2197
2198 if (args_size.var)
2199 {
2200 /* If this function requires a variable-sized argument list, don't
2201 try to make a cse'able block for this call. We may be able to
2202 do this eventually, but it is too complicated to keep track of
2203 what insns go in the cse'able block and which don't. */
2204
2205 flags &= ~ECF_LIBCALL_BLOCK;
2206 must_preallocate = 1;
2207 }
2208
2209 /* Now make final decision about preallocating stack space. */
2210 must_preallocate = finalize_must_preallocate (must_preallocate,
2211 num_actuals, args,
2212 &args_size);
2213
2214 /* If the structure value address will reference the stack pointer, we
2215 must stabilize it. We don't need to do this if we know that we are
2216 not going to adjust the stack pointer in processing this call. */
2217
2218 if (structure_value_addr
2219 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2220 || reg_mentioned_p (virtual_outgoing_args_rtx,
2221 structure_value_addr))
2222 && (args_size.var
2223 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2224 structure_value_addr = copy_to_reg (structure_value_addr);
2225
2226 /* Tail calls can make things harder to debug, and we've traditionally
2227 pushed these optimizations into -O2. Don't try if we're already
2228 expanding a call, as that means we're an argument. Don't try if
2229 there's cleanups, as we know there's code to follow the call.
2230
2231 If rtx_equal_function_value_matters is false, that means we've
2232 finished with regular parsing. Which means that some of the
2233 machinery we use to generate tail-calls is no longer in place.
2234 This is most often true of sjlj-exceptions, which we couldn't
2235 tail-call to anyway.
2236
2237 If current_nesting_level () == 0, we're being called after
2238 the function body has been expanded. This can happen when
2239 setting up trampolines in expand_function_end. */
2240 if (currently_expanding_call++ != 0
2241 || !flag_optimize_sibling_calls
2242 || !rtx_equal_function_value_matters
2243 || current_nesting_level () == 0
2244 || args_size.var
2245 || lookup_stmt_eh_region (exp) >= 0)
2246 try_tail_call = 0;
2247
2248 /* Rest of purposes for tail call optimizations to fail. */
2249 if (
2250 #ifdef HAVE_sibcall_epilogue
2251 !HAVE_sibcall_epilogue
2252 #else
2253 1
2254 #endif
2255 || !try_tail_call
2256 /* Doing sibling call optimization needs some work, since
2257 structure_value_addr can be allocated on the stack.
2258 It does not seem worth the effort since few optimizable
2259 sibling calls will return a structure. */
2260 || structure_value_addr != NULL_RTX
2261 /* Check whether the target is able to optimize the call
2262 into a sibcall. */
2263 || !targetm.function_ok_for_sibcall (fndecl, exp)
2264 /* Functions that do not return exactly once may not be sibcall
2265 optimized. */
2266 || (flags & (ECF_RETURNS_TWICE | ECF_LONGJMP | ECF_NORETURN))
2267 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2268 /* If the called function is nested in the current one, it might access
2269 some of the caller's arguments, but could clobber them beforehand if
2270 the argument areas are shared. */
2271 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2272 /* If this function requires more stack slots than the current
2273 function, we cannot change it into a sibling call. */
2274 || args_size.constant > current_function_args_size
2275 /* If the callee pops its own arguments, then it must pop exactly
2276 the same number of arguments as the current function. */
2277 || (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
2278 != RETURN_POPS_ARGS (current_function_decl,
2279 TREE_TYPE (current_function_decl),
2280 current_function_args_size))
2281 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2282 try_tail_call = 0;
2283
2284 if (try_tail_call)
2285 {
2286 int end, inc;
2287 actparms = NULL_TREE;
2288 /* Ok, we're going to give the tail call the old college try.
2289 This means we're going to evaluate the function arguments
2290 up to three times. There are two degrees of badness we can
2291 encounter, those that can be unsaved and those that can't.
2292 (See unsafe_for_reeval commentary for details.)
2293
2294 Generate a new argument list. Pass safe arguments through
2295 unchanged. For the easy badness wrap them in UNSAVE_EXPRs.
2296 For hard badness, evaluate them now and put their resulting
2297 rtx in a temporary VAR_DECL.
2298
2299 initialize_argument_information has ordered the array for the
2300 order to be pushed, and we must remember this when reconstructing
2301 the original argument order. */
2302
2303 if (PUSH_ARGS_REVERSED)
2304 {
2305 inc = 1;
2306 i = 0;
2307 end = num_actuals;
2308 }
2309 else
2310 {
2311 inc = -1;
2312 i = num_actuals - 1;
2313 end = -1;
2314 }
2315
2316 for (; i != end; i += inc)
2317 {
2318 args[i].tree_value = fix_unsafe_tree (args[i].tree_value);
2319 }
2320 /* Do the same for the function address if it is an expression. */
2321 if (!fndecl)
2322 addr = fix_unsafe_tree (addr);
2323 }
2324
2325
2326 /* Ensure current function's preferred stack boundary is at least
2327 what we need. We don't have to increase alignment for recursive
2328 functions. */
2329 if (cfun->preferred_stack_boundary < preferred_stack_boundary
2330 && fndecl != current_function_decl)
2331 cfun->preferred_stack_boundary = preferred_stack_boundary;
2332 if (fndecl == current_function_decl)
2333 cfun->recursive_call_emit = true;
2334
2335 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2336
2337 /* We want to make two insn chains; one for a sibling call, the other
2338 for a normal call. We will select one of the two chains after
2339 initial RTL generation is complete. */
2340 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2341 {
2342 int sibcall_failure = 0;
2343 /* We want to emit any pending stack adjustments before the tail
2344 recursion "call". That way we know any adjustment after the tail
2345 recursion call can be ignored if we indeed use the tail
2346 call expansion. */
2347 int save_pending_stack_adjust = 0;
2348 int save_stack_pointer_delta = 0;
2349 rtx insns;
2350 rtx before_call, next_arg_reg;
2351
2352 if (pass == 0)
2353 {
2354 /* State variables we need to save and restore between
2355 iterations. */
2356 save_pending_stack_adjust = pending_stack_adjust;
2357 save_stack_pointer_delta = stack_pointer_delta;
2358 }
2359 if (pass)
2360 flags &= ~ECF_SIBCALL;
2361 else
2362 flags |= ECF_SIBCALL;
2363
2364 /* Other state variables that we must reinitialize each time
2365 through the loop (that are not initialized by the loop itself). */
2366 argblock = 0;
2367 call_fusage = 0;
2368
2369 /* Start a new sequence for the normal call case.
2370
2371 From this point on, if the sibling call fails, we want to set
2372 sibcall_failure instead of continuing the loop. */
2373 start_sequence ();
2374
2375 if (pass == 0)
2376 {
2377 /* We know at this point that there are not currently any
2378 pending cleanups. If, however, in the process of evaluating
2379 the arguments we were to create some, we'll need to be
2380 able to get rid of them. */
2381 expand_start_target_temps ();
2382 }
2383
2384 /* Don't let pending stack adjusts add up to too much.
2385 Also, do all pending adjustments now if there is any chance
2386 this might be a call to alloca or if we are expanding a sibling
2387 call sequence or if we are calling a function that is to return
2388 with stack pointer depressed. */
2389 if (pending_stack_adjust >= 32
2390 || (pending_stack_adjust > 0
2391 && (flags & (ECF_MAY_BE_ALLOCA | ECF_SP_DEPRESSED)))
2392 || pass == 0)
2393 do_pending_stack_adjust ();
2394
2395 /* When calling a const function, we must pop the stack args right away,
2396 so that the pop is deleted or moved with the call. */
2397 if (pass && (flags & ECF_LIBCALL_BLOCK))
2398 NO_DEFER_POP;
2399
2400 /* Precompute any arguments as needed. */
2401 if (pass)
2402 precompute_arguments (flags, num_actuals, args);
2403
2404 /* Now we are about to start emitting insns that can be deleted
2405 if a libcall is deleted. */
2406 if (pass && (flags & (ECF_LIBCALL_BLOCK | ECF_MALLOC)))
2407 start_sequence ();
2408
2409 adjusted_args_size = args_size;
2410 /* Compute the actual size of the argument block required. The variable
2411 and constant sizes must be combined, the size may have to be rounded,
2412 and there may be a minimum required size. When generating a sibcall
2413 pattern, do not round up, since we'll be re-using whatever space our
2414 caller provided. */
2415 unadjusted_args_size
2416 = compute_argument_block_size (reg_parm_stack_space,
2417 &adjusted_args_size,
2418 (pass == 0 ? 0
2419 : preferred_stack_boundary));
2420
2421 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2422
2423 /* The argument block when performing a sibling call is the
2424 incoming argument block. */
2425 if (pass == 0)
2426 {
2427 argblock = virtual_incoming_args_rtx;
2428 argblock
2429 #ifdef STACK_GROWS_DOWNWARD
2430 = plus_constant (argblock, current_function_pretend_args_size);
2431 #else
2432 = plus_constant (argblock, -current_function_pretend_args_size);
2433 #endif
2434 stored_args_map = sbitmap_alloc (args_size.constant);
2435 sbitmap_zero (stored_args_map);
2436 }
2437
2438 /* If we have no actual push instructions, or shouldn't use them,
2439 make space for all args right now. */
2440 else if (adjusted_args_size.var != 0)
2441 {
2442 if (old_stack_level == 0)
2443 {
2444 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
2445 old_stack_pointer_delta = stack_pointer_delta;
2446 old_pending_adj = pending_stack_adjust;
2447 pending_stack_adjust = 0;
2448 /* stack_arg_under_construction says whether a stack arg is
2449 being constructed at the old stack level. Pushing the stack
2450 gets a clean outgoing argument block. */
2451 old_stack_arg_under_construction = stack_arg_under_construction;
2452 stack_arg_under_construction = 0;
2453 }
2454 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2455 }
2456 else
2457 {
2458 /* Note that we must go through the motions of allocating an argument
2459 block even if the size is zero because we may be storing args
2460 in the area reserved for register arguments, which may be part of
2461 the stack frame. */
2462
2463 int needed = adjusted_args_size.constant;
2464
2465 /* Store the maximum argument space used. It will be pushed by
2466 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2467 checking). */
2468
2469 if (needed > current_function_outgoing_args_size)
2470 current_function_outgoing_args_size = needed;
2471
2472 if (must_preallocate)
2473 {
2474 if (ACCUMULATE_OUTGOING_ARGS)
2475 {
2476 /* Since the stack pointer will never be pushed, it is
2477 possible for the evaluation of a parm to clobber
2478 something we have already written to the stack.
2479 Since most function calls on RISC machines do not use
2480 the stack, this is uncommon, but must work correctly.
2481
2482 Therefore, we save any area of the stack that was already
2483 written and that we are using. Here we set up to do this
2484 by making a new stack usage map from the old one. The
2485 actual save will be done by store_one_arg.
2486
2487 Another approach might be to try to reorder the argument
2488 evaluations to avoid this conflicting stack usage. */
2489
2490 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2491 /* Since we will be writing into the entire argument area,
2492 the map must be allocated for its entire size, not just
2493 the part that is the responsibility of the caller. */
2494 needed += reg_parm_stack_space;
2495 #endif
2496
2497 #ifdef ARGS_GROW_DOWNWARD
2498 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2499 needed + 1);
2500 #else
2501 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2502 needed);
2503 #endif
2504 stack_usage_map = alloca (highest_outgoing_arg_in_use);
2505
2506 if (initial_highest_arg_in_use)
2507 memcpy (stack_usage_map, initial_stack_usage_map,
2508 initial_highest_arg_in_use);
2509
2510 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2511 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2512 (highest_outgoing_arg_in_use
2513 - initial_highest_arg_in_use));
2514 needed = 0;
2515
2516 /* The address of the outgoing argument list must not be
2517 copied to a register here, because argblock would be left
2518 pointing to the wrong place after the call to
2519 allocate_dynamic_stack_space below. */
2520
2521 argblock = virtual_outgoing_args_rtx;
2522 }
2523 else
2524 {
2525 if (inhibit_defer_pop == 0)
2526 {
2527 /* Try to reuse some or all of the pending_stack_adjust
2528 to get this space. */
2529 needed
2530 = (combine_pending_stack_adjustment_and_call
2531 (unadjusted_args_size,
2532 &adjusted_args_size,
2533 preferred_unit_stack_boundary));
2534
2535 /* combine_pending_stack_adjustment_and_call computes
2536 an adjustment before the arguments are allocated.
2537 Account for them and see whether or not the stack
2538 needs to go up or down. */
2539 needed = unadjusted_args_size - needed;
2540
2541 if (needed < 0)
2542 {
2543 /* We're releasing stack space. */
2544 /* ??? We can avoid any adjustment at all if we're
2545 already aligned. FIXME. */
2546 pending_stack_adjust = -needed;
2547 do_pending_stack_adjust ();
2548 needed = 0;
2549 }
2550 else
2551 /* We need to allocate space. We'll do that in
2552 push_block below. */
2553 pending_stack_adjust = 0;
2554 }
2555
2556 /* Special case this because overhead of `push_block' in
2557 this case is non-trivial. */
2558 if (needed == 0)
2559 argblock = virtual_outgoing_args_rtx;
2560 else
2561 {
2562 argblock = push_block (GEN_INT (needed), 0, 0);
2563 #ifdef ARGS_GROW_DOWNWARD
2564 argblock = plus_constant (argblock, needed);
2565 #endif
2566 }
2567
2568 /* We only really need to call `copy_to_reg' in the case
2569 where push insns are going to be used to pass ARGBLOCK
2570 to a function call in ARGS. In that case, the stack
2571 pointer changes value from the allocation point to the
2572 call point, and hence the value of
2573 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2574 as well always do it. */
2575 argblock = copy_to_reg (argblock);
2576 }
2577 }
2578 }
2579
2580 if (ACCUMULATE_OUTGOING_ARGS)
2581 {
2582 /* The save/restore code in store_one_arg handles all
2583 cases except one: a constructor call (including a C
2584 function returning a BLKmode struct) to initialize
2585 an argument. */
2586 if (stack_arg_under_construction)
2587 {
2588 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2589 rtx push_size = GEN_INT (reg_parm_stack_space
2590 + adjusted_args_size.constant);
2591 #else
2592 rtx push_size = GEN_INT (adjusted_args_size.constant);
2593 #endif
2594 if (old_stack_level == 0)
2595 {
2596 emit_stack_save (SAVE_BLOCK, &old_stack_level,
2597 NULL_RTX);
2598 old_stack_pointer_delta = stack_pointer_delta;
2599 old_pending_adj = pending_stack_adjust;
2600 pending_stack_adjust = 0;
2601 /* stack_arg_under_construction says whether a stack
2602 arg is being constructed at the old stack level.
2603 Pushing the stack gets a clean outgoing argument
2604 block. */
2605 old_stack_arg_under_construction
2606 = stack_arg_under_construction;
2607 stack_arg_under_construction = 0;
2608 /* Make a new map for the new argument list. */
2609 stack_usage_map = alloca (highest_outgoing_arg_in_use);
2610 memset (stack_usage_map, 0, highest_outgoing_arg_in_use);
2611 highest_outgoing_arg_in_use = 0;
2612 }
2613 allocate_dynamic_stack_space (push_size, NULL_RTX,
2614 BITS_PER_UNIT);
2615 }
2616
2617 /* If argument evaluation might modify the stack pointer,
2618 copy the address of the argument list to a register. */
2619 for (i = 0; i < num_actuals; i++)
2620 if (args[i].pass_on_stack)
2621 {
2622 argblock = copy_addr_to_reg (argblock);
2623 break;
2624 }
2625 }
2626
2627 compute_argument_addresses (args, argblock, num_actuals);
2628
2629 /* If we push args individually in reverse order, perform stack alignment
2630 before the first push (the last arg). */
2631 if (PUSH_ARGS_REVERSED && argblock == 0
2632 && adjusted_args_size.constant != unadjusted_args_size)
2633 {
2634 /* When the stack adjustment is pending, we get better code
2635 by combining the adjustments. */
2636 if (pending_stack_adjust
2637 && ! (flags & ECF_LIBCALL_BLOCK)
2638 && ! inhibit_defer_pop)
2639 {
2640 pending_stack_adjust
2641 = (combine_pending_stack_adjustment_and_call
2642 (unadjusted_args_size,
2643 &adjusted_args_size,
2644 preferred_unit_stack_boundary));
2645 do_pending_stack_adjust ();
2646 }
2647 else if (argblock == 0)
2648 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2649 - unadjusted_args_size));
2650 }
2651 /* Now that the stack is properly aligned, pops can't safely
2652 be deferred during the evaluation of the arguments. */
2653 NO_DEFER_POP;
2654
2655 funexp = rtx_for_function_call (fndecl, addr);
2656
2657 /* Figure out the register where the value, if any, will come back. */
2658 valreg = 0;
2659 if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
2660 && ! structure_value_addr)
2661 {
2662 if (pcc_struct_value)
2663 valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
2664 fndecl, (pass == 0));
2665 else
2666 valreg = hard_function_value (TREE_TYPE (exp), fndecl, (pass == 0));
2667 }
2668
2669 /* Precompute all register parameters. It isn't safe to compute anything
2670 once we have started filling any specific hard regs. */
2671 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2672
2673 if (TREE_OPERAND (exp, 2))
2674 static_chain_value = expand_expr (TREE_OPERAND (exp, 2),
2675 NULL_RTX, VOIDmode, 0);
2676 else
2677 static_chain_value = 0;
2678
2679 #ifdef REG_PARM_STACK_SPACE
2680 /* Save the fixed argument area if it's part of the caller's frame and
2681 is clobbered by argument setup for this call. */
2682 if (ACCUMULATE_OUTGOING_ARGS && pass)
2683 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2684 &low_to_save, &high_to_save);
2685 #endif
2686
2687 /* Now store (and compute if necessary) all non-register parms.
2688 These come before register parms, since they can require block-moves,
2689 which could clobber the registers used for register parms.
2690 Parms which have partial registers are not stored here,
2691 but we do preallocate space here if they want that. */
2692
2693 for (i = 0; i < num_actuals; i++)
2694 if (args[i].reg == 0 || args[i].pass_on_stack)
2695 {
2696 rtx before_arg = get_last_insn ();
2697
2698 if (store_one_arg (&args[i], argblock, flags,
2699 adjusted_args_size.var != 0,
2700 reg_parm_stack_space)
2701 || (pass == 0
2702 && check_sibcall_argument_overlap (before_arg,
2703 &args[i], 1)))
2704 sibcall_failure = 1;
2705
2706 if (flags & ECF_CONST
2707 && args[i].stack
2708 && args[i].value == args[i].stack)
2709 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2710 gen_rtx_USE (VOIDmode,
2711 args[i].value),
2712 call_fusage);
2713 }
2714
2715 /* If we have a parm that is passed in registers but not in memory
2716 and whose alignment does not permit a direct copy into registers,
2717 make a group of pseudos that correspond to each register that we
2718 will later fill. */
2719 if (STRICT_ALIGNMENT)
2720 store_unaligned_arguments_into_pseudos (args, num_actuals);
2721
2722 /* Now store any partially-in-registers parm.
2723 This is the last place a block-move can happen. */
2724 if (reg_parm_seen)
2725 for (i = 0; i < num_actuals; i++)
2726 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2727 {
2728 rtx before_arg = get_last_insn ();
2729
2730 if (store_one_arg (&args[i], argblock, flags,
2731 adjusted_args_size.var != 0,
2732 reg_parm_stack_space)
2733 || (pass == 0
2734 && check_sibcall_argument_overlap (before_arg,
2735 &args[i], 1)))
2736 sibcall_failure = 1;
2737 }
2738
2739 /* If we pushed args in forward order, perform stack alignment
2740 after pushing the last arg. */
2741 if (!PUSH_ARGS_REVERSED && argblock == 0)
2742 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2743 - unadjusted_args_size));
2744
2745 /* If register arguments require space on the stack and stack space
2746 was not preallocated, allocate stack space here for arguments
2747 passed in registers. */
2748 #ifdef OUTGOING_REG_PARM_STACK_SPACE
2749 if (!ACCUMULATE_OUTGOING_ARGS
2750 && must_preallocate == 0 && reg_parm_stack_space > 0)
2751 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2752 #endif
2753
2754 /* Pass the function the address in which to return a
2755 structure value. */
2756 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2757 {
2758 structure_value_addr
2759 = convert_memory_address (Pmode, structure_value_addr);
2760 emit_move_insn (struct_value,
2761 force_reg (Pmode,
2762 force_operand (structure_value_addr,
2763 NULL_RTX)));
2764
2765 if (REG_P (struct_value))
2766 use_reg (&call_fusage, struct_value);
2767 }
2768
2769 funexp = prepare_call_address (funexp, static_chain_value,
2770 &call_fusage, reg_parm_seen, pass == 0);
2771
2772 load_register_parameters (args, num_actuals, &call_fusage, flags,
2773 pass == 0, &sibcall_failure);
2774
2775 /* Save a pointer to the last insn before the call, so that we can
2776 later safely search backwards to find the CALL_INSN. */
2777 before_call = get_last_insn ();
2778
2779 /* Set up next argument register. For sibling calls on machines
2780 with register windows this should be the incoming register. */
2781 #ifdef FUNCTION_INCOMING_ARG
2782 if (pass == 0)
2783 next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
2784 void_type_node, 1);
2785 else
2786 #endif
2787 next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
2788 void_type_node, 1);
2789
2790 /* All arguments and registers used for the call must be set up by
2791 now! */
2792
2793 /* Stack must be properly aligned now. */
2794 if (pass && stack_pointer_delta % preferred_unit_stack_boundary)
2795 abort ();
2796
2797 /* Generate the actual call instruction. */
2798 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2799 adjusted_args_size.constant, struct_value_size,
2800 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2801 flags, & args_so_far);
2802
2803 /* If call is cse'able, make appropriate pair of reg-notes around it.
2804 Test valreg so we don't crash; may safely ignore `const'
2805 if return type is void. Disable for PARALLEL return values, because
2806 we have no way to move such values into a pseudo register. */
2807 if (pass && (flags & ECF_LIBCALL_BLOCK))
2808 {
2809 rtx insns;
2810 rtx insn;
2811 bool failed = valreg == 0 || GET_CODE (valreg) == PARALLEL;
2812
2813 insns = get_insns ();
2814
2815 /* Expansion of block moves possibly introduced a loop that may
2816 not appear inside libcall block. */
2817 for (insn = insns; insn; insn = NEXT_INSN (insn))
2818 if (JUMP_P (insn))
2819 failed = true;
2820
2821 if (failed)
2822 {
2823 end_sequence ();
2824 emit_insn (insns);
2825 }
2826 else
2827 {
2828 rtx note = 0;
2829 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2830
2831 /* Mark the return value as a pointer if needed. */
2832 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2833 mark_reg_pointer (temp,
2834 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp))));
2835
2836 end_sequence ();
2837 if (flag_unsafe_math_optimizations
2838 && fndecl
2839 && DECL_BUILT_IN (fndecl)
2840 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRT
2841 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTF
2842 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTL))
2843 note = gen_rtx_fmt_e (SQRT,
2844 GET_MODE (temp),
2845 args[0].initial_value);
2846 else
2847 {
2848 /* Construct an "equal form" for the value which
2849 mentions all the arguments in order as well as
2850 the function name. */
2851 for (i = 0; i < num_actuals; i++)
2852 note = gen_rtx_EXPR_LIST (VOIDmode,
2853 args[i].initial_value, note);
2854 note = gen_rtx_EXPR_LIST (VOIDmode, funexp, note);
2855
2856 if (flags & ECF_PURE)
2857 note = gen_rtx_EXPR_LIST (VOIDmode,
2858 gen_rtx_USE (VOIDmode,
2859 gen_rtx_MEM (BLKmode,
2860 gen_rtx_SCRATCH (VOIDmode))),
2861 note);
2862 }
2863 emit_libcall_block (insns, temp, valreg, note);
2864
2865 valreg = temp;
2866 }
2867 }
2868 else if (pass && (flags & ECF_MALLOC))
2869 {
2870 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2871 rtx last, insns;
2872
2873 /* The return value from a malloc-like function is a pointer. */
2874 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2875 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2876
2877 emit_move_insn (temp, valreg);
2878
2879 /* The return value from a malloc-like function can not alias
2880 anything else. */
2881 last = get_last_insn ();
2882 REG_NOTES (last) =
2883 gen_rtx_EXPR_LIST (REG_NOALIAS, temp, REG_NOTES (last));
2884
2885 /* Write out the sequence. */
2886 insns = get_insns ();
2887 end_sequence ();
2888 emit_insn (insns);
2889 valreg = temp;
2890 }
2891
2892 /* For calls to `setjmp', etc., inform flow.c it should complain
2893 if nonvolatile values are live. For functions that cannot return,
2894 inform flow that control does not fall through. */
2895
2896 if ((flags & (ECF_NORETURN | ECF_LONGJMP)) || pass == 0)
2897 {
2898 /* The barrier must be emitted
2899 immediately after the CALL_INSN. Some ports emit more
2900 than just a CALL_INSN above, so we must search for it here. */
2901
2902 rtx last = get_last_insn ();
2903 while (!CALL_P (last))
2904 {
2905 last = PREV_INSN (last);
2906 /* There was no CALL_INSN? */
2907 if (last == before_call)
2908 abort ();
2909 }
2910
2911 emit_barrier_after (last);
2912
2913 /* Stack adjustments after a noreturn call are dead code.
2914 However when NO_DEFER_POP is in effect, we must preserve
2915 stack_pointer_delta. */
2916 if (inhibit_defer_pop == 0)
2917 {
2918 stack_pointer_delta = old_stack_allocated;
2919 pending_stack_adjust = 0;
2920 }
2921 }
2922
2923 if (flags & ECF_LONGJMP)
2924 current_function_calls_longjmp = 1;
2925
2926 /* If value type not void, return an rtx for the value. */
2927
2928 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
2929 || ignore)
2930 target = const0_rtx;
2931 else if (structure_value_addr)
2932 {
2933 if (target == 0 || !MEM_P (target))
2934 {
2935 target
2936 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2937 memory_address (TYPE_MODE (TREE_TYPE (exp)),
2938 structure_value_addr));
2939 set_mem_attributes (target, exp, 1);
2940 }
2941 }
2942 else if (pcc_struct_value)
2943 {
2944 /* This is the special C++ case where we need to
2945 know what the true target was. We take care to
2946 never use this value more than once in one expression. */
2947 target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2948 copy_to_reg (valreg));
2949 set_mem_attributes (target, exp, 1);
2950 }
2951 /* Handle calls that return values in multiple non-contiguous locations.
2952 The Irix 6 ABI has examples of this. */
2953 else if (GET_CODE (valreg) == PARALLEL)
2954 {
2955 if (target == 0)
2956 {
2957 /* This will only be assigned once, so it can be readonly. */
2958 tree nt = build_qualified_type (TREE_TYPE (exp),
2959 (TYPE_QUALS (TREE_TYPE (exp))
2960 | TYPE_QUAL_CONST));
2961
2962 target = assign_temp (nt, 0, 1, 1);
2963 preserve_temp_slots (target);
2964 }
2965
2966 if (! rtx_equal_p (target, valreg))
2967 emit_group_store (target, valreg, TREE_TYPE (exp),
2968 int_size_in_bytes (TREE_TYPE (exp)));
2969
2970 /* We can not support sibling calls for this case. */
2971 sibcall_failure = 1;
2972 }
2973 else if (target
2974 && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
2975 && GET_MODE (target) == GET_MODE (valreg))
2976 {
2977 /* TARGET and VALREG cannot be equal at this point because the
2978 latter would not have REG_FUNCTION_VALUE_P true, while the
2979 former would if it were referring to the same register.
2980
2981 If they refer to the same register, this move will be a no-op,
2982 except when function inlining is being done. */
2983 emit_move_insn (target, valreg);
2984
2985 /* If we are setting a MEM, this code must be executed. Since it is
2986 emitted after the call insn, sibcall optimization cannot be
2987 performed in that case. */
2988 if (MEM_P (target))
2989 sibcall_failure = 1;
2990 }
2991 else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
2992 {
2993 target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp));
2994
2995 /* We can not support sibling calls for this case. */
2996 sibcall_failure = 1;
2997 }
2998 else
2999 {
3000 if (shift_returned_value (TREE_TYPE (exp), &valreg))
3001 sibcall_failure = 1;
3002
3003 target = copy_to_reg (valreg);
3004 }
3005
3006 if (targetm.calls.promote_function_return(funtype))
3007 {
3008 /* If we promoted this return value, make the proper SUBREG. TARGET
3009 might be const0_rtx here, so be careful. */
3010 if (REG_P (target)
3011 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
3012 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
3013 {
3014 tree type = TREE_TYPE (exp);
3015 int unsignedp = TYPE_UNSIGNED (type);
3016 int offset = 0;
3017
3018 /* If we don't promote as expected, something is wrong. */
3019 if (GET_MODE (target)
3020 != promote_mode (type, TYPE_MODE (type), &unsignedp, 1))
3021 abort ();
3022
3023 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
3024 && GET_MODE_SIZE (GET_MODE (target))
3025 > GET_MODE_SIZE (TYPE_MODE (type)))
3026 {
3027 offset = GET_MODE_SIZE (GET_MODE (target))
3028 - GET_MODE_SIZE (TYPE_MODE (type));
3029 if (! BYTES_BIG_ENDIAN)
3030 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
3031 else if (! WORDS_BIG_ENDIAN)
3032 offset %= UNITS_PER_WORD;
3033 }
3034 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
3035 SUBREG_PROMOTED_VAR_P (target) = 1;
3036 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
3037 }
3038 }
3039
3040 /* If size of args is variable or this was a constructor call for a stack
3041 argument, restore saved stack-pointer value. */
3042
3043 if (old_stack_level && ! (flags & ECF_SP_DEPRESSED))
3044 {
3045 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
3046 stack_pointer_delta = old_stack_pointer_delta;
3047 pending_stack_adjust = old_pending_adj;
3048 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3049 stack_arg_under_construction = old_stack_arg_under_construction;
3050 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3051 stack_usage_map = initial_stack_usage_map;
3052 sibcall_failure = 1;
3053 }
3054 else if (ACCUMULATE_OUTGOING_ARGS && pass)
3055 {
3056 #ifdef REG_PARM_STACK_SPACE
3057 if (save_area)
3058 restore_fixed_argument_area (save_area, argblock,
3059 high_to_save, low_to_save);
3060 #endif
3061
3062 /* If we saved any argument areas, restore them. */
3063 for (i = 0; i < num_actuals; i++)
3064 if (args[i].save_area)
3065 {
3066 enum machine_mode save_mode = GET_MODE (args[i].save_area);
3067 rtx stack_area
3068 = gen_rtx_MEM (save_mode,
3069 memory_address (save_mode,
3070 XEXP (args[i].stack_slot, 0)));
3071
3072 if (save_mode != BLKmode)
3073 emit_move_insn (stack_area, args[i].save_area);
3074 else
3075 emit_block_move (stack_area, args[i].save_area,
3076 GEN_INT (args[i].locate.size.constant),
3077 BLOCK_OP_CALL_PARM);
3078 }
3079
3080 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3081 stack_usage_map = initial_stack_usage_map;
3082 }
3083
3084 /* If this was alloca, record the new stack level for nonlocal gotos.
3085 Check for the handler slots since we might not have a save area
3086 for non-local gotos. */
3087
3088 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
3089 update_nonlocal_goto_save_area ();
3090
3091 /* Free up storage we no longer need. */
3092 for (i = 0; i < num_actuals; ++i)
3093 if (args[i].aligned_regs)
3094 free (args[i].aligned_regs);
3095
3096 if (pass == 0)
3097 {
3098 /* Undo the fake expand_start_target_temps we did earlier. If
3099 there had been any cleanups created, we've already set
3100 sibcall_failure. */
3101 expand_end_target_temps ();
3102 }
3103
3104 /* If this function is returning into a memory location marked as
3105 readonly, it means it is initializing that location. We normally treat
3106 functions as not clobbering such locations, so we need to specify that
3107 this one does. We do this by adding the appropriate CLOBBER to the
3108 CALL_INSN function usage list. This cannot be done by emitting a
3109 standalone CLOBBER after the call because the latter would be ignored
3110 by at least the delay slot scheduling pass. We do this now instead of
3111 adding to call_fusage before the call to emit_call_1 because TARGET
3112 may be modified in the meantime. */
3113 if (structure_value_addr != 0 && target != 0
3114 && MEM_P (target) && RTX_UNCHANGING_P (target))
3115 add_function_usage_to
3116 (last_call_insn (),
3117 gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_CLOBBER (VOIDmode, target),
3118 NULL_RTX));
3119
3120 insns = get_insns ();
3121 end_sequence ();
3122
3123 if (pass == 0)
3124 {
3125 tail_call_insns = insns;
3126
3127 /* Restore the pending stack adjustment now that we have
3128 finished generating the sibling call sequence. */
3129
3130 pending_stack_adjust = save_pending_stack_adjust;
3131 stack_pointer_delta = save_stack_pointer_delta;
3132
3133 /* Prepare arg structure for next iteration. */
3134 for (i = 0; i < num_actuals; i++)
3135 {
3136 args[i].value = 0;
3137 args[i].aligned_regs = 0;
3138 args[i].stack = 0;
3139 }
3140
3141 sbitmap_free (stored_args_map);
3142 }
3143 else
3144 {
3145 normal_call_insns = insns;
3146
3147 /* Verify that we've deallocated all the stack we used. */
3148 if (! (flags & (ECF_NORETURN | ECF_LONGJMP))
3149 && old_stack_allocated != stack_pointer_delta
3150 - pending_stack_adjust)
3151 abort ();
3152 }
3153
3154 /* If something prevents making this a sibling call,
3155 zero out the sequence. */
3156 if (sibcall_failure)
3157 tail_call_insns = NULL_RTX;
3158 else
3159 break;
3160 }
3161
3162 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3163 arguments too, as argument area is now clobbered by the call. */
3164 if (tail_call_insns)
3165 {
3166 emit_insn (tail_call_insns);
3167 cfun->tail_call_emit = true;
3168 }
3169 else
3170 emit_insn (normal_call_insns);
3171
3172 currently_expanding_call--;
3173
3174 /* If this function returns with the stack pointer depressed, ensure
3175 this block saves and restores the stack pointer, show it was
3176 changed, and adjust for any outgoing arg space. */
3177 if (flags & ECF_SP_DEPRESSED)
3178 {
3179 clear_pending_stack_adjust ();
3180 emit_insn (gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx));
3181 emit_move_insn (virtual_stack_dynamic_rtx, stack_pointer_rtx);
3182 }
3183
3184 return target;
3185 }
3186
3187 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3188 this function's incoming arguments.
3189
3190 At the start of RTL generation we know the only REG_EQUIV notes
3191 in the rtl chain are those for incoming arguments, so we can safely
3192 flush any REG_EQUIV note.
3193
3194 This is (slight) overkill. We could keep track of the highest
3195 argument we clobber and be more selective in removing notes, but it
3196 does not seem to be worth the effort. */
3197 void
3198 fixup_tail_calls (void)
3199 {
3200 rtx insn;
3201 tree arg;
3202
3203 purge_reg_equiv_notes ();
3204
3205 /* A sibling call sequence also may invalidate RTX_UNCHANGING_P
3206 flag of some incoming arguments MEM RTLs, because it can write into
3207 those slots. We clear all those bits now.
3208
3209 This is (slight) overkill, we could keep track of which arguments
3210 we actually write into. */
3211 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3212 {
3213 if (INSN_P (insn))
3214 purge_mem_unchanging_flag (PATTERN (insn));
3215 }
3216
3217 /* Similarly, invalidate RTX_UNCHANGING_P for any incoming
3218 arguments passed in registers. */
3219 for (arg = DECL_ARGUMENTS (current_function_decl);
3220 arg;
3221 arg = TREE_CHAIN (arg))
3222 {
3223 if (REG_P (DECL_RTL (arg)))
3224 RTX_UNCHANGING_P (DECL_RTL (arg)) = false;
3225 }
3226 }
3227
3228 /* Traverse an argument list in VALUES and expand all complex
3229 arguments into their components. */
3230 tree
3231 split_complex_values (tree values)
3232 {
3233 tree p;
3234
3235 /* Before allocating memory, check for the common case of no complex. */
3236 for (p = values; p; p = TREE_CHAIN (p))
3237 {
3238 tree type = TREE_TYPE (TREE_VALUE (p));
3239 if (type && TREE_CODE (type) == COMPLEX_TYPE
3240 && targetm.calls.split_complex_arg (type))
3241 goto found;
3242 }
3243 return values;
3244
3245 found:
3246 values = copy_list (values);
3247
3248 for (p = values; p; p = TREE_CHAIN (p))
3249 {
3250 tree complex_value = TREE_VALUE (p);
3251 tree complex_type;
3252
3253 complex_type = TREE_TYPE (complex_value);
3254 if (!complex_type)
3255 continue;
3256
3257 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3258 && targetm.calls.split_complex_arg (complex_type))
3259 {
3260 tree subtype;
3261 tree real, imag, next;
3262
3263 subtype = TREE_TYPE (complex_type);
3264 complex_value = save_expr (complex_value);
3265 real = build1 (REALPART_EXPR, subtype, complex_value);
3266 imag = build1 (IMAGPART_EXPR, subtype, complex_value);
3267
3268 TREE_VALUE (p) = real;
3269 next = TREE_CHAIN (p);
3270 imag = build_tree_list (NULL_TREE, imag);
3271 TREE_CHAIN (p) = imag;
3272 TREE_CHAIN (imag) = next;
3273
3274 /* Skip the newly created node. */
3275 p = TREE_CHAIN (p);
3276 }
3277 }
3278
3279 return values;
3280 }
3281
3282 /* Traverse a list of TYPES and expand all complex types into their
3283 components. */
3284 tree
3285 split_complex_types (tree types)
3286 {
3287 tree p;
3288
3289 /* Before allocating memory, check for the common case of no complex. */
3290 for (p = types; p; p = TREE_CHAIN (p))
3291 {
3292 tree type = TREE_VALUE (p);
3293 if (TREE_CODE (type) == COMPLEX_TYPE
3294 && targetm.calls.split_complex_arg (type))
3295 goto found;
3296 }
3297 return types;
3298
3299 found:
3300 types = copy_list (types);
3301
3302 for (p = types; p; p = TREE_CHAIN (p))
3303 {
3304 tree complex_type = TREE_VALUE (p);
3305
3306 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3307 && targetm.calls.split_complex_arg (complex_type))
3308 {
3309 tree next, imag;
3310
3311 /* Rewrite complex type with component type. */
3312 TREE_VALUE (p) = TREE_TYPE (complex_type);
3313 next = TREE_CHAIN (p);
3314
3315 /* Add another component type for the imaginary part. */
3316 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3317 TREE_CHAIN (p) = imag;
3318 TREE_CHAIN (imag) = next;
3319
3320 /* Skip the newly created node. */
3321 p = TREE_CHAIN (p);
3322 }
3323 }
3324
3325 return types;
3326 }
3327 \f
3328 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3329 The RETVAL parameter specifies whether return value needs to be saved, other
3330 parameters are documented in the emit_library_call function below. */
3331
3332 static rtx
3333 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3334 enum libcall_type fn_type,
3335 enum machine_mode outmode, int nargs, va_list p)
3336 {
3337 /* Total size in bytes of all the stack-parms scanned so far. */
3338 struct args_size args_size;
3339 /* Size of arguments before any adjustments (such as rounding). */
3340 struct args_size original_args_size;
3341 int argnum;
3342 rtx fun;
3343 int inc;
3344 int count;
3345 rtx argblock = 0;
3346 CUMULATIVE_ARGS args_so_far;
3347 struct arg
3348 {
3349 rtx value;
3350 enum machine_mode mode;
3351 rtx reg;
3352 int partial;
3353 struct locate_and_pad_arg_data locate;
3354 rtx save_area;
3355 };
3356 struct arg *argvec;
3357 int old_inhibit_defer_pop = inhibit_defer_pop;
3358 rtx call_fusage = 0;
3359 rtx mem_value = 0;
3360 rtx valreg;
3361 int pcc_struct_value = 0;
3362 int struct_value_size = 0;
3363 int flags;
3364 int reg_parm_stack_space = 0;
3365 int needed;
3366 rtx before_call;
3367 tree tfom; /* type_for_mode (outmode, 0) */
3368
3369 #ifdef REG_PARM_STACK_SPACE
3370 /* Define the boundary of the register parm stack space that needs to be
3371 save, if any. */
3372 int low_to_save, high_to_save;
3373 rtx save_area = 0; /* Place that it is saved. */
3374 #endif
3375
3376 /* Size of the stack reserved for parameter registers. */
3377 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3378 char *initial_stack_usage_map = stack_usage_map;
3379
3380 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3381
3382 #ifdef REG_PARM_STACK_SPACE
3383 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3384 #endif
3385
3386 /* By default, library functions can not throw. */
3387 flags = ECF_NOTHROW;
3388
3389 switch (fn_type)
3390 {
3391 case LCT_NORMAL:
3392 break;
3393 case LCT_CONST:
3394 flags |= ECF_CONST;
3395 break;
3396 case LCT_PURE:
3397 flags |= ECF_PURE;
3398 break;
3399 case LCT_CONST_MAKE_BLOCK:
3400 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
3401 break;
3402 case LCT_PURE_MAKE_BLOCK:
3403 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
3404 break;
3405 case LCT_NORETURN:
3406 flags |= ECF_NORETURN;
3407 break;
3408 case LCT_THROW:
3409 flags = ECF_NORETURN;
3410 break;
3411 case LCT_ALWAYS_RETURN:
3412 flags = ECF_ALWAYS_RETURN;
3413 break;
3414 case LCT_RETURNS_TWICE:
3415 flags = ECF_RETURNS_TWICE;
3416 break;
3417 }
3418 fun = orgfun;
3419
3420 /* Ensure current function's preferred stack boundary is at least
3421 what we need. */
3422 if (cfun->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3423 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3424
3425 /* If this kind of value comes back in memory,
3426 decide where in memory it should come back. */
3427 if (outmode != VOIDmode)
3428 {
3429 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3430 if (aggregate_value_p (tfom, 0))
3431 {
3432 #ifdef PCC_STATIC_STRUCT_RETURN
3433 rtx pointer_reg
3434 = hard_function_value (build_pointer_type (tfom), 0, 0);
3435 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3436 pcc_struct_value = 1;
3437 if (value == 0)
3438 value = gen_reg_rtx (outmode);
3439 #else /* not PCC_STATIC_STRUCT_RETURN */
3440 struct_value_size = GET_MODE_SIZE (outmode);
3441 if (value != 0 && MEM_P (value))
3442 mem_value = value;
3443 else
3444 mem_value = assign_temp (tfom, 0, 1, 1);
3445 #endif
3446 /* This call returns a big structure. */
3447 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3448 }
3449 }
3450 else
3451 tfom = void_type_node;
3452
3453 /* ??? Unfinished: must pass the memory address as an argument. */
3454
3455 /* Copy all the libcall-arguments out of the varargs data
3456 and into a vector ARGVEC.
3457
3458 Compute how to pass each argument. We only support a very small subset
3459 of the full argument passing conventions to limit complexity here since
3460 library functions shouldn't have many args. */
3461
3462 argvec = alloca ((nargs + 1) * sizeof (struct arg));
3463 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3464
3465 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3466 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
3467 #else
3468 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
3469 #endif
3470
3471 args_size.constant = 0;
3472 args_size.var = 0;
3473
3474 count = 0;
3475
3476 /* Now we are about to start emitting insns that can be deleted
3477 if a libcall is deleted. */
3478 if (flags & ECF_LIBCALL_BLOCK)
3479 start_sequence ();
3480
3481 push_temp_slots ();
3482
3483 /* If there's a structure value address to be passed,
3484 either pass it in the special place, or pass it as an extra argument. */
3485 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3486 {
3487 rtx addr = XEXP (mem_value, 0);
3488 nargs++;
3489
3490 /* Make sure it is a reasonable operand for a move or push insn. */
3491 if (!REG_P (addr) && !MEM_P (addr)
3492 && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
3493 addr = force_operand (addr, NULL_RTX);
3494
3495 argvec[count].value = addr;
3496 argvec[count].mode = Pmode;
3497 argvec[count].partial = 0;
3498
3499 argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
3500 if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far, Pmode, NULL_TREE, 1))
3501 abort ();
3502
3503 locate_and_pad_parm (Pmode, NULL_TREE,
3504 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3505 1,
3506 #else
3507 argvec[count].reg != 0,
3508 #endif
3509 0, NULL_TREE, &args_size, &argvec[count].locate);
3510
3511 if (argvec[count].reg == 0 || argvec[count].partial != 0
3512 || reg_parm_stack_space > 0)
3513 args_size.constant += argvec[count].locate.size.constant;
3514
3515 FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
3516
3517 count++;
3518 }
3519
3520 for (; count < nargs; count++)
3521 {
3522 rtx val = va_arg (p, rtx);
3523 enum machine_mode mode = va_arg (p, enum machine_mode);
3524
3525 /* We cannot convert the arg value to the mode the library wants here;
3526 must do it earlier where we know the signedness of the arg. */
3527 if (mode == BLKmode
3528 || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode))
3529 abort ();
3530
3531 /* Make sure it is a reasonable operand for a move or push insn. */
3532 if (!REG_P (val) && !MEM_P (val)
3533 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
3534 val = force_operand (val, NULL_RTX);
3535
3536 if (pass_by_reference (&args_so_far, mode, NULL_TREE, 1))
3537 {
3538 rtx slot;
3539 int must_copy = ! FUNCTION_ARG_CALLEE_COPIES (args_so_far, mode,
3540 NULL_TREE, 1);
3541
3542 /* loop.c won't look at CALL_INSN_FUNCTION_USAGE of const/pure
3543 functions, so we have to pretend this isn't such a function. */
3544 if (flags & ECF_LIBCALL_BLOCK)
3545 {
3546 rtx insns = get_insns ();
3547 end_sequence ();
3548 emit_insn (insns);
3549 }
3550 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3551
3552 /* If this was a CONST function, it is now PURE since
3553 it now reads memory. */
3554 if (flags & ECF_CONST)
3555 {
3556 flags &= ~ECF_CONST;
3557 flags |= ECF_PURE;
3558 }
3559
3560 if (GET_MODE (val) == MEM && ! must_copy)
3561 slot = val;
3562 else if (must_copy)
3563 {
3564 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3565 0, 1, 1);
3566 emit_move_insn (slot, val);
3567 }
3568 else
3569 {
3570 tree type = lang_hooks.types.type_for_mode (mode, 0);
3571
3572 slot
3573 = gen_rtx_MEM (mode,
3574 expand_expr (build1 (ADDR_EXPR,
3575 build_pointer_type (type),
3576 make_tree (type, val)),
3577 NULL_RTX, VOIDmode, 0));
3578 }
3579
3580 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3581 gen_rtx_USE (VOIDmode, slot),
3582 call_fusage);
3583 if (must_copy)
3584 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3585 gen_rtx_CLOBBER (VOIDmode,
3586 slot),
3587 call_fusage);
3588
3589 mode = Pmode;
3590 val = force_operand (XEXP (slot, 0), NULL_RTX);
3591 }
3592
3593 argvec[count].value = val;
3594 argvec[count].mode = mode;
3595
3596 argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
3597
3598 argvec[count].partial
3599 = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1);
3600
3601 locate_and_pad_parm (mode, NULL_TREE,
3602 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3603 1,
3604 #else
3605 argvec[count].reg != 0,
3606 #endif
3607 argvec[count].partial,
3608 NULL_TREE, &args_size, &argvec[count].locate);
3609
3610 if (argvec[count].locate.size.var)
3611 abort ();
3612
3613 if (argvec[count].reg == 0 || argvec[count].partial != 0
3614 || reg_parm_stack_space > 0)
3615 args_size.constant += argvec[count].locate.size.constant;
3616
3617 FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
3618 }
3619
3620 /* If this machine requires an external definition for library
3621 functions, write one out. */
3622 assemble_external_libcall (fun);
3623
3624 original_args_size = args_size;
3625 args_size.constant = (((args_size.constant
3626 + stack_pointer_delta
3627 + STACK_BYTES - 1)
3628 / STACK_BYTES
3629 * STACK_BYTES)
3630 - stack_pointer_delta);
3631
3632 args_size.constant = MAX (args_size.constant,
3633 reg_parm_stack_space);
3634
3635 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3636 args_size.constant -= reg_parm_stack_space;
3637 #endif
3638
3639 if (args_size.constant > current_function_outgoing_args_size)
3640 current_function_outgoing_args_size = args_size.constant;
3641
3642 if (ACCUMULATE_OUTGOING_ARGS)
3643 {
3644 /* Since the stack pointer will never be pushed, it is possible for
3645 the evaluation of a parm to clobber something we have already
3646 written to the stack. Since most function calls on RISC machines
3647 do not use the stack, this is uncommon, but must work correctly.
3648
3649 Therefore, we save any area of the stack that was already written
3650 and that we are using. Here we set up to do this by making a new
3651 stack usage map from the old one.
3652
3653 Another approach might be to try to reorder the argument
3654 evaluations to avoid this conflicting stack usage. */
3655
3656 needed = args_size.constant;
3657
3658 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3659 /* Since we will be writing into the entire argument area, the
3660 map must be allocated for its entire size, not just the part that
3661 is the responsibility of the caller. */
3662 needed += reg_parm_stack_space;
3663 #endif
3664
3665 #ifdef ARGS_GROW_DOWNWARD
3666 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3667 needed + 1);
3668 #else
3669 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3670 needed);
3671 #endif
3672 stack_usage_map = alloca (highest_outgoing_arg_in_use);
3673
3674 if (initial_highest_arg_in_use)
3675 memcpy (stack_usage_map, initial_stack_usage_map,
3676 initial_highest_arg_in_use);
3677
3678 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3679 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3680 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3681 needed = 0;
3682
3683 /* We must be careful to use virtual regs before they're instantiated,
3684 and real regs afterwards. Loop optimization, for example, can create
3685 new libcalls after we've instantiated the virtual regs, and if we
3686 use virtuals anyway, they won't match the rtl patterns. */
3687
3688 if (virtuals_instantiated)
3689 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3690 else
3691 argblock = virtual_outgoing_args_rtx;
3692 }
3693 else
3694 {
3695 if (!PUSH_ARGS)
3696 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3697 }
3698
3699 /* If we push args individually in reverse order, perform stack alignment
3700 before the first push (the last arg). */
3701 if (argblock == 0 && PUSH_ARGS_REVERSED)
3702 anti_adjust_stack (GEN_INT (args_size.constant
3703 - original_args_size.constant));
3704
3705 if (PUSH_ARGS_REVERSED)
3706 {
3707 inc = -1;
3708 argnum = nargs - 1;
3709 }
3710 else
3711 {
3712 inc = 1;
3713 argnum = 0;
3714 }
3715
3716 #ifdef REG_PARM_STACK_SPACE
3717 if (ACCUMULATE_OUTGOING_ARGS)
3718 {
3719 /* The argument list is the property of the called routine and it
3720 may clobber it. If the fixed area has been used for previous
3721 parameters, we must save and restore it. */
3722 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3723 &low_to_save, &high_to_save);
3724 }
3725 #endif
3726
3727 /* Push the args that need to be pushed. */
3728
3729 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3730 are to be pushed. */
3731 for (count = 0; count < nargs; count++, argnum += inc)
3732 {
3733 enum machine_mode mode = argvec[argnum].mode;
3734 rtx val = argvec[argnum].value;
3735 rtx reg = argvec[argnum].reg;
3736 int partial = argvec[argnum].partial;
3737 int lower_bound = 0, upper_bound = 0, i;
3738
3739 if (! (reg != 0 && partial == 0))
3740 {
3741 if (ACCUMULATE_OUTGOING_ARGS)
3742 {
3743 /* If this is being stored into a pre-allocated, fixed-size,
3744 stack area, save any previous data at that location. */
3745
3746 #ifdef ARGS_GROW_DOWNWARD
3747 /* stack_slot is negative, but we want to index stack_usage_map
3748 with positive values. */
3749 upper_bound = -argvec[argnum].locate.offset.constant + 1;
3750 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3751 #else
3752 lower_bound = argvec[argnum].locate.offset.constant;
3753 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3754 #endif
3755
3756 i = lower_bound;
3757 /* Don't worry about things in the fixed argument area;
3758 it has already been saved. */
3759 if (i < reg_parm_stack_space)
3760 i = reg_parm_stack_space;
3761 while (i < upper_bound && stack_usage_map[i] == 0)
3762 i++;
3763
3764 if (i < upper_bound)
3765 {
3766 /* We need to make a save area. */
3767 unsigned int size
3768 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3769 enum machine_mode save_mode
3770 = mode_for_size (size, MODE_INT, 1);
3771 rtx adr
3772 = plus_constant (argblock,
3773 argvec[argnum].locate.offset.constant);
3774 rtx stack_area
3775 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3776
3777 if (save_mode == BLKmode)
3778 {
3779 argvec[argnum].save_area
3780 = assign_stack_temp (BLKmode,
3781 argvec[argnum].locate.size.constant,
3782 0);
3783
3784 emit_block_move (validize_mem (argvec[argnum].save_area),
3785 stack_area,
3786 GEN_INT (argvec[argnum].locate.size.constant),
3787 BLOCK_OP_CALL_PARM);
3788 }
3789 else
3790 {
3791 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3792
3793 emit_move_insn (argvec[argnum].save_area, stack_area);
3794 }
3795 }
3796 }
3797
3798 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, PARM_BOUNDARY,
3799 partial, reg, 0, argblock,
3800 GEN_INT (argvec[argnum].locate.offset.constant),
3801 reg_parm_stack_space,
3802 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3803
3804 /* Now mark the segment we just used. */
3805 if (ACCUMULATE_OUTGOING_ARGS)
3806 for (i = lower_bound; i < upper_bound; i++)
3807 stack_usage_map[i] = 1;
3808
3809 NO_DEFER_POP;
3810 }
3811 }
3812
3813 /* If we pushed args in forward order, perform stack alignment
3814 after pushing the last arg. */
3815 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3816 anti_adjust_stack (GEN_INT (args_size.constant
3817 - original_args_size.constant));
3818
3819 if (PUSH_ARGS_REVERSED)
3820 argnum = nargs - 1;
3821 else
3822 argnum = 0;
3823
3824 fun = prepare_call_address (fun, NULL, &call_fusage, 0, 0);
3825
3826 /* Now load any reg parms into their regs. */
3827
3828 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3829 are to be pushed. */
3830 for (count = 0; count < nargs; count++, argnum += inc)
3831 {
3832 enum machine_mode mode = argvec[argnum].mode;
3833 rtx val = argvec[argnum].value;
3834 rtx reg = argvec[argnum].reg;
3835 int partial = argvec[argnum].partial;
3836
3837 /* Handle calls that pass values in multiple non-contiguous
3838 locations. The PA64 has examples of this for library calls. */
3839 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3840 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3841 else if (reg != 0 && partial == 0)
3842 emit_move_insn (reg, val);
3843
3844 NO_DEFER_POP;
3845 }
3846
3847 /* Any regs containing parms remain in use through the call. */
3848 for (count = 0; count < nargs; count++)
3849 {
3850 rtx reg = argvec[count].reg;
3851 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3852 use_group_regs (&call_fusage, reg);
3853 else if (reg != 0)
3854 use_reg (&call_fusage, reg);
3855 }
3856
3857 /* Pass the function the address in which to return a structure value. */
3858 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3859 {
3860 emit_move_insn (struct_value,
3861 force_reg (Pmode,
3862 force_operand (XEXP (mem_value, 0),
3863 NULL_RTX)));
3864 if (REG_P (struct_value))
3865 use_reg (&call_fusage, struct_value);
3866 }
3867
3868 /* Don't allow popping to be deferred, since then
3869 cse'ing of library calls could delete a call and leave the pop. */
3870 NO_DEFER_POP;
3871 valreg = (mem_value == 0 && outmode != VOIDmode
3872 ? hard_libcall_value (outmode) : NULL_RTX);
3873
3874 /* Stack must be properly aligned now. */
3875 if (stack_pointer_delta & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1))
3876 abort ();
3877
3878 before_call = get_last_insn ();
3879
3880 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3881 will set inhibit_defer_pop to that value. */
3882 /* The return type is needed to decide how many bytes the function pops.
3883 Signedness plays no role in that, so for simplicity, we pretend it's
3884 always signed. We also assume that the list of arguments passed has
3885 no impact, so we pretend it is unknown. */
3886
3887 emit_call_1 (fun, NULL,
3888 get_identifier (XSTR (orgfun, 0)),
3889 build_function_type (tfom, NULL_TREE),
3890 original_args_size.constant, args_size.constant,
3891 struct_value_size,
3892 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
3893 valreg,
3894 old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
3895
3896 /* For calls to `setjmp', etc., inform flow.c it should complain
3897 if nonvolatile values are live. For functions that cannot return,
3898 inform flow that control does not fall through. */
3899
3900 if (flags & (ECF_NORETURN | ECF_LONGJMP))
3901 {
3902 /* The barrier note must be emitted
3903 immediately after the CALL_INSN. Some ports emit more than
3904 just a CALL_INSN above, so we must search for it here. */
3905
3906 rtx last = get_last_insn ();
3907 while (!CALL_P (last))
3908 {
3909 last = PREV_INSN (last);
3910 /* There was no CALL_INSN? */
3911 if (last == before_call)
3912 abort ();
3913 }
3914
3915 emit_barrier_after (last);
3916 }
3917
3918 /* Now restore inhibit_defer_pop to its actual original value. */
3919 OK_DEFER_POP;
3920
3921 /* If call is cse'able, make appropriate pair of reg-notes around it.
3922 Test valreg so we don't crash; may safely ignore `const'
3923 if return type is void. Disable for PARALLEL return values, because
3924 we have no way to move such values into a pseudo register. */
3925 if (flags & ECF_LIBCALL_BLOCK)
3926 {
3927 rtx insns;
3928
3929 if (valreg == 0)
3930 {
3931 insns = get_insns ();
3932 end_sequence ();
3933 emit_insn (insns);
3934 }
3935 else
3936 {
3937 rtx note = 0;
3938 rtx temp;
3939 int i;
3940
3941 if (GET_CODE (valreg) == PARALLEL)
3942 {
3943 temp = gen_reg_rtx (outmode);
3944 emit_group_store (temp, valreg, NULL_TREE,
3945 GET_MODE_SIZE (outmode));
3946 valreg = temp;
3947 }
3948
3949 temp = gen_reg_rtx (GET_MODE (valreg));
3950
3951 /* Construct an "equal form" for the value which mentions all the
3952 arguments in order as well as the function name. */
3953 for (i = 0; i < nargs; i++)
3954 note = gen_rtx_EXPR_LIST (VOIDmode, argvec[i].value, note);
3955 note = gen_rtx_EXPR_LIST (VOIDmode, fun, note);
3956
3957 insns = get_insns ();
3958 end_sequence ();
3959
3960 if (flags & ECF_PURE)
3961 note = gen_rtx_EXPR_LIST (VOIDmode,
3962 gen_rtx_USE (VOIDmode,
3963 gen_rtx_MEM (BLKmode,
3964 gen_rtx_SCRATCH (VOIDmode))),
3965 note);
3966
3967 emit_libcall_block (insns, temp, valreg, note);
3968
3969 valreg = temp;
3970 }
3971 }
3972 pop_temp_slots ();
3973
3974 /* Copy the value to the right place. */
3975 if (outmode != VOIDmode && retval)
3976 {
3977 if (mem_value)
3978 {
3979 if (value == 0)
3980 value = mem_value;
3981 if (value != mem_value)
3982 emit_move_insn (value, mem_value);
3983 }
3984 else if (GET_CODE (valreg) == PARALLEL)
3985 {
3986 if (value == 0)
3987 value = gen_reg_rtx (outmode);
3988 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
3989 }
3990 else if (value != 0)
3991 emit_move_insn (value, valreg);
3992 else
3993 value = valreg;
3994 }
3995
3996 if (ACCUMULATE_OUTGOING_ARGS)
3997 {
3998 #ifdef REG_PARM_STACK_SPACE
3999 if (save_area)
4000 restore_fixed_argument_area (save_area, argblock,
4001 high_to_save, low_to_save);
4002 #endif
4003
4004 /* If we saved any argument areas, restore them. */
4005 for (count = 0; count < nargs; count++)
4006 if (argvec[count].save_area)
4007 {
4008 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
4009 rtx adr = plus_constant (argblock,
4010 argvec[count].locate.offset.constant);
4011 rtx stack_area = gen_rtx_MEM (save_mode,
4012 memory_address (save_mode, adr));
4013
4014 if (save_mode == BLKmode)
4015 emit_block_move (stack_area,
4016 validize_mem (argvec[count].save_area),
4017 GEN_INT (argvec[count].locate.size.constant),
4018 BLOCK_OP_CALL_PARM);
4019 else
4020 emit_move_insn (stack_area, argvec[count].save_area);
4021 }
4022
4023 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4024 stack_usage_map = initial_stack_usage_map;
4025 }
4026
4027 return value;
4028
4029 }
4030 \f
4031 /* Output a library call to function FUN (a SYMBOL_REF rtx)
4032 (emitting the queue unless NO_QUEUE is nonzero),
4033 for a value of mode OUTMODE,
4034 with NARGS different arguments, passed as alternating rtx values
4035 and machine_modes to convert them to.
4036
4037 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for `const'
4038 calls, LCT_PURE for `pure' calls, LCT_CONST_MAKE_BLOCK for `const' calls
4039 which should be enclosed in REG_LIBCALL/REG_RETVAL notes,
4040 LCT_PURE_MAKE_BLOCK for `purep' calls which should be enclosed in
4041 REG_LIBCALL/REG_RETVAL notes with extra (use (memory (scratch)),
4042 or other LCT_ value for other types of library calls. */
4043
4044 void
4045 emit_library_call (rtx orgfun, enum libcall_type fn_type,
4046 enum machine_mode outmode, int nargs, ...)
4047 {
4048 va_list p;
4049
4050 va_start (p, nargs);
4051 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
4052 va_end (p);
4053 }
4054 \f
4055 /* Like emit_library_call except that an extra argument, VALUE,
4056 comes second and says where to store the result.
4057 (If VALUE is zero, this function chooses a convenient way
4058 to return the value.
4059
4060 This function returns an rtx for where the value is to be found.
4061 If VALUE is nonzero, VALUE is returned. */
4062
4063 rtx
4064 emit_library_call_value (rtx orgfun, rtx value,
4065 enum libcall_type fn_type,
4066 enum machine_mode outmode, int nargs, ...)
4067 {
4068 rtx result;
4069 va_list p;
4070
4071 va_start (p, nargs);
4072 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
4073 nargs, p);
4074 va_end (p);
4075
4076 return result;
4077 }
4078 \f
4079 /* Store a single argument for a function call
4080 into the register or memory area where it must be passed.
4081 *ARG describes the argument value and where to pass it.
4082
4083 ARGBLOCK is the address of the stack-block for all the arguments,
4084 or 0 on a machine where arguments are pushed individually.
4085
4086 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
4087 so must be careful about how the stack is used.
4088
4089 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
4090 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
4091 that we need not worry about saving and restoring the stack.
4092
4093 FNDECL is the declaration of the function we are calling.
4094
4095 Return nonzero if this arg should cause sibcall failure,
4096 zero otherwise. */
4097
4098 static int
4099 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
4100 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
4101 {
4102 tree pval = arg->tree_value;
4103 rtx reg = 0;
4104 int partial = 0;
4105 int used = 0;
4106 int i, lower_bound = 0, upper_bound = 0;
4107 int sibcall_failure = 0;
4108
4109 if (TREE_CODE (pval) == ERROR_MARK)
4110 return 1;
4111
4112 /* Push a new temporary level for any temporaries we make for
4113 this argument. */
4114 push_temp_slots ();
4115
4116 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
4117 {
4118 /* If this is being stored into a pre-allocated, fixed-size, stack area,
4119 save any previous data at that location. */
4120 if (argblock && ! variable_size && arg->stack)
4121 {
4122 #ifdef ARGS_GROW_DOWNWARD
4123 /* stack_slot is negative, but we want to index stack_usage_map
4124 with positive values. */
4125 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4126 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
4127 else
4128 upper_bound = 0;
4129
4130 lower_bound = upper_bound - arg->locate.size.constant;
4131 #else
4132 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4133 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
4134 else
4135 lower_bound = 0;
4136
4137 upper_bound = lower_bound + arg->locate.size.constant;
4138 #endif
4139
4140 i = lower_bound;
4141 /* Don't worry about things in the fixed argument area;
4142 it has already been saved. */
4143 if (i < reg_parm_stack_space)
4144 i = reg_parm_stack_space;
4145 while (i < upper_bound && stack_usage_map[i] == 0)
4146 i++;
4147
4148 if (i < upper_bound)
4149 {
4150 /* We need to make a save area. */
4151 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
4152 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
4153 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
4154 rtx stack_area = gen_rtx_MEM (save_mode, adr);
4155
4156 if (save_mode == BLKmode)
4157 {
4158 tree ot = TREE_TYPE (arg->tree_value);
4159 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
4160 | TYPE_QUAL_CONST));
4161
4162 arg->save_area = assign_temp (nt, 0, 1, 1);
4163 preserve_temp_slots (arg->save_area);
4164 emit_block_move (validize_mem (arg->save_area), stack_area,
4165 expr_size (arg->tree_value),
4166 BLOCK_OP_CALL_PARM);
4167 }
4168 else
4169 {
4170 arg->save_area = gen_reg_rtx (save_mode);
4171 emit_move_insn (arg->save_area, stack_area);
4172 }
4173 }
4174 }
4175 }
4176
4177 /* If this isn't going to be placed on both the stack and in registers,
4178 set up the register and number of words. */
4179 if (! arg->pass_on_stack)
4180 {
4181 if (flags & ECF_SIBCALL)
4182 reg = arg->tail_call_reg;
4183 else
4184 reg = arg->reg;
4185 partial = arg->partial;
4186 }
4187
4188 if (reg != 0 && partial == 0)
4189 /* Being passed entirely in a register. We shouldn't be called in
4190 this case. */
4191 abort ();
4192
4193 /* If this arg needs special alignment, don't load the registers
4194 here. */
4195 if (arg->n_aligned_regs != 0)
4196 reg = 0;
4197
4198 /* If this is being passed partially in a register, we can't evaluate
4199 it directly into its stack slot. Otherwise, we can. */
4200 if (arg->value == 0)
4201 {
4202 /* stack_arg_under_construction is nonzero if a function argument is
4203 being evaluated directly into the outgoing argument list and
4204 expand_call must take special action to preserve the argument list
4205 if it is called recursively.
4206
4207 For scalar function arguments stack_usage_map is sufficient to
4208 determine which stack slots must be saved and restored. Scalar
4209 arguments in general have pass_on_stack == 0.
4210
4211 If this argument is initialized by a function which takes the
4212 address of the argument (a C++ constructor or a C function
4213 returning a BLKmode structure), then stack_usage_map is
4214 insufficient and expand_call must push the stack around the
4215 function call. Such arguments have pass_on_stack == 1.
4216
4217 Note that it is always safe to set stack_arg_under_construction,
4218 but this generates suboptimal code if set when not needed. */
4219
4220 if (arg->pass_on_stack)
4221 stack_arg_under_construction++;
4222
4223 arg->value = expand_expr (pval,
4224 (partial
4225 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4226 ? NULL_RTX : arg->stack,
4227 VOIDmode, EXPAND_STACK_PARM);
4228
4229 /* If we are promoting object (or for any other reason) the mode
4230 doesn't agree, convert the mode. */
4231
4232 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4233 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4234 arg->value, arg->unsignedp);
4235
4236 if (arg->pass_on_stack)
4237 stack_arg_under_construction--;
4238 }
4239
4240 /* Don't allow anything left on stack from computation
4241 of argument to alloca. */
4242 if (flags & ECF_MAY_BE_ALLOCA)
4243 do_pending_stack_adjust ();
4244
4245 if (arg->value == arg->stack)
4246 /* If the value is already in the stack slot, we are done. */
4247 ;
4248 else if (arg->mode != BLKmode)
4249 {
4250 int size;
4251
4252 /* Argument is a scalar, not entirely passed in registers.
4253 (If part is passed in registers, arg->partial says how much
4254 and emit_push_insn will take care of putting it there.)
4255
4256 Push it, and if its size is less than the
4257 amount of space allocated to it,
4258 also bump stack pointer by the additional space.
4259 Note that in C the default argument promotions
4260 will prevent such mismatches. */
4261
4262 size = GET_MODE_SIZE (arg->mode);
4263 /* Compute how much space the push instruction will push.
4264 On many machines, pushing a byte will advance the stack
4265 pointer by a halfword. */
4266 #ifdef PUSH_ROUNDING
4267 size = PUSH_ROUNDING (size);
4268 #endif
4269 used = size;
4270
4271 /* Compute how much space the argument should get:
4272 round up to a multiple of the alignment for arguments. */
4273 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4274 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4275 / (PARM_BOUNDARY / BITS_PER_UNIT))
4276 * (PARM_BOUNDARY / BITS_PER_UNIT));
4277
4278 /* This isn't already where we want it on the stack, so put it there.
4279 This can either be done with push or copy insns. */
4280 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4281 PARM_BOUNDARY, partial, reg, used - size, argblock,
4282 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4283 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4284
4285 /* Unless this is a partially-in-register argument, the argument is now
4286 in the stack. */
4287 if (partial == 0)
4288 arg->value = arg->stack;
4289 }
4290 else
4291 {
4292 /* BLKmode, at least partly to be pushed. */
4293
4294 unsigned int parm_align;
4295 int excess;
4296 rtx size_rtx;
4297
4298 /* Pushing a nonscalar.
4299 If part is passed in registers, PARTIAL says how much
4300 and emit_push_insn will take care of putting it there. */
4301
4302 /* Round its size up to a multiple
4303 of the allocation unit for arguments. */
4304
4305 if (arg->locate.size.var != 0)
4306 {
4307 excess = 0;
4308 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4309 }
4310 else
4311 {
4312 /* PUSH_ROUNDING has no effect on us, because
4313 emit_push_insn for BLKmode is careful to avoid it. */
4314 if (reg && GET_CODE (reg) == PARALLEL)
4315 {
4316 /* Use the size of the elt to compute excess. */
4317 rtx elt = XEXP (XVECEXP (reg, 0, 0), 0);
4318 excess = (arg->locate.size.constant
4319 - int_size_in_bytes (TREE_TYPE (pval))
4320 + partial * GET_MODE_SIZE (GET_MODE (elt)));
4321 }
4322 else
4323 excess = (arg->locate.size.constant
4324 - int_size_in_bytes (TREE_TYPE (pval))
4325 + partial * UNITS_PER_WORD);
4326 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4327 NULL_RTX, TYPE_MODE (sizetype), 0);
4328 }
4329
4330 /* Some types will require stricter alignment, which will be
4331 provided for elsewhere in argument layout. */
4332 parm_align = MAX (PARM_BOUNDARY, TYPE_ALIGN (TREE_TYPE (pval)));
4333
4334 /* When an argument is padded down, the block is aligned to
4335 PARM_BOUNDARY, but the actual argument isn't. */
4336 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4337 {
4338 if (arg->locate.size.var)
4339 parm_align = BITS_PER_UNIT;
4340 else if (excess)
4341 {
4342 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4343 parm_align = MIN (parm_align, excess_align);
4344 }
4345 }
4346
4347 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4348 {
4349 /* emit_push_insn might not work properly if arg->value and
4350 argblock + arg->locate.offset areas overlap. */
4351 rtx x = arg->value;
4352 int i = 0;
4353
4354 if (XEXP (x, 0) == current_function_internal_arg_pointer
4355 || (GET_CODE (XEXP (x, 0)) == PLUS
4356 && XEXP (XEXP (x, 0), 0) ==
4357 current_function_internal_arg_pointer
4358 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
4359 {
4360 if (XEXP (x, 0) != current_function_internal_arg_pointer)
4361 i = INTVAL (XEXP (XEXP (x, 0), 1));
4362
4363 /* expand_call should ensure this. */
4364 if (arg->locate.offset.var || GET_CODE (size_rtx) != CONST_INT)
4365 abort ();
4366
4367 if (arg->locate.offset.constant > i)
4368 {
4369 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4370 sibcall_failure = 1;
4371 }
4372 else if (arg->locate.offset.constant < i)
4373 {
4374 if (i < arg->locate.offset.constant + INTVAL (size_rtx))
4375 sibcall_failure = 1;
4376 }
4377 }
4378 }
4379
4380 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4381 parm_align, partial, reg, excess, argblock,
4382 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4383 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4384
4385 /* Unless this is a partially-in-register argument, the argument is now
4386 in the stack.
4387
4388 ??? Unlike the case above, in which we want the actual
4389 address of the data, so that we can load it directly into a
4390 register, here we want the address of the stack slot, so that
4391 it's properly aligned for word-by-word copying or something
4392 like that. It's not clear that this is always correct. */
4393 if (partial == 0)
4394 arg->value = arg->stack_slot;
4395 }
4396
4397 /* Mark all slots this store used. */
4398 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4399 && argblock && ! variable_size && arg->stack)
4400 for (i = lower_bound; i < upper_bound; i++)
4401 stack_usage_map[i] = 1;
4402
4403 /* Once we have pushed something, pops can't safely
4404 be deferred during the rest of the arguments. */
4405 NO_DEFER_POP;
4406
4407 /* Free any temporary slots made in processing this argument. Show
4408 that we might have taken the address of something and pushed that
4409 as an operand. */
4410 preserve_temp_slots (NULL_RTX);
4411 free_temp_slots ();
4412 pop_temp_slots ();
4413
4414 return sibcall_failure;
4415 }
4416
4417 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4418
4419 bool
4420 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4421 tree type)
4422 {
4423 if (!type)
4424 return false;
4425
4426 /* If the type has variable size... */
4427 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4428 return true;
4429
4430 /* If the type is marked as addressable (it is required
4431 to be constructed into the stack)... */
4432 if (TREE_ADDRESSABLE (type))
4433 return true;
4434
4435 return false;
4436 }
4437
4438 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4439 takes trailing padding of a structure into account. */
4440 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4441
4442 bool
4443 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, tree type)
4444 {
4445 if (!type)
4446 return false;
4447
4448 /* If the type has variable size... */
4449 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4450 return true;
4451
4452 /* If the type is marked as addressable (it is required
4453 to be constructed into the stack)... */
4454 if (TREE_ADDRESSABLE (type))
4455 return true;
4456
4457 /* If the padding and mode of the type is such that a copy into
4458 a register would put it into the wrong part of the register. */
4459 if (mode == BLKmode
4460 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4461 && (FUNCTION_ARG_PADDING (mode, type)
4462 == (BYTES_BIG_ENDIAN ? upward : downward)))
4463 return true;
4464
4465 return false;
4466 }