re PR middle-end/23150 (20050713-1.c fails on arm-none-eabi with -O2 or -Os.)
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "expr.h"
31 #include "optabs.h"
32 #include "libfuncs.h"
33 #include "function.h"
34 #include "regs.h"
35 #include "toplev.h"
36 #include "output.h"
37 #include "tm_p.h"
38 #include "timevar.h"
39 #include "sbitmap.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "cgraph.h"
43 #include "except.h"
44
45 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
46 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
47
48 /* Data structure and subroutines used within expand_call. */
49
50 struct arg_data
51 {
52 /* Tree node for this argument. */
53 tree tree_value;
54 /* Mode for value; TYPE_MODE unless promoted. */
55 enum machine_mode mode;
56 /* Current RTL value for argument, or 0 if it isn't precomputed. */
57 rtx value;
58 /* Initially-compute RTL value for argument; only for const functions. */
59 rtx initial_value;
60 /* Register to pass this argument in, 0 if passed on stack, or an
61 PARALLEL if the arg is to be copied into multiple non-contiguous
62 registers. */
63 rtx reg;
64 /* Register to pass this argument in when generating tail call sequence.
65 This is not the same register as for normal calls on machines with
66 register windows. */
67 rtx tail_call_reg;
68 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
69 form for emit_group_move. */
70 rtx parallel_value;
71 /* If REG was promoted from the actual mode of the argument expression,
72 indicates whether the promotion is sign- or zero-extended. */
73 int unsignedp;
74 /* Number of bytes to put in registers. 0 means put the whole arg
75 in registers. Also 0 if not passed in registers. */
76 int partial;
77 /* Nonzero if argument must be passed on stack.
78 Note that some arguments may be passed on the stack
79 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
80 pass_on_stack identifies arguments that *cannot* go in registers. */
81 int pass_on_stack;
82 /* Some fields packaged up for locate_and_pad_parm. */
83 struct locate_and_pad_arg_data locate;
84 /* Location on the stack at which parameter should be stored. The store
85 has already been done if STACK == VALUE. */
86 rtx stack;
87 /* Location on the stack of the start of this argument slot. This can
88 differ from STACK if this arg pads downward. This location is known
89 to be aligned to FUNCTION_ARG_BOUNDARY. */
90 rtx stack_slot;
91 /* Place that this stack area has been saved, if needed. */
92 rtx save_area;
93 /* If an argument's alignment does not permit direct copying into registers,
94 copy in smaller-sized pieces into pseudos. These are stored in a
95 block pointed to by this field. The next field says how many
96 word-sized pseudos we made. */
97 rtx *aligned_regs;
98 int n_aligned_regs;
99 };
100
101 /* A vector of one char per byte of stack space. A byte if nonzero if
102 the corresponding stack location has been used.
103 This vector is used to prevent a function call within an argument from
104 clobbering any stack already set up. */
105 static char *stack_usage_map;
106
107 /* Size of STACK_USAGE_MAP. */
108 static int highest_outgoing_arg_in_use;
109
110 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
111 stack location's tail call argument has been already stored into the stack.
112 This bitmap is used to prevent sibling call optimization if function tries
113 to use parent's incoming argument slots when they have been already
114 overwritten with tail call arguments. */
115 static sbitmap stored_args_map;
116
117 /* stack_arg_under_construction is nonzero when an argument may be
118 initialized with a constructor call (including a C function that
119 returns a BLKmode struct) and expand_call must take special action
120 to make sure the object being constructed does not overlap the
121 argument list for the constructor call. */
122 static int stack_arg_under_construction;
123
124 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
125 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
126 CUMULATIVE_ARGS *);
127 static void precompute_register_parameters (int, struct arg_data *, int *);
128 static int store_one_arg (struct arg_data *, rtx, int, int, int);
129 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
130 static int finalize_must_preallocate (int, int, struct arg_data *,
131 struct args_size *);
132 static void precompute_arguments (int, int, struct arg_data *);
133 static int compute_argument_block_size (int, struct args_size *, int);
134 static void initialize_argument_information (int, struct arg_data *,
135 struct args_size *, int, tree,
136 tree, CUMULATIVE_ARGS *, int,
137 rtx *, int *, int *, int *,
138 bool *, bool);
139 static void compute_argument_addresses (struct arg_data *, rtx, int);
140 static rtx rtx_for_function_call (tree, tree);
141 static void load_register_parameters (struct arg_data *, int, rtx *, int,
142 int, int *);
143 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
144 enum machine_mode, int, va_list);
145 static int special_function_p (tree, int);
146 static int check_sibcall_argument_overlap_1 (rtx);
147 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
148
149 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
150 unsigned int);
151 static tree split_complex_values (tree);
152 static tree split_complex_types (tree);
153
154 #ifdef REG_PARM_STACK_SPACE
155 static rtx save_fixed_argument_area (int, rtx, int *, int *);
156 static void restore_fixed_argument_area (rtx, rtx, int, int);
157 #endif
158 \f
159 /* Force FUNEXP into a form suitable for the address of a CALL,
160 and return that as an rtx. Also load the static chain register
161 if FNDECL is a nested function.
162
163 CALL_FUSAGE points to a variable holding the prospective
164 CALL_INSN_FUNCTION_USAGE information. */
165
166 rtx
167 prepare_call_address (rtx funexp, rtx static_chain_value,
168 rtx *call_fusage, int reg_parm_seen, int sibcallp)
169 {
170 /* Make a valid memory address and copy constants through pseudo-regs,
171 but not for a constant address if -fno-function-cse. */
172 if (GET_CODE (funexp) != SYMBOL_REF)
173 /* If we are using registers for parameters, force the
174 function address into a register now. */
175 funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
176 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
177 : memory_address (FUNCTION_MODE, funexp));
178 else if (! sibcallp)
179 {
180 #ifndef NO_FUNCTION_CSE
181 if (optimize && ! flag_no_function_cse)
182 funexp = force_reg (Pmode, funexp);
183 #endif
184 }
185
186 if (static_chain_value != 0)
187 {
188 static_chain_value = convert_memory_address (Pmode, static_chain_value);
189 emit_move_insn (static_chain_rtx, static_chain_value);
190
191 if (REG_P (static_chain_rtx))
192 use_reg (call_fusage, static_chain_rtx);
193 }
194
195 return funexp;
196 }
197
198 /* Generate instructions to call function FUNEXP,
199 and optionally pop the results.
200 The CALL_INSN is the first insn generated.
201
202 FNDECL is the declaration node of the function. This is given to the
203 macro RETURN_POPS_ARGS to determine whether this function pops its own args.
204
205 FUNTYPE is the data type of the function. This is given to the macro
206 RETURN_POPS_ARGS to determine whether this function pops its own args.
207 We used to allow an identifier for library functions, but that doesn't
208 work when the return type is an aggregate type and the calling convention
209 says that the pointer to this aggregate is to be popped by the callee.
210
211 STACK_SIZE is the number of bytes of arguments on the stack,
212 ROUNDED_STACK_SIZE is that number rounded up to
213 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
214 both to put into the call insn and to generate explicit popping
215 code if necessary.
216
217 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
218 It is zero if this call doesn't want a structure value.
219
220 NEXT_ARG_REG is the rtx that results from executing
221 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
222 just after all the args have had their registers assigned.
223 This could be whatever you like, but normally it is the first
224 arg-register beyond those used for args in this call,
225 or 0 if all the arg-registers are used in this call.
226 It is passed on to `gen_call' so you can put this info in the call insn.
227
228 VALREG is a hard register in which a value is returned,
229 or 0 if the call does not return a value.
230
231 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
232 the args to this call were processed.
233 We restore `inhibit_defer_pop' to that value.
234
235 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
236 denote registers used by the called function. */
237
238 static void
239 emit_call_1 (rtx funexp, tree fntree, tree fndecl ATTRIBUTE_UNUSED,
240 tree funtype ATTRIBUTE_UNUSED,
241 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
242 HOST_WIDE_INT rounded_stack_size,
243 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
244 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
245 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
246 CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
247 {
248 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
249 rtx call_insn;
250 int already_popped = 0;
251 HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
252 #if defined (HAVE_call) && defined (HAVE_call_value)
253 rtx struct_value_size_rtx;
254 struct_value_size_rtx = GEN_INT (struct_value_size);
255 #endif
256
257 #ifdef CALL_POPS_ARGS
258 n_popped += CALL_POPS_ARGS (* args_so_far);
259 #endif
260
261 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
262 and we don't want to load it into a register as an optimization,
263 because prepare_call_address already did it if it should be done. */
264 if (GET_CODE (funexp) != SYMBOL_REF)
265 funexp = memory_address (FUNCTION_MODE, funexp);
266
267 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
268 if ((ecf_flags & ECF_SIBCALL)
269 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
270 && (n_popped > 0 || stack_size == 0))
271 {
272 rtx n_pop = GEN_INT (n_popped);
273 rtx pat;
274
275 /* If this subroutine pops its own args, record that in the call insn
276 if possible, for the sake of frame pointer elimination. */
277
278 if (valreg)
279 pat = GEN_SIBCALL_VALUE_POP (valreg,
280 gen_rtx_MEM (FUNCTION_MODE, funexp),
281 rounded_stack_size_rtx, next_arg_reg,
282 n_pop);
283 else
284 pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
285 rounded_stack_size_rtx, next_arg_reg, n_pop);
286
287 emit_call_insn (pat);
288 already_popped = 1;
289 }
290 else
291 #endif
292
293 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
294 /* If the target has "call" or "call_value" insns, then prefer them
295 if no arguments are actually popped. If the target does not have
296 "call" or "call_value" insns, then we must use the popping versions
297 even if the call has no arguments to pop. */
298 #if defined (HAVE_call) && defined (HAVE_call_value)
299 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
300 && n_popped > 0 && ! (ecf_flags & ECF_SP_DEPRESSED))
301 #else
302 if (HAVE_call_pop && HAVE_call_value_pop)
303 #endif
304 {
305 rtx n_pop = GEN_INT (n_popped);
306 rtx pat;
307
308 /* If this subroutine pops its own args, record that in the call insn
309 if possible, for the sake of frame pointer elimination. */
310
311 if (valreg)
312 pat = GEN_CALL_VALUE_POP (valreg,
313 gen_rtx_MEM (FUNCTION_MODE, funexp),
314 rounded_stack_size_rtx, next_arg_reg, n_pop);
315 else
316 pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
317 rounded_stack_size_rtx, next_arg_reg, n_pop);
318
319 emit_call_insn (pat);
320 already_popped = 1;
321 }
322 else
323 #endif
324
325 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
326 if ((ecf_flags & ECF_SIBCALL)
327 && HAVE_sibcall && HAVE_sibcall_value)
328 {
329 if (valreg)
330 emit_call_insn (GEN_SIBCALL_VALUE (valreg,
331 gen_rtx_MEM (FUNCTION_MODE, funexp),
332 rounded_stack_size_rtx,
333 next_arg_reg, NULL_RTX));
334 else
335 emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
336 rounded_stack_size_rtx, next_arg_reg,
337 struct_value_size_rtx));
338 }
339 else
340 #endif
341
342 #if defined (HAVE_call) && defined (HAVE_call_value)
343 if (HAVE_call && HAVE_call_value)
344 {
345 if (valreg)
346 emit_call_insn (GEN_CALL_VALUE (valreg,
347 gen_rtx_MEM (FUNCTION_MODE, funexp),
348 rounded_stack_size_rtx, next_arg_reg,
349 NULL_RTX));
350 else
351 emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
352 rounded_stack_size_rtx, next_arg_reg,
353 struct_value_size_rtx));
354 }
355 else
356 #endif
357 gcc_unreachable ();
358
359 /* Find the call we just emitted. */
360 call_insn = last_call_insn ();
361
362 /* Mark memory as used for "pure" function call. */
363 if (ecf_flags & ECF_PURE)
364 call_fusage
365 = gen_rtx_EXPR_LIST
366 (VOIDmode,
367 gen_rtx_USE (VOIDmode,
368 gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))),
369 call_fusage);
370
371 /* Put the register usage information there. */
372 add_function_usage_to (call_insn, call_fusage);
373
374 /* If this is a const call, then set the insn's unchanging bit. */
375 if (ecf_flags & (ECF_CONST | ECF_PURE))
376 CONST_OR_PURE_CALL_P (call_insn) = 1;
377
378 /* If this call can't throw, attach a REG_EH_REGION reg note to that
379 effect. */
380 if (ecf_flags & ECF_NOTHROW)
381 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, const0_rtx,
382 REG_NOTES (call_insn));
383 else
384 {
385 int rn = lookup_stmt_eh_region (fntree);
386
387 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't
388 throw, which we already took care of. */
389 if (rn > 0)
390 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
391 REG_NOTES (call_insn));
392 note_current_region_may_contain_throw ();
393 }
394
395 if (ecf_flags & ECF_NORETURN)
396 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_NORETURN, const0_rtx,
397 REG_NOTES (call_insn));
398
399 if (ecf_flags & ECF_RETURNS_TWICE)
400 {
401 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_SETJMP, const0_rtx,
402 REG_NOTES (call_insn));
403 current_function_calls_setjmp = 1;
404 }
405
406 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
407
408 /* Restore this now, so that we do defer pops for this call's args
409 if the context of the call as a whole permits. */
410 inhibit_defer_pop = old_inhibit_defer_pop;
411
412 if (n_popped > 0)
413 {
414 if (!already_popped)
415 CALL_INSN_FUNCTION_USAGE (call_insn)
416 = gen_rtx_EXPR_LIST (VOIDmode,
417 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
418 CALL_INSN_FUNCTION_USAGE (call_insn));
419 rounded_stack_size -= n_popped;
420 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
421 stack_pointer_delta -= n_popped;
422 }
423
424 if (!ACCUMULATE_OUTGOING_ARGS)
425 {
426 /* If returning from the subroutine does not automatically pop the args,
427 we need an instruction to pop them sooner or later.
428 Perhaps do it now; perhaps just record how much space to pop later.
429
430 If returning from the subroutine does pop the args, indicate that the
431 stack pointer will be changed. */
432
433 if (rounded_stack_size != 0)
434 {
435 if (ecf_flags & (ECF_SP_DEPRESSED | ECF_NORETURN))
436 /* Just pretend we did the pop. */
437 stack_pointer_delta -= rounded_stack_size;
438 else if (flag_defer_pop && inhibit_defer_pop == 0
439 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
440 pending_stack_adjust += rounded_stack_size;
441 else
442 adjust_stack (rounded_stack_size_rtx);
443 }
444 }
445 /* When we accumulate outgoing args, we must avoid any stack manipulations.
446 Restore the stack pointer to its original value now. Usually
447 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
448 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
449 popping variants of functions exist as well.
450
451 ??? We may optimize similar to defer_pop above, but it is
452 probably not worthwhile.
453
454 ??? It will be worthwhile to enable combine_stack_adjustments even for
455 such machines. */
456 else if (n_popped)
457 anti_adjust_stack (GEN_INT (n_popped));
458 }
459
460 /* Determine if the function identified by NAME and FNDECL is one with
461 special properties we wish to know about.
462
463 For example, if the function might return more than one time (setjmp), then
464 set RETURNS_TWICE to a nonzero value.
465
466 Similarly set NORETURN if the function is in the longjmp family.
467
468 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
469 space from the stack such as alloca. */
470
471 static int
472 special_function_p (tree fndecl, int flags)
473 {
474 if (fndecl && DECL_NAME (fndecl)
475 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
476 /* Exclude functions not at the file scope, or not `extern',
477 since they are not the magic functions we would otherwise
478 think they are.
479 FIXME: this should be handled with attributes, not with this
480 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
481 because you can declare fork() inside a function if you
482 wish. */
483 && (DECL_CONTEXT (fndecl) == NULL_TREE
484 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
485 && TREE_PUBLIC (fndecl))
486 {
487 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
488 const char *tname = name;
489
490 /* We assume that alloca will always be called by name. It
491 makes no sense to pass it as a pointer-to-function to
492 anything that does not understand its behavior. */
493 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
494 && name[0] == 'a'
495 && ! strcmp (name, "alloca"))
496 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
497 && name[0] == '_'
498 && ! strcmp (name, "__builtin_alloca"))))
499 flags |= ECF_MAY_BE_ALLOCA;
500
501 /* Disregard prefix _, __ or __x. */
502 if (name[0] == '_')
503 {
504 if (name[1] == '_' && name[2] == 'x')
505 tname += 3;
506 else if (name[1] == '_')
507 tname += 2;
508 else
509 tname += 1;
510 }
511
512 if (tname[0] == 's')
513 {
514 if ((tname[1] == 'e'
515 && (! strcmp (tname, "setjmp")
516 || ! strcmp (tname, "setjmp_syscall")))
517 || (tname[1] == 'i'
518 && ! strcmp (tname, "sigsetjmp"))
519 || (tname[1] == 'a'
520 && ! strcmp (tname, "savectx")))
521 flags |= ECF_RETURNS_TWICE;
522
523 if (tname[1] == 'i'
524 && ! strcmp (tname, "siglongjmp"))
525 flags |= ECF_NORETURN;
526 }
527 else if ((tname[0] == 'q' && tname[1] == 's'
528 && ! strcmp (tname, "qsetjmp"))
529 || (tname[0] == 'v' && tname[1] == 'f'
530 && ! strcmp (tname, "vfork")))
531 flags |= ECF_RETURNS_TWICE;
532
533 else if (tname[0] == 'l' && tname[1] == 'o'
534 && ! strcmp (tname, "longjmp"))
535 flags |= ECF_NORETURN;
536 }
537
538 return flags;
539 }
540
541 /* Return nonzero when FNDECL represents a call to setjmp. */
542
543 int
544 setjmp_call_p (tree fndecl)
545 {
546 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
547 }
548
549 /* Return true when exp contains alloca call. */
550 bool
551 alloca_call_p (tree exp)
552 {
553 if (TREE_CODE (exp) == CALL_EXPR
554 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
555 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
556 == FUNCTION_DECL)
557 && (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
558 0) & ECF_MAY_BE_ALLOCA))
559 return true;
560 return false;
561 }
562
563 /* Detect flags (function attributes) from the function decl or type node. */
564
565 int
566 flags_from_decl_or_type (tree exp)
567 {
568 int flags = 0;
569 tree type = exp;
570
571 if (DECL_P (exp))
572 {
573 type = TREE_TYPE (exp);
574
575 /* The function exp may have the `malloc' attribute. */
576 if (DECL_IS_MALLOC (exp))
577 flags |= ECF_MALLOC;
578
579 /* The function exp may have the `returns_twice' attribute. */
580 if (DECL_IS_RETURNS_TWICE (exp))
581 flags |= ECF_RETURNS_TWICE;
582
583 /* The function exp may have the `pure' attribute. */
584 if (DECL_IS_PURE (exp))
585 flags |= ECF_PURE;
586
587 if (DECL_IS_NOVOPS (exp))
588 flags |= ECF_NOVOPS;
589
590 if (TREE_NOTHROW (exp))
591 flags |= ECF_NOTHROW;
592
593 if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
594 flags |= ECF_CONST;
595
596 flags = special_function_p (exp, flags);
597 }
598 else if (TYPE_P (exp) && TYPE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
599 flags |= ECF_CONST;
600
601 if (TREE_THIS_VOLATILE (exp))
602 flags |= ECF_NORETURN;
603
604 /* Mark if the function returns with the stack pointer depressed. We
605 cannot consider it pure or constant in that case. */
606 if (TREE_CODE (type) == FUNCTION_TYPE && TYPE_RETURNS_STACK_DEPRESSED (type))
607 {
608 flags |= ECF_SP_DEPRESSED;
609 flags &= ~(ECF_PURE | ECF_CONST);
610 }
611
612 return flags;
613 }
614
615 /* Detect flags from a CALL_EXPR. */
616
617 int
618 call_expr_flags (tree t)
619 {
620 int flags;
621 tree decl = get_callee_fndecl (t);
622
623 if (decl)
624 flags = flags_from_decl_or_type (decl);
625 else
626 {
627 t = TREE_TYPE (TREE_OPERAND (t, 0));
628 if (t && TREE_CODE (t) == POINTER_TYPE)
629 flags = flags_from_decl_or_type (TREE_TYPE (t));
630 else
631 flags = 0;
632 }
633
634 return flags;
635 }
636
637 /* Precompute all register parameters as described by ARGS, storing values
638 into fields within the ARGS array.
639
640 NUM_ACTUALS indicates the total number elements in the ARGS array.
641
642 Set REG_PARM_SEEN if we encounter a register parameter. */
643
644 static void
645 precompute_register_parameters (int num_actuals, struct arg_data *args,
646 int *reg_parm_seen)
647 {
648 int i;
649
650 *reg_parm_seen = 0;
651
652 for (i = 0; i < num_actuals; i++)
653 if (args[i].reg != 0 && ! args[i].pass_on_stack)
654 {
655 *reg_parm_seen = 1;
656
657 if (args[i].value == 0)
658 {
659 push_temp_slots ();
660 args[i].value = expand_expr (args[i].tree_value, NULL_RTX,
661 VOIDmode, 0);
662 preserve_temp_slots (args[i].value);
663 pop_temp_slots ();
664 }
665
666 /* If the value is a non-legitimate constant, force it into a
667 pseudo now. TLS symbols sometimes need a call to resolve. */
668 if (CONSTANT_P (args[i].value)
669 && !LEGITIMATE_CONSTANT_P (args[i].value))
670 args[i].value = force_reg (args[i].mode, args[i].value);
671
672 /* If we are to promote the function arg to a wider mode,
673 do it now. */
674
675 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
676 args[i].value
677 = convert_modes (args[i].mode,
678 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
679 args[i].value, args[i].unsignedp);
680
681 /* If we're going to have to load the value by parts, pull the
682 parts into pseudos. The part extraction process can involve
683 non-trivial computation. */
684 if (GET_CODE (args[i].reg) == PARALLEL)
685 {
686 tree type = TREE_TYPE (args[i].tree_value);
687 args[i].parallel_value
688 = emit_group_load_into_temps (args[i].reg, args[i].value,
689 type, int_size_in_bytes (type));
690 }
691
692 /* If the value is expensive, and we are inside an appropriately
693 short loop, put the value into a pseudo and then put the pseudo
694 into the hard reg.
695
696 For small register classes, also do this if this call uses
697 register parameters. This is to avoid reload conflicts while
698 loading the parameters registers. */
699
700 else if ((! (REG_P (args[i].value)
701 || (GET_CODE (args[i].value) == SUBREG
702 && REG_P (SUBREG_REG (args[i].value)))))
703 && args[i].mode != BLKmode
704 && rtx_cost (args[i].value, SET) > COSTS_N_INSNS (1)
705 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
706 || optimize))
707 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
708 }
709 }
710
711 #ifdef REG_PARM_STACK_SPACE
712
713 /* The argument list is the property of the called routine and it
714 may clobber it. If the fixed area has been used for previous
715 parameters, we must save and restore it. */
716
717 static rtx
718 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
719 {
720 int low;
721 int high;
722
723 /* Compute the boundary of the area that needs to be saved, if any. */
724 high = reg_parm_stack_space;
725 #ifdef ARGS_GROW_DOWNWARD
726 high += 1;
727 #endif
728 if (high > highest_outgoing_arg_in_use)
729 high = highest_outgoing_arg_in_use;
730
731 for (low = 0; low < high; low++)
732 if (stack_usage_map[low] != 0)
733 {
734 int num_to_save;
735 enum machine_mode save_mode;
736 int delta;
737 rtx stack_area;
738 rtx save_area;
739
740 while (stack_usage_map[--high] == 0)
741 ;
742
743 *low_to_save = low;
744 *high_to_save = high;
745
746 num_to_save = high - low + 1;
747 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
748
749 /* If we don't have the required alignment, must do this
750 in BLKmode. */
751 if ((low & (MIN (GET_MODE_SIZE (save_mode),
752 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
753 save_mode = BLKmode;
754
755 #ifdef ARGS_GROW_DOWNWARD
756 delta = -high;
757 #else
758 delta = low;
759 #endif
760 stack_area = gen_rtx_MEM (save_mode,
761 memory_address (save_mode,
762 plus_constant (argblock,
763 delta)));
764
765 set_mem_align (stack_area, PARM_BOUNDARY);
766 if (save_mode == BLKmode)
767 {
768 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
769 emit_block_move (validize_mem (save_area), stack_area,
770 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
771 }
772 else
773 {
774 save_area = gen_reg_rtx (save_mode);
775 emit_move_insn (save_area, stack_area);
776 }
777
778 return save_area;
779 }
780
781 return NULL_RTX;
782 }
783
784 static void
785 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
786 {
787 enum machine_mode save_mode = GET_MODE (save_area);
788 int delta;
789 rtx stack_area;
790
791 #ifdef ARGS_GROW_DOWNWARD
792 delta = -high_to_save;
793 #else
794 delta = low_to_save;
795 #endif
796 stack_area = gen_rtx_MEM (save_mode,
797 memory_address (save_mode,
798 plus_constant (argblock, delta)));
799 set_mem_align (stack_area, PARM_BOUNDARY);
800
801 if (save_mode != BLKmode)
802 emit_move_insn (stack_area, save_area);
803 else
804 emit_block_move (stack_area, validize_mem (save_area),
805 GEN_INT (high_to_save - low_to_save + 1),
806 BLOCK_OP_CALL_PARM);
807 }
808 #endif /* REG_PARM_STACK_SPACE */
809
810 /* If any elements in ARGS refer to parameters that are to be passed in
811 registers, but not in memory, and whose alignment does not permit a
812 direct copy into registers. Copy the values into a group of pseudos
813 which we will later copy into the appropriate hard registers.
814
815 Pseudos for each unaligned argument will be stored into the array
816 args[argnum].aligned_regs. The caller is responsible for deallocating
817 the aligned_regs array if it is nonzero. */
818
819 static void
820 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
821 {
822 int i, j;
823
824 for (i = 0; i < num_actuals; i++)
825 if (args[i].reg != 0 && ! args[i].pass_on_stack
826 && args[i].mode == BLKmode
827 && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
828 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
829 {
830 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
831 int endian_correction = 0;
832
833 if (args[i].partial)
834 {
835 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
836 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
837 }
838 else
839 {
840 args[i].n_aligned_regs
841 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
842 }
843
844 args[i].aligned_regs = xmalloc (sizeof (rtx) * args[i].n_aligned_regs);
845
846 /* Structures smaller than a word are normally aligned to the
847 least significant byte. On a BYTES_BIG_ENDIAN machine,
848 this means we must skip the empty high order bytes when
849 calculating the bit offset. */
850 if (bytes < UNITS_PER_WORD
851 #ifdef BLOCK_REG_PADDING
852 && (BLOCK_REG_PADDING (args[i].mode,
853 TREE_TYPE (args[i].tree_value), 1)
854 == downward)
855 #else
856 && BYTES_BIG_ENDIAN
857 #endif
858 )
859 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
860
861 for (j = 0; j < args[i].n_aligned_regs; j++)
862 {
863 rtx reg = gen_reg_rtx (word_mode);
864 rtx word = operand_subword_force (args[i].value, j, BLKmode);
865 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
866
867 args[i].aligned_regs[j] = reg;
868 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
869 word_mode, word_mode);
870
871 /* There is no need to restrict this code to loading items
872 in TYPE_ALIGN sized hunks. The bitfield instructions can
873 load up entire word sized registers efficiently.
874
875 ??? This may not be needed anymore.
876 We use to emit a clobber here but that doesn't let later
877 passes optimize the instructions we emit. By storing 0 into
878 the register later passes know the first AND to zero out the
879 bitfield being set in the register is unnecessary. The store
880 of 0 will be deleted as will at least the first AND. */
881
882 emit_move_insn (reg, const0_rtx);
883
884 bytes -= bitsize / BITS_PER_UNIT;
885 store_bit_field (reg, bitsize, endian_correction, word_mode,
886 word);
887 }
888 }
889 }
890
891 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
892 ACTPARMS.
893
894 NUM_ACTUALS is the total number of parameters.
895
896 N_NAMED_ARGS is the total number of named arguments.
897
898 FNDECL is the tree code for the target of this call (if known)
899
900 ARGS_SO_FAR holds state needed by the target to know where to place
901 the next argument.
902
903 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
904 for arguments which are passed in registers.
905
906 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
907 and may be modified by this routine.
908
909 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
910 flags which may may be modified by this routine.
911
912 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
913 that requires allocation of stack space.
914
915 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
916 the thunked-to function. */
917
918 static void
919 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
920 struct arg_data *args,
921 struct args_size *args_size,
922 int n_named_args ATTRIBUTE_UNUSED,
923 tree actparms, tree fndecl,
924 CUMULATIVE_ARGS *args_so_far,
925 int reg_parm_stack_space,
926 rtx *old_stack_level, int *old_pending_adj,
927 int *must_preallocate, int *ecf_flags,
928 bool *may_tailcall, bool call_from_thunk_p)
929 {
930 /* 1 if scanning parms front to back, -1 if scanning back to front. */
931 int inc;
932
933 /* Count arg position in order args appear. */
934 int argpos;
935
936 int i;
937 tree p;
938
939 args_size->constant = 0;
940 args_size->var = 0;
941
942 /* In this loop, we consider args in the order they are written.
943 We fill up ARGS from the front or from the back if necessary
944 so that in any case the first arg to be pushed ends up at the front. */
945
946 if (PUSH_ARGS_REVERSED)
947 {
948 i = num_actuals - 1, inc = -1;
949 /* In this case, must reverse order of args
950 so that we compute and push the last arg first. */
951 }
952 else
953 {
954 i = 0, inc = 1;
955 }
956
957 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
958 for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++)
959 {
960 tree type = TREE_TYPE (TREE_VALUE (p));
961 int unsignedp;
962 enum machine_mode mode;
963
964 args[i].tree_value = TREE_VALUE (p);
965
966 /* Replace erroneous argument with constant zero. */
967 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
968 args[i].tree_value = integer_zero_node, type = integer_type_node;
969
970 /* If TYPE is a transparent union, pass things the way we would
971 pass the first field of the union. We have already verified that
972 the modes are the same. */
973 if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
974 type = TREE_TYPE (TYPE_FIELDS (type));
975
976 /* Decide where to pass this arg.
977
978 args[i].reg is nonzero if all or part is passed in registers.
979
980 args[i].partial is nonzero if part but not all is passed in registers,
981 and the exact value says how many bytes are passed in registers.
982
983 args[i].pass_on_stack is nonzero if the argument must at least be
984 computed on the stack. It may then be loaded back into registers
985 if args[i].reg is nonzero.
986
987 These decisions are driven by the FUNCTION_... macros and must agree
988 with those made by function.c. */
989
990 /* See if this argument should be passed by invisible reference. */
991 if (pass_by_reference (args_so_far, TYPE_MODE (type),
992 type, argpos < n_named_args))
993 {
994 bool callee_copies;
995 tree base;
996
997 callee_copies
998 = reference_callee_copied (args_so_far, TYPE_MODE (type),
999 type, argpos < n_named_args);
1000
1001 /* If we're compiling a thunk, pass through invisible references
1002 instead of making a copy. */
1003 if (call_from_thunk_p
1004 || (callee_copies
1005 && !TREE_ADDRESSABLE (type)
1006 && (base = get_base_address (args[i].tree_value))
1007 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1008 {
1009 /* We can't use sibcalls if a callee-copied argument is
1010 stored in the current function's frame. */
1011 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1012 *may_tailcall = false;
1013
1014 args[i].tree_value = build_fold_addr_expr (args[i].tree_value);
1015 type = TREE_TYPE (args[i].tree_value);
1016
1017 *ecf_flags &= ~(ECF_CONST | ECF_LIBCALL_BLOCK);
1018 }
1019 else
1020 {
1021 /* We make a copy of the object and pass the address to the
1022 function being called. */
1023 rtx copy;
1024
1025 if (!COMPLETE_TYPE_P (type)
1026 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
1027 || (flag_stack_check && ! STACK_CHECK_BUILTIN
1028 && (0 < compare_tree_int (TYPE_SIZE_UNIT (type),
1029 STACK_CHECK_MAX_VAR_SIZE))))
1030 {
1031 /* This is a variable-sized object. Make space on the stack
1032 for it. */
1033 rtx size_rtx = expr_size (TREE_VALUE (p));
1034
1035 if (*old_stack_level == 0)
1036 {
1037 emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
1038 *old_pending_adj = pending_stack_adjust;
1039 pending_stack_adjust = 0;
1040 }
1041
1042 copy = gen_rtx_MEM (BLKmode,
1043 allocate_dynamic_stack_space
1044 (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
1045 set_mem_attributes (copy, type, 1);
1046 }
1047 else
1048 copy = assign_temp (type, 0, 1, 0);
1049
1050 store_expr (args[i].tree_value, copy, 0);
1051
1052 if (callee_copies)
1053 *ecf_flags &= ~(ECF_CONST | ECF_LIBCALL_BLOCK);
1054 else
1055 *ecf_flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1056
1057 args[i].tree_value
1058 = build_fold_addr_expr (make_tree (type, copy));
1059 type = TREE_TYPE (args[i].tree_value);
1060 *may_tailcall = false;
1061 }
1062 }
1063
1064 mode = TYPE_MODE (type);
1065 unsignedp = TYPE_UNSIGNED (type);
1066
1067 if (targetm.calls.promote_function_args (fndecl ? TREE_TYPE (fndecl) : 0))
1068 mode = promote_mode (type, mode, &unsignedp, 1);
1069
1070 args[i].unsignedp = unsignedp;
1071 args[i].mode = mode;
1072
1073 args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
1074 argpos < n_named_args);
1075 #ifdef FUNCTION_INCOMING_ARG
1076 /* If this is a sibling call and the machine has register windows, the
1077 register window has to be unwinded before calling the routine, so
1078 arguments have to go into the incoming registers. */
1079 args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
1080 argpos < n_named_args);
1081 #else
1082 args[i].tail_call_reg = args[i].reg;
1083 #endif
1084
1085 if (args[i].reg)
1086 args[i].partial
1087 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1088 argpos < n_named_args);
1089
1090 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1091
1092 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1093 it means that we are to pass this arg in the register(s) designated
1094 by the PARALLEL, but also to pass it in the stack. */
1095 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1096 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1097 args[i].pass_on_stack = 1;
1098
1099 /* If this is an addressable type, we must preallocate the stack
1100 since we must evaluate the object into its final location.
1101
1102 If this is to be passed in both registers and the stack, it is simpler
1103 to preallocate. */
1104 if (TREE_ADDRESSABLE (type)
1105 || (args[i].pass_on_stack && args[i].reg != 0))
1106 *must_preallocate = 1;
1107
1108 /* If this is an addressable type, we cannot pre-evaluate it. Thus,
1109 we cannot consider this function call constant. */
1110 if (TREE_ADDRESSABLE (type))
1111 *ecf_flags &= ~ECF_LIBCALL_BLOCK;
1112
1113 /* Compute the stack-size of this argument. */
1114 if (args[i].reg == 0 || args[i].partial != 0
1115 || reg_parm_stack_space > 0
1116 || args[i].pass_on_stack)
1117 locate_and_pad_parm (mode, type,
1118 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1119 1,
1120 #else
1121 args[i].reg != 0,
1122 #endif
1123 args[i].pass_on_stack ? 0 : args[i].partial,
1124 fndecl, args_size, &args[i].locate);
1125 #ifdef BLOCK_REG_PADDING
1126 else
1127 /* The argument is passed entirely in registers. See at which
1128 end it should be padded. */
1129 args[i].locate.where_pad =
1130 BLOCK_REG_PADDING (mode, type,
1131 int_size_in_bytes (type) <= UNITS_PER_WORD);
1132 #endif
1133
1134 /* Update ARGS_SIZE, the total stack space for args so far. */
1135
1136 args_size->constant += args[i].locate.size.constant;
1137 if (args[i].locate.size.var)
1138 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1139
1140 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1141 have been used, etc. */
1142
1143 FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
1144 argpos < n_named_args);
1145 }
1146 }
1147
1148 /* Update ARGS_SIZE to contain the total size for the argument block.
1149 Return the original constant component of the argument block's size.
1150
1151 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1152 for arguments passed in registers. */
1153
1154 static int
1155 compute_argument_block_size (int reg_parm_stack_space,
1156 struct args_size *args_size,
1157 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1158 {
1159 int unadjusted_args_size = args_size->constant;
1160
1161 /* For accumulate outgoing args mode we don't need to align, since the frame
1162 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1163 backends from generating misaligned frame sizes. */
1164 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1165 preferred_stack_boundary = STACK_BOUNDARY;
1166
1167 /* Compute the actual size of the argument block required. The variable
1168 and constant sizes must be combined, the size may have to be rounded,
1169 and there may be a minimum required size. */
1170
1171 if (args_size->var)
1172 {
1173 args_size->var = ARGS_SIZE_TREE (*args_size);
1174 args_size->constant = 0;
1175
1176 preferred_stack_boundary /= BITS_PER_UNIT;
1177 if (preferred_stack_boundary > 1)
1178 {
1179 /* We don't handle this case yet. To handle it correctly we have
1180 to add the delta, round and subtract the delta.
1181 Currently no machine description requires this support. */
1182 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1183 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1184 }
1185
1186 if (reg_parm_stack_space > 0)
1187 {
1188 args_size->var
1189 = size_binop (MAX_EXPR, args_size->var,
1190 ssize_int (reg_parm_stack_space));
1191
1192 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1193 /* The area corresponding to register parameters is not to count in
1194 the size of the block we need. So make the adjustment. */
1195 args_size->var
1196 = size_binop (MINUS_EXPR, args_size->var,
1197 ssize_int (reg_parm_stack_space));
1198 #endif
1199 }
1200 }
1201 else
1202 {
1203 preferred_stack_boundary /= BITS_PER_UNIT;
1204 if (preferred_stack_boundary < 1)
1205 preferred_stack_boundary = 1;
1206 args_size->constant = (((args_size->constant
1207 + stack_pointer_delta
1208 + preferred_stack_boundary - 1)
1209 / preferred_stack_boundary
1210 * preferred_stack_boundary)
1211 - stack_pointer_delta);
1212
1213 args_size->constant = MAX (args_size->constant,
1214 reg_parm_stack_space);
1215
1216 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1217 args_size->constant -= reg_parm_stack_space;
1218 #endif
1219 }
1220 return unadjusted_args_size;
1221 }
1222
1223 /* Precompute parameters as needed for a function call.
1224
1225 FLAGS is mask of ECF_* constants.
1226
1227 NUM_ACTUALS is the number of arguments.
1228
1229 ARGS is an array containing information for each argument; this
1230 routine fills in the INITIAL_VALUE and VALUE fields for each
1231 precomputed argument. */
1232
1233 static void
1234 precompute_arguments (int flags, int num_actuals, struct arg_data *args)
1235 {
1236 int i;
1237
1238 /* If this is a libcall, then precompute all arguments so that we do not
1239 get extraneous instructions emitted as part of the libcall sequence. */
1240 if ((flags & ECF_LIBCALL_BLOCK) == 0)
1241 return;
1242
1243 for (i = 0; i < num_actuals; i++)
1244 {
1245 enum machine_mode mode;
1246
1247 /* If this is an addressable type, we cannot pre-evaluate it. */
1248 gcc_assert (!TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)));
1249
1250 args[i].initial_value = args[i].value
1251 = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0);
1252
1253 mode = TYPE_MODE (TREE_TYPE (args[i].tree_value));
1254 if (mode != args[i].mode)
1255 {
1256 args[i].value
1257 = convert_modes (args[i].mode, mode,
1258 args[i].value, args[i].unsignedp);
1259 #if defined(PROMOTE_FUNCTION_MODE) && !defined(PROMOTE_MODE)
1260 /* CSE will replace this only if it contains args[i].value
1261 pseudo, so convert it down to the declared mode using
1262 a SUBREG. */
1263 if (REG_P (args[i].value)
1264 && GET_MODE_CLASS (args[i].mode) == MODE_INT)
1265 {
1266 args[i].initial_value
1267 = gen_lowpart_SUBREG (mode, args[i].value);
1268 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1269 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1270 args[i].unsignedp);
1271 }
1272 #endif
1273 }
1274 }
1275 }
1276
1277 /* Given the current state of MUST_PREALLOCATE and information about
1278 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1279 compute and return the final value for MUST_PREALLOCATE. */
1280
1281 static int
1282 finalize_must_preallocate (int must_preallocate, int num_actuals, struct arg_data *args, struct args_size *args_size)
1283 {
1284 /* See if we have or want to preallocate stack space.
1285
1286 If we would have to push a partially-in-regs parm
1287 before other stack parms, preallocate stack space instead.
1288
1289 If the size of some parm is not a multiple of the required stack
1290 alignment, we must preallocate.
1291
1292 If the total size of arguments that would otherwise create a copy in
1293 a temporary (such as a CALL) is more than half the total argument list
1294 size, preallocation is faster.
1295
1296 Another reason to preallocate is if we have a machine (like the m88k)
1297 where stack alignment is required to be maintained between every
1298 pair of insns, not just when the call is made. However, we assume here
1299 that such machines either do not have push insns (and hence preallocation
1300 would occur anyway) or the problem is taken care of with
1301 PUSH_ROUNDING. */
1302
1303 if (! must_preallocate)
1304 {
1305 int partial_seen = 0;
1306 int copy_to_evaluate_size = 0;
1307 int i;
1308
1309 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1310 {
1311 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1312 partial_seen = 1;
1313 else if (partial_seen && args[i].reg == 0)
1314 must_preallocate = 1;
1315
1316 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1317 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1318 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1319 || TREE_CODE (args[i].tree_value) == COND_EXPR
1320 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1321 copy_to_evaluate_size
1322 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1323 }
1324
1325 if (copy_to_evaluate_size * 2 >= args_size->constant
1326 && args_size->constant > 0)
1327 must_preallocate = 1;
1328 }
1329 return must_preallocate;
1330 }
1331
1332 /* If we preallocated stack space, compute the address of each argument
1333 and store it into the ARGS array.
1334
1335 We need not ensure it is a valid memory address here; it will be
1336 validized when it is used.
1337
1338 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1339
1340 static void
1341 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1342 {
1343 if (argblock)
1344 {
1345 rtx arg_reg = argblock;
1346 int i, arg_offset = 0;
1347
1348 if (GET_CODE (argblock) == PLUS)
1349 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1350
1351 for (i = 0; i < num_actuals; i++)
1352 {
1353 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1354 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1355 rtx addr;
1356 unsigned int align, boundary;
1357
1358 /* Skip this parm if it will not be passed on the stack. */
1359 if (! args[i].pass_on_stack && args[i].reg != 0)
1360 continue;
1361
1362 if (GET_CODE (offset) == CONST_INT)
1363 addr = plus_constant (arg_reg, INTVAL (offset));
1364 else
1365 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1366
1367 addr = plus_constant (addr, arg_offset);
1368 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1369 set_mem_attributes (args[i].stack,
1370 TREE_TYPE (args[i].tree_value), 1);
1371 align = BITS_PER_UNIT;
1372 boundary = args[i].locate.boundary;
1373 if (args[i].locate.where_pad != downward)
1374 align = boundary;
1375 else if (GET_CODE (offset) == CONST_INT)
1376 {
1377 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1378 align = align & -align;
1379 }
1380 set_mem_align (args[i].stack, align);
1381
1382 if (GET_CODE (slot_offset) == CONST_INT)
1383 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1384 else
1385 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1386
1387 addr = plus_constant (addr, arg_offset);
1388 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1389 set_mem_attributes (args[i].stack_slot,
1390 TREE_TYPE (args[i].tree_value), 1);
1391 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1392
1393 /* Function incoming arguments may overlap with sibling call
1394 outgoing arguments and we cannot allow reordering of reads
1395 from function arguments with stores to outgoing arguments
1396 of sibling calls. */
1397 set_mem_alias_set (args[i].stack, 0);
1398 set_mem_alias_set (args[i].stack_slot, 0);
1399 }
1400 }
1401 }
1402
1403 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1404 in a call instruction.
1405
1406 FNDECL is the tree node for the target function. For an indirect call
1407 FNDECL will be NULL_TREE.
1408
1409 ADDR is the operand 0 of CALL_EXPR for this call. */
1410
1411 static rtx
1412 rtx_for_function_call (tree fndecl, tree addr)
1413 {
1414 rtx funexp;
1415
1416 /* Get the function to call, in the form of RTL. */
1417 if (fndecl)
1418 {
1419 /* If this is the first use of the function, see if we need to
1420 make an external definition for it. */
1421 if (! TREE_USED (fndecl))
1422 {
1423 assemble_external (fndecl);
1424 TREE_USED (fndecl) = 1;
1425 }
1426
1427 /* Get a SYMBOL_REF rtx for the function address. */
1428 funexp = XEXP (DECL_RTL (fndecl), 0);
1429 }
1430 else
1431 /* Generate an rtx (probably a pseudo-register) for the address. */
1432 {
1433 push_temp_slots ();
1434 funexp = expand_expr (addr, NULL_RTX, VOIDmode, 0);
1435 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1436 }
1437 return funexp;
1438 }
1439
1440 /* Return true if and only if SIZE storage units (usually bytes)
1441 starting from address ADDR overlap with already clobbered argument
1442 area. This function is used to determine if we should give up a
1443 sibcall. */
1444
1445 static bool
1446 mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
1447 {
1448 HOST_WIDE_INT i;
1449
1450 if (addr == current_function_internal_arg_pointer)
1451 i = 0;
1452 else if (GET_CODE (addr) == PLUS
1453 && (XEXP (addr, 0)
1454 == current_function_internal_arg_pointer)
1455 && GET_CODE (XEXP (addr, 1)) == CONST_INT)
1456 i = INTVAL (XEXP (addr, 1));
1457 else
1458 return false;
1459
1460 #ifdef ARGS_GROW_DOWNWARD
1461 i = -i - size;
1462 #endif
1463 if (size > 0)
1464 {
1465 unsigned HOST_WIDE_INT k;
1466
1467 for (k = 0; k < size; k++)
1468 if (i + k < stored_args_map->n_bits
1469 && TEST_BIT (stored_args_map, i + k))
1470 return true;
1471 }
1472
1473 return false;
1474 }
1475
1476 /* Do the register loads required for any wholly-register parms or any
1477 parms which are passed both on the stack and in a register. Their
1478 expressions were already evaluated.
1479
1480 Mark all register-parms as living through the call, putting these USE
1481 insns in the CALL_INSN_FUNCTION_USAGE field.
1482
1483 When IS_SIBCALL, perform the check_sibcall_argument_overlap
1484 checking, setting *SIBCALL_FAILURE if appropriate. */
1485
1486 static void
1487 load_register_parameters (struct arg_data *args, int num_actuals,
1488 rtx *call_fusage, int flags, int is_sibcall,
1489 int *sibcall_failure)
1490 {
1491 int i, j;
1492
1493 for (i = 0; i < num_actuals; i++)
1494 {
1495 rtx reg = ((flags & ECF_SIBCALL)
1496 ? args[i].tail_call_reg : args[i].reg);
1497 if (reg)
1498 {
1499 int partial = args[i].partial;
1500 int nregs;
1501 int size = 0;
1502 rtx before_arg = get_last_insn ();
1503 /* Set non-negative if we must move a word at a time, even if
1504 just one word (e.g, partial == 4 && mode == DFmode). Set
1505 to -1 if we just use a normal move insn. This value can be
1506 zero if the argument is a zero size structure. */
1507 nregs = -1;
1508 if (GET_CODE (reg) == PARALLEL)
1509 ;
1510 else if (partial)
1511 {
1512 gcc_assert (partial % UNITS_PER_WORD == 0);
1513 nregs = partial / UNITS_PER_WORD;
1514 }
1515 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1516 {
1517 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1518 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1519 }
1520 else
1521 size = GET_MODE_SIZE (args[i].mode);
1522
1523 /* Handle calls that pass values in multiple non-contiguous
1524 locations. The Irix 6 ABI has examples of this. */
1525
1526 if (GET_CODE (reg) == PARALLEL)
1527 emit_group_move (reg, args[i].parallel_value);
1528
1529 /* If simple case, just do move. If normal partial, store_one_arg
1530 has already loaded the register for us. In all other cases,
1531 load the register(s) from memory. */
1532
1533 else if (nregs == -1)
1534 {
1535 emit_move_insn (reg, args[i].value);
1536 #ifdef BLOCK_REG_PADDING
1537 /* Handle case where we have a value that needs shifting
1538 up to the msb. eg. a QImode value and we're padding
1539 upward on a BYTES_BIG_ENDIAN machine. */
1540 if (size < UNITS_PER_WORD
1541 && (args[i].locate.where_pad
1542 == (BYTES_BIG_ENDIAN ? upward : downward)))
1543 {
1544 rtx x;
1545 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1546
1547 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1548 report the whole reg as used. Strictly speaking, the
1549 call only uses SIZE bytes at the msb end, but it doesn't
1550 seem worth generating rtl to say that. */
1551 reg = gen_rtx_REG (word_mode, REGNO (reg));
1552 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
1553 build_int_cst (NULL_TREE, shift),
1554 reg, 1);
1555 if (x != reg)
1556 emit_move_insn (reg, x);
1557 }
1558 #endif
1559 }
1560
1561 /* If we have pre-computed the values to put in the registers in
1562 the case of non-aligned structures, copy them in now. */
1563
1564 else if (args[i].n_aligned_regs != 0)
1565 for (j = 0; j < args[i].n_aligned_regs; j++)
1566 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1567 args[i].aligned_regs[j]);
1568
1569 else if (partial == 0 || args[i].pass_on_stack)
1570 {
1571 rtx mem = validize_mem (args[i].value);
1572
1573 /* Check for overlap with already clobbered argument area. */
1574 if (is_sibcall
1575 && mem_overlaps_already_clobbered_arg_p (XEXP (args[i].value, 0),
1576 size))
1577 *sibcall_failure = 1;
1578
1579 /* Handle a BLKmode that needs shifting. */
1580 if (nregs == 1 && size < UNITS_PER_WORD
1581 #ifdef BLOCK_REG_PADDING
1582 && args[i].locate.where_pad == downward
1583 #else
1584 && BYTES_BIG_ENDIAN
1585 #endif
1586 )
1587 {
1588 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1589 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1590 rtx x = gen_reg_rtx (word_mode);
1591 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1592 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1593 : LSHIFT_EXPR;
1594
1595 emit_move_insn (x, tem);
1596 x = expand_shift (dir, word_mode, x,
1597 build_int_cst (NULL_TREE, shift),
1598 ri, 1);
1599 if (x != ri)
1600 emit_move_insn (ri, x);
1601 }
1602 else
1603 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1604 }
1605
1606 /* When a parameter is a block, and perhaps in other cases, it is
1607 possible that it did a load from an argument slot that was
1608 already clobbered. */
1609 if (is_sibcall
1610 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1611 *sibcall_failure = 1;
1612
1613 /* Handle calls that pass values in multiple non-contiguous
1614 locations. The Irix 6 ABI has examples of this. */
1615 if (GET_CODE (reg) == PARALLEL)
1616 use_group_regs (call_fusage, reg);
1617 else if (nregs == -1)
1618 use_reg (call_fusage, reg);
1619 else if (nregs > 0)
1620 use_regs (call_fusage, REGNO (reg), nregs);
1621 }
1622 }
1623 }
1624
1625 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1626 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1627 bytes, then we would need to push some additional bytes to pad the
1628 arguments. So, we compute an adjust to the stack pointer for an
1629 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1630 bytes. Then, when the arguments are pushed the stack will be perfectly
1631 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1632 be popped after the call. Returns the adjustment. */
1633
1634 static int
1635 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1636 struct args_size *args_size,
1637 unsigned int preferred_unit_stack_boundary)
1638 {
1639 /* The number of bytes to pop so that the stack will be
1640 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1641 HOST_WIDE_INT adjustment;
1642 /* The alignment of the stack after the arguments are pushed, if we
1643 just pushed the arguments without adjust the stack here. */
1644 unsigned HOST_WIDE_INT unadjusted_alignment;
1645
1646 unadjusted_alignment
1647 = ((stack_pointer_delta + unadjusted_args_size)
1648 % preferred_unit_stack_boundary);
1649
1650 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1651 as possible -- leaving just enough left to cancel out the
1652 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1653 PENDING_STACK_ADJUST is non-negative, and congruent to
1654 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1655
1656 /* Begin by trying to pop all the bytes. */
1657 unadjusted_alignment
1658 = (unadjusted_alignment
1659 - (pending_stack_adjust % preferred_unit_stack_boundary));
1660 adjustment = pending_stack_adjust;
1661 /* Push enough additional bytes that the stack will be aligned
1662 after the arguments are pushed. */
1663 if (preferred_unit_stack_boundary > 1)
1664 {
1665 if (unadjusted_alignment > 0)
1666 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1667 else
1668 adjustment += unadjusted_alignment;
1669 }
1670
1671 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1672 bytes after the call. The right number is the entire
1673 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1674 by the arguments in the first place. */
1675 args_size->constant
1676 = pending_stack_adjust - adjustment + unadjusted_args_size;
1677
1678 return adjustment;
1679 }
1680
1681 /* Scan X expression if it does not dereference any argument slots
1682 we already clobbered by tail call arguments (as noted in stored_args_map
1683 bitmap).
1684 Return nonzero if X expression dereferences such argument slots,
1685 zero otherwise. */
1686
1687 static int
1688 check_sibcall_argument_overlap_1 (rtx x)
1689 {
1690 RTX_CODE code;
1691 int i, j;
1692 const char *fmt;
1693
1694 if (x == NULL_RTX)
1695 return 0;
1696
1697 code = GET_CODE (x);
1698
1699 if (code == MEM)
1700 return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
1701 GET_MODE_SIZE (GET_MODE (x)));
1702
1703 /* Scan all subexpressions. */
1704 fmt = GET_RTX_FORMAT (code);
1705 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1706 {
1707 if (*fmt == 'e')
1708 {
1709 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1710 return 1;
1711 }
1712 else if (*fmt == 'E')
1713 {
1714 for (j = 0; j < XVECLEN (x, i); j++)
1715 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1716 return 1;
1717 }
1718 }
1719 return 0;
1720 }
1721
1722 /* Scan sequence after INSN if it does not dereference any argument slots
1723 we already clobbered by tail call arguments (as noted in stored_args_map
1724 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1725 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1726 should be 0). Return nonzero if sequence after INSN dereferences such argument
1727 slots, zero otherwise. */
1728
1729 static int
1730 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1731 {
1732 int low, high;
1733
1734 if (insn == NULL_RTX)
1735 insn = get_insns ();
1736 else
1737 insn = NEXT_INSN (insn);
1738
1739 for (; insn; insn = NEXT_INSN (insn))
1740 if (INSN_P (insn)
1741 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1742 break;
1743
1744 if (mark_stored_args_map)
1745 {
1746 #ifdef ARGS_GROW_DOWNWARD
1747 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1748 #else
1749 low = arg->locate.slot_offset.constant;
1750 #endif
1751
1752 for (high = low + arg->locate.size.constant; low < high; low++)
1753 SET_BIT (stored_args_map, low);
1754 }
1755 return insn != NULL_RTX;
1756 }
1757
1758 /* Given that a function returns a value of mode MODE at the most
1759 significant end of hard register VALUE, shift VALUE left or right
1760 as specified by LEFT_P. Return true if some action was needed. */
1761
1762 bool
1763 shift_return_value (enum machine_mode mode, bool left_p, rtx value)
1764 {
1765 HOST_WIDE_INT shift;
1766
1767 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
1768 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
1769 if (shift == 0)
1770 return false;
1771
1772 /* Use ashr rather than lshr for right shifts. This is for the benefit
1773 of the MIPS port, which requires SImode values to be sign-extended
1774 when stored in 64-bit registers. */
1775 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
1776 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
1777 gcc_unreachable ();
1778 return true;
1779 }
1780
1781 /* Generate all the code for a function call
1782 and return an rtx for its value.
1783 Store the value in TARGET (specified as an rtx) if convenient.
1784 If the value is stored in TARGET then TARGET is returned.
1785 If IGNORE is nonzero, then we ignore the value of the function call. */
1786
1787 rtx
1788 expand_call (tree exp, rtx target, int ignore)
1789 {
1790 /* Nonzero if we are currently expanding a call. */
1791 static int currently_expanding_call = 0;
1792
1793 /* List of actual parameters. */
1794 tree actparms = TREE_OPERAND (exp, 1);
1795 /* RTX for the function to be called. */
1796 rtx funexp;
1797 /* Sequence of insns to perform a normal "call". */
1798 rtx normal_call_insns = NULL_RTX;
1799 /* Sequence of insns to perform a tail "call". */
1800 rtx tail_call_insns = NULL_RTX;
1801 /* Data type of the function. */
1802 tree funtype;
1803 tree type_arg_types;
1804 /* Declaration of the function being called,
1805 or 0 if the function is computed (not known by name). */
1806 tree fndecl = 0;
1807 /* The type of the function being called. */
1808 tree fntype;
1809 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1810 int pass;
1811
1812 /* Register in which non-BLKmode value will be returned,
1813 or 0 if no value or if value is BLKmode. */
1814 rtx valreg;
1815 /* Address where we should return a BLKmode value;
1816 0 if value not BLKmode. */
1817 rtx structure_value_addr = 0;
1818 /* Nonzero if that address is being passed by treating it as
1819 an extra, implicit first parameter. Otherwise,
1820 it is passed by being copied directly into struct_value_rtx. */
1821 int structure_value_addr_parm = 0;
1822 /* Size of aggregate value wanted, or zero if none wanted
1823 or if we are using the non-reentrant PCC calling convention
1824 or expecting the value in registers. */
1825 HOST_WIDE_INT struct_value_size = 0;
1826 /* Nonzero if called function returns an aggregate in memory PCC style,
1827 by returning the address of where to find it. */
1828 int pcc_struct_value = 0;
1829 rtx struct_value = 0;
1830
1831 /* Number of actual parameters in this call, including struct value addr. */
1832 int num_actuals;
1833 /* Number of named args. Args after this are anonymous ones
1834 and they must all go on the stack. */
1835 int n_named_args;
1836
1837 /* Vector of information about each argument.
1838 Arguments are numbered in the order they will be pushed,
1839 not the order they are written. */
1840 struct arg_data *args;
1841
1842 /* Total size in bytes of all the stack-parms scanned so far. */
1843 struct args_size args_size;
1844 struct args_size adjusted_args_size;
1845 /* Size of arguments before any adjustments (such as rounding). */
1846 int unadjusted_args_size;
1847 /* Data on reg parms scanned so far. */
1848 CUMULATIVE_ARGS args_so_far;
1849 /* Nonzero if a reg parm has been scanned. */
1850 int reg_parm_seen;
1851 /* Nonzero if this is an indirect function call. */
1852
1853 /* Nonzero if we must avoid push-insns in the args for this call.
1854 If stack space is allocated for register parameters, but not by the
1855 caller, then it is preallocated in the fixed part of the stack frame.
1856 So the entire argument block must then be preallocated (i.e., we
1857 ignore PUSH_ROUNDING in that case). */
1858
1859 int must_preallocate = !PUSH_ARGS;
1860
1861 /* Size of the stack reserved for parameter registers. */
1862 int reg_parm_stack_space = 0;
1863
1864 /* Address of space preallocated for stack parms
1865 (on machines that lack push insns), or 0 if space not preallocated. */
1866 rtx argblock = 0;
1867
1868 /* Mask of ECF_ flags. */
1869 int flags = 0;
1870 #ifdef REG_PARM_STACK_SPACE
1871 /* Define the boundary of the register parm stack space that needs to be
1872 saved, if any. */
1873 int low_to_save, high_to_save;
1874 rtx save_area = 0; /* Place that it is saved */
1875 #endif
1876
1877 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
1878 char *initial_stack_usage_map = stack_usage_map;
1879 char *stack_usage_map_buf = NULL;
1880
1881 int old_stack_allocated;
1882
1883 /* State variables to track stack modifications. */
1884 rtx old_stack_level = 0;
1885 int old_stack_arg_under_construction = 0;
1886 int old_pending_adj = 0;
1887 int old_inhibit_defer_pop = inhibit_defer_pop;
1888
1889 /* Some stack pointer alterations we make are performed via
1890 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
1891 which we then also need to save/restore along the way. */
1892 int old_stack_pointer_delta = 0;
1893
1894 rtx call_fusage;
1895 tree p = TREE_OPERAND (exp, 0);
1896 tree addr = TREE_OPERAND (exp, 0);
1897 int i;
1898 /* The alignment of the stack, in bits. */
1899 unsigned HOST_WIDE_INT preferred_stack_boundary;
1900 /* The alignment of the stack, in bytes. */
1901 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
1902 /* The static chain value to use for this call. */
1903 rtx static_chain_value;
1904 /* See if this is "nothrow" function call. */
1905 if (TREE_NOTHROW (exp))
1906 flags |= ECF_NOTHROW;
1907
1908 /* See if we can find a DECL-node for the actual function, and get the
1909 function attributes (flags) from the function decl or type node. */
1910 fndecl = get_callee_fndecl (exp);
1911 if (fndecl)
1912 {
1913 fntype = TREE_TYPE (fndecl);
1914 flags |= flags_from_decl_or_type (fndecl);
1915 }
1916 else
1917 {
1918 fntype = TREE_TYPE (TREE_TYPE (p));
1919 flags |= flags_from_decl_or_type (fntype);
1920 }
1921
1922 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
1923
1924 /* Warn if this value is an aggregate type,
1925 regardless of which calling convention we are using for it. */
1926 if (AGGREGATE_TYPE_P (TREE_TYPE (exp)))
1927 warning (OPT_Waggregate_return, "function call has aggregate value");
1928
1929 /* If the result of a pure or const function call is ignored (or void),
1930 and none of its arguments are volatile, we can avoid expanding the
1931 call and just evaluate the arguments for side-effects. */
1932 if ((flags & (ECF_CONST | ECF_PURE))
1933 && (ignore || target == const0_rtx
1934 || TYPE_MODE (TREE_TYPE (exp)) == VOIDmode))
1935 {
1936 bool volatilep = false;
1937 tree arg;
1938
1939 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
1940 if (TREE_THIS_VOLATILE (TREE_VALUE (arg)))
1941 {
1942 volatilep = true;
1943 break;
1944 }
1945
1946 if (! volatilep)
1947 {
1948 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
1949 expand_expr (TREE_VALUE (arg), const0_rtx,
1950 VOIDmode, EXPAND_NORMAL);
1951 return const0_rtx;
1952 }
1953 }
1954
1955 #ifdef REG_PARM_STACK_SPACE
1956 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
1957 #endif
1958
1959 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1960 if (reg_parm_stack_space > 0 && PUSH_ARGS)
1961 must_preallocate = 1;
1962 #endif
1963
1964 /* Set up a place to return a structure. */
1965
1966 /* Cater to broken compilers. */
1967 if (aggregate_value_p (exp, fndecl))
1968 {
1969 /* This call returns a big structure. */
1970 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1971
1972 #ifdef PCC_STATIC_STRUCT_RETURN
1973 {
1974 pcc_struct_value = 1;
1975 }
1976 #else /* not PCC_STATIC_STRUCT_RETURN */
1977 {
1978 struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
1979
1980 if (target && MEM_P (target) && CALL_EXPR_RETURN_SLOT_OPT (exp))
1981 structure_value_addr = XEXP (target, 0);
1982 else
1983 {
1984 /* For variable-sized objects, we must be called with a target
1985 specified. If we were to allocate space on the stack here,
1986 we would have no way of knowing when to free it. */
1987 rtx d = assign_temp (TREE_TYPE (exp), 1, 1, 1);
1988
1989 mark_temp_addr_taken (d);
1990 structure_value_addr = XEXP (d, 0);
1991 target = 0;
1992 }
1993 }
1994 #endif /* not PCC_STATIC_STRUCT_RETURN */
1995 }
1996
1997 /* Figure out the amount to which the stack should be aligned. */
1998 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1999 if (fndecl)
2000 {
2001 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2002 if (i && i->preferred_incoming_stack_boundary)
2003 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2004 }
2005
2006 /* Operand 0 is a pointer-to-function; get the type of the function. */
2007 funtype = TREE_TYPE (addr);
2008 gcc_assert (POINTER_TYPE_P (funtype));
2009 funtype = TREE_TYPE (funtype);
2010
2011 /* Munge the tree to split complex arguments into their imaginary
2012 and real parts. */
2013 if (targetm.calls.split_complex_arg)
2014 {
2015 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2016 actparms = split_complex_values (actparms);
2017 }
2018 else
2019 type_arg_types = TYPE_ARG_TYPES (funtype);
2020
2021 if (flags & ECF_MAY_BE_ALLOCA)
2022 current_function_calls_alloca = 1;
2023
2024 /* If struct_value_rtx is 0, it means pass the address
2025 as if it were an extra parameter. */
2026 if (structure_value_addr && struct_value == 0)
2027 {
2028 /* If structure_value_addr is a REG other than
2029 virtual_outgoing_args_rtx, we can use always use it. If it
2030 is not a REG, we must always copy it into a register.
2031 If it is virtual_outgoing_args_rtx, we must copy it to another
2032 register in some cases. */
2033 rtx temp = (!REG_P (structure_value_addr)
2034 || (ACCUMULATE_OUTGOING_ARGS
2035 && stack_arg_under_construction
2036 && structure_value_addr == virtual_outgoing_args_rtx)
2037 ? copy_addr_to_reg (convert_memory_address
2038 (Pmode, structure_value_addr))
2039 : structure_value_addr);
2040
2041 actparms
2042 = tree_cons (error_mark_node,
2043 make_tree (build_pointer_type (TREE_TYPE (funtype)),
2044 temp),
2045 actparms);
2046 structure_value_addr_parm = 1;
2047 }
2048
2049 /* Count the arguments and set NUM_ACTUALS. */
2050 for (p = actparms, num_actuals = 0; p; p = TREE_CHAIN (p))
2051 num_actuals++;
2052
2053 /* Compute number of named args.
2054 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2055
2056 if (type_arg_types != 0)
2057 n_named_args
2058 = (list_length (type_arg_types)
2059 /* Count the struct value address, if it is passed as a parm. */
2060 + structure_value_addr_parm);
2061 else
2062 /* If we know nothing, treat all args as named. */
2063 n_named_args = num_actuals;
2064
2065 /* Start updating where the next arg would go.
2066
2067 On some machines (such as the PA) indirect calls have a different
2068 calling convention than normal calls. The fourth argument in
2069 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2070 or not. */
2071 INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
2072
2073 /* Now possibly adjust the number of named args.
2074 Normally, don't include the last named arg if anonymous args follow.
2075 We do include the last named arg if
2076 targetm.calls.strict_argument_naming() returns nonzero.
2077 (If no anonymous args follow, the result of list_length is actually
2078 one too large. This is harmless.)
2079
2080 If targetm.calls.pretend_outgoing_varargs_named() returns
2081 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2082 this machine will be able to place unnamed args that were passed
2083 in registers into the stack. So treat all args as named. This
2084 allows the insns emitting for a specific argument list to be
2085 independent of the function declaration.
2086
2087 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2088 we do not have any reliable way to pass unnamed args in
2089 registers, so we must force them into memory. */
2090
2091 if (type_arg_types != 0
2092 && targetm.calls.strict_argument_naming (&args_so_far))
2093 ;
2094 else if (type_arg_types != 0
2095 && ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
2096 /* Don't include the last named arg. */
2097 --n_named_args;
2098 else
2099 /* Treat all args as named. */
2100 n_named_args = num_actuals;
2101
2102 /* Make a vector to hold all the information about each arg. */
2103 args = alloca (num_actuals * sizeof (struct arg_data));
2104 memset (args, 0, num_actuals * sizeof (struct arg_data));
2105
2106 /* Build up entries in the ARGS array, compute the size of the
2107 arguments into ARGS_SIZE, etc. */
2108 initialize_argument_information (num_actuals, args, &args_size,
2109 n_named_args, actparms, fndecl,
2110 &args_so_far, reg_parm_stack_space,
2111 &old_stack_level, &old_pending_adj,
2112 &must_preallocate, &flags,
2113 &try_tail_call, CALL_FROM_THUNK_P (exp));
2114
2115 if (args_size.var)
2116 {
2117 /* If this function requires a variable-sized argument list, don't
2118 try to make a cse'able block for this call. We may be able to
2119 do this eventually, but it is too complicated to keep track of
2120 what insns go in the cse'able block and which don't. */
2121
2122 flags &= ~ECF_LIBCALL_BLOCK;
2123 must_preallocate = 1;
2124 }
2125
2126 /* Now make final decision about preallocating stack space. */
2127 must_preallocate = finalize_must_preallocate (must_preallocate,
2128 num_actuals, args,
2129 &args_size);
2130
2131 /* If the structure value address will reference the stack pointer, we
2132 must stabilize it. We don't need to do this if we know that we are
2133 not going to adjust the stack pointer in processing this call. */
2134
2135 if (structure_value_addr
2136 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2137 || reg_mentioned_p (virtual_outgoing_args_rtx,
2138 structure_value_addr))
2139 && (args_size.var
2140 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2141 structure_value_addr = copy_to_reg (structure_value_addr);
2142
2143 /* Tail calls can make things harder to debug, and we've traditionally
2144 pushed these optimizations into -O2. Don't try if we're already
2145 expanding a call, as that means we're an argument. Don't try if
2146 there's cleanups, as we know there's code to follow the call. */
2147
2148 if (currently_expanding_call++ != 0
2149 || !flag_optimize_sibling_calls
2150 || args_size.var
2151 || lookup_stmt_eh_region (exp) >= 0)
2152 try_tail_call = 0;
2153
2154 /* Rest of purposes for tail call optimizations to fail. */
2155 if (
2156 #ifdef HAVE_sibcall_epilogue
2157 !HAVE_sibcall_epilogue
2158 #else
2159 1
2160 #endif
2161 || !try_tail_call
2162 /* Doing sibling call optimization needs some work, since
2163 structure_value_addr can be allocated on the stack.
2164 It does not seem worth the effort since few optimizable
2165 sibling calls will return a structure. */
2166 || structure_value_addr != NULL_RTX
2167 /* Check whether the target is able to optimize the call
2168 into a sibcall. */
2169 || !targetm.function_ok_for_sibcall (fndecl, exp)
2170 /* Functions that do not return exactly once may not be sibcall
2171 optimized. */
2172 || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2173 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2174 /* If the called function is nested in the current one, it might access
2175 some of the caller's arguments, but could clobber them beforehand if
2176 the argument areas are shared. */
2177 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2178 /* If this function requires more stack slots than the current
2179 function, we cannot change it into a sibling call.
2180 current_function_pretend_args_size is not part of the
2181 stack allocated by our caller. */
2182 || args_size.constant > (current_function_args_size
2183 - current_function_pretend_args_size)
2184 /* If the callee pops its own arguments, then it must pop exactly
2185 the same number of arguments as the current function. */
2186 || (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
2187 != RETURN_POPS_ARGS (current_function_decl,
2188 TREE_TYPE (current_function_decl),
2189 current_function_args_size))
2190 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2191 try_tail_call = 0;
2192
2193 /* Ensure current function's preferred stack boundary is at least
2194 what we need. We don't have to increase alignment for recursive
2195 functions. */
2196 if (cfun->preferred_stack_boundary < preferred_stack_boundary
2197 && fndecl != current_function_decl)
2198 cfun->preferred_stack_boundary = preferred_stack_boundary;
2199 if (fndecl == current_function_decl)
2200 cfun->recursive_call_emit = true;
2201
2202 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2203
2204 /* We want to make two insn chains; one for a sibling call, the other
2205 for a normal call. We will select one of the two chains after
2206 initial RTL generation is complete. */
2207 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2208 {
2209 int sibcall_failure = 0;
2210 /* We want to emit any pending stack adjustments before the tail
2211 recursion "call". That way we know any adjustment after the tail
2212 recursion call can be ignored if we indeed use the tail
2213 call expansion. */
2214 int save_pending_stack_adjust = 0;
2215 int save_stack_pointer_delta = 0;
2216 rtx insns;
2217 rtx before_call, next_arg_reg;
2218
2219 if (pass == 0)
2220 {
2221 /* State variables we need to save and restore between
2222 iterations. */
2223 save_pending_stack_adjust = pending_stack_adjust;
2224 save_stack_pointer_delta = stack_pointer_delta;
2225 }
2226 if (pass)
2227 flags &= ~ECF_SIBCALL;
2228 else
2229 flags |= ECF_SIBCALL;
2230
2231 /* Other state variables that we must reinitialize each time
2232 through the loop (that are not initialized by the loop itself). */
2233 argblock = 0;
2234 call_fusage = 0;
2235
2236 /* Start a new sequence for the normal call case.
2237
2238 From this point on, if the sibling call fails, we want to set
2239 sibcall_failure instead of continuing the loop. */
2240 start_sequence ();
2241
2242 /* Don't let pending stack adjusts add up to too much.
2243 Also, do all pending adjustments now if there is any chance
2244 this might be a call to alloca or if we are expanding a sibling
2245 call sequence or if we are calling a function that is to return
2246 with stack pointer depressed.
2247 Also do the adjustments before a throwing call, otherwise
2248 exception handling can fail; PR 19225. */
2249 if (pending_stack_adjust >= 32
2250 || (pending_stack_adjust > 0
2251 && (flags & (ECF_MAY_BE_ALLOCA | ECF_SP_DEPRESSED)))
2252 || (pending_stack_adjust > 0
2253 && flag_exceptions && !(flags & ECF_NOTHROW))
2254 || pass == 0)
2255 do_pending_stack_adjust ();
2256
2257 /* When calling a const function, we must pop the stack args right away,
2258 so that the pop is deleted or moved with the call. */
2259 if (pass && (flags & ECF_LIBCALL_BLOCK))
2260 NO_DEFER_POP;
2261
2262 /* Precompute any arguments as needed. */
2263 if (pass)
2264 precompute_arguments (flags, num_actuals, args);
2265
2266 /* Now we are about to start emitting insns that can be deleted
2267 if a libcall is deleted. */
2268 if (pass && (flags & (ECF_LIBCALL_BLOCK | ECF_MALLOC)))
2269 start_sequence ();
2270
2271 if (pass == 0 && cfun->stack_protect_guard)
2272 stack_protect_epilogue ();
2273
2274 adjusted_args_size = args_size;
2275 /* Compute the actual size of the argument block required. The variable
2276 and constant sizes must be combined, the size may have to be rounded,
2277 and there may be a minimum required size. When generating a sibcall
2278 pattern, do not round up, since we'll be re-using whatever space our
2279 caller provided. */
2280 unadjusted_args_size
2281 = compute_argument_block_size (reg_parm_stack_space,
2282 &adjusted_args_size,
2283 (pass == 0 ? 0
2284 : preferred_stack_boundary));
2285
2286 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2287
2288 /* The argument block when performing a sibling call is the
2289 incoming argument block. */
2290 if (pass == 0)
2291 {
2292 argblock = virtual_incoming_args_rtx;
2293 argblock
2294 #ifdef STACK_GROWS_DOWNWARD
2295 = plus_constant (argblock, current_function_pretend_args_size);
2296 #else
2297 = plus_constant (argblock, -current_function_pretend_args_size);
2298 #endif
2299 stored_args_map = sbitmap_alloc (args_size.constant);
2300 sbitmap_zero (stored_args_map);
2301 }
2302
2303 /* If we have no actual push instructions, or shouldn't use them,
2304 make space for all args right now. */
2305 else if (adjusted_args_size.var != 0)
2306 {
2307 if (old_stack_level == 0)
2308 {
2309 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
2310 old_stack_pointer_delta = stack_pointer_delta;
2311 old_pending_adj = pending_stack_adjust;
2312 pending_stack_adjust = 0;
2313 /* stack_arg_under_construction says whether a stack arg is
2314 being constructed at the old stack level. Pushing the stack
2315 gets a clean outgoing argument block. */
2316 old_stack_arg_under_construction = stack_arg_under_construction;
2317 stack_arg_under_construction = 0;
2318 }
2319 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2320 }
2321 else
2322 {
2323 /* Note that we must go through the motions of allocating an argument
2324 block even if the size is zero because we may be storing args
2325 in the area reserved for register arguments, which may be part of
2326 the stack frame. */
2327
2328 int needed = adjusted_args_size.constant;
2329
2330 /* Store the maximum argument space used. It will be pushed by
2331 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2332 checking). */
2333
2334 if (needed > current_function_outgoing_args_size)
2335 current_function_outgoing_args_size = needed;
2336
2337 if (must_preallocate)
2338 {
2339 if (ACCUMULATE_OUTGOING_ARGS)
2340 {
2341 /* Since the stack pointer will never be pushed, it is
2342 possible for the evaluation of a parm to clobber
2343 something we have already written to the stack.
2344 Since most function calls on RISC machines do not use
2345 the stack, this is uncommon, but must work correctly.
2346
2347 Therefore, we save any area of the stack that was already
2348 written and that we are using. Here we set up to do this
2349 by making a new stack usage map from the old one. The
2350 actual save will be done by store_one_arg.
2351
2352 Another approach might be to try to reorder the argument
2353 evaluations to avoid this conflicting stack usage. */
2354
2355 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2356 /* Since we will be writing into the entire argument area,
2357 the map must be allocated for its entire size, not just
2358 the part that is the responsibility of the caller. */
2359 needed += reg_parm_stack_space;
2360 #endif
2361
2362 #ifdef ARGS_GROW_DOWNWARD
2363 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2364 needed + 1);
2365 #else
2366 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2367 needed);
2368 #endif
2369 if (stack_usage_map_buf)
2370 free (stack_usage_map_buf);
2371 stack_usage_map_buf = xmalloc (highest_outgoing_arg_in_use);
2372 stack_usage_map = stack_usage_map_buf;
2373
2374 if (initial_highest_arg_in_use)
2375 memcpy (stack_usage_map, initial_stack_usage_map,
2376 initial_highest_arg_in_use);
2377
2378 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2379 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2380 (highest_outgoing_arg_in_use
2381 - initial_highest_arg_in_use));
2382 needed = 0;
2383
2384 /* The address of the outgoing argument list must not be
2385 copied to a register here, because argblock would be left
2386 pointing to the wrong place after the call to
2387 allocate_dynamic_stack_space below. */
2388
2389 argblock = virtual_outgoing_args_rtx;
2390 }
2391 else
2392 {
2393 if (inhibit_defer_pop == 0)
2394 {
2395 /* Try to reuse some or all of the pending_stack_adjust
2396 to get this space. */
2397 needed
2398 = (combine_pending_stack_adjustment_and_call
2399 (unadjusted_args_size,
2400 &adjusted_args_size,
2401 preferred_unit_stack_boundary));
2402
2403 /* combine_pending_stack_adjustment_and_call computes
2404 an adjustment before the arguments are allocated.
2405 Account for them and see whether or not the stack
2406 needs to go up or down. */
2407 needed = unadjusted_args_size - needed;
2408
2409 if (needed < 0)
2410 {
2411 /* We're releasing stack space. */
2412 /* ??? We can avoid any adjustment at all if we're
2413 already aligned. FIXME. */
2414 pending_stack_adjust = -needed;
2415 do_pending_stack_adjust ();
2416 needed = 0;
2417 }
2418 else
2419 /* We need to allocate space. We'll do that in
2420 push_block below. */
2421 pending_stack_adjust = 0;
2422 }
2423
2424 /* Special case this because overhead of `push_block' in
2425 this case is non-trivial. */
2426 if (needed == 0)
2427 argblock = virtual_outgoing_args_rtx;
2428 else
2429 {
2430 argblock = push_block (GEN_INT (needed), 0, 0);
2431 #ifdef ARGS_GROW_DOWNWARD
2432 argblock = plus_constant (argblock, needed);
2433 #endif
2434 }
2435
2436 /* We only really need to call `copy_to_reg' in the case
2437 where push insns are going to be used to pass ARGBLOCK
2438 to a function call in ARGS. In that case, the stack
2439 pointer changes value from the allocation point to the
2440 call point, and hence the value of
2441 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2442 as well always do it. */
2443 argblock = copy_to_reg (argblock);
2444 }
2445 }
2446 }
2447
2448 if (ACCUMULATE_OUTGOING_ARGS)
2449 {
2450 /* The save/restore code in store_one_arg handles all
2451 cases except one: a constructor call (including a C
2452 function returning a BLKmode struct) to initialize
2453 an argument. */
2454 if (stack_arg_under_construction)
2455 {
2456 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2457 rtx push_size = GEN_INT (reg_parm_stack_space
2458 + adjusted_args_size.constant);
2459 #else
2460 rtx push_size = GEN_INT (adjusted_args_size.constant);
2461 #endif
2462 if (old_stack_level == 0)
2463 {
2464 emit_stack_save (SAVE_BLOCK, &old_stack_level,
2465 NULL_RTX);
2466 old_stack_pointer_delta = stack_pointer_delta;
2467 old_pending_adj = pending_stack_adjust;
2468 pending_stack_adjust = 0;
2469 /* stack_arg_under_construction says whether a stack
2470 arg is being constructed at the old stack level.
2471 Pushing the stack gets a clean outgoing argument
2472 block. */
2473 old_stack_arg_under_construction
2474 = stack_arg_under_construction;
2475 stack_arg_under_construction = 0;
2476 /* Make a new map for the new argument list. */
2477 if (stack_usage_map_buf)
2478 free (stack_usage_map_buf);
2479 stack_usage_map_buf = xmalloc (highest_outgoing_arg_in_use);
2480 stack_usage_map = stack_usage_map_buf;
2481 memset (stack_usage_map, 0, highest_outgoing_arg_in_use);
2482 highest_outgoing_arg_in_use = 0;
2483 }
2484 allocate_dynamic_stack_space (push_size, NULL_RTX,
2485 BITS_PER_UNIT);
2486 }
2487
2488 /* If argument evaluation might modify the stack pointer,
2489 copy the address of the argument list to a register. */
2490 for (i = 0; i < num_actuals; i++)
2491 if (args[i].pass_on_stack)
2492 {
2493 argblock = copy_addr_to_reg (argblock);
2494 break;
2495 }
2496 }
2497
2498 compute_argument_addresses (args, argblock, num_actuals);
2499
2500 /* If we push args individually in reverse order, perform stack alignment
2501 before the first push (the last arg). */
2502 if (PUSH_ARGS_REVERSED && argblock == 0
2503 && adjusted_args_size.constant != unadjusted_args_size)
2504 {
2505 /* When the stack adjustment is pending, we get better code
2506 by combining the adjustments. */
2507 if (pending_stack_adjust
2508 && ! (flags & ECF_LIBCALL_BLOCK)
2509 && ! inhibit_defer_pop)
2510 {
2511 pending_stack_adjust
2512 = (combine_pending_stack_adjustment_and_call
2513 (unadjusted_args_size,
2514 &adjusted_args_size,
2515 preferred_unit_stack_boundary));
2516 do_pending_stack_adjust ();
2517 }
2518 else if (argblock == 0)
2519 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2520 - unadjusted_args_size));
2521 }
2522 /* Now that the stack is properly aligned, pops can't safely
2523 be deferred during the evaluation of the arguments. */
2524 NO_DEFER_POP;
2525
2526 funexp = rtx_for_function_call (fndecl, addr);
2527
2528 /* Figure out the register where the value, if any, will come back. */
2529 valreg = 0;
2530 if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
2531 && ! structure_value_addr)
2532 {
2533 if (pcc_struct_value)
2534 valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
2535 fndecl, NULL, (pass == 0));
2536 else
2537 valreg = hard_function_value (TREE_TYPE (exp), fndecl, fntype,
2538 (pass == 0));
2539 }
2540
2541 /* Precompute all register parameters. It isn't safe to compute anything
2542 once we have started filling any specific hard regs. */
2543 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2544
2545 if (TREE_OPERAND (exp, 2))
2546 static_chain_value = expand_expr (TREE_OPERAND (exp, 2),
2547 NULL_RTX, VOIDmode, 0);
2548 else
2549 static_chain_value = 0;
2550
2551 #ifdef REG_PARM_STACK_SPACE
2552 /* Save the fixed argument area if it's part of the caller's frame and
2553 is clobbered by argument setup for this call. */
2554 if (ACCUMULATE_OUTGOING_ARGS && pass)
2555 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2556 &low_to_save, &high_to_save);
2557 #endif
2558
2559 /* Now store (and compute if necessary) all non-register parms.
2560 These come before register parms, since they can require block-moves,
2561 which could clobber the registers used for register parms.
2562 Parms which have partial registers are not stored here,
2563 but we do preallocate space here if they want that. */
2564
2565 for (i = 0; i < num_actuals; i++)
2566 if (args[i].reg == 0 || args[i].pass_on_stack)
2567 {
2568 rtx before_arg = get_last_insn ();
2569
2570 if (store_one_arg (&args[i], argblock, flags,
2571 adjusted_args_size.var != 0,
2572 reg_parm_stack_space)
2573 || (pass == 0
2574 && check_sibcall_argument_overlap (before_arg,
2575 &args[i], 1)))
2576 sibcall_failure = 1;
2577
2578 if (flags & ECF_CONST
2579 && args[i].stack
2580 && args[i].value == args[i].stack)
2581 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2582 gen_rtx_USE (VOIDmode,
2583 args[i].value),
2584 call_fusage);
2585 }
2586
2587 /* If we have a parm that is passed in registers but not in memory
2588 and whose alignment does not permit a direct copy into registers,
2589 make a group of pseudos that correspond to each register that we
2590 will later fill. */
2591 if (STRICT_ALIGNMENT)
2592 store_unaligned_arguments_into_pseudos (args, num_actuals);
2593
2594 /* Now store any partially-in-registers parm.
2595 This is the last place a block-move can happen. */
2596 if (reg_parm_seen)
2597 for (i = 0; i < num_actuals; i++)
2598 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2599 {
2600 rtx before_arg = get_last_insn ();
2601
2602 if (store_one_arg (&args[i], argblock, flags,
2603 adjusted_args_size.var != 0,
2604 reg_parm_stack_space)
2605 || (pass == 0
2606 && check_sibcall_argument_overlap (before_arg,
2607 &args[i], 1)))
2608 sibcall_failure = 1;
2609 }
2610
2611 /* If we pushed args in forward order, perform stack alignment
2612 after pushing the last arg. */
2613 if (!PUSH_ARGS_REVERSED && argblock == 0)
2614 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2615 - unadjusted_args_size));
2616
2617 /* If register arguments require space on the stack and stack space
2618 was not preallocated, allocate stack space here for arguments
2619 passed in registers. */
2620 #ifdef OUTGOING_REG_PARM_STACK_SPACE
2621 if (!ACCUMULATE_OUTGOING_ARGS
2622 && must_preallocate == 0 && reg_parm_stack_space > 0)
2623 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2624 #endif
2625
2626 /* Pass the function the address in which to return a
2627 structure value. */
2628 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2629 {
2630 structure_value_addr
2631 = convert_memory_address (Pmode, structure_value_addr);
2632 emit_move_insn (struct_value,
2633 force_reg (Pmode,
2634 force_operand (structure_value_addr,
2635 NULL_RTX)));
2636
2637 if (REG_P (struct_value))
2638 use_reg (&call_fusage, struct_value);
2639 }
2640
2641 funexp = prepare_call_address (funexp, static_chain_value,
2642 &call_fusage, reg_parm_seen, pass == 0);
2643
2644 load_register_parameters (args, num_actuals, &call_fusage, flags,
2645 pass == 0, &sibcall_failure);
2646
2647 /* Save a pointer to the last insn before the call, so that we can
2648 later safely search backwards to find the CALL_INSN. */
2649 before_call = get_last_insn ();
2650
2651 /* Set up next argument register. For sibling calls on machines
2652 with register windows this should be the incoming register. */
2653 #ifdef FUNCTION_INCOMING_ARG
2654 if (pass == 0)
2655 next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
2656 void_type_node, 1);
2657 else
2658 #endif
2659 next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
2660 void_type_node, 1);
2661
2662 /* All arguments and registers used for the call must be set up by
2663 now! */
2664
2665 /* Stack must be properly aligned now. */
2666 gcc_assert (!pass
2667 || !(stack_pointer_delta % preferred_unit_stack_boundary));
2668
2669 /* Generate the actual call instruction. */
2670 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2671 adjusted_args_size.constant, struct_value_size,
2672 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2673 flags, & args_so_far);
2674
2675 /* If a non-BLKmode value is returned at the most significant end
2676 of a register, shift the register right by the appropriate amount
2677 and update VALREG accordingly. BLKmode values are handled by the
2678 group load/store machinery below. */
2679 if (!structure_value_addr
2680 && !pcc_struct_value
2681 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2682 && targetm.calls.return_in_msb (TREE_TYPE (exp)))
2683 {
2684 if (shift_return_value (TYPE_MODE (TREE_TYPE (exp)), false, valreg))
2685 sibcall_failure = 1;
2686 valreg = gen_rtx_REG (TYPE_MODE (TREE_TYPE (exp)), REGNO (valreg));
2687 }
2688
2689 /* If call is cse'able, make appropriate pair of reg-notes around it.
2690 Test valreg so we don't crash; may safely ignore `const'
2691 if return type is void. Disable for PARALLEL return values, because
2692 we have no way to move such values into a pseudo register. */
2693 if (pass && (flags & ECF_LIBCALL_BLOCK))
2694 {
2695 rtx insns;
2696 rtx insn;
2697 bool failed = valreg == 0 || GET_CODE (valreg) == PARALLEL;
2698
2699 insns = get_insns ();
2700
2701 /* Expansion of block moves possibly introduced a loop that may
2702 not appear inside libcall block. */
2703 for (insn = insns; insn; insn = NEXT_INSN (insn))
2704 if (JUMP_P (insn))
2705 failed = true;
2706
2707 if (failed)
2708 {
2709 end_sequence ();
2710 emit_insn (insns);
2711 }
2712 else
2713 {
2714 rtx note = 0;
2715 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2716
2717 /* Mark the return value as a pointer if needed. */
2718 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2719 mark_reg_pointer (temp,
2720 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp))));
2721
2722 end_sequence ();
2723 if (flag_unsafe_math_optimizations
2724 && fndecl
2725 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2726 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRT
2727 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTF
2728 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTL))
2729 note = gen_rtx_fmt_e (SQRT,
2730 GET_MODE (temp),
2731 args[0].initial_value);
2732 else
2733 {
2734 /* Construct an "equal form" for the value which
2735 mentions all the arguments in order as well as
2736 the function name. */
2737 for (i = 0; i < num_actuals; i++)
2738 note = gen_rtx_EXPR_LIST (VOIDmode,
2739 args[i].initial_value, note);
2740 note = gen_rtx_EXPR_LIST (VOIDmode, funexp, note);
2741
2742 if (flags & ECF_PURE)
2743 note = gen_rtx_EXPR_LIST (VOIDmode,
2744 gen_rtx_USE (VOIDmode,
2745 gen_rtx_MEM (BLKmode,
2746 gen_rtx_SCRATCH (VOIDmode))),
2747 note);
2748 }
2749 emit_libcall_block (insns, temp, valreg, note);
2750
2751 valreg = temp;
2752 }
2753 }
2754 else if (pass && (flags & ECF_MALLOC))
2755 {
2756 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2757 rtx last, insns;
2758
2759 /* The return value from a malloc-like function is a pointer. */
2760 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2761 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2762
2763 emit_move_insn (temp, valreg);
2764
2765 /* The return value from a malloc-like function can not alias
2766 anything else. */
2767 last = get_last_insn ();
2768 REG_NOTES (last) =
2769 gen_rtx_EXPR_LIST (REG_NOALIAS, temp, REG_NOTES (last));
2770
2771 /* Write out the sequence. */
2772 insns = get_insns ();
2773 end_sequence ();
2774 emit_insn (insns);
2775 valreg = temp;
2776 }
2777
2778 /* For calls to `setjmp', etc., inform flow.c it should complain
2779 if nonvolatile values are live. For functions that cannot return,
2780 inform flow that control does not fall through. */
2781
2782 if ((flags & ECF_NORETURN) || pass == 0)
2783 {
2784 /* The barrier must be emitted
2785 immediately after the CALL_INSN. Some ports emit more
2786 than just a CALL_INSN above, so we must search for it here. */
2787
2788 rtx last = get_last_insn ();
2789 while (!CALL_P (last))
2790 {
2791 last = PREV_INSN (last);
2792 /* There was no CALL_INSN? */
2793 gcc_assert (last != before_call);
2794 }
2795
2796 emit_barrier_after (last);
2797
2798 /* Stack adjustments after a noreturn call are dead code.
2799 However when NO_DEFER_POP is in effect, we must preserve
2800 stack_pointer_delta. */
2801 if (inhibit_defer_pop == 0)
2802 {
2803 stack_pointer_delta = old_stack_allocated;
2804 pending_stack_adjust = 0;
2805 }
2806 }
2807
2808 /* If value type not void, return an rtx for the value. */
2809
2810 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
2811 || ignore)
2812 target = const0_rtx;
2813 else if (structure_value_addr)
2814 {
2815 if (target == 0 || !MEM_P (target))
2816 {
2817 target
2818 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2819 memory_address (TYPE_MODE (TREE_TYPE (exp)),
2820 structure_value_addr));
2821 set_mem_attributes (target, exp, 1);
2822 }
2823 }
2824 else if (pcc_struct_value)
2825 {
2826 /* This is the special C++ case where we need to
2827 know what the true target was. We take care to
2828 never use this value more than once in one expression. */
2829 target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2830 copy_to_reg (valreg));
2831 set_mem_attributes (target, exp, 1);
2832 }
2833 /* Handle calls that return values in multiple non-contiguous locations.
2834 The Irix 6 ABI has examples of this. */
2835 else if (GET_CODE (valreg) == PARALLEL)
2836 {
2837 if (target == 0)
2838 {
2839 /* This will only be assigned once, so it can be readonly. */
2840 tree nt = build_qualified_type (TREE_TYPE (exp),
2841 (TYPE_QUALS (TREE_TYPE (exp))
2842 | TYPE_QUAL_CONST));
2843
2844 target = assign_temp (nt, 0, 1, 1);
2845 }
2846
2847 if (! rtx_equal_p (target, valreg))
2848 emit_group_store (target, valreg, TREE_TYPE (exp),
2849 int_size_in_bytes (TREE_TYPE (exp)));
2850
2851 /* We can not support sibling calls for this case. */
2852 sibcall_failure = 1;
2853 }
2854 else if (target
2855 && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
2856 && GET_MODE (target) == GET_MODE (valreg))
2857 {
2858 /* TARGET and VALREG cannot be equal at this point because the
2859 latter would not have REG_FUNCTION_VALUE_P true, while the
2860 former would if it were referring to the same register.
2861
2862 If they refer to the same register, this move will be a no-op,
2863 except when function inlining is being done. */
2864 emit_move_insn (target, valreg);
2865
2866 /* If we are setting a MEM, this code must be executed. Since it is
2867 emitted after the call insn, sibcall optimization cannot be
2868 performed in that case. */
2869 if (MEM_P (target))
2870 sibcall_failure = 1;
2871 }
2872 else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
2873 {
2874 target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp));
2875
2876 /* We can not support sibling calls for this case. */
2877 sibcall_failure = 1;
2878 }
2879 else
2880 target = copy_to_reg (valreg);
2881
2882 if (targetm.calls.promote_function_return(funtype))
2883 {
2884 /* If we promoted this return value, make the proper SUBREG.
2885 TARGET might be const0_rtx here, so be careful. */
2886 if (REG_P (target)
2887 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2888 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
2889 {
2890 tree type = TREE_TYPE (exp);
2891 int unsignedp = TYPE_UNSIGNED (type);
2892 int offset = 0;
2893 enum machine_mode pmode;
2894
2895 pmode = promote_mode (type, TYPE_MODE (type), &unsignedp, 1);
2896 /* If we don't promote as expected, something is wrong. */
2897 gcc_assert (GET_MODE (target) == pmode);
2898
2899 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
2900 && (GET_MODE_SIZE (GET_MODE (target))
2901 > GET_MODE_SIZE (TYPE_MODE (type))))
2902 {
2903 offset = GET_MODE_SIZE (GET_MODE (target))
2904 - GET_MODE_SIZE (TYPE_MODE (type));
2905 if (! BYTES_BIG_ENDIAN)
2906 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
2907 else if (! WORDS_BIG_ENDIAN)
2908 offset %= UNITS_PER_WORD;
2909 }
2910 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
2911 SUBREG_PROMOTED_VAR_P (target) = 1;
2912 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
2913 }
2914 }
2915
2916 /* If size of args is variable or this was a constructor call for a stack
2917 argument, restore saved stack-pointer value. */
2918
2919 if (old_stack_level && ! (flags & ECF_SP_DEPRESSED))
2920 {
2921 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
2922 stack_pointer_delta = old_stack_pointer_delta;
2923 pending_stack_adjust = old_pending_adj;
2924 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2925 stack_arg_under_construction = old_stack_arg_under_construction;
2926 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
2927 stack_usage_map = initial_stack_usage_map;
2928 sibcall_failure = 1;
2929 }
2930 else if (ACCUMULATE_OUTGOING_ARGS && pass)
2931 {
2932 #ifdef REG_PARM_STACK_SPACE
2933 if (save_area)
2934 restore_fixed_argument_area (save_area, argblock,
2935 high_to_save, low_to_save);
2936 #endif
2937
2938 /* If we saved any argument areas, restore them. */
2939 for (i = 0; i < num_actuals; i++)
2940 if (args[i].save_area)
2941 {
2942 enum machine_mode save_mode = GET_MODE (args[i].save_area);
2943 rtx stack_area
2944 = gen_rtx_MEM (save_mode,
2945 memory_address (save_mode,
2946 XEXP (args[i].stack_slot, 0)));
2947
2948 if (save_mode != BLKmode)
2949 emit_move_insn (stack_area, args[i].save_area);
2950 else
2951 emit_block_move (stack_area, args[i].save_area,
2952 GEN_INT (args[i].locate.size.constant),
2953 BLOCK_OP_CALL_PARM);
2954 }
2955
2956 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
2957 stack_usage_map = initial_stack_usage_map;
2958 }
2959
2960 /* If this was alloca, record the new stack level for nonlocal gotos.
2961 Check for the handler slots since we might not have a save area
2962 for non-local gotos. */
2963
2964 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
2965 update_nonlocal_goto_save_area ();
2966
2967 /* Free up storage we no longer need. */
2968 for (i = 0; i < num_actuals; ++i)
2969 if (args[i].aligned_regs)
2970 free (args[i].aligned_regs);
2971
2972 insns = get_insns ();
2973 end_sequence ();
2974
2975 if (pass == 0)
2976 {
2977 tail_call_insns = insns;
2978
2979 /* Restore the pending stack adjustment now that we have
2980 finished generating the sibling call sequence. */
2981
2982 pending_stack_adjust = save_pending_stack_adjust;
2983 stack_pointer_delta = save_stack_pointer_delta;
2984
2985 /* Prepare arg structure for next iteration. */
2986 for (i = 0; i < num_actuals; i++)
2987 {
2988 args[i].value = 0;
2989 args[i].aligned_regs = 0;
2990 args[i].stack = 0;
2991 }
2992
2993 sbitmap_free (stored_args_map);
2994 }
2995 else
2996 {
2997 normal_call_insns = insns;
2998
2999 /* Verify that we've deallocated all the stack we used. */
3000 gcc_assert ((flags & ECF_NORETURN)
3001 || (old_stack_allocated
3002 == stack_pointer_delta - pending_stack_adjust));
3003 }
3004
3005 /* If something prevents making this a sibling call,
3006 zero out the sequence. */
3007 if (sibcall_failure)
3008 tail_call_insns = NULL_RTX;
3009 else
3010 break;
3011 }
3012
3013 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3014 arguments too, as argument area is now clobbered by the call. */
3015 if (tail_call_insns)
3016 {
3017 emit_insn (tail_call_insns);
3018 cfun->tail_call_emit = true;
3019 }
3020 else
3021 emit_insn (normal_call_insns);
3022
3023 currently_expanding_call--;
3024
3025 /* If this function returns with the stack pointer depressed, ensure
3026 this block saves and restores the stack pointer, show it was
3027 changed, and adjust for any outgoing arg space. */
3028 if (flags & ECF_SP_DEPRESSED)
3029 {
3030 clear_pending_stack_adjust ();
3031 emit_insn (gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx));
3032 emit_move_insn (virtual_stack_dynamic_rtx, stack_pointer_rtx);
3033 }
3034
3035 if (stack_usage_map_buf)
3036 free (stack_usage_map_buf);
3037
3038 return target;
3039 }
3040
3041 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3042 this function's incoming arguments.
3043
3044 At the start of RTL generation we know the only REG_EQUIV notes
3045 in the rtl chain are those for incoming arguments, so we can look
3046 for REG_EQUIV notes between the start of the function and the
3047 NOTE_INSN_FUNCTION_BEG.
3048
3049 This is (slight) overkill. We could keep track of the highest
3050 argument we clobber and be more selective in removing notes, but it
3051 does not seem to be worth the effort. */
3052
3053 void
3054 fixup_tail_calls (void)
3055 {
3056 rtx insn;
3057
3058 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3059 {
3060 /* There are never REG_EQUIV notes for the incoming arguments
3061 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
3062 if (NOTE_P (insn)
3063 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
3064 break;
3065
3066 while (1)
3067 {
3068 rtx note = find_reg_note (insn, REG_EQUIV, 0);
3069 if (note)
3070 {
3071 /* Remove the note and keep looking at the notes for
3072 this insn. */
3073 remove_note (insn, note);
3074 continue;
3075 }
3076 break;
3077 }
3078 }
3079 }
3080
3081 /* Traverse an argument list in VALUES and expand all complex
3082 arguments into their components. */
3083 static tree
3084 split_complex_values (tree values)
3085 {
3086 tree p;
3087
3088 /* Before allocating memory, check for the common case of no complex. */
3089 for (p = values; p; p = TREE_CHAIN (p))
3090 {
3091 tree type = TREE_TYPE (TREE_VALUE (p));
3092 if (type && TREE_CODE (type) == COMPLEX_TYPE
3093 && targetm.calls.split_complex_arg (type))
3094 goto found;
3095 }
3096 return values;
3097
3098 found:
3099 values = copy_list (values);
3100
3101 for (p = values; p; p = TREE_CHAIN (p))
3102 {
3103 tree complex_value = TREE_VALUE (p);
3104 tree complex_type;
3105
3106 complex_type = TREE_TYPE (complex_value);
3107 if (!complex_type)
3108 continue;
3109
3110 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3111 && targetm.calls.split_complex_arg (complex_type))
3112 {
3113 tree subtype;
3114 tree real, imag, next;
3115
3116 subtype = TREE_TYPE (complex_type);
3117 complex_value = save_expr (complex_value);
3118 real = build1 (REALPART_EXPR, subtype, complex_value);
3119 imag = build1 (IMAGPART_EXPR, subtype, complex_value);
3120
3121 TREE_VALUE (p) = real;
3122 next = TREE_CHAIN (p);
3123 imag = build_tree_list (NULL_TREE, imag);
3124 TREE_CHAIN (p) = imag;
3125 TREE_CHAIN (imag) = next;
3126
3127 /* Skip the newly created node. */
3128 p = TREE_CHAIN (p);
3129 }
3130 }
3131
3132 return values;
3133 }
3134
3135 /* Traverse a list of TYPES and expand all complex types into their
3136 components. */
3137 static tree
3138 split_complex_types (tree types)
3139 {
3140 tree p;
3141
3142 /* Before allocating memory, check for the common case of no complex. */
3143 for (p = types; p; p = TREE_CHAIN (p))
3144 {
3145 tree type = TREE_VALUE (p);
3146 if (TREE_CODE (type) == COMPLEX_TYPE
3147 && targetm.calls.split_complex_arg (type))
3148 goto found;
3149 }
3150 return types;
3151
3152 found:
3153 types = copy_list (types);
3154
3155 for (p = types; p; p = TREE_CHAIN (p))
3156 {
3157 tree complex_type = TREE_VALUE (p);
3158
3159 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3160 && targetm.calls.split_complex_arg (complex_type))
3161 {
3162 tree next, imag;
3163
3164 /* Rewrite complex type with component type. */
3165 TREE_VALUE (p) = TREE_TYPE (complex_type);
3166 next = TREE_CHAIN (p);
3167
3168 /* Add another component type for the imaginary part. */
3169 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3170 TREE_CHAIN (p) = imag;
3171 TREE_CHAIN (imag) = next;
3172
3173 /* Skip the newly created node. */
3174 p = TREE_CHAIN (p);
3175 }
3176 }
3177
3178 return types;
3179 }
3180 \f
3181 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3182 The RETVAL parameter specifies whether return value needs to be saved, other
3183 parameters are documented in the emit_library_call function below. */
3184
3185 static rtx
3186 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3187 enum libcall_type fn_type,
3188 enum machine_mode outmode, int nargs, va_list p)
3189 {
3190 /* Total size in bytes of all the stack-parms scanned so far. */
3191 struct args_size args_size;
3192 /* Size of arguments before any adjustments (such as rounding). */
3193 struct args_size original_args_size;
3194 int argnum;
3195 rtx fun;
3196 int inc;
3197 int count;
3198 rtx argblock = 0;
3199 CUMULATIVE_ARGS args_so_far;
3200 struct arg
3201 {
3202 rtx value;
3203 enum machine_mode mode;
3204 rtx reg;
3205 int partial;
3206 struct locate_and_pad_arg_data locate;
3207 rtx save_area;
3208 };
3209 struct arg *argvec;
3210 int old_inhibit_defer_pop = inhibit_defer_pop;
3211 rtx call_fusage = 0;
3212 rtx mem_value = 0;
3213 rtx valreg;
3214 int pcc_struct_value = 0;
3215 int struct_value_size = 0;
3216 int flags;
3217 int reg_parm_stack_space = 0;
3218 int needed;
3219 rtx before_call;
3220 tree tfom; /* type_for_mode (outmode, 0) */
3221
3222 #ifdef REG_PARM_STACK_SPACE
3223 /* Define the boundary of the register parm stack space that needs to be
3224 save, if any. */
3225 int low_to_save, high_to_save;
3226 rtx save_area = 0; /* Place that it is saved. */
3227 #endif
3228
3229 /* Size of the stack reserved for parameter registers. */
3230 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3231 char *initial_stack_usage_map = stack_usage_map;
3232 char *stack_usage_map_buf = NULL;
3233
3234 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3235
3236 #ifdef REG_PARM_STACK_SPACE
3237 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3238 #endif
3239
3240 /* By default, library functions can not throw. */
3241 flags = ECF_NOTHROW;
3242
3243 switch (fn_type)
3244 {
3245 case LCT_NORMAL:
3246 break;
3247 case LCT_CONST:
3248 flags |= ECF_CONST;
3249 break;
3250 case LCT_PURE:
3251 flags |= ECF_PURE;
3252 break;
3253 case LCT_CONST_MAKE_BLOCK:
3254 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
3255 break;
3256 case LCT_PURE_MAKE_BLOCK:
3257 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
3258 break;
3259 case LCT_NORETURN:
3260 flags |= ECF_NORETURN;
3261 break;
3262 case LCT_THROW:
3263 flags = ECF_NORETURN;
3264 break;
3265 case LCT_RETURNS_TWICE:
3266 flags = ECF_RETURNS_TWICE;
3267 break;
3268 }
3269 fun = orgfun;
3270
3271 /* Ensure current function's preferred stack boundary is at least
3272 what we need. */
3273 if (cfun->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3274 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3275
3276 /* If this kind of value comes back in memory,
3277 decide where in memory it should come back. */
3278 if (outmode != VOIDmode)
3279 {
3280 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3281 if (aggregate_value_p (tfom, 0))
3282 {
3283 #ifdef PCC_STATIC_STRUCT_RETURN
3284 rtx pointer_reg
3285 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
3286 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3287 pcc_struct_value = 1;
3288 if (value == 0)
3289 value = gen_reg_rtx (outmode);
3290 #else /* not PCC_STATIC_STRUCT_RETURN */
3291 struct_value_size = GET_MODE_SIZE (outmode);
3292 if (value != 0 && MEM_P (value))
3293 mem_value = value;
3294 else
3295 mem_value = assign_temp (tfom, 0, 1, 1);
3296 #endif
3297 /* This call returns a big structure. */
3298 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3299 }
3300 }
3301 else
3302 tfom = void_type_node;
3303
3304 /* ??? Unfinished: must pass the memory address as an argument. */
3305
3306 /* Copy all the libcall-arguments out of the varargs data
3307 and into a vector ARGVEC.
3308
3309 Compute how to pass each argument. We only support a very small subset
3310 of the full argument passing conventions to limit complexity here since
3311 library functions shouldn't have many args. */
3312
3313 argvec = alloca ((nargs + 1) * sizeof (struct arg));
3314 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3315
3316 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3317 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
3318 #else
3319 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
3320 #endif
3321
3322 args_size.constant = 0;
3323 args_size.var = 0;
3324
3325 count = 0;
3326
3327 /* Now we are about to start emitting insns that can be deleted
3328 if a libcall is deleted. */
3329 if (flags & ECF_LIBCALL_BLOCK)
3330 start_sequence ();
3331
3332 push_temp_slots ();
3333
3334 /* If there's a structure value address to be passed,
3335 either pass it in the special place, or pass it as an extra argument. */
3336 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3337 {
3338 rtx addr = XEXP (mem_value, 0);
3339
3340 nargs++;
3341
3342 /* Make sure it is a reasonable operand for a move or push insn. */
3343 if (!REG_P (addr) && !MEM_P (addr)
3344 && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
3345 addr = force_operand (addr, NULL_RTX);
3346
3347 argvec[count].value = addr;
3348 argvec[count].mode = Pmode;
3349 argvec[count].partial = 0;
3350
3351 argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
3352 gcc_assert (targetm.calls.arg_partial_bytes (&args_so_far, Pmode,
3353 NULL_TREE, 1) == 0);
3354
3355 locate_and_pad_parm (Pmode, NULL_TREE,
3356 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3357 1,
3358 #else
3359 argvec[count].reg != 0,
3360 #endif
3361 0, NULL_TREE, &args_size, &argvec[count].locate);
3362
3363 if (argvec[count].reg == 0 || argvec[count].partial != 0
3364 || reg_parm_stack_space > 0)
3365 args_size.constant += argvec[count].locate.size.constant;
3366
3367 FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
3368
3369 count++;
3370 }
3371
3372 for (; count < nargs; count++)
3373 {
3374 rtx val = va_arg (p, rtx);
3375 enum machine_mode mode = va_arg (p, enum machine_mode);
3376
3377 /* We cannot convert the arg value to the mode the library wants here;
3378 must do it earlier where we know the signedness of the arg. */
3379 gcc_assert (mode != BLKmode
3380 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3381
3382 /* Make sure it is a reasonable operand for a move or push insn. */
3383 if (!REG_P (val) && !MEM_P (val)
3384 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
3385 val = force_operand (val, NULL_RTX);
3386
3387 if (pass_by_reference (&args_so_far, mode, NULL_TREE, 1))
3388 {
3389 rtx slot;
3390 int must_copy
3391 = !reference_callee_copied (&args_so_far, mode, NULL_TREE, 1);
3392
3393 /* loop.c won't look at CALL_INSN_FUNCTION_USAGE of const/pure
3394 functions, so we have to pretend this isn't such a function. */
3395 if (flags & ECF_LIBCALL_BLOCK)
3396 {
3397 rtx insns = get_insns ();
3398 end_sequence ();
3399 emit_insn (insns);
3400 }
3401 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3402
3403 /* If this was a CONST function, it is now PURE since
3404 it now reads memory. */
3405 if (flags & ECF_CONST)
3406 {
3407 flags &= ~ECF_CONST;
3408 flags |= ECF_PURE;
3409 }
3410
3411 if (GET_MODE (val) == MEM && !must_copy)
3412 slot = val;
3413 else
3414 {
3415 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3416 0, 1, 1);
3417 emit_move_insn (slot, val);
3418 }
3419
3420 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3421 gen_rtx_USE (VOIDmode, slot),
3422 call_fusage);
3423 if (must_copy)
3424 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3425 gen_rtx_CLOBBER (VOIDmode,
3426 slot),
3427 call_fusage);
3428
3429 mode = Pmode;
3430 val = force_operand (XEXP (slot, 0), NULL_RTX);
3431 }
3432
3433 argvec[count].value = val;
3434 argvec[count].mode = mode;
3435
3436 argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
3437
3438 argvec[count].partial
3439 = targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL_TREE, 1);
3440
3441 locate_and_pad_parm (mode, NULL_TREE,
3442 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3443 1,
3444 #else
3445 argvec[count].reg != 0,
3446 #endif
3447 argvec[count].partial,
3448 NULL_TREE, &args_size, &argvec[count].locate);
3449
3450 gcc_assert (!argvec[count].locate.size.var);
3451
3452 if (argvec[count].reg == 0 || argvec[count].partial != 0
3453 || reg_parm_stack_space > 0)
3454 args_size.constant += argvec[count].locate.size.constant;
3455
3456 FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
3457 }
3458
3459 /* If this machine requires an external definition for library
3460 functions, write one out. */
3461 assemble_external_libcall (fun);
3462
3463 original_args_size = args_size;
3464 args_size.constant = (((args_size.constant
3465 + stack_pointer_delta
3466 + STACK_BYTES - 1)
3467 / STACK_BYTES
3468 * STACK_BYTES)
3469 - stack_pointer_delta);
3470
3471 args_size.constant = MAX (args_size.constant,
3472 reg_parm_stack_space);
3473
3474 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3475 args_size.constant -= reg_parm_stack_space;
3476 #endif
3477
3478 if (args_size.constant > current_function_outgoing_args_size)
3479 current_function_outgoing_args_size = args_size.constant;
3480
3481 if (ACCUMULATE_OUTGOING_ARGS)
3482 {
3483 /* Since the stack pointer will never be pushed, it is possible for
3484 the evaluation of a parm to clobber something we have already
3485 written to the stack. Since most function calls on RISC machines
3486 do not use the stack, this is uncommon, but must work correctly.
3487
3488 Therefore, we save any area of the stack that was already written
3489 and that we are using. Here we set up to do this by making a new
3490 stack usage map from the old one.
3491
3492 Another approach might be to try to reorder the argument
3493 evaluations to avoid this conflicting stack usage. */
3494
3495 needed = args_size.constant;
3496
3497 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3498 /* Since we will be writing into the entire argument area, the
3499 map must be allocated for its entire size, not just the part that
3500 is the responsibility of the caller. */
3501 needed += reg_parm_stack_space;
3502 #endif
3503
3504 #ifdef ARGS_GROW_DOWNWARD
3505 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3506 needed + 1);
3507 #else
3508 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3509 needed);
3510 #endif
3511 stack_usage_map_buf = xmalloc (highest_outgoing_arg_in_use);
3512 stack_usage_map = stack_usage_map_buf;
3513
3514 if (initial_highest_arg_in_use)
3515 memcpy (stack_usage_map, initial_stack_usage_map,
3516 initial_highest_arg_in_use);
3517
3518 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3519 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3520 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3521 needed = 0;
3522
3523 /* We must be careful to use virtual regs before they're instantiated,
3524 and real regs afterwards. Loop optimization, for example, can create
3525 new libcalls after we've instantiated the virtual regs, and if we
3526 use virtuals anyway, they won't match the rtl patterns. */
3527
3528 if (virtuals_instantiated)
3529 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3530 else
3531 argblock = virtual_outgoing_args_rtx;
3532 }
3533 else
3534 {
3535 if (!PUSH_ARGS)
3536 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3537 }
3538
3539 /* If we push args individually in reverse order, perform stack alignment
3540 before the first push (the last arg). */
3541 if (argblock == 0 && PUSH_ARGS_REVERSED)
3542 anti_adjust_stack (GEN_INT (args_size.constant
3543 - original_args_size.constant));
3544
3545 if (PUSH_ARGS_REVERSED)
3546 {
3547 inc = -1;
3548 argnum = nargs - 1;
3549 }
3550 else
3551 {
3552 inc = 1;
3553 argnum = 0;
3554 }
3555
3556 #ifdef REG_PARM_STACK_SPACE
3557 if (ACCUMULATE_OUTGOING_ARGS)
3558 {
3559 /* The argument list is the property of the called routine and it
3560 may clobber it. If the fixed area has been used for previous
3561 parameters, we must save and restore it. */
3562 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3563 &low_to_save, &high_to_save);
3564 }
3565 #endif
3566
3567 /* Push the args that need to be pushed. */
3568
3569 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3570 are to be pushed. */
3571 for (count = 0; count < nargs; count++, argnum += inc)
3572 {
3573 enum machine_mode mode = argvec[argnum].mode;
3574 rtx val = argvec[argnum].value;
3575 rtx reg = argvec[argnum].reg;
3576 int partial = argvec[argnum].partial;
3577 int lower_bound = 0, upper_bound = 0, i;
3578
3579 if (! (reg != 0 && partial == 0))
3580 {
3581 if (ACCUMULATE_OUTGOING_ARGS)
3582 {
3583 /* If this is being stored into a pre-allocated, fixed-size,
3584 stack area, save any previous data at that location. */
3585
3586 #ifdef ARGS_GROW_DOWNWARD
3587 /* stack_slot is negative, but we want to index stack_usage_map
3588 with positive values. */
3589 upper_bound = -argvec[argnum].locate.offset.constant + 1;
3590 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3591 #else
3592 lower_bound = argvec[argnum].locate.offset.constant;
3593 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3594 #endif
3595
3596 i = lower_bound;
3597 /* Don't worry about things in the fixed argument area;
3598 it has already been saved. */
3599 if (i < reg_parm_stack_space)
3600 i = reg_parm_stack_space;
3601 while (i < upper_bound && stack_usage_map[i] == 0)
3602 i++;
3603
3604 if (i < upper_bound)
3605 {
3606 /* We need to make a save area. */
3607 unsigned int size
3608 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3609 enum machine_mode save_mode
3610 = mode_for_size (size, MODE_INT, 1);
3611 rtx adr
3612 = plus_constant (argblock,
3613 argvec[argnum].locate.offset.constant);
3614 rtx stack_area
3615 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3616
3617 if (save_mode == BLKmode)
3618 {
3619 argvec[argnum].save_area
3620 = assign_stack_temp (BLKmode,
3621 argvec[argnum].locate.size.constant,
3622 0);
3623
3624 emit_block_move (validize_mem (argvec[argnum].save_area),
3625 stack_area,
3626 GEN_INT (argvec[argnum].locate.size.constant),
3627 BLOCK_OP_CALL_PARM);
3628 }
3629 else
3630 {
3631 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3632
3633 emit_move_insn (argvec[argnum].save_area, stack_area);
3634 }
3635 }
3636 }
3637
3638 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, PARM_BOUNDARY,
3639 partial, reg, 0, argblock,
3640 GEN_INT (argvec[argnum].locate.offset.constant),
3641 reg_parm_stack_space,
3642 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3643
3644 /* Now mark the segment we just used. */
3645 if (ACCUMULATE_OUTGOING_ARGS)
3646 for (i = lower_bound; i < upper_bound; i++)
3647 stack_usage_map[i] = 1;
3648
3649 NO_DEFER_POP;
3650
3651 if (flags & ECF_CONST)
3652 {
3653 rtx use;
3654
3655 /* Indicate argument access so that alias.c knows that these
3656 values are live. */
3657 if (argblock)
3658 use = plus_constant (argblock,
3659 argvec[argnum].locate.offset.constant);
3660 else
3661 /* When arguments are pushed, trying to tell alias.c where
3662 exactly this argument is won't work, because the
3663 auto-increment causes confusion. So we merely indicate
3664 that we access something with a known mode somewhere on
3665 the stack. */
3666 use = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3667 gen_rtx_SCRATCH (Pmode));
3668 use = gen_rtx_MEM (argvec[argnum].mode, use);
3669 use = gen_rtx_USE (VOIDmode, use);
3670 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
3671 }
3672 }
3673 }
3674
3675 /* If we pushed args in forward order, perform stack alignment
3676 after pushing the last arg. */
3677 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3678 anti_adjust_stack (GEN_INT (args_size.constant
3679 - original_args_size.constant));
3680
3681 if (PUSH_ARGS_REVERSED)
3682 argnum = nargs - 1;
3683 else
3684 argnum = 0;
3685
3686 fun = prepare_call_address (fun, NULL, &call_fusage, 0, 0);
3687
3688 /* Now load any reg parms into their regs. */
3689
3690 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3691 are to be pushed. */
3692 for (count = 0; count < nargs; count++, argnum += inc)
3693 {
3694 enum machine_mode mode = argvec[argnum].mode;
3695 rtx val = argvec[argnum].value;
3696 rtx reg = argvec[argnum].reg;
3697 int partial = argvec[argnum].partial;
3698
3699 /* Handle calls that pass values in multiple non-contiguous
3700 locations. The PA64 has examples of this for library calls. */
3701 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3702 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3703 else if (reg != 0 && partial == 0)
3704 emit_move_insn (reg, val);
3705
3706 NO_DEFER_POP;
3707 }
3708
3709 /* Any regs containing parms remain in use through the call. */
3710 for (count = 0; count < nargs; count++)
3711 {
3712 rtx reg = argvec[count].reg;
3713 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3714 use_group_regs (&call_fusage, reg);
3715 else if (reg != 0)
3716 use_reg (&call_fusage, reg);
3717 }
3718
3719 /* Pass the function the address in which to return a structure value. */
3720 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3721 {
3722 emit_move_insn (struct_value,
3723 force_reg (Pmode,
3724 force_operand (XEXP (mem_value, 0),
3725 NULL_RTX)));
3726 if (REG_P (struct_value))
3727 use_reg (&call_fusage, struct_value);
3728 }
3729
3730 /* Don't allow popping to be deferred, since then
3731 cse'ing of library calls could delete a call and leave the pop. */
3732 NO_DEFER_POP;
3733 valreg = (mem_value == 0 && outmode != VOIDmode
3734 ? hard_libcall_value (outmode) : NULL_RTX);
3735
3736 /* Stack must be properly aligned now. */
3737 gcc_assert (!(stack_pointer_delta
3738 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
3739
3740 before_call = get_last_insn ();
3741
3742 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3743 will set inhibit_defer_pop to that value. */
3744 /* The return type is needed to decide how many bytes the function pops.
3745 Signedness plays no role in that, so for simplicity, we pretend it's
3746 always signed. We also assume that the list of arguments passed has
3747 no impact, so we pretend it is unknown. */
3748
3749 emit_call_1 (fun, NULL,
3750 get_identifier (XSTR (orgfun, 0)),
3751 build_function_type (tfom, NULL_TREE),
3752 original_args_size.constant, args_size.constant,
3753 struct_value_size,
3754 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
3755 valreg,
3756 old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
3757
3758 /* For calls to `setjmp', etc., inform flow.c it should complain
3759 if nonvolatile values are live. For functions that cannot return,
3760 inform flow that control does not fall through. */
3761
3762 if (flags & ECF_NORETURN)
3763 {
3764 /* The barrier note must be emitted
3765 immediately after the CALL_INSN. Some ports emit more than
3766 just a CALL_INSN above, so we must search for it here. */
3767
3768 rtx last = get_last_insn ();
3769 while (!CALL_P (last))
3770 {
3771 last = PREV_INSN (last);
3772 /* There was no CALL_INSN? */
3773 gcc_assert (last != before_call);
3774 }
3775
3776 emit_barrier_after (last);
3777 }
3778
3779 /* Now restore inhibit_defer_pop to its actual original value. */
3780 OK_DEFER_POP;
3781
3782 /* If call is cse'able, make appropriate pair of reg-notes around it.
3783 Test valreg so we don't crash; may safely ignore `const'
3784 if return type is void. Disable for PARALLEL return values, because
3785 we have no way to move such values into a pseudo register. */
3786 if (flags & ECF_LIBCALL_BLOCK)
3787 {
3788 rtx insns;
3789
3790 if (valreg == 0)
3791 {
3792 insns = get_insns ();
3793 end_sequence ();
3794 emit_insn (insns);
3795 }
3796 else
3797 {
3798 rtx note = 0;
3799 rtx temp;
3800 int i;
3801
3802 if (GET_CODE (valreg) == PARALLEL)
3803 {
3804 temp = gen_reg_rtx (outmode);
3805 emit_group_store (temp, valreg, NULL_TREE,
3806 GET_MODE_SIZE (outmode));
3807 valreg = temp;
3808 }
3809
3810 temp = gen_reg_rtx (GET_MODE (valreg));
3811
3812 /* Construct an "equal form" for the value which mentions all the
3813 arguments in order as well as the function name. */
3814 for (i = 0; i < nargs; i++)
3815 note = gen_rtx_EXPR_LIST (VOIDmode, argvec[i].value, note);
3816 note = gen_rtx_EXPR_LIST (VOIDmode, fun, note);
3817
3818 insns = get_insns ();
3819 end_sequence ();
3820
3821 if (flags & ECF_PURE)
3822 note = gen_rtx_EXPR_LIST (VOIDmode,
3823 gen_rtx_USE (VOIDmode,
3824 gen_rtx_MEM (BLKmode,
3825 gen_rtx_SCRATCH (VOIDmode))),
3826 note);
3827
3828 emit_libcall_block (insns, temp, valreg, note);
3829
3830 valreg = temp;
3831 }
3832 }
3833 pop_temp_slots ();
3834
3835 /* Copy the value to the right place. */
3836 if (outmode != VOIDmode && retval)
3837 {
3838 if (mem_value)
3839 {
3840 if (value == 0)
3841 value = mem_value;
3842 if (value != mem_value)
3843 emit_move_insn (value, mem_value);
3844 }
3845 else if (GET_CODE (valreg) == PARALLEL)
3846 {
3847 if (value == 0)
3848 value = gen_reg_rtx (outmode);
3849 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
3850 }
3851 else if (value != 0)
3852 emit_move_insn (value, valreg);
3853 else
3854 value = valreg;
3855 }
3856
3857 if (ACCUMULATE_OUTGOING_ARGS)
3858 {
3859 #ifdef REG_PARM_STACK_SPACE
3860 if (save_area)
3861 restore_fixed_argument_area (save_area, argblock,
3862 high_to_save, low_to_save);
3863 #endif
3864
3865 /* If we saved any argument areas, restore them. */
3866 for (count = 0; count < nargs; count++)
3867 if (argvec[count].save_area)
3868 {
3869 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
3870 rtx adr = plus_constant (argblock,
3871 argvec[count].locate.offset.constant);
3872 rtx stack_area = gen_rtx_MEM (save_mode,
3873 memory_address (save_mode, adr));
3874
3875 if (save_mode == BLKmode)
3876 emit_block_move (stack_area,
3877 validize_mem (argvec[count].save_area),
3878 GEN_INT (argvec[count].locate.size.constant),
3879 BLOCK_OP_CALL_PARM);
3880 else
3881 emit_move_insn (stack_area, argvec[count].save_area);
3882 }
3883
3884 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3885 stack_usage_map = initial_stack_usage_map;
3886 }
3887
3888 if (stack_usage_map_buf)
3889 free (stack_usage_map_buf);
3890
3891 return value;
3892
3893 }
3894 \f
3895 /* Output a library call to function FUN (a SYMBOL_REF rtx)
3896 (emitting the queue unless NO_QUEUE is nonzero),
3897 for a value of mode OUTMODE,
3898 with NARGS different arguments, passed as alternating rtx values
3899 and machine_modes to convert them to.
3900
3901 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for `const'
3902 calls, LCT_PURE for `pure' calls, LCT_CONST_MAKE_BLOCK for `const' calls
3903 which should be enclosed in REG_LIBCALL/REG_RETVAL notes,
3904 LCT_PURE_MAKE_BLOCK for `purep' calls which should be enclosed in
3905 REG_LIBCALL/REG_RETVAL notes with extra (use (memory (scratch)),
3906 or other LCT_ value for other types of library calls. */
3907
3908 void
3909 emit_library_call (rtx orgfun, enum libcall_type fn_type,
3910 enum machine_mode outmode, int nargs, ...)
3911 {
3912 va_list p;
3913
3914 va_start (p, nargs);
3915 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
3916 va_end (p);
3917 }
3918 \f
3919 /* Like emit_library_call except that an extra argument, VALUE,
3920 comes second and says where to store the result.
3921 (If VALUE is zero, this function chooses a convenient way
3922 to return the value.
3923
3924 This function returns an rtx for where the value is to be found.
3925 If VALUE is nonzero, VALUE is returned. */
3926
3927 rtx
3928 emit_library_call_value (rtx orgfun, rtx value,
3929 enum libcall_type fn_type,
3930 enum machine_mode outmode, int nargs, ...)
3931 {
3932 rtx result;
3933 va_list p;
3934
3935 va_start (p, nargs);
3936 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
3937 nargs, p);
3938 va_end (p);
3939
3940 return result;
3941 }
3942 \f
3943 /* Store a single argument for a function call
3944 into the register or memory area where it must be passed.
3945 *ARG describes the argument value and where to pass it.
3946
3947 ARGBLOCK is the address of the stack-block for all the arguments,
3948 or 0 on a machine where arguments are pushed individually.
3949
3950 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
3951 so must be careful about how the stack is used.
3952
3953 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
3954 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
3955 that we need not worry about saving and restoring the stack.
3956
3957 FNDECL is the declaration of the function we are calling.
3958
3959 Return nonzero if this arg should cause sibcall failure,
3960 zero otherwise. */
3961
3962 static int
3963 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
3964 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
3965 {
3966 tree pval = arg->tree_value;
3967 rtx reg = 0;
3968 int partial = 0;
3969 int used = 0;
3970 int i, lower_bound = 0, upper_bound = 0;
3971 int sibcall_failure = 0;
3972
3973 if (TREE_CODE (pval) == ERROR_MARK)
3974 return 1;
3975
3976 /* Push a new temporary level for any temporaries we make for
3977 this argument. */
3978 push_temp_slots ();
3979
3980 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
3981 {
3982 /* If this is being stored into a pre-allocated, fixed-size, stack area,
3983 save any previous data at that location. */
3984 if (argblock && ! variable_size && arg->stack)
3985 {
3986 #ifdef ARGS_GROW_DOWNWARD
3987 /* stack_slot is negative, but we want to index stack_usage_map
3988 with positive values. */
3989 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
3990 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
3991 else
3992 upper_bound = 0;
3993
3994 lower_bound = upper_bound - arg->locate.size.constant;
3995 #else
3996 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
3997 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
3998 else
3999 lower_bound = 0;
4000
4001 upper_bound = lower_bound + arg->locate.size.constant;
4002 #endif
4003
4004 i = lower_bound;
4005 /* Don't worry about things in the fixed argument area;
4006 it has already been saved. */
4007 if (i < reg_parm_stack_space)
4008 i = reg_parm_stack_space;
4009 while (i < upper_bound && stack_usage_map[i] == 0)
4010 i++;
4011
4012 if (i < upper_bound)
4013 {
4014 /* We need to make a save area. */
4015 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
4016 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
4017 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
4018 rtx stack_area = gen_rtx_MEM (save_mode, adr);
4019
4020 if (save_mode == BLKmode)
4021 {
4022 tree ot = TREE_TYPE (arg->tree_value);
4023 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
4024 | TYPE_QUAL_CONST));
4025
4026 arg->save_area = assign_temp (nt, 0, 1, 1);
4027 preserve_temp_slots (arg->save_area);
4028 emit_block_move (validize_mem (arg->save_area), stack_area,
4029 expr_size (arg->tree_value),
4030 BLOCK_OP_CALL_PARM);
4031 }
4032 else
4033 {
4034 arg->save_area = gen_reg_rtx (save_mode);
4035 emit_move_insn (arg->save_area, stack_area);
4036 }
4037 }
4038 }
4039 }
4040
4041 /* If this isn't going to be placed on both the stack and in registers,
4042 set up the register and number of words. */
4043 if (! arg->pass_on_stack)
4044 {
4045 if (flags & ECF_SIBCALL)
4046 reg = arg->tail_call_reg;
4047 else
4048 reg = arg->reg;
4049 partial = arg->partial;
4050 }
4051
4052 /* Being passed entirely in a register. We shouldn't be called in
4053 this case. */
4054 gcc_assert (reg == 0 || partial != 0);
4055
4056 /* If this arg needs special alignment, don't load the registers
4057 here. */
4058 if (arg->n_aligned_regs != 0)
4059 reg = 0;
4060
4061 /* If this is being passed partially in a register, we can't evaluate
4062 it directly into its stack slot. Otherwise, we can. */
4063 if (arg->value == 0)
4064 {
4065 /* stack_arg_under_construction is nonzero if a function argument is
4066 being evaluated directly into the outgoing argument list and
4067 expand_call must take special action to preserve the argument list
4068 if it is called recursively.
4069
4070 For scalar function arguments stack_usage_map is sufficient to
4071 determine which stack slots must be saved and restored. Scalar
4072 arguments in general have pass_on_stack == 0.
4073
4074 If this argument is initialized by a function which takes the
4075 address of the argument (a C++ constructor or a C function
4076 returning a BLKmode structure), then stack_usage_map is
4077 insufficient and expand_call must push the stack around the
4078 function call. Such arguments have pass_on_stack == 1.
4079
4080 Note that it is always safe to set stack_arg_under_construction,
4081 but this generates suboptimal code if set when not needed. */
4082
4083 if (arg->pass_on_stack)
4084 stack_arg_under_construction++;
4085
4086 arg->value = expand_expr (pval,
4087 (partial
4088 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4089 ? NULL_RTX : arg->stack,
4090 VOIDmode, EXPAND_STACK_PARM);
4091
4092 /* If we are promoting object (or for any other reason) the mode
4093 doesn't agree, convert the mode. */
4094
4095 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4096 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4097 arg->value, arg->unsignedp);
4098
4099 if (arg->pass_on_stack)
4100 stack_arg_under_construction--;
4101 }
4102
4103 /* Check for overlap with already clobbered argument area. */
4104 if ((flags & ECF_SIBCALL)
4105 && MEM_P (arg->value)
4106 && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
4107 arg->locate.size.constant))
4108 sibcall_failure = 1;
4109
4110 /* Don't allow anything left on stack from computation
4111 of argument to alloca. */
4112 if (flags & ECF_MAY_BE_ALLOCA)
4113 do_pending_stack_adjust ();
4114
4115 if (arg->value == arg->stack)
4116 /* If the value is already in the stack slot, we are done. */
4117 ;
4118 else if (arg->mode != BLKmode)
4119 {
4120 int size;
4121
4122 /* Argument is a scalar, not entirely passed in registers.
4123 (If part is passed in registers, arg->partial says how much
4124 and emit_push_insn will take care of putting it there.)
4125
4126 Push it, and if its size is less than the
4127 amount of space allocated to it,
4128 also bump stack pointer by the additional space.
4129 Note that in C the default argument promotions
4130 will prevent such mismatches. */
4131
4132 size = GET_MODE_SIZE (arg->mode);
4133 /* Compute how much space the push instruction will push.
4134 On many machines, pushing a byte will advance the stack
4135 pointer by a halfword. */
4136 #ifdef PUSH_ROUNDING
4137 size = PUSH_ROUNDING (size);
4138 #endif
4139 used = size;
4140
4141 /* Compute how much space the argument should get:
4142 round up to a multiple of the alignment for arguments. */
4143 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4144 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4145 / (PARM_BOUNDARY / BITS_PER_UNIT))
4146 * (PARM_BOUNDARY / BITS_PER_UNIT));
4147
4148 /* This isn't already where we want it on the stack, so put it there.
4149 This can either be done with push or copy insns. */
4150 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4151 PARM_BOUNDARY, partial, reg, used - size, argblock,
4152 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4153 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4154
4155 /* Unless this is a partially-in-register argument, the argument is now
4156 in the stack. */
4157 if (partial == 0)
4158 arg->value = arg->stack;
4159 }
4160 else
4161 {
4162 /* BLKmode, at least partly to be pushed. */
4163
4164 unsigned int parm_align;
4165 int excess;
4166 rtx size_rtx;
4167
4168 /* Pushing a nonscalar.
4169 If part is passed in registers, PARTIAL says how much
4170 and emit_push_insn will take care of putting it there. */
4171
4172 /* Round its size up to a multiple
4173 of the allocation unit for arguments. */
4174
4175 if (arg->locate.size.var != 0)
4176 {
4177 excess = 0;
4178 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4179 }
4180 else
4181 {
4182 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4183 for BLKmode is careful to avoid it. */
4184 excess = (arg->locate.size.constant
4185 - int_size_in_bytes (TREE_TYPE (pval))
4186 + partial);
4187 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4188 NULL_RTX, TYPE_MODE (sizetype), 0);
4189 }
4190
4191 parm_align = arg->locate.boundary;
4192
4193 /* When an argument is padded down, the block is aligned to
4194 PARM_BOUNDARY, but the actual argument isn't. */
4195 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4196 {
4197 if (arg->locate.size.var)
4198 parm_align = BITS_PER_UNIT;
4199 else if (excess)
4200 {
4201 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4202 parm_align = MIN (parm_align, excess_align);
4203 }
4204 }
4205
4206 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4207 {
4208 /* emit_push_insn might not work properly if arg->value and
4209 argblock + arg->locate.offset areas overlap. */
4210 rtx x = arg->value;
4211 int i = 0;
4212
4213 if (XEXP (x, 0) == current_function_internal_arg_pointer
4214 || (GET_CODE (XEXP (x, 0)) == PLUS
4215 && XEXP (XEXP (x, 0), 0) ==
4216 current_function_internal_arg_pointer
4217 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
4218 {
4219 if (XEXP (x, 0) != current_function_internal_arg_pointer)
4220 i = INTVAL (XEXP (XEXP (x, 0), 1));
4221
4222 /* expand_call should ensure this. */
4223 gcc_assert (!arg->locate.offset.var
4224 && GET_CODE (size_rtx) == CONST_INT);
4225
4226 if (arg->locate.offset.constant > i)
4227 {
4228 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4229 sibcall_failure = 1;
4230 }
4231 else if (arg->locate.offset.constant < i)
4232 {
4233 if (i < arg->locate.offset.constant + INTVAL (size_rtx))
4234 sibcall_failure = 1;
4235 }
4236 }
4237 }
4238
4239 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4240 parm_align, partial, reg, excess, argblock,
4241 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4242 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4243
4244 /* Unless this is a partially-in-register argument, the argument is now
4245 in the stack.
4246
4247 ??? Unlike the case above, in which we want the actual
4248 address of the data, so that we can load it directly into a
4249 register, here we want the address of the stack slot, so that
4250 it's properly aligned for word-by-word copying or something
4251 like that. It's not clear that this is always correct. */
4252 if (partial == 0)
4253 arg->value = arg->stack_slot;
4254 }
4255
4256 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
4257 {
4258 tree type = TREE_TYPE (arg->tree_value);
4259 arg->parallel_value
4260 = emit_group_load_into_temps (arg->reg, arg->value, type,
4261 int_size_in_bytes (type));
4262 }
4263
4264 /* Mark all slots this store used. */
4265 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4266 && argblock && ! variable_size && arg->stack)
4267 for (i = lower_bound; i < upper_bound; i++)
4268 stack_usage_map[i] = 1;
4269
4270 /* Once we have pushed something, pops can't safely
4271 be deferred during the rest of the arguments. */
4272 NO_DEFER_POP;
4273
4274 /* Free any temporary slots made in processing this argument. Show
4275 that we might have taken the address of something and pushed that
4276 as an operand. */
4277 preserve_temp_slots (NULL_RTX);
4278 free_temp_slots ();
4279 pop_temp_slots ();
4280
4281 return sibcall_failure;
4282 }
4283
4284 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4285
4286 bool
4287 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4288 tree type)
4289 {
4290 if (!type)
4291 return false;
4292
4293 /* If the type has variable size... */
4294 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4295 return true;
4296
4297 /* If the type is marked as addressable (it is required
4298 to be constructed into the stack)... */
4299 if (TREE_ADDRESSABLE (type))
4300 return true;
4301
4302 return false;
4303 }
4304
4305 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4306 takes trailing padding of a structure into account. */
4307 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4308
4309 bool
4310 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, tree type)
4311 {
4312 if (!type)
4313 return false;
4314
4315 /* If the type has variable size... */
4316 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4317 return true;
4318
4319 /* If the type is marked as addressable (it is required
4320 to be constructed into the stack)... */
4321 if (TREE_ADDRESSABLE (type))
4322 return true;
4323
4324 /* If the padding and mode of the type is such that a copy into
4325 a register would put it into the wrong part of the register. */
4326 if (mode == BLKmode
4327 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4328 && (FUNCTION_ARG_PADDING (mode, type)
4329 == (BYTES_BIG_ENDIAN ? upward : downward)))
4330 return true;
4331
4332 return false;
4333 }