* calls.c (fix_unsafe_tree): Prototype.
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "flags.h"
29 #include "expr.h"
30 #include "libfuncs.h"
31 #include "function.h"
32 #include "regs.h"
33 #include "toplev.h"
34 #include "output.h"
35 #include "tm_p.h"
36 #include "timevar.h"
37 #include "sbitmap.h"
38 #include "langhooks.h"
39 #include "target.h"
40
41 /* Decide whether a function's arguments should be processed
42 from first to last or from last to first.
43
44 They should if the stack and args grow in opposite directions, but
45 only if we have push insns. */
46
47 #ifdef PUSH_ROUNDING
48
49 #ifndef PUSH_ARGS_REVERSED
50 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
51 #define PUSH_ARGS_REVERSED PUSH_ARGS
52 #endif
53 #endif
54
55 #endif
56
57 #ifndef PUSH_ARGS_REVERSED
58 #define PUSH_ARGS_REVERSED 0
59 #endif
60
61 #ifndef STACK_POINTER_OFFSET
62 #define STACK_POINTER_OFFSET 0
63 #endif
64
65 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
66 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
67
68 /* Data structure and subroutines used within expand_call. */
69
70 struct arg_data
71 {
72 /* Tree node for this argument. */
73 tree tree_value;
74 /* Mode for value; TYPE_MODE unless promoted. */
75 enum machine_mode mode;
76 /* Current RTL value for argument, or 0 if it isn't precomputed. */
77 rtx value;
78 /* Initially-compute RTL value for argument; only for const functions. */
79 rtx initial_value;
80 /* Register to pass this argument in, 0 if passed on stack, or an
81 PARALLEL if the arg is to be copied into multiple non-contiguous
82 registers. */
83 rtx reg;
84 /* Register to pass this argument in when generating tail call sequence.
85 This is not the same register as for normal calls on machines with
86 register windows. */
87 rtx tail_call_reg;
88 /* If REG was promoted from the actual mode of the argument expression,
89 indicates whether the promotion is sign- or zero-extended. */
90 int unsignedp;
91 /* Number of registers to use. 0 means put the whole arg in registers.
92 Also 0 if not passed in registers. */
93 int partial;
94 /* Nonzero if argument must be passed on stack.
95 Note that some arguments may be passed on the stack
96 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
97 pass_on_stack identifies arguments that *cannot* go in registers. */
98 int pass_on_stack;
99 /* Offset of this argument from beginning of stack-args. */
100 struct args_size offset;
101 /* Similar, but offset to the start of the stack slot. Different from
102 OFFSET if this arg pads downward. */
103 struct args_size slot_offset;
104 /* Size of this argument on the stack, rounded up for any padding it gets,
105 parts of the argument passed in registers do not count.
106 If REG_PARM_STACK_SPACE is defined, then register parms
107 are counted here as well. */
108 struct args_size size;
109 /* Location on the stack at which parameter should be stored. The store
110 has already been done if STACK == VALUE. */
111 rtx stack;
112 /* Location on the stack of the start of this argument slot. This can
113 differ from STACK if this arg pads downward. This location is known
114 to be aligned to FUNCTION_ARG_BOUNDARY. */
115 rtx stack_slot;
116 /* Place that this stack area has been saved, if needed. */
117 rtx save_area;
118 /* If an argument's alignment does not permit direct copying into registers,
119 copy in smaller-sized pieces into pseudos. These are stored in a
120 block pointed to by this field. The next field says how many
121 word-sized pseudos we made. */
122 rtx *aligned_regs;
123 int n_aligned_regs;
124 /* The amount that the stack pointer needs to be adjusted to
125 force alignment for the next argument. */
126 struct args_size alignment_pad;
127 };
128
129 /* A vector of one char per byte of stack space. A byte if nonzero if
130 the corresponding stack location has been used.
131 This vector is used to prevent a function call within an argument from
132 clobbering any stack already set up. */
133 static char *stack_usage_map;
134
135 /* Size of STACK_USAGE_MAP. */
136 static int highest_outgoing_arg_in_use;
137
138 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
139 stack location's tail call argument has been already stored into the stack.
140 This bitmap is used to prevent sibling call optimization if function tries
141 to use parent's incoming argument slots when they have been already
142 overwritten with tail call arguments. */
143 static sbitmap stored_args_map;
144
145 /* stack_arg_under_construction is nonzero when an argument may be
146 initialized with a constructor call (including a C function that
147 returns a BLKmode struct) and expand_call must take special action
148 to make sure the object being constructed does not overlap the
149 argument list for the constructor call. */
150 int stack_arg_under_construction;
151
152 static int calls_function PARAMS ((tree, int));
153 static int calls_function_1 PARAMS ((tree, int));
154
155 static void emit_call_1 PARAMS ((rtx, tree, tree, HOST_WIDE_INT,
156 HOST_WIDE_INT, HOST_WIDE_INT, rtx,
157 rtx, int, rtx, int,
158 CUMULATIVE_ARGS *));
159 static void precompute_register_parameters PARAMS ((int,
160 struct arg_data *,
161 int *));
162 static int store_one_arg PARAMS ((struct arg_data *, rtx, int, int,
163 int));
164 static void store_unaligned_arguments_into_pseudos PARAMS ((struct arg_data *,
165 int));
166 static int finalize_must_preallocate PARAMS ((int, int,
167 struct arg_data *,
168 struct args_size *));
169 static void precompute_arguments PARAMS ((int, int,
170 struct arg_data *));
171 static int compute_argument_block_size PARAMS ((int,
172 struct args_size *,
173 int));
174 static void initialize_argument_information PARAMS ((int,
175 struct arg_data *,
176 struct args_size *,
177 int, tree, tree,
178 CUMULATIVE_ARGS *,
179 int, rtx *, int *,
180 int *, int *));
181 static void compute_argument_addresses PARAMS ((struct arg_data *,
182 rtx, int));
183 static rtx rtx_for_function_call PARAMS ((tree, tree));
184 static void load_register_parameters PARAMS ((struct arg_data *,
185 int, rtx *, int,
186 int, int *));
187 static rtx emit_library_call_value_1 PARAMS ((int, rtx, rtx,
188 enum libcall_type,
189 enum machine_mode,
190 int, va_list));
191 static int special_function_p PARAMS ((tree, int));
192 static rtx try_to_integrate PARAMS ((tree, tree, rtx,
193 int, tree, rtx));
194 static int check_sibcall_argument_overlap_1 PARAMS ((rtx));
195 static int check_sibcall_argument_overlap PARAMS ((rtx, struct arg_data *,
196 int));
197
198 static int combine_pending_stack_adjustment_and_call
199 PARAMS ((int, struct args_size *, int));
200 static tree fix_unsafe_tree PARAMS ((tree));
201
202 #ifdef REG_PARM_STACK_SPACE
203 static rtx save_fixed_argument_area PARAMS ((int, rtx, int *, int *));
204 static void restore_fixed_argument_area PARAMS ((rtx, rtx, int, int));
205 #endif
206 \f
207 /* If WHICH is 1, return 1 if EXP contains a call to the built-in function
208 `alloca'.
209
210 If WHICH is 0, return 1 if EXP contains a call to any function.
211 Actually, we only need return 1 if evaluating EXP would require pushing
212 arguments on the stack, but that is too difficult to compute, so we just
213 assume any function call might require the stack. */
214
215 static tree calls_function_save_exprs;
216
217 static int
218 calls_function (exp, which)
219 tree exp;
220 int which;
221 {
222 int val;
223
224 calls_function_save_exprs = 0;
225 val = calls_function_1 (exp, which);
226 calls_function_save_exprs = 0;
227 return val;
228 }
229
230 /* Recursive function to do the work of above function. */
231
232 static int
233 calls_function_1 (exp, which)
234 tree exp;
235 int which;
236 {
237 int i;
238 enum tree_code code = TREE_CODE (exp);
239 int class = TREE_CODE_CLASS (code);
240 int length = first_rtl_op (code);
241
242 /* If this code is language-specific, we don't know what it will do. */
243 if ((int) code >= NUM_TREE_CODES)
244 return 1;
245
246 switch (code)
247 {
248 case CALL_EXPR:
249 if (which == 0)
250 return 1;
251 else if ((TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
252 == FUNCTION_TYPE)
253 && (TYPE_RETURNS_STACK_DEPRESSED
254 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))))
255 return 1;
256 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
257 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
258 == FUNCTION_DECL)
259 && (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
260 0)
261 & ECF_MAY_BE_ALLOCA))
262 return 1;
263
264 break;
265
266 case CONSTRUCTOR:
267 {
268 tree tem;
269
270 for (tem = CONSTRUCTOR_ELTS (exp); tem != 0; tem = TREE_CHAIN (tem))
271 if (calls_function_1 (TREE_VALUE (tem), which))
272 return 1;
273 }
274
275 return 0;
276
277 case SAVE_EXPR:
278 if (SAVE_EXPR_RTL (exp) != 0)
279 return 0;
280 if (value_member (exp, calls_function_save_exprs))
281 return 0;
282 calls_function_save_exprs = tree_cons (NULL_TREE, exp,
283 calls_function_save_exprs);
284 return (TREE_OPERAND (exp, 0) != 0
285 && calls_function_1 (TREE_OPERAND (exp, 0), which));
286
287 case BLOCK:
288 {
289 tree local;
290 tree subblock;
291
292 for (local = BLOCK_VARS (exp); local; local = TREE_CHAIN (local))
293 if (DECL_INITIAL (local) != 0
294 && calls_function_1 (DECL_INITIAL (local), which))
295 return 1;
296
297 for (subblock = BLOCK_SUBBLOCKS (exp);
298 subblock;
299 subblock = TREE_CHAIN (subblock))
300 if (calls_function_1 (subblock, which))
301 return 1;
302 }
303 return 0;
304
305 case TREE_LIST:
306 for (; exp != 0; exp = TREE_CHAIN (exp))
307 if (calls_function_1 (TREE_VALUE (exp), which))
308 return 1;
309 return 0;
310
311 default:
312 break;
313 }
314
315 /* Only expressions, references, and blocks can contain calls. */
316 if (! IS_EXPR_CODE_CLASS (class) && class != 'r' && class != 'b')
317 return 0;
318
319 for (i = 0; i < length; i++)
320 if (TREE_OPERAND (exp, i) != 0
321 && calls_function_1 (TREE_OPERAND (exp, i), which))
322 return 1;
323
324 return 0;
325 }
326 \f
327 /* Force FUNEXP into a form suitable for the address of a CALL,
328 and return that as an rtx. Also load the static chain register
329 if FNDECL is a nested function.
330
331 CALL_FUSAGE points to a variable holding the prospective
332 CALL_INSN_FUNCTION_USAGE information. */
333
334 rtx
335 prepare_call_address (funexp, fndecl, call_fusage, reg_parm_seen, sibcallp)
336 rtx funexp;
337 tree fndecl;
338 rtx *call_fusage;
339 int reg_parm_seen;
340 int sibcallp;
341 {
342 rtx static_chain_value = 0;
343
344 funexp = protect_from_queue (funexp, 0);
345
346 if (fndecl != 0)
347 /* Get possible static chain value for nested function in C. */
348 static_chain_value = lookup_static_chain (fndecl);
349
350 /* Make a valid memory address and copy constants thru pseudo-regs,
351 but not for a constant address if -fno-function-cse. */
352 if (GET_CODE (funexp) != SYMBOL_REF)
353 /* If we are using registers for parameters, force the
354 function address into a register now. */
355 funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
356 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
357 : memory_address (FUNCTION_MODE, funexp));
358 else if (! sibcallp)
359 {
360 #ifndef NO_FUNCTION_CSE
361 if (optimize && ! flag_no_function_cse)
362 #ifdef NO_RECURSIVE_FUNCTION_CSE
363 if (fndecl != current_function_decl)
364 #endif
365 funexp = force_reg (Pmode, funexp);
366 #endif
367 }
368
369 if (static_chain_value != 0)
370 {
371 emit_move_insn (static_chain_rtx, static_chain_value);
372
373 if (GET_CODE (static_chain_rtx) == REG)
374 use_reg (call_fusage, static_chain_rtx);
375 }
376
377 return funexp;
378 }
379
380 /* Generate instructions to call function FUNEXP,
381 and optionally pop the results.
382 The CALL_INSN is the first insn generated.
383
384 FNDECL is the declaration node of the function. This is given to the
385 macro RETURN_POPS_ARGS to determine whether this function pops its own args.
386
387 FUNTYPE is the data type of the function. This is given to the macro
388 RETURN_POPS_ARGS to determine whether this function pops its own args.
389 We used to allow an identifier for library functions, but that doesn't
390 work when the return type is an aggregate type and the calling convention
391 says that the pointer to this aggregate is to be popped by the callee.
392
393 STACK_SIZE is the number of bytes of arguments on the stack,
394 ROUNDED_STACK_SIZE is that number rounded up to
395 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
396 both to put into the call insn and to generate explicit popping
397 code if necessary.
398
399 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
400 It is zero if this call doesn't want a structure value.
401
402 NEXT_ARG_REG is the rtx that results from executing
403 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
404 just after all the args have had their registers assigned.
405 This could be whatever you like, but normally it is the first
406 arg-register beyond those used for args in this call,
407 or 0 if all the arg-registers are used in this call.
408 It is passed on to `gen_call' so you can put this info in the call insn.
409
410 VALREG is a hard register in which a value is returned,
411 or 0 if the call does not return a value.
412
413 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
414 the args to this call were processed.
415 We restore `inhibit_defer_pop' to that value.
416
417 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
418 denote registers used by the called function. */
419
420 static void
421 emit_call_1 (funexp, fndecl, funtype, stack_size, rounded_stack_size,
422 struct_value_size, next_arg_reg, valreg, old_inhibit_defer_pop,
423 call_fusage, ecf_flags, args_so_far)
424 rtx funexp;
425 tree fndecl ATTRIBUTE_UNUSED;
426 tree funtype ATTRIBUTE_UNUSED;
427 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED;
428 HOST_WIDE_INT rounded_stack_size;
429 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED;
430 rtx next_arg_reg ATTRIBUTE_UNUSED;
431 rtx valreg;
432 int old_inhibit_defer_pop;
433 rtx call_fusage;
434 int ecf_flags;
435 CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED;
436 {
437 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
438 rtx call_insn;
439 int already_popped = 0;
440 HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
441 #if defined (HAVE_call) && defined (HAVE_call_value)
442 rtx struct_value_size_rtx;
443 struct_value_size_rtx = GEN_INT (struct_value_size);
444 #endif
445
446 #ifdef CALL_POPS_ARGS
447 n_popped += CALL_POPS_ARGS (* args_so_far);
448 #endif
449
450 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
451 and we don't want to load it into a register as an optimization,
452 because prepare_call_address already did it if it should be done. */
453 if (GET_CODE (funexp) != SYMBOL_REF)
454 funexp = memory_address (FUNCTION_MODE, funexp);
455
456 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
457 if ((ecf_flags & ECF_SIBCALL)
458 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
459 && (n_popped > 0 || stack_size == 0))
460 {
461 rtx n_pop = GEN_INT (n_popped);
462 rtx pat;
463
464 /* If this subroutine pops its own args, record that in the call insn
465 if possible, for the sake of frame pointer elimination. */
466
467 if (valreg)
468 pat = GEN_SIBCALL_VALUE_POP (valreg,
469 gen_rtx_MEM (FUNCTION_MODE, funexp),
470 rounded_stack_size_rtx, next_arg_reg,
471 n_pop);
472 else
473 pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
474 rounded_stack_size_rtx, next_arg_reg, n_pop);
475
476 emit_call_insn (pat);
477 already_popped = 1;
478 }
479 else
480 #endif
481
482 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
483 /* If the target has "call" or "call_value" insns, then prefer them
484 if no arguments are actually popped. If the target does not have
485 "call" or "call_value" insns, then we must use the popping versions
486 even if the call has no arguments to pop. */
487 #if defined (HAVE_call) && defined (HAVE_call_value)
488 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
489 && n_popped > 0 && ! (ecf_flags & ECF_SP_DEPRESSED))
490 #else
491 if (HAVE_call_pop && HAVE_call_value_pop)
492 #endif
493 {
494 rtx n_pop = GEN_INT (n_popped);
495 rtx pat;
496
497 /* If this subroutine pops its own args, record that in the call insn
498 if possible, for the sake of frame pointer elimination. */
499
500 if (valreg)
501 pat = GEN_CALL_VALUE_POP (valreg,
502 gen_rtx_MEM (FUNCTION_MODE, funexp),
503 rounded_stack_size_rtx, next_arg_reg, n_pop);
504 else
505 pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
506 rounded_stack_size_rtx, next_arg_reg, n_pop);
507
508 emit_call_insn (pat);
509 already_popped = 1;
510 }
511 else
512 #endif
513
514 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
515 if ((ecf_flags & ECF_SIBCALL)
516 && HAVE_sibcall && HAVE_sibcall_value)
517 {
518 if (valreg)
519 emit_call_insn (GEN_SIBCALL_VALUE (valreg,
520 gen_rtx_MEM (FUNCTION_MODE, funexp),
521 rounded_stack_size_rtx,
522 next_arg_reg, NULL_RTX));
523 else
524 emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
525 rounded_stack_size_rtx, next_arg_reg,
526 struct_value_size_rtx));
527 }
528 else
529 #endif
530
531 #if defined (HAVE_call) && defined (HAVE_call_value)
532 if (HAVE_call && HAVE_call_value)
533 {
534 if (valreg)
535 emit_call_insn (GEN_CALL_VALUE (valreg,
536 gen_rtx_MEM (FUNCTION_MODE, funexp),
537 rounded_stack_size_rtx, next_arg_reg,
538 NULL_RTX));
539 else
540 emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
541 rounded_stack_size_rtx, next_arg_reg,
542 struct_value_size_rtx));
543 }
544 else
545 #endif
546 abort ();
547
548 /* Find the CALL insn we just emitted. */
549 for (call_insn = get_last_insn ();
550 call_insn && GET_CODE (call_insn) != CALL_INSN;
551 call_insn = PREV_INSN (call_insn))
552 ;
553
554 if (! call_insn)
555 abort ();
556
557 /* Mark memory as used for "pure" function call. */
558 if (ecf_flags & ECF_PURE)
559 call_fusage
560 = gen_rtx_EXPR_LIST
561 (VOIDmode,
562 gen_rtx_USE (VOIDmode,
563 gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))),
564 call_fusage);
565
566 /* Put the register usage information on the CALL. If there is already
567 some usage information, put ours at the end. */
568 if (CALL_INSN_FUNCTION_USAGE (call_insn))
569 {
570 rtx link;
571
572 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
573 link = XEXP (link, 1))
574 ;
575
576 XEXP (link, 1) = call_fusage;
577 }
578 else
579 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
580
581 /* If this is a const call, then set the insn's unchanging bit. */
582 if (ecf_flags & (ECF_CONST | ECF_PURE))
583 CONST_OR_PURE_CALL_P (call_insn) = 1;
584
585 /* If this call can't throw, attach a REG_EH_REGION reg note to that
586 effect. */
587 if (ecf_flags & ECF_NOTHROW)
588 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, const0_rtx,
589 REG_NOTES (call_insn));
590
591 if (ecf_flags & ECF_NORETURN)
592 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_NORETURN, const0_rtx,
593 REG_NOTES (call_insn));
594 if (ecf_flags & ECF_ALWAYS_RETURN)
595 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_ALWAYS_RETURN, const0_rtx,
596 REG_NOTES (call_insn));
597
598 if (ecf_flags & ECF_RETURNS_TWICE)
599 {
600 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_SETJMP, const0_rtx,
601 REG_NOTES (call_insn));
602 current_function_calls_setjmp = 1;
603 }
604
605 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
606
607 /* Restore this now, so that we do defer pops for this call's args
608 if the context of the call as a whole permits. */
609 inhibit_defer_pop = old_inhibit_defer_pop;
610
611 if (n_popped > 0)
612 {
613 if (!already_popped)
614 CALL_INSN_FUNCTION_USAGE (call_insn)
615 = gen_rtx_EXPR_LIST (VOIDmode,
616 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
617 CALL_INSN_FUNCTION_USAGE (call_insn));
618 rounded_stack_size -= n_popped;
619 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
620 stack_pointer_delta -= n_popped;
621 }
622
623 if (!ACCUMULATE_OUTGOING_ARGS)
624 {
625 /* If returning from the subroutine does not automatically pop the args,
626 we need an instruction to pop them sooner or later.
627 Perhaps do it now; perhaps just record how much space to pop later.
628
629 If returning from the subroutine does pop the args, indicate that the
630 stack pointer will be changed. */
631
632 if (rounded_stack_size != 0)
633 {
634 if (ecf_flags & ECF_SP_DEPRESSED)
635 /* Just pretend we did the pop. */
636 stack_pointer_delta -= rounded_stack_size;
637 else if (flag_defer_pop && inhibit_defer_pop == 0
638 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
639 pending_stack_adjust += rounded_stack_size;
640 else
641 adjust_stack (rounded_stack_size_rtx);
642 }
643 }
644 /* When we accumulate outgoing args, we must avoid any stack manipulations.
645 Restore the stack pointer to its original value now. Usually
646 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
647 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
648 popping variants of functions exist as well.
649
650 ??? We may optimize similar to defer_pop above, but it is
651 probably not worthwhile.
652
653 ??? It will be worthwhile to enable combine_stack_adjustments even for
654 such machines. */
655 else if (n_popped)
656 anti_adjust_stack (GEN_INT (n_popped));
657 }
658
659 /* Determine if the function identified by NAME and FNDECL is one with
660 special properties we wish to know about.
661
662 For example, if the function might return more than one time (setjmp), then
663 set RETURNS_TWICE to a nonzero value.
664
665 Similarly set LONGJMP for if the function is in the longjmp family.
666
667 Set MALLOC for any of the standard memory allocation functions which
668 allocate from the heap.
669
670 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
671 space from the stack such as alloca. */
672
673 static int
674 special_function_p (fndecl, flags)
675 tree fndecl;
676 int flags;
677 {
678 if (! (flags & ECF_MALLOC)
679 && fndecl && DECL_NAME (fndecl)
680 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
681 /* Exclude functions not at the file scope, or not `extern',
682 since they are not the magic functions we would otherwise
683 think they are. */
684 && DECL_CONTEXT (fndecl) == NULL_TREE && TREE_PUBLIC (fndecl))
685 {
686 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
687 const char *tname = name;
688
689 /* We assume that alloca will always be called by name. It
690 makes no sense to pass it as a pointer-to-function to
691 anything that does not understand its behavior. */
692 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
693 && name[0] == 'a'
694 && ! strcmp (name, "alloca"))
695 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
696 && name[0] == '_'
697 && ! strcmp (name, "__builtin_alloca"))))
698 flags |= ECF_MAY_BE_ALLOCA;
699
700 /* Disregard prefix _, __ or __x. */
701 if (name[0] == '_')
702 {
703 if (name[1] == '_' && name[2] == 'x')
704 tname += 3;
705 else if (name[1] == '_')
706 tname += 2;
707 else
708 tname += 1;
709 }
710
711 if (tname[0] == 's')
712 {
713 if ((tname[1] == 'e'
714 && (! strcmp (tname, "setjmp")
715 || ! strcmp (tname, "setjmp_syscall")))
716 || (tname[1] == 'i'
717 && ! strcmp (tname, "sigsetjmp"))
718 || (tname[1] == 'a'
719 && ! strcmp (tname, "savectx")))
720 flags |= ECF_RETURNS_TWICE;
721
722 if (tname[1] == 'i'
723 && ! strcmp (tname, "siglongjmp"))
724 flags |= ECF_LONGJMP;
725 }
726 else if ((tname[0] == 'q' && tname[1] == 's'
727 && ! strcmp (tname, "qsetjmp"))
728 || (tname[0] == 'v' && tname[1] == 'f'
729 && ! strcmp (tname, "vfork")))
730 flags |= ECF_RETURNS_TWICE;
731
732 else if (tname[0] == 'l' && tname[1] == 'o'
733 && ! strcmp (tname, "longjmp"))
734 flags |= ECF_LONGJMP;
735
736 else if ((tname[0] == 'f' && tname[1] == 'o'
737 && ! strcmp (tname, "fork"))
738 /* Linux specific: __clone. check NAME to insist on the
739 leading underscores, to avoid polluting the ISO / POSIX
740 namespace. */
741 || (name[0] == '_' && name[1] == '_'
742 && ! strcmp (tname, "clone"))
743 || (tname[0] == 'e' && tname[1] == 'x' && tname[2] == 'e'
744 && tname[3] == 'c' && (tname[4] == 'l' || tname[4] == 'v')
745 && (tname[5] == '\0'
746 || ((tname[5] == 'p' || tname[5] == 'e')
747 && tname[6] == '\0'))))
748 flags |= ECF_FORK_OR_EXEC;
749
750 /* Do not add any more malloc-like functions to this list,
751 instead mark them as malloc functions using the malloc attribute.
752 Note, realloc is not suitable for attribute malloc since
753 it may return the same address across multiple calls.
754 C++ operator new is not suitable because it is not required
755 to return a unique pointer; indeed, the standard placement new
756 just returns its argument. */
757 else if (TYPE_MODE (TREE_TYPE (TREE_TYPE (fndecl))) == Pmode
758 && (! strcmp (tname, "malloc")
759 || ! strcmp (tname, "calloc")
760 || ! strcmp (tname, "strdup")))
761 flags |= ECF_MALLOC;
762 }
763 return flags;
764 }
765
766 /* Return nonzero when tree represent call to longjmp. */
767
768 int
769 setjmp_call_p (fndecl)
770 tree fndecl;
771 {
772 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
773 }
774
775 /* Return true when exp contains alloca call. */
776 bool
777 alloca_call_p (exp)
778 tree exp;
779 {
780 if (TREE_CODE (exp) == CALL_EXPR
781 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
782 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
783 == FUNCTION_DECL)
784 && (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
785 0) & ECF_MAY_BE_ALLOCA))
786 return true;
787 return false;
788 }
789
790 /* Detect flags (function attributes) from the function decl or type node. */
791
792 int
793 flags_from_decl_or_type (exp)
794 tree exp;
795 {
796 int flags = 0;
797 tree type = exp;
798 /* ??? We can't set IS_MALLOC for function types? */
799 if (DECL_P (exp))
800 {
801 type = TREE_TYPE (exp);
802
803 /* The function exp may have the `malloc' attribute. */
804 if (DECL_P (exp) && DECL_IS_MALLOC (exp))
805 flags |= ECF_MALLOC;
806
807 /* The function exp may have the `pure' attribute. */
808 if (DECL_P (exp) && DECL_IS_PURE (exp))
809 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
810
811 if (TREE_NOTHROW (exp))
812 flags |= ECF_NOTHROW;
813 }
814
815 if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
816 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
817
818 if (TREE_THIS_VOLATILE (exp))
819 flags |= ECF_NORETURN;
820
821 /* Mark if the function returns with the stack pointer depressed. We
822 cannot consider it pure or constant in that case. */
823 if (TREE_CODE (type) == FUNCTION_TYPE && TYPE_RETURNS_STACK_DEPRESSED (type))
824 {
825 flags |= ECF_SP_DEPRESSED;
826 flags &= ~(ECF_PURE | ECF_CONST | ECF_LIBCALL_BLOCK);
827 }
828
829 return flags;
830 }
831
832 /* Precompute all register parameters as described by ARGS, storing values
833 into fields within the ARGS array.
834
835 NUM_ACTUALS indicates the total number elements in the ARGS array.
836
837 Set REG_PARM_SEEN if we encounter a register parameter. */
838
839 static void
840 precompute_register_parameters (num_actuals, args, reg_parm_seen)
841 int num_actuals;
842 struct arg_data *args;
843 int *reg_parm_seen;
844 {
845 int i;
846
847 *reg_parm_seen = 0;
848
849 for (i = 0; i < num_actuals; i++)
850 if (args[i].reg != 0 && ! args[i].pass_on_stack)
851 {
852 *reg_parm_seen = 1;
853
854 if (args[i].value == 0)
855 {
856 push_temp_slots ();
857 args[i].value = expand_expr (args[i].tree_value, NULL_RTX,
858 VOIDmode, 0);
859 preserve_temp_slots (args[i].value);
860 pop_temp_slots ();
861
862 /* ANSI doesn't require a sequence point here,
863 but PCC has one, so this will avoid some problems. */
864 emit_queue ();
865 }
866
867 /* If the value is a non-legitimate constant, force it into a
868 pseudo now. TLS symbols sometimes need a call to resolve. */
869 if (CONSTANT_P (args[i].value)
870 && !LEGITIMATE_CONSTANT_P (args[i].value))
871 args[i].value = force_reg (args[i].mode, args[i].value);
872
873 /* If we are to promote the function arg to a wider mode,
874 do it now. */
875
876 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
877 args[i].value
878 = convert_modes (args[i].mode,
879 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
880 args[i].value, args[i].unsignedp);
881
882 /* If the value is expensive, and we are inside an appropriately
883 short loop, put the value into a pseudo and then put the pseudo
884 into the hard reg.
885
886 For small register classes, also do this if this call uses
887 register parameters. This is to avoid reload conflicts while
888 loading the parameters registers. */
889
890 if ((! (GET_CODE (args[i].value) == REG
891 || (GET_CODE (args[i].value) == SUBREG
892 && GET_CODE (SUBREG_REG (args[i].value)) == REG)))
893 && args[i].mode != BLKmode
894 && rtx_cost (args[i].value, SET) > COSTS_N_INSNS (1)
895 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
896 || preserve_subexpressions_p ()))
897 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
898 }
899 }
900
901 #ifdef REG_PARM_STACK_SPACE
902
903 /* The argument list is the property of the called routine and it
904 may clobber it. If the fixed area has been used for previous
905 parameters, we must save and restore it. */
906
907 static rtx
908 save_fixed_argument_area (reg_parm_stack_space, argblock,
909 low_to_save, high_to_save)
910 int reg_parm_stack_space;
911 rtx argblock;
912 int *low_to_save;
913 int *high_to_save;
914 {
915 int i;
916 rtx save_area = NULL_RTX;
917
918 /* Compute the boundary of the that needs to be saved, if any. */
919 #ifdef ARGS_GROW_DOWNWARD
920 for (i = 0; i < reg_parm_stack_space + 1; i++)
921 #else
922 for (i = 0; i < reg_parm_stack_space; i++)
923 #endif
924 {
925 if (i >= highest_outgoing_arg_in_use
926 || stack_usage_map[i] == 0)
927 continue;
928
929 if (*low_to_save == -1)
930 *low_to_save = i;
931
932 *high_to_save = i;
933 }
934
935 if (*low_to_save >= 0)
936 {
937 int num_to_save = *high_to_save - *low_to_save + 1;
938 enum machine_mode save_mode
939 = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
940 rtx stack_area;
941
942 /* If we don't have the required alignment, must do this in BLKmode. */
943 if ((*low_to_save & (MIN (GET_MODE_SIZE (save_mode),
944 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
945 save_mode = BLKmode;
946
947 #ifdef ARGS_GROW_DOWNWARD
948 stack_area
949 = gen_rtx_MEM (save_mode,
950 memory_address (save_mode,
951 plus_constant (argblock,
952 - *high_to_save)));
953 #else
954 stack_area = gen_rtx_MEM (save_mode,
955 memory_address (save_mode,
956 plus_constant (argblock,
957 *low_to_save)));
958 #endif
959
960 set_mem_align (stack_area, PARM_BOUNDARY);
961 if (save_mode == BLKmode)
962 {
963 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
964 emit_block_move (validize_mem (save_area), stack_area,
965 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
966 }
967 else
968 {
969 save_area = gen_reg_rtx (save_mode);
970 emit_move_insn (save_area, stack_area);
971 }
972 }
973
974 return save_area;
975 }
976
977 static void
978 restore_fixed_argument_area (save_area, argblock, high_to_save, low_to_save)
979 rtx save_area;
980 rtx argblock;
981 int high_to_save;
982 int low_to_save;
983 {
984 enum machine_mode save_mode = GET_MODE (save_area);
985 #ifdef ARGS_GROW_DOWNWARD
986 rtx stack_area
987 = gen_rtx_MEM (save_mode,
988 memory_address (save_mode,
989 plus_constant (argblock,
990 - high_to_save)));
991 #else
992 rtx stack_area
993 = gen_rtx_MEM (save_mode,
994 memory_address (save_mode,
995 plus_constant (argblock,
996 low_to_save)));
997 #endif
998
999 if (save_mode != BLKmode)
1000 emit_move_insn (stack_area, save_area);
1001 else
1002 emit_block_move (stack_area, validize_mem (save_area),
1003 GEN_INT (high_to_save - low_to_save + 1),
1004 BLOCK_OP_CALL_PARM);
1005 }
1006 #endif /* REG_PARM_STACK_SPACE */
1007
1008 /* If any elements in ARGS refer to parameters that are to be passed in
1009 registers, but not in memory, and whose alignment does not permit a
1010 direct copy into registers. Copy the values into a group of pseudos
1011 which we will later copy into the appropriate hard registers.
1012
1013 Pseudos for each unaligned argument will be stored into the array
1014 args[argnum].aligned_regs. The caller is responsible for deallocating
1015 the aligned_regs array if it is nonzero. */
1016
1017 static void
1018 store_unaligned_arguments_into_pseudos (args, num_actuals)
1019 struct arg_data *args;
1020 int num_actuals;
1021 {
1022 int i, j;
1023
1024 for (i = 0; i < num_actuals; i++)
1025 if (args[i].reg != 0 && ! args[i].pass_on_stack
1026 && args[i].mode == BLKmode
1027 && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
1028 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
1029 {
1030 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1031 int big_endian_correction = 0;
1032
1033 args[i].n_aligned_regs
1034 = args[i].partial ? args[i].partial
1035 : (bytes + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1036
1037 args[i].aligned_regs = (rtx *) xmalloc (sizeof (rtx)
1038 * args[i].n_aligned_regs);
1039
1040 /* Structures smaller than a word are aligned to the least
1041 significant byte (to the right). On a BYTES_BIG_ENDIAN machine,
1042 this means we must skip the empty high order bytes when
1043 calculating the bit offset. */
1044 if (BYTES_BIG_ENDIAN
1045 && bytes < UNITS_PER_WORD)
1046 big_endian_correction = (BITS_PER_WORD - (bytes * BITS_PER_UNIT));
1047
1048 for (j = 0; j < args[i].n_aligned_regs; j++)
1049 {
1050 rtx reg = gen_reg_rtx (word_mode);
1051 rtx word = operand_subword_force (args[i].value, j, BLKmode);
1052 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
1053
1054 args[i].aligned_regs[j] = reg;
1055
1056 /* There is no need to restrict this code to loading items
1057 in TYPE_ALIGN sized hunks. The bitfield instructions can
1058 load up entire word sized registers efficiently.
1059
1060 ??? This may not be needed anymore.
1061 We use to emit a clobber here but that doesn't let later
1062 passes optimize the instructions we emit. By storing 0 into
1063 the register later passes know the first AND to zero out the
1064 bitfield being set in the register is unnecessary. The store
1065 of 0 will be deleted as will at least the first AND. */
1066
1067 emit_move_insn (reg, const0_rtx);
1068
1069 bytes -= bitsize / BITS_PER_UNIT;
1070 store_bit_field (reg, bitsize, big_endian_correction, word_mode,
1071 extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
1072 word_mode, word_mode,
1073 BITS_PER_WORD),
1074 BITS_PER_WORD);
1075 }
1076 }
1077 }
1078
1079 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
1080 ACTPARMS.
1081
1082 NUM_ACTUALS is the total number of parameters.
1083
1084 N_NAMED_ARGS is the total number of named arguments.
1085
1086 FNDECL is the tree code for the target of this call (if known)
1087
1088 ARGS_SO_FAR holds state needed by the target to know where to place
1089 the next argument.
1090
1091 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
1092 for arguments which are passed in registers.
1093
1094 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
1095 and may be modified by this routine.
1096
1097 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
1098 flags which may may be modified by this routine. */
1099
1100 static void
1101 initialize_argument_information (num_actuals, args, args_size, n_named_args,
1102 actparms, fndecl, args_so_far,
1103 reg_parm_stack_space, old_stack_level,
1104 old_pending_adj, must_preallocate,
1105 ecf_flags)
1106 int num_actuals ATTRIBUTE_UNUSED;
1107 struct arg_data *args;
1108 struct args_size *args_size;
1109 int n_named_args ATTRIBUTE_UNUSED;
1110 tree actparms;
1111 tree fndecl;
1112 CUMULATIVE_ARGS *args_so_far;
1113 int reg_parm_stack_space;
1114 rtx *old_stack_level;
1115 int *old_pending_adj;
1116 int *must_preallocate;
1117 int *ecf_flags;
1118 {
1119 /* 1 if scanning parms front to back, -1 if scanning back to front. */
1120 int inc;
1121
1122 /* Count arg position in order args appear. */
1123 int argpos;
1124
1125 struct args_size alignment_pad;
1126 int i;
1127 tree p;
1128
1129 args_size->constant = 0;
1130 args_size->var = 0;
1131
1132 /* In this loop, we consider args in the order they are written.
1133 We fill up ARGS from the front or from the back if necessary
1134 so that in any case the first arg to be pushed ends up at the front. */
1135
1136 if (PUSH_ARGS_REVERSED)
1137 {
1138 i = num_actuals - 1, inc = -1;
1139 /* In this case, must reverse order of args
1140 so that we compute and push the last arg first. */
1141 }
1142 else
1143 {
1144 i = 0, inc = 1;
1145 }
1146
1147 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1148 for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++)
1149 {
1150 tree type = TREE_TYPE (TREE_VALUE (p));
1151 int unsignedp;
1152 enum machine_mode mode;
1153
1154 args[i].tree_value = TREE_VALUE (p);
1155
1156 /* Replace erroneous argument with constant zero. */
1157 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1158 args[i].tree_value = integer_zero_node, type = integer_type_node;
1159
1160 /* If TYPE is a transparent union, pass things the way we would
1161 pass the first field of the union. We have already verified that
1162 the modes are the same. */
1163 if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
1164 type = TREE_TYPE (TYPE_FIELDS (type));
1165
1166 /* Decide where to pass this arg.
1167
1168 args[i].reg is nonzero if all or part is passed in registers.
1169
1170 args[i].partial is nonzero if part but not all is passed in registers,
1171 and the exact value says how many words are passed in registers.
1172
1173 args[i].pass_on_stack is nonzero if the argument must at least be
1174 computed on the stack. It may then be loaded back into registers
1175 if args[i].reg is nonzero.
1176
1177 These decisions are driven by the FUNCTION_... macros and must agree
1178 with those made by function.c. */
1179
1180 /* See if this argument should be passed by invisible reference. */
1181 if ((TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
1182 && contains_placeholder_p (TYPE_SIZE (type)))
1183 || TREE_ADDRESSABLE (type)
1184 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
1185 || FUNCTION_ARG_PASS_BY_REFERENCE (*args_so_far, TYPE_MODE (type),
1186 type, argpos < n_named_args)
1187 #endif
1188 )
1189 {
1190 /* If we're compiling a thunk, pass through invisible
1191 references instead of making a copy. */
1192 if (current_function_is_thunk
1193 #ifdef FUNCTION_ARG_CALLEE_COPIES
1194 || (FUNCTION_ARG_CALLEE_COPIES (*args_so_far, TYPE_MODE (type),
1195 type, argpos < n_named_args)
1196 /* If it's in a register, we must make a copy of it too. */
1197 /* ??? Is this a sufficient test? Is there a better one? */
1198 && !(TREE_CODE (args[i].tree_value) == VAR_DECL
1199 && REG_P (DECL_RTL (args[i].tree_value)))
1200 && ! TREE_ADDRESSABLE (type))
1201 #endif
1202 )
1203 {
1204 /* C++ uses a TARGET_EXPR to indicate that we want to make a
1205 new object from the argument. If we are passing by
1206 invisible reference, the callee will do that for us, so we
1207 can strip off the TARGET_EXPR. This is not always safe,
1208 but it is safe in the only case where this is a useful
1209 optimization; namely, when the argument is a plain object.
1210 In that case, the frontend is just asking the backend to
1211 make a bitwise copy of the argument. */
1212
1213 if (TREE_CODE (args[i].tree_value) == TARGET_EXPR
1214 && (DECL_P (TREE_OPERAND (args[i].tree_value, 1)))
1215 && ! REG_P (DECL_RTL (TREE_OPERAND (args[i].tree_value, 1))))
1216 args[i].tree_value = TREE_OPERAND (args[i].tree_value, 1);
1217
1218 args[i].tree_value = build1 (ADDR_EXPR,
1219 build_pointer_type (type),
1220 args[i].tree_value);
1221 type = build_pointer_type (type);
1222 }
1223 else if (TREE_CODE (args[i].tree_value) == TARGET_EXPR)
1224 {
1225 /* In the V3 C++ ABI, parameters are destroyed in the caller.
1226 We implement this by passing the address of the temporary
1227 rather than expanding it into another allocated slot. */
1228 args[i].tree_value = build1 (ADDR_EXPR,
1229 build_pointer_type (type),
1230 args[i].tree_value);
1231 type = build_pointer_type (type);
1232 }
1233 else
1234 {
1235 /* We make a copy of the object and pass the address to the
1236 function being called. */
1237 rtx copy;
1238
1239 if (!COMPLETE_TYPE_P (type)
1240 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
1241 || (flag_stack_check && ! STACK_CHECK_BUILTIN
1242 && (0 < compare_tree_int (TYPE_SIZE_UNIT (type),
1243 STACK_CHECK_MAX_VAR_SIZE))))
1244 {
1245 /* This is a variable-sized object. Make space on the stack
1246 for it. */
1247 rtx size_rtx = expr_size (TREE_VALUE (p));
1248
1249 if (*old_stack_level == 0)
1250 {
1251 emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
1252 *old_pending_adj = pending_stack_adjust;
1253 pending_stack_adjust = 0;
1254 }
1255
1256 copy = gen_rtx_MEM (BLKmode,
1257 allocate_dynamic_stack_space
1258 (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
1259 set_mem_attributes (copy, type, 1);
1260 }
1261 else
1262 copy = assign_temp (type, 0, 1, 0);
1263
1264 store_expr (args[i].tree_value, copy, 0);
1265 *ecf_flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1266
1267 args[i].tree_value = build1 (ADDR_EXPR,
1268 build_pointer_type (type),
1269 make_tree (type, copy));
1270 type = build_pointer_type (type);
1271 }
1272 }
1273
1274 mode = TYPE_MODE (type);
1275 unsignedp = TREE_UNSIGNED (type);
1276
1277 #ifdef PROMOTE_FUNCTION_ARGS
1278 mode = promote_mode (type, mode, &unsignedp, 1);
1279 #endif
1280
1281 args[i].unsignedp = unsignedp;
1282 args[i].mode = mode;
1283
1284 args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
1285 argpos < n_named_args);
1286 #ifdef FUNCTION_INCOMING_ARG
1287 /* If this is a sibling call and the machine has register windows, the
1288 register window has to be unwinded before calling the routine, so
1289 arguments have to go into the incoming registers. */
1290 args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
1291 argpos < n_named_args);
1292 #else
1293 args[i].tail_call_reg = args[i].reg;
1294 #endif
1295
1296 #ifdef FUNCTION_ARG_PARTIAL_NREGS
1297 if (args[i].reg)
1298 args[i].partial
1299 = FUNCTION_ARG_PARTIAL_NREGS (*args_so_far, mode, type,
1300 argpos < n_named_args);
1301 #endif
1302
1303 args[i].pass_on_stack = MUST_PASS_IN_STACK (mode, type);
1304
1305 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1306 it means that we are to pass this arg in the register(s) designated
1307 by the PARALLEL, but also to pass it in the stack. */
1308 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1309 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1310 args[i].pass_on_stack = 1;
1311
1312 /* If this is an addressable type, we must preallocate the stack
1313 since we must evaluate the object into its final location.
1314
1315 If this is to be passed in both registers and the stack, it is simpler
1316 to preallocate. */
1317 if (TREE_ADDRESSABLE (type)
1318 || (args[i].pass_on_stack && args[i].reg != 0))
1319 *must_preallocate = 1;
1320
1321 /* If this is an addressable type, we cannot pre-evaluate it. Thus,
1322 we cannot consider this function call constant. */
1323 if (TREE_ADDRESSABLE (type))
1324 *ecf_flags &= ~ECF_LIBCALL_BLOCK;
1325
1326 /* Compute the stack-size of this argument. */
1327 if (args[i].reg == 0 || args[i].partial != 0
1328 || reg_parm_stack_space > 0
1329 || args[i].pass_on_stack)
1330 locate_and_pad_parm (mode, type,
1331 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1332 1,
1333 #else
1334 args[i].reg != 0,
1335 #endif
1336 fndecl, args_size, &args[i].offset,
1337 &args[i].size, &alignment_pad);
1338
1339 #ifndef ARGS_GROW_DOWNWARD
1340 args[i].slot_offset = *args_size;
1341 #endif
1342
1343 args[i].alignment_pad = alignment_pad;
1344
1345 /* If a part of the arg was put into registers,
1346 don't include that part in the amount pushed. */
1347 if (reg_parm_stack_space == 0 && ! args[i].pass_on_stack)
1348 args[i].size.constant -= ((args[i].partial * UNITS_PER_WORD)
1349 / (PARM_BOUNDARY / BITS_PER_UNIT)
1350 * (PARM_BOUNDARY / BITS_PER_UNIT));
1351
1352 /* Update ARGS_SIZE, the total stack space for args so far. */
1353
1354 args_size->constant += args[i].size.constant;
1355 if (args[i].size.var)
1356 {
1357 ADD_PARM_SIZE (*args_size, args[i].size.var);
1358 }
1359
1360 /* Since the slot offset points to the bottom of the slot,
1361 we must record it after incrementing if the args grow down. */
1362 #ifdef ARGS_GROW_DOWNWARD
1363 args[i].slot_offset = *args_size;
1364
1365 args[i].slot_offset.constant = -args_size->constant;
1366 if (args_size->var)
1367 SUB_PARM_SIZE (args[i].slot_offset, args_size->var);
1368 #endif
1369
1370 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1371 have been used, etc. */
1372
1373 FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
1374 argpos < n_named_args);
1375 }
1376 }
1377
1378 /* Update ARGS_SIZE to contain the total size for the argument block.
1379 Return the original constant component of the argument block's size.
1380
1381 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1382 for arguments passed in registers. */
1383
1384 static int
1385 compute_argument_block_size (reg_parm_stack_space, args_size,
1386 preferred_stack_boundary)
1387 int reg_parm_stack_space;
1388 struct args_size *args_size;
1389 int preferred_stack_boundary ATTRIBUTE_UNUSED;
1390 {
1391 int unadjusted_args_size = args_size->constant;
1392
1393 /* For accumulate outgoing args mode we don't need to align, since the frame
1394 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1395 backends from generating misaligned frame sizes. */
1396 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1397 preferred_stack_boundary = STACK_BOUNDARY;
1398
1399 /* Compute the actual size of the argument block required. The variable
1400 and constant sizes must be combined, the size may have to be rounded,
1401 and there may be a minimum required size. */
1402
1403 if (args_size->var)
1404 {
1405 args_size->var = ARGS_SIZE_TREE (*args_size);
1406 args_size->constant = 0;
1407
1408 preferred_stack_boundary /= BITS_PER_UNIT;
1409 if (preferred_stack_boundary > 1)
1410 {
1411 /* We don't handle this case yet. To handle it correctly we have
1412 to add the delta, round and subtract the delta.
1413 Currently no machine description requires this support. */
1414 if (stack_pointer_delta & (preferred_stack_boundary - 1))
1415 abort ();
1416 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1417 }
1418
1419 if (reg_parm_stack_space > 0)
1420 {
1421 args_size->var
1422 = size_binop (MAX_EXPR, args_size->var,
1423 ssize_int (reg_parm_stack_space));
1424
1425 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1426 /* The area corresponding to register parameters is not to count in
1427 the size of the block we need. So make the adjustment. */
1428 args_size->var
1429 = size_binop (MINUS_EXPR, args_size->var,
1430 ssize_int (reg_parm_stack_space));
1431 #endif
1432 }
1433 }
1434 else
1435 {
1436 preferred_stack_boundary /= BITS_PER_UNIT;
1437 if (preferred_stack_boundary < 1)
1438 preferred_stack_boundary = 1;
1439 args_size->constant = (((args_size->constant
1440 + stack_pointer_delta
1441 + preferred_stack_boundary - 1)
1442 / preferred_stack_boundary
1443 * preferred_stack_boundary)
1444 - stack_pointer_delta);
1445
1446 args_size->constant = MAX (args_size->constant,
1447 reg_parm_stack_space);
1448
1449 #ifdef MAYBE_REG_PARM_STACK_SPACE
1450 if (reg_parm_stack_space == 0)
1451 args_size->constant = 0;
1452 #endif
1453
1454 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1455 args_size->constant -= reg_parm_stack_space;
1456 #endif
1457 }
1458 return unadjusted_args_size;
1459 }
1460
1461 /* Precompute parameters as needed for a function call.
1462
1463 FLAGS is mask of ECF_* constants.
1464
1465 NUM_ACTUALS is the number of arguments.
1466
1467 ARGS is an array containing information for each argument; this
1468 routine fills in the INITIAL_VALUE and VALUE fields for each
1469 precomputed argument. */
1470
1471 static void
1472 precompute_arguments (flags, num_actuals, args)
1473 int flags;
1474 int num_actuals;
1475 struct arg_data *args;
1476 {
1477 int i;
1478
1479 /* If this function call is cse'able, precompute all the parameters.
1480 Note that if the parameter is constructed into a temporary, this will
1481 cause an additional copy because the parameter will be constructed
1482 into a temporary location and then copied into the outgoing arguments.
1483 If a parameter contains a call to alloca and this function uses the
1484 stack, precompute the parameter. */
1485
1486 /* If we preallocated the stack space, and some arguments must be passed
1487 on the stack, then we must precompute any parameter which contains a
1488 function call which will store arguments on the stack.
1489 Otherwise, evaluating the parameter may clobber previous parameters
1490 which have already been stored into the stack. (we have code to avoid
1491 such case by saving the outgoing stack arguments, but it results in
1492 worse code) */
1493
1494 for (i = 0; i < num_actuals; i++)
1495 if ((flags & ECF_LIBCALL_BLOCK)
1496 || calls_function (args[i].tree_value, !ACCUMULATE_OUTGOING_ARGS))
1497 {
1498 enum machine_mode mode;
1499
1500 /* If this is an addressable type, we cannot pre-evaluate it. */
1501 if (TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)))
1502 abort ();
1503
1504 args[i].value
1505 = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0);
1506
1507 /* ANSI doesn't require a sequence point here,
1508 but PCC has one, so this will avoid some problems. */
1509 emit_queue ();
1510
1511 args[i].initial_value = args[i].value
1512 = protect_from_queue (args[i].value, 0);
1513
1514 mode = TYPE_MODE (TREE_TYPE (args[i].tree_value));
1515 if (mode != args[i].mode)
1516 {
1517 args[i].value
1518 = convert_modes (args[i].mode, mode,
1519 args[i].value, args[i].unsignedp);
1520 #ifdef PROMOTE_FOR_CALL_ONLY
1521 /* CSE will replace this only if it contains args[i].value
1522 pseudo, so convert it down to the declared mode using
1523 a SUBREG. */
1524 if (GET_CODE (args[i].value) == REG
1525 && GET_MODE_CLASS (args[i].mode) == MODE_INT)
1526 {
1527 args[i].initial_value
1528 = gen_lowpart_SUBREG (mode, args[i].value);
1529 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1530 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1531 args[i].unsignedp);
1532 }
1533 #endif
1534 }
1535 }
1536 }
1537
1538 /* Given the current state of MUST_PREALLOCATE and information about
1539 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1540 compute and return the final value for MUST_PREALLOCATE. */
1541
1542 static int
1543 finalize_must_preallocate (must_preallocate, num_actuals, args, args_size)
1544 int must_preallocate;
1545 int num_actuals;
1546 struct arg_data *args;
1547 struct args_size *args_size;
1548 {
1549 /* See if we have or want to preallocate stack space.
1550
1551 If we would have to push a partially-in-regs parm
1552 before other stack parms, preallocate stack space instead.
1553
1554 If the size of some parm is not a multiple of the required stack
1555 alignment, we must preallocate.
1556
1557 If the total size of arguments that would otherwise create a copy in
1558 a temporary (such as a CALL) is more than half the total argument list
1559 size, preallocation is faster.
1560
1561 Another reason to preallocate is if we have a machine (like the m88k)
1562 where stack alignment is required to be maintained between every
1563 pair of insns, not just when the call is made. However, we assume here
1564 that such machines either do not have push insns (and hence preallocation
1565 would occur anyway) or the problem is taken care of with
1566 PUSH_ROUNDING. */
1567
1568 if (! must_preallocate)
1569 {
1570 int partial_seen = 0;
1571 int copy_to_evaluate_size = 0;
1572 int i;
1573
1574 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1575 {
1576 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1577 partial_seen = 1;
1578 else if (partial_seen && args[i].reg == 0)
1579 must_preallocate = 1;
1580
1581 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1582 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1583 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1584 || TREE_CODE (args[i].tree_value) == COND_EXPR
1585 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1586 copy_to_evaluate_size
1587 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1588 }
1589
1590 if (copy_to_evaluate_size * 2 >= args_size->constant
1591 && args_size->constant > 0)
1592 must_preallocate = 1;
1593 }
1594 return must_preallocate;
1595 }
1596
1597 /* If we preallocated stack space, compute the address of each argument
1598 and store it into the ARGS array.
1599
1600 We need not ensure it is a valid memory address here; it will be
1601 validized when it is used.
1602
1603 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1604
1605 static void
1606 compute_argument_addresses (args, argblock, num_actuals)
1607 struct arg_data *args;
1608 rtx argblock;
1609 int num_actuals;
1610 {
1611 if (argblock)
1612 {
1613 rtx arg_reg = argblock;
1614 int i, arg_offset = 0;
1615
1616 if (GET_CODE (argblock) == PLUS)
1617 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1618
1619 for (i = 0; i < num_actuals; i++)
1620 {
1621 rtx offset = ARGS_SIZE_RTX (args[i].offset);
1622 rtx slot_offset = ARGS_SIZE_RTX (args[i].slot_offset);
1623 rtx addr;
1624
1625 /* Skip this parm if it will not be passed on the stack. */
1626 if (! args[i].pass_on_stack && args[i].reg != 0)
1627 continue;
1628
1629 if (GET_CODE (offset) == CONST_INT)
1630 addr = plus_constant (arg_reg, INTVAL (offset));
1631 else
1632 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1633
1634 addr = plus_constant (addr, arg_offset);
1635 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1636 set_mem_attributes (args[i].stack,
1637 TREE_TYPE (args[i].tree_value), 1);
1638
1639 if (GET_CODE (slot_offset) == CONST_INT)
1640 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1641 else
1642 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1643
1644 addr = plus_constant (addr, arg_offset);
1645 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1646 set_mem_attributes (args[i].stack_slot,
1647 TREE_TYPE (args[i].tree_value), 1);
1648
1649 /* Function incoming arguments may overlap with sibling call
1650 outgoing arguments and we cannot allow reordering of reads
1651 from function arguments with stores to outgoing arguments
1652 of sibling calls. */
1653 set_mem_alias_set (args[i].stack, 0);
1654 set_mem_alias_set (args[i].stack_slot, 0);
1655 }
1656 }
1657 }
1658
1659 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1660 in a call instruction.
1661
1662 FNDECL is the tree node for the target function. For an indirect call
1663 FNDECL will be NULL_TREE.
1664
1665 EXP is the CALL_EXPR for this call. */
1666
1667 static rtx
1668 rtx_for_function_call (fndecl, exp)
1669 tree fndecl;
1670 tree exp;
1671 {
1672 rtx funexp;
1673
1674 /* Get the function to call, in the form of RTL. */
1675 if (fndecl)
1676 {
1677 /* If this is the first use of the function, see if we need to
1678 make an external definition for it. */
1679 if (! TREE_USED (fndecl))
1680 {
1681 assemble_external (fndecl);
1682 TREE_USED (fndecl) = 1;
1683 }
1684
1685 /* Get a SYMBOL_REF rtx for the function address. */
1686 funexp = XEXP (DECL_RTL (fndecl), 0);
1687 }
1688 else
1689 /* Generate an rtx (probably a pseudo-register) for the address. */
1690 {
1691 push_temp_slots ();
1692 funexp = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
1693 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1694 emit_queue ();
1695 }
1696 return funexp;
1697 }
1698
1699 /* Do the register loads required for any wholly-register parms or any
1700 parms which are passed both on the stack and in a register. Their
1701 expressions were already evaluated.
1702
1703 Mark all register-parms as living through the call, putting these USE
1704 insns in the CALL_INSN_FUNCTION_USAGE field.
1705
1706 When IS_SIBCALL, perform the check_sibcall_overlap_argument_overlap
1707 checking, setting *SIBCALL_FAILURE if appropriate. */
1708
1709 static void
1710 load_register_parameters (args, num_actuals, call_fusage, flags,
1711 is_sibcall, sibcall_failure)
1712 struct arg_data *args;
1713 int num_actuals;
1714 rtx *call_fusage;
1715 int flags;
1716 int is_sibcall;
1717 int *sibcall_failure;
1718 {
1719 int i, j;
1720
1721 #ifdef LOAD_ARGS_REVERSED
1722 for (i = num_actuals - 1; i >= 0; i--)
1723 #else
1724 for (i = 0; i < num_actuals; i++)
1725 #endif
1726 {
1727 rtx reg = ((flags & ECF_SIBCALL)
1728 ? args[i].tail_call_reg : args[i].reg);
1729 int partial = args[i].partial;
1730 int nregs;
1731
1732 if (reg)
1733 {
1734 rtx before_arg = get_last_insn ();
1735 /* Set to non-negative if must move a word at a time, even if just
1736 one word (e.g, partial == 1 && mode == DFmode). Set to -1 if
1737 we just use a normal move insn. This value can be zero if the
1738 argument is a zero size structure with no fields. */
1739 nregs = (partial ? partial
1740 : (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1741 ? ((int_size_in_bytes (TREE_TYPE (args[i].tree_value))
1742 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1743 : -1));
1744
1745 /* Handle calls that pass values in multiple non-contiguous
1746 locations. The Irix 6 ABI has examples of this. */
1747
1748 if (GET_CODE (reg) == PARALLEL)
1749 emit_group_load (reg, args[i].value,
1750 int_size_in_bytes (TREE_TYPE (args[i].tree_value)));
1751
1752 /* If simple case, just do move. If normal partial, store_one_arg
1753 has already loaded the register for us. In all other cases,
1754 load the register(s) from memory. */
1755
1756 else if (nregs == -1)
1757 emit_move_insn (reg, args[i].value);
1758
1759 /* If we have pre-computed the values to put in the registers in
1760 the case of non-aligned structures, copy them in now. */
1761
1762 else if (args[i].n_aligned_regs != 0)
1763 for (j = 0; j < args[i].n_aligned_regs; j++)
1764 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1765 args[i].aligned_regs[j]);
1766
1767 else if (partial == 0 || args[i].pass_on_stack)
1768 move_block_to_reg (REGNO (reg),
1769 validize_mem (args[i].value), nregs,
1770 args[i].mode);
1771
1772 /* When a parameter is a block, and perhaps in other cases, it is
1773 possible that it did a load from an argument slot that was
1774 already clobbered. */
1775 if (is_sibcall
1776 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1777 *sibcall_failure = 1;
1778
1779 /* Handle calls that pass values in multiple non-contiguous
1780 locations. The Irix 6 ABI has examples of this. */
1781 if (GET_CODE (reg) == PARALLEL)
1782 use_group_regs (call_fusage, reg);
1783 else if (nregs == -1)
1784 use_reg (call_fusage, reg);
1785 else
1786 use_regs (call_fusage, REGNO (reg), nregs == 0 ? 1 : nregs);
1787 }
1788 }
1789 }
1790
1791 /* Try to integrate function. See expand_inline_function for documentation
1792 about the parameters. */
1793
1794 static rtx
1795 try_to_integrate (fndecl, actparms, target, ignore, type, structure_value_addr)
1796 tree fndecl;
1797 tree actparms;
1798 rtx target;
1799 int ignore;
1800 tree type;
1801 rtx structure_value_addr;
1802 {
1803 rtx temp;
1804 rtx before_call;
1805 int i;
1806 rtx old_stack_level = 0;
1807 int reg_parm_stack_space = 0;
1808
1809 #ifdef REG_PARM_STACK_SPACE
1810 #ifdef MAYBE_REG_PARM_STACK_SPACE
1811 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
1812 #else
1813 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
1814 #endif
1815 #endif
1816
1817 before_call = get_last_insn ();
1818
1819 timevar_push (TV_INTEGRATION);
1820
1821 temp = expand_inline_function (fndecl, actparms, target,
1822 ignore, type,
1823 structure_value_addr);
1824
1825 timevar_pop (TV_INTEGRATION);
1826
1827 /* If inlining succeeded, return. */
1828 if (temp != (rtx) (size_t) - 1)
1829 {
1830 if (ACCUMULATE_OUTGOING_ARGS)
1831 {
1832 /* If the outgoing argument list must be preserved, push
1833 the stack before executing the inlined function if it
1834 makes any calls. */
1835
1836 for (i = reg_parm_stack_space - 1; i >= 0; i--)
1837 if (i < highest_outgoing_arg_in_use && stack_usage_map[i] != 0)
1838 break;
1839
1840 if (stack_arg_under_construction || i >= 0)
1841 {
1842 rtx first_insn
1843 = before_call ? NEXT_INSN (before_call) : get_insns ();
1844 rtx insn = NULL_RTX, seq;
1845
1846 /* Look for a call in the inline function code.
1847 If DECL_SAVED_INSNS (fndecl)->outgoing_args_size is
1848 nonzero then there is a call and it is not necessary
1849 to scan the insns. */
1850
1851 if (DECL_SAVED_INSNS (fndecl)->outgoing_args_size == 0)
1852 for (insn = first_insn; insn; insn = NEXT_INSN (insn))
1853 if (GET_CODE (insn) == CALL_INSN)
1854 break;
1855
1856 if (insn)
1857 {
1858 /* Reserve enough stack space so that the largest
1859 argument list of any function call in the inline
1860 function does not overlap the argument list being
1861 evaluated. This is usually an overestimate because
1862 allocate_dynamic_stack_space reserves space for an
1863 outgoing argument list in addition to the requested
1864 space, but there is no way to ask for stack space such
1865 that an argument list of a certain length can be
1866 safely constructed.
1867
1868 Add the stack space reserved for register arguments, if
1869 any, in the inline function. What is really needed is the
1870 largest value of reg_parm_stack_space in the inline
1871 function, but that is not available. Using the current
1872 value of reg_parm_stack_space is wrong, but gives
1873 correct results on all supported machines. */
1874
1875 int adjust = (DECL_SAVED_INSNS (fndecl)->outgoing_args_size
1876 + reg_parm_stack_space);
1877
1878 start_sequence ();
1879 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
1880 allocate_dynamic_stack_space (GEN_INT (adjust),
1881 NULL_RTX, BITS_PER_UNIT);
1882 seq = get_insns ();
1883 end_sequence ();
1884 emit_insn_before (seq, first_insn);
1885 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
1886 }
1887 }
1888 }
1889
1890 /* If the result is equivalent to TARGET, return TARGET to simplify
1891 checks in store_expr. They can be equivalent but not equal in the
1892 case of a function that returns BLKmode. */
1893 if (temp != target && rtx_equal_p (temp, target))
1894 return target;
1895 return temp;
1896 }
1897
1898 /* If inlining failed, mark FNDECL as needing to be compiled
1899 separately after all. If function was declared inline,
1900 give a warning. */
1901 if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline
1902 && optimize > 0 && !TREE_ADDRESSABLE (fndecl))
1903 {
1904 warning_with_decl (fndecl, "inlining failed in call to `%s'");
1905 warning ("called from here");
1906 }
1907 (*lang_hooks.mark_addressable) (fndecl);
1908 return (rtx) (size_t) - 1;
1909 }
1910
1911 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1912 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1913 bytes, then we would need to push some additional bytes to pad the
1914 arguments. So, we compute an adjust to the stack pointer for an
1915 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1916 bytes. Then, when the arguments are pushed the stack will be perfectly
1917 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1918 be popped after the call. Returns the adjustment. */
1919
1920 static int
1921 combine_pending_stack_adjustment_and_call (unadjusted_args_size,
1922 args_size,
1923 preferred_unit_stack_boundary)
1924 int unadjusted_args_size;
1925 struct args_size *args_size;
1926 int preferred_unit_stack_boundary;
1927 {
1928 /* The number of bytes to pop so that the stack will be
1929 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1930 HOST_WIDE_INT adjustment;
1931 /* The alignment of the stack after the arguments are pushed, if we
1932 just pushed the arguments without adjust the stack here. */
1933 HOST_WIDE_INT unadjusted_alignment;
1934
1935 unadjusted_alignment
1936 = ((stack_pointer_delta + unadjusted_args_size)
1937 % preferred_unit_stack_boundary);
1938
1939 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1940 as possible -- leaving just enough left to cancel out the
1941 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1942 PENDING_STACK_ADJUST is non-negative, and congruent to
1943 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1944
1945 /* Begin by trying to pop all the bytes. */
1946 unadjusted_alignment
1947 = (unadjusted_alignment
1948 - (pending_stack_adjust % preferred_unit_stack_boundary));
1949 adjustment = pending_stack_adjust;
1950 /* Push enough additional bytes that the stack will be aligned
1951 after the arguments are pushed. */
1952 if (preferred_unit_stack_boundary > 1)
1953 {
1954 if (unadjusted_alignment > 0)
1955 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1956 else
1957 adjustment += unadjusted_alignment;
1958 }
1959
1960 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1961 bytes after the call. The right number is the entire
1962 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1963 by the arguments in the first place. */
1964 args_size->constant
1965 = pending_stack_adjust - adjustment + unadjusted_args_size;
1966
1967 return adjustment;
1968 }
1969
1970 /* Scan X expression if it does not dereference any argument slots
1971 we already clobbered by tail call arguments (as noted in stored_args_map
1972 bitmap).
1973 Return nonzero if X expression dereferences such argument slots,
1974 zero otherwise. */
1975
1976 static int
1977 check_sibcall_argument_overlap_1 (x)
1978 rtx x;
1979 {
1980 RTX_CODE code;
1981 int i, j;
1982 unsigned int k;
1983 const char *fmt;
1984
1985 if (x == NULL_RTX)
1986 return 0;
1987
1988 code = GET_CODE (x);
1989
1990 if (code == MEM)
1991 {
1992 if (XEXP (x, 0) == current_function_internal_arg_pointer)
1993 i = 0;
1994 else if (GET_CODE (XEXP (x, 0)) == PLUS
1995 && XEXP (XEXP (x, 0), 0) ==
1996 current_function_internal_arg_pointer
1997 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1998 i = INTVAL (XEXP (XEXP (x, 0), 1));
1999 else
2000 return 0;
2001
2002 #ifdef ARGS_GROW_DOWNWARD
2003 i = -i - GET_MODE_SIZE (GET_MODE (x));
2004 #endif
2005
2006 for (k = 0; k < GET_MODE_SIZE (GET_MODE (x)); k++)
2007 if (i + k < stored_args_map->n_bits
2008 && TEST_BIT (stored_args_map, i + k))
2009 return 1;
2010
2011 return 0;
2012 }
2013
2014 /* Scan all subexpressions. */
2015 fmt = GET_RTX_FORMAT (code);
2016 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2017 {
2018 if (*fmt == 'e')
2019 {
2020 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
2021 return 1;
2022 }
2023 else if (*fmt == 'E')
2024 {
2025 for (j = 0; j < XVECLEN (x, i); j++)
2026 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
2027 return 1;
2028 }
2029 }
2030 return 0;
2031 }
2032
2033 /* Scan sequence after INSN if it does not dereference any argument slots
2034 we already clobbered by tail call arguments (as noted in stored_args_map
2035 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
2036 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
2037 should be 0). Return nonzero if sequence after INSN dereferences such argument
2038 slots, zero otherwise. */
2039
2040 static int
2041 check_sibcall_argument_overlap (insn, arg, mark_stored_args_map)
2042 rtx insn;
2043 struct arg_data *arg;
2044 int mark_stored_args_map;
2045 {
2046 int low, high;
2047
2048 if (insn == NULL_RTX)
2049 insn = get_insns ();
2050 else
2051 insn = NEXT_INSN (insn);
2052
2053 for (; insn; insn = NEXT_INSN (insn))
2054 if (INSN_P (insn)
2055 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
2056 break;
2057
2058 if (mark_stored_args_map)
2059 {
2060 #ifdef ARGS_GROW_DOWNWARD
2061 low = -arg->slot_offset.constant - arg->size.constant;
2062 #else
2063 low = arg->slot_offset.constant;
2064 #endif
2065
2066 for (high = low + arg->size.constant; low < high; low++)
2067 SET_BIT (stored_args_map, low);
2068 }
2069 return insn != NULL_RTX;
2070 }
2071
2072 static tree
2073 fix_unsafe_tree (t)
2074 tree t;
2075 {
2076 switch (unsafe_for_reeval (t))
2077 {
2078 case 0: /* Safe. */
2079 break;
2080
2081 case 1: /* Mildly unsafe. */
2082 t = unsave_expr (t);
2083 break;
2084
2085 case 2: /* Wildly unsafe. */
2086 {
2087 tree var = build_decl (VAR_DECL, NULL_TREE,
2088 TREE_TYPE (t));
2089 SET_DECL_RTL (var,
2090 expand_expr (t, NULL_RTX, VOIDmode, EXPAND_NORMAL));
2091 t = var;
2092 }
2093 break;
2094
2095 default:
2096 abort ();
2097 }
2098 return t;
2099 }
2100
2101 /* Generate all the code for a function call
2102 and return an rtx for its value.
2103 Store the value in TARGET (specified as an rtx) if convenient.
2104 If the value is stored in TARGET then TARGET is returned.
2105 If IGNORE is nonzero, then we ignore the value of the function call. */
2106
2107 rtx
2108 expand_call (exp, target, ignore)
2109 tree exp;
2110 rtx target;
2111 int ignore;
2112 {
2113 /* Nonzero if we are currently expanding a call. */
2114 static int currently_expanding_call = 0;
2115
2116 /* List of actual parameters. */
2117 tree actparms = TREE_OPERAND (exp, 1);
2118 /* RTX for the function to be called. */
2119 rtx funexp;
2120 /* Sequence of insns to perform a tail recursive "call". */
2121 rtx tail_recursion_insns = NULL_RTX;
2122 /* Sequence of insns to perform a normal "call". */
2123 rtx normal_call_insns = NULL_RTX;
2124 /* Sequence of insns to perform a tail recursive "call". */
2125 rtx tail_call_insns = NULL_RTX;
2126 /* Data type of the function. */
2127 tree funtype;
2128 /* Declaration of the function being called,
2129 or 0 if the function is computed (not known by name). */
2130 tree fndecl = 0;
2131 rtx insn;
2132 int try_tail_call = 1;
2133 int try_tail_recursion = 1;
2134 int pass;
2135
2136 /* Register in which non-BLKmode value will be returned,
2137 or 0 if no value or if value is BLKmode. */
2138 rtx valreg;
2139 /* Address where we should return a BLKmode value;
2140 0 if value not BLKmode. */
2141 rtx structure_value_addr = 0;
2142 /* Nonzero if that address is being passed by treating it as
2143 an extra, implicit first parameter. Otherwise,
2144 it is passed by being copied directly into struct_value_rtx. */
2145 int structure_value_addr_parm = 0;
2146 /* Size of aggregate value wanted, or zero if none wanted
2147 or if we are using the non-reentrant PCC calling convention
2148 or expecting the value in registers. */
2149 HOST_WIDE_INT struct_value_size = 0;
2150 /* Nonzero if called function returns an aggregate in memory PCC style,
2151 by returning the address of where to find it. */
2152 int pcc_struct_value = 0;
2153
2154 /* Number of actual parameters in this call, including struct value addr. */
2155 int num_actuals;
2156 /* Number of named args. Args after this are anonymous ones
2157 and they must all go on the stack. */
2158 int n_named_args;
2159
2160 /* Vector of information about each argument.
2161 Arguments are numbered in the order they will be pushed,
2162 not the order they are written. */
2163 struct arg_data *args;
2164
2165 /* Total size in bytes of all the stack-parms scanned so far. */
2166 struct args_size args_size;
2167 struct args_size adjusted_args_size;
2168 /* Size of arguments before any adjustments (such as rounding). */
2169 int unadjusted_args_size;
2170 /* Data on reg parms scanned so far. */
2171 CUMULATIVE_ARGS args_so_far;
2172 /* Nonzero if a reg parm has been scanned. */
2173 int reg_parm_seen;
2174 /* Nonzero if this is an indirect function call. */
2175
2176 /* Nonzero if we must avoid push-insns in the args for this call.
2177 If stack space is allocated for register parameters, but not by the
2178 caller, then it is preallocated in the fixed part of the stack frame.
2179 So the entire argument block must then be preallocated (i.e., we
2180 ignore PUSH_ROUNDING in that case). */
2181
2182 int must_preallocate = !PUSH_ARGS;
2183
2184 /* Size of the stack reserved for parameter registers. */
2185 int reg_parm_stack_space = 0;
2186
2187 /* Address of space preallocated for stack parms
2188 (on machines that lack push insns), or 0 if space not preallocated. */
2189 rtx argblock = 0;
2190
2191 /* Mask of ECF_ flags. */
2192 int flags = 0;
2193 /* Nonzero if this is a call to an inline function. */
2194 int is_integrable = 0;
2195 #ifdef REG_PARM_STACK_SPACE
2196 /* Define the boundary of the register parm stack space that needs to be
2197 save, if any. */
2198 int low_to_save = -1, high_to_save;
2199 rtx save_area = 0; /* Place that it is saved */
2200 #endif
2201
2202 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
2203 char *initial_stack_usage_map = stack_usage_map;
2204 int old_stack_arg_under_construction = 0;
2205
2206 rtx old_stack_level = 0;
2207 int old_pending_adj = 0;
2208 int old_inhibit_defer_pop = inhibit_defer_pop;
2209 int old_stack_allocated;
2210 rtx call_fusage;
2211 tree p = TREE_OPERAND (exp, 0);
2212 int i;
2213 /* The alignment of the stack, in bits. */
2214 HOST_WIDE_INT preferred_stack_boundary;
2215 /* The alignment of the stack, in bytes. */
2216 HOST_WIDE_INT preferred_unit_stack_boundary;
2217
2218 /* See if this is "nothrow" function call. */
2219 if (TREE_NOTHROW (exp))
2220 flags |= ECF_NOTHROW;
2221
2222 /* See if we can find a DECL-node for the actual function.
2223 As a result, decide whether this is a call to an integrable function. */
2224
2225 fndecl = get_callee_fndecl (exp);
2226 if (fndecl)
2227 {
2228 if (!flag_no_inline
2229 && fndecl != current_function_decl
2230 && DECL_INLINE (fndecl)
2231 && DECL_SAVED_INSNS (fndecl)
2232 && DECL_SAVED_INSNS (fndecl)->inlinable)
2233 is_integrable = 1;
2234 else if (! TREE_ADDRESSABLE (fndecl))
2235 {
2236 /* In case this function later becomes inlinable,
2237 record that there was already a non-inline call to it.
2238
2239 Use abstraction instead of setting TREE_ADDRESSABLE
2240 directly. */
2241 if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline
2242 && optimize > 0)
2243 {
2244 warning_with_decl (fndecl, "can't inline call to `%s'");
2245 warning ("called from here");
2246 }
2247 (*lang_hooks.mark_addressable) (fndecl);
2248 }
2249
2250 flags |= flags_from_decl_or_type (fndecl);
2251 }
2252
2253 /* If we don't have specific function to call, see if we have a
2254 attributes set in the type. */
2255 else
2256 flags |= flags_from_decl_or_type (TREE_TYPE (TREE_TYPE (p)));
2257
2258 #ifdef REG_PARM_STACK_SPACE
2259 #ifdef MAYBE_REG_PARM_STACK_SPACE
2260 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
2261 #else
2262 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
2263 #endif
2264 #endif
2265
2266 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2267 if (reg_parm_stack_space > 0 && PUSH_ARGS)
2268 must_preallocate = 1;
2269 #endif
2270
2271 /* Warn if this value is an aggregate type,
2272 regardless of which calling convention we are using for it. */
2273 if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (exp)))
2274 warning ("function call has aggregate value");
2275
2276 /* Set up a place to return a structure. */
2277
2278 /* Cater to broken compilers. */
2279 if (aggregate_value_p (exp))
2280 {
2281 /* This call returns a big structure. */
2282 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
2283
2284 #ifdef PCC_STATIC_STRUCT_RETURN
2285 {
2286 pcc_struct_value = 1;
2287 /* Easier than making that case work right. */
2288 if (is_integrable)
2289 {
2290 /* In case this is a static function, note that it has been
2291 used. */
2292 if (! TREE_ADDRESSABLE (fndecl))
2293 (*lang_hooks.mark_addressable) (fndecl);
2294 is_integrable = 0;
2295 }
2296 }
2297 #else /* not PCC_STATIC_STRUCT_RETURN */
2298 {
2299 struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
2300
2301 if (CALL_EXPR_HAS_RETURN_SLOT_ADDR (exp))
2302 {
2303 /* The structure value address arg is already in actparms.
2304 Pull it out. It might be nice to just leave it there, but
2305 we need to set structure_value_addr. */
2306 tree return_arg = TREE_VALUE (actparms);
2307 actparms = TREE_CHAIN (actparms);
2308 structure_value_addr = expand_expr (return_arg, NULL_RTX,
2309 VOIDmode, EXPAND_NORMAL);
2310 }
2311 else if (target && GET_CODE (target) == MEM)
2312 structure_value_addr = XEXP (target, 0);
2313 else
2314 {
2315 /* For variable-sized objects, we must be called with a target
2316 specified. If we were to allocate space on the stack here,
2317 we would have no way of knowing when to free it. */
2318 rtx d = assign_temp (TREE_TYPE (exp), 1, 1, 1);
2319
2320 mark_temp_addr_taken (d);
2321 structure_value_addr = XEXP (d, 0);
2322 target = 0;
2323 }
2324 }
2325 #endif /* not PCC_STATIC_STRUCT_RETURN */
2326 }
2327
2328 /* If called function is inline, try to integrate it. */
2329
2330 if (is_integrable)
2331 {
2332 rtx temp = try_to_integrate (fndecl, actparms, target,
2333 ignore, TREE_TYPE (exp),
2334 structure_value_addr);
2335 if (temp != (rtx) (size_t) - 1)
2336 return temp;
2337 }
2338
2339 /* Figure out the amount to which the stack should be aligned. */
2340 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2341
2342 /* Operand 0 is a pointer-to-function; get the type of the function. */
2343 funtype = TREE_TYPE (TREE_OPERAND (exp, 0));
2344 if (! POINTER_TYPE_P (funtype))
2345 abort ();
2346 funtype = TREE_TYPE (funtype);
2347
2348 /* See if this is a call to a function that can return more than once
2349 or a call to longjmp or malloc. */
2350 flags |= special_function_p (fndecl, flags);
2351
2352 if (flags & ECF_MAY_BE_ALLOCA)
2353 current_function_calls_alloca = 1;
2354
2355 /* If struct_value_rtx is 0, it means pass the address
2356 as if it were an extra parameter. */
2357 if (structure_value_addr && struct_value_rtx == 0)
2358 {
2359 /* If structure_value_addr is a REG other than
2360 virtual_outgoing_args_rtx, we can use always use it. If it
2361 is not a REG, we must always copy it into a register.
2362 If it is virtual_outgoing_args_rtx, we must copy it to another
2363 register in some cases. */
2364 rtx temp = (GET_CODE (structure_value_addr) != REG
2365 || (ACCUMULATE_OUTGOING_ARGS
2366 && stack_arg_under_construction
2367 && structure_value_addr == virtual_outgoing_args_rtx)
2368 ? copy_addr_to_reg (structure_value_addr)
2369 : structure_value_addr);
2370
2371 actparms
2372 = tree_cons (error_mark_node,
2373 make_tree (build_pointer_type (TREE_TYPE (funtype)),
2374 temp),
2375 actparms);
2376 structure_value_addr_parm = 1;
2377 }
2378
2379 /* Count the arguments and set NUM_ACTUALS. */
2380 for (p = actparms, num_actuals = 0; p; p = TREE_CHAIN (p))
2381 num_actuals++;
2382
2383 /* Compute number of named args.
2384 Normally, don't include the last named arg if anonymous args follow.
2385 We do include the last named arg if STRICT_ARGUMENT_NAMING is nonzero.
2386 (If no anonymous args follow, the result of list_length is actually
2387 one too large. This is harmless.)
2388
2389 If PRETEND_OUTGOING_VARARGS_NAMED is set and STRICT_ARGUMENT_NAMING is
2390 zero, this machine will be able to place unnamed args that were
2391 passed in registers into the stack. So treat all args as named.
2392 This allows the insns emitting for a specific argument list to be
2393 independent of the function declaration.
2394
2395 If PRETEND_OUTGOING_VARARGS_NAMED is not set, we do not have any
2396 reliable way to pass unnamed args in registers, so we must force
2397 them into memory. */
2398
2399 if ((STRICT_ARGUMENT_NAMING
2400 || ! PRETEND_OUTGOING_VARARGS_NAMED)
2401 && TYPE_ARG_TYPES (funtype) != 0)
2402 n_named_args
2403 = (list_length (TYPE_ARG_TYPES (funtype))
2404 /* Don't include the last named arg. */
2405 - (STRICT_ARGUMENT_NAMING ? 0 : 1)
2406 /* Count the struct value address, if it is passed as a parm. */
2407 + structure_value_addr_parm);
2408 else
2409 /* If we know nothing, treat all args as named. */
2410 n_named_args = num_actuals;
2411
2412 /* Start updating where the next arg would go.
2413
2414 On some machines (such as the PA) indirect calls have a different
2415 calling convention than normal calls. The last argument in
2416 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2417 or not. */
2418 INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, (fndecl == 0));
2419
2420 /* Make a vector to hold all the information about each arg. */
2421 args = (struct arg_data *) alloca (num_actuals * sizeof (struct arg_data));
2422 memset ((char *) args, 0, num_actuals * sizeof (struct arg_data));
2423
2424 /* Build up entries in the ARGS array, compute the size of the
2425 arguments into ARGS_SIZE, etc. */
2426 initialize_argument_information (num_actuals, args, &args_size,
2427 n_named_args, actparms, fndecl,
2428 &args_so_far, reg_parm_stack_space,
2429 &old_stack_level, &old_pending_adj,
2430 &must_preallocate, &flags);
2431
2432 if (args_size.var)
2433 {
2434 /* If this function requires a variable-sized argument list, don't
2435 try to make a cse'able block for this call. We may be able to
2436 do this eventually, but it is too complicated to keep track of
2437 what insns go in the cse'able block and which don't. */
2438
2439 flags &= ~ECF_LIBCALL_BLOCK;
2440 must_preallocate = 1;
2441 }
2442
2443 /* Now make final decision about preallocating stack space. */
2444 must_preallocate = finalize_must_preallocate (must_preallocate,
2445 num_actuals, args,
2446 &args_size);
2447
2448 /* If the structure value address will reference the stack pointer, we
2449 must stabilize it. We don't need to do this if we know that we are
2450 not going to adjust the stack pointer in processing this call. */
2451
2452 if (structure_value_addr
2453 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2454 || reg_mentioned_p (virtual_outgoing_args_rtx,
2455 structure_value_addr))
2456 && (args_size.var
2457 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2458 structure_value_addr = copy_to_reg (structure_value_addr);
2459
2460 /* Tail calls can make things harder to debug, and we're traditionally
2461 pushed these optimizations into -O2. Don't try if we're already
2462 expanding a call, as that means we're an argument. Don't try if
2463 there's cleanups, as we know there's code to follow the call.
2464
2465 If rtx_equal_function_value_matters is false, that means we've
2466 finished with regular parsing. Which means that some of the
2467 machinery we use to generate tail-calls is no longer in place.
2468 This is most often true of sjlj-exceptions, which we couldn't
2469 tail-call to anyway. */
2470
2471 if (currently_expanding_call++ != 0
2472 || !flag_optimize_sibling_calls
2473 || !rtx_equal_function_value_matters
2474 || any_pending_cleanups (1)
2475 || args_size.var)
2476 try_tail_call = try_tail_recursion = 0;
2477
2478 /* Tail recursion fails, when we are not dealing with recursive calls. */
2479 if (!try_tail_recursion
2480 || TREE_CODE (TREE_OPERAND (exp, 0)) != ADDR_EXPR
2481 || TREE_OPERAND (TREE_OPERAND (exp, 0), 0) != current_function_decl)
2482 try_tail_recursion = 0;
2483
2484 /* Rest of purposes for tail call optimizations to fail. */
2485 if (
2486 #ifdef HAVE_sibcall_epilogue
2487 !HAVE_sibcall_epilogue
2488 #else
2489 1
2490 #endif
2491 || !try_tail_call
2492 /* Doing sibling call optimization needs some work, since
2493 structure_value_addr can be allocated on the stack.
2494 It does not seem worth the effort since few optimizable
2495 sibling calls will return a structure. */
2496 || structure_value_addr != NULL_RTX
2497 /* Check whether the target is able to optimize the call
2498 into a sibcall. */
2499 || !(*targetm.function_ok_for_sibcall) (fndecl, exp)
2500 /* Functions that do not return exactly once may not be sibcall
2501 optimized. */
2502 || (flags & (ECF_RETURNS_TWICE | ECF_LONGJMP | ECF_NORETURN))
2503 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
2504 /* If this function requires more stack slots than the current
2505 function, we cannot change it into a sibling call. */
2506 || args_size.constant > current_function_args_size
2507 /* If the callee pops its own arguments, then it must pop exactly
2508 the same number of arguments as the current function. */
2509 || RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
2510 != RETURN_POPS_ARGS (current_function_decl,
2511 TREE_TYPE (current_function_decl),
2512 current_function_args_size))
2513 try_tail_call = 0;
2514
2515 if (try_tail_call || try_tail_recursion)
2516 {
2517 int end, inc;
2518 actparms = NULL_TREE;
2519 /* Ok, we're going to give the tail call the old college try.
2520 This means we're going to evaluate the function arguments
2521 up to three times. There are two degrees of badness we can
2522 encounter, those that can be unsaved and those that can't.
2523 (See unsafe_for_reeval commentary for details.)
2524
2525 Generate a new argument list. Pass safe arguments through
2526 unchanged. For the easy badness wrap them in UNSAVE_EXPRs.
2527 For hard badness, evaluate them now and put their resulting
2528 rtx in a temporary VAR_DECL.
2529
2530 initialize_argument_information has ordered the array for the
2531 order to be pushed, and we must remember this when reconstructing
2532 the original argument order. */
2533
2534 if (PUSH_ARGS_REVERSED)
2535 {
2536 inc = 1;
2537 i = 0;
2538 end = num_actuals;
2539 }
2540 else
2541 {
2542 inc = -1;
2543 i = num_actuals - 1;
2544 end = -1;
2545 }
2546
2547 for (; i != end; i += inc)
2548 {
2549 args[i].tree_value = fix_unsafe_tree (args[i].tree_value);
2550 /* We need to build actparms for optimize_tail_recursion. We can
2551 safely trash away TREE_PURPOSE, since it is unused by this
2552 function. */
2553 if (try_tail_recursion)
2554 actparms = tree_cons (NULL_TREE, args[i].tree_value, actparms);
2555 }
2556 /* Do the same for the function address if it is an expression. */
2557 if (!fndecl)
2558 TREE_OPERAND (exp, 0) = fix_unsafe_tree (TREE_OPERAND (exp, 0));
2559 /* Expanding one of those dangerous arguments could have added
2560 cleanups, but otherwise give it a whirl. */
2561 if (any_pending_cleanups (1))
2562 try_tail_call = try_tail_recursion = 0;
2563 }
2564
2565 /* Generate a tail recursion sequence when calling ourselves. */
2566
2567 if (try_tail_recursion)
2568 {
2569 /* We want to emit any pending stack adjustments before the tail
2570 recursion "call". That way we know any adjustment after the tail
2571 recursion call can be ignored if we indeed use the tail recursion
2572 call expansion. */
2573 int save_pending_stack_adjust = pending_stack_adjust;
2574 int save_stack_pointer_delta = stack_pointer_delta;
2575
2576 /* Emit any queued insns now; otherwise they would end up in
2577 only one of the alternates. */
2578 emit_queue ();
2579
2580 /* Use a new sequence to hold any RTL we generate. We do not even
2581 know if we will use this RTL yet. The final decision can not be
2582 made until after RTL generation for the entire function is
2583 complete. */
2584 start_sequence ();
2585 /* If expanding any of the arguments creates cleanups, we can't
2586 do a tailcall. So, we'll need to pop the pending cleanups
2587 list. If, however, all goes well, and there are no cleanups
2588 then the call to expand_start_target_temps will have no
2589 effect. */
2590 expand_start_target_temps ();
2591 if (optimize_tail_recursion (actparms, get_last_insn ()))
2592 {
2593 if (any_pending_cleanups (1))
2594 try_tail_call = try_tail_recursion = 0;
2595 else
2596 tail_recursion_insns = get_insns ();
2597 }
2598 expand_end_target_temps ();
2599 end_sequence ();
2600
2601 /* Restore the original pending stack adjustment for the sibling and
2602 normal call cases below. */
2603 pending_stack_adjust = save_pending_stack_adjust;
2604 stack_pointer_delta = save_stack_pointer_delta;
2605 }
2606
2607 if (profile_arc_flag && (flags & ECF_FORK_OR_EXEC))
2608 {
2609 /* A fork duplicates the profile information, and an exec discards
2610 it. We can't rely on fork/exec to be paired. So write out the
2611 profile information we have gathered so far, and clear it. */
2612 /* ??? When Linux's __clone is called with CLONE_VM set, profiling
2613 is subject to race conditions, just as with multithreaded
2614 programs. */
2615
2616 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__gcov_flush"),
2617 LCT_ALWAYS_RETURN,
2618 VOIDmode, 0);
2619 }
2620
2621 /* Ensure current function's preferred stack boundary is at least
2622 what we need. We don't have to increase alignment for recursive
2623 functions. */
2624 if (cfun->preferred_stack_boundary < preferred_stack_boundary
2625 && fndecl != current_function_decl)
2626 cfun->preferred_stack_boundary = preferred_stack_boundary;
2627
2628 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2629
2630 function_call_count++;
2631
2632 /* We want to make two insn chains; one for a sibling call, the other
2633 for a normal call. We will select one of the two chains after
2634 initial RTL generation is complete. */
2635 for (pass = 0; pass < 2; pass++)
2636 {
2637 int sibcall_failure = 0;
2638 /* We want to emit any pending stack adjustments before the tail
2639 recursion "call". That way we know any adjustment after the tail
2640 recursion call can be ignored if we indeed use the tail recursion
2641 call expansion. */
2642 int save_pending_stack_adjust = 0;
2643 int save_stack_pointer_delta = 0;
2644 rtx insns;
2645 rtx before_call, next_arg_reg;
2646
2647 if (pass == 0)
2648 {
2649 if (! try_tail_call)
2650 continue;
2651
2652 /* Emit any queued insns now; otherwise they would end up in
2653 only one of the alternates. */
2654 emit_queue ();
2655
2656 /* State variables we need to save and restore between
2657 iterations. */
2658 save_pending_stack_adjust = pending_stack_adjust;
2659 save_stack_pointer_delta = stack_pointer_delta;
2660 }
2661 if (pass)
2662 flags &= ~ECF_SIBCALL;
2663 else
2664 flags |= ECF_SIBCALL;
2665
2666 /* Other state variables that we must reinitialize each time
2667 through the loop (that are not initialized by the loop itself). */
2668 argblock = 0;
2669 call_fusage = 0;
2670
2671 /* Start a new sequence for the normal call case.
2672
2673 From this point on, if the sibling call fails, we want to set
2674 sibcall_failure instead of continuing the loop. */
2675 start_sequence ();
2676
2677 if (pass == 0)
2678 {
2679 /* We know at this point that there are not currently any
2680 pending cleanups. If, however, in the process of evaluating
2681 the arguments we were to create some, we'll need to be
2682 able to get rid of them. */
2683 expand_start_target_temps ();
2684 }
2685
2686 /* Don't let pending stack adjusts add up to too much.
2687 Also, do all pending adjustments now if there is any chance
2688 this might be a call to alloca or if we are expanding a sibling
2689 call sequence or if we are calling a function that is to return
2690 with stack pointer depressed. */
2691 if (pending_stack_adjust >= 32
2692 || (pending_stack_adjust > 0
2693 && (flags & (ECF_MAY_BE_ALLOCA | ECF_SP_DEPRESSED)))
2694 || pass == 0)
2695 do_pending_stack_adjust ();
2696
2697 /* When calling a const function, we must pop the stack args right away,
2698 so that the pop is deleted or moved with the call. */
2699 if (pass && (flags & ECF_LIBCALL_BLOCK))
2700 NO_DEFER_POP;
2701
2702 #ifdef FINAL_REG_PARM_STACK_SPACE
2703 reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant,
2704 args_size.var);
2705 #endif
2706 /* Precompute any arguments as needed. */
2707 if (pass)
2708 precompute_arguments (flags, num_actuals, args);
2709
2710 /* Now we are about to start emitting insns that can be deleted
2711 if a libcall is deleted. */
2712 if (pass && (flags & (ECF_LIBCALL_BLOCK | ECF_MALLOC)))
2713 start_sequence ();
2714
2715 adjusted_args_size = args_size;
2716 /* Compute the actual size of the argument block required. The variable
2717 and constant sizes must be combined, the size may have to be rounded,
2718 and there may be a minimum required size. When generating a sibcall
2719 pattern, do not round up, since we'll be re-using whatever space our
2720 caller provided. */
2721 unadjusted_args_size
2722 = compute_argument_block_size (reg_parm_stack_space,
2723 &adjusted_args_size,
2724 (pass == 0 ? 0
2725 : preferred_stack_boundary));
2726
2727 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2728
2729 /* The argument block when performing a sibling call is the
2730 incoming argument block. */
2731 if (pass == 0)
2732 {
2733 argblock = virtual_incoming_args_rtx;
2734 argblock
2735 #ifdef STACK_GROWS_DOWNWARD
2736 = plus_constant (argblock, current_function_pretend_args_size);
2737 #else
2738 = plus_constant (argblock, -current_function_pretend_args_size);
2739 #endif
2740 stored_args_map = sbitmap_alloc (args_size.constant);
2741 sbitmap_zero (stored_args_map);
2742 }
2743
2744 /* If we have no actual push instructions, or shouldn't use them,
2745 make space for all args right now. */
2746 else if (adjusted_args_size.var != 0)
2747 {
2748 if (old_stack_level == 0)
2749 {
2750 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
2751 old_pending_adj = pending_stack_adjust;
2752 pending_stack_adjust = 0;
2753 /* stack_arg_under_construction says whether a stack arg is
2754 being constructed at the old stack level. Pushing the stack
2755 gets a clean outgoing argument block. */
2756 old_stack_arg_under_construction = stack_arg_under_construction;
2757 stack_arg_under_construction = 0;
2758 }
2759 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2760 }
2761 else
2762 {
2763 /* Note that we must go through the motions of allocating an argument
2764 block even if the size is zero because we may be storing args
2765 in the area reserved for register arguments, which may be part of
2766 the stack frame. */
2767
2768 int needed = adjusted_args_size.constant;
2769
2770 /* Store the maximum argument space used. It will be pushed by
2771 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2772 checking). */
2773
2774 if (needed > current_function_outgoing_args_size)
2775 current_function_outgoing_args_size = needed;
2776
2777 if (must_preallocate)
2778 {
2779 if (ACCUMULATE_OUTGOING_ARGS)
2780 {
2781 /* Since the stack pointer will never be pushed, it is
2782 possible for the evaluation of a parm to clobber
2783 something we have already written to the stack.
2784 Since most function calls on RISC machines do not use
2785 the stack, this is uncommon, but must work correctly.
2786
2787 Therefore, we save any area of the stack that was already
2788 written and that we are using. Here we set up to do this
2789 by making a new stack usage map from the old one. The
2790 actual save will be done by store_one_arg.
2791
2792 Another approach might be to try to reorder the argument
2793 evaluations to avoid this conflicting stack usage. */
2794
2795 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2796 /* Since we will be writing into the entire argument area,
2797 the map must be allocated for its entire size, not just
2798 the part that is the responsibility of the caller. */
2799 needed += reg_parm_stack_space;
2800 #endif
2801
2802 #ifdef ARGS_GROW_DOWNWARD
2803 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2804 needed + 1);
2805 #else
2806 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2807 needed);
2808 #endif
2809 stack_usage_map
2810 = (char *) alloca (highest_outgoing_arg_in_use);
2811
2812 if (initial_highest_arg_in_use)
2813 memcpy (stack_usage_map, initial_stack_usage_map,
2814 initial_highest_arg_in_use);
2815
2816 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2817 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2818 (highest_outgoing_arg_in_use
2819 - initial_highest_arg_in_use));
2820 needed = 0;
2821
2822 /* The address of the outgoing argument list must not be
2823 copied to a register here, because argblock would be left
2824 pointing to the wrong place after the call to
2825 allocate_dynamic_stack_space below. */
2826
2827 argblock = virtual_outgoing_args_rtx;
2828 }
2829 else
2830 {
2831 if (inhibit_defer_pop == 0)
2832 {
2833 /* Try to reuse some or all of the pending_stack_adjust
2834 to get this space. */
2835 needed
2836 = (combine_pending_stack_adjustment_and_call
2837 (unadjusted_args_size,
2838 &adjusted_args_size,
2839 preferred_unit_stack_boundary));
2840
2841 /* combine_pending_stack_adjustment_and_call computes
2842 an adjustment before the arguments are allocated.
2843 Account for them and see whether or not the stack
2844 needs to go up or down. */
2845 needed = unadjusted_args_size - needed;
2846
2847 if (needed < 0)
2848 {
2849 /* We're releasing stack space. */
2850 /* ??? We can avoid any adjustment at all if we're
2851 already aligned. FIXME. */
2852 pending_stack_adjust = -needed;
2853 do_pending_stack_adjust ();
2854 needed = 0;
2855 }
2856 else
2857 /* We need to allocate space. We'll do that in
2858 push_block below. */
2859 pending_stack_adjust = 0;
2860 }
2861
2862 /* Special case this because overhead of `push_block' in
2863 this case is non-trivial. */
2864 if (needed == 0)
2865 argblock = virtual_outgoing_args_rtx;
2866 else
2867 argblock = push_block (GEN_INT (needed), 0, 0);
2868
2869 /* We only really need to call `copy_to_reg' in the case
2870 where push insns are going to be used to pass ARGBLOCK
2871 to a function call in ARGS. In that case, the stack
2872 pointer changes value from the allocation point to the
2873 call point, and hence the value of
2874 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2875 as well always do it. */
2876 argblock = copy_to_reg (argblock);
2877
2878 /* The save/restore code in store_one_arg handles all
2879 cases except one: a constructor call (including a C
2880 function returning a BLKmode struct) to initialize
2881 an argument. */
2882 if (stack_arg_under_construction)
2883 {
2884 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2885 rtx push_size = GEN_INT (reg_parm_stack_space
2886 + adjusted_args_size.constant);
2887 #else
2888 rtx push_size = GEN_INT (adjusted_args_size.constant);
2889 #endif
2890 if (old_stack_level == 0)
2891 {
2892 emit_stack_save (SAVE_BLOCK, &old_stack_level,
2893 NULL_RTX);
2894 old_pending_adj = pending_stack_adjust;
2895 pending_stack_adjust = 0;
2896 /* stack_arg_under_construction says whether a stack
2897 arg is being constructed at the old stack level.
2898 Pushing the stack gets a clean outgoing argument
2899 block. */
2900 old_stack_arg_under_construction
2901 = stack_arg_under_construction;
2902 stack_arg_under_construction = 0;
2903 /* Make a new map for the new argument list. */
2904 stack_usage_map = (char *)
2905 alloca (highest_outgoing_arg_in_use);
2906 memset (stack_usage_map, 0, highest_outgoing_arg_in_use);
2907 highest_outgoing_arg_in_use = 0;
2908 }
2909 allocate_dynamic_stack_space (push_size, NULL_RTX,
2910 BITS_PER_UNIT);
2911 }
2912 /* If argument evaluation might modify the stack pointer,
2913 copy the address of the argument list to a register. */
2914 for (i = 0; i < num_actuals; i++)
2915 if (args[i].pass_on_stack)
2916 {
2917 argblock = copy_addr_to_reg (argblock);
2918 break;
2919 }
2920 }
2921 }
2922 }
2923
2924 compute_argument_addresses (args, argblock, num_actuals);
2925
2926 /* If we push args individually in reverse order, perform stack alignment
2927 before the first push (the last arg). */
2928 if (PUSH_ARGS_REVERSED && argblock == 0
2929 && adjusted_args_size.constant != unadjusted_args_size)
2930 {
2931 /* When the stack adjustment is pending, we get better code
2932 by combining the adjustments. */
2933 if (pending_stack_adjust
2934 && ! (flags & ECF_LIBCALL_BLOCK)
2935 && ! inhibit_defer_pop)
2936 {
2937 pending_stack_adjust
2938 = (combine_pending_stack_adjustment_and_call
2939 (unadjusted_args_size,
2940 &adjusted_args_size,
2941 preferred_unit_stack_boundary));
2942 do_pending_stack_adjust ();
2943 }
2944 else if (argblock == 0)
2945 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2946 - unadjusted_args_size));
2947 }
2948 /* Now that the stack is properly aligned, pops can't safely
2949 be deferred during the evaluation of the arguments. */
2950 NO_DEFER_POP;
2951
2952 funexp = rtx_for_function_call (fndecl, exp);
2953
2954 /* Figure out the register where the value, if any, will come back. */
2955 valreg = 0;
2956 if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
2957 && ! structure_value_addr)
2958 {
2959 if (pcc_struct_value)
2960 valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
2961 fndecl, (pass == 0));
2962 else
2963 valreg = hard_function_value (TREE_TYPE (exp), fndecl, (pass == 0));
2964 }
2965
2966 /* Precompute all register parameters. It isn't safe to compute anything
2967 once we have started filling any specific hard regs. */
2968 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2969
2970 #ifdef REG_PARM_STACK_SPACE
2971 /* Save the fixed argument area if it's part of the caller's frame and
2972 is clobbered by argument setup for this call. */
2973 if (ACCUMULATE_OUTGOING_ARGS && pass)
2974 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2975 &low_to_save, &high_to_save);
2976 #endif
2977
2978 /* Now store (and compute if necessary) all non-register parms.
2979 These come before register parms, since they can require block-moves,
2980 which could clobber the registers used for register parms.
2981 Parms which have partial registers are not stored here,
2982 but we do preallocate space here if they want that. */
2983
2984 for (i = 0; i < num_actuals; i++)
2985 if (args[i].reg == 0 || args[i].pass_on_stack)
2986 {
2987 rtx before_arg = get_last_insn ();
2988
2989 if (store_one_arg (&args[i], argblock, flags,
2990 adjusted_args_size.var != 0,
2991 reg_parm_stack_space)
2992 || (pass == 0
2993 && check_sibcall_argument_overlap (before_arg,
2994 &args[i], 1)))
2995 sibcall_failure = 1;
2996 }
2997
2998 /* If we have a parm that is passed in registers but not in memory
2999 and whose alignment does not permit a direct copy into registers,
3000 make a group of pseudos that correspond to each register that we
3001 will later fill. */
3002 if (STRICT_ALIGNMENT)
3003 store_unaligned_arguments_into_pseudos (args, num_actuals);
3004
3005 /* Now store any partially-in-registers parm.
3006 This is the last place a block-move can happen. */
3007 if (reg_parm_seen)
3008 for (i = 0; i < num_actuals; i++)
3009 if (args[i].partial != 0 && ! args[i].pass_on_stack)
3010 {
3011 rtx before_arg = get_last_insn ();
3012
3013 if (store_one_arg (&args[i], argblock, flags,
3014 adjusted_args_size.var != 0,
3015 reg_parm_stack_space)
3016 || (pass == 0
3017 && check_sibcall_argument_overlap (before_arg,
3018 &args[i], 1)))
3019 sibcall_failure = 1;
3020 }
3021
3022 /* If we pushed args in forward order, perform stack alignment
3023 after pushing the last arg. */
3024 if (!PUSH_ARGS_REVERSED && argblock == 0)
3025 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
3026 - unadjusted_args_size));
3027
3028 /* If register arguments require space on the stack and stack space
3029 was not preallocated, allocate stack space here for arguments
3030 passed in registers. */
3031 #ifdef OUTGOING_REG_PARM_STACK_SPACE
3032 if (!ACCUMULATE_OUTGOING_ARGS
3033 && must_preallocate == 0 && reg_parm_stack_space > 0)
3034 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
3035 #endif
3036
3037 /* Pass the function the address in which to return a
3038 structure value. */
3039 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
3040 {
3041 emit_move_insn (struct_value_rtx,
3042 force_reg (Pmode,
3043 force_operand (structure_value_addr,
3044 NULL_RTX)));
3045
3046 if (GET_CODE (struct_value_rtx) == REG)
3047 use_reg (&call_fusage, struct_value_rtx);
3048 }
3049
3050 funexp = prepare_call_address (funexp, fndecl, &call_fusage,
3051 reg_parm_seen, pass == 0);
3052
3053 load_register_parameters (args, num_actuals, &call_fusage, flags,
3054 pass == 0, &sibcall_failure);
3055
3056 /* Perform postincrements before actually calling the function. */
3057 emit_queue ();
3058
3059 /* Save a pointer to the last insn before the call, so that we can
3060 later safely search backwards to find the CALL_INSN. */
3061 before_call = get_last_insn ();
3062
3063 /* Set up next argument register. For sibling calls on machines
3064 with register windows this should be the incoming register. */
3065 #ifdef FUNCTION_INCOMING_ARG
3066 if (pass == 0)
3067 next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
3068 void_type_node, 1);
3069 else
3070 #endif
3071 next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
3072 void_type_node, 1);
3073
3074 /* All arguments and registers used for the call must be set up by
3075 now! */
3076
3077 /* Stack must be properly aligned now. */
3078 if (pass && stack_pointer_delta % preferred_unit_stack_boundary)
3079 abort ();
3080
3081 /* Generate the actual call instruction. */
3082 emit_call_1 (funexp, fndecl, funtype, unadjusted_args_size,
3083 adjusted_args_size.constant, struct_value_size,
3084 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
3085 flags, & args_so_far);
3086
3087 /* Verify that we've deallocated all the stack we used. */
3088 if (pass
3089 && old_stack_allocated != stack_pointer_delta - pending_stack_adjust)
3090 abort ();
3091
3092 /* If call is cse'able, make appropriate pair of reg-notes around it.
3093 Test valreg so we don't crash; may safely ignore `const'
3094 if return type is void. Disable for PARALLEL return values, because
3095 we have no way to move such values into a pseudo register. */
3096 if (pass && (flags & ECF_LIBCALL_BLOCK))
3097 {
3098 rtx insns;
3099
3100 if (valreg == 0 || GET_CODE (valreg) == PARALLEL)
3101 {
3102 insns = get_insns ();
3103 end_sequence ();
3104 emit_insn (insns);
3105 }
3106 else
3107 {
3108 rtx note = 0;
3109 rtx temp = gen_reg_rtx (GET_MODE (valreg));
3110
3111 /* Mark the return value as a pointer if needed. */
3112 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
3113 mark_reg_pointer (temp,
3114 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp))));
3115
3116 /* Construct an "equal form" for the value which mentions all the
3117 arguments in order as well as the function name. */
3118 for (i = 0; i < num_actuals; i++)
3119 note = gen_rtx_EXPR_LIST (VOIDmode,
3120 args[i].initial_value, note);
3121 note = gen_rtx_EXPR_LIST (VOIDmode, funexp, note);
3122
3123 insns = get_insns ();
3124 end_sequence ();
3125
3126 if (flags & ECF_PURE)
3127 note = gen_rtx_EXPR_LIST (VOIDmode,
3128 gen_rtx_USE (VOIDmode,
3129 gen_rtx_MEM (BLKmode,
3130 gen_rtx_SCRATCH (VOIDmode))),
3131 note);
3132
3133 emit_libcall_block (insns, temp, valreg, note);
3134
3135 valreg = temp;
3136 }
3137 }
3138 else if (pass && (flags & ECF_MALLOC))
3139 {
3140 rtx temp = gen_reg_rtx (GET_MODE (valreg));
3141 rtx last, insns;
3142
3143 /* The return value from a malloc-like function is a pointer. */
3144 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
3145 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
3146
3147 emit_move_insn (temp, valreg);
3148
3149 /* The return value from a malloc-like function can not alias
3150 anything else. */
3151 last = get_last_insn ();
3152 REG_NOTES (last) =
3153 gen_rtx_EXPR_LIST (REG_NOALIAS, temp, REG_NOTES (last));
3154
3155 /* Write out the sequence. */
3156 insns = get_insns ();
3157 end_sequence ();
3158 emit_insn (insns);
3159 valreg = temp;
3160 }
3161
3162 /* For calls to `setjmp', etc., inform flow.c it should complain
3163 if nonvolatile values are live. For functions that cannot return,
3164 inform flow that control does not fall through. */
3165
3166 if ((flags & (ECF_NORETURN | ECF_LONGJMP)) || pass == 0)
3167 {
3168 /* The barrier must be emitted
3169 immediately after the CALL_INSN. Some ports emit more
3170 than just a CALL_INSN above, so we must search for it here. */
3171
3172 rtx last = get_last_insn ();
3173 while (GET_CODE (last) != CALL_INSN)
3174 {
3175 last = PREV_INSN (last);
3176 /* There was no CALL_INSN? */
3177 if (last == before_call)
3178 abort ();
3179 }
3180
3181 emit_barrier_after (last);
3182 }
3183
3184 if (flags & ECF_LONGJMP)
3185 current_function_calls_longjmp = 1;
3186
3187 /* If this function is returning into a memory location marked as
3188 readonly, it means it is initializing that location. But we normally
3189 treat functions as not clobbering such locations, so we need to
3190 specify that this one does. */
3191 if (target != 0 && GET_CODE (target) == MEM
3192 && structure_value_addr != 0 && RTX_UNCHANGING_P (target))
3193 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
3194
3195 /* If value type not void, return an rtx for the value. */
3196
3197 /* If there are cleanups to be called, don't use a hard reg as target.
3198 We need to double check this and see if it matters anymore. */
3199 if (any_pending_cleanups (1))
3200 {
3201 if (target && REG_P (target)
3202 && REGNO (target) < FIRST_PSEUDO_REGISTER)
3203 target = 0;
3204 sibcall_failure = 1;
3205 }
3206
3207 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
3208 || ignore)
3209 target = const0_rtx;
3210 else if (structure_value_addr)
3211 {
3212 if (target == 0 || GET_CODE (target) != MEM)
3213 {
3214 target
3215 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
3216 memory_address (TYPE_MODE (TREE_TYPE (exp)),
3217 structure_value_addr));
3218 set_mem_attributes (target, exp, 1);
3219 }
3220 }
3221 else if (pcc_struct_value)
3222 {
3223 /* This is the special C++ case where we need to
3224 know what the true target was. We take care to
3225 never use this value more than once in one expression. */
3226 target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
3227 copy_to_reg (valreg));
3228 set_mem_attributes (target, exp, 1);
3229 }
3230 /* Handle calls that return values in multiple non-contiguous locations.
3231 The Irix 6 ABI has examples of this. */
3232 else if (GET_CODE (valreg) == PARALLEL)
3233 {
3234 if (target == 0)
3235 {
3236 /* This will only be assigned once, so it can be readonly. */
3237 tree nt = build_qualified_type (TREE_TYPE (exp),
3238 (TYPE_QUALS (TREE_TYPE (exp))
3239 | TYPE_QUAL_CONST));
3240
3241 target = assign_temp (nt, 0, 1, 1);
3242 preserve_temp_slots (target);
3243 }
3244
3245 if (! rtx_equal_p (target, valreg))
3246 emit_group_store (target, valreg,
3247 int_size_in_bytes (TREE_TYPE (exp)));
3248
3249 /* We can not support sibling calls for this case. */
3250 sibcall_failure = 1;
3251 }
3252 else if (target
3253 && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
3254 && GET_MODE (target) == GET_MODE (valreg))
3255 {
3256 /* TARGET and VALREG cannot be equal at this point because the
3257 latter would not have REG_FUNCTION_VALUE_P true, while the
3258 former would if it were referring to the same register.
3259
3260 If they refer to the same register, this move will be a no-op,
3261 except when function inlining is being done. */
3262 emit_move_insn (target, valreg);
3263 }
3264 else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
3265 {
3266 target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp));
3267
3268 /* We can not support sibling calls for this case. */
3269 sibcall_failure = 1;
3270 }
3271 else
3272 target = copy_to_reg (valreg);
3273
3274 #ifdef PROMOTE_FUNCTION_RETURN
3275 /* If we promoted this return value, make the proper SUBREG. TARGET
3276 might be const0_rtx here, so be careful. */
3277 if (GET_CODE (target) == REG
3278 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
3279 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
3280 {
3281 tree type = TREE_TYPE (exp);
3282 int unsignedp = TREE_UNSIGNED (type);
3283 int offset = 0;
3284
3285 /* If we don't promote as expected, something is wrong. */
3286 if (GET_MODE (target)
3287 != promote_mode (type, TYPE_MODE (type), &unsignedp, 1))
3288 abort ();
3289
3290 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
3291 && GET_MODE_SIZE (GET_MODE (target))
3292 > GET_MODE_SIZE (TYPE_MODE (type)))
3293 {
3294 offset = GET_MODE_SIZE (GET_MODE (target))
3295 - GET_MODE_SIZE (TYPE_MODE (type));
3296 if (! BYTES_BIG_ENDIAN)
3297 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
3298 else if (! WORDS_BIG_ENDIAN)
3299 offset %= UNITS_PER_WORD;
3300 }
3301 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
3302 SUBREG_PROMOTED_VAR_P (target) = 1;
3303 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
3304 }
3305 #endif
3306
3307 /* If size of args is variable or this was a constructor call for a stack
3308 argument, restore saved stack-pointer value. */
3309
3310 if (old_stack_level && ! (flags & ECF_SP_DEPRESSED))
3311 {
3312 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
3313 pending_stack_adjust = old_pending_adj;
3314 stack_arg_under_construction = old_stack_arg_under_construction;
3315 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3316 stack_usage_map = initial_stack_usage_map;
3317 sibcall_failure = 1;
3318 }
3319 else if (ACCUMULATE_OUTGOING_ARGS && pass)
3320 {
3321 #ifdef REG_PARM_STACK_SPACE
3322 if (save_area)
3323 {
3324 restore_fixed_argument_area (save_area, argblock,
3325 high_to_save, low_to_save);
3326 }
3327 #endif
3328
3329 /* If we saved any argument areas, restore them. */
3330 for (i = 0; i < num_actuals; i++)
3331 if (args[i].save_area)
3332 {
3333 enum machine_mode save_mode = GET_MODE (args[i].save_area);
3334 rtx stack_area
3335 = gen_rtx_MEM (save_mode,
3336 memory_address (save_mode,
3337 XEXP (args[i].stack_slot, 0)));
3338
3339 if (save_mode != BLKmode)
3340 emit_move_insn (stack_area, args[i].save_area);
3341 else
3342 emit_block_move (stack_area, args[i].save_area,
3343 GEN_INT (args[i].size.constant),
3344 BLOCK_OP_CALL_PARM);
3345 }
3346
3347 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3348 stack_usage_map = initial_stack_usage_map;
3349 }
3350
3351 /* If this was alloca, record the new stack level for nonlocal gotos.
3352 Check for the handler slots since we might not have a save area
3353 for non-local gotos. */
3354
3355 if ((flags & ECF_MAY_BE_ALLOCA) && nonlocal_goto_handler_slots != 0)
3356 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
3357
3358 /* Free up storage we no longer need. */
3359 for (i = 0; i < num_actuals; ++i)
3360 if (args[i].aligned_regs)
3361 free (args[i].aligned_regs);
3362
3363 if (pass == 0)
3364 {
3365 /* Undo the fake expand_start_target_temps we did earlier. If
3366 there had been any cleanups created, we've already set
3367 sibcall_failure. */
3368 expand_end_target_temps ();
3369 }
3370
3371 insns = get_insns ();
3372 end_sequence ();
3373
3374 if (pass == 0)
3375 {
3376 tail_call_insns = insns;
3377
3378 /* Restore the pending stack adjustment now that we have
3379 finished generating the sibling call sequence. */
3380
3381 pending_stack_adjust = save_pending_stack_adjust;
3382 stack_pointer_delta = save_stack_pointer_delta;
3383
3384 /* Prepare arg structure for next iteration. */
3385 for (i = 0; i < num_actuals; i++)
3386 {
3387 args[i].value = 0;
3388 args[i].aligned_regs = 0;
3389 args[i].stack = 0;
3390 }
3391
3392 sbitmap_free (stored_args_map);
3393 }
3394 else
3395 normal_call_insns = insns;
3396
3397 /* If something prevents making this a sibling call,
3398 zero out the sequence. */
3399 if (sibcall_failure)
3400 tail_call_insns = NULL_RTX;
3401 }
3402
3403 /* The function optimize_sibling_and_tail_recursive_calls doesn't
3404 handle CALL_PLACEHOLDERs inside other CALL_PLACEHOLDERs. This
3405 can happen if the arguments to this function call an inline
3406 function who's expansion contains another CALL_PLACEHOLDER.
3407
3408 If there are any C_Ps in any of these sequences, replace them
3409 with their normal call. */
3410
3411 for (insn = normal_call_insns; insn; insn = NEXT_INSN (insn))
3412 if (GET_CODE (insn) == CALL_INSN
3413 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
3414 replace_call_placeholder (insn, sibcall_use_normal);
3415
3416 for (insn = tail_call_insns; insn; insn = NEXT_INSN (insn))
3417 if (GET_CODE (insn) == CALL_INSN
3418 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
3419 replace_call_placeholder (insn, sibcall_use_normal);
3420
3421 for (insn = tail_recursion_insns; insn; insn = NEXT_INSN (insn))
3422 if (GET_CODE (insn) == CALL_INSN
3423 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
3424 replace_call_placeholder (insn, sibcall_use_normal);
3425
3426 /* If this was a potential tail recursion site, then emit a
3427 CALL_PLACEHOLDER with the normal and the tail recursion streams.
3428 One of them will be selected later. */
3429 if (tail_recursion_insns || tail_call_insns)
3430 {
3431 /* The tail recursion label must be kept around. We could expose
3432 its use in the CALL_PLACEHOLDER, but that creates unwanted edges
3433 and makes determining true tail recursion sites difficult.
3434
3435 So we set LABEL_PRESERVE_P here, then clear it when we select
3436 one of the call sequences after rtl generation is complete. */
3437 if (tail_recursion_insns)
3438 LABEL_PRESERVE_P (tail_recursion_label) = 1;
3439 emit_call_insn (gen_rtx_CALL_PLACEHOLDER (VOIDmode, normal_call_insns,
3440 tail_call_insns,
3441 tail_recursion_insns,
3442 tail_recursion_label));
3443 }
3444 else
3445 emit_insn (normal_call_insns);
3446
3447 currently_expanding_call--;
3448
3449 /* If this function returns with the stack pointer depressed, ensure
3450 this block saves and restores the stack pointer, show it was
3451 changed, and adjust for any outgoing arg space. */
3452 if (flags & ECF_SP_DEPRESSED)
3453 {
3454 clear_pending_stack_adjust ();
3455 emit_insn (gen_rtx (CLOBBER, VOIDmode, stack_pointer_rtx));
3456 emit_move_insn (virtual_stack_dynamic_rtx, stack_pointer_rtx);
3457 save_stack_pointer ();
3458 }
3459
3460 return target;
3461 }
3462 \f
3463 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3464 The RETVAL parameter specifies whether return value needs to be saved, other
3465 parameters are documented in the emit_library_call function below. */
3466
3467 static rtx
3468 emit_library_call_value_1 (retval, orgfun, value, fn_type, outmode, nargs, p)
3469 int retval;
3470 rtx orgfun;
3471 rtx value;
3472 enum libcall_type fn_type;
3473 enum machine_mode outmode;
3474 int nargs;
3475 va_list p;
3476 {
3477 /* Total size in bytes of all the stack-parms scanned so far. */
3478 struct args_size args_size;
3479 /* Size of arguments before any adjustments (such as rounding). */
3480 struct args_size original_args_size;
3481 int argnum;
3482 rtx fun;
3483 int inc;
3484 int count;
3485 struct args_size alignment_pad;
3486 rtx argblock = 0;
3487 CUMULATIVE_ARGS args_so_far;
3488 struct arg
3489 {
3490 rtx value;
3491 enum machine_mode mode;
3492 rtx reg;
3493 int partial;
3494 struct args_size offset;
3495 struct args_size size;
3496 rtx save_area;
3497 };
3498 struct arg *argvec;
3499 int old_inhibit_defer_pop = inhibit_defer_pop;
3500 rtx call_fusage = 0;
3501 rtx mem_value = 0;
3502 rtx valreg;
3503 int pcc_struct_value = 0;
3504 int struct_value_size = 0;
3505 int flags;
3506 int reg_parm_stack_space = 0;
3507 int needed;
3508 rtx before_call;
3509 tree tfom; /* type_for_mode (outmode, 0) */
3510
3511 #ifdef REG_PARM_STACK_SPACE
3512 /* Define the boundary of the register parm stack space that needs to be
3513 save, if any. */
3514 int low_to_save = -1, high_to_save = 0;
3515 rtx save_area = 0; /* Place that it is saved. */
3516 #endif
3517
3518 /* Size of the stack reserved for parameter registers. */
3519 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3520 char *initial_stack_usage_map = stack_usage_map;
3521
3522 #ifdef REG_PARM_STACK_SPACE
3523 #ifdef MAYBE_REG_PARM_STACK_SPACE
3524 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
3525 #else
3526 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3527 #endif
3528 #endif
3529
3530 /* By default, library functions can not throw. */
3531 flags = ECF_NOTHROW;
3532
3533 switch (fn_type)
3534 {
3535 case LCT_NORMAL:
3536 break;
3537 case LCT_CONST:
3538 flags |= ECF_CONST;
3539 break;
3540 case LCT_PURE:
3541 flags |= ECF_PURE;
3542 break;
3543 case LCT_CONST_MAKE_BLOCK:
3544 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
3545 break;
3546 case LCT_PURE_MAKE_BLOCK:
3547 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
3548 break;
3549 case LCT_NORETURN:
3550 flags |= ECF_NORETURN;
3551 break;
3552 case LCT_THROW:
3553 flags = ECF_NORETURN;
3554 break;
3555 case LCT_ALWAYS_RETURN:
3556 flags = ECF_ALWAYS_RETURN;
3557 break;
3558 case LCT_RETURNS_TWICE:
3559 flags = ECF_RETURNS_TWICE;
3560 break;
3561 }
3562 fun = orgfun;
3563
3564 /* Ensure current function's preferred stack boundary is at least
3565 what we need. */
3566 if (cfun->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3567 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3568
3569 /* If this kind of value comes back in memory,
3570 decide where in memory it should come back. */
3571 if (outmode != VOIDmode)
3572 {
3573 tfom = (*lang_hooks.types.type_for_mode) (outmode, 0);
3574 if (aggregate_value_p (tfom))
3575 {
3576 #ifdef PCC_STATIC_STRUCT_RETURN
3577 rtx pointer_reg
3578 = hard_function_value (build_pointer_type (tfom), 0, 0);
3579 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3580 pcc_struct_value = 1;
3581 if (value == 0)
3582 value = gen_reg_rtx (outmode);
3583 #else /* not PCC_STATIC_STRUCT_RETURN */
3584 struct_value_size = GET_MODE_SIZE (outmode);
3585 if (value != 0 && GET_CODE (value) == MEM)
3586 mem_value = value;
3587 else
3588 mem_value = assign_temp (tfom, 0, 1, 1);
3589 #endif
3590 /* This call returns a big structure. */
3591 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3592 }
3593 }
3594 else
3595 tfom = void_type_node;
3596
3597 /* ??? Unfinished: must pass the memory address as an argument. */
3598
3599 /* Copy all the libcall-arguments out of the varargs data
3600 and into a vector ARGVEC.
3601
3602 Compute how to pass each argument. We only support a very small subset
3603 of the full argument passing conventions to limit complexity here since
3604 library functions shouldn't have many args. */
3605
3606 argvec = (struct arg *) alloca ((nargs + 1) * sizeof (struct arg));
3607 memset ((char *) argvec, 0, (nargs + 1) * sizeof (struct arg));
3608
3609 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3610 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
3611 #else
3612 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0);
3613 #endif
3614
3615 args_size.constant = 0;
3616 args_size.var = 0;
3617
3618 count = 0;
3619
3620 /* Now we are about to start emitting insns that can be deleted
3621 if a libcall is deleted. */
3622 if (flags & ECF_LIBCALL_BLOCK)
3623 start_sequence ();
3624
3625 push_temp_slots ();
3626
3627 /* If there's a structure value address to be passed,
3628 either pass it in the special place, or pass it as an extra argument. */
3629 if (mem_value && struct_value_rtx == 0 && ! pcc_struct_value)
3630 {
3631 rtx addr = XEXP (mem_value, 0);
3632 nargs++;
3633
3634 /* Make sure it is a reasonable operand for a move or push insn. */
3635 if (GET_CODE (addr) != REG && GET_CODE (addr) != MEM
3636 && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
3637 addr = force_operand (addr, NULL_RTX);
3638
3639 argvec[count].value = addr;
3640 argvec[count].mode = Pmode;
3641 argvec[count].partial = 0;
3642
3643 argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
3644 #ifdef FUNCTION_ARG_PARTIAL_NREGS
3645 if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far, Pmode, NULL_TREE, 1))
3646 abort ();
3647 #endif
3648
3649 locate_and_pad_parm (Pmode, NULL_TREE,
3650 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3651 1,
3652 #else
3653 argvec[count].reg != 0,
3654 #endif
3655 NULL_TREE, &args_size, &argvec[count].offset,
3656 &argvec[count].size, &alignment_pad);
3657
3658 if (argvec[count].reg == 0 || argvec[count].partial != 0
3659 || reg_parm_stack_space > 0)
3660 args_size.constant += argvec[count].size.constant;
3661
3662 FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
3663
3664 count++;
3665 }
3666
3667 for (; count < nargs; count++)
3668 {
3669 rtx val = va_arg (p, rtx);
3670 enum machine_mode mode = va_arg (p, enum machine_mode);
3671
3672 /* We cannot convert the arg value to the mode the library wants here;
3673 must do it earlier where we know the signedness of the arg. */
3674 if (mode == BLKmode
3675 || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode))
3676 abort ();
3677
3678 /* On some machines, there's no way to pass a float to a library fcn.
3679 Pass it as a double instead. */
3680 #ifdef LIBGCC_NEEDS_DOUBLE
3681 if (LIBGCC_NEEDS_DOUBLE && mode == SFmode)
3682 val = convert_modes (DFmode, SFmode, val, 0), mode = DFmode;
3683 #endif
3684
3685 /* There's no need to call protect_from_queue, because
3686 either emit_move_insn or emit_push_insn will do that. */
3687
3688 /* Make sure it is a reasonable operand for a move or push insn. */
3689 if (GET_CODE (val) != REG && GET_CODE (val) != MEM
3690 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
3691 val = force_operand (val, NULL_RTX);
3692
3693 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
3694 if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1))
3695 {
3696 rtx slot;
3697 int must_copy = 1
3698 #ifdef FUNCTION_ARG_CALLEE_COPIES
3699 && ! FUNCTION_ARG_CALLEE_COPIES (args_so_far, mode,
3700 NULL_TREE, 1)
3701 #endif
3702 ;
3703
3704 /* loop.c won't look at CALL_INSN_FUNCTION_USAGE of const/pure
3705 functions, so we have to pretend this isn't such a function. */
3706 if (flags & ECF_LIBCALL_BLOCK)
3707 {
3708 rtx insns = get_insns ();
3709 end_sequence ();
3710 emit_insn (insns);
3711 }
3712 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3713
3714 /* If this was a CONST function, it is now PURE since
3715 it now reads memory. */
3716 if (flags & ECF_CONST)
3717 {
3718 flags &= ~ECF_CONST;
3719 flags |= ECF_PURE;
3720 }
3721
3722 if (GET_MODE (val) == MEM && ! must_copy)
3723 slot = val;
3724 else if (must_copy)
3725 {
3726 slot = assign_temp ((*lang_hooks.types.type_for_mode) (mode, 0),
3727 0, 1, 1);
3728 emit_move_insn (slot, val);
3729 }
3730 else
3731 {
3732 tree type = (*lang_hooks.types.type_for_mode) (mode, 0);
3733
3734 slot = gen_rtx_MEM (mode,
3735 expand_expr (build1 (ADDR_EXPR,
3736 build_pointer_type
3737 (type),
3738 make_tree (type, val)),
3739 NULL_RTX, VOIDmode, 0));
3740 }
3741
3742 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3743 gen_rtx_USE (VOIDmode, slot),
3744 call_fusage);
3745 if (must_copy)
3746 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3747 gen_rtx_CLOBBER (VOIDmode,
3748 slot),
3749 call_fusage);
3750
3751 mode = Pmode;
3752 val = force_operand (XEXP (slot, 0), NULL_RTX);
3753 }
3754 #endif
3755
3756 argvec[count].value = val;
3757 argvec[count].mode = mode;
3758
3759 argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
3760
3761 #ifdef FUNCTION_ARG_PARTIAL_NREGS
3762 argvec[count].partial
3763 = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1);
3764 #else
3765 argvec[count].partial = 0;
3766 #endif
3767
3768 locate_and_pad_parm (mode, NULL_TREE,
3769 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3770 1,
3771 #else
3772 argvec[count].reg != 0,
3773 #endif
3774 NULL_TREE, &args_size, &argvec[count].offset,
3775 &argvec[count].size, &alignment_pad);
3776
3777 if (argvec[count].size.var)
3778 abort ();
3779
3780 if (reg_parm_stack_space == 0 && argvec[count].partial)
3781 argvec[count].size.constant -= argvec[count].partial * UNITS_PER_WORD;
3782
3783 if (argvec[count].reg == 0 || argvec[count].partial != 0
3784 || reg_parm_stack_space > 0)
3785 args_size.constant += argvec[count].size.constant;
3786
3787 FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
3788 }
3789
3790 #ifdef FINAL_REG_PARM_STACK_SPACE
3791 reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant,
3792 args_size.var);
3793 #endif
3794 /* If this machine requires an external definition for library
3795 functions, write one out. */
3796 assemble_external_libcall (fun);
3797
3798 original_args_size = args_size;
3799 args_size.constant = (((args_size.constant
3800 + stack_pointer_delta
3801 + STACK_BYTES - 1)
3802 / STACK_BYTES
3803 * STACK_BYTES)
3804 - stack_pointer_delta);
3805
3806 args_size.constant = MAX (args_size.constant,
3807 reg_parm_stack_space);
3808
3809 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3810 args_size.constant -= reg_parm_stack_space;
3811 #endif
3812
3813 if (args_size.constant > current_function_outgoing_args_size)
3814 current_function_outgoing_args_size = args_size.constant;
3815
3816 if (ACCUMULATE_OUTGOING_ARGS)
3817 {
3818 /* Since the stack pointer will never be pushed, it is possible for
3819 the evaluation of a parm to clobber something we have already
3820 written to the stack. Since most function calls on RISC machines
3821 do not use the stack, this is uncommon, but must work correctly.
3822
3823 Therefore, we save any area of the stack that was already written
3824 and that we are using. Here we set up to do this by making a new
3825 stack usage map from the old one.
3826
3827 Another approach might be to try to reorder the argument
3828 evaluations to avoid this conflicting stack usage. */
3829
3830 needed = args_size.constant;
3831
3832 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3833 /* Since we will be writing into the entire argument area, the
3834 map must be allocated for its entire size, not just the part that
3835 is the responsibility of the caller. */
3836 needed += reg_parm_stack_space;
3837 #endif
3838
3839 #ifdef ARGS_GROW_DOWNWARD
3840 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3841 needed + 1);
3842 #else
3843 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3844 needed);
3845 #endif
3846 stack_usage_map = (char *) alloca (highest_outgoing_arg_in_use);
3847
3848 if (initial_highest_arg_in_use)
3849 memcpy (stack_usage_map, initial_stack_usage_map,
3850 initial_highest_arg_in_use);
3851
3852 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3853 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3854 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3855 needed = 0;
3856
3857 /* We must be careful to use virtual regs before they're instantiated,
3858 and real regs afterwards. Loop optimization, for example, can create
3859 new libcalls after we've instantiated the virtual regs, and if we
3860 use virtuals anyway, they won't match the rtl patterns. */
3861
3862 if (virtuals_instantiated)
3863 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3864 else
3865 argblock = virtual_outgoing_args_rtx;
3866 }
3867 else
3868 {
3869 if (!PUSH_ARGS)
3870 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3871 }
3872
3873 /* If we push args individually in reverse order, perform stack alignment
3874 before the first push (the last arg). */
3875 if (argblock == 0 && PUSH_ARGS_REVERSED)
3876 anti_adjust_stack (GEN_INT (args_size.constant
3877 - original_args_size.constant));
3878
3879 if (PUSH_ARGS_REVERSED)
3880 {
3881 inc = -1;
3882 argnum = nargs - 1;
3883 }
3884 else
3885 {
3886 inc = 1;
3887 argnum = 0;
3888 }
3889
3890 #ifdef REG_PARM_STACK_SPACE
3891 if (ACCUMULATE_OUTGOING_ARGS)
3892 {
3893 /* The argument list is the property of the called routine and it
3894 may clobber it. If the fixed area has been used for previous
3895 parameters, we must save and restore it.
3896
3897 Here we compute the boundary of the that needs to be saved, if any. */
3898
3899 #ifdef ARGS_GROW_DOWNWARD
3900 for (count = 0; count < reg_parm_stack_space + 1; count++)
3901 #else
3902 for (count = 0; count < reg_parm_stack_space; count++)
3903 #endif
3904 {
3905 if (count >= highest_outgoing_arg_in_use
3906 || stack_usage_map[count] == 0)
3907 continue;
3908
3909 if (low_to_save == -1)
3910 low_to_save = count;
3911
3912 high_to_save = count;
3913 }
3914
3915 if (low_to_save >= 0)
3916 {
3917 int num_to_save = high_to_save - low_to_save + 1;
3918 enum machine_mode save_mode
3919 = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
3920 rtx stack_area;
3921
3922 /* If we don't have the required alignment, must do this in BLKmode. */
3923 if ((low_to_save & (MIN (GET_MODE_SIZE (save_mode),
3924 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
3925 save_mode = BLKmode;
3926
3927 #ifdef ARGS_GROW_DOWNWARD
3928 stack_area = gen_rtx_MEM (save_mode,
3929 memory_address (save_mode,
3930 plus_constant (argblock,
3931 -high_to_save)));
3932 #else
3933 stack_area = gen_rtx_MEM (save_mode,
3934 memory_address (save_mode,
3935 plus_constant (argblock,
3936 low_to_save)));
3937 #endif
3938 if (save_mode == BLKmode)
3939 {
3940 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
3941 set_mem_align (save_area, PARM_BOUNDARY);
3942 emit_block_move (save_area, stack_area, GEN_INT (num_to_save),
3943 BLOCK_OP_CALL_PARM);
3944 }
3945 else
3946 {
3947 save_area = gen_reg_rtx (save_mode);
3948 emit_move_insn (save_area, stack_area);
3949 }
3950 }
3951 }
3952 #endif
3953
3954 /* Push the args that need to be pushed. */
3955
3956 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3957 are to be pushed. */
3958 for (count = 0; count < nargs; count++, argnum += inc)
3959 {
3960 enum machine_mode mode = argvec[argnum].mode;
3961 rtx val = argvec[argnum].value;
3962 rtx reg = argvec[argnum].reg;
3963 int partial = argvec[argnum].partial;
3964 int lower_bound = 0, upper_bound = 0, i;
3965
3966 if (! (reg != 0 && partial == 0))
3967 {
3968 if (ACCUMULATE_OUTGOING_ARGS)
3969 {
3970 /* If this is being stored into a pre-allocated, fixed-size,
3971 stack area, save any previous data at that location. */
3972
3973 #ifdef ARGS_GROW_DOWNWARD
3974 /* stack_slot is negative, but we want to index stack_usage_map
3975 with positive values. */
3976 upper_bound = -argvec[argnum].offset.constant + 1;
3977 lower_bound = upper_bound - argvec[argnum].size.constant;
3978 #else
3979 lower_bound = argvec[argnum].offset.constant;
3980 upper_bound = lower_bound + argvec[argnum].size.constant;
3981 #endif
3982
3983 for (i = lower_bound; i < upper_bound; i++)
3984 if (stack_usage_map[i]
3985 /* Don't store things in the fixed argument area at this
3986 point; it has already been saved. */
3987 && i > reg_parm_stack_space)
3988 break;
3989
3990 if (i != upper_bound)
3991 {
3992 /* We need to make a save area. See what mode we can make
3993 it. */
3994 enum machine_mode save_mode
3995 = mode_for_size (argvec[argnum].size.constant
3996 * BITS_PER_UNIT,
3997 MODE_INT, 1);
3998 rtx stack_area
3999 = gen_rtx_MEM
4000 (save_mode,
4001 memory_address
4002 (save_mode,
4003 plus_constant (argblock,
4004 argvec[argnum].offset.constant)));
4005 argvec[argnum].save_area = gen_reg_rtx (save_mode);
4006
4007 emit_move_insn (argvec[argnum].save_area, stack_area);
4008 }
4009 }
4010
4011 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, PARM_BOUNDARY,
4012 partial, reg, 0, argblock,
4013 GEN_INT (argvec[argnum].offset.constant),
4014 reg_parm_stack_space, ARGS_SIZE_RTX (alignment_pad));
4015
4016 /* Now mark the segment we just used. */
4017 if (ACCUMULATE_OUTGOING_ARGS)
4018 for (i = lower_bound; i < upper_bound; i++)
4019 stack_usage_map[i] = 1;
4020
4021 NO_DEFER_POP;
4022 }
4023 }
4024
4025 /* If we pushed args in forward order, perform stack alignment
4026 after pushing the last arg. */
4027 if (argblock == 0 && !PUSH_ARGS_REVERSED)
4028 anti_adjust_stack (GEN_INT (args_size.constant
4029 - original_args_size.constant));
4030
4031 if (PUSH_ARGS_REVERSED)
4032 argnum = nargs - 1;
4033 else
4034 argnum = 0;
4035
4036 fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0, 0);
4037
4038 /* Now load any reg parms into their regs. */
4039
4040 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
4041 are to be pushed. */
4042 for (count = 0; count < nargs; count++, argnum += inc)
4043 {
4044 rtx val = argvec[argnum].value;
4045 rtx reg = argvec[argnum].reg;
4046 int partial = argvec[argnum].partial;
4047
4048 /* Handle calls that pass values in multiple non-contiguous
4049 locations. The PA64 has examples of this for library calls. */
4050 if (reg != 0 && GET_CODE (reg) == PARALLEL)
4051 emit_group_load (reg, val, GET_MODE_SIZE (GET_MODE (val)));
4052 else if (reg != 0 && partial == 0)
4053 emit_move_insn (reg, val);
4054
4055 NO_DEFER_POP;
4056 }
4057
4058 /* Any regs containing parms remain in use through the call. */
4059 for (count = 0; count < nargs; count++)
4060 {
4061 rtx reg = argvec[count].reg;
4062 if (reg != 0 && GET_CODE (reg) == PARALLEL)
4063 use_group_regs (&call_fusage, reg);
4064 else if (reg != 0)
4065 use_reg (&call_fusage, reg);
4066 }
4067
4068 /* Pass the function the address in which to return a structure value. */
4069 if (mem_value != 0 && struct_value_rtx != 0 && ! pcc_struct_value)
4070 {
4071 emit_move_insn (struct_value_rtx,
4072 force_reg (Pmode,
4073 force_operand (XEXP (mem_value, 0),
4074 NULL_RTX)));
4075 if (GET_CODE (struct_value_rtx) == REG)
4076 use_reg (&call_fusage, struct_value_rtx);
4077 }
4078
4079 /* Don't allow popping to be deferred, since then
4080 cse'ing of library calls could delete a call and leave the pop. */
4081 NO_DEFER_POP;
4082 valreg = (mem_value == 0 && outmode != VOIDmode
4083 ? hard_libcall_value (outmode) : NULL_RTX);
4084
4085 /* Stack must be properly aligned now. */
4086 if (stack_pointer_delta & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1))
4087 abort ();
4088
4089 before_call = get_last_insn ();
4090
4091 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
4092 will set inhibit_defer_pop to that value. */
4093 /* The return type is needed to decide how many bytes the function pops.
4094 Signedness plays no role in that, so for simplicity, we pretend it's
4095 always signed. We also assume that the list of arguments passed has
4096 no impact, so we pretend it is unknown. */
4097
4098 emit_call_1 (fun,
4099 get_identifier (XSTR (orgfun, 0)),
4100 build_function_type (tfom, NULL_TREE),
4101 original_args_size.constant, args_size.constant,
4102 struct_value_size,
4103 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
4104 valreg,
4105 old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
4106
4107 /* For calls to `setjmp', etc., inform flow.c it should complain
4108 if nonvolatile values are live. For functions that cannot return,
4109 inform flow that control does not fall through. */
4110
4111 if (flags & (ECF_NORETURN | ECF_LONGJMP))
4112 {
4113 /* The barrier note must be emitted
4114 immediately after the CALL_INSN. Some ports emit more than
4115 just a CALL_INSN above, so we must search for it here. */
4116
4117 rtx last = get_last_insn ();
4118 while (GET_CODE (last) != CALL_INSN)
4119 {
4120 last = PREV_INSN (last);
4121 /* There was no CALL_INSN? */
4122 if (last == before_call)
4123 abort ();
4124 }
4125
4126 emit_barrier_after (last);
4127 }
4128
4129 /* Now restore inhibit_defer_pop to its actual original value. */
4130 OK_DEFER_POP;
4131
4132 /* If call is cse'able, make appropriate pair of reg-notes around it.
4133 Test valreg so we don't crash; may safely ignore `const'
4134 if return type is void. Disable for PARALLEL return values, because
4135 we have no way to move such values into a pseudo register. */
4136 if (flags & ECF_LIBCALL_BLOCK)
4137 {
4138 rtx insns;
4139
4140 if (valreg == 0 || GET_CODE (valreg) == PARALLEL)
4141 {
4142 insns = get_insns ();
4143 end_sequence ();
4144 emit_insn (insns);
4145 }
4146 else
4147 {
4148 rtx note = 0;
4149 rtx temp = gen_reg_rtx (GET_MODE (valreg));
4150 int i;
4151
4152 /* Construct an "equal form" for the value which mentions all the
4153 arguments in order as well as the function name. */
4154 for (i = 0; i < nargs; i++)
4155 note = gen_rtx_EXPR_LIST (VOIDmode, argvec[i].value, note);
4156 note = gen_rtx_EXPR_LIST (VOIDmode, fun, note);
4157
4158 insns = get_insns ();
4159 end_sequence ();
4160
4161 if (flags & ECF_PURE)
4162 note = gen_rtx_EXPR_LIST (VOIDmode,
4163 gen_rtx_USE (VOIDmode,
4164 gen_rtx_MEM (BLKmode,
4165 gen_rtx_SCRATCH (VOIDmode))),
4166 note);
4167
4168 emit_libcall_block (insns, temp, valreg, note);
4169
4170 valreg = temp;
4171 }
4172 }
4173 pop_temp_slots ();
4174
4175 /* Copy the value to the right place. */
4176 if (outmode != VOIDmode && retval)
4177 {
4178 if (mem_value)
4179 {
4180 if (value == 0)
4181 value = mem_value;
4182 if (value != mem_value)
4183 emit_move_insn (value, mem_value);
4184 }
4185 else if (value != 0)
4186 emit_move_insn (value, valreg);
4187 else
4188 value = valreg;
4189 }
4190
4191 if (ACCUMULATE_OUTGOING_ARGS)
4192 {
4193 #ifdef REG_PARM_STACK_SPACE
4194 if (save_area)
4195 {
4196 enum machine_mode save_mode = GET_MODE (save_area);
4197 #ifdef ARGS_GROW_DOWNWARD
4198 rtx stack_area
4199 = gen_rtx_MEM (save_mode,
4200 memory_address (save_mode,
4201 plus_constant (argblock,
4202 - high_to_save)));
4203 #else
4204 rtx stack_area
4205 = gen_rtx_MEM (save_mode,
4206 memory_address (save_mode,
4207 plus_constant (argblock, low_to_save)));
4208 #endif
4209
4210 set_mem_align (stack_area, PARM_BOUNDARY);
4211 if (save_mode != BLKmode)
4212 emit_move_insn (stack_area, save_area);
4213 else
4214 emit_block_move (stack_area, save_area,
4215 GEN_INT (high_to_save - low_to_save + 1),
4216 BLOCK_OP_CALL_PARM);
4217 }
4218 #endif
4219
4220 /* If we saved any argument areas, restore them. */
4221 for (count = 0; count < nargs; count++)
4222 if (argvec[count].save_area)
4223 {
4224 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
4225 rtx stack_area
4226 = gen_rtx_MEM (save_mode,
4227 memory_address
4228 (save_mode,
4229 plus_constant (argblock,
4230 argvec[count].offset.constant)));
4231
4232 emit_move_insn (stack_area, argvec[count].save_area);
4233 }
4234
4235 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4236 stack_usage_map = initial_stack_usage_map;
4237 }
4238
4239 return value;
4240
4241 }
4242 \f
4243 /* Output a library call to function FUN (a SYMBOL_REF rtx)
4244 (emitting the queue unless NO_QUEUE is nonzero),
4245 for a value of mode OUTMODE,
4246 with NARGS different arguments, passed as alternating rtx values
4247 and machine_modes to convert them to.
4248 The rtx values should have been passed through protect_from_queue already.
4249
4250 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for `const'
4251 calls, LCT_PURE for `pure' calls, LCT_CONST_MAKE_BLOCK for `const' calls
4252 which should be enclosed in REG_LIBCALL/REG_RETVAL notes,
4253 LCT_PURE_MAKE_BLOCK for `purep' calls which should be enclosed in
4254 REG_LIBCALL/REG_RETVAL notes with extra (use (memory (scratch)),
4255 or other LCT_ value for other types of library calls. */
4256
4257 void
4258 emit_library_call VPARAMS((rtx orgfun, enum libcall_type fn_type,
4259 enum machine_mode outmode, int nargs, ...))
4260 {
4261 VA_OPEN (p, nargs);
4262 VA_FIXEDARG (p, rtx, orgfun);
4263 VA_FIXEDARG (p, int, fn_type);
4264 VA_FIXEDARG (p, enum machine_mode, outmode);
4265 VA_FIXEDARG (p, int, nargs);
4266
4267 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
4268
4269 VA_CLOSE (p);
4270 }
4271 \f
4272 /* Like emit_library_call except that an extra argument, VALUE,
4273 comes second and says where to store the result.
4274 (If VALUE is zero, this function chooses a convenient way
4275 to return the value.
4276
4277 This function returns an rtx for where the value is to be found.
4278 If VALUE is nonzero, VALUE is returned. */
4279
4280 rtx
4281 emit_library_call_value VPARAMS((rtx orgfun, rtx value,
4282 enum libcall_type fn_type,
4283 enum machine_mode outmode, int nargs, ...))
4284 {
4285 rtx result;
4286
4287 VA_OPEN (p, nargs);
4288 VA_FIXEDARG (p, rtx, orgfun);
4289 VA_FIXEDARG (p, rtx, value);
4290 VA_FIXEDARG (p, int, fn_type);
4291 VA_FIXEDARG (p, enum machine_mode, outmode);
4292 VA_FIXEDARG (p, int, nargs);
4293
4294 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
4295 nargs, p);
4296
4297 VA_CLOSE (p);
4298
4299 return result;
4300 }
4301 \f
4302 /* Store a single argument for a function call
4303 into the register or memory area where it must be passed.
4304 *ARG describes the argument value and where to pass it.
4305
4306 ARGBLOCK is the address of the stack-block for all the arguments,
4307 or 0 on a machine where arguments are pushed individually.
4308
4309 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
4310 so must be careful about how the stack is used.
4311
4312 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
4313 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
4314 that we need not worry about saving and restoring the stack.
4315
4316 FNDECL is the declaration of the function we are calling.
4317
4318 Return nonzero if this arg should cause sibcall failure,
4319 zero otherwise. */
4320
4321 static int
4322 store_one_arg (arg, argblock, flags, variable_size, reg_parm_stack_space)
4323 struct arg_data *arg;
4324 rtx argblock;
4325 int flags;
4326 int variable_size ATTRIBUTE_UNUSED;
4327 int reg_parm_stack_space;
4328 {
4329 tree pval = arg->tree_value;
4330 rtx reg = 0;
4331 int partial = 0;
4332 int used = 0;
4333 int i, lower_bound = 0, upper_bound = 0;
4334 int sibcall_failure = 0;
4335
4336 if (TREE_CODE (pval) == ERROR_MARK)
4337 return 1;
4338
4339 /* Push a new temporary level for any temporaries we make for
4340 this argument. */
4341 push_temp_slots ();
4342
4343 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
4344 {
4345 /* If this is being stored into a pre-allocated, fixed-size, stack area,
4346 save any previous data at that location. */
4347 if (argblock && ! variable_size && arg->stack)
4348 {
4349 #ifdef ARGS_GROW_DOWNWARD
4350 /* stack_slot is negative, but we want to index stack_usage_map
4351 with positive values. */
4352 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4353 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
4354 else
4355 upper_bound = 0;
4356
4357 lower_bound = upper_bound - arg->size.constant;
4358 #else
4359 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4360 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
4361 else
4362 lower_bound = 0;
4363
4364 upper_bound = lower_bound + arg->size.constant;
4365 #endif
4366
4367 for (i = lower_bound; i < upper_bound; i++)
4368 if (stack_usage_map[i]
4369 /* Don't store things in the fixed argument area at this point;
4370 it has already been saved. */
4371 && i > reg_parm_stack_space)
4372 break;
4373
4374 if (i != upper_bound)
4375 {
4376 /* We need to make a save area. See what mode we can make it. */
4377 enum machine_mode save_mode
4378 = mode_for_size (arg->size.constant * BITS_PER_UNIT, MODE_INT, 1);
4379 rtx stack_area
4380 = gen_rtx_MEM (save_mode,
4381 memory_address (save_mode,
4382 XEXP (arg->stack_slot, 0)));
4383
4384 if (save_mode == BLKmode)
4385 {
4386 tree ot = TREE_TYPE (arg->tree_value);
4387 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
4388 | TYPE_QUAL_CONST));
4389
4390 arg->save_area = assign_temp (nt, 0, 1, 1);
4391 preserve_temp_slots (arg->save_area);
4392 emit_block_move (validize_mem (arg->save_area), stack_area,
4393 expr_size (arg->tree_value),
4394 BLOCK_OP_CALL_PARM);
4395 }
4396 else
4397 {
4398 arg->save_area = gen_reg_rtx (save_mode);
4399 emit_move_insn (arg->save_area, stack_area);
4400 }
4401 }
4402 }
4403 /* Now that we have saved any slots that will be overwritten by this
4404 store, mark all slots this store will use. We must do this before
4405 we actually expand the argument since the expansion itself may
4406 trigger library calls which might need to use the same stack slot. */
4407 if (argblock && ! variable_size && arg->stack)
4408 for (i = lower_bound; i < upper_bound; i++)
4409 stack_usage_map[i] = 1;
4410 }
4411
4412 /* If this isn't going to be placed on both the stack and in registers,
4413 set up the register and number of words. */
4414 if (! arg->pass_on_stack)
4415 {
4416 if (flags & ECF_SIBCALL)
4417 reg = arg->tail_call_reg;
4418 else
4419 reg = arg->reg;
4420 partial = arg->partial;
4421 }
4422
4423 if (reg != 0 && partial == 0)
4424 /* Being passed entirely in a register. We shouldn't be called in
4425 this case. */
4426 abort ();
4427
4428 /* If this arg needs special alignment, don't load the registers
4429 here. */
4430 if (arg->n_aligned_regs != 0)
4431 reg = 0;
4432
4433 /* If this is being passed partially in a register, we can't evaluate
4434 it directly into its stack slot. Otherwise, we can. */
4435 if (arg->value == 0)
4436 {
4437 /* stack_arg_under_construction is nonzero if a function argument is
4438 being evaluated directly into the outgoing argument list and
4439 expand_call must take special action to preserve the argument list
4440 if it is called recursively.
4441
4442 For scalar function arguments stack_usage_map is sufficient to
4443 determine which stack slots must be saved and restored. Scalar
4444 arguments in general have pass_on_stack == 0.
4445
4446 If this argument is initialized by a function which takes the
4447 address of the argument (a C++ constructor or a C function
4448 returning a BLKmode structure), then stack_usage_map is
4449 insufficient and expand_call must push the stack around the
4450 function call. Such arguments have pass_on_stack == 1.
4451
4452 Note that it is always safe to set stack_arg_under_construction,
4453 but this generates suboptimal code if set when not needed. */
4454
4455 if (arg->pass_on_stack)
4456 stack_arg_under_construction++;
4457
4458 arg->value = expand_expr (pval,
4459 (partial
4460 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4461 ? NULL_RTX : arg->stack,
4462 VOIDmode, 0);
4463
4464 /* If we are promoting object (or for any other reason) the mode
4465 doesn't agree, convert the mode. */
4466
4467 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4468 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4469 arg->value, arg->unsignedp);
4470
4471 if (arg->pass_on_stack)
4472 stack_arg_under_construction--;
4473 }
4474
4475 /* Don't allow anything left on stack from computation
4476 of argument to alloca. */
4477 if (flags & ECF_MAY_BE_ALLOCA)
4478 do_pending_stack_adjust ();
4479
4480 if (arg->value == arg->stack)
4481 /* If the value is already in the stack slot, we are done. */
4482 ;
4483 else if (arg->mode != BLKmode)
4484 {
4485 int size;
4486
4487 /* Argument is a scalar, not entirely passed in registers.
4488 (If part is passed in registers, arg->partial says how much
4489 and emit_push_insn will take care of putting it there.)
4490
4491 Push it, and if its size is less than the
4492 amount of space allocated to it,
4493 also bump stack pointer by the additional space.
4494 Note that in C the default argument promotions
4495 will prevent such mismatches. */
4496
4497 size = GET_MODE_SIZE (arg->mode);
4498 /* Compute how much space the push instruction will push.
4499 On many machines, pushing a byte will advance the stack
4500 pointer by a halfword. */
4501 #ifdef PUSH_ROUNDING
4502 size = PUSH_ROUNDING (size);
4503 #endif
4504 used = size;
4505
4506 /* Compute how much space the argument should get:
4507 round up to a multiple of the alignment for arguments. */
4508 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4509 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4510 / (PARM_BOUNDARY / BITS_PER_UNIT))
4511 * (PARM_BOUNDARY / BITS_PER_UNIT));
4512
4513 /* This isn't already where we want it on the stack, so put it there.
4514 This can either be done with push or copy insns. */
4515 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4516 PARM_BOUNDARY, partial, reg, used - size, argblock,
4517 ARGS_SIZE_RTX (arg->offset), reg_parm_stack_space,
4518 ARGS_SIZE_RTX (arg->alignment_pad));
4519
4520 /* Unless this is a partially-in-register argument, the argument is now
4521 in the stack. */
4522 if (partial == 0)
4523 arg->value = arg->stack;
4524 }
4525 else
4526 {
4527 /* BLKmode, at least partly to be pushed. */
4528
4529 unsigned int parm_align;
4530 int excess;
4531 rtx size_rtx;
4532
4533 /* Pushing a nonscalar.
4534 If part is passed in registers, PARTIAL says how much
4535 and emit_push_insn will take care of putting it there. */
4536
4537 /* Round its size up to a multiple
4538 of the allocation unit for arguments. */
4539
4540 if (arg->size.var != 0)
4541 {
4542 excess = 0;
4543 size_rtx = ARGS_SIZE_RTX (arg->size);
4544 }
4545 else
4546 {
4547 /* PUSH_ROUNDING has no effect on us, because
4548 emit_push_insn for BLKmode is careful to avoid it. */
4549 excess = (arg->size.constant - int_size_in_bytes (TREE_TYPE (pval))
4550 + partial * UNITS_PER_WORD);
4551 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4552 NULL_RTX, TYPE_MODE (sizetype), 0);
4553 }
4554
4555 /* Some types will require stricter alignment, which will be
4556 provided for elsewhere in argument layout. */
4557 parm_align = MAX (PARM_BOUNDARY, TYPE_ALIGN (TREE_TYPE (pval)));
4558
4559 /* When an argument is padded down, the block is aligned to
4560 PARM_BOUNDARY, but the actual argument isn't. */
4561 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4562 {
4563 if (arg->size.var)
4564 parm_align = BITS_PER_UNIT;
4565 else if (excess)
4566 {
4567 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4568 parm_align = MIN (parm_align, excess_align);
4569 }
4570 }
4571
4572 if ((flags & ECF_SIBCALL) && GET_CODE (arg->value) == MEM)
4573 {
4574 /* emit_push_insn might not work properly if arg->value and
4575 argblock + arg->offset areas overlap. */
4576 rtx x = arg->value;
4577 int i = 0;
4578
4579 if (XEXP (x, 0) == current_function_internal_arg_pointer
4580 || (GET_CODE (XEXP (x, 0)) == PLUS
4581 && XEXP (XEXP (x, 0), 0) ==
4582 current_function_internal_arg_pointer
4583 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
4584 {
4585 if (XEXP (x, 0) != current_function_internal_arg_pointer)
4586 i = INTVAL (XEXP (XEXP (x, 0), 1));
4587
4588 /* expand_call should ensure this */
4589 if (arg->offset.var || GET_CODE (size_rtx) != CONST_INT)
4590 abort ();
4591
4592 if (arg->offset.constant > i)
4593 {
4594 if (arg->offset.constant < i + INTVAL (size_rtx))
4595 sibcall_failure = 1;
4596 }
4597 else if (arg->offset.constant < i)
4598 {
4599 if (i < arg->offset.constant + INTVAL (size_rtx))
4600 sibcall_failure = 1;
4601 }
4602 }
4603 }
4604
4605 /* Special handling is required if part of the parameter lies in the
4606 register parameter area. The argument may be copied into the stack
4607 slot using memcpy(), but the original contents of the register
4608 parameter area will be restored after the memcpy() call.
4609
4610 To ensure that the part that lies in the register parameter area
4611 is copied correctly, we emit a separate push for that part. This
4612 push should be small enough to avoid a call to memcpy(). */
4613 #ifndef STACK_PARMS_IN_REG_PARM_AREA
4614 if (arg->reg && arg->pass_on_stack)
4615 #else
4616 if (1)
4617 #endif
4618 {
4619 if (arg->offset.constant < reg_parm_stack_space && arg->offset.var)
4620 error ("variable offset is passed partially in stack and in reg");
4621 else if (arg->offset.constant < reg_parm_stack_space && arg->size.var)
4622 error ("variable size is passed partially in stack and in reg");
4623 else if (arg->offset.constant < reg_parm_stack_space
4624 && ((arg->offset.constant + arg->size.constant)
4625 > reg_parm_stack_space))
4626 {
4627 rtx size_rtx1 = GEN_INT (reg_parm_stack_space - arg->offset.constant);
4628 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx1,
4629 parm_align, partial, reg, excess, argblock,
4630 ARGS_SIZE_RTX (arg->offset), reg_parm_stack_space,
4631 ARGS_SIZE_RTX (arg->alignment_pad));
4632 }
4633 }
4634
4635
4636 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4637 parm_align, partial, reg, excess, argblock,
4638 ARGS_SIZE_RTX (arg->offset), reg_parm_stack_space,
4639 ARGS_SIZE_RTX (arg->alignment_pad));
4640
4641 /* Unless this is a partially-in-register argument, the argument is now
4642 in the stack.
4643
4644 ??? Unlike the case above, in which we want the actual
4645 address of the data, so that we can load it directly into a
4646 register, here we want the address of the stack slot, so that
4647 it's properly aligned for word-by-word copying or something
4648 like that. It's not clear that this is always correct. */
4649 if (partial == 0)
4650 arg->value = arg->stack_slot;
4651 }
4652
4653 /* Once we have pushed something, pops can't safely
4654 be deferred during the rest of the arguments. */
4655 NO_DEFER_POP;
4656
4657 /* ANSI doesn't require a sequence point here,
4658 but PCC has one, so this will avoid some problems. */
4659 emit_queue ();
4660
4661 /* Free any temporary slots made in processing this argument. Show
4662 that we might have taken the address of something and pushed that
4663 as an operand. */
4664 preserve_temp_slots (NULL_RTX);
4665 free_temp_slots ();
4666 pop_temp_slots ();
4667
4668 return sibcall_failure;
4669 }
4670
4671
4672 /* Nonzero if we do not know how to pass TYPE solely in registers.
4673 We cannot do so in the following cases:
4674
4675 - if the type has variable size
4676 - if the type is marked as addressable (it is required to be constructed
4677 into the stack)
4678 - if the padding and mode of the type is such that a copy into a register
4679 would put it into the wrong part of the register.
4680
4681 Which padding can't be supported depends on the byte endianness.
4682
4683 A value in a register is implicitly padded at the most significant end.
4684 On a big-endian machine, that is the lower end in memory.
4685 So a value padded in memory at the upper end can't go in a register.
4686 For a little-endian machine, the reverse is true. */
4687
4688 bool
4689 default_must_pass_in_stack (mode, type)
4690 enum machine_mode mode;
4691 tree type;
4692 {
4693 if (!type)
4694 return true;
4695
4696 /* If the type has variable size... */
4697 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4698 return true;
4699
4700 /* If the type is marked as addressable (it is required
4701 to be constructed into the stack)... */
4702 if (TREE_ADDRESSABLE (type))
4703 return true;
4704
4705 /* If the padding and mode of the type is such that a copy into
4706 a register would put it into the wrong part of the register. */
4707 if (mode == BLKmode
4708 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4709 && (FUNCTION_ARG_PADDING (mode, type)
4710 == (BYTES_BIG_ENDIAN ? upward : downward)))
4711 return true;
4712
4713 return false;
4714 }