calls.c (precompute_register_parameters): Force all PARALLELs into pseudo registers.
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "flags.h"
29 #include "expr.h"
30 #include "optabs.h"
31 #include "libfuncs.h"
32 #include "function.h"
33 #include "regs.h"
34 #include "toplev.h"
35 #include "output.h"
36 #include "tm_p.h"
37 #include "timevar.h"
38 #include "sbitmap.h"
39 #include "langhooks.h"
40 #include "target.h"
41 #include "cgraph.h"
42 #include "except.h"
43
44 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
45 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
46
47 /* Data structure and subroutines used within expand_call. */
48
49 struct arg_data
50 {
51 /* Tree node for this argument. */
52 tree tree_value;
53 /* Mode for value; TYPE_MODE unless promoted. */
54 enum machine_mode mode;
55 /* Current RTL value for argument, or 0 if it isn't precomputed. */
56 rtx value;
57 /* Initially-compute RTL value for argument; only for const functions. */
58 rtx initial_value;
59 /* Register to pass this argument in, 0 if passed on stack, or an
60 PARALLEL if the arg is to be copied into multiple non-contiguous
61 registers. */
62 rtx reg;
63 /* Register to pass this argument in when generating tail call sequence.
64 This is not the same register as for normal calls on machines with
65 register windows. */
66 rtx tail_call_reg;
67 /* If REG was promoted from the actual mode of the argument expression,
68 indicates whether the promotion is sign- or zero-extended. */
69 int unsignedp;
70 /* Number of registers to use. 0 means put the whole arg in registers.
71 Also 0 if not passed in registers. */
72 int partial;
73 /* Nonzero if argument must be passed on stack.
74 Note that some arguments may be passed on the stack
75 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
76 pass_on_stack identifies arguments that *cannot* go in registers. */
77 int pass_on_stack;
78 /* Some fields packaged up for locate_and_pad_parm. */
79 struct locate_and_pad_arg_data locate;
80 /* Location on the stack at which parameter should be stored. The store
81 has already been done if STACK == VALUE. */
82 rtx stack;
83 /* Location on the stack of the start of this argument slot. This can
84 differ from STACK if this arg pads downward. This location is known
85 to be aligned to FUNCTION_ARG_BOUNDARY. */
86 rtx stack_slot;
87 /* Place that this stack area has been saved, if needed. */
88 rtx save_area;
89 /* If an argument's alignment does not permit direct copying into registers,
90 copy in smaller-sized pieces into pseudos. These are stored in a
91 block pointed to by this field. The next field says how many
92 word-sized pseudos we made. */
93 rtx *aligned_regs;
94 int n_aligned_regs;
95 };
96
97 /* A vector of one char per byte of stack space. A byte if nonzero if
98 the corresponding stack location has been used.
99 This vector is used to prevent a function call within an argument from
100 clobbering any stack already set up. */
101 static char *stack_usage_map;
102
103 /* Size of STACK_USAGE_MAP. */
104 static int highest_outgoing_arg_in_use;
105
106 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
107 stack location's tail call argument has been already stored into the stack.
108 This bitmap is used to prevent sibling call optimization if function tries
109 to use parent's incoming argument slots when they have been already
110 overwritten with tail call arguments. */
111 static sbitmap stored_args_map;
112
113 /* stack_arg_under_construction is nonzero when an argument may be
114 initialized with a constructor call (including a C function that
115 returns a BLKmode struct) and expand_call must take special action
116 to make sure the object being constructed does not overlap the
117 argument list for the constructor call. */
118 int stack_arg_under_construction;
119
120 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
121 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
122 CUMULATIVE_ARGS *);
123 static void precompute_register_parameters (int, struct arg_data *, int *);
124 static int store_one_arg (struct arg_data *, rtx, int, int, int);
125 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
126 static int finalize_must_preallocate (int, int, struct arg_data *,
127 struct args_size *);
128 static void precompute_arguments (int, int, struct arg_data *);
129 static int compute_argument_block_size (int, struct args_size *, int);
130 static void initialize_argument_information (int, struct arg_data *,
131 struct args_size *, int, tree,
132 tree, CUMULATIVE_ARGS *, int,
133 rtx *, int *, int *, int *,
134 bool *, bool);
135 static void compute_argument_addresses (struct arg_data *, rtx, int);
136 static rtx rtx_for_function_call (tree, tree);
137 static void load_register_parameters (struct arg_data *, int, rtx *, int,
138 int, int *);
139 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
140 enum machine_mode, int, va_list);
141 static int special_function_p (tree, int);
142 static int check_sibcall_argument_overlap_1 (rtx);
143 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
144
145 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
146 unsigned int);
147 static bool shift_returned_value (tree, rtx *);
148 static tree split_complex_values (tree);
149 static tree split_complex_types (tree);
150
151 #ifdef REG_PARM_STACK_SPACE
152 static rtx save_fixed_argument_area (int, rtx, int *, int *);
153 static void restore_fixed_argument_area (rtx, rtx, int, int);
154 #endif
155 \f
156 /* Force FUNEXP into a form suitable for the address of a CALL,
157 and return that as an rtx. Also load the static chain register
158 if FNDECL is a nested function.
159
160 CALL_FUSAGE points to a variable holding the prospective
161 CALL_INSN_FUNCTION_USAGE information. */
162
163 rtx
164 prepare_call_address (rtx funexp, rtx static_chain_value,
165 rtx *call_fusage, int reg_parm_seen, int sibcallp)
166 {
167 /* Make a valid memory address and copy constants through pseudo-regs,
168 but not for a constant address if -fno-function-cse. */
169 if (GET_CODE (funexp) != SYMBOL_REF)
170 /* If we are using registers for parameters, force the
171 function address into a register now. */
172 funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
173 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
174 : memory_address (FUNCTION_MODE, funexp));
175 else if (! sibcallp)
176 {
177 #ifndef NO_FUNCTION_CSE
178 if (optimize && ! flag_no_function_cse)
179 funexp = force_reg (Pmode, funexp);
180 #endif
181 }
182
183 if (static_chain_value != 0)
184 {
185 static_chain_value = convert_memory_address (Pmode, static_chain_value);
186 emit_move_insn (static_chain_rtx, static_chain_value);
187
188 if (REG_P (static_chain_rtx))
189 use_reg (call_fusage, static_chain_rtx);
190 }
191
192 return funexp;
193 }
194
195 /* Generate instructions to call function FUNEXP,
196 and optionally pop the results.
197 The CALL_INSN is the first insn generated.
198
199 FNDECL is the declaration node of the function. This is given to the
200 macro RETURN_POPS_ARGS to determine whether this function pops its own args.
201
202 FUNTYPE is the data type of the function. This is given to the macro
203 RETURN_POPS_ARGS to determine whether this function pops its own args.
204 We used to allow an identifier for library functions, but that doesn't
205 work when the return type is an aggregate type and the calling convention
206 says that the pointer to this aggregate is to be popped by the callee.
207
208 STACK_SIZE is the number of bytes of arguments on the stack,
209 ROUNDED_STACK_SIZE is that number rounded up to
210 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
211 both to put into the call insn and to generate explicit popping
212 code if necessary.
213
214 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
215 It is zero if this call doesn't want a structure value.
216
217 NEXT_ARG_REG is the rtx that results from executing
218 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
219 just after all the args have had their registers assigned.
220 This could be whatever you like, but normally it is the first
221 arg-register beyond those used for args in this call,
222 or 0 if all the arg-registers are used in this call.
223 It is passed on to `gen_call' so you can put this info in the call insn.
224
225 VALREG is a hard register in which a value is returned,
226 or 0 if the call does not return a value.
227
228 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
229 the args to this call were processed.
230 We restore `inhibit_defer_pop' to that value.
231
232 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
233 denote registers used by the called function. */
234
235 static void
236 emit_call_1 (rtx funexp, tree fntree, tree fndecl ATTRIBUTE_UNUSED,
237 tree funtype ATTRIBUTE_UNUSED,
238 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
239 HOST_WIDE_INT rounded_stack_size,
240 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
241 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
242 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
243 CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
244 {
245 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
246 rtx call_insn;
247 int already_popped = 0;
248 HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
249 #if defined (HAVE_call) && defined (HAVE_call_value)
250 rtx struct_value_size_rtx;
251 struct_value_size_rtx = GEN_INT (struct_value_size);
252 #endif
253
254 #ifdef CALL_POPS_ARGS
255 n_popped += CALL_POPS_ARGS (* args_so_far);
256 #endif
257
258 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
259 and we don't want to load it into a register as an optimization,
260 because prepare_call_address already did it if it should be done. */
261 if (GET_CODE (funexp) != SYMBOL_REF)
262 funexp = memory_address (FUNCTION_MODE, funexp);
263
264 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
265 if ((ecf_flags & ECF_SIBCALL)
266 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
267 && (n_popped > 0 || stack_size == 0))
268 {
269 rtx n_pop = GEN_INT (n_popped);
270 rtx pat;
271
272 /* If this subroutine pops its own args, record that in the call insn
273 if possible, for the sake of frame pointer elimination. */
274
275 if (valreg)
276 pat = GEN_SIBCALL_VALUE_POP (valreg,
277 gen_rtx_MEM (FUNCTION_MODE, funexp),
278 rounded_stack_size_rtx, next_arg_reg,
279 n_pop);
280 else
281 pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
282 rounded_stack_size_rtx, next_arg_reg, n_pop);
283
284 emit_call_insn (pat);
285 already_popped = 1;
286 }
287 else
288 #endif
289
290 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
291 /* If the target has "call" or "call_value" insns, then prefer them
292 if no arguments are actually popped. If the target does not have
293 "call" or "call_value" insns, then we must use the popping versions
294 even if the call has no arguments to pop. */
295 #if defined (HAVE_call) && defined (HAVE_call_value)
296 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
297 && n_popped > 0 && ! (ecf_flags & ECF_SP_DEPRESSED))
298 #else
299 if (HAVE_call_pop && HAVE_call_value_pop)
300 #endif
301 {
302 rtx n_pop = GEN_INT (n_popped);
303 rtx pat;
304
305 /* If this subroutine pops its own args, record that in the call insn
306 if possible, for the sake of frame pointer elimination. */
307
308 if (valreg)
309 pat = GEN_CALL_VALUE_POP (valreg,
310 gen_rtx_MEM (FUNCTION_MODE, funexp),
311 rounded_stack_size_rtx, next_arg_reg, n_pop);
312 else
313 pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
314 rounded_stack_size_rtx, next_arg_reg, n_pop);
315
316 emit_call_insn (pat);
317 already_popped = 1;
318 }
319 else
320 #endif
321
322 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
323 if ((ecf_flags & ECF_SIBCALL)
324 && HAVE_sibcall && HAVE_sibcall_value)
325 {
326 if (valreg)
327 emit_call_insn (GEN_SIBCALL_VALUE (valreg,
328 gen_rtx_MEM (FUNCTION_MODE, funexp),
329 rounded_stack_size_rtx,
330 next_arg_reg, NULL_RTX));
331 else
332 emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
333 rounded_stack_size_rtx, next_arg_reg,
334 struct_value_size_rtx));
335 }
336 else
337 #endif
338
339 #if defined (HAVE_call) && defined (HAVE_call_value)
340 if (HAVE_call && HAVE_call_value)
341 {
342 if (valreg)
343 emit_call_insn (GEN_CALL_VALUE (valreg,
344 gen_rtx_MEM (FUNCTION_MODE, funexp),
345 rounded_stack_size_rtx, next_arg_reg,
346 NULL_RTX));
347 else
348 emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
349 rounded_stack_size_rtx, next_arg_reg,
350 struct_value_size_rtx));
351 }
352 else
353 #endif
354 gcc_unreachable ();
355
356 /* Find the call we just emitted. */
357 call_insn = last_call_insn ();
358
359 /* Mark memory as used for "pure" function call. */
360 if (ecf_flags & ECF_PURE)
361 call_fusage
362 = gen_rtx_EXPR_LIST
363 (VOIDmode,
364 gen_rtx_USE (VOIDmode,
365 gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))),
366 call_fusage);
367
368 /* Put the register usage information there. */
369 add_function_usage_to (call_insn, call_fusage);
370
371 /* If this is a const call, then set the insn's unchanging bit. */
372 if (ecf_flags & (ECF_CONST | ECF_PURE))
373 CONST_OR_PURE_CALL_P (call_insn) = 1;
374
375 /* If this call can't throw, attach a REG_EH_REGION reg note to that
376 effect. */
377 if (ecf_flags & ECF_NOTHROW)
378 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, const0_rtx,
379 REG_NOTES (call_insn));
380 else
381 {
382 int rn = lookup_stmt_eh_region (fntree);
383
384 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't
385 throw, which we already took care of. */
386 if (rn > 0)
387 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
388 REG_NOTES (call_insn));
389 note_current_region_may_contain_throw ();
390 }
391
392 if (ecf_flags & ECF_NORETURN)
393 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_NORETURN, const0_rtx,
394 REG_NOTES (call_insn));
395 if (ecf_flags & ECF_ALWAYS_RETURN)
396 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_ALWAYS_RETURN, const0_rtx,
397 REG_NOTES (call_insn));
398
399 if (ecf_flags & ECF_RETURNS_TWICE)
400 {
401 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_SETJMP, const0_rtx,
402 REG_NOTES (call_insn));
403 current_function_calls_setjmp = 1;
404 }
405
406 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
407
408 /* Restore this now, so that we do defer pops for this call's args
409 if the context of the call as a whole permits. */
410 inhibit_defer_pop = old_inhibit_defer_pop;
411
412 if (n_popped > 0)
413 {
414 if (!already_popped)
415 CALL_INSN_FUNCTION_USAGE (call_insn)
416 = gen_rtx_EXPR_LIST (VOIDmode,
417 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
418 CALL_INSN_FUNCTION_USAGE (call_insn));
419 rounded_stack_size -= n_popped;
420 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
421 stack_pointer_delta -= n_popped;
422 }
423
424 if (!ACCUMULATE_OUTGOING_ARGS)
425 {
426 /* If returning from the subroutine does not automatically pop the args,
427 we need an instruction to pop them sooner or later.
428 Perhaps do it now; perhaps just record how much space to pop later.
429
430 If returning from the subroutine does pop the args, indicate that the
431 stack pointer will be changed. */
432
433 if (rounded_stack_size != 0)
434 {
435 if (ecf_flags & (ECF_SP_DEPRESSED | ECF_NORETURN | ECF_LONGJMP))
436 /* Just pretend we did the pop. */
437 stack_pointer_delta -= rounded_stack_size;
438 else if (flag_defer_pop && inhibit_defer_pop == 0
439 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
440 pending_stack_adjust += rounded_stack_size;
441 else
442 adjust_stack (rounded_stack_size_rtx);
443 }
444 }
445 /* When we accumulate outgoing args, we must avoid any stack manipulations.
446 Restore the stack pointer to its original value now. Usually
447 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
448 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
449 popping variants of functions exist as well.
450
451 ??? We may optimize similar to defer_pop above, but it is
452 probably not worthwhile.
453
454 ??? It will be worthwhile to enable combine_stack_adjustments even for
455 such machines. */
456 else if (n_popped)
457 anti_adjust_stack (GEN_INT (n_popped));
458 }
459
460 /* Determine if the function identified by NAME and FNDECL is one with
461 special properties we wish to know about.
462
463 For example, if the function might return more than one time (setjmp), then
464 set RETURNS_TWICE to a nonzero value.
465
466 Similarly set LONGJMP for if the function is in the longjmp family.
467
468 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
469 space from the stack such as alloca. */
470
471 static int
472 special_function_p (tree fndecl, int flags)
473 {
474 if (fndecl && DECL_NAME (fndecl)
475 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
476 /* Exclude functions not at the file scope, or not `extern',
477 since they are not the magic functions we would otherwise
478 think they are.
479 FIXME: this should be handled with attributes, not with this
480 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
481 because you can declare fork() inside a function if you
482 wish. */
483 && (DECL_CONTEXT (fndecl) == NULL_TREE
484 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
485 && TREE_PUBLIC (fndecl))
486 {
487 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
488 const char *tname = name;
489
490 /* We assume that alloca will always be called by name. It
491 makes no sense to pass it as a pointer-to-function to
492 anything that does not understand its behavior. */
493 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
494 && name[0] == 'a'
495 && ! strcmp (name, "alloca"))
496 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
497 && name[0] == '_'
498 && ! strcmp (name, "__builtin_alloca"))))
499 flags |= ECF_MAY_BE_ALLOCA;
500
501 /* Disregard prefix _, __ or __x. */
502 if (name[0] == '_')
503 {
504 if (name[1] == '_' && name[2] == 'x')
505 tname += 3;
506 else if (name[1] == '_')
507 tname += 2;
508 else
509 tname += 1;
510 }
511
512 if (tname[0] == 's')
513 {
514 if ((tname[1] == 'e'
515 && (! strcmp (tname, "setjmp")
516 || ! strcmp (tname, "setjmp_syscall")))
517 || (tname[1] == 'i'
518 && ! strcmp (tname, "sigsetjmp"))
519 || (tname[1] == 'a'
520 && ! strcmp (tname, "savectx")))
521 flags |= ECF_RETURNS_TWICE;
522
523 if (tname[1] == 'i'
524 && ! strcmp (tname, "siglongjmp"))
525 flags |= ECF_LONGJMP;
526 }
527 else if ((tname[0] == 'q' && tname[1] == 's'
528 && ! strcmp (tname, "qsetjmp"))
529 || (tname[0] == 'v' && tname[1] == 'f'
530 && ! strcmp (tname, "vfork")))
531 flags |= ECF_RETURNS_TWICE;
532
533 else if (tname[0] == 'l' && tname[1] == 'o'
534 && ! strcmp (tname, "longjmp"))
535 flags |= ECF_LONGJMP;
536 }
537
538 return flags;
539 }
540
541 /* Return nonzero when tree represent call to longjmp. */
542
543 int
544 setjmp_call_p (tree fndecl)
545 {
546 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
547 }
548
549 /* Return true when exp contains alloca call. */
550 bool
551 alloca_call_p (tree exp)
552 {
553 if (TREE_CODE (exp) == CALL_EXPR
554 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
555 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
556 == FUNCTION_DECL)
557 && (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
558 0) & ECF_MAY_BE_ALLOCA))
559 return true;
560 return false;
561 }
562
563 /* Detect flags (function attributes) from the function decl or type node. */
564
565 int
566 flags_from_decl_or_type (tree exp)
567 {
568 int flags = 0;
569 tree type = exp;
570
571 if (DECL_P (exp))
572 {
573 struct cgraph_rtl_info *i = cgraph_rtl_info (exp);
574 type = TREE_TYPE (exp);
575
576 if (i)
577 {
578 if (i->pure_function)
579 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
580 if (i->const_function)
581 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
582 }
583
584 /* The function exp may have the `malloc' attribute. */
585 if (DECL_IS_MALLOC (exp))
586 flags |= ECF_MALLOC;
587
588 /* The function exp may have the `pure' attribute. */
589 if (DECL_IS_PURE (exp))
590 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
591
592 if (TREE_NOTHROW (exp))
593 flags |= ECF_NOTHROW;
594
595 if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
596 flags |= ECF_LIBCALL_BLOCK | ECF_CONST;
597
598 flags = special_function_p (exp, flags);
599 }
600 else if (TYPE_P (exp) && TYPE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
601 flags |= ECF_CONST;
602
603 if (TREE_THIS_VOLATILE (exp))
604 flags |= ECF_NORETURN;
605
606 /* Mark if the function returns with the stack pointer depressed. We
607 cannot consider it pure or constant in that case. */
608 if (TREE_CODE (type) == FUNCTION_TYPE && TYPE_RETURNS_STACK_DEPRESSED (type))
609 {
610 flags |= ECF_SP_DEPRESSED;
611 flags &= ~(ECF_PURE | ECF_CONST | ECF_LIBCALL_BLOCK);
612 }
613
614 return flags;
615 }
616
617 /* Detect flags from a CALL_EXPR. */
618
619 int
620 call_expr_flags (tree t)
621 {
622 int flags;
623 tree decl = get_callee_fndecl (t);
624
625 if (decl)
626 flags = flags_from_decl_or_type (decl);
627 else
628 {
629 t = TREE_TYPE (TREE_OPERAND (t, 0));
630 if (t && TREE_CODE (t) == POINTER_TYPE)
631 flags = flags_from_decl_or_type (TREE_TYPE (t));
632 else
633 flags = 0;
634 }
635
636 return flags;
637 }
638
639 /* Precompute all register parameters as described by ARGS, storing values
640 into fields within the ARGS array.
641
642 NUM_ACTUALS indicates the total number elements in the ARGS array.
643
644 Set REG_PARM_SEEN if we encounter a register parameter. */
645
646 static void
647 precompute_register_parameters (int num_actuals, struct arg_data *args,
648 int *reg_parm_seen)
649 {
650 int i;
651
652 *reg_parm_seen = 0;
653
654 for (i = 0; i < num_actuals; i++)
655 if (args[i].reg != 0 && ! args[i].pass_on_stack)
656 {
657 *reg_parm_seen = 1;
658
659 if (args[i].value == 0)
660 {
661 push_temp_slots ();
662 args[i].value = expand_expr (args[i].tree_value, NULL_RTX,
663 VOIDmode, 0);
664 preserve_temp_slots (args[i].value);
665 pop_temp_slots ();
666 }
667
668 /* If the value is a non-legitimate constant, force it into a
669 pseudo now. TLS symbols sometimes need a call to resolve. */
670 if (CONSTANT_P (args[i].value)
671 && !LEGITIMATE_CONSTANT_P (args[i].value))
672 args[i].value = force_reg (args[i].mode, args[i].value);
673
674 /* If we are to promote the function arg to a wider mode,
675 do it now. */
676
677 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
678 args[i].value
679 = convert_modes (args[i].mode,
680 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
681 args[i].value, args[i].unsignedp);
682
683 /* If we're going to have to load the value by parts, pull the
684 parts into pseudos. The part extraction process can involve
685 non-trivial computation. */
686 if (GET_CODE (args[i].reg) == PARALLEL)
687 {
688 tree type = TREE_TYPE (args[i].tree_value);
689 args[i].value
690 = emit_group_load_into_temps (args[i].reg, args[i].value,
691 type, int_size_in_bytes (type));
692 }
693
694 /* If the value is expensive, and we are inside an appropriately
695 short loop, put the value into a pseudo and then put the pseudo
696 into the hard reg.
697
698 For small register classes, also do this if this call uses
699 register parameters. This is to avoid reload conflicts while
700 loading the parameters registers. */
701
702 else if ((! (REG_P (args[i].value)
703 || (GET_CODE (args[i].value) == SUBREG
704 && REG_P (SUBREG_REG (args[i].value)))))
705 && args[i].mode != BLKmode
706 && rtx_cost (args[i].value, SET) > COSTS_N_INSNS (1)
707 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
708 || optimize))
709 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
710 }
711 }
712
713 #ifdef REG_PARM_STACK_SPACE
714
715 /* The argument list is the property of the called routine and it
716 may clobber it. If the fixed area has been used for previous
717 parameters, we must save and restore it. */
718
719 static rtx
720 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
721 {
722 int low;
723 int high;
724
725 /* Compute the boundary of the area that needs to be saved, if any. */
726 high = reg_parm_stack_space;
727 #ifdef ARGS_GROW_DOWNWARD
728 high += 1;
729 #endif
730 if (high > highest_outgoing_arg_in_use)
731 high = highest_outgoing_arg_in_use;
732
733 for (low = 0; low < high; low++)
734 if (stack_usage_map[low] != 0)
735 {
736 int num_to_save;
737 enum machine_mode save_mode;
738 int delta;
739 rtx stack_area;
740 rtx save_area;
741
742 while (stack_usage_map[--high] == 0)
743 ;
744
745 *low_to_save = low;
746 *high_to_save = high;
747
748 num_to_save = high - low + 1;
749 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
750
751 /* If we don't have the required alignment, must do this
752 in BLKmode. */
753 if ((low & (MIN (GET_MODE_SIZE (save_mode),
754 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
755 save_mode = BLKmode;
756
757 #ifdef ARGS_GROW_DOWNWARD
758 delta = -high;
759 #else
760 delta = low;
761 #endif
762 stack_area = gen_rtx_MEM (save_mode,
763 memory_address (save_mode,
764 plus_constant (argblock,
765 delta)));
766
767 set_mem_align (stack_area, PARM_BOUNDARY);
768 if (save_mode == BLKmode)
769 {
770 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
771 emit_block_move (validize_mem (save_area), stack_area,
772 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
773 }
774 else
775 {
776 save_area = gen_reg_rtx (save_mode);
777 emit_move_insn (save_area, stack_area);
778 }
779
780 return save_area;
781 }
782
783 return NULL_RTX;
784 }
785
786 static void
787 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
788 {
789 enum machine_mode save_mode = GET_MODE (save_area);
790 int delta;
791 rtx stack_area;
792
793 #ifdef ARGS_GROW_DOWNWARD
794 delta = -high_to_save;
795 #else
796 delta = low_to_save;
797 #endif
798 stack_area = gen_rtx_MEM (save_mode,
799 memory_address (save_mode,
800 plus_constant (argblock, delta)));
801 set_mem_align (stack_area, PARM_BOUNDARY);
802
803 if (save_mode != BLKmode)
804 emit_move_insn (stack_area, save_area);
805 else
806 emit_block_move (stack_area, validize_mem (save_area),
807 GEN_INT (high_to_save - low_to_save + 1),
808 BLOCK_OP_CALL_PARM);
809 }
810 #endif /* REG_PARM_STACK_SPACE */
811
812 /* If any elements in ARGS refer to parameters that are to be passed in
813 registers, but not in memory, and whose alignment does not permit a
814 direct copy into registers. Copy the values into a group of pseudos
815 which we will later copy into the appropriate hard registers.
816
817 Pseudos for each unaligned argument will be stored into the array
818 args[argnum].aligned_regs. The caller is responsible for deallocating
819 the aligned_regs array if it is nonzero. */
820
821 static void
822 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
823 {
824 int i, j;
825
826 for (i = 0; i < num_actuals; i++)
827 if (args[i].reg != 0 && ! args[i].pass_on_stack
828 && args[i].mode == BLKmode
829 && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
830 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
831 {
832 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
833 int nregs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
834 int endian_correction = 0;
835
836 args[i].n_aligned_regs = args[i].partial ? args[i].partial : nregs;
837 args[i].aligned_regs = xmalloc (sizeof (rtx) * args[i].n_aligned_regs);
838
839 /* Structures smaller than a word are normally aligned to the
840 least significant byte. On a BYTES_BIG_ENDIAN machine,
841 this means we must skip the empty high order bytes when
842 calculating the bit offset. */
843 if (bytes < UNITS_PER_WORD
844 #ifdef BLOCK_REG_PADDING
845 && (BLOCK_REG_PADDING (args[i].mode,
846 TREE_TYPE (args[i].tree_value), 1)
847 == downward)
848 #else
849 && BYTES_BIG_ENDIAN
850 #endif
851 )
852 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
853
854 for (j = 0; j < args[i].n_aligned_regs; j++)
855 {
856 rtx reg = gen_reg_rtx (word_mode);
857 rtx word = operand_subword_force (args[i].value, j, BLKmode);
858 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
859
860 args[i].aligned_regs[j] = reg;
861 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
862 word_mode, word_mode);
863
864 /* There is no need to restrict this code to loading items
865 in TYPE_ALIGN sized hunks. The bitfield instructions can
866 load up entire word sized registers efficiently.
867
868 ??? This may not be needed anymore.
869 We use to emit a clobber here but that doesn't let later
870 passes optimize the instructions we emit. By storing 0 into
871 the register later passes know the first AND to zero out the
872 bitfield being set in the register is unnecessary. The store
873 of 0 will be deleted as will at least the first AND. */
874
875 emit_move_insn (reg, const0_rtx);
876
877 bytes -= bitsize / BITS_PER_UNIT;
878 store_bit_field (reg, bitsize, endian_correction, word_mode,
879 word);
880 }
881 }
882 }
883
884 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
885 ACTPARMS.
886
887 NUM_ACTUALS is the total number of parameters.
888
889 N_NAMED_ARGS is the total number of named arguments.
890
891 FNDECL is the tree code for the target of this call (if known)
892
893 ARGS_SO_FAR holds state needed by the target to know where to place
894 the next argument.
895
896 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
897 for arguments which are passed in registers.
898
899 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
900 and may be modified by this routine.
901
902 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
903 flags which may may be modified by this routine.
904
905 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
906 that requires allocation of stack space.
907
908 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
909 the thunked-to function. */
910
911 static void
912 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
913 struct arg_data *args,
914 struct args_size *args_size,
915 int n_named_args ATTRIBUTE_UNUSED,
916 tree actparms, tree fndecl,
917 CUMULATIVE_ARGS *args_so_far,
918 int reg_parm_stack_space,
919 rtx *old_stack_level, int *old_pending_adj,
920 int *must_preallocate, int *ecf_flags,
921 bool *may_tailcall, bool call_from_thunk_p)
922 {
923 /* 1 if scanning parms front to back, -1 if scanning back to front. */
924 int inc;
925
926 /* Count arg position in order args appear. */
927 int argpos;
928
929 int i;
930 tree p;
931
932 args_size->constant = 0;
933 args_size->var = 0;
934
935 /* In this loop, we consider args in the order they are written.
936 We fill up ARGS from the front or from the back if necessary
937 so that in any case the first arg to be pushed ends up at the front. */
938
939 if (PUSH_ARGS_REVERSED)
940 {
941 i = num_actuals - 1, inc = -1;
942 /* In this case, must reverse order of args
943 so that we compute and push the last arg first. */
944 }
945 else
946 {
947 i = 0, inc = 1;
948 }
949
950 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
951 for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++)
952 {
953 tree type = TREE_TYPE (TREE_VALUE (p));
954 int unsignedp;
955 enum machine_mode mode;
956
957 args[i].tree_value = TREE_VALUE (p);
958
959 /* Replace erroneous argument with constant zero. */
960 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
961 args[i].tree_value = integer_zero_node, type = integer_type_node;
962
963 /* If TYPE is a transparent union, pass things the way we would
964 pass the first field of the union. We have already verified that
965 the modes are the same. */
966 if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
967 type = TREE_TYPE (TYPE_FIELDS (type));
968
969 /* Decide where to pass this arg.
970
971 args[i].reg is nonzero if all or part is passed in registers.
972
973 args[i].partial is nonzero if part but not all is passed in registers,
974 and the exact value says how many words are passed in registers.
975
976 args[i].pass_on_stack is nonzero if the argument must at least be
977 computed on the stack. It may then be loaded back into registers
978 if args[i].reg is nonzero.
979
980 These decisions are driven by the FUNCTION_... macros and must agree
981 with those made by function.c. */
982
983 /* See if this argument should be passed by invisible reference. */
984 if (pass_by_reference (args_so_far, TYPE_MODE (type),
985 type, argpos < n_named_args))
986 {
987 bool callee_copies;
988 tree base;
989
990 callee_copies
991 = reference_callee_copied (args_so_far, TYPE_MODE (type),
992 type, argpos < n_named_args);
993
994 /* If we're compiling a thunk, pass through invisible references
995 instead of making a copy. */
996 if (call_from_thunk_p
997 || (callee_copies
998 && !TREE_ADDRESSABLE (type)
999 && (base = get_base_address (args[i].tree_value))
1000 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1001 {
1002 /* We can't use sibcalls if a callee-copied argument is
1003 stored in the current function's frame. */
1004 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1005 *may_tailcall = false;
1006
1007 args[i].tree_value = build_fold_addr_expr (args[i].tree_value);
1008 type = TREE_TYPE (args[i].tree_value);
1009
1010 *ecf_flags &= ~(ECF_CONST | ECF_LIBCALL_BLOCK);
1011 }
1012 else
1013 {
1014 /* We make a copy of the object and pass the address to the
1015 function being called. */
1016 rtx copy;
1017
1018 if (!COMPLETE_TYPE_P (type)
1019 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
1020 || (flag_stack_check && ! STACK_CHECK_BUILTIN
1021 && (0 < compare_tree_int (TYPE_SIZE_UNIT (type),
1022 STACK_CHECK_MAX_VAR_SIZE))))
1023 {
1024 /* This is a variable-sized object. Make space on the stack
1025 for it. */
1026 rtx size_rtx = expr_size (TREE_VALUE (p));
1027
1028 if (*old_stack_level == 0)
1029 {
1030 emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
1031 *old_pending_adj = pending_stack_adjust;
1032 pending_stack_adjust = 0;
1033 }
1034
1035 copy = gen_rtx_MEM (BLKmode,
1036 allocate_dynamic_stack_space
1037 (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
1038 set_mem_attributes (copy, type, 1);
1039 }
1040 else
1041 copy = assign_temp (type, 0, 1, 0);
1042
1043 store_expr (args[i].tree_value, copy, 0);
1044
1045 if (callee_copies)
1046 *ecf_flags &= ~(ECF_CONST | ECF_LIBCALL_BLOCK);
1047 else
1048 *ecf_flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1049
1050 args[i].tree_value
1051 = build_fold_addr_expr (make_tree (type, copy));
1052 type = TREE_TYPE (args[i].tree_value);
1053 *may_tailcall = false;
1054 }
1055 }
1056
1057 mode = TYPE_MODE (type);
1058 unsignedp = TYPE_UNSIGNED (type);
1059
1060 if (targetm.calls.promote_function_args (fndecl ? TREE_TYPE (fndecl) : 0))
1061 mode = promote_mode (type, mode, &unsignedp, 1);
1062
1063 args[i].unsignedp = unsignedp;
1064 args[i].mode = mode;
1065
1066 args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
1067 argpos < n_named_args);
1068 #ifdef FUNCTION_INCOMING_ARG
1069 /* If this is a sibling call and the machine has register windows, the
1070 register window has to be unwinded before calling the routine, so
1071 arguments have to go into the incoming registers. */
1072 args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
1073 argpos < n_named_args);
1074 #else
1075 args[i].tail_call_reg = args[i].reg;
1076 #endif
1077
1078 if (args[i].reg)
1079 args[i].partial
1080 = FUNCTION_ARG_PARTIAL_NREGS (*args_so_far, mode, type,
1081 argpos < n_named_args);
1082
1083 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1084
1085 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1086 it means that we are to pass this arg in the register(s) designated
1087 by the PARALLEL, but also to pass it in the stack. */
1088 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1089 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1090 args[i].pass_on_stack = 1;
1091
1092 /* If this is an addressable type, we must preallocate the stack
1093 since we must evaluate the object into its final location.
1094
1095 If this is to be passed in both registers and the stack, it is simpler
1096 to preallocate. */
1097 if (TREE_ADDRESSABLE (type)
1098 || (args[i].pass_on_stack && args[i].reg != 0))
1099 *must_preallocate = 1;
1100
1101 /* If this is an addressable type, we cannot pre-evaluate it. Thus,
1102 we cannot consider this function call constant. */
1103 if (TREE_ADDRESSABLE (type))
1104 *ecf_flags &= ~ECF_LIBCALL_BLOCK;
1105
1106 /* Compute the stack-size of this argument. */
1107 if (args[i].reg == 0 || args[i].partial != 0
1108 || reg_parm_stack_space > 0
1109 || args[i].pass_on_stack)
1110 locate_and_pad_parm (mode, type,
1111 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1112 1,
1113 #else
1114 args[i].reg != 0,
1115 #endif
1116 args[i].pass_on_stack ? 0 : args[i].partial,
1117 fndecl, args_size, &args[i].locate);
1118 #ifdef BLOCK_REG_PADDING
1119 else
1120 /* The argument is passed entirely in registers. See at which
1121 end it should be padded. */
1122 args[i].locate.where_pad =
1123 BLOCK_REG_PADDING (mode, type,
1124 int_size_in_bytes (type) <= UNITS_PER_WORD);
1125 #endif
1126
1127 /* Update ARGS_SIZE, the total stack space for args so far. */
1128
1129 args_size->constant += args[i].locate.size.constant;
1130 if (args[i].locate.size.var)
1131 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1132
1133 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1134 have been used, etc. */
1135
1136 FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
1137 argpos < n_named_args);
1138 }
1139 }
1140
1141 /* Update ARGS_SIZE to contain the total size for the argument block.
1142 Return the original constant component of the argument block's size.
1143
1144 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1145 for arguments passed in registers. */
1146
1147 static int
1148 compute_argument_block_size (int reg_parm_stack_space,
1149 struct args_size *args_size,
1150 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1151 {
1152 int unadjusted_args_size = args_size->constant;
1153
1154 /* For accumulate outgoing args mode we don't need to align, since the frame
1155 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1156 backends from generating misaligned frame sizes. */
1157 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1158 preferred_stack_boundary = STACK_BOUNDARY;
1159
1160 /* Compute the actual size of the argument block required. The variable
1161 and constant sizes must be combined, the size may have to be rounded,
1162 and there may be a minimum required size. */
1163
1164 if (args_size->var)
1165 {
1166 args_size->var = ARGS_SIZE_TREE (*args_size);
1167 args_size->constant = 0;
1168
1169 preferred_stack_boundary /= BITS_PER_UNIT;
1170 if (preferred_stack_boundary > 1)
1171 {
1172 /* We don't handle this case yet. To handle it correctly we have
1173 to add the delta, round and subtract the delta.
1174 Currently no machine description requires this support. */
1175 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1176 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1177 }
1178
1179 if (reg_parm_stack_space > 0)
1180 {
1181 args_size->var
1182 = size_binop (MAX_EXPR, args_size->var,
1183 ssize_int (reg_parm_stack_space));
1184
1185 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1186 /* The area corresponding to register parameters is not to count in
1187 the size of the block we need. So make the adjustment. */
1188 args_size->var
1189 = size_binop (MINUS_EXPR, args_size->var,
1190 ssize_int (reg_parm_stack_space));
1191 #endif
1192 }
1193 }
1194 else
1195 {
1196 preferred_stack_boundary /= BITS_PER_UNIT;
1197 if (preferred_stack_boundary < 1)
1198 preferred_stack_boundary = 1;
1199 args_size->constant = (((args_size->constant
1200 + stack_pointer_delta
1201 + preferred_stack_boundary - 1)
1202 / preferred_stack_boundary
1203 * preferred_stack_boundary)
1204 - stack_pointer_delta);
1205
1206 args_size->constant = MAX (args_size->constant,
1207 reg_parm_stack_space);
1208
1209 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1210 args_size->constant -= reg_parm_stack_space;
1211 #endif
1212 }
1213 return unadjusted_args_size;
1214 }
1215
1216 /* Precompute parameters as needed for a function call.
1217
1218 FLAGS is mask of ECF_* constants.
1219
1220 NUM_ACTUALS is the number of arguments.
1221
1222 ARGS is an array containing information for each argument; this
1223 routine fills in the INITIAL_VALUE and VALUE fields for each
1224 precomputed argument. */
1225
1226 static void
1227 precompute_arguments (int flags, int num_actuals, struct arg_data *args)
1228 {
1229 int i;
1230
1231 /* If this is a libcall, then precompute all arguments so that we do not
1232 get extraneous instructions emitted as part of the libcall sequence. */
1233 if ((flags & ECF_LIBCALL_BLOCK) == 0)
1234 return;
1235
1236 for (i = 0; i < num_actuals; i++)
1237 {
1238 enum machine_mode mode;
1239
1240 /* If this is an addressable type, we cannot pre-evaluate it. */
1241 gcc_assert (!TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)));
1242
1243 args[i].initial_value = args[i].value
1244 = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0);
1245
1246 mode = TYPE_MODE (TREE_TYPE (args[i].tree_value));
1247 if (mode != args[i].mode)
1248 {
1249 args[i].value
1250 = convert_modes (args[i].mode, mode,
1251 args[i].value, args[i].unsignedp);
1252 #if defined(PROMOTE_FUNCTION_MODE) && !defined(PROMOTE_MODE)
1253 /* CSE will replace this only if it contains args[i].value
1254 pseudo, so convert it down to the declared mode using
1255 a SUBREG. */
1256 if (REG_P (args[i].value)
1257 && GET_MODE_CLASS (args[i].mode) == MODE_INT)
1258 {
1259 args[i].initial_value
1260 = gen_lowpart_SUBREG (mode, args[i].value);
1261 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1262 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1263 args[i].unsignedp);
1264 }
1265 #endif
1266 }
1267 }
1268 }
1269
1270 /* Given the current state of MUST_PREALLOCATE and information about
1271 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1272 compute and return the final value for MUST_PREALLOCATE. */
1273
1274 static int
1275 finalize_must_preallocate (int must_preallocate, int num_actuals, struct arg_data *args, struct args_size *args_size)
1276 {
1277 /* See if we have or want to preallocate stack space.
1278
1279 If we would have to push a partially-in-regs parm
1280 before other stack parms, preallocate stack space instead.
1281
1282 If the size of some parm is not a multiple of the required stack
1283 alignment, we must preallocate.
1284
1285 If the total size of arguments that would otherwise create a copy in
1286 a temporary (such as a CALL) is more than half the total argument list
1287 size, preallocation is faster.
1288
1289 Another reason to preallocate is if we have a machine (like the m88k)
1290 where stack alignment is required to be maintained between every
1291 pair of insns, not just when the call is made. However, we assume here
1292 that such machines either do not have push insns (and hence preallocation
1293 would occur anyway) or the problem is taken care of with
1294 PUSH_ROUNDING. */
1295
1296 if (! must_preallocate)
1297 {
1298 int partial_seen = 0;
1299 int copy_to_evaluate_size = 0;
1300 int i;
1301
1302 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1303 {
1304 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1305 partial_seen = 1;
1306 else if (partial_seen && args[i].reg == 0)
1307 must_preallocate = 1;
1308
1309 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1310 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1311 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1312 || TREE_CODE (args[i].tree_value) == COND_EXPR
1313 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1314 copy_to_evaluate_size
1315 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1316 }
1317
1318 if (copy_to_evaluate_size * 2 >= args_size->constant
1319 && args_size->constant > 0)
1320 must_preallocate = 1;
1321 }
1322 return must_preallocate;
1323 }
1324
1325 /* If we preallocated stack space, compute the address of each argument
1326 and store it into the ARGS array.
1327
1328 We need not ensure it is a valid memory address here; it will be
1329 validized when it is used.
1330
1331 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1332
1333 static void
1334 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1335 {
1336 if (argblock)
1337 {
1338 rtx arg_reg = argblock;
1339 int i, arg_offset = 0;
1340
1341 if (GET_CODE (argblock) == PLUS)
1342 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1343
1344 for (i = 0; i < num_actuals; i++)
1345 {
1346 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1347 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1348 rtx addr;
1349
1350 /* Skip this parm if it will not be passed on the stack. */
1351 if (! args[i].pass_on_stack && args[i].reg != 0)
1352 continue;
1353
1354 if (GET_CODE (offset) == CONST_INT)
1355 addr = plus_constant (arg_reg, INTVAL (offset));
1356 else
1357 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1358
1359 addr = plus_constant (addr, arg_offset);
1360 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1361 set_mem_align (args[i].stack, PARM_BOUNDARY);
1362 set_mem_attributes (args[i].stack,
1363 TREE_TYPE (args[i].tree_value), 1);
1364
1365 if (GET_CODE (slot_offset) == CONST_INT)
1366 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1367 else
1368 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1369
1370 addr = plus_constant (addr, arg_offset);
1371 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1372 set_mem_align (args[i].stack_slot, PARM_BOUNDARY);
1373 set_mem_attributes (args[i].stack_slot,
1374 TREE_TYPE (args[i].tree_value), 1);
1375
1376 /* Function incoming arguments may overlap with sibling call
1377 outgoing arguments and we cannot allow reordering of reads
1378 from function arguments with stores to outgoing arguments
1379 of sibling calls. */
1380 set_mem_alias_set (args[i].stack, 0);
1381 set_mem_alias_set (args[i].stack_slot, 0);
1382 }
1383 }
1384 }
1385
1386 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1387 in a call instruction.
1388
1389 FNDECL is the tree node for the target function. For an indirect call
1390 FNDECL will be NULL_TREE.
1391
1392 ADDR is the operand 0 of CALL_EXPR for this call. */
1393
1394 static rtx
1395 rtx_for_function_call (tree fndecl, tree addr)
1396 {
1397 rtx funexp;
1398
1399 /* Get the function to call, in the form of RTL. */
1400 if (fndecl)
1401 {
1402 /* If this is the first use of the function, see if we need to
1403 make an external definition for it. */
1404 if (! TREE_USED (fndecl))
1405 {
1406 assemble_external (fndecl);
1407 TREE_USED (fndecl) = 1;
1408 }
1409
1410 /* Get a SYMBOL_REF rtx for the function address. */
1411 funexp = XEXP (DECL_RTL (fndecl), 0);
1412 }
1413 else
1414 /* Generate an rtx (probably a pseudo-register) for the address. */
1415 {
1416 push_temp_slots ();
1417 funexp = expand_expr (addr, NULL_RTX, VOIDmode, 0);
1418 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1419 }
1420 return funexp;
1421 }
1422
1423 /* Do the register loads required for any wholly-register parms or any
1424 parms which are passed both on the stack and in a register. Their
1425 expressions were already evaluated.
1426
1427 Mark all register-parms as living through the call, putting these USE
1428 insns in the CALL_INSN_FUNCTION_USAGE field.
1429
1430 When IS_SIBCALL, perform the check_sibcall_overlap_argument_overlap
1431 checking, setting *SIBCALL_FAILURE if appropriate. */
1432
1433 static void
1434 load_register_parameters (struct arg_data *args, int num_actuals,
1435 rtx *call_fusage, int flags, int is_sibcall,
1436 int *sibcall_failure)
1437 {
1438 int i, j;
1439
1440 for (i = 0; i < num_actuals; i++)
1441 {
1442 rtx reg = ((flags & ECF_SIBCALL)
1443 ? args[i].tail_call_reg : args[i].reg);
1444 if (reg)
1445 {
1446 int partial = args[i].partial;
1447 int nregs;
1448 int size = 0;
1449 rtx before_arg = get_last_insn ();
1450 /* Set to non-negative if must move a word at a time, even if just
1451 one word (e.g, partial == 1 && mode == DFmode). Set to -1 if
1452 we just use a normal move insn. This value can be zero if the
1453 argument is a zero size structure with no fields. */
1454 nregs = -1;
1455 if (partial)
1456 nregs = partial;
1457 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1458 {
1459 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1460 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1461 }
1462 else
1463 size = GET_MODE_SIZE (args[i].mode);
1464
1465 /* Handle calls that pass values in multiple non-contiguous
1466 locations. The Irix 6 ABI has examples of this. */
1467
1468 if (GET_CODE (reg) == PARALLEL)
1469 emit_group_move (reg, args[i].value);
1470
1471 /* If simple case, just do move. If normal partial, store_one_arg
1472 has already loaded the register for us. In all other cases,
1473 load the register(s) from memory. */
1474
1475 else if (nregs == -1)
1476 {
1477 emit_move_insn (reg, args[i].value);
1478 #ifdef BLOCK_REG_PADDING
1479 /* Handle case where we have a value that needs shifting
1480 up to the msb. eg. a QImode value and we're padding
1481 upward on a BYTES_BIG_ENDIAN machine. */
1482 if (size < UNITS_PER_WORD
1483 && (args[i].locate.where_pad
1484 == (BYTES_BIG_ENDIAN ? upward : downward)))
1485 {
1486 rtx x;
1487 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1488
1489 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1490 report the whole reg as used. Strictly speaking, the
1491 call only uses SIZE bytes at the msb end, but it doesn't
1492 seem worth generating rtl to say that. */
1493 reg = gen_rtx_REG (word_mode, REGNO (reg));
1494 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
1495 build_int_cst (NULL_TREE, shift),
1496 reg, 1);
1497 if (x != reg)
1498 emit_move_insn (reg, x);
1499 }
1500 #endif
1501 }
1502
1503 /* If we have pre-computed the values to put in the registers in
1504 the case of non-aligned structures, copy them in now. */
1505
1506 else if (args[i].n_aligned_regs != 0)
1507 for (j = 0; j < args[i].n_aligned_regs; j++)
1508 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1509 args[i].aligned_regs[j]);
1510
1511 else if (partial == 0 || args[i].pass_on_stack)
1512 {
1513 rtx mem = validize_mem (args[i].value);
1514
1515 /* Handle a BLKmode that needs shifting. */
1516 if (nregs == 1 && size < UNITS_PER_WORD
1517 #ifdef BLOCK_REG_PADDING
1518 && args[i].locate.where_pad == downward
1519 #else
1520 && BYTES_BIG_ENDIAN
1521 #endif
1522 )
1523 {
1524 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1525 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1526 rtx x = gen_reg_rtx (word_mode);
1527 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1528 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1529 : LSHIFT_EXPR;
1530
1531 emit_move_insn (x, tem);
1532 x = expand_shift (dir, word_mode, x,
1533 build_int_cst (NULL_TREE, shift),
1534 ri, 1);
1535 if (x != ri)
1536 emit_move_insn (ri, x);
1537 }
1538 else
1539 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1540 }
1541
1542 /* When a parameter is a block, and perhaps in other cases, it is
1543 possible that it did a load from an argument slot that was
1544 already clobbered. */
1545 if (is_sibcall
1546 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1547 *sibcall_failure = 1;
1548
1549 /* Handle calls that pass values in multiple non-contiguous
1550 locations. The Irix 6 ABI has examples of this. */
1551 if (GET_CODE (reg) == PARALLEL)
1552 use_group_regs (call_fusage, reg);
1553 else if (nregs == -1)
1554 use_reg (call_fusage, reg);
1555 else
1556 use_regs (call_fusage, REGNO (reg), nregs == 0 ? 1 : nregs);
1557 }
1558 }
1559 }
1560
1561 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1562 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1563 bytes, then we would need to push some additional bytes to pad the
1564 arguments. So, we compute an adjust to the stack pointer for an
1565 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1566 bytes. Then, when the arguments are pushed the stack will be perfectly
1567 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1568 be popped after the call. Returns the adjustment. */
1569
1570 static int
1571 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1572 struct args_size *args_size,
1573 unsigned int preferred_unit_stack_boundary)
1574 {
1575 /* The number of bytes to pop so that the stack will be
1576 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1577 HOST_WIDE_INT adjustment;
1578 /* The alignment of the stack after the arguments are pushed, if we
1579 just pushed the arguments without adjust the stack here. */
1580 unsigned HOST_WIDE_INT unadjusted_alignment;
1581
1582 unadjusted_alignment
1583 = ((stack_pointer_delta + unadjusted_args_size)
1584 % preferred_unit_stack_boundary);
1585
1586 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1587 as possible -- leaving just enough left to cancel out the
1588 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1589 PENDING_STACK_ADJUST is non-negative, and congruent to
1590 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1591
1592 /* Begin by trying to pop all the bytes. */
1593 unadjusted_alignment
1594 = (unadjusted_alignment
1595 - (pending_stack_adjust % preferred_unit_stack_boundary));
1596 adjustment = pending_stack_adjust;
1597 /* Push enough additional bytes that the stack will be aligned
1598 after the arguments are pushed. */
1599 if (preferred_unit_stack_boundary > 1)
1600 {
1601 if (unadjusted_alignment > 0)
1602 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1603 else
1604 adjustment += unadjusted_alignment;
1605 }
1606
1607 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1608 bytes after the call. The right number is the entire
1609 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1610 by the arguments in the first place. */
1611 args_size->constant
1612 = pending_stack_adjust - adjustment + unadjusted_args_size;
1613
1614 return adjustment;
1615 }
1616
1617 /* Scan X expression if it does not dereference any argument slots
1618 we already clobbered by tail call arguments (as noted in stored_args_map
1619 bitmap).
1620 Return nonzero if X expression dereferences such argument slots,
1621 zero otherwise. */
1622
1623 static int
1624 check_sibcall_argument_overlap_1 (rtx x)
1625 {
1626 RTX_CODE code;
1627 int i, j;
1628 unsigned int k;
1629 const char *fmt;
1630
1631 if (x == NULL_RTX)
1632 return 0;
1633
1634 code = GET_CODE (x);
1635
1636 if (code == MEM)
1637 {
1638 if (XEXP (x, 0) == current_function_internal_arg_pointer)
1639 i = 0;
1640 else if (GET_CODE (XEXP (x, 0)) == PLUS
1641 && XEXP (XEXP (x, 0), 0) ==
1642 current_function_internal_arg_pointer
1643 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1644 i = INTVAL (XEXP (XEXP (x, 0), 1));
1645 else
1646 return 1;
1647
1648 #ifdef ARGS_GROW_DOWNWARD
1649 i = -i - GET_MODE_SIZE (GET_MODE (x));
1650 #endif
1651
1652 for (k = 0; k < GET_MODE_SIZE (GET_MODE (x)); k++)
1653 if (i + k < stored_args_map->n_bits
1654 && TEST_BIT (stored_args_map, i + k))
1655 return 1;
1656
1657 return 0;
1658 }
1659
1660 /* Scan all subexpressions. */
1661 fmt = GET_RTX_FORMAT (code);
1662 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1663 {
1664 if (*fmt == 'e')
1665 {
1666 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1667 return 1;
1668 }
1669 else if (*fmt == 'E')
1670 {
1671 for (j = 0; j < XVECLEN (x, i); j++)
1672 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1673 return 1;
1674 }
1675 }
1676 return 0;
1677 }
1678
1679 /* Scan sequence after INSN if it does not dereference any argument slots
1680 we already clobbered by tail call arguments (as noted in stored_args_map
1681 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1682 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1683 should be 0). Return nonzero if sequence after INSN dereferences such argument
1684 slots, zero otherwise. */
1685
1686 static int
1687 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1688 {
1689 int low, high;
1690
1691 if (insn == NULL_RTX)
1692 insn = get_insns ();
1693 else
1694 insn = NEXT_INSN (insn);
1695
1696 for (; insn; insn = NEXT_INSN (insn))
1697 if (INSN_P (insn)
1698 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1699 break;
1700
1701 if (mark_stored_args_map)
1702 {
1703 #ifdef ARGS_GROW_DOWNWARD
1704 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1705 #else
1706 low = arg->locate.slot_offset.constant;
1707 #endif
1708
1709 for (high = low + arg->locate.size.constant; low < high; low++)
1710 SET_BIT (stored_args_map, low);
1711 }
1712 return insn != NULL_RTX;
1713 }
1714
1715 /* If function value *VALUE was returned at the most significant end of a
1716 register, shift it towards the least significant end and convert it to
1717 TYPE's mode. Return true and update *VALUE if some action was needed.
1718
1719 TYPE is the type of the function's return value, which is known not
1720 to have mode BLKmode. */
1721
1722 static bool
1723 shift_returned_value (tree type, rtx *value)
1724 {
1725 if (targetm.calls.return_in_msb (type))
1726 {
1727 HOST_WIDE_INT shift;
1728
1729 shift = (GET_MODE_BITSIZE (GET_MODE (*value))
1730 - BITS_PER_UNIT * int_size_in_bytes (type));
1731 if (shift > 0)
1732 {
1733 /* Shift the value into the low part of the register. */
1734 *value = expand_binop (GET_MODE (*value), lshr_optab, *value,
1735 GEN_INT (shift), 0, 1, OPTAB_WIDEN);
1736
1737 /* Truncate it to the type's mode, or its integer equivalent.
1738 This is subject to TRULY_NOOP_TRUNCATION. */
1739 *value = convert_to_mode (int_mode_for_mode (TYPE_MODE (type)),
1740 *value, 0);
1741
1742 /* Now convert it to the final form. */
1743 *value = gen_lowpart (TYPE_MODE (type), *value);
1744 return true;
1745 }
1746 }
1747 return false;
1748 }
1749
1750 /* Remove all REG_EQUIV notes found in the insn chain. */
1751
1752 static void
1753 purge_reg_equiv_notes (void)
1754 {
1755 rtx insn;
1756
1757 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1758 {
1759 while (1)
1760 {
1761 rtx note = find_reg_note (insn, REG_EQUIV, 0);
1762 if (note)
1763 {
1764 /* Remove the note and keep looking at the notes for
1765 this insn. */
1766 remove_note (insn, note);
1767 continue;
1768 }
1769 break;
1770 }
1771 }
1772 }
1773
1774 /* Generate all the code for a function call
1775 and return an rtx for its value.
1776 Store the value in TARGET (specified as an rtx) if convenient.
1777 If the value is stored in TARGET then TARGET is returned.
1778 If IGNORE is nonzero, then we ignore the value of the function call. */
1779
1780 rtx
1781 expand_call (tree exp, rtx target, int ignore)
1782 {
1783 /* Nonzero if we are currently expanding a call. */
1784 static int currently_expanding_call = 0;
1785
1786 /* List of actual parameters. */
1787 tree actparms = TREE_OPERAND (exp, 1);
1788 /* RTX for the function to be called. */
1789 rtx funexp;
1790 /* Sequence of insns to perform a normal "call". */
1791 rtx normal_call_insns = NULL_RTX;
1792 /* Sequence of insns to perform a tail "call". */
1793 rtx tail_call_insns = NULL_RTX;
1794 /* Data type of the function. */
1795 tree funtype;
1796 tree type_arg_types;
1797 /* Declaration of the function being called,
1798 or 0 if the function is computed (not known by name). */
1799 tree fndecl = 0;
1800 /* The type of the function being called. */
1801 tree fntype;
1802 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1803 int pass;
1804
1805 /* Register in which non-BLKmode value will be returned,
1806 or 0 if no value or if value is BLKmode. */
1807 rtx valreg;
1808 /* Address where we should return a BLKmode value;
1809 0 if value not BLKmode. */
1810 rtx structure_value_addr = 0;
1811 /* Nonzero if that address is being passed by treating it as
1812 an extra, implicit first parameter. Otherwise,
1813 it is passed by being copied directly into struct_value_rtx. */
1814 int structure_value_addr_parm = 0;
1815 /* Size of aggregate value wanted, or zero if none wanted
1816 or if we are using the non-reentrant PCC calling convention
1817 or expecting the value in registers. */
1818 HOST_WIDE_INT struct_value_size = 0;
1819 /* Nonzero if called function returns an aggregate in memory PCC style,
1820 by returning the address of where to find it. */
1821 int pcc_struct_value = 0;
1822 rtx struct_value = 0;
1823
1824 /* Number of actual parameters in this call, including struct value addr. */
1825 int num_actuals;
1826 /* Number of named args. Args after this are anonymous ones
1827 and they must all go on the stack. */
1828 int n_named_args;
1829
1830 /* Vector of information about each argument.
1831 Arguments are numbered in the order they will be pushed,
1832 not the order they are written. */
1833 struct arg_data *args;
1834
1835 /* Total size in bytes of all the stack-parms scanned so far. */
1836 struct args_size args_size;
1837 struct args_size adjusted_args_size;
1838 /* Size of arguments before any adjustments (such as rounding). */
1839 int unadjusted_args_size;
1840 /* Data on reg parms scanned so far. */
1841 CUMULATIVE_ARGS args_so_far;
1842 /* Nonzero if a reg parm has been scanned. */
1843 int reg_parm_seen;
1844 /* Nonzero if this is an indirect function call. */
1845
1846 /* Nonzero if we must avoid push-insns in the args for this call.
1847 If stack space is allocated for register parameters, but not by the
1848 caller, then it is preallocated in the fixed part of the stack frame.
1849 So the entire argument block must then be preallocated (i.e., we
1850 ignore PUSH_ROUNDING in that case). */
1851
1852 int must_preallocate = !PUSH_ARGS;
1853
1854 /* Size of the stack reserved for parameter registers. */
1855 int reg_parm_stack_space = 0;
1856
1857 /* Address of space preallocated for stack parms
1858 (on machines that lack push insns), or 0 if space not preallocated. */
1859 rtx argblock = 0;
1860
1861 /* Mask of ECF_ flags. */
1862 int flags = 0;
1863 #ifdef REG_PARM_STACK_SPACE
1864 /* Define the boundary of the register parm stack space that needs to be
1865 saved, if any. */
1866 int low_to_save, high_to_save;
1867 rtx save_area = 0; /* Place that it is saved */
1868 #endif
1869
1870 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
1871 char *initial_stack_usage_map = stack_usage_map;
1872
1873 int old_stack_allocated;
1874
1875 /* State variables to track stack modifications. */
1876 rtx old_stack_level = 0;
1877 int old_stack_arg_under_construction = 0;
1878 int old_pending_adj = 0;
1879 int old_inhibit_defer_pop = inhibit_defer_pop;
1880
1881 /* Some stack pointer alterations we make are performed via
1882 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
1883 which we then also need to save/restore along the way. */
1884 int old_stack_pointer_delta = 0;
1885
1886 rtx call_fusage;
1887 tree p = TREE_OPERAND (exp, 0);
1888 tree addr = TREE_OPERAND (exp, 0);
1889 int i;
1890 /* The alignment of the stack, in bits. */
1891 unsigned HOST_WIDE_INT preferred_stack_boundary;
1892 /* The alignment of the stack, in bytes. */
1893 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
1894 /* The static chain value to use for this call. */
1895 rtx static_chain_value;
1896 /* See if this is "nothrow" function call. */
1897 if (TREE_NOTHROW (exp))
1898 flags |= ECF_NOTHROW;
1899
1900 /* See if we can find a DECL-node for the actual function, and get the
1901 function attributes (flags) from the function decl or type node. */
1902 fndecl = get_callee_fndecl (exp);
1903 if (fndecl)
1904 {
1905 fntype = TREE_TYPE (fndecl);
1906 flags |= flags_from_decl_or_type (fndecl);
1907 }
1908 else
1909 {
1910 fntype = TREE_TYPE (TREE_TYPE (p));
1911 flags |= flags_from_decl_or_type (fntype);
1912 }
1913
1914 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
1915
1916 /* Warn if this value is an aggregate type,
1917 regardless of which calling convention we are using for it. */
1918 if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (exp)))
1919 warning ("function call has aggregate value");
1920
1921 /* If the result of a pure or const function call is ignored (or void),
1922 and none of its arguments are volatile, we can avoid expanding the
1923 call and just evaluate the arguments for side-effects. */
1924 if ((flags & (ECF_CONST | ECF_PURE))
1925 && (ignore || target == const0_rtx
1926 || TYPE_MODE (TREE_TYPE (exp)) == VOIDmode))
1927 {
1928 bool volatilep = false;
1929 tree arg;
1930
1931 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
1932 if (TREE_THIS_VOLATILE (TREE_VALUE (arg)))
1933 {
1934 volatilep = true;
1935 break;
1936 }
1937
1938 if (! volatilep)
1939 {
1940 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
1941 expand_expr (TREE_VALUE (arg), const0_rtx,
1942 VOIDmode, EXPAND_NORMAL);
1943 return const0_rtx;
1944 }
1945 }
1946
1947 #ifdef REG_PARM_STACK_SPACE
1948 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
1949 #endif
1950
1951 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1952 if (reg_parm_stack_space > 0 && PUSH_ARGS)
1953 must_preallocate = 1;
1954 #endif
1955
1956 /* Set up a place to return a structure. */
1957
1958 /* Cater to broken compilers. */
1959 if (aggregate_value_p (exp, fndecl))
1960 {
1961 /* This call returns a big structure. */
1962 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1963
1964 #ifdef PCC_STATIC_STRUCT_RETURN
1965 {
1966 pcc_struct_value = 1;
1967 }
1968 #else /* not PCC_STATIC_STRUCT_RETURN */
1969 {
1970 struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
1971
1972 if (CALL_EXPR_HAS_RETURN_SLOT_ADDR (exp))
1973 {
1974 /* The structure value address arg is already in actparms.
1975 Pull it out. It might be nice to just leave it there, but
1976 we need to set structure_value_addr. */
1977 tree return_arg = TREE_VALUE (actparms);
1978 actparms = TREE_CHAIN (actparms);
1979 structure_value_addr = expand_expr (return_arg, NULL_RTX,
1980 VOIDmode, EXPAND_NORMAL);
1981 }
1982 else if (target && MEM_P (target))
1983 structure_value_addr = XEXP (target, 0);
1984 else
1985 {
1986 /* For variable-sized objects, we must be called with a target
1987 specified. If we were to allocate space on the stack here,
1988 we would have no way of knowing when to free it. */
1989 rtx d = assign_temp (TREE_TYPE (exp), 1, 1, 1);
1990
1991 mark_temp_addr_taken (d);
1992 structure_value_addr = XEXP (d, 0);
1993 target = 0;
1994 }
1995 }
1996 #endif /* not PCC_STATIC_STRUCT_RETURN */
1997 }
1998
1999 /* Figure out the amount to which the stack should be aligned. */
2000 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2001 if (fndecl)
2002 {
2003 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2004 if (i && i->preferred_incoming_stack_boundary)
2005 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2006 }
2007
2008 /* Operand 0 is a pointer-to-function; get the type of the function. */
2009 funtype = TREE_TYPE (addr);
2010 gcc_assert (POINTER_TYPE_P (funtype));
2011 funtype = TREE_TYPE (funtype);
2012
2013 /* Munge the tree to split complex arguments into their imaginary
2014 and real parts. */
2015 if (targetm.calls.split_complex_arg)
2016 {
2017 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2018 actparms = split_complex_values (actparms);
2019 }
2020 else
2021 type_arg_types = TYPE_ARG_TYPES (funtype);
2022
2023 if (flags & ECF_MAY_BE_ALLOCA)
2024 current_function_calls_alloca = 1;
2025
2026 /* If struct_value_rtx is 0, it means pass the address
2027 as if it were an extra parameter. */
2028 if (structure_value_addr && struct_value == 0)
2029 {
2030 /* If structure_value_addr is a REG other than
2031 virtual_outgoing_args_rtx, we can use always use it. If it
2032 is not a REG, we must always copy it into a register.
2033 If it is virtual_outgoing_args_rtx, we must copy it to another
2034 register in some cases. */
2035 rtx temp = (!REG_P (structure_value_addr)
2036 || (ACCUMULATE_OUTGOING_ARGS
2037 && stack_arg_under_construction
2038 && structure_value_addr == virtual_outgoing_args_rtx)
2039 ? copy_addr_to_reg (convert_memory_address
2040 (Pmode, structure_value_addr))
2041 : structure_value_addr);
2042
2043 actparms
2044 = tree_cons (error_mark_node,
2045 make_tree (build_pointer_type (TREE_TYPE (funtype)),
2046 temp),
2047 actparms);
2048 structure_value_addr_parm = 1;
2049 }
2050
2051 /* Count the arguments and set NUM_ACTUALS. */
2052 for (p = actparms, num_actuals = 0; p; p = TREE_CHAIN (p))
2053 num_actuals++;
2054
2055 /* Compute number of named args.
2056 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2057
2058 if (type_arg_types != 0)
2059 n_named_args
2060 = (list_length (type_arg_types)
2061 /* Count the struct value address, if it is passed as a parm. */
2062 + structure_value_addr_parm);
2063 else
2064 /* If we know nothing, treat all args as named. */
2065 n_named_args = num_actuals;
2066
2067 /* Start updating where the next arg would go.
2068
2069 On some machines (such as the PA) indirect calls have a different
2070 calling convention than normal calls. The fourth argument in
2071 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2072 or not. */
2073 INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
2074
2075 /* Now possibly adjust the number of named args.
2076 Normally, don't include the last named arg if anonymous args follow.
2077 We do include the last named arg if
2078 targetm.calls.strict_argument_naming() returns nonzero.
2079 (If no anonymous args follow, the result of list_length is actually
2080 one too large. This is harmless.)
2081
2082 If targetm.calls.pretend_outgoing_varargs_named() returns
2083 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2084 this machine will be able to place unnamed args that were passed
2085 in registers into the stack. So treat all args as named. This
2086 allows the insns emitting for a specific argument list to be
2087 independent of the function declaration.
2088
2089 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2090 we do not have any reliable way to pass unnamed args in
2091 registers, so we must force them into memory. */
2092
2093 if (type_arg_types != 0
2094 && targetm.calls.strict_argument_naming (&args_so_far))
2095 ;
2096 else if (type_arg_types != 0
2097 && ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
2098 /* Don't include the last named arg. */
2099 --n_named_args;
2100 else
2101 /* Treat all args as named. */
2102 n_named_args = num_actuals;
2103
2104 /* Make a vector to hold all the information about each arg. */
2105 args = alloca (num_actuals * sizeof (struct arg_data));
2106 memset (args, 0, num_actuals * sizeof (struct arg_data));
2107
2108 /* Build up entries in the ARGS array, compute the size of the
2109 arguments into ARGS_SIZE, etc. */
2110 initialize_argument_information (num_actuals, args, &args_size,
2111 n_named_args, actparms, fndecl,
2112 &args_so_far, reg_parm_stack_space,
2113 &old_stack_level, &old_pending_adj,
2114 &must_preallocate, &flags,
2115 &try_tail_call, CALL_FROM_THUNK_P (exp));
2116
2117 if (args_size.var)
2118 {
2119 /* If this function requires a variable-sized argument list, don't
2120 try to make a cse'able block for this call. We may be able to
2121 do this eventually, but it is too complicated to keep track of
2122 what insns go in the cse'able block and which don't. */
2123
2124 flags &= ~ECF_LIBCALL_BLOCK;
2125 must_preallocate = 1;
2126 }
2127
2128 /* Now make final decision about preallocating stack space. */
2129 must_preallocate = finalize_must_preallocate (must_preallocate,
2130 num_actuals, args,
2131 &args_size);
2132
2133 /* If the structure value address will reference the stack pointer, we
2134 must stabilize it. We don't need to do this if we know that we are
2135 not going to adjust the stack pointer in processing this call. */
2136
2137 if (structure_value_addr
2138 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2139 || reg_mentioned_p (virtual_outgoing_args_rtx,
2140 structure_value_addr))
2141 && (args_size.var
2142 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2143 structure_value_addr = copy_to_reg (structure_value_addr);
2144
2145 /* Tail calls can make things harder to debug, and we've traditionally
2146 pushed these optimizations into -O2. Don't try if we're already
2147 expanding a call, as that means we're an argument. Don't try if
2148 there's cleanups, as we know there's code to follow the call. */
2149
2150 if (currently_expanding_call++ != 0
2151 || !flag_optimize_sibling_calls
2152 || args_size.var
2153 || lookup_stmt_eh_region (exp) >= 0)
2154 try_tail_call = 0;
2155
2156 /* Rest of purposes for tail call optimizations to fail. */
2157 if (
2158 #ifdef HAVE_sibcall_epilogue
2159 !HAVE_sibcall_epilogue
2160 #else
2161 1
2162 #endif
2163 || !try_tail_call
2164 /* Doing sibling call optimization needs some work, since
2165 structure_value_addr can be allocated on the stack.
2166 It does not seem worth the effort since few optimizable
2167 sibling calls will return a structure. */
2168 || structure_value_addr != NULL_RTX
2169 /* Check whether the target is able to optimize the call
2170 into a sibcall. */
2171 || !targetm.function_ok_for_sibcall (fndecl, exp)
2172 /* Functions that do not return exactly once may not be sibcall
2173 optimized. */
2174 || (flags & (ECF_RETURNS_TWICE | ECF_LONGJMP | ECF_NORETURN))
2175 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2176 /* If the called function is nested in the current one, it might access
2177 some of the caller's arguments, but could clobber them beforehand if
2178 the argument areas are shared. */
2179 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2180 /* If this function requires more stack slots than the current
2181 function, we cannot change it into a sibling call. */
2182 || args_size.constant > current_function_args_size
2183 /* If the callee pops its own arguments, then it must pop exactly
2184 the same number of arguments as the current function. */
2185 || (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
2186 != RETURN_POPS_ARGS (current_function_decl,
2187 TREE_TYPE (current_function_decl),
2188 current_function_args_size))
2189 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2190 try_tail_call = 0;
2191
2192 /* Ensure current function's preferred stack boundary is at least
2193 what we need. We don't have to increase alignment for recursive
2194 functions. */
2195 if (cfun->preferred_stack_boundary < preferred_stack_boundary
2196 && fndecl != current_function_decl)
2197 cfun->preferred_stack_boundary = preferred_stack_boundary;
2198 if (fndecl == current_function_decl)
2199 cfun->recursive_call_emit = true;
2200
2201 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2202
2203 /* We want to make two insn chains; one for a sibling call, the other
2204 for a normal call. We will select one of the two chains after
2205 initial RTL generation is complete. */
2206 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2207 {
2208 int sibcall_failure = 0;
2209 /* We want to emit any pending stack adjustments before the tail
2210 recursion "call". That way we know any adjustment after the tail
2211 recursion call can be ignored if we indeed use the tail
2212 call expansion. */
2213 int save_pending_stack_adjust = 0;
2214 int save_stack_pointer_delta = 0;
2215 rtx insns;
2216 rtx before_call, next_arg_reg;
2217
2218 if (pass == 0)
2219 {
2220 /* State variables we need to save and restore between
2221 iterations. */
2222 save_pending_stack_adjust = pending_stack_adjust;
2223 save_stack_pointer_delta = stack_pointer_delta;
2224 }
2225 if (pass)
2226 flags &= ~ECF_SIBCALL;
2227 else
2228 flags |= ECF_SIBCALL;
2229
2230 /* Other state variables that we must reinitialize each time
2231 through the loop (that are not initialized by the loop itself). */
2232 argblock = 0;
2233 call_fusage = 0;
2234
2235 /* Start a new sequence for the normal call case.
2236
2237 From this point on, if the sibling call fails, we want to set
2238 sibcall_failure instead of continuing the loop. */
2239 start_sequence ();
2240
2241 /* Don't let pending stack adjusts add up to too much.
2242 Also, do all pending adjustments now if there is any chance
2243 this might be a call to alloca or if we are expanding a sibling
2244 call sequence or if we are calling a function that is to return
2245 with stack pointer depressed. */
2246 if (pending_stack_adjust >= 32
2247 || (pending_stack_adjust > 0
2248 && (flags & (ECF_MAY_BE_ALLOCA | ECF_SP_DEPRESSED)))
2249 || pass == 0)
2250 do_pending_stack_adjust ();
2251
2252 /* When calling a const function, we must pop the stack args right away,
2253 so that the pop is deleted or moved with the call. */
2254 if (pass && (flags & ECF_LIBCALL_BLOCK))
2255 NO_DEFER_POP;
2256
2257 /* Precompute any arguments as needed. */
2258 if (pass)
2259 precompute_arguments (flags, num_actuals, args);
2260
2261 /* Now we are about to start emitting insns that can be deleted
2262 if a libcall is deleted. */
2263 if (pass && (flags & (ECF_LIBCALL_BLOCK | ECF_MALLOC)))
2264 start_sequence ();
2265
2266 adjusted_args_size = args_size;
2267 /* Compute the actual size of the argument block required. The variable
2268 and constant sizes must be combined, the size may have to be rounded,
2269 and there may be a minimum required size. When generating a sibcall
2270 pattern, do not round up, since we'll be re-using whatever space our
2271 caller provided. */
2272 unadjusted_args_size
2273 = compute_argument_block_size (reg_parm_stack_space,
2274 &adjusted_args_size,
2275 (pass == 0 ? 0
2276 : preferred_stack_boundary));
2277
2278 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2279
2280 /* The argument block when performing a sibling call is the
2281 incoming argument block. */
2282 if (pass == 0)
2283 {
2284 argblock = virtual_incoming_args_rtx;
2285 argblock
2286 #ifdef STACK_GROWS_DOWNWARD
2287 = plus_constant (argblock, current_function_pretend_args_size);
2288 #else
2289 = plus_constant (argblock, -current_function_pretend_args_size);
2290 #endif
2291 stored_args_map = sbitmap_alloc (args_size.constant);
2292 sbitmap_zero (stored_args_map);
2293 }
2294
2295 /* If we have no actual push instructions, or shouldn't use them,
2296 make space for all args right now. */
2297 else if (adjusted_args_size.var != 0)
2298 {
2299 if (old_stack_level == 0)
2300 {
2301 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
2302 old_stack_pointer_delta = stack_pointer_delta;
2303 old_pending_adj = pending_stack_adjust;
2304 pending_stack_adjust = 0;
2305 /* stack_arg_under_construction says whether a stack arg is
2306 being constructed at the old stack level. Pushing the stack
2307 gets a clean outgoing argument block. */
2308 old_stack_arg_under_construction = stack_arg_under_construction;
2309 stack_arg_under_construction = 0;
2310 }
2311 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2312 }
2313 else
2314 {
2315 /* Note that we must go through the motions of allocating an argument
2316 block even if the size is zero because we may be storing args
2317 in the area reserved for register arguments, which may be part of
2318 the stack frame. */
2319
2320 int needed = adjusted_args_size.constant;
2321
2322 /* Store the maximum argument space used. It will be pushed by
2323 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2324 checking). */
2325
2326 if (needed > current_function_outgoing_args_size)
2327 current_function_outgoing_args_size = needed;
2328
2329 if (must_preallocate)
2330 {
2331 if (ACCUMULATE_OUTGOING_ARGS)
2332 {
2333 /* Since the stack pointer will never be pushed, it is
2334 possible for the evaluation of a parm to clobber
2335 something we have already written to the stack.
2336 Since most function calls on RISC machines do not use
2337 the stack, this is uncommon, but must work correctly.
2338
2339 Therefore, we save any area of the stack that was already
2340 written and that we are using. Here we set up to do this
2341 by making a new stack usage map from the old one. The
2342 actual save will be done by store_one_arg.
2343
2344 Another approach might be to try to reorder the argument
2345 evaluations to avoid this conflicting stack usage. */
2346
2347 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2348 /* Since we will be writing into the entire argument area,
2349 the map must be allocated for its entire size, not just
2350 the part that is the responsibility of the caller. */
2351 needed += reg_parm_stack_space;
2352 #endif
2353
2354 #ifdef ARGS_GROW_DOWNWARD
2355 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2356 needed + 1);
2357 #else
2358 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2359 needed);
2360 #endif
2361 stack_usage_map = alloca (highest_outgoing_arg_in_use);
2362
2363 if (initial_highest_arg_in_use)
2364 memcpy (stack_usage_map, initial_stack_usage_map,
2365 initial_highest_arg_in_use);
2366
2367 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2368 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2369 (highest_outgoing_arg_in_use
2370 - initial_highest_arg_in_use));
2371 needed = 0;
2372
2373 /* The address of the outgoing argument list must not be
2374 copied to a register here, because argblock would be left
2375 pointing to the wrong place after the call to
2376 allocate_dynamic_stack_space below. */
2377
2378 argblock = virtual_outgoing_args_rtx;
2379 }
2380 else
2381 {
2382 if (inhibit_defer_pop == 0)
2383 {
2384 /* Try to reuse some or all of the pending_stack_adjust
2385 to get this space. */
2386 needed
2387 = (combine_pending_stack_adjustment_and_call
2388 (unadjusted_args_size,
2389 &adjusted_args_size,
2390 preferred_unit_stack_boundary));
2391
2392 /* combine_pending_stack_adjustment_and_call computes
2393 an adjustment before the arguments are allocated.
2394 Account for them and see whether or not the stack
2395 needs to go up or down. */
2396 needed = unadjusted_args_size - needed;
2397
2398 if (needed < 0)
2399 {
2400 /* We're releasing stack space. */
2401 /* ??? We can avoid any adjustment at all if we're
2402 already aligned. FIXME. */
2403 pending_stack_adjust = -needed;
2404 do_pending_stack_adjust ();
2405 needed = 0;
2406 }
2407 else
2408 /* We need to allocate space. We'll do that in
2409 push_block below. */
2410 pending_stack_adjust = 0;
2411 }
2412
2413 /* Special case this because overhead of `push_block' in
2414 this case is non-trivial. */
2415 if (needed == 0)
2416 argblock = virtual_outgoing_args_rtx;
2417 else
2418 {
2419 argblock = push_block (GEN_INT (needed), 0, 0);
2420 #ifdef ARGS_GROW_DOWNWARD
2421 argblock = plus_constant (argblock, needed);
2422 #endif
2423 }
2424
2425 /* We only really need to call `copy_to_reg' in the case
2426 where push insns are going to be used to pass ARGBLOCK
2427 to a function call in ARGS. In that case, the stack
2428 pointer changes value from the allocation point to the
2429 call point, and hence the value of
2430 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2431 as well always do it. */
2432 argblock = copy_to_reg (argblock);
2433 }
2434 }
2435 }
2436
2437 if (ACCUMULATE_OUTGOING_ARGS)
2438 {
2439 /* The save/restore code in store_one_arg handles all
2440 cases except one: a constructor call (including a C
2441 function returning a BLKmode struct) to initialize
2442 an argument. */
2443 if (stack_arg_under_construction)
2444 {
2445 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2446 rtx push_size = GEN_INT (reg_parm_stack_space
2447 + adjusted_args_size.constant);
2448 #else
2449 rtx push_size = GEN_INT (adjusted_args_size.constant);
2450 #endif
2451 if (old_stack_level == 0)
2452 {
2453 emit_stack_save (SAVE_BLOCK, &old_stack_level,
2454 NULL_RTX);
2455 old_stack_pointer_delta = stack_pointer_delta;
2456 old_pending_adj = pending_stack_adjust;
2457 pending_stack_adjust = 0;
2458 /* stack_arg_under_construction says whether a stack
2459 arg is being constructed at the old stack level.
2460 Pushing the stack gets a clean outgoing argument
2461 block. */
2462 old_stack_arg_under_construction
2463 = stack_arg_under_construction;
2464 stack_arg_under_construction = 0;
2465 /* Make a new map for the new argument list. */
2466 stack_usage_map = alloca (highest_outgoing_arg_in_use);
2467 memset (stack_usage_map, 0, highest_outgoing_arg_in_use);
2468 highest_outgoing_arg_in_use = 0;
2469 }
2470 allocate_dynamic_stack_space (push_size, NULL_RTX,
2471 BITS_PER_UNIT);
2472 }
2473
2474 /* If argument evaluation might modify the stack pointer,
2475 copy the address of the argument list to a register. */
2476 for (i = 0; i < num_actuals; i++)
2477 if (args[i].pass_on_stack)
2478 {
2479 argblock = copy_addr_to_reg (argblock);
2480 break;
2481 }
2482 }
2483
2484 compute_argument_addresses (args, argblock, num_actuals);
2485
2486 /* If we push args individually in reverse order, perform stack alignment
2487 before the first push (the last arg). */
2488 if (PUSH_ARGS_REVERSED && argblock == 0
2489 && adjusted_args_size.constant != unadjusted_args_size)
2490 {
2491 /* When the stack adjustment is pending, we get better code
2492 by combining the adjustments. */
2493 if (pending_stack_adjust
2494 && ! (flags & ECF_LIBCALL_BLOCK)
2495 && ! inhibit_defer_pop)
2496 {
2497 pending_stack_adjust
2498 = (combine_pending_stack_adjustment_and_call
2499 (unadjusted_args_size,
2500 &adjusted_args_size,
2501 preferred_unit_stack_boundary));
2502 do_pending_stack_adjust ();
2503 }
2504 else if (argblock == 0)
2505 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2506 - unadjusted_args_size));
2507 }
2508 /* Now that the stack is properly aligned, pops can't safely
2509 be deferred during the evaluation of the arguments. */
2510 NO_DEFER_POP;
2511
2512 funexp = rtx_for_function_call (fndecl, addr);
2513
2514 /* Figure out the register where the value, if any, will come back. */
2515 valreg = 0;
2516 if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
2517 && ! structure_value_addr)
2518 {
2519 if (pcc_struct_value)
2520 valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
2521 fndecl, (pass == 0));
2522 else
2523 valreg = hard_function_value (TREE_TYPE (exp), fndecl, (pass == 0));
2524 }
2525
2526 /* Precompute all register parameters. It isn't safe to compute anything
2527 once we have started filling any specific hard regs. */
2528 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2529
2530 if (TREE_OPERAND (exp, 2))
2531 static_chain_value = expand_expr (TREE_OPERAND (exp, 2),
2532 NULL_RTX, VOIDmode, 0);
2533 else
2534 static_chain_value = 0;
2535
2536 #ifdef REG_PARM_STACK_SPACE
2537 /* Save the fixed argument area if it's part of the caller's frame and
2538 is clobbered by argument setup for this call. */
2539 if (ACCUMULATE_OUTGOING_ARGS && pass)
2540 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2541 &low_to_save, &high_to_save);
2542 #endif
2543
2544 /* Now store (and compute if necessary) all non-register parms.
2545 These come before register parms, since they can require block-moves,
2546 which could clobber the registers used for register parms.
2547 Parms which have partial registers are not stored here,
2548 but we do preallocate space here if they want that. */
2549
2550 for (i = 0; i < num_actuals; i++)
2551 if (args[i].reg == 0 || args[i].pass_on_stack)
2552 {
2553 rtx before_arg = get_last_insn ();
2554
2555 if (store_one_arg (&args[i], argblock, flags,
2556 adjusted_args_size.var != 0,
2557 reg_parm_stack_space)
2558 || (pass == 0
2559 && check_sibcall_argument_overlap (before_arg,
2560 &args[i], 1)))
2561 sibcall_failure = 1;
2562
2563 if (flags & ECF_CONST
2564 && args[i].stack
2565 && args[i].value == args[i].stack)
2566 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2567 gen_rtx_USE (VOIDmode,
2568 args[i].value),
2569 call_fusage);
2570 }
2571
2572 /* If we have a parm that is passed in registers but not in memory
2573 and whose alignment does not permit a direct copy into registers,
2574 make a group of pseudos that correspond to each register that we
2575 will later fill. */
2576 if (STRICT_ALIGNMENT)
2577 store_unaligned_arguments_into_pseudos (args, num_actuals);
2578
2579 /* Now store any partially-in-registers parm.
2580 This is the last place a block-move can happen. */
2581 if (reg_parm_seen)
2582 for (i = 0; i < num_actuals; i++)
2583 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2584 {
2585 rtx before_arg = get_last_insn ();
2586
2587 if (store_one_arg (&args[i], argblock, flags,
2588 adjusted_args_size.var != 0,
2589 reg_parm_stack_space)
2590 || (pass == 0
2591 && check_sibcall_argument_overlap (before_arg,
2592 &args[i], 1)))
2593 sibcall_failure = 1;
2594 }
2595
2596 /* If we pushed args in forward order, perform stack alignment
2597 after pushing the last arg. */
2598 if (!PUSH_ARGS_REVERSED && argblock == 0)
2599 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2600 - unadjusted_args_size));
2601
2602 /* If register arguments require space on the stack and stack space
2603 was not preallocated, allocate stack space here for arguments
2604 passed in registers. */
2605 #ifdef OUTGOING_REG_PARM_STACK_SPACE
2606 if (!ACCUMULATE_OUTGOING_ARGS
2607 && must_preallocate == 0 && reg_parm_stack_space > 0)
2608 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2609 #endif
2610
2611 /* Pass the function the address in which to return a
2612 structure value. */
2613 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2614 {
2615 structure_value_addr
2616 = convert_memory_address (Pmode, structure_value_addr);
2617 emit_move_insn (struct_value,
2618 force_reg (Pmode,
2619 force_operand (structure_value_addr,
2620 NULL_RTX)));
2621
2622 if (REG_P (struct_value))
2623 use_reg (&call_fusage, struct_value);
2624 }
2625
2626 funexp = prepare_call_address (funexp, static_chain_value,
2627 &call_fusage, reg_parm_seen, pass == 0);
2628
2629 load_register_parameters (args, num_actuals, &call_fusage, flags,
2630 pass == 0, &sibcall_failure);
2631
2632 /* Save a pointer to the last insn before the call, so that we can
2633 later safely search backwards to find the CALL_INSN. */
2634 before_call = get_last_insn ();
2635
2636 /* Set up next argument register. For sibling calls on machines
2637 with register windows this should be the incoming register. */
2638 #ifdef FUNCTION_INCOMING_ARG
2639 if (pass == 0)
2640 next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
2641 void_type_node, 1);
2642 else
2643 #endif
2644 next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
2645 void_type_node, 1);
2646
2647 /* All arguments and registers used for the call must be set up by
2648 now! */
2649
2650 /* Stack must be properly aligned now. */
2651 gcc_assert (!pass
2652 || !(stack_pointer_delta % preferred_unit_stack_boundary));
2653
2654 /* Generate the actual call instruction. */
2655 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2656 adjusted_args_size.constant, struct_value_size,
2657 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2658 flags, & args_so_far);
2659
2660 /* If call is cse'able, make appropriate pair of reg-notes around it.
2661 Test valreg so we don't crash; may safely ignore `const'
2662 if return type is void. Disable for PARALLEL return values, because
2663 we have no way to move such values into a pseudo register. */
2664 if (pass && (flags & ECF_LIBCALL_BLOCK))
2665 {
2666 rtx insns;
2667 rtx insn;
2668 bool failed = valreg == 0 || GET_CODE (valreg) == PARALLEL;
2669
2670 insns = get_insns ();
2671
2672 /* Expansion of block moves possibly introduced a loop that may
2673 not appear inside libcall block. */
2674 for (insn = insns; insn; insn = NEXT_INSN (insn))
2675 if (JUMP_P (insn))
2676 failed = true;
2677
2678 if (failed)
2679 {
2680 end_sequence ();
2681 emit_insn (insns);
2682 }
2683 else
2684 {
2685 rtx note = 0;
2686 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2687
2688 /* Mark the return value as a pointer if needed. */
2689 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2690 mark_reg_pointer (temp,
2691 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp))));
2692
2693 end_sequence ();
2694 if (flag_unsafe_math_optimizations
2695 && fndecl
2696 && DECL_BUILT_IN (fndecl)
2697 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRT
2698 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTF
2699 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTL))
2700 note = gen_rtx_fmt_e (SQRT,
2701 GET_MODE (temp),
2702 args[0].initial_value);
2703 else
2704 {
2705 /* Construct an "equal form" for the value which
2706 mentions all the arguments in order as well as
2707 the function name. */
2708 for (i = 0; i < num_actuals; i++)
2709 note = gen_rtx_EXPR_LIST (VOIDmode,
2710 args[i].initial_value, note);
2711 note = gen_rtx_EXPR_LIST (VOIDmode, funexp, note);
2712
2713 if (flags & ECF_PURE)
2714 note = gen_rtx_EXPR_LIST (VOIDmode,
2715 gen_rtx_USE (VOIDmode,
2716 gen_rtx_MEM (BLKmode,
2717 gen_rtx_SCRATCH (VOIDmode))),
2718 note);
2719 }
2720 emit_libcall_block (insns, temp, valreg, note);
2721
2722 valreg = temp;
2723 }
2724 }
2725 else if (pass && (flags & ECF_MALLOC))
2726 {
2727 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2728 rtx last, insns;
2729
2730 /* The return value from a malloc-like function is a pointer. */
2731 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2732 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2733
2734 emit_move_insn (temp, valreg);
2735
2736 /* The return value from a malloc-like function can not alias
2737 anything else. */
2738 last = get_last_insn ();
2739 REG_NOTES (last) =
2740 gen_rtx_EXPR_LIST (REG_NOALIAS, temp, REG_NOTES (last));
2741
2742 /* Write out the sequence. */
2743 insns = get_insns ();
2744 end_sequence ();
2745 emit_insn (insns);
2746 valreg = temp;
2747 }
2748
2749 /* For calls to `setjmp', etc., inform flow.c it should complain
2750 if nonvolatile values are live. For functions that cannot return,
2751 inform flow that control does not fall through. */
2752
2753 if ((flags & (ECF_NORETURN | ECF_LONGJMP)) || pass == 0)
2754 {
2755 /* The barrier must be emitted
2756 immediately after the CALL_INSN. Some ports emit more
2757 than just a CALL_INSN above, so we must search for it here. */
2758
2759 rtx last = get_last_insn ();
2760 while (!CALL_P (last))
2761 {
2762 last = PREV_INSN (last);
2763 /* There was no CALL_INSN? */
2764 gcc_assert (last != before_call);
2765 }
2766
2767 emit_barrier_after (last);
2768
2769 /* Stack adjustments after a noreturn call are dead code.
2770 However when NO_DEFER_POP is in effect, we must preserve
2771 stack_pointer_delta. */
2772 if (inhibit_defer_pop == 0)
2773 {
2774 stack_pointer_delta = old_stack_allocated;
2775 pending_stack_adjust = 0;
2776 }
2777 }
2778
2779 if (flags & ECF_LONGJMP)
2780 current_function_calls_longjmp = 1;
2781
2782 /* If value type not void, return an rtx for the value. */
2783
2784 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
2785 || ignore)
2786 target = const0_rtx;
2787 else if (structure_value_addr)
2788 {
2789 if (target == 0 || !MEM_P (target))
2790 {
2791 target
2792 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2793 memory_address (TYPE_MODE (TREE_TYPE (exp)),
2794 structure_value_addr));
2795 set_mem_attributes (target, exp, 1);
2796 }
2797 }
2798 else if (pcc_struct_value)
2799 {
2800 /* This is the special C++ case where we need to
2801 know what the true target was. We take care to
2802 never use this value more than once in one expression. */
2803 target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2804 copy_to_reg (valreg));
2805 set_mem_attributes (target, exp, 1);
2806 }
2807 /* Handle calls that return values in multiple non-contiguous locations.
2808 The Irix 6 ABI has examples of this. */
2809 else if (GET_CODE (valreg) == PARALLEL)
2810 {
2811 if (target == 0)
2812 {
2813 /* This will only be assigned once, so it can be readonly. */
2814 tree nt = build_qualified_type (TREE_TYPE (exp),
2815 (TYPE_QUALS (TREE_TYPE (exp))
2816 | TYPE_QUAL_CONST));
2817
2818 target = assign_temp (nt, 0, 1, 1);
2819 preserve_temp_slots (target);
2820 }
2821
2822 if (! rtx_equal_p (target, valreg))
2823 emit_group_store (target, valreg, TREE_TYPE (exp),
2824 int_size_in_bytes (TREE_TYPE (exp)));
2825
2826 /* We can not support sibling calls for this case. */
2827 sibcall_failure = 1;
2828 }
2829 else if (target
2830 && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
2831 && GET_MODE (target) == GET_MODE (valreg))
2832 {
2833 /* TARGET and VALREG cannot be equal at this point because the
2834 latter would not have REG_FUNCTION_VALUE_P true, while the
2835 former would if it were referring to the same register.
2836
2837 If they refer to the same register, this move will be a no-op,
2838 except when function inlining is being done. */
2839 emit_move_insn (target, valreg);
2840
2841 /* If we are setting a MEM, this code must be executed. Since it is
2842 emitted after the call insn, sibcall optimization cannot be
2843 performed in that case. */
2844 if (MEM_P (target))
2845 sibcall_failure = 1;
2846 }
2847 else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
2848 {
2849 target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp));
2850
2851 /* We can not support sibling calls for this case. */
2852 sibcall_failure = 1;
2853 }
2854 else
2855 {
2856 if (shift_returned_value (TREE_TYPE (exp), &valreg))
2857 sibcall_failure = 1;
2858
2859 target = copy_to_reg (valreg);
2860 }
2861
2862 if (targetm.calls.promote_function_return(funtype))
2863 {
2864 /* If we promoted this return value, make the proper SUBREG.
2865 TARGET might be const0_rtx here, so be careful. */
2866 if (REG_P (target)
2867 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2868 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
2869 {
2870 tree type = TREE_TYPE (exp);
2871 int unsignedp = TYPE_UNSIGNED (type);
2872 int offset = 0;
2873 enum machine_mode pmode;
2874
2875 pmode = promote_mode (type, TYPE_MODE (type), &unsignedp, 1);
2876 /* If we don't promote as expected, something is wrong. */
2877 gcc_assert (GET_MODE (target) == pmode);
2878
2879 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
2880 && (GET_MODE_SIZE (GET_MODE (target))
2881 > GET_MODE_SIZE (TYPE_MODE (type))))
2882 {
2883 offset = GET_MODE_SIZE (GET_MODE (target))
2884 - GET_MODE_SIZE (TYPE_MODE (type));
2885 if (! BYTES_BIG_ENDIAN)
2886 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
2887 else if (! WORDS_BIG_ENDIAN)
2888 offset %= UNITS_PER_WORD;
2889 }
2890 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
2891 SUBREG_PROMOTED_VAR_P (target) = 1;
2892 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
2893 }
2894 }
2895
2896 /* If size of args is variable or this was a constructor call for a stack
2897 argument, restore saved stack-pointer value. */
2898
2899 if (old_stack_level && ! (flags & ECF_SP_DEPRESSED))
2900 {
2901 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
2902 stack_pointer_delta = old_stack_pointer_delta;
2903 pending_stack_adjust = old_pending_adj;
2904 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2905 stack_arg_under_construction = old_stack_arg_under_construction;
2906 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
2907 stack_usage_map = initial_stack_usage_map;
2908 sibcall_failure = 1;
2909 }
2910 else if (ACCUMULATE_OUTGOING_ARGS && pass)
2911 {
2912 #ifdef REG_PARM_STACK_SPACE
2913 if (save_area)
2914 restore_fixed_argument_area (save_area, argblock,
2915 high_to_save, low_to_save);
2916 #endif
2917
2918 /* If we saved any argument areas, restore them. */
2919 for (i = 0; i < num_actuals; i++)
2920 if (args[i].save_area)
2921 {
2922 enum machine_mode save_mode = GET_MODE (args[i].save_area);
2923 rtx stack_area
2924 = gen_rtx_MEM (save_mode,
2925 memory_address (save_mode,
2926 XEXP (args[i].stack_slot, 0)));
2927
2928 if (save_mode != BLKmode)
2929 emit_move_insn (stack_area, args[i].save_area);
2930 else
2931 emit_block_move (stack_area, args[i].save_area,
2932 GEN_INT (args[i].locate.size.constant),
2933 BLOCK_OP_CALL_PARM);
2934 }
2935
2936 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
2937 stack_usage_map = initial_stack_usage_map;
2938 }
2939
2940 /* If this was alloca, record the new stack level for nonlocal gotos.
2941 Check for the handler slots since we might not have a save area
2942 for non-local gotos. */
2943
2944 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
2945 update_nonlocal_goto_save_area ();
2946
2947 /* Free up storage we no longer need. */
2948 for (i = 0; i < num_actuals; ++i)
2949 if (args[i].aligned_regs)
2950 free (args[i].aligned_regs);
2951
2952 insns = get_insns ();
2953 end_sequence ();
2954
2955 if (pass == 0)
2956 {
2957 tail_call_insns = insns;
2958
2959 /* Restore the pending stack adjustment now that we have
2960 finished generating the sibling call sequence. */
2961
2962 pending_stack_adjust = save_pending_stack_adjust;
2963 stack_pointer_delta = save_stack_pointer_delta;
2964
2965 /* Prepare arg structure for next iteration. */
2966 for (i = 0; i < num_actuals; i++)
2967 {
2968 args[i].value = 0;
2969 args[i].aligned_regs = 0;
2970 args[i].stack = 0;
2971 }
2972
2973 sbitmap_free (stored_args_map);
2974 }
2975 else
2976 {
2977 normal_call_insns = insns;
2978
2979 /* Verify that we've deallocated all the stack we used. */
2980 gcc_assert ((flags & (ECF_NORETURN | ECF_LONGJMP))
2981 || (old_stack_allocated
2982 == stack_pointer_delta - pending_stack_adjust));
2983 }
2984
2985 /* If something prevents making this a sibling call,
2986 zero out the sequence. */
2987 if (sibcall_failure)
2988 tail_call_insns = NULL_RTX;
2989 else
2990 break;
2991 }
2992
2993 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
2994 arguments too, as argument area is now clobbered by the call. */
2995 if (tail_call_insns)
2996 {
2997 emit_insn (tail_call_insns);
2998 cfun->tail_call_emit = true;
2999 }
3000 else
3001 emit_insn (normal_call_insns);
3002
3003 currently_expanding_call--;
3004
3005 /* If this function returns with the stack pointer depressed, ensure
3006 this block saves and restores the stack pointer, show it was
3007 changed, and adjust for any outgoing arg space. */
3008 if (flags & ECF_SP_DEPRESSED)
3009 {
3010 clear_pending_stack_adjust ();
3011 emit_insn (gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx));
3012 emit_move_insn (virtual_stack_dynamic_rtx, stack_pointer_rtx);
3013 }
3014
3015 return target;
3016 }
3017
3018 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3019 this function's incoming arguments.
3020
3021 At the start of RTL generation we know the only REG_EQUIV notes
3022 in the rtl chain are those for incoming arguments, so we can safely
3023 flush any REG_EQUIV note.
3024
3025 This is (slight) overkill. We could keep track of the highest
3026 argument we clobber and be more selective in removing notes, but it
3027 does not seem to be worth the effort. */
3028 void
3029 fixup_tail_calls (void)
3030 {
3031 purge_reg_equiv_notes ();
3032 }
3033
3034 /* Traverse an argument list in VALUES and expand all complex
3035 arguments into their components. */
3036 static tree
3037 split_complex_values (tree values)
3038 {
3039 tree p;
3040
3041 /* Before allocating memory, check for the common case of no complex. */
3042 for (p = values; p; p = TREE_CHAIN (p))
3043 {
3044 tree type = TREE_TYPE (TREE_VALUE (p));
3045 if (type && TREE_CODE (type) == COMPLEX_TYPE
3046 && targetm.calls.split_complex_arg (type))
3047 goto found;
3048 }
3049 return values;
3050
3051 found:
3052 values = copy_list (values);
3053
3054 for (p = values; p; p = TREE_CHAIN (p))
3055 {
3056 tree complex_value = TREE_VALUE (p);
3057 tree complex_type;
3058
3059 complex_type = TREE_TYPE (complex_value);
3060 if (!complex_type)
3061 continue;
3062
3063 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3064 && targetm.calls.split_complex_arg (complex_type))
3065 {
3066 tree subtype;
3067 tree real, imag, next;
3068
3069 subtype = TREE_TYPE (complex_type);
3070 complex_value = save_expr (complex_value);
3071 real = build1 (REALPART_EXPR, subtype, complex_value);
3072 imag = build1 (IMAGPART_EXPR, subtype, complex_value);
3073
3074 TREE_VALUE (p) = real;
3075 next = TREE_CHAIN (p);
3076 imag = build_tree_list (NULL_TREE, imag);
3077 TREE_CHAIN (p) = imag;
3078 TREE_CHAIN (imag) = next;
3079
3080 /* Skip the newly created node. */
3081 p = TREE_CHAIN (p);
3082 }
3083 }
3084
3085 return values;
3086 }
3087
3088 /* Traverse a list of TYPES and expand all complex types into their
3089 components. */
3090 static tree
3091 split_complex_types (tree types)
3092 {
3093 tree p;
3094
3095 /* Before allocating memory, check for the common case of no complex. */
3096 for (p = types; p; p = TREE_CHAIN (p))
3097 {
3098 tree type = TREE_VALUE (p);
3099 if (TREE_CODE (type) == COMPLEX_TYPE
3100 && targetm.calls.split_complex_arg (type))
3101 goto found;
3102 }
3103 return types;
3104
3105 found:
3106 types = copy_list (types);
3107
3108 for (p = types; p; p = TREE_CHAIN (p))
3109 {
3110 tree complex_type = TREE_VALUE (p);
3111
3112 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3113 && targetm.calls.split_complex_arg (complex_type))
3114 {
3115 tree next, imag;
3116
3117 /* Rewrite complex type with component type. */
3118 TREE_VALUE (p) = TREE_TYPE (complex_type);
3119 next = TREE_CHAIN (p);
3120
3121 /* Add another component type for the imaginary part. */
3122 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3123 TREE_CHAIN (p) = imag;
3124 TREE_CHAIN (imag) = next;
3125
3126 /* Skip the newly created node. */
3127 p = TREE_CHAIN (p);
3128 }
3129 }
3130
3131 return types;
3132 }
3133 \f
3134 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3135 The RETVAL parameter specifies whether return value needs to be saved, other
3136 parameters are documented in the emit_library_call function below. */
3137
3138 static rtx
3139 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3140 enum libcall_type fn_type,
3141 enum machine_mode outmode, int nargs, va_list p)
3142 {
3143 /* Total size in bytes of all the stack-parms scanned so far. */
3144 struct args_size args_size;
3145 /* Size of arguments before any adjustments (such as rounding). */
3146 struct args_size original_args_size;
3147 int argnum;
3148 rtx fun;
3149 int inc;
3150 int count;
3151 rtx argblock = 0;
3152 CUMULATIVE_ARGS args_so_far;
3153 struct arg
3154 {
3155 rtx value;
3156 enum machine_mode mode;
3157 rtx reg;
3158 int partial;
3159 struct locate_and_pad_arg_data locate;
3160 rtx save_area;
3161 };
3162 struct arg *argvec;
3163 int old_inhibit_defer_pop = inhibit_defer_pop;
3164 rtx call_fusage = 0;
3165 rtx mem_value = 0;
3166 rtx valreg;
3167 int pcc_struct_value = 0;
3168 int struct_value_size = 0;
3169 int flags;
3170 int reg_parm_stack_space = 0;
3171 int needed;
3172 rtx before_call;
3173 tree tfom; /* type_for_mode (outmode, 0) */
3174
3175 #ifdef REG_PARM_STACK_SPACE
3176 /* Define the boundary of the register parm stack space that needs to be
3177 save, if any. */
3178 int low_to_save, high_to_save;
3179 rtx save_area = 0; /* Place that it is saved. */
3180 #endif
3181
3182 /* Size of the stack reserved for parameter registers. */
3183 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3184 char *initial_stack_usage_map = stack_usage_map;
3185
3186 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3187
3188 #ifdef REG_PARM_STACK_SPACE
3189 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3190 #endif
3191
3192 /* By default, library functions can not throw. */
3193 flags = ECF_NOTHROW;
3194
3195 switch (fn_type)
3196 {
3197 case LCT_NORMAL:
3198 break;
3199 case LCT_CONST:
3200 flags |= ECF_CONST;
3201 break;
3202 case LCT_PURE:
3203 flags |= ECF_PURE;
3204 break;
3205 case LCT_CONST_MAKE_BLOCK:
3206 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
3207 break;
3208 case LCT_PURE_MAKE_BLOCK:
3209 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
3210 break;
3211 case LCT_NORETURN:
3212 flags |= ECF_NORETURN;
3213 break;
3214 case LCT_THROW:
3215 flags = ECF_NORETURN;
3216 break;
3217 case LCT_ALWAYS_RETURN:
3218 flags = ECF_ALWAYS_RETURN;
3219 break;
3220 case LCT_RETURNS_TWICE:
3221 flags = ECF_RETURNS_TWICE;
3222 break;
3223 }
3224 fun = orgfun;
3225
3226 /* Ensure current function's preferred stack boundary is at least
3227 what we need. */
3228 if (cfun->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3229 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3230
3231 /* If this kind of value comes back in memory,
3232 decide where in memory it should come back. */
3233 if (outmode != VOIDmode)
3234 {
3235 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3236 if (aggregate_value_p (tfom, 0))
3237 {
3238 #ifdef PCC_STATIC_STRUCT_RETURN
3239 rtx pointer_reg
3240 = hard_function_value (build_pointer_type (tfom), 0, 0);
3241 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3242 pcc_struct_value = 1;
3243 if (value == 0)
3244 value = gen_reg_rtx (outmode);
3245 #else /* not PCC_STATIC_STRUCT_RETURN */
3246 struct_value_size = GET_MODE_SIZE (outmode);
3247 if (value != 0 && MEM_P (value))
3248 mem_value = value;
3249 else
3250 mem_value = assign_temp (tfom, 0, 1, 1);
3251 #endif
3252 /* This call returns a big structure. */
3253 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3254 }
3255 }
3256 else
3257 tfom = void_type_node;
3258
3259 /* ??? Unfinished: must pass the memory address as an argument. */
3260
3261 /* Copy all the libcall-arguments out of the varargs data
3262 and into a vector ARGVEC.
3263
3264 Compute how to pass each argument. We only support a very small subset
3265 of the full argument passing conventions to limit complexity here since
3266 library functions shouldn't have many args. */
3267
3268 argvec = alloca ((nargs + 1) * sizeof (struct arg));
3269 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3270
3271 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3272 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
3273 #else
3274 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
3275 #endif
3276
3277 args_size.constant = 0;
3278 args_size.var = 0;
3279
3280 count = 0;
3281
3282 /* Now we are about to start emitting insns that can be deleted
3283 if a libcall is deleted. */
3284 if (flags & ECF_LIBCALL_BLOCK)
3285 start_sequence ();
3286
3287 push_temp_slots ();
3288
3289 /* If there's a structure value address to be passed,
3290 either pass it in the special place, or pass it as an extra argument. */
3291 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3292 {
3293 rtx addr = XEXP (mem_value, 0);
3294 int partial;
3295
3296 nargs++;
3297
3298 /* Make sure it is a reasonable operand for a move or push insn. */
3299 if (!REG_P (addr) && !MEM_P (addr)
3300 && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
3301 addr = force_operand (addr, NULL_RTX);
3302
3303 argvec[count].value = addr;
3304 argvec[count].mode = Pmode;
3305 argvec[count].partial = 0;
3306
3307 argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
3308 partial = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, Pmode, NULL_TREE, 1);
3309 gcc_assert (!partial);
3310
3311 locate_and_pad_parm (Pmode, NULL_TREE,
3312 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3313 1,
3314 #else
3315 argvec[count].reg != 0,
3316 #endif
3317 0, NULL_TREE, &args_size, &argvec[count].locate);
3318
3319 if (argvec[count].reg == 0 || argvec[count].partial != 0
3320 || reg_parm_stack_space > 0)
3321 args_size.constant += argvec[count].locate.size.constant;
3322
3323 FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
3324
3325 count++;
3326 }
3327
3328 for (; count < nargs; count++)
3329 {
3330 rtx val = va_arg (p, rtx);
3331 enum machine_mode mode = va_arg (p, enum machine_mode);
3332
3333 /* We cannot convert the arg value to the mode the library wants here;
3334 must do it earlier where we know the signedness of the arg. */
3335 gcc_assert (mode != BLKmode
3336 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3337
3338 /* Make sure it is a reasonable operand for a move or push insn. */
3339 if (!REG_P (val) && !MEM_P (val)
3340 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
3341 val = force_operand (val, NULL_RTX);
3342
3343 if (pass_by_reference (&args_so_far, mode, NULL_TREE, 1))
3344 {
3345 rtx slot;
3346 int must_copy
3347 = !reference_callee_copied (&args_so_far, mode, NULL_TREE, 1);
3348
3349 /* loop.c won't look at CALL_INSN_FUNCTION_USAGE of const/pure
3350 functions, so we have to pretend this isn't such a function. */
3351 if (flags & ECF_LIBCALL_BLOCK)
3352 {
3353 rtx insns = get_insns ();
3354 end_sequence ();
3355 emit_insn (insns);
3356 }
3357 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3358
3359 /* If this was a CONST function, it is now PURE since
3360 it now reads memory. */
3361 if (flags & ECF_CONST)
3362 {
3363 flags &= ~ECF_CONST;
3364 flags |= ECF_PURE;
3365 }
3366
3367 if (GET_MODE (val) == MEM && !must_copy)
3368 slot = val;
3369 else
3370 {
3371 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3372 0, 1, 1);
3373 emit_move_insn (slot, val);
3374 }
3375
3376 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3377 gen_rtx_USE (VOIDmode, slot),
3378 call_fusage);
3379 if (must_copy)
3380 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3381 gen_rtx_CLOBBER (VOIDmode,
3382 slot),
3383 call_fusage);
3384
3385 mode = Pmode;
3386 val = force_operand (XEXP (slot, 0), NULL_RTX);
3387 }
3388
3389 argvec[count].value = val;
3390 argvec[count].mode = mode;
3391
3392 argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
3393
3394 argvec[count].partial
3395 = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1);
3396
3397 locate_and_pad_parm (mode, NULL_TREE,
3398 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3399 1,
3400 #else
3401 argvec[count].reg != 0,
3402 #endif
3403 argvec[count].partial,
3404 NULL_TREE, &args_size, &argvec[count].locate);
3405
3406 gcc_assert (!argvec[count].locate.size.var);
3407
3408 if (argvec[count].reg == 0 || argvec[count].partial != 0
3409 || reg_parm_stack_space > 0)
3410 args_size.constant += argvec[count].locate.size.constant;
3411
3412 FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
3413 }
3414
3415 /* If this machine requires an external definition for library
3416 functions, write one out. */
3417 assemble_external_libcall (fun);
3418
3419 original_args_size = args_size;
3420 args_size.constant = (((args_size.constant
3421 + stack_pointer_delta
3422 + STACK_BYTES - 1)
3423 / STACK_BYTES
3424 * STACK_BYTES)
3425 - stack_pointer_delta);
3426
3427 args_size.constant = MAX (args_size.constant,
3428 reg_parm_stack_space);
3429
3430 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3431 args_size.constant -= reg_parm_stack_space;
3432 #endif
3433
3434 if (args_size.constant > current_function_outgoing_args_size)
3435 current_function_outgoing_args_size = args_size.constant;
3436
3437 if (ACCUMULATE_OUTGOING_ARGS)
3438 {
3439 /* Since the stack pointer will never be pushed, it is possible for
3440 the evaluation of a parm to clobber something we have already
3441 written to the stack. Since most function calls on RISC machines
3442 do not use the stack, this is uncommon, but must work correctly.
3443
3444 Therefore, we save any area of the stack that was already written
3445 and that we are using. Here we set up to do this by making a new
3446 stack usage map from the old one.
3447
3448 Another approach might be to try to reorder the argument
3449 evaluations to avoid this conflicting stack usage. */
3450
3451 needed = args_size.constant;
3452
3453 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3454 /* Since we will be writing into the entire argument area, the
3455 map must be allocated for its entire size, not just the part that
3456 is the responsibility of the caller. */
3457 needed += reg_parm_stack_space;
3458 #endif
3459
3460 #ifdef ARGS_GROW_DOWNWARD
3461 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3462 needed + 1);
3463 #else
3464 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3465 needed);
3466 #endif
3467 stack_usage_map = alloca (highest_outgoing_arg_in_use);
3468
3469 if (initial_highest_arg_in_use)
3470 memcpy (stack_usage_map, initial_stack_usage_map,
3471 initial_highest_arg_in_use);
3472
3473 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3474 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3475 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3476 needed = 0;
3477
3478 /* We must be careful to use virtual regs before they're instantiated,
3479 and real regs afterwards. Loop optimization, for example, can create
3480 new libcalls after we've instantiated the virtual regs, and if we
3481 use virtuals anyway, they won't match the rtl patterns. */
3482
3483 if (virtuals_instantiated)
3484 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3485 else
3486 argblock = virtual_outgoing_args_rtx;
3487 }
3488 else
3489 {
3490 if (!PUSH_ARGS)
3491 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3492 }
3493
3494 /* If we push args individually in reverse order, perform stack alignment
3495 before the first push (the last arg). */
3496 if (argblock == 0 && PUSH_ARGS_REVERSED)
3497 anti_adjust_stack (GEN_INT (args_size.constant
3498 - original_args_size.constant));
3499
3500 if (PUSH_ARGS_REVERSED)
3501 {
3502 inc = -1;
3503 argnum = nargs - 1;
3504 }
3505 else
3506 {
3507 inc = 1;
3508 argnum = 0;
3509 }
3510
3511 #ifdef REG_PARM_STACK_SPACE
3512 if (ACCUMULATE_OUTGOING_ARGS)
3513 {
3514 /* The argument list is the property of the called routine and it
3515 may clobber it. If the fixed area has been used for previous
3516 parameters, we must save and restore it. */
3517 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3518 &low_to_save, &high_to_save);
3519 }
3520 #endif
3521
3522 /* Push the args that need to be pushed. */
3523
3524 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3525 are to be pushed. */
3526 for (count = 0; count < nargs; count++, argnum += inc)
3527 {
3528 enum machine_mode mode = argvec[argnum].mode;
3529 rtx val = argvec[argnum].value;
3530 rtx reg = argvec[argnum].reg;
3531 int partial = argvec[argnum].partial;
3532 int lower_bound = 0, upper_bound = 0, i;
3533
3534 if (! (reg != 0 && partial == 0))
3535 {
3536 if (ACCUMULATE_OUTGOING_ARGS)
3537 {
3538 /* If this is being stored into a pre-allocated, fixed-size,
3539 stack area, save any previous data at that location. */
3540
3541 #ifdef ARGS_GROW_DOWNWARD
3542 /* stack_slot is negative, but we want to index stack_usage_map
3543 with positive values. */
3544 upper_bound = -argvec[argnum].locate.offset.constant + 1;
3545 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3546 #else
3547 lower_bound = argvec[argnum].locate.offset.constant;
3548 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3549 #endif
3550
3551 i = lower_bound;
3552 /* Don't worry about things in the fixed argument area;
3553 it has already been saved. */
3554 if (i < reg_parm_stack_space)
3555 i = reg_parm_stack_space;
3556 while (i < upper_bound && stack_usage_map[i] == 0)
3557 i++;
3558
3559 if (i < upper_bound)
3560 {
3561 /* We need to make a save area. */
3562 unsigned int size
3563 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3564 enum machine_mode save_mode
3565 = mode_for_size (size, MODE_INT, 1);
3566 rtx adr
3567 = plus_constant (argblock,
3568 argvec[argnum].locate.offset.constant);
3569 rtx stack_area
3570 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3571
3572 if (save_mode == BLKmode)
3573 {
3574 argvec[argnum].save_area
3575 = assign_stack_temp (BLKmode,
3576 argvec[argnum].locate.size.constant,
3577 0);
3578
3579 emit_block_move (validize_mem (argvec[argnum].save_area),
3580 stack_area,
3581 GEN_INT (argvec[argnum].locate.size.constant),
3582 BLOCK_OP_CALL_PARM);
3583 }
3584 else
3585 {
3586 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3587
3588 emit_move_insn (argvec[argnum].save_area, stack_area);
3589 }
3590 }
3591 }
3592
3593 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, PARM_BOUNDARY,
3594 partial, reg, 0, argblock,
3595 GEN_INT (argvec[argnum].locate.offset.constant),
3596 reg_parm_stack_space,
3597 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3598
3599 /* Now mark the segment we just used. */
3600 if (ACCUMULATE_OUTGOING_ARGS)
3601 for (i = lower_bound; i < upper_bound; i++)
3602 stack_usage_map[i] = 1;
3603
3604 NO_DEFER_POP;
3605 }
3606 }
3607
3608 /* If we pushed args in forward order, perform stack alignment
3609 after pushing the last arg. */
3610 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3611 anti_adjust_stack (GEN_INT (args_size.constant
3612 - original_args_size.constant));
3613
3614 if (PUSH_ARGS_REVERSED)
3615 argnum = nargs - 1;
3616 else
3617 argnum = 0;
3618
3619 fun = prepare_call_address (fun, NULL, &call_fusage, 0, 0);
3620
3621 /* Now load any reg parms into their regs. */
3622
3623 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3624 are to be pushed. */
3625 for (count = 0; count < nargs; count++, argnum += inc)
3626 {
3627 enum machine_mode mode = argvec[argnum].mode;
3628 rtx val = argvec[argnum].value;
3629 rtx reg = argvec[argnum].reg;
3630 int partial = argvec[argnum].partial;
3631
3632 /* Handle calls that pass values in multiple non-contiguous
3633 locations. The PA64 has examples of this for library calls. */
3634 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3635 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3636 else if (reg != 0 && partial == 0)
3637 emit_move_insn (reg, val);
3638
3639 NO_DEFER_POP;
3640 }
3641
3642 /* Any regs containing parms remain in use through the call. */
3643 for (count = 0; count < nargs; count++)
3644 {
3645 rtx reg = argvec[count].reg;
3646 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3647 use_group_regs (&call_fusage, reg);
3648 else if (reg != 0)
3649 use_reg (&call_fusage, reg);
3650 }
3651
3652 /* Pass the function the address in which to return a structure value. */
3653 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3654 {
3655 emit_move_insn (struct_value,
3656 force_reg (Pmode,
3657 force_operand (XEXP (mem_value, 0),
3658 NULL_RTX)));
3659 if (REG_P (struct_value))
3660 use_reg (&call_fusage, struct_value);
3661 }
3662
3663 /* Don't allow popping to be deferred, since then
3664 cse'ing of library calls could delete a call and leave the pop. */
3665 NO_DEFER_POP;
3666 valreg = (mem_value == 0 && outmode != VOIDmode
3667 ? hard_libcall_value (outmode) : NULL_RTX);
3668
3669 /* Stack must be properly aligned now. */
3670 gcc_assert (!(stack_pointer_delta
3671 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
3672
3673 before_call = get_last_insn ();
3674
3675 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3676 will set inhibit_defer_pop to that value. */
3677 /* The return type is needed to decide how many bytes the function pops.
3678 Signedness plays no role in that, so for simplicity, we pretend it's
3679 always signed. We also assume that the list of arguments passed has
3680 no impact, so we pretend it is unknown. */
3681
3682 emit_call_1 (fun, NULL,
3683 get_identifier (XSTR (orgfun, 0)),
3684 build_function_type (tfom, NULL_TREE),
3685 original_args_size.constant, args_size.constant,
3686 struct_value_size,
3687 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
3688 valreg,
3689 old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
3690
3691 /* For calls to `setjmp', etc., inform flow.c it should complain
3692 if nonvolatile values are live. For functions that cannot return,
3693 inform flow that control does not fall through. */
3694
3695 if (flags & (ECF_NORETURN | ECF_LONGJMP))
3696 {
3697 /* The barrier note must be emitted
3698 immediately after the CALL_INSN. Some ports emit more than
3699 just a CALL_INSN above, so we must search for it here. */
3700
3701 rtx last = get_last_insn ();
3702 while (!CALL_P (last))
3703 {
3704 last = PREV_INSN (last);
3705 /* There was no CALL_INSN? */
3706 gcc_assert (last != before_call);
3707 }
3708
3709 emit_barrier_after (last);
3710 }
3711
3712 /* Now restore inhibit_defer_pop to its actual original value. */
3713 OK_DEFER_POP;
3714
3715 /* If call is cse'able, make appropriate pair of reg-notes around it.
3716 Test valreg so we don't crash; may safely ignore `const'
3717 if return type is void. Disable for PARALLEL return values, because
3718 we have no way to move such values into a pseudo register. */
3719 if (flags & ECF_LIBCALL_BLOCK)
3720 {
3721 rtx insns;
3722
3723 if (valreg == 0)
3724 {
3725 insns = get_insns ();
3726 end_sequence ();
3727 emit_insn (insns);
3728 }
3729 else
3730 {
3731 rtx note = 0;
3732 rtx temp;
3733 int i;
3734
3735 if (GET_CODE (valreg) == PARALLEL)
3736 {
3737 temp = gen_reg_rtx (outmode);
3738 emit_group_store (temp, valreg, NULL_TREE,
3739 GET_MODE_SIZE (outmode));
3740 valreg = temp;
3741 }
3742
3743 temp = gen_reg_rtx (GET_MODE (valreg));
3744
3745 /* Construct an "equal form" for the value which mentions all the
3746 arguments in order as well as the function name. */
3747 for (i = 0; i < nargs; i++)
3748 note = gen_rtx_EXPR_LIST (VOIDmode, argvec[i].value, note);
3749 note = gen_rtx_EXPR_LIST (VOIDmode, fun, note);
3750
3751 insns = get_insns ();
3752 end_sequence ();
3753
3754 if (flags & ECF_PURE)
3755 note = gen_rtx_EXPR_LIST (VOIDmode,
3756 gen_rtx_USE (VOIDmode,
3757 gen_rtx_MEM (BLKmode,
3758 gen_rtx_SCRATCH (VOIDmode))),
3759 note);
3760
3761 emit_libcall_block (insns, temp, valreg, note);
3762
3763 valreg = temp;
3764 }
3765 }
3766 pop_temp_slots ();
3767
3768 /* Copy the value to the right place. */
3769 if (outmode != VOIDmode && retval)
3770 {
3771 if (mem_value)
3772 {
3773 if (value == 0)
3774 value = mem_value;
3775 if (value != mem_value)
3776 emit_move_insn (value, mem_value);
3777 }
3778 else if (GET_CODE (valreg) == PARALLEL)
3779 {
3780 if (value == 0)
3781 value = gen_reg_rtx (outmode);
3782 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
3783 }
3784 else if (value != 0)
3785 emit_move_insn (value, valreg);
3786 else
3787 value = valreg;
3788 }
3789
3790 if (ACCUMULATE_OUTGOING_ARGS)
3791 {
3792 #ifdef REG_PARM_STACK_SPACE
3793 if (save_area)
3794 restore_fixed_argument_area (save_area, argblock,
3795 high_to_save, low_to_save);
3796 #endif
3797
3798 /* If we saved any argument areas, restore them. */
3799 for (count = 0; count < nargs; count++)
3800 if (argvec[count].save_area)
3801 {
3802 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
3803 rtx adr = plus_constant (argblock,
3804 argvec[count].locate.offset.constant);
3805 rtx stack_area = gen_rtx_MEM (save_mode,
3806 memory_address (save_mode, adr));
3807
3808 if (save_mode == BLKmode)
3809 emit_block_move (stack_area,
3810 validize_mem (argvec[count].save_area),
3811 GEN_INT (argvec[count].locate.size.constant),
3812 BLOCK_OP_CALL_PARM);
3813 else
3814 emit_move_insn (stack_area, argvec[count].save_area);
3815 }
3816
3817 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3818 stack_usage_map = initial_stack_usage_map;
3819 }
3820
3821 return value;
3822
3823 }
3824 \f
3825 /* Output a library call to function FUN (a SYMBOL_REF rtx)
3826 (emitting the queue unless NO_QUEUE is nonzero),
3827 for a value of mode OUTMODE,
3828 with NARGS different arguments, passed as alternating rtx values
3829 and machine_modes to convert them to.
3830
3831 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for `const'
3832 calls, LCT_PURE for `pure' calls, LCT_CONST_MAKE_BLOCK for `const' calls
3833 which should be enclosed in REG_LIBCALL/REG_RETVAL notes,
3834 LCT_PURE_MAKE_BLOCK for `purep' calls which should be enclosed in
3835 REG_LIBCALL/REG_RETVAL notes with extra (use (memory (scratch)),
3836 or other LCT_ value for other types of library calls. */
3837
3838 void
3839 emit_library_call (rtx orgfun, enum libcall_type fn_type,
3840 enum machine_mode outmode, int nargs, ...)
3841 {
3842 va_list p;
3843
3844 va_start (p, nargs);
3845 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
3846 va_end (p);
3847 }
3848 \f
3849 /* Like emit_library_call except that an extra argument, VALUE,
3850 comes second and says where to store the result.
3851 (If VALUE is zero, this function chooses a convenient way
3852 to return the value.
3853
3854 This function returns an rtx for where the value is to be found.
3855 If VALUE is nonzero, VALUE is returned. */
3856
3857 rtx
3858 emit_library_call_value (rtx orgfun, rtx value,
3859 enum libcall_type fn_type,
3860 enum machine_mode outmode, int nargs, ...)
3861 {
3862 rtx result;
3863 va_list p;
3864
3865 va_start (p, nargs);
3866 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
3867 nargs, p);
3868 va_end (p);
3869
3870 return result;
3871 }
3872 \f
3873 /* Store a single argument for a function call
3874 into the register or memory area where it must be passed.
3875 *ARG describes the argument value and where to pass it.
3876
3877 ARGBLOCK is the address of the stack-block for all the arguments,
3878 or 0 on a machine where arguments are pushed individually.
3879
3880 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
3881 so must be careful about how the stack is used.
3882
3883 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
3884 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
3885 that we need not worry about saving and restoring the stack.
3886
3887 FNDECL is the declaration of the function we are calling.
3888
3889 Return nonzero if this arg should cause sibcall failure,
3890 zero otherwise. */
3891
3892 static int
3893 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
3894 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
3895 {
3896 tree pval = arg->tree_value;
3897 rtx reg = 0;
3898 int partial = 0;
3899 int used = 0;
3900 int i, lower_bound = 0, upper_bound = 0;
3901 int sibcall_failure = 0;
3902
3903 if (TREE_CODE (pval) == ERROR_MARK)
3904 return 1;
3905
3906 /* Push a new temporary level for any temporaries we make for
3907 this argument. */
3908 push_temp_slots ();
3909
3910 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
3911 {
3912 /* If this is being stored into a pre-allocated, fixed-size, stack area,
3913 save any previous data at that location. */
3914 if (argblock && ! variable_size && arg->stack)
3915 {
3916 #ifdef ARGS_GROW_DOWNWARD
3917 /* stack_slot is negative, but we want to index stack_usage_map
3918 with positive values. */
3919 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
3920 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
3921 else
3922 upper_bound = 0;
3923
3924 lower_bound = upper_bound - arg->locate.size.constant;
3925 #else
3926 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
3927 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
3928 else
3929 lower_bound = 0;
3930
3931 upper_bound = lower_bound + arg->locate.size.constant;
3932 #endif
3933
3934 i = lower_bound;
3935 /* Don't worry about things in the fixed argument area;
3936 it has already been saved. */
3937 if (i < reg_parm_stack_space)
3938 i = reg_parm_stack_space;
3939 while (i < upper_bound && stack_usage_map[i] == 0)
3940 i++;
3941
3942 if (i < upper_bound)
3943 {
3944 /* We need to make a save area. */
3945 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
3946 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
3947 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
3948 rtx stack_area = gen_rtx_MEM (save_mode, adr);
3949
3950 if (save_mode == BLKmode)
3951 {
3952 tree ot = TREE_TYPE (arg->tree_value);
3953 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
3954 | TYPE_QUAL_CONST));
3955
3956 arg->save_area = assign_temp (nt, 0, 1, 1);
3957 preserve_temp_slots (arg->save_area);
3958 emit_block_move (validize_mem (arg->save_area), stack_area,
3959 expr_size (arg->tree_value),
3960 BLOCK_OP_CALL_PARM);
3961 }
3962 else
3963 {
3964 arg->save_area = gen_reg_rtx (save_mode);
3965 emit_move_insn (arg->save_area, stack_area);
3966 }
3967 }
3968 }
3969 }
3970
3971 /* If this isn't going to be placed on both the stack and in registers,
3972 set up the register and number of words. */
3973 if (! arg->pass_on_stack)
3974 {
3975 if (flags & ECF_SIBCALL)
3976 reg = arg->tail_call_reg;
3977 else
3978 reg = arg->reg;
3979 partial = arg->partial;
3980 }
3981
3982 /* Being passed entirely in a register. We shouldn't be called in
3983 this case. */
3984 gcc_assert (reg == 0 || partial != 0);
3985
3986 /* If this arg needs special alignment, don't load the registers
3987 here. */
3988 if (arg->n_aligned_regs != 0)
3989 reg = 0;
3990
3991 /* If this is being passed partially in a register, we can't evaluate
3992 it directly into its stack slot. Otherwise, we can. */
3993 if (arg->value == 0)
3994 {
3995 /* stack_arg_under_construction is nonzero if a function argument is
3996 being evaluated directly into the outgoing argument list and
3997 expand_call must take special action to preserve the argument list
3998 if it is called recursively.
3999
4000 For scalar function arguments stack_usage_map is sufficient to
4001 determine which stack slots must be saved and restored. Scalar
4002 arguments in general have pass_on_stack == 0.
4003
4004 If this argument is initialized by a function which takes the
4005 address of the argument (a C++ constructor or a C function
4006 returning a BLKmode structure), then stack_usage_map is
4007 insufficient and expand_call must push the stack around the
4008 function call. Such arguments have pass_on_stack == 1.
4009
4010 Note that it is always safe to set stack_arg_under_construction,
4011 but this generates suboptimal code if set when not needed. */
4012
4013 if (arg->pass_on_stack)
4014 stack_arg_under_construction++;
4015
4016 arg->value = expand_expr (pval,
4017 (partial
4018 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4019 ? NULL_RTX : arg->stack,
4020 VOIDmode, EXPAND_STACK_PARM);
4021
4022 /* If we are promoting object (or for any other reason) the mode
4023 doesn't agree, convert the mode. */
4024
4025 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4026 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4027 arg->value, arg->unsignedp);
4028
4029 if (arg->pass_on_stack)
4030 stack_arg_under_construction--;
4031 }
4032
4033 /* Don't allow anything left on stack from computation
4034 of argument to alloca. */
4035 if (flags & ECF_MAY_BE_ALLOCA)
4036 do_pending_stack_adjust ();
4037
4038 if (arg->value == arg->stack)
4039 /* If the value is already in the stack slot, we are done. */
4040 ;
4041 else if (arg->mode != BLKmode)
4042 {
4043 int size;
4044
4045 /* Argument is a scalar, not entirely passed in registers.
4046 (If part is passed in registers, arg->partial says how much
4047 and emit_push_insn will take care of putting it there.)
4048
4049 Push it, and if its size is less than the
4050 amount of space allocated to it,
4051 also bump stack pointer by the additional space.
4052 Note that in C the default argument promotions
4053 will prevent such mismatches. */
4054
4055 size = GET_MODE_SIZE (arg->mode);
4056 /* Compute how much space the push instruction will push.
4057 On many machines, pushing a byte will advance the stack
4058 pointer by a halfword. */
4059 #ifdef PUSH_ROUNDING
4060 size = PUSH_ROUNDING (size);
4061 #endif
4062 used = size;
4063
4064 /* Compute how much space the argument should get:
4065 round up to a multiple of the alignment for arguments. */
4066 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4067 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4068 / (PARM_BOUNDARY / BITS_PER_UNIT))
4069 * (PARM_BOUNDARY / BITS_PER_UNIT));
4070
4071 /* This isn't already where we want it on the stack, so put it there.
4072 This can either be done with push or copy insns. */
4073 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4074 PARM_BOUNDARY, partial, reg, used - size, argblock,
4075 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4076 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4077
4078 /* Unless this is a partially-in-register argument, the argument is now
4079 in the stack. */
4080 if (partial == 0)
4081 arg->value = arg->stack;
4082 }
4083 else
4084 {
4085 /* BLKmode, at least partly to be pushed. */
4086
4087 unsigned int parm_align;
4088 int excess;
4089 rtx size_rtx;
4090
4091 /* Pushing a nonscalar.
4092 If part is passed in registers, PARTIAL says how much
4093 and emit_push_insn will take care of putting it there. */
4094
4095 /* Round its size up to a multiple
4096 of the allocation unit for arguments. */
4097
4098 if (arg->locate.size.var != 0)
4099 {
4100 excess = 0;
4101 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4102 }
4103 else
4104 {
4105 /* PUSH_ROUNDING has no effect on us, because
4106 emit_push_insn for BLKmode is careful to avoid it. */
4107 if (reg && GET_CODE (reg) == PARALLEL)
4108 {
4109 /* Use the size of the elt to compute excess. */
4110 rtx elt = XEXP (XVECEXP (reg, 0, 0), 0);
4111 excess = (arg->locate.size.constant
4112 - int_size_in_bytes (TREE_TYPE (pval))
4113 + partial * GET_MODE_SIZE (GET_MODE (elt)));
4114 }
4115 else
4116 excess = (arg->locate.size.constant
4117 - int_size_in_bytes (TREE_TYPE (pval))
4118 + partial * UNITS_PER_WORD);
4119 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4120 NULL_RTX, TYPE_MODE (sizetype), 0);
4121 }
4122
4123 /* Some types will require stricter alignment, which will be
4124 provided for elsewhere in argument layout. */
4125 parm_align = MAX (PARM_BOUNDARY, TYPE_ALIGN (TREE_TYPE (pval)));
4126
4127 /* When an argument is padded down, the block is aligned to
4128 PARM_BOUNDARY, but the actual argument isn't. */
4129 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4130 {
4131 if (arg->locate.size.var)
4132 parm_align = BITS_PER_UNIT;
4133 else if (excess)
4134 {
4135 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4136 parm_align = MIN (parm_align, excess_align);
4137 }
4138 }
4139
4140 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4141 {
4142 /* emit_push_insn might not work properly if arg->value and
4143 argblock + arg->locate.offset areas overlap. */
4144 rtx x = arg->value;
4145 int i = 0;
4146
4147 if (XEXP (x, 0) == current_function_internal_arg_pointer
4148 || (GET_CODE (XEXP (x, 0)) == PLUS
4149 && XEXP (XEXP (x, 0), 0) ==
4150 current_function_internal_arg_pointer
4151 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
4152 {
4153 if (XEXP (x, 0) != current_function_internal_arg_pointer)
4154 i = INTVAL (XEXP (XEXP (x, 0), 1));
4155
4156 /* expand_call should ensure this. */
4157 gcc_assert (!arg->locate.offset.var
4158 && GET_CODE (size_rtx) == CONST_INT);
4159
4160 if (arg->locate.offset.constant > i)
4161 {
4162 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4163 sibcall_failure = 1;
4164 }
4165 else if (arg->locate.offset.constant < i)
4166 {
4167 if (i < arg->locate.offset.constant + INTVAL (size_rtx))
4168 sibcall_failure = 1;
4169 }
4170 }
4171 }
4172
4173 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4174 parm_align, partial, reg, excess, argblock,
4175 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4176 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4177
4178 /* Unless this is a partially-in-register argument, the argument is now
4179 in the stack.
4180
4181 ??? Unlike the case above, in which we want the actual
4182 address of the data, so that we can load it directly into a
4183 register, here we want the address of the stack slot, so that
4184 it's properly aligned for word-by-word copying or something
4185 like that. It's not clear that this is always correct. */
4186 if (partial == 0)
4187 arg->value = arg->stack_slot;
4188 }
4189
4190 /* Mark all slots this store used. */
4191 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4192 && argblock && ! variable_size && arg->stack)
4193 for (i = lower_bound; i < upper_bound; i++)
4194 stack_usage_map[i] = 1;
4195
4196 /* Once we have pushed something, pops can't safely
4197 be deferred during the rest of the arguments. */
4198 NO_DEFER_POP;
4199
4200 /* Free any temporary slots made in processing this argument. Show
4201 that we might have taken the address of something and pushed that
4202 as an operand. */
4203 preserve_temp_slots (NULL_RTX);
4204 free_temp_slots ();
4205 pop_temp_slots ();
4206
4207 return sibcall_failure;
4208 }
4209
4210 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4211
4212 bool
4213 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4214 tree type)
4215 {
4216 if (!type)
4217 return false;
4218
4219 /* If the type has variable size... */
4220 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4221 return true;
4222
4223 /* If the type is marked as addressable (it is required
4224 to be constructed into the stack)... */
4225 if (TREE_ADDRESSABLE (type))
4226 return true;
4227
4228 return false;
4229 }
4230
4231 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4232 takes trailing padding of a structure into account. */
4233 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4234
4235 bool
4236 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, tree type)
4237 {
4238 if (!type)
4239 return false;
4240
4241 /* If the type has variable size... */
4242 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4243 return true;
4244
4245 /* If the type is marked as addressable (it is required
4246 to be constructed into the stack)... */
4247 if (TREE_ADDRESSABLE (type))
4248 return true;
4249
4250 /* If the padding and mode of the type is such that a copy into
4251 a register would put it into the wrong part of the register. */
4252 if (mode == BLKmode
4253 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4254 && (FUNCTION_ARG_PADDING (mode, type)
4255 == (BYTES_BIG_ENDIAN ? upward : downward)))
4256 return true;
4257
4258 return false;
4259 }