re PR middle-end/50113 (soft-float MIPS64 compiler is miscompiling ggc-page.c)
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "flags.h"
30 #include "expr.h"
31 #include "optabs.h"
32 #include "libfuncs.h"
33 #include "function.h"
34 #include "regs.h"
35 #include "diagnostic-core.h"
36 #include "output.h"
37 #include "tm_p.h"
38 #include "timevar.h"
39 #include "sbitmap.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "cgraph.h"
43 #include "except.h"
44 #include "dbgcnt.h"
45 #include "tree-flow.h"
46
47 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
48 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
49
50 /* Data structure and subroutines used within expand_call. */
51
52 struct arg_data
53 {
54 /* Tree node for this argument. */
55 tree tree_value;
56 /* Mode for value; TYPE_MODE unless promoted. */
57 enum machine_mode mode;
58 /* Current RTL value for argument, or 0 if it isn't precomputed. */
59 rtx value;
60 /* Initially-compute RTL value for argument; only for const functions. */
61 rtx initial_value;
62 /* Register to pass this argument in, 0 if passed on stack, or an
63 PARALLEL if the arg is to be copied into multiple non-contiguous
64 registers. */
65 rtx reg;
66 /* Register to pass this argument in when generating tail call sequence.
67 This is not the same register as for normal calls on machines with
68 register windows. */
69 rtx tail_call_reg;
70 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
71 form for emit_group_move. */
72 rtx parallel_value;
73 /* If REG was promoted from the actual mode of the argument expression,
74 indicates whether the promotion is sign- or zero-extended. */
75 int unsignedp;
76 /* Number of bytes to put in registers. 0 means put the whole arg
77 in registers. Also 0 if not passed in registers. */
78 int partial;
79 /* Nonzero if argument must be passed on stack.
80 Note that some arguments may be passed on the stack
81 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
82 pass_on_stack identifies arguments that *cannot* go in registers. */
83 int pass_on_stack;
84 /* Some fields packaged up for locate_and_pad_parm. */
85 struct locate_and_pad_arg_data locate;
86 /* Location on the stack at which parameter should be stored. The store
87 has already been done if STACK == VALUE. */
88 rtx stack;
89 /* Location on the stack of the start of this argument slot. This can
90 differ from STACK if this arg pads downward. This location is known
91 to be aligned to TARGET_FUNCTION_ARG_BOUNDARY. */
92 rtx stack_slot;
93 /* Place that this stack area has been saved, if needed. */
94 rtx save_area;
95 /* If an argument's alignment does not permit direct copying into registers,
96 copy in smaller-sized pieces into pseudos. These are stored in a
97 block pointed to by this field. The next field says how many
98 word-sized pseudos we made. */
99 rtx *aligned_regs;
100 int n_aligned_regs;
101 };
102
103 /* A vector of one char per byte of stack space. A byte if nonzero if
104 the corresponding stack location has been used.
105 This vector is used to prevent a function call within an argument from
106 clobbering any stack already set up. */
107 static char *stack_usage_map;
108
109 /* Size of STACK_USAGE_MAP. */
110 static int highest_outgoing_arg_in_use;
111
112 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
113 stack location's tail call argument has been already stored into the stack.
114 This bitmap is used to prevent sibling call optimization if function tries
115 to use parent's incoming argument slots when they have been already
116 overwritten with tail call arguments. */
117 static sbitmap stored_args_map;
118
119 /* stack_arg_under_construction is nonzero when an argument may be
120 initialized with a constructor call (including a C function that
121 returns a BLKmode struct) and expand_call must take special action
122 to make sure the object being constructed does not overlap the
123 argument list for the constructor call. */
124 static int stack_arg_under_construction;
125
126 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
127 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
128 cumulative_args_t);
129 static void precompute_register_parameters (int, struct arg_data *, int *);
130 static int store_one_arg (struct arg_data *, rtx, int, int, int);
131 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
132 static int finalize_must_preallocate (int, int, struct arg_data *,
133 struct args_size *);
134 static void precompute_arguments (int, struct arg_data *);
135 static int compute_argument_block_size (int, struct args_size *, tree, tree, int);
136 static void initialize_argument_information (int, struct arg_data *,
137 struct args_size *, int,
138 tree, tree,
139 tree, tree, cumulative_args_t, int,
140 rtx *, int *, int *, int *,
141 bool *, bool);
142 static void compute_argument_addresses (struct arg_data *, rtx, int);
143 static rtx rtx_for_function_call (tree, tree);
144 static void load_register_parameters (struct arg_data *, int, rtx *, int,
145 int, int *);
146 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
147 enum machine_mode, int, va_list);
148 static int special_function_p (const_tree, int);
149 static int check_sibcall_argument_overlap_1 (rtx);
150 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
151
152 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
153 unsigned int);
154 static tree split_complex_types (tree);
155
156 #ifdef REG_PARM_STACK_SPACE
157 static rtx save_fixed_argument_area (int, rtx, int *, int *);
158 static void restore_fixed_argument_area (rtx, rtx, int, int);
159 #endif
160 \f
161 /* Force FUNEXP into a form suitable for the address of a CALL,
162 and return that as an rtx. Also load the static chain register
163 if FNDECL is a nested function.
164
165 CALL_FUSAGE points to a variable holding the prospective
166 CALL_INSN_FUNCTION_USAGE information. */
167
168 rtx
169 prepare_call_address (tree fndecl, rtx funexp, rtx static_chain_value,
170 rtx *call_fusage, int reg_parm_seen, int sibcallp)
171 {
172 /* Make a valid memory address and copy constants through pseudo-regs,
173 but not for a constant address if -fno-function-cse. */
174 if (GET_CODE (funexp) != SYMBOL_REF)
175 /* If we are using registers for parameters, force the
176 function address into a register now. */
177 funexp = ((reg_parm_seen
178 && targetm.small_register_classes_for_mode_p (FUNCTION_MODE))
179 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
180 : memory_address (FUNCTION_MODE, funexp));
181 else if (! sibcallp)
182 {
183 #ifndef NO_FUNCTION_CSE
184 if (optimize && ! flag_no_function_cse)
185 funexp = force_reg (Pmode, funexp);
186 #endif
187 }
188
189 if (static_chain_value != 0)
190 {
191 rtx chain;
192
193 gcc_assert (fndecl);
194 chain = targetm.calls.static_chain (fndecl, false);
195 static_chain_value = convert_memory_address (Pmode, static_chain_value);
196
197 emit_move_insn (chain, static_chain_value);
198 if (REG_P (chain))
199 use_reg (call_fusage, chain);
200 }
201
202 return funexp;
203 }
204
205 /* Generate instructions to call function FUNEXP,
206 and optionally pop the results.
207 The CALL_INSN is the first insn generated.
208
209 FNDECL is the declaration node of the function. This is given to the
210 hook TARGET_RETURN_POPS_ARGS to determine whether this function pops
211 its own args.
212
213 FUNTYPE is the data type of the function. This is given to the hook
214 TARGET_RETURN_POPS_ARGS to determine whether this function pops its
215 own args. We used to allow an identifier for library functions, but
216 that doesn't work when the return type is an aggregate type and the
217 calling convention says that the pointer to this aggregate is to be
218 popped by the callee.
219
220 STACK_SIZE is the number of bytes of arguments on the stack,
221 ROUNDED_STACK_SIZE is that number rounded up to
222 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
223 both to put into the call insn and to generate explicit popping
224 code if necessary.
225
226 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
227 It is zero if this call doesn't want a structure value.
228
229 NEXT_ARG_REG is the rtx that results from executing
230 targetm.calls.function_arg (&args_so_far, VOIDmode, void_type_node, true)
231 just after all the args have had their registers assigned.
232 This could be whatever you like, but normally it is the first
233 arg-register beyond those used for args in this call,
234 or 0 if all the arg-registers are used in this call.
235 It is passed on to `gen_call' so you can put this info in the call insn.
236
237 VALREG is a hard register in which a value is returned,
238 or 0 if the call does not return a value.
239
240 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
241 the args to this call were processed.
242 We restore `inhibit_defer_pop' to that value.
243
244 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
245 denote registers used by the called function. */
246
247 static void
248 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
249 tree funtype ATTRIBUTE_UNUSED,
250 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
251 HOST_WIDE_INT rounded_stack_size,
252 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
253 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
254 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
255 cumulative_args_t args_so_far ATTRIBUTE_UNUSED)
256 {
257 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
258 rtx call_insn, call, funmem;
259 int already_popped = 0;
260 HOST_WIDE_INT n_popped
261 = targetm.calls.return_pops_args (fndecl, funtype, stack_size);
262
263 #ifdef CALL_POPS_ARGS
264 n_popped += CALL_POPS_ARGS (*get_cumulative_args (args_so_far));
265 #endif
266
267 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
268 and we don't want to load it into a register as an optimization,
269 because prepare_call_address already did it if it should be done. */
270 if (GET_CODE (funexp) != SYMBOL_REF)
271 funexp = memory_address (FUNCTION_MODE, funexp);
272
273 funmem = gen_rtx_MEM (FUNCTION_MODE, funexp);
274 if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL)
275 {
276 tree t = fndecl;
277 /* Although a built-in FUNCTION_DECL and its non-__builtin
278 counterpart compare equal and get a shared mem_attrs, they
279 produce different dump output in compare-debug compilations,
280 if an entry gets garbage collected in one compilation, then
281 adds a different (but equivalent) entry, while the other
282 doesn't run the garbage collector at the same spot and then
283 shares the mem_attr with the equivalent entry. */
284 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
285 && built_in_decls[DECL_FUNCTION_CODE (t)])
286 t = built_in_decls[DECL_FUNCTION_CODE (t)];
287 set_mem_expr (funmem, t);
288 }
289 else if (fntree)
290 set_mem_expr (funmem, build_simple_mem_ref (CALL_EXPR_FN (fntree)));
291
292 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
293 if ((ecf_flags & ECF_SIBCALL)
294 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
295 && (n_popped > 0 || stack_size == 0))
296 {
297 rtx n_pop = GEN_INT (n_popped);
298 rtx pat;
299
300 /* If this subroutine pops its own args, record that in the call insn
301 if possible, for the sake of frame pointer elimination. */
302
303 if (valreg)
304 pat = GEN_SIBCALL_VALUE_POP (valreg, funmem, rounded_stack_size_rtx,
305 next_arg_reg, n_pop);
306 else
307 pat = GEN_SIBCALL_POP (funmem, rounded_stack_size_rtx, next_arg_reg,
308 n_pop);
309
310 emit_call_insn (pat);
311 already_popped = 1;
312 }
313 else
314 #endif
315
316 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
317 /* If the target has "call" or "call_value" insns, then prefer them
318 if no arguments are actually popped. If the target does not have
319 "call" or "call_value" insns, then we must use the popping versions
320 even if the call has no arguments to pop. */
321 #if defined (HAVE_call) && defined (HAVE_call_value)
322 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
323 && n_popped > 0)
324 #else
325 if (HAVE_call_pop && HAVE_call_value_pop)
326 #endif
327 {
328 rtx n_pop = GEN_INT (n_popped);
329 rtx pat;
330
331 /* If this subroutine pops its own args, record that in the call insn
332 if possible, for the sake of frame pointer elimination. */
333
334 if (valreg)
335 pat = GEN_CALL_VALUE_POP (valreg, funmem, rounded_stack_size_rtx,
336 next_arg_reg, n_pop);
337 else
338 pat = GEN_CALL_POP (funmem, rounded_stack_size_rtx, next_arg_reg,
339 n_pop);
340
341 emit_call_insn (pat);
342 already_popped = 1;
343 }
344 else
345 #endif
346
347 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
348 if ((ecf_flags & ECF_SIBCALL)
349 && HAVE_sibcall && HAVE_sibcall_value)
350 {
351 if (valreg)
352 emit_call_insn (GEN_SIBCALL_VALUE (valreg, funmem,
353 rounded_stack_size_rtx,
354 next_arg_reg, NULL_RTX));
355 else
356 emit_call_insn (GEN_SIBCALL (funmem, rounded_stack_size_rtx,
357 next_arg_reg,
358 GEN_INT (struct_value_size)));
359 }
360 else
361 #endif
362
363 #if defined (HAVE_call) && defined (HAVE_call_value)
364 if (HAVE_call && HAVE_call_value)
365 {
366 if (valreg)
367 emit_call_insn (GEN_CALL_VALUE (valreg, funmem, rounded_stack_size_rtx,
368 next_arg_reg, NULL_RTX));
369 else
370 emit_call_insn (GEN_CALL (funmem, rounded_stack_size_rtx, next_arg_reg,
371 GEN_INT (struct_value_size)));
372 }
373 else
374 #endif
375 gcc_unreachable ();
376
377 /* Find the call we just emitted. */
378 call_insn = last_call_insn ();
379
380 /* Some target create a fresh MEM instead of reusing the one provided
381 above. Set its MEM_EXPR. */
382 call = PATTERN (call_insn);
383 if (GET_CODE (call) == PARALLEL)
384 call = XVECEXP (call, 0, 0);
385 if (GET_CODE (call) == SET)
386 call = SET_SRC (call);
387 if (GET_CODE (call) == CALL
388 && MEM_P (XEXP (call, 0))
389 && MEM_EXPR (XEXP (call, 0)) == NULL_TREE
390 && MEM_EXPR (funmem) != NULL_TREE)
391 set_mem_expr (XEXP (call, 0), MEM_EXPR (funmem));
392
393 /* Put the register usage information there. */
394 add_function_usage_to (call_insn, call_fusage);
395
396 /* If this is a const call, then set the insn's unchanging bit. */
397 if (ecf_flags & ECF_CONST)
398 RTL_CONST_CALL_P (call_insn) = 1;
399
400 /* If this is a pure call, then set the insn's unchanging bit. */
401 if (ecf_flags & ECF_PURE)
402 RTL_PURE_CALL_P (call_insn) = 1;
403
404 /* If this is a const call, then set the insn's unchanging bit. */
405 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
406 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
407
408 /* Create a nothrow REG_EH_REGION note, if needed. */
409 make_reg_eh_region_note (call_insn, ecf_flags, 0);
410
411 if (ecf_flags & ECF_NORETURN)
412 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
413
414 if (ecf_flags & ECF_RETURNS_TWICE)
415 {
416 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
417 cfun->calls_setjmp = 1;
418 }
419
420 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
421
422 /* Restore this now, so that we do defer pops for this call's args
423 if the context of the call as a whole permits. */
424 inhibit_defer_pop = old_inhibit_defer_pop;
425
426 if (n_popped > 0)
427 {
428 if (!already_popped)
429 CALL_INSN_FUNCTION_USAGE (call_insn)
430 = gen_rtx_EXPR_LIST (VOIDmode,
431 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
432 CALL_INSN_FUNCTION_USAGE (call_insn));
433 rounded_stack_size -= n_popped;
434 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
435 stack_pointer_delta -= n_popped;
436
437 add_reg_note (call_insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
438
439 /* If popup is needed, stack realign must use DRAP */
440 if (SUPPORTS_STACK_ALIGNMENT)
441 crtl->need_drap = true;
442 }
443
444 if (!ACCUMULATE_OUTGOING_ARGS)
445 {
446 /* If returning from the subroutine does not automatically pop the args,
447 we need an instruction to pop them sooner or later.
448 Perhaps do it now; perhaps just record how much space to pop later.
449
450 If returning from the subroutine does pop the args, indicate that the
451 stack pointer will be changed. */
452
453 if (rounded_stack_size != 0)
454 {
455 if (ecf_flags & ECF_NORETURN)
456 /* Just pretend we did the pop. */
457 stack_pointer_delta -= rounded_stack_size;
458 else if (flag_defer_pop && inhibit_defer_pop == 0
459 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
460 pending_stack_adjust += rounded_stack_size;
461 else
462 adjust_stack (rounded_stack_size_rtx);
463 }
464 }
465 /* When we accumulate outgoing args, we must avoid any stack manipulations.
466 Restore the stack pointer to its original value now. Usually
467 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
468 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
469 popping variants of functions exist as well.
470
471 ??? We may optimize similar to defer_pop above, but it is
472 probably not worthwhile.
473
474 ??? It will be worthwhile to enable combine_stack_adjustments even for
475 such machines. */
476 else if (n_popped)
477 anti_adjust_stack (GEN_INT (n_popped));
478 }
479
480 /* Determine if the function identified by NAME and FNDECL is one with
481 special properties we wish to know about.
482
483 For example, if the function might return more than one time (setjmp), then
484 set RETURNS_TWICE to a nonzero value.
485
486 Similarly set NORETURN if the function is in the longjmp family.
487
488 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
489 space from the stack such as alloca. */
490
491 static int
492 special_function_p (const_tree fndecl, int flags)
493 {
494 if (fndecl && DECL_NAME (fndecl)
495 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
496 /* Exclude functions not at the file scope, or not `extern',
497 since they are not the magic functions we would otherwise
498 think they are.
499 FIXME: this should be handled with attributes, not with this
500 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
501 because you can declare fork() inside a function if you
502 wish. */
503 && (DECL_CONTEXT (fndecl) == NULL_TREE
504 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
505 && TREE_PUBLIC (fndecl))
506 {
507 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
508 const char *tname = name;
509
510 /* We assume that alloca will always be called by name. It
511 makes no sense to pass it as a pointer-to-function to
512 anything that does not understand its behavior. */
513 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
514 && name[0] == 'a'
515 && ! strcmp (name, "alloca"))
516 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
517 && name[0] == '_'
518 && ! strcmp (name, "__builtin_alloca"))))
519 flags |= ECF_MAY_BE_ALLOCA;
520
521 /* Disregard prefix _, __, __x or __builtin_. */
522 if (name[0] == '_')
523 {
524 if (name[1] == '_'
525 && name[2] == 'b'
526 && !strncmp (name + 3, "uiltin_", 7))
527 tname += 10;
528 else if (name[1] == '_' && name[2] == 'x')
529 tname += 3;
530 else if (name[1] == '_')
531 tname += 2;
532 else
533 tname += 1;
534 }
535
536 if (tname[0] == 's')
537 {
538 if ((tname[1] == 'e'
539 && (! strcmp (tname, "setjmp")
540 || ! strcmp (tname, "setjmp_syscall")))
541 || (tname[1] == 'i'
542 && ! strcmp (tname, "sigsetjmp"))
543 || (tname[1] == 'a'
544 && ! strcmp (tname, "savectx")))
545 flags |= ECF_RETURNS_TWICE;
546
547 if (tname[1] == 'i'
548 && ! strcmp (tname, "siglongjmp"))
549 flags |= ECF_NORETURN;
550 }
551 else if ((tname[0] == 'q' && tname[1] == 's'
552 && ! strcmp (tname, "qsetjmp"))
553 || (tname[0] == 'v' && tname[1] == 'f'
554 && ! strcmp (tname, "vfork"))
555 || (tname[0] == 'g' && tname[1] == 'e'
556 && !strcmp (tname, "getcontext")))
557 flags |= ECF_RETURNS_TWICE;
558
559 else if (tname[0] == 'l' && tname[1] == 'o'
560 && ! strcmp (tname, "longjmp"))
561 flags |= ECF_NORETURN;
562 }
563
564 return flags;
565 }
566
567 /* Return nonzero when FNDECL represents a call to setjmp. */
568
569 int
570 setjmp_call_p (const_tree fndecl)
571 {
572 if (DECL_IS_RETURNS_TWICE (fndecl))
573 return ECF_RETURNS_TWICE;
574 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
575 }
576
577
578 /* Return true if STMT is an alloca call. */
579
580 bool
581 gimple_alloca_call_p (const_gimple stmt)
582 {
583 tree fndecl;
584
585 if (!is_gimple_call (stmt))
586 return false;
587
588 fndecl = gimple_call_fndecl (stmt);
589 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
590 return true;
591
592 return false;
593 }
594
595 /* Return true when exp contains alloca call. */
596
597 bool
598 alloca_call_p (const_tree exp)
599 {
600 if (TREE_CODE (exp) == CALL_EXPR
601 && TREE_CODE (CALL_EXPR_FN (exp)) == ADDR_EXPR
602 && (TREE_CODE (TREE_OPERAND (CALL_EXPR_FN (exp), 0)) == FUNCTION_DECL)
603 && (special_function_p (TREE_OPERAND (CALL_EXPR_FN (exp), 0), 0)
604 & ECF_MAY_BE_ALLOCA))
605 return true;
606 return false;
607 }
608
609 /* Detect flags (function attributes) from the function decl or type node. */
610
611 int
612 flags_from_decl_or_type (const_tree exp)
613 {
614 int flags = 0;
615
616 if (DECL_P (exp))
617 {
618 /* The function exp may have the `malloc' attribute. */
619 if (DECL_IS_MALLOC (exp))
620 flags |= ECF_MALLOC;
621
622 /* The function exp may have the `returns_twice' attribute. */
623 if (DECL_IS_RETURNS_TWICE (exp))
624 flags |= ECF_RETURNS_TWICE;
625
626 /* Process the pure and const attributes. */
627 if (TREE_READONLY (exp))
628 flags |= ECF_CONST;
629 if (DECL_PURE_P (exp))
630 flags |= ECF_PURE;
631 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
632 flags |= ECF_LOOPING_CONST_OR_PURE;
633
634 if (DECL_IS_NOVOPS (exp))
635 flags |= ECF_NOVOPS;
636 if (lookup_attribute ("leaf", DECL_ATTRIBUTES (exp)))
637 flags |= ECF_LEAF;
638
639 if (TREE_NOTHROW (exp))
640 flags |= ECF_NOTHROW;
641
642 flags = special_function_p (exp, flags);
643 }
644 else if (TYPE_P (exp) && TYPE_READONLY (exp))
645 flags |= ECF_CONST;
646
647 if (TREE_THIS_VOLATILE (exp))
648 {
649 flags |= ECF_NORETURN;
650 if (flags & (ECF_CONST|ECF_PURE))
651 flags |= ECF_LOOPING_CONST_OR_PURE;
652 }
653
654 return flags;
655 }
656
657 /* Detect flags from a CALL_EXPR. */
658
659 int
660 call_expr_flags (const_tree t)
661 {
662 int flags;
663 tree decl = get_callee_fndecl (t);
664
665 if (decl)
666 flags = flags_from_decl_or_type (decl);
667 else
668 {
669 t = TREE_TYPE (CALL_EXPR_FN (t));
670 if (t && TREE_CODE (t) == POINTER_TYPE)
671 flags = flags_from_decl_or_type (TREE_TYPE (t));
672 else
673 flags = 0;
674 }
675
676 return flags;
677 }
678
679 /* Precompute all register parameters as described by ARGS, storing values
680 into fields within the ARGS array.
681
682 NUM_ACTUALS indicates the total number elements in the ARGS array.
683
684 Set REG_PARM_SEEN if we encounter a register parameter. */
685
686 static void
687 precompute_register_parameters (int num_actuals, struct arg_data *args,
688 int *reg_parm_seen)
689 {
690 int i;
691
692 *reg_parm_seen = 0;
693
694 for (i = 0; i < num_actuals; i++)
695 if (args[i].reg != 0 && ! args[i].pass_on_stack)
696 {
697 *reg_parm_seen = 1;
698
699 if (args[i].value == 0)
700 {
701 push_temp_slots ();
702 args[i].value = expand_normal (args[i].tree_value);
703 preserve_temp_slots (args[i].value);
704 pop_temp_slots ();
705 }
706
707 /* If we are to promote the function arg to a wider mode,
708 do it now. */
709
710 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
711 args[i].value
712 = convert_modes (args[i].mode,
713 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
714 args[i].value, args[i].unsignedp);
715
716 /* If the value is a non-legitimate constant, force it into a
717 pseudo now. TLS symbols sometimes need a call to resolve. */
718 if (CONSTANT_P (args[i].value)
719 && !targetm.legitimate_constant_p (args[i].mode, args[i].value))
720 args[i].value = force_reg (args[i].mode, args[i].value);
721
722 /* If we're going to have to load the value by parts, pull the
723 parts into pseudos. The part extraction process can involve
724 non-trivial computation. */
725 if (GET_CODE (args[i].reg) == PARALLEL)
726 {
727 tree type = TREE_TYPE (args[i].tree_value);
728 args[i].parallel_value
729 = emit_group_load_into_temps (args[i].reg, args[i].value,
730 type, int_size_in_bytes (type));
731 }
732
733 /* If the value is expensive, and we are inside an appropriately
734 short loop, put the value into a pseudo and then put the pseudo
735 into the hard reg.
736
737 For small register classes, also do this if this call uses
738 register parameters. This is to avoid reload conflicts while
739 loading the parameters registers. */
740
741 else if ((! (REG_P (args[i].value)
742 || (GET_CODE (args[i].value) == SUBREG
743 && REG_P (SUBREG_REG (args[i].value)))))
744 && args[i].mode != BLKmode
745 && set_src_cost (args[i].value, optimize_insn_for_speed_p ())
746 > COSTS_N_INSNS (1)
747 && ((*reg_parm_seen
748 && targetm.small_register_classes_for_mode_p (args[i].mode))
749 || optimize))
750 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
751 }
752 }
753
754 #ifdef REG_PARM_STACK_SPACE
755
756 /* The argument list is the property of the called routine and it
757 may clobber it. If the fixed area has been used for previous
758 parameters, we must save and restore it. */
759
760 static rtx
761 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
762 {
763 int low;
764 int high;
765
766 /* Compute the boundary of the area that needs to be saved, if any. */
767 high = reg_parm_stack_space;
768 #ifdef ARGS_GROW_DOWNWARD
769 high += 1;
770 #endif
771 if (high > highest_outgoing_arg_in_use)
772 high = highest_outgoing_arg_in_use;
773
774 for (low = 0; low < high; low++)
775 if (stack_usage_map[low] != 0)
776 {
777 int num_to_save;
778 enum machine_mode save_mode;
779 int delta;
780 rtx stack_area;
781 rtx save_area;
782
783 while (stack_usage_map[--high] == 0)
784 ;
785
786 *low_to_save = low;
787 *high_to_save = high;
788
789 num_to_save = high - low + 1;
790 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
791
792 /* If we don't have the required alignment, must do this
793 in BLKmode. */
794 if ((low & (MIN (GET_MODE_SIZE (save_mode),
795 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
796 save_mode = BLKmode;
797
798 #ifdef ARGS_GROW_DOWNWARD
799 delta = -high;
800 #else
801 delta = low;
802 #endif
803 stack_area = gen_rtx_MEM (save_mode,
804 memory_address (save_mode,
805 plus_constant (argblock,
806 delta)));
807
808 set_mem_align (stack_area, PARM_BOUNDARY);
809 if (save_mode == BLKmode)
810 {
811 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
812 emit_block_move (validize_mem (save_area), stack_area,
813 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
814 }
815 else
816 {
817 save_area = gen_reg_rtx (save_mode);
818 emit_move_insn (save_area, stack_area);
819 }
820
821 return save_area;
822 }
823
824 return NULL_RTX;
825 }
826
827 static void
828 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
829 {
830 enum machine_mode save_mode = GET_MODE (save_area);
831 int delta;
832 rtx stack_area;
833
834 #ifdef ARGS_GROW_DOWNWARD
835 delta = -high_to_save;
836 #else
837 delta = low_to_save;
838 #endif
839 stack_area = gen_rtx_MEM (save_mode,
840 memory_address (save_mode,
841 plus_constant (argblock, delta)));
842 set_mem_align (stack_area, PARM_BOUNDARY);
843
844 if (save_mode != BLKmode)
845 emit_move_insn (stack_area, save_area);
846 else
847 emit_block_move (stack_area, validize_mem (save_area),
848 GEN_INT (high_to_save - low_to_save + 1),
849 BLOCK_OP_CALL_PARM);
850 }
851 #endif /* REG_PARM_STACK_SPACE */
852
853 /* If any elements in ARGS refer to parameters that are to be passed in
854 registers, but not in memory, and whose alignment does not permit a
855 direct copy into registers. Copy the values into a group of pseudos
856 which we will later copy into the appropriate hard registers.
857
858 Pseudos for each unaligned argument will be stored into the array
859 args[argnum].aligned_regs. The caller is responsible for deallocating
860 the aligned_regs array if it is nonzero. */
861
862 static void
863 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
864 {
865 int i, j;
866
867 for (i = 0; i < num_actuals; i++)
868 if (args[i].reg != 0 && ! args[i].pass_on_stack
869 && args[i].mode == BLKmode
870 && MEM_P (args[i].value)
871 && (MEM_ALIGN (args[i].value)
872 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
873 {
874 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
875 int endian_correction = 0;
876
877 if (args[i].partial)
878 {
879 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
880 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
881 }
882 else
883 {
884 args[i].n_aligned_regs
885 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
886 }
887
888 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
889
890 /* Structures smaller than a word are normally aligned to the
891 least significant byte. On a BYTES_BIG_ENDIAN machine,
892 this means we must skip the empty high order bytes when
893 calculating the bit offset. */
894 if (bytes < UNITS_PER_WORD
895 #ifdef BLOCK_REG_PADDING
896 && (BLOCK_REG_PADDING (args[i].mode,
897 TREE_TYPE (args[i].tree_value), 1)
898 == downward)
899 #else
900 && BYTES_BIG_ENDIAN
901 #endif
902 )
903 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
904
905 for (j = 0; j < args[i].n_aligned_regs; j++)
906 {
907 rtx reg = gen_reg_rtx (word_mode);
908 rtx word = operand_subword_force (args[i].value, j, BLKmode);
909 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
910
911 args[i].aligned_regs[j] = reg;
912 word = extract_bit_field (word, bitsize, 0, 1, false, NULL_RTX,
913 word_mode, word_mode);
914
915 /* There is no need to restrict this code to loading items
916 in TYPE_ALIGN sized hunks. The bitfield instructions can
917 load up entire word sized registers efficiently.
918
919 ??? This may not be needed anymore.
920 We use to emit a clobber here but that doesn't let later
921 passes optimize the instructions we emit. By storing 0 into
922 the register later passes know the first AND to zero out the
923 bitfield being set in the register is unnecessary. The store
924 of 0 will be deleted as will at least the first AND. */
925
926 emit_move_insn (reg, const0_rtx);
927
928 bytes -= bitsize / BITS_PER_UNIT;
929 store_bit_field (reg, bitsize, endian_correction, 0, 0,
930 word_mode, word);
931 }
932 }
933 }
934
935 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
936 CALL_EXPR EXP.
937
938 NUM_ACTUALS is the total number of parameters.
939
940 N_NAMED_ARGS is the total number of named arguments.
941
942 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
943 value, or null.
944
945 FNDECL is the tree code for the target of this call (if known)
946
947 ARGS_SO_FAR holds state needed by the target to know where to place
948 the next argument.
949
950 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
951 for arguments which are passed in registers.
952
953 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
954 and may be modified by this routine.
955
956 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
957 flags which may may be modified by this routine.
958
959 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
960 that requires allocation of stack space.
961
962 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
963 the thunked-to function. */
964
965 static void
966 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
967 struct arg_data *args,
968 struct args_size *args_size,
969 int n_named_args ATTRIBUTE_UNUSED,
970 tree exp, tree struct_value_addr_value,
971 tree fndecl, tree fntype,
972 cumulative_args_t args_so_far,
973 int reg_parm_stack_space,
974 rtx *old_stack_level, int *old_pending_adj,
975 int *must_preallocate, int *ecf_flags,
976 bool *may_tailcall, bool call_from_thunk_p)
977 {
978 CUMULATIVE_ARGS *args_so_far_pnt = get_cumulative_args (args_so_far);
979 location_t loc = EXPR_LOCATION (exp);
980 /* 1 if scanning parms front to back, -1 if scanning back to front. */
981 int inc;
982
983 /* Count arg position in order args appear. */
984 int argpos;
985
986 int i;
987
988 args_size->constant = 0;
989 args_size->var = 0;
990
991 /* In this loop, we consider args in the order they are written.
992 We fill up ARGS from the front or from the back if necessary
993 so that in any case the first arg to be pushed ends up at the front. */
994
995 if (PUSH_ARGS_REVERSED)
996 {
997 i = num_actuals - 1, inc = -1;
998 /* In this case, must reverse order of args
999 so that we compute and push the last arg first. */
1000 }
1001 else
1002 {
1003 i = 0, inc = 1;
1004 }
1005
1006 /* First fill in the actual arguments in the ARGS array, splitting
1007 complex arguments if necessary. */
1008 {
1009 int j = i;
1010 call_expr_arg_iterator iter;
1011 tree arg;
1012
1013 if (struct_value_addr_value)
1014 {
1015 args[j].tree_value = struct_value_addr_value;
1016 j += inc;
1017 }
1018 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
1019 {
1020 tree argtype = TREE_TYPE (arg);
1021 if (targetm.calls.split_complex_arg
1022 && argtype
1023 && TREE_CODE (argtype) == COMPLEX_TYPE
1024 && targetm.calls.split_complex_arg (argtype))
1025 {
1026 tree subtype = TREE_TYPE (argtype);
1027 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
1028 j += inc;
1029 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
1030 }
1031 else
1032 args[j].tree_value = arg;
1033 j += inc;
1034 }
1035 }
1036
1037 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1038 for (argpos = 0; argpos < num_actuals; i += inc, argpos++)
1039 {
1040 tree type = TREE_TYPE (args[i].tree_value);
1041 int unsignedp;
1042 enum machine_mode mode;
1043
1044 /* Replace erroneous argument with constant zero. */
1045 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1046 args[i].tree_value = integer_zero_node, type = integer_type_node;
1047
1048 /* If TYPE is a transparent union or record, pass things the way
1049 we would pass the first field of the union or record. We have
1050 already verified that the modes are the same. */
1051 if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
1052 && TYPE_TRANSPARENT_AGGR (type))
1053 type = TREE_TYPE (first_field (type));
1054
1055 /* Decide where to pass this arg.
1056
1057 args[i].reg is nonzero if all or part is passed in registers.
1058
1059 args[i].partial is nonzero if part but not all is passed in registers,
1060 and the exact value says how many bytes are passed in registers.
1061
1062 args[i].pass_on_stack is nonzero if the argument must at least be
1063 computed on the stack. It may then be loaded back into registers
1064 if args[i].reg is nonzero.
1065
1066 These decisions are driven by the FUNCTION_... macros and must agree
1067 with those made by function.c. */
1068
1069 /* See if this argument should be passed by invisible reference. */
1070 if (pass_by_reference (args_so_far_pnt, TYPE_MODE (type),
1071 type, argpos < n_named_args))
1072 {
1073 bool callee_copies;
1074 tree base;
1075
1076 callee_copies
1077 = reference_callee_copied (args_so_far_pnt, TYPE_MODE (type),
1078 type, argpos < n_named_args);
1079
1080 /* If we're compiling a thunk, pass through invisible references
1081 instead of making a copy. */
1082 if (call_from_thunk_p
1083 || (callee_copies
1084 && !TREE_ADDRESSABLE (type)
1085 && (base = get_base_address (args[i].tree_value))
1086 && TREE_CODE (base) != SSA_NAME
1087 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1088 {
1089 mark_addressable (args[i].tree_value);
1090
1091 /* We can't use sibcalls if a callee-copied argument is
1092 stored in the current function's frame. */
1093 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1094 *may_tailcall = false;
1095
1096 args[i].tree_value = build_fold_addr_expr_loc (loc,
1097 args[i].tree_value);
1098 type = TREE_TYPE (args[i].tree_value);
1099
1100 if (*ecf_flags & ECF_CONST)
1101 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
1102 }
1103 else
1104 {
1105 /* We make a copy of the object and pass the address to the
1106 function being called. */
1107 rtx copy;
1108
1109 if (!COMPLETE_TYPE_P (type)
1110 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
1111 || (flag_stack_check == GENERIC_STACK_CHECK
1112 && compare_tree_int (TYPE_SIZE_UNIT (type),
1113 STACK_CHECK_MAX_VAR_SIZE) > 0))
1114 {
1115 /* This is a variable-sized object. Make space on the stack
1116 for it. */
1117 rtx size_rtx = expr_size (args[i].tree_value);
1118
1119 if (*old_stack_level == 0)
1120 {
1121 emit_stack_save (SAVE_BLOCK, old_stack_level);
1122 *old_pending_adj = pending_stack_adjust;
1123 pending_stack_adjust = 0;
1124 }
1125
1126 /* We can pass TRUE as the 4th argument because we just
1127 saved the stack pointer and will restore it right after
1128 the call. */
1129 copy = allocate_dynamic_stack_space (size_rtx,
1130 TYPE_ALIGN (type),
1131 TYPE_ALIGN (type),
1132 true);
1133 copy = gen_rtx_MEM (BLKmode, copy);
1134 set_mem_attributes (copy, type, 1);
1135 }
1136 else
1137 copy = assign_temp (type, 0, 1, 0);
1138
1139 store_expr (args[i].tree_value, copy, 0, false);
1140
1141 /* Just change the const function to pure and then let
1142 the next test clear the pure based on
1143 callee_copies. */
1144 if (*ecf_flags & ECF_CONST)
1145 {
1146 *ecf_flags &= ~ECF_CONST;
1147 *ecf_flags |= ECF_PURE;
1148 }
1149
1150 if (!callee_copies && *ecf_flags & ECF_PURE)
1151 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
1152
1153 args[i].tree_value
1154 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
1155 type = TREE_TYPE (args[i].tree_value);
1156 *may_tailcall = false;
1157 }
1158 }
1159
1160 unsignedp = TYPE_UNSIGNED (type);
1161 mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
1162 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
1163
1164 args[i].unsignedp = unsignedp;
1165 args[i].mode = mode;
1166
1167 args[i].reg = targetm.calls.function_arg (args_so_far, mode, type,
1168 argpos < n_named_args);
1169
1170 /* If this is a sibling call and the machine has register windows, the
1171 register window has to be unwinded before calling the routine, so
1172 arguments have to go into the incoming registers. */
1173 if (targetm.calls.function_incoming_arg != targetm.calls.function_arg)
1174 args[i].tail_call_reg
1175 = targetm.calls.function_incoming_arg (args_so_far, mode, type,
1176 argpos < n_named_args);
1177 else
1178 args[i].tail_call_reg = args[i].reg;
1179
1180 if (args[i].reg)
1181 args[i].partial
1182 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1183 argpos < n_named_args);
1184
1185 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1186
1187 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1188 it means that we are to pass this arg in the register(s) designated
1189 by the PARALLEL, but also to pass it in the stack. */
1190 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1191 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1192 args[i].pass_on_stack = 1;
1193
1194 /* If this is an addressable type, we must preallocate the stack
1195 since we must evaluate the object into its final location.
1196
1197 If this is to be passed in both registers and the stack, it is simpler
1198 to preallocate. */
1199 if (TREE_ADDRESSABLE (type)
1200 || (args[i].pass_on_stack && args[i].reg != 0))
1201 *must_preallocate = 1;
1202
1203 /* Compute the stack-size of this argument. */
1204 if (args[i].reg == 0 || args[i].partial != 0
1205 || reg_parm_stack_space > 0
1206 || args[i].pass_on_stack)
1207 locate_and_pad_parm (mode, type,
1208 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1209 1,
1210 #else
1211 args[i].reg != 0,
1212 #endif
1213 args[i].pass_on_stack ? 0 : args[i].partial,
1214 fndecl, args_size, &args[i].locate);
1215 #ifdef BLOCK_REG_PADDING
1216 else
1217 /* The argument is passed entirely in registers. See at which
1218 end it should be padded. */
1219 args[i].locate.where_pad =
1220 BLOCK_REG_PADDING (mode, type,
1221 int_size_in_bytes (type) <= UNITS_PER_WORD);
1222 #endif
1223
1224 /* Update ARGS_SIZE, the total stack space for args so far. */
1225
1226 args_size->constant += args[i].locate.size.constant;
1227 if (args[i].locate.size.var)
1228 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1229
1230 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1231 have been used, etc. */
1232
1233 targetm.calls.function_arg_advance (args_so_far, TYPE_MODE (type),
1234 type, argpos < n_named_args);
1235 }
1236 }
1237
1238 /* Update ARGS_SIZE to contain the total size for the argument block.
1239 Return the original constant component of the argument block's size.
1240
1241 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1242 for arguments passed in registers. */
1243
1244 static int
1245 compute_argument_block_size (int reg_parm_stack_space,
1246 struct args_size *args_size,
1247 tree fndecl ATTRIBUTE_UNUSED,
1248 tree fntype ATTRIBUTE_UNUSED,
1249 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1250 {
1251 int unadjusted_args_size = args_size->constant;
1252
1253 /* For accumulate outgoing args mode we don't need to align, since the frame
1254 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1255 backends from generating misaligned frame sizes. */
1256 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1257 preferred_stack_boundary = STACK_BOUNDARY;
1258
1259 /* Compute the actual size of the argument block required. The variable
1260 and constant sizes must be combined, the size may have to be rounded,
1261 and there may be a minimum required size. */
1262
1263 if (args_size->var)
1264 {
1265 args_size->var = ARGS_SIZE_TREE (*args_size);
1266 args_size->constant = 0;
1267
1268 preferred_stack_boundary /= BITS_PER_UNIT;
1269 if (preferred_stack_boundary > 1)
1270 {
1271 /* We don't handle this case yet. To handle it correctly we have
1272 to add the delta, round and subtract the delta.
1273 Currently no machine description requires this support. */
1274 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1275 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1276 }
1277
1278 if (reg_parm_stack_space > 0)
1279 {
1280 args_size->var
1281 = size_binop (MAX_EXPR, args_size->var,
1282 ssize_int (reg_parm_stack_space));
1283
1284 /* The area corresponding to register parameters is not to count in
1285 the size of the block we need. So make the adjustment. */
1286 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1287 args_size->var
1288 = size_binop (MINUS_EXPR, args_size->var,
1289 ssize_int (reg_parm_stack_space));
1290 }
1291 }
1292 else
1293 {
1294 preferred_stack_boundary /= BITS_PER_UNIT;
1295 if (preferred_stack_boundary < 1)
1296 preferred_stack_boundary = 1;
1297 args_size->constant = (((args_size->constant
1298 + stack_pointer_delta
1299 + preferred_stack_boundary - 1)
1300 / preferred_stack_boundary
1301 * preferred_stack_boundary)
1302 - stack_pointer_delta);
1303
1304 args_size->constant = MAX (args_size->constant,
1305 reg_parm_stack_space);
1306
1307 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1308 args_size->constant -= reg_parm_stack_space;
1309 }
1310 return unadjusted_args_size;
1311 }
1312
1313 /* Precompute parameters as needed for a function call.
1314
1315 FLAGS is mask of ECF_* constants.
1316
1317 NUM_ACTUALS is the number of arguments.
1318
1319 ARGS is an array containing information for each argument; this
1320 routine fills in the INITIAL_VALUE and VALUE fields for each
1321 precomputed argument. */
1322
1323 static void
1324 precompute_arguments (int num_actuals, struct arg_data *args)
1325 {
1326 int i;
1327
1328 /* If this is a libcall, then precompute all arguments so that we do not
1329 get extraneous instructions emitted as part of the libcall sequence. */
1330
1331 /* If we preallocated the stack space, and some arguments must be passed
1332 on the stack, then we must precompute any parameter which contains a
1333 function call which will store arguments on the stack.
1334 Otherwise, evaluating the parameter may clobber previous parameters
1335 which have already been stored into the stack. (we have code to avoid
1336 such case by saving the outgoing stack arguments, but it results in
1337 worse code) */
1338 if (!ACCUMULATE_OUTGOING_ARGS)
1339 return;
1340
1341 for (i = 0; i < num_actuals; i++)
1342 {
1343 tree type;
1344 enum machine_mode mode;
1345
1346 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
1347 continue;
1348
1349 /* If this is an addressable type, we cannot pre-evaluate it. */
1350 type = TREE_TYPE (args[i].tree_value);
1351 gcc_assert (!TREE_ADDRESSABLE (type));
1352
1353 args[i].initial_value = args[i].value
1354 = expand_normal (args[i].tree_value);
1355
1356 mode = TYPE_MODE (type);
1357 if (mode != args[i].mode)
1358 {
1359 int unsignedp = args[i].unsignedp;
1360 args[i].value
1361 = convert_modes (args[i].mode, mode,
1362 args[i].value, args[i].unsignedp);
1363
1364 /* CSE will replace this only if it contains args[i].value
1365 pseudo, so convert it down to the declared mode using
1366 a SUBREG. */
1367 if (REG_P (args[i].value)
1368 && GET_MODE_CLASS (args[i].mode) == MODE_INT
1369 && promote_mode (type, mode, &unsignedp) != args[i].mode)
1370 {
1371 args[i].initial_value
1372 = gen_lowpart_SUBREG (mode, args[i].value);
1373 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1374 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1375 args[i].unsignedp);
1376 }
1377 }
1378 }
1379 }
1380
1381 /* Given the current state of MUST_PREALLOCATE and information about
1382 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1383 compute and return the final value for MUST_PREALLOCATE. */
1384
1385 static int
1386 finalize_must_preallocate (int must_preallocate, int num_actuals,
1387 struct arg_data *args, struct args_size *args_size)
1388 {
1389 /* See if we have or want to preallocate stack space.
1390
1391 If we would have to push a partially-in-regs parm
1392 before other stack parms, preallocate stack space instead.
1393
1394 If the size of some parm is not a multiple of the required stack
1395 alignment, we must preallocate.
1396
1397 If the total size of arguments that would otherwise create a copy in
1398 a temporary (such as a CALL) is more than half the total argument list
1399 size, preallocation is faster.
1400
1401 Another reason to preallocate is if we have a machine (like the m88k)
1402 where stack alignment is required to be maintained between every
1403 pair of insns, not just when the call is made. However, we assume here
1404 that such machines either do not have push insns (and hence preallocation
1405 would occur anyway) or the problem is taken care of with
1406 PUSH_ROUNDING. */
1407
1408 if (! must_preallocate)
1409 {
1410 int partial_seen = 0;
1411 int copy_to_evaluate_size = 0;
1412 int i;
1413
1414 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1415 {
1416 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1417 partial_seen = 1;
1418 else if (partial_seen && args[i].reg == 0)
1419 must_preallocate = 1;
1420
1421 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1422 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1423 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1424 || TREE_CODE (args[i].tree_value) == COND_EXPR
1425 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1426 copy_to_evaluate_size
1427 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1428 }
1429
1430 if (copy_to_evaluate_size * 2 >= args_size->constant
1431 && args_size->constant > 0)
1432 must_preallocate = 1;
1433 }
1434 return must_preallocate;
1435 }
1436
1437 /* If we preallocated stack space, compute the address of each argument
1438 and store it into the ARGS array.
1439
1440 We need not ensure it is a valid memory address here; it will be
1441 validized when it is used.
1442
1443 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1444
1445 static void
1446 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1447 {
1448 if (argblock)
1449 {
1450 rtx arg_reg = argblock;
1451 int i, arg_offset = 0;
1452
1453 if (GET_CODE (argblock) == PLUS)
1454 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1455
1456 for (i = 0; i < num_actuals; i++)
1457 {
1458 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1459 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1460 rtx addr;
1461 unsigned int align, boundary;
1462 unsigned int units_on_stack = 0;
1463 enum machine_mode partial_mode = VOIDmode;
1464
1465 /* Skip this parm if it will not be passed on the stack. */
1466 if (! args[i].pass_on_stack
1467 && args[i].reg != 0
1468 && args[i].partial == 0)
1469 continue;
1470
1471 if (CONST_INT_P (offset))
1472 addr = plus_constant (arg_reg, INTVAL (offset));
1473 else
1474 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1475
1476 addr = plus_constant (addr, arg_offset);
1477
1478 if (args[i].partial != 0)
1479 {
1480 /* Only part of the parameter is being passed on the stack.
1481 Generate a simple memory reference of the correct size. */
1482 units_on_stack = args[i].locate.size.constant;
1483 partial_mode = mode_for_size (units_on_stack * BITS_PER_UNIT,
1484 MODE_INT, 1);
1485 args[i].stack = gen_rtx_MEM (partial_mode, addr);
1486 set_mem_size (args[i].stack, units_on_stack);
1487 }
1488 else
1489 {
1490 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1491 set_mem_attributes (args[i].stack,
1492 TREE_TYPE (args[i].tree_value), 1);
1493 }
1494 align = BITS_PER_UNIT;
1495 boundary = args[i].locate.boundary;
1496 if (args[i].locate.where_pad != downward)
1497 align = boundary;
1498 else if (CONST_INT_P (offset))
1499 {
1500 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1501 align = align & -align;
1502 }
1503 set_mem_align (args[i].stack, align);
1504
1505 if (CONST_INT_P (slot_offset))
1506 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1507 else
1508 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1509
1510 addr = plus_constant (addr, arg_offset);
1511
1512 if (args[i].partial != 0)
1513 {
1514 /* Only part of the parameter is being passed on the stack.
1515 Generate a simple memory reference of the correct size.
1516 */
1517 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
1518 set_mem_size (args[i].stack_slot, units_on_stack);
1519 }
1520 else
1521 {
1522 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1523 set_mem_attributes (args[i].stack_slot,
1524 TREE_TYPE (args[i].tree_value), 1);
1525 }
1526 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1527
1528 /* Function incoming arguments may overlap with sibling call
1529 outgoing arguments and we cannot allow reordering of reads
1530 from function arguments with stores to outgoing arguments
1531 of sibling calls. */
1532 set_mem_alias_set (args[i].stack, 0);
1533 set_mem_alias_set (args[i].stack_slot, 0);
1534 }
1535 }
1536 }
1537
1538 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1539 in a call instruction.
1540
1541 FNDECL is the tree node for the target function. For an indirect call
1542 FNDECL will be NULL_TREE.
1543
1544 ADDR is the operand 0 of CALL_EXPR for this call. */
1545
1546 static rtx
1547 rtx_for_function_call (tree fndecl, tree addr)
1548 {
1549 rtx funexp;
1550
1551 /* Get the function to call, in the form of RTL. */
1552 if (fndecl)
1553 {
1554 /* If this is the first use of the function, see if we need to
1555 make an external definition for it. */
1556 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
1557 {
1558 assemble_external (fndecl);
1559 TREE_USED (fndecl) = 1;
1560 }
1561
1562 /* Get a SYMBOL_REF rtx for the function address. */
1563 funexp = XEXP (DECL_RTL (fndecl), 0);
1564 }
1565 else
1566 /* Generate an rtx (probably a pseudo-register) for the address. */
1567 {
1568 push_temp_slots ();
1569 funexp = expand_normal (addr);
1570 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1571 }
1572 return funexp;
1573 }
1574
1575 /* Return true if and only if SIZE storage units (usually bytes)
1576 starting from address ADDR overlap with already clobbered argument
1577 area. This function is used to determine if we should give up a
1578 sibcall. */
1579
1580 static bool
1581 mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
1582 {
1583 HOST_WIDE_INT i;
1584
1585 if (addr == crtl->args.internal_arg_pointer)
1586 i = 0;
1587 else if (GET_CODE (addr) == PLUS
1588 && XEXP (addr, 0) == crtl->args.internal_arg_pointer
1589 && CONST_INT_P (XEXP (addr, 1)))
1590 i = INTVAL (XEXP (addr, 1));
1591 /* Return true for arg pointer based indexed addressing. */
1592 else if (GET_CODE (addr) == PLUS
1593 && (XEXP (addr, 0) == crtl->args.internal_arg_pointer
1594 || XEXP (addr, 1) == crtl->args.internal_arg_pointer))
1595 return true;
1596 /* If the address comes in a register, we have no idea of its origin so
1597 give up and conservatively return true. */
1598 else if (REG_P(addr))
1599 return true;
1600 else
1601 return false;
1602
1603 #ifdef ARGS_GROW_DOWNWARD
1604 i = -i - size;
1605 #endif
1606 if (size > 0)
1607 {
1608 unsigned HOST_WIDE_INT k;
1609
1610 for (k = 0; k < size; k++)
1611 if (i + k < stored_args_map->n_bits
1612 && TEST_BIT (stored_args_map, i + k))
1613 return true;
1614 }
1615
1616 return false;
1617 }
1618
1619 /* Do the register loads required for any wholly-register parms or any
1620 parms which are passed both on the stack and in a register. Their
1621 expressions were already evaluated.
1622
1623 Mark all register-parms as living through the call, putting these USE
1624 insns in the CALL_INSN_FUNCTION_USAGE field.
1625
1626 When IS_SIBCALL, perform the check_sibcall_argument_overlap
1627 checking, setting *SIBCALL_FAILURE if appropriate. */
1628
1629 static void
1630 load_register_parameters (struct arg_data *args, int num_actuals,
1631 rtx *call_fusage, int flags, int is_sibcall,
1632 int *sibcall_failure)
1633 {
1634 int i, j;
1635
1636 for (i = 0; i < num_actuals; i++)
1637 {
1638 rtx reg = ((flags & ECF_SIBCALL)
1639 ? args[i].tail_call_reg : args[i].reg);
1640 if (reg)
1641 {
1642 int partial = args[i].partial;
1643 int nregs;
1644 int size = 0;
1645 rtx before_arg = get_last_insn ();
1646 /* Set non-negative if we must move a word at a time, even if
1647 just one word (e.g, partial == 4 && mode == DFmode). Set
1648 to -1 if we just use a normal move insn. This value can be
1649 zero if the argument is a zero size structure. */
1650 nregs = -1;
1651 if (GET_CODE (reg) == PARALLEL)
1652 ;
1653 else if (partial)
1654 {
1655 gcc_assert (partial % UNITS_PER_WORD == 0);
1656 nregs = partial / UNITS_PER_WORD;
1657 }
1658 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1659 {
1660 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1661 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1662 }
1663 else
1664 size = GET_MODE_SIZE (args[i].mode);
1665
1666 /* Handle calls that pass values in multiple non-contiguous
1667 locations. The Irix 6 ABI has examples of this. */
1668
1669 if (GET_CODE (reg) == PARALLEL)
1670 emit_group_move (reg, args[i].parallel_value);
1671
1672 /* If simple case, just do move. If normal partial, store_one_arg
1673 has already loaded the register for us. In all other cases,
1674 load the register(s) from memory. */
1675
1676 else if (nregs == -1)
1677 {
1678 emit_move_insn (reg, args[i].value);
1679 #ifdef BLOCK_REG_PADDING
1680 /* Handle case where we have a value that needs shifting
1681 up to the msb. eg. a QImode value and we're padding
1682 upward on a BYTES_BIG_ENDIAN machine. */
1683 if (size < UNITS_PER_WORD
1684 && (args[i].locate.where_pad
1685 == (BYTES_BIG_ENDIAN ? upward : downward)))
1686 {
1687 rtx x;
1688 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1689
1690 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1691 report the whole reg as used. Strictly speaking, the
1692 call only uses SIZE bytes at the msb end, but it doesn't
1693 seem worth generating rtl to say that. */
1694 reg = gen_rtx_REG (word_mode, REGNO (reg));
1695 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
1696 if (x != reg)
1697 emit_move_insn (reg, x);
1698 }
1699 #endif
1700 }
1701
1702 /* If we have pre-computed the values to put in the registers in
1703 the case of non-aligned structures, copy them in now. */
1704
1705 else if (args[i].n_aligned_regs != 0)
1706 for (j = 0; j < args[i].n_aligned_regs; j++)
1707 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1708 args[i].aligned_regs[j]);
1709
1710 else if (partial == 0 || args[i].pass_on_stack)
1711 {
1712 rtx mem = validize_mem (args[i].value);
1713
1714 /* Check for overlap with already clobbered argument area,
1715 providing that this has non-zero size. */
1716 if (is_sibcall
1717 && (size == 0
1718 || mem_overlaps_already_clobbered_arg_p
1719 (XEXP (args[i].value, 0), size)))
1720 *sibcall_failure = 1;
1721
1722 /* Handle a BLKmode that needs shifting. */
1723 if (nregs == 1 && size < UNITS_PER_WORD
1724 #ifdef BLOCK_REG_PADDING
1725 && args[i].locate.where_pad == downward
1726 #else
1727 && BYTES_BIG_ENDIAN
1728 #endif
1729 )
1730 {
1731 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1732 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1733 rtx x = gen_reg_rtx (word_mode);
1734 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1735 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1736 : LSHIFT_EXPR;
1737
1738 emit_move_insn (x, tem);
1739 x = expand_shift (dir, word_mode, x, shift, ri, 1);
1740 if (x != ri)
1741 emit_move_insn (ri, x);
1742 }
1743 else
1744 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1745 }
1746
1747 /* When a parameter is a block, and perhaps in other cases, it is
1748 possible that it did a load from an argument slot that was
1749 already clobbered. */
1750 if (is_sibcall
1751 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1752 *sibcall_failure = 1;
1753
1754 /* Handle calls that pass values in multiple non-contiguous
1755 locations. The Irix 6 ABI has examples of this. */
1756 if (GET_CODE (reg) == PARALLEL)
1757 use_group_regs (call_fusage, reg);
1758 else if (nregs == -1)
1759 use_reg_mode (call_fusage, reg,
1760 TYPE_MODE (TREE_TYPE (args[i].tree_value)));
1761 else if (nregs > 0)
1762 use_regs (call_fusage, REGNO (reg), nregs);
1763 }
1764 }
1765 }
1766
1767 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1768 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1769 bytes, then we would need to push some additional bytes to pad the
1770 arguments. So, we compute an adjust to the stack pointer for an
1771 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1772 bytes. Then, when the arguments are pushed the stack will be perfectly
1773 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1774 be popped after the call. Returns the adjustment. */
1775
1776 static int
1777 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1778 struct args_size *args_size,
1779 unsigned int preferred_unit_stack_boundary)
1780 {
1781 /* The number of bytes to pop so that the stack will be
1782 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1783 HOST_WIDE_INT adjustment;
1784 /* The alignment of the stack after the arguments are pushed, if we
1785 just pushed the arguments without adjust the stack here. */
1786 unsigned HOST_WIDE_INT unadjusted_alignment;
1787
1788 unadjusted_alignment
1789 = ((stack_pointer_delta + unadjusted_args_size)
1790 % preferred_unit_stack_boundary);
1791
1792 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1793 as possible -- leaving just enough left to cancel out the
1794 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1795 PENDING_STACK_ADJUST is non-negative, and congruent to
1796 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1797
1798 /* Begin by trying to pop all the bytes. */
1799 unadjusted_alignment
1800 = (unadjusted_alignment
1801 - (pending_stack_adjust % preferred_unit_stack_boundary));
1802 adjustment = pending_stack_adjust;
1803 /* Push enough additional bytes that the stack will be aligned
1804 after the arguments are pushed. */
1805 if (preferred_unit_stack_boundary > 1)
1806 {
1807 if (unadjusted_alignment > 0)
1808 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1809 else
1810 adjustment += unadjusted_alignment;
1811 }
1812
1813 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1814 bytes after the call. The right number is the entire
1815 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1816 by the arguments in the first place. */
1817 args_size->constant
1818 = pending_stack_adjust - adjustment + unadjusted_args_size;
1819
1820 return adjustment;
1821 }
1822
1823 /* Scan X expression if it does not dereference any argument slots
1824 we already clobbered by tail call arguments (as noted in stored_args_map
1825 bitmap).
1826 Return nonzero if X expression dereferences such argument slots,
1827 zero otherwise. */
1828
1829 static int
1830 check_sibcall_argument_overlap_1 (rtx x)
1831 {
1832 RTX_CODE code;
1833 int i, j;
1834 const char *fmt;
1835
1836 if (x == NULL_RTX)
1837 return 0;
1838
1839 code = GET_CODE (x);
1840
1841 /* We need not check the operands of the CALL expression itself. */
1842 if (code == CALL)
1843 return 0;
1844
1845 if (code == MEM)
1846 return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
1847 GET_MODE_SIZE (GET_MODE (x)));
1848
1849 /* Scan all subexpressions. */
1850 fmt = GET_RTX_FORMAT (code);
1851 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1852 {
1853 if (*fmt == 'e')
1854 {
1855 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1856 return 1;
1857 }
1858 else if (*fmt == 'E')
1859 {
1860 for (j = 0; j < XVECLEN (x, i); j++)
1861 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1862 return 1;
1863 }
1864 }
1865 return 0;
1866 }
1867
1868 /* Scan sequence after INSN if it does not dereference any argument slots
1869 we already clobbered by tail call arguments (as noted in stored_args_map
1870 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1871 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1872 should be 0). Return nonzero if sequence after INSN dereferences such argument
1873 slots, zero otherwise. */
1874
1875 static int
1876 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1877 {
1878 int low, high;
1879
1880 if (insn == NULL_RTX)
1881 insn = get_insns ();
1882 else
1883 insn = NEXT_INSN (insn);
1884
1885 for (; insn; insn = NEXT_INSN (insn))
1886 if (INSN_P (insn)
1887 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1888 break;
1889
1890 if (mark_stored_args_map)
1891 {
1892 #ifdef ARGS_GROW_DOWNWARD
1893 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1894 #else
1895 low = arg->locate.slot_offset.constant;
1896 #endif
1897
1898 for (high = low + arg->locate.size.constant; low < high; low++)
1899 SET_BIT (stored_args_map, low);
1900 }
1901 return insn != NULL_RTX;
1902 }
1903
1904 /* Given that a function returns a value of mode MODE at the most
1905 significant end of hard register VALUE, shift VALUE left or right
1906 as specified by LEFT_P. Return true if some action was needed. */
1907
1908 bool
1909 shift_return_value (enum machine_mode mode, bool left_p, rtx value)
1910 {
1911 HOST_WIDE_INT shift;
1912
1913 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
1914 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
1915 if (shift == 0)
1916 return false;
1917
1918 /* Use ashr rather than lshr for right shifts. This is for the benefit
1919 of the MIPS port, which requires SImode values to be sign-extended
1920 when stored in 64-bit registers. */
1921 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
1922 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
1923 gcc_unreachable ();
1924 return true;
1925 }
1926
1927 /* If X is a likely-spilled register value, copy it to a pseudo
1928 register and return that register. Return X otherwise. */
1929
1930 static rtx
1931 avoid_likely_spilled_reg (rtx x)
1932 {
1933 rtx new_rtx;
1934
1935 if (REG_P (x)
1936 && HARD_REGISTER_P (x)
1937 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
1938 {
1939 /* Make sure that we generate a REG rather than a CONCAT.
1940 Moves into CONCATs can need nontrivial instructions,
1941 and the whole point of this function is to avoid
1942 using the hard register directly in such a situation. */
1943 generating_concat_p = 0;
1944 new_rtx = gen_reg_rtx (GET_MODE (x));
1945 generating_concat_p = 1;
1946 emit_move_insn (new_rtx, x);
1947 return new_rtx;
1948 }
1949 return x;
1950 }
1951
1952 /* Generate all the code for a CALL_EXPR exp
1953 and return an rtx for its value.
1954 Store the value in TARGET (specified as an rtx) if convenient.
1955 If the value is stored in TARGET then TARGET is returned.
1956 If IGNORE is nonzero, then we ignore the value of the function call. */
1957
1958 rtx
1959 expand_call (tree exp, rtx target, int ignore)
1960 {
1961 /* Nonzero if we are currently expanding a call. */
1962 static int currently_expanding_call = 0;
1963
1964 /* RTX for the function to be called. */
1965 rtx funexp;
1966 /* Sequence of insns to perform a normal "call". */
1967 rtx normal_call_insns = NULL_RTX;
1968 /* Sequence of insns to perform a tail "call". */
1969 rtx tail_call_insns = NULL_RTX;
1970 /* Data type of the function. */
1971 tree funtype;
1972 tree type_arg_types;
1973 tree rettype;
1974 /* Declaration of the function being called,
1975 or 0 if the function is computed (not known by name). */
1976 tree fndecl = 0;
1977 /* The type of the function being called. */
1978 tree fntype;
1979 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1980 int pass;
1981
1982 /* Register in which non-BLKmode value will be returned,
1983 or 0 if no value or if value is BLKmode. */
1984 rtx valreg;
1985 /* Address where we should return a BLKmode value;
1986 0 if value not BLKmode. */
1987 rtx structure_value_addr = 0;
1988 /* Nonzero if that address is being passed by treating it as
1989 an extra, implicit first parameter. Otherwise,
1990 it is passed by being copied directly into struct_value_rtx. */
1991 int structure_value_addr_parm = 0;
1992 /* Holds the value of implicit argument for the struct value. */
1993 tree structure_value_addr_value = NULL_TREE;
1994 /* Size of aggregate value wanted, or zero if none wanted
1995 or if we are using the non-reentrant PCC calling convention
1996 or expecting the value in registers. */
1997 HOST_WIDE_INT struct_value_size = 0;
1998 /* Nonzero if called function returns an aggregate in memory PCC style,
1999 by returning the address of where to find it. */
2000 int pcc_struct_value = 0;
2001 rtx struct_value = 0;
2002
2003 /* Number of actual parameters in this call, including struct value addr. */
2004 int num_actuals;
2005 /* Number of named args. Args after this are anonymous ones
2006 and they must all go on the stack. */
2007 int n_named_args;
2008 /* Number of complex actual arguments that need to be split. */
2009 int num_complex_actuals = 0;
2010
2011 /* Vector of information about each argument.
2012 Arguments are numbered in the order they will be pushed,
2013 not the order they are written. */
2014 struct arg_data *args;
2015
2016 /* Total size in bytes of all the stack-parms scanned so far. */
2017 struct args_size args_size;
2018 struct args_size adjusted_args_size;
2019 /* Size of arguments before any adjustments (such as rounding). */
2020 int unadjusted_args_size;
2021 /* Data on reg parms scanned so far. */
2022 CUMULATIVE_ARGS args_so_far_v;
2023 cumulative_args_t args_so_far;
2024 /* Nonzero if a reg parm has been scanned. */
2025 int reg_parm_seen;
2026 /* Nonzero if this is an indirect function call. */
2027
2028 /* Nonzero if we must avoid push-insns in the args for this call.
2029 If stack space is allocated for register parameters, but not by the
2030 caller, then it is preallocated in the fixed part of the stack frame.
2031 So the entire argument block must then be preallocated (i.e., we
2032 ignore PUSH_ROUNDING in that case). */
2033
2034 int must_preallocate = !PUSH_ARGS;
2035
2036 /* Size of the stack reserved for parameter registers. */
2037 int reg_parm_stack_space = 0;
2038
2039 /* Address of space preallocated for stack parms
2040 (on machines that lack push insns), or 0 if space not preallocated. */
2041 rtx argblock = 0;
2042
2043 /* Mask of ECF_ flags. */
2044 int flags = 0;
2045 #ifdef REG_PARM_STACK_SPACE
2046 /* Define the boundary of the register parm stack space that needs to be
2047 saved, if any. */
2048 int low_to_save, high_to_save;
2049 rtx save_area = 0; /* Place that it is saved */
2050 #endif
2051
2052 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
2053 char *initial_stack_usage_map = stack_usage_map;
2054 char *stack_usage_map_buf = NULL;
2055
2056 int old_stack_allocated;
2057
2058 /* State variables to track stack modifications. */
2059 rtx old_stack_level = 0;
2060 int old_stack_arg_under_construction = 0;
2061 int old_pending_adj = 0;
2062 int old_inhibit_defer_pop = inhibit_defer_pop;
2063
2064 /* Some stack pointer alterations we make are performed via
2065 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
2066 which we then also need to save/restore along the way. */
2067 int old_stack_pointer_delta = 0;
2068
2069 rtx call_fusage;
2070 tree addr = CALL_EXPR_FN (exp);
2071 int i;
2072 /* The alignment of the stack, in bits. */
2073 unsigned HOST_WIDE_INT preferred_stack_boundary;
2074 /* The alignment of the stack, in bytes. */
2075 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
2076 /* The static chain value to use for this call. */
2077 rtx static_chain_value;
2078 /* See if this is "nothrow" function call. */
2079 if (TREE_NOTHROW (exp))
2080 flags |= ECF_NOTHROW;
2081
2082 /* See if we can find a DECL-node for the actual function, and get the
2083 function attributes (flags) from the function decl or type node. */
2084 fndecl = get_callee_fndecl (exp);
2085 if (fndecl)
2086 {
2087 fntype = TREE_TYPE (fndecl);
2088 flags |= flags_from_decl_or_type (fndecl);
2089 }
2090 else
2091 {
2092 fntype = TREE_TYPE (TREE_TYPE (addr));
2093 flags |= flags_from_decl_or_type (fntype);
2094 }
2095 rettype = TREE_TYPE (exp);
2096
2097 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
2098
2099 /* Warn if this value is an aggregate type,
2100 regardless of which calling convention we are using for it. */
2101 if (AGGREGATE_TYPE_P (rettype))
2102 warning (OPT_Waggregate_return, "function call has aggregate value");
2103
2104 /* If the result of a non looping pure or const function call is
2105 ignored (or void), and none of its arguments are volatile, we can
2106 avoid expanding the call and just evaluate the arguments for
2107 side-effects. */
2108 if ((flags & (ECF_CONST | ECF_PURE))
2109 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
2110 && (ignore || target == const0_rtx
2111 || TYPE_MODE (rettype) == VOIDmode))
2112 {
2113 bool volatilep = false;
2114 tree arg;
2115 call_expr_arg_iterator iter;
2116
2117 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2118 if (TREE_THIS_VOLATILE (arg))
2119 {
2120 volatilep = true;
2121 break;
2122 }
2123
2124 if (! volatilep)
2125 {
2126 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2127 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
2128 return const0_rtx;
2129 }
2130 }
2131
2132 #ifdef REG_PARM_STACK_SPACE
2133 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
2134 #endif
2135
2136 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2137 && reg_parm_stack_space > 0 && PUSH_ARGS)
2138 must_preallocate = 1;
2139
2140 /* Set up a place to return a structure. */
2141
2142 /* Cater to broken compilers. */
2143 if (aggregate_value_p (exp, fntype))
2144 {
2145 /* This call returns a big structure. */
2146 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2147
2148 #ifdef PCC_STATIC_STRUCT_RETURN
2149 {
2150 pcc_struct_value = 1;
2151 }
2152 #else /* not PCC_STATIC_STRUCT_RETURN */
2153 {
2154 struct_value_size = int_size_in_bytes (rettype);
2155
2156 if (target && MEM_P (target) && CALL_EXPR_RETURN_SLOT_OPT (exp))
2157 structure_value_addr = XEXP (target, 0);
2158 else
2159 {
2160 /* For variable-sized objects, we must be called with a target
2161 specified. If we were to allocate space on the stack here,
2162 we would have no way of knowing when to free it. */
2163 rtx d = assign_temp (rettype, 0, 1, 1);
2164
2165 mark_temp_addr_taken (d);
2166 structure_value_addr = XEXP (d, 0);
2167 target = 0;
2168 }
2169 }
2170 #endif /* not PCC_STATIC_STRUCT_RETURN */
2171 }
2172
2173 /* Figure out the amount to which the stack should be aligned. */
2174 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2175 if (fndecl)
2176 {
2177 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2178 /* Without automatic stack alignment, we can't increase preferred
2179 stack boundary. With automatic stack alignment, it is
2180 unnecessary since unless we can guarantee that all callers will
2181 align the outgoing stack properly, callee has to align its
2182 stack anyway. */
2183 if (i
2184 && i->preferred_incoming_stack_boundary
2185 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
2186 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2187 }
2188
2189 /* Operand 0 is a pointer-to-function; get the type of the function. */
2190 funtype = TREE_TYPE (addr);
2191 gcc_assert (POINTER_TYPE_P (funtype));
2192 funtype = TREE_TYPE (funtype);
2193
2194 /* Count whether there are actual complex arguments that need to be split
2195 into their real and imaginary parts. Munge the type_arg_types
2196 appropriately here as well. */
2197 if (targetm.calls.split_complex_arg)
2198 {
2199 call_expr_arg_iterator iter;
2200 tree arg;
2201 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2202 {
2203 tree type = TREE_TYPE (arg);
2204 if (type && TREE_CODE (type) == COMPLEX_TYPE
2205 && targetm.calls.split_complex_arg (type))
2206 num_complex_actuals++;
2207 }
2208 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2209 }
2210 else
2211 type_arg_types = TYPE_ARG_TYPES (funtype);
2212
2213 if (flags & ECF_MAY_BE_ALLOCA)
2214 cfun->calls_alloca = 1;
2215
2216 /* If struct_value_rtx is 0, it means pass the address
2217 as if it were an extra parameter. Put the argument expression
2218 in structure_value_addr_value. */
2219 if (structure_value_addr && struct_value == 0)
2220 {
2221 /* If structure_value_addr is a REG other than
2222 virtual_outgoing_args_rtx, we can use always use it. If it
2223 is not a REG, we must always copy it into a register.
2224 If it is virtual_outgoing_args_rtx, we must copy it to another
2225 register in some cases. */
2226 rtx temp = (!REG_P (structure_value_addr)
2227 || (ACCUMULATE_OUTGOING_ARGS
2228 && stack_arg_under_construction
2229 && structure_value_addr == virtual_outgoing_args_rtx)
2230 ? copy_addr_to_reg (convert_memory_address
2231 (Pmode, structure_value_addr))
2232 : structure_value_addr);
2233
2234 structure_value_addr_value =
2235 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
2236 structure_value_addr_parm = 1;
2237 }
2238
2239 /* Count the arguments and set NUM_ACTUALS. */
2240 num_actuals =
2241 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
2242
2243 /* Compute number of named args.
2244 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2245
2246 if (type_arg_types != 0)
2247 n_named_args
2248 = (list_length (type_arg_types)
2249 /* Count the struct value address, if it is passed as a parm. */
2250 + structure_value_addr_parm);
2251 else
2252 /* If we know nothing, treat all args as named. */
2253 n_named_args = num_actuals;
2254
2255 /* Start updating where the next arg would go.
2256
2257 On some machines (such as the PA) indirect calls have a different
2258 calling convention than normal calls. The fourth argument in
2259 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2260 or not. */
2261 INIT_CUMULATIVE_ARGS (args_so_far_v, funtype, NULL_RTX, fndecl, n_named_args);
2262 args_so_far = pack_cumulative_args (&args_so_far_v);
2263
2264 /* Now possibly adjust the number of named args.
2265 Normally, don't include the last named arg if anonymous args follow.
2266 We do include the last named arg if
2267 targetm.calls.strict_argument_naming() returns nonzero.
2268 (If no anonymous args follow, the result of list_length is actually
2269 one too large. This is harmless.)
2270
2271 If targetm.calls.pretend_outgoing_varargs_named() returns
2272 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2273 this machine will be able to place unnamed args that were passed
2274 in registers into the stack. So treat all args as named. This
2275 allows the insns emitting for a specific argument list to be
2276 independent of the function declaration.
2277
2278 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2279 we do not have any reliable way to pass unnamed args in
2280 registers, so we must force them into memory. */
2281
2282 if (type_arg_types != 0
2283 && targetm.calls.strict_argument_naming (args_so_far))
2284 ;
2285 else if (type_arg_types != 0
2286 && ! targetm.calls.pretend_outgoing_varargs_named (args_so_far))
2287 /* Don't include the last named arg. */
2288 --n_named_args;
2289 else
2290 /* Treat all args as named. */
2291 n_named_args = num_actuals;
2292
2293 /* Make a vector to hold all the information about each arg. */
2294 args = XALLOCAVEC (struct arg_data, num_actuals);
2295 memset (args, 0, num_actuals * sizeof (struct arg_data));
2296
2297 /* Build up entries in the ARGS array, compute the size of the
2298 arguments into ARGS_SIZE, etc. */
2299 initialize_argument_information (num_actuals, args, &args_size,
2300 n_named_args, exp,
2301 structure_value_addr_value, fndecl, fntype,
2302 args_so_far, reg_parm_stack_space,
2303 &old_stack_level, &old_pending_adj,
2304 &must_preallocate, &flags,
2305 &try_tail_call, CALL_FROM_THUNK_P (exp));
2306
2307 if (args_size.var)
2308 must_preallocate = 1;
2309
2310 /* Now make final decision about preallocating stack space. */
2311 must_preallocate = finalize_must_preallocate (must_preallocate,
2312 num_actuals, args,
2313 &args_size);
2314
2315 /* If the structure value address will reference the stack pointer, we
2316 must stabilize it. We don't need to do this if we know that we are
2317 not going to adjust the stack pointer in processing this call. */
2318
2319 if (structure_value_addr
2320 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2321 || reg_mentioned_p (virtual_outgoing_args_rtx,
2322 structure_value_addr))
2323 && (args_size.var
2324 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2325 structure_value_addr = copy_to_reg (structure_value_addr);
2326
2327 /* Tail calls can make things harder to debug, and we've traditionally
2328 pushed these optimizations into -O2. Don't try if we're already
2329 expanding a call, as that means we're an argument. Don't try if
2330 there's cleanups, as we know there's code to follow the call. */
2331
2332 if (currently_expanding_call++ != 0
2333 || !flag_optimize_sibling_calls
2334 || args_size.var
2335 || dbg_cnt (tail_call) == false)
2336 try_tail_call = 0;
2337
2338 /* Rest of purposes for tail call optimizations to fail. */
2339 if (
2340 #ifdef HAVE_sibcall_epilogue
2341 !HAVE_sibcall_epilogue
2342 #else
2343 1
2344 #endif
2345 || !try_tail_call
2346 /* Doing sibling call optimization needs some work, since
2347 structure_value_addr can be allocated on the stack.
2348 It does not seem worth the effort since few optimizable
2349 sibling calls will return a structure. */
2350 || structure_value_addr != NULL_RTX
2351 #ifdef REG_PARM_STACK_SPACE
2352 /* If outgoing reg parm stack space changes, we can not do sibcall. */
2353 || (OUTGOING_REG_PARM_STACK_SPACE (funtype)
2354 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl)))
2355 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (fndecl))
2356 #endif
2357 /* Check whether the target is able to optimize the call
2358 into a sibcall. */
2359 || !targetm.function_ok_for_sibcall (fndecl, exp)
2360 /* Functions that do not return exactly once may not be sibcall
2361 optimized. */
2362 || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2363 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2364 /* If the called function is nested in the current one, it might access
2365 some of the caller's arguments, but could clobber them beforehand if
2366 the argument areas are shared. */
2367 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2368 /* If this function requires more stack slots than the current
2369 function, we cannot change it into a sibling call.
2370 crtl->args.pretend_args_size is not part of the
2371 stack allocated by our caller. */
2372 || args_size.constant > (crtl->args.size
2373 - crtl->args.pretend_args_size)
2374 /* If the callee pops its own arguments, then it must pop exactly
2375 the same number of arguments as the current function. */
2376 || (targetm.calls.return_pops_args (fndecl, funtype, args_size.constant)
2377 != targetm.calls.return_pops_args (current_function_decl,
2378 TREE_TYPE (current_function_decl),
2379 crtl->args.size))
2380 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2381 try_tail_call = 0;
2382
2383 /* Check if caller and callee disagree in promotion of function
2384 return value. */
2385 if (try_tail_call)
2386 {
2387 enum machine_mode caller_mode, caller_promoted_mode;
2388 enum machine_mode callee_mode, callee_promoted_mode;
2389 int caller_unsignedp, callee_unsignedp;
2390 tree caller_res = DECL_RESULT (current_function_decl);
2391
2392 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
2393 caller_mode = DECL_MODE (caller_res);
2394 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
2395 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
2396 caller_promoted_mode
2397 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
2398 &caller_unsignedp,
2399 TREE_TYPE (current_function_decl), 1);
2400 callee_promoted_mode
2401 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
2402 &callee_unsignedp,
2403 funtype, 1);
2404 if (caller_mode != VOIDmode
2405 && (caller_promoted_mode != callee_promoted_mode
2406 || ((caller_mode != caller_promoted_mode
2407 || callee_mode != callee_promoted_mode)
2408 && (caller_unsignedp != callee_unsignedp
2409 || GET_MODE_BITSIZE (caller_mode)
2410 < GET_MODE_BITSIZE (callee_mode)))))
2411 try_tail_call = 0;
2412 }
2413
2414 /* Ensure current function's preferred stack boundary is at least
2415 what we need. Stack alignment may also increase preferred stack
2416 boundary. */
2417 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
2418 crtl->preferred_stack_boundary = preferred_stack_boundary;
2419 else
2420 preferred_stack_boundary = crtl->preferred_stack_boundary;
2421
2422 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2423
2424 /* We want to make two insn chains; one for a sibling call, the other
2425 for a normal call. We will select one of the two chains after
2426 initial RTL generation is complete. */
2427 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2428 {
2429 int sibcall_failure = 0;
2430 /* We want to emit any pending stack adjustments before the tail
2431 recursion "call". That way we know any adjustment after the tail
2432 recursion call can be ignored if we indeed use the tail
2433 call expansion. */
2434 int save_pending_stack_adjust = 0;
2435 int save_stack_pointer_delta = 0;
2436 rtx insns;
2437 rtx before_call, next_arg_reg, after_args;
2438
2439 if (pass == 0)
2440 {
2441 /* State variables we need to save and restore between
2442 iterations. */
2443 save_pending_stack_adjust = pending_stack_adjust;
2444 save_stack_pointer_delta = stack_pointer_delta;
2445 }
2446 if (pass)
2447 flags &= ~ECF_SIBCALL;
2448 else
2449 flags |= ECF_SIBCALL;
2450
2451 /* Other state variables that we must reinitialize each time
2452 through the loop (that are not initialized by the loop itself). */
2453 argblock = 0;
2454 call_fusage = 0;
2455
2456 /* Start a new sequence for the normal call case.
2457
2458 From this point on, if the sibling call fails, we want to set
2459 sibcall_failure instead of continuing the loop. */
2460 start_sequence ();
2461
2462 /* Don't let pending stack adjusts add up to too much.
2463 Also, do all pending adjustments now if there is any chance
2464 this might be a call to alloca or if we are expanding a sibling
2465 call sequence.
2466 Also do the adjustments before a throwing call, otherwise
2467 exception handling can fail; PR 19225. */
2468 if (pending_stack_adjust >= 32
2469 || (pending_stack_adjust > 0
2470 && (flags & ECF_MAY_BE_ALLOCA))
2471 || (pending_stack_adjust > 0
2472 && flag_exceptions && !(flags & ECF_NOTHROW))
2473 || pass == 0)
2474 do_pending_stack_adjust ();
2475
2476 /* Precompute any arguments as needed. */
2477 if (pass)
2478 precompute_arguments (num_actuals, args);
2479
2480 /* Now we are about to start emitting insns that can be deleted
2481 if a libcall is deleted. */
2482 if (pass && (flags & ECF_MALLOC))
2483 start_sequence ();
2484
2485 if (pass == 0 && crtl->stack_protect_guard)
2486 stack_protect_epilogue ();
2487
2488 adjusted_args_size = args_size;
2489 /* Compute the actual size of the argument block required. The variable
2490 and constant sizes must be combined, the size may have to be rounded,
2491 and there may be a minimum required size. When generating a sibcall
2492 pattern, do not round up, since we'll be re-using whatever space our
2493 caller provided. */
2494 unadjusted_args_size
2495 = compute_argument_block_size (reg_parm_stack_space,
2496 &adjusted_args_size,
2497 fndecl, fntype,
2498 (pass == 0 ? 0
2499 : preferred_stack_boundary));
2500
2501 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2502
2503 /* The argument block when performing a sibling call is the
2504 incoming argument block. */
2505 if (pass == 0)
2506 {
2507 argblock = crtl->args.internal_arg_pointer;
2508 argblock
2509 #ifdef STACK_GROWS_DOWNWARD
2510 = plus_constant (argblock, crtl->args.pretend_args_size);
2511 #else
2512 = plus_constant (argblock, -crtl->args.pretend_args_size);
2513 #endif
2514 stored_args_map = sbitmap_alloc (args_size.constant);
2515 sbitmap_zero (stored_args_map);
2516 }
2517
2518 /* If we have no actual push instructions, or shouldn't use them,
2519 make space for all args right now. */
2520 else if (adjusted_args_size.var != 0)
2521 {
2522 if (old_stack_level == 0)
2523 {
2524 emit_stack_save (SAVE_BLOCK, &old_stack_level);
2525 old_stack_pointer_delta = stack_pointer_delta;
2526 old_pending_adj = pending_stack_adjust;
2527 pending_stack_adjust = 0;
2528 /* stack_arg_under_construction says whether a stack arg is
2529 being constructed at the old stack level. Pushing the stack
2530 gets a clean outgoing argument block. */
2531 old_stack_arg_under_construction = stack_arg_under_construction;
2532 stack_arg_under_construction = 0;
2533 }
2534 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2535 if (flag_stack_usage_info)
2536 current_function_has_unbounded_dynamic_stack_size = 1;
2537 }
2538 else
2539 {
2540 /* Note that we must go through the motions of allocating an argument
2541 block even if the size is zero because we may be storing args
2542 in the area reserved for register arguments, which may be part of
2543 the stack frame. */
2544
2545 int needed = adjusted_args_size.constant;
2546
2547 /* Store the maximum argument space used. It will be pushed by
2548 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2549 checking). */
2550
2551 if (needed > crtl->outgoing_args_size)
2552 crtl->outgoing_args_size = needed;
2553
2554 if (must_preallocate)
2555 {
2556 if (ACCUMULATE_OUTGOING_ARGS)
2557 {
2558 /* Since the stack pointer will never be pushed, it is
2559 possible for the evaluation of a parm to clobber
2560 something we have already written to the stack.
2561 Since most function calls on RISC machines do not use
2562 the stack, this is uncommon, but must work correctly.
2563
2564 Therefore, we save any area of the stack that was already
2565 written and that we are using. Here we set up to do this
2566 by making a new stack usage map from the old one. The
2567 actual save will be done by store_one_arg.
2568
2569 Another approach might be to try to reorder the argument
2570 evaluations to avoid this conflicting stack usage. */
2571
2572 /* Since we will be writing into the entire argument area,
2573 the map must be allocated for its entire size, not just
2574 the part that is the responsibility of the caller. */
2575 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2576 needed += reg_parm_stack_space;
2577
2578 #ifdef ARGS_GROW_DOWNWARD
2579 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2580 needed + 1);
2581 #else
2582 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2583 needed);
2584 #endif
2585 free (stack_usage_map_buf);
2586 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
2587 stack_usage_map = stack_usage_map_buf;
2588
2589 if (initial_highest_arg_in_use)
2590 memcpy (stack_usage_map, initial_stack_usage_map,
2591 initial_highest_arg_in_use);
2592
2593 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2594 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2595 (highest_outgoing_arg_in_use
2596 - initial_highest_arg_in_use));
2597 needed = 0;
2598
2599 /* The address of the outgoing argument list must not be
2600 copied to a register here, because argblock would be left
2601 pointing to the wrong place after the call to
2602 allocate_dynamic_stack_space below. */
2603
2604 argblock = virtual_outgoing_args_rtx;
2605 }
2606 else
2607 {
2608 if (inhibit_defer_pop == 0)
2609 {
2610 /* Try to reuse some or all of the pending_stack_adjust
2611 to get this space. */
2612 needed
2613 = (combine_pending_stack_adjustment_and_call
2614 (unadjusted_args_size,
2615 &adjusted_args_size,
2616 preferred_unit_stack_boundary));
2617
2618 /* combine_pending_stack_adjustment_and_call computes
2619 an adjustment before the arguments are allocated.
2620 Account for them and see whether or not the stack
2621 needs to go up or down. */
2622 needed = unadjusted_args_size - needed;
2623
2624 if (needed < 0)
2625 {
2626 /* We're releasing stack space. */
2627 /* ??? We can avoid any adjustment at all if we're
2628 already aligned. FIXME. */
2629 pending_stack_adjust = -needed;
2630 do_pending_stack_adjust ();
2631 needed = 0;
2632 }
2633 else
2634 /* We need to allocate space. We'll do that in
2635 push_block below. */
2636 pending_stack_adjust = 0;
2637 }
2638
2639 /* Special case this because overhead of `push_block' in
2640 this case is non-trivial. */
2641 if (needed == 0)
2642 argblock = virtual_outgoing_args_rtx;
2643 else
2644 {
2645 argblock = push_block (GEN_INT (needed), 0, 0);
2646 #ifdef ARGS_GROW_DOWNWARD
2647 argblock = plus_constant (argblock, needed);
2648 #endif
2649 }
2650
2651 /* We only really need to call `copy_to_reg' in the case
2652 where push insns are going to be used to pass ARGBLOCK
2653 to a function call in ARGS. In that case, the stack
2654 pointer changes value from the allocation point to the
2655 call point, and hence the value of
2656 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2657 as well always do it. */
2658 argblock = copy_to_reg (argblock);
2659 }
2660 }
2661 }
2662
2663 if (ACCUMULATE_OUTGOING_ARGS)
2664 {
2665 /* The save/restore code in store_one_arg handles all
2666 cases except one: a constructor call (including a C
2667 function returning a BLKmode struct) to initialize
2668 an argument. */
2669 if (stack_arg_under_construction)
2670 {
2671 rtx push_size
2672 = GEN_INT (adjusted_args_size.constant
2673 + (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype
2674 : TREE_TYPE (fndecl))) ? 0
2675 : reg_parm_stack_space));
2676 if (old_stack_level == 0)
2677 {
2678 emit_stack_save (SAVE_BLOCK, &old_stack_level);
2679 old_stack_pointer_delta = stack_pointer_delta;
2680 old_pending_adj = pending_stack_adjust;
2681 pending_stack_adjust = 0;
2682 /* stack_arg_under_construction says whether a stack
2683 arg is being constructed at the old stack level.
2684 Pushing the stack gets a clean outgoing argument
2685 block. */
2686 old_stack_arg_under_construction
2687 = stack_arg_under_construction;
2688 stack_arg_under_construction = 0;
2689 /* Make a new map for the new argument list. */
2690 free (stack_usage_map_buf);
2691 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
2692 stack_usage_map = stack_usage_map_buf;
2693 highest_outgoing_arg_in_use = 0;
2694 }
2695 /* We can pass TRUE as the 4th argument because we just
2696 saved the stack pointer and will restore it right after
2697 the call. */
2698 allocate_dynamic_stack_space (push_size, 0,
2699 BIGGEST_ALIGNMENT, true);
2700 }
2701
2702 /* If argument evaluation might modify the stack pointer,
2703 copy the address of the argument list to a register. */
2704 for (i = 0; i < num_actuals; i++)
2705 if (args[i].pass_on_stack)
2706 {
2707 argblock = copy_addr_to_reg (argblock);
2708 break;
2709 }
2710 }
2711
2712 compute_argument_addresses (args, argblock, num_actuals);
2713
2714 /* If we push args individually in reverse order, perform stack alignment
2715 before the first push (the last arg). */
2716 if (PUSH_ARGS_REVERSED && argblock == 0
2717 && adjusted_args_size.constant != unadjusted_args_size)
2718 {
2719 /* When the stack adjustment is pending, we get better code
2720 by combining the adjustments. */
2721 if (pending_stack_adjust
2722 && ! inhibit_defer_pop)
2723 {
2724 pending_stack_adjust
2725 = (combine_pending_stack_adjustment_and_call
2726 (unadjusted_args_size,
2727 &adjusted_args_size,
2728 preferred_unit_stack_boundary));
2729 do_pending_stack_adjust ();
2730 }
2731 else if (argblock == 0)
2732 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2733 - unadjusted_args_size));
2734 }
2735 /* Now that the stack is properly aligned, pops can't safely
2736 be deferred during the evaluation of the arguments. */
2737 NO_DEFER_POP;
2738
2739 /* Record the maximum pushed stack space size. We need to delay
2740 doing it this far to take into account the optimization done
2741 by combine_pending_stack_adjustment_and_call. */
2742 if (flag_stack_usage_info
2743 && !ACCUMULATE_OUTGOING_ARGS
2744 && pass
2745 && adjusted_args_size.var == 0)
2746 {
2747 int pushed = adjusted_args_size.constant + pending_stack_adjust;
2748 if (pushed > current_function_pushed_stack_size)
2749 current_function_pushed_stack_size = pushed;
2750 }
2751
2752 funexp = rtx_for_function_call (fndecl, addr);
2753
2754 /* Figure out the register where the value, if any, will come back. */
2755 valreg = 0;
2756 if (TYPE_MODE (rettype) != VOIDmode
2757 && ! structure_value_addr)
2758 {
2759 if (pcc_struct_value)
2760 valreg = hard_function_value (build_pointer_type (rettype),
2761 fndecl, NULL, (pass == 0));
2762 else
2763 valreg = hard_function_value (rettype, fndecl, fntype,
2764 (pass == 0));
2765
2766 /* If VALREG is a PARALLEL whose first member has a zero
2767 offset, use that. This is for targets such as m68k that
2768 return the same value in multiple places. */
2769 if (GET_CODE (valreg) == PARALLEL)
2770 {
2771 rtx elem = XVECEXP (valreg, 0, 0);
2772 rtx where = XEXP (elem, 0);
2773 rtx offset = XEXP (elem, 1);
2774 if (offset == const0_rtx
2775 && GET_MODE (where) == GET_MODE (valreg))
2776 valreg = where;
2777 }
2778 }
2779
2780 /* Precompute all register parameters. It isn't safe to compute anything
2781 once we have started filling any specific hard regs. */
2782 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2783
2784 if (CALL_EXPR_STATIC_CHAIN (exp))
2785 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
2786 else
2787 static_chain_value = 0;
2788
2789 #ifdef REG_PARM_STACK_SPACE
2790 /* Save the fixed argument area if it's part of the caller's frame and
2791 is clobbered by argument setup for this call. */
2792 if (ACCUMULATE_OUTGOING_ARGS && pass)
2793 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2794 &low_to_save, &high_to_save);
2795 #endif
2796
2797 /* Now store (and compute if necessary) all non-register parms.
2798 These come before register parms, since they can require block-moves,
2799 which could clobber the registers used for register parms.
2800 Parms which have partial registers are not stored here,
2801 but we do preallocate space here if they want that. */
2802
2803 for (i = 0; i < num_actuals; i++)
2804 {
2805 if (args[i].reg == 0 || args[i].pass_on_stack)
2806 {
2807 rtx before_arg = get_last_insn ();
2808
2809 if (store_one_arg (&args[i], argblock, flags,
2810 adjusted_args_size.var != 0,
2811 reg_parm_stack_space)
2812 || (pass == 0
2813 && check_sibcall_argument_overlap (before_arg,
2814 &args[i], 1)))
2815 sibcall_failure = 1;
2816 }
2817
2818 if (args[i].stack)
2819 call_fusage
2820 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[i].tree_value)),
2821 gen_rtx_USE (VOIDmode, args[i].stack),
2822 call_fusage);
2823 }
2824
2825 /* If we have a parm that is passed in registers but not in memory
2826 and whose alignment does not permit a direct copy into registers,
2827 make a group of pseudos that correspond to each register that we
2828 will later fill. */
2829 if (STRICT_ALIGNMENT)
2830 store_unaligned_arguments_into_pseudos (args, num_actuals);
2831
2832 /* Now store any partially-in-registers parm.
2833 This is the last place a block-move can happen. */
2834 if (reg_parm_seen)
2835 for (i = 0; i < num_actuals; i++)
2836 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2837 {
2838 rtx before_arg = get_last_insn ();
2839
2840 if (store_one_arg (&args[i], argblock, flags,
2841 adjusted_args_size.var != 0,
2842 reg_parm_stack_space)
2843 || (pass == 0
2844 && check_sibcall_argument_overlap (before_arg,
2845 &args[i], 1)))
2846 sibcall_failure = 1;
2847 }
2848
2849 /* If we pushed args in forward order, perform stack alignment
2850 after pushing the last arg. */
2851 if (!PUSH_ARGS_REVERSED && argblock == 0)
2852 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2853 - unadjusted_args_size));
2854
2855 /* If register arguments require space on the stack and stack space
2856 was not preallocated, allocate stack space here for arguments
2857 passed in registers. */
2858 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2859 && !ACCUMULATE_OUTGOING_ARGS
2860 && must_preallocate == 0 && reg_parm_stack_space > 0)
2861 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2862
2863 /* Pass the function the address in which to return a
2864 structure value. */
2865 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2866 {
2867 structure_value_addr
2868 = convert_memory_address (Pmode, structure_value_addr);
2869 emit_move_insn (struct_value,
2870 force_reg (Pmode,
2871 force_operand (structure_value_addr,
2872 NULL_RTX)));
2873
2874 if (REG_P (struct_value))
2875 use_reg (&call_fusage, struct_value);
2876 }
2877
2878 after_args = get_last_insn ();
2879 funexp = prepare_call_address (fndecl, funexp, static_chain_value,
2880 &call_fusage, reg_parm_seen, pass == 0);
2881
2882 load_register_parameters (args, num_actuals, &call_fusage, flags,
2883 pass == 0, &sibcall_failure);
2884
2885 /* Save a pointer to the last insn before the call, so that we can
2886 later safely search backwards to find the CALL_INSN. */
2887 before_call = get_last_insn ();
2888
2889 /* Set up next argument register. For sibling calls on machines
2890 with register windows this should be the incoming register. */
2891 if (pass == 0)
2892 next_arg_reg = targetm.calls.function_incoming_arg (args_so_far,
2893 VOIDmode,
2894 void_type_node,
2895 true);
2896 else
2897 next_arg_reg = targetm.calls.function_arg (args_so_far,
2898 VOIDmode, void_type_node,
2899 true);
2900
2901 /* All arguments and registers used for the call must be set up by
2902 now! */
2903
2904 /* Stack must be properly aligned now. */
2905 gcc_assert (!pass
2906 || !(stack_pointer_delta % preferred_unit_stack_boundary));
2907
2908 /* Generate the actual call instruction. */
2909 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2910 adjusted_args_size.constant, struct_value_size,
2911 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2912 flags, args_so_far);
2913
2914 /* If the call setup or the call itself overlaps with anything
2915 of the argument setup we probably clobbered our call address.
2916 In that case we can't do sibcalls. */
2917 if (pass == 0
2918 && check_sibcall_argument_overlap (after_args, 0, 0))
2919 sibcall_failure = 1;
2920
2921 /* If a non-BLKmode value is returned at the most significant end
2922 of a register, shift the register right by the appropriate amount
2923 and update VALREG accordingly. BLKmode values are handled by the
2924 group load/store machinery below. */
2925 if (!structure_value_addr
2926 && !pcc_struct_value
2927 && TYPE_MODE (rettype) != BLKmode
2928 && targetm.calls.return_in_msb (rettype))
2929 {
2930 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
2931 sibcall_failure = 1;
2932 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
2933 }
2934
2935 if (pass && (flags & ECF_MALLOC))
2936 {
2937 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2938 rtx last, insns;
2939
2940 /* The return value from a malloc-like function is a pointer. */
2941 if (TREE_CODE (rettype) == POINTER_TYPE)
2942 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2943
2944 emit_move_insn (temp, valreg);
2945
2946 /* The return value from a malloc-like function can not alias
2947 anything else. */
2948 last = get_last_insn ();
2949 add_reg_note (last, REG_NOALIAS, temp);
2950
2951 /* Write out the sequence. */
2952 insns = get_insns ();
2953 end_sequence ();
2954 emit_insn (insns);
2955 valreg = temp;
2956 }
2957
2958 /* For calls to `setjmp', etc., inform
2959 function.c:setjmp_warnings that it should complain if
2960 nonvolatile values are live. For functions that cannot
2961 return, inform flow that control does not fall through. */
2962
2963 if ((flags & ECF_NORETURN) || pass == 0)
2964 {
2965 /* The barrier must be emitted
2966 immediately after the CALL_INSN. Some ports emit more
2967 than just a CALL_INSN above, so we must search for it here. */
2968
2969 rtx last = get_last_insn ();
2970 while (!CALL_P (last))
2971 {
2972 last = PREV_INSN (last);
2973 /* There was no CALL_INSN? */
2974 gcc_assert (last != before_call);
2975 }
2976
2977 emit_barrier_after (last);
2978
2979 /* Stack adjustments after a noreturn call are dead code.
2980 However when NO_DEFER_POP is in effect, we must preserve
2981 stack_pointer_delta. */
2982 if (inhibit_defer_pop == 0)
2983 {
2984 stack_pointer_delta = old_stack_allocated;
2985 pending_stack_adjust = 0;
2986 }
2987 }
2988
2989 /* If value type not void, return an rtx for the value. */
2990
2991 if (TYPE_MODE (rettype) == VOIDmode
2992 || ignore)
2993 target = const0_rtx;
2994 else if (structure_value_addr)
2995 {
2996 if (target == 0 || !MEM_P (target))
2997 {
2998 target
2999 = gen_rtx_MEM (TYPE_MODE (rettype),
3000 memory_address (TYPE_MODE (rettype),
3001 structure_value_addr));
3002 set_mem_attributes (target, rettype, 1);
3003 }
3004 }
3005 else if (pcc_struct_value)
3006 {
3007 /* This is the special C++ case where we need to
3008 know what the true target was. We take care to
3009 never use this value more than once in one expression. */
3010 target = gen_rtx_MEM (TYPE_MODE (rettype),
3011 copy_to_reg (valreg));
3012 set_mem_attributes (target, rettype, 1);
3013 }
3014 /* Handle calls that return values in multiple non-contiguous locations.
3015 The Irix 6 ABI has examples of this. */
3016 else if (GET_CODE (valreg) == PARALLEL)
3017 {
3018 if (target == 0)
3019 {
3020 /* This will only be assigned once, so it can be readonly. */
3021 tree nt = build_qualified_type (rettype,
3022 (TYPE_QUALS (rettype)
3023 | TYPE_QUAL_CONST));
3024
3025 target = assign_temp (nt, 0, 1, 1);
3026 }
3027
3028 if (! rtx_equal_p (target, valreg))
3029 emit_group_store (target, valreg, rettype,
3030 int_size_in_bytes (rettype));
3031
3032 /* We can not support sibling calls for this case. */
3033 sibcall_failure = 1;
3034 }
3035 else if (target
3036 && GET_MODE (target) == TYPE_MODE (rettype)
3037 && GET_MODE (target) == GET_MODE (valreg))
3038 {
3039 bool may_overlap = false;
3040
3041 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
3042 reg to a plain register. */
3043 if (!REG_P (target) || HARD_REGISTER_P (target))
3044 valreg = avoid_likely_spilled_reg (valreg);
3045
3046 /* If TARGET is a MEM in the argument area, and we have
3047 saved part of the argument area, then we can't store
3048 directly into TARGET as it may get overwritten when we
3049 restore the argument save area below. Don't work too
3050 hard though and simply force TARGET to a register if it
3051 is a MEM; the optimizer is quite likely to sort it out. */
3052 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
3053 for (i = 0; i < num_actuals; i++)
3054 if (args[i].save_area)
3055 {
3056 may_overlap = true;
3057 break;
3058 }
3059
3060 if (may_overlap)
3061 target = copy_to_reg (valreg);
3062 else
3063 {
3064 /* TARGET and VALREG cannot be equal at this point
3065 because the latter would not have
3066 REG_FUNCTION_VALUE_P true, while the former would if
3067 it were referring to the same register.
3068
3069 If they refer to the same register, this move will be
3070 a no-op, except when function inlining is being
3071 done. */
3072 emit_move_insn (target, valreg);
3073
3074 /* If we are setting a MEM, this code must be executed.
3075 Since it is emitted after the call insn, sibcall
3076 optimization cannot be performed in that case. */
3077 if (MEM_P (target))
3078 sibcall_failure = 1;
3079 }
3080 }
3081 else if (TYPE_MODE (rettype) == BLKmode)
3082 {
3083 rtx val = valreg;
3084 if (GET_MODE (val) != BLKmode)
3085 val = avoid_likely_spilled_reg (val);
3086 target = copy_blkmode_from_reg (target, val, rettype);
3087
3088 /* We can not support sibling calls for this case. */
3089 sibcall_failure = 1;
3090 }
3091 else
3092 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
3093
3094 /* If we promoted this return value, make the proper SUBREG.
3095 TARGET might be const0_rtx here, so be careful. */
3096 if (REG_P (target)
3097 && TYPE_MODE (rettype) != BLKmode
3098 && GET_MODE (target) != TYPE_MODE (rettype))
3099 {
3100 tree type = rettype;
3101 int unsignedp = TYPE_UNSIGNED (type);
3102 int offset = 0;
3103 enum machine_mode pmode;
3104
3105 /* Ensure we promote as expected, and get the new unsignedness. */
3106 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
3107 funtype, 1);
3108 gcc_assert (GET_MODE (target) == pmode);
3109
3110 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
3111 && (GET_MODE_SIZE (GET_MODE (target))
3112 > GET_MODE_SIZE (TYPE_MODE (type))))
3113 {
3114 offset = GET_MODE_SIZE (GET_MODE (target))
3115 - GET_MODE_SIZE (TYPE_MODE (type));
3116 if (! BYTES_BIG_ENDIAN)
3117 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
3118 else if (! WORDS_BIG_ENDIAN)
3119 offset %= UNITS_PER_WORD;
3120 }
3121
3122 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
3123 SUBREG_PROMOTED_VAR_P (target) = 1;
3124 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
3125 }
3126
3127 /* If size of args is variable or this was a constructor call for a stack
3128 argument, restore saved stack-pointer value. */
3129
3130 if (old_stack_level)
3131 {
3132 rtx prev = get_last_insn ();
3133
3134 emit_stack_restore (SAVE_BLOCK, old_stack_level);
3135 stack_pointer_delta = old_stack_pointer_delta;
3136
3137 fixup_args_size_notes (prev, get_last_insn (), stack_pointer_delta);
3138
3139 pending_stack_adjust = old_pending_adj;
3140 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3141 stack_arg_under_construction = old_stack_arg_under_construction;
3142 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3143 stack_usage_map = initial_stack_usage_map;
3144 sibcall_failure = 1;
3145 }
3146 else if (ACCUMULATE_OUTGOING_ARGS && pass)
3147 {
3148 #ifdef REG_PARM_STACK_SPACE
3149 if (save_area)
3150 restore_fixed_argument_area (save_area, argblock,
3151 high_to_save, low_to_save);
3152 #endif
3153
3154 /* If we saved any argument areas, restore them. */
3155 for (i = 0; i < num_actuals; i++)
3156 if (args[i].save_area)
3157 {
3158 enum machine_mode save_mode = GET_MODE (args[i].save_area);
3159 rtx stack_area
3160 = gen_rtx_MEM (save_mode,
3161 memory_address (save_mode,
3162 XEXP (args[i].stack_slot, 0)));
3163
3164 if (save_mode != BLKmode)
3165 emit_move_insn (stack_area, args[i].save_area);
3166 else
3167 emit_block_move (stack_area, args[i].save_area,
3168 GEN_INT (args[i].locate.size.constant),
3169 BLOCK_OP_CALL_PARM);
3170 }
3171
3172 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3173 stack_usage_map = initial_stack_usage_map;
3174 }
3175
3176 /* If this was alloca, record the new stack level for nonlocal gotos.
3177 Check for the handler slots since we might not have a save area
3178 for non-local gotos. */
3179
3180 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
3181 update_nonlocal_goto_save_area ();
3182
3183 /* Free up storage we no longer need. */
3184 for (i = 0; i < num_actuals; ++i)
3185 free (args[i].aligned_regs);
3186
3187 insns = get_insns ();
3188 end_sequence ();
3189
3190 if (pass == 0)
3191 {
3192 tail_call_insns = insns;
3193
3194 /* Restore the pending stack adjustment now that we have
3195 finished generating the sibling call sequence. */
3196
3197 pending_stack_adjust = save_pending_stack_adjust;
3198 stack_pointer_delta = save_stack_pointer_delta;
3199
3200 /* Prepare arg structure for next iteration. */
3201 for (i = 0; i < num_actuals; i++)
3202 {
3203 args[i].value = 0;
3204 args[i].aligned_regs = 0;
3205 args[i].stack = 0;
3206 }
3207
3208 sbitmap_free (stored_args_map);
3209 }
3210 else
3211 {
3212 normal_call_insns = insns;
3213
3214 /* Verify that we've deallocated all the stack we used. */
3215 gcc_assert ((flags & ECF_NORETURN)
3216 || (old_stack_allocated
3217 == stack_pointer_delta - pending_stack_adjust));
3218 }
3219
3220 /* If something prevents making this a sibling call,
3221 zero out the sequence. */
3222 if (sibcall_failure)
3223 tail_call_insns = NULL_RTX;
3224 else
3225 break;
3226 }
3227
3228 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3229 arguments too, as argument area is now clobbered by the call. */
3230 if (tail_call_insns)
3231 {
3232 emit_insn (tail_call_insns);
3233 crtl->tail_call_emit = true;
3234 }
3235 else
3236 emit_insn (normal_call_insns);
3237
3238 currently_expanding_call--;
3239
3240 free (stack_usage_map_buf);
3241
3242 return target;
3243 }
3244
3245 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3246 this function's incoming arguments.
3247
3248 At the start of RTL generation we know the only REG_EQUIV notes
3249 in the rtl chain are those for incoming arguments, so we can look
3250 for REG_EQUIV notes between the start of the function and the
3251 NOTE_INSN_FUNCTION_BEG.
3252
3253 This is (slight) overkill. We could keep track of the highest
3254 argument we clobber and be more selective in removing notes, but it
3255 does not seem to be worth the effort. */
3256
3257 void
3258 fixup_tail_calls (void)
3259 {
3260 rtx insn;
3261
3262 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3263 {
3264 rtx note;
3265
3266 /* There are never REG_EQUIV notes for the incoming arguments
3267 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
3268 if (NOTE_P (insn)
3269 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3270 break;
3271
3272 note = find_reg_note (insn, REG_EQUIV, 0);
3273 if (note)
3274 remove_note (insn, note);
3275 note = find_reg_note (insn, REG_EQUIV, 0);
3276 gcc_assert (!note);
3277 }
3278 }
3279
3280 /* Traverse a list of TYPES and expand all complex types into their
3281 components. */
3282 static tree
3283 split_complex_types (tree types)
3284 {
3285 tree p;
3286
3287 /* Before allocating memory, check for the common case of no complex. */
3288 for (p = types; p; p = TREE_CHAIN (p))
3289 {
3290 tree type = TREE_VALUE (p);
3291 if (TREE_CODE (type) == COMPLEX_TYPE
3292 && targetm.calls.split_complex_arg (type))
3293 goto found;
3294 }
3295 return types;
3296
3297 found:
3298 types = copy_list (types);
3299
3300 for (p = types; p; p = TREE_CHAIN (p))
3301 {
3302 tree complex_type = TREE_VALUE (p);
3303
3304 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3305 && targetm.calls.split_complex_arg (complex_type))
3306 {
3307 tree next, imag;
3308
3309 /* Rewrite complex type with component type. */
3310 TREE_VALUE (p) = TREE_TYPE (complex_type);
3311 next = TREE_CHAIN (p);
3312
3313 /* Add another component type for the imaginary part. */
3314 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3315 TREE_CHAIN (p) = imag;
3316 TREE_CHAIN (imag) = next;
3317
3318 /* Skip the newly created node. */
3319 p = TREE_CHAIN (p);
3320 }
3321 }
3322
3323 return types;
3324 }
3325 \f
3326 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3327 The RETVAL parameter specifies whether return value needs to be saved, other
3328 parameters are documented in the emit_library_call function below. */
3329
3330 static rtx
3331 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3332 enum libcall_type fn_type,
3333 enum machine_mode outmode, int nargs, va_list p)
3334 {
3335 /* Total size in bytes of all the stack-parms scanned so far. */
3336 struct args_size args_size;
3337 /* Size of arguments before any adjustments (such as rounding). */
3338 struct args_size original_args_size;
3339 int argnum;
3340 rtx fun;
3341 /* Todo, choose the correct decl type of orgfun. Sadly this information
3342 isn't present here, so we default to native calling abi here. */
3343 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3344 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3345 int inc;
3346 int count;
3347 rtx argblock = 0;
3348 CUMULATIVE_ARGS args_so_far_v;
3349 cumulative_args_t args_so_far;
3350 struct arg
3351 {
3352 rtx value;
3353 enum machine_mode mode;
3354 rtx reg;
3355 int partial;
3356 struct locate_and_pad_arg_data locate;
3357 rtx save_area;
3358 };
3359 struct arg *argvec;
3360 int old_inhibit_defer_pop = inhibit_defer_pop;
3361 rtx call_fusage = 0;
3362 rtx mem_value = 0;
3363 rtx valreg;
3364 int pcc_struct_value = 0;
3365 int struct_value_size = 0;
3366 int flags;
3367 int reg_parm_stack_space = 0;
3368 int needed;
3369 rtx before_call;
3370 tree tfom; /* type_for_mode (outmode, 0) */
3371
3372 #ifdef REG_PARM_STACK_SPACE
3373 /* Define the boundary of the register parm stack space that needs to be
3374 save, if any. */
3375 int low_to_save = 0, high_to_save = 0;
3376 rtx save_area = 0; /* Place that it is saved. */
3377 #endif
3378
3379 /* Size of the stack reserved for parameter registers. */
3380 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3381 char *initial_stack_usage_map = stack_usage_map;
3382 char *stack_usage_map_buf = NULL;
3383
3384 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3385
3386 #ifdef REG_PARM_STACK_SPACE
3387 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3388 #endif
3389
3390 /* By default, library functions can not throw. */
3391 flags = ECF_NOTHROW;
3392
3393 switch (fn_type)
3394 {
3395 case LCT_NORMAL:
3396 break;
3397 case LCT_CONST:
3398 flags |= ECF_CONST;
3399 break;
3400 case LCT_PURE:
3401 flags |= ECF_PURE;
3402 break;
3403 case LCT_NORETURN:
3404 flags |= ECF_NORETURN;
3405 break;
3406 case LCT_THROW:
3407 flags = ECF_NORETURN;
3408 break;
3409 case LCT_RETURNS_TWICE:
3410 flags = ECF_RETURNS_TWICE;
3411 break;
3412 }
3413 fun = orgfun;
3414
3415 /* Ensure current function's preferred stack boundary is at least
3416 what we need. */
3417 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3418 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3419
3420 /* If this kind of value comes back in memory,
3421 decide where in memory it should come back. */
3422 if (outmode != VOIDmode)
3423 {
3424 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3425 if (aggregate_value_p (tfom, 0))
3426 {
3427 #ifdef PCC_STATIC_STRUCT_RETURN
3428 rtx pointer_reg
3429 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
3430 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3431 pcc_struct_value = 1;
3432 if (value == 0)
3433 value = gen_reg_rtx (outmode);
3434 #else /* not PCC_STATIC_STRUCT_RETURN */
3435 struct_value_size = GET_MODE_SIZE (outmode);
3436 if (value != 0 && MEM_P (value))
3437 mem_value = value;
3438 else
3439 mem_value = assign_temp (tfom, 0, 1, 1);
3440 #endif
3441 /* This call returns a big structure. */
3442 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3443 }
3444 }
3445 else
3446 tfom = void_type_node;
3447
3448 /* ??? Unfinished: must pass the memory address as an argument. */
3449
3450 /* Copy all the libcall-arguments out of the varargs data
3451 and into a vector ARGVEC.
3452
3453 Compute how to pass each argument. We only support a very small subset
3454 of the full argument passing conventions to limit complexity here since
3455 library functions shouldn't have many args. */
3456
3457 argvec = XALLOCAVEC (struct arg, nargs + 1);
3458 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3459
3460 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3461 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far_v, outmode, fun);
3462 #else
3463 INIT_CUMULATIVE_ARGS (args_so_far_v, NULL_TREE, fun, 0, nargs);
3464 #endif
3465 args_so_far = pack_cumulative_args (&args_so_far_v);
3466
3467 args_size.constant = 0;
3468 args_size.var = 0;
3469
3470 count = 0;
3471
3472 push_temp_slots ();
3473
3474 /* If there's a structure value address to be passed,
3475 either pass it in the special place, or pass it as an extra argument. */
3476 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3477 {
3478 rtx addr = XEXP (mem_value, 0);
3479
3480 nargs++;
3481
3482 /* Make sure it is a reasonable operand for a move or push insn. */
3483 if (!REG_P (addr) && !MEM_P (addr)
3484 && !(CONSTANT_P (addr)
3485 && targetm.legitimate_constant_p (Pmode, addr)))
3486 addr = force_operand (addr, NULL_RTX);
3487
3488 argvec[count].value = addr;
3489 argvec[count].mode = Pmode;
3490 argvec[count].partial = 0;
3491
3492 argvec[count].reg = targetm.calls.function_arg (args_so_far,
3493 Pmode, NULL_TREE, true);
3494 gcc_assert (targetm.calls.arg_partial_bytes (args_so_far, Pmode,
3495 NULL_TREE, 1) == 0);
3496
3497 locate_and_pad_parm (Pmode, NULL_TREE,
3498 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3499 1,
3500 #else
3501 argvec[count].reg != 0,
3502 #endif
3503 0, NULL_TREE, &args_size, &argvec[count].locate);
3504
3505 if (argvec[count].reg == 0 || argvec[count].partial != 0
3506 || reg_parm_stack_space > 0)
3507 args_size.constant += argvec[count].locate.size.constant;
3508
3509 targetm.calls.function_arg_advance (args_so_far, Pmode, (tree) 0, true);
3510
3511 count++;
3512 }
3513
3514 for (; count < nargs; count++)
3515 {
3516 rtx val = va_arg (p, rtx);
3517 enum machine_mode mode = (enum machine_mode) va_arg (p, int);
3518 int unsigned_p = 0;
3519
3520 /* We cannot convert the arg value to the mode the library wants here;
3521 must do it earlier where we know the signedness of the arg. */
3522 gcc_assert (mode != BLKmode
3523 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3524
3525 /* Make sure it is a reasonable operand for a move or push insn. */
3526 if (!REG_P (val) && !MEM_P (val)
3527 && !(CONSTANT_P (val) && targetm.legitimate_constant_p (mode, val)))
3528 val = force_operand (val, NULL_RTX);
3529
3530 if (pass_by_reference (&args_so_far_v, mode, NULL_TREE, 1))
3531 {
3532 rtx slot;
3533 int must_copy
3534 = !reference_callee_copied (&args_so_far_v, mode, NULL_TREE, 1);
3535
3536 /* If this was a CONST function, it is now PURE since it now
3537 reads memory. */
3538 if (flags & ECF_CONST)
3539 {
3540 flags &= ~ECF_CONST;
3541 flags |= ECF_PURE;
3542 }
3543
3544 if (MEM_P (val) && !must_copy)
3545 {
3546 tree val_expr = MEM_EXPR (val);
3547 if (val_expr)
3548 mark_addressable (val_expr);
3549 slot = val;
3550 }
3551 else
3552 {
3553 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3554 0, 1, 1);
3555 emit_move_insn (slot, val);
3556 }
3557
3558 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3559 gen_rtx_USE (VOIDmode, slot),
3560 call_fusage);
3561 if (must_copy)
3562 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3563 gen_rtx_CLOBBER (VOIDmode,
3564 slot),
3565 call_fusage);
3566
3567 mode = Pmode;
3568 val = force_operand (XEXP (slot, 0), NULL_RTX);
3569 }
3570
3571 mode = promote_function_mode (NULL_TREE, mode, &unsigned_p, NULL_TREE, 0);
3572 argvec[count].mode = mode;
3573 argvec[count].value = convert_modes (mode, GET_MODE (val), val, unsigned_p);
3574 argvec[count].reg = targetm.calls.function_arg (args_so_far, mode,
3575 NULL_TREE, true);
3576
3577 argvec[count].partial
3578 = targetm.calls.arg_partial_bytes (args_so_far, mode, NULL_TREE, 1);
3579
3580 if (argvec[count].reg == 0
3581 || argvec[count].partial != 0
3582 || reg_parm_stack_space > 0)
3583 {
3584 locate_and_pad_parm (mode, NULL_TREE,
3585 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3586 1,
3587 #else
3588 argvec[count].reg != 0,
3589 #endif
3590 argvec[count].partial,
3591 NULL_TREE, &args_size, &argvec[count].locate);
3592 args_size.constant += argvec[count].locate.size.constant;
3593 gcc_assert (!argvec[count].locate.size.var);
3594 }
3595 #ifdef BLOCK_REG_PADDING
3596 else
3597 /* The argument is passed entirely in registers. See at which
3598 end it should be padded. */
3599 argvec[count].locate.where_pad =
3600 BLOCK_REG_PADDING (mode, NULL_TREE,
3601 GET_MODE_SIZE (mode) <= UNITS_PER_WORD);
3602 #endif
3603
3604 targetm.calls.function_arg_advance (args_so_far, mode, (tree) 0, true);
3605 }
3606
3607 /* If this machine requires an external definition for library
3608 functions, write one out. */
3609 assemble_external_libcall (fun);
3610
3611 original_args_size = args_size;
3612 args_size.constant = (((args_size.constant
3613 + stack_pointer_delta
3614 + STACK_BYTES - 1)
3615 / STACK_BYTES
3616 * STACK_BYTES)
3617 - stack_pointer_delta);
3618
3619 args_size.constant = MAX (args_size.constant,
3620 reg_parm_stack_space);
3621
3622 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3623 args_size.constant -= reg_parm_stack_space;
3624
3625 if (args_size.constant > crtl->outgoing_args_size)
3626 crtl->outgoing_args_size = args_size.constant;
3627
3628 if (flag_stack_usage_info && !ACCUMULATE_OUTGOING_ARGS)
3629 {
3630 int pushed = args_size.constant + pending_stack_adjust;
3631 if (pushed > current_function_pushed_stack_size)
3632 current_function_pushed_stack_size = pushed;
3633 }
3634
3635 if (ACCUMULATE_OUTGOING_ARGS)
3636 {
3637 /* Since the stack pointer will never be pushed, it is possible for
3638 the evaluation of a parm to clobber something we have already
3639 written to the stack. Since most function calls on RISC machines
3640 do not use the stack, this is uncommon, but must work correctly.
3641
3642 Therefore, we save any area of the stack that was already written
3643 and that we are using. Here we set up to do this by making a new
3644 stack usage map from the old one.
3645
3646 Another approach might be to try to reorder the argument
3647 evaluations to avoid this conflicting stack usage. */
3648
3649 needed = args_size.constant;
3650
3651 /* Since we will be writing into the entire argument area, the
3652 map must be allocated for its entire size, not just the part that
3653 is the responsibility of the caller. */
3654 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3655 needed += reg_parm_stack_space;
3656
3657 #ifdef ARGS_GROW_DOWNWARD
3658 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3659 needed + 1);
3660 #else
3661 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3662 needed);
3663 #endif
3664 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3665 stack_usage_map = stack_usage_map_buf;
3666
3667 if (initial_highest_arg_in_use)
3668 memcpy (stack_usage_map, initial_stack_usage_map,
3669 initial_highest_arg_in_use);
3670
3671 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3672 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3673 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3674 needed = 0;
3675
3676 /* We must be careful to use virtual regs before they're instantiated,
3677 and real regs afterwards. Loop optimization, for example, can create
3678 new libcalls after we've instantiated the virtual regs, and if we
3679 use virtuals anyway, they won't match the rtl patterns. */
3680
3681 if (virtuals_instantiated)
3682 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3683 else
3684 argblock = virtual_outgoing_args_rtx;
3685 }
3686 else
3687 {
3688 if (!PUSH_ARGS)
3689 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3690 }
3691
3692 /* If we push args individually in reverse order, perform stack alignment
3693 before the first push (the last arg). */
3694 if (argblock == 0 && PUSH_ARGS_REVERSED)
3695 anti_adjust_stack (GEN_INT (args_size.constant
3696 - original_args_size.constant));
3697
3698 if (PUSH_ARGS_REVERSED)
3699 {
3700 inc = -1;
3701 argnum = nargs - 1;
3702 }
3703 else
3704 {
3705 inc = 1;
3706 argnum = 0;
3707 }
3708
3709 #ifdef REG_PARM_STACK_SPACE
3710 if (ACCUMULATE_OUTGOING_ARGS)
3711 {
3712 /* The argument list is the property of the called routine and it
3713 may clobber it. If the fixed area has been used for previous
3714 parameters, we must save and restore it. */
3715 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3716 &low_to_save, &high_to_save);
3717 }
3718 #endif
3719
3720 /* Push the args that need to be pushed. */
3721
3722 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3723 are to be pushed. */
3724 for (count = 0; count < nargs; count++, argnum += inc)
3725 {
3726 enum machine_mode mode = argvec[argnum].mode;
3727 rtx val = argvec[argnum].value;
3728 rtx reg = argvec[argnum].reg;
3729 int partial = argvec[argnum].partial;
3730 unsigned int parm_align = argvec[argnum].locate.boundary;
3731 int lower_bound = 0, upper_bound = 0, i;
3732
3733 if (! (reg != 0 && partial == 0))
3734 {
3735 rtx use;
3736
3737 if (ACCUMULATE_OUTGOING_ARGS)
3738 {
3739 /* If this is being stored into a pre-allocated, fixed-size,
3740 stack area, save any previous data at that location. */
3741
3742 #ifdef ARGS_GROW_DOWNWARD
3743 /* stack_slot is negative, but we want to index stack_usage_map
3744 with positive values. */
3745 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
3746 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3747 #else
3748 lower_bound = argvec[argnum].locate.slot_offset.constant;
3749 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3750 #endif
3751
3752 i = lower_bound;
3753 /* Don't worry about things in the fixed argument area;
3754 it has already been saved. */
3755 if (i < reg_parm_stack_space)
3756 i = reg_parm_stack_space;
3757 while (i < upper_bound && stack_usage_map[i] == 0)
3758 i++;
3759
3760 if (i < upper_bound)
3761 {
3762 /* We need to make a save area. */
3763 unsigned int size
3764 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3765 enum machine_mode save_mode
3766 = mode_for_size (size, MODE_INT, 1);
3767 rtx adr
3768 = plus_constant (argblock,
3769 argvec[argnum].locate.offset.constant);
3770 rtx stack_area
3771 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3772
3773 if (save_mode == BLKmode)
3774 {
3775 argvec[argnum].save_area
3776 = assign_stack_temp (BLKmode,
3777 argvec[argnum].locate.size.constant,
3778 0);
3779
3780 emit_block_move (validize_mem (argvec[argnum].save_area),
3781 stack_area,
3782 GEN_INT (argvec[argnum].locate.size.constant),
3783 BLOCK_OP_CALL_PARM);
3784 }
3785 else
3786 {
3787 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3788
3789 emit_move_insn (argvec[argnum].save_area, stack_area);
3790 }
3791 }
3792 }
3793
3794 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
3795 partial, reg, 0, argblock,
3796 GEN_INT (argvec[argnum].locate.offset.constant),
3797 reg_parm_stack_space,
3798 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3799
3800 /* Now mark the segment we just used. */
3801 if (ACCUMULATE_OUTGOING_ARGS)
3802 for (i = lower_bound; i < upper_bound; i++)
3803 stack_usage_map[i] = 1;
3804
3805 NO_DEFER_POP;
3806
3807 /* Indicate argument access so that alias.c knows that these
3808 values are live. */
3809 if (argblock)
3810 use = plus_constant (argblock,
3811 argvec[argnum].locate.offset.constant);
3812 else
3813 /* When arguments are pushed, trying to tell alias.c where
3814 exactly this argument is won't work, because the
3815 auto-increment causes confusion. So we merely indicate
3816 that we access something with a known mode somewhere on
3817 the stack. */
3818 use = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3819 gen_rtx_SCRATCH (Pmode));
3820 use = gen_rtx_MEM (argvec[argnum].mode, use);
3821 use = gen_rtx_USE (VOIDmode, use);
3822 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
3823 }
3824 }
3825
3826 /* If we pushed args in forward order, perform stack alignment
3827 after pushing the last arg. */
3828 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3829 anti_adjust_stack (GEN_INT (args_size.constant
3830 - original_args_size.constant));
3831
3832 if (PUSH_ARGS_REVERSED)
3833 argnum = nargs - 1;
3834 else
3835 argnum = 0;
3836
3837 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
3838
3839 /* Now load any reg parms into their regs. */
3840
3841 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3842 are to be pushed. */
3843 for (count = 0; count < nargs; count++, argnum += inc)
3844 {
3845 enum machine_mode mode = argvec[argnum].mode;
3846 rtx val = argvec[argnum].value;
3847 rtx reg = argvec[argnum].reg;
3848 int partial = argvec[argnum].partial;
3849 #ifdef BLOCK_REG_PADDING
3850 int size = 0;
3851 #endif
3852
3853 /* Handle calls that pass values in multiple non-contiguous
3854 locations. The PA64 has examples of this for library calls. */
3855 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3856 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3857 else if (reg != 0 && partial == 0)
3858 {
3859 emit_move_insn (reg, val);
3860 #ifdef BLOCK_REG_PADDING
3861 size = GET_MODE_SIZE (argvec[argnum].mode);
3862
3863 /* Copied from load_register_parameters. */
3864
3865 /* Handle case where we have a value that needs shifting
3866 up to the msb. eg. a QImode value and we're padding
3867 upward on a BYTES_BIG_ENDIAN machine. */
3868 if (size < UNITS_PER_WORD
3869 && (argvec[argnum].locate.where_pad
3870 == (BYTES_BIG_ENDIAN ? upward : downward)))
3871 {
3872 rtx x;
3873 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3874
3875 /* Assigning REG here rather than a temp makes CALL_FUSAGE
3876 report the whole reg as used. Strictly speaking, the
3877 call only uses SIZE bytes at the msb end, but it doesn't
3878 seem worth generating rtl to say that. */
3879 reg = gen_rtx_REG (word_mode, REGNO (reg));
3880 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
3881 if (x != reg)
3882 emit_move_insn (reg, x);
3883 }
3884 #endif
3885 }
3886
3887 NO_DEFER_POP;
3888 }
3889
3890 /* Any regs containing parms remain in use through the call. */
3891 for (count = 0; count < nargs; count++)
3892 {
3893 rtx reg = argvec[count].reg;
3894 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3895 use_group_regs (&call_fusage, reg);
3896 else if (reg != 0)
3897 {
3898 int partial = argvec[count].partial;
3899 if (partial)
3900 {
3901 int nregs;
3902 gcc_assert (partial % UNITS_PER_WORD == 0);
3903 nregs = partial / UNITS_PER_WORD;
3904 use_regs (&call_fusage, REGNO (reg), nregs);
3905 }
3906 else
3907 use_reg (&call_fusage, reg);
3908 }
3909 }
3910
3911 /* Pass the function the address in which to return a structure value. */
3912 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3913 {
3914 emit_move_insn (struct_value,
3915 force_reg (Pmode,
3916 force_operand (XEXP (mem_value, 0),
3917 NULL_RTX)));
3918 if (REG_P (struct_value))
3919 use_reg (&call_fusage, struct_value);
3920 }
3921
3922 /* Don't allow popping to be deferred, since then
3923 cse'ing of library calls could delete a call and leave the pop. */
3924 NO_DEFER_POP;
3925 valreg = (mem_value == 0 && outmode != VOIDmode
3926 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
3927
3928 /* Stack must be properly aligned now. */
3929 gcc_assert (!(stack_pointer_delta
3930 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
3931
3932 before_call = get_last_insn ();
3933
3934 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3935 will set inhibit_defer_pop to that value. */
3936 /* The return type is needed to decide how many bytes the function pops.
3937 Signedness plays no role in that, so for simplicity, we pretend it's
3938 always signed. We also assume that the list of arguments passed has
3939 no impact, so we pretend it is unknown. */
3940
3941 emit_call_1 (fun, NULL,
3942 get_identifier (XSTR (orgfun, 0)),
3943 build_function_type (tfom, NULL_TREE),
3944 original_args_size.constant, args_size.constant,
3945 struct_value_size,
3946 targetm.calls.function_arg (args_so_far,
3947 VOIDmode, void_type_node, true),
3948 valreg,
3949 old_inhibit_defer_pop + 1, call_fusage, flags, args_so_far);
3950
3951 /* Right-shift returned value if necessary. */
3952 if (!pcc_struct_value
3953 && TYPE_MODE (tfom) != BLKmode
3954 && targetm.calls.return_in_msb (tfom))
3955 {
3956 shift_return_value (TYPE_MODE (tfom), false, valreg);
3957 valreg = gen_rtx_REG (TYPE_MODE (tfom), REGNO (valreg));
3958 }
3959
3960 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
3961 that it should complain if nonvolatile values are live. For
3962 functions that cannot return, inform flow that control does not
3963 fall through. */
3964
3965 if (flags & ECF_NORETURN)
3966 {
3967 /* The barrier note must be emitted
3968 immediately after the CALL_INSN. Some ports emit more than
3969 just a CALL_INSN above, so we must search for it here. */
3970
3971 rtx last = get_last_insn ();
3972 while (!CALL_P (last))
3973 {
3974 last = PREV_INSN (last);
3975 /* There was no CALL_INSN? */
3976 gcc_assert (last != before_call);
3977 }
3978
3979 emit_barrier_after (last);
3980 }
3981
3982 /* Now restore inhibit_defer_pop to its actual original value. */
3983 OK_DEFER_POP;
3984
3985 pop_temp_slots ();
3986
3987 /* Copy the value to the right place. */
3988 if (outmode != VOIDmode && retval)
3989 {
3990 if (mem_value)
3991 {
3992 if (value == 0)
3993 value = mem_value;
3994 if (value != mem_value)
3995 emit_move_insn (value, mem_value);
3996 }
3997 else if (GET_CODE (valreg) == PARALLEL)
3998 {
3999 if (value == 0)
4000 value = gen_reg_rtx (outmode);
4001 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
4002 }
4003 else
4004 {
4005 /* Convert to the proper mode if a promotion has been active. */
4006 if (GET_MODE (valreg) != outmode)
4007 {
4008 int unsignedp = TYPE_UNSIGNED (tfom);
4009
4010 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
4011 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
4012 == GET_MODE (valreg));
4013 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
4014 }
4015
4016 if (value != 0)
4017 emit_move_insn (value, valreg);
4018 else
4019 value = valreg;
4020 }
4021 }
4022
4023 if (ACCUMULATE_OUTGOING_ARGS)
4024 {
4025 #ifdef REG_PARM_STACK_SPACE
4026 if (save_area)
4027 restore_fixed_argument_area (save_area, argblock,
4028 high_to_save, low_to_save);
4029 #endif
4030
4031 /* If we saved any argument areas, restore them. */
4032 for (count = 0; count < nargs; count++)
4033 if (argvec[count].save_area)
4034 {
4035 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
4036 rtx adr = plus_constant (argblock,
4037 argvec[count].locate.offset.constant);
4038 rtx stack_area = gen_rtx_MEM (save_mode,
4039 memory_address (save_mode, adr));
4040
4041 if (save_mode == BLKmode)
4042 emit_block_move (stack_area,
4043 validize_mem (argvec[count].save_area),
4044 GEN_INT (argvec[count].locate.size.constant),
4045 BLOCK_OP_CALL_PARM);
4046 else
4047 emit_move_insn (stack_area, argvec[count].save_area);
4048 }
4049
4050 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4051 stack_usage_map = initial_stack_usage_map;
4052 }
4053
4054 free (stack_usage_map_buf);
4055
4056 return value;
4057
4058 }
4059 \f
4060 /* Output a library call to function FUN (a SYMBOL_REF rtx)
4061 (emitting the queue unless NO_QUEUE is nonzero),
4062 for a value of mode OUTMODE,
4063 with NARGS different arguments, passed as alternating rtx values
4064 and machine_modes to convert them to.
4065
4066 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
4067 `const' calls, LCT_PURE for `pure' calls, or other LCT_ value for
4068 other types of library calls. */
4069
4070 void
4071 emit_library_call (rtx orgfun, enum libcall_type fn_type,
4072 enum machine_mode outmode, int nargs, ...)
4073 {
4074 va_list p;
4075
4076 va_start (p, nargs);
4077 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
4078 va_end (p);
4079 }
4080 \f
4081 /* Like emit_library_call except that an extra argument, VALUE,
4082 comes second and says where to store the result.
4083 (If VALUE is zero, this function chooses a convenient way
4084 to return the value.
4085
4086 This function returns an rtx for where the value is to be found.
4087 If VALUE is nonzero, VALUE is returned. */
4088
4089 rtx
4090 emit_library_call_value (rtx orgfun, rtx value,
4091 enum libcall_type fn_type,
4092 enum machine_mode outmode, int nargs, ...)
4093 {
4094 rtx result;
4095 va_list p;
4096
4097 va_start (p, nargs);
4098 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
4099 nargs, p);
4100 va_end (p);
4101
4102 return result;
4103 }
4104 \f
4105 /* Store a single argument for a function call
4106 into the register or memory area where it must be passed.
4107 *ARG describes the argument value and where to pass it.
4108
4109 ARGBLOCK is the address of the stack-block for all the arguments,
4110 or 0 on a machine where arguments are pushed individually.
4111
4112 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
4113 so must be careful about how the stack is used.
4114
4115 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
4116 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
4117 that we need not worry about saving and restoring the stack.
4118
4119 FNDECL is the declaration of the function we are calling.
4120
4121 Return nonzero if this arg should cause sibcall failure,
4122 zero otherwise. */
4123
4124 static int
4125 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
4126 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
4127 {
4128 tree pval = arg->tree_value;
4129 rtx reg = 0;
4130 int partial = 0;
4131 int used = 0;
4132 int i, lower_bound = 0, upper_bound = 0;
4133 int sibcall_failure = 0;
4134
4135 if (TREE_CODE (pval) == ERROR_MARK)
4136 return 1;
4137
4138 /* Push a new temporary level for any temporaries we make for
4139 this argument. */
4140 push_temp_slots ();
4141
4142 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
4143 {
4144 /* If this is being stored into a pre-allocated, fixed-size, stack area,
4145 save any previous data at that location. */
4146 if (argblock && ! variable_size && arg->stack)
4147 {
4148 #ifdef ARGS_GROW_DOWNWARD
4149 /* stack_slot is negative, but we want to index stack_usage_map
4150 with positive values. */
4151 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4152 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
4153 else
4154 upper_bound = 0;
4155
4156 lower_bound = upper_bound - arg->locate.size.constant;
4157 #else
4158 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4159 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
4160 else
4161 lower_bound = 0;
4162
4163 upper_bound = lower_bound + arg->locate.size.constant;
4164 #endif
4165
4166 i = lower_bound;
4167 /* Don't worry about things in the fixed argument area;
4168 it has already been saved. */
4169 if (i < reg_parm_stack_space)
4170 i = reg_parm_stack_space;
4171 while (i < upper_bound && stack_usage_map[i] == 0)
4172 i++;
4173
4174 if (i < upper_bound)
4175 {
4176 /* We need to make a save area. */
4177 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
4178 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
4179 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
4180 rtx stack_area = gen_rtx_MEM (save_mode, adr);
4181
4182 if (save_mode == BLKmode)
4183 {
4184 tree ot = TREE_TYPE (arg->tree_value);
4185 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
4186 | TYPE_QUAL_CONST));
4187
4188 arg->save_area = assign_temp (nt, 0, 1, 1);
4189 preserve_temp_slots (arg->save_area);
4190 emit_block_move (validize_mem (arg->save_area), stack_area,
4191 GEN_INT (arg->locate.size.constant),
4192 BLOCK_OP_CALL_PARM);
4193 }
4194 else
4195 {
4196 arg->save_area = gen_reg_rtx (save_mode);
4197 emit_move_insn (arg->save_area, stack_area);
4198 }
4199 }
4200 }
4201 }
4202
4203 /* If this isn't going to be placed on both the stack and in registers,
4204 set up the register and number of words. */
4205 if (! arg->pass_on_stack)
4206 {
4207 if (flags & ECF_SIBCALL)
4208 reg = arg->tail_call_reg;
4209 else
4210 reg = arg->reg;
4211 partial = arg->partial;
4212 }
4213
4214 /* Being passed entirely in a register. We shouldn't be called in
4215 this case. */
4216 gcc_assert (reg == 0 || partial != 0);
4217
4218 /* If this arg needs special alignment, don't load the registers
4219 here. */
4220 if (arg->n_aligned_regs != 0)
4221 reg = 0;
4222
4223 /* If this is being passed partially in a register, we can't evaluate
4224 it directly into its stack slot. Otherwise, we can. */
4225 if (arg->value == 0)
4226 {
4227 /* stack_arg_under_construction is nonzero if a function argument is
4228 being evaluated directly into the outgoing argument list and
4229 expand_call must take special action to preserve the argument list
4230 if it is called recursively.
4231
4232 For scalar function arguments stack_usage_map is sufficient to
4233 determine which stack slots must be saved and restored. Scalar
4234 arguments in general have pass_on_stack == 0.
4235
4236 If this argument is initialized by a function which takes the
4237 address of the argument (a C++ constructor or a C function
4238 returning a BLKmode structure), then stack_usage_map is
4239 insufficient and expand_call must push the stack around the
4240 function call. Such arguments have pass_on_stack == 1.
4241
4242 Note that it is always safe to set stack_arg_under_construction,
4243 but this generates suboptimal code if set when not needed. */
4244
4245 if (arg->pass_on_stack)
4246 stack_arg_under_construction++;
4247
4248 arg->value = expand_expr (pval,
4249 (partial
4250 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4251 ? NULL_RTX : arg->stack,
4252 VOIDmode, EXPAND_STACK_PARM);
4253
4254 /* If we are promoting object (or for any other reason) the mode
4255 doesn't agree, convert the mode. */
4256
4257 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4258 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4259 arg->value, arg->unsignedp);
4260
4261 if (arg->pass_on_stack)
4262 stack_arg_under_construction--;
4263 }
4264
4265 /* Check for overlap with already clobbered argument area. */
4266 if ((flags & ECF_SIBCALL)
4267 && MEM_P (arg->value)
4268 && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
4269 arg->locate.size.constant))
4270 sibcall_failure = 1;
4271
4272 /* Don't allow anything left on stack from computation
4273 of argument to alloca. */
4274 if (flags & ECF_MAY_BE_ALLOCA)
4275 do_pending_stack_adjust ();
4276
4277 if (arg->value == arg->stack)
4278 /* If the value is already in the stack slot, we are done. */
4279 ;
4280 else if (arg->mode != BLKmode)
4281 {
4282 int size;
4283 unsigned int parm_align;
4284
4285 /* Argument is a scalar, not entirely passed in registers.
4286 (If part is passed in registers, arg->partial says how much
4287 and emit_push_insn will take care of putting it there.)
4288
4289 Push it, and if its size is less than the
4290 amount of space allocated to it,
4291 also bump stack pointer by the additional space.
4292 Note that in C the default argument promotions
4293 will prevent such mismatches. */
4294
4295 size = GET_MODE_SIZE (arg->mode);
4296 /* Compute how much space the push instruction will push.
4297 On many machines, pushing a byte will advance the stack
4298 pointer by a halfword. */
4299 #ifdef PUSH_ROUNDING
4300 size = PUSH_ROUNDING (size);
4301 #endif
4302 used = size;
4303
4304 /* Compute how much space the argument should get:
4305 round up to a multiple of the alignment for arguments. */
4306 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4307 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4308 / (PARM_BOUNDARY / BITS_PER_UNIT))
4309 * (PARM_BOUNDARY / BITS_PER_UNIT));
4310
4311 /* Compute the alignment of the pushed argument. */
4312 parm_align = arg->locate.boundary;
4313 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4314 {
4315 int pad = used - size;
4316 if (pad)
4317 {
4318 unsigned int pad_align = (pad & -pad) * BITS_PER_UNIT;
4319 parm_align = MIN (parm_align, pad_align);
4320 }
4321 }
4322
4323 /* This isn't already where we want it on the stack, so put it there.
4324 This can either be done with push or copy insns. */
4325 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4326 parm_align, partial, reg, used - size, argblock,
4327 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4328 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4329
4330 /* Unless this is a partially-in-register argument, the argument is now
4331 in the stack. */
4332 if (partial == 0)
4333 arg->value = arg->stack;
4334 }
4335 else
4336 {
4337 /* BLKmode, at least partly to be pushed. */
4338
4339 unsigned int parm_align;
4340 int excess;
4341 rtx size_rtx;
4342
4343 /* Pushing a nonscalar.
4344 If part is passed in registers, PARTIAL says how much
4345 and emit_push_insn will take care of putting it there. */
4346
4347 /* Round its size up to a multiple
4348 of the allocation unit for arguments. */
4349
4350 if (arg->locate.size.var != 0)
4351 {
4352 excess = 0;
4353 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4354 }
4355 else
4356 {
4357 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4358 for BLKmode is careful to avoid it. */
4359 excess = (arg->locate.size.constant
4360 - int_size_in_bytes (TREE_TYPE (pval))
4361 + partial);
4362 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4363 NULL_RTX, TYPE_MODE (sizetype),
4364 EXPAND_NORMAL);
4365 }
4366
4367 parm_align = arg->locate.boundary;
4368
4369 /* When an argument is padded down, the block is aligned to
4370 PARM_BOUNDARY, but the actual argument isn't. */
4371 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4372 {
4373 if (arg->locate.size.var)
4374 parm_align = BITS_PER_UNIT;
4375 else if (excess)
4376 {
4377 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4378 parm_align = MIN (parm_align, excess_align);
4379 }
4380 }
4381
4382 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4383 {
4384 /* emit_push_insn might not work properly if arg->value and
4385 argblock + arg->locate.offset areas overlap. */
4386 rtx x = arg->value;
4387 int i = 0;
4388
4389 if (XEXP (x, 0) == crtl->args.internal_arg_pointer
4390 || (GET_CODE (XEXP (x, 0)) == PLUS
4391 && XEXP (XEXP (x, 0), 0) ==
4392 crtl->args.internal_arg_pointer
4393 && CONST_INT_P (XEXP (XEXP (x, 0), 1))))
4394 {
4395 if (XEXP (x, 0) != crtl->args.internal_arg_pointer)
4396 i = INTVAL (XEXP (XEXP (x, 0), 1));
4397
4398 /* expand_call should ensure this. */
4399 gcc_assert (!arg->locate.offset.var
4400 && arg->locate.size.var == 0
4401 && CONST_INT_P (size_rtx));
4402
4403 if (arg->locate.offset.constant > i)
4404 {
4405 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4406 sibcall_failure = 1;
4407 }
4408 else if (arg->locate.offset.constant < i)
4409 {
4410 /* Use arg->locate.size.constant instead of size_rtx
4411 because we only care about the part of the argument
4412 on the stack. */
4413 if (i < (arg->locate.offset.constant
4414 + arg->locate.size.constant))
4415 sibcall_failure = 1;
4416 }
4417 else
4418 {
4419 /* Even though they appear to be at the same location,
4420 if part of the outgoing argument is in registers,
4421 they aren't really at the same location. Check for
4422 this by making sure that the incoming size is the
4423 same as the outgoing size. */
4424 if (arg->locate.size.constant != INTVAL (size_rtx))
4425 sibcall_failure = 1;
4426 }
4427 }
4428 }
4429
4430 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4431 parm_align, partial, reg, excess, argblock,
4432 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4433 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4434
4435 /* Unless this is a partially-in-register argument, the argument is now
4436 in the stack.
4437
4438 ??? Unlike the case above, in which we want the actual
4439 address of the data, so that we can load it directly into a
4440 register, here we want the address of the stack slot, so that
4441 it's properly aligned for word-by-word copying or something
4442 like that. It's not clear that this is always correct. */
4443 if (partial == 0)
4444 arg->value = arg->stack_slot;
4445 }
4446
4447 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
4448 {
4449 tree type = TREE_TYPE (arg->tree_value);
4450 arg->parallel_value
4451 = emit_group_load_into_temps (arg->reg, arg->value, type,
4452 int_size_in_bytes (type));
4453 }
4454
4455 /* Mark all slots this store used. */
4456 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4457 && argblock && ! variable_size && arg->stack)
4458 for (i = lower_bound; i < upper_bound; i++)
4459 stack_usage_map[i] = 1;
4460
4461 /* Once we have pushed something, pops can't safely
4462 be deferred during the rest of the arguments. */
4463 NO_DEFER_POP;
4464
4465 /* Free any temporary slots made in processing this argument. Show
4466 that we might have taken the address of something and pushed that
4467 as an operand. */
4468 preserve_temp_slots (NULL_RTX);
4469 free_temp_slots ();
4470 pop_temp_slots ();
4471
4472 return sibcall_failure;
4473 }
4474
4475 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4476
4477 bool
4478 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4479 const_tree type)
4480 {
4481 if (!type)
4482 return false;
4483
4484 /* If the type has variable size... */
4485 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4486 return true;
4487
4488 /* If the type is marked as addressable (it is required
4489 to be constructed into the stack)... */
4490 if (TREE_ADDRESSABLE (type))
4491 return true;
4492
4493 return false;
4494 }
4495
4496 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4497 takes trailing padding of a structure into account. */
4498 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4499
4500 bool
4501 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, const_tree type)
4502 {
4503 if (!type)
4504 return false;
4505
4506 /* If the type has variable size... */
4507 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4508 return true;
4509
4510 /* If the type is marked as addressable (it is required
4511 to be constructed into the stack)... */
4512 if (TREE_ADDRESSABLE (type))
4513 return true;
4514
4515 /* If the padding and mode of the type is such that a copy into
4516 a register would put it into the wrong part of the register. */
4517 if (mode == BLKmode
4518 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4519 && (FUNCTION_ARG_PADDING (mode, type)
4520 == (BYTES_BIG_ENDIAN ? upward : downward)))
4521 return true;
4522
4523 return false;
4524 }