re PR rtl-optimization/44194 (struct returned by value generates useless stores)
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "flags.h"
30 #include "expr.h"
31 #include "optabs.h"
32 #include "libfuncs.h"
33 #include "function.h"
34 #include "regs.h"
35 #include "diagnostic-core.h"
36 #include "output.h"
37 #include "tm_p.h"
38 #include "timevar.h"
39 #include "sbitmap.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "cgraph.h"
43 #include "except.h"
44 #include "dbgcnt.h"
45 #include "tree-flow.h"
46
47 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
48 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
49
50 /* Data structure and subroutines used within expand_call. */
51
52 struct arg_data
53 {
54 /* Tree node for this argument. */
55 tree tree_value;
56 /* Mode for value; TYPE_MODE unless promoted. */
57 enum machine_mode mode;
58 /* Current RTL value for argument, or 0 if it isn't precomputed. */
59 rtx value;
60 /* Initially-compute RTL value for argument; only for const functions. */
61 rtx initial_value;
62 /* Register to pass this argument in, 0 if passed on stack, or an
63 PARALLEL if the arg is to be copied into multiple non-contiguous
64 registers. */
65 rtx reg;
66 /* Register to pass this argument in when generating tail call sequence.
67 This is not the same register as for normal calls on machines with
68 register windows. */
69 rtx tail_call_reg;
70 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
71 form for emit_group_move. */
72 rtx parallel_value;
73 /* If REG was promoted from the actual mode of the argument expression,
74 indicates whether the promotion is sign- or zero-extended. */
75 int unsignedp;
76 /* Number of bytes to put in registers. 0 means put the whole arg
77 in registers. Also 0 if not passed in registers. */
78 int partial;
79 /* Nonzero if argument must be passed on stack.
80 Note that some arguments may be passed on the stack
81 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
82 pass_on_stack identifies arguments that *cannot* go in registers. */
83 int pass_on_stack;
84 /* Some fields packaged up for locate_and_pad_parm. */
85 struct locate_and_pad_arg_data locate;
86 /* Location on the stack at which parameter should be stored. The store
87 has already been done if STACK == VALUE. */
88 rtx stack;
89 /* Location on the stack of the start of this argument slot. This can
90 differ from STACK if this arg pads downward. This location is known
91 to be aligned to TARGET_FUNCTION_ARG_BOUNDARY. */
92 rtx stack_slot;
93 /* Place that this stack area has been saved, if needed. */
94 rtx save_area;
95 /* If an argument's alignment does not permit direct copying into registers,
96 copy in smaller-sized pieces into pseudos. These are stored in a
97 block pointed to by this field. The next field says how many
98 word-sized pseudos we made. */
99 rtx *aligned_regs;
100 int n_aligned_regs;
101 };
102
103 /* A vector of one char per byte of stack space. A byte if nonzero if
104 the corresponding stack location has been used.
105 This vector is used to prevent a function call within an argument from
106 clobbering any stack already set up. */
107 static char *stack_usage_map;
108
109 /* Size of STACK_USAGE_MAP. */
110 static int highest_outgoing_arg_in_use;
111
112 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
113 stack location's tail call argument has been already stored into the stack.
114 This bitmap is used to prevent sibling call optimization if function tries
115 to use parent's incoming argument slots when they have been already
116 overwritten with tail call arguments. */
117 static sbitmap stored_args_map;
118
119 /* stack_arg_under_construction is nonzero when an argument may be
120 initialized with a constructor call (including a C function that
121 returns a BLKmode struct) and expand_call must take special action
122 to make sure the object being constructed does not overlap the
123 argument list for the constructor call. */
124 static int stack_arg_under_construction;
125
126 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
127 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
128 cumulative_args_t);
129 static void precompute_register_parameters (int, struct arg_data *, int *);
130 static int store_one_arg (struct arg_data *, rtx, int, int, int);
131 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
132 static int finalize_must_preallocate (int, int, struct arg_data *,
133 struct args_size *);
134 static void precompute_arguments (int, struct arg_data *);
135 static int compute_argument_block_size (int, struct args_size *, tree, tree, int);
136 static void initialize_argument_information (int, struct arg_data *,
137 struct args_size *, int,
138 tree, tree,
139 tree, tree, cumulative_args_t, int,
140 rtx *, int *, int *, int *,
141 bool *, bool);
142 static void compute_argument_addresses (struct arg_data *, rtx, int);
143 static rtx rtx_for_function_call (tree, tree);
144 static void load_register_parameters (struct arg_data *, int, rtx *, int,
145 int, int *);
146 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
147 enum machine_mode, int, va_list);
148 static int special_function_p (const_tree, int);
149 static int check_sibcall_argument_overlap_1 (rtx);
150 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
151
152 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
153 unsigned int);
154 static tree split_complex_types (tree);
155
156 #ifdef REG_PARM_STACK_SPACE
157 static rtx save_fixed_argument_area (int, rtx, int *, int *);
158 static void restore_fixed_argument_area (rtx, rtx, int, int);
159 #endif
160 \f
161 /* Force FUNEXP into a form suitable for the address of a CALL,
162 and return that as an rtx. Also load the static chain register
163 if FNDECL is a nested function.
164
165 CALL_FUSAGE points to a variable holding the prospective
166 CALL_INSN_FUNCTION_USAGE information. */
167
168 rtx
169 prepare_call_address (tree fndecl, rtx funexp, rtx static_chain_value,
170 rtx *call_fusage, int reg_parm_seen, int sibcallp)
171 {
172 /* Make a valid memory address and copy constants through pseudo-regs,
173 but not for a constant address if -fno-function-cse. */
174 if (GET_CODE (funexp) != SYMBOL_REF)
175 /* If we are using registers for parameters, force the
176 function address into a register now. */
177 funexp = ((reg_parm_seen
178 && targetm.small_register_classes_for_mode_p (FUNCTION_MODE))
179 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
180 : memory_address (FUNCTION_MODE, funexp));
181 else if (! sibcallp)
182 {
183 #ifndef NO_FUNCTION_CSE
184 if (optimize && ! flag_no_function_cse)
185 funexp = force_reg (Pmode, funexp);
186 #endif
187 }
188
189 if (static_chain_value != 0)
190 {
191 rtx chain;
192
193 gcc_assert (fndecl);
194 chain = targetm.calls.static_chain (fndecl, false);
195 static_chain_value = convert_memory_address (Pmode, static_chain_value);
196
197 emit_move_insn (chain, static_chain_value);
198 if (REG_P (chain))
199 use_reg (call_fusage, chain);
200 }
201
202 return funexp;
203 }
204
205 /* Generate instructions to call function FUNEXP,
206 and optionally pop the results.
207 The CALL_INSN is the first insn generated.
208
209 FNDECL is the declaration node of the function. This is given to the
210 hook TARGET_RETURN_POPS_ARGS to determine whether this function pops
211 its own args.
212
213 FUNTYPE is the data type of the function. This is given to the hook
214 TARGET_RETURN_POPS_ARGS to determine whether this function pops its
215 own args. We used to allow an identifier for library functions, but
216 that doesn't work when the return type is an aggregate type and the
217 calling convention says that the pointer to this aggregate is to be
218 popped by the callee.
219
220 STACK_SIZE is the number of bytes of arguments on the stack,
221 ROUNDED_STACK_SIZE is that number rounded up to
222 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
223 both to put into the call insn and to generate explicit popping
224 code if necessary.
225
226 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
227 It is zero if this call doesn't want a structure value.
228
229 NEXT_ARG_REG is the rtx that results from executing
230 targetm.calls.function_arg (&args_so_far, VOIDmode, void_type_node, true)
231 just after all the args have had their registers assigned.
232 This could be whatever you like, but normally it is the first
233 arg-register beyond those used for args in this call,
234 or 0 if all the arg-registers are used in this call.
235 It is passed on to `gen_call' so you can put this info in the call insn.
236
237 VALREG is a hard register in which a value is returned,
238 or 0 if the call does not return a value.
239
240 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
241 the args to this call were processed.
242 We restore `inhibit_defer_pop' to that value.
243
244 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
245 denote registers used by the called function. */
246
247 static void
248 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
249 tree funtype ATTRIBUTE_UNUSED,
250 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
251 HOST_WIDE_INT rounded_stack_size,
252 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
253 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
254 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
255 cumulative_args_t args_so_far ATTRIBUTE_UNUSED)
256 {
257 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
258 rtx call_insn, call, funmem;
259 int already_popped = 0;
260 HOST_WIDE_INT n_popped
261 = targetm.calls.return_pops_args (fndecl, funtype, stack_size);
262
263 #ifdef CALL_POPS_ARGS
264 n_popped += CALL_POPS_ARGS (*get_cumulative_args (args_so_far));
265 #endif
266
267 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
268 and we don't want to load it into a register as an optimization,
269 because prepare_call_address already did it if it should be done. */
270 if (GET_CODE (funexp) != SYMBOL_REF)
271 funexp = memory_address (FUNCTION_MODE, funexp);
272
273 funmem = gen_rtx_MEM (FUNCTION_MODE, funexp);
274 if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL)
275 {
276 tree t = fndecl;
277
278 /* Although a built-in FUNCTION_DECL and its non-__builtin
279 counterpart compare equal and get a shared mem_attrs, they
280 produce different dump output in compare-debug compilations,
281 if an entry gets garbage collected in one compilation, then
282 adds a different (but equivalent) entry, while the other
283 doesn't run the garbage collector at the same spot and then
284 shares the mem_attr with the equivalent entry. */
285 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL)
286 {
287 tree t2 = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
288 if (t2)
289 t = t2;
290 }
291
292 set_mem_expr (funmem, t);
293 }
294 else if (fntree)
295 set_mem_expr (funmem, build_simple_mem_ref (CALL_EXPR_FN (fntree)));
296
297 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
298 if ((ecf_flags & ECF_SIBCALL)
299 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
300 && (n_popped > 0 || stack_size == 0))
301 {
302 rtx n_pop = GEN_INT (n_popped);
303 rtx pat;
304
305 /* If this subroutine pops its own args, record that in the call insn
306 if possible, for the sake of frame pointer elimination. */
307
308 if (valreg)
309 pat = GEN_SIBCALL_VALUE_POP (valreg, funmem, rounded_stack_size_rtx,
310 next_arg_reg, n_pop);
311 else
312 pat = GEN_SIBCALL_POP (funmem, rounded_stack_size_rtx, next_arg_reg,
313 n_pop);
314
315 emit_call_insn (pat);
316 already_popped = 1;
317 }
318 else
319 #endif
320
321 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
322 /* If the target has "call" or "call_value" insns, then prefer them
323 if no arguments are actually popped. If the target does not have
324 "call" or "call_value" insns, then we must use the popping versions
325 even if the call has no arguments to pop. */
326 #if defined (HAVE_call) && defined (HAVE_call_value)
327 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
328 && n_popped > 0)
329 #else
330 if (HAVE_call_pop && HAVE_call_value_pop)
331 #endif
332 {
333 rtx n_pop = GEN_INT (n_popped);
334 rtx pat;
335
336 /* If this subroutine pops its own args, record that in the call insn
337 if possible, for the sake of frame pointer elimination. */
338
339 if (valreg)
340 pat = GEN_CALL_VALUE_POP (valreg, funmem, rounded_stack_size_rtx,
341 next_arg_reg, n_pop);
342 else
343 pat = GEN_CALL_POP (funmem, rounded_stack_size_rtx, next_arg_reg,
344 n_pop);
345
346 emit_call_insn (pat);
347 already_popped = 1;
348 }
349 else
350 #endif
351
352 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
353 if ((ecf_flags & ECF_SIBCALL)
354 && HAVE_sibcall && HAVE_sibcall_value)
355 {
356 if (valreg)
357 emit_call_insn (GEN_SIBCALL_VALUE (valreg, funmem,
358 rounded_stack_size_rtx,
359 next_arg_reg, NULL_RTX));
360 else
361 emit_call_insn (GEN_SIBCALL (funmem, rounded_stack_size_rtx,
362 next_arg_reg,
363 GEN_INT (struct_value_size)));
364 }
365 else
366 #endif
367
368 #if defined (HAVE_call) && defined (HAVE_call_value)
369 if (HAVE_call && HAVE_call_value)
370 {
371 if (valreg)
372 emit_call_insn (GEN_CALL_VALUE (valreg, funmem, rounded_stack_size_rtx,
373 next_arg_reg, NULL_RTX));
374 else
375 emit_call_insn (GEN_CALL (funmem, rounded_stack_size_rtx, next_arg_reg,
376 GEN_INT (struct_value_size)));
377 }
378 else
379 #endif
380 gcc_unreachable ();
381
382 /* Find the call we just emitted. */
383 call_insn = last_call_insn ();
384
385 /* Some target create a fresh MEM instead of reusing the one provided
386 above. Set its MEM_EXPR. */
387 call = PATTERN (call_insn);
388 if (GET_CODE (call) == PARALLEL)
389 call = XVECEXP (call, 0, 0);
390 if (GET_CODE (call) == SET)
391 call = SET_SRC (call);
392 if (GET_CODE (call) == CALL
393 && MEM_P (XEXP (call, 0))
394 && MEM_EXPR (XEXP (call, 0)) == NULL_TREE
395 && MEM_EXPR (funmem) != NULL_TREE)
396 set_mem_expr (XEXP (call, 0), MEM_EXPR (funmem));
397
398 /* Put the register usage information there. */
399 add_function_usage_to (call_insn, call_fusage);
400
401 /* If this is a const call, then set the insn's unchanging bit. */
402 if (ecf_flags & ECF_CONST)
403 RTL_CONST_CALL_P (call_insn) = 1;
404
405 /* If this is a pure call, then set the insn's unchanging bit. */
406 if (ecf_flags & ECF_PURE)
407 RTL_PURE_CALL_P (call_insn) = 1;
408
409 /* If this is a const call, then set the insn's unchanging bit. */
410 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
411 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
412
413 /* Create a nothrow REG_EH_REGION note, if needed. */
414 make_reg_eh_region_note (call_insn, ecf_flags, 0);
415
416 if (ecf_flags & ECF_NORETURN)
417 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
418
419 if (ecf_flags & ECF_RETURNS_TWICE)
420 {
421 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
422 cfun->calls_setjmp = 1;
423 }
424
425 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
426
427 /* Restore this now, so that we do defer pops for this call's args
428 if the context of the call as a whole permits. */
429 inhibit_defer_pop = old_inhibit_defer_pop;
430
431 if (n_popped > 0)
432 {
433 if (!already_popped)
434 CALL_INSN_FUNCTION_USAGE (call_insn)
435 = gen_rtx_EXPR_LIST (VOIDmode,
436 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
437 CALL_INSN_FUNCTION_USAGE (call_insn));
438 rounded_stack_size -= n_popped;
439 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
440 stack_pointer_delta -= n_popped;
441
442 add_reg_note (call_insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
443
444 /* If popup is needed, stack realign must use DRAP */
445 if (SUPPORTS_STACK_ALIGNMENT)
446 crtl->need_drap = true;
447 }
448 /* For noreturn calls when not accumulating outgoing args force
449 REG_ARGS_SIZE note to prevent crossjumping of calls with different
450 args sizes. */
451 else if (!ACCUMULATE_OUTGOING_ARGS && (ecf_flags & ECF_NORETURN) != 0)
452 add_reg_note (call_insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
453
454 if (!ACCUMULATE_OUTGOING_ARGS)
455 {
456 /* If returning from the subroutine does not automatically pop the args,
457 we need an instruction to pop them sooner or later.
458 Perhaps do it now; perhaps just record how much space to pop later.
459
460 If returning from the subroutine does pop the args, indicate that the
461 stack pointer will be changed. */
462
463 if (rounded_stack_size != 0)
464 {
465 if (ecf_flags & ECF_NORETURN)
466 /* Just pretend we did the pop. */
467 stack_pointer_delta -= rounded_stack_size;
468 else if (flag_defer_pop && inhibit_defer_pop == 0
469 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
470 pending_stack_adjust += rounded_stack_size;
471 else
472 adjust_stack (rounded_stack_size_rtx);
473 }
474 }
475 /* When we accumulate outgoing args, we must avoid any stack manipulations.
476 Restore the stack pointer to its original value now. Usually
477 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
478 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
479 popping variants of functions exist as well.
480
481 ??? We may optimize similar to defer_pop above, but it is
482 probably not worthwhile.
483
484 ??? It will be worthwhile to enable combine_stack_adjustments even for
485 such machines. */
486 else if (n_popped)
487 anti_adjust_stack (GEN_INT (n_popped));
488 }
489
490 /* Determine if the function identified by NAME and FNDECL is one with
491 special properties we wish to know about.
492
493 For example, if the function might return more than one time (setjmp), then
494 set RETURNS_TWICE to a nonzero value.
495
496 Similarly set NORETURN if the function is in the longjmp family.
497
498 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
499 space from the stack such as alloca. */
500
501 static int
502 special_function_p (const_tree fndecl, int flags)
503 {
504 if (fndecl && DECL_NAME (fndecl)
505 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
506 /* Exclude functions not at the file scope, or not `extern',
507 since they are not the magic functions we would otherwise
508 think they are.
509 FIXME: this should be handled with attributes, not with this
510 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
511 because you can declare fork() inside a function if you
512 wish. */
513 && (DECL_CONTEXT (fndecl) == NULL_TREE
514 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
515 && TREE_PUBLIC (fndecl))
516 {
517 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
518 const char *tname = name;
519
520 /* We assume that alloca will always be called by name. It
521 makes no sense to pass it as a pointer-to-function to
522 anything that does not understand its behavior. */
523 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
524 && name[0] == 'a'
525 && ! strcmp (name, "alloca"))
526 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
527 && name[0] == '_'
528 && ! strcmp (name, "__builtin_alloca"))))
529 flags |= ECF_MAY_BE_ALLOCA;
530
531 /* Disregard prefix _, __, __x or __builtin_. */
532 if (name[0] == '_')
533 {
534 if (name[1] == '_'
535 && name[2] == 'b'
536 && !strncmp (name + 3, "uiltin_", 7))
537 tname += 10;
538 else if (name[1] == '_' && name[2] == 'x')
539 tname += 3;
540 else if (name[1] == '_')
541 tname += 2;
542 else
543 tname += 1;
544 }
545
546 if (tname[0] == 's')
547 {
548 if ((tname[1] == 'e'
549 && (! strcmp (tname, "setjmp")
550 || ! strcmp (tname, "setjmp_syscall")))
551 || (tname[1] == 'i'
552 && ! strcmp (tname, "sigsetjmp"))
553 || (tname[1] == 'a'
554 && ! strcmp (tname, "savectx")))
555 flags |= ECF_RETURNS_TWICE;
556
557 if (tname[1] == 'i'
558 && ! strcmp (tname, "siglongjmp"))
559 flags |= ECF_NORETURN;
560 }
561 else if ((tname[0] == 'q' && tname[1] == 's'
562 && ! strcmp (tname, "qsetjmp"))
563 || (tname[0] == 'v' && tname[1] == 'f'
564 && ! strcmp (tname, "vfork"))
565 || (tname[0] == 'g' && tname[1] == 'e'
566 && !strcmp (tname, "getcontext")))
567 flags |= ECF_RETURNS_TWICE;
568
569 else if (tname[0] == 'l' && tname[1] == 'o'
570 && ! strcmp (tname, "longjmp"))
571 flags |= ECF_NORETURN;
572 }
573
574 return flags;
575 }
576
577 /* Similar to special_function_p; return a set of ERF_ flags for the
578 function FNDECL. */
579 static int
580 decl_return_flags (tree fndecl)
581 {
582 tree attr;
583 tree type = TREE_TYPE (fndecl);
584 if (!type)
585 return 0;
586
587 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
588 if (!attr)
589 return 0;
590
591 attr = TREE_VALUE (TREE_VALUE (attr));
592 if (!attr || TREE_STRING_LENGTH (attr) < 1)
593 return 0;
594
595 switch (TREE_STRING_POINTER (attr)[0])
596 {
597 case '1':
598 case '2':
599 case '3':
600 case '4':
601 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
602
603 case 'm':
604 return ERF_NOALIAS;
605
606 case '.':
607 default:
608 return 0;
609 }
610 }
611
612 /* Return nonzero when FNDECL represents a call to setjmp. */
613
614 int
615 setjmp_call_p (const_tree fndecl)
616 {
617 if (DECL_IS_RETURNS_TWICE (fndecl))
618 return ECF_RETURNS_TWICE;
619 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
620 }
621
622
623 /* Return true if STMT is an alloca call. */
624
625 bool
626 gimple_alloca_call_p (const_gimple stmt)
627 {
628 tree fndecl;
629
630 if (!is_gimple_call (stmt))
631 return false;
632
633 fndecl = gimple_call_fndecl (stmt);
634 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
635 return true;
636
637 return false;
638 }
639
640 /* Return true when exp contains alloca call. */
641
642 bool
643 alloca_call_p (const_tree exp)
644 {
645 if (TREE_CODE (exp) == CALL_EXPR
646 && TREE_CODE (CALL_EXPR_FN (exp)) == ADDR_EXPR
647 && (TREE_CODE (TREE_OPERAND (CALL_EXPR_FN (exp), 0)) == FUNCTION_DECL)
648 && (special_function_p (TREE_OPERAND (CALL_EXPR_FN (exp), 0), 0)
649 & ECF_MAY_BE_ALLOCA))
650 return true;
651 return false;
652 }
653
654 /* Return TRUE if FNDECL is either a TM builtin or a TM cloned
655 function. Return FALSE otherwise. */
656
657 static bool
658 is_tm_builtin (const_tree fndecl)
659 {
660 if (fndecl == NULL)
661 return false;
662
663 if (decl_is_tm_clone (fndecl))
664 return true;
665
666 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
667 {
668 switch (DECL_FUNCTION_CODE (fndecl))
669 {
670 case BUILT_IN_TM_COMMIT:
671 case BUILT_IN_TM_COMMIT_EH:
672 case BUILT_IN_TM_ABORT:
673 case BUILT_IN_TM_IRREVOCABLE:
674 case BUILT_IN_TM_GETTMCLONE_IRR:
675 case BUILT_IN_TM_MEMCPY:
676 case BUILT_IN_TM_MEMMOVE:
677 case BUILT_IN_TM_MEMSET:
678 CASE_BUILT_IN_TM_STORE (1):
679 CASE_BUILT_IN_TM_STORE (2):
680 CASE_BUILT_IN_TM_STORE (4):
681 CASE_BUILT_IN_TM_STORE (8):
682 CASE_BUILT_IN_TM_STORE (FLOAT):
683 CASE_BUILT_IN_TM_STORE (DOUBLE):
684 CASE_BUILT_IN_TM_STORE (LDOUBLE):
685 CASE_BUILT_IN_TM_STORE (M64):
686 CASE_BUILT_IN_TM_STORE (M128):
687 CASE_BUILT_IN_TM_STORE (M256):
688 CASE_BUILT_IN_TM_LOAD (1):
689 CASE_BUILT_IN_TM_LOAD (2):
690 CASE_BUILT_IN_TM_LOAD (4):
691 CASE_BUILT_IN_TM_LOAD (8):
692 CASE_BUILT_IN_TM_LOAD (FLOAT):
693 CASE_BUILT_IN_TM_LOAD (DOUBLE):
694 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
695 CASE_BUILT_IN_TM_LOAD (M64):
696 CASE_BUILT_IN_TM_LOAD (M128):
697 CASE_BUILT_IN_TM_LOAD (M256):
698 case BUILT_IN_TM_LOG:
699 case BUILT_IN_TM_LOG_1:
700 case BUILT_IN_TM_LOG_2:
701 case BUILT_IN_TM_LOG_4:
702 case BUILT_IN_TM_LOG_8:
703 case BUILT_IN_TM_LOG_FLOAT:
704 case BUILT_IN_TM_LOG_DOUBLE:
705 case BUILT_IN_TM_LOG_LDOUBLE:
706 case BUILT_IN_TM_LOG_M64:
707 case BUILT_IN_TM_LOG_M128:
708 case BUILT_IN_TM_LOG_M256:
709 return true;
710 default:
711 break;
712 }
713 }
714 return false;
715 }
716
717 /* Detect flags (function attributes) from the function decl or type node. */
718
719 int
720 flags_from_decl_or_type (const_tree exp)
721 {
722 int flags = 0;
723
724 if (DECL_P (exp))
725 {
726 /* The function exp may have the `malloc' attribute. */
727 if (DECL_IS_MALLOC (exp))
728 flags |= ECF_MALLOC;
729
730 /* The function exp may have the `returns_twice' attribute. */
731 if (DECL_IS_RETURNS_TWICE (exp))
732 flags |= ECF_RETURNS_TWICE;
733
734 /* Process the pure and const attributes. */
735 if (TREE_READONLY (exp))
736 flags |= ECF_CONST;
737 if (DECL_PURE_P (exp))
738 flags |= ECF_PURE;
739 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
740 flags |= ECF_LOOPING_CONST_OR_PURE;
741
742 if (DECL_IS_NOVOPS (exp))
743 flags |= ECF_NOVOPS;
744 if (lookup_attribute ("leaf", DECL_ATTRIBUTES (exp)))
745 flags |= ECF_LEAF;
746
747 if (TREE_NOTHROW (exp))
748 flags |= ECF_NOTHROW;
749
750 if (flag_tm)
751 {
752 if (is_tm_builtin (exp))
753 flags |= ECF_TM_BUILTIN;
754 else if ((flags & (ECF_CONST|ECF_NOVOPS)) != 0
755 || lookup_attribute ("transaction_pure",
756 TYPE_ATTRIBUTES (TREE_TYPE (exp))))
757 flags |= ECF_TM_PURE;
758 }
759
760 flags = special_function_p (exp, flags);
761 }
762 else if (TYPE_P (exp))
763 {
764 if (TYPE_READONLY (exp))
765 flags |= ECF_CONST;
766
767 if (flag_tm
768 && ((flags & ECF_CONST) != 0
769 || lookup_attribute ("transaction_pure", TYPE_ATTRIBUTES (exp))))
770 flags |= ECF_TM_PURE;
771 }
772
773 if (TREE_THIS_VOLATILE (exp))
774 {
775 flags |= ECF_NORETURN;
776 if (flags & (ECF_CONST|ECF_PURE))
777 flags |= ECF_LOOPING_CONST_OR_PURE;
778 }
779
780 return flags;
781 }
782
783 /* Detect flags from a CALL_EXPR. */
784
785 int
786 call_expr_flags (const_tree t)
787 {
788 int flags;
789 tree decl = get_callee_fndecl (t);
790
791 if (decl)
792 flags = flags_from_decl_or_type (decl);
793 else
794 {
795 t = TREE_TYPE (CALL_EXPR_FN (t));
796 if (t && TREE_CODE (t) == POINTER_TYPE)
797 flags = flags_from_decl_or_type (TREE_TYPE (t));
798 else
799 flags = 0;
800 }
801
802 return flags;
803 }
804
805 /* Precompute all register parameters as described by ARGS, storing values
806 into fields within the ARGS array.
807
808 NUM_ACTUALS indicates the total number elements in the ARGS array.
809
810 Set REG_PARM_SEEN if we encounter a register parameter. */
811
812 static void
813 precompute_register_parameters (int num_actuals, struct arg_data *args,
814 int *reg_parm_seen)
815 {
816 int i;
817
818 *reg_parm_seen = 0;
819
820 for (i = 0; i < num_actuals; i++)
821 if (args[i].reg != 0 && ! args[i].pass_on_stack)
822 {
823 *reg_parm_seen = 1;
824
825 if (args[i].value == 0)
826 {
827 push_temp_slots ();
828 args[i].value = expand_normal (args[i].tree_value);
829 preserve_temp_slots (args[i].value);
830 pop_temp_slots ();
831 }
832
833 /* If we are to promote the function arg to a wider mode,
834 do it now. */
835
836 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
837 args[i].value
838 = convert_modes (args[i].mode,
839 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
840 args[i].value, args[i].unsignedp);
841
842 /* If the value is a non-legitimate constant, force it into a
843 pseudo now. TLS symbols sometimes need a call to resolve. */
844 if (CONSTANT_P (args[i].value)
845 && !targetm.legitimate_constant_p (args[i].mode, args[i].value))
846 args[i].value = force_reg (args[i].mode, args[i].value);
847
848 /* If we're going to have to load the value by parts, pull the
849 parts into pseudos. The part extraction process can involve
850 non-trivial computation. */
851 if (GET_CODE (args[i].reg) == PARALLEL)
852 {
853 tree type = TREE_TYPE (args[i].tree_value);
854 args[i].parallel_value
855 = emit_group_load_into_temps (args[i].reg, args[i].value,
856 type, int_size_in_bytes (type));
857 }
858
859 /* If the value is expensive, and we are inside an appropriately
860 short loop, put the value into a pseudo and then put the pseudo
861 into the hard reg.
862
863 For small register classes, also do this if this call uses
864 register parameters. This is to avoid reload conflicts while
865 loading the parameters registers. */
866
867 else if ((! (REG_P (args[i].value)
868 || (GET_CODE (args[i].value) == SUBREG
869 && REG_P (SUBREG_REG (args[i].value)))))
870 && args[i].mode != BLKmode
871 && set_src_cost (args[i].value, optimize_insn_for_speed_p ())
872 > COSTS_N_INSNS (1)
873 && ((*reg_parm_seen
874 && targetm.small_register_classes_for_mode_p (args[i].mode))
875 || optimize))
876 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
877 }
878 }
879
880 #ifdef REG_PARM_STACK_SPACE
881
882 /* The argument list is the property of the called routine and it
883 may clobber it. If the fixed area has been used for previous
884 parameters, we must save and restore it. */
885
886 static rtx
887 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
888 {
889 int low;
890 int high;
891
892 /* Compute the boundary of the area that needs to be saved, if any. */
893 high = reg_parm_stack_space;
894 #ifdef ARGS_GROW_DOWNWARD
895 high += 1;
896 #endif
897 if (high > highest_outgoing_arg_in_use)
898 high = highest_outgoing_arg_in_use;
899
900 for (low = 0; low < high; low++)
901 if (stack_usage_map[low] != 0)
902 {
903 int num_to_save;
904 enum machine_mode save_mode;
905 int delta;
906 rtx addr;
907 rtx stack_area;
908 rtx save_area;
909
910 while (stack_usage_map[--high] == 0)
911 ;
912
913 *low_to_save = low;
914 *high_to_save = high;
915
916 num_to_save = high - low + 1;
917 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
918
919 /* If we don't have the required alignment, must do this
920 in BLKmode. */
921 if ((low & (MIN (GET_MODE_SIZE (save_mode),
922 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
923 save_mode = BLKmode;
924
925 #ifdef ARGS_GROW_DOWNWARD
926 delta = -high;
927 #else
928 delta = low;
929 #endif
930 addr = plus_constant (Pmode, argblock, delta);
931 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
932
933 set_mem_align (stack_area, PARM_BOUNDARY);
934 if (save_mode == BLKmode)
935 {
936 save_area = assign_stack_temp (BLKmode, num_to_save);
937 emit_block_move (validize_mem (save_area), stack_area,
938 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
939 }
940 else
941 {
942 save_area = gen_reg_rtx (save_mode);
943 emit_move_insn (save_area, stack_area);
944 }
945
946 return save_area;
947 }
948
949 return NULL_RTX;
950 }
951
952 static void
953 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
954 {
955 enum machine_mode save_mode = GET_MODE (save_area);
956 int delta;
957 rtx addr, stack_area;
958
959 #ifdef ARGS_GROW_DOWNWARD
960 delta = -high_to_save;
961 #else
962 delta = low_to_save;
963 #endif
964 addr = plus_constant (Pmode, argblock, delta);
965 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
966 set_mem_align (stack_area, PARM_BOUNDARY);
967
968 if (save_mode != BLKmode)
969 emit_move_insn (stack_area, save_area);
970 else
971 emit_block_move (stack_area, validize_mem (save_area),
972 GEN_INT (high_to_save - low_to_save + 1),
973 BLOCK_OP_CALL_PARM);
974 }
975 #endif /* REG_PARM_STACK_SPACE */
976
977 /* If any elements in ARGS refer to parameters that are to be passed in
978 registers, but not in memory, and whose alignment does not permit a
979 direct copy into registers. Copy the values into a group of pseudos
980 which we will later copy into the appropriate hard registers.
981
982 Pseudos for each unaligned argument will be stored into the array
983 args[argnum].aligned_regs. The caller is responsible for deallocating
984 the aligned_regs array if it is nonzero. */
985
986 static void
987 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
988 {
989 int i, j;
990
991 for (i = 0; i < num_actuals; i++)
992 if (args[i].reg != 0 && ! args[i].pass_on_stack
993 && args[i].mode == BLKmode
994 && MEM_P (args[i].value)
995 && (MEM_ALIGN (args[i].value)
996 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
997 {
998 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
999 int endian_correction = 0;
1000
1001 if (args[i].partial)
1002 {
1003 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
1004 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
1005 }
1006 else
1007 {
1008 args[i].n_aligned_regs
1009 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1010 }
1011
1012 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
1013
1014 /* Structures smaller than a word are normally aligned to the
1015 least significant byte. On a BYTES_BIG_ENDIAN machine,
1016 this means we must skip the empty high order bytes when
1017 calculating the bit offset. */
1018 if (bytes < UNITS_PER_WORD
1019 #ifdef BLOCK_REG_PADDING
1020 && (BLOCK_REG_PADDING (args[i].mode,
1021 TREE_TYPE (args[i].tree_value), 1)
1022 == downward)
1023 #else
1024 && BYTES_BIG_ENDIAN
1025 #endif
1026 )
1027 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
1028
1029 for (j = 0; j < args[i].n_aligned_regs; j++)
1030 {
1031 rtx reg = gen_reg_rtx (word_mode);
1032 rtx word = operand_subword_force (args[i].value, j, BLKmode);
1033 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
1034
1035 args[i].aligned_regs[j] = reg;
1036 word = extract_bit_field (word, bitsize, 0, 1, false, NULL_RTX,
1037 word_mode, word_mode);
1038
1039 /* There is no need to restrict this code to loading items
1040 in TYPE_ALIGN sized hunks. The bitfield instructions can
1041 load up entire word sized registers efficiently.
1042
1043 ??? This may not be needed anymore.
1044 We use to emit a clobber here but that doesn't let later
1045 passes optimize the instructions we emit. By storing 0 into
1046 the register later passes know the first AND to zero out the
1047 bitfield being set in the register is unnecessary. The store
1048 of 0 will be deleted as will at least the first AND. */
1049
1050 emit_move_insn (reg, const0_rtx);
1051
1052 bytes -= bitsize / BITS_PER_UNIT;
1053 store_bit_field (reg, bitsize, endian_correction, 0, 0,
1054 word_mode, word);
1055 }
1056 }
1057 }
1058
1059 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
1060 CALL_EXPR EXP.
1061
1062 NUM_ACTUALS is the total number of parameters.
1063
1064 N_NAMED_ARGS is the total number of named arguments.
1065
1066 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
1067 value, or null.
1068
1069 FNDECL is the tree code for the target of this call (if known)
1070
1071 ARGS_SO_FAR holds state needed by the target to know where to place
1072 the next argument.
1073
1074 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
1075 for arguments which are passed in registers.
1076
1077 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
1078 and may be modified by this routine.
1079
1080 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
1081 flags which may may be modified by this routine.
1082
1083 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
1084 that requires allocation of stack space.
1085
1086 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
1087 the thunked-to function. */
1088
1089 static void
1090 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
1091 struct arg_data *args,
1092 struct args_size *args_size,
1093 int n_named_args ATTRIBUTE_UNUSED,
1094 tree exp, tree struct_value_addr_value,
1095 tree fndecl, tree fntype,
1096 cumulative_args_t args_so_far,
1097 int reg_parm_stack_space,
1098 rtx *old_stack_level, int *old_pending_adj,
1099 int *must_preallocate, int *ecf_flags,
1100 bool *may_tailcall, bool call_from_thunk_p)
1101 {
1102 CUMULATIVE_ARGS *args_so_far_pnt = get_cumulative_args (args_so_far);
1103 location_t loc = EXPR_LOCATION (exp);
1104 /* 1 if scanning parms front to back, -1 if scanning back to front. */
1105 int inc;
1106
1107 /* Count arg position in order args appear. */
1108 int argpos;
1109
1110 int i;
1111
1112 args_size->constant = 0;
1113 args_size->var = 0;
1114
1115 /* In this loop, we consider args in the order they are written.
1116 We fill up ARGS from the front or from the back if necessary
1117 so that in any case the first arg to be pushed ends up at the front. */
1118
1119 if (PUSH_ARGS_REVERSED)
1120 {
1121 i = num_actuals - 1, inc = -1;
1122 /* In this case, must reverse order of args
1123 so that we compute and push the last arg first. */
1124 }
1125 else
1126 {
1127 i = 0, inc = 1;
1128 }
1129
1130 /* First fill in the actual arguments in the ARGS array, splitting
1131 complex arguments if necessary. */
1132 {
1133 int j = i;
1134 call_expr_arg_iterator iter;
1135 tree arg;
1136
1137 if (struct_value_addr_value)
1138 {
1139 args[j].tree_value = struct_value_addr_value;
1140 j += inc;
1141 }
1142 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
1143 {
1144 tree argtype = TREE_TYPE (arg);
1145 if (targetm.calls.split_complex_arg
1146 && argtype
1147 && TREE_CODE (argtype) == COMPLEX_TYPE
1148 && targetm.calls.split_complex_arg (argtype))
1149 {
1150 tree subtype = TREE_TYPE (argtype);
1151 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
1152 j += inc;
1153 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
1154 }
1155 else
1156 args[j].tree_value = arg;
1157 j += inc;
1158 }
1159 }
1160
1161 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1162 for (argpos = 0; argpos < num_actuals; i += inc, argpos++)
1163 {
1164 tree type = TREE_TYPE (args[i].tree_value);
1165 int unsignedp;
1166 enum machine_mode mode;
1167
1168 /* Replace erroneous argument with constant zero. */
1169 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1170 args[i].tree_value = integer_zero_node, type = integer_type_node;
1171
1172 /* If TYPE is a transparent union or record, pass things the way
1173 we would pass the first field of the union or record. We have
1174 already verified that the modes are the same. */
1175 if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
1176 && TYPE_TRANSPARENT_AGGR (type))
1177 type = TREE_TYPE (first_field (type));
1178
1179 /* Decide where to pass this arg.
1180
1181 args[i].reg is nonzero if all or part is passed in registers.
1182
1183 args[i].partial is nonzero if part but not all is passed in registers,
1184 and the exact value says how many bytes are passed in registers.
1185
1186 args[i].pass_on_stack is nonzero if the argument must at least be
1187 computed on the stack. It may then be loaded back into registers
1188 if args[i].reg is nonzero.
1189
1190 These decisions are driven by the FUNCTION_... macros and must agree
1191 with those made by function.c. */
1192
1193 /* See if this argument should be passed by invisible reference. */
1194 if (pass_by_reference (args_so_far_pnt, TYPE_MODE (type),
1195 type, argpos < n_named_args))
1196 {
1197 bool callee_copies;
1198 tree base = NULL_TREE;
1199
1200 callee_copies
1201 = reference_callee_copied (args_so_far_pnt, TYPE_MODE (type),
1202 type, argpos < n_named_args);
1203
1204 /* If we're compiling a thunk, pass through invisible references
1205 instead of making a copy. */
1206 if (call_from_thunk_p
1207 || (callee_copies
1208 && !TREE_ADDRESSABLE (type)
1209 && (base = get_base_address (args[i].tree_value))
1210 && TREE_CODE (base) != SSA_NAME
1211 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1212 {
1213 mark_addressable (args[i].tree_value);
1214
1215 /* We can't use sibcalls if a callee-copied argument is
1216 stored in the current function's frame. */
1217 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1218 *may_tailcall = false;
1219
1220 args[i].tree_value = build_fold_addr_expr_loc (loc,
1221 args[i].tree_value);
1222 type = TREE_TYPE (args[i].tree_value);
1223
1224 if (*ecf_flags & ECF_CONST)
1225 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
1226 }
1227 else
1228 {
1229 /* We make a copy of the object and pass the address to the
1230 function being called. */
1231 rtx copy;
1232
1233 if (!COMPLETE_TYPE_P (type)
1234 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
1235 || (flag_stack_check == GENERIC_STACK_CHECK
1236 && compare_tree_int (TYPE_SIZE_UNIT (type),
1237 STACK_CHECK_MAX_VAR_SIZE) > 0))
1238 {
1239 /* This is a variable-sized object. Make space on the stack
1240 for it. */
1241 rtx size_rtx = expr_size (args[i].tree_value);
1242
1243 if (*old_stack_level == 0)
1244 {
1245 emit_stack_save (SAVE_BLOCK, old_stack_level);
1246 *old_pending_adj = pending_stack_adjust;
1247 pending_stack_adjust = 0;
1248 }
1249
1250 /* We can pass TRUE as the 4th argument because we just
1251 saved the stack pointer and will restore it right after
1252 the call. */
1253 copy = allocate_dynamic_stack_space (size_rtx,
1254 TYPE_ALIGN (type),
1255 TYPE_ALIGN (type),
1256 true);
1257 copy = gen_rtx_MEM (BLKmode, copy);
1258 set_mem_attributes (copy, type, 1);
1259 }
1260 else
1261 copy = assign_temp (type, 1, 0);
1262
1263 store_expr (args[i].tree_value, copy, 0, false);
1264
1265 /* Just change the const function to pure and then let
1266 the next test clear the pure based on
1267 callee_copies. */
1268 if (*ecf_flags & ECF_CONST)
1269 {
1270 *ecf_flags &= ~ECF_CONST;
1271 *ecf_flags |= ECF_PURE;
1272 }
1273
1274 if (!callee_copies && *ecf_flags & ECF_PURE)
1275 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
1276
1277 args[i].tree_value
1278 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
1279 type = TREE_TYPE (args[i].tree_value);
1280 *may_tailcall = false;
1281 }
1282 }
1283
1284 unsignedp = TYPE_UNSIGNED (type);
1285 mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
1286 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
1287
1288 args[i].unsignedp = unsignedp;
1289 args[i].mode = mode;
1290
1291 args[i].reg = targetm.calls.function_arg (args_so_far, mode, type,
1292 argpos < n_named_args);
1293
1294 /* If this is a sibling call and the machine has register windows, the
1295 register window has to be unwinded before calling the routine, so
1296 arguments have to go into the incoming registers. */
1297 if (targetm.calls.function_incoming_arg != targetm.calls.function_arg)
1298 args[i].tail_call_reg
1299 = targetm.calls.function_incoming_arg (args_so_far, mode, type,
1300 argpos < n_named_args);
1301 else
1302 args[i].tail_call_reg = args[i].reg;
1303
1304 if (args[i].reg)
1305 args[i].partial
1306 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1307 argpos < n_named_args);
1308
1309 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1310
1311 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1312 it means that we are to pass this arg in the register(s) designated
1313 by the PARALLEL, but also to pass it in the stack. */
1314 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1315 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1316 args[i].pass_on_stack = 1;
1317
1318 /* If this is an addressable type, we must preallocate the stack
1319 since we must evaluate the object into its final location.
1320
1321 If this is to be passed in both registers and the stack, it is simpler
1322 to preallocate. */
1323 if (TREE_ADDRESSABLE (type)
1324 || (args[i].pass_on_stack && args[i].reg != 0))
1325 *must_preallocate = 1;
1326
1327 /* Compute the stack-size of this argument. */
1328 if (args[i].reg == 0 || args[i].partial != 0
1329 || reg_parm_stack_space > 0
1330 || args[i].pass_on_stack)
1331 locate_and_pad_parm (mode, type,
1332 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1333 1,
1334 #else
1335 args[i].reg != 0,
1336 #endif
1337 args[i].pass_on_stack ? 0 : args[i].partial,
1338 fndecl, args_size, &args[i].locate);
1339 #ifdef BLOCK_REG_PADDING
1340 else
1341 /* The argument is passed entirely in registers. See at which
1342 end it should be padded. */
1343 args[i].locate.where_pad =
1344 BLOCK_REG_PADDING (mode, type,
1345 int_size_in_bytes (type) <= UNITS_PER_WORD);
1346 #endif
1347
1348 /* Update ARGS_SIZE, the total stack space for args so far. */
1349
1350 args_size->constant += args[i].locate.size.constant;
1351 if (args[i].locate.size.var)
1352 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1353
1354 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1355 have been used, etc. */
1356
1357 targetm.calls.function_arg_advance (args_so_far, TYPE_MODE (type),
1358 type, argpos < n_named_args);
1359 }
1360 }
1361
1362 /* Update ARGS_SIZE to contain the total size for the argument block.
1363 Return the original constant component of the argument block's size.
1364
1365 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1366 for arguments passed in registers. */
1367
1368 static int
1369 compute_argument_block_size (int reg_parm_stack_space,
1370 struct args_size *args_size,
1371 tree fndecl ATTRIBUTE_UNUSED,
1372 tree fntype ATTRIBUTE_UNUSED,
1373 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1374 {
1375 int unadjusted_args_size = args_size->constant;
1376
1377 /* For accumulate outgoing args mode we don't need to align, since the frame
1378 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1379 backends from generating misaligned frame sizes. */
1380 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1381 preferred_stack_boundary = STACK_BOUNDARY;
1382
1383 /* Compute the actual size of the argument block required. The variable
1384 and constant sizes must be combined, the size may have to be rounded,
1385 and there may be a minimum required size. */
1386
1387 if (args_size->var)
1388 {
1389 args_size->var = ARGS_SIZE_TREE (*args_size);
1390 args_size->constant = 0;
1391
1392 preferred_stack_boundary /= BITS_PER_UNIT;
1393 if (preferred_stack_boundary > 1)
1394 {
1395 /* We don't handle this case yet. To handle it correctly we have
1396 to add the delta, round and subtract the delta.
1397 Currently no machine description requires this support. */
1398 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1399 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1400 }
1401
1402 if (reg_parm_stack_space > 0)
1403 {
1404 args_size->var
1405 = size_binop (MAX_EXPR, args_size->var,
1406 ssize_int (reg_parm_stack_space));
1407
1408 /* The area corresponding to register parameters is not to count in
1409 the size of the block we need. So make the adjustment. */
1410 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1411 args_size->var
1412 = size_binop (MINUS_EXPR, args_size->var,
1413 ssize_int (reg_parm_stack_space));
1414 }
1415 }
1416 else
1417 {
1418 preferred_stack_boundary /= BITS_PER_UNIT;
1419 if (preferred_stack_boundary < 1)
1420 preferred_stack_boundary = 1;
1421 args_size->constant = (((args_size->constant
1422 + stack_pointer_delta
1423 + preferred_stack_boundary - 1)
1424 / preferred_stack_boundary
1425 * preferred_stack_boundary)
1426 - stack_pointer_delta);
1427
1428 args_size->constant = MAX (args_size->constant,
1429 reg_parm_stack_space);
1430
1431 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1432 args_size->constant -= reg_parm_stack_space;
1433 }
1434 return unadjusted_args_size;
1435 }
1436
1437 /* Precompute parameters as needed for a function call.
1438
1439 FLAGS is mask of ECF_* constants.
1440
1441 NUM_ACTUALS is the number of arguments.
1442
1443 ARGS is an array containing information for each argument; this
1444 routine fills in the INITIAL_VALUE and VALUE fields for each
1445 precomputed argument. */
1446
1447 static void
1448 precompute_arguments (int num_actuals, struct arg_data *args)
1449 {
1450 int i;
1451
1452 /* If this is a libcall, then precompute all arguments so that we do not
1453 get extraneous instructions emitted as part of the libcall sequence. */
1454
1455 /* If we preallocated the stack space, and some arguments must be passed
1456 on the stack, then we must precompute any parameter which contains a
1457 function call which will store arguments on the stack.
1458 Otherwise, evaluating the parameter may clobber previous parameters
1459 which have already been stored into the stack. (we have code to avoid
1460 such case by saving the outgoing stack arguments, but it results in
1461 worse code) */
1462 if (!ACCUMULATE_OUTGOING_ARGS)
1463 return;
1464
1465 for (i = 0; i < num_actuals; i++)
1466 {
1467 tree type;
1468 enum machine_mode mode;
1469
1470 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
1471 continue;
1472
1473 /* If this is an addressable type, we cannot pre-evaluate it. */
1474 type = TREE_TYPE (args[i].tree_value);
1475 gcc_assert (!TREE_ADDRESSABLE (type));
1476
1477 args[i].initial_value = args[i].value
1478 = expand_normal (args[i].tree_value);
1479
1480 mode = TYPE_MODE (type);
1481 if (mode != args[i].mode)
1482 {
1483 int unsignedp = args[i].unsignedp;
1484 args[i].value
1485 = convert_modes (args[i].mode, mode,
1486 args[i].value, args[i].unsignedp);
1487
1488 /* CSE will replace this only if it contains args[i].value
1489 pseudo, so convert it down to the declared mode using
1490 a SUBREG. */
1491 if (REG_P (args[i].value)
1492 && GET_MODE_CLASS (args[i].mode) == MODE_INT
1493 && promote_mode (type, mode, &unsignedp) != args[i].mode)
1494 {
1495 args[i].initial_value
1496 = gen_lowpart_SUBREG (mode, args[i].value);
1497 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1498 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1499 args[i].unsignedp);
1500 }
1501 }
1502 }
1503 }
1504
1505 /* Given the current state of MUST_PREALLOCATE and information about
1506 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1507 compute and return the final value for MUST_PREALLOCATE. */
1508
1509 static int
1510 finalize_must_preallocate (int must_preallocate, int num_actuals,
1511 struct arg_data *args, struct args_size *args_size)
1512 {
1513 /* See if we have or want to preallocate stack space.
1514
1515 If we would have to push a partially-in-regs parm
1516 before other stack parms, preallocate stack space instead.
1517
1518 If the size of some parm is not a multiple of the required stack
1519 alignment, we must preallocate.
1520
1521 If the total size of arguments that would otherwise create a copy in
1522 a temporary (such as a CALL) is more than half the total argument list
1523 size, preallocation is faster.
1524
1525 Another reason to preallocate is if we have a machine (like the m88k)
1526 where stack alignment is required to be maintained between every
1527 pair of insns, not just when the call is made. However, we assume here
1528 that such machines either do not have push insns (and hence preallocation
1529 would occur anyway) or the problem is taken care of with
1530 PUSH_ROUNDING. */
1531
1532 if (! must_preallocate)
1533 {
1534 int partial_seen = 0;
1535 int copy_to_evaluate_size = 0;
1536 int i;
1537
1538 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1539 {
1540 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1541 partial_seen = 1;
1542 else if (partial_seen && args[i].reg == 0)
1543 must_preallocate = 1;
1544
1545 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1546 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1547 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1548 || TREE_CODE (args[i].tree_value) == COND_EXPR
1549 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1550 copy_to_evaluate_size
1551 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1552 }
1553
1554 if (copy_to_evaluate_size * 2 >= args_size->constant
1555 && args_size->constant > 0)
1556 must_preallocate = 1;
1557 }
1558 return must_preallocate;
1559 }
1560
1561 /* If we preallocated stack space, compute the address of each argument
1562 and store it into the ARGS array.
1563
1564 We need not ensure it is a valid memory address here; it will be
1565 validized when it is used.
1566
1567 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1568
1569 static void
1570 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1571 {
1572 if (argblock)
1573 {
1574 rtx arg_reg = argblock;
1575 int i, arg_offset = 0;
1576
1577 if (GET_CODE (argblock) == PLUS)
1578 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1579
1580 for (i = 0; i < num_actuals; i++)
1581 {
1582 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1583 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1584 rtx addr;
1585 unsigned int align, boundary;
1586 unsigned int units_on_stack = 0;
1587 enum machine_mode partial_mode = VOIDmode;
1588
1589 /* Skip this parm if it will not be passed on the stack. */
1590 if (! args[i].pass_on_stack
1591 && args[i].reg != 0
1592 && args[i].partial == 0)
1593 continue;
1594
1595 if (CONST_INT_P (offset))
1596 addr = plus_constant (Pmode, arg_reg, INTVAL (offset));
1597 else
1598 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1599
1600 addr = plus_constant (Pmode, addr, arg_offset);
1601
1602 if (args[i].partial != 0)
1603 {
1604 /* Only part of the parameter is being passed on the stack.
1605 Generate a simple memory reference of the correct size. */
1606 units_on_stack = args[i].locate.size.constant;
1607 partial_mode = mode_for_size (units_on_stack * BITS_PER_UNIT,
1608 MODE_INT, 1);
1609 args[i].stack = gen_rtx_MEM (partial_mode, addr);
1610 set_mem_size (args[i].stack, units_on_stack);
1611 }
1612 else
1613 {
1614 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1615 set_mem_attributes (args[i].stack,
1616 TREE_TYPE (args[i].tree_value), 1);
1617 }
1618 align = BITS_PER_UNIT;
1619 boundary = args[i].locate.boundary;
1620 if (args[i].locate.where_pad != downward)
1621 align = boundary;
1622 else if (CONST_INT_P (offset))
1623 {
1624 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1625 align = align & -align;
1626 }
1627 set_mem_align (args[i].stack, align);
1628
1629 if (CONST_INT_P (slot_offset))
1630 addr = plus_constant (Pmode, arg_reg, INTVAL (slot_offset));
1631 else
1632 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1633
1634 addr = plus_constant (Pmode, addr, arg_offset);
1635
1636 if (args[i].partial != 0)
1637 {
1638 /* Only part of the parameter is being passed on the stack.
1639 Generate a simple memory reference of the correct size.
1640 */
1641 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
1642 set_mem_size (args[i].stack_slot, units_on_stack);
1643 }
1644 else
1645 {
1646 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1647 set_mem_attributes (args[i].stack_slot,
1648 TREE_TYPE (args[i].tree_value), 1);
1649 }
1650 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1651
1652 /* Function incoming arguments may overlap with sibling call
1653 outgoing arguments and we cannot allow reordering of reads
1654 from function arguments with stores to outgoing arguments
1655 of sibling calls. */
1656 set_mem_alias_set (args[i].stack, 0);
1657 set_mem_alias_set (args[i].stack_slot, 0);
1658 }
1659 }
1660 }
1661
1662 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1663 in a call instruction.
1664
1665 FNDECL is the tree node for the target function. For an indirect call
1666 FNDECL will be NULL_TREE.
1667
1668 ADDR is the operand 0 of CALL_EXPR for this call. */
1669
1670 static rtx
1671 rtx_for_function_call (tree fndecl, tree addr)
1672 {
1673 rtx funexp;
1674
1675 /* Get the function to call, in the form of RTL. */
1676 if (fndecl)
1677 {
1678 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
1679 TREE_USED (fndecl) = 1;
1680
1681 /* Get a SYMBOL_REF rtx for the function address. */
1682 funexp = XEXP (DECL_RTL (fndecl), 0);
1683 }
1684 else
1685 /* Generate an rtx (probably a pseudo-register) for the address. */
1686 {
1687 push_temp_slots ();
1688 funexp = expand_normal (addr);
1689 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1690 }
1691 return funexp;
1692 }
1693
1694 /* Internal state for internal_arg_pointer_based_exp and its helpers. */
1695 static struct
1696 {
1697 /* Last insn that has been scanned by internal_arg_pointer_based_exp_scan,
1698 or NULL_RTX if none has been scanned yet. */
1699 rtx scan_start;
1700 /* Vector indexed by REGNO - FIRST_PSEUDO_REGISTER, recording if a pseudo is
1701 based on crtl->args.internal_arg_pointer. The element is NULL_RTX if the
1702 pseudo isn't based on it, a CONST_INT offset if the pseudo is based on it
1703 with fixed offset, or PC if this is with variable or unknown offset. */
1704 VEC(rtx, heap) *cache;
1705 } internal_arg_pointer_exp_state;
1706
1707 static rtx internal_arg_pointer_based_exp (rtx, bool);
1708
1709 /* Helper function for internal_arg_pointer_based_exp. Scan insns in
1710 the tail call sequence, starting with first insn that hasn't been
1711 scanned yet, and note for each pseudo on the LHS whether it is based
1712 on crtl->args.internal_arg_pointer or not, and what offset from that
1713 that pointer it has. */
1714
1715 static void
1716 internal_arg_pointer_based_exp_scan (void)
1717 {
1718 rtx insn, scan_start = internal_arg_pointer_exp_state.scan_start;
1719
1720 if (scan_start == NULL_RTX)
1721 insn = get_insns ();
1722 else
1723 insn = NEXT_INSN (scan_start);
1724
1725 while (insn)
1726 {
1727 rtx set = single_set (insn);
1728 if (set && REG_P (SET_DEST (set)) && !HARD_REGISTER_P (SET_DEST (set)))
1729 {
1730 rtx val = NULL_RTX;
1731 unsigned int idx = REGNO (SET_DEST (set)) - FIRST_PSEUDO_REGISTER;
1732 /* Punt on pseudos set multiple times. */
1733 if (idx < VEC_length (rtx, internal_arg_pointer_exp_state.cache)
1734 && (VEC_index (rtx, internal_arg_pointer_exp_state.cache, idx)
1735 != NULL_RTX))
1736 val = pc_rtx;
1737 else
1738 val = internal_arg_pointer_based_exp (SET_SRC (set), false);
1739 if (val != NULL_RTX)
1740 {
1741 if (idx
1742 >= VEC_length (rtx, internal_arg_pointer_exp_state.cache))
1743 VEC_safe_grow_cleared (rtx, heap,
1744 internal_arg_pointer_exp_state.cache,
1745 idx + 1);
1746 VEC_replace (rtx, internal_arg_pointer_exp_state.cache,
1747 idx, val);
1748 }
1749 }
1750 if (NEXT_INSN (insn) == NULL_RTX)
1751 scan_start = insn;
1752 insn = NEXT_INSN (insn);
1753 }
1754
1755 internal_arg_pointer_exp_state.scan_start = scan_start;
1756 }
1757
1758 /* Helper function for internal_arg_pointer_based_exp, called through
1759 for_each_rtx. Return 1 if *LOC is a register based on
1760 crtl->args.internal_arg_pointer. Return -1 if *LOC is not based on it
1761 and the subexpressions need not be examined. Otherwise return 0. */
1762
1763 static int
1764 internal_arg_pointer_based_exp_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1765 {
1766 if (REG_P (*loc) && internal_arg_pointer_based_exp (*loc, false) != NULL_RTX)
1767 return 1;
1768 if (MEM_P (*loc))
1769 return -1;
1770 return 0;
1771 }
1772
1773 /* Compute whether RTL is based on crtl->args.internal_arg_pointer. Return
1774 NULL_RTX if RTL isn't based on it, a CONST_INT offset if RTL is based on
1775 it with fixed offset, or PC if this is with variable or unknown offset.
1776 TOPLEVEL is true if the function is invoked at the topmost level. */
1777
1778 static rtx
1779 internal_arg_pointer_based_exp (rtx rtl, bool toplevel)
1780 {
1781 if (CONSTANT_P (rtl))
1782 return NULL_RTX;
1783
1784 if (rtl == crtl->args.internal_arg_pointer)
1785 return const0_rtx;
1786
1787 if (REG_P (rtl) && HARD_REGISTER_P (rtl))
1788 return NULL_RTX;
1789
1790 if (GET_CODE (rtl) == PLUS && CONST_INT_P (XEXP (rtl, 1)))
1791 {
1792 rtx val = internal_arg_pointer_based_exp (XEXP (rtl, 0), toplevel);
1793 if (val == NULL_RTX || val == pc_rtx)
1794 return val;
1795 return plus_constant (Pmode, val, INTVAL (XEXP (rtl, 1)));
1796 }
1797
1798 /* When called at the topmost level, scan pseudo assignments in between the
1799 last scanned instruction in the tail call sequence and the latest insn
1800 in that sequence. */
1801 if (toplevel)
1802 internal_arg_pointer_based_exp_scan ();
1803
1804 if (REG_P (rtl))
1805 {
1806 unsigned int idx = REGNO (rtl) - FIRST_PSEUDO_REGISTER;
1807 if (idx < VEC_length (rtx, internal_arg_pointer_exp_state.cache))
1808 return VEC_index (rtx, internal_arg_pointer_exp_state.cache, idx);
1809
1810 return NULL_RTX;
1811 }
1812
1813 if (for_each_rtx (&rtl, internal_arg_pointer_based_exp_1, NULL))
1814 return pc_rtx;
1815
1816 return NULL_RTX;
1817 }
1818
1819 /* Return true if and only if SIZE storage units (usually bytes)
1820 starting from address ADDR overlap with already clobbered argument
1821 area. This function is used to determine if we should give up a
1822 sibcall. */
1823
1824 static bool
1825 mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
1826 {
1827 HOST_WIDE_INT i;
1828 rtx val;
1829
1830 if (sbitmap_empty_p (stored_args_map))
1831 return false;
1832 val = internal_arg_pointer_based_exp (addr, true);
1833 if (val == NULL_RTX)
1834 return false;
1835 else if (val == pc_rtx)
1836 return true;
1837 else
1838 i = INTVAL (val);
1839 #ifdef STACK_GROWS_DOWNWARD
1840 i -= crtl->args.pretend_args_size;
1841 #else
1842 i += crtl->args.pretend_args_size;
1843 #endif
1844
1845 #ifdef ARGS_GROW_DOWNWARD
1846 i = -i - size;
1847 #endif
1848 if (size > 0)
1849 {
1850 unsigned HOST_WIDE_INT k;
1851
1852 for (k = 0; k < size; k++)
1853 if (i + k < SBITMAP_SIZE (stored_args_map)
1854 && TEST_BIT (stored_args_map, i + k))
1855 return true;
1856 }
1857
1858 return false;
1859 }
1860
1861 /* Do the register loads required for any wholly-register parms or any
1862 parms which are passed both on the stack and in a register. Their
1863 expressions were already evaluated.
1864
1865 Mark all register-parms as living through the call, putting these USE
1866 insns in the CALL_INSN_FUNCTION_USAGE field.
1867
1868 When IS_SIBCALL, perform the check_sibcall_argument_overlap
1869 checking, setting *SIBCALL_FAILURE if appropriate. */
1870
1871 static void
1872 load_register_parameters (struct arg_data *args, int num_actuals,
1873 rtx *call_fusage, int flags, int is_sibcall,
1874 int *sibcall_failure)
1875 {
1876 int i, j;
1877
1878 for (i = 0; i < num_actuals; i++)
1879 {
1880 rtx reg = ((flags & ECF_SIBCALL)
1881 ? args[i].tail_call_reg : args[i].reg);
1882 if (reg)
1883 {
1884 int partial = args[i].partial;
1885 int nregs;
1886 int size = 0;
1887 rtx before_arg = get_last_insn ();
1888 /* Set non-negative if we must move a word at a time, even if
1889 just one word (e.g, partial == 4 && mode == DFmode). Set
1890 to -1 if we just use a normal move insn. This value can be
1891 zero if the argument is a zero size structure. */
1892 nregs = -1;
1893 if (GET_CODE (reg) == PARALLEL)
1894 ;
1895 else if (partial)
1896 {
1897 gcc_assert (partial % UNITS_PER_WORD == 0);
1898 nregs = partial / UNITS_PER_WORD;
1899 }
1900 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1901 {
1902 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1903 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1904 }
1905 else
1906 size = GET_MODE_SIZE (args[i].mode);
1907
1908 /* Handle calls that pass values in multiple non-contiguous
1909 locations. The Irix 6 ABI has examples of this. */
1910
1911 if (GET_CODE (reg) == PARALLEL)
1912 emit_group_move (reg, args[i].parallel_value);
1913
1914 /* If simple case, just do move. If normal partial, store_one_arg
1915 has already loaded the register for us. In all other cases,
1916 load the register(s) from memory. */
1917
1918 else if (nregs == -1)
1919 {
1920 emit_move_insn (reg, args[i].value);
1921 #ifdef BLOCK_REG_PADDING
1922 /* Handle case where we have a value that needs shifting
1923 up to the msb. eg. a QImode value and we're padding
1924 upward on a BYTES_BIG_ENDIAN machine. */
1925 if (size < UNITS_PER_WORD
1926 && (args[i].locate.where_pad
1927 == (BYTES_BIG_ENDIAN ? upward : downward)))
1928 {
1929 rtx x;
1930 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1931
1932 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1933 report the whole reg as used. Strictly speaking, the
1934 call only uses SIZE bytes at the msb end, but it doesn't
1935 seem worth generating rtl to say that. */
1936 reg = gen_rtx_REG (word_mode, REGNO (reg));
1937 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
1938 if (x != reg)
1939 emit_move_insn (reg, x);
1940 }
1941 #endif
1942 }
1943
1944 /* If we have pre-computed the values to put in the registers in
1945 the case of non-aligned structures, copy them in now. */
1946
1947 else if (args[i].n_aligned_regs != 0)
1948 for (j = 0; j < args[i].n_aligned_regs; j++)
1949 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1950 args[i].aligned_regs[j]);
1951
1952 else if (partial == 0 || args[i].pass_on_stack)
1953 {
1954 rtx mem = validize_mem (args[i].value);
1955
1956 /* Check for overlap with already clobbered argument area,
1957 providing that this has non-zero size. */
1958 if (is_sibcall
1959 && (size == 0
1960 || mem_overlaps_already_clobbered_arg_p
1961 (XEXP (args[i].value, 0), size)))
1962 *sibcall_failure = 1;
1963
1964 /* Handle a BLKmode that needs shifting. */
1965 if (nregs == 1 && size < UNITS_PER_WORD
1966 #ifdef BLOCK_REG_PADDING
1967 && args[i].locate.where_pad == downward
1968 #else
1969 && BYTES_BIG_ENDIAN
1970 #endif
1971 )
1972 {
1973 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1974 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1975 rtx x = gen_reg_rtx (word_mode);
1976 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1977 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1978 : LSHIFT_EXPR;
1979
1980 emit_move_insn (x, tem);
1981 x = expand_shift (dir, word_mode, x, shift, ri, 1);
1982 if (x != ri)
1983 emit_move_insn (ri, x);
1984 }
1985 else
1986 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1987 }
1988
1989 /* When a parameter is a block, and perhaps in other cases, it is
1990 possible that it did a load from an argument slot that was
1991 already clobbered. */
1992 if (is_sibcall
1993 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1994 *sibcall_failure = 1;
1995
1996 /* Handle calls that pass values in multiple non-contiguous
1997 locations. The Irix 6 ABI has examples of this. */
1998 if (GET_CODE (reg) == PARALLEL)
1999 use_group_regs (call_fusage, reg);
2000 else if (nregs == -1)
2001 use_reg_mode (call_fusage, reg,
2002 TYPE_MODE (TREE_TYPE (args[i].tree_value)));
2003 else if (nregs > 0)
2004 use_regs (call_fusage, REGNO (reg), nregs);
2005 }
2006 }
2007 }
2008
2009 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
2010 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
2011 bytes, then we would need to push some additional bytes to pad the
2012 arguments. So, we compute an adjust to the stack pointer for an
2013 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
2014 bytes. Then, when the arguments are pushed the stack will be perfectly
2015 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
2016 be popped after the call. Returns the adjustment. */
2017
2018 static int
2019 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
2020 struct args_size *args_size,
2021 unsigned int preferred_unit_stack_boundary)
2022 {
2023 /* The number of bytes to pop so that the stack will be
2024 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
2025 HOST_WIDE_INT adjustment;
2026 /* The alignment of the stack after the arguments are pushed, if we
2027 just pushed the arguments without adjust the stack here. */
2028 unsigned HOST_WIDE_INT unadjusted_alignment;
2029
2030 unadjusted_alignment
2031 = ((stack_pointer_delta + unadjusted_args_size)
2032 % preferred_unit_stack_boundary);
2033
2034 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
2035 as possible -- leaving just enough left to cancel out the
2036 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
2037 PENDING_STACK_ADJUST is non-negative, and congruent to
2038 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
2039
2040 /* Begin by trying to pop all the bytes. */
2041 unadjusted_alignment
2042 = (unadjusted_alignment
2043 - (pending_stack_adjust % preferred_unit_stack_boundary));
2044 adjustment = pending_stack_adjust;
2045 /* Push enough additional bytes that the stack will be aligned
2046 after the arguments are pushed. */
2047 if (preferred_unit_stack_boundary > 1)
2048 {
2049 if (unadjusted_alignment > 0)
2050 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
2051 else
2052 adjustment += unadjusted_alignment;
2053 }
2054
2055 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
2056 bytes after the call. The right number is the entire
2057 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
2058 by the arguments in the first place. */
2059 args_size->constant
2060 = pending_stack_adjust - adjustment + unadjusted_args_size;
2061
2062 return adjustment;
2063 }
2064
2065 /* Scan X expression if it does not dereference any argument slots
2066 we already clobbered by tail call arguments (as noted in stored_args_map
2067 bitmap).
2068 Return nonzero if X expression dereferences such argument slots,
2069 zero otherwise. */
2070
2071 static int
2072 check_sibcall_argument_overlap_1 (rtx x)
2073 {
2074 RTX_CODE code;
2075 int i, j;
2076 const char *fmt;
2077
2078 if (x == NULL_RTX)
2079 return 0;
2080
2081 code = GET_CODE (x);
2082
2083 /* We need not check the operands of the CALL expression itself. */
2084 if (code == CALL)
2085 return 0;
2086
2087 if (code == MEM)
2088 return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
2089 GET_MODE_SIZE (GET_MODE (x)));
2090
2091 /* Scan all subexpressions. */
2092 fmt = GET_RTX_FORMAT (code);
2093 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2094 {
2095 if (*fmt == 'e')
2096 {
2097 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
2098 return 1;
2099 }
2100 else if (*fmt == 'E')
2101 {
2102 for (j = 0; j < XVECLEN (x, i); j++)
2103 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
2104 return 1;
2105 }
2106 }
2107 return 0;
2108 }
2109
2110 /* Scan sequence after INSN if it does not dereference any argument slots
2111 we already clobbered by tail call arguments (as noted in stored_args_map
2112 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
2113 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
2114 should be 0). Return nonzero if sequence after INSN dereferences such argument
2115 slots, zero otherwise. */
2116
2117 static int
2118 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
2119 {
2120 int low, high;
2121
2122 if (insn == NULL_RTX)
2123 insn = get_insns ();
2124 else
2125 insn = NEXT_INSN (insn);
2126
2127 for (; insn; insn = NEXT_INSN (insn))
2128 if (INSN_P (insn)
2129 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
2130 break;
2131
2132 if (mark_stored_args_map)
2133 {
2134 #ifdef ARGS_GROW_DOWNWARD
2135 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
2136 #else
2137 low = arg->locate.slot_offset.constant;
2138 #endif
2139
2140 for (high = low + arg->locate.size.constant; low < high; low++)
2141 SET_BIT (stored_args_map, low);
2142 }
2143 return insn != NULL_RTX;
2144 }
2145
2146 /* Given that a function returns a value of mode MODE at the most
2147 significant end of hard register VALUE, shift VALUE left or right
2148 as specified by LEFT_P. Return true if some action was needed. */
2149
2150 bool
2151 shift_return_value (enum machine_mode mode, bool left_p, rtx value)
2152 {
2153 HOST_WIDE_INT shift;
2154
2155 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
2156 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
2157 if (shift == 0)
2158 return false;
2159
2160 /* Use ashr rather than lshr for right shifts. This is for the benefit
2161 of the MIPS port, which requires SImode values to be sign-extended
2162 when stored in 64-bit registers. */
2163 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
2164 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
2165 gcc_unreachable ();
2166 return true;
2167 }
2168
2169 /* If X is a likely-spilled register value, copy it to a pseudo
2170 register and return that register. Return X otherwise. */
2171
2172 static rtx
2173 avoid_likely_spilled_reg (rtx x)
2174 {
2175 rtx new_rtx;
2176
2177 if (REG_P (x)
2178 && HARD_REGISTER_P (x)
2179 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2180 {
2181 /* Make sure that we generate a REG rather than a CONCAT.
2182 Moves into CONCATs can need nontrivial instructions,
2183 and the whole point of this function is to avoid
2184 using the hard register directly in such a situation. */
2185 generating_concat_p = 0;
2186 new_rtx = gen_reg_rtx (GET_MODE (x));
2187 generating_concat_p = 1;
2188 emit_move_insn (new_rtx, x);
2189 return new_rtx;
2190 }
2191 return x;
2192 }
2193
2194 /* Generate all the code for a CALL_EXPR exp
2195 and return an rtx for its value.
2196 Store the value in TARGET (specified as an rtx) if convenient.
2197 If the value is stored in TARGET then TARGET is returned.
2198 If IGNORE is nonzero, then we ignore the value of the function call. */
2199
2200 rtx
2201 expand_call (tree exp, rtx target, int ignore)
2202 {
2203 /* Nonzero if we are currently expanding a call. */
2204 static int currently_expanding_call = 0;
2205
2206 /* RTX for the function to be called. */
2207 rtx funexp;
2208 /* Sequence of insns to perform a normal "call". */
2209 rtx normal_call_insns = NULL_RTX;
2210 /* Sequence of insns to perform a tail "call". */
2211 rtx tail_call_insns = NULL_RTX;
2212 /* Data type of the function. */
2213 tree funtype;
2214 tree type_arg_types;
2215 tree rettype;
2216 /* Declaration of the function being called,
2217 or 0 if the function is computed (not known by name). */
2218 tree fndecl = 0;
2219 /* The type of the function being called. */
2220 tree fntype;
2221 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
2222 int pass;
2223
2224 /* Register in which non-BLKmode value will be returned,
2225 or 0 if no value or if value is BLKmode. */
2226 rtx valreg;
2227 /* Address where we should return a BLKmode value;
2228 0 if value not BLKmode. */
2229 rtx structure_value_addr = 0;
2230 /* Nonzero if that address is being passed by treating it as
2231 an extra, implicit first parameter. Otherwise,
2232 it is passed by being copied directly into struct_value_rtx. */
2233 int structure_value_addr_parm = 0;
2234 /* Holds the value of implicit argument for the struct value. */
2235 tree structure_value_addr_value = NULL_TREE;
2236 /* Size of aggregate value wanted, or zero if none wanted
2237 or if we are using the non-reentrant PCC calling convention
2238 or expecting the value in registers. */
2239 HOST_WIDE_INT struct_value_size = 0;
2240 /* Nonzero if called function returns an aggregate in memory PCC style,
2241 by returning the address of where to find it. */
2242 int pcc_struct_value = 0;
2243 rtx struct_value = 0;
2244
2245 /* Number of actual parameters in this call, including struct value addr. */
2246 int num_actuals;
2247 /* Number of named args. Args after this are anonymous ones
2248 and they must all go on the stack. */
2249 int n_named_args;
2250 /* Number of complex actual arguments that need to be split. */
2251 int num_complex_actuals = 0;
2252
2253 /* Vector of information about each argument.
2254 Arguments are numbered in the order they will be pushed,
2255 not the order they are written. */
2256 struct arg_data *args;
2257
2258 /* Total size in bytes of all the stack-parms scanned so far. */
2259 struct args_size args_size;
2260 struct args_size adjusted_args_size;
2261 /* Size of arguments before any adjustments (such as rounding). */
2262 int unadjusted_args_size;
2263 /* Data on reg parms scanned so far. */
2264 CUMULATIVE_ARGS args_so_far_v;
2265 cumulative_args_t args_so_far;
2266 /* Nonzero if a reg parm has been scanned. */
2267 int reg_parm_seen;
2268 /* Nonzero if this is an indirect function call. */
2269
2270 /* Nonzero if we must avoid push-insns in the args for this call.
2271 If stack space is allocated for register parameters, but not by the
2272 caller, then it is preallocated in the fixed part of the stack frame.
2273 So the entire argument block must then be preallocated (i.e., we
2274 ignore PUSH_ROUNDING in that case). */
2275
2276 int must_preallocate = !PUSH_ARGS;
2277
2278 /* Size of the stack reserved for parameter registers. */
2279 int reg_parm_stack_space = 0;
2280
2281 /* Address of space preallocated for stack parms
2282 (on machines that lack push insns), or 0 if space not preallocated. */
2283 rtx argblock = 0;
2284
2285 /* Mask of ECF_ and ERF_ flags. */
2286 int flags = 0;
2287 int return_flags = 0;
2288 #ifdef REG_PARM_STACK_SPACE
2289 /* Define the boundary of the register parm stack space that needs to be
2290 saved, if any. */
2291 int low_to_save, high_to_save;
2292 rtx save_area = 0; /* Place that it is saved */
2293 #endif
2294
2295 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
2296 char *initial_stack_usage_map = stack_usage_map;
2297 char *stack_usage_map_buf = NULL;
2298
2299 int old_stack_allocated;
2300
2301 /* State variables to track stack modifications. */
2302 rtx old_stack_level = 0;
2303 int old_stack_arg_under_construction = 0;
2304 int old_pending_adj = 0;
2305 int old_inhibit_defer_pop = inhibit_defer_pop;
2306
2307 /* Some stack pointer alterations we make are performed via
2308 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
2309 which we then also need to save/restore along the way. */
2310 int old_stack_pointer_delta = 0;
2311
2312 rtx call_fusage;
2313 tree addr = CALL_EXPR_FN (exp);
2314 int i;
2315 /* The alignment of the stack, in bits. */
2316 unsigned HOST_WIDE_INT preferred_stack_boundary;
2317 /* The alignment of the stack, in bytes. */
2318 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
2319 /* The static chain value to use for this call. */
2320 rtx static_chain_value;
2321 /* See if this is "nothrow" function call. */
2322 if (TREE_NOTHROW (exp))
2323 flags |= ECF_NOTHROW;
2324
2325 /* See if we can find a DECL-node for the actual function, and get the
2326 function attributes (flags) from the function decl or type node. */
2327 fndecl = get_callee_fndecl (exp);
2328 if (fndecl)
2329 {
2330 fntype = TREE_TYPE (fndecl);
2331 flags |= flags_from_decl_or_type (fndecl);
2332 return_flags |= decl_return_flags (fndecl);
2333 }
2334 else
2335 {
2336 fntype = TREE_TYPE (TREE_TYPE (addr));
2337 flags |= flags_from_decl_or_type (fntype);
2338 }
2339 rettype = TREE_TYPE (exp);
2340
2341 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
2342
2343 /* Warn if this value is an aggregate type,
2344 regardless of which calling convention we are using for it. */
2345 if (AGGREGATE_TYPE_P (rettype))
2346 warning (OPT_Waggregate_return, "function call has aggregate value");
2347
2348 /* If the result of a non looping pure or const function call is
2349 ignored (or void), and none of its arguments are volatile, we can
2350 avoid expanding the call and just evaluate the arguments for
2351 side-effects. */
2352 if ((flags & (ECF_CONST | ECF_PURE))
2353 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
2354 && (ignore || target == const0_rtx
2355 || TYPE_MODE (rettype) == VOIDmode))
2356 {
2357 bool volatilep = false;
2358 tree arg;
2359 call_expr_arg_iterator iter;
2360
2361 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2362 if (TREE_THIS_VOLATILE (arg))
2363 {
2364 volatilep = true;
2365 break;
2366 }
2367
2368 if (! volatilep)
2369 {
2370 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2371 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
2372 return const0_rtx;
2373 }
2374 }
2375
2376 #ifdef REG_PARM_STACK_SPACE
2377 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
2378 #endif
2379
2380 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2381 && reg_parm_stack_space > 0 && PUSH_ARGS)
2382 must_preallocate = 1;
2383
2384 /* Set up a place to return a structure. */
2385
2386 /* Cater to broken compilers. */
2387 if (aggregate_value_p (exp, fntype))
2388 {
2389 /* This call returns a big structure. */
2390 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2391
2392 #ifdef PCC_STATIC_STRUCT_RETURN
2393 {
2394 pcc_struct_value = 1;
2395 }
2396 #else /* not PCC_STATIC_STRUCT_RETURN */
2397 {
2398 struct_value_size = int_size_in_bytes (rettype);
2399
2400 if (target && MEM_P (target) && CALL_EXPR_RETURN_SLOT_OPT (exp))
2401 structure_value_addr = XEXP (target, 0);
2402 else
2403 {
2404 /* For variable-sized objects, we must be called with a target
2405 specified. If we were to allocate space on the stack here,
2406 we would have no way of knowing when to free it. */
2407 rtx d = assign_temp (rettype, 1, 1);
2408 structure_value_addr = XEXP (d, 0);
2409 target = 0;
2410 }
2411 }
2412 #endif /* not PCC_STATIC_STRUCT_RETURN */
2413 }
2414
2415 /* Figure out the amount to which the stack should be aligned. */
2416 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2417 if (fndecl)
2418 {
2419 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2420 /* Without automatic stack alignment, we can't increase preferred
2421 stack boundary. With automatic stack alignment, it is
2422 unnecessary since unless we can guarantee that all callers will
2423 align the outgoing stack properly, callee has to align its
2424 stack anyway. */
2425 if (i
2426 && i->preferred_incoming_stack_boundary
2427 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
2428 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2429 }
2430
2431 /* Operand 0 is a pointer-to-function; get the type of the function. */
2432 funtype = TREE_TYPE (addr);
2433 gcc_assert (POINTER_TYPE_P (funtype));
2434 funtype = TREE_TYPE (funtype);
2435
2436 /* Count whether there are actual complex arguments that need to be split
2437 into their real and imaginary parts. Munge the type_arg_types
2438 appropriately here as well. */
2439 if (targetm.calls.split_complex_arg)
2440 {
2441 call_expr_arg_iterator iter;
2442 tree arg;
2443 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2444 {
2445 tree type = TREE_TYPE (arg);
2446 if (type && TREE_CODE (type) == COMPLEX_TYPE
2447 && targetm.calls.split_complex_arg (type))
2448 num_complex_actuals++;
2449 }
2450 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2451 }
2452 else
2453 type_arg_types = TYPE_ARG_TYPES (funtype);
2454
2455 if (flags & ECF_MAY_BE_ALLOCA)
2456 cfun->calls_alloca = 1;
2457
2458 /* If struct_value_rtx is 0, it means pass the address
2459 as if it were an extra parameter. Put the argument expression
2460 in structure_value_addr_value. */
2461 if (structure_value_addr && struct_value == 0)
2462 {
2463 /* If structure_value_addr is a REG other than
2464 virtual_outgoing_args_rtx, we can use always use it. If it
2465 is not a REG, we must always copy it into a register.
2466 If it is virtual_outgoing_args_rtx, we must copy it to another
2467 register in some cases. */
2468 rtx temp = (!REG_P (structure_value_addr)
2469 || (ACCUMULATE_OUTGOING_ARGS
2470 && stack_arg_under_construction
2471 && structure_value_addr == virtual_outgoing_args_rtx)
2472 ? copy_addr_to_reg (convert_memory_address
2473 (Pmode, structure_value_addr))
2474 : structure_value_addr);
2475
2476 structure_value_addr_value =
2477 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
2478 structure_value_addr_parm = 1;
2479 }
2480
2481 /* Count the arguments and set NUM_ACTUALS. */
2482 num_actuals =
2483 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
2484
2485 /* Compute number of named args.
2486 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2487
2488 if (type_arg_types != 0)
2489 n_named_args
2490 = (list_length (type_arg_types)
2491 /* Count the struct value address, if it is passed as a parm. */
2492 + structure_value_addr_parm);
2493 else
2494 /* If we know nothing, treat all args as named. */
2495 n_named_args = num_actuals;
2496
2497 /* Start updating where the next arg would go.
2498
2499 On some machines (such as the PA) indirect calls have a different
2500 calling convention than normal calls. The fourth argument in
2501 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2502 or not. */
2503 INIT_CUMULATIVE_ARGS (args_so_far_v, funtype, NULL_RTX, fndecl, n_named_args);
2504 args_so_far = pack_cumulative_args (&args_so_far_v);
2505
2506 /* Now possibly adjust the number of named args.
2507 Normally, don't include the last named arg if anonymous args follow.
2508 We do include the last named arg if
2509 targetm.calls.strict_argument_naming() returns nonzero.
2510 (If no anonymous args follow, the result of list_length is actually
2511 one too large. This is harmless.)
2512
2513 If targetm.calls.pretend_outgoing_varargs_named() returns
2514 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2515 this machine will be able to place unnamed args that were passed
2516 in registers into the stack. So treat all args as named. This
2517 allows the insns emitting for a specific argument list to be
2518 independent of the function declaration.
2519
2520 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2521 we do not have any reliable way to pass unnamed args in
2522 registers, so we must force them into memory. */
2523
2524 if (type_arg_types != 0
2525 && targetm.calls.strict_argument_naming (args_so_far))
2526 ;
2527 else if (type_arg_types != 0
2528 && ! targetm.calls.pretend_outgoing_varargs_named (args_so_far))
2529 /* Don't include the last named arg. */
2530 --n_named_args;
2531 else
2532 /* Treat all args as named. */
2533 n_named_args = num_actuals;
2534
2535 /* Make a vector to hold all the information about each arg. */
2536 args = XALLOCAVEC (struct arg_data, num_actuals);
2537 memset (args, 0, num_actuals * sizeof (struct arg_data));
2538
2539 /* Build up entries in the ARGS array, compute the size of the
2540 arguments into ARGS_SIZE, etc. */
2541 initialize_argument_information (num_actuals, args, &args_size,
2542 n_named_args, exp,
2543 structure_value_addr_value, fndecl, fntype,
2544 args_so_far, reg_parm_stack_space,
2545 &old_stack_level, &old_pending_adj,
2546 &must_preallocate, &flags,
2547 &try_tail_call, CALL_FROM_THUNK_P (exp));
2548
2549 if (args_size.var)
2550 must_preallocate = 1;
2551
2552 /* Now make final decision about preallocating stack space. */
2553 must_preallocate = finalize_must_preallocate (must_preallocate,
2554 num_actuals, args,
2555 &args_size);
2556
2557 /* If the structure value address will reference the stack pointer, we
2558 must stabilize it. We don't need to do this if we know that we are
2559 not going to adjust the stack pointer in processing this call. */
2560
2561 if (structure_value_addr
2562 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2563 || reg_mentioned_p (virtual_outgoing_args_rtx,
2564 structure_value_addr))
2565 && (args_size.var
2566 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2567 structure_value_addr = copy_to_reg (structure_value_addr);
2568
2569 /* Tail calls can make things harder to debug, and we've traditionally
2570 pushed these optimizations into -O2. Don't try if we're already
2571 expanding a call, as that means we're an argument. Don't try if
2572 there's cleanups, as we know there's code to follow the call. */
2573
2574 if (currently_expanding_call++ != 0
2575 || !flag_optimize_sibling_calls
2576 || args_size.var
2577 || dbg_cnt (tail_call) == false)
2578 try_tail_call = 0;
2579
2580 /* Rest of purposes for tail call optimizations to fail. */
2581 if (
2582 #ifdef HAVE_sibcall_epilogue
2583 !HAVE_sibcall_epilogue
2584 #else
2585 1
2586 #endif
2587 || !try_tail_call
2588 /* Doing sibling call optimization needs some work, since
2589 structure_value_addr can be allocated on the stack.
2590 It does not seem worth the effort since few optimizable
2591 sibling calls will return a structure. */
2592 || structure_value_addr != NULL_RTX
2593 #ifdef REG_PARM_STACK_SPACE
2594 /* If outgoing reg parm stack space changes, we can not do sibcall. */
2595 || (OUTGOING_REG_PARM_STACK_SPACE (funtype)
2596 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl)))
2597 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (fndecl))
2598 #endif
2599 /* Check whether the target is able to optimize the call
2600 into a sibcall. */
2601 || !targetm.function_ok_for_sibcall (fndecl, exp)
2602 /* Functions that do not return exactly once may not be sibcall
2603 optimized. */
2604 || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2605 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2606 /* If the called function is nested in the current one, it might access
2607 some of the caller's arguments, but could clobber them beforehand if
2608 the argument areas are shared. */
2609 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2610 /* If this function requires more stack slots than the current
2611 function, we cannot change it into a sibling call.
2612 crtl->args.pretend_args_size is not part of the
2613 stack allocated by our caller. */
2614 || args_size.constant > (crtl->args.size
2615 - crtl->args.pretend_args_size)
2616 /* If the callee pops its own arguments, then it must pop exactly
2617 the same number of arguments as the current function. */
2618 || (targetm.calls.return_pops_args (fndecl, funtype, args_size.constant)
2619 != targetm.calls.return_pops_args (current_function_decl,
2620 TREE_TYPE (current_function_decl),
2621 crtl->args.size))
2622 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2623 try_tail_call = 0;
2624
2625 /* Check if caller and callee disagree in promotion of function
2626 return value. */
2627 if (try_tail_call)
2628 {
2629 enum machine_mode caller_mode, caller_promoted_mode;
2630 enum machine_mode callee_mode, callee_promoted_mode;
2631 int caller_unsignedp, callee_unsignedp;
2632 tree caller_res = DECL_RESULT (current_function_decl);
2633
2634 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
2635 caller_mode = DECL_MODE (caller_res);
2636 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
2637 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
2638 caller_promoted_mode
2639 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
2640 &caller_unsignedp,
2641 TREE_TYPE (current_function_decl), 1);
2642 callee_promoted_mode
2643 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
2644 &callee_unsignedp,
2645 funtype, 1);
2646 if (caller_mode != VOIDmode
2647 && (caller_promoted_mode != callee_promoted_mode
2648 || ((caller_mode != caller_promoted_mode
2649 || callee_mode != callee_promoted_mode)
2650 && (caller_unsignedp != callee_unsignedp
2651 || GET_MODE_BITSIZE (caller_mode)
2652 < GET_MODE_BITSIZE (callee_mode)))))
2653 try_tail_call = 0;
2654 }
2655
2656 /* Ensure current function's preferred stack boundary is at least
2657 what we need. Stack alignment may also increase preferred stack
2658 boundary. */
2659 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
2660 crtl->preferred_stack_boundary = preferred_stack_boundary;
2661 else
2662 preferred_stack_boundary = crtl->preferred_stack_boundary;
2663
2664 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2665
2666 /* We want to make two insn chains; one for a sibling call, the other
2667 for a normal call. We will select one of the two chains after
2668 initial RTL generation is complete. */
2669 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2670 {
2671 int sibcall_failure = 0;
2672 /* We want to emit any pending stack adjustments before the tail
2673 recursion "call". That way we know any adjustment after the tail
2674 recursion call can be ignored if we indeed use the tail
2675 call expansion. */
2676 int save_pending_stack_adjust = 0;
2677 int save_stack_pointer_delta = 0;
2678 rtx insns;
2679 rtx before_call, next_arg_reg, after_args;
2680
2681 if (pass == 0)
2682 {
2683 /* State variables we need to save and restore between
2684 iterations. */
2685 save_pending_stack_adjust = pending_stack_adjust;
2686 save_stack_pointer_delta = stack_pointer_delta;
2687 }
2688 if (pass)
2689 flags &= ~ECF_SIBCALL;
2690 else
2691 flags |= ECF_SIBCALL;
2692
2693 /* Other state variables that we must reinitialize each time
2694 through the loop (that are not initialized by the loop itself). */
2695 argblock = 0;
2696 call_fusage = 0;
2697
2698 /* Start a new sequence for the normal call case.
2699
2700 From this point on, if the sibling call fails, we want to set
2701 sibcall_failure instead of continuing the loop. */
2702 start_sequence ();
2703
2704 /* Don't let pending stack adjusts add up to too much.
2705 Also, do all pending adjustments now if there is any chance
2706 this might be a call to alloca or if we are expanding a sibling
2707 call sequence.
2708 Also do the adjustments before a throwing call, otherwise
2709 exception handling can fail; PR 19225. */
2710 if (pending_stack_adjust >= 32
2711 || (pending_stack_adjust > 0
2712 && (flags & ECF_MAY_BE_ALLOCA))
2713 || (pending_stack_adjust > 0
2714 && flag_exceptions && !(flags & ECF_NOTHROW))
2715 || pass == 0)
2716 do_pending_stack_adjust ();
2717
2718 /* Precompute any arguments as needed. */
2719 if (pass)
2720 precompute_arguments (num_actuals, args);
2721
2722 /* Now we are about to start emitting insns that can be deleted
2723 if a libcall is deleted. */
2724 if (pass && (flags & ECF_MALLOC))
2725 start_sequence ();
2726
2727 if (pass == 0 && crtl->stack_protect_guard)
2728 stack_protect_epilogue ();
2729
2730 adjusted_args_size = args_size;
2731 /* Compute the actual size of the argument block required. The variable
2732 and constant sizes must be combined, the size may have to be rounded,
2733 and there may be a minimum required size. When generating a sibcall
2734 pattern, do not round up, since we'll be re-using whatever space our
2735 caller provided. */
2736 unadjusted_args_size
2737 = compute_argument_block_size (reg_parm_stack_space,
2738 &adjusted_args_size,
2739 fndecl, fntype,
2740 (pass == 0 ? 0
2741 : preferred_stack_boundary));
2742
2743 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2744
2745 /* The argument block when performing a sibling call is the
2746 incoming argument block. */
2747 if (pass == 0)
2748 {
2749 argblock = crtl->args.internal_arg_pointer;
2750 argblock
2751 #ifdef STACK_GROWS_DOWNWARD
2752 = plus_constant (Pmode, argblock, crtl->args.pretend_args_size);
2753 #else
2754 = plus_constant (Pmode, argblock, -crtl->args.pretend_args_size);
2755 #endif
2756 stored_args_map = sbitmap_alloc (args_size.constant);
2757 sbitmap_zero (stored_args_map);
2758 }
2759
2760 /* If we have no actual push instructions, or shouldn't use them,
2761 make space for all args right now. */
2762 else if (adjusted_args_size.var != 0)
2763 {
2764 if (old_stack_level == 0)
2765 {
2766 emit_stack_save (SAVE_BLOCK, &old_stack_level);
2767 old_stack_pointer_delta = stack_pointer_delta;
2768 old_pending_adj = pending_stack_adjust;
2769 pending_stack_adjust = 0;
2770 /* stack_arg_under_construction says whether a stack arg is
2771 being constructed at the old stack level. Pushing the stack
2772 gets a clean outgoing argument block. */
2773 old_stack_arg_under_construction = stack_arg_under_construction;
2774 stack_arg_under_construction = 0;
2775 }
2776 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2777 if (flag_stack_usage_info)
2778 current_function_has_unbounded_dynamic_stack_size = 1;
2779 }
2780 else
2781 {
2782 /* Note that we must go through the motions of allocating an argument
2783 block even if the size is zero because we may be storing args
2784 in the area reserved for register arguments, which may be part of
2785 the stack frame. */
2786
2787 int needed = adjusted_args_size.constant;
2788
2789 /* Store the maximum argument space used. It will be pushed by
2790 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2791 checking). */
2792
2793 if (needed > crtl->outgoing_args_size)
2794 crtl->outgoing_args_size = needed;
2795
2796 if (must_preallocate)
2797 {
2798 if (ACCUMULATE_OUTGOING_ARGS)
2799 {
2800 /* Since the stack pointer will never be pushed, it is
2801 possible for the evaluation of a parm to clobber
2802 something we have already written to the stack.
2803 Since most function calls on RISC machines do not use
2804 the stack, this is uncommon, but must work correctly.
2805
2806 Therefore, we save any area of the stack that was already
2807 written and that we are using. Here we set up to do this
2808 by making a new stack usage map from the old one. The
2809 actual save will be done by store_one_arg.
2810
2811 Another approach might be to try to reorder the argument
2812 evaluations to avoid this conflicting stack usage. */
2813
2814 /* Since we will be writing into the entire argument area,
2815 the map must be allocated for its entire size, not just
2816 the part that is the responsibility of the caller. */
2817 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2818 needed += reg_parm_stack_space;
2819
2820 #ifdef ARGS_GROW_DOWNWARD
2821 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2822 needed + 1);
2823 #else
2824 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2825 needed);
2826 #endif
2827 free (stack_usage_map_buf);
2828 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
2829 stack_usage_map = stack_usage_map_buf;
2830
2831 if (initial_highest_arg_in_use)
2832 memcpy (stack_usage_map, initial_stack_usage_map,
2833 initial_highest_arg_in_use);
2834
2835 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2836 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2837 (highest_outgoing_arg_in_use
2838 - initial_highest_arg_in_use));
2839 needed = 0;
2840
2841 /* The address of the outgoing argument list must not be
2842 copied to a register here, because argblock would be left
2843 pointing to the wrong place after the call to
2844 allocate_dynamic_stack_space below. */
2845
2846 argblock = virtual_outgoing_args_rtx;
2847 }
2848 else
2849 {
2850 if (inhibit_defer_pop == 0)
2851 {
2852 /* Try to reuse some or all of the pending_stack_adjust
2853 to get this space. */
2854 needed
2855 = (combine_pending_stack_adjustment_and_call
2856 (unadjusted_args_size,
2857 &adjusted_args_size,
2858 preferred_unit_stack_boundary));
2859
2860 /* combine_pending_stack_adjustment_and_call computes
2861 an adjustment before the arguments are allocated.
2862 Account for them and see whether or not the stack
2863 needs to go up or down. */
2864 needed = unadjusted_args_size - needed;
2865
2866 if (needed < 0)
2867 {
2868 /* We're releasing stack space. */
2869 /* ??? We can avoid any adjustment at all if we're
2870 already aligned. FIXME. */
2871 pending_stack_adjust = -needed;
2872 do_pending_stack_adjust ();
2873 needed = 0;
2874 }
2875 else
2876 /* We need to allocate space. We'll do that in
2877 push_block below. */
2878 pending_stack_adjust = 0;
2879 }
2880
2881 /* Special case this because overhead of `push_block' in
2882 this case is non-trivial. */
2883 if (needed == 0)
2884 argblock = virtual_outgoing_args_rtx;
2885 else
2886 {
2887 argblock = push_block (GEN_INT (needed), 0, 0);
2888 #ifdef ARGS_GROW_DOWNWARD
2889 argblock = plus_constant (Pmode, argblock, needed);
2890 #endif
2891 }
2892
2893 /* We only really need to call `copy_to_reg' in the case
2894 where push insns are going to be used to pass ARGBLOCK
2895 to a function call in ARGS. In that case, the stack
2896 pointer changes value from the allocation point to the
2897 call point, and hence the value of
2898 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2899 as well always do it. */
2900 argblock = copy_to_reg (argblock);
2901 }
2902 }
2903 }
2904
2905 if (ACCUMULATE_OUTGOING_ARGS)
2906 {
2907 /* The save/restore code in store_one_arg handles all
2908 cases except one: a constructor call (including a C
2909 function returning a BLKmode struct) to initialize
2910 an argument. */
2911 if (stack_arg_under_construction)
2912 {
2913 rtx push_size
2914 = GEN_INT (adjusted_args_size.constant
2915 + (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype
2916 : TREE_TYPE (fndecl))) ? 0
2917 : reg_parm_stack_space));
2918 if (old_stack_level == 0)
2919 {
2920 emit_stack_save (SAVE_BLOCK, &old_stack_level);
2921 old_stack_pointer_delta = stack_pointer_delta;
2922 old_pending_adj = pending_stack_adjust;
2923 pending_stack_adjust = 0;
2924 /* stack_arg_under_construction says whether a stack
2925 arg is being constructed at the old stack level.
2926 Pushing the stack gets a clean outgoing argument
2927 block. */
2928 old_stack_arg_under_construction
2929 = stack_arg_under_construction;
2930 stack_arg_under_construction = 0;
2931 /* Make a new map for the new argument list. */
2932 free (stack_usage_map_buf);
2933 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
2934 stack_usage_map = stack_usage_map_buf;
2935 highest_outgoing_arg_in_use = 0;
2936 }
2937 /* We can pass TRUE as the 4th argument because we just
2938 saved the stack pointer and will restore it right after
2939 the call. */
2940 allocate_dynamic_stack_space (push_size, 0,
2941 BIGGEST_ALIGNMENT, true);
2942 }
2943
2944 /* If argument evaluation might modify the stack pointer,
2945 copy the address of the argument list to a register. */
2946 for (i = 0; i < num_actuals; i++)
2947 if (args[i].pass_on_stack)
2948 {
2949 argblock = copy_addr_to_reg (argblock);
2950 break;
2951 }
2952 }
2953
2954 compute_argument_addresses (args, argblock, num_actuals);
2955
2956 /* If we push args individually in reverse order, perform stack alignment
2957 before the first push (the last arg). */
2958 if (PUSH_ARGS_REVERSED && argblock == 0
2959 && adjusted_args_size.constant != unadjusted_args_size)
2960 {
2961 /* When the stack adjustment is pending, we get better code
2962 by combining the adjustments. */
2963 if (pending_stack_adjust
2964 && ! inhibit_defer_pop)
2965 {
2966 pending_stack_adjust
2967 = (combine_pending_stack_adjustment_and_call
2968 (unadjusted_args_size,
2969 &adjusted_args_size,
2970 preferred_unit_stack_boundary));
2971 do_pending_stack_adjust ();
2972 }
2973 else if (argblock == 0)
2974 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2975 - unadjusted_args_size));
2976 }
2977 /* Now that the stack is properly aligned, pops can't safely
2978 be deferred during the evaluation of the arguments. */
2979 NO_DEFER_POP;
2980
2981 /* Record the maximum pushed stack space size. We need to delay
2982 doing it this far to take into account the optimization done
2983 by combine_pending_stack_adjustment_and_call. */
2984 if (flag_stack_usage_info
2985 && !ACCUMULATE_OUTGOING_ARGS
2986 && pass
2987 && adjusted_args_size.var == 0)
2988 {
2989 int pushed = adjusted_args_size.constant + pending_stack_adjust;
2990 if (pushed > current_function_pushed_stack_size)
2991 current_function_pushed_stack_size = pushed;
2992 }
2993
2994 funexp = rtx_for_function_call (fndecl, addr);
2995
2996 /* Figure out the register where the value, if any, will come back. */
2997 valreg = 0;
2998 if (TYPE_MODE (rettype) != VOIDmode
2999 && ! structure_value_addr)
3000 {
3001 if (pcc_struct_value)
3002 valreg = hard_function_value (build_pointer_type (rettype),
3003 fndecl, NULL, (pass == 0));
3004 else
3005 valreg = hard_function_value (rettype, fndecl, fntype,
3006 (pass == 0));
3007
3008 /* If VALREG is a PARALLEL whose first member has a zero
3009 offset, use that. This is for targets such as m68k that
3010 return the same value in multiple places. */
3011 if (GET_CODE (valreg) == PARALLEL)
3012 {
3013 rtx elem = XVECEXP (valreg, 0, 0);
3014 rtx where = XEXP (elem, 0);
3015 rtx offset = XEXP (elem, 1);
3016 if (offset == const0_rtx
3017 && GET_MODE (where) == GET_MODE (valreg))
3018 valreg = where;
3019 }
3020 }
3021
3022 /* Precompute all register parameters. It isn't safe to compute anything
3023 once we have started filling any specific hard regs. */
3024 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
3025
3026 if (CALL_EXPR_STATIC_CHAIN (exp))
3027 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
3028 else
3029 static_chain_value = 0;
3030
3031 #ifdef REG_PARM_STACK_SPACE
3032 /* Save the fixed argument area if it's part of the caller's frame and
3033 is clobbered by argument setup for this call. */
3034 if (ACCUMULATE_OUTGOING_ARGS && pass)
3035 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3036 &low_to_save, &high_to_save);
3037 #endif
3038
3039 /* Now store (and compute if necessary) all non-register parms.
3040 These come before register parms, since they can require block-moves,
3041 which could clobber the registers used for register parms.
3042 Parms which have partial registers are not stored here,
3043 but we do preallocate space here if they want that. */
3044
3045 for (i = 0; i < num_actuals; i++)
3046 {
3047 if (args[i].reg == 0 || args[i].pass_on_stack)
3048 {
3049 rtx before_arg = get_last_insn ();
3050
3051 if (store_one_arg (&args[i], argblock, flags,
3052 adjusted_args_size.var != 0,
3053 reg_parm_stack_space)
3054 || (pass == 0
3055 && check_sibcall_argument_overlap (before_arg,
3056 &args[i], 1)))
3057 sibcall_failure = 1;
3058 }
3059
3060 if (args[i].stack)
3061 call_fusage
3062 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[i].tree_value)),
3063 gen_rtx_USE (VOIDmode, args[i].stack),
3064 call_fusage);
3065 }
3066
3067 /* If we have a parm that is passed in registers but not in memory
3068 and whose alignment does not permit a direct copy into registers,
3069 make a group of pseudos that correspond to each register that we
3070 will later fill. */
3071 if (STRICT_ALIGNMENT)
3072 store_unaligned_arguments_into_pseudos (args, num_actuals);
3073
3074 /* Now store any partially-in-registers parm.
3075 This is the last place a block-move can happen. */
3076 if (reg_parm_seen)
3077 for (i = 0; i < num_actuals; i++)
3078 if (args[i].partial != 0 && ! args[i].pass_on_stack)
3079 {
3080 rtx before_arg = get_last_insn ();
3081
3082 if (store_one_arg (&args[i], argblock, flags,
3083 adjusted_args_size.var != 0,
3084 reg_parm_stack_space)
3085 || (pass == 0
3086 && check_sibcall_argument_overlap (before_arg,
3087 &args[i], 1)))
3088 sibcall_failure = 1;
3089 }
3090
3091 /* If we pushed args in forward order, perform stack alignment
3092 after pushing the last arg. */
3093 if (!PUSH_ARGS_REVERSED && argblock == 0)
3094 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
3095 - unadjusted_args_size));
3096
3097 /* If register arguments require space on the stack and stack space
3098 was not preallocated, allocate stack space here for arguments
3099 passed in registers. */
3100 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
3101 && !ACCUMULATE_OUTGOING_ARGS
3102 && must_preallocate == 0 && reg_parm_stack_space > 0)
3103 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
3104
3105 /* Pass the function the address in which to return a
3106 structure value. */
3107 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
3108 {
3109 structure_value_addr
3110 = convert_memory_address (Pmode, structure_value_addr);
3111 emit_move_insn (struct_value,
3112 force_reg (Pmode,
3113 force_operand (structure_value_addr,
3114 NULL_RTX)));
3115
3116 if (REG_P (struct_value))
3117 use_reg (&call_fusage, struct_value);
3118 }
3119
3120 after_args = get_last_insn ();
3121 funexp = prepare_call_address (fndecl, funexp, static_chain_value,
3122 &call_fusage, reg_parm_seen, pass == 0);
3123
3124 load_register_parameters (args, num_actuals, &call_fusage, flags,
3125 pass == 0, &sibcall_failure);
3126
3127 /* Save a pointer to the last insn before the call, so that we can
3128 later safely search backwards to find the CALL_INSN. */
3129 before_call = get_last_insn ();
3130
3131 /* Set up next argument register. For sibling calls on machines
3132 with register windows this should be the incoming register. */
3133 if (pass == 0)
3134 next_arg_reg = targetm.calls.function_incoming_arg (args_so_far,
3135 VOIDmode,
3136 void_type_node,
3137 true);
3138 else
3139 next_arg_reg = targetm.calls.function_arg (args_so_far,
3140 VOIDmode, void_type_node,
3141 true);
3142
3143 if (pass == 1 && (return_flags & ERF_RETURNS_ARG))
3144 {
3145 int arg_nr = return_flags & ERF_RETURN_ARG_MASK;
3146 if (PUSH_ARGS_REVERSED)
3147 arg_nr = num_actuals - arg_nr - 1;
3148 if (args[arg_nr].reg
3149 && valreg
3150 && REG_P (valreg)
3151 && GET_MODE (args[arg_nr].reg) == GET_MODE (valreg))
3152 call_fusage
3153 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[arg_nr].tree_value)),
3154 gen_rtx_SET (VOIDmode, valreg, args[arg_nr].reg),
3155 call_fusage);
3156 }
3157 /* All arguments and registers used for the call must be set up by
3158 now! */
3159
3160 /* Stack must be properly aligned now. */
3161 gcc_assert (!pass
3162 || !(stack_pointer_delta % preferred_unit_stack_boundary));
3163
3164 /* Generate the actual call instruction. */
3165 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
3166 adjusted_args_size.constant, struct_value_size,
3167 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
3168 flags, args_so_far);
3169
3170 /* If the call setup or the call itself overlaps with anything
3171 of the argument setup we probably clobbered our call address.
3172 In that case we can't do sibcalls. */
3173 if (pass == 0
3174 && check_sibcall_argument_overlap (after_args, 0, 0))
3175 sibcall_failure = 1;
3176
3177 /* If a non-BLKmode value is returned at the most significant end
3178 of a register, shift the register right by the appropriate amount
3179 and update VALREG accordingly. BLKmode values are handled by the
3180 group load/store machinery below. */
3181 if (!structure_value_addr
3182 && !pcc_struct_value
3183 && TYPE_MODE (rettype) != BLKmode
3184 && targetm.calls.return_in_msb (rettype))
3185 {
3186 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
3187 sibcall_failure = 1;
3188 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
3189 }
3190
3191 if (pass && (flags & ECF_MALLOC))
3192 {
3193 rtx temp = gen_reg_rtx (GET_MODE (valreg));
3194 rtx last, insns;
3195
3196 /* The return value from a malloc-like function is a pointer. */
3197 if (TREE_CODE (rettype) == POINTER_TYPE)
3198 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
3199
3200 emit_move_insn (temp, valreg);
3201
3202 /* The return value from a malloc-like function can not alias
3203 anything else. */
3204 last = get_last_insn ();
3205 add_reg_note (last, REG_NOALIAS, temp);
3206
3207 /* Write out the sequence. */
3208 insns = get_insns ();
3209 end_sequence ();
3210 emit_insn (insns);
3211 valreg = temp;
3212 }
3213
3214 /* For calls to `setjmp', etc., inform
3215 function.c:setjmp_warnings that it should complain if
3216 nonvolatile values are live. For functions that cannot
3217 return, inform flow that control does not fall through. */
3218
3219 if ((flags & ECF_NORETURN) || pass == 0)
3220 {
3221 /* The barrier must be emitted
3222 immediately after the CALL_INSN. Some ports emit more
3223 than just a CALL_INSN above, so we must search for it here. */
3224
3225 rtx last = get_last_insn ();
3226 while (!CALL_P (last))
3227 {
3228 last = PREV_INSN (last);
3229 /* There was no CALL_INSN? */
3230 gcc_assert (last != before_call);
3231 }
3232
3233 emit_barrier_after (last);
3234
3235 /* Stack adjustments after a noreturn call are dead code.
3236 However when NO_DEFER_POP is in effect, we must preserve
3237 stack_pointer_delta. */
3238 if (inhibit_defer_pop == 0)
3239 {
3240 stack_pointer_delta = old_stack_allocated;
3241 pending_stack_adjust = 0;
3242 }
3243 }
3244
3245 /* If value type not void, return an rtx for the value. */
3246
3247 if (TYPE_MODE (rettype) == VOIDmode
3248 || ignore)
3249 target = const0_rtx;
3250 else if (structure_value_addr)
3251 {
3252 if (target == 0 || !MEM_P (target))
3253 {
3254 target
3255 = gen_rtx_MEM (TYPE_MODE (rettype),
3256 memory_address (TYPE_MODE (rettype),
3257 structure_value_addr));
3258 set_mem_attributes (target, rettype, 1);
3259 }
3260 }
3261 else if (pcc_struct_value)
3262 {
3263 /* This is the special C++ case where we need to
3264 know what the true target was. We take care to
3265 never use this value more than once in one expression. */
3266 target = gen_rtx_MEM (TYPE_MODE (rettype),
3267 copy_to_reg (valreg));
3268 set_mem_attributes (target, rettype, 1);
3269 }
3270 /* Handle calls that return values in multiple non-contiguous locations.
3271 The Irix 6 ABI has examples of this. */
3272 else if (GET_CODE (valreg) == PARALLEL)
3273 {
3274 if (target == 0)
3275 target = emit_group_move_into_temps (valreg);
3276 else if (!rtx_equal_p (target, valreg))
3277 emit_group_store (target, valreg, rettype,
3278 int_size_in_bytes (rettype));
3279
3280 /* We can not support sibling calls for this case. */
3281 sibcall_failure = 1;
3282 }
3283 else if (target
3284 && GET_MODE (target) == TYPE_MODE (rettype)
3285 && GET_MODE (target) == GET_MODE (valreg))
3286 {
3287 bool may_overlap = false;
3288
3289 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
3290 reg to a plain register. */
3291 if (!REG_P (target) || HARD_REGISTER_P (target))
3292 valreg = avoid_likely_spilled_reg (valreg);
3293
3294 /* If TARGET is a MEM in the argument area, and we have
3295 saved part of the argument area, then we can't store
3296 directly into TARGET as it may get overwritten when we
3297 restore the argument save area below. Don't work too
3298 hard though and simply force TARGET to a register if it
3299 is a MEM; the optimizer is quite likely to sort it out. */
3300 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
3301 for (i = 0; i < num_actuals; i++)
3302 if (args[i].save_area)
3303 {
3304 may_overlap = true;
3305 break;
3306 }
3307
3308 if (may_overlap)
3309 target = copy_to_reg (valreg);
3310 else
3311 {
3312 /* TARGET and VALREG cannot be equal at this point
3313 because the latter would not have
3314 REG_FUNCTION_VALUE_P true, while the former would if
3315 it were referring to the same register.
3316
3317 If they refer to the same register, this move will be
3318 a no-op, except when function inlining is being
3319 done. */
3320 emit_move_insn (target, valreg);
3321
3322 /* If we are setting a MEM, this code must be executed.
3323 Since it is emitted after the call insn, sibcall
3324 optimization cannot be performed in that case. */
3325 if (MEM_P (target))
3326 sibcall_failure = 1;
3327 }
3328 }
3329 else if (TYPE_MODE (rettype) == BLKmode)
3330 {
3331 rtx val = valreg;
3332 if (GET_MODE (val) != BLKmode)
3333 val = avoid_likely_spilled_reg (val);
3334 target = copy_blkmode_from_reg (target, val, rettype);
3335
3336 /* We can not support sibling calls for this case. */
3337 sibcall_failure = 1;
3338 }
3339 else
3340 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
3341
3342 /* If we promoted this return value, make the proper SUBREG.
3343 TARGET might be const0_rtx here, so be careful. */
3344 if (REG_P (target)
3345 && TYPE_MODE (rettype) != BLKmode
3346 && GET_MODE (target) != TYPE_MODE (rettype))
3347 {
3348 tree type = rettype;
3349 int unsignedp = TYPE_UNSIGNED (type);
3350 int offset = 0;
3351 enum machine_mode pmode;
3352
3353 /* Ensure we promote as expected, and get the new unsignedness. */
3354 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
3355 funtype, 1);
3356 gcc_assert (GET_MODE (target) == pmode);
3357
3358 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
3359 && (GET_MODE_SIZE (GET_MODE (target))
3360 > GET_MODE_SIZE (TYPE_MODE (type))))
3361 {
3362 offset = GET_MODE_SIZE (GET_MODE (target))
3363 - GET_MODE_SIZE (TYPE_MODE (type));
3364 if (! BYTES_BIG_ENDIAN)
3365 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
3366 else if (! WORDS_BIG_ENDIAN)
3367 offset %= UNITS_PER_WORD;
3368 }
3369
3370 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
3371 SUBREG_PROMOTED_VAR_P (target) = 1;
3372 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
3373 }
3374
3375 /* If size of args is variable or this was a constructor call for a stack
3376 argument, restore saved stack-pointer value. */
3377
3378 if (old_stack_level)
3379 {
3380 rtx prev = get_last_insn ();
3381
3382 emit_stack_restore (SAVE_BLOCK, old_stack_level);
3383 stack_pointer_delta = old_stack_pointer_delta;
3384
3385 fixup_args_size_notes (prev, get_last_insn (), stack_pointer_delta);
3386
3387 pending_stack_adjust = old_pending_adj;
3388 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3389 stack_arg_under_construction = old_stack_arg_under_construction;
3390 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3391 stack_usage_map = initial_stack_usage_map;
3392 sibcall_failure = 1;
3393 }
3394 else if (ACCUMULATE_OUTGOING_ARGS && pass)
3395 {
3396 #ifdef REG_PARM_STACK_SPACE
3397 if (save_area)
3398 restore_fixed_argument_area (save_area, argblock,
3399 high_to_save, low_to_save);
3400 #endif
3401
3402 /* If we saved any argument areas, restore them. */
3403 for (i = 0; i < num_actuals; i++)
3404 if (args[i].save_area)
3405 {
3406 enum machine_mode save_mode = GET_MODE (args[i].save_area);
3407 rtx stack_area
3408 = gen_rtx_MEM (save_mode,
3409 memory_address (save_mode,
3410 XEXP (args[i].stack_slot, 0)));
3411
3412 if (save_mode != BLKmode)
3413 emit_move_insn (stack_area, args[i].save_area);
3414 else
3415 emit_block_move (stack_area, args[i].save_area,
3416 GEN_INT (args[i].locate.size.constant),
3417 BLOCK_OP_CALL_PARM);
3418 }
3419
3420 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3421 stack_usage_map = initial_stack_usage_map;
3422 }
3423
3424 /* If this was alloca, record the new stack level for nonlocal gotos.
3425 Check for the handler slots since we might not have a save area
3426 for non-local gotos. */
3427
3428 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
3429 update_nonlocal_goto_save_area ();
3430
3431 /* Free up storage we no longer need. */
3432 for (i = 0; i < num_actuals; ++i)
3433 free (args[i].aligned_regs);
3434
3435 insns = get_insns ();
3436 end_sequence ();
3437
3438 if (pass == 0)
3439 {
3440 tail_call_insns = insns;
3441
3442 /* Restore the pending stack adjustment now that we have
3443 finished generating the sibling call sequence. */
3444
3445 pending_stack_adjust = save_pending_stack_adjust;
3446 stack_pointer_delta = save_stack_pointer_delta;
3447
3448 /* Prepare arg structure for next iteration. */
3449 for (i = 0; i < num_actuals; i++)
3450 {
3451 args[i].value = 0;
3452 args[i].aligned_regs = 0;
3453 args[i].stack = 0;
3454 }
3455
3456 sbitmap_free (stored_args_map);
3457 internal_arg_pointer_exp_state.scan_start = NULL_RTX;
3458 VEC_free (rtx, heap, internal_arg_pointer_exp_state.cache);
3459 }
3460 else
3461 {
3462 normal_call_insns = insns;
3463
3464 /* Verify that we've deallocated all the stack we used. */
3465 gcc_assert ((flags & ECF_NORETURN)
3466 || (old_stack_allocated
3467 == stack_pointer_delta - pending_stack_adjust));
3468 }
3469
3470 /* If something prevents making this a sibling call,
3471 zero out the sequence. */
3472 if (sibcall_failure)
3473 tail_call_insns = NULL_RTX;
3474 else
3475 break;
3476 }
3477
3478 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3479 arguments too, as argument area is now clobbered by the call. */
3480 if (tail_call_insns)
3481 {
3482 emit_insn (tail_call_insns);
3483 crtl->tail_call_emit = true;
3484 }
3485 else
3486 emit_insn (normal_call_insns);
3487
3488 currently_expanding_call--;
3489
3490 free (stack_usage_map_buf);
3491
3492 return target;
3493 }
3494
3495 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3496 this function's incoming arguments.
3497
3498 At the start of RTL generation we know the only REG_EQUIV notes
3499 in the rtl chain are those for incoming arguments, so we can look
3500 for REG_EQUIV notes between the start of the function and the
3501 NOTE_INSN_FUNCTION_BEG.
3502
3503 This is (slight) overkill. We could keep track of the highest
3504 argument we clobber and be more selective in removing notes, but it
3505 does not seem to be worth the effort. */
3506
3507 void
3508 fixup_tail_calls (void)
3509 {
3510 rtx insn;
3511
3512 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3513 {
3514 rtx note;
3515
3516 /* There are never REG_EQUIV notes for the incoming arguments
3517 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
3518 if (NOTE_P (insn)
3519 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3520 break;
3521
3522 note = find_reg_note (insn, REG_EQUIV, 0);
3523 if (note)
3524 remove_note (insn, note);
3525 note = find_reg_note (insn, REG_EQUIV, 0);
3526 gcc_assert (!note);
3527 }
3528 }
3529
3530 /* Traverse a list of TYPES and expand all complex types into their
3531 components. */
3532 static tree
3533 split_complex_types (tree types)
3534 {
3535 tree p;
3536
3537 /* Before allocating memory, check for the common case of no complex. */
3538 for (p = types; p; p = TREE_CHAIN (p))
3539 {
3540 tree type = TREE_VALUE (p);
3541 if (TREE_CODE (type) == COMPLEX_TYPE
3542 && targetm.calls.split_complex_arg (type))
3543 goto found;
3544 }
3545 return types;
3546
3547 found:
3548 types = copy_list (types);
3549
3550 for (p = types; p; p = TREE_CHAIN (p))
3551 {
3552 tree complex_type = TREE_VALUE (p);
3553
3554 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3555 && targetm.calls.split_complex_arg (complex_type))
3556 {
3557 tree next, imag;
3558
3559 /* Rewrite complex type with component type. */
3560 TREE_VALUE (p) = TREE_TYPE (complex_type);
3561 next = TREE_CHAIN (p);
3562
3563 /* Add another component type for the imaginary part. */
3564 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3565 TREE_CHAIN (p) = imag;
3566 TREE_CHAIN (imag) = next;
3567
3568 /* Skip the newly created node. */
3569 p = TREE_CHAIN (p);
3570 }
3571 }
3572
3573 return types;
3574 }
3575 \f
3576 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3577 The RETVAL parameter specifies whether return value needs to be saved, other
3578 parameters are documented in the emit_library_call function below. */
3579
3580 static rtx
3581 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3582 enum libcall_type fn_type,
3583 enum machine_mode outmode, int nargs, va_list p)
3584 {
3585 /* Total size in bytes of all the stack-parms scanned so far. */
3586 struct args_size args_size;
3587 /* Size of arguments before any adjustments (such as rounding). */
3588 struct args_size original_args_size;
3589 int argnum;
3590 rtx fun;
3591 /* Todo, choose the correct decl type of orgfun. Sadly this information
3592 isn't present here, so we default to native calling abi here. */
3593 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3594 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3595 int inc;
3596 int count;
3597 rtx argblock = 0;
3598 CUMULATIVE_ARGS args_so_far_v;
3599 cumulative_args_t args_so_far;
3600 struct arg
3601 {
3602 rtx value;
3603 enum machine_mode mode;
3604 rtx reg;
3605 int partial;
3606 struct locate_and_pad_arg_data locate;
3607 rtx save_area;
3608 };
3609 struct arg *argvec;
3610 int old_inhibit_defer_pop = inhibit_defer_pop;
3611 rtx call_fusage = 0;
3612 rtx mem_value = 0;
3613 rtx valreg;
3614 int pcc_struct_value = 0;
3615 int struct_value_size = 0;
3616 int flags;
3617 int reg_parm_stack_space = 0;
3618 int needed;
3619 rtx before_call;
3620 tree tfom; /* type_for_mode (outmode, 0) */
3621
3622 #ifdef REG_PARM_STACK_SPACE
3623 /* Define the boundary of the register parm stack space that needs to be
3624 save, if any. */
3625 int low_to_save = 0, high_to_save = 0;
3626 rtx save_area = 0; /* Place that it is saved. */
3627 #endif
3628
3629 /* Size of the stack reserved for parameter registers. */
3630 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3631 char *initial_stack_usage_map = stack_usage_map;
3632 char *stack_usage_map_buf = NULL;
3633
3634 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3635
3636 #ifdef REG_PARM_STACK_SPACE
3637 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3638 #endif
3639
3640 /* By default, library functions can not throw. */
3641 flags = ECF_NOTHROW;
3642
3643 switch (fn_type)
3644 {
3645 case LCT_NORMAL:
3646 break;
3647 case LCT_CONST:
3648 flags |= ECF_CONST;
3649 break;
3650 case LCT_PURE:
3651 flags |= ECF_PURE;
3652 break;
3653 case LCT_NORETURN:
3654 flags |= ECF_NORETURN;
3655 break;
3656 case LCT_THROW:
3657 flags = ECF_NORETURN;
3658 break;
3659 case LCT_RETURNS_TWICE:
3660 flags = ECF_RETURNS_TWICE;
3661 break;
3662 }
3663 fun = orgfun;
3664
3665 /* Ensure current function's preferred stack boundary is at least
3666 what we need. */
3667 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3668 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3669
3670 /* If this kind of value comes back in memory,
3671 decide where in memory it should come back. */
3672 if (outmode != VOIDmode)
3673 {
3674 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3675 if (aggregate_value_p (tfom, 0))
3676 {
3677 #ifdef PCC_STATIC_STRUCT_RETURN
3678 rtx pointer_reg
3679 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
3680 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3681 pcc_struct_value = 1;
3682 if (value == 0)
3683 value = gen_reg_rtx (outmode);
3684 #else /* not PCC_STATIC_STRUCT_RETURN */
3685 struct_value_size = GET_MODE_SIZE (outmode);
3686 if (value != 0 && MEM_P (value))
3687 mem_value = value;
3688 else
3689 mem_value = assign_temp (tfom, 1, 1);
3690 #endif
3691 /* This call returns a big structure. */
3692 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3693 }
3694 }
3695 else
3696 tfom = void_type_node;
3697
3698 /* ??? Unfinished: must pass the memory address as an argument. */
3699
3700 /* Copy all the libcall-arguments out of the varargs data
3701 and into a vector ARGVEC.
3702
3703 Compute how to pass each argument. We only support a very small subset
3704 of the full argument passing conventions to limit complexity here since
3705 library functions shouldn't have many args. */
3706
3707 argvec = XALLOCAVEC (struct arg, nargs + 1);
3708 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3709
3710 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3711 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far_v, outmode, fun);
3712 #else
3713 INIT_CUMULATIVE_ARGS (args_so_far_v, NULL_TREE, fun, 0, nargs);
3714 #endif
3715 args_so_far = pack_cumulative_args (&args_so_far_v);
3716
3717 args_size.constant = 0;
3718 args_size.var = 0;
3719
3720 count = 0;
3721
3722 push_temp_slots ();
3723
3724 /* If there's a structure value address to be passed,
3725 either pass it in the special place, or pass it as an extra argument. */
3726 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3727 {
3728 rtx addr = XEXP (mem_value, 0);
3729
3730 nargs++;
3731
3732 /* Make sure it is a reasonable operand for a move or push insn. */
3733 if (!REG_P (addr) && !MEM_P (addr)
3734 && !(CONSTANT_P (addr)
3735 && targetm.legitimate_constant_p (Pmode, addr)))
3736 addr = force_operand (addr, NULL_RTX);
3737
3738 argvec[count].value = addr;
3739 argvec[count].mode = Pmode;
3740 argvec[count].partial = 0;
3741
3742 argvec[count].reg = targetm.calls.function_arg (args_so_far,
3743 Pmode, NULL_TREE, true);
3744 gcc_assert (targetm.calls.arg_partial_bytes (args_so_far, Pmode,
3745 NULL_TREE, 1) == 0);
3746
3747 locate_and_pad_parm (Pmode, NULL_TREE,
3748 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3749 1,
3750 #else
3751 argvec[count].reg != 0,
3752 #endif
3753 0, NULL_TREE, &args_size, &argvec[count].locate);
3754
3755 if (argvec[count].reg == 0 || argvec[count].partial != 0
3756 || reg_parm_stack_space > 0)
3757 args_size.constant += argvec[count].locate.size.constant;
3758
3759 targetm.calls.function_arg_advance (args_so_far, Pmode, (tree) 0, true);
3760
3761 count++;
3762 }
3763
3764 for (; count < nargs; count++)
3765 {
3766 rtx val = va_arg (p, rtx);
3767 enum machine_mode mode = (enum machine_mode) va_arg (p, int);
3768 int unsigned_p = 0;
3769
3770 /* We cannot convert the arg value to the mode the library wants here;
3771 must do it earlier where we know the signedness of the arg. */
3772 gcc_assert (mode != BLKmode
3773 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3774
3775 /* Make sure it is a reasonable operand for a move or push insn. */
3776 if (!REG_P (val) && !MEM_P (val)
3777 && !(CONSTANT_P (val) && targetm.legitimate_constant_p (mode, val)))
3778 val = force_operand (val, NULL_RTX);
3779
3780 if (pass_by_reference (&args_so_far_v, mode, NULL_TREE, 1))
3781 {
3782 rtx slot;
3783 int must_copy
3784 = !reference_callee_copied (&args_so_far_v, mode, NULL_TREE, 1);
3785
3786 /* If this was a CONST function, it is now PURE since it now
3787 reads memory. */
3788 if (flags & ECF_CONST)
3789 {
3790 flags &= ~ECF_CONST;
3791 flags |= ECF_PURE;
3792 }
3793
3794 if (MEM_P (val) && !must_copy)
3795 {
3796 tree val_expr = MEM_EXPR (val);
3797 if (val_expr)
3798 mark_addressable (val_expr);
3799 slot = val;
3800 }
3801 else
3802 {
3803 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3804 1, 1);
3805 emit_move_insn (slot, val);
3806 }
3807
3808 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3809 gen_rtx_USE (VOIDmode, slot),
3810 call_fusage);
3811 if (must_copy)
3812 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3813 gen_rtx_CLOBBER (VOIDmode,
3814 slot),
3815 call_fusage);
3816
3817 mode = Pmode;
3818 val = force_operand (XEXP (slot, 0), NULL_RTX);
3819 }
3820
3821 mode = promote_function_mode (NULL_TREE, mode, &unsigned_p, NULL_TREE, 0);
3822 argvec[count].mode = mode;
3823 argvec[count].value = convert_modes (mode, GET_MODE (val), val, unsigned_p);
3824 argvec[count].reg = targetm.calls.function_arg (args_so_far, mode,
3825 NULL_TREE, true);
3826
3827 argvec[count].partial
3828 = targetm.calls.arg_partial_bytes (args_so_far, mode, NULL_TREE, 1);
3829
3830 if (argvec[count].reg == 0
3831 || argvec[count].partial != 0
3832 || reg_parm_stack_space > 0)
3833 {
3834 locate_and_pad_parm (mode, NULL_TREE,
3835 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3836 1,
3837 #else
3838 argvec[count].reg != 0,
3839 #endif
3840 argvec[count].partial,
3841 NULL_TREE, &args_size, &argvec[count].locate);
3842 args_size.constant += argvec[count].locate.size.constant;
3843 gcc_assert (!argvec[count].locate.size.var);
3844 }
3845 #ifdef BLOCK_REG_PADDING
3846 else
3847 /* The argument is passed entirely in registers. See at which
3848 end it should be padded. */
3849 argvec[count].locate.where_pad =
3850 BLOCK_REG_PADDING (mode, NULL_TREE,
3851 GET_MODE_SIZE (mode) <= UNITS_PER_WORD);
3852 #endif
3853
3854 targetm.calls.function_arg_advance (args_so_far, mode, (tree) 0, true);
3855 }
3856
3857 /* If this machine requires an external definition for library
3858 functions, write one out. */
3859 assemble_external_libcall (fun);
3860
3861 original_args_size = args_size;
3862 args_size.constant = (((args_size.constant
3863 + stack_pointer_delta
3864 + STACK_BYTES - 1)
3865 / STACK_BYTES
3866 * STACK_BYTES)
3867 - stack_pointer_delta);
3868
3869 args_size.constant = MAX (args_size.constant,
3870 reg_parm_stack_space);
3871
3872 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3873 args_size.constant -= reg_parm_stack_space;
3874
3875 if (args_size.constant > crtl->outgoing_args_size)
3876 crtl->outgoing_args_size = args_size.constant;
3877
3878 if (flag_stack_usage_info && !ACCUMULATE_OUTGOING_ARGS)
3879 {
3880 int pushed = args_size.constant + pending_stack_adjust;
3881 if (pushed > current_function_pushed_stack_size)
3882 current_function_pushed_stack_size = pushed;
3883 }
3884
3885 if (ACCUMULATE_OUTGOING_ARGS)
3886 {
3887 /* Since the stack pointer will never be pushed, it is possible for
3888 the evaluation of a parm to clobber something we have already
3889 written to the stack. Since most function calls on RISC machines
3890 do not use the stack, this is uncommon, but must work correctly.
3891
3892 Therefore, we save any area of the stack that was already written
3893 and that we are using. Here we set up to do this by making a new
3894 stack usage map from the old one.
3895
3896 Another approach might be to try to reorder the argument
3897 evaluations to avoid this conflicting stack usage. */
3898
3899 needed = args_size.constant;
3900
3901 /* Since we will be writing into the entire argument area, the
3902 map must be allocated for its entire size, not just the part that
3903 is the responsibility of the caller. */
3904 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3905 needed += reg_parm_stack_space;
3906
3907 #ifdef ARGS_GROW_DOWNWARD
3908 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3909 needed + 1);
3910 #else
3911 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3912 needed);
3913 #endif
3914 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3915 stack_usage_map = stack_usage_map_buf;
3916
3917 if (initial_highest_arg_in_use)
3918 memcpy (stack_usage_map, initial_stack_usage_map,
3919 initial_highest_arg_in_use);
3920
3921 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3922 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3923 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3924 needed = 0;
3925
3926 /* We must be careful to use virtual regs before they're instantiated,
3927 and real regs afterwards. Loop optimization, for example, can create
3928 new libcalls after we've instantiated the virtual regs, and if we
3929 use virtuals anyway, they won't match the rtl patterns. */
3930
3931 if (virtuals_instantiated)
3932 argblock = plus_constant (Pmode, stack_pointer_rtx,
3933 STACK_POINTER_OFFSET);
3934 else
3935 argblock = virtual_outgoing_args_rtx;
3936 }
3937 else
3938 {
3939 if (!PUSH_ARGS)
3940 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3941 }
3942
3943 /* If we push args individually in reverse order, perform stack alignment
3944 before the first push (the last arg). */
3945 if (argblock == 0 && PUSH_ARGS_REVERSED)
3946 anti_adjust_stack (GEN_INT (args_size.constant
3947 - original_args_size.constant));
3948
3949 if (PUSH_ARGS_REVERSED)
3950 {
3951 inc = -1;
3952 argnum = nargs - 1;
3953 }
3954 else
3955 {
3956 inc = 1;
3957 argnum = 0;
3958 }
3959
3960 #ifdef REG_PARM_STACK_SPACE
3961 if (ACCUMULATE_OUTGOING_ARGS)
3962 {
3963 /* The argument list is the property of the called routine and it
3964 may clobber it. If the fixed area has been used for previous
3965 parameters, we must save and restore it. */
3966 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3967 &low_to_save, &high_to_save);
3968 }
3969 #endif
3970
3971 /* Push the args that need to be pushed. */
3972
3973 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3974 are to be pushed. */
3975 for (count = 0; count < nargs; count++, argnum += inc)
3976 {
3977 enum machine_mode mode = argvec[argnum].mode;
3978 rtx val = argvec[argnum].value;
3979 rtx reg = argvec[argnum].reg;
3980 int partial = argvec[argnum].partial;
3981 unsigned int parm_align = argvec[argnum].locate.boundary;
3982 int lower_bound = 0, upper_bound = 0, i;
3983
3984 if (! (reg != 0 && partial == 0))
3985 {
3986 rtx use;
3987
3988 if (ACCUMULATE_OUTGOING_ARGS)
3989 {
3990 /* If this is being stored into a pre-allocated, fixed-size,
3991 stack area, save any previous data at that location. */
3992
3993 #ifdef ARGS_GROW_DOWNWARD
3994 /* stack_slot is negative, but we want to index stack_usage_map
3995 with positive values. */
3996 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
3997 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3998 #else
3999 lower_bound = argvec[argnum].locate.slot_offset.constant;
4000 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
4001 #endif
4002
4003 i = lower_bound;
4004 /* Don't worry about things in the fixed argument area;
4005 it has already been saved. */
4006 if (i < reg_parm_stack_space)
4007 i = reg_parm_stack_space;
4008 while (i < upper_bound && stack_usage_map[i] == 0)
4009 i++;
4010
4011 if (i < upper_bound)
4012 {
4013 /* We need to make a save area. */
4014 unsigned int size
4015 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
4016 enum machine_mode save_mode
4017 = mode_for_size (size, MODE_INT, 1);
4018 rtx adr
4019 = plus_constant (Pmode, argblock,
4020 argvec[argnum].locate.offset.constant);
4021 rtx stack_area
4022 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
4023
4024 if (save_mode == BLKmode)
4025 {
4026 argvec[argnum].save_area
4027 = assign_stack_temp (BLKmode,
4028 argvec[argnum].locate.size.constant
4029 );
4030
4031 emit_block_move (validize_mem (argvec[argnum].save_area),
4032 stack_area,
4033 GEN_INT (argvec[argnum].locate.size.constant),
4034 BLOCK_OP_CALL_PARM);
4035 }
4036 else
4037 {
4038 argvec[argnum].save_area = gen_reg_rtx (save_mode);
4039
4040 emit_move_insn (argvec[argnum].save_area, stack_area);
4041 }
4042 }
4043 }
4044
4045 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
4046 partial, reg, 0, argblock,
4047 GEN_INT (argvec[argnum].locate.offset.constant),
4048 reg_parm_stack_space,
4049 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
4050
4051 /* Now mark the segment we just used. */
4052 if (ACCUMULATE_OUTGOING_ARGS)
4053 for (i = lower_bound; i < upper_bound; i++)
4054 stack_usage_map[i] = 1;
4055
4056 NO_DEFER_POP;
4057
4058 /* Indicate argument access so that alias.c knows that these
4059 values are live. */
4060 if (argblock)
4061 use = plus_constant (Pmode, argblock,
4062 argvec[argnum].locate.offset.constant);
4063 else
4064 /* When arguments are pushed, trying to tell alias.c where
4065 exactly this argument is won't work, because the
4066 auto-increment causes confusion. So we merely indicate
4067 that we access something with a known mode somewhere on
4068 the stack. */
4069 use = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4070 gen_rtx_SCRATCH (Pmode));
4071 use = gen_rtx_MEM (argvec[argnum].mode, use);
4072 use = gen_rtx_USE (VOIDmode, use);
4073 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
4074 }
4075 }
4076
4077 /* If we pushed args in forward order, perform stack alignment
4078 after pushing the last arg. */
4079 if (argblock == 0 && !PUSH_ARGS_REVERSED)
4080 anti_adjust_stack (GEN_INT (args_size.constant
4081 - original_args_size.constant));
4082
4083 if (PUSH_ARGS_REVERSED)
4084 argnum = nargs - 1;
4085 else
4086 argnum = 0;
4087
4088 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
4089
4090 /* Now load any reg parms into their regs. */
4091
4092 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
4093 are to be pushed. */
4094 for (count = 0; count < nargs; count++, argnum += inc)
4095 {
4096 enum machine_mode mode = argvec[argnum].mode;
4097 rtx val = argvec[argnum].value;
4098 rtx reg = argvec[argnum].reg;
4099 int partial = argvec[argnum].partial;
4100 #ifdef BLOCK_REG_PADDING
4101 int size = 0;
4102 #endif
4103
4104 /* Handle calls that pass values in multiple non-contiguous
4105 locations. The PA64 has examples of this for library calls. */
4106 if (reg != 0 && GET_CODE (reg) == PARALLEL)
4107 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
4108 else if (reg != 0 && partial == 0)
4109 {
4110 emit_move_insn (reg, val);
4111 #ifdef BLOCK_REG_PADDING
4112 size = GET_MODE_SIZE (argvec[argnum].mode);
4113
4114 /* Copied from load_register_parameters. */
4115
4116 /* Handle case where we have a value that needs shifting
4117 up to the msb. eg. a QImode value and we're padding
4118 upward on a BYTES_BIG_ENDIAN machine. */
4119 if (size < UNITS_PER_WORD
4120 && (argvec[argnum].locate.where_pad
4121 == (BYTES_BIG_ENDIAN ? upward : downward)))
4122 {
4123 rtx x;
4124 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
4125
4126 /* Assigning REG here rather than a temp makes CALL_FUSAGE
4127 report the whole reg as used. Strictly speaking, the
4128 call only uses SIZE bytes at the msb end, but it doesn't
4129 seem worth generating rtl to say that. */
4130 reg = gen_rtx_REG (word_mode, REGNO (reg));
4131 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
4132 if (x != reg)
4133 emit_move_insn (reg, x);
4134 }
4135 #endif
4136 }
4137
4138 NO_DEFER_POP;
4139 }
4140
4141 /* Any regs containing parms remain in use through the call. */
4142 for (count = 0; count < nargs; count++)
4143 {
4144 rtx reg = argvec[count].reg;
4145 if (reg != 0 && GET_CODE (reg) == PARALLEL)
4146 use_group_regs (&call_fusage, reg);
4147 else if (reg != 0)
4148 {
4149 int partial = argvec[count].partial;
4150 if (partial)
4151 {
4152 int nregs;
4153 gcc_assert (partial % UNITS_PER_WORD == 0);
4154 nregs = partial / UNITS_PER_WORD;
4155 use_regs (&call_fusage, REGNO (reg), nregs);
4156 }
4157 else
4158 use_reg (&call_fusage, reg);
4159 }
4160 }
4161
4162 /* Pass the function the address in which to return a structure value. */
4163 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
4164 {
4165 emit_move_insn (struct_value,
4166 force_reg (Pmode,
4167 force_operand (XEXP (mem_value, 0),
4168 NULL_RTX)));
4169 if (REG_P (struct_value))
4170 use_reg (&call_fusage, struct_value);
4171 }
4172
4173 /* Don't allow popping to be deferred, since then
4174 cse'ing of library calls could delete a call and leave the pop. */
4175 NO_DEFER_POP;
4176 valreg = (mem_value == 0 && outmode != VOIDmode
4177 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
4178
4179 /* Stack must be properly aligned now. */
4180 gcc_assert (!(stack_pointer_delta
4181 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
4182
4183 before_call = get_last_insn ();
4184
4185 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
4186 will set inhibit_defer_pop to that value. */
4187 /* The return type is needed to decide how many bytes the function pops.
4188 Signedness plays no role in that, so for simplicity, we pretend it's
4189 always signed. We also assume that the list of arguments passed has
4190 no impact, so we pretend it is unknown. */
4191
4192 emit_call_1 (fun, NULL,
4193 get_identifier (XSTR (orgfun, 0)),
4194 build_function_type (tfom, NULL_TREE),
4195 original_args_size.constant, args_size.constant,
4196 struct_value_size,
4197 targetm.calls.function_arg (args_so_far,
4198 VOIDmode, void_type_node, true),
4199 valreg,
4200 old_inhibit_defer_pop + 1, call_fusage, flags, args_so_far);
4201
4202 /* Right-shift returned value if necessary. */
4203 if (!pcc_struct_value
4204 && TYPE_MODE (tfom) != BLKmode
4205 && targetm.calls.return_in_msb (tfom))
4206 {
4207 shift_return_value (TYPE_MODE (tfom), false, valreg);
4208 valreg = gen_rtx_REG (TYPE_MODE (tfom), REGNO (valreg));
4209 }
4210
4211 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
4212 that it should complain if nonvolatile values are live. For
4213 functions that cannot return, inform flow that control does not
4214 fall through. */
4215
4216 if (flags & ECF_NORETURN)
4217 {
4218 /* The barrier note must be emitted
4219 immediately after the CALL_INSN. Some ports emit more than
4220 just a CALL_INSN above, so we must search for it here. */
4221
4222 rtx last = get_last_insn ();
4223 while (!CALL_P (last))
4224 {
4225 last = PREV_INSN (last);
4226 /* There was no CALL_INSN? */
4227 gcc_assert (last != before_call);
4228 }
4229
4230 emit_barrier_after (last);
4231 }
4232
4233 /* Now restore inhibit_defer_pop to its actual original value. */
4234 OK_DEFER_POP;
4235
4236 pop_temp_slots ();
4237
4238 /* Copy the value to the right place. */
4239 if (outmode != VOIDmode && retval)
4240 {
4241 if (mem_value)
4242 {
4243 if (value == 0)
4244 value = mem_value;
4245 if (value != mem_value)
4246 emit_move_insn (value, mem_value);
4247 }
4248 else if (GET_CODE (valreg) == PARALLEL)
4249 {
4250 if (value == 0)
4251 value = gen_reg_rtx (outmode);
4252 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
4253 }
4254 else
4255 {
4256 /* Convert to the proper mode if a promotion has been active. */
4257 if (GET_MODE (valreg) != outmode)
4258 {
4259 int unsignedp = TYPE_UNSIGNED (tfom);
4260
4261 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
4262 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
4263 == GET_MODE (valreg));
4264 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
4265 }
4266
4267 if (value != 0)
4268 emit_move_insn (value, valreg);
4269 else
4270 value = valreg;
4271 }
4272 }
4273
4274 if (ACCUMULATE_OUTGOING_ARGS)
4275 {
4276 #ifdef REG_PARM_STACK_SPACE
4277 if (save_area)
4278 restore_fixed_argument_area (save_area, argblock,
4279 high_to_save, low_to_save);
4280 #endif
4281
4282 /* If we saved any argument areas, restore them. */
4283 for (count = 0; count < nargs; count++)
4284 if (argvec[count].save_area)
4285 {
4286 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
4287 rtx adr = plus_constant (Pmode, argblock,
4288 argvec[count].locate.offset.constant);
4289 rtx stack_area = gen_rtx_MEM (save_mode,
4290 memory_address (save_mode, adr));
4291
4292 if (save_mode == BLKmode)
4293 emit_block_move (stack_area,
4294 validize_mem (argvec[count].save_area),
4295 GEN_INT (argvec[count].locate.size.constant),
4296 BLOCK_OP_CALL_PARM);
4297 else
4298 emit_move_insn (stack_area, argvec[count].save_area);
4299 }
4300
4301 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4302 stack_usage_map = initial_stack_usage_map;
4303 }
4304
4305 free (stack_usage_map_buf);
4306
4307 return value;
4308
4309 }
4310 \f
4311 /* Output a library call to function FUN (a SYMBOL_REF rtx)
4312 (emitting the queue unless NO_QUEUE is nonzero),
4313 for a value of mode OUTMODE,
4314 with NARGS different arguments, passed as alternating rtx values
4315 and machine_modes to convert them to.
4316
4317 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
4318 `const' calls, LCT_PURE for `pure' calls, or other LCT_ value for
4319 other types of library calls. */
4320
4321 void
4322 emit_library_call (rtx orgfun, enum libcall_type fn_type,
4323 enum machine_mode outmode, int nargs, ...)
4324 {
4325 va_list p;
4326
4327 va_start (p, nargs);
4328 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
4329 va_end (p);
4330 }
4331 \f
4332 /* Like emit_library_call except that an extra argument, VALUE,
4333 comes second and says where to store the result.
4334 (If VALUE is zero, this function chooses a convenient way
4335 to return the value.
4336
4337 This function returns an rtx for where the value is to be found.
4338 If VALUE is nonzero, VALUE is returned. */
4339
4340 rtx
4341 emit_library_call_value (rtx orgfun, rtx value,
4342 enum libcall_type fn_type,
4343 enum machine_mode outmode, int nargs, ...)
4344 {
4345 rtx result;
4346 va_list p;
4347
4348 va_start (p, nargs);
4349 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
4350 nargs, p);
4351 va_end (p);
4352
4353 return result;
4354 }
4355 \f
4356 /* Store a single argument for a function call
4357 into the register or memory area where it must be passed.
4358 *ARG describes the argument value and where to pass it.
4359
4360 ARGBLOCK is the address of the stack-block for all the arguments,
4361 or 0 on a machine where arguments are pushed individually.
4362
4363 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
4364 so must be careful about how the stack is used.
4365
4366 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
4367 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
4368 that we need not worry about saving and restoring the stack.
4369
4370 FNDECL is the declaration of the function we are calling.
4371
4372 Return nonzero if this arg should cause sibcall failure,
4373 zero otherwise. */
4374
4375 static int
4376 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
4377 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
4378 {
4379 tree pval = arg->tree_value;
4380 rtx reg = 0;
4381 int partial = 0;
4382 int used = 0;
4383 int i, lower_bound = 0, upper_bound = 0;
4384 int sibcall_failure = 0;
4385
4386 if (TREE_CODE (pval) == ERROR_MARK)
4387 return 1;
4388
4389 /* Push a new temporary level for any temporaries we make for
4390 this argument. */
4391 push_temp_slots ();
4392
4393 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
4394 {
4395 /* If this is being stored into a pre-allocated, fixed-size, stack area,
4396 save any previous data at that location. */
4397 if (argblock && ! variable_size && arg->stack)
4398 {
4399 #ifdef ARGS_GROW_DOWNWARD
4400 /* stack_slot is negative, but we want to index stack_usage_map
4401 with positive values. */
4402 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4403 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
4404 else
4405 upper_bound = 0;
4406
4407 lower_bound = upper_bound - arg->locate.size.constant;
4408 #else
4409 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4410 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
4411 else
4412 lower_bound = 0;
4413
4414 upper_bound = lower_bound + arg->locate.size.constant;
4415 #endif
4416
4417 i = lower_bound;
4418 /* Don't worry about things in the fixed argument area;
4419 it has already been saved. */
4420 if (i < reg_parm_stack_space)
4421 i = reg_parm_stack_space;
4422 while (i < upper_bound && stack_usage_map[i] == 0)
4423 i++;
4424
4425 if (i < upper_bound)
4426 {
4427 /* We need to make a save area. */
4428 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
4429 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
4430 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
4431 rtx stack_area = gen_rtx_MEM (save_mode, adr);
4432
4433 if (save_mode == BLKmode)
4434 {
4435 tree ot = TREE_TYPE (arg->tree_value);
4436 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
4437 | TYPE_QUAL_CONST));
4438
4439 arg->save_area = assign_temp (nt, 1, 1);
4440 preserve_temp_slots (arg->save_area);
4441 emit_block_move (validize_mem (arg->save_area), stack_area,
4442 GEN_INT (arg->locate.size.constant),
4443 BLOCK_OP_CALL_PARM);
4444 }
4445 else
4446 {
4447 arg->save_area = gen_reg_rtx (save_mode);
4448 emit_move_insn (arg->save_area, stack_area);
4449 }
4450 }
4451 }
4452 }
4453
4454 /* If this isn't going to be placed on both the stack and in registers,
4455 set up the register and number of words. */
4456 if (! arg->pass_on_stack)
4457 {
4458 if (flags & ECF_SIBCALL)
4459 reg = arg->tail_call_reg;
4460 else
4461 reg = arg->reg;
4462 partial = arg->partial;
4463 }
4464
4465 /* Being passed entirely in a register. We shouldn't be called in
4466 this case. */
4467 gcc_assert (reg == 0 || partial != 0);
4468
4469 /* If this arg needs special alignment, don't load the registers
4470 here. */
4471 if (arg->n_aligned_regs != 0)
4472 reg = 0;
4473
4474 /* If this is being passed partially in a register, we can't evaluate
4475 it directly into its stack slot. Otherwise, we can. */
4476 if (arg->value == 0)
4477 {
4478 /* stack_arg_under_construction is nonzero if a function argument is
4479 being evaluated directly into the outgoing argument list and
4480 expand_call must take special action to preserve the argument list
4481 if it is called recursively.
4482
4483 For scalar function arguments stack_usage_map is sufficient to
4484 determine which stack slots must be saved and restored. Scalar
4485 arguments in general have pass_on_stack == 0.
4486
4487 If this argument is initialized by a function which takes the
4488 address of the argument (a C++ constructor or a C function
4489 returning a BLKmode structure), then stack_usage_map is
4490 insufficient and expand_call must push the stack around the
4491 function call. Such arguments have pass_on_stack == 1.
4492
4493 Note that it is always safe to set stack_arg_under_construction,
4494 but this generates suboptimal code if set when not needed. */
4495
4496 if (arg->pass_on_stack)
4497 stack_arg_under_construction++;
4498
4499 arg->value = expand_expr (pval,
4500 (partial
4501 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4502 ? NULL_RTX : arg->stack,
4503 VOIDmode, EXPAND_STACK_PARM);
4504
4505 /* If we are promoting object (or for any other reason) the mode
4506 doesn't agree, convert the mode. */
4507
4508 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4509 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4510 arg->value, arg->unsignedp);
4511
4512 if (arg->pass_on_stack)
4513 stack_arg_under_construction--;
4514 }
4515
4516 /* Check for overlap with already clobbered argument area. */
4517 if ((flags & ECF_SIBCALL)
4518 && MEM_P (arg->value)
4519 && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
4520 arg->locate.size.constant))
4521 sibcall_failure = 1;
4522
4523 /* Don't allow anything left on stack from computation
4524 of argument to alloca. */
4525 if (flags & ECF_MAY_BE_ALLOCA)
4526 do_pending_stack_adjust ();
4527
4528 if (arg->value == arg->stack)
4529 /* If the value is already in the stack slot, we are done. */
4530 ;
4531 else if (arg->mode != BLKmode)
4532 {
4533 int size;
4534 unsigned int parm_align;
4535
4536 /* Argument is a scalar, not entirely passed in registers.
4537 (If part is passed in registers, arg->partial says how much
4538 and emit_push_insn will take care of putting it there.)
4539
4540 Push it, and if its size is less than the
4541 amount of space allocated to it,
4542 also bump stack pointer by the additional space.
4543 Note that in C the default argument promotions
4544 will prevent such mismatches. */
4545
4546 size = GET_MODE_SIZE (arg->mode);
4547 /* Compute how much space the push instruction will push.
4548 On many machines, pushing a byte will advance the stack
4549 pointer by a halfword. */
4550 #ifdef PUSH_ROUNDING
4551 size = PUSH_ROUNDING (size);
4552 #endif
4553 used = size;
4554
4555 /* Compute how much space the argument should get:
4556 round up to a multiple of the alignment for arguments. */
4557 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4558 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4559 / (PARM_BOUNDARY / BITS_PER_UNIT))
4560 * (PARM_BOUNDARY / BITS_PER_UNIT));
4561
4562 /* Compute the alignment of the pushed argument. */
4563 parm_align = arg->locate.boundary;
4564 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4565 {
4566 int pad = used - size;
4567 if (pad)
4568 {
4569 unsigned int pad_align = (pad & -pad) * BITS_PER_UNIT;
4570 parm_align = MIN (parm_align, pad_align);
4571 }
4572 }
4573
4574 /* This isn't already where we want it on the stack, so put it there.
4575 This can either be done with push or copy insns. */
4576 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4577 parm_align, partial, reg, used - size, argblock,
4578 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4579 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4580
4581 /* Unless this is a partially-in-register argument, the argument is now
4582 in the stack. */
4583 if (partial == 0)
4584 arg->value = arg->stack;
4585 }
4586 else
4587 {
4588 /* BLKmode, at least partly to be pushed. */
4589
4590 unsigned int parm_align;
4591 int excess;
4592 rtx size_rtx;
4593
4594 /* Pushing a nonscalar.
4595 If part is passed in registers, PARTIAL says how much
4596 and emit_push_insn will take care of putting it there. */
4597
4598 /* Round its size up to a multiple
4599 of the allocation unit for arguments. */
4600
4601 if (arg->locate.size.var != 0)
4602 {
4603 excess = 0;
4604 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4605 }
4606 else
4607 {
4608 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4609 for BLKmode is careful to avoid it. */
4610 excess = (arg->locate.size.constant
4611 - int_size_in_bytes (TREE_TYPE (pval))
4612 + partial);
4613 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4614 NULL_RTX, TYPE_MODE (sizetype),
4615 EXPAND_NORMAL);
4616 }
4617
4618 parm_align = arg->locate.boundary;
4619
4620 /* When an argument is padded down, the block is aligned to
4621 PARM_BOUNDARY, but the actual argument isn't. */
4622 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4623 {
4624 if (arg->locate.size.var)
4625 parm_align = BITS_PER_UNIT;
4626 else if (excess)
4627 {
4628 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4629 parm_align = MIN (parm_align, excess_align);
4630 }
4631 }
4632
4633 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4634 {
4635 /* emit_push_insn might not work properly if arg->value and
4636 argblock + arg->locate.offset areas overlap. */
4637 rtx x = arg->value;
4638 int i = 0;
4639
4640 if (XEXP (x, 0) == crtl->args.internal_arg_pointer
4641 || (GET_CODE (XEXP (x, 0)) == PLUS
4642 && XEXP (XEXP (x, 0), 0) ==
4643 crtl->args.internal_arg_pointer
4644 && CONST_INT_P (XEXP (XEXP (x, 0), 1))))
4645 {
4646 if (XEXP (x, 0) != crtl->args.internal_arg_pointer)
4647 i = INTVAL (XEXP (XEXP (x, 0), 1));
4648
4649 /* expand_call should ensure this. */
4650 gcc_assert (!arg->locate.offset.var
4651 && arg->locate.size.var == 0
4652 && CONST_INT_P (size_rtx));
4653
4654 if (arg->locate.offset.constant > i)
4655 {
4656 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4657 sibcall_failure = 1;
4658 }
4659 else if (arg->locate.offset.constant < i)
4660 {
4661 /* Use arg->locate.size.constant instead of size_rtx
4662 because we only care about the part of the argument
4663 on the stack. */
4664 if (i < (arg->locate.offset.constant
4665 + arg->locate.size.constant))
4666 sibcall_failure = 1;
4667 }
4668 else
4669 {
4670 /* Even though they appear to be at the same location,
4671 if part of the outgoing argument is in registers,
4672 they aren't really at the same location. Check for
4673 this by making sure that the incoming size is the
4674 same as the outgoing size. */
4675 if (arg->locate.size.constant != INTVAL (size_rtx))
4676 sibcall_failure = 1;
4677 }
4678 }
4679 }
4680
4681 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4682 parm_align, partial, reg, excess, argblock,
4683 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4684 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4685
4686 /* Unless this is a partially-in-register argument, the argument is now
4687 in the stack.
4688
4689 ??? Unlike the case above, in which we want the actual
4690 address of the data, so that we can load it directly into a
4691 register, here we want the address of the stack slot, so that
4692 it's properly aligned for word-by-word copying or something
4693 like that. It's not clear that this is always correct. */
4694 if (partial == 0)
4695 arg->value = arg->stack_slot;
4696 }
4697
4698 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
4699 {
4700 tree type = TREE_TYPE (arg->tree_value);
4701 arg->parallel_value
4702 = emit_group_load_into_temps (arg->reg, arg->value, type,
4703 int_size_in_bytes (type));
4704 }
4705
4706 /* Mark all slots this store used. */
4707 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4708 && argblock && ! variable_size && arg->stack)
4709 for (i = lower_bound; i < upper_bound; i++)
4710 stack_usage_map[i] = 1;
4711
4712 /* Once we have pushed something, pops can't safely
4713 be deferred during the rest of the arguments. */
4714 NO_DEFER_POP;
4715
4716 /* Free any temporary slots made in processing this argument. */
4717 pop_temp_slots ();
4718
4719 return sibcall_failure;
4720 }
4721
4722 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4723
4724 bool
4725 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4726 const_tree type)
4727 {
4728 if (!type)
4729 return false;
4730
4731 /* If the type has variable size... */
4732 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4733 return true;
4734
4735 /* If the type is marked as addressable (it is required
4736 to be constructed into the stack)... */
4737 if (TREE_ADDRESSABLE (type))
4738 return true;
4739
4740 return false;
4741 }
4742
4743 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4744 takes trailing padding of a structure into account. */
4745 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4746
4747 bool
4748 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, const_tree type)
4749 {
4750 if (!type)
4751 return false;
4752
4753 /* If the type has variable size... */
4754 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4755 return true;
4756
4757 /* If the type is marked as addressable (it is required
4758 to be constructed into the stack)... */
4759 if (TREE_ADDRESSABLE (type))
4760 return true;
4761
4762 /* If the padding and mode of the type is such that a copy into
4763 a register would put it into the wrong part of the register. */
4764 if (mode == BLKmode
4765 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4766 && (FUNCTION_ARG_PADDING (mode, type)
4767 == (BYTES_BIG_ENDIAN ? upward : downward)))
4768 return true;
4769
4770 return false;
4771 }