rtlanal.c (add_reg_note): New function.
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "flags.h"
29 #include "expr.h"
30 #include "optabs.h"
31 #include "libfuncs.h"
32 #include "function.h"
33 #include "regs.h"
34 #include "toplev.h"
35 #include "output.h"
36 #include "tm_p.h"
37 #include "timevar.h"
38 #include "sbitmap.h"
39 #include "langhooks.h"
40 #include "target.h"
41 #include "cgraph.h"
42 #include "except.h"
43 #include "dbgcnt.h"
44
45 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
46 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
47
48 /* Data structure and subroutines used within expand_call. */
49
50 struct arg_data
51 {
52 /* Tree node for this argument. */
53 tree tree_value;
54 /* Mode for value; TYPE_MODE unless promoted. */
55 enum machine_mode mode;
56 /* Current RTL value for argument, or 0 if it isn't precomputed. */
57 rtx value;
58 /* Initially-compute RTL value for argument; only for const functions. */
59 rtx initial_value;
60 /* Register to pass this argument in, 0 if passed on stack, or an
61 PARALLEL if the arg is to be copied into multiple non-contiguous
62 registers. */
63 rtx reg;
64 /* Register to pass this argument in when generating tail call sequence.
65 This is not the same register as for normal calls on machines with
66 register windows. */
67 rtx tail_call_reg;
68 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
69 form for emit_group_move. */
70 rtx parallel_value;
71 /* If REG was promoted from the actual mode of the argument expression,
72 indicates whether the promotion is sign- or zero-extended. */
73 int unsignedp;
74 /* Number of bytes to put in registers. 0 means put the whole arg
75 in registers. Also 0 if not passed in registers. */
76 int partial;
77 /* Nonzero if argument must be passed on stack.
78 Note that some arguments may be passed on the stack
79 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
80 pass_on_stack identifies arguments that *cannot* go in registers. */
81 int pass_on_stack;
82 /* Some fields packaged up for locate_and_pad_parm. */
83 struct locate_and_pad_arg_data locate;
84 /* Location on the stack at which parameter should be stored. The store
85 has already been done if STACK == VALUE. */
86 rtx stack;
87 /* Location on the stack of the start of this argument slot. This can
88 differ from STACK if this arg pads downward. This location is known
89 to be aligned to FUNCTION_ARG_BOUNDARY. */
90 rtx stack_slot;
91 /* Place that this stack area has been saved, if needed. */
92 rtx save_area;
93 /* If an argument's alignment does not permit direct copying into registers,
94 copy in smaller-sized pieces into pseudos. These are stored in a
95 block pointed to by this field. The next field says how many
96 word-sized pseudos we made. */
97 rtx *aligned_regs;
98 int n_aligned_regs;
99 };
100
101 /* A vector of one char per byte of stack space. A byte if nonzero if
102 the corresponding stack location has been used.
103 This vector is used to prevent a function call within an argument from
104 clobbering any stack already set up. */
105 static char *stack_usage_map;
106
107 /* Size of STACK_USAGE_MAP. */
108 static int highest_outgoing_arg_in_use;
109
110 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
111 stack location's tail call argument has been already stored into the stack.
112 This bitmap is used to prevent sibling call optimization if function tries
113 to use parent's incoming argument slots when they have been already
114 overwritten with tail call arguments. */
115 static sbitmap stored_args_map;
116
117 /* stack_arg_under_construction is nonzero when an argument may be
118 initialized with a constructor call (including a C function that
119 returns a BLKmode struct) and expand_call must take special action
120 to make sure the object being constructed does not overlap the
121 argument list for the constructor call. */
122 static int stack_arg_under_construction;
123
124 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
125 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
126 CUMULATIVE_ARGS *);
127 static void precompute_register_parameters (int, struct arg_data *, int *);
128 static int store_one_arg (struct arg_data *, rtx, int, int, int);
129 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
130 static int finalize_must_preallocate (int, int, struct arg_data *,
131 struct args_size *);
132 static void precompute_arguments (int, struct arg_data *);
133 static int compute_argument_block_size (int, struct args_size *, tree, int);
134 static void initialize_argument_information (int, struct arg_data *,
135 struct args_size *, int,
136 tree, tree,
137 tree, CUMULATIVE_ARGS *, int,
138 rtx *, int *, int *, int *,
139 bool *, bool);
140 static void compute_argument_addresses (struct arg_data *, rtx, int);
141 static rtx rtx_for_function_call (tree, tree);
142 static void load_register_parameters (struct arg_data *, int, rtx *, int,
143 int, int *);
144 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
145 enum machine_mode, int, va_list);
146 static int special_function_p (const_tree, int);
147 static int check_sibcall_argument_overlap_1 (rtx);
148 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
149
150 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
151 unsigned int);
152 static tree split_complex_types (tree);
153
154 #ifdef REG_PARM_STACK_SPACE
155 static rtx save_fixed_argument_area (int, rtx, int *, int *);
156 static void restore_fixed_argument_area (rtx, rtx, int, int);
157 #endif
158 \f
159 /* Force FUNEXP into a form suitable for the address of a CALL,
160 and return that as an rtx. Also load the static chain register
161 if FNDECL is a nested function.
162
163 CALL_FUSAGE points to a variable holding the prospective
164 CALL_INSN_FUNCTION_USAGE information. */
165
166 rtx
167 prepare_call_address (rtx funexp, rtx static_chain_value,
168 rtx *call_fusage, int reg_parm_seen, int sibcallp)
169 {
170 /* Make a valid memory address and copy constants through pseudo-regs,
171 but not for a constant address if -fno-function-cse. */
172 if (GET_CODE (funexp) != SYMBOL_REF)
173 /* If we are using registers for parameters, force the
174 function address into a register now. */
175 funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
176 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
177 : memory_address (FUNCTION_MODE, funexp));
178 else if (! sibcallp)
179 {
180 #ifndef NO_FUNCTION_CSE
181 if (optimize && ! flag_no_function_cse)
182 funexp = force_reg (Pmode, funexp);
183 #endif
184 }
185
186 if (static_chain_value != 0)
187 {
188 static_chain_value = convert_memory_address (Pmode, static_chain_value);
189 emit_move_insn (static_chain_rtx, static_chain_value);
190
191 if (REG_P (static_chain_rtx))
192 use_reg (call_fusage, static_chain_rtx);
193 }
194
195 return funexp;
196 }
197
198 /* Generate instructions to call function FUNEXP,
199 and optionally pop the results.
200 The CALL_INSN is the first insn generated.
201
202 FNDECL is the declaration node of the function. This is given to the
203 macro RETURN_POPS_ARGS to determine whether this function pops its own args.
204
205 FUNTYPE is the data type of the function. This is given to the macro
206 RETURN_POPS_ARGS to determine whether this function pops its own args.
207 We used to allow an identifier for library functions, but that doesn't
208 work when the return type is an aggregate type and the calling convention
209 says that the pointer to this aggregate is to be popped by the callee.
210
211 STACK_SIZE is the number of bytes of arguments on the stack,
212 ROUNDED_STACK_SIZE is that number rounded up to
213 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
214 both to put into the call insn and to generate explicit popping
215 code if necessary.
216
217 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
218 It is zero if this call doesn't want a structure value.
219
220 NEXT_ARG_REG is the rtx that results from executing
221 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
222 just after all the args have had their registers assigned.
223 This could be whatever you like, but normally it is the first
224 arg-register beyond those used for args in this call,
225 or 0 if all the arg-registers are used in this call.
226 It is passed on to `gen_call' so you can put this info in the call insn.
227
228 VALREG is a hard register in which a value is returned,
229 or 0 if the call does not return a value.
230
231 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
232 the args to this call were processed.
233 We restore `inhibit_defer_pop' to that value.
234
235 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
236 denote registers used by the called function. */
237
238 static void
239 emit_call_1 (rtx funexp, tree fntree, tree fndecl ATTRIBUTE_UNUSED,
240 tree funtype ATTRIBUTE_UNUSED,
241 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
242 HOST_WIDE_INT rounded_stack_size,
243 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
244 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
245 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
246 CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
247 {
248 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
249 rtx call_insn;
250 int already_popped = 0;
251 HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
252 #if defined (HAVE_call) && defined (HAVE_call_value)
253 rtx struct_value_size_rtx;
254 struct_value_size_rtx = GEN_INT (struct_value_size);
255 #endif
256
257 #ifdef CALL_POPS_ARGS
258 n_popped += CALL_POPS_ARGS (* args_so_far);
259 #endif
260
261 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
262 and we don't want to load it into a register as an optimization,
263 because prepare_call_address already did it if it should be done. */
264 if (GET_CODE (funexp) != SYMBOL_REF)
265 funexp = memory_address (FUNCTION_MODE, funexp);
266
267 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
268 if ((ecf_flags & ECF_SIBCALL)
269 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
270 && (n_popped > 0 || stack_size == 0))
271 {
272 rtx n_pop = GEN_INT (n_popped);
273 rtx pat;
274
275 /* If this subroutine pops its own args, record that in the call insn
276 if possible, for the sake of frame pointer elimination. */
277
278 if (valreg)
279 pat = GEN_SIBCALL_VALUE_POP (valreg,
280 gen_rtx_MEM (FUNCTION_MODE, funexp),
281 rounded_stack_size_rtx, next_arg_reg,
282 n_pop);
283 else
284 pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
285 rounded_stack_size_rtx, next_arg_reg, n_pop);
286
287 emit_call_insn (pat);
288 already_popped = 1;
289 }
290 else
291 #endif
292
293 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
294 /* If the target has "call" or "call_value" insns, then prefer them
295 if no arguments are actually popped. If the target does not have
296 "call" or "call_value" insns, then we must use the popping versions
297 even if the call has no arguments to pop. */
298 #if defined (HAVE_call) && defined (HAVE_call_value)
299 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
300 && n_popped > 0)
301 #else
302 if (HAVE_call_pop && HAVE_call_value_pop)
303 #endif
304 {
305 rtx n_pop = GEN_INT (n_popped);
306 rtx pat;
307
308 /* If this subroutine pops its own args, record that in the call insn
309 if possible, for the sake of frame pointer elimination. */
310
311 if (valreg)
312 pat = GEN_CALL_VALUE_POP (valreg,
313 gen_rtx_MEM (FUNCTION_MODE, funexp),
314 rounded_stack_size_rtx, next_arg_reg, n_pop);
315 else
316 pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
317 rounded_stack_size_rtx, next_arg_reg, n_pop);
318
319 emit_call_insn (pat);
320 already_popped = 1;
321 }
322 else
323 #endif
324
325 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
326 if ((ecf_flags & ECF_SIBCALL)
327 && HAVE_sibcall && HAVE_sibcall_value)
328 {
329 if (valreg)
330 emit_call_insn (GEN_SIBCALL_VALUE (valreg,
331 gen_rtx_MEM (FUNCTION_MODE, funexp),
332 rounded_stack_size_rtx,
333 next_arg_reg, NULL_RTX));
334 else
335 emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
336 rounded_stack_size_rtx, next_arg_reg,
337 struct_value_size_rtx));
338 }
339 else
340 #endif
341
342 #if defined (HAVE_call) && defined (HAVE_call_value)
343 if (HAVE_call && HAVE_call_value)
344 {
345 if (valreg)
346 emit_call_insn (GEN_CALL_VALUE (valreg,
347 gen_rtx_MEM (FUNCTION_MODE, funexp),
348 rounded_stack_size_rtx, next_arg_reg,
349 NULL_RTX));
350 else
351 emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
352 rounded_stack_size_rtx, next_arg_reg,
353 struct_value_size_rtx));
354 }
355 else
356 #endif
357 gcc_unreachable ();
358
359 /* Find the call we just emitted. */
360 call_insn = last_call_insn ();
361
362 /* Put the register usage information there. */
363 add_function_usage_to (call_insn, call_fusage);
364
365 /* If this is a const call, then set the insn's unchanging bit. */
366 if (ecf_flags & ECF_CONST)
367 RTL_CONST_CALL_P (call_insn) = 1;
368
369 /* If this is a pure call, then set the insn's unchanging bit. */
370 if (ecf_flags & ECF_PURE)
371 RTL_PURE_CALL_P (call_insn) = 1;
372
373 /* If this is a const call, then set the insn's unchanging bit. */
374 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
375 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
376
377 /* If this call can't throw, attach a REG_EH_REGION reg note to that
378 effect. */
379 if (ecf_flags & ECF_NOTHROW)
380 add_reg_note (call_insn, REG_EH_REGION, const0_rtx);
381 else
382 {
383 int rn = lookup_stmt_eh_region (fntree);
384
385 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't
386 throw, which we already took care of. */
387 if (rn > 0)
388 add_reg_note (call_insn, REG_EH_REGION, GEN_INT (rn));
389 }
390
391 if (ecf_flags & ECF_NORETURN)
392 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
393
394 if (ecf_flags & ECF_RETURNS_TWICE)
395 {
396 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
397 cfun->calls_setjmp = 1;
398 }
399
400 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
401
402 /* Restore this now, so that we do defer pops for this call's args
403 if the context of the call as a whole permits. */
404 inhibit_defer_pop = old_inhibit_defer_pop;
405
406 if (n_popped > 0)
407 {
408 if (!already_popped)
409 CALL_INSN_FUNCTION_USAGE (call_insn)
410 = gen_rtx_EXPR_LIST (VOIDmode,
411 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
412 CALL_INSN_FUNCTION_USAGE (call_insn));
413 rounded_stack_size -= n_popped;
414 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
415 stack_pointer_delta -= n_popped;
416 }
417
418 if (!ACCUMULATE_OUTGOING_ARGS)
419 {
420 /* If returning from the subroutine does not automatically pop the args,
421 we need an instruction to pop them sooner or later.
422 Perhaps do it now; perhaps just record how much space to pop later.
423
424 If returning from the subroutine does pop the args, indicate that the
425 stack pointer will be changed. */
426
427 if (rounded_stack_size != 0)
428 {
429 if (ecf_flags & ECF_NORETURN)
430 /* Just pretend we did the pop. */
431 stack_pointer_delta -= rounded_stack_size;
432 else if (flag_defer_pop && inhibit_defer_pop == 0
433 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
434 pending_stack_adjust += rounded_stack_size;
435 else
436 adjust_stack (rounded_stack_size_rtx);
437 }
438 }
439 /* When we accumulate outgoing args, we must avoid any stack manipulations.
440 Restore the stack pointer to its original value now. Usually
441 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
442 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
443 popping variants of functions exist as well.
444
445 ??? We may optimize similar to defer_pop above, but it is
446 probably not worthwhile.
447
448 ??? It will be worthwhile to enable combine_stack_adjustments even for
449 such machines. */
450 else if (n_popped)
451 anti_adjust_stack (GEN_INT (n_popped));
452 }
453
454 /* Determine if the function identified by NAME and FNDECL is one with
455 special properties we wish to know about.
456
457 For example, if the function might return more than one time (setjmp), then
458 set RETURNS_TWICE to a nonzero value.
459
460 Similarly set NORETURN if the function is in the longjmp family.
461
462 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
463 space from the stack such as alloca. */
464
465 static int
466 special_function_p (const_tree fndecl, int flags)
467 {
468 if (fndecl && DECL_NAME (fndecl)
469 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
470 /* Exclude functions not at the file scope, or not `extern',
471 since they are not the magic functions we would otherwise
472 think they are.
473 FIXME: this should be handled with attributes, not with this
474 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
475 because you can declare fork() inside a function if you
476 wish. */
477 && (DECL_CONTEXT (fndecl) == NULL_TREE
478 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
479 && TREE_PUBLIC (fndecl))
480 {
481 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
482 const char *tname = name;
483
484 /* We assume that alloca will always be called by name. It
485 makes no sense to pass it as a pointer-to-function to
486 anything that does not understand its behavior. */
487 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
488 && name[0] == 'a'
489 && ! strcmp (name, "alloca"))
490 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
491 && name[0] == '_'
492 && ! strcmp (name, "__builtin_alloca"))))
493 flags |= ECF_MAY_BE_ALLOCA;
494
495 /* Disregard prefix _, __ or __x. */
496 if (name[0] == '_')
497 {
498 if (name[1] == '_' && name[2] == 'x')
499 tname += 3;
500 else if (name[1] == '_')
501 tname += 2;
502 else
503 tname += 1;
504 }
505
506 if (tname[0] == 's')
507 {
508 if ((tname[1] == 'e'
509 && (! strcmp (tname, "setjmp")
510 || ! strcmp (tname, "setjmp_syscall")))
511 || (tname[1] == 'i'
512 && ! strcmp (tname, "sigsetjmp"))
513 || (tname[1] == 'a'
514 && ! strcmp (tname, "savectx")))
515 flags |= ECF_RETURNS_TWICE;
516
517 if (tname[1] == 'i'
518 && ! strcmp (tname, "siglongjmp"))
519 flags |= ECF_NORETURN;
520 }
521 else if ((tname[0] == 'q' && tname[1] == 's'
522 && ! strcmp (tname, "qsetjmp"))
523 || (tname[0] == 'v' && tname[1] == 'f'
524 && ! strcmp (tname, "vfork"))
525 || (tname[0] == 'g' && tname[1] == 'e'
526 && !strcmp (tname, "getcontext")))
527 flags |= ECF_RETURNS_TWICE;
528
529 else if (tname[0] == 'l' && tname[1] == 'o'
530 && ! strcmp (tname, "longjmp"))
531 flags |= ECF_NORETURN;
532 }
533
534 return flags;
535 }
536
537 /* Return nonzero when FNDECL represents a call to setjmp. */
538
539 int
540 setjmp_call_p (const_tree fndecl)
541 {
542 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
543 }
544
545 /* Return true when exp contains alloca call. */
546 bool
547 alloca_call_p (const_tree exp)
548 {
549 if (TREE_CODE (exp) == CALL_EXPR
550 && TREE_CODE (CALL_EXPR_FN (exp)) == ADDR_EXPR
551 && (TREE_CODE (TREE_OPERAND (CALL_EXPR_FN (exp), 0)) == FUNCTION_DECL)
552 && (special_function_p (TREE_OPERAND (CALL_EXPR_FN (exp), 0), 0)
553 & ECF_MAY_BE_ALLOCA))
554 return true;
555 return false;
556 }
557
558 /* Detect flags (function attributes) from the function decl or type node. */
559
560 int
561 flags_from_decl_or_type (const_tree exp)
562 {
563 int flags = 0;
564 const_tree type = exp;
565
566 if (DECL_P (exp))
567 {
568 type = TREE_TYPE (exp);
569
570 /* The function exp may have the `malloc' attribute. */
571 if (DECL_IS_MALLOC (exp))
572 flags |= ECF_MALLOC;
573
574 /* The function exp may have the `returns_twice' attribute. */
575 if (DECL_IS_RETURNS_TWICE (exp))
576 flags |= ECF_RETURNS_TWICE;
577
578 /* Process the pure and const attributes. */
579 if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
580 flags |= ECF_CONST;
581 if (DECL_PURE_P (exp))
582 flags |= ECF_PURE;
583 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
584 flags |= ECF_LOOPING_CONST_OR_PURE;
585
586 if (DECL_IS_NOVOPS (exp))
587 flags |= ECF_NOVOPS;
588
589 if (TREE_NOTHROW (exp))
590 flags |= ECF_NOTHROW;
591
592 flags = special_function_p (exp, flags);
593 }
594 else if (TYPE_P (exp) && TYPE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
595 flags |= ECF_CONST;
596
597 if (TREE_THIS_VOLATILE (exp))
598 flags |= ECF_NORETURN;
599
600 return flags;
601 }
602
603 /* Detect flags from a CALL_EXPR. */
604
605 int
606 call_expr_flags (const_tree t)
607 {
608 int flags;
609 tree decl = get_callee_fndecl (t);
610
611 if (decl)
612 flags = flags_from_decl_or_type (decl);
613 else
614 {
615 t = TREE_TYPE (CALL_EXPR_FN (t));
616 if (t && TREE_CODE (t) == POINTER_TYPE)
617 flags = flags_from_decl_or_type (TREE_TYPE (t));
618 else
619 flags = 0;
620 }
621
622 return flags;
623 }
624
625 /* Precompute all register parameters as described by ARGS, storing values
626 into fields within the ARGS array.
627
628 NUM_ACTUALS indicates the total number elements in the ARGS array.
629
630 Set REG_PARM_SEEN if we encounter a register parameter. */
631
632 static void
633 precompute_register_parameters (int num_actuals, struct arg_data *args,
634 int *reg_parm_seen)
635 {
636 int i;
637
638 *reg_parm_seen = 0;
639
640 for (i = 0; i < num_actuals; i++)
641 if (args[i].reg != 0 && ! args[i].pass_on_stack)
642 {
643 *reg_parm_seen = 1;
644
645 if (args[i].value == 0)
646 {
647 push_temp_slots ();
648 args[i].value = expand_normal (args[i].tree_value);
649 preserve_temp_slots (args[i].value);
650 pop_temp_slots ();
651 }
652
653 /* If the value is a non-legitimate constant, force it into a
654 pseudo now. TLS symbols sometimes need a call to resolve. */
655 if (CONSTANT_P (args[i].value)
656 && !LEGITIMATE_CONSTANT_P (args[i].value))
657 args[i].value = force_reg (args[i].mode, args[i].value);
658
659 /* If we are to promote the function arg to a wider mode,
660 do it now. */
661
662 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
663 args[i].value
664 = convert_modes (args[i].mode,
665 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
666 args[i].value, args[i].unsignedp);
667
668 /* If we're going to have to load the value by parts, pull the
669 parts into pseudos. The part extraction process can involve
670 non-trivial computation. */
671 if (GET_CODE (args[i].reg) == PARALLEL)
672 {
673 tree type = TREE_TYPE (args[i].tree_value);
674 args[i].parallel_value
675 = emit_group_load_into_temps (args[i].reg, args[i].value,
676 type, int_size_in_bytes (type));
677 }
678
679 /* If the value is expensive, and we are inside an appropriately
680 short loop, put the value into a pseudo and then put the pseudo
681 into the hard reg.
682
683 For small register classes, also do this if this call uses
684 register parameters. This is to avoid reload conflicts while
685 loading the parameters registers. */
686
687 else if ((! (REG_P (args[i].value)
688 || (GET_CODE (args[i].value) == SUBREG
689 && REG_P (SUBREG_REG (args[i].value)))))
690 && args[i].mode != BLKmode
691 && rtx_cost (args[i].value, SET) > COSTS_N_INSNS (1)
692 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
693 || optimize))
694 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
695 }
696 }
697
698 #ifdef REG_PARM_STACK_SPACE
699
700 /* The argument list is the property of the called routine and it
701 may clobber it. If the fixed area has been used for previous
702 parameters, we must save and restore it. */
703
704 static rtx
705 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
706 {
707 int low;
708 int high;
709
710 /* Compute the boundary of the area that needs to be saved, if any. */
711 high = reg_parm_stack_space;
712 #ifdef ARGS_GROW_DOWNWARD
713 high += 1;
714 #endif
715 if (high > highest_outgoing_arg_in_use)
716 high = highest_outgoing_arg_in_use;
717
718 for (low = 0; low < high; low++)
719 if (stack_usage_map[low] != 0)
720 {
721 int num_to_save;
722 enum machine_mode save_mode;
723 int delta;
724 rtx stack_area;
725 rtx save_area;
726
727 while (stack_usage_map[--high] == 0)
728 ;
729
730 *low_to_save = low;
731 *high_to_save = high;
732
733 num_to_save = high - low + 1;
734 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
735
736 /* If we don't have the required alignment, must do this
737 in BLKmode. */
738 if ((low & (MIN (GET_MODE_SIZE (save_mode),
739 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
740 save_mode = BLKmode;
741
742 #ifdef ARGS_GROW_DOWNWARD
743 delta = -high;
744 #else
745 delta = low;
746 #endif
747 stack_area = gen_rtx_MEM (save_mode,
748 memory_address (save_mode,
749 plus_constant (argblock,
750 delta)));
751
752 set_mem_align (stack_area, PARM_BOUNDARY);
753 if (save_mode == BLKmode)
754 {
755 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
756 emit_block_move (validize_mem (save_area), stack_area,
757 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
758 }
759 else
760 {
761 save_area = gen_reg_rtx (save_mode);
762 emit_move_insn (save_area, stack_area);
763 }
764
765 return save_area;
766 }
767
768 return NULL_RTX;
769 }
770
771 static void
772 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
773 {
774 enum machine_mode save_mode = GET_MODE (save_area);
775 int delta;
776 rtx stack_area;
777
778 #ifdef ARGS_GROW_DOWNWARD
779 delta = -high_to_save;
780 #else
781 delta = low_to_save;
782 #endif
783 stack_area = gen_rtx_MEM (save_mode,
784 memory_address (save_mode,
785 plus_constant (argblock, delta)));
786 set_mem_align (stack_area, PARM_BOUNDARY);
787
788 if (save_mode != BLKmode)
789 emit_move_insn (stack_area, save_area);
790 else
791 emit_block_move (stack_area, validize_mem (save_area),
792 GEN_INT (high_to_save - low_to_save + 1),
793 BLOCK_OP_CALL_PARM);
794 }
795 #endif /* REG_PARM_STACK_SPACE */
796
797 /* If any elements in ARGS refer to parameters that are to be passed in
798 registers, but not in memory, and whose alignment does not permit a
799 direct copy into registers. Copy the values into a group of pseudos
800 which we will later copy into the appropriate hard registers.
801
802 Pseudos for each unaligned argument will be stored into the array
803 args[argnum].aligned_regs. The caller is responsible for deallocating
804 the aligned_regs array if it is nonzero. */
805
806 static void
807 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
808 {
809 int i, j;
810
811 for (i = 0; i < num_actuals; i++)
812 if (args[i].reg != 0 && ! args[i].pass_on_stack
813 && args[i].mode == BLKmode
814 && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
815 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
816 {
817 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
818 int endian_correction = 0;
819
820 if (args[i].partial)
821 {
822 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
823 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
824 }
825 else
826 {
827 args[i].n_aligned_regs
828 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
829 }
830
831 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
832
833 /* Structures smaller than a word are normally aligned to the
834 least significant byte. On a BYTES_BIG_ENDIAN machine,
835 this means we must skip the empty high order bytes when
836 calculating the bit offset. */
837 if (bytes < UNITS_PER_WORD
838 #ifdef BLOCK_REG_PADDING
839 && (BLOCK_REG_PADDING (args[i].mode,
840 TREE_TYPE (args[i].tree_value), 1)
841 == downward)
842 #else
843 && BYTES_BIG_ENDIAN
844 #endif
845 )
846 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
847
848 for (j = 0; j < args[i].n_aligned_regs; j++)
849 {
850 rtx reg = gen_reg_rtx (word_mode);
851 rtx word = operand_subword_force (args[i].value, j, BLKmode);
852 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
853
854 args[i].aligned_regs[j] = reg;
855 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
856 word_mode, word_mode);
857
858 /* There is no need to restrict this code to loading items
859 in TYPE_ALIGN sized hunks. The bitfield instructions can
860 load up entire word sized registers efficiently.
861
862 ??? This may not be needed anymore.
863 We use to emit a clobber here but that doesn't let later
864 passes optimize the instructions we emit. By storing 0 into
865 the register later passes know the first AND to zero out the
866 bitfield being set in the register is unnecessary. The store
867 of 0 will be deleted as will at least the first AND. */
868
869 emit_move_insn (reg, const0_rtx);
870
871 bytes -= bitsize / BITS_PER_UNIT;
872 store_bit_field (reg, bitsize, endian_correction, word_mode,
873 word);
874 }
875 }
876 }
877
878 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
879 CALL_EXPR EXP.
880
881 NUM_ACTUALS is the total number of parameters.
882
883 N_NAMED_ARGS is the total number of named arguments.
884
885 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
886 value, or null.
887
888 FNDECL is the tree code for the target of this call (if known)
889
890 ARGS_SO_FAR holds state needed by the target to know where to place
891 the next argument.
892
893 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
894 for arguments which are passed in registers.
895
896 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
897 and may be modified by this routine.
898
899 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
900 flags which may may be modified by this routine.
901
902 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
903 that requires allocation of stack space.
904
905 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
906 the thunked-to function. */
907
908 static void
909 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
910 struct arg_data *args,
911 struct args_size *args_size,
912 int n_named_args ATTRIBUTE_UNUSED,
913 tree exp, tree struct_value_addr_value,
914 tree fndecl,
915 CUMULATIVE_ARGS *args_so_far,
916 int reg_parm_stack_space,
917 rtx *old_stack_level, int *old_pending_adj,
918 int *must_preallocate, int *ecf_flags,
919 bool *may_tailcall, bool call_from_thunk_p)
920 {
921 /* 1 if scanning parms front to back, -1 if scanning back to front. */
922 int inc;
923
924 /* Count arg position in order args appear. */
925 int argpos;
926
927 int i;
928
929 args_size->constant = 0;
930 args_size->var = 0;
931
932 /* In this loop, we consider args in the order they are written.
933 We fill up ARGS from the front or from the back if necessary
934 so that in any case the first arg to be pushed ends up at the front. */
935
936 if (PUSH_ARGS_REVERSED)
937 {
938 i = num_actuals - 1, inc = -1;
939 /* In this case, must reverse order of args
940 so that we compute and push the last arg first. */
941 }
942 else
943 {
944 i = 0, inc = 1;
945 }
946
947 /* First fill in the actual arguments in the ARGS array, splitting
948 complex arguments if necessary. */
949 {
950 int j = i;
951 call_expr_arg_iterator iter;
952 tree arg;
953
954 if (struct_value_addr_value)
955 {
956 args[j].tree_value = struct_value_addr_value;
957 j += inc;
958 }
959 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
960 {
961 tree argtype = TREE_TYPE (arg);
962 if (targetm.calls.split_complex_arg
963 && argtype
964 && TREE_CODE (argtype) == COMPLEX_TYPE
965 && targetm.calls.split_complex_arg (argtype))
966 {
967 tree subtype = TREE_TYPE (argtype);
968 arg = save_expr (arg);
969 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
970 j += inc;
971 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
972 }
973 else
974 args[j].tree_value = arg;
975 j += inc;
976 }
977 }
978
979 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
980 for (argpos = 0; argpos < num_actuals; i += inc, argpos++)
981 {
982 tree type = TREE_TYPE (args[i].tree_value);
983 int unsignedp;
984 enum machine_mode mode;
985
986 /* Replace erroneous argument with constant zero. */
987 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
988 args[i].tree_value = integer_zero_node, type = integer_type_node;
989
990 /* If TYPE is a transparent union, pass things the way we would
991 pass the first field of the union. We have already verified that
992 the modes are the same. */
993 if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
994 type = TREE_TYPE (TYPE_FIELDS (type));
995
996 /* Decide where to pass this arg.
997
998 args[i].reg is nonzero if all or part is passed in registers.
999
1000 args[i].partial is nonzero if part but not all is passed in registers,
1001 and the exact value says how many bytes are passed in registers.
1002
1003 args[i].pass_on_stack is nonzero if the argument must at least be
1004 computed on the stack. It may then be loaded back into registers
1005 if args[i].reg is nonzero.
1006
1007 These decisions are driven by the FUNCTION_... macros and must agree
1008 with those made by function.c. */
1009
1010 /* See if this argument should be passed by invisible reference. */
1011 if (pass_by_reference (args_so_far, TYPE_MODE (type),
1012 type, argpos < n_named_args))
1013 {
1014 bool callee_copies;
1015 tree base;
1016
1017 callee_copies
1018 = reference_callee_copied (args_so_far, TYPE_MODE (type),
1019 type, argpos < n_named_args);
1020
1021 /* If we're compiling a thunk, pass through invisible references
1022 instead of making a copy. */
1023 if (call_from_thunk_p
1024 || (callee_copies
1025 && !TREE_ADDRESSABLE (type)
1026 && (base = get_base_address (args[i].tree_value))
1027 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1028 {
1029 /* We can't use sibcalls if a callee-copied argument is
1030 stored in the current function's frame. */
1031 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1032 *may_tailcall = false;
1033
1034 args[i].tree_value = build_fold_addr_expr (args[i].tree_value);
1035 type = TREE_TYPE (args[i].tree_value);
1036
1037 if (*ecf_flags & ECF_CONST)
1038 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
1039 }
1040 else
1041 {
1042 /* We make a copy of the object and pass the address to the
1043 function being called. */
1044 rtx copy;
1045
1046 if (!COMPLETE_TYPE_P (type)
1047 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
1048 || (flag_stack_check && ! STACK_CHECK_BUILTIN
1049 && (0 < compare_tree_int (TYPE_SIZE_UNIT (type),
1050 STACK_CHECK_MAX_VAR_SIZE))))
1051 {
1052 /* This is a variable-sized object. Make space on the stack
1053 for it. */
1054 rtx size_rtx = expr_size (args[i].tree_value);
1055
1056 if (*old_stack_level == 0)
1057 {
1058 emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
1059 *old_pending_adj = pending_stack_adjust;
1060 pending_stack_adjust = 0;
1061 }
1062
1063 copy = gen_rtx_MEM (BLKmode,
1064 allocate_dynamic_stack_space
1065 (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
1066 set_mem_attributes (copy, type, 1);
1067 }
1068 else
1069 copy = assign_temp (type, 0, 1, 0);
1070
1071 store_expr (args[i].tree_value, copy, 0, false);
1072
1073 /* Just change the const function to pure and then let
1074 the next test clear the pure based on
1075 callee_copies. */
1076 if (*ecf_flags & ECF_CONST)
1077 {
1078 *ecf_flags &= ~ECF_CONST;
1079 *ecf_flags |= ECF_PURE;
1080 }
1081
1082 if (!callee_copies && *ecf_flags & ECF_PURE)
1083 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
1084
1085 args[i].tree_value
1086 = build_fold_addr_expr (make_tree (type, copy));
1087 type = TREE_TYPE (args[i].tree_value);
1088 *may_tailcall = false;
1089 }
1090 }
1091
1092 mode = TYPE_MODE (type);
1093 unsignedp = TYPE_UNSIGNED (type);
1094
1095 if (targetm.calls.promote_function_args (fndecl ? TREE_TYPE (fndecl) : 0))
1096 mode = promote_mode (type, mode, &unsignedp, 1);
1097
1098 args[i].unsignedp = unsignedp;
1099 args[i].mode = mode;
1100
1101 args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
1102 argpos < n_named_args);
1103 #ifdef FUNCTION_INCOMING_ARG
1104 /* If this is a sibling call and the machine has register windows, the
1105 register window has to be unwinded before calling the routine, so
1106 arguments have to go into the incoming registers. */
1107 args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
1108 argpos < n_named_args);
1109 #else
1110 args[i].tail_call_reg = args[i].reg;
1111 #endif
1112
1113 if (args[i].reg)
1114 args[i].partial
1115 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1116 argpos < n_named_args);
1117
1118 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1119
1120 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1121 it means that we are to pass this arg in the register(s) designated
1122 by the PARALLEL, but also to pass it in the stack. */
1123 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1124 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1125 args[i].pass_on_stack = 1;
1126
1127 /* If this is an addressable type, we must preallocate the stack
1128 since we must evaluate the object into its final location.
1129
1130 If this is to be passed in both registers and the stack, it is simpler
1131 to preallocate. */
1132 if (TREE_ADDRESSABLE (type)
1133 || (args[i].pass_on_stack && args[i].reg != 0))
1134 *must_preallocate = 1;
1135
1136 /* Compute the stack-size of this argument. */
1137 if (args[i].reg == 0 || args[i].partial != 0
1138 || reg_parm_stack_space > 0
1139 || args[i].pass_on_stack)
1140 locate_and_pad_parm (mode, type,
1141 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1142 1,
1143 #else
1144 args[i].reg != 0,
1145 #endif
1146 args[i].pass_on_stack ? 0 : args[i].partial,
1147 fndecl, args_size, &args[i].locate);
1148 #ifdef BLOCK_REG_PADDING
1149 else
1150 /* The argument is passed entirely in registers. See at which
1151 end it should be padded. */
1152 args[i].locate.where_pad =
1153 BLOCK_REG_PADDING (mode, type,
1154 int_size_in_bytes (type) <= UNITS_PER_WORD);
1155 #endif
1156
1157 /* Update ARGS_SIZE, the total stack space for args so far. */
1158
1159 args_size->constant += args[i].locate.size.constant;
1160 if (args[i].locate.size.var)
1161 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1162
1163 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1164 have been used, etc. */
1165
1166 FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
1167 argpos < n_named_args);
1168 }
1169 }
1170
1171 /* Update ARGS_SIZE to contain the total size for the argument block.
1172 Return the original constant component of the argument block's size.
1173
1174 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1175 for arguments passed in registers. */
1176
1177 static int
1178 compute_argument_block_size (int reg_parm_stack_space,
1179 struct args_size *args_size,
1180 tree fndecl ATTRIBUTE_UNUSED,
1181 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1182 {
1183 int unadjusted_args_size = args_size->constant;
1184
1185 /* For accumulate outgoing args mode we don't need to align, since the frame
1186 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1187 backends from generating misaligned frame sizes. */
1188 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1189 preferred_stack_boundary = STACK_BOUNDARY;
1190
1191 /* Compute the actual size of the argument block required. The variable
1192 and constant sizes must be combined, the size may have to be rounded,
1193 and there may be a minimum required size. */
1194
1195 if (args_size->var)
1196 {
1197 args_size->var = ARGS_SIZE_TREE (*args_size);
1198 args_size->constant = 0;
1199
1200 preferred_stack_boundary /= BITS_PER_UNIT;
1201 if (preferred_stack_boundary > 1)
1202 {
1203 /* We don't handle this case yet. To handle it correctly we have
1204 to add the delta, round and subtract the delta.
1205 Currently no machine description requires this support. */
1206 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1207 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1208 }
1209
1210 if (reg_parm_stack_space > 0)
1211 {
1212 args_size->var
1213 = size_binop (MAX_EXPR, args_size->var,
1214 ssize_int (reg_parm_stack_space));
1215
1216 /* The area corresponding to register parameters is not to count in
1217 the size of the block we need. So make the adjustment. */
1218 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? NULL_TREE : TREE_TYPE (fndecl))))
1219 args_size->var
1220 = size_binop (MINUS_EXPR, args_size->var,
1221 ssize_int (reg_parm_stack_space));
1222 }
1223 }
1224 else
1225 {
1226 preferred_stack_boundary /= BITS_PER_UNIT;
1227 if (preferred_stack_boundary < 1)
1228 preferred_stack_boundary = 1;
1229 args_size->constant = (((args_size->constant
1230 + stack_pointer_delta
1231 + preferred_stack_boundary - 1)
1232 / preferred_stack_boundary
1233 * preferred_stack_boundary)
1234 - stack_pointer_delta);
1235
1236 args_size->constant = MAX (args_size->constant,
1237 reg_parm_stack_space);
1238
1239 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? NULL_TREE : TREE_TYPE (fndecl))))
1240 args_size->constant -= reg_parm_stack_space;
1241 }
1242 return unadjusted_args_size;
1243 }
1244
1245 /* Precompute parameters as needed for a function call.
1246
1247 FLAGS is mask of ECF_* constants.
1248
1249 NUM_ACTUALS is the number of arguments.
1250
1251 ARGS is an array containing information for each argument; this
1252 routine fills in the INITIAL_VALUE and VALUE fields for each
1253 precomputed argument. */
1254
1255 static void
1256 precompute_arguments (int num_actuals, struct arg_data *args)
1257 {
1258 int i;
1259
1260 /* If this is a libcall, then precompute all arguments so that we do not
1261 get extraneous instructions emitted as part of the libcall sequence. */
1262
1263 /* If we preallocated the stack space, and some arguments must be passed
1264 on the stack, then we must precompute any parameter which contains a
1265 function call which will store arguments on the stack.
1266 Otherwise, evaluating the parameter may clobber previous parameters
1267 which have already been stored into the stack. (we have code to avoid
1268 such case by saving the outgoing stack arguments, but it results in
1269 worse code) */
1270 if (!ACCUMULATE_OUTGOING_ARGS)
1271 return;
1272
1273 for (i = 0; i < num_actuals; i++)
1274 {
1275 enum machine_mode mode;
1276
1277 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
1278 continue;
1279
1280 /* If this is an addressable type, we cannot pre-evaluate it. */
1281 gcc_assert (!TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)));
1282
1283 args[i].initial_value = args[i].value
1284 = expand_normal (args[i].tree_value);
1285
1286 mode = TYPE_MODE (TREE_TYPE (args[i].tree_value));
1287 if (mode != args[i].mode)
1288 {
1289 args[i].value
1290 = convert_modes (args[i].mode, mode,
1291 args[i].value, args[i].unsignedp);
1292 #if defined(PROMOTE_FUNCTION_MODE) && !defined(PROMOTE_MODE)
1293 /* CSE will replace this only if it contains args[i].value
1294 pseudo, so convert it down to the declared mode using
1295 a SUBREG. */
1296 if (REG_P (args[i].value)
1297 && GET_MODE_CLASS (args[i].mode) == MODE_INT)
1298 {
1299 args[i].initial_value
1300 = gen_lowpart_SUBREG (mode, args[i].value);
1301 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1302 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1303 args[i].unsignedp);
1304 }
1305 #endif
1306 }
1307 }
1308 }
1309
1310 /* Given the current state of MUST_PREALLOCATE and information about
1311 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1312 compute and return the final value for MUST_PREALLOCATE. */
1313
1314 static int
1315 finalize_must_preallocate (int must_preallocate, int num_actuals,
1316 struct arg_data *args, struct args_size *args_size)
1317 {
1318 /* See if we have or want to preallocate stack space.
1319
1320 If we would have to push a partially-in-regs parm
1321 before other stack parms, preallocate stack space instead.
1322
1323 If the size of some parm is not a multiple of the required stack
1324 alignment, we must preallocate.
1325
1326 If the total size of arguments that would otherwise create a copy in
1327 a temporary (such as a CALL) is more than half the total argument list
1328 size, preallocation is faster.
1329
1330 Another reason to preallocate is if we have a machine (like the m88k)
1331 where stack alignment is required to be maintained between every
1332 pair of insns, not just when the call is made. However, we assume here
1333 that such machines either do not have push insns (and hence preallocation
1334 would occur anyway) or the problem is taken care of with
1335 PUSH_ROUNDING. */
1336
1337 if (! must_preallocate)
1338 {
1339 int partial_seen = 0;
1340 int copy_to_evaluate_size = 0;
1341 int i;
1342
1343 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1344 {
1345 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1346 partial_seen = 1;
1347 else if (partial_seen && args[i].reg == 0)
1348 must_preallocate = 1;
1349
1350 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1351 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1352 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1353 || TREE_CODE (args[i].tree_value) == COND_EXPR
1354 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1355 copy_to_evaluate_size
1356 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1357 }
1358
1359 if (copy_to_evaluate_size * 2 >= args_size->constant
1360 && args_size->constant > 0)
1361 must_preallocate = 1;
1362 }
1363 return must_preallocate;
1364 }
1365
1366 /* If we preallocated stack space, compute the address of each argument
1367 and store it into the ARGS array.
1368
1369 We need not ensure it is a valid memory address here; it will be
1370 validized when it is used.
1371
1372 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1373
1374 static void
1375 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1376 {
1377 if (argblock)
1378 {
1379 rtx arg_reg = argblock;
1380 int i, arg_offset = 0;
1381
1382 if (GET_CODE (argblock) == PLUS)
1383 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1384
1385 for (i = 0; i < num_actuals; i++)
1386 {
1387 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1388 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1389 rtx addr;
1390 unsigned int align, boundary;
1391 unsigned int units_on_stack = 0;
1392 enum machine_mode partial_mode = VOIDmode;
1393
1394 /* Skip this parm if it will not be passed on the stack. */
1395 if (! args[i].pass_on_stack
1396 && args[i].reg != 0
1397 && args[i].partial == 0)
1398 continue;
1399
1400 if (GET_CODE (offset) == CONST_INT)
1401 addr = plus_constant (arg_reg, INTVAL (offset));
1402 else
1403 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1404
1405 addr = plus_constant (addr, arg_offset);
1406
1407 if (args[i].partial != 0)
1408 {
1409 /* Only part of the parameter is being passed on the stack.
1410 Generate a simple memory reference of the correct size. */
1411 units_on_stack = args[i].locate.size.constant;
1412 partial_mode = mode_for_size (units_on_stack * BITS_PER_UNIT,
1413 MODE_INT, 1);
1414 args[i].stack = gen_rtx_MEM (partial_mode, addr);
1415 set_mem_size (args[i].stack, GEN_INT (units_on_stack));
1416 }
1417 else
1418 {
1419 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1420 set_mem_attributes (args[i].stack,
1421 TREE_TYPE (args[i].tree_value), 1);
1422 }
1423 align = BITS_PER_UNIT;
1424 boundary = args[i].locate.boundary;
1425 if (args[i].locate.where_pad != downward)
1426 align = boundary;
1427 else if (GET_CODE (offset) == CONST_INT)
1428 {
1429 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1430 align = align & -align;
1431 }
1432 set_mem_align (args[i].stack, align);
1433
1434 if (GET_CODE (slot_offset) == CONST_INT)
1435 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1436 else
1437 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1438
1439 addr = plus_constant (addr, arg_offset);
1440
1441 if (args[i].partial != 0)
1442 {
1443 /* Only part of the parameter is being passed on the stack.
1444 Generate a simple memory reference of the correct size.
1445 */
1446 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
1447 set_mem_size (args[i].stack_slot, GEN_INT (units_on_stack));
1448 }
1449 else
1450 {
1451 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1452 set_mem_attributes (args[i].stack_slot,
1453 TREE_TYPE (args[i].tree_value), 1);
1454 }
1455 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1456
1457 /* Function incoming arguments may overlap with sibling call
1458 outgoing arguments and we cannot allow reordering of reads
1459 from function arguments with stores to outgoing arguments
1460 of sibling calls. */
1461 set_mem_alias_set (args[i].stack, 0);
1462 set_mem_alias_set (args[i].stack_slot, 0);
1463 }
1464 }
1465 }
1466
1467 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1468 in a call instruction.
1469
1470 FNDECL is the tree node for the target function. For an indirect call
1471 FNDECL will be NULL_TREE.
1472
1473 ADDR is the operand 0 of CALL_EXPR for this call. */
1474
1475 static rtx
1476 rtx_for_function_call (tree fndecl, tree addr)
1477 {
1478 rtx funexp;
1479
1480 /* Get the function to call, in the form of RTL. */
1481 if (fndecl)
1482 {
1483 /* If this is the first use of the function, see if we need to
1484 make an external definition for it. */
1485 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
1486 {
1487 assemble_external (fndecl);
1488 TREE_USED (fndecl) = 1;
1489 }
1490
1491 /* Get a SYMBOL_REF rtx for the function address. */
1492 funexp = XEXP (DECL_RTL (fndecl), 0);
1493 }
1494 else
1495 /* Generate an rtx (probably a pseudo-register) for the address. */
1496 {
1497 push_temp_slots ();
1498 funexp = expand_normal (addr);
1499 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1500 }
1501 return funexp;
1502 }
1503
1504 /* Return true if and only if SIZE storage units (usually bytes)
1505 starting from address ADDR overlap with already clobbered argument
1506 area. This function is used to determine if we should give up a
1507 sibcall. */
1508
1509 static bool
1510 mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
1511 {
1512 HOST_WIDE_INT i;
1513
1514 if (addr == crtl->args.internal_arg_pointer)
1515 i = 0;
1516 else if (GET_CODE (addr) == PLUS
1517 && XEXP (addr, 0) == crtl->args.internal_arg_pointer
1518 && GET_CODE (XEXP (addr, 1)) == CONST_INT)
1519 i = INTVAL (XEXP (addr, 1));
1520 /* Return true for arg pointer based indexed addressing. */
1521 else if (GET_CODE (addr) == PLUS
1522 && (XEXP (addr, 0) == crtl->args.internal_arg_pointer
1523 || XEXP (addr, 1) == crtl->args.internal_arg_pointer))
1524 return true;
1525 else
1526 return false;
1527
1528 #ifdef ARGS_GROW_DOWNWARD
1529 i = -i - size;
1530 #endif
1531 if (size > 0)
1532 {
1533 unsigned HOST_WIDE_INT k;
1534
1535 for (k = 0; k < size; k++)
1536 if (i + k < stored_args_map->n_bits
1537 && TEST_BIT (stored_args_map, i + k))
1538 return true;
1539 }
1540
1541 return false;
1542 }
1543
1544 /* Do the register loads required for any wholly-register parms or any
1545 parms which are passed both on the stack and in a register. Their
1546 expressions were already evaluated.
1547
1548 Mark all register-parms as living through the call, putting these USE
1549 insns in the CALL_INSN_FUNCTION_USAGE field.
1550
1551 When IS_SIBCALL, perform the check_sibcall_argument_overlap
1552 checking, setting *SIBCALL_FAILURE if appropriate. */
1553
1554 static void
1555 load_register_parameters (struct arg_data *args, int num_actuals,
1556 rtx *call_fusage, int flags, int is_sibcall,
1557 int *sibcall_failure)
1558 {
1559 int i, j;
1560
1561 for (i = 0; i < num_actuals; i++)
1562 {
1563 rtx reg = ((flags & ECF_SIBCALL)
1564 ? args[i].tail_call_reg : args[i].reg);
1565 if (reg)
1566 {
1567 int partial = args[i].partial;
1568 int nregs;
1569 int size = 0;
1570 rtx before_arg = get_last_insn ();
1571 /* Set non-negative if we must move a word at a time, even if
1572 just one word (e.g, partial == 4 && mode == DFmode). Set
1573 to -1 if we just use a normal move insn. This value can be
1574 zero if the argument is a zero size structure. */
1575 nregs = -1;
1576 if (GET_CODE (reg) == PARALLEL)
1577 ;
1578 else if (partial)
1579 {
1580 gcc_assert (partial % UNITS_PER_WORD == 0);
1581 nregs = partial / UNITS_PER_WORD;
1582 }
1583 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1584 {
1585 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1586 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1587 }
1588 else
1589 size = GET_MODE_SIZE (args[i].mode);
1590
1591 /* Handle calls that pass values in multiple non-contiguous
1592 locations. The Irix 6 ABI has examples of this. */
1593
1594 if (GET_CODE (reg) == PARALLEL)
1595 emit_group_move (reg, args[i].parallel_value);
1596
1597 /* If simple case, just do move. If normal partial, store_one_arg
1598 has already loaded the register for us. In all other cases,
1599 load the register(s) from memory. */
1600
1601 else if (nregs == -1)
1602 {
1603 emit_move_insn (reg, args[i].value);
1604 #ifdef BLOCK_REG_PADDING
1605 /* Handle case where we have a value that needs shifting
1606 up to the msb. eg. a QImode value and we're padding
1607 upward on a BYTES_BIG_ENDIAN machine. */
1608 if (size < UNITS_PER_WORD
1609 && (args[i].locate.where_pad
1610 == (BYTES_BIG_ENDIAN ? upward : downward)))
1611 {
1612 rtx x;
1613 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1614
1615 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1616 report the whole reg as used. Strictly speaking, the
1617 call only uses SIZE bytes at the msb end, but it doesn't
1618 seem worth generating rtl to say that. */
1619 reg = gen_rtx_REG (word_mode, REGNO (reg));
1620 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
1621 build_int_cst (NULL_TREE, shift),
1622 reg, 1);
1623 if (x != reg)
1624 emit_move_insn (reg, x);
1625 }
1626 #endif
1627 }
1628
1629 /* If we have pre-computed the values to put in the registers in
1630 the case of non-aligned structures, copy them in now. */
1631
1632 else if (args[i].n_aligned_regs != 0)
1633 for (j = 0; j < args[i].n_aligned_regs; j++)
1634 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1635 args[i].aligned_regs[j]);
1636
1637 else if (partial == 0 || args[i].pass_on_stack)
1638 {
1639 rtx mem = validize_mem (args[i].value);
1640
1641 /* Check for overlap with already clobbered argument area. */
1642 if (is_sibcall
1643 && mem_overlaps_already_clobbered_arg_p (XEXP (args[i].value, 0),
1644 size))
1645 *sibcall_failure = 1;
1646
1647 /* Handle a BLKmode that needs shifting. */
1648 if (nregs == 1 && size < UNITS_PER_WORD
1649 #ifdef BLOCK_REG_PADDING
1650 && args[i].locate.where_pad == downward
1651 #else
1652 && BYTES_BIG_ENDIAN
1653 #endif
1654 )
1655 {
1656 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1657 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1658 rtx x = gen_reg_rtx (word_mode);
1659 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1660 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1661 : LSHIFT_EXPR;
1662
1663 emit_move_insn (x, tem);
1664 x = expand_shift (dir, word_mode, x,
1665 build_int_cst (NULL_TREE, shift),
1666 ri, 1);
1667 if (x != ri)
1668 emit_move_insn (ri, x);
1669 }
1670 else
1671 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1672 }
1673
1674 /* When a parameter is a block, and perhaps in other cases, it is
1675 possible that it did a load from an argument slot that was
1676 already clobbered. */
1677 if (is_sibcall
1678 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1679 *sibcall_failure = 1;
1680
1681 /* Handle calls that pass values in multiple non-contiguous
1682 locations. The Irix 6 ABI has examples of this. */
1683 if (GET_CODE (reg) == PARALLEL)
1684 use_group_regs (call_fusage, reg);
1685 else if (nregs == -1)
1686 use_reg (call_fusage, reg);
1687 else if (nregs > 0)
1688 use_regs (call_fusage, REGNO (reg), nregs);
1689 }
1690 }
1691 }
1692
1693 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1694 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1695 bytes, then we would need to push some additional bytes to pad the
1696 arguments. So, we compute an adjust to the stack pointer for an
1697 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1698 bytes. Then, when the arguments are pushed the stack will be perfectly
1699 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1700 be popped after the call. Returns the adjustment. */
1701
1702 static int
1703 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1704 struct args_size *args_size,
1705 unsigned int preferred_unit_stack_boundary)
1706 {
1707 /* The number of bytes to pop so that the stack will be
1708 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1709 HOST_WIDE_INT adjustment;
1710 /* The alignment of the stack after the arguments are pushed, if we
1711 just pushed the arguments without adjust the stack here. */
1712 unsigned HOST_WIDE_INT unadjusted_alignment;
1713
1714 unadjusted_alignment
1715 = ((stack_pointer_delta + unadjusted_args_size)
1716 % preferred_unit_stack_boundary);
1717
1718 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1719 as possible -- leaving just enough left to cancel out the
1720 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1721 PENDING_STACK_ADJUST is non-negative, and congruent to
1722 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1723
1724 /* Begin by trying to pop all the bytes. */
1725 unadjusted_alignment
1726 = (unadjusted_alignment
1727 - (pending_stack_adjust % preferred_unit_stack_boundary));
1728 adjustment = pending_stack_adjust;
1729 /* Push enough additional bytes that the stack will be aligned
1730 after the arguments are pushed. */
1731 if (preferred_unit_stack_boundary > 1)
1732 {
1733 if (unadjusted_alignment > 0)
1734 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1735 else
1736 adjustment += unadjusted_alignment;
1737 }
1738
1739 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1740 bytes after the call. The right number is the entire
1741 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1742 by the arguments in the first place. */
1743 args_size->constant
1744 = pending_stack_adjust - adjustment + unadjusted_args_size;
1745
1746 return adjustment;
1747 }
1748
1749 /* Scan X expression if it does not dereference any argument slots
1750 we already clobbered by tail call arguments (as noted in stored_args_map
1751 bitmap).
1752 Return nonzero if X expression dereferences such argument slots,
1753 zero otherwise. */
1754
1755 static int
1756 check_sibcall_argument_overlap_1 (rtx x)
1757 {
1758 RTX_CODE code;
1759 int i, j;
1760 const char *fmt;
1761
1762 if (x == NULL_RTX)
1763 return 0;
1764
1765 code = GET_CODE (x);
1766
1767 if (code == MEM)
1768 return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
1769 GET_MODE_SIZE (GET_MODE (x)));
1770
1771 /* Scan all subexpressions. */
1772 fmt = GET_RTX_FORMAT (code);
1773 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1774 {
1775 if (*fmt == 'e')
1776 {
1777 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1778 return 1;
1779 }
1780 else if (*fmt == 'E')
1781 {
1782 for (j = 0; j < XVECLEN (x, i); j++)
1783 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1784 return 1;
1785 }
1786 }
1787 return 0;
1788 }
1789
1790 /* Scan sequence after INSN if it does not dereference any argument slots
1791 we already clobbered by tail call arguments (as noted in stored_args_map
1792 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1793 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1794 should be 0). Return nonzero if sequence after INSN dereferences such argument
1795 slots, zero otherwise. */
1796
1797 static int
1798 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1799 {
1800 int low, high;
1801
1802 if (insn == NULL_RTX)
1803 insn = get_insns ();
1804 else
1805 insn = NEXT_INSN (insn);
1806
1807 for (; insn; insn = NEXT_INSN (insn))
1808 if (INSN_P (insn)
1809 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1810 break;
1811
1812 if (mark_stored_args_map)
1813 {
1814 #ifdef ARGS_GROW_DOWNWARD
1815 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1816 #else
1817 low = arg->locate.slot_offset.constant;
1818 #endif
1819
1820 for (high = low + arg->locate.size.constant; low < high; low++)
1821 SET_BIT (stored_args_map, low);
1822 }
1823 return insn != NULL_RTX;
1824 }
1825
1826 /* Given that a function returns a value of mode MODE at the most
1827 significant end of hard register VALUE, shift VALUE left or right
1828 as specified by LEFT_P. Return true if some action was needed. */
1829
1830 bool
1831 shift_return_value (enum machine_mode mode, bool left_p, rtx value)
1832 {
1833 HOST_WIDE_INT shift;
1834
1835 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
1836 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
1837 if (shift == 0)
1838 return false;
1839
1840 /* Use ashr rather than lshr for right shifts. This is for the benefit
1841 of the MIPS port, which requires SImode values to be sign-extended
1842 when stored in 64-bit registers. */
1843 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
1844 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
1845 gcc_unreachable ();
1846 return true;
1847 }
1848
1849 /* If X is a likely-spilled register value, copy it to a pseudo
1850 register and return that register. Return X otherwise. */
1851
1852 static rtx
1853 avoid_likely_spilled_reg (rtx x)
1854 {
1855 rtx new;
1856
1857 if (REG_P (x)
1858 && HARD_REGISTER_P (x)
1859 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (x))))
1860 {
1861 /* Make sure that we generate a REG rather than a CONCAT.
1862 Moves into CONCATs can need nontrivial instructions,
1863 and the whole point of this function is to avoid
1864 using the hard register directly in such a situation. */
1865 generating_concat_p = 0;
1866 new = gen_reg_rtx (GET_MODE (x));
1867 generating_concat_p = 1;
1868 emit_move_insn (new, x);
1869 return new;
1870 }
1871 return x;
1872 }
1873
1874 /* Generate all the code for a CALL_EXPR exp
1875 and return an rtx for its value.
1876 Store the value in TARGET (specified as an rtx) if convenient.
1877 If the value is stored in TARGET then TARGET is returned.
1878 If IGNORE is nonzero, then we ignore the value of the function call. */
1879
1880 rtx
1881 expand_call (tree exp, rtx target, int ignore)
1882 {
1883 /* Nonzero if we are currently expanding a call. */
1884 static int currently_expanding_call = 0;
1885
1886 /* RTX for the function to be called. */
1887 rtx funexp;
1888 /* Sequence of insns to perform a normal "call". */
1889 rtx normal_call_insns = NULL_RTX;
1890 /* Sequence of insns to perform a tail "call". */
1891 rtx tail_call_insns = NULL_RTX;
1892 /* Data type of the function. */
1893 tree funtype;
1894 tree type_arg_types;
1895 /* Declaration of the function being called,
1896 or 0 if the function is computed (not known by name). */
1897 tree fndecl = 0;
1898 /* The type of the function being called. */
1899 tree fntype;
1900 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1901 int pass;
1902
1903 /* Register in which non-BLKmode value will be returned,
1904 or 0 if no value or if value is BLKmode. */
1905 rtx valreg;
1906 /* Address where we should return a BLKmode value;
1907 0 if value not BLKmode. */
1908 rtx structure_value_addr = 0;
1909 /* Nonzero if that address is being passed by treating it as
1910 an extra, implicit first parameter. Otherwise,
1911 it is passed by being copied directly into struct_value_rtx. */
1912 int structure_value_addr_parm = 0;
1913 /* Holds the value of implicit argument for the struct value. */
1914 tree structure_value_addr_value = NULL_TREE;
1915 /* Size of aggregate value wanted, or zero if none wanted
1916 or if we are using the non-reentrant PCC calling convention
1917 or expecting the value in registers. */
1918 HOST_WIDE_INT struct_value_size = 0;
1919 /* Nonzero if called function returns an aggregate in memory PCC style,
1920 by returning the address of where to find it. */
1921 int pcc_struct_value = 0;
1922 rtx struct_value = 0;
1923
1924 /* Number of actual parameters in this call, including struct value addr. */
1925 int num_actuals;
1926 /* Number of named args. Args after this are anonymous ones
1927 and they must all go on the stack. */
1928 int n_named_args;
1929 /* Number of complex actual arguments that need to be split. */
1930 int num_complex_actuals = 0;
1931
1932 /* Vector of information about each argument.
1933 Arguments are numbered in the order they will be pushed,
1934 not the order they are written. */
1935 struct arg_data *args;
1936
1937 /* Total size in bytes of all the stack-parms scanned so far. */
1938 struct args_size args_size;
1939 struct args_size adjusted_args_size;
1940 /* Size of arguments before any adjustments (such as rounding). */
1941 int unadjusted_args_size;
1942 /* Data on reg parms scanned so far. */
1943 CUMULATIVE_ARGS args_so_far;
1944 /* Nonzero if a reg parm has been scanned. */
1945 int reg_parm_seen;
1946 /* Nonzero if this is an indirect function call. */
1947
1948 /* Nonzero if we must avoid push-insns in the args for this call.
1949 If stack space is allocated for register parameters, but not by the
1950 caller, then it is preallocated in the fixed part of the stack frame.
1951 So the entire argument block must then be preallocated (i.e., we
1952 ignore PUSH_ROUNDING in that case). */
1953
1954 int must_preallocate = !PUSH_ARGS;
1955
1956 /* Size of the stack reserved for parameter registers. */
1957 int reg_parm_stack_space = 0;
1958
1959 /* Address of space preallocated for stack parms
1960 (on machines that lack push insns), or 0 if space not preallocated. */
1961 rtx argblock = 0;
1962
1963 /* Mask of ECF_ flags. */
1964 int flags = 0;
1965 #ifdef REG_PARM_STACK_SPACE
1966 /* Define the boundary of the register parm stack space that needs to be
1967 saved, if any. */
1968 int low_to_save, high_to_save;
1969 rtx save_area = 0; /* Place that it is saved */
1970 #endif
1971
1972 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
1973 char *initial_stack_usage_map = stack_usage_map;
1974 char *stack_usage_map_buf = NULL;
1975
1976 int old_stack_allocated;
1977
1978 /* State variables to track stack modifications. */
1979 rtx old_stack_level = 0;
1980 int old_stack_arg_under_construction = 0;
1981 int old_pending_adj = 0;
1982 int old_inhibit_defer_pop = inhibit_defer_pop;
1983
1984 /* Some stack pointer alterations we make are performed via
1985 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
1986 which we then also need to save/restore along the way. */
1987 int old_stack_pointer_delta = 0;
1988
1989 rtx call_fusage;
1990 tree p = CALL_EXPR_FN (exp);
1991 tree addr = CALL_EXPR_FN (exp);
1992 int i;
1993 /* The alignment of the stack, in bits. */
1994 unsigned HOST_WIDE_INT preferred_stack_boundary;
1995 /* The alignment of the stack, in bytes. */
1996 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
1997 /* The static chain value to use for this call. */
1998 rtx static_chain_value;
1999 /* See if this is "nothrow" function call. */
2000 if (TREE_NOTHROW (exp))
2001 flags |= ECF_NOTHROW;
2002
2003 /* See if we can find a DECL-node for the actual function, and get the
2004 function attributes (flags) from the function decl or type node. */
2005 fndecl = get_callee_fndecl (exp);
2006 if (fndecl)
2007 {
2008 fntype = TREE_TYPE (fndecl);
2009 flags |= flags_from_decl_or_type (fndecl);
2010 }
2011 else
2012 {
2013 fntype = TREE_TYPE (TREE_TYPE (p));
2014 flags |= flags_from_decl_or_type (fntype);
2015 }
2016
2017 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
2018
2019 /* Warn if this value is an aggregate type,
2020 regardless of which calling convention we are using for it. */
2021 if (AGGREGATE_TYPE_P (TREE_TYPE (exp)))
2022 warning (OPT_Waggregate_return, "function call has aggregate value");
2023
2024 /* If the result of a non looping pure or const function call is
2025 ignored (or void), and none of its arguments are volatile, we can
2026 avoid expanding the call and just evaluate the arguments for
2027 side-effects. */
2028 if ((flags & (ECF_CONST | ECF_PURE))
2029 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
2030 && (ignore || target == const0_rtx
2031 || TYPE_MODE (TREE_TYPE (exp)) == VOIDmode))
2032 {
2033 bool volatilep = false;
2034 tree arg;
2035 call_expr_arg_iterator iter;
2036
2037 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2038 if (TREE_THIS_VOLATILE (arg))
2039 {
2040 volatilep = true;
2041 break;
2042 }
2043
2044 if (! volatilep)
2045 {
2046 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2047 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
2048 return const0_rtx;
2049 }
2050 }
2051
2052 #ifdef REG_PARM_STACK_SPACE
2053 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
2054 #endif
2055
2056 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? NULL_TREE : TREE_TYPE (fndecl)))
2057 && reg_parm_stack_space > 0 && PUSH_ARGS)
2058 must_preallocate = 1;
2059
2060 /* Set up a place to return a structure. */
2061
2062 /* Cater to broken compilers. */
2063 if (aggregate_value_p (exp, fndecl))
2064 {
2065 /* This call returns a big structure. */
2066 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2067
2068 #ifdef PCC_STATIC_STRUCT_RETURN
2069 {
2070 pcc_struct_value = 1;
2071 }
2072 #else /* not PCC_STATIC_STRUCT_RETURN */
2073 {
2074 struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
2075
2076 if (target && MEM_P (target) && CALL_EXPR_RETURN_SLOT_OPT (exp))
2077 structure_value_addr = XEXP (target, 0);
2078 else
2079 {
2080 /* For variable-sized objects, we must be called with a target
2081 specified. If we were to allocate space on the stack here,
2082 we would have no way of knowing when to free it. */
2083 rtx d = assign_temp (TREE_TYPE (exp), 0, 1, 1);
2084
2085 mark_temp_addr_taken (d);
2086 structure_value_addr = XEXP (d, 0);
2087 target = 0;
2088 }
2089 }
2090 #endif /* not PCC_STATIC_STRUCT_RETURN */
2091 }
2092
2093 /* Figure out the amount to which the stack should be aligned. */
2094 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2095 if (fndecl)
2096 {
2097 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2098 /* Without automatic stack alignment, we can't increase preferred
2099 stack boundary. With automatic stack alignment, it is
2100 unnecessary since unless we can guarantee that all callers will
2101 align the outgoing stack properly, callee has to align its
2102 stack anyway. */
2103 if (i
2104 && i->preferred_incoming_stack_boundary
2105 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
2106 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2107 }
2108
2109 /* Operand 0 is a pointer-to-function; get the type of the function. */
2110 funtype = TREE_TYPE (addr);
2111 gcc_assert (POINTER_TYPE_P (funtype));
2112 funtype = TREE_TYPE (funtype);
2113
2114 /* Count whether there are actual complex arguments that need to be split
2115 into their real and imaginary parts. Munge the type_arg_types
2116 appropriately here as well. */
2117 if (targetm.calls.split_complex_arg)
2118 {
2119 call_expr_arg_iterator iter;
2120 tree arg;
2121 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2122 {
2123 tree type = TREE_TYPE (arg);
2124 if (type && TREE_CODE (type) == COMPLEX_TYPE
2125 && targetm.calls.split_complex_arg (type))
2126 num_complex_actuals++;
2127 }
2128 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2129 }
2130 else
2131 type_arg_types = TYPE_ARG_TYPES (funtype);
2132
2133 if (flags & ECF_MAY_BE_ALLOCA)
2134 cfun->calls_alloca = 1;
2135
2136 /* If struct_value_rtx is 0, it means pass the address
2137 as if it were an extra parameter. Put the argument expression
2138 in structure_value_addr_value. */
2139 if (structure_value_addr && struct_value == 0)
2140 {
2141 /* If structure_value_addr is a REG other than
2142 virtual_outgoing_args_rtx, we can use always use it. If it
2143 is not a REG, we must always copy it into a register.
2144 If it is virtual_outgoing_args_rtx, we must copy it to another
2145 register in some cases. */
2146 rtx temp = (!REG_P (structure_value_addr)
2147 || (ACCUMULATE_OUTGOING_ARGS
2148 && stack_arg_under_construction
2149 && structure_value_addr == virtual_outgoing_args_rtx)
2150 ? copy_addr_to_reg (convert_memory_address
2151 (Pmode, structure_value_addr))
2152 : structure_value_addr);
2153
2154 structure_value_addr_value =
2155 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
2156 structure_value_addr_parm = 1;
2157 }
2158
2159 /* Count the arguments and set NUM_ACTUALS. */
2160 num_actuals =
2161 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
2162
2163 /* Compute number of named args.
2164 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2165
2166 if (type_arg_types != 0)
2167 n_named_args
2168 = (list_length (type_arg_types)
2169 /* Count the struct value address, if it is passed as a parm. */
2170 + structure_value_addr_parm);
2171 else
2172 /* If we know nothing, treat all args as named. */
2173 n_named_args = num_actuals;
2174
2175 /* Start updating where the next arg would go.
2176
2177 On some machines (such as the PA) indirect calls have a different
2178 calling convention than normal calls. The fourth argument in
2179 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2180 or not. */
2181 INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
2182
2183 /* Now possibly adjust the number of named args.
2184 Normally, don't include the last named arg if anonymous args follow.
2185 We do include the last named arg if
2186 targetm.calls.strict_argument_naming() returns nonzero.
2187 (If no anonymous args follow, the result of list_length is actually
2188 one too large. This is harmless.)
2189
2190 If targetm.calls.pretend_outgoing_varargs_named() returns
2191 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2192 this machine will be able to place unnamed args that were passed
2193 in registers into the stack. So treat all args as named. This
2194 allows the insns emitting for a specific argument list to be
2195 independent of the function declaration.
2196
2197 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2198 we do not have any reliable way to pass unnamed args in
2199 registers, so we must force them into memory. */
2200
2201 if (type_arg_types != 0
2202 && targetm.calls.strict_argument_naming (&args_so_far))
2203 ;
2204 else if (type_arg_types != 0
2205 && ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
2206 /* Don't include the last named arg. */
2207 --n_named_args;
2208 else
2209 /* Treat all args as named. */
2210 n_named_args = num_actuals;
2211
2212 /* Make a vector to hold all the information about each arg. */
2213 args = XALLOCAVEC (struct arg_data, num_actuals);
2214 memset (args, 0, num_actuals * sizeof (struct arg_data));
2215
2216 /* Build up entries in the ARGS array, compute the size of the
2217 arguments into ARGS_SIZE, etc. */
2218 initialize_argument_information (num_actuals, args, &args_size,
2219 n_named_args, exp,
2220 structure_value_addr_value, fndecl,
2221 &args_so_far, reg_parm_stack_space,
2222 &old_stack_level, &old_pending_adj,
2223 &must_preallocate, &flags,
2224 &try_tail_call, CALL_FROM_THUNK_P (exp));
2225
2226 if (args_size.var)
2227 must_preallocate = 1;
2228
2229 /* Now make final decision about preallocating stack space. */
2230 must_preallocate = finalize_must_preallocate (must_preallocate,
2231 num_actuals, args,
2232 &args_size);
2233
2234 /* If the structure value address will reference the stack pointer, we
2235 must stabilize it. We don't need to do this if we know that we are
2236 not going to adjust the stack pointer in processing this call. */
2237
2238 if (structure_value_addr
2239 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2240 || reg_mentioned_p (virtual_outgoing_args_rtx,
2241 structure_value_addr))
2242 && (args_size.var
2243 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2244 structure_value_addr = copy_to_reg (structure_value_addr);
2245
2246 /* Tail calls can make things harder to debug, and we've traditionally
2247 pushed these optimizations into -O2. Don't try if we're already
2248 expanding a call, as that means we're an argument. Don't try if
2249 there's cleanups, as we know there's code to follow the call. */
2250
2251 if (currently_expanding_call++ != 0
2252 || !flag_optimize_sibling_calls
2253 || args_size.var
2254 || lookup_stmt_eh_region (exp) >= 0
2255 || dbg_cnt (tail_call) == false)
2256 try_tail_call = 0;
2257
2258 /* Rest of purposes for tail call optimizations to fail. */
2259 if (
2260 #ifdef HAVE_sibcall_epilogue
2261 !HAVE_sibcall_epilogue
2262 #else
2263 1
2264 #endif
2265 || !try_tail_call
2266 /* Doing sibling call optimization needs some work, since
2267 structure_value_addr can be allocated on the stack.
2268 It does not seem worth the effort since few optimizable
2269 sibling calls will return a structure. */
2270 || structure_value_addr != NULL_RTX
2271 /* Check whether the target is able to optimize the call
2272 into a sibcall. */
2273 || !targetm.function_ok_for_sibcall (fndecl, exp)
2274 /* Functions that do not return exactly once may not be sibcall
2275 optimized. */
2276 || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2277 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2278 /* If the called function is nested in the current one, it might access
2279 some of the caller's arguments, but could clobber them beforehand if
2280 the argument areas are shared. */
2281 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2282 /* If this function requires more stack slots than the current
2283 function, we cannot change it into a sibling call.
2284 crtl->args.pretend_args_size is not part of the
2285 stack allocated by our caller. */
2286 || args_size.constant > (crtl->args.size
2287 - crtl->args.pretend_args_size)
2288 /* If the callee pops its own arguments, then it must pop exactly
2289 the same number of arguments as the current function. */
2290 || (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
2291 != RETURN_POPS_ARGS (current_function_decl,
2292 TREE_TYPE (current_function_decl),
2293 crtl->args.size))
2294 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2295 try_tail_call = 0;
2296
2297 /* Ensure current function's preferred stack
2298 boundary is at least what we need. */
2299 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
2300 crtl->preferred_stack_boundary = preferred_stack_boundary;
2301
2302 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2303
2304 /* We want to make two insn chains; one for a sibling call, the other
2305 for a normal call. We will select one of the two chains after
2306 initial RTL generation is complete. */
2307 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2308 {
2309 int sibcall_failure = 0;
2310 /* We want to emit any pending stack adjustments before the tail
2311 recursion "call". That way we know any adjustment after the tail
2312 recursion call can be ignored if we indeed use the tail
2313 call expansion. */
2314 int save_pending_stack_adjust = 0;
2315 int save_stack_pointer_delta = 0;
2316 rtx insns;
2317 rtx before_call, next_arg_reg, after_args;
2318
2319 if (pass == 0)
2320 {
2321 /* State variables we need to save and restore between
2322 iterations. */
2323 save_pending_stack_adjust = pending_stack_adjust;
2324 save_stack_pointer_delta = stack_pointer_delta;
2325 }
2326 if (pass)
2327 flags &= ~ECF_SIBCALL;
2328 else
2329 flags |= ECF_SIBCALL;
2330
2331 /* Other state variables that we must reinitialize each time
2332 through the loop (that are not initialized by the loop itself). */
2333 argblock = 0;
2334 call_fusage = 0;
2335
2336 /* Start a new sequence for the normal call case.
2337
2338 From this point on, if the sibling call fails, we want to set
2339 sibcall_failure instead of continuing the loop. */
2340 start_sequence ();
2341
2342 /* Don't let pending stack adjusts add up to too much.
2343 Also, do all pending adjustments now if there is any chance
2344 this might be a call to alloca or if we are expanding a sibling
2345 call sequence.
2346 Also do the adjustments before a throwing call, otherwise
2347 exception handling can fail; PR 19225. */
2348 if (pending_stack_adjust >= 32
2349 || (pending_stack_adjust > 0
2350 && (flags & ECF_MAY_BE_ALLOCA))
2351 || (pending_stack_adjust > 0
2352 && flag_exceptions && !(flags & ECF_NOTHROW))
2353 || pass == 0)
2354 do_pending_stack_adjust ();
2355
2356 /* Precompute any arguments as needed. */
2357 if (pass)
2358 precompute_arguments (num_actuals, args);
2359
2360 /* Now we are about to start emitting insns that can be deleted
2361 if a libcall is deleted. */
2362 if (pass && (flags & ECF_MALLOC))
2363 start_sequence ();
2364
2365 if (pass == 0 && crtl->stack_protect_guard)
2366 stack_protect_epilogue ();
2367
2368 adjusted_args_size = args_size;
2369 /* Compute the actual size of the argument block required. The variable
2370 and constant sizes must be combined, the size may have to be rounded,
2371 and there may be a minimum required size. When generating a sibcall
2372 pattern, do not round up, since we'll be re-using whatever space our
2373 caller provided. */
2374 unadjusted_args_size
2375 = compute_argument_block_size (reg_parm_stack_space,
2376 &adjusted_args_size,
2377 fndecl,
2378 (pass == 0 ? 0
2379 : preferred_stack_boundary));
2380
2381 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2382
2383 /* The argument block when performing a sibling call is the
2384 incoming argument block. */
2385 if (pass == 0)
2386 {
2387 argblock = virtual_incoming_args_rtx;
2388 argblock
2389 #ifdef STACK_GROWS_DOWNWARD
2390 = plus_constant (argblock, crtl->args.pretend_args_size);
2391 #else
2392 = plus_constant (argblock, -crtl->args.pretend_args_size);
2393 #endif
2394 stored_args_map = sbitmap_alloc (args_size.constant);
2395 sbitmap_zero (stored_args_map);
2396 }
2397
2398 /* If we have no actual push instructions, or shouldn't use them,
2399 make space for all args right now. */
2400 else if (adjusted_args_size.var != 0)
2401 {
2402 if (old_stack_level == 0)
2403 {
2404 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
2405 old_stack_pointer_delta = stack_pointer_delta;
2406 old_pending_adj = pending_stack_adjust;
2407 pending_stack_adjust = 0;
2408 /* stack_arg_under_construction says whether a stack arg is
2409 being constructed at the old stack level. Pushing the stack
2410 gets a clean outgoing argument block. */
2411 old_stack_arg_under_construction = stack_arg_under_construction;
2412 stack_arg_under_construction = 0;
2413 }
2414 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2415 }
2416 else
2417 {
2418 /* Note that we must go through the motions of allocating an argument
2419 block even if the size is zero because we may be storing args
2420 in the area reserved for register arguments, which may be part of
2421 the stack frame. */
2422
2423 int needed = adjusted_args_size.constant;
2424
2425 /* Store the maximum argument space used. It will be pushed by
2426 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2427 checking). */
2428
2429 if (needed > crtl->outgoing_args_size)
2430 crtl->outgoing_args_size = needed;
2431
2432 if (must_preallocate)
2433 {
2434 if (ACCUMULATE_OUTGOING_ARGS)
2435 {
2436 /* Since the stack pointer will never be pushed, it is
2437 possible for the evaluation of a parm to clobber
2438 something we have already written to the stack.
2439 Since most function calls on RISC machines do not use
2440 the stack, this is uncommon, but must work correctly.
2441
2442 Therefore, we save any area of the stack that was already
2443 written and that we are using. Here we set up to do this
2444 by making a new stack usage map from the old one. The
2445 actual save will be done by store_one_arg.
2446
2447 Another approach might be to try to reorder the argument
2448 evaluations to avoid this conflicting stack usage. */
2449
2450 /* Since we will be writing into the entire argument area,
2451 the map must be allocated for its entire size, not just
2452 the part that is the responsibility of the caller. */
2453 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? NULL_TREE : TREE_TYPE (fndecl))))
2454 needed += reg_parm_stack_space;
2455
2456 #ifdef ARGS_GROW_DOWNWARD
2457 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2458 needed + 1);
2459 #else
2460 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2461 needed);
2462 #endif
2463 if (stack_usage_map_buf)
2464 free (stack_usage_map_buf);
2465 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
2466 stack_usage_map = stack_usage_map_buf;
2467
2468 if (initial_highest_arg_in_use)
2469 memcpy (stack_usage_map, initial_stack_usage_map,
2470 initial_highest_arg_in_use);
2471
2472 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2473 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2474 (highest_outgoing_arg_in_use
2475 - initial_highest_arg_in_use));
2476 needed = 0;
2477
2478 /* The address of the outgoing argument list must not be
2479 copied to a register here, because argblock would be left
2480 pointing to the wrong place after the call to
2481 allocate_dynamic_stack_space below. */
2482
2483 argblock = virtual_outgoing_args_rtx;
2484 }
2485 else
2486 {
2487 if (inhibit_defer_pop == 0)
2488 {
2489 /* Try to reuse some or all of the pending_stack_adjust
2490 to get this space. */
2491 needed
2492 = (combine_pending_stack_adjustment_and_call
2493 (unadjusted_args_size,
2494 &adjusted_args_size,
2495 preferred_unit_stack_boundary));
2496
2497 /* combine_pending_stack_adjustment_and_call computes
2498 an adjustment before the arguments are allocated.
2499 Account for them and see whether or not the stack
2500 needs to go up or down. */
2501 needed = unadjusted_args_size - needed;
2502
2503 if (needed < 0)
2504 {
2505 /* We're releasing stack space. */
2506 /* ??? We can avoid any adjustment at all if we're
2507 already aligned. FIXME. */
2508 pending_stack_adjust = -needed;
2509 do_pending_stack_adjust ();
2510 needed = 0;
2511 }
2512 else
2513 /* We need to allocate space. We'll do that in
2514 push_block below. */
2515 pending_stack_adjust = 0;
2516 }
2517
2518 /* Special case this because overhead of `push_block' in
2519 this case is non-trivial. */
2520 if (needed == 0)
2521 argblock = virtual_outgoing_args_rtx;
2522 else
2523 {
2524 argblock = push_block (GEN_INT (needed), 0, 0);
2525 #ifdef ARGS_GROW_DOWNWARD
2526 argblock = plus_constant (argblock, needed);
2527 #endif
2528 }
2529
2530 /* We only really need to call `copy_to_reg' in the case
2531 where push insns are going to be used to pass ARGBLOCK
2532 to a function call in ARGS. In that case, the stack
2533 pointer changes value from the allocation point to the
2534 call point, and hence the value of
2535 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2536 as well always do it. */
2537 argblock = copy_to_reg (argblock);
2538 }
2539 }
2540 }
2541
2542 if (ACCUMULATE_OUTGOING_ARGS)
2543 {
2544 /* The save/restore code in store_one_arg handles all
2545 cases except one: a constructor call (including a C
2546 function returning a BLKmode struct) to initialize
2547 an argument. */
2548 if (stack_arg_under_construction)
2549 {
2550 rtx push_size
2551 = GEN_INT (adjusted_args_size.constant
2552 + (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? NULL
2553 : TREE_TYPE (fndecl))) ? 0
2554 : reg_parm_stack_space));
2555 if (old_stack_level == 0)
2556 {
2557 emit_stack_save (SAVE_BLOCK, &old_stack_level,
2558 NULL_RTX);
2559 old_stack_pointer_delta = stack_pointer_delta;
2560 old_pending_adj = pending_stack_adjust;
2561 pending_stack_adjust = 0;
2562 /* stack_arg_under_construction says whether a stack
2563 arg is being constructed at the old stack level.
2564 Pushing the stack gets a clean outgoing argument
2565 block. */
2566 old_stack_arg_under_construction
2567 = stack_arg_under_construction;
2568 stack_arg_under_construction = 0;
2569 /* Make a new map for the new argument list. */
2570 if (stack_usage_map_buf)
2571 free (stack_usage_map_buf);
2572 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
2573 stack_usage_map = stack_usage_map_buf;
2574 highest_outgoing_arg_in_use = 0;
2575 }
2576 allocate_dynamic_stack_space (push_size, NULL_RTX,
2577 BITS_PER_UNIT);
2578 }
2579
2580 /* If argument evaluation might modify the stack pointer,
2581 copy the address of the argument list to a register. */
2582 for (i = 0; i < num_actuals; i++)
2583 if (args[i].pass_on_stack)
2584 {
2585 argblock = copy_addr_to_reg (argblock);
2586 break;
2587 }
2588 }
2589
2590 compute_argument_addresses (args, argblock, num_actuals);
2591
2592 /* If we push args individually in reverse order, perform stack alignment
2593 before the first push (the last arg). */
2594 if (PUSH_ARGS_REVERSED && argblock == 0
2595 && adjusted_args_size.constant != unadjusted_args_size)
2596 {
2597 /* When the stack adjustment is pending, we get better code
2598 by combining the adjustments. */
2599 if (pending_stack_adjust
2600 && ! inhibit_defer_pop)
2601 {
2602 pending_stack_adjust
2603 = (combine_pending_stack_adjustment_and_call
2604 (unadjusted_args_size,
2605 &adjusted_args_size,
2606 preferred_unit_stack_boundary));
2607 do_pending_stack_adjust ();
2608 }
2609 else if (argblock == 0)
2610 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2611 - unadjusted_args_size));
2612 }
2613 /* Now that the stack is properly aligned, pops can't safely
2614 be deferred during the evaluation of the arguments. */
2615 NO_DEFER_POP;
2616
2617 funexp = rtx_for_function_call (fndecl, addr);
2618
2619 /* Figure out the register where the value, if any, will come back. */
2620 valreg = 0;
2621 if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
2622 && ! structure_value_addr)
2623 {
2624 if (pcc_struct_value)
2625 valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
2626 fndecl, NULL, (pass == 0));
2627 else
2628 valreg = hard_function_value (TREE_TYPE (exp), fndecl, fntype,
2629 (pass == 0));
2630
2631 /* If VALREG is a PARALLEL whose first member has a zero
2632 offset, use that. This is for targets such as m68k that
2633 return the same value in multiple places. */
2634 if (GET_CODE (valreg) == PARALLEL)
2635 {
2636 rtx elem = XVECEXP (valreg, 0, 0);
2637 rtx where = XEXP (elem, 0);
2638 rtx offset = XEXP (elem, 1);
2639 if (offset == const0_rtx
2640 && GET_MODE (where) == GET_MODE (valreg))
2641 valreg = where;
2642 }
2643 }
2644
2645 /* Precompute all register parameters. It isn't safe to compute anything
2646 once we have started filling any specific hard regs. */
2647 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2648
2649 if (CALL_EXPR_STATIC_CHAIN (exp))
2650 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
2651 else
2652 static_chain_value = 0;
2653
2654 #ifdef REG_PARM_STACK_SPACE
2655 /* Save the fixed argument area if it's part of the caller's frame and
2656 is clobbered by argument setup for this call. */
2657 if (ACCUMULATE_OUTGOING_ARGS && pass)
2658 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2659 &low_to_save, &high_to_save);
2660 #endif
2661
2662 /* Now store (and compute if necessary) all non-register parms.
2663 These come before register parms, since they can require block-moves,
2664 which could clobber the registers used for register parms.
2665 Parms which have partial registers are not stored here,
2666 but we do preallocate space here if they want that. */
2667
2668 for (i = 0; i < num_actuals; i++)
2669 if (args[i].reg == 0 || args[i].pass_on_stack)
2670 {
2671 rtx before_arg = get_last_insn ();
2672
2673 if (store_one_arg (&args[i], argblock, flags,
2674 adjusted_args_size.var != 0,
2675 reg_parm_stack_space)
2676 || (pass == 0
2677 && check_sibcall_argument_overlap (before_arg,
2678 &args[i], 1)))
2679 sibcall_failure = 1;
2680
2681 if (flags & ECF_CONST
2682 && args[i].stack
2683 && args[i].value == args[i].stack)
2684 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2685 gen_rtx_USE (VOIDmode,
2686 args[i].value),
2687 call_fusage);
2688 }
2689
2690 /* If we have a parm that is passed in registers but not in memory
2691 and whose alignment does not permit a direct copy into registers,
2692 make a group of pseudos that correspond to each register that we
2693 will later fill. */
2694 if (STRICT_ALIGNMENT)
2695 store_unaligned_arguments_into_pseudos (args, num_actuals);
2696
2697 /* Now store any partially-in-registers parm.
2698 This is the last place a block-move can happen. */
2699 if (reg_parm_seen)
2700 for (i = 0; i < num_actuals; i++)
2701 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2702 {
2703 rtx before_arg = get_last_insn ();
2704
2705 if (store_one_arg (&args[i], argblock, flags,
2706 adjusted_args_size.var != 0,
2707 reg_parm_stack_space)
2708 || (pass == 0
2709 && check_sibcall_argument_overlap (before_arg,
2710 &args[i], 1)))
2711 sibcall_failure = 1;
2712 }
2713
2714 /* If we pushed args in forward order, perform stack alignment
2715 after pushing the last arg. */
2716 if (!PUSH_ARGS_REVERSED && argblock == 0)
2717 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2718 - unadjusted_args_size));
2719
2720 /* If register arguments require space on the stack and stack space
2721 was not preallocated, allocate stack space here for arguments
2722 passed in registers. */
2723 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? NULL_TREE : TREE_TYPE (fndecl)))
2724 && !ACCUMULATE_OUTGOING_ARGS
2725 && must_preallocate == 0 && reg_parm_stack_space > 0)
2726 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2727
2728 /* Pass the function the address in which to return a
2729 structure value. */
2730 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2731 {
2732 structure_value_addr
2733 = convert_memory_address (Pmode, structure_value_addr);
2734 emit_move_insn (struct_value,
2735 force_reg (Pmode,
2736 force_operand (structure_value_addr,
2737 NULL_RTX)));
2738
2739 if (REG_P (struct_value))
2740 use_reg (&call_fusage, struct_value);
2741 }
2742
2743 after_args = get_last_insn ();
2744 funexp = prepare_call_address (funexp, static_chain_value,
2745 &call_fusage, reg_parm_seen, pass == 0);
2746
2747 load_register_parameters (args, num_actuals, &call_fusage, flags,
2748 pass == 0, &sibcall_failure);
2749
2750 /* Save a pointer to the last insn before the call, so that we can
2751 later safely search backwards to find the CALL_INSN. */
2752 before_call = get_last_insn ();
2753
2754 /* Set up next argument register. For sibling calls on machines
2755 with register windows this should be the incoming register. */
2756 #ifdef FUNCTION_INCOMING_ARG
2757 if (pass == 0)
2758 next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
2759 void_type_node, 1);
2760 else
2761 #endif
2762 next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
2763 void_type_node, 1);
2764
2765 /* All arguments and registers used for the call must be set up by
2766 now! */
2767
2768 /* Stack must be properly aligned now. */
2769 gcc_assert (!pass
2770 || !(stack_pointer_delta % preferred_unit_stack_boundary));
2771
2772 /* Generate the actual call instruction. */
2773 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2774 adjusted_args_size.constant, struct_value_size,
2775 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2776 flags, & args_so_far);
2777
2778 /* If the call setup or the call itself overlaps with anything
2779 of the argument setup we probably clobbered our call address.
2780 In that case we can't do sibcalls. */
2781 if (pass == 0
2782 && check_sibcall_argument_overlap (after_args, 0, 0))
2783 sibcall_failure = 1;
2784
2785 /* If a non-BLKmode value is returned at the most significant end
2786 of a register, shift the register right by the appropriate amount
2787 and update VALREG accordingly. BLKmode values are handled by the
2788 group load/store machinery below. */
2789 if (!structure_value_addr
2790 && !pcc_struct_value
2791 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2792 && targetm.calls.return_in_msb (TREE_TYPE (exp)))
2793 {
2794 if (shift_return_value (TYPE_MODE (TREE_TYPE (exp)), false, valreg))
2795 sibcall_failure = 1;
2796 valreg = gen_rtx_REG (TYPE_MODE (TREE_TYPE (exp)), REGNO (valreg));
2797 }
2798
2799 if (pass && (flags & ECF_MALLOC))
2800 {
2801 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2802 rtx last, insns;
2803
2804 /* The return value from a malloc-like function is a pointer. */
2805 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2806 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2807
2808 emit_move_insn (temp, valreg);
2809
2810 /* The return value from a malloc-like function can not alias
2811 anything else. */
2812 last = get_last_insn ();
2813 add_reg_note (last, REG_NOALIAS, temp);
2814
2815 /* Write out the sequence. */
2816 insns = get_insns ();
2817 end_sequence ();
2818 emit_insn (insns);
2819 valreg = temp;
2820 }
2821
2822 /* For calls to `setjmp', etc., inform
2823 function.c:setjmp_warnings that it should complain if
2824 nonvolatile values are live. For functions that cannot
2825 return, inform flow that control does not fall through. */
2826
2827 if ((flags & ECF_NORETURN) || pass == 0)
2828 {
2829 /* The barrier must be emitted
2830 immediately after the CALL_INSN. Some ports emit more
2831 than just a CALL_INSN above, so we must search for it here. */
2832
2833 rtx last = get_last_insn ();
2834 while (!CALL_P (last))
2835 {
2836 last = PREV_INSN (last);
2837 /* There was no CALL_INSN? */
2838 gcc_assert (last != before_call);
2839 }
2840
2841 emit_barrier_after (last);
2842
2843 /* Stack adjustments after a noreturn call are dead code.
2844 However when NO_DEFER_POP is in effect, we must preserve
2845 stack_pointer_delta. */
2846 if (inhibit_defer_pop == 0)
2847 {
2848 stack_pointer_delta = old_stack_allocated;
2849 pending_stack_adjust = 0;
2850 }
2851 }
2852
2853 /* If value type not void, return an rtx for the value. */
2854
2855 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
2856 || ignore)
2857 target = const0_rtx;
2858 else if (structure_value_addr)
2859 {
2860 if (target == 0 || !MEM_P (target))
2861 {
2862 target
2863 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2864 memory_address (TYPE_MODE (TREE_TYPE (exp)),
2865 structure_value_addr));
2866 set_mem_attributes (target, exp, 1);
2867 }
2868 }
2869 else if (pcc_struct_value)
2870 {
2871 /* This is the special C++ case where we need to
2872 know what the true target was. We take care to
2873 never use this value more than once in one expression. */
2874 target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2875 copy_to_reg (valreg));
2876 set_mem_attributes (target, exp, 1);
2877 }
2878 /* Handle calls that return values in multiple non-contiguous locations.
2879 The Irix 6 ABI has examples of this. */
2880 else if (GET_CODE (valreg) == PARALLEL)
2881 {
2882 if (target == 0)
2883 {
2884 /* This will only be assigned once, so it can be readonly. */
2885 tree nt = build_qualified_type (TREE_TYPE (exp),
2886 (TYPE_QUALS (TREE_TYPE (exp))
2887 | TYPE_QUAL_CONST));
2888
2889 target = assign_temp (nt, 0, 1, 1);
2890 }
2891
2892 if (! rtx_equal_p (target, valreg))
2893 emit_group_store (target, valreg, TREE_TYPE (exp),
2894 int_size_in_bytes (TREE_TYPE (exp)));
2895
2896 /* We can not support sibling calls for this case. */
2897 sibcall_failure = 1;
2898 }
2899 else if (target
2900 && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
2901 && GET_MODE (target) == GET_MODE (valreg))
2902 {
2903 bool may_overlap = false;
2904
2905 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
2906 reg to a plain register. */
2907 if (!REG_P (target) || HARD_REGISTER_P (target))
2908 valreg = avoid_likely_spilled_reg (valreg);
2909
2910 /* If TARGET is a MEM in the argument area, and we have
2911 saved part of the argument area, then we can't store
2912 directly into TARGET as it may get overwritten when we
2913 restore the argument save area below. Don't work too
2914 hard though and simply force TARGET to a register if it
2915 is a MEM; the optimizer is quite likely to sort it out. */
2916 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
2917 for (i = 0; i < num_actuals; i++)
2918 if (args[i].save_area)
2919 {
2920 may_overlap = true;
2921 break;
2922 }
2923
2924 if (may_overlap)
2925 target = copy_to_reg (valreg);
2926 else
2927 {
2928 /* TARGET and VALREG cannot be equal at this point
2929 because the latter would not have
2930 REG_FUNCTION_VALUE_P true, while the former would if
2931 it were referring to the same register.
2932
2933 If they refer to the same register, this move will be
2934 a no-op, except when function inlining is being
2935 done. */
2936 emit_move_insn (target, valreg);
2937
2938 /* If we are setting a MEM, this code must be executed.
2939 Since it is emitted after the call insn, sibcall
2940 optimization cannot be performed in that case. */
2941 if (MEM_P (target))
2942 sibcall_failure = 1;
2943 }
2944 }
2945 else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
2946 {
2947 target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp));
2948
2949 /* We can not support sibling calls for this case. */
2950 sibcall_failure = 1;
2951 }
2952 else
2953 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
2954
2955 if (targetm.calls.promote_function_return(funtype))
2956 {
2957 /* If we promoted this return value, make the proper SUBREG.
2958 TARGET might be const0_rtx here, so be careful. */
2959 if (REG_P (target)
2960 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2961 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
2962 {
2963 tree type = TREE_TYPE (exp);
2964 int unsignedp = TYPE_UNSIGNED (type);
2965 int offset = 0;
2966 enum machine_mode pmode;
2967
2968 pmode = promote_mode (type, TYPE_MODE (type), &unsignedp, 1);
2969 /* If we don't promote as expected, something is wrong. */
2970 gcc_assert (GET_MODE (target) == pmode);
2971
2972 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
2973 && (GET_MODE_SIZE (GET_MODE (target))
2974 > GET_MODE_SIZE (TYPE_MODE (type))))
2975 {
2976 offset = GET_MODE_SIZE (GET_MODE (target))
2977 - GET_MODE_SIZE (TYPE_MODE (type));
2978 if (! BYTES_BIG_ENDIAN)
2979 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
2980 else if (! WORDS_BIG_ENDIAN)
2981 offset %= UNITS_PER_WORD;
2982 }
2983 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
2984 SUBREG_PROMOTED_VAR_P (target) = 1;
2985 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
2986 }
2987 }
2988
2989 /* If size of args is variable or this was a constructor call for a stack
2990 argument, restore saved stack-pointer value. */
2991
2992 if (old_stack_level)
2993 {
2994 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
2995 stack_pointer_delta = old_stack_pointer_delta;
2996 pending_stack_adjust = old_pending_adj;
2997 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2998 stack_arg_under_construction = old_stack_arg_under_construction;
2999 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3000 stack_usage_map = initial_stack_usage_map;
3001 sibcall_failure = 1;
3002 }
3003 else if (ACCUMULATE_OUTGOING_ARGS && pass)
3004 {
3005 #ifdef REG_PARM_STACK_SPACE
3006 if (save_area)
3007 restore_fixed_argument_area (save_area, argblock,
3008 high_to_save, low_to_save);
3009 #endif
3010
3011 /* If we saved any argument areas, restore them. */
3012 for (i = 0; i < num_actuals; i++)
3013 if (args[i].save_area)
3014 {
3015 enum machine_mode save_mode = GET_MODE (args[i].save_area);
3016 rtx stack_area
3017 = gen_rtx_MEM (save_mode,
3018 memory_address (save_mode,
3019 XEXP (args[i].stack_slot, 0)));
3020
3021 if (save_mode != BLKmode)
3022 emit_move_insn (stack_area, args[i].save_area);
3023 else
3024 emit_block_move (stack_area, args[i].save_area,
3025 GEN_INT (args[i].locate.size.constant),
3026 BLOCK_OP_CALL_PARM);
3027 }
3028
3029 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3030 stack_usage_map = initial_stack_usage_map;
3031 }
3032
3033 /* If this was alloca, record the new stack level for nonlocal gotos.
3034 Check for the handler slots since we might not have a save area
3035 for non-local gotos. */
3036
3037 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
3038 update_nonlocal_goto_save_area ();
3039
3040 /* Free up storage we no longer need. */
3041 for (i = 0; i < num_actuals; ++i)
3042 if (args[i].aligned_regs)
3043 free (args[i].aligned_regs);
3044
3045 insns = get_insns ();
3046 end_sequence ();
3047
3048 if (pass == 0)
3049 {
3050 tail_call_insns = insns;
3051
3052 /* Restore the pending stack adjustment now that we have
3053 finished generating the sibling call sequence. */
3054
3055 pending_stack_adjust = save_pending_stack_adjust;
3056 stack_pointer_delta = save_stack_pointer_delta;
3057
3058 /* Prepare arg structure for next iteration. */
3059 for (i = 0; i < num_actuals; i++)
3060 {
3061 args[i].value = 0;
3062 args[i].aligned_regs = 0;
3063 args[i].stack = 0;
3064 }
3065
3066 sbitmap_free (stored_args_map);
3067 }
3068 else
3069 {
3070 normal_call_insns = insns;
3071
3072 /* Verify that we've deallocated all the stack we used. */
3073 gcc_assert ((flags & ECF_NORETURN)
3074 || (old_stack_allocated
3075 == stack_pointer_delta - pending_stack_adjust));
3076 }
3077
3078 /* If something prevents making this a sibling call,
3079 zero out the sequence. */
3080 if (sibcall_failure)
3081 tail_call_insns = NULL_RTX;
3082 else
3083 break;
3084 }
3085
3086 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3087 arguments too, as argument area is now clobbered by the call. */
3088 if (tail_call_insns)
3089 {
3090 emit_insn (tail_call_insns);
3091 crtl->tail_call_emit = true;
3092 }
3093 else
3094 emit_insn (normal_call_insns);
3095
3096 currently_expanding_call--;
3097
3098 if (stack_usage_map_buf)
3099 free (stack_usage_map_buf);
3100
3101 return target;
3102 }
3103
3104 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3105 this function's incoming arguments.
3106
3107 At the start of RTL generation we know the only REG_EQUIV notes
3108 in the rtl chain are those for incoming arguments, so we can look
3109 for REG_EQUIV notes between the start of the function and the
3110 NOTE_INSN_FUNCTION_BEG.
3111
3112 This is (slight) overkill. We could keep track of the highest
3113 argument we clobber and be more selective in removing notes, but it
3114 does not seem to be worth the effort. */
3115
3116 void
3117 fixup_tail_calls (void)
3118 {
3119 rtx insn;
3120
3121 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3122 {
3123 rtx note;
3124
3125 /* There are never REG_EQUIV notes for the incoming arguments
3126 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
3127 if (NOTE_P (insn)
3128 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3129 break;
3130
3131 note = find_reg_note (insn, REG_EQUIV, 0);
3132 if (note)
3133 remove_note (insn, note);
3134 note = find_reg_note (insn, REG_EQUIV, 0);
3135 gcc_assert (!note);
3136 }
3137 }
3138
3139 /* Traverse a list of TYPES and expand all complex types into their
3140 components. */
3141 static tree
3142 split_complex_types (tree types)
3143 {
3144 tree p;
3145
3146 /* Before allocating memory, check for the common case of no complex. */
3147 for (p = types; p; p = TREE_CHAIN (p))
3148 {
3149 tree type = TREE_VALUE (p);
3150 if (TREE_CODE (type) == COMPLEX_TYPE
3151 && targetm.calls.split_complex_arg (type))
3152 goto found;
3153 }
3154 return types;
3155
3156 found:
3157 types = copy_list (types);
3158
3159 for (p = types; p; p = TREE_CHAIN (p))
3160 {
3161 tree complex_type = TREE_VALUE (p);
3162
3163 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3164 && targetm.calls.split_complex_arg (complex_type))
3165 {
3166 tree next, imag;
3167
3168 /* Rewrite complex type with component type. */
3169 TREE_VALUE (p) = TREE_TYPE (complex_type);
3170 next = TREE_CHAIN (p);
3171
3172 /* Add another component type for the imaginary part. */
3173 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3174 TREE_CHAIN (p) = imag;
3175 TREE_CHAIN (imag) = next;
3176
3177 /* Skip the newly created node. */
3178 p = TREE_CHAIN (p);
3179 }
3180 }
3181
3182 return types;
3183 }
3184 \f
3185 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3186 The RETVAL parameter specifies whether return value needs to be saved, other
3187 parameters are documented in the emit_library_call function below. */
3188
3189 static rtx
3190 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3191 enum libcall_type fn_type,
3192 enum machine_mode outmode, int nargs, va_list p)
3193 {
3194 /* Total size in bytes of all the stack-parms scanned so far. */
3195 struct args_size args_size;
3196 /* Size of arguments before any adjustments (such as rounding). */
3197 struct args_size original_args_size;
3198 int argnum;
3199 rtx fun;
3200 /* Todo, choose the correct decl type of orgfun. Sadly this information
3201 isn't present here, so we default to native calling abi here. */
3202 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3203 int inc;
3204 int count;
3205 rtx argblock = 0;
3206 CUMULATIVE_ARGS args_so_far;
3207 struct arg
3208 {
3209 rtx value;
3210 enum machine_mode mode;
3211 rtx reg;
3212 int partial;
3213 struct locate_and_pad_arg_data locate;
3214 rtx save_area;
3215 };
3216 struct arg *argvec;
3217 int old_inhibit_defer_pop = inhibit_defer_pop;
3218 rtx call_fusage = 0;
3219 rtx mem_value = 0;
3220 rtx valreg;
3221 int pcc_struct_value = 0;
3222 int struct_value_size = 0;
3223 int flags;
3224 int reg_parm_stack_space = 0;
3225 int needed;
3226 rtx before_call;
3227 tree tfom; /* type_for_mode (outmode, 0) */
3228
3229 #ifdef REG_PARM_STACK_SPACE
3230 /* Define the boundary of the register parm stack space that needs to be
3231 save, if any. */
3232 int low_to_save, high_to_save;
3233 rtx save_area = 0; /* Place that it is saved. */
3234 #endif
3235
3236 /* Size of the stack reserved for parameter registers. */
3237 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3238 char *initial_stack_usage_map = stack_usage_map;
3239 char *stack_usage_map_buf = NULL;
3240
3241 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3242
3243 #ifdef REG_PARM_STACK_SPACE
3244 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3245 #endif
3246
3247 /* By default, library functions can not throw. */
3248 flags = ECF_NOTHROW;
3249
3250 switch (fn_type)
3251 {
3252 case LCT_NORMAL:
3253 break;
3254 case LCT_CONST:
3255 flags |= ECF_CONST;
3256 break;
3257 case LCT_PURE:
3258 flags |= ECF_PURE;
3259 break;
3260 case LCT_NORETURN:
3261 flags |= ECF_NORETURN;
3262 break;
3263 case LCT_THROW:
3264 flags = ECF_NORETURN;
3265 break;
3266 case LCT_RETURNS_TWICE:
3267 flags = ECF_RETURNS_TWICE;
3268 break;
3269 }
3270 fun = orgfun;
3271
3272 /* Ensure current function's preferred stack boundary is at least
3273 what we need. */
3274 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3275 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3276
3277 /* If this kind of value comes back in memory,
3278 decide where in memory it should come back. */
3279 if (outmode != VOIDmode)
3280 {
3281 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3282 if (aggregate_value_p (tfom, 0))
3283 {
3284 #ifdef PCC_STATIC_STRUCT_RETURN
3285 rtx pointer_reg
3286 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
3287 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3288 pcc_struct_value = 1;
3289 if (value == 0)
3290 value = gen_reg_rtx (outmode);
3291 #else /* not PCC_STATIC_STRUCT_RETURN */
3292 struct_value_size = GET_MODE_SIZE (outmode);
3293 if (value != 0 && MEM_P (value))
3294 mem_value = value;
3295 else
3296 mem_value = assign_temp (tfom, 0, 1, 1);
3297 #endif
3298 /* This call returns a big structure. */
3299 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3300 }
3301 }
3302 else
3303 tfom = void_type_node;
3304
3305 /* ??? Unfinished: must pass the memory address as an argument. */
3306
3307 /* Copy all the libcall-arguments out of the varargs data
3308 and into a vector ARGVEC.
3309
3310 Compute how to pass each argument. We only support a very small subset
3311 of the full argument passing conventions to limit complexity here since
3312 library functions shouldn't have many args. */
3313
3314 argvec = XALLOCAVEC (struct arg, nargs + 1);
3315 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3316
3317 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3318 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
3319 #else
3320 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
3321 #endif
3322
3323 args_size.constant = 0;
3324 args_size.var = 0;
3325
3326 count = 0;
3327
3328 push_temp_slots ();
3329
3330 /* If there's a structure value address to be passed,
3331 either pass it in the special place, or pass it as an extra argument. */
3332 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3333 {
3334 rtx addr = XEXP (mem_value, 0);
3335
3336 nargs++;
3337
3338 /* Make sure it is a reasonable operand for a move or push insn. */
3339 if (!REG_P (addr) && !MEM_P (addr)
3340 && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
3341 addr = force_operand (addr, NULL_RTX);
3342
3343 argvec[count].value = addr;
3344 argvec[count].mode = Pmode;
3345 argvec[count].partial = 0;
3346
3347 argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
3348 gcc_assert (targetm.calls.arg_partial_bytes (&args_so_far, Pmode,
3349 NULL_TREE, 1) == 0);
3350
3351 locate_and_pad_parm (Pmode, NULL_TREE,
3352 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3353 1,
3354 #else
3355 argvec[count].reg != 0,
3356 #endif
3357 0, NULL_TREE, &args_size, &argvec[count].locate);
3358
3359 if (argvec[count].reg == 0 || argvec[count].partial != 0
3360 || reg_parm_stack_space > 0)
3361 args_size.constant += argvec[count].locate.size.constant;
3362
3363 FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
3364
3365 count++;
3366 }
3367
3368 for (; count < nargs; count++)
3369 {
3370 rtx val = va_arg (p, rtx);
3371 enum machine_mode mode = va_arg (p, enum machine_mode);
3372
3373 /* We cannot convert the arg value to the mode the library wants here;
3374 must do it earlier where we know the signedness of the arg. */
3375 gcc_assert (mode != BLKmode
3376 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3377
3378 /* Make sure it is a reasonable operand for a move or push insn. */
3379 if (!REG_P (val) && !MEM_P (val)
3380 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
3381 val = force_operand (val, NULL_RTX);
3382
3383 if (pass_by_reference (&args_so_far, mode, NULL_TREE, 1))
3384 {
3385 rtx slot;
3386 int must_copy
3387 = !reference_callee_copied (&args_so_far, mode, NULL_TREE, 1);
3388
3389 /* If this was a CONST function, it is now PURE since it now
3390 reads memory. */
3391 if (flags & ECF_CONST)
3392 {
3393 flags &= ~ECF_CONST;
3394 flags |= ECF_PURE;
3395 }
3396
3397 if (GET_MODE (val) == MEM && !must_copy)
3398 slot = val;
3399 else
3400 {
3401 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3402 0, 1, 1);
3403 emit_move_insn (slot, val);
3404 }
3405
3406 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3407 gen_rtx_USE (VOIDmode, slot),
3408 call_fusage);
3409 if (must_copy)
3410 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3411 gen_rtx_CLOBBER (VOIDmode,
3412 slot),
3413 call_fusage);
3414
3415 mode = Pmode;
3416 val = force_operand (XEXP (slot, 0), NULL_RTX);
3417 }
3418
3419 argvec[count].value = val;
3420 argvec[count].mode = mode;
3421
3422 argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
3423
3424 argvec[count].partial
3425 = targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL_TREE, 1);
3426
3427 locate_and_pad_parm (mode, NULL_TREE,
3428 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3429 1,
3430 #else
3431 argvec[count].reg != 0,
3432 #endif
3433 argvec[count].partial,
3434 NULL_TREE, &args_size, &argvec[count].locate);
3435
3436 gcc_assert (!argvec[count].locate.size.var);
3437
3438 if (argvec[count].reg == 0 || argvec[count].partial != 0
3439 || reg_parm_stack_space > 0)
3440 args_size.constant += argvec[count].locate.size.constant;
3441
3442 FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
3443 }
3444
3445 /* If this machine requires an external definition for library
3446 functions, write one out. */
3447 assemble_external_libcall (fun);
3448
3449 original_args_size = args_size;
3450 args_size.constant = (((args_size.constant
3451 + stack_pointer_delta
3452 + STACK_BYTES - 1)
3453 / STACK_BYTES
3454 * STACK_BYTES)
3455 - stack_pointer_delta);
3456
3457 args_size.constant = MAX (args_size.constant,
3458 reg_parm_stack_space);
3459
3460 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? NULL_TREE : TREE_TYPE (fndecl))))
3461 args_size.constant -= reg_parm_stack_space;
3462
3463 if (args_size.constant > crtl->outgoing_args_size)
3464 crtl->outgoing_args_size = args_size.constant;
3465
3466 if (ACCUMULATE_OUTGOING_ARGS)
3467 {
3468 /* Since the stack pointer will never be pushed, it is possible for
3469 the evaluation of a parm to clobber something we have already
3470 written to the stack. Since most function calls on RISC machines
3471 do not use the stack, this is uncommon, but must work correctly.
3472
3473 Therefore, we save any area of the stack that was already written
3474 and that we are using. Here we set up to do this by making a new
3475 stack usage map from the old one.
3476
3477 Another approach might be to try to reorder the argument
3478 evaluations to avoid this conflicting stack usage. */
3479
3480 needed = args_size.constant;
3481
3482 /* Since we will be writing into the entire argument area, the
3483 map must be allocated for its entire size, not just the part that
3484 is the responsibility of the caller. */
3485 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? NULL_TREE : TREE_TYPE (fndecl))))
3486 needed += reg_parm_stack_space;
3487
3488 #ifdef ARGS_GROW_DOWNWARD
3489 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3490 needed + 1);
3491 #else
3492 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3493 needed);
3494 #endif
3495 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3496 stack_usage_map = stack_usage_map_buf;
3497
3498 if (initial_highest_arg_in_use)
3499 memcpy (stack_usage_map, initial_stack_usage_map,
3500 initial_highest_arg_in_use);
3501
3502 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3503 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3504 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3505 needed = 0;
3506
3507 /* We must be careful to use virtual regs before they're instantiated,
3508 and real regs afterwards. Loop optimization, for example, can create
3509 new libcalls after we've instantiated the virtual regs, and if we
3510 use virtuals anyway, they won't match the rtl patterns. */
3511
3512 if (virtuals_instantiated)
3513 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3514 else
3515 argblock = virtual_outgoing_args_rtx;
3516 }
3517 else
3518 {
3519 if (!PUSH_ARGS)
3520 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3521 }
3522
3523 /* If we push args individually in reverse order, perform stack alignment
3524 before the first push (the last arg). */
3525 if (argblock == 0 && PUSH_ARGS_REVERSED)
3526 anti_adjust_stack (GEN_INT (args_size.constant
3527 - original_args_size.constant));
3528
3529 if (PUSH_ARGS_REVERSED)
3530 {
3531 inc = -1;
3532 argnum = nargs - 1;
3533 }
3534 else
3535 {
3536 inc = 1;
3537 argnum = 0;
3538 }
3539
3540 #ifdef REG_PARM_STACK_SPACE
3541 if (ACCUMULATE_OUTGOING_ARGS)
3542 {
3543 /* The argument list is the property of the called routine and it
3544 may clobber it. If the fixed area has been used for previous
3545 parameters, we must save and restore it. */
3546 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3547 &low_to_save, &high_to_save);
3548 }
3549 #endif
3550
3551 /* Push the args that need to be pushed. */
3552
3553 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3554 are to be pushed. */
3555 for (count = 0; count < nargs; count++, argnum += inc)
3556 {
3557 enum machine_mode mode = argvec[argnum].mode;
3558 rtx val = argvec[argnum].value;
3559 rtx reg = argvec[argnum].reg;
3560 int partial = argvec[argnum].partial;
3561 int lower_bound = 0, upper_bound = 0, i;
3562
3563 if (! (reg != 0 && partial == 0))
3564 {
3565 if (ACCUMULATE_OUTGOING_ARGS)
3566 {
3567 /* If this is being stored into a pre-allocated, fixed-size,
3568 stack area, save any previous data at that location. */
3569
3570 #ifdef ARGS_GROW_DOWNWARD
3571 /* stack_slot is negative, but we want to index stack_usage_map
3572 with positive values. */
3573 upper_bound = -argvec[argnum].locate.offset.constant + 1;
3574 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3575 #else
3576 lower_bound = argvec[argnum].locate.offset.constant;
3577 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3578 #endif
3579
3580 i = lower_bound;
3581 /* Don't worry about things in the fixed argument area;
3582 it has already been saved. */
3583 if (i < reg_parm_stack_space)
3584 i = reg_parm_stack_space;
3585 while (i < upper_bound && stack_usage_map[i] == 0)
3586 i++;
3587
3588 if (i < upper_bound)
3589 {
3590 /* We need to make a save area. */
3591 unsigned int size
3592 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3593 enum machine_mode save_mode
3594 = mode_for_size (size, MODE_INT, 1);
3595 rtx adr
3596 = plus_constant (argblock,
3597 argvec[argnum].locate.offset.constant);
3598 rtx stack_area
3599 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3600
3601 if (save_mode == BLKmode)
3602 {
3603 argvec[argnum].save_area
3604 = assign_stack_temp (BLKmode,
3605 argvec[argnum].locate.size.constant,
3606 0);
3607
3608 emit_block_move (validize_mem (argvec[argnum].save_area),
3609 stack_area,
3610 GEN_INT (argvec[argnum].locate.size.constant),
3611 BLOCK_OP_CALL_PARM);
3612 }
3613 else
3614 {
3615 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3616
3617 emit_move_insn (argvec[argnum].save_area, stack_area);
3618 }
3619 }
3620 }
3621
3622 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, PARM_BOUNDARY,
3623 partial, reg, 0, argblock,
3624 GEN_INT (argvec[argnum].locate.offset.constant),
3625 reg_parm_stack_space,
3626 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3627
3628 /* Now mark the segment we just used. */
3629 if (ACCUMULATE_OUTGOING_ARGS)
3630 for (i = lower_bound; i < upper_bound; i++)
3631 stack_usage_map[i] = 1;
3632
3633 NO_DEFER_POP;
3634
3635 if (flags & ECF_CONST)
3636 {
3637 rtx use;
3638
3639 /* Indicate argument access so that alias.c knows that these
3640 values are live. */
3641 if (argblock)
3642 use = plus_constant (argblock,
3643 argvec[argnum].locate.offset.constant);
3644 else
3645 /* When arguments are pushed, trying to tell alias.c where
3646 exactly this argument is won't work, because the
3647 auto-increment causes confusion. So we merely indicate
3648 that we access something with a known mode somewhere on
3649 the stack. */
3650 use = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3651 gen_rtx_SCRATCH (Pmode));
3652 use = gen_rtx_MEM (argvec[argnum].mode, use);
3653 use = gen_rtx_USE (VOIDmode, use);
3654 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
3655 }
3656 }
3657 }
3658
3659 /* If we pushed args in forward order, perform stack alignment
3660 after pushing the last arg. */
3661 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3662 anti_adjust_stack (GEN_INT (args_size.constant
3663 - original_args_size.constant));
3664
3665 if (PUSH_ARGS_REVERSED)
3666 argnum = nargs - 1;
3667 else
3668 argnum = 0;
3669
3670 fun = prepare_call_address (fun, NULL, &call_fusage, 0, 0);
3671
3672 /* Now load any reg parms into their regs. */
3673
3674 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3675 are to be pushed. */
3676 for (count = 0; count < nargs; count++, argnum += inc)
3677 {
3678 enum machine_mode mode = argvec[argnum].mode;
3679 rtx val = argvec[argnum].value;
3680 rtx reg = argvec[argnum].reg;
3681 int partial = argvec[argnum].partial;
3682
3683 /* Handle calls that pass values in multiple non-contiguous
3684 locations. The PA64 has examples of this for library calls. */
3685 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3686 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3687 else if (reg != 0 && partial == 0)
3688 emit_move_insn (reg, val);
3689
3690 NO_DEFER_POP;
3691 }
3692
3693 /* Any regs containing parms remain in use through the call. */
3694 for (count = 0; count < nargs; count++)
3695 {
3696 rtx reg = argvec[count].reg;
3697 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3698 use_group_regs (&call_fusage, reg);
3699 else if (reg != 0)
3700 {
3701 int partial = argvec[count].partial;
3702 if (partial)
3703 {
3704 int nregs;
3705 gcc_assert (partial % UNITS_PER_WORD == 0);
3706 nregs = partial / UNITS_PER_WORD;
3707 use_regs (&call_fusage, REGNO (reg), nregs);
3708 }
3709 else
3710 use_reg (&call_fusage, reg);
3711 }
3712 }
3713
3714 /* Pass the function the address in which to return a structure value. */
3715 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3716 {
3717 emit_move_insn (struct_value,
3718 force_reg (Pmode,
3719 force_operand (XEXP (mem_value, 0),
3720 NULL_RTX)));
3721 if (REG_P (struct_value))
3722 use_reg (&call_fusage, struct_value);
3723 }
3724
3725 /* Don't allow popping to be deferred, since then
3726 cse'ing of library calls could delete a call and leave the pop. */
3727 NO_DEFER_POP;
3728 valreg = (mem_value == 0 && outmode != VOIDmode
3729 ? hard_libcall_value (outmode) : NULL_RTX);
3730
3731 /* Stack must be properly aligned now. */
3732 gcc_assert (!(stack_pointer_delta
3733 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
3734
3735 before_call = get_last_insn ();
3736
3737 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3738 will set inhibit_defer_pop to that value. */
3739 /* The return type is needed to decide how many bytes the function pops.
3740 Signedness plays no role in that, so for simplicity, we pretend it's
3741 always signed. We also assume that the list of arguments passed has
3742 no impact, so we pretend it is unknown. */
3743
3744 emit_call_1 (fun, NULL,
3745 get_identifier (XSTR (orgfun, 0)),
3746 build_function_type (tfom, NULL_TREE),
3747 original_args_size.constant, args_size.constant,
3748 struct_value_size,
3749 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
3750 valreg,
3751 old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
3752
3753 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
3754 that it should complain if nonvolatile values are live. For
3755 functions that cannot return, inform flow that control does not
3756 fall through. */
3757
3758 if (flags & ECF_NORETURN)
3759 {
3760 /* The barrier note must be emitted
3761 immediately after the CALL_INSN. Some ports emit more than
3762 just a CALL_INSN above, so we must search for it here. */
3763
3764 rtx last = get_last_insn ();
3765 while (!CALL_P (last))
3766 {
3767 last = PREV_INSN (last);
3768 /* There was no CALL_INSN? */
3769 gcc_assert (last != before_call);
3770 }
3771
3772 emit_barrier_after (last);
3773 }
3774
3775 /* Now restore inhibit_defer_pop to its actual original value. */
3776 OK_DEFER_POP;
3777
3778 pop_temp_slots ();
3779
3780 /* Copy the value to the right place. */
3781 if (outmode != VOIDmode && retval)
3782 {
3783 if (mem_value)
3784 {
3785 if (value == 0)
3786 value = mem_value;
3787 if (value != mem_value)
3788 emit_move_insn (value, mem_value);
3789 }
3790 else if (GET_CODE (valreg) == PARALLEL)
3791 {
3792 if (value == 0)
3793 value = gen_reg_rtx (outmode);
3794 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
3795 }
3796 else
3797 {
3798 /* Convert to the proper mode if PROMOTE_MODE has been active. */
3799 if (GET_MODE (valreg) != outmode)
3800 {
3801 int unsignedp = TYPE_UNSIGNED (tfom);
3802
3803 gcc_assert (targetm.calls.promote_function_return (tfom));
3804 gcc_assert (promote_mode (tfom, outmode, &unsignedp, 0)
3805 == GET_MODE (valreg));
3806
3807 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
3808 }
3809
3810 if (value != 0)
3811 emit_move_insn (value, valreg);
3812 else
3813 value = valreg;
3814 }
3815 }
3816
3817 if (ACCUMULATE_OUTGOING_ARGS)
3818 {
3819 #ifdef REG_PARM_STACK_SPACE
3820 if (save_area)
3821 restore_fixed_argument_area (save_area, argblock,
3822 high_to_save, low_to_save);
3823 #endif
3824
3825 /* If we saved any argument areas, restore them. */
3826 for (count = 0; count < nargs; count++)
3827 if (argvec[count].save_area)
3828 {
3829 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
3830 rtx adr = plus_constant (argblock,
3831 argvec[count].locate.offset.constant);
3832 rtx stack_area = gen_rtx_MEM (save_mode,
3833 memory_address (save_mode, adr));
3834
3835 if (save_mode == BLKmode)
3836 emit_block_move (stack_area,
3837 validize_mem (argvec[count].save_area),
3838 GEN_INT (argvec[count].locate.size.constant),
3839 BLOCK_OP_CALL_PARM);
3840 else
3841 emit_move_insn (stack_area, argvec[count].save_area);
3842 }
3843
3844 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3845 stack_usage_map = initial_stack_usage_map;
3846 }
3847
3848 if (stack_usage_map_buf)
3849 free (stack_usage_map_buf);
3850
3851 return value;
3852
3853 }
3854 \f
3855 /* Output a library call to function FUN (a SYMBOL_REF rtx)
3856 (emitting the queue unless NO_QUEUE is nonzero),
3857 for a value of mode OUTMODE,
3858 with NARGS different arguments, passed as alternating rtx values
3859 and machine_modes to convert them to.
3860
3861 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
3862 `const' calls, LCT_PURE for `pure' calls, or other LCT_ value for
3863 other types of library calls. */
3864
3865 void
3866 emit_library_call (rtx orgfun, enum libcall_type fn_type,
3867 enum machine_mode outmode, int nargs, ...)
3868 {
3869 va_list p;
3870
3871 va_start (p, nargs);
3872 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
3873 va_end (p);
3874 }
3875 \f
3876 /* Like emit_library_call except that an extra argument, VALUE,
3877 comes second and says where to store the result.
3878 (If VALUE is zero, this function chooses a convenient way
3879 to return the value.
3880
3881 This function returns an rtx for where the value is to be found.
3882 If VALUE is nonzero, VALUE is returned. */
3883
3884 rtx
3885 emit_library_call_value (rtx orgfun, rtx value,
3886 enum libcall_type fn_type,
3887 enum machine_mode outmode, int nargs, ...)
3888 {
3889 rtx result;
3890 va_list p;
3891
3892 va_start (p, nargs);
3893 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
3894 nargs, p);
3895 va_end (p);
3896
3897 return result;
3898 }
3899 \f
3900 /* Store a single argument for a function call
3901 into the register or memory area where it must be passed.
3902 *ARG describes the argument value and where to pass it.
3903
3904 ARGBLOCK is the address of the stack-block for all the arguments,
3905 or 0 on a machine where arguments are pushed individually.
3906
3907 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
3908 so must be careful about how the stack is used.
3909
3910 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
3911 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
3912 that we need not worry about saving and restoring the stack.
3913
3914 FNDECL is the declaration of the function we are calling.
3915
3916 Return nonzero if this arg should cause sibcall failure,
3917 zero otherwise. */
3918
3919 static int
3920 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
3921 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
3922 {
3923 tree pval = arg->tree_value;
3924 rtx reg = 0;
3925 int partial = 0;
3926 int used = 0;
3927 int i, lower_bound = 0, upper_bound = 0;
3928 int sibcall_failure = 0;
3929
3930 if (TREE_CODE (pval) == ERROR_MARK)
3931 return 1;
3932
3933 /* Push a new temporary level for any temporaries we make for
3934 this argument. */
3935 push_temp_slots ();
3936
3937 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
3938 {
3939 /* If this is being stored into a pre-allocated, fixed-size, stack area,
3940 save any previous data at that location. */
3941 if (argblock && ! variable_size && arg->stack)
3942 {
3943 #ifdef ARGS_GROW_DOWNWARD
3944 /* stack_slot is negative, but we want to index stack_usage_map
3945 with positive values. */
3946 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
3947 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
3948 else
3949 upper_bound = 0;
3950
3951 lower_bound = upper_bound - arg->locate.size.constant;
3952 #else
3953 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
3954 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
3955 else
3956 lower_bound = 0;
3957
3958 upper_bound = lower_bound + arg->locate.size.constant;
3959 #endif
3960
3961 i = lower_bound;
3962 /* Don't worry about things in the fixed argument area;
3963 it has already been saved. */
3964 if (i < reg_parm_stack_space)
3965 i = reg_parm_stack_space;
3966 while (i < upper_bound && stack_usage_map[i] == 0)
3967 i++;
3968
3969 if (i < upper_bound)
3970 {
3971 /* We need to make a save area. */
3972 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
3973 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
3974 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
3975 rtx stack_area = gen_rtx_MEM (save_mode, adr);
3976
3977 if (save_mode == BLKmode)
3978 {
3979 tree ot = TREE_TYPE (arg->tree_value);
3980 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
3981 | TYPE_QUAL_CONST));
3982
3983 arg->save_area = assign_temp (nt, 0, 1, 1);
3984 preserve_temp_slots (arg->save_area);
3985 emit_block_move (validize_mem (arg->save_area), stack_area,
3986 GEN_INT (arg->locate.size.constant),
3987 BLOCK_OP_CALL_PARM);
3988 }
3989 else
3990 {
3991 arg->save_area = gen_reg_rtx (save_mode);
3992 emit_move_insn (arg->save_area, stack_area);
3993 }
3994 }
3995 }
3996 }
3997
3998 /* If this isn't going to be placed on both the stack and in registers,
3999 set up the register and number of words. */
4000 if (! arg->pass_on_stack)
4001 {
4002 if (flags & ECF_SIBCALL)
4003 reg = arg->tail_call_reg;
4004 else
4005 reg = arg->reg;
4006 partial = arg->partial;
4007 }
4008
4009 /* Being passed entirely in a register. We shouldn't be called in
4010 this case. */
4011 gcc_assert (reg == 0 || partial != 0);
4012
4013 /* If this arg needs special alignment, don't load the registers
4014 here. */
4015 if (arg->n_aligned_regs != 0)
4016 reg = 0;
4017
4018 /* If this is being passed partially in a register, we can't evaluate
4019 it directly into its stack slot. Otherwise, we can. */
4020 if (arg->value == 0)
4021 {
4022 /* stack_arg_under_construction is nonzero if a function argument is
4023 being evaluated directly into the outgoing argument list and
4024 expand_call must take special action to preserve the argument list
4025 if it is called recursively.
4026
4027 For scalar function arguments stack_usage_map is sufficient to
4028 determine which stack slots must be saved and restored. Scalar
4029 arguments in general have pass_on_stack == 0.
4030
4031 If this argument is initialized by a function which takes the
4032 address of the argument (a C++ constructor or a C function
4033 returning a BLKmode structure), then stack_usage_map is
4034 insufficient and expand_call must push the stack around the
4035 function call. Such arguments have pass_on_stack == 1.
4036
4037 Note that it is always safe to set stack_arg_under_construction,
4038 but this generates suboptimal code if set when not needed. */
4039
4040 if (arg->pass_on_stack)
4041 stack_arg_under_construction++;
4042
4043 arg->value = expand_expr (pval,
4044 (partial
4045 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4046 ? NULL_RTX : arg->stack,
4047 VOIDmode, EXPAND_STACK_PARM);
4048
4049 /* If we are promoting object (or for any other reason) the mode
4050 doesn't agree, convert the mode. */
4051
4052 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4053 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4054 arg->value, arg->unsignedp);
4055
4056 if (arg->pass_on_stack)
4057 stack_arg_under_construction--;
4058 }
4059
4060 /* Check for overlap with already clobbered argument area. */
4061 if ((flags & ECF_SIBCALL)
4062 && MEM_P (arg->value)
4063 && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
4064 arg->locate.size.constant))
4065 sibcall_failure = 1;
4066
4067 /* Don't allow anything left on stack from computation
4068 of argument to alloca. */
4069 if (flags & ECF_MAY_BE_ALLOCA)
4070 do_pending_stack_adjust ();
4071
4072 if (arg->value == arg->stack)
4073 /* If the value is already in the stack slot, we are done. */
4074 ;
4075 else if (arg->mode != BLKmode)
4076 {
4077 int size;
4078 unsigned int parm_align;
4079
4080 /* Argument is a scalar, not entirely passed in registers.
4081 (If part is passed in registers, arg->partial says how much
4082 and emit_push_insn will take care of putting it there.)
4083
4084 Push it, and if its size is less than the
4085 amount of space allocated to it,
4086 also bump stack pointer by the additional space.
4087 Note that in C the default argument promotions
4088 will prevent such mismatches. */
4089
4090 size = GET_MODE_SIZE (arg->mode);
4091 /* Compute how much space the push instruction will push.
4092 On many machines, pushing a byte will advance the stack
4093 pointer by a halfword. */
4094 #ifdef PUSH_ROUNDING
4095 size = PUSH_ROUNDING (size);
4096 #endif
4097 used = size;
4098
4099 /* Compute how much space the argument should get:
4100 round up to a multiple of the alignment for arguments. */
4101 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4102 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4103 / (PARM_BOUNDARY / BITS_PER_UNIT))
4104 * (PARM_BOUNDARY / BITS_PER_UNIT));
4105
4106 /* Compute the alignment of the pushed argument. */
4107 parm_align = arg->locate.boundary;
4108 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4109 {
4110 int pad = used - size;
4111 if (pad)
4112 {
4113 unsigned int pad_align = (pad & -pad) * BITS_PER_UNIT;
4114 parm_align = MIN (parm_align, pad_align);
4115 }
4116 }
4117
4118 /* This isn't already where we want it on the stack, so put it there.
4119 This can either be done with push or copy insns. */
4120 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4121 parm_align, partial, reg, used - size, argblock,
4122 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4123 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4124
4125 /* Unless this is a partially-in-register argument, the argument is now
4126 in the stack. */
4127 if (partial == 0)
4128 arg->value = arg->stack;
4129 }
4130 else
4131 {
4132 /* BLKmode, at least partly to be pushed. */
4133
4134 unsigned int parm_align;
4135 int excess;
4136 rtx size_rtx;
4137
4138 /* Pushing a nonscalar.
4139 If part is passed in registers, PARTIAL says how much
4140 and emit_push_insn will take care of putting it there. */
4141
4142 /* Round its size up to a multiple
4143 of the allocation unit for arguments. */
4144
4145 if (arg->locate.size.var != 0)
4146 {
4147 excess = 0;
4148 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4149 }
4150 else
4151 {
4152 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4153 for BLKmode is careful to avoid it. */
4154 excess = (arg->locate.size.constant
4155 - int_size_in_bytes (TREE_TYPE (pval))
4156 + partial);
4157 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4158 NULL_RTX, TYPE_MODE (sizetype), 0);
4159 }
4160
4161 parm_align = arg->locate.boundary;
4162
4163 /* When an argument is padded down, the block is aligned to
4164 PARM_BOUNDARY, but the actual argument isn't. */
4165 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4166 {
4167 if (arg->locate.size.var)
4168 parm_align = BITS_PER_UNIT;
4169 else if (excess)
4170 {
4171 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4172 parm_align = MIN (parm_align, excess_align);
4173 }
4174 }
4175
4176 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4177 {
4178 /* emit_push_insn might not work properly if arg->value and
4179 argblock + arg->locate.offset areas overlap. */
4180 rtx x = arg->value;
4181 int i = 0;
4182
4183 if (XEXP (x, 0) == crtl->args.internal_arg_pointer
4184 || (GET_CODE (XEXP (x, 0)) == PLUS
4185 && XEXP (XEXP (x, 0), 0) ==
4186 crtl->args.internal_arg_pointer
4187 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
4188 {
4189 if (XEXP (x, 0) != crtl->args.internal_arg_pointer)
4190 i = INTVAL (XEXP (XEXP (x, 0), 1));
4191
4192 /* expand_call should ensure this. */
4193 gcc_assert (!arg->locate.offset.var
4194 && arg->locate.size.var == 0
4195 && GET_CODE (size_rtx) == CONST_INT);
4196
4197 if (arg->locate.offset.constant > i)
4198 {
4199 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4200 sibcall_failure = 1;
4201 }
4202 else if (arg->locate.offset.constant < i)
4203 {
4204 /* Use arg->locate.size.constant instead of size_rtx
4205 because we only care about the part of the argument
4206 on the stack. */
4207 if (i < (arg->locate.offset.constant
4208 + arg->locate.size.constant))
4209 sibcall_failure = 1;
4210 }
4211 else
4212 {
4213 /* Even though they appear to be at the same location,
4214 if part of the outgoing argument is in registers,
4215 they aren't really at the same location. Check for
4216 this by making sure that the incoming size is the
4217 same as the outgoing size. */
4218 if (arg->locate.size.constant != INTVAL (size_rtx))
4219 sibcall_failure = 1;
4220 }
4221 }
4222 }
4223
4224 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4225 parm_align, partial, reg, excess, argblock,
4226 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4227 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4228
4229 /* Unless this is a partially-in-register argument, the argument is now
4230 in the stack.
4231
4232 ??? Unlike the case above, in which we want the actual
4233 address of the data, so that we can load it directly into a
4234 register, here we want the address of the stack slot, so that
4235 it's properly aligned for word-by-word copying or something
4236 like that. It's not clear that this is always correct. */
4237 if (partial == 0)
4238 arg->value = arg->stack_slot;
4239 }
4240
4241 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
4242 {
4243 tree type = TREE_TYPE (arg->tree_value);
4244 arg->parallel_value
4245 = emit_group_load_into_temps (arg->reg, arg->value, type,
4246 int_size_in_bytes (type));
4247 }
4248
4249 /* Mark all slots this store used. */
4250 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4251 && argblock && ! variable_size && arg->stack)
4252 for (i = lower_bound; i < upper_bound; i++)
4253 stack_usage_map[i] = 1;
4254
4255 /* Once we have pushed something, pops can't safely
4256 be deferred during the rest of the arguments. */
4257 NO_DEFER_POP;
4258
4259 /* Free any temporary slots made in processing this argument. Show
4260 that we might have taken the address of something and pushed that
4261 as an operand. */
4262 preserve_temp_slots (NULL_RTX);
4263 free_temp_slots ();
4264 pop_temp_slots ();
4265
4266 return sibcall_failure;
4267 }
4268
4269 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4270
4271 bool
4272 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4273 const_tree type)
4274 {
4275 if (!type)
4276 return false;
4277
4278 /* If the type has variable size... */
4279 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4280 return true;
4281
4282 /* If the type is marked as addressable (it is required
4283 to be constructed into the stack)... */
4284 if (TREE_ADDRESSABLE (type))
4285 return true;
4286
4287 return false;
4288 }
4289
4290 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4291 takes trailing padding of a structure into account. */
4292 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4293
4294 bool
4295 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, const_tree type)
4296 {
4297 if (!type)
4298 return false;
4299
4300 /* If the type has variable size... */
4301 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4302 return true;
4303
4304 /* If the type is marked as addressable (it is required
4305 to be constructed into the stack)... */
4306 if (TREE_ADDRESSABLE (type))
4307 return true;
4308
4309 /* If the padding and mode of the type is such that a copy into
4310 a register would put it into the wrong part of the register. */
4311 if (mode == BLKmode
4312 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4313 && (FUNCTION_ARG_PADDING (mode, type)
4314 == (BYTES_BIG_ENDIAN ? upward : downward)))
4315 return true;
4316
4317 return false;
4318 }