tm.texi (TARGET_PROMOTE_FUNCTION_MODE): Add documentation for for_return == 2.
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "flags.h"
30 #include "expr.h"
31 #include "optabs.h"
32 #include "libfuncs.h"
33 #include "function.h"
34 #include "regs.h"
35 #include "toplev.h"
36 #include "output.h"
37 #include "tm_p.h"
38 #include "timevar.h"
39 #include "sbitmap.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "cgraph.h"
43 #include "except.h"
44 #include "dbgcnt.h"
45 #include "tree-flow.h"
46
47 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
48 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
49
50 /* Data structure and subroutines used within expand_call. */
51
52 struct arg_data
53 {
54 /* Tree node for this argument. */
55 tree tree_value;
56 /* Mode for value; TYPE_MODE unless promoted. */
57 enum machine_mode mode;
58 /* Current RTL value for argument, or 0 if it isn't precomputed. */
59 rtx value;
60 /* Initially-compute RTL value for argument; only for const functions. */
61 rtx initial_value;
62 /* Register to pass this argument in, 0 if passed on stack, or an
63 PARALLEL if the arg is to be copied into multiple non-contiguous
64 registers. */
65 rtx reg;
66 /* Register to pass this argument in when generating tail call sequence.
67 This is not the same register as for normal calls on machines with
68 register windows. */
69 rtx tail_call_reg;
70 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
71 form for emit_group_move. */
72 rtx parallel_value;
73 /* If REG was promoted from the actual mode of the argument expression,
74 indicates whether the promotion is sign- or zero-extended. */
75 int unsignedp;
76 /* Number of bytes to put in registers. 0 means put the whole arg
77 in registers. Also 0 if not passed in registers. */
78 int partial;
79 /* Nonzero if argument must be passed on stack.
80 Note that some arguments may be passed on the stack
81 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
82 pass_on_stack identifies arguments that *cannot* go in registers. */
83 int pass_on_stack;
84 /* Some fields packaged up for locate_and_pad_parm. */
85 struct locate_and_pad_arg_data locate;
86 /* Location on the stack at which parameter should be stored. The store
87 has already been done if STACK == VALUE. */
88 rtx stack;
89 /* Location on the stack of the start of this argument slot. This can
90 differ from STACK if this arg pads downward. This location is known
91 to be aligned to FUNCTION_ARG_BOUNDARY. */
92 rtx stack_slot;
93 /* Place that this stack area has been saved, if needed. */
94 rtx save_area;
95 /* If an argument's alignment does not permit direct copying into registers,
96 copy in smaller-sized pieces into pseudos. These are stored in a
97 block pointed to by this field. The next field says how many
98 word-sized pseudos we made. */
99 rtx *aligned_regs;
100 int n_aligned_regs;
101 };
102
103 /* A vector of one char per byte of stack space. A byte if nonzero if
104 the corresponding stack location has been used.
105 This vector is used to prevent a function call within an argument from
106 clobbering any stack already set up. */
107 static char *stack_usage_map;
108
109 /* Size of STACK_USAGE_MAP. */
110 static int highest_outgoing_arg_in_use;
111
112 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
113 stack location's tail call argument has been already stored into the stack.
114 This bitmap is used to prevent sibling call optimization if function tries
115 to use parent's incoming argument slots when they have been already
116 overwritten with tail call arguments. */
117 static sbitmap stored_args_map;
118
119 /* stack_arg_under_construction is nonzero when an argument may be
120 initialized with a constructor call (including a C function that
121 returns a BLKmode struct) and expand_call must take special action
122 to make sure the object being constructed does not overlap the
123 argument list for the constructor call. */
124 static int stack_arg_under_construction;
125
126 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
127 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
128 CUMULATIVE_ARGS *);
129 static void precompute_register_parameters (int, struct arg_data *, int *);
130 static int store_one_arg (struct arg_data *, rtx, int, int, int);
131 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
132 static int finalize_must_preallocate (int, int, struct arg_data *,
133 struct args_size *);
134 static void precompute_arguments (int, struct arg_data *);
135 static int compute_argument_block_size (int, struct args_size *, tree, tree, int);
136 static void initialize_argument_information (int, struct arg_data *,
137 struct args_size *, int,
138 tree, tree,
139 tree, tree, CUMULATIVE_ARGS *, int,
140 rtx *, int *, int *, int *,
141 bool *, bool);
142 static void compute_argument_addresses (struct arg_data *, rtx, int);
143 static rtx rtx_for_function_call (tree, tree);
144 static void load_register_parameters (struct arg_data *, int, rtx *, int,
145 int, int *);
146 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
147 enum machine_mode, int, va_list);
148 static int special_function_p (const_tree, int);
149 static int check_sibcall_argument_overlap_1 (rtx);
150 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
151
152 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
153 unsigned int);
154 static tree split_complex_types (tree);
155
156 #ifdef REG_PARM_STACK_SPACE
157 static rtx save_fixed_argument_area (int, rtx, int *, int *);
158 static void restore_fixed_argument_area (rtx, rtx, int, int);
159 #endif
160 \f
161 /* Force FUNEXP into a form suitable for the address of a CALL,
162 and return that as an rtx. Also load the static chain register
163 if FNDECL is a nested function.
164
165 CALL_FUSAGE points to a variable holding the prospective
166 CALL_INSN_FUNCTION_USAGE information. */
167
168 rtx
169 prepare_call_address (rtx funexp, rtx static_chain_value,
170 rtx *call_fusage, int reg_parm_seen, int sibcallp)
171 {
172 /* Make a valid memory address and copy constants through pseudo-regs,
173 but not for a constant address if -fno-function-cse. */
174 if (GET_CODE (funexp) != SYMBOL_REF)
175 /* If we are using registers for parameters, force the
176 function address into a register now. */
177 funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
178 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
179 : memory_address (FUNCTION_MODE, funexp));
180 else if (! sibcallp)
181 {
182 #ifndef NO_FUNCTION_CSE
183 if (optimize && ! flag_no_function_cse)
184 funexp = force_reg (Pmode, funexp);
185 #endif
186 }
187
188 if (static_chain_value != 0)
189 {
190 static_chain_value = convert_memory_address (Pmode, static_chain_value);
191 emit_move_insn (static_chain_rtx, static_chain_value);
192
193 if (REG_P (static_chain_rtx))
194 use_reg (call_fusage, static_chain_rtx);
195 }
196
197 return funexp;
198 }
199
200 /* Generate instructions to call function FUNEXP,
201 and optionally pop the results.
202 The CALL_INSN is the first insn generated.
203
204 FNDECL is the declaration node of the function. This is given to the
205 macro RETURN_POPS_ARGS to determine whether this function pops its own args.
206
207 FUNTYPE is the data type of the function. This is given to the macro
208 RETURN_POPS_ARGS to determine whether this function pops its own args.
209 We used to allow an identifier for library functions, but that doesn't
210 work when the return type is an aggregate type and the calling convention
211 says that the pointer to this aggregate is to be popped by the callee.
212
213 STACK_SIZE is the number of bytes of arguments on the stack,
214 ROUNDED_STACK_SIZE is that number rounded up to
215 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
216 both to put into the call insn and to generate explicit popping
217 code if necessary.
218
219 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
220 It is zero if this call doesn't want a structure value.
221
222 NEXT_ARG_REG is the rtx that results from executing
223 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
224 just after all the args have had their registers assigned.
225 This could be whatever you like, but normally it is the first
226 arg-register beyond those used for args in this call,
227 or 0 if all the arg-registers are used in this call.
228 It is passed on to `gen_call' so you can put this info in the call insn.
229
230 VALREG is a hard register in which a value is returned,
231 or 0 if the call does not return a value.
232
233 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
234 the args to this call were processed.
235 We restore `inhibit_defer_pop' to that value.
236
237 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
238 denote registers used by the called function. */
239
240 static void
241 emit_call_1 (rtx funexp, tree fntree, tree fndecl ATTRIBUTE_UNUSED,
242 tree funtype ATTRIBUTE_UNUSED,
243 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
244 HOST_WIDE_INT rounded_stack_size,
245 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
246 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
247 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
248 CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
249 {
250 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
251 rtx call_insn;
252 int already_popped = 0;
253 HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
254 #if defined (HAVE_call) && defined (HAVE_call_value)
255 rtx struct_value_size_rtx;
256 struct_value_size_rtx = GEN_INT (struct_value_size);
257 #endif
258
259 #ifdef CALL_POPS_ARGS
260 n_popped += CALL_POPS_ARGS (* args_so_far);
261 #endif
262
263 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
264 and we don't want to load it into a register as an optimization,
265 because prepare_call_address already did it if it should be done. */
266 if (GET_CODE (funexp) != SYMBOL_REF)
267 funexp = memory_address (FUNCTION_MODE, funexp);
268
269 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
270 if ((ecf_flags & ECF_SIBCALL)
271 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
272 && (n_popped > 0 || stack_size == 0))
273 {
274 rtx n_pop = GEN_INT (n_popped);
275 rtx pat;
276
277 /* If this subroutine pops its own args, record that in the call insn
278 if possible, for the sake of frame pointer elimination. */
279
280 if (valreg)
281 pat = GEN_SIBCALL_VALUE_POP (valreg,
282 gen_rtx_MEM (FUNCTION_MODE, funexp),
283 rounded_stack_size_rtx, next_arg_reg,
284 n_pop);
285 else
286 pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
287 rounded_stack_size_rtx, next_arg_reg, n_pop);
288
289 emit_call_insn (pat);
290 already_popped = 1;
291 }
292 else
293 #endif
294
295 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
296 /* If the target has "call" or "call_value" insns, then prefer them
297 if no arguments are actually popped. If the target does not have
298 "call" or "call_value" insns, then we must use the popping versions
299 even if the call has no arguments to pop. */
300 #if defined (HAVE_call) && defined (HAVE_call_value)
301 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
302 && n_popped > 0)
303 #else
304 if (HAVE_call_pop && HAVE_call_value_pop)
305 #endif
306 {
307 rtx n_pop = GEN_INT (n_popped);
308 rtx pat;
309
310 /* If this subroutine pops its own args, record that in the call insn
311 if possible, for the sake of frame pointer elimination. */
312
313 if (valreg)
314 pat = GEN_CALL_VALUE_POP (valreg,
315 gen_rtx_MEM (FUNCTION_MODE, funexp),
316 rounded_stack_size_rtx, next_arg_reg, n_pop);
317 else
318 pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
319 rounded_stack_size_rtx, next_arg_reg, n_pop);
320
321 emit_call_insn (pat);
322 already_popped = 1;
323 }
324 else
325 #endif
326
327 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
328 if ((ecf_flags & ECF_SIBCALL)
329 && HAVE_sibcall && HAVE_sibcall_value)
330 {
331 if (valreg)
332 emit_call_insn (GEN_SIBCALL_VALUE (valreg,
333 gen_rtx_MEM (FUNCTION_MODE, funexp),
334 rounded_stack_size_rtx,
335 next_arg_reg, NULL_RTX));
336 else
337 emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
338 rounded_stack_size_rtx, next_arg_reg,
339 struct_value_size_rtx));
340 }
341 else
342 #endif
343
344 #if defined (HAVE_call) && defined (HAVE_call_value)
345 if (HAVE_call && HAVE_call_value)
346 {
347 if (valreg)
348 emit_call_insn (GEN_CALL_VALUE (valreg,
349 gen_rtx_MEM (FUNCTION_MODE, funexp),
350 rounded_stack_size_rtx, next_arg_reg,
351 NULL_RTX));
352 else
353 emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
354 rounded_stack_size_rtx, next_arg_reg,
355 struct_value_size_rtx));
356 }
357 else
358 #endif
359 gcc_unreachable ();
360
361 /* Find the call we just emitted. */
362 call_insn = last_call_insn ();
363
364 /* Put the register usage information there. */
365 add_function_usage_to (call_insn, call_fusage);
366
367 /* If this is a const call, then set the insn's unchanging bit. */
368 if (ecf_flags & ECF_CONST)
369 RTL_CONST_CALL_P (call_insn) = 1;
370
371 /* If this is a pure call, then set the insn's unchanging bit. */
372 if (ecf_flags & ECF_PURE)
373 RTL_PURE_CALL_P (call_insn) = 1;
374
375 /* If this is a const call, then set the insn's unchanging bit. */
376 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
377 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
378
379 /* If this call can't throw, attach a REG_EH_REGION reg note to that
380 effect. */
381 if (ecf_flags & ECF_NOTHROW)
382 add_reg_note (call_insn, REG_EH_REGION, const0_rtx);
383 else
384 {
385 int rn = lookup_expr_eh_region (fntree);
386
387 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't
388 throw, which we already took care of. */
389 if (rn > 0)
390 add_reg_note (call_insn, REG_EH_REGION, GEN_INT (rn));
391 }
392
393 if (ecf_flags & ECF_NORETURN)
394 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
395
396 if (ecf_flags & ECF_RETURNS_TWICE)
397 {
398 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
399 cfun->calls_setjmp = 1;
400 }
401
402 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
403
404 /* Restore this now, so that we do defer pops for this call's args
405 if the context of the call as a whole permits. */
406 inhibit_defer_pop = old_inhibit_defer_pop;
407
408 if (n_popped > 0)
409 {
410 if (!already_popped)
411 CALL_INSN_FUNCTION_USAGE (call_insn)
412 = gen_rtx_EXPR_LIST (VOIDmode,
413 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
414 CALL_INSN_FUNCTION_USAGE (call_insn));
415 rounded_stack_size -= n_popped;
416 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
417 stack_pointer_delta -= n_popped;
418
419 /* If popup is needed, stack realign must use DRAP */
420 if (SUPPORTS_STACK_ALIGNMENT)
421 crtl->need_drap = true;
422 }
423
424 if (!ACCUMULATE_OUTGOING_ARGS)
425 {
426 /* If returning from the subroutine does not automatically pop the args,
427 we need an instruction to pop them sooner or later.
428 Perhaps do it now; perhaps just record how much space to pop later.
429
430 If returning from the subroutine does pop the args, indicate that the
431 stack pointer will be changed. */
432
433 if (rounded_stack_size != 0)
434 {
435 if (ecf_flags & ECF_NORETURN)
436 /* Just pretend we did the pop. */
437 stack_pointer_delta -= rounded_stack_size;
438 else if (flag_defer_pop && inhibit_defer_pop == 0
439 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
440 pending_stack_adjust += rounded_stack_size;
441 else
442 adjust_stack (rounded_stack_size_rtx);
443 }
444 }
445 /* When we accumulate outgoing args, we must avoid any stack manipulations.
446 Restore the stack pointer to its original value now. Usually
447 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
448 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
449 popping variants of functions exist as well.
450
451 ??? We may optimize similar to defer_pop above, but it is
452 probably not worthwhile.
453
454 ??? It will be worthwhile to enable combine_stack_adjustments even for
455 such machines. */
456 else if (n_popped)
457 anti_adjust_stack (GEN_INT (n_popped));
458 }
459
460 /* Determine if the function identified by NAME and FNDECL is one with
461 special properties we wish to know about.
462
463 For example, if the function might return more than one time (setjmp), then
464 set RETURNS_TWICE to a nonzero value.
465
466 Similarly set NORETURN if the function is in the longjmp family.
467
468 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
469 space from the stack such as alloca. */
470
471 static int
472 special_function_p (const_tree fndecl, int flags)
473 {
474 if (fndecl && DECL_NAME (fndecl)
475 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
476 /* Exclude functions not at the file scope, or not `extern',
477 since they are not the magic functions we would otherwise
478 think they are.
479 FIXME: this should be handled with attributes, not with this
480 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
481 because you can declare fork() inside a function if you
482 wish. */
483 && (DECL_CONTEXT (fndecl) == NULL_TREE
484 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
485 && TREE_PUBLIC (fndecl))
486 {
487 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
488 const char *tname = name;
489
490 /* We assume that alloca will always be called by name. It
491 makes no sense to pass it as a pointer-to-function to
492 anything that does not understand its behavior. */
493 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
494 && name[0] == 'a'
495 && ! strcmp (name, "alloca"))
496 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
497 && name[0] == '_'
498 && ! strcmp (name, "__builtin_alloca"))))
499 flags |= ECF_MAY_BE_ALLOCA;
500
501 /* Disregard prefix _, __, __x or __builtin_. */
502 if (name[0] == '_')
503 {
504 if (name[1] == '_'
505 && name[2] == 'b'
506 && !strncmp (name + 3, "uiltin_", 7))
507 tname += 10;
508 else if (name[1] == '_' && name[2] == 'x')
509 tname += 3;
510 else if (name[1] == '_')
511 tname += 2;
512 else
513 tname += 1;
514 }
515
516 if (tname[0] == 's')
517 {
518 if ((tname[1] == 'e'
519 && (! strcmp (tname, "setjmp")
520 || ! strcmp (tname, "setjmp_syscall")))
521 || (tname[1] == 'i'
522 && ! strcmp (tname, "sigsetjmp"))
523 || (tname[1] == 'a'
524 && ! strcmp (tname, "savectx")))
525 flags |= ECF_RETURNS_TWICE;
526
527 if (tname[1] == 'i'
528 && ! strcmp (tname, "siglongjmp"))
529 flags |= ECF_NORETURN;
530 }
531 else if ((tname[0] == 'q' && tname[1] == 's'
532 && ! strcmp (tname, "qsetjmp"))
533 || (tname[0] == 'v' && tname[1] == 'f'
534 && ! strcmp (tname, "vfork"))
535 || (tname[0] == 'g' && tname[1] == 'e'
536 && !strcmp (tname, "getcontext")))
537 flags |= ECF_RETURNS_TWICE;
538
539 else if (tname[0] == 'l' && tname[1] == 'o'
540 && ! strcmp (tname, "longjmp"))
541 flags |= ECF_NORETURN;
542 }
543
544 return flags;
545 }
546
547 /* Return nonzero when FNDECL represents a call to setjmp. */
548
549 int
550 setjmp_call_p (const_tree fndecl)
551 {
552 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
553 }
554
555
556 /* Return true if STMT is an alloca call. */
557
558 bool
559 gimple_alloca_call_p (const_gimple stmt)
560 {
561 tree fndecl;
562
563 if (!is_gimple_call (stmt))
564 return false;
565
566 fndecl = gimple_call_fndecl (stmt);
567 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
568 return true;
569
570 return false;
571 }
572
573 /* Return true when exp contains alloca call. */
574
575 bool
576 alloca_call_p (const_tree exp)
577 {
578 if (TREE_CODE (exp) == CALL_EXPR
579 && TREE_CODE (CALL_EXPR_FN (exp)) == ADDR_EXPR
580 && (TREE_CODE (TREE_OPERAND (CALL_EXPR_FN (exp), 0)) == FUNCTION_DECL)
581 && (special_function_p (TREE_OPERAND (CALL_EXPR_FN (exp), 0), 0)
582 & ECF_MAY_BE_ALLOCA))
583 return true;
584 return false;
585 }
586
587 /* Detect flags (function attributes) from the function decl or type node. */
588
589 int
590 flags_from_decl_or_type (const_tree exp)
591 {
592 int flags = 0;
593 const_tree type = exp;
594
595 if (DECL_P (exp))
596 {
597 type = TREE_TYPE (exp);
598
599 /* The function exp may have the `malloc' attribute. */
600 if (DECL_IS_MALLOC (exp))
601 flags |= ECF_MALLOC;
602
603 /* The function exp may have the `returns_twice' attribute. */
604 if (DECL_IS_RETURNS_TWICE (exp))
605 flags |= ECF_RETURNS_TWICE;
606
607 /* Process the pure and const attributes. */
608 if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
609 flags |= ECF_CONST;
610 if (DECL_PURE_P (exp))
611 flags |= ECF_PURE;
612 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
613 flags |= ECF_LOOPING_CONST_OR_PURE;
614
615 if (DECL_IS_NOVOPS (exp))
616 flags |= ECF_NOVOPS;
617
618 if (TREE_NOTHROW (exp))
619 flags |= ECF_NOTHROW;
620
621 flags = special_function_p (exp, flags);
622 }
623 else if (TYPE_P (exp) && TYPE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
624 flags |= ECF_CONST;
625
626 if (TREE_THIS_VOLATILE (exp))
627 flags |= ECF_NORETURN;
628
629 return flags;
630 }
631
632 /* Detect flags from a CALL_EXPR. */
633
634 int
635 call_expr_flags (const_tree t)
636 {
637 int flags;
638 tree decl = get_callee_fndecl (t);
639
640 if (decl)
641 flags = flags_from_decl_or_type (decl);
642 else
643 {
644 t = TREE_TYPE (CALL_EXPR_FN (t));
645 if (t && TREE_CODE (t) == POINTER_TYPE)
646 flags = flags_from_decl_or_type (TREE_TYPE (t));
647 else
648 flags = 0;
649 }
650
651 return flags;
652 }
653
654 /* Precompute all register parameters as described by ARGS, storing values
655 into fields within the ARGS array.
656
657 NUM_ACTUALS indicates the total number elements in the ARGS array.
658
659 Set REG_PARM_SEEN if we encounter a register parameter. */
660
661 static void
662 precompute_register_parameters (int num_actuals, struct arg_data *args,
663 int *reg_parm_seen)
664 {
665 int i;
666
667 *reg_parm_seen = 0;
668
669 for (i = 0; i < num_actuals; i++)
670 if (args[i].reg != 0 && ! args[i].pass_on_stack)
671 {
672 *reg_parm_seen = 1;
673
674 if (args[i].value == 0)
675 {
676 push_temp_slots ();
677 args[i].value = expand_normal (args[i].tree_value);
678 preserve_temp_slots (args[i].value);
679 pop_temp_slots ();
680 }
681
682 /* If the value is a non-legitimate constant, force it into a
683 pseudo now. TLS symbols sometimes need a call to resolve. */
684 if (CONSTANT_P (args[i].value)
685 && !LEGITIMATE_CONSTANT_P (args[i].value))
686 args[i].value = force_reg (args[i].mode, args[i].value);
687
688 /* If we are to promote the function arg to a wider mode,
689 do it now. */
690
691 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
692 args[i].value
693 = convert_modes (args[i].mode,
694 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
695 args[i].value, args[i].unsignedp);
696
697 /* If we're going to have to load the value by parts, pull the
698 parts into pseudos. The part extraction process can involve
699 non-trivial computation. */
700 if (GET_CODE (args[i].reg) == PARALLEL)
701 {
702 tree type = TREE_TYPE (args[i].tree_value);
703 args[i].parallel_value
704 = emit_group_load_into_temps (args[i].reg, args[i].value,
705 type, int_size_in_bytes (type));
706 }
707
708 /* If the value is expensive, and we are inside an appropriately
709 short loop, put the value into a pseudo and then put the pseudo
710 into the hard reg.
711
712 For small register classes, also do this if this call uses
713 register parameters. This is to avoid reload conflicts while
714 loading the parameters registers. */
715
716 else if ((! (REG_P (args[i].value)
717 || (GET_CODE (args[i].value) == SUBREG
718 && REG_P (SUBREG_REG (args[i].value)))))
719 && args[i].mode != BLKmode
720 && rtx_cost (args[i].value, SET, optimize_insn_for_speed_p ())
721 > COSTS_N_INSNS (1)
722 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
723 || optimize))
724 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
725 }
726 }
727
728 #ifdef REG_PARM_STACK_SPACE
729
730 /* The argument list is the property of the called routine and it
731 may clobber it. If the fixed area has been used for previous
732 parameters, we must save and restore it. */
733
734 static rtx
735 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
736 {
737 int low;
738 int high;
739
740 /* Compute the boundary of the area that needs to be saved, if any. */
741 high = reg_parm_stack_space;
742 #ifdef ARGS_GROW_DOWNWARD
743 high += 1;
744 #endif
745 if (high > highest_outgoing_arg_in_use)
746 high = highest_outgoing_arg_in_use;
747
748 for (low = 0; low < high; low++)
749 if (stack_usage_map[low] != 0)
750 {
751 int num_to_save;
752 enum machine_mode save_mode;
753 int delta;
754 rtx stack_area;
755 rtx save_area;
756
757 while (stack_usage_map[--high] == 0)
758 ;
759
760 *low_to_save = low;
761 *high_to_save = high;
762
763 num_to_save = high - low + 1;
764 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
765
766 /* If we don't have the required alignment, must do this
767 in BLKmode. */
768 if ((low & (MIN (GET_MODE_SIZE (save_mode),
769 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
770 save_mode = BLKmode;
771
772 #ifdef ARGS_GROW_DOWNWARD
773 delta = -high;
774 #else
775 delta = low;
776 #endif
777 stack_area = gen_rtx_MEM (save_mode,
778 memory_address (save_mode,
779 plus_constant (argblock,
780 delta)));
781
782 set_mem_align (stack_area, PARM_BOUNDARY);
783 if (save_mode == BLKmode)
784 {
785 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
786 emit_block_move (validize_mem (save_area), stack_area,
787 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
788 }
789 else
790 {
791 save_area = gen_reg_rtx (save_mode);
792 emit_move_insn (save_area, stack_area);
793 }
794
795 return save_area;
796 }
797
798 return NULL_RTX;
799 }
800
801 static void
802 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
803 {
804 enum machine_mode save_mode = GET_MODE (save_area);
805 int delta;
806 rtx stack_area;
807
808 #ifdef ARGS_GROW_DOWNWARD
809 delta = -high_to_save;
810 #else
811 delta = low_to_save;
812 #endif
813 stack_area = gen_rtx_MEM (save_mode,
814 memory_address (save_mode,
815 plus_constant (argblock, delta)));
816 set_mem_align (stack_area, PARM_BOUNDARY);
817
818 if (save_mode != BLKmode)
819 emit_move_insn (stack_area, save_area);
820 else
821 emit_block_move (stack_area, validize_mem (save_area),
822 GEN_INT (high_to_save - low_to_save + 1),
823 BLOCK_OP_CALL_PARM);
824 }
825 #endif /* REG_PARM_STACK_SPACE */
826
827 /* If any elements in ARGS refer to parameters that are to be passed in
828 registers, but not in memory, and whose alignment does not permit a
829 direct copy into registers. Copy the values into a group of pseudos
830 which we will later copy into the appropriate hard registers.
831
832 Pseudos for each unaligned argument will be stored into the array
833 args[argnum].aligned_regs. The caller is responsible for deallocating
834 the aligned_regs array if it is nonzero. */
835
836 static void
837 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
838 {
839 int i, j;
840
841 for (i = 0; i < num_actuals; i++)
842 if (args[i].reg != 0 && ! args[i].pass_on_stack
843 && args[i].mode == BLKmode
844 && MEM_P (args[i].value)
845 && (MEM_ALIGN (args[i].value)
846 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
847 {
848 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
849 int endian_correction = 0;
850
851 if (args[i].partial)
852 {
853 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
854 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
855 }
856 else
857 {
858 args[i].n_aligned_regs
859 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
860 }
861
862 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
863
864 /* Structures smaller than a word are normally aligned to the
865 least significant byte. On a BYTES_BIG_ENDIAN machine,
866 this means we must skip the empty high order bytes when
867 calculating the bit offset. */
868 if (bytes < UNITS_PER_WORD
869 #ifdef BLOCK_REG_PADDING
870 && (BLOCK_REG_PADDING (args[i].mode,
871 TREE_TYPE (args[i].tree_value), 1)
872 == downward)
873 #else
874 && BYTES_BIG_ENDIAN
875 #endif
876 )
877 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
878
879 for (j = 0; j < args[i].n_aligned_regs; j++)
880 {
881 rtx reg = gen_reg_rtx (word_mode);
882 rtx word = operand_subword_force (args[i].value, j, BLKmode);
883 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
884
885 args[i].aligned_regs[j] = reg;
886 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
887 word_mode, word_mode);
888
889 /* There is no need to restrict this code to loading items
890 in TYPE_ALIGN sized hunks. The bitfield instructions can
891 load up entire word sized registers efficiently.
892
893 ??? This may not be needed anymore.
894 We use to emit a clobber here but that doesn't let later
895 passes optimize the instructions we emit. By storing 0 into
896 the register later passes know the first AND to zero out the
897 bitfield being set in the register is unnecessary. The store
898 of 0 will be deleted as will at least the first AND. */
899
900 emit_move_insn (reg, const0_rtx);
901
902 bytes -= bitsize / BITS_PER_UNIT;
903 store_bit_field (reg, bitsize, endian_correction, word_mode,
904 word);
905 }
906 }
907 }
908
909 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
910 CALL_EXPR EXP.
911
912 NUM_ACTUALS is the total number of parameters.
913
914 N_NAMED_ARGS is the total number of named arguments.
915
916 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
917 value, or null.
918
919 FNDECL is the tree code for the target of this call (if known)
920
921 ARGS_SO_FAR holds state needed by the target to know where to place
922 the next argument.
923
924 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
925 for arguments which are passed in registers.
926
927 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
928 and may be modified by this routine.
929
930 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
931 flags which may may be modified by this routine.
932
933 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
934 that requires allocation of stack space.
935
936 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
937 the thunked-to function. */
938
939 static void
940 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
941 struct arg_data *args,
942 struct args_size *args_size,
943 int n_named_args ATTRIBUTE_UNUSED,
944 tree exp, tree struct_value_addr_value,
945 tree fndecl, tree fntype,
946 CUMULATIVE_ARGS *args_so_far,
947 int reg_parm_stack_space,
948 rtx *old_stack_level, int *old_pending_adj,
949 int *must_preallocate, int *ecf_flags,
950 bool *may_tailcall, bool call_from_thunk_p)
951 {
952 location_t loc = EXPR_LOCATION (exp);
953 /* 1 if scanning parms front to back, -1 if scanning back to front. */
954 int inc;
955
956 /* Count arg position in order args appear. */
957 int argpos;
958
959 int i;
960
961 args_size->constant = 0;
962 args_size->var = 0;
963
964 /* In this loop, we consider args in the order they are written.
965 We fill up ARGS from the front or from the back if necessary
966 so that in any case the first arg to be pushed ends up at the front. */
967
968 if (PUSH_ARGS_REVERSED)
969 {
970 i = num_actuals - 1, inc = -1;
971 /* In this case, must reverse order of args
972 so that we compute and push the last arg first. */
973 }
974 else
975 {
976 i = 0, inc = 1;
977 }
978
979 /* First fill in the actual arguments in the ARGS array, splitting
980 complex arguments if necessary. */
981 {
982 int j = i;
983 call_expr_arg_iterator iter;
984 tree arg;
985
986 if (struct_value_addr_value)
987 {
988 args[j].tree_value = struct_value_addr_value;
989 j += inc;
990 }
991 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
992 {
993 tree argtype = TREE_TYPE (arg);
994 if (targetm.calls.split_complex_arg
995 && argtype
996 && TREE_CODE (argtype) == COMPLEX_TYPE
997 && targetm.calls.split_complex_arg (argtype))
998 {
999 tree subtype = TREE_TYPE (argtype);
1000 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
1001 j += inc;
1002 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
1003 }
1004 else
1005 args[j].tree_value = arg;
1006 j += inc;
1007 }
1008 }
1009
1010 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1011 for (argpos = 0; argpos < num_actuals; i += inc, argpos++)
1012 {
1013 tree type = TREE_TYPE (args[i].tree_value);
1014 int unsignedp;
1015 enum machine_mode mode;
1016
1017 /* Replace erroneous argument with constant zero. */
1018 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1019 args[i].tree_value = integer_zero_node, type = integer_type_node;
1020
1021 /* If TYPE is a transparent union, pass things the way we would
1022 pass the first field of the union. We have already verified that
1023 the modes are the same. */
1024 if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
1025 type = TREE_TYPE (TYPE_FIELDS (type));
1026
1027 /* Decide where to pass this arg.
1028
1029 args[i].reg is nonzero if all or part is passed in registers.
1030
1031 args[i].partial is nonzero if part but not all is passed in registers,
1032 and the exact value says how many bytes are passed in registers.
1033
1034 args[i].pass_on_stack is nonzero if the argument must at least be
1035 computed on the stack. It may then be loaded back into registers
1036 if args[i].reg is nonzero.
1037
1038 These decisions are driven by the FUNCTION_... macros and must agree
1039 with those made by function.c. */
1040
1041 /* See if this argument should be passed by invisible reference. */
1042 if (pass_by_reference (args_so_far, TYPE_MODE (type),
1043 type, argpos < n_named_args))
1044 {
1045 bool callee_copies;
1046 tree base;
1047
1048 callee_copies
1049 = reference_callee_copied (args_so_far, TYPE_MODE (type),
1050 type, argpos < n_named_args);
1051
1052 /* If we're compiling a thunk, pass through invisible references
1053 instead of making a copy. */
1054 if (call_from_thunk_p
1055 || (callee_copies
1056 && !TREE_ADDRESSABLE (type)
1057 && (base = get_base_address (args[i].tree_value))
1058 && TREE_CODE (base) != SSA_NAME
1059 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1060 {
1061 /* We can't use sibcalls if a callee-copied argument is
1062 stored in the current function's frame. */
1063 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1064 *may_tailcall = false;
1065
1066 args[i].tree_value = build_fold_addr_expr_loc (loc,
1067 args[i].tree_value);
1068 type = TREE_TYPE (args[i].tree_value);
1069
1070 if (*ecf_flags & ECF_CONST)
1071 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
1072 }
1073 else
1074 {
1075 /* We make a copy of the object and pass the address to the
1076 function being called. */
1077 rtx copy;
1078
1079 if (!COMPLETE_TYPE_P (type)
1080 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
1081 || (flag_stack_check == GENERIC_STACK_CHECK
1082 && compare_tree_int (TYPE_SIZE_UNIT (type),
1083 STACK_CHECK_MAX_VAR_SIZE) > 0))
1084 {
1085 /* This is a variable-sized object. Make space on the stack
1086 for it. */
1087 rtx size_rtx = expr_size (args[i].tree_value);
1088
1089 if (*old_stack_level == 0)
1090 {
1091 emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
1092 *old_pending_adj = pending_stack_adjust;
1093 pending_stack_adjust = 0;
1094 }
1095
1096 copy = gen_rtx_MEM (BLKmode,
1097 allocate_dynamic_stack_space
1098 (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
1099 set_mem_attributes (copy, type, 1);
1100 }
1101 else
1102 copy = assign_temp (type, 0, 1, 0);
1103
1104 store_expr (args[i].tree_value, copy, 0, false);
1105
1106 /* Just change the const function to pure and then let
1107 the next test clear the pure based on
1108 callee_copies. */
1109 if (*ecf_flags & ECF_CONST)
1110 {
1111 *ecf_flags &= ~ECF_CONST;
1112 *ecf_flags |= ECF_PURE;
1113 }
1114
1115 if (!callee_copies && *ecf_flags & ECF_PURE)
1116 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
1117
1118 args[i].tree_value
1119 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
1120 type = TREE_TYPE (args[i].tree_value);
1121 *may_tailcall = false;
1122 }
1123 }
1124
1125 unsignedp = TYPE_UNSIGNED (type);
1126 mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
1127 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
1128
1129 args[i].unsignedp = unsignedp;
1130 args[i].mode = mode;
1131
1132 args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
1133 argpos < n_named_args);
1134 #ifdef FUNCTION_INCOMING_ARG
1135 /* If this is a sibling call and the machine has register windows, the
1136 register window has to be unwinded before calling the routine, so
1137 arguments have to go into the incoming registers. */
1138 args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
1139 argpos < n_named_args);
1140 #else
1141 args[i].tail_call_reg = args[i].reg;
1142 #endif
1143
1144 if (args[i].reg)
1145 args[i].partial
1146 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1147 argpos < n_named_args);
1148
1149 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1150
1151 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1152 it means that we are to pass this arg in the register(s) designated
1153 by the PARALLEL, but also to pass it in the stack. */
1154 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1155 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1156 args[i].pass_on_stack = 1;
1157
1158 /* If this is an addressable type, we must preallocate the stack
1159 since we must evaluate the object into its final location.
1160
1161 If this is to be passed in both registers and the stack, it is simpler
1162 to preallocate. */
1163 if (TREE_ADDRESSABLE (type)
1164 || (args[i].pass_on_stack && args[i].reg != 0))
1165 *must_preallocate = 1;
1166
1167 /* Compute the stack-size of this argument. */
1168 if (args[i].reg == 0 || args[i].partial != 0
1169 || reg_parm_stack_space > 0
1170 || args[i].pass_on_stack)
1171 locate_and_pad_parm (mode, type,
1172 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1173 1,
1174 #else
1175 args[i].reg != 0,
1176 #endif
1177 args[i].pass_on_stack ? 0 : args[i].partial,
1178 fndecl, args_size, &args[i].locate);
1179 #ifdef BLOCK_REG_PADDING
1180 else
1181 /* The argument is passed entirely in registers. See at which
1182 end it should be padded. */
1183 args[i].locate.where_pad =
1184 BLOCK_REG_PADDING (mode, type,
1185 int_size_in_bytes (type) <= UNITS_PER_WORD);
1186 #endif
1187
1188 /* Update ARGS_SIZE, the total stack space for args so far. */
1189
1190 args_size->constant += args[i].locate.size.constant;
1191 if (args[i].locate.size.var)
1192 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1193
1194 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1195 have been used, etc. */
1196
1197 FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
1198 argpos < n_named_args);
1199 }
1200 }
1201
1202 /* Update ARGS_SIZE to contain the total size for the argument block.
1203 Return the original constant component of the argument block's size.
1204
1205 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1206 for arguments passed in registers. */
1207
1208 static int
1209 compute_argument_block_size (int reg_parm_stack_space,
1210 struct args_size *args_size,
1211 tree fndecl ATTRIBUTE_UNUSED,
1212 tree fntype ATTRIBUTE_UNUSED,
1213 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1214 {
1215 int unadjusted_args_size = args_size->constant;
1216
1217 /* For accumulate outgoing args mode we don't need to align, since the frame
1218 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1219 backends from generating misaligned frame sizes. */
1220 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1221 preferred_stack_boundary = STACK_BOUNDARY;
1222
1223 /* Compute the actual size of the argument block required. The variable
1224 and constant sizes must be combined, the size may have to be rounded,
1225 and there may be a minimum required size. */
1226
1227 if (args_size->var)
1228 {
1229 args_size->var = ARGS_SIZE_TREE (*args_size);
1230 args_size->constant = 0;
1231
1232 preferred_stack_boundary /= BITS_PER_UNIT;
1233 if (preferred_stack_boundary > 1)
1234 {
1235 /* We don't handle this case yet. To handle it correctly we have
1236 to add the delta, round and subtract the delta.
1237 Currently no machine description requires this support. */
1238 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1239 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1240 }
1241
1242 if (reg_parm_stack_space > 0)
1243 {
1244 args_size->var
1245 = size_binop (MAX_EXPR, args_size->var,
1246 ssize_int (reg_parm_stack_space));
1247
1248 /* The area corresponding to register parameters is not to count in
1249 the size of the block we need. So make the adjustment. */
1250 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1251 args_size->var
1252 = size_binop (MINUS_EXPR, args_size->var,
1253 ssize_int (reg_parm_stack_space));
1254 }
1255 }
1256 else
1257 {
1258 preferred_stack_boundary /= BITS_PER_UNIT;
1259 if (preferred_stack_boundary < 1)
1260 preferred_stack_boundary = 1;
1261 args_size->constant = (((args_size->constant
1262 + stack_pointer_delta
1263 + preferred_stack_boundary - 1)
1264 / preferred_stack_boundary
1265 * preferred_stack_boundary)
1266 - stack_pointer_delta);
1267
1268 args_size->constant = MAX (args_size->constant,
1269 reg_parm_stack_space);
1270
1271 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1272 args_size->constant -= reg_parm_stack_space;
1273 }
1274 return unadjusted_args_size;
1275 }
1276
1277 /* Precompute parameters as needed for a function call.
1278
1279 FLAGS is mask of ECF_* constants.
1280
1281 NUM_ACTUALS is the number of arguments.
1282
1283 ARGS is an array containing information for each argument; this
1284 routine fills in the INITIAL_VALUE and VALUE fields for each
1285 precomputed argument. */
1286
1287 static void
1288 precompute_arguments (int num_actuals, struct arg_data *args)
1289 {
1290 int i;
1291
1292 /* If this is a libcall, then precompute all arguments so that we do not
1293 get extraneous instructions emitted as part of the libcall sequence. */
1294
1295 /* If we preallocated the stack space, and some arguments must be passed
1296 on the stack, then we must precompute any parameter which contains a
1297 function call which will store arguments on the stack.
1298 Otherwise, evaluating the parameter may clobber previous parameters
1299 which have already been stored into the stack. (we have code to avoid
1300 such case by saving the outgoing stack arguments, but it results in
1301 worse code) */
1302 if (!ACCUMULATE_OUTGOING_ARGS)
1303 return;
1304
1305 for (i = 0; i < num_actuals; i++)
1306 {
1307 tree type;
1308 enum machine_mode mode;
1309
1310 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
1311 continue;
1312
1313 /* If this is an addressable type, we cannot pre-evaluate it. */
1314 type = TREE_TYPE (args[i].tree_value);
1315 gcc_assert (!TREE_ADDRESSABLE (type));
1316
1317 args[i].initial_value = args[i].value
1318 = expand_normal (args[i].tree_value);
1319
1320 mode = TYPE_MODE (type);
1321 if (mode != args[i].mode)
1322 {
1323 int unsignedp = args[i].unsignedp;
1324 args[i].value
1325 = convert_modes (args[i].mode, mode,
1326 args[i].value, args[i].unsignedp);
1327
1328 /* CSE will replace this only if it contains args[i].value
1329 pseudo, so convert it down to the declared mode using
1330 a SUBREG. */
1331 if (REG_P (args[i].value)
1332 && GET_MODE_CLASS (args[i].mode) == MODE_INT
1333 && promote_mode (type, mode, &unsignedp) != args[i].mode)
1334 {
1335 args[i].initial_value
1336 = gen_lowpart_SUBREG (mode, args[i].value);
1337 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1338 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1339 args[i].unsignedp);
1340 }
1341 }
1342 }
1343 }
1344
1345 /* Given the current state of MUST_PREALLOCATE and information about
1346 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1347 compute and return the final value for MUST_PREALLOCATE. */
1348
1349 static int
1350 finalize_must_preallocate (int must_preallocate, int num_actuals,
1351 struct arg_data *args, struct args_size *args_size)
1352 {
1353 /* See if we have or want to preallocate stack space.
1354
1355 If we would have to push a partially-in-regs parm
1356 before other stack parms, preallocate stack space instead.
1357
1358 If the size of some parm is not a multiple of the required stack
1359 alignment, we must preallocate.
1360
1361 If the total size of arguments that would otherwise create a copy in
1362 a temporary (such as a CALL) is more than half the total argument list
1363 size, preallocation is faster.
1364
1365 Another reason to preallocate is if we have a machine (like the m88k)
1366 where stack alignment is required to be maintained between every
1367 pair of insns, not just when the call is made. However, we assume here
1368 that such machines either do not have push insns (and hence preallocation
1369 would occur anyway) or the problem is taken care of with
1370 PUSH_ROUNDING. */
1371
1372 if (! must_preallocate)
1373 {
1374 int partial_seen = 0;
1375 int copy_to_evaluate_size = 0;
1376 int i;
1377
1378 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1379 {
1380 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1381 partial_seen = 1;
1382 else if (partial_seen && args[i].reg == 0)
1383 must_preallocate = 1;
1384
1385 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1386 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1387 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1388 || TREE_CODE (args[i].tree_value) == COND_EXPR
1389 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1390 copy_to_evaluate_size
1391 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1392 }
1393
1394 if (copy_to_evaluate_size * 2 >= args_size->constant
1395 && args_size->constant > 0)
1396 must_preallocate = 1;
1397 }
1398 return must_preallocate;
1399 }
1400
1401 /* If we preallocated stack space, compute the address of each argument
1402 and store it into the ARGS array.
1403
1404 We need not ensure it is a valid memory address here; it will be
1405 validized when it is used.
1406
1407 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1408
1409 static void
1410 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1411 {
1412 if (argblock)
1413 {
1414 rtx arg_reg = argblock;
1415 int i, arg_offset = 0;
1416
1417 if (GET_CODE (argblock) == PLUS)
1418 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1419
1420 for (i = 0; i < num_actuals; i++)
1421 {
1422 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1423 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1424 rtx addr;
1425 unsigned int align, boundary;
1426 unsigned int units_on_stack = 0;
1427 enum machine_mode partial_mode = VOIDmode;
1428
1429 /* Skip this parm if it will not be passed on the stack. */
1430 if (! args[i].pass_on_stack
1431 && args[i].reg != 0
1432 && args[i].partial == 0)
1433 continue;
1434
1435 if (CONST_INT_P (offset))
1436 addr = plus_constant (arg_reg, INTVAL (offset));
1437 else
1438 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1439
1440 addr = plus_constant (addr, arg_offset);
1441
1442 if (args[i].partial != 0)
1443 {
1444 /* Only part of the parameter is being passed on the stack.
1445 Generate a simple memory reference of the correct size. */
1446 units_on_stack = args[i].locate.size.constant;
1447 partial_mode = mode_for_size (units_on_stack * BITS_PER_UNIT,
1448 MODE_INT, 1);
1449 args[i].stack = gen_rtx_MEM (partial_mode, addr);
1450 set_mem_size (args[i].stack, GEN_INT (units_on_stack));
1451 }
1452 else
1453 {
1454 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1455 set_mem_attributes (args[i].stack,
1456 TREE_TYPE (args[i].tree_value), 1);
1457 }
1458 align = BITS_PER_UNIT;
1459 boundary = args[i].locate.boundary;
1460 if (args[i].locate.where_pad != downward)
1461 align = boundary;
1462 else if (CONST_INT_P (offset))
1463 {
1464 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1465 align = align & -align;
1466 }
1467 set_mem_align (args[i].stack, align);
1468
1469 if (CONST_INT_P (slot_offset))
1470 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1471 else
1472 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1473
1474 addr = plus_constant (addr, arg_offset);
1475
1476 if (args[i].partial != 0)
1477 {
1478 /* Only part of the parameter is being passed on the stack.
1479 Generate a simple memory reference of the correct size.
1480 */
1481 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
1482 set_mem_size (args[i].stack_slot, GEN_INT (units_on_stack));
1483 }
1484 else
1485 {
1486 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1487 set_mem_attributes (args[i].stack_slot,
1488 TREE_TYPE (args[i].tree_value), 1);
1489 }
1490 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1491
1492 /* Function incoming arguments may overlap with sibling call
1493 outgoing arguments and we cannot allow reordering of reads
1494 from function arguments with stores to outgoing arguments
1495 of sibling calls. */
1496 set_mem_alias_set (args[i].stack, 0);
1497 set_mem_alias_set (args[i].stack_slot, 0);
1498 }
1499 }
1500 }
1501
1502 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1503 in a call instruction.
1504
1505 FNDECL is the tree node for the target function. For an indirect call
1506 FNDECL will be NULL_TREE.
1507
1508 ADDR is the operand 0 of CALL_EXPR for this call. */
1509
1510 static rtx
1511 rtx_for_function_call (tree fndecl, tree addr)
1512 {
1513 rtx funexp;
1514
1515 /* Get the function to call, in the form of RTL. */
1516 if (fndecl)
1517 {
1518 /* If this is the first use of the function, see if we need to
1519 make an external definition for it. */
1520 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
1521 {
1522 assemble_external (fndecl);
1523 TREE_USED (fndecl) = 1;
1524 }
1525
1526 /* Get a SYMBOL_REF rtx for the function address. */
1527 funexp = XEXP (DECL_RTL (fndecl), 0);
1528 }
1529 else
1530 /* Generate an rtx (probably a pseudo-register) for the address. */
1531 {
1532 push_temp_slots ();
1533 funexp = expand_normal (addr);
1534 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1535 }
1536 return funexp;
1537 }
1538
1539 /* Return true if and only if SIZE storage units (usually bytes)
1540 starting from address ADDR overlap with already clobbered argument
1541 area. This function is used to determine if we should give up a
1542 sibcall. */
1543
1544 static bool
1545 mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
1546 {
1547 HOST_WIDE_INT i;
1548
1549 if (addr == crtl->args.internal_arg_pointer)
1550 i = 0;
1551 else if (GET_CODE (addr) == PLUS
1552 && XEXP (addr, 0) == crtl->args.internal_arg_pointer
1553 && CONST_INT_P (XEXP (addr, 1)))
1554 i = INTVAL (XEXP (addr, 1));
1555 /* Return true for arg pointer based indexed addressing. */
1556 else if (GET_CODE (addr) == PLUS
1557 && (XEXP (addr, 0) == crtl->args.internal_arg_pointer
1558 || XEXP (addr, 1) == crtl->args.internal_arg_pointer))
1559 return true;
1560 else
1561 return false;
1562
1563 #ifdef ARGS_GROW_DOWNWARD
1564 i = -i - size;
1565 #endif
1566 if (size > 0)
1567 {
1568 unsigned HOST_WIDE_INT k;
1569
1570 for (k = 0; k < size; k++)
1571 if (i + k < stored_args_map->n_bits
1572 && TEST_BIT (stored_args_map, i + k))
1573 return true;
1574 }
1575
1576 return false;
1577 }
1578
1579 /* Do the register loads required for any wholly-register parms or any
1580 parms which are passed both on the stack and in a register. Their
1581 expressions were already evaluated.
1582
1583 Mark all register-parms as living through the call, putting these USE
1584 insns in the CALL_INSN_FUNCTION_USAGE field.
1585
1586 When IS_SIBCALL, perform the check_sibcall_argument_overlap
1587 checking, setting *SIBCALL_FAILURE if appropriate. */
1588
1589 static void
1590 load_register_parameters (struct arg_data *args, int num_actuals,
1591 rtx *call_fusage, int flags, int is_sibcall,
1592 int *sibcall_failure)
1593 {
1594 int i, j;
1595
1596 for (i = 0; i < num_actuals; i++)
1597 {
1598 rtx reg = ((flags & ECF_SIBCALL)
1599 ? args[i].tail_call_reg : args[i].reg);
1600 if (reg)
1601 {
1602 int partial = args[i].partial;
1603 int nregs;
1604 int size = 0;
1605 rtx before_arg = get_last_insn ();
1606 /* Set non-negative if we must move a word at a time, even if
1607 just one word (e.g, partial == 4 && mode == DFmode). Set
1608 to -1 if we just use a normal move insn. This value can be
1609 zero if the argument is a zero size structure. */
1610 nregs = -1;
1611 if (GET_CODE (reg) == PARALLEL)
1612 ;
1613 else if (partial)
1614 {
1615 gcc_assert (partial % UNITS_PER_WORD == 0);
1616 nregs = partial / UNITS_PER_WORD;
1617 }
1618 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1619 {
1620 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1621 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1622 }
1623 else
1624 size = GET_MODE_SIZE (args[i].mode);
1625
1626 /* Handle calls that pass values in multiple non-contiguous
1627 locations. The Irix 6 ABI has examples of this. */
1628
1629 if (GET_CODE (reg) == PARALLEL)
1630 emit_group_move (reg, args[i].parallel_value);
1631
1632 /* If simple case, just do move. If normal partial, store_one_arg
1633 has already loaded the register for us. In all other cases,
1634 load the register(s) from memory. */
1635
1636 else if (nregs == -1)
1637 {
1638 emit_move_insn (reg, args[i].value);
1639 #ifdef BLOCK_REG_PADDING
1640 /* Handle case where we have a value that needs shifting
1641 up to the msb. eg. a QImode value and we're padding
1642 upward on a BYTES_BIG_ENDIAN machine. */
1643 if (size < UNITS_PER_WORD
1644 && (args[i].locate.where_pad
1645 == (BYTES_BIG_ENDIAN ? upward : downward)))
1646 {
1647 rtx x;
1648 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1649
1650 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1651 report the whole reg as used. Strictly speaking, the
1652 call only uses SIZE bytes at the msb end, but it doesn't
1653 seem worth generating rtl to say that. */
1654 reg = gen_rtx_REG (word_mode, REGNO (reg));
1655 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
1656 build_int_cst (NULL_TREE, shift),
1657 reg, 1);
1658 if (x != reg)
1659 emit_move_insn (reg, x);
1660 }
1661 #endif
1662 }
1663
1664 /* If we have pre-computed the values to put in the registers in
1665 the case of non-aligned structures, copy them in now. */
1666
1667 else if (args[i].n_aligned_regs != 0)
1668 for (j = 0; j < args[i].n_aligned_regs; j++)
1669 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1670 args[i].aligned_regs[j]);
1671
1672 else if (partial == 0 || args[i].pass_on_stack)
1673 {
1674 rtx mem = validize_mem (args[i].value);
1675
1676 /* Check for overlap with already clobbered argument area. */
1677 if (is_sibcall
1678 && mem_overlaps_already_clobbered_arg_p (XEXP (args[i].value, 0),
1679 size))
1680 *sibcall_failure = 1;
1681
1682 /* Handle a BLKmode that needs shifting. */
1683 if (nregs == 1 && size < UNITS_PER_WORD
1684 #ifdef BLOCK_REG_PADDING
1685 && args[i].locate.where_pad == downward
1686 #else
1687 && BYTES_BIG_ENDIAN
1688 #endif
1689 )
1690 {
1691 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1692 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1693 rtx x = gen_reg_rtx (word_mode);
1694 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1695 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1696 : LSHIFT_EXPR;
1697
1698 emit_move_insn (x, tem);
1699 x = expand_shift (dir, word_mode, x,
1700 build_int_cst (NULL_TREE, shift),
1701 ri, 1);
1702 if (x != ri)
1703 emit_move_insn (ri, x);
1704 }
1705 else
1706 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1707 }
1708
1709 /* When a parameter is a block, and perhaps in other cases, it is
1710 possible that it did a load from an argument slot that was
1711 already clobbered. */
1712 if (is_sibcall
1713 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1714 *sibcall_failure = 1;
1715
1716 /* Handle calls that pass values in multiple non-contiguous
1717 locations. The Irix 6 ABI has examples of this. */
1718 if (GET_CODE (reg) == PARALLEL)
1719 use_group_regs (call_fusage, reg);
1720 else if (nregs == -1)
1721 use_reg (call_fusage, reg);
1722 else if (nregs > 0)
1723 use_regs (call_fusage, REGNO (reg), nregs);
1724 }
1725 }
1726 }
1727
1728 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1729 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1730 bytes, then we would need to push some additional bytes to pad the
1731 arguments. So, we compute an adjust to the stack pointer for an
1732 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1733 bytes. Then, when the arguments are pushed the stack will be perfectly
1734 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1735 be popped after the call. Returns the adjustment. */
1736
1737 static int
1738 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1739 struct args_size *args_size,
1740 unsigned int preferred_unit_stack_boundary)
1741 {
1742 /* The number of bytes to pop so that the stack will be
1743 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1744 HOST_WIDE_INT adjustment;
1745 /* The alignment of the stack after the arguments are pushed, if we
1746 just pushed the arguments without adjust the stack here. */
1747 unsigned HOST_WIDE_INT unadjusted_alignment;
1748
1749 unadjusted_alignment
1750 = ((stack_pointer_delta + unadjusted_args_size)
1751 % preferred_unit_stack_boundary);
1752
1753 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1754 as possible -- leaving just enough left to cancel out the
1755 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1756 PENDING_STACK_ADJUST is non-negative, and congruent to
1757 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1758
1759 /* Begin by trying to pop all the bytes. */
1760 unadjusted_alignment
1761 = (unadjusted_alignment
1762 - (pending_stack_adjust % preferred_unit_stack_boundary));
1763 adjustment = pending_stack_adjust;
1764 /* Push enough additional bytes that the stack will be aligned
1765 after the arguments are pushed. */
1766 if (preferred_unit_stack_boundary > 1)
1767 {
1768 if (unadjusted_alignment > 0)
1769 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1770 else
1771 adjustment += unadjusted_alignment;
1772 }
1773
1774 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1775 bytes after the call. The right number is the entire
1776 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1777 by the arguments in the first place. */
1778 args_size->constant
1779 = pending_stack_adjust - adjustment + unadjusted_args_size;
1780
1781 return adjustment;
1782 }
1783
1784 /* Scan X expression if it does not dereference any argument slots
1785 we already clobbered by tail call arguments (as noted in stored_args_map
1786 bitmap).
1787 Return nonzero if X expression dereferences such argument slots,
1788 zero otherwise. */
1789
1790 static int
1791 check_sibcall_argument_overlap_1 (rtx x)
1792 {
1793 RTX_CODE code;
1794 int i, j;
1795 const char *fmt;
1796
1797 if (x == NULL_RTX)
1798 return 0;
1799
1800 code = GET_CODE (x);
1801
1802 if (code == MEM)
1803 return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
1804 GET_MODE_SIZE (GET_MODE (x)));
1805
1806 /* Scan all subexpressions. */
1807 fmt = GET_RTX_FORMAT (code);
1808 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1809 {
1810 if (*fmt == 'e')
1811 {
1812 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1813 return 1;
1814 }
1815 else if (*fmt == 'E')
1816 {
1817 for (j = 0; j < XVECLEN (x, i); j++)
1818 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1819 return 1;
1820 }
1821 }
1822 return 0;
1823 }
1824
1825 /* Scan sequence after INSN if it does not dereference any argument slots
1826 we already clobbered by tail call arguments (as noted in stored_args_map
1827 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1828 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1829 should be 0). Return nonzero if sequence after INSN dereferences such argument
1830 slots, zero otherwise. */
1831
1832 static int
1833 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1834 {
1835 int low, high;
1836
1837 if (insn == NULL_RTX)
1838 insn = get_insns ();
1839 else
1840 insn = NEXT_INSN (insn);
1841
1842 for (; insn; insn = NEXT_INSN (insn))
1843 if (INSN_P (insn)
1844 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1845 break;
1846
1847 if (mark_stored_args_map)
1848 {
1849 #ifdef ARGS_GROW_DOWNWARD
1850 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1851 #else
1852 low = arg->locate.slot_offset.constant;
1853 #endif
1854
1855 for (high = low + arg->locate.size.constant; low < high; low++)
1856 SET_BIT (stored_args_map, low);
1857 }
1858 return insn != NULL_RTX;
1859 }
1860
1861 /* Given that a function returns a value of mode MODE at the most
1862 significant end of hard register VALUE, shift VALUE left or right
1863 as specified by LEFT_P. Return true if some action was needed. */
1864
1865 bool
1866 shift_return_value (enum machine_mode mode, bool left_p, rtx value)
1867 {
1868 HOST_WIDE_INT shift;
1869
1870 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
1871 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
1872 if (shift == 0)
1873 return false;
1874
1875 /* Use ashr rather than lshr for right shifts. This is for the benefit
1876 of the MIPS port, which requires SImode values to be sign-extended
1877 when stored in 64-bit registers. */
1878 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
1879 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
1880 gcc_unreachable ();
1881 return true;
1882 }
1883
1884 /* If X is a likely-spilled register value, copy it to a pseudo
1885 register and return that register. Return X otherwise. */
1886
1887 static rtx
1888 avoid_likely_spilled_reg (rtx x)
1889 {
1890 rtx new_rtx;
1891
1892 if (REG_P (x)
1893 && HARD_REGISTER_P (x)
1894 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (x))))
1895 {
1896 /* Make sure that we generate a REG rather than a CONCAT.
1897 Moves into CONCATs can need nontrivial instructions,
1898 and the whole point of this function is to avoid
1899 using the hard register directly in such a situation. */
1900 generating_concat_p = 0;
1901 new_rtx = gen_reg_rtx (GET_MODE (x));
1902 generating_concat_p = 1;
1903 emit_move_insn (new_rtx, x);
1904 return new_rtx;
1905 }
1906 return x;
1907 }
1908
1909 /* Generate all the code for a CALL_EXPR exp
1910 and return an rtx for its value.
1911 Store the value in TARGET (specified as an rtx) if convenient.
1912 If the value is stored in TARGET then TARGET is returned.
1913 If IGNORE is nonzero, then we ignore the value of the function call. */
1914
1915 rtx
1916 expand_call (tree exp, rtx target, int ignore)
1917 {
1918 /* Nonzero if we are currently expanding a call. */
1919 static int currently_expanding_call = 0;
1920
1921 /* RTX for the function to be called. */
1922 rtx funexp;
1923 /* Sequence of insns to perform a normal "call". */
1924 rtx normal_call_insns = NULL_RTX;
1925 /* Sequence of insns to perform a tail "call". */
1926 rtx tail_call_insns = NULL_RTX;
1927 /* Data type of the function. */
1928 tree funtype;
1929 tree type_arg_types;
1930 /* Declaration of the function being called,
1931 or 0 if the function is computed (not known by name). */
1932 tree fndecl = 0;
1933 /* The type of the function being called. */
1934 tree fntype;
1935 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1936 int pass;
1937
1938 /* Register in which non-BLKmode value will be returned,
1939 or 0 if no value or if value is BLKmode. */
1940 rtx valreg;
1941 /* Address where we should return a BLKmode value;
1942 0 if value not BLKmode. */
1943 rtx structure_value_addr = 0;
1944 /* Nonzero if that address is being passed by treating it as
1945 an extra, implicit first parameter. Otherwise,
1946 it is passed by being copied directly into struct_value_rtx. */
1947 int structure_value_addr_parm = 0;
1948 /* Holds the value of implicit argument for the struct value. */
1949 tree structure_value_addr_value = NULL_TREE;
1950 /* Size of aggregate value wanted, or zero if none wanted
1951 or if we are using the non-reentrant PCC calling convention
1952 or expecting the value in registers. */
1953 HOST_WIDE_INT struct_value_size = 0;
1954 /* Nonzero if called function returns an aggregate in memory PCC style,
1955 by returning the address of where to find it. */
1956 int pcc_struct_value = 0;
1957 rtx struct_value = 0;
1958
1959 /* Number of actual parameters in this call, including struct value addr. */
1960 int num_actuals;
1961 /* Number of named args. Args after this are anonymous ones
1962 and they must all go on the stack. */
1963 int n_named_args;
1964 /* Number of complex actual arguments that need to be split. */
1965 int num_complex_actuals = 0;
1966
1967 /* Vector of information about each argument.
1968 Arguments are numbered in the order they will be pushed,
1969 not the order they are written. */
1970 struct arg_data *args;
1971
1972 /* Total size in bytes of all the stack-parms scanned so far. */
1973 struct args_size args_size;
1974 struct args_size adjusted_args_size;
1975 /* Size of arguments before any adjustments (such as rounding). */
1976 int unadjusted_args_size;
1977 /* Data on reg parms scanned so far. */
1978 CUMULATIVE_ARGS args_so_far;
1979 /* Nonzero if a reg parm has been scanned. */
1980 int reg_parm_seen;
1981 /* Nonzero if this is an indirect function call. */
1982
1983 /* Nonzero if we must avoid push-insns in the args for this call.
1984 If stack space is allocated for register parameters, but not by the
1985 caller, then it is preallocated in the fixed part of the stack frame.
1986 So the entire argument block must then be preallocated (i.e., we
1987 ignore PUSH_ROUNDING in that case). */
1988
1989 int must_preallocate = !PUSH_ARGS;
1990
1991 /* Size of the stack reserved for parameter registers. */
1992 int reg_parm_stack_space = 0;
1993
1994 /* Address of space preallocated for stack parms
1995 (on machines that lack push insns), or 0 if space not preallocated. */
1996 rtx argblock = 0;
1997
1998 /* Mask of ECF_ flags. */
1999 int flags = 0;
2000 #ifdef REG_PARM_STACK_SPACE
2001 /* Define the boundary of the register parm stack space that needs to be
2002 saved, if any. */
2003 int low_to_save, high_to_save;
2004 rtx save_area = 0; /* Place that it is saved */
2005 #endif
2006
2007 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
2008 char *initial_stack_usage_map = stack_usage_map;
2009 char *stack_usage_map_buf = NULL;
2010
2011 int old_stack_allocated;
2012
2013 /* State variables to track stack modifications. */
2014 rtx old_stack_level = 0;
2015 int old_stack_arg_under_construction = 0;
2016 int old_pending_adj = 0;
2017 int old_inhibit_defer_pop = inhibit_defer_pop;
2018
2019 /* Some stack pointer alterations we make are performed via
2020 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
2021 which we then also need to save/restore along the way. */
2022 int old_stack_pointer_delta = 0;
2023
2024 rtx call_fusage;
2025 tree p = CALL_EXPR_FN (exp);
2026 tree addr = CALL_EXPR_FN (exp);
2027 int i;
2028 /* The alignment of the stack, in bits. */
2029 unsigned HOST_WIDE_INT preferred_stack_boundary;
2030 /* The alignment of the stack, in bytes. */
2031 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
2032 /* The static chain value to use for this call. */
2033 rtx static_chain_value;
2034 /* See if this is "nothrow" function call. */
2035 if (TREE_NOTHROW (exp))
2036 flags |= ECF_NOTHROW;
2037
2038 /* See if we can find a DECL-node for the actual function, and get the
2039 function attributes (flags) from the function decl or type node. */
2040 fndecl = get_callee_fndecl (exp);
2041 if (fndecl)
2042 {
2043 fntype = TREE_TYPE (fndecl);
2044 flags |= flags_from_decl_or_type (fndecl);
2045 }
2046 else
2047 {
2048 fntype = TREE_TYPE (TREE_TYPE (p));
2049 flags |= flags_from_decl_or_type (fntype);
2050 }
2051
2052 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
2053
2054 /* Warn if this value is an aggregate type,
2055 regardless of which calling convention we are using for it. */
2056 if (AGGREGATE_TYPE_P (TREE_TYPE (exp)))
2057 warning (OPT_Waggregate_return, "function call has aggregate value");
2058
2059 /* If the result of a non looping pure or const function call is
2060 ignored (or void), and none of its arguments are volatile, we can
2061 avoid expanding the call and just evaluate the arguments for
2062 side-effects. */
2063 if ((flags & (ECF_CONST | ECF_PURE))
2064 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
2065 && (ignore || target == const0_rtx
2066 || TYPE_MODE (TREE_TYPE (exp)) == VOIDmode))
2067 {
2068 bool volatilep = false;
2069 tree arg;
2070 call_expr_arg_iterator iter;
2071
2072 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2073 if (TREE_THIS_VOLATILE (arg))
2074 {
2075 volatilep = true;
2076 break;
2077 }
2078
2079 if (! volatilep)
2080 {
2081 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2082 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
2083 return const0_rtx;
2084 }
2085 }
2086
2087 #ifdef REG_PARM_STACK_SPACE
2088 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
2089 #endif
2090
2091 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2092 && reg_parm_stack_space > 0 && PUSH_ARGS)
2093 must_preallocate = 1;
2094
2095 /* Set up a place to return a structure. */
2096
2097 /* Cater to broken compilers. */
2098 if (aggregate_value_p (exp, (!fndecl ? fntype : fndecl)))
2099 {
2100 /* This call returns a big structure. */
2101 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2102
2103 #ifdef PCC_STATIC_STRUCT_RETURN
2104 {
2105 pcc_struct_value = 1;
2106 }
2107 #else /* not PCC_STATIC_STRUCT_RETURN */
2108 {
2109 struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
2110
2111 if (target && MEM_P (target) && CALL_EXPR_RETURN_SLOT_OPT (exp))
2112 structure_value_addr = XEXP (target, 0);
2113 else
2114 {
2115 /* For variable-sized objects, we must be called with a target
2116 specified. If we were to allocate space on the stack here,
2117 we would have no way of knowing when to free it. */
2118 rtx d = assign_temp (TREE_TYPE (exp), 0, 1, 1);
2119
2120 mark_temp_addr_taken (d);
2121 structure_value_addr = XEXP (d, 0);
2122 target = 0;
2123 }
2124 }
2125 #endif /* not PCC_STATIC_STRUCT_RETURN */
2126 }
2127
2128 /* Figure out the amount to which the stack should be aligned. */
2129 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2130 if (fndecl)
2131 {
2132 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2133 /* Without automatic stack alignment, we can't increase preferred
2134 stack boundary. With automatic stack alignment, it is
2135 unnecessary since unless we can guarantee that all callers will
2136 align the outgoing stack properly, callee has to align its
2137 stack anyway. */
2138 if (i
2139 && i->preferred_incoming_stack_boundary
2140 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
2141 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2142 }
2143
2144 /* Operand 0 is a pointer-to-function; get the type of the function. */
2145 funtype = TREE_TYPE (addr);
2146 gcc_assert (POINTER_TYPE_P (funtype));
2147 funtype = TREE_TYPE (funtype);
2148
2149 /* Count whether there are actual complex arguments that need to be split
2150 into their real and imaginary parts. Munge the type_arg_types
2151 appropriately here as well. */
2152 if (targetm.calls.split_complex_arg)
2153 {
2154 call_expr_arg_iterator iter;
2155 tree arg;
2156 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2157 {
2158 tree type = TREE_TYPE (arg);
2159 if (type && TREE_CODE (type) == COMPLEX_TYPE
2160 && targetm.calls.split_complex_arg (type))
2161 num_complex_actuals++;
2162 }
2163 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2164 }
2165 else
2166 type_arg_types = TYPE_ARG_TYPES (funtype);
2167
2168 if (flags & ECF_MAY_BE_ALLOCA)
2169 cfun->calls_alloca = 1;
2170
2171 /* If struct_value_rtx is 0, it means pass the address
2172 as if it were an extra parameter. Put the argument expression
2173 in structure_value_addr_value. */
2174 if (structure_value_addr && struct_value == 0)
2175 {
2176 /* If structure_value_addr is a REG other than
2177 virtual_outgoing_args_rtx, we can use always use it. If it
2178 is not a REG, we must always copy it into a register.
2179 If it is virtual_outgoing_args_rtx, we must copy it to another
2180 register in some cases. */
2181 rtx temp = (!REG_P (structure_value_addr)
2182 || (ACCUMULATE_OUTGOING_ARGS
2183 && stack_arg_under_construction
2184 && structure_value_addr == virtual_outgoing_args_rtx)
2185 ? copy_addr_to_reg (convert_memory_address
2186 (Pmode, structure_value_addr))
2187 : structure_value_addr);
2188
2189 structure_value_addr_value =
2190 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
2191 structure_value_addr_parm = 1;
2192 }
2193
2194 /* Count the arguments and set NUM_ACTUALS. */
2195 num_actuals =
2196 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
2197
2198 /* Compute number of named args.
2199 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2200
2201 if (type_arg_types != 0)
2202 n_named_args
2203 = (list_length (type_arg_types)
2204 /* Count the struct value address, if it is passed as a parm. */
2205 + structure_value_addr_parm);
2206 else
2207 /* If we know nothing, treat all args as named. */
2208 n_named_args = num_actuals;
2209
2210 /* Start updating where the next arg would go.
2211
2212 On some machines (such as the PA) indirect calls have a different
2213 calling convention than normal calls. The fourth argument in
2214 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2215 or not. */
2216 INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
2217
2218 /* Now possibly adjust the number of named args.
2219 Normally, don't include the last named arg if anonymous args follow.
2220 We do include the last named arg if
2221 targetm.calls.strict_argument_naming() returns nonzero.
2222 (If no anonymous args follow, the result of list_length is actually
2223 one too large. This is harmless.)
2224
2225 If targetm.calls.pretend_outgoing_varargs_named() returns
2226 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2227 this machine will be able to place unnamed args that were passed
2228 in registers into the stack. So treat all args as named. This
2229 allows the insns emitting for a specific argument list to be
2230 independent of the function declaration.
2231
2232 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2233 we do not have any reliable way to pass unnamed args in
2234 registers, so we must force them into memory. */
2235
2236 if (type_arg_types != 0
2237 && targetm.calls.strict_argument_naming (&args_so_far))
2238 ;
2239 else if (type_arg_types != 0
2240 && ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
2241 /* Don't include the last named arg. */
2242 --n_named_args;
2243 else
2244 /* Treat all args as named. */
2245 n_named_args = num_actuals;
2246
2247 /* Make a vector to hold all the information about each arg. */
2248 args = XALLOCAVEC (struct arg_data, num_actuals);
2249 memset (args, 0, num_actuals * sizeof (struct arg_data));
2250
2251 /* Build up entries in the ARGS array, compute the size of the
2252 arguments into ARGS_SIZE, etc. */
2253 initialize_argument_information (num_actuals, args, &args_size,
2254 n_named_args, exp,
2255 structure_value_addr_value, fndecl, fntype,
2256 &args_so_far, reg_parm_stack_space,
2257 &old_stack_level, &old_pending_adj,
2258 &must_preallocate, &flags,
2259 &try_tail_call, CALL_FROM_THUNK_P (exp));
2260
2261 if (args_size.var)
2262 must_preallocate = 1;
2263
2264 /* Now make final decision about preallocating stack space. */
2265 must_preallocate = finalize_must_preallocate (must_preallocate,
2266 num_actuals, args,
2267 &args_size);
2268
2269 /* If the structure value address will reference the stack pointer, we
2270 must stabilize it. We don't need to do this if we know that we are
2271 not going to adjust the stack pointer in processing this call. */
2272
2273 if (structure_value_addr
2274 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2275 || reg_mentioned_p (virtual_outgoing_args_rtx,
2276 structure_value_addr))
2277 && (args_size.var
2278 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2279 structure_value_addr = copy_to_reg (structure_value_addr);
2280
2281 /* Tail calls can make things harder to debug, and we've traditionally
2282 pushed these optimizations into -O2. Don't try if we're already
2283 expanding a call, as that means we're an argument. Don't try if
2284 there's cleanups, as we know there's code to follow the call. */
2285
2286 if (currently_expanding_call++ != 0
2287 || !flag_optimize_sibling_calls
2288 || args_size.var
2289 || lookup_expr_eh_region (exp) >= 0
2290 || dbg_cnt (tail_call) == false)
2291 try_tail_call = 0;
2292
2293 /* Rest of purposes for tail call optimizations to fail. */
2294 if (
2295 #ifdef HAVE_sibcall_epilogue
2296 !HAVE_sibcall_epilogue
2297 #else
2298 1
2299 #endif
2300 || !try_tail_call
2301 /* Doing sibling call optimization needs some work, since
2302 structure_value_addr can be allocated on the stack.
2303 It does not seem worth the effort since few optimizable
2304 sibling calls will return a structure. */
2305 || structure_value_addr != NULL_RTX
2306 #ifdef REG_PARM_STACK_SPACE
2307 /* If outgoing reg parm stack space changes, we can not do sibcall. */
2308 || (OUTGOING_REG_PARM_STACK_SPACE (funtype)
2309 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl)))
2310 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (fndecl))
2311 #endif
2312 /* Check whether the target is able to optimize the call
2313 into a sibcall. */
2314 || !targetm.function_ok_for_sibcall (fndecl, exp)
2315 /* Functions that do not return exactly once may not be sibcall
2316 optimized. */
2317 || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2318 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2319 /* If the called function is nested in the current one, it might access
2320 some of the caller's arguments, but could clobber them beforehand if
2321 the argument areas are shared. */
2322 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2323 /* If this function requires more stack slots than the current
2324 function, we cannot change it into a sibling call.
2325 crtl->args.pretend_args_size is not part of the
2326 stack allocated by our caller. */
2327 || args_size.constant > (crtl->args.size
2328 - crtl->args.pretend_args_size)
2329 /* If the callee pops its own arguments, then it must pop exactly
2330 the same number of arguments as the current function. */
2331 || (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
2332 != RETURN_POPS_ARGS (current_function_decl,
2333 TREE_TYPE (current_function_decl),
2334 crtl->args.size))
2335 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2336 try_tail_call = 0;
2337
2338 /* Check if caller and callee disagree in promotion of function
2339 return value. */
2340 if (try_tail_call)
2341 {
2342 enum machine_mode caller_mode, caller_promoted_mode;
2343 enum machine_mode callee_mode, callee_promoted_mode;
2344 int caller_unsignedp, callee_unsignedp;
2345 tree caller_res = DECL_RESULT (current_function_decl);
2346
2347 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
2348 caller_mode = DECL_MODE (caller_res);
2349 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
2350 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
2351 caller_promoted_mode
2352 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
2353 &caller_unsignedp,
2354 TREE_TYPE (current_function_decl), 1);
2355 callee_promoted_mode
2356 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
2357 &callee_unsignedp,
2358 funtype, 1);
2359 if (caller_mode != VOIDmode
2360 && (caller_promoted_mode != callee_promoted_mode
2361 || ((caller_mode != caller_promoted_mode
2362 || callee_mode != callee_promoted_mode)
2363 && (caller_unsignedp != callee_unsignedp
2364 || GET_MODE_BITSIZE (caller_mode)
2365 < GET_MODE_BITSIZE (callee_mode)))))
2366 try_tail_call = 0;
2367 }
2368
2369 /* Ensure current function's preferred stack boundary is at least
2370 what we need. Stack alignment may also increase preferred stack
2371 boundary. */
2372 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
2373 crtl->preferred_stack_boundary = preferred_stack_boundary;
2374 else
2375 preferred_stack_boundary = crtl->preferred_stack_boundary;
2376
2377 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2378
2379 /* We want to make two insn chains; one for a sibling call, the other
2380 for a normal call. We will select one of the two chains after
2381 initial RTL generation is complete. */
2382 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2383 {
2384 int sibcall_failure = 0;
2385 /* We want to emit any pending stack adjustments before the tail
2386 recursion "call". That way we know any adjustment after the tail
2387 recursion call can be ignored if we indeed use the tail
2388 call expansion. */
2389 int save_pending_stack_adjust = 0;
2390 int save_stack_pointer_delta = 0;
2391 rtx insns;
2392 rtx before_call, next_arg_reg, after_args;
2393
2394 if (pass == 0)
2395 {
2396 /* State variables we need to save and restore between
2397 iterations. */
2398 save_pending_stack_adjust = pending_stack_adjust;
2399 save_stack_pointer_delta = stack_pointer_delta;
2400 }
2401 if (pass)
2402 flags &= ~ECF_SIBCALL;
2403 else
2404 flags |= ECF_SIBCALL;
2405
2406 /* Other state variables that we must reinitialize each time
2407 through the loop (that are not initialized by the loop itself). */
2408 argblock = 0;
2409 call_fusage = 0;
2410
2411 /* Start a new sequence for the normal call case.
2412
2413 From this point on, if the sibling call fails, we want to set
2414 sibcall_failure instead of continuing the loop. */
2415 start_sequence ();
2416
2417 /* Don't let pending stack adjusts add up to too much.
2418 Also, do all pending adjustments now if there is any chance
2419 this might be a call to alloca or if we are expanding a sibling
2420 call sequence.
2421 Also do the adjustments before a throwing call, otherwise
2422 exception handling can fail; PR 19225. */
2423 if (pending_stack_adjust >= 32
2424 || (pending_stack_adjust > 0
2425 && (flags & ECF_MAY_BE_ALLOCA))
2426 || (pending_stack_adjust > 0
2427 && flag_exceptions && !(flags & ECF_NOTHROW))
2428 || pass == 0)
2429 do_pending_stack_adjust ();
2430
2431 /* Precompute any arguments as needed. */
2432 if (pass)
2433 precompute_arguments (num_actuals, args);
2434
2435 /* Now we are about to start emitting insns that can be deleted
2436 if a libcall is deleted. */
2437 if (pass && (flags & ECF_MALLOC))
2438 start_sequence ();
2439
2440 if (pass == 0 && crtl->stack_protect_guard)
2441 stack_protect_epilogue ();
2442
2443 adjusted_args_size = args_size;
2444 /* Compute the actual size of the argument block required. The variable
2445 and constant sizes must be combined, the size may have to be rounded,
2446 and there may be a minimum required size. When generating a sibcall
2447 pattern, do not round up, since we'll be re-using whatever space our
2448 caller provided. */
2449 unadjusted_args_size
2450 = compute_argument_block_size (reg_parm_stack_space,
2451 &adjusted_args_size,
2452 fndecl, fntype,
2453 (pass == 0 ? 0
2454 : preferred_stack_boundary));
2455
2456 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2457
2458 /* The argument block when performing a sibling call is the
2459 incoming argument block. */
2460 if (pass == 0)
2461 {
2462 argblock = crtl->args.internal_arg_pointer;
2463 argblock
2464 #ifdef STACK_GROWS_DOWNWARD
2465 = plus_constant (argblock, crtl->args.pretend_args_size);
2466 #else
2467 = plus_constant (argblock, -crtl->args.pretend_args_size);
2468 #endif
2469 stored_args_map = sbitmap_alloc (args_size.constant);
2470 sbitmap_zero (stored_args_map);
2471 }
2472
2473 /* If we have no actual push instructions, or shouldn't use them,
2474 make space for all args right now. */
2475 else if (adjusted_args_size.var != 0)
2476 {
2477 if (old_stack_level == 0)
2478 {
2479 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
2480 old_stack_pointer_delta = stack_pointer_delta;
2481 old_pending_adj = pending_stack_adjust;
2482 pending_stack_adjust = 0;
2483 /* stack_arg_under_construction says whether a stack arg is
2484 being constructed at the old stack level. Pushing the stack
2485 gets a clean outgoing argument block. */
2486 old_stack_arg_under_construction = stack_arg_under_construction;
2487 stack_arg_under_construction = 0;
2488 }
2489 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2490 }
2491 else
2492 {
2493 /* Note that we must go through the motions of allocating an argument
2494 block even if the size is zero because we may be storing args
2495 in the area reserved for register arguments, which may be part of
2496 the stack frame. */
2497
2498 int needed = adjusted_args_size.constant;
2499
2500 /* Store the maximum argument space used. It will be pushed by
2501 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2502 checking). */
2503
2504 if (needed > crtl->outgoing_args_size)
2505 crtl->outgoing_args_size = needed;
2506
2507 if (must_preallocate)
2508 {
2509 if (ACCUMULATE_OUTGOING_ARGS)
2510 {
2511 /* Since the stack pointer will never be pushed, it is
2512 possible for the evaluation of a parm to clobber
2513 something we have already written to the stack.
2514 Since most function calls on RISC machines do not use
2515 the stack, this is uncommon, but must work correctly.
2516
2517 Therefore, we save any area of the stack that was already
2518 written and that we are using. Here we set up to do this
2519 by making a new stack usage map from the old one. The
2520 actual save will be done by store_one_arg.
2521
2522 Another approach might be to try to reorder the argument
2523 evaluations to avoid this conflicting stack usage. */
2524
2525 /* Since we will be writing into the entire argument area,
2526 the map must be allocated for its entire size, not just
2527 the part that is the responsibility of the caller. */
2528 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2529 needed += reg_parm_stack_space;
2530
2531 #ifdef ARGS_GROW_DOWNWARD
2532 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2533 needed + 1);
2534 #else
2535 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2536 needed);
2537 #endif
2538 if (stack_usage_map_buf)
2539 free (stack_usage_map_buf);
2540 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
2541 stack_usage_map = stack_usage_map_buf;
2542
2543 if (initial_highest_arg_in_use)
2544 memcpy (stack_usage_map, initial_stack_usage_map,
2545 initial_highest_arg_in_use);
2546
2547 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2548 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2549 (highest_outgoing_arg_in_use
2550 - initial_highest_arg_in_use));
2551 needed = 0;
2552
2553 /* The address of the outgoing argument list must not be
2554 copied to a register here, because argblock would be left
2555 pointing to the wrong place after the call to
2556 allocate_dynamic_stack_space below. */
2557
2558 argblock = virtual_outgoing_args_rtx;
2559 }
2560 else
2561 {
2562 if (inhibit_defer_pop == 0)
2563 {
2564 /* Try to reuse some or all of the pending_stack_adjust
2565 to get this space. */
2566 needed
2567 = (combine_pending_stack_adjustment_and_call
2568 (unadjusted_args_size,
2569 &adjusted_args_size,
2570 preferred_unit_stack_boundary));
2571
2572 /* combine_pending_stack_adjustment_and_call computes
2573 an adjustment before the arguments are allocated.
2574 Account for them and see whether or not the stack
2575 needs to go up or down. */
2576 needed = unadjusted_args_size - needed;
2577
2578 if (needed < 0)
2579 {
2580 /* We're releasing stack space. */
2581 /* ??? We can avoid any adjustment at all if we're
2582 already aligned. FIXME. */
2583 pending_stack_adjust = -needed;
2584 do_pending_stack_adjust ();
2585 needed = 0;
2586 }
2587 else
2588 /* We need to allocate space. We'll do that in
2589 push_block below. */
2590 pending_stack_adjust = 0;
2591 }
2592
2593 /* Special case this because overhead of `push_block' in
2594 this case is non-trivial. */
2595 if (needed == 0)
2596 argblock = virtual_outgoing_args_rtx;
2597 else
2598 {
2599 argblock = push_block (GEN_INT (needed), 0, 0);
2600 #ifdef ARGS_GROW_DOWNWARD
2601 argblock = plus_constant (argblock, needed);
2602 #endif
2603 }
2604
2605 /* We only really need to call `copy_to_reg' in the case
2606 where push insns are going to be used to pass ARGBLOCK
2607 to a function call in ARGS. In that case, the stack
2608 pointer changes value from the allocation point to the
2609 call point, and hence the value of
2610 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2611 as well always do it. */
2612 argblock = copy_to_reg (argblock);
2613 }
2614 }
2615 }
2616
2617 if (ACCUMULATE_OUTGOING_ARGS)
2618 {
2619 /* The save/restore code in store_one_arg handles all
2620 cases except one: a constructor call (including a C
2621 function returning a BLKmode struct) to initialize
2622 an argument. */
2623 if (stack_arg_under_construction)
2624 {
2625 rtx push_size
2626 = GEN_INT (adjusted_args_size.constant
2627 + (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype
2628 : TREE_TYPE (fndecl))) ? 0
2629 : reg_parm_stack_space));
2630 if (old_stack_level == 0)
2631 {
2632 emit_stack_save (SAVE_BLOCK, &old_stack_level,
2633 NULL_RTX);
2634 old_stack_pointer_delta = stack_pointer_delta;
2635 old_pending_adj = pending_stack_adjust;
2636 pending_stack_adjust = 0;
2637 /* stack_arg_under_construction says whether a stack
2638 arg is being constructed at the old stack level.
2639 Pushing the stack gets a clean outgoing argument
2640 block. */
2641 old_stack_arg_under_construction
2642 = stack_arg_under_construction;
2643 stack_arg_under_construction = 0;
2644 /* Make a new map for the new argument list. */
2645 if (stack_usage_map_buf)
2646 free (stack_usage_map_buf);
2647 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
2648 stack_usage_map = stack_usage_map_buf;
2649 highest_outgoing_arg_in_use = 0;
2650 }
2651 allocate_dynamic_stack_space (push_size, NULL_RTX,
2652 BITS_PER_UNIT);
2653 }
2654
2655 /* If argument evaluation might modify the stack pointer,
2656 copy the address of the argument list to a register. */
2657 for (i = 0; i < num_actuals; i++)
2658 if (args[i].pass_on_stack)
2659 {
2660 argblock = copy_addr_to_reg (argblock);
2661 break;
2662 }
2663 }
2664
2665 compute_argument_addresses (args, argblock, num_actuals);
2666
2667 /* If we push args individually in reverse order, perform stack alignment
2668 before the first push (the last arg). */
2669 if (PUSH_ARGS_REVERSED && argblock == 0
2670 && adjusted_args_size.constant != unadjusted_args_size)
2671 {
2672 /* When the stack adjustment is pending, we get better code
2673 by combining the adjustments. */
2674 if (pending_stack_adjust
2675 && ! inhibit_defer_pop)
2676 {
2677 pending_stack_adjust
2678 = (combine_pending_stack_adjustment_and_call
2679 (unadjusted_args_size,
2680 &adjusted_args_size,
2681 preferred_unit_stack_boundary));
2682 do_pending_stack_adjust ();
2683 }
2684 else if (argblock == 0)
2685 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2686 - unadjusted_args_size));
2687 }
2688 /* Now that the stack is properly aligned, pops can't safely
2689 be deferred during the evaluation of the arguments. */
2690 NO_DEFER_POP;
2691
2692 funexp = rtx_for_function_call (fndecl, addr);
2693
2694 /* Figure out the register where the value, if any, will come back. */
2695 valreg = 0;
2696 if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
2697 && ! structure_value_addr)
2698 {
2699 if (pcc_struct_value)
2700 valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
2701 fndecl, NULL, (pass == 0));
2702 else
2703 valreg = hard_function_value (TREE_TYPE (exp), fndecl, fntype,
2704 (pass == 0));
2705
2706 /* If VALREG is a PARALLEL whose first member has a zero
2707 offset, use that. This is for targets such as m68k that
2708 return the same value in multiple places. */
2709 if (GET_CODE (valreg) == PARALLEL)
2710 {
2711 rtx elem = XVECEXP (valreg, 0, 0);
2712 rtx where = XEXP (elem, 0);
2713 rtx offset = XEXP (elem, 1);
2714 if (offset == const0_rtx
2715 && GET_MODE (where) == GET_MODE (valreg))
2716 valreg = where;
2717 }
2718 }
2719
2720 /* Precompute all register parameters. It isn't safe to compute anything
2721 once we have started filling any specific hard regs. */
2722 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2723
2724 if (CALL_EXPR_STATIC_CHAIN (exp))
2725 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
2726 else
2727 static_chain_value = 0;
2728
2729 #ifdef REG_PARM_STACK_SPACE
2730 /* Save the fixed argument area if it's part of the caller's frame and
2731 is clobbered by argument setup for this call. */
2732 if (ACCUMULATE_OUTGOING_ARGS && pass)
2733 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2734 &low_to_save, &high_to_save);
2735 #endif
2736
2737 /* Now store (and compute if necessary) all non-register parms.
2738 These come before register parms, since they can require block-moves,
2739 which could clobber the registers used for register parms.
2740 Parms which have partial registers are not stored here,
2741 but we do preallocate space here if they want that. */
2742
2743 for (i = 0; i < num_actuals; i++)
2744 {
2745 if (args[i].reg == 0 || args[i].pass_on_stack)
2746 {
2747 rtx before_arg = get_last_insn ();
2748
2749 if (store_one_arg (&args[i], argblock, flags,
2750 adjusted_args_size.var != 0,
2751 reg_parm_stack_space)
2752 || (pass == 0
2753 && check_sibcall_argument_overlap (before_arg,
2754 &args[i], 1)))
2755 sibcall_failure = 1;
2756 }
2757
2758 if (((flags & ECF_CONST)
2759 || ((flags & ECF_PURE) && ACCUMULATE_OUTGOING_ARGS))
2760 && args[i].stack)
2761 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2762 gen_rtx_USE (VOIDmode,
2763 args[i].stack),
2764 call_fusage);
2765 }
2766
2767 /* If we have a parm that is passed in registers but not in memory
2768 and whose alignment does not permit a direct copy into registers,
2769 make a group of pseudos that correspond to each register that we
2770 will later fill. */
2771 if (STRICT_ALIGNMENT)
2772 store_unaligned_arguments_into_pseudos (args, num_actuals);
2773
2774 /* Now store any partially-in-registers parm.
2775 This is the last place a block-move can happen. */
2776 if (reg_parm_seen)
2777 for (i = 0; i < num_actuals; i++)
2778 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2779 {
2780 rtx before_arg = get_last_insn ();
2781
2782 if (store_one_arg (&args[i], argblock, flags,
2783 adjusted_args_size.var != 0,
2784 reg_parm_stack_space)
2785 || (pass == 0
2786 && check_sibcall_argument_overlap (before_arg,
2787 &args[i], 1)))
2788 sibcall_failure = 1;
2789 }
2790
2791 /* If we pushed args in forward order, perform stack alignment
2792 after pushing the last arg. */
2793 if (!PUSH_ARGS_REVERSED && argblock == 0)
2794 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2795 - unadjusted_args_size));
2796
2797 /* If register arguments require space on the stack and stack space
2798 was not preallocated, allocate stack space here for arguments
2799 passed in registers. */
2800 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2801 && !ACCUMULATE_OUTGOING_ARGS
2802 && must_preallocate == 0 && reg_parm_stack_space > 0)
2803 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2804
2805 /* Pass the function the address in which to return a
2806 structure value. */
2807 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2808 {
2809 structure_value_addr
2810 = convert_memory_address (Pmode, structure_value_addr);
2811 emit_move_insn (struct_value,
2812 force_reg (Pmode,
2813 force_operand (structure_value_addr,
2814 NULL_RTX)));
2815
2816 if (REG_P (struct_value))
2817 use_reg (&call_fusage, struct_value);
2818 }
2819
2820 after_args = get_last_insn ();
2821 funexp = prepare_call_address (funexp, static_chain_value,
2822 &call_fusage, reg_parm_seen, pass == 0);
2823
2824 load_register_parameters (args, num_actuals, &call_fusage, flags,
2825 pass == 0, &sibcall_failure);
2826
2827 /* Save a pointer to the last insn before the call, so that we can
2828 later safely search backwards to find the CALL_INSN. */
2829 before_call = get_last_insn ();
2830
2831 /* Set up next argument register. For sibling calls on machines
2832 with register windows this should be the incoming register. */
2833 #ifdef FUNCTION_INCOMING_ARG
2834 if (pass == 0)
2835 next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
2836 void_type_node, 1);
2837 else
2838 #endif
2839 next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
2840 void_type_node, 1);
2841
2842 /* All arguments and registers used for the call must be set up by
2843 now! */
2844
2845 /* Stack must be properly aligned now. */
2846 gcc_assert (!pass
2847 || !(stack_pointer_delta % preferred_unit_stack_boundary));
2848
2849 /* Generate the actual call instruction. */
2850 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2851 adjusted_args_size.constant, struct_value_size,
2852 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2853 flags, & args_so_far);
2854
2855 /* If the call setup or the call itself overlaps with anything
2856 of the argument setup we probably clobbered our call address.
2857 In that case we can't do sibcalls. */
2858 if (pass == 0
2859 && check_sibcall_argument_overlap (after_args, 0, 0))
2860 sibcall_failure = 1;
2861
2862 /* If a non-BLKmode value is returned at the most significant end
2863 of a register, shift the register right by the appropriate amount
2864 and update VALREG accordingly. BLKmode values are handled by the
2865 group load/store machinery below. */
2866 if (!structure_value_addr
2867 && !pcc_struct_value
2868 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2869 && targetm.calls.return_in_msb (TREE_TYPE (exp)))
2870 {
2871 if (shift_return_value (TYPE_MODE (TREE_TYPE (exp)), false, valreg))
2872 sibcall_failure = 1;
2873 valreg = gen_rtx_REG (TYPE_MODE (TREE_TYPE (exp)), REGNO (valreg));
2874 }
2875
2876 if (pass && (flags & ECF_MALLOC))
2877 {
2878 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2879 rtx last, insns;
2880
2881 /* The return value from a malloc-like function is a pointer. */
2882 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2883 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2884
2885 emit_move_insn (temp, valreg);
2886
2887 /* The return value from a malloc-like function can not alias
2888 anything else. */
2889 last = get_last_insn ();
2890 add_reg_note (last, REG_NOALIAS, temp);
2891
2892 /* Write out the sequence. */
2893 insns = get_insns ();
2894 end_sequence ();
2895 emit_insn (insns);
2896 valreg = temp;
2897 }
2898
2899 /* For calls to `setjmp', etc., inform
2900 function.c:setjmp_warnings that it should complain if
2901 nonvolatile values are live. For functions that cannot
2902 return, inform flow that control does not fall through. */
2903
2904 if ((flags & ECF_NORETURN) || pass == 0)
2905 {
2906 /* The barrier must be emitted
2907 immediately after the CALL_INSN. Some ports emit more
2908 than just a CALL_INSN above, so we must search for it here. */
2909
2910 rtx last = get_last_insn ();
2911 while (!CALL_P (last))
2912 {
2913 last = PREV_INSN (last);
2914 /* There was no CALL_INSN? */
2915 gcc_assert (last != before_call);
2916 }
2917
2918 emit_barrier_after (last);
2919
2920 /* Stack adjustments after a noreturn call are dead code.
2921 However when NO_DEFER_POP is in effect, we must preserve
2922 stack_pointer_delta. */
2923 if (inhibit_defer_pop == 0)
2924 {
2925 stack_pointer_delta = old_stack_allocated;
2926 pending_stack_adjust = 0;
2927 }
2928 }
2929
2930 /* If value type not void, return an rtx for the value. */
2931
2932 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
2933 || ignore)
2934 target = const0_rtx;
2935 else if (structure_value_addr)
2936 {
2937 if (target == 0 || !MEM_P (target))
2938 {
2939 target
2940 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2941 memory_address (TYPE_MODE (TREE_TYPE (exp)),
2942 structure_value_addr));
2943 set_mem_attributes (target, exp, 1);
2944 }
2945 }
2946 else if (pcc_struct_value)
2947 {
2948 /* This is the special C++ case where we need to
2949 know what the true target was. We take care to
2950 never use this value more than once in one expression. */
2951 target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2952 copy_to_reg (valreg));
2953 set_mem_attributes (target, exp, 1);
2954 }
2955 /* Handle calls that return values in multiple non-contiguous locations.
2956 The Irix 6 ABI has examples of this. */
2957 else if (GET_CODE (valreg) == PARALLEL)
2958 {
2959 if (target == 0)
2960 {
2961 /* This will only be assigned once, so it can be readonly. */
2962 tree nt = build_qualified_type (TREE_TYPE (exp),
2963 (TYPE_QUALS (TREE_TYPE (exp))
2964 | TYPE_QUAL_CONST));
2965
2966 target = assign_temp (nt, 0, 1, 1);
2967 }
2968
2969 if (! rtx_equal_p (target, valreg))
2970 emit_group_store (target, valreg, TREE_TYPE (exp),
2971 int_size_in_bytes (TREE_TYPE (exp)));
2972
2973 /* We can not support sibling calls for this case. */
2974 sibcall_failure = 1;
2975 }
2976 else if (target
2977 && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
2978 && GET_MODE (target) == GET_MODE (valreg))
2979 {
2980 bool may_overlap = false;
2981
2982 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
2983 reg to a plain register. */
2984 if (!REG_P (target) || HARD_REGISTER_P (target))
2985 valreg = avoid_likely_spilled_reg (valreg);
2986
2987 /* If TARGET is a MEM in the argument area, and we have
2988 saved part of the argument area, then we can't store
2989 directly into TARGET as it may get overwritten when we
2990 restore the argument save area below. Don't work too
2991 hard though and simply force TARGET to a register if it
2992 is a MEM; the optimizer is quite likely to sort it out. */
2993 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
2994 for (i = 0; i < num_actuals; i++)
2995 if (args[i].save_area)
2996 {
2997 may_overlap = true;
2998 break;
2999 }
3000
3001 if (may_overlap)
3002 target = copy_to_reg (valreg);
3003 else
3004 {
3005 /* TARGET and VALREG cannot be equal at this point
3006 because the latter would not have
3007 REG_FUNCTION_VALUE_P true, while the former would if
3008 it were referring to the same register.
3009
3010 If they refer to the same register, this move will be
3011 a no-op, except when function inlining is being
3012 done. */
3013 emit_move_insn (target, valreg);
3014
3015 /* If we are setting a MEM, this code must be executed.
3016 Since it is emitted after the call insn, sibcall
3017 optimization cannot be performed in that case. */
3018 if (MEM_P (target))
3019 sibcall_failure = 1;
3020 }
3021 }
3022 else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
3023 {
3024 target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp));
3025
3026 /* We can not support sibling calls for this case. */
3027 sibcall_failure = 1;
3028 }
3029 else
3030 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
3031
3032 /* If we promoted this return value, make the proper SUBREG.
3033 TARGET might be const0_rtx here, so be careful. */
3034 if (REG_P (target)
3035 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
3036 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
3037 {
3038 tree type = TREE_TYPE (exp);
3039 int unsignedp = TYPE_UNSIGNED (type);
3040 int offset = 0;
3041 enum machine_mode pmode;
3042
3043 /* Ensure we promote as expected, and get the new unsignedness. */
3044 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
3045 funtype, 1);
3046 gcc_assert (GET_MODE (target) == pmode);
3047
3048 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
3049 && (GET_MODE_SIZE (GET_MODE (target))
3050 > GET_MODE_SIZE (TYPE_MODE (type))))
3051 {
3052 offset = GET_MODE_SIZE (GET_MODE (target))
3053 - GET_MODE_SIZE (TYPE_MODE (type));
3054 if (! BYTES_BIG_ENDIAN)
3055 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
3056 else if (! WORDS_BIG_ENDIAN)
3057 offset %= UNITS_PER_WORD;
3058 }
3059
3060 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
3061 SUBREG_PROMOTED_VAR_P (target) = 1;
3062 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
3063 }
3064
3065 /* If size of args is variable or this was a constructor call for a stack
3066 argument, restore saved stack-pointer value. */
3067
3068 if (old_stack_level)
3069 {
3070 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
3071 stack_pointer_delta = old_stack_pointer_delta;
3072 pending_stack_adjust = old_pending_adj;
3073 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3074 stack_arg_under_construction = old_stack_arg_under_construction;
3075 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3076 stack_usage_map = initial_stack_usage_map;
3077 sibcall_failure = 1;
3078 }
3079 else if (ACCUMULATE_OUTGOING_ARGS && pass)
3080 {
3081 #ifdef REG_PARM_STACK_SPACE
3082 if (save_area)
3083 restore_fixed_argument_area (save_area, argblock,
3084 high_to_save, low_to_save);
3085 #endif
3086
3087 /* If we saved any argument areas, restore them. */
3088 for (i = 0; i < num_actuals; i++)
3089 if (args[i].save_area)
3090 {
3091 enum machine_mode save_mode = GET_MODE (args[i].save_area);
3092 rtx stack_area
3093 = gen_rtx_MEM (save_mode,
3094 memory_address (save_mode,
3095 XEXP (args[i].stack_slot, 0)));
3096
3097 if (save_mode != BLKmode)
3098 emit_move_insn (stack_area, args[i].save_area);
3099 else
3100 emit_block_move (stack_area, args[i].save_area,
3101 GEN_INT (args[i].locate.size.constant),
3102 BLOCK_OP_CALL_PARM);
3103 }
3104
3105 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3106 stack_usage_map = initial_stack_usage_map;
3107 }
3108
3109 /* If this was alloca, record the new stack level for nonlocal gotos.
3110 Check for the handler slots since we might not have a save area
3111 for non-local gotos. */
3112
3113 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
3114 update_nonlocal_goto_save_area ();
3115
3116 /* Free up storage we no longer need. */
3117 for (i = 0; i < num_actuals; ++i)
3118 if (args[i].aligned_regs)
3119 free (args[i].aligned_regs);
3120
3121 insns = get_insns ();
3122 end_sequence ();
3123
3124 if (pass == 0)
3125 {
3126 tail_call_insns = insns;
3127
3128 /* Restore the pending stack adjustment now that we have
3129 finished generating the sibling call sequence. */
3130
3131 pending_stack_adjust = save_pending_stack_adjust;
3132 stack_pointer_delta = save_stack_pointer_delta;
3133
3134 /* Prepare arg structure for next iteration. */
3135 for (i = 0; i < num_actuals; i++)
3136 {
3137 args[i].value = 0;
3138 args[i].aligned_regs = 0;
3139 args[i].stack = 0;
3140 }
3141
3142 sbitmap_free (stored_args_map);
3143 }
3144 else
3145 {
3146 normal_call_insns = insns;
3147
3148 /* Verify that we've deallocated all the stack we used. */
3149 gcc_assert ((flags & ECF_NORETURN)
3150 || (old_stack_allocated
3151 == stack_pointer_delta - pending_stack_adjust));
3152 }
3153
3154 /* If something prevents making this a sibling call,
3155 zero out the sequence. */
3156 if (sibcall_failure)
3157 tail_call_insns = NULL_RTX;
3158 else
3159 break;
3160 }
3161
3162 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3163 arguments too, as argument area is now clobbered by the call. */
3164 if (tail_call_insns)
3165 {
3166 emit_insn (tail_call_insns);
3167 crtl->tail_call_emit = true;
3168 }
3169 else
3170 emit_insn (normal_call_insns);
3171
3172 currently_expanding_call--;
3173
3174 if (stack_usage_map_buf)
3175 free (stack_usage_map_buf);
3176
3177 return target;
3178 }
3179
3180 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3181 this function's incoming arguments.
3182
3183 At the start of RTL generation we know the only REG_EQUIV notes
3184 in the rtl chain are those for incoming arguments, so we can look
3185 for REG_EQUIV notes between the start of the function and the
3186 NOTE_INSN_FUNCTION_BEG.
3187
3188 This is (slight) overkill. We could keep track of the highest
3189 argument we clobber and be more selective in removing notes, but it
3190 does not seem to be worth the effort. */
3191
3192 void
3193 fixup_tail_calls (void)
3194 {
3195 rtx insn;
3196
3197 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3198 {
3199 rtx note;
3200
3201 /* There are never REG_EQUIV notes for the incoming arguments
3202 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
3203 if (NOTE_P (insn)
3204 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3205 break;
3206
3207 note = find_reg_note (insn, REG_EQUIV, 0);
3208 if (note)
3209 remove_note (insn, note);
3210 note = find_reg_note (insn, REG_EQUIV, 0);
3211 gcc_assert (!note);
3212 }
3213 }
3214
3215 /* Traverse a list of TYPES and expand all complex types into their
3216 components. */
3217 static tree
3218 split_complex_types (tree types)
3219 {
3220 tree p;
3221
3222 /* Before allocating memory, check for the common case of no complex. */
3223 for (p = types; p; p = TREE_CHAIN (p))
3224 {
3225 tree type = TREE_VALUE (p);
3226 if (TREE_CODE (type) == COMPLEX_TYPE
3227 && targetm.calls.split_complex_arg (type))
3228 goto found;
3229 }
3230 return types;
3231
3232 found:
3233 types = copy_list (types);
3234
3235 for (p = types; p; p = TREE_CHAIN (p))
3236 {
3237 tree complex_type = TREE_VALUE (p);
3238
3239 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3240 && targetm.calls.split_complex_arg (complex_type))
3241 {
3242 tree next, imag;
3243
3244 /* Rewrite complex type with component type. */
3245 TREE_VALUE (p) = TREE_TYPE (complex_type);
3246 next = TREE_CHAIN (p);
3247
3248 /* Add another component type for the imaginary part. */
3249 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3250 TREE_CHAIN (p) = imag;
3251 TREE_CHAIN (imag) = next;
3252
3253 /* Skip the newly created node. */
3254 p = TREE_CHAIN (p);
3255 }
3256 }
3257
3258 return types;
3259 }
3260 \f
3261 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3262 The RETVAL parameter specifies whether return value needs to be saved, other
3263 parameters are documented in the emit_library_call function below. */
3264
3265 static rtx
3266 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3267 enum libcall_type fn_type,
3268 enum machine_mode outmode, int nargs, va_list p)
3269 {
3270 /* Total size in bytes of all the stack-parms scanned so far. */
3271 struct args_size args_size;
3272 /* Size of arguments before any adjustments (such as rounding). */
3273 struct args_size original_args_size;
3274 int argnum;
3275 rtx fun;
3276 /* Todo, choose the correct decl type of orgfun. Sadly this information
3277 isn't present here, so we default to native calling abi here. */
3278 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3279 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3280 int inc;
3281 int count;
3282 rtx argblock = 0;
3283 CUMULATIVE_ARGS args_so_far;
3284 struct arg
3285 {
3286 rtx value;
3287 enum machine_mode mode;
3288 rtx reg;
3289 int partial;
3290 struct locate_and_pad_arg_data locate;
3291 rtx save_area;
3292 };
3293 struct arg *argvec;
3294 int old_inhibit_defer_pop = inhibit_defer_pop;
3295 rtx call_fusage = 0;
3296 rtx mem_value = 0;
3297 rtx valreg;
3298 int pcc_struct_value = 0;
3299 int struct_value_size = 0;
3300 int flags;
3301 int reg_parm_stack_space = 0;
3302 int needed;
3303 rtx before_call;
3304 tree tfom; /* type_for_mode (outmode, 0) */
3305
3306 #ifdef REG_PARM_STACK_SPACE
3307 /* Define the boundary of the register parm stack space that needs to be
3308 save, if any. */
3309 int low_to_save = 0, high_to_save = 0;
3310 rtx save_area = 0; /* Place that it is saved. */
3311 #endif
3312
3313 /* Size of the stack reserved for parameter registers. */
3314 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3315 char *initial_stack_usage_map = stack_usage_map;
3316 char *stack_usage_map_buf = NULL;
3317
3318 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3319
3320 #ifdef REG_PARM_STACK_SPACE
3321 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3322 #endif
3323
3324 /* By default, library functions can not throw. */
3325 flags = ECF_NOTHROW;
3326
3327 switch (fn_type)
3328 {
3329 case LCT_NORMAL:
3330 break;
3331 case LCT_CONST:
3332 flags |= ECF_CONST;
3333 break;
3334 case LCT_PURE:
3335 flags |= ECF_PURE;
3336 break;
3337 case LCT_NORETURN:
3338 flags |= ECF_NORETURN;
3339 break;
3340 case LCT_THROW:
3341 flags = ECF_NORETURN;
3342 break;
3343 case LCT_RETURNS_TWICE:
3344 flags = ECF_RETURNS_TWICE;
3345 break;
3346 }
3347 fun = orgfun;
3348
3349 /* Ensure current function's preferred stack boundary is at least
3350 what we need. */
3351 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3352 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3353
3354 /* If this kind of value comes back in memory,
3355 decide where in memory it should come back. */
3356 if (outmode != VOIDmode)
3357 {
3358 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3359 if (aggregate_value_p (tfom, 0))
3360 {
3361 #ifdef PCC_STATIC_STRUCT_RETURN
3362 rtx pointer_reg
3363 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
3364 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3365 pcc_struct_value = 1;
3366 if (value == 0)
3367 value = gen_reg_rtx (outmode);
3368 #else /* not PCC_STATIC_STRUCT_RETURN */
3369 struct_value_size = GET_MODE_SIZE (outmode);
3370 if (value != 0 && MEM_P (value))
3371 mem_value = value;
3372 else
3373 mem_value = assign_temp (tfom, 0, 1, 1);
3374 #endif
3375 /* This call returns a big structure. */
3376 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3377 }
3378 }
3379 else
3380 tfom = void_type_node;
3381
3382 /* ??? Unfinished: must pass the memory address as an argument. */
3383
3384 /* Copy all the libcall-arguments out of the varargs data
3385 and into a vector ARGVEC.
3386
3387 Compute how to pass each argument. We only support a very small subset
3388 of the full argument passing conventions to limit complexity here since
3389 library functions shouldn't have many args. */
3390
3391 argvec = XALLOCAVEC (struct arg, nargs + 1);
3392 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3393
3394 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3395 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
3396 #else
3397 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
3398 #endif
3399
3400 args_size.constant = 0;
3401 args_size.var = 0;
3402
3403 count = 0;
3404
3405 push_temp_slots ();
3406
3407 /* If there's a structure value address to be passed,
3408 either pass it in the special place, or pass it as an extra argument. */
3409 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3410 {
3411 rtx addr = XEXP (mem_value, 0);
3412
3413 nargs++;
3414
3415 /* Make sure it is a reasonable operand for a move or push insn. */
3416 if (!REG_P (addr) && !MEM_P (addr)
3417 && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
3418 addr = force_operand (addr, NULL_RTX);
3419
3420 argvec[count].value = addr;
3421 argvec[count].mode = Pmode;
3422 argvec[count].partial = 0;
3423
3424 argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
3425 gcc_assert (targetm.calls.arg_partial_bytes (&args_so_far, Pmode,
3426 NULL_TREE, 1) == 0);
3427
3428 locate_and_pad_parm (Pmode, NULL_TREE,
3429 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3430 1,
3431 #else
3432 argvec[count].reg != 0,
3433 #endif
3434 0, NULL_TREE, &args_size, &argvec[count].locate);
3435
3436 if (argvec[count].reg == 0 || argvec[count].partial != 0
3437 || reg_parm_stack_space > 0)
3438 args_size.constant += argvec[count].locate.size.constant;
3439
3440 FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
3441
3442 count++;
3443 }
3444
3445 for (; count < nargs; count++)
3446 {
3447 rtx val = va_arg (p, rtx);
3448 enum machine_mode mode = (enum machine_mode) va_arg (p, int);
3449
3450 /* We cannot convert the arg value to the mode the library wants here;
3451 must do it earlier where we know the signedness of the arg. */
3452 gcc_assert (mode != BLKmode
3453 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3454
3455 /* Make sure it is a reasonable operand for a move or push insn. */
3456 if (!REG_P (val) && !MEM_P (val)
3457 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
3458 val = force_operand (val, NULL_RTX);
3459
3460 if (pass_by_reference (&args_so_far, mode, NULL_TREE, 1))
3461 {
3462 rtx slot;
3463 int must_copy
3464 = !reference_callee_copied (&args_so_far, mode, NULL_TREE, 1);
3465
3466 /* If this was a CONST function, it is now PURE since it now
3467 reads memory. */
3468 if (flags & ECF_CONST)
3469 {
3470 flags &= ~ECF_CONST;
3471 flags |= ECF_PURE;
3472 }
3473
3474 if (MEM_P (val) && !must_copy)
3475 slot = val;
3476 else
3477 {
3478 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3479 0, 1, 1);
3480 emit_move_insn (slot, val);
3481 }
3482
3483 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3484 gen_rtx_USE (VOIDmode, slot),
3485 call_fusage);
3486 if (must_copy)
3487 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3488 gen_rtx_CLOBBER (VOIDmode,
3489 slot),
3490 call_fusage);
3491
3492 mode = Pmode;
3493 val = force_operand (XEXP (slot, 0), NULL_RTX);
3494 }
3495
3496 argvec[count].value = val;
3497 argvec[count].mode = mode;
3498
3499 argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
3500
3501 argvec[count].partial
3502 = targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL_TREE, 1);
3503
3504 locate_and_pad_parm (mode, NULL_TREE,
3505 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3506 1,
3507 #else
3508 argvec[count].reg != 0,
3509 #endif
3510 argvec[count].partial,
3511 NULL_TREE, &args_size, &argvec[count].locate);
3512
3513 gcc_assert (!argvec[count].locate.size.var);
3514
3515 if (argvec[count].reg == 0 || argvec[count].partial != 0
3516 || reg_parm_stack_space > 0)
3517 args_size.constant += argvec[count].locate.size.constant;
3518
3519 FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
3520 }
3521
3522 /* If this machine requires an external definition for library
3523 functions, write one out. */
3524 assemble_external_libcall (fun);
3525
3526 original_args_size = args_size;
3527 args_size.constant = (((args_size.constant
3528 + stack_pointer_delta
3529 + STACK_BYTES - 1)
3530 / STACK_BYTES
3531 * STACK_BYTES)
3532 - stack_pointer_delta);
3533
3534 args_size.constant = MAX (args_size.constant,
3535 reg_parm_stack_space);
3536
3537 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3538 args_size.constant -= reg_parm_stack_space;
3539
3540 if (args_size.constant > crtl->outgoing_args_size)
3541 crtl->outgoing_args_size = args_size.constant;
3542
3543 if (ACCUMULATE_OUTGOING_ARGS)
3544 {
3545 /* Since the stack pointer will never be pushed, it is possible for
3546 the evaluation of a parm to clobber something we have already
3547 written to the stack. Since most function calls on RISC machines
3548 do not use the stack, this is uncommon, but must work correctly.
3549
3550 Therefore, we save any area of the stack that was already written
3551 and that we are using. Here we set up to do this by making a new
3552 stack usage map from the old one.
3553
3554 Another approach might be to try to reorder the argument
3555 evaluations to avoid this conflicting stack usage. */
3556
3557 needed = args_size.constant;
3558
3559 /* Since we will be writing into the entire argument area, the
3560 map must be allocated for its entire size, not just the part that
3561 is the responsibility of the caller. */
3562 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3563 needed += reg_parm_stack_space;
3564
3565 #ifdef ARGS_GROW_DOWNWARD
3566 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3567 needed + 1);
3568 #else
3569 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3570 needed);
3571 #endif
3572 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3573 stack_usage_map = stack_usage_map_buf;
3574
3575 if (initial_highest_arg_in_use)
3576 memcpy (stack_usage_map, initial_stack_usage_map,
3577 initial_highest_arg_in_use);
3578
3579 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3580 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3581 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3582 needed = 0;
3583
3584 /* We must be careful to use virtual regs before they're instantiated,
3585 and real regs afterwards. Loop optimization, for example, can create
3586 new libcalls after we've instantiated the virtual regs, and if we
3587 use virtuals anyway, they won't match the rtl patterns. */
3588
3589 if (virtuals_instantiated)
3590 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3591 else
3592 argblock = virtual_outgoing_args_rtx;
3593 }
3594 else
3595 {
3596 if (!PUSH_ARGS)
3597 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3598 }
3599
3600 /* If we push args individually in reverse order, perform stack alignment
3601 before the first push (the last arg). */
3602 if (argblock == 0 && PUSH_ARGS_REVERSED)
3603 anti_adjust_stack (GEN_INT (args_size.constant
3604 - original_args_size.constant));
3605
3606 if (PUSH_ARGS_REVERSED)
3607 {
3608 inc = -1;
3609 argnum = nargs - 1;
3610 }
3611 else
3612 {
3613 inc = 1;
3614 argnum = 0;
3615 }
3616
3617 #ifdef REG_PARM_STACK_SPACE
3618 if (ACCUMULATE_OUTGOING_ARGS)
3619 {
3620 /* The argument list is the property of the called routine and it
3621 may clobber it. If the fixed area has been used for previous
3622 parameters, we must save and restore it. */
3623 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3624 &low_to_save, &high_to_save);
3625 }
3626 #endif
3627
3628 /* Push the args that need to be pushed. */
3629
3630 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3631 are to be pushed. */
3632 for (count = 0; count < nargs; count++, argnum += inc)
3633 {
3634 enum machine_mode mode = argvec[argnum].mode;
3635 rtx val = argvec[argnum].value;
3636 rtx reg = argvec[argnum].reg;
3637 int partial = argvec[argnum].partial;
3638 unsigned int parm_align = argvec[argnum].locate.boundary;
3639 int lower_bound = 0, upper_bound = 0, i;
3640
3641 if (! (reg != 0 && partial == 0))
3642 {
3643 if (ACCUMULATE_OUTGOING_ARGS)
3644 {
3645 /* If this is being stored into a pre-allocated, fixed-size,
3646 stack area, save any previous data at that location. */
3647
3648 #ifdef ARGS_GROW_DOWNWARD
3649 /* stack_slot is negative, but we want to index stack_usage_map
3650 with positive values. */
3651 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
3652 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3653 #else
3654 lower_bound = argvec[argnum].locate.slot_offset.constant;
3655 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3656 #endif
3657
3658 i = lower_bound;
3659 /* Don't worry about things in the fixed argument area;
3660 it has already been saved. */
3661 if (i < reg_parm_stack_space)
3662 i = reg_parm_stack_space;
3663 while (i < upper_bound && stack_usage_map[i] == 0)
3664 i++;
3665
3666 if (i < upper_bound)
3667 {
3668 /* We need to make a save area. */
3669 unsigned int size
3670 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3671 enum machine_mode save_mode
3672 = mode_for_size (size, MODE_INT, 1);
3673 rtx adr
3674 = plus_constant (argblock,
3675 argvec[argnum].locate.offset.constant);
3676 rtx stack_area
3677 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3678
3679 if (save_mode == BLKmode)
3680 {
3681 argvec[argnum].save_area
3682 = assign_stack_temp (BLKmode,
3683 argvec[argnum].locate.size.constant,
3684 0);
3685
3686 emit_block_move (validize_mem (argvec[argnum].save_area),
3687 stack_area,
3688 GEN_INT (argvec[argnum].locate.size.constant),
3689 BLOCK_OP_CALL_PARM);
3690 }
3691 else
3692 {
3693 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3694
3695 emit_move_insn (argvec[argnum].save_area, stack_area);
3696 }
3697 }
3698 }
3699
3700 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
3701 partial, reg, 0, argblock,
3702 GEN_INT (argvec[argnum].locate.offset.constant),
3703 reg_parm_stack_space,
3704 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3705
3706 /* Now mark the segment we just used. */
3707 if (ACCUMULATE_OUTGOING_ARGS)
3708 for (i = lower_bound; i < upper_bound; i++)
3709 stack_usage_map[i] = 1;
3710
3711 NO_DEFER_POP;
3712
3713 if ((flags & ECF_CONST)
3714 || ((flags & ECF_PURE) && ACCUMULATE_OUTGOING_ARGS))
3715 {
3716 rtx use;
3717
3718 /* Indicate argument access so that alias.c knows that these
3719 values are live. */
3720 if (argblock)
3721 use = plus_constant (argblock,
3722 argvec[argnum].locate.offset.constant);
3723 else
3724 /* When arguments are pushed, trying to tell alias.c where
3725 exactly this argument is won't work, because the
3726 auto-increment causes confusion. So we merely indicate
3727 that we access something with a known mode somewhere on
3728 the stack. */
3729 use = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3730 gen_rtx_SCRATCH (Pmode));
3731 use = gen_rtx_MEM (argvec[argnum].mode, use);
3732 use = gen_rtx_USE (VOIDmode, use);
3733 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
3734 }
3735 }
3736 }
3737
3738 /* If we pushed args in forward order, perform stack alignment
3739 after pushing the last arg. */
3740 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3741 anti_adjust_stack (GEN_INT (args_size.constant
3742 - original_args_size.constant));
3743
3744 if (PUSH_ARGS_REVERSED)
3745 argnum = nargs - 1;
3746 else
3747 argnum = 0;
3748
3749 fun = prepare_call_address (fun, NULL, &call_fusage, 0, 0);
3750
3751 /* Now load any reg parms into their regs. */
3752
3753 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3754 are to be pushed. */
3755 for (count = 0; count < nargs; count++, argnum += inc)
3756 {
3757 enum machine_mode mode = argvec[argnum].mode;
3758 rtx val = argvec[argnum].value;
3759 rtx reg = argvec[argnum].reg;
3760 int partial = argvec[argnum].partial;
3761
3762 /* Handle calls that pass values in multiple non-contiguous
3763 locations. The PA64 has examples of this for library calls. */
3764 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3765 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3766 else if (reg != 0 && partial == 0)
3767 emit_move_insn (reg, val);
3768
3769 NO_DEFER_POP;
3770 }
3771
3772 /* Any regs containing parms remain in use through the call. */
3773 for (count = 0; count < nargs; count++)
3774 {
3775 rtx reg = argvec[count].reg;
3776 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3777 use_group_regs (&call_fusage, reg);
3778 else if (reg != 0)
3779 {
3780 int partial = argvec[count].partial;
3781 if (partial)
3782 {
3783 int nregs;
3784 gcc_assert (partial % UNITS_PER_WORD == 0);
3785 nregs = partial / UNITS_PER_WORD;
3786 use_regs (&call_fusage, REGNO (reg), nregs);
3787 }
3788 else
3789 use_reg (&call_fusage, reg);
3790 }
3791 }
3792
3793 /* Pass the function the address in which to return a structure value. */
3794 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3795 {
3796 emit_move_insn (struct_value,
3797 force_reg (Pmode,
3798 force_operand (XEXP (mem_value, 0),
3799 NULL_RTX)));
3800 if (REG_P (struct_value))
3801 use_reg (&call_fusage, struct_value);
3802 }
3803
3804 /* Don't allow popping to be deferred, since then
3805 cse'ing of library calls could delete a call and leave the pop. */
3806 NO_DEFER_POP;
3807 valreg = (mem_value == 0 && outmode != VOIDmode
3808 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
3809
3810 /* Stack must be properly aligned now. */
3811 gcc_assert (!(stack_pointer_delta
3812 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
3813
3814 before_call = get_last_insn ();
3815
3816 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3817 will set inhibit_defer_pop to that value. */
3818 /* The return type is needed to decide how many bytes the function pops.
3819 Signedness plays no role in that, so for simplicity, we pretend it's
3820 always signed. We also assume that the list of arguments passed has
3821 no impact, so we pretend it is unknown. */
3822
3823 emit_call_1 (fun, NULL,
3824 get_identifier (XSTR (orgfun, 0)),
3825 build_function_type (tfom, NULL_TREE),
3826 original_args_size.constant, args_size.constant,
3827 struct_value_size,
3828 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
3829 valreg,
3830 old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
3831
3832 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
3833 that it should complain if nonvolatile values are live. For
3834 functions that cannot return, inform flow that control does not
3835 fall through. */
3836
3837 if (flags & ECF_NORETURN)
3838 {
3839 /* The barrier note must be emitted
3840 immediately after the CALL_INSN. Some ports emit more than
3841 just a CALL_INSN above, so we must search for it here. */
3842
3843 rtx last = get_last_insn ();
3844 while (!CALL_P (last))
3845 {
3846 last = PREV_INSN (last);
3847 /* There was no CALL_INSN? */
3848 gcc_assert (last != before_call);
3849 }
3850
3851 emit_barrier_after (last);
3852 }
3853
3854 /* Now restore inhibit_defer_pop to its actual original value. */
3855 OK_DEFER_POP;
3856
3857 pop_temp_slots ();
3858
3859 /* Copy the value to the right place. */
3860 if (outmode != VOIDmode && retval)
3861 {
3862 if (mem_value)
3863 {
3864 if (value == 0)
3865 value = mem_value;
3866 if (value != mem_value)
3867 emit_move_insn (value, mem_value);
3868 }
3869 else if (GET_CODE (valreg) == PARALLEL)
3870 {
3871 if (value == 0)
3872 value = gen_reg_rtx (outmode);
3873 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
3874 }
3875 else
3876 {
3877 /* Convert to the proper mode if a promotion has been active. */
3878 if (GET_MODE (valreg) != outmode)
3879 {
3880 int unsignedp = TYPE_UNSIGNED (tfom);
3881
3882 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
3883 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
3884 == GET_MODE (valreg));
3885 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
3886 }
3887
3888 if (value != 0)
3889 emit_move_insn (value, valreg);
3890 else
3891 value = valreg;
3892 }
3893 }
3894
3895 if (ACCUMULATE_OUTGOING_ARGS)
3896 {
3897 #ifdef REG_PARM_STACK_SPACE
3898 if (save_area)
3899 restore_fixed_argument_area (save_area, argblock,
3900 high_to_save, low_to_save);
3901 #endif
3902
3903 /* If we saved any argument areas, restore them. */
3904 for (count = 0; count < nargs; count++)
3905 if (argvec[count].save_area)
3906 {
3907 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
3908 rtx adr = plus_constant (argblock,
3909 argvec[count].locate.offset.constant);
3910 rtx stack_area = gen_rtx_MEM (save_mode,
3911 memory_address (save_mode, adr));
3912
3913 if (save_mode == BLKmode)
3914 emit_block_move (stack_area,
3915 validize_mem (argvec[count].save_area),
3916 GEN_INT (argvec[count].locate.size.constant),
3917 BLOCK_OP_CALL_PARM);
3918 else
3919 emit_move_insn (stack_area, argvec[count].save_area);
3920 }
3921
3922 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3923 stack_usage_map = initial_stack_usage_map;
3924 }
3925
3926 if (stack_usage_map_buf)
3927 free (stack_usage_map_buf);
3928
3929 return value;
3930
3931 }
3932 \f
3933 /* Output a library call to function FUN (a SYMBOL_REF rtx)
3934 (emitting the queue unless NO_QUEUE is nonzero),
3935 for a value of mode OUTMODE,
3936 with NARGS different arguments, passed as alternating rtx values
3937 and machine_modes to convert them to.
3938
3939 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
3940 `const' calls, LCT_PURE for `pure' calls, or other LCT_ value for
3941 other types of library calls. */
3942
3943 void
3944 emit_library_call (rtx orgfun, enum libcall_type fn_type,
3945 enum machine_mode outmode, int nargs, ...)
3946 {
3947 va_list p;
3948
3949 va_start (p, nargs);
3950 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
3951 va_end (p);
3952 }
3953 \f
3954 /* Like emit_library_call except that an extra argument, VALUE,
3955 comes second and says where to store the result.
3956 (If VALUE is zero, this function chooses a convenient way
3957 to return the value.
3958
3959 This function returns an rtx for where the value is to be found.
3960 If VALUE is nonzero, VALUE is returned. */
3961
3962 rtx
3963 emit_library_call_value (rtx orgfun, rtx value,
3964 enum libcall_type fn_type,
3965 enum machine_mode outmode, int nargs, ...)
3966 {
3967 rtx result;
3968 va_list p;
3969
3970 va_start (p, nargs);
3971 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
3972 nargs, p);
3973 va_end (p);
3974
3975 return result;
3976 }
3977 \f
3978 /* Store a single argument for a function call
3979 into the register or memory area where it must be passed.
3980 *ARG describes the argument value and where to pass it.
3981
3982 ARGBLOCK is the address of the stack-block for all the arguments,
3983 or 0 on a machine where arguments are pushed individually.
3984
3985 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
3986 so must be careful about how the stack is used.
3987
3988 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
3989 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
3990 that we need not worry about saving and restoring the stack.
3991
3992 FNDECL is the declaration of the function we are calling.
3993
3994 Return nonzero if this arg should cause sibcall failure,
3995 zero otherwise. */
3996
3997 static int
3998 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
3999 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
4000 {
4001 tree pval = arg->tree_value;
4002 rtx reg = 0;
4003 int partial = 0;
4004 int used = 0;
4005 int i, lower_bound = 0, upper_bound = 0;
4006 int sibcall_failure = 0;
4007
4008 if (TREE_CODE (pval) == ERROR_MARK)
4009 return 1;
4010
4011 /* Push a new temporary level for any temporaries we make for
4012 this argument. */
4013 push_temp_slots ();
4014
4015 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
4016 {
4017 /* If this is being stored into a pre-allocated, fixed-size, stack area,
4018 save any previous data at that location. */
4019 if (argblock && ! variable_size && arg->stack)
4020 {
4021 #ifdef ARGS_GROW_DOWNWARD
4022 /* stack_slot is negative, but we want to index stack_usage_map
4023 with positive values. */
4024 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4025 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
4026 else
4027 upper_bound = 0;
4028
4029 lower_bound = upper_bound - arg->locate.size.constant;
4030 #else
4031 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4032 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
4033 else
4034 lower_bound = 0;
4035
4036 upper_bound = lower_bound + arg->locate.size.constant;
4037 #endif
4038
4039 i = lower_bound;
4040 /* Don't worry about things in the fixed argument area;
4041 it has already been saved. */
4042 if (i < reg_parm_stack_space)
4043 i = reg_parm_stack_space;
4044 while (i < upper_bound && stack_usage_map[i] == 0)
4045 i++;
4046
4047 if (i < upper_bound)
4048 {
4049 /* We need to make a save area. */
4050 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
4051 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
4052 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
4053 rtx stack_area = gen_rtx_MEM (save_mode, adr);
4054
4055 if (save_mode == BLKmode)
4056 {
4057 tree ot = TREE_TYPE (arg->tree_value);
4058 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
4059 | TYPE_QUAL_CONST));
4060
4061 arg->save_area = assign_temp (nt, 0, 1, 1);
4062 preserve_temp_slots (arg->save_area);
4063 emit_block_move (validize_mem (arg->save_area), stack_area,
4064 GEN_INT (arg->locate.size.constant),
4065 BLOCK_OP_CALL_PARM);
4066 }
4067 else
4068 {
4069 arg->save_area = gen_reg_rtx (save_mode);
4070 emit_move_insn (arg->save_area, stack_area);
4071 }
4072 }
4073 }
4074 }
4075
4076 /* If this isn't going to be placed on both the stack and in registers,
4077 set up the register and number of words. */
4078 if (! arg->pass_on_stack)
4079 {
4080 if (flags & ECF_SIBCALL)
4081 reg = arg->tail_call_reg;
4082 else
4083 reg = arg->reg;
4084 partial = arg->partial;
4085 }
4086
4087 /* Being passed entirely in a register. We shouldn't be called in
4088 this case. */
4089 gcc_assert (reg == 0 || partial != 0);
4090
4091 /* If this arg needs special alignment, don't load the registers
4092 here. */
4093 if (arg->n_aligned_regs != 0)
4094 reg = 0;
4095
4096 /* If this is being passed partially in a register, we can't evaluate
4097 it directly into its stack slot. Otherwise, we can. */
4098 if (arg->value == 0)
4099 {
4100 /* stack_arg_under_construction is nonzero if a function argument is
4101 being evaluated directly into the outgoing argument list and
4102 expand_call must take special action to preserve the argument list
4103 if it is called recursively.
4104
4105 For scalar function arguments stack_usage_map is sufficient to
4106 determine which stack slots must be saved and restored. Scalar
4107 arguments in general have pass_on_stack == 0.
4108
4109 If this argument is initialized by a function which takes the
4110 address of the argument (a C++ constructor or a C function
4111 returning a BLKmode structure), then stack_usage_map is
4112 insufficient and expand_call must push the stack around the
4113 function call. Such arguments have pass_on_stack == 1.
4114
4115 Note that it is always safe to set stack_arg_under_construction,
4116 but this generates suboptimal code if set when not needed. */
4117
4118 if (arg->pass_on_stack)
4119 stack_arg_under_construction++;
4120
4121 arg->value = expand_expr (pval,
4122 (partial
4123 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4124 ? NULL_RTX : arg->stack,
4125 VOIDmode, EXPAND_STACK_PARM);
4126
4127 /* If we are promoting object (or for any other reason) the mode
4128 doesn't agree, convert the mode. */
4129
4130 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4131 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4132 arg->value, arg->unsignedp);
4133
4134 if (arg->pass_on_stack)
4135 stack_arg_under_construction--;
4136 }
4137
4138 /* Check for overlap with already clobbered argument area. */
4139 if ((flags & ECF_SIBCALL)
4140 && MEM_P (arg->value)
4141 && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
4142 arg->locate.size.constant))
4143 sibcall_failure = 1;
4144
4145 /* Don't allow anything left on stack from computation
4146 of argument to alloca. */
4147 if (flags & ECF_MAY_BE_ALLOCA)
4148 do_pending_stack_adjust ();
4149
4150 if (arg->value == arg->stack)
4151 /* If the value is already in the stack slot, we are done. */
4152 ;
4153 else if (arg->mode != BLKmode)
4154 {
4155 int size;
4156 unsigned int parm_align;
4157
4158 /* Argument is a scalar, not entirely passed in registers.
4159 (If part is passed in registers, arg->partial says how much
4160 and emit_push_insn will take care of putting it there.)
4161
4162 Push it, and if its size is less than the
4163 amount of space allocated to it,
4164 also bump stack pointer by the additional space.
4165 Note that in C the default argument promotions
4166 will prevent such mismatches. */
4167
4168 size = GET_MODE_SIZE (arg->mode);
4169 /* Compute how much space the push instruction will push.
4170 On many machines, pushing a byte will advance the stack
4171 pointer by a halfword. */
4172 #ifdef PUSH_ROUNDING
4173 size = PUSH_ROUNDING (size);
4174 #endif
4175 used = size;
4176
4177 /* Compute how much space the argument should get:
4178 round up to a multiple of the alignment for arguments. */
4179 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4180 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4181 / (PARM_BOUNDARY / BITS_PER_UNIT))
4182 * (PARM_BOUNDARY / BITS_PER_UNIT));
4183
4184 /* Compute the alignment of the pushed argument. */
4185 parm_align = arg->locate.boundary;
4186 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4187 {
4188 int pad = used - size;
4189 if (pad)
4190 {
4191 unsigned int pad_align = (pad & -pad) * BITS_PER_UNIT;
4192 parm_align = MIN (parm_align, pad_align);
4193 }
4194 }
4195
4196 /* This isn't already where we want it on the stack, so put it there.
4197 This can either be done with push or copy insns. */
4198 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4199 parm_align, partial, reg, used - size, argblock,
4200 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4201 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4202
4203 /* Unless this is a partially-in-register argument, the argument is now
4204 in the stack. */
4205 if (partial == 0)
4206 arg->value = arg->stack;
4207 }
4208 else
4209 {
4210 /* BLKmode, at least partly to be pushed. */
4211
4212 unsigned int parm_align;
4213 int excess;
4214 rtx size_rtx;
4215
4216 /* Pushing a nonscalar.
4217 If part is passed in registers, PARTIAL says how much
4218 and emit_push_insn will take care of putting it there. */
4219
4220 /* Round its size up to a multiple
4221 of the allocation unit for arguments. */
4222
4223 if (arg->locate.size.var != 0)
4224 {
4225 excess = 0;
4226 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4227 }
4228 else
4229 {
4230 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4231 for BLKmode is careful to avoid it. */
4232 excess = (arg->locate.size.constant
4233 - int_size_in_bytes (TREE_TYPE (pval))
4234 + partial);
4235 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4236 NULL_RTX, TYPE_MODE (sizetype),
4237 EXPAND_NORMAL);
4238 }
4239
4240 parm_align = arg->locate.boundary;
4241
4242 /* When an argument is padded down, the block is aligned to
4243 PARM_BOUNDARY, but the actual argument isn't. */
4244 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4245 {
4246 if (arg->locate.size.var)
4247 parm_align = BITS_PER_UNIT;
4248 else if (excess)
4249 {
4250 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4251 parm_align = MIN (parm_align, excess_align);
4252 }
4253 }
4254
4255 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4256 {
4257 /* emit_push_insn might not work properly if arg->value and
4258 argblock + arg->locate.offset areas overlap. */
4259 rtx x = arg->value;
4260 int i = 0;
4261
4262 if (XEXP (x, 0) == crtl->args.internal_arg_pointer
4263 || (GET_CODE (XEXP (x, 0)) == PLUS
4264 && XEXP (XEXP (x, 0), 0) ==
4265 crtl->args.internal_arg_pointer
4266 && CONST_INT_P (XEXP (XEXP (x, 0), 1))))
4267 {
4268 if (XEXP (x, 0) != crtl->args.internal_arg_pointer)
4269 i = INTVAL (XEXP (XEXP (x, 0), 1));
4270
4271 /* expand_call should ensure this. */
4272 gcc_assert (!arg->locate.offset.var
4273 && arg->locate.size.var == 0
4274 && CONST_INT_P (size_rtx));
4275
4276 if (arg->locate.offset.constant > i)
4277 {
4278 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4279 sibcall_failure = 1;
4280 }
4281 else if (arg->locate.offset.constant < i)
4282 {
4283 /* Use arg->locate.size.constant instead of size_rtx
4284 because we only care about the part of the argument
4285 on the stack. */
4286 if (i < (arg->locate.offset.constant
4287 + arg->locate.size.constant))
4288 sibcall_failure = 1;
4289 }
4290 else
4291 {
4292 /* Even though they appear to be at the same location,
4293 if part of the outgoing argument is in registers,
4294 they aren't really at the same location. Check for
4295 this by making sure that the incoming size is the
4296 same as the outgoing size. */
4297 if (arg->locate.size.constant != INTVAL (size_rtx))
4298 sibcall_failure = 1;
4299 }
4300 }
4301 }
4302
4303 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4304 parm_align, partial, reg, excess, argblock,
4305 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4306 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4307
4308 /* Unless this is a partially-in-register argument, the argument is now
4309 in the stack.
4310
4311 ??? Unlike the case above, in which we want the actual
4312 address of the data, so that we can load it directly into a
4313 register, here we want the address of the stack slot, so that
4314 it's properly aligned for word-by-word copying or something
4315 like that. It's not clear that this is always correct. */
4316 if (partial == 0)
4317 arg->value = arg->stack_slot;
4318 }
4319
4320 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
4321 {
4322 tree type = TREE_TYPE (arg->tree_value);
4323 arg->parallel_value
4324 = emit_group_load_into_temps (arg->reg, arg->value, type,
4325 int_size_in_bytes (type));
4326 }
4327
4328 /* Mark all slots this store used. */
4329 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4330 && argblock && ! variable_size && arg->stack)
4331 for (i = lower_bound; i < upper_bound; i++)
4332 stack_usage_map[i] = 1;
4333
4334 /* Once we have pushed something, pops can't safely
4335 be deferred during the rest of the arguments. */
4336 NO_DEFER_POP;
4337
4338 /* Free any temporary slots made in processing this argument. Show
4339 that we might have taken the address of something and pushed that
4340 as an operand. */
4341 preserve_temp_slots (NULL_RTX);
4342 free_temp_slots ();
4343 pop_temp_slots ();
4344
4345 return sibcall_failure;
4346 }
4347
4348 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4349
4350 bool
4351 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4352 const_tree type)
4353 {
4354 if (!type)
4355 return false;
4356
4357 /* If the type has variable size... */
4358 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4359 return true;
4360
4361 /* If the type is marked as addressable (it is required
4362 to be constructed into the stack)... */
4363 if (TREE_ADDRESSABLE (type))
4364 return true;
4365
4366 return false;
4367 }
4368
4369 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4370 takes trailing padding of a structure into account. */
4371 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4372
4373 bool
4374 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, const_tree type)
4375 {
4376 if (!type)
4377 return false;
4378
4379 /* If the type has variable size... */
4380 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4381 return true;
4382
4383 /* If the type is marked as addressable (it is required
4384 to be constructed into the stack)... */
4385 if (TREE_ADDRESSABLE (type))
4386 return true;
4387
4388 /* If the padding and mode of the type is such that a copy into
4389 a register would put it into the wrong part of the register. */
4390 if (mode == BLKmode
4391 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4392 && (FUNCTION_ARG_PADDING (mode, type)
4393 == (BYTES_BIG_ENDIAN ? upward : downward)))
4394 return true;
4395
4396 return false;
4397 }