Use function_arg_info for TARGET_FUNCTION_(INCOMING_)ARG
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "stringpool.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "emit-rtl.h"
35 #include "cgraph.h"
36 #include "diagnostic-core.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "varasm.h"
40 #include "internal-fn.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "calls.h"
44 #include "expr.h"
45 #include "output.h"
46 #include "langhooks.h"
47 #include "except.h"
48 #include "dbgcnt.h"
49 #include "rtl-iter.h"
50 #include "tree-vrp.h"
51 #include "tree-ssanames.h"
52 #include "tree-ssa-strlen.h"
53 #include "intl.h"
54 #include "stringpool.h"
55 #include "attribs.h"
56 #include "builtins.h"
57 #include "gimple-fold.h"
58
59 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
60 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
61
62 /* Data structure and subroutines used within expand_call. */
63
64 struct arg_data
65 {
66 /* Tree node for this argument. */
67 tree tree_value;
68 /* Mode for value; TYPE_MODE unless promoted. */
69 machine_mode mode;
70 /* Current RTL value for argument, or 0 if it isn't precomputed. */
71 rtx value;
72 /* Initially-compute RTL value for argument; only for const functions. */
73 rtx initial_value;
74 /* Register to pass this argument in, 0 if passed on stack, or an
75 PARALLEL if the arg is to be copied into multiple non-contiguous
76 registers. */
77 rtx reg;
78 /* Register to pass this argument in when generating tail call sequence.
79 This is not the same register as for normal calls on machines with
80 register windows. */
81 rtx tail_call_reg;
82 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
83 form for emit_group_move. */
84 rtx parallel_value;
85 /* If REG was promoted from the actual mode of the argument expression,
86 indicates whether the promotion is sign- or zero-extended. */
87 int unsignedp;
88 /* Number of bytes to put in registers. 0 means put the whole arg
89 in registers. Also 0 if not passed in registers. */
90 int partial;
91 /* Nonzero if argument must be passed on stack.
92 Note that some arguments may be passed on the stack
93 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
94 pass_on_stack identifies arguments that *cannot* go in registers. */
95 int pass_on_stack;
96 /* Some fields packaged up for locate_and_pad_parm. */
97 struct locate_and_pad_arg_data locate;
98 /* Location on the stack at which parameter should be stored. The store
99 has already been done if STACK == VALUE. */
100 rtx stack;
101 /* Location on the stack of the start of this argument slot. This can
102 differ from STACK if this arg pads downward. This location is known
103 to be aligned to TARGET_FUNCTION_ARG_BOUNDARY. */
104 rtx stack_slot;
105 /* Place that this stack area has been saved, if needed. */
106 rtx save_area;
107 /* If an argument's alignment does not permit direct copying into registers,
108 copy in smaller-sized pieces into pseudos. These are stored in a
109 block pointed to by this field. The next field says how many
110 word-sized pseudos we made. */
111 rtx *aligned_regs;
112 int n_aligned_regs;
113 };
114
115 /* A vector of one char per byte of stack space. A byte if nonzero if
116 the corresponding stack location has been used.
117 This vector is used to prevent a function call within an argument from
118 clobbering any stack already set up. */
119 static char *stack_usage_map;
120
121 /* Size of STACK_USAGE_MAP. */
122 static unsigned int highest_outgoing_arg_in_use;
123
124 /* Assume that any stack location at this byte index is used,
125 without checking the contents of stack_usage_map. */
126 static unsigned HOST_WIDE_INT stack_usage_watermark = HOST_WIDE_INT_M1U;
127
128 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
129 stack location's tail call argument has been already stored into the stack.
130 This bitmap is used to prevent sibling call optimization if function tries
131 to use parent's incoming argument slots when they have been already
132 overwritten with tail call arguments. */
133 static sbitmap stored_args_map;
134
135 /* Assume that any virtual-incoming location at this byte index has been
136 stored, without checking the contents of stored_args_map. */
137 static unsigned HOST_WIDE_INT stored_args_watermark;
138
139 /* stack_arg_under_construction is nonzero when an argument may be
140 initialized with a constructor call (including a C function that
141 returns a BLKmode struct) and expand_call must take special action
142 to make sure the object being constructed does not overlap the
143 argument list for the constructor call. */
144 static int stack_arg_under_construction;
145
146 static void precompute_register_parameters (int, struct arg_data *, int *);
147 static int store_one_arg (struct arg_data *, rtx, int, int, int);
148 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
149 static int finalize_must_preallocate (int, int, struct arg_data *,
150 struct args_size *);
151 static void precompute_arguments (int, struct arg_data *);
152 static void compute_argument_addresses (struct arg_data *, rtx, int);
153 static rtx rtx_for_function_call (tree, tree);
154 static void load_register_parameters (struct arg_data *, int, rtx *, int,
155 int, int *);
156 static int special_function_p (const_tree, int);
157 static int check_sibcall_argument_overlap_1 (rtx);
158 static int check_sibcall_argument_overlap (rtx_insn *, struct arg_data *, int);
159
160 static tree split_complex_types (tree);
161
162 #ifdef REG_PARM_STACK_SPACE
163 static rtx save_fixed_argument_area (int, rtx, int *, int *);
164 static void restore_fixed_argument_area (rtx, rtx, int, int);
165 #endif
166 \f
167 /* Return true if bytes [LOWER_BOUND, UPPER_BOUND) of the outgoing
168 stack region might already be in use. */
169
170 static bool
171 stack_region_maybe_used_p (poly_uint64 lower_bound, poly_uint64 upper_bound,
172 unsigned int reg_parm_stack_space)
173 {
174 unsigned HOST_WIDE_INT const_lower, const_upper;
175 const_lower = constant_lower_bound (lower_bound);
176 if (!upper_bound.is_constant (&const_upper))
177 const_upper = HOST_WIDE_INT_M1U;
178
179 if (const_upper > stack_usage_watermark)
180 return true;
181
182 /* Don't worry about things in the fixed argument area;
183 it has already been saved. */
184 const_lower = MAX (const_lower, reg_parm_stack_space);
185 const_upper = MIN (const_upper, highest_outgoing_arg_in_use);
186 for (unsigned HOST_WIDE_INT i = const_lower; i < const_upper; ++i)
187 if (stack_usage_map[i])
188 return true;
189 return false;
190 }
191
192 /* Record that bytes [LOWER_BOUND, UPPER_BOUND) of the outgoing
193 stack region are now in use. */
194
195 static void
196 mark_stack_region_used (poly_uint64 lower_bound, poly_uint64 upper_bound)
197 {
198 unsigned HOST_WIDE_INT const_lower, const_upper;
199 const_lower = constant_lower_bound (lower_bound);
200 if (upper_bound.is_constant (&const_upper))
201 for (unsigned HOST_WIDE_INT i = const_lower; i < const_upper; ++i)
202 stack_usage_map[i] = 1;
203 else
204 stack_usage_watermark = MIN (stack_usage_watermark, const_lower);
205 }
206
207 /* Force FUNEXP into a form suitable for the address of a CALL,
208 and return that as an rtx. Also load the static chain register
209 if FNDECL is a nested function.
210
211 CALL_FUSAGE points to a variable holding the prospective
212 CALL_INSN_FUNCTION_USAGE information. */
213
214 rtx
215 prepare_call_address (tree fndecl_or_type, rtx funexp, rtx static_chain_value,
216 rtx *call_fusage, int reg_parm_seen, int flags)
217 {
218 /* Make a valid memory address and copy constants through pseudo-regs,
219 but not for a constant address if -fno-function-cse. */
220 if (GET_CODE (funexp) != SYMBOL_REF)
221 {
222 /* If it's an indirect call by descriptor, generate code to perform
223 runtime identification of the pointer and load the descriptor. */
224 if ((flags & ECF_BY_DESCRIPTOR) && !flag_trampolines)
225 {
226 const int bit_val = targetm.calls.custom_function_descriptors;
227 rtx call_lab = gen_label_rtx ();
228
229 gcc_assert (fndecl_or_type && TYPE_P (fndecl_or_type));
230 fndecl_or_type
231 = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
232 fndecl_or_type);
233 DECL_STATIC_CHAIN (fndecl_or_type) = 1;
234 rtx chain = targetm.calls.static_chain (fndecl_or_type, false);
235
236 if (GET_MODE (funexp) != Pmode)
237 funexp = convert_memory_address (Pmode, funexp);
238
239 /* Avoid long live ranges around function calls. */
240 funexp = copy_to_mode_reg (Pmode, funexp);
241
242 if (REG_P (chain))
243 emit_insn (gen_rtx_CLOBBER (VOIDmode, chain));
244
245 /* Emit the runtime identification pattern. */
246 rtx mask = gen_rtx_AND (Pmode, funexp, GEN_INT (bit_val));
247 emit_cmp_and_jump_insns (mask, const0_rtx, EQ, NULL_RTX, Pmode, 1,
248 call_lab);
249
250 /* Statically predict the branch to very likely taken. */
251 rtx_insn *insn = get_last_insn ();
252 if (JUMP_P (insn))
253 predict_insn_def (insn, PRED_BUILTIN_EXPECT, TAKEN);
254
255 /* Load the descriptor. */
256 rtx mem = gen_rtx_MEM (ptr_mode,
257 plus_constant (Pmode, funexp, - bit_val));
258 MEM_NOTRAP_P (mem) = 1;
259 mem = convert_memory_address (Pmode, mem);
260 emit_move_insn (chain, mem);
261
262 mem = gen_rtx_MEM (ptr_mode,
263 plus_constant (Pmode, funexp,
264 POINTER_SIZE / BITS_PER_UNIT
265 - bit_val));
266 MEM_NOTRAP_P (mem) = 1;
267 mem = convert_memory_address (Pmode, mem);
268 emit_move_insn (funexp, mem);
269
270 emit_label (call_lab);
271
272 if (REG_P (chain))
273 {
274 use_reg (call_fusage, chain);
275 STATIC_CHAIN_REG_P (chain) = 1;
276 }
277
278 /* Make sure we're not going to be overwritten below. */
279 gcc_assert (!static_chain_value);
280 }
281
282 /* If we are using registers for parameters, force the
283 function address into a register now. */
284 funexp = ((reg_parm_seen
285 && targetm.small_register_classes_for_mode_p (FUNCTION_MODE))
286 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
287 : memory_address (FUNCTION_MODE, funexp));
288 }
289 else
290 {
291 /* funexp could be a SYMBOL_REF represents a function pointer which is
292 of ptr_mode. In this case, it should be converted into address mode
293 to be a valid address for memory rtx pattern. See PR 64971. */
294 if (GET_MODE (funexp) != Pmode)
295 funexp = convert_memory_address (Pmode, funexp);
296
297 if (!(flags & ECF_SIBCALL))
298 {
299 if (!NO_FUNCTION_CSE && optimize && ! flag_no_function_cse)
300 funexp = force_reg (Pmode, funexp);
301 }
302 }
303
304 if (static_chain_value != 0
305 && (TREE_CODE (fndecl_or_type) != FUNCTION_DECL
306 || DECL_STATIC_CHAIN (fndecl_or_type)))
307 {
308 rtx chain;
309
310 chain = targetm.calls.static_chain (fndecl_or_type, false);
311 static_chain_value = convert_memory_address (Pmode, static_chain_value);
312
313 emit_move_insn (chain, static_chain_value);
314 if (REG_P (chain))
315 {
316 use_reg (call_fusage, chain);
317 STATIC_CHAIN_REG_P (chain) = 1;
318 }
319 }
320
321 return funexp;
322 }
323
324 /* Generate instructions to call function FUNEXP,
325 and optionally pop the results.
326 The CALL_INSN is the first insn generated.
327
328 FNDECL is the declaration node of the function. This is given to the
329 hook TARGET_RETURN_POPS_ARGS to determine whether this function pops
330 its own args.
331
332 FUNTYPE is the data type of the function. This is given to the hook
333 TARGET_RETURN_POPS_ARGS to determine whether this function pops its
334 own args. We used to allow an identifier for library functions, but
335 that doesn't work when the return type is an aggregate type and the
336 calling convention says that the pointer to this aggregate is to be
337 popped by the callee.
338
339 STACK_SIZE is the number of bytes of arguments on the stack,
340 ROUNDED_STACK_SIZE is that number rounded up to
341 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
342 both to put into the call insn and to generate explicit popping
343 code if necessary.
344
345 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
346 It is zero if this call doesn't want a structure value.
347
348 NEXT_ARG_REG is the rtx that results from executing
349 targetm.calls.function_arg (&args_so_far,
350 function_arg_info::end_marker ());
351 just after all the args have had their registers assigned.
352 This could be whatever you like, but normally it is the first
353 arg-register beyond those used for args in this call,
354 or 0 if all the arg-registers are used in this call.
355 It is passed on to `gen_call' so you can put this info in the call insn.
356
357 VALREG is a hard register in which a value is returned,
358 or 0 if the call does not return a value.
359
360 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
361 the args to this call were processed.
362 We restore `inhibit_defer_pop' to that value.
363
364 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
365 denote registers used by the called function. */
366
367 static void
368 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
369 tree funtype ATTRIBUTE_UNUSED,
370 poly_int64 stack_size ATTRIBUTE_UNUSED,
371 poly_int64 rounded_stack_size,
372 poly_int64 struct_value_size ATTRIBUTE_UNUSED,
373 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
374 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
375 cumulative_args_t args_so_far ATTRIBUTE_UNUSED)
376 {
377 rtx rounded_stack_size_rtx = gen_int_mode (rounded_stack_size, Pmode);
378 rtx call, funmem, pat;
379 int already_popped = 0;
380 poly_int64 n_popped = 0;
381
382 /* Sibling call patterns never pop arguments (no sibcall(_value)_pop
383 patterns exist). Any popping that the callee does on return will
384 be from our caller's frame rather than ours. */
385 if (!(ecf_flags & ECF_SIBCALL))
386 {
387 n_popped += targetm.calls.return_pops_args (fndecl, funtype, stack_size);
388
389 #ifdef CALL_POPS_ARGS
390 n_popped += CALL_POPS_ARGS (*get_cumulative_args (args_so_far));
391 #endif
392 }
393
394 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
395 and we don't want to load it into a register as an optimization,
396 because prepare_call_address already did it if it should be done. */
397 if (GET_CODE (funexp) != SYMBOL_REF)
398 funexp = memory_address (FUNCTION_MODE, funexp);
399
400 funmem = gen_rtx_MEM (FUNCTION_MODE, funexp);
401 if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL)
402 {
403 tree t = fndecl;
404
405 /* Although a built-in FUNCTION_DECL and its non-__builtin
406 counterpart compare equal and get a shared mem_attrs, they
407 produce different dump output in compare-debug compilations,
408 if an entry gets garbage collected in one compilation, then
409 adds a different (but equivalent) entry, while the other
410 doesn't run the garbage collector at the same spot and then
411 shares the mem_attr with the equivalent entry. */
412 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL)
413 {
414 tree t2 = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
415 if (t2)
416 t = t2;
417 }
418
419 set_mem_expr (funmem, t);
420 }
421 else if (fntree)
422 set_mem_expr (funmem, build_simple_mem_ref (CALL_EXPR_FN (fntree)));
423
424 if (ecf_flags & ECF_SIBCALL)
425 {
426 if (valreg)
427 pat = targetm.gen_sibcall_value (valreg, funmem,
428 rounded_stack_size_rtx,
429 next_arg_reg, NULL_RTX);
430 else
431 pat = targetm.gen_sibcall (funmem, rounded_stack_size_rtx,
432 next_arg_reg,
433 gen_int_mode (struct_value_size, Pmode));
434 }
435 /* If the target has "call" or "call_value" insns, then prefer them
436 if no arguments are actually popped. If the target does not have
437 "call" or "call_value" insns, then we must use the popping versions
438 even if the call has no arguments to pop. */
439 else if (maybe_ne (n_popped, 0)
440 || !(valreg
441 ? targetm.have_call_value ()
442 : targetm.have_call ()))
443 {
444 rtx n_pop = gen_int_mode (n_popped, Pmode);
445
446 /* If this subroutine pops its own args, record that in the call insn
447 if possible, for the sake of frame pointer elimination. */
448
449 if (valreg)
450 pat = targetm.gen_call_value_pop (valreg, funmem,
451 rounded_stack_size_rtx,
452 next_arg_reg, n_pop);
453 else
454 pat = targetm.gen_call_pop (funmem, rounded_stack_size_rtx,
455 next_arg_reg, n_pop);
456
457 already_popped = 1;
458 }
459 else
460 {
461 if (valreg)
462 pat = targetm.gen_call_value (valreg, funmem, rounded_stack_size_rtx,
463 next_arg_reg, NULL_RTX);
464 else
465 pat = targetm.gen_call (funmem, rounded_stack_size_rtx, next_arg_reg,
466 gen_int_mode (struct_value_size, Pmode));
467 }
468 emit_insn (pat);
469
470 /* Find the call we just emitted. */
471 rtx_call_insn *call_insn = last_call_insn ();
472
473 /* Some target create a fresh MEM instead of reusing the one provided
474 above. Set its MEM_EXPR. */
475 call = get_call_rtx_from (call_insn);
476 if (call
477 && MEM_EXPR (XEXP (call, 0)) == NULL_TREE
478 && MEM_EXPR (funmem) != NULL_TREE)
479 set_mem_expr (XEXP (call, 0), MEM_EXPR (funmem));
480
481 /* Put the register usage information there. */
482 add_function_usage_to (call_insn, call_fusage);
483
484 /* If this is a const call, then set the insn's unchanging bit. */
485 if (ecf_flags & ECF_CONST)
486 RTL_CONST_CALL_P (call_insn) = 1;
487
488 /* If this is a pure call, then set the insn's unchanging bit. */
489 if (ecf_flags & ECF_PURE)
490 RTL_PURE_CALL_P (call_insn) = 1;
491
492 /* If this is a const call, then set the insn's unchanging bit. */
493 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
494 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
495
496 /* Create a nothrow REG_EH_REGION note, if needed. */
497 make_reg_eh_region_note (call_insn, ecf_flags, 0);
498
499 if (ecf_flags & ECF_NORETURN)
500 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
501
502 if (ecf_flags & ECF_RETURNS_TWICE)
503 {
504 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
505 cfun->calls_setjmp = 1;
506 }
507
508 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
509
510 /* Restore this now, so that we do defer pops for this call's args
511 if the context of the call as a whole permits. */
512 inhibit_defer_pop = old_inhibit_defer_pop;
513
514 if (maybe_ne (n_popped, 0))
515 {
516 if (!already_popped)
517 CALL_INSN_FUNCTION_USAGE (call_insn)
518 = gen_rtx_EXPR_LIST (VOIDmode,
519 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
520 CALL_INSN_FUNCTION_USAGE (call_insn));
521 rounded_stack_size -= n_popped;
522 rounded_stack_size_rtx = gen_int_mode (rounded_stack_size, Pmode);
523 stack_pointer_delta -= n_popped;
524
525 add_args_size_note (call_insn, stack_pointer_delta);
526
527 /* If popup is needed, stack realign must use DRAP */
528 if (SUPPORTS_STACK_ALIGNMENT)
529 crtl->need_drap = true;
530 }
531 /* For noreturn calls when not accumulating outgoing args force
532 REG_ARGS_SIZE note to prevent crossjumping of calls with different
533 args sizes. */
534 else if (!ACCUMULATE_OUTGOING_ARGS && (ecf_flags & ECF_NORETURN) != 0)
535 add_args_size_note (call_insn, stack_pointer_delta);
536
537 if (!ACCUMULATE_OUTGOING_ARGS)
538 {
539 /* If returning from the subroutine does not automatically pop the args,
540 we need an instruction to pop them sooner or later.
541 Perhaps do it now; perhaps just record how much space to pop later.
542
543 If returning from the subroutine does pop the args, indicate that the
544 stack pointer will be changed. */
545
546 if (maybe_ne (rounded_stack_size, 0))
547 {
548 if (ecf_flags & ECF_NORETURN)
549 /* Just pretend we did the pop. */
550 stack_pointer_delta -= rounded_stack_size;
551 else if (flag_defer_pop && inhibit_defer_pop == 0
552 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
553 pending_stack_adjust += rounded_stack_size;
554 else
555 adjust_stack (rounded_stack_size_rtx);
556 }
557 }
558 /* When we accumulate outgoing args, we must avoid any stack manipulations.
559 Restore the stack pointer to its original value now. Usually
560 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
561 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
562 popping variants of functions exist as well.
563
564 ??? We may optimize similar to defer_pop above, but it is
565 probably not worthwhile.
566
567 ??? It will be worthwhile to enable combine_stack_adjustments even for
568 such machines. */
569 else if (maybe_ne (n_popped, 0))
570 anti_adjust_stack (gen_int_mode (n_popped, Pmode));
571 }
572
573 /* Determine if the function identified by FNDECL is one with
574 special properties we wish to know about. Modify FLAGS accordingly.
575
576 For example, if the function might return more than one time (setjmp), then
577 set ECF_RETURNS_TWICE.
578
579 Set ECF_MAY_BE_ALLOCA for any memory allocation function that might allocate
580 space from the stack such as alloca. */
581
582 static int
583 special_function_p (const_tree fndecl, int flags)
584 {
585 tree name_decl = DECL_NAME (fndecl);
586
587 if (fndecl && name_decl
588 && IDENTIFIER_LENGTH (name_decl) <= 11
589 /* Exclude functions not at the file scope, or not `extern',
590 since they are not the magic functions we would otherwise
591 think they are.
592 FIXME: this should be handled with attributes, not with this
593 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
594 because you can declare fork() inside a function if you
595 wish. */
596 && (DECL_CONTEXT (fndecl) == NULL_TREE
597 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
598 && TREE_PUBLIC (fndecl))
599 {
600 const char *name = IDENTIFIER_POINTER (name_decl);
601 const char *tname = name;
602
603 /* We assume that alloca will always be called by name. It
604 makes no sense to pass it as a pointer-to-function to
605 anything that does not understand its behavior. */
606 if (IDENTIFIER_LENGTH (name_decl) == 6
607 && name[0] == 'a'
608 && ! strcmp (name, "alloca"))
609 flags |= ECF_MAY_BE_ALLOCA;
610
611 /* Disregard prefix _ or __. */
612 if (name[0] == '_')
613 {
614 if (name[1] == '_')
615 tname += 2;
616 else
617 tname += 1;
618 }
619
620 /* ECF_RETURNS_TWICE is safe even for -ffreestanding. */
621 if (! strcmp (tname, "setjmp")
622 || ! strcmp (tname, "sigsetjmp")
623 || ! strcmp (name, "savectx")
624 || ! strcmp (name, "vfork")
625 || ! strcmp (name, "getcontext"))
626 flags |= ECF_RETURNS_TWICE;
627 }
628
629 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
630 && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
631 flags |= ECF_MAY_BE_ALLOCA;
632
633 return flags;
634 }
635
636 /* Similar to special_function_p; return a set of ERF_ flags for the
637 function FNDECL. */
638 static int
639 decl_return_flags (tree fndecl)
640 {
641 tree attr;
642 tree type = TREE_TYPE (fndecl);
643 if (!type)
644 return 0;
645
646 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
647 if (!attr)
648 return 0;
649
650 attr = TREE_VALUE (TREE_VALUE (attr));
651 if (!attr || TREE_STRING_LENGTH (attr) < 1)
652 return 0;
653
654 switch (TREE_STRING_POINTER (attr)[0])
655 {
656 case '1':
657 case '2':
658 case '3':
659 case '4':
660 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
661
662 case 'm':
663 return ERF_NOALIAS;
664
665 case '.':
666 default:
667 return 0;
668 }
669 }
670
671 /* Return nonzero when FNDECL represents a call to setjmp. */
672
673 int
674 setjmp_call_p (const_tree fndecl)
675 {
676 if (DECL_IS_RETURNS_TWICE (fndecl))
677 return ECF_RETURNS_TWICE;
678 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
679 }
680
681
682 /* Return true if STMT may be an alloca call. */
683
684 bool
685 gimple_maybe_alloca_call_p (const gimple *stmt)
686 {
687 tree fndecl;
688
689 if (!is_gimple_call (stmt))
690 return false;
691
692 fndecl = gimple_call_fndecl (stmt);
693 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
694 return true;
695
696 return false;
697 }
698
699 /* Return true if STMT is a builtin alloca call. */
700
701 bool
702 gimple_alloca_call_p (const gimple *stmt)
703 {
704 tree fndecl;
705
706 if (!is_gimple_call (stmt))
707 return false;
708
709 fndecl = gimple_call_fndecl (stmt);
710 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
711 switch (DECL_FUNCTION_CODE (fndecl))
712 {
713 CASE_BUILT_IN_ALLOCA:
714 return gimple_call_num_args (stmt) > 0;
715 default:
716 break;
717 }
718
719 return false;
720 }
721
722 /* Return true when exp contains a builtin alloca call. */
723
724 bool
725 alloca_call_p (const_tree exp)
726 {
727 tree fndecl;
728 if (TREE_CODE (exp) == CALL_EXPR
729 && (fndecl = get_callee_fndecl (exp))
730 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
731 switch (DECL_FUNCTION_CODE (fndecl))
732 {
733 CASE_BUILT_IN_ALLOCA:
734 return true;
735 default:
736 break;
737 }
738
739 return false;
740 }
741
742 /* Return TRUE if FNDECL is either a TM builtin or a TM cloned
743 function. Return FALSE otherwise. */
744
745 static bool
746 is_tm_builtin (const_tree fndecl)
747 {
748 if (fndecl == NULL)
749 return false;
750
751 if (decl_is_tm_clone (fndecl))
752 return true;
753
754 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
755 {
756 switch (DECL_FUNCTION_CODE (fndecl))
757 {
758 case BUILT_IN_TM_COMMIT:
759 case BUILT_IN_TM_COMMIT_EH:
760 case BUILT_IN_TM_ABORT:
761 case BUILT_IN_TM_IRREVOCABLE:
762 case BUILT_IN_TM_GETTMCLONE_IRR:
763 case BUILT_IN_TM_MEMCPY:
764 case BUILT_IN_TM_MEMMOVE:
765 case BUILT_IN_TM_MEMSET:
766 CASE_BUILT_IN_TM_STORE (1):
767 CASE_BUILT_IN_TM_STORE (2):
768 CASE_BUILT_IN_TM_STORE (4):
769 CASE_BUILT_IN_TM_STORE (8):
770 CASE_BUILT_IN_TM_STORE (FLOAT):
771 CASE_BUILT_IN_TM_STORE (DOUBLE):
772 CASE_BUILT_IN_TM_STORE (LDOUBLE):
773 CASE_BUILT_IN_TM_STORE (M64):
774 CASE_BUILT_IN_TM_STORE (M128):
775 CASE_BUILT_IN_TM_STORE (M256):
776 CASE_BUILT_IN_TM_LOAD (1):
777 CASE_BUILT_IN_TM_LOAD (2):
778 CASE_BUILT_IN_TM_LOAD (4):
779 CASE_BUILT_IN_TM_LOAD (8):
780 CASE_BUILT_IN_TM_LOAD (FLOAT):
781 CASE_BUILT_IN_TM_LOAD (DOUBLE):
782 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
783 CASE_BUILT_IN_TM_LOAD (M64):
784 CASE_BUILT_IN_TM_LOAD (M128):
785 CASE_BUILT_IN_TM_LOAD (M256):
786 case BUILT_IN_TM_LOG:
787 case BUILT_IN_TM_LOG_1:
788 case BUILT_IN_TM_LOG_2:
789 case BUILT_IN_TM_LOG_4:
790 case BUILT_IN_TM_LOG_8:
791 case BUILT_IN_TM_LOG_FLOAT:
792 case BUILT_IN_TM_LOG_DOUBLE:
793 case BUILT_IN_TM_LOG_LDOUBLE:
794 case BUILT_IN_TM_LOG_M64:
795 case BUILT_IN_TM_LOG_M128:
796 case BUILT_IN_TM_LOG_M256:
797 return true;
798 default:
799 break;
800 }
801 }
802 return false;
803 }
804
805 /* Detect flags (function attributes) from the function decl or type node. */
806
807 int
808 flags_from_decl_or_type (const_tree exp)
809 {
810 int flags = 0;
811
812 if (DECL_P (exp))
813 {
814 /* The function exp may have the `malloc' attribute. */
815 if (DECL_IS_MALLOC (exp))
816 flags |= ECF_MALLOC;
817
818 /* The function exp may have the `returns_twice' attribute. */
819 if (DECL_IS_RETURNS_TWICE (exp))
820 flags |= ECF_RETURNS_TWICE;
821
822 /* Process the pure and const attributes. */
823 if (TREE_READONLY (exp))
824 flags |= ECF_CONST;
825 if (DECL_PURE_P (exp))
826 flags |= ECF_PURE;
827 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
828 flags |= ECF_LOOPING_CONST_OR_PURE;
829
830 if (DECL_IS_NOVOPS (exp))
831 flags |= ECF_NOVOPS;
832 if (lookup_attribute ("leaf", DECL_ATTRIBUTES (exp)))
833 flags |= ECF_LEAF;
834 if (lookup_attribute ("cold", DECL_ATTRIBUTES (exp)))
835 flags |= ECF_COLD;
836
837 if (TREE_NOTHROW (exp))
838 flags |= ECF_NOTHROW;
839
840 if (flag_tm)
841 {
842 if (is_tm_builtin (exp))
843 flags |= ECF_TM_BUILTIN;
844 else if ((flags & (ECF_CONST|ECF_NOVOPS)) != 0
845 || lookup_attribute ("transaction_pure",
846 TYPE_ATTRIBUTES (TREE_TYPE (exp))))
847 flags |= ECF_TM_PURE;
848 }
849
850 flags = special_function_p (exp, flags);
851 }
852 else if (TYPE_P (exp))
853 {
854 if (TYPE_READONLY (exp))
855 flags |= ECF_CONST;
856
857 if (flag_tm
858 && ((flags & ECF_CONST) != 0
859 || lookup_attribute ("transaction_pure", TYPE_ATTRIBUTES (exp))))
860 flags |= ECF_TM_PURE;
861 }
862 else
863 gcc_unreachable ();
864
865 if (TREE_THIS_VOLATILE (exp))
866 {
867 flags |= ECF_NORETURN;
868 if (flags & (ECF_CONST|ECF_PURE))
869 flags |= ECF_LOOPING_CONST_OR_PURE;
870 }
871
872 return flags;
873 }
874
875 /* Detect flags from a CALL_EXPR. */
876
877 int
878 call_expr_flags (const_tree t)
879 {
880 int flags;
881 tree decl = get_callee_fndecl (t);
882
883 if (decl)
884 flags = flags_from_decl_or_type (decl);
885 else if (CALL_EXPR_FN (t) == NULL_TREE)
886 flags = internal_fn_flags (CALL_EXPR_IFN (t));
887 else
888 {
889 tree type = TREE_TYPE (CALL_EXPR_FN (t));
890 if (type && TREE_CODE (type) == POINTER_TYPE)
891 flags = flags_from_decl_or_type (TREE_TYPE (type));
892 else
893 flags = 0;
894 if (CALL_EXPR_BY_DESCRIPTOR (t))
895 flags |= ECF_BY_DESCRIPTOR;
896 }
897
898 return flags;
899 }
900
901 /* Return true if ARG should be passed by invisible reference. */
902
903 bool
904 pass_by_reference (CUMULATIVE_ARGS *ca, function_arg_info arg)
905 {
906 if (tree type = arg.type)
907 {
908 /* If this type contains non-trivial constructors, then it is
909 forbidden for the middle-end to create any new copies. */
910 if (TREE_ADDRESSABLE (type))
911 return true;
912
913 /* GCC post 3.4 passes *all* variable sized types by reference. */
914 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
915 return true;
916
917 /* If a record type should be passed the same as its first (and only)
918 member, use the type and mode of that member. */
919 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
920 {
921 arg.type = TREE_TYPE (first_field (type));
922 arg.mode = TYPE_MODE (arg.type);
923 }
924 }
925
926 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), arg);
927 }
928
929 /* Return true if TYPE should be passed by reference when passed to
930 the "..." arguments of a function. */
931
932 bool
933 pass_va_arg_by_reference (tree type)
934 {
935 return pass_by_reference (NULL, function_arg_info (type, /*named=*/false));
936 }
937
938 /* Return true if TYPE, which is passed by reference, should be callee
939 copied instead of caller copied. */
940
941 bool
942 reference_callee_copied (CUMULATIVE_ARGS *ca, machine_mode mode,
943 tree type, bool named_arg)
944 {
945 if (type && TREE_ADDRESSABLE (type))
946 return false;
947 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
948 named_arg);
949 }
950
951
952 /* Precompute all register parameters as described by ARGS, storing values
953 into fields within the ARGS array.
954
955 NUM_ACTUALS indicates the total number elements in the ARGS array.
956
957 Set REG_PARM_SEEN if we encounter a register parameter. */
958
959 static void
960 precompute_register_parameters (int num_actuals, struct arg_data *args,
961 int *reg_parm_seen)
962 {
963 int i;
964
965 *reg_parm_seen = 0;
966
967 for (i = 0; i < num_actuals; i++)
968 if (args[i].reg != 0 && ! args[i].pass_on_stack)
969 {
970 *reg_parm_seen = 1;
971
972 if (args[i].value == 0)
973 {
974 push_temp_slots ();
975 args[i].value = expand_normal (args[i].tree_value);
976 preserve_temp_slots (args[i].value);
977 pop_temp_slots ();
978 }
979
980 /* If we are to promote the function arg to a wider mode,
981 do it now. */
982
983 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
984 args[i].value
985 = convert_modes (args[i].mode,
986 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
987 args[i].value, args[i].unsignedp);
988
989 /* If the value is a non-legitimate constant, force it into a
990 pseudo now. TLS symbols sometimes need a call to resolve. */
991 if (CONSTANT_P (args[i].value)
992 && !targetm.legitimate_constant_p (args[i].mode, args[i].value))
993 args[i].value = force_reg (args[i].mode, args[i].value);
994
995 /* If we're going to have to load the value by parts, pull the
996 parts into pseudos. The part extraction process can involve
997 non-trivial computation. */
998 if (GET_CODE (args[i].reg) == PARALLEL)
999 {
1000 tree type = TREE_TYPE (args[i].tree_value);
1001 args[i].parallel_value
1002 = emit_group_load_into_temps (args[i].reg, args[i].value,
1003 type, int_size_in_bytes (type));
1004 }
1005
1006 /* If the value is expensive, and we are inside an appropriately
1007 short loop, put the value into a pseudo and then put the pseudo
1008 into the hard reg.
1009
1010 For small register classes, also do this if this call uses
1011 register parameters. This is to avoid reload conflicts while
1012 loading the parameters registers. */
1013
1014 else if ((! (REG_P (args[i].value)
1015 || (GET_CODE (args[i].value) == SUBREG
1016 && REG_P (SUBREG_REG (args[i].value)))))
1017 && args[i].mode != BLKmode
1018 && (set_src_cost (args[i].value, args[i].mode,
1019 optimize_insn_for_speed_p ())
1020 > COSTS_N_INSNS (1))
1021 && ((*reg_parm_seen
1022 && targetm.small_register_classes_for_mode_p (args[i].mode))
1023 || optimize))
1024 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
1025 }
1026 }
1027
1028 #ifdef REG_PARM_STACK_SPACE
1029
1030 /* The argument list is the property of the called routine and it
1031 may clobber it. If the fixed area has been used for previous
1032 parameters, we must save and restore it. */
1033
1034 static rtx
1035 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
1036 {
1037 unsigned int low;
1038 unsigned int high;
1039
1040 /* Compute the boundary of the area that needs to be saved, if any. */
1041 high = reg_parm_stack_space;
1042 if (ARGS_GROW_DOWNWARD)
1043 high += 1;
1044
1045 if (high > highest_outgoing_arg_in_use)
1046 high = highest_outgoing_arg_in_use;
1047
1048 for (low = 0; low < high; low++)
1049 if (stack_usage_map[low] != 0 || low >= stack_usage_watermark)
1050 {
1051 int num_to_save;
1052 machine_mode save_mode;
1053 int delta;
1054 rtx addr;
1055 rtx stack_area;
1056 rtx save_area;
1057
1058 while (stack_usage_map[--high] == 0)
1059 ;
1060
1061 *low_to_save = low;
1062 *high_to_save = high;
1063
1064 num_to_save = high - low + 1;
1065
1066 /* If we don't have the required alignment, must do this
1067 in BLKmode. */
1068 scalar_int_mode imode;
1069 if (int_mode_for_size (num_to_save * BITS_PER_UNIT, 1).exists (&imode)
1070 && (low & (MIN (GET_MODE_SIZE (imode),
1071 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)) == 0)
1072 save_mode = imode;
1073 else
1074 save_mode = BLKmode;
1075
1076 if (ARGS_GROW_DOWNWARD)
1077 delta = -high;
1078 else
1079 delta = low;
1080
1081 addr = plus_constant (Pmode, argblock, delta);
1082 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1083
1084 set_mem_align (stack_area, PARM_BOUNDARY);
1085 if (save_mode == BLKmode)
1086 {
1087 save_area = assign_stack_temp (BLKmode, num_to_save);
1088 emit_block_move (validize_mem (save_area), stack_area,
1089 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
1090 }
1091 else
1092 {
1093 save_area = gen_reg_rtx (save_mode);
1094 emit_move_insn (save_area, stack_area);
1095 }
1096
1097 return save_area;
1098 }
1099
1100 return NULL_RTX;
1101 }
1102
1103 static void
1104 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
1105 {
1106 machine_mode save_mode = GET_MODE (save_area);
1107 int delta;
1108 rtx addr, stack_area;
1109
1110 if (ARGS_GROW_DOWNWARD)
1111 delta = -high_to_save;
1112 else
1113 delta = low_to_save;
1114
1115 addr = plus_constant (Pmode, argblock, delta);
1116 stack_area = gen_rtx_MEM (save_mode, memory_address (save_mode, addr));
1117 set_mem_align (stack_area, PARM_BOUNDARY);
1118
1119 if (save_mode != BLKmode)
1120 emit_move_insn (stack_area, save_area);
1121 else
1122 emit_block_move (stack_area, validize_mem (save_area),
1123 GEN_INT (high_to_save - low_to_save + 1),
1124 BLOCK_OP_CALL_PARM);
1125 }
1126 #endif /* REG_PARM_STACK_SPACE */
1127
1128 /* If any elements in ARGS refer to parameters that are to be passed in
1129 registers, but not in memory, and whose alignment does not permit a
1130 direct copy into registers. Copy the values into a group of pseudos
1131 which we will later copy into the appropriate hard registers.
1132
1133 Pseudos for each unaligned argument will be stored into the array
1134 args[argnum].aligned_regs. The caller is responsible for deallocating
1135 the aligned_regs array if it is nonzero. */
1136
1137 static void
1138 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
1139 {
1140 int i, j;
1141
1142 for (i = 0; i < num_actuals; i++)
1143 if (args[i].reg != 0 && ! args[i].pass_on_stack
1144 && GET_CODE (args[i].reg) != PARALLEL
1145 && args[i].mode == BLKmode
1146 && MEM_P (args[i].value)
1147 && (MEM_ALIGN (args[i].value)
1148 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
1149 {
1150 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1151 int endian_correction = 0;
1152
1153 if (args[i].partial)
1154 {
1155 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
1156 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
1157 }
1158 else
1159 {
1160 args[i].n_aligned_regs
1161 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1162 }
1163
1164 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
1165
1166 /* Structures smaller than a word are normally aligned to the
1167 least significant byte. On a BYTES_BIG_ENDIAN machine,
1168 this means we must skip the empty high order bytes when
1169 calculating the bit offset. */
1170 if (bytes < UNITS_PER_WORD
1171 #ifdef BLOCK_REG_PADDING
1172 && (BLOCK_REG_PADDING (args[i].mode,
1173 TREE_TYPE (args[i].tree_value), 1)
1174 == PAD_DOWNWARD)
1175 #else
1176 && BYTES_BIG_ENDIAN
1177 #endif
1178 )
1179 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
1180
1181 for (j = 0; j < args[i].n_aligned_regs; j++)
1182 {
1183 rtx reg = gen_reg_rtx (word_mode);
1184 rtx word = operand_subword_force (args[i].value, j, BLKmode);
1185 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
1186
1187 args[i].aligned_regs[j] = reg;
1188 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
1189 word_mode, word_mode, false, NULL);
1190
1191 /* There is no need to restrict this code to loading items
1192 in TYPE_ALIGN sized hunks. The bitfield instructions can
1193 load up entire word sized registers efficiently.
1194
1195 ??? This may not be needed anymore.
1196 We use to emit a clobber here but that doesn't let later
1197 passes optimize the instructions we emit. By storing 0 into
1198 the register later passes know the first AND to zero out the
1199 bitfield being set in the register is unnecessary. The store
1200 of 0 will be deleted as will at least the first AND. */
1201
1202 emit_move_insn (reg, const0_rtx);
1203
1204 bytes -= bitsize / BITS_PER_UNIT;
1205 store_bit_field (reg, bitsize, endian_correction, 0, 0,
1206 word_mode, word, false);
1207 }
1208 }
1209 }
1210
1211 /* The limit set by -Walloc-larger-than=. */
1212 static GTY(()) tree alloc_object_size_limit;
1213
1214 /* Initialize ALLOC_OBJECT_SIZE_LIMIT based on the -Walloc-size-larger-than=
1215 setting if the option is specified, or to the maximum object size if it
1216 is not. Return the initialized value. */
1217
1218 static tree
1219 alloc_max_size (void)
1220 {
1221 if (alloc_object_size_limit)
1222 return alloc_object_size_limit;
1223
1224 HOST_WIDE_INT limit = warn_alloc_size_limit;
1225 if (limit == HOST_WIDE_INT_MAX)
1226 limit = tree_to_shwi (TYPE_MAX_VALUE (ptrdiff_type_node));
1227
1228 alloc_object_size_limit = build_int_cst (size_type_node, limit);
1229
1230 return alloc_object_size_limit;
1231 }
1232
1233 /* Return true when EXP's range can be determined and set RANGE[] to it
1234 after adjusting it if necessary to make EXP a represents a valid size
1235 of object, or a valid size argument to an allocation function declared
1236 with attribute alloc_size (whose argument may be signed), or to a string
1237 manipulation function like memset. When ALLOW_ZERO is true, allow
1238 returning a range of [0, 0] for a size in an anti-range [1, N] where
1239 N > PTRDIFF_MAX. A zero range is a (nearly) invalid argument to
1240 allocation functions like malloc but it is a valid argument to
1241 functions like memset. */
1242
1243 bool
1244 get_size_range (tree exp, tree range[2], bool allow_zero /* = false */)
1245 {
1246 if (tree_fits_uhwi_p (exp))
1247 {
1248 /* EXP is a constant. */
1249 range[0] = range[1] = exp;
1250 return true;
1251 }
1252
1253 tree exptype = TREE_TYPE (exp);
1254 bool integral = INTEGRAL_TYPE_P (exptype);
1255
1256 wide_int min, max;
1257 enum value_range_kind range_type;
1258
1259 if (integral)
1260 range_type = determine_value_range (exp, &min, &max);
1261 else
1262 range_type = VR_VARYING;
1263
1264 if (range_type == VR_VARYING)
1265 {
1266 if (integral)
1267 {
1268 /* Use the full range of the type of the expression when
1269 no value range information is available. */
1270 range[0] = TYPE_MIN_VALUE (exptype);
1271 range[1] = TYPE_MAX_VALUE (exptype);
1272 return true;
1273 }
1274
1275 range[0] = NULL_TREE;
1276 range[1] = NULL_TREE;
1277 return false;
1278 }
1279
1280 unsigned expprec = TYPE_PRECISION (exptype);
1281
1282 bool signed_p = !TYPE_UNSIGNED (exptype);
1283
1284 if (range_type == VR_ANTI_RANGE)
1285 {
1286 if (signed_p)
1287 {
1288 if (wi::les_p (max, 0))
1289 {
1290 /* EXP is not in a strictly negative range. That means
1291 it must be in some (not necessarily strictly) positive
1292 range which includes zero. Since in signed to unsigned
1293 conversions negative values end up converted to large
1294 positive values, and otherwise they are not valid sizes,
1295 the resulting range is in both cases [0, TYPE_MAX]. */
1296 min = wi::zero (expprec);
1297 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1298 }
1299 else if (wi::les_p (min - 1, 0))
1300 {
1301 /* EXP is not in a negative-positive range. That means EXP
1302 is either negative, or greater than max. Since negative
1303 sizes are invalid make the range [MAX + 1, TYPE_MAX]. */
1304 min = max + 1;
1305 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1306 }
1307 else
1308 {
1309 max = min - 1;
1310 min = wi::zero (expprec);
1311 }
1312 }
1313 else if (wi::eq_p (0, min - 1))
1314 {
1315 /* EXP is unsigned and not in the range [1, MAX]. That means
1316 it's either zero or greater than MAX. Even though 0 would
1317 normally be detected by -Walloc-zero, unless ALLOW_ZERO
1318 is true, set the range to [MAX, TYPE_MAX] so that when MAX
1319 is greater than the limit the whole range is diagnosed. */
1320 if (allow_zero)
1321 min = max = wi::zero (expprec);
1322 else
1323 {
1324 min = max + 1;
1325 max = wi::to_wide (TYPE_MAX_VALUE (exptype));
1326 }
1327 }
1328 else
1329 {
1330 max = min - 1;
1331 min = wi::zero (expprec);
1332 }
1333 }
1334
1335 range[0] = wide_int_to_tree (exptype, min);
1336 range[1] = wide_int_to_tree (exptype, max);
1337
1338 return true;
1339 }
1340
1341 /* Diagnose a call EXP to function FN decorated with attribute alloc_size
1342 whose argument numbers given by IDX with values given by ARGS exceed
1343 the maximum object size or cause an unsigned oveflow (wrapping) when
1344 multiplied. FN is null when EXP is a call via a function pointer.
1345 When ARGS[0] is null the function does nothing. ARGS[1] may be null
1346 for functions like malloc, and non-null for those like calloc that
1347 are decorated with a two-argument attribute alloc_size. */
1348
1349 void
1350 maybe_warn_alloc_args_overflow (tree fn, tree exp, tree args[2], int idx[2])
1351 {
1352 /* The range each of the (up to) two arguments is known to be in. */
1353 tree argrange[2][2] = { { NULL_TREE, NULL_TREE }, { NULL_TREE, NULL_TREE } };
1354
1355 /* Maximum object size set by -Walloc-size-larger-than= or SIZE_MAX / 2. */
1356 tree maxobjsize = alloc_max_size ();
1357
1358 location_t loc = EXPR_LOCATION (exp);
1359
1360 tree fntype = fn ? TREE_TYPE (fn) : TREE_TYPE (TREE_TYPE (exp));
1361 bool warned = false;
1362
1363 /* Validate each argument individually. */
1364 for (unsigned i = 0; i != 2 && args[i]; ++i)
1365 {
1366 if (TREE_CODE (args[i]) == INTEGER_CST)
1367 {
1368 argrange[i][0] = args[i];
1369 argrange[i][1] = args[i];
1370
1371 if (tree_int_cst_lt (args[i], integer_zero_node))
1372 {
1373 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1374 "%Kargument %i value %qE is negative",
1375 exp, idx[i] + 1, args[i]);
1376 }
1377 else if (integer_zerop (args[i]))
1378 {
1379 /* Avoid issuing -Walloc-zero for allocation functions other
1380 than __builtin_alloca that are declared with attribute
1381 returns_nonnull because there's no portability risk. This
1382 avoids warning for such calls to libiberty's xmalloc and
1383 friends.
1384 Also avoid issuing the warning for calls to function named
1385 "alloca". */
1386 if (fn && fndecl_built_in_p (fn, BUILT_IN_ALLOCA)
1387 ? IDENTIFIER_LENGTH (DECL_NAME (fn)) != 6
1388 : !lookup_attribute ("returns_nonnull",
1389 TYPE_ATTRIBUTES (fntype)))
1390 warned = warning_at (loc, OPT_Walloc_zero,
1391 "%Kargument %i value is zero",
1392 exp, idx[i] + 1);
1393 }
1394 else if (tree_int_cst_lt (maxobjsize, args[i]))
1395 {
1396 /* G++ emits calls to ::operator new[](SIZE_MAX) in C++98
1397 mode and with -fno-exceptions as a way to indicate array
1398 size overflow. There's no good way to detect C++98 here
1399 so avoid diagnosing these calls for all C++ modes. */
1400 if (i == 0
1401 && fn
1402 && !args[1]
1403 && lang_GNU_CXX ()
1404 && DECL_IS_OPERATOR_NEW_P (fn)
1405 && integer_all_onesp (args[i]))
1406 continue;
1407
1408 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1409 "%Kargument %i value %qE exceeds "
1410 "maximum object size %E",
1411 exp, idx[i] + 1, args[i], maxobjsize);
1412 }
1413 }
1414 else if (TREE_CODE (args[i]) == SSA_NAME
1415 && get_size_range (args[i], argrange[i]))
1416 {
1417 /* Verify that the argument's range is not negative (including
1418 upper bound of zero). */
1419 if (tree_int_cst_lt (argrange[i][0], integer_zero_node)
1420 && tree_int_cst_le (argrange[i][1], integer_zero_node))
1421 {
1422 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1423 "%Kargument %i range [%E, %E] is negative",
1424 exp, idx[i] + 1,
1425 argrange[i][0], argrange[i][1]);
1426 }
1427 else if (tree_int_cst_lt (maxobjsize, argrange[i][0]))
1428 {
1429 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1430 "%Kargument %i range [%E, %E] exceeds "
1431 "maximum object size %E",
1432 exp, idx[i] + 1,
1433 argrange[i][0], argrange[i][1],
1434 maxobjsize);
1435 }
1436 }
1437 }
1438
1439 if (!argrange[0])
1440 return;
1441
1442 /* For a two-argument alloc_size, validate the product of the two
1443 arguments if both of their values or ranges are known. */
1444 if (!warned && tree_fits_uhwi_p (argrange[0][0])
1445 && argrange[1][0] && tree_fits_uhwi_p (argrange[1][0])
1446 && !integer_onep (argrange[0][0])
1447 && !integer_onep (argrange[1][0]))
1448 {
1449 /* Check for overflow in the product of a function decorated with
1450 attribute alloc_size (X, Y). */
1451 unsigned szprec = TYPE_PRECISION (size_type_node);
1452 wide_int x = wi::to_wide (argrange[0][0], szprec);
1453 wide_int y = wi::to_wide (argrange[1][0], szprec);
1454
1455 wi::overflow_type vflow;
1456 wide_int prod = wi::umul (x, y, &vflow);
1457
1458 if (vflow)
1459 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1460 "%Kproduct %<%E * %E%> of arguments %i and %i "
1461 "exceeds %<SIZE_MAX%>",
1462 exp, argrange[0][0], argrange[1][0],
1463 idx[0] + 1, idx[1] + 1);
1464 else if (wi::ltu_p (wi::to_wide (maxobjsize, szprec), prod))
1465 warned = warning_at (loc, OPT_Walloc_size_larger_than_,
1466 "%Kproduct %<%E * %E%> of arguments %i and %i "
1467 "exceeds maximum object size %E",
1468 exp, argrange[0][0], argrange[1][0],
1469 idx[0] + 1, idx[1] + 1,
1470 maxobjsize);
1471
1472 if (warned)
1473 {
1474 /* Print the full range of each of the two arguments to make
1475 it clear when it is, in fact, in a range and not constant. */
1476 if (argrange[0][0] != argrange [0][1])
1477 inform (loc, "argument %i in the range [%E, %E]",
1478 idx[0] + 1, argrange[0][0], argrange[0][1]);
1479 if (argrange[1][0] != argrange [1][1])
1480 inform (loc, "argument %i in the range [%E, %E]",
1481 idx[1] + 1, argrange[1][0], argrange[1][1]);
1482 }
1483 }
1484
1485 if (warned && fn)
1486 {
1487 location_t fnloc = DECL_SOURCE_LOCATION (fn);
1488
1489 if (DECL_IS_BUILTIN (fn))
1490 inform (loc,
1491 "in a call to built-in allocation function %qD", fn);
1492 else
1493 inform (fnloc,
1494 "in a call to allocation function %qD declared here", fn);
1495 }
1496 }
1497
1498 /* If EXPR refers to a character array or pointer declared attribute
1499 nonstring return a decl for that array or pointer and set *REF to
1500 the referenced enclosing object or pointer. Otherwise returns
1501 null. */
1502
1503 tree
1504 get_attr_nonstring_decl (tree expr, tree *ref)
1505 {
1506 tree decl = expr;
1507 tree var = NULL_TREE;
1508 if (TREE_CODE (decl) == SSA_NAME)
1509 {
1510 gimple *def = SSA_NAME_DEF_STMT (decl);
1511
1512 if (is_gimple_assign (def))
1513 {
1514 tree_code code = gimple_assign_rhs_code (def);
1515 if (code == ADDR_EXPR
1516 || code == COMPONENT_REF
1517 || code == VAR_DECL)
1518 decl = gimple_assign_rhs1 (def);
1519 }
1520 else
1521 var = SSA_NAME_VAR (decl);
1522 }
1523
1524 if (TREE_CODE (decl) == ADDR_EXPR)
1525 decl = TREE_OPERAND (decl, 0);
1526
1527 /* To simplify calling code, store the referenced DECL regardless of
1528 the attribute determined below, but avoid storing the SSA_NAME_VAR
1529 obtained above (it's not useful for dataflow purposes). */
1530 if (ref)
1531 *ref = decl;
1532
1533 /* Use the SSA_NAME_VAR that was determined above to see if it's
1534 declared nonstring. Otherwise drill down into the referenced
1535 DECL. */
1536 if (var)
1537 decl = var;
1538 else if (TREE_CODE (decl) == ARRAY_REF)
1539 decl = TREE_OPERAND (decl, 0);
1540 else if (TREE_CODE (decl) == COMPONENT_REF)
1541 decl = TREE_OPERAND (decl, 1);
1542 else if (TREE_CODE (decl) == MEM_REF)
1543 return get_attr_nonstring_decl (TREE_OPERAND (decl, 0), ref);
1544
1545 if (DECL_P (decl)
1546 && lookup_attribute ("nonstring", DECL_ATTRIBUTES (decl)))
1547 return decl;
1548
1549 return NULL_TREE;
1550 }
1551
1552 /* Warn about passing a non-string array/pointer to a function that
1553 expects a nul-terminated string argument. */
1554
1555 void
1556 maybe_warn_nonstring_arg (tree fndecl, tree exp)
1557 {
1558 if (!fndecl || !fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
1559 return;
1560
1561 if (TREE_NO_WARNING (exp) || !warn_stringop_overflow)
1562 return;
1563
1564 /* Avoid clearly invalid calls (more checking done below). */
1565 unsigned nargs = call_expr_nargs (exp);
1566 if (!nargs)
1567 return;
1568
1569 /* The bound argument to a bounded string function like strncpy. */
1570 tree bound = NULL_TREE;
1571
1572 /* The longest known or possible string argument to one of the comparison
1573 functions. If the length is less than the bound it is used instead.
1574 Since the length is only used for warning and not for code generation
1575 disable strict mode in the calls to get_range_strlen below. */
1576 tree maxlen = NULL_TREE;
1577
1578 /* It's safe to call "bounded" string functions with a non-string
1579 argument since the functions provide an explicit bound for this
1580 purpose. The exception is strncat where the bound may refer to
1581 either the destination or the source. */
1582 int fncode = DECL_FUNCTION_CODE (fndecl);
1583 switch (fncode)
1584 {
1585 case BUILT_IN_STRCMP:
1586 case BUILT_IN_STRNCMP:
1587 case BUILT_IN_STRNCASECMP:
1588 {
1589 /* For these, if one argument refers to one or more of a set
1590 of string constants or arrays of known size, determine
1591 the range of their known or possible lengths and use it
1592 conservatively as the bound for the unbounded function,
1593 and to adjust the range of the bound of the bounded ones. */
1594 for (unsigned argno = 0;
1595 argno < MIN (nargs, 2)
1596 && !(maxlen && TREE_CODE (maxlen) == INTEGER_CST); argno++)
1597 {
1598 tree arg = CALL_EXPR_ARG (exp, argno);
1599 if (!get_attr_nonstring_decl (arg))
1600 {
1601 c_strlen_data lendata = { };
1602 get_range_strlen (arg, &lendata, /* eltsize = */ 1);
1603 maxlen = lendata.maxbound;
1604 }
1605 }
1606 }
1607 /* Fall through. */
1608
1609 case BUILT_IN_STRNCAT:
1610 case BUILT_IN_STPNCPY:
1611 case BUILT_IN_STRNCPY:
1612 if (nargs > 2)
1613 bound = CALL_EXPR_ARG (exp, 2);
1614 break;
1615
1616 case BUILT_IN_STRNDUP:
1617 if (nargs > 1)
1618 bound = CALL_EXPR_ARG (exp, 1);
1619 break;
1620
1621 case BUILT_IN_STRNLEN:
1622 {
1623 tree arg = CALL_EXPR_ARG (exp, 0);
1624 if (!get_attr_nonstring_decl (arg))
1625 {
1626 c_strlen_data lendata = { };
1627 get_range_strlen (arg, &lendata, /* eltsize = */ 1);
1628 maxlen = lendata.maxbound;
1629 }
1630 if (nargs > 1)
1631 bound = CALL_EXPR_ARG (exp, 1);
1632 break;
1633 }
1634
1635 default:
1636 break;
1637 }
1638
1639 /* Determine the range of the bound argument (if specified). */
1640 tree bndrng[2] = { NULL_TREE, NULL_TREE };
1641 if (bound)
1642 {
1643 STRIP_NOPS (bound);
1644 get_size_range (bound, bndrng);
1645 }
1646
1647 location_t loc = EXPR_LOCATION (exp);
1648
1649 if (bndrng[0])
1650 {
1651 /* Diagnose excessive bound prior the adjustment below and
1652 regardless of attribute nonstring. */
1653 tree maxobjsize = max_object_size ();
1654 if (tree_int_cst_lt (maxobjsize, bndrng[0]))
1655 {
1656 if (tree_int_cst_equal (bndrng[0], bndrng[1]))
1657 warning_at (loc, OPT_Wstringop_overflow_,
1658 "%K%qD specified bound %E "
1659 "exceeds maximum object size %E",
1660 exp, fndecl, bndrng[0], maxobjsize);
1661 else
1662 warning_at (loc, OPT_Wstringop_overflow_,
1663 "%K%qD specified bound [%E, %E] "
1664 "exceeds maximum object size %E",
1665 exp, fndecl, bndrng[0], bndrng[1], maxobjsize);
1666 return;
1667 }
1668 }
1669
1670 if (maxlen && !integer_all_onesp (maxlen))
1671 {
1672 /* Add one for the nul. */
1673 maxlen = const_binop (PLUS_EXPR, TREE_TYPE (maxlen), maxlen,
1674 size_one_node);
1675
1676 if (!bndrng[0])
1677 {
1678 /* Conservatively use the upper bound of the lengths for
1679 both the lower and the upper bound of the operation. */
1680 bndrng[0] = maxlen;
1681 bndrng[1] = maxlen;
1682 bound = void_type_node;
1683 }
1684 else if (maxlen)
1685 {
1686 /* Replace the bound on the operation with the upper bound
1687 of the length of the string if the latter is smaller. */
1688 if (tree_int_cst_lt (maxlen, bndrng[0]))
1689 bndrng[0] = maxlen;
1690 else if (tree_int_cst_lt (maxlen, bndrng[1]))
1691 bndrng[1] = maxlen;
1692 }
1693 }
1694
1695 /* Iterate over the built-in function's formal arguments and check
1696 each const char* against the actual argument. If the actual
1697 argument is declared attribute non-string issue a warning unless
1698 the argument's maximum length is bounded. */
1699 function_args_iterator it;
1700 function_args_iter_init (&it, TREE_TYPE (fndecl));
1701
1702 for (unsigned argno = 0; ; ++argno, function_args_iter_next (&it))
1703 {
1704 /* Avoid iterating past the declared argument in a call
1705 to function declared without a prototype. */
1706 if (argno >= nargs)
1707 break;
1708
1709 tree argtype = function_args_iter_cond (&it);
1710 if (!argtype)
1711 break;
1712
1713 if (TREE_CODE (argtype) != POINTER_TYPE)
1714 continue;
1715
1716 argtype = TREE_TYPE (argtype);
1717
1718 if (TREE_CODE (argtype) != INTEGER_TYPE
1719 || !TYPE_READONLY (argtype))
1720 continue;
1721
1722 argtype = TYPE_MAIN_VARIANT (argtype);
1723 if (argtype != char_type_node)
1724 continue;
1725
1726 tree callarg = CALL_EXPR_ARG (exp, argno);
1727 if (TREE_CODE (callarg) == ADDR_EXPR)
1728 callarg = TREE_OPERAND (callarg, 0);
1729
1730 /* See if the destination is declared with attribute "nonstring". */
1731 tree decl = get_attr_nonstring_decl (callarg);
1732 if (!decl)
1733 continue;
1734
1735 /* The maximum number of array elements accessed. */
1736 offset_int wibnd = 0;
1737
1738 if (argno && fncode == BUILT_IN_STRNCAT)
1739 {
1740 /* See if the bound in strncat is derived from the length
1741 of the strlen of the destination (as it's expected to be).
1742 If so, reset BOUND and FNCODE to trigger a warning. */
1743 tree dstarg = CALL_EXPR_ARG (exp, 0);
1744 if (is_strlen_related_p (dstarg, bound))
1745 {
1746 /* The bound applies to the destination, not to the source,
1747 so reset these to trigger a warning without mentioning
1748 the bound. */
1749 bound = NULL;
1750 fncode = 0;
1751 }
1752 else if (bndrng[1])
1753 /* Use the upper bound of the range for strncat. */
1754 wibnd = wi::to_offset (bndrng[1]);
1755 }
1756 else if (bndrng[0])
1757 /* Use the lower bound of the range for functions other than
1758 strncat. */
1759 wibnd = wi::to_offset (bndrng[0]);
1760
1761 /* Determine the size of the argument array if it is one. */
1762 offset_int asize = wibnd;
1763 bool known_size = false;
1764 tree type = TREE_TYPE (decl);
1765
1766 /* Determine the array size. For arrays of unknown bound and
1767 pointers reset BOUND to trigger the appropriate warning. */
1768 if (TREE_CODE (type) == ARRAY_TYPE)
1769 {
1770 if (tree arrbnd = TYPE_DOMAIN (type))
1771 {
1772 if ((arrbnd = TYPE_MAX_VALUE (arrbnd)))
1773 {
1774 asize = wi::to_offset (arrbnd) + 1;
1775 known_size = true;
1776 }
1777 }
1778 else if (bound == void_type_node)
1779 bound = NULL_TREE;
1780 }
1781 else if (bound == void_type_node)
1782 bound = NULL_TREE;
1783
1784 /* In a call to strncat with a bound in a range whose lower but
1785 not upper bound is less than the array size, reset ASIZE to
1786 be the same as the bound and the other variable to trigger
1787 the apprpriate warning below. */
1788 if (fncode == BUILT_IN_STRNCAT
1789 && bndrng[0] != bndrng[1]
1790 && wi::ltu_p (wi::to_offset (bndrng[0]), asize)
1791 && (!known_size
1792 || wi::ltu_p (asize, wibnd)))
1793 {
1794 asize = wibnd;
1795 bound = NULL_TREE;
1796 fncode = 0;
1797 }
1798
1799 bool warned = false;
1800
1801 auto_diagnostic_group d;
1802 if (wi::ltu_p (asize, wibnd))
1803 {
1804 if (bndrng[0] == bndrng[1])
1805 warned = warning_at (loc, OPT_Wstringop_overflow_,
1806 "%qD argument %i declared attribute "
1807 "%<nonstring%> is smaller than the specified "
1808 "bound %wu",
1809 fndecl, argno + 1, wibnd.to_uhwi ());
1810 else if (wi::ltu_p (asize, wi::to_offset (bndrng[0])))
1811 warned = warning_at (loc, OPT_Wstringop_overflow_,
1812 "%qD argument %i declared attribute "
1813 "%<nonstring%> is smaller than "
1814 "the specified bound [%E, %E]",
1815 fndecl, argno + 1, bndrng[0], bndrng[1]);
1816 else
1817 warned = warning_at (loc, OPT_Wstringop_overflow_,
1818 "%qD argument %i declared attribute "
1819 "%<nonstring%> may be smaller than "
1820 "the specified bound [%E, %E]",
1821 fndecl, argno + 1, bndrng[0], bndrng[1]);
1822 }
1823 else if (fncode == BUILT_IN_STRNCAT)
1824 ; /* Avoid warning for calls to strncat() when the bound
1825 is equal to the size of the non-string argument. */
1826 else if (!bound)
1827 warned = warning_at (loc, OPT_Wstringop_overflow_,
1828 "%qD argument %i declared attribute %<nonstring%>",
1829 fndecl, argno + 1);
1830
1831 if (warned)
1832 inform (DECL_SOURCE_LOCATION (decl),
1833 "argument %qD declared here", decl);
1834 }
1835 }
1836
1837 /* Issue an error if CALL_EXPR was flagged as requiring
1838 tall-call optimization. */
1839
1840 static void
1841 maybe_complain_about_tail_call (tree call_expr, const char *reason)
1842 {
1843 gcc_assert (TREE_CODE (call_expr) == CALL_EXPR);
1844 if (!CALL_EXPR_MUST_TAIL_CALL (call_expr))
1845 return;
1846
1847 error_at (EXPR_LOCATION (call_expr), "cannot tail-call: %s", reason);
1848 }
1849
1850 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
1851 CALL_EXPR EXP.
1852
1853 NUM_ACTUALS is the total number of parameters.
1854
1855 N_NAMED_ARGS is the total number of named arguments.
1856
1857 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
1858 value, or null.
1859
1860 FNDECL is the tree code for the target of this call (if known)
1861
1862 ARGS_SO_FAR holds state needed by the target to know where to place
1863 the next argument.
1864
1865 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
1866 for arguments which are passed in registers.
1867
1868 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
1869 and may be modified by this routine.
1870
1871 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
1872 flags which may be modified by this routine.
1873
1874 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
1875 that requires allocation of stack space.
1876
1877 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
1878 the thunked-to function. */
1879
1880 static void
1881 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
1882 struct arg_data *args,
1883 struct args_size *args_size,
1884 int n_named_args ATTRIBUTE_UNUSED,
1885 tree exp, tree struct_value_addr_value,
1886 tree fndecl, tree fntype,
1887 cumulative_args_t args_so_far,
1888 int reg_parm_stack_space,
1889 rtx *old_stack_level,
1890 poly_int64_pod *old_pending_adj,
1891 int *must_preallocate, int *ecf_flags,
1892 bool *may_tailcall, bool call_from_thunk_p)
1893 {
1894 CUMULATIVE_ARGS *args_so_far_pnt = get_cumulative_args (args_so_far);
1895 location_t loc = EXPR_LOCATION (exp);
1896
1897 /* Count arg position in order args appear. */
1898 int argpos;
1899
1900 int i;
1901
1902 args_size->constant = 0;
1903 args_size->var = 0;
1904
1905 bitmap_obstack_initialize (NULL);
1906
1907 /* In this loop, we consider args in the order they are written.
1908 We fill up ARGS from the back. */
1909
1910 i = num_actuals - 1;
1911 {
1912 int j = i;
1913 call_expr_arg_iterator iter;
1914 tree arg;
1915 bitmap slots = NULL;
1916
1917 if (struct_value_addr_value)
1918 {
1919 args[j].tree_value = struct_value_addr_value;
1920 j--;
1921 }
1922 argpos = 0;
1923 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
1924 {
1925 tree argtype = TREE_TYPE (arg);
1926
1927 if (targetm.calls.split_complex_arg
1928 && argtype
1929 && TREE_CODE (argtype) == COMPLEX_TYPE
1930 && targetm.calls.split_complex_arg (argtype))
1931 {
1932 tree subtype = TREE_TYPE (argtype);
1933 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
1934 j--;
1935 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
1936 }
1937 else
1938 args[j].tree_value = arg;
1939 j--;
1940 argpos++;
1941 }
1942
1943 if (slots)
1944 BITMAP_FREE (slots);
1945 }
1946
1947 bitmap_obstack_release (NULL);
1948
1949 /* Extract attribute alloc_size from the type of the called expression
1950 (which could be a function or a function pointer) and if set, store
1951 the indices of the corresponding arguments in ALLOC_IDX, and then
1952 the actual argument(s) at those indices in ALLOC_ARGS. */
1953 int alloc_idx[2] = { -1, -1 };
1954 if (tree alloc_size = lookup_attribute ("alloc_size",
1955 TYPE_ATTRIBUTES (fntype)))
1956 {
1957 tree args = TREE_VALUE (alloc_size);
1958 alloc_idx[0] = TREE_INT_CST_LOW (TREE_VALUE (args)) - 1;
1959 if (TREE_CHAIN (args))
1960 alloc_idx[1] = TREE_INT_CST_LOW (TREE_VALUE (TREE_CHAIN (args))) - 1;
1961 }
1962
1963 /* Array for up to the two attribute alloc_size arguments. */
1964 tree alloc_args[] = { NULL_TREE, NULL_TREE };
1965
1966 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1967 for (argpos = 0; argpos < num_actuals; i--, argpos++)
1968 {
1969 tree type = TREE_TYPE (args[i].tree_value);
1970 int unsignedp;
1971 machine_mode mode;
1972
1973 /* Replace erroneous argument with constant zero. */
1974 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1975 args[i].tree_value = integer_zero_node, type = integer_type_node;
1976
1977 /* If TYPE is a transparent union or record, pass things the way
1978 we would pass the first field of the union or record. We have
1979 already verified that the modes are the same. */
1980 if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
1981 && TYPE_TRANSPARENT_AGGR (type))
1982 type = TREE_TYPE (first_field (type));
1983
1984 /* Decide where to pass this arg.
1985
1986 args[i].reg is nonzero if all or part is passed in registers.
1987
1988 args[i].partial is nonzero if part but not all is passed in registers,
1989 and the exact value says how many bytes are passed in registers.
1990
1991 args[i].pass_on_stack is nonzero if the argument must at least be
1992 computed on the stack. It may then be loaded back into registers
1993 if args[i].reg is nonzero.
1994
1995 These decisions are driven by the FUNCTION_... macros and must agree
1996 with those made by function.c. */
1997
1998 /* See if this argument should be passed by invisible reference. */
1999 function_arg_info orig_arg (type, argpos < n_named_args);
2000 if (pass_by_reference (args_so_far_pnt, orig_arg))
2001 {
2002 bool callee_copies;
2003 tree base = NULL_TREE;
2004
2005 callee_copies
2006 = reference_callee_copied (args_so_far_pnt, TYPE_MODE (type),
2007 type, argpos < n_named_args);
2008
2009 /* If we're compiling a thunk, pass through invisible references
2010 instead of making a copy. */
2011 if (call_from_thunk_p
2012 || (callee_copies
2013 && !TREE_ADDRESSABLE (type)
2014 && (base = get_base_address (args[i].tree_value))
2015 && TREE_CODE (base) != SSA_NAME
2016 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
2017 {
2018 /* We may have turned the parameter value into an SSA name.
2019 Go back to the original parameter so we can take the
2020 address. */
2021 if (TREE_CODE (args[i].tree_value) == SSA_NAME)
2022 {
2023 gcc_assert (SSA_NAME_IS_DEFAULT_DEF (args[i].tree_value));
2024 args[i].tree_value = SSA_NAME_VAR (args[i].tree_value);
2025 gcc_assert (TREE_CODE (args[i].tree_value) == PARM_DECL);
2026 }
2027 /* Argument setup code may have copied the value to register. We
2028 revert that optimization now because the tail call code must
2029 use the original location. */
2030 if (TREE_CODE (args[i].tree_value) == PARM_DECL
2031 && !MEM_P (DECL_RTL (args[i].tree_value))
2032 && DECL_INCOMING_RTL (args[i].tree_value)
2033 && MEM_P (DECL_INCOMING_RTL (args[i].tree_value)))
2034 set_decl_rtl (args[i].tree_value,
2035 DECL_INCOMING_RTL (args[i].tree_value));
2036
2037 mark_addressable (args[i].tree_value);
2038
2039 /* We can't use sibcalls if a callee-copied argument is
2040 stored in the current function's frame. */
2041 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
2042 {
2043 *may_tailcall = false;
2044 maybe_complain_about_tail_call (exp,
2045 "a callee-copied argument is"
2046 " stored in the current"
2047 " function's frame");
2048 }
2049
2050 args[i].tree_value = build_fold_addr_expr_loc (loc,
2051 args[i].tree_value);
2052 type = TREE_TYPE (args[i].tree_value);
2053
2054 if (*ecf_flags & ECF_CONST)
2055 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
2056 }
2057 else
2058 {
2059 /* We make a copy of the object and pass the address to the
2060 function being called. */
2061 rtx copy;
2062
2063 if (!COMPLETE_TYPE_P (type)
2064 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
2065 || (flag_stack_check == GENERIC_STACK_CHECK
2066 && compare_tree_int (TYPE_SIZE_UNIT (type),
2067 STACK_CHECK_MAX_VAR_SIZE) > 0))
2068 {
2069 /* This is a variable-sized object. Make space on the stack
2070 for it. */
2071 rtx size_rtx = expr_size (args[i].tree_value);
2072
2073 if (*old_stack_level == 0)
2074 {
2075 emit_stack_save (SAVE_BLOCK, old_stack_level);
2076 *old_pending_adj = pending_stack_adjust;
2077 pending_stack_adjust = 0;
2078 }
2079
2080 /* We can pass TRUE as the 4th argument because we just
2081 saved the stack pointer and will restore it right after
2082 the call. */
2083 copy = allocate_dynamic_stack_space (size_rtx,
2084 TYPE_ALIGN (type),
2085 TYPE_ALIGN (type),
2086 max_int_size_in_bytes
2087 (type),
2088 true);
2089 copy = gen_rtx_MEM (BLKmode, copy);
2090 set_mem_attributes (copy, type, 1);
2091 }
2092 else
2093 copy = assign_temp (type, 1, 0);
2094
2095 store_expr (args[i].tree_value, copy, 0, false, false);
2096
2097 /* Just change the const function to pure and then let
2098 the next test clear the pure based on
2099 callee_copies. */
2100 if (*ecf_flags & ECF_CONST)
2101 {
2102 *ecf_flags &= ~ECF_CONST;
2103 *ecf_flags |= ECF_PURE;
2104 }
2105
2106 if (!callee_copies && *ecf_flags & ECF_PURE)
2107 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2108
2109 args[i].tree_value
2110 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
2111 type = TREE_TYPE (args[i].tree_value);
2112 *may_tailcall = false;
2113 maybe_complain_about_tail_call (exp,
2114 "argument must be passed"
2115 " by copying");
2116 }
2117 }
2118
2119 unsignedp = TYPE_UNSIGNED (type);
2120 mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
2121 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
2122
2123 args[i].unsignedp = unsignedp;
2124 args[i].mode = mode;
2125
2126 targetm.calls.warn_parameter_passing_abi (args_so_far, type);
2127
2128 function_arg_info arg (type, mode, argpos < n_named_args);
2129 args[i].reg = targetm.calls.function_arg (args_so_far, arg);
2130
2131 if (args[i].reg && CONST_INT_P (args[i].reg))
2132 args[i].reg = NULL;
2133
2134 /* If this is a sibling call and the machine has register windows, the
2135 register window has to be unwinded before calling the routine, so
2136 arguments have to go into the incoming registers. */
2137 if (targetm.calls.function_incoming_arg != targetm.calls.function_arg)
2138 args[i].tail_call_reg
2139 = targetm.calls.function_incoming_arg (args_so_far, arg);
2140 else
2141 args[i].tail_call_reg = args[i].reg;
2142
2143 if (args[i].reg)
2144 args[i].partial = targetm.calls.arg_partial_bytes (args_so_far, arg);
2145
2146 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
2147
2148 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
2149 it means that we are to pass this arg in the register(s) designated
2150 by the PARALLEL, but also to pass it in the stack. */
2151 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
2152 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
2153 args[i].pass_on_stack = 1;
2154
2155 /* If this is an addressable type, we must preallocate the stack
2156 since we must evaluate the object into its final location.
2157
2158 If this is to be passed in both registers and the stack, it is simpler
2159 to preallocate. */
2160 if (TREE_ADDRESSABLE (type)
2161 || (args[i].pass_on_stack && args[i].reg != 0))
2162 *must_preallocate = 1;
2163
2164 /* Compute the stack-size of this argument. */
2165 if (args[i].reg == 0 || args[i].partial != 0
2166 || reg_parm_stack_space > 0
2167 || args[i].pass_on_stack)
2168 locate_and_pad_parm (mode, type,
2169 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2170 1,
2171 #else
2172 args[i].reg != 0,
2173 #endif
2174 reg_parm_stack_space,
2175 args[i].pass_on_stack ? 0 : args[i].partial,
2176 fndecl, args_size, &args[i].locate);
2177 #ifdef BLOCK_REG_PADDING
2178 else
2179 /* The argument is passed entirely in registers. See at which
2180 end it should be padded. */
2181 args[i].locate.where_pad =
2182 BLOCK_REG_PADDING (mode, type,
2183 int_size_in_bytes (type) <= UNITS_PER_WORD);
2184 #endif
2185
2186 /* Update ARGS_SIZE, the total stack space for args so far. */
2187
2188 args_size->constant += args[i].locate.size.constant;
2189 if (args[i].locate.size.var)
2190 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
2191
2192 /* Increment ARGS_SO_FAR, which has info about which arg-registers
2193 have been used, etc. */
2194
2195 targetm.calls.function_arg_advance (args_so_far, TYPE_MODE (type),
2196 type, argpos < n_named_args);
2197
2198 /* Store argument values for functions decorated with attribute
2199 alloc_size. */
2200 if (argpos == alloc_idx[0])
2201 alloc_args[0] = args[i].tree_value;
2202 else if (argpos == alloc_idx[1])
2203 alloc_args[1] = args[i].tree_value;
2204 }
2205
2206 if (alloc_args[0])
2207 {
2208 /* Check the arguments of functions decorated with attribute
2209 alloc_size. */
2210 maybe_warn_alloc_args_overflow (fndecl, exp, alloc_args, alloc_idx);
2211 }
2212
2213 /* Detect passing non-string arguments to functions expecting
2214 nul-terminated strings. */
2215 maybe_warn_nonstring_arg (fndecl, exp);
2216 }
2217
2218 /* Update ARGS_SIZE to contain the total size for the argument block.
2219 Return the original constant component of the argument block's size.
2220
2221 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
2222 for arguments passed in registers. */
2223
2224 static poly_int64
2225 compute_argument_block_size (int reg_parm_stack_space,
2226 struct args_size *args_size,
2227 tree fndecl ATTRIBUTE_UNUSED,
2228 tree fntype ATTRIBUTE_UNUSED,
2229 int preferred_stack_boundary ATTRIBUTE_UNUSED)
2230 {
2231 poly_int64 unadjusted_args_size = args_size->constant;
2232
2233 /* For accumulate outgoing args mode we don't need to align, since the frame
2234 will be already aligned. Align to STACK_BOUNDARY in order to prevent
2235 backends from generating misaligned frame sizes. */
2236 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
2237 preferred_stack_boundary = STACK_BOUNDARY;
2238
2239 /* Compute the actual size of the argument block required. The variable
2240 and constant sizes must be combined, the size may have to be rounded,
2241 and there may be a minimum required size. */
2242
2243 if (args_size->var)
2244 {
2245 args_size->var = ARGS_SIZE_TREE (*args_size);
2246 args_size->constant = 0;
2247
2248 preferred_stack_boundary /= BITS_PER_UNIT;
2249 if (preferred_stack_boundary > 1)
2250 {
2251 /* We don't handle this case yet. To handle it correctly we have
2252 to add the delta, round and subtract the delta.
2253 Currently no machine description requires this support. */
2254 gcc_assert (multiple_p (stack_pointer_delta,
2255 preferred_stack_boundary));
2256 args_size->var = round_up (args_size->var, preferred_stack_boundary);
2257 }
2258
2259 if (reg_parm_stack_space > 0)
2260 {
2261 args_size->var
2262 = size_binop (MAX_EXPR, args_size->var,
2263 ssize_int (reg_parm_stack_space));
2264
2265 /* The area corresponding to register parameters is not to count in
2266 the size of the block we need. So make the adjustment. */
2267 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2268 args_size->var
2269 = size_binop (MINUS_EXPR, args_size->var,
2270 ssize_int (reg_parm_stack_space));
2271 }
2272 }
2273 else
2274 {
2275 preferred_stack_boundary /= BITS_PER_UNIT;
2276 if (preferred_stack_boundary < 1)
2277 preferred_stack_boundary = 1;
2278 args_size->constant = (aligned_upper_bound (args_size->constant
2279 + stack_pointer_delta,
2280 preferred_stack_boundary)
2281 - stack_pointer_delta);
2282
2283 args_size->constant = upper_bound (args_size->constant,
2284 reg_parm_stack_space);
2285
2286 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2287 args_size->constant -= reg_parm_stack_space;
2288 }
2289 return unadjusted_args_size;
2290 }
2291
2292 /* Precompute parameters as needed for a function call.
2293
2294 FLAGS is mask of ECF_* constants.
2295
2296 NUM_ACTUALS is the number of arguments.
2297
2298 ARGS is an array containing information for each argument; this
2299 routine fills in the INITIAL_VALUE and VALUE fields for each
2300 precomputed argument. */
2301
2302 static void
2303 precompute_arguments (int num_actuals, struct arg_data *args)
2304 {
2305 int i;
2306
2307 /* If this is a libcall, then precompute all arguments so that we do not
2308 get extraneous instructions emitted as part of the libcall sequence. */
2309
2310 /* If we preallocated the stack space, and some arguments must be passed
2311 on the stack, then we must precompute any parameter which contains a
2312 function call which will store arguments on the stack.
2313 Otherwise, evaluating the parameter may clobber previous parameters
2314 which have already been stored into the stack. (we have code to avoid
2315 such case by saving the outgoing stack arguments, but it results in
2316 worse code) */
2317 if (!ACCUMULATE_OUTGOING_ARGS)
2318 return;
2319
2320 for (i = 0; i < num_actuals; i++)
2321 {
2322 tree type;
2323 machine_mode mode;
2324
2325 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
2326 continue;
2327
2328 /* If this is an addressable type, we cannot pre-evaluate it. */
2329 type = TREE_TYPE (args[i].tree_value);
2330 gcc_assert (!TREE_ADDRESSABLE (type));
2331
2332 args[i].initial_value = args[i].value
2333 = expand_normal (args[i].tree_value);
2334
2335 mode = TYPE_MODE (type);
2336 if (mode != args[i].mode)
2337 {
2338 int unsignedp = args[i].unsignedp;
2339 args[i].value
2340 = convert_modes (args[i].mode, mode,
2341 args[i].value, args[i].unsignedp);
2342
2343 /* CSE will replace this only if it contains args[i].value
2344 pseudo, so convert it down to the declared mode using
2345 a SUBREG. */
2346 if (REG_P (args[i].value)
2347 && GET_MODE_CLASS (args[i].mode) == MODE_INT
2348 && promote_mode (type, mode, &unsignedp) != args[i].mode)
2349 {
2350 args[i].initial_value
2351 = gen_lowpart_SUBREG (mode, args[i].value);
2352 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
2353 SUBREG_PROMOTED_SET (args[i].initial_value, args[i].unsignedp);
2354 }
2355 }
2356 }
2357 }
2358
2359 /* Given the current state of MUST_PREALLOCATE and information about
2360 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
2361 compute and return the final value for MUST_PREALLOCATE. */
2362
2363 static int
2364 finalize_must_preallocate (int must_preallocate, int num_actuals,
2365 struct arg_data *args, struct args_size *args_size)
2366 {
2367 /* See if we have or want to preallocate stack space.
2368
2369 If we would have to push a partially-in-regs parm
2370 before other stack parms, preallocate stack space instead.
2371
2372 If the size of some parm is not a multiple of the required stack
2373 alignment, we must preallocate.
2374
2375 If the total size of arguments that would otherwise create a copy in
2376 a temporary (such as a CALL) is more than half the total argument list
2377 size, preallocation is faster.
2378
2379 Another reason to preallocate is if we have a machine (like the m88k)
2380 where stack alignment is required to be maintained between every
2381 pair of insns, not just when the call is made. However, we assume here
2382 that such machines either do not have push insns (and hence preallocation
2383 would occur anyway) or the problem is taken care of with
2384 PUSH_ROUNDING. */
2385
2386 if (! must_preallocate)
2387 {
2388 int partial_seen = 0;
2389 poly_int64 copy_to_evaluate_size = 0;
2390 int i;
2391
2392 for (i = 0; i < num_actuals && ! must_preallocate; i++)
2393 {
2394 if (args[i].partial > 0 && ! args[i].pass_on_stack)
2395 partial_seen = 1;
2396 else if (partial_seen && args[i].reg == 0)
2397 must_preallocate = 1;
2398
2399 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
2400 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
2401 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
2402 || TREE_CODE (args[i].tree_value) == COND_EXPR
2403 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
2404 copy_to_evaluate_size
2405 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
2406 }
2407
2408 if (maybe_ne (args_size->constant, 0)
2409 && maybe_ge (copy_to_evaluate_size * 2, args_size->constant))
2410 must_preallocate = 1;
2411 }
2412 return must_preallocate;
2413 }
2414
2415 /* If we preallocated stack space, compute the address of each argument
2416 and store it into the ARGS array.
2417
2418 We need not ensure it is a valid memory address here; it will be
2419 validized when it is used.
2420
2421 ARGBLOCK is an rtx for the address of the outgoing arguments. */
2422
2423 static void
2424 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
2425 {
2426 if (argblock)
2427 {
2428 rtx arg_reg = argblock;
2429 int i;
2430 poly_int64 arg_offset = 0;
2431
2432 if (GET_CODE (argblock) == PLUS)
2433 {
2434 arg_reg = XEXP (argblock, 0);
2435 arg_offset = rtx_to_poly_int64 (XEXP (argblock, 1));
2436 }
2437
2438 for (i = 0; i < num_actuals; i++)
2439 {
2440 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
2441 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
2442 rtx addr;
2443 unsigned int align, boundary;
2444 poly_uint64 units_on_stack = 0;
2445 machine_mode partial_mode = VOIDmode;
2446
2447 /* Skip this parm if it will not be passed on the stack. */
2448 if (! args[i].pass_on_stack
2449 && args[i].reg != 0
2450 && args[i].partial == 0)
2451 continue;
2452
2453 if (TYPE_EMPTY_P (TREE_TYPE (args[i].tree_value)))
2454 continue;
2455
2456 addr = simplify_gen_binary (PLUS, Pmode, arg_reg, offset);
2457 addr = plus_constant (Pmode, addr, arg_offset);
2458
2459 if (args[i].partial != 0)
2460 {
2461 /* Only part of the parameter is being passed on the stack.
2462 Generate a simple memory reference of the correct size. */
2463 units_on_stack = args[i].locate.size.constant;
2464 poly_uint64 bits_on_stack = units_on_stack * BITS_PER_UNIT;
2465 partial_mode = int_mode_for_size (bits_on_stack, 1).else_blk ();
2466 args[i].stack = gen_rtx_MEM (partial_mode, addr);
2467 set_mem_size (args[i].stack, units_on_stack);
2468 }
2469 else
2470 {
2471 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
2472 set_mem_attributes (args[i].stack,
2473 TREE_TYPE (args[i].tree_value), 1);
2474 }
2475 align = BITS_PER_UNIT;
2476 boundary = args[i].locate.boundary;
2477 poly_int64 offset_val;
2478 if (args[i].locate.where_pad != PAD_DOWNWARD)
2479 align = boundary;
2480 else if (poly_int_rtx_p (offset, &offset_val))
2481 {
2482 align = least_bit_hwi (boundary);
2483 unsigned int offset_align
2484 = known_alignment (offset_val) * BITS_PER_UNIT;
2485 if (offset_align != 0)
2486 align = MIN (align, offset_align);
2487 }
2488 set_mem_align (args[i].stack, align);
2489
2490 addr = simplify_gen_binary (PLUS, Pmode, arg_reg, slot_offset);
2491 addr = plus_constant (Pmode, addr, arg_offset);
2492
2493 if (args[i].partial != 0)
2494 {
2495 /* Only part of the parameter is being passed on the stack.
2496 Generate a simple memory reference of the correct size.
2497 */
2498 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
2499 set_mem_size (args[i].stack_slot, units_on_stack);
2500 }
2501 else
2502 {
2503 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
2504 set_mem_attributes (args[i].stack_slot,
2505 TREE_TYPE (args[i].tree_value), 1);
2506 }
2507 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
2508
2509 /* Function incoming arguments may overlap with sibling call
2510 outgoing arguments and we cannot allow reordering of reads
2511 from function arguments with stores to outgoing arguments
2512 of sibling calls. */
2513 set_mem_alias_set (args[i].stack, 0);
2514 set_mem_alias_set (args[i].stack_slot, 0);
2515 }
2516 }
2517 }
2518
2519 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
2520 in a call instruction.
2521
2522 FNDECL is the tree node for the target function. For an indirect call
2523 FNDECL will be NULL_TREE.
2524
2525 ADDR is the operand 0 of CALL_EXPR for this call. */
2526
2527 static rtx
2528 rtx_for_function_call (tree fndecl, tree addr)
2529 {
2530 rtx funexp;
2531
2532 /* Get the function to call, in the form of RTL. */
2533 if (fndecl)
2534 {
2535 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
2536 TREE_USED (fndecl) = 1;
2537
2538 /* Get a SYMBOL_REF rtx for the function address. */
2539 funexp = XEXP (DECL_RTL (fndecl), 0);
2540 }
2541 else
2542 /* Generate an rtx (probably a pseudo-register) for the address. */
2543 {
2544 push_temp_slots ();
2545 funexp = expand_normal (addr);
2546 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
2547 }
2548 return funexp;
2549 }
2550
2551 /* Return the static chain for this function, if any. */
2552
2553 rtx
2554 rtx_for_static_chain (const_tree fndecl_or_type, bool incoming_p)
2555 {
2556 if (DECL_P (fndecl_or_type) && !DECL_STATIC_CHAIN (fndecl_or_type))
2557 return NULL;
2558
2559 return targetm.calls.static_chain (fndecl_or_type, incoming_p);
2560 }
2561
2562 /* Internal state for internal_arg_pointer_based_exp and its helpers. */
2563 static struct
2564 {
2565 /* Last insn that has been scanned by internal_arg_pointer_based_exp_scan,
2566 or NULL_RTX if none has been scanned yet. */
2567 rtx_insn *scan_start;
2568 /* Vector indexed by REGNO - FIRST_PSEUDO_REGISTER, recording if a pseudo is
2569 based on crtl->args.internal_arg_pointer. The element is NULL_RTX if the
2570 pseudo isn't based on it, a CONST_INT offset if the pseudo is based on it
2571 with fixed offset, or PC if this is with variable or unknown offset. */
2572 vec<rtx> cache;
2573 } internal_arg_pointer_exp_state;
2574
2575 static rtx internal_arg_pointer_based_exp (const_rtx, bool);
2576
2577 /* Helper function for internal_arg_pointer_based_exp. Scan insns in
2578 the tail call sequence, starting with first insn that hasn't been
2579 scanned yet, and note for each pseudo on the LHS whether it is based
2580 on crtl->args.internal_arg_pointer or not, and what offset from that
2581 that pointer it has. */
2582
2583 static void
2584 internal_arg_pointer_based_exp_scan (void)
2585 {
2586 rtx_insn *insn, *scan_start = internal_arg_pointer_exp_state.scan_start;
2587
2588 if (scan_start == NULL_RTX)
2589 insn = get_insns ();
2590 else
2591 insn = NEXT_INSN (scan_start);
2592
2593 while (insn)
2594 {
2595 rtx set = single_set (insn);
2596 if (set && REG_P (SET_DEST (set)) && !HARD_REGISTER_P (SET_DEST (set)))
2597 {
2598 rtx val = NULL_RTX;
2599 unsigned int idx = REGNO (SET_DEST (set)) - FIRST_PSEUDO_REGISTER;
2600 /* Punt on pseudos set multiple times. */
2601 if (idx < internal_arg_pointer_exp_state.cache.length ()
2602 && (internal_arg_pointer_exp_state.cache[idx]
2603 != NULL_RTX))
2604 val = pc_rtx;
2605 else
2606 val = internal_arg_pointer_based_exp (SET_SRC (set), false);
2607 if (val != NULL_RTX)
2608 {
2609 if (idx >= internal_arg_pointer_exp_state.cache.length ())
2610 internal_arg_pointer_exp_state.cache
2611 .safe_grow_cleared (idx + 1);
2612 internal_arg_pointer_exp_state.cache[idx] = val;
2613 }
2614 }
2615 if (NEXT_INSN (insn) == NULL_RTX)
2616 scan_start = insn;
2617 insn = NEXT_INSN (insn);
2618 }
2619
2620 internal_arg_pointer_exp_state.scan_start = scan_start;
2621 }
2622
2623 /* Compute whether RTL is based on crtl->args.internal_arg_pointer. Return
2624 NULL_RTX if RTL isn't based on it, a CONST_INT offset if RTL is based on
2625 it with fixed offset, or PC if this is with variable or unknown offset.
2626 TOPLEVEL is true if the function is invoked at the topmost level. */
2627
2628 static rtx
2629 internal_arg_pointer_based_exp (const_rtx rtl, bool toplevel)
2630 {
2631 if (CONSTANT_P (rtl))
2632 return NULL_RTX;
2633
2634 if (rtl == crtl->args.internal_arg_pointer)
2635 return const0_rtx;
2636
2637 if (REG_P (rtl) && HARD_REGISTER_P (rtl))
2638 return NULL_RTX;
2639
2640 poly_int64 offset;
2641 if (GET_CODE (rtl) == PLUS && poly_int_rtx_p (XEXP (rtl, 1), &offset))
2642 {
2643 rtx val = internal_arg_pointer_based_exp (XEXP (rtl, 0), toplevel);
2644 if (val == NULL_RTX || val == pc_rtx)
2645 return val;
2646 return plus_constant (Pmode, val, offset);
2647 }
2648
2649 /* When called at the topmost level, scan pseudo assignments in between the
2650 last scanned instruction in the tail call sequence and the latest insn
2651 in that sequence. */
2652 if (toplevel)
2653 internal_arg_pointer_based_exp_scan ();
2654
2655 if (REG_P (rtl))
2656 {
2657 unsigned int idx = REGNO (rtl) - FIRST_PSEUDO_REGISTER;
2658 if (idx < internal_arg_pointer_exp_state.cache.length ())
2659 return internal_arg_pointer_exp_state.cache[idx];
2660
2661 return NULL_RTX;
2662 }
2663
2664 subrtx_iterator::array_type array;
2665 FOR_EACH_SUBRTX (iter, array, rtl, NONCONST)
2666 {
2667 const_rtx x = *iter;
2668 if (REG_P (x) && internal_arg_pointer_based_exp (x, false) != NULL_RTX)
2669 return pc_rtx;
2670 if (MEM_P (x))
2671 iter.skip_subrtxes ();
2672 }
2673
2674 return NULL_RTX;
2675 }
2676
2677 /* Return true if SIZE bytes starting from address ADDR might overlap an
2678 already-clobbered argument area. This function is used to determine
2679 if we should give up a sibcall. */
2680
2681 static bool
2682 mem_might_overlap_already_clobbered_arg_p (rtx addr, poly_uint64 size)
2683 {
2684 poly_int64 i;
2685 unsigned HOST_WIDE_INT start, end;
2686 rtx val;
2687
2688 if (bitmap_empty_p (stored_args_map)
2689 && stored_args_watermark == HOST_WIDE_INT_M1U)
2690 return false;
2691 val = internal_arg_pointer_based_exp (addr, true);
2692 if (val == NULL_RTX)
2693 return false;
2694 else if (!poly_int_rtx_p (val, &i))
2695 return true;
2696
2697 if (known_eq (size, 0U))
2698 return false;
2699
2700 if (STACK_GROWS_DOWNWARD)
2701 i -= crtl->args.pretend_args_size;
2702 else
2703 i += crtl->args.pretend_args_size;
2704
2705 if (ARGS_GROW_DOWNWARD)
2706 i = -i - size;
2707
2708 /* We can ignore any references to the function's pretend args,
2709 which at this point would manifest as negative values of I. */
2710 if (known_le (i, 0) && known_le (size, poly_uint64 (-i)))
2711 return false;
2712
2713 start = maybe_lt (i, 0) ? 0 : constant_lower_bound (i);
2714 if (!(i + size).is_constant (&end))
2715 end = HOST_WIDE_INT_M1U;
2716
2717 if (end > stored_args_watermark)
2718 return true;
2719
2720 end = MIN (end, SBITMAP_SIZE (stored_args_map));
2721 for (unsigned HOST_WIDE_INT k = start; k < end; ++k)
2722 if (bitmap_bit_p (stored_args_map, k))
2723 return true;
2724
2725 return false;
2726 }
2727
2728 /* Do the register loads required for any wholly-register parms or any
2729 parms which are passed both on the stack and in a register. Their
2730 expressions were already evaluated.
2731
2732 Mark all register-parms as living through the call, putting these USE
2733 insns in the CALL_INSN_FUNCTION_USAGE field.
2734
2735 When IS_SIBCALL, perform the check_sibcall_argument_overlap
2736 checking, setting *SIBCALL_FAILURE if appropriate. */
2737
2738 static void
2739 load_register_parameters (struct arg_data *args, int num_actuals,
2740 rtx *call_fusage, int flags, int is_sibcall,
2741 int *sibcall_failure)
2742 {
2743 int i, j;
2744
2745 for (i = 0; i < num_actuals; i++)
2746 {
2747 rtx reg = ((flags & ECF_SIBCALL)
2748 ? args[i].tail_call_reg : args[i].reg);
2749 if (reg)
2750 {
2751 int partial = args[i].partial;
2752 int nregs;
2753 poly_int64 size = 0;
2754 HOST_WIDE_INT const_size = 0;
2755 rtx_insn *before_arg = get_last_insn ();
2756 /* Set non-negative if we must move a word at a time, even if
2757 just one word (e.g, partial == 4 && mode == DFmode). Set
2758 to -1 if we just use a normal move insn. This value can be
2759 zero if the argument is a zero size structure. */
2760 nregs = -1;
2761 if (GET_CODE (reg) == PARALLEL)
2762 ;
2763 else if (partial)
2764 {
2765 gcc_assert (partial % UNITS_PER_WORD == 0);
2766 nregs = partial / UNITS_PER_WORD;
2767 }
2768 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
2769 {
2770 /* Variable-sized parameters should be described by a
2771 PARALLEL instead. */
2772 const_size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
2773 gcc_assert (const_size >= 0);
2774 nregs = (const_size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
2775 size = const_size;
2776 }
2777 else
2778 size = GET_MODE_SIZE (args[i].mode);
2779
2780 /* Handle calls that pass values in multiple non-contiguous
2781 locations. The Irix 6 ABI has examples of this. */
2782
2783 if (GET_CODE (reg) == PARALLEL)
2784 emit_group_move (reg, args[i].parallel_value);
2785
2786 /* If simple case, just do move. If normal partial, store_one_arg
2787 has already loaded the register for us. In all other cases,
2788 load the register(s) from memory. */
2789
2790 else if (nregs == -1)
2791 {
2792 emit_move_insn (reg, args[i].value);
2793 #ifdef BLOCK_REG_PADDING
2794 /* Handle case where we have a value that needs shifting
2795 up to the msb. eg. a QImode value and we're padding
2796 upward on a BYTES_BIG_ENDIAN machine. */
2797 if (args[i].locate.where_pad
2798 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD))
2799 {
2800 gcc_checking_assert (ordered_p (size, UNITS_PER_WORD));
2801 if (maybe_lt (size, UNITS_PER_WORD))
2802 {
2803 rtx x;
2804 poly_int64 shift
2805 = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2806
2807 /* Assigning REG here rather than a temp makes
2808 CALL_FUSAGE report the whole reg as used.
2809 Strictly speaking, the call only uses SIZE
2810 bytes at the msb end, but it doesn't seem worth
2811 generating rtl to say that. */
2812 reg = gen_rtx_REG (word_mode, REGNO (reg));
2813 x = expand_shift (LSHIFT_EXPR, word_mode,
2814 reg, shift, reg, 1);
2815 if (x != reg)
2816 emit_move_insn (reg, x);
2817 }
2818 }
2819 #endif
2820 }
2821
2822 /* If we have pre-computed the values to put in the registers in
2823 the case of non-aligned structures, copy them in now. */
2824
2825 else if (args[i].n_aligned_regs != 0)
2826 for (j = 0; j < args[i].n_aligned_regs; j++)
2827 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
2828 args[i].aligned_regs[j]);
2829
2830 else if (partial == 0 || args[i].pass_on_stack)
2831 {
2832 /* SIZE and CONST_SIZE are 0 for partial arguments and
2833 the size of a BLKmode type otherwise. */
2834 gcc_checking_assert (known_eq (size, const_size));
2835 rtx mem = validize_mem (copy_rtx (args[i].value));
2836
2837 /* Check for overlap with already clobbered argument area,
2838 providing that this has non-zero size. */
2839 if (is_sibcall
2840 && const_size != 0
2841 && (mem_might_overlap_already_clobbered_arg_p
2842 (XEXP (args[i].value, 0), const_size)))
2843 *sibcall_failure = 1;
2844
2845 if (const_size % UNITS_PER_WORD == 0
2846 || MEM_ALIGN (mem) % BITS_PER_WORD == 0)
2847 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
2848 else
2849 {
2850 if (nregs > 1)
2851 move_block_to_reg (REGNO (reg), mem, nregs - 1,
2852 args[i].mode);
2853 rtx dest = gen_rtx_REG (word_mode, REGNO (reg) + nregs - 1);
2854 unsigned int bitoff = (nregs - 1) * BITS_PER_WORD;
2855 unsigned int bitsize = const_size * BITS_PER_UNIT - bitoff;
2856 rtx x = extract_bit_field (mem, bitsize, bitoff, 1, dest,
2857 word_mode, word_mode, false,
2858 NULL);
2859 if (BYTES_BIG_ENDIAN)
2860 x = expand_shift (LSHIFT_EXPR, word_mode, x,
2861 BITS_PER_WORD - bitsize, dest, 1);
2862 if (x != dest)
2863 emit_move_insn (dest, x);
2864 }
2865
2866 /* Handle a BLKmode that needs shifting. */
2867 if (nregs == 1 && const_size < UNITS_PER_WORD
2868 #ifdef BLOCK_REG_PADDING
2869 && args[i].locate.where_pad == PAD_DOWNWARD
2870 #else
2871 && BYTES_BIG_ENDIAN
2872 #endif
2873 )
2874 {
2875 rtx dest = gen_rtx_REG (word_mode, REGNO (reg));
2876 int shift = (UNITS_PER_WORD - const_size) * BITS_PER_UNIT;
2877 enum tree_code dir = (BYTES_BIG_ENDIAN
2878 ? RSHIFT_EXPR : LSHIFT_EXPR);
2879 rtx x;
2880
2881 x = expand_shift (dir, word_mode, dest, shift, dest, 1);
2882 if (x != dest)
2883 emit_move_insn (dest, x);
2884 }
2885 }
2886
2887 /* When a parameter is a block, and perhaps in other cases, it is
2888 possible that it did a load from an argument slot that was
2889 already clobbered. */
2890 if (is_sibcall
2891 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
2892 *sibcall_failure = 1;
2893
2894 /* Handle calls that pass values in multiple non-contiguous
2895 locations. The Irix 6 ABI has examples of this. */
2896 if (GET_CODE (reg) == PARALLEL)
2897 use_group_regs (call_fusage, reg);
2898 else if (nregs == -1)
2899 use_reg_mode (call_fusage, reg,
2900 TYPE_MODE (TREE_TYPE (args[i].tree_value)));
2901 else if (nregs > 0)
2902 use_regs (call_fusage, REGNO (reg), nregs);
2903 }
2904 }
2905 }
2906
2907 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
2908 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
2909 bytes, then we would need to push some additional bytes to pad the
2910 arguments. So, we try to compute an adjust to the stack pointer for an
2911 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
2912 bytes. Then, when the arguments are pushed the stack will be perfectly
2913 aligned.
2914
2915 Return true if this optimization is possible, storing the adjustment
2916 in ADJUSTMENT_OUT and setting ARGS_SIZE->CONSTANT to the number of
2917 bytes that should be popped after the call. */
2918
2919 static bool
2920 combine_pending_stack_adjustment_and_call (poly_int64_pod *adjustment_out,
2921 poly_int64 unadjusted_args_size,
2922 struct args_size *args_size,
2923 unsigned int preferred_unit_stack_boundary)
2924 {
2925 /* The number of bytes to pop so that the stack will be
2926 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
2927 poly_int64 adjustment;
2928 /* The alignment of the stack after the arguments are pushed, if we
2929 just pushed the arguments without adjust the stack here. */
2930 unsigned HOST_WIDE_INT unadjusted_alignment;
2931
2932 if (!known_misalignment (stack_pointer_delta + unadjusted_args_size,
2933 preferred_unit_stack_boundary,
2934 &unadjusted_alignment))
2935 return false;
2936
2937 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
2938 as possible -- leaving just enough left to cancel out the
2939 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
2940 PENDING_STACK_ADJUST is non-negative, and congruent to
2941 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
2942
2943 /* Begin by trying to pop all the bytes. */
2944 unsigned HOST_WIDE_INT tmp_misalignment;
2945 if (!known_misalignment (pending_stack_adjust,
2946 preferred_unit_stack_boundary,
2947 &tmp_misalignment))
2948 return false;
2949 unadjusted_alignment -= tmp_misalignment;
2950 adjustment = pending_stack_adjust;
2951 /* Push enough additional bytes that the stack will be aligned
2952 after the arguments are pushed. */
2953 if (preferred_unit_stack_boundary > 1 && unadjusted_alignment)
2954 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
2955
2956 /* We need to know whether the adjusted argument size
2957 (UNADJUSTED_ARGS_SIZE - ADJUSTMENT) constitutes an allocation
2958 or a deallocation. */
2959 if (!ordered_p (adjustment, unadjusted_args_size))
2960 return false;
2961
2962 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
2963 bytes after the call. The right number is the entire
2964 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
2965 by the arguments in the first place. */
2966 args_size->constant
2967 = pending_stack_adjust - adjustment + unadjusted_args_size;
2968
2969 *adjustment_out = adjustment;
2970 return true;
2971 }
2972
2973 /* Scan X expression if it does not dereference any argument slots
2974 we already clobbered by tail call arguments (as noted in stored_args_map
2975 bitmap).
2976 Return nonzero if X expression dereferences such argument slots,
2977 zero otherwise. */
2978
2979 static int
2980 check_sibcall_argument_overlap_1 (rtx x)
2981 {
2982 RTX_CODE code;
2983 int i, j;
2984 const char *fmt;
2985
2986 if (x == NULL_RTX)
2987 return 0;
2988
2989 code = GET_CODE (x);
2990
2991 /* We need not check the operands of the CALL expression itself. */
2992 if (code == CALL)
2993 return 0;
2994
2995 if (code == MEM)
2996 return (mem_might_overlap_already_clobbered_arg_p
2997 (XEXP (x, 0), GET_MODE_SIZE (GET_MODE (x))));
2998
2999 /* Scan all subexpressions. */
3000 fmt = GET_RTX_FORMAT (code);
3001 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3002 {
3003 if (*fmt == 'e')
3004 {
3005 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
3006 return 1;
3007 }
3008 else if (*fmt == 'E')
3009 {
3010 for (j = 0; j < XVECLEN (x, i); j++)
3011 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
3012 return 1;
3013 }
3014 }
3015 return 0;
3016 }
3017
3018 /* Scan sequence after INSN if it does not dereference any argument slots
3019 we already clobbered by tail call arguments (as noted in stored_args_map
3020 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
3021 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
3022 should be 0). Return nonzero if sequence after INSN dereferences such argument
3023 slots, zero otherwise. */
3024
3025 static int
3026 check_sibcall_argument_overlap (rtx_insn *insn, struct arg_data *arg,
3027 int mark_stored_args_map)
3028 {
3029 poly_uint64 low, high;
3030 unsigned HOST_WIDE_INT const_low, const_high;
3031
3032 if (insn == NULL_RTX)
3033 insn = get_insns ();
3034 else
3035 insn = NEXT_INSN (insn);
3036
3037 for (; insn; insn = NEXT_INSN (insn))
3038 if (INSN_P (insn)
3039 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
3040 break;
3041
3042 if (mark_stored_args_map)
3043 {
3044 if (ARGS_GROW_DOWNWARD)
3045 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
3046 else
3047 low = arg->locate.slot_offset.constant;
3048 high = low + arg->locate.size.constant;
3049
3050 const_low = constant_lower_bound (low);
3051 if (high.is_constant (&const_high))
3052 for (unsigned HOST_WIDE_INT i = const_low; i < const_high; ++i)
3053 bitmap_set_bit (stored_args_map, i);
3054 else
3055 stored_args_watermark = MIN (stored_args_watermark, const_low);
3056 }
3057 return insn != NULL_RTX;
3058 }
3059
3060 /* Given that a function returns a value of mode MODE at the most
3061 significant end of hard register VALUE, shift VALUE left or right
3062 as specified by LEFT_P. Return true if some action was needed. */
3063
3064 bool
3065 shift_return_value (machine_mode mode, bool left_p, rtx value)
3066 {
3067 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
3068 machine_mode value_mode = GET_MODE (value);
3069 poly_int64 shift = GET_MODE_BITSIZE (value_mode) - GET_MODE_BITSIZE (mode);
3070
3071 if (known_eq (shift, 0))
3072 return false;
3073
3074 /* Use ashr rather than lshr for right shifts. This is for the benefit
3075 of the MIPS port, which requires SImode values to be sign-extended
3076 when stored in 64-bit registers. */
3077 if (!force_expand_binop (value_mode, left_p ? ashl_optab : ashr_optab,
3078 value, gen_int_shift_amount (value_mode, shift),
3079 value, 1, OPTAB_WIDEN))
3080 gcc_unreachable ();
3081 return true;
3082 }
3083
3084 /* If X is a likely-spilled register value, copy it to a pseudo
3085 register and return that register. Return X otherwise. */
3086
3087 static rtx
3088 avoid_likely_spilled_reg (rtx x)
3089 {
3090 rtx new_rtx;
3091
3092 if (REG_P (x)
3093 && HARD_REGISTER_P (x)
3094 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
3095 {
3096 /* Make sure that we generate a REG rather than a CONCAT.
3097 Moves into CONCATs can need nontrivial instructions,
3098 and the whole point of this function is to avoid
3099 using the hard register directly in such a situation. */
3100 generating_concat_p = 0;
3101 new_rtx = gen_reg_rtx (GET_MODE (x));
3102 generating_concat_p = 1;
3103 emit_move_insn (new_rtx, x);
3104 return new_rtx;
3105 }
3106 return x;
3107 }
3108
3109 /* Helper function for expand_call.
3110 Return false is EXP is not implementable as a sibling call. */
3111
3112 static bool
3113 can_implement_as_sibling_call_p (tree exp,
3114 rtx structure_value_addr,
3115 tree funtype,
3116 int reg_parm_stack_space ATTRIBUTE_UNUSED,
3117 tree fndecl,
3118 int flags,
3119 tree addr,
3120 const args_size &args_size)
3121 {
3122 if (!targetm.have_sibcall_epilogue ())
3123 {
3124 maybe_complain_about_tail_call
3125 (exp,
3126 "machine description does not have"
3127 " a sibcall_epilogue instruction pattern");
3128 return false;
3129 }
3130
3131 /* Doing sibling call optimization needs some work, since
3132 structure_value_addr can be allocated on the stack.
3133 It does not seem worth the effort since few optimizable
3134 sibling calls will return a structure. */
3135 if (structure_value_addr != NULL_RTX)
3136 {
3137 maybe_complain_about_tail_call (exp, "callee returns a structure");
3138 return false;
3139 }
3140
3141 #ifdef REG_PARM_STACK_SPACE
3142 /* If outgoing reg parm stack space changes, we cannot do sibcall. */
3143 if (OUTGOING_REG_PARM_STACK_SPACE (funtype)
3144 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl))
3145 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (current_function_decl)))
3146 {
3147 maybe_complain_about_tail_call (exp,
3148 "inconsistent size of stack space"
3149 " allocated for arguments which are"
3150 " passed in registers");
3151 return false;
3152 }
3153 #endif
3154
3155 /* Check whether the target is able to optimize the call
3156 into a sibcall. */
3157 if (!targetm.function_ok_for_sibcall (fndecl, exp))
3158 {
3159 maybe_complain_about_tail_call (exp,
3160 "target is not able to optimize the"
3161 " call into a sibling call");
3162 return false;
3163 }
3164
3165 /* Functions that do not return exactly once may not be sibcall
3166 optimized. */
3167 if (flags & ECF_RETURNS_TWICE)
3168 {
3169 maybe_complain_about_tail_call (exp, "callee returns twice");
3170 return false;
3171 }
3172 if (flags & ECF_NORETURN)
3173 {
3174 maybe_complain_about_tail_call (exp, "callee does not return");
3175 return false;
3176 }
3177
3178 if (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr))))
3179 {
3180 maybe_complain_about_tail_call (exp, "volatile function type");
3181 return false;
3182 }
3183
3184 /* If the called function is nested in the current one, it might access
3185 some of the caller's arguments, but could clobber them beforehand if
3186 the argument areas are shared. */
3187 if (fndecl && decl_function_context (fndecl) == current_function_decl)
3188 {
3189 maybe_complain_about_tail_call (exp, "nested function");
3190 return false;
3191 }
3192
3193 /* If this function requires more stack slots than the current
3194 function, we cannot change it into a sibling call.
3195 crtl->args.pretend_args_size is not part of the
3196 stack allocated by our caller. */
3197 if (maybe_gt (args_size.constant,
3198 crtl->args.size - crtl->args.pretend_args_size))
3199 {
3200 maybe_complain_about_tail_call (exp,
3201 "callee required more stack slots"
3202 " than the caller");
3203 return false;
3204 }
3205
3206 /* If the callee pops its own arguments, then it must pop exactly
3207 the same number of arguments as the current function. */
3208 if (maybe_ne (targetm.calls.return_pops_args (fndecl, funtype,
3209 args_size.constant),
3210 targetm.calls.return_pops_args (current_function_decl,
3211 TREE_TYPE
3212 (current_function_decl),
3213 crtl->args.size)))
3214 {
3215 maybe_complain_about_tail_call (exp,
3216 "inconsistent number of"
3217 " popped arguments");
3218 return false;
3219 }
3220
3221 if (!lang_hooks.decls.ok_for_sibcall (fndecl))
3222 {
3223 maybe_complain_about_tail_call (exp, "frontend does not support"
3224 " sibling call");
3225 return false;
3226 }
3227
3228 /* All checks passed. */
3229 return true;
3230 }
3231
3232 /* Update stack alignment when the parameter is passed in the stack
3233 since the outgoing parameter requires extra alignment on the calling
3234 function side. */
3235
3236 static void
3237 update_stack_alignment_for_call (struct locate_and_pad_arg_data *locate)
3238 {
3239 if (crtl->stack_alignment_needed < locate->boundary)
3240 crtl->stack_alignment_needed = locate->boundary;
3241 if (crtl->preferred_stack_boundary < locate->boundary)
3242 crtl->preferred_stack_boundary = locate->boundary;
3243 }
3244
3245 /* Generate all the code for a CALL_EXPR exp
3246 and return an rtx for its value.
3247 Store the value in TARGET (specified as an rtx) if convenient.
3248 If the value is stored in TARGET then TARGET is returned.
3249 If IGNORE is nonzero, then we ignore the value of the function call. */
3250
3251 rtx
3252 expand_call (tree exp, rtx target, int ignore)
3253 {
3254 /* Nonzero if we are currently expanding a call. */
3255 static int currently_expanding_call = 0;
3256
3257 /* RTX for the function to be called. */
3258 rtx funexp;
3259 /* Sequence of insns to perform a normal "call". */
3260 rtx_insn *normal_call_insns = NULL;
3261 /* Sequence of insns to perform a tail "call". */
3262 rtx_insn *tail_call_insns = NULL;
3263 /* Data type of the function. */
3264 tree funtype;
3265 tree type_arg_types;
3266 tree rettype;
3267 /* Declaration of the function being called,
3268 or 0 if the function is computed (not known by name). */
3269 tree fndecl = 0;
3270 /* The type of the function being called. */
3271 tree fntype;
3272 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
3273 bool must_tail_call = CALL_EXPR_MUST_TAIL_CALL (exp);
3274 int pass;
3275
3276 /* Register in which non-BLKmode value will be returned,
3277 or 0 if no value or if value is BLKmode. */
3278 rtx valreg;
3279 /* Address where we should return a BLKmode value;
3280 0 if value not BLKmode. */
3281 rtx structure_value_addr = 0;
3282 /* Nonzero if that address is being passed by treating it as
3283 an extra, implicit first parameter. Otherwise,
3284 it is passed by being copied directly into struct_value_rtx. */
3285 int structure_value_addr_parm = 0;
3286 /* Holds the value of implicit argument for the struct value. */
3287 tree structure_value_addr_value = NULL_TREE;
3288 /* Size of aggregate value wanted, or zero if none wanted
3289 or if we are using the non-reentrant PCC calling convention
3290 or expecting the value in registers. */
3291 poly_int64 struct_value_size = 0;
3292 /* Nonzero if called function returns an aggregate in memory PCC style,
3293 by returning the address of where to find it. */
3294 int pcc_struct_value = 0;
3295 rtx struct_value = 0;
3296
3297 /* Number of actual parameters in this call, including struct value addr. */
3298 int num_actuals;
3299 /* Number of named args. Args after this are anonymous ones
3300 and they must all go on the stack. */
3301 int n_named_args;
3302 /* Number of complex actual arguments that need to be split. */
3303 int num_complex_actuals = 0;
3304
3305 /* Vector of information about each argument.
3306 Arguments are numbered in the order they will be pushed,
3307 not the order they are written. */
3308 struct arg_data *args;
3309
3310 /* Total size in bytes of all the stack-parms scanned so far. */
3311 struct args_size args_size;
3312 struct args_size adjusted_args_size;
3313 /* Size of arguments before any adjustments (such as rounding). */
3314 poly_int64 unadjusted_args_size;
3315 /* Data on reg parms scanned so far. */
3316 CUMULATIVE_ARGS args_so_far_v;
3317 cumulative_args_t args_so_far;
3318 /* Nonzero if a reg parm has been scanned. */
3319 int reg_parm_seen;
3320 /* Nonzero if this is an indirect function call. */
3321
3322 /* Nonzero if we must avoid push-insns in the args for this call.
3323 If stack space is allocated for register parameters, but not by the
3324 caller, then it is preallocated in the fixed part of the stack frame.
3325 So the entire argument block must then be preallocated (i.e., we
3326 ignore PUSH_ROUNDING in that case). */
3327
3328 int must_preallocate = !PUSH_ARGS;
3329
3330 /* Size of the stack reserved for parameter registers. */
3331 int reg_parm_stack_space = 0;
3332
3333 /* Address of space preallocated for stack parms
3334 (on machines that lack push insns), or 0 if space not preallocated. */
3335 rtx argblock = 0;
3336
3337 /* Mask of ECF_ and ERF_ flags. */
3338 int flags = 0;
3339 int return_flags = 0;
3340 #ifdef REG_PARM_STACK_SPACE
3341 /* Define the boundary of the register parm stack space that needs to be
3342 saved, if any. */
3343 int low_to_save, high_to_save;
3344 rtx save_area = 0; /* Place that it is saved */
3345 #endif
3346
3347 unsigned int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3348 char *initial_stack_usage_map = stack_usage_map;
3349 unsigned HOST_WIDE_INT initial_stack_usage_watermark = stack_usage_watermark;
3350 char *stack_usage_map_buf = NULL;
3351
3352 poly_int64 old_stack_allocated;
3353
3354 /* State variables to track stack modifications. */
3355 rtx old_stack_level = 0;
3356 int old_stack_arg_under_construction = 0;
3357 poly_int64 old_pending_adj = 0;
3358 int old_inhibit_defer_pop = inhibit_defer_pop;
3359
3360 /* Some stack pointer alterations we make are performed via
3361 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
3362 which we then also need to save/restore along the way. */
3363 poly_int64 old_stack_pointer_delta = 0;
3364
3365 rtx call_fusage;
3366 tree addr = CALL_EXPR_FN (exp);
3367 int i;
3368 /* The alignment of the stack, in bits. */
3369 unsigned HOST_WIDE_INT preferred_stack_boundary;
3370 /* The alignment of the stack, in bytes. */
3371 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
3372 /* The static chain value to use for this call. */
3373 rtx static_chain_value;
3374 /* See if this is "nothrow" function call. */
3375 if (TREE_NOTHROW (exp))
3376 flags |= ECF_NOTHROW;
3377
3378 /* See if we can find a DECL-node for the actual function, and get the
3379 function attributes (flags) from the function decl or type node. */
3380 fndecl = get_callee_fndecl (exp);
3381 if (fndecl)
3382 {
3383 fntype = TREE_TYPE (fndecl);
3384 flags |= flags_from_decl_or_type (fndecl);
3385 return_flags |= decl_return_flags (fndecl);
3386 }
3387 else
3388 {
3389 fntype = TREE_TYPE (TREE_TYPE (addr));
3390 flags |= flags_from_decl_or_type (fntype);
3391 if (CALL_EXPR_BY_DESCRIPTOR (exp))
3392 flags |= ECF_BY_DESCRIPTOR;
3393 }
3394 rettype = TREE_TYPE (exp);
3395
3396 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
3397
3398 /* Warn if this value is an aggregate type,
3399 regardless of which calling convention we are using for it. */
3400 if (AGGREGATE_TYPE_P (rettype))
3401 warning (OPT_Waggregate_return, "function call has aggregate value");
3402
3403 /* If the result of a non looping pure or const function call is
3404 ignored (or void), and none of its arguments are volatile, we can
3405 avoid expanding the call and just evaluate the arguments for
3406 side-effects. */
3407 if ((flags & (ECF_CONST | ECF_PURE))
3408 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
3409 && (ignore || target == const0_rtx
3410 || TYPE_MODE (rettype) == VOIDmode))
3411 {
3412 bool volatilep = false;
3413 tree arg;
3414 call_expr_arg_iterator iter;
3415
3416 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3417 if (TREE_THIS_VOLATILE (arg))
3418 {
3419 volatilep = true;
3420 break;
3421 }
3422
3423 if (! volatilep)
3424 {
3425 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3426 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
3427 return const0_rtx;
3428 }
3429 }
3430
3431 #ifdef REG_PARM_STACK_SPACE
3432 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
3433 #endif
3434
3435 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
3436 && reg_parm_stack_space > 0 && PUSH_ARGS)
3437 must_preallocate = 1;
3438
3439 /* Set up a place to return a structure. */
3440
3441 /* Cater to broken compilers. */
3442 if (aggregate_value_p (exp, fntype))
3443 {
3444 /* This call returns a big structure. */
3445 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3446
3447 #ifdef PCC_STATIC_STRUCT_RETURN
3448 {
3449 pcc_struct_value = 1;
3450 }
3451 #else /* not PCC_STATIC_STRUCT_RETURN */
3452 {
3453 if (!poly_int_tree_p (TYPE_SIZE_UNIT (rettype), &struct_value_size))
3454 struct_value_size = -1;
3455
3456 /* Even if it is semantically safe to use the target as the return
3457 slot, it may be not sufficiently aligned for the return type. */
3458 if (CALL_EXPR_RETURN_SLOT_OPT (exp)
3459 && target
3460 && MEM_P (target)
3461 /* If rettype is addressable, we may not create a temporary.
3462 If target is properly aligned at runtime and the compiler
3463 just doesn't know about it, it will work fine, otherwise it
3464 will be UB. */
3465 && (TREE_ADDRESSABLE (rettype)
3466 || !(MEM_ALIGN (target) < TYPE_ALIGN (rettype)
3467 && targetm.slow_unaligned_access (TYPE_MODE (rettype),
3468 MEM_ALIGN (target)))))
3469 structure_value_addr = XEXP (target, 0);
3470 else
3471 {
3472 /* For variable-sized objects, we must be called with a target
3473 specified. If we were to allocate space on the stack here,
3474 we would have no way of knowing when to free it. */
3475 rtx d = assign_temp (rettype, 1, 1);
3476 structure_value_addr = XEXP (d, 0);
3477 target = 0;
3478 }
3479 }
3480 #endif /* not PCC_STATIC_STRUCT_RETURN */
3481 }
3482
3483 /* Figure out the amount to which the stack should be aligned. */
3484 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3485 if (fndecl)
3486 {
3487 struct cgraph_rtl_info *i = cgraph_node::rtl_info (fndecl);
3488 /* Without automatic stack alignment, we can't increase preferred
3489 stack boundary. With automatic stack alignment, it is
3490 unnecessary since unless we can guarantee that all callers will
3491 align the outgoing stack properly, callee has to align its
3492 stack anyway. */
3493 if (i
3494 && i->preferred_incoming_stack_boundary
3495 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
3496 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
3497 }
3498
3499 /* Operand 0 is a pointer-to-function; get the type of the function. */
3500 funtype = TREE_TYPE (addr);
3501 gcc_assert (POINTER_TYPE_P (funtype));
3502 funtype = TREE_TYPE (funtype);
3503
3504 /* Count whether there are actual complex arguments that need to be split
3505 into their real and imaginary parts. Munge the type_arg_types
3506 appropriately here as well. */
3507 if (targetm.calls.split_complex_arg)
3508 {
3509 call_expr_arg_iterator iter;
3510 tree arg;
3511 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
3512 {
3513 tree type = TREE_TYPE (arg);
3514 if (type && TREE_CODE (type) == COMPLEX_TYPE
3515 && targetm.calls.split_complex_arg (type))
3516 num_complex_actuals++;
3517 }
3518 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
3519 }
3520 else
3521 type_arg_types = TYPE_ARG_TYPES (funtype);
3522
3523 if (flags & ECF_MAY_BE_ALLOCA)
3524 cfun->calls_alloca = 1;
3525
3526 /* If struct_value_rtx is 0, it means pass the address
3527 as if it were an extra parameter. Put the argument expression
3528 in structure_value_addr_value. */
3529 if (structure_value_addr && struct_value == 0)
3530 {
3531 /* If structure_value_addr is a REG other than
3532 virtual_outgoing_args_rtx, we can use always use it. If it
3533 is not a REG, we must always copy it into a register.
3534 If it is virtual_outgoing_args_rtx, we must copy it to another
3535 register in some cases. */
3536 rtx temp = (!REG_P (structure_value_addr)
3537 || (ACCUMULATE_OUTGOING_ARGS
3538 && stack_arg_under_construction
3539 && structure_value_addr == virtual_outgoing_args_rtx)
3540 ? copy_addr_to_reg (convert_memory_address
3541 (Pmode, structure_value_addr))
3542 : structure_value_addr);
3543
3544 structure_value_addr_value =
3545 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
3546 structure_value_addr_parm = 1;
3547 }
3548
3549 /* Count the arguments and set NUM_ACTUALS. */
3550 num_actuals =
3551 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
3552
3553 /* Compute number of named args.
3554 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
3555
3556 if (type_arg_types != 0)
3557 n_named_args
3558 = (list_length (type_arg_types)
3559 /* Count the struct value address, if it is passed as a parm. */
3560 + structure_value_addr_parm);
3561 else
3562 /* If we know nothing, treat all args as named. */
3563 n_named_args = num_actuals;
3564
3565 /* Start updating where the next arg would go.
3566
3567 On some machines (such as the PA) indirect calls have a different
3568 calling convention than normal calls. The fourth argument in
3569 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
3570 or not. */
3571 INIT_CUMULATIVE_ARGS (args_so_far_v, funtype, NULL_RTX, fndecl, n_named_args);
3572 args_so_far = pack_cumulative_args (&args_so_far_v);
3573
3574 /* Now possibly adjust the number of named args.
3575 Normally, don't include the last named arg if anonymous args follow.
3576 We do include the last named arg if
3577 targetm.calls.strict_argument_naming() returns nonzero.
3578 (If no anonymous args follow, the result of list_length is actually
3579 one too large. This is harmless.)
3580
3581 If targetm.calls.pretend_outgoing_varargs_named() returns
3582 nonzero, and targetm.calls.strict_argument_naming() returns zero,
3583 this machine will be able to place unnamed args that were passed
3584 in registers into the stack. So treat all args as named. This
3585 allows the insns emitting for a specific argument list to be
3586 independent of the function declaration.
3587
3588 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
3589 we do not have any reliable way to pass unnamed args in
3590 registers, so we must force them into memory. */
3591
3592 if (type_arg_types != 0
3593 && targetm.calls.strict_argument_naming (args_so_far))
3594 ;
3595 else if (type_arg_types != 0
3596 && ! targetm.calls.pretend_outgoing_varargs_named (args_so_far))
3597 /* Don't include the last named arg. */
3598 --n_named_args;
3599 else
3600 /* Treat all args as named. */
3601 n_named_args = num_actuals;
3602
3603 /* Make a vector to hold all the information about each arg. */
3604 args = XCNEWVEC (struct arg_data, num_actuals);
3605
3606 /* Build up entries in the ARGS array, compute the size of the
3607 arguments into ARGS_SIZE, etc. */
3608 initialize_argument_information (num_actuals, args, &args_size,
3609 n_named_args, exp,
3610 structure_value_addr_value, fndecl, fntype,
3611 args_so_far, reg_parm_stack_space,
3612 &old_stack_level, &old_pending_adj,
3613 &must_preallocate, &flags,
3614 &try_tail_call, CALL_FROM_THUNK_P (exp));
3615
3616 if (args_size.var)
3617 must_preallocate = 1;
3618
3619 /* Now make final decision about preallocating stack space. */
3620 must_preallocate = finalize_must_preallocate (must_preallocate,
3621 num_actuals, args,
3622 &args_size);
3623
3624 /* If the structure value address will reference the stack pointer, we
3625 must stabilize it. We don't need to do this if we know that we are
3626 not going to adjust the stack pointer in processing this call. */
3627
3628 if (structure_value_addr
3629 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
3630 || reg_mentioned_p (virtual_outgoing_args_rtx,
3631 structure_value_addr))
3632 && (args_size.var
3633 || (!ACCUMULATE_OUTGOING_ARGS
3634 && maybe_ne (args_size.constant, 0))))
3635 structure_value_addr = copy_to_reg (structure_value_addr);
3636
3637 /* Tail calls can make things harder to debug, and we've traditionally
3638 pushed these optimizations into -O2. Don't try if we're already
3639 expanding a call, as that means we're an argument. Don't try if
3640 there's cleanups, as we know there's code to follow the call. */
3641 if (currently_expanding_call++ != 0
3642 || (!flag_optimize_sibling_calls && !CALL_FROM_THUNK_P (exp))
3643 || args_size.var
3644 || dbg_cnt (tail_call) == false)
3645 try_tail_call = 0;
3646
3647 /* Workaround buggy C/C++ wrappers around Fortran routines with
3648 character(len=constant) arguments if the hidden string length arguments
3649 are passed on the stack; if the callers forget to pass those arguments,
3650 attempting to tail call in such routines leads to stack corruption.
3651 Avoid tail calls in functions where at least one such hidden string
3652 length argument is passed (partially or fully) on the stack in the
3653 caller and the callee needs to pass any arguments on the stack.
3654 See PR90329. */
3655 if (try_tail_call && maybe_ne (args_size.constant, 0))
3656 for (tree arg = DECL_ARGUMENTS (current_function_decl);
3657 arg; arg = DECL_CHAIN (arg))
3658 if (DECL_HIDDEN_STRING_LENGTH (arg) && DECL_INCOMING_RTL (arg))
3659 {
3660 subrtx_iterator::array_type array;
3661 FOR_EACH_SUBRTX (iter, array, DECL_INCOMING_RTL (arg), NONCONST)
3662 if (MEM_P (*iter))
3663 {
3664 try_tail_call = 0;
3665 break;
3666 }
3667 }
3668
3669 /* If the user has marked the function as requiring tail-call
3670 optimization, attempt it. */
3671 if (must_tail_call)
3672 try_tail_call = 1;
3673
3674 /* Rest of purposes for tail call optimizations to fail. */
3675 if (try_tail_call)
3676 try_tail_call = can_implement_as_sibling_call_p (exp,
3677 structure_value_addr,
3678 funtype,
3679 reg_parm_stack_space,
3680 fndecl,
3681 flags, addr, args_size);
3682
3683 /* Check if caller and callee disagree in promotion of function
3684 return value. */
3685 if (try_tail_call)
3686 {
3687 machine_mode caller_mode, caller_promoted_mode;
3688 machine_mode callee_mode, callee_promoted_mode;
3689 int caller_unsignedp, callee_unsignedp;
3690 tree caller_res = DECL_RESULT (current_function_decl);
3691
3692 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
3693 caller_mode = DECL_MODE (caller_res);
3694 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
3695 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
3696 caller_promoted_mode
3697 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
3698 &caller_unsignedp,
3699 TREE_TYPE (current_function_decl), 1);
3700 callee_promoted_mode
3701 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
3702 &callee_unsignedp,
3703 funtype, 1);
3704 if (caller_mode != VOIDmode
3705 && (caller_promoted_mode != callee_promoted_mode
3706 || ((caller_mode != caller_promoted_mode
3707 || callee_mode != callee_promoted_mode)
3708 && (caller_unsignedp != callee_unsignedp
3709 || partial_subreg_p (caller_mode, callee_mode)))))
3710 {
3711 try_tail_call = 0;
3712 maybe_complain_about_tail_call (exp,
3713 "caller and callee disagree in"
3714 " promotion of function"
3715 " return value");
3716 }
3717 }
3718
3719 /* Ensure current function's preferred stack boundary is at least
3720 what we need. Stack alignment may also increase preferred stack
3721 boundary. */
3722 for (i = 0; i < num_actuals; i++)
3723 if (reg_parm_stack_space > 0
3724 || args[i].reg == 0
3725 || args[i].partial != 0
3726 || args[i].pass_on_stack)
3727 update_stack_alignment_for_call (&args[i].locate);
3728 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
3729 crtl->preferred_stack_boundary = preferred_stack_boundary;
3730 else
3731 preferred_stack_boundary = crtl->preferred_stack_boundary;
3732
3733 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
3734
3735 /* We want to make two insn chains; one for a sibling call, the other
3736 for a normal call. We will select one of the two chains after
3737 initial RTL generation is complete. */
3738 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
3739 {
3740 int sibcall_failure = 0;
3741 /* We want to emit any pending stack adjustments before the tail
3742 recursion "call". That way we know any adjustment after the tail
3743 recursion call can be ignored if we indeed use the tail
3744 call expansion. */
3745 saved_pending_stack_adjust save;
3746 rtx_insn *insns, *before_call, *after_args;
3747 rtx next_arg_reg;
3748
3749 if (pass == 0)
3750 {
3751 /* State variables we need to save and restore between
3752 iterations. */
3753 save_pending_stack_adjust (&save);
3754 }
3755 if (pass)
3756 flags &= ~ECF_SIBCALL;
3757 else
3758 flags |= ECF_SIBCALL;
3759
3760 /* Other state variables that we must reinitialize each time
3761 through the loop (that are not initialized by the loop itself). */
3762 argblock = 0;
3763 call_fusage = 0;
3764
3765 /* Start a new sequence for the normal call case.
3766
3767 From this point on, if the sibling call fails, we want to set
3768 sibcall_failure instead of continuing the loop. */
3769 start_sequence ();
3770
3771 /* Don't let pending stack adjusts add up to too much.
3772 Also, do all pending adjustments now if there is any chance
3773 this might be a call to alloca or if we are expanding a sibling
3774 call sequence.
3775 Also do the adjustments before a throwing call, otherwise
3776 exception handling can fail; PR 19225. */
3777 if (maybe_ge (pending_stack_adjust, 32)
3778 || (maybe_ne (pending_stack_adjust, 0)
3779 && (flags & ECF_MAY_BE_ALLOCA))
3780 || (maybe_ne (pending_stack_adjust, 0)
3781 && flag_exceptions && !(flags & ECF_NOTHROW))
3782 || pass == 0)
3783 do_pending_stack_adjust ();
3784
3785 /* Precompute any arguments as needed. */
3786 if (pass)
3787 precompute_arguments (num_actuals, args);
3788
3789 /* Now we are about to start emitting insns that can be deleted
3790 if a libcall is deleted. */
3791 if (pass && (flags & ECF_MALLOC))
3792 start_sequence ();
3793
3794 if (pass == 0
3795 && crtl->stack_protect_guard
3796 && targetm.stack_protect_runtime_enabled_p ())
3797 stack_protect_epilogue ();
3798
3799 adjusted_args_size = args_size;
3800 /* Compute the actual size of the argument block required. The variable
3801 and constant sizes must be combined, the size may have to be rounded,
3802 and there may be a minimum required size. When generating a sibcall
3803 pattern, do not round up, since we'll be re-using whatever space our
3804 caller provided. */
3805 unadjusted_args_size
3806 = compute_argument_block_size (reg_parm_stack_space,
3807 &adjusted_args_size,
3808 fndecl, fntype,
3809 (pass == 0 ? 0
3810 : preferred_stack_boundary));
3811
3812 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3813
3814 /* The argument block when performing a sibling call is the
3815 incoming argument block. */
3816 if (pass == 0)
3817 {
3818 argblock = crtl->args.internal_arg_pointer;
3819 if (STACK_GROWS_DOWNWARD)
3820 argblock
3821 = plus_constant (Pmode, argblock, crtl->args.pretend_args_size);
3822 else
3823 argblock
3824 = plus_constant (Pmode, argblock, -crtl->args.pretend_args_size);
3825
3826 HOST_WIDE_INT map_size = constant_lower_bound (args_size.constant);
3827 stored_args_map = sbitmap_alloc (map_size);
3828 bitmap_clear (stored_args_map);
3829 stored_args_watermark = HOST_WIDE_INT_M1U;
3830 }
3831
3832 /* If we have no actual push instructions, or shouldn't use them,
3833 make space for all args right now. */
3834 else if (adjusted_args_size.var != 0)
3835 {
3836 if (old_stack_level == 0)
3837 {
3838 emit_stack_save (SAVE_BLOCK, &old_stack_level);
3839 old_stack_pointer_delta = stack_pointer_delta;
3840 old_pending_adj = pending_stack_adjust;
3841 pending_stack_adjust = 0;
3842 /* stack_arg_under_construction says whether a stack arg is
3843 being constructed at the old stack level. Pushing the stack
3844 gets a clean outgoing argument block. */
3845 old_stack_arg_under_construction = stack_arg_under_construction;
3846 stack_arg_under_construction = 0;
3847 }
3848 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
3849 if (flag_stack_usage_info)
3850 current_function_has_unbounded_dynamic_stack_size = 1;
3851 }
3852 else
3853 {
3854 /* Note that we must go through the motions of allocating an argument
3855 block even if the size is zero because we may be storing args
3856 in the area reserved for register arguments, which may be part of
3857 the stack frame. */
3858
3859 poly_int64 needed = adjusted_args_size.constant;
3860
3861 /* Store the maximum argument space used. It will be pushed by
3862 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
3863 checking). */
3864
3865 crtl->outgoing_args_size = upper_bound (crtl->outgoing_args_size,
3866 needed);
3867
3868 if (must_preallocate)
3869 {
3870 if (ACCUMULATE_OUTGOING_ARGS)
3871 {
3872 /* Since the stack pointer will never be pushed, it is
3873 possible for the evaluation of a parm to clobber
3874 something we have already written to the stack.
3875 Since most function calls on RISC machines do not use
3876 the stack, this is uncommon, but must work correctly.
3877
3878 Therefore, we save any area of the stack that was already
3879 written and that we are using. Here we set up to do this
3880 by making a new stack usage map from the old one. The
3881 actual save will be done by store_one_arg.
3882
3883 Another approach might be to try to reorder the argument
3884 evaluations to avoid this conflicting stack usage. */
3885
3886 /* Since we will be writing into the entire argument area,
3887 the map must be allocated for its entire size, not just
3888 the part that is the responsibility of the caller. */
3889 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3890 needed += reg_parm_stack_space;
3891
3892 poly_int64 limit = needed;
3893 if (ARGS_GROW_DOWNWARD)
3894 limit += 1;
3895
3896 /* For polynomial sizes, this is the maximum possible
3897 size needed for arguments with a constant size
3898 and offset. */
3899 HOST_WIDE_INT const_limit = constant_lower_bound (limit);
3900 highest_outgoing_arg_in_use
3901 = MAX (initial_highest_arg_in_use, const_limit);
3902
3903 free (stack_usage_map_buf);
3904 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3905 stack_usage_map = stack_usage_map_buf;
3906
3907 if (initial_highest_arg_in_use)
3908 memcpy (stack_usage_map, initial_stack_usage_map,
3909 initial_highest_arg_in_use);
3910
3911 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3912 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3913 (highest_outgoing_arg_in_use
3914 - initial_highest_arg_in_use));
3915 needed = 0;
3916
3917 /* The address of the outgoing argument list must not be
3918 copied to a register here, because argblock would be left
3919 pointing to the wrong place after the call to
3920 allocate_dynamic_stack_space below. */
3921
3922 argblock = virtual_outgoing_args_rtx;
3923 }
3924 else
3925 {
3926 /* Try to reuse some or all of the pending_stack_adjust
3927 to get this space. */
3928 if (inhibit_defer_pop == 0
3929 && (combine_pending_stack_adjustment_and_call
3930 (&needed,
3931 unadjusted_args_size,
3932 &adjusted_args_size,
3933 preferred_unit_stack_boundary)))
3934 {
3935 /* combine_pending_stack_adjustment_and_call computes
3936 an adjustment before the arguments are allocated.
3937 Account for them and see whether or not the stack
3938 needs to go up or down. */
3939 needed = unadjusted_args_size - needed;
3940
3941 /* Checked by
3942 combine_pending_stack_adjustment_and_call. */
3943 gcc_checking_assert (ordered_p (needed, 0));
3944 if (maybe_lt (needed, 0))
3945 {
3946 /* We're releasing stack space. */
3947 /* ??? We can avoid any adjustment at all if we're
3948 already aligned. FIXME. */
3949 pending_stack_adjust = -needed;
3950 do_pending_stack_adjust ();
3951 needed = 0;
3952 }
3953 else
3954 /* We need to allocate space. We'll do that in
3955 push_block below. */
3956 pending_stack_adjust = 0;
3957 }
3958
3959 /* Special case this because overhead of `push_block' in
3960 this case is non-trivial. */
3961 if (known_eq (needed, 0))
3962 argblock = virtual_outgoing_args_rtx;
3963 else
3964 {
3965 rtx needed_rtx = gen_int_mode (needed, Pmode);
3966 argblock = push_block (needed_rtx, 0, 0);
3967 if (ARGS_GROW_DOWNWARD)
3968 argblock = plus_constant (Pmode, argblock, needed);
3969 }
3970
3971 /* We only really need to call `copy_to_reg' in the case
3972 where push insns are going to be used to pass ARGBLOCK
3973 to a function call in ARGS. In that case, the stack
3974 pointer changes value from the allocation point to the
3975 call point, and hence the value of
3976 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
3977 as well always do it. */
3978 argblock = copy_to_reg (argblock);
3979 }
3980 }
3981 }
3982
3983 if (ACCUMULATE_OUTGOING_ARGS)
3984 {
3985 /* The save/restore code in store_one_arg handles all
3986 cases except one: a constructor call (including a C
3987 function returning a BLKmode struct) to initialize
3988 an argument. */
3989 if (stack_arg_under_construction)
3990 {
3991 rtx push_size
3992 = (gen_int_mode
3993 (adjusted_args_size.constant
3994 + (OUTGOING_REG_PARM_STACK_SPACE (!fndecl ? fntype
3995 : TREE_TYPE (fndecl))
3996 ? 0 : reg_parm_stack_space), Pmode));
3997 if (old_stack_level == 0)
3998 {
3999 emit_stack_save (SAVE_BLOCK, &old_stack_level);
4000 old_stack_pointer_delta = stack_pointer_delta;
4001 old_pending_adj = pending_stack_adjust;
4002 pending_stack_adjust = 0;
4003 /* stack_arg_under_construction says whether a stack
4004 arg is being constructed at the old stack level.
4005 Pushing the stack gets a clean outgoing argument
4006 block. */
4007 old_stack_arg_under_construction
4008 = stack_arg_under_construction;
4009 stack_arg_under_construction = 0;
4010 /* Make a new map for the new argument list. */
4011 free (stack_usage_map_buf);
4012 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
4013 stack_usage_map = stack_usage_map_buf;
4014 highest_outgoing_arg_in_use = 0;
4015 stack_usage_watermark = HOST_WIDE_INT_M1U;
4016 }
4017 /* We can pass TRUE as the 4th argument because we just
4018 saved the stack pointer and will restore it right after
4019 the call. */
4020 allocate_dynamic_stack_space (push_size, 0, BIGGEST_ALIGNMENT,
4021 -1, true);
4022 }
4023
4024 /* If argument evaluation might modify the stack pointer,
4025 copy the address of the argument list to a register. */
4026 for (i = 0; i < num_actuals; i++)
4027 if (args[i].pass_on_stack)
4028 {
4029 argblock = copy_addr_to_reg (argblock);
4030 break;
4031 }
4032 }
4033
4034 compute_argument_addresses (args, argblock, num_actuals);
4035
4036 /* Stack is properly aligned, pops can't safely be deferred during
4037 the evaluation of the arguments. */
4038 NO_DEFER_POP;
4039
4040 /* Precompute all register parameters. It isn't safe to compute
4041 anything once we have started filling any specific hard regs.
4042 TLS symbols sometimes need a call to resolve. Precompute
4043 register parameters before any stack pointer manipulation
4044 to avoid unaligned stack in the called function. */
4045 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
4046
4047 OK_DEFER_POP;
4048
4049 /* Perform stack alignment before the first push (the last arg). */
4050 if (argblock == 0
4051 && maybe_gt (adjusted_args_size.constant, reg_parm_stack_space)
4052 && maybe_ne (adjusted_args_size.constant, unadjusted_args_size))
4053 {
4054 /* When the stack adjustment is pending, we get better code
4055 by combining the adjustments. */
4056 if (maybe_ne (pending_stack_adjust, 0)
4057 && ! inhibit_defer_pop
4058 && (combine_pending_stack_adjustment_and_call
4059 (&pending_stack_adjust,
4060 unadjusted_args_size,
4061 &adjusted_args_size,
4062 preferred_unit_stack_boundary)))
4063 do_pending_stack_adjust ();
4064 else if (argblock == 0)
4065 anti_adjust_stack (gen_int_mode (adjusted_args_size.constant
4066 - unadjusted_args_size,
4067 Pmode));
4068 }
4069 /* Now that the stack is properly aligned, pops can't safely
4070 be deferred during the evaluation of the arguments. */
4071 NO_DEFER_POP;
4072
4073 /* Record the maximum pushed stack space size. We need to delay
4074 doing it this far to take into account the optimization done
4075 by combine_pending_stack_adjustment_and_call. */
4076 if (flag_stack_usage_info
4077 && !ACCUMULATE_OUTGOING_ARGS
4078 && pass
4079 && adjusted_args_size.var == 0)
4080 {
4081 poly_int64 pushed = (adjusted_args_size.constant
4082 + pending_stack_adjust);
4083 current_function_pushed_stack_size
4084 = upper_bound (current_function_pushed_stack_size, pushed);
4085 }
4086
4087 funexp = rtx_for_function_call (fndecl, addr);
4088
4089 if (CALL_EXPR_STATIC_CHAIN (exp))
4090 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
4091 else
4092 static_chain_value = 0;
4093
4094 #ifdef REG_PARM_STACK_SPACE
4095 /* Save the fixed argument area if it's part of the caller's frame and
4096 is clobbered by argument setup for this call. */
4097 if (ACCUMULATE_OUTGOING_ARGS && pass)
4098 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
4099 &low_to_save, &high_to_save);
4100 #endif
4101
4102 /* Now store (and compute if necessary) all non-register parms.
4103 These come before register parms, since they can require block-moves,
4104 which could clobber the registers used for register parms.
4105 Parms which have partial registers are not stored here,
4106 but we do preallocate space here if they want that. */
4107
4108 for (i = 0; i < num_actuals; i++)
4109 {
4110 if (args[i].reg == 0 || args[i].pass_on_stack)
4111 {
4112 rtx_insn *before_arg = get_last_insn ();
4113
4114 /* We don't allow passing huge (> 2^30 B) arguments
4115 by value. It would cause an overflow later on. */
4116 if (constant_lower_bound (adjusted_args_size.constant)
4117 >= (1 << (HOST_BITS_PER_INT - 2)))
4118 {
4119 sorry ("passing too large argument on stack");
4120 continue;
4121 }
4122
4123 if (store_one_arg (&args[i], argblock, flags,
4124 adjusted_args_size.var != 0,
4125 reg_parm_stack_space)
4126 || (pass == 0
4127 && check_sibcall_argument_overlap (before_arg,
4128 &args[i], 1)))
4129 sibcall_failure = 1;
4130 }
4131
4132 if (args[i].stack)
4133 call_fusage
4134 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[i].tree_value)),
4135 gen_rtx_USE (VOIDmode, args[i].stack),
4136 call_fusage);
4137 }
4138
4139 /* If we have a parm that is passed in registers but not in memory
4140 and whose alignment does not permit a direct copy into registers,
4141 make a group of pseudos that correspond to each register that we
4142 will later fill. */
4143 if (STRICT_ALIGNMENT)
4144 store_unaligned_arguments_into_pseudos (args, num_actuals);
4145
4146 /* Now store any partially-in-registers parm.
4147 This is the last place a block-move can happen. */
4148 if (reg_parm_seen)
4149 for (i = 0; i < num_actuals; i++)
4150 if (args[i].partial != 0 && ! args[i].pass_on_stack)
4151 {
4152 rtx_insn *before_arg = get_last_insn ();
4153
4154 /* On targets with weird calling conventions (e.g. PA) it's
4155 hard to ensure that all cases of argument overlap between
4156 stack and registers work. Play it safe and bail out. */
4157 if (ARGS_GROW_DOWNWARD && !STACK_GROWS_DOWNWARD)
4158 {
4159 sibcall_failure = 1;
4160 break;
4161 }
4162
4163 if (store_one_arg (&args[i], argblock, flags,
4164 adjusted_args_size.var != 0,
4165 reg_parm_stack_space)
4166 || (pass == 0
4167 && check_sibcall_argument_overlap (before_arg,
4168 &args[i], 1)))
4169 sibcall_failure = 1;
4170 }
4171
4172 bool any_regs = false;
4173 for (i = 0; i < num_actuals; i++)
4174 if (args[i].reg != NULL_RTX)
4175 {
4176 any_regs = true;
4177 targetm.calls.call_args (args[i].reg, funtype);
4178 }
4179 if (!any_regs)
4180 targetm.calls.call_args (pc_rtx, funtype);
4181
4182 /* Figure out the register where the value, if any, will come back. */
4183 valreg = 0;
4184 if (TYPE_MODE (rettype) != VOIDmode
4185 && ! structure_value_addr)
4186 {
4187 if (pcc_struct_value)
4188 valreg = hard_function_value (build_pointer_type (rettype),
4189 fndecl, NULL, (pass == 0));
4190 else
4191 valreg = hard_function_value (rettype, fndecl, fntype,
4192 (pass == 0));
4193
4194 /* If VALREG is a PARALLEL whose first member has a zero
4195 offset, use that. This is for targets such as m68k that
4196 return the same value in multiple places. */
4197 if (GET_CODE (valreg) == PARALLEL)
4198 {
4199 rtx elem = XVECEXP (valreg, 0, 0);
4200 rtx where = XEXP (elem, 0);
4201 rtx offset = XEXP (elem, 1);
4202 if (offset == const0_rtx
4203 && GET_MODE (where) == GET_MODE (valreg))
4204 valreg = where;
4205 }
4206 }
4207
4208 /* If register arguments require space on the stack and stack space
4209 was not preallocated, allocate stack space here for arguments
4210 passed in registers. */
4211 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
4212 && !ACCUMULATE_OUTGOING_ARGS
4213 && must_preallocate == 0 && reg_parm_stack_space > 0)
4214 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
4215
4216 /* Pass the function the address in which to return a
4217 structure value. */
4218 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
4219 {
4220 structure_value_addr
4221 = convert_memory_address (Pmode, structure_value_addr);
4222 emit_move_insn (struct_value,
4223 force_reg (Pmode,
4224 force_operand (structure_value_addr,
4225 NULL_RTX)));
4226
4227 if (REG_P (struct_value))
4228 use_reg (&call_fusage, struct_value);
4229 }
4230
4231 after_args = get_last_insn ();
4232 funexp = prepare_call_address (fndecl ? fndecl : fntype, funexp,
4233 static_chain_value, &call_fusage,
4234 reg_parm_seen, flags);
4235
4236 load_register_parameters (args, num_actuals, &call_fusage, flags,
4237 pass == 0, &sibcall_failure);
4238
4239 /* Save a pointer to the last insn before the call, so that we can
4240 later safely search backwards to find the CALL_INSN. */
4241 before_call = get_last_insn ();
4242
4243 /* Set up next argument register. For sibling calls on machines
4244 with register windows this should be the incoming register. */
4245 if (pass == 0)
4246 next_arg_reg = targetm.calls.function_incoming_arg
4247 (args_so_far, function_arg_info::end_marker ());
4248 else
4249 next_arg_reg = targetm.calls.function_arg
4250 (args_so_far, function_arg_info::end_marker ());
4251
4252 if (pass == 1 && (return_flags & ERF_RETURNS_ARG))
4253 {
4254 int arg_nr = return_flags & ERF_RETURN_ARG_MASK;
4255 arg_nr = num_actuals - arg_nr - 1;
4256 if (arg_nr >= 0
4257 && arg_nr < num_actuals
4258 && args[arg_nr].reg
4259 && valreg
4260 && REG_P (valreg)
4261 && GET_MODE (args[arg_nr].reg) == GET_MODE (valreg))
4262 call_fusage
4263 = gen_rtx_EXPR_LIST (TYPE_MODE (TREE_TYPE (args[arg_nr].tree_value)),
4264 gen_rtx_SET (valreg, args[arg_nr].reg),
4265 call_fusage);
4266 }
4267 /* All arguments and registers used for the call must be set up by
4268 now! */
4269
4270 /* Stack must be properly aligned now. */
4271 gcc_assert (!pass
4272 || multiple_p (stack_pointer_delta,
4273 preferred_unit_stack_boundary));
4274
4275 /* Generate the actual call instruction. */
4276 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
4277 adjusted_args_size.constant, struct_value_size,
4278 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
4279 flags, args_so_far);
4280
4281 if (flag_ipa_ra)
4282 {
4283 rtx_call_insn *last;
4284 rtx datum = NULL_RTX;
4285 if (fndecl != NULL_TREE)
4286 {
4287 datum = XEXP (DECL_RTL (fndecl), 0);
4288 gcc_assert (datum != NULL_RTX
4289 && GET_CODE (datum) == SYMBOL_REF);
4290 }
4291 last = last_call_insn ();
4292 add_reg_note (last, REG_CALL_DECL, datum);
4293 }
4294
4295 /* If the call setup or the call itself overlaps with anything
4296 of the argument setup we probably clobbered our call address.
4297 In that case we can't do sibcalls. */
4298 if (pass == 0
4299 && check_sibcall_argument_overlap (after_args, 0, 0))
4300 sibcall_failure = 1;
4301
4302 /* If a non-BLKmode value is returned at the most significant end
4303 of a register, shift the register right by the appropriate amount
4304 and update VALREG accordingly. BLKmode values are handled by the
4305 group load/store machinery below. */
4306 if (!structure_value_addr
4307 && !pcc_struct_value
4308 && TYPE_MODE (rettype) != VOIDmode
4309 && TYPE_MODE (rettype) != BLKmode
4310 && REG_P (valreg)
4311 && targetm.calls.return_in_msb (rettype))
4312 {
4313 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
4314 sibcall_failure = 1;
4315 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
4316 }
4317
4318 if (pass && (flags & ECF_MALLOC))
4319 {
4320 rtx temp = gen_reg_rtx (GET_MODE (valreg));
4321 rtx_insn *last, *insns;
4322
4323 /* The return value from a malloc-like function is a pointer. */
4324 if (TREE_CODE (rettype) == POINTER_TYPE)
4325 mark_reg_pointer (temp, MALLOC_ABI_ALIGNMENT);
4326
4327 emit_move_insn (temp, valreg);
4328
4329 /* The return value from a malloc-like function cannot alias
4330 anything else. */
4331 last = get_last_insn ();
4332 add_reg_note (last, REG_NOALIAS, temp);
4333
4334 /* Write out the sequence. */
4335 insns = get_insns ();
4336 end_sequence ();
4337 emit_insn (insns);
4338 valreg = temp;
4339 }
4340
4341 /* For calls to `setjmp', etc., inform
4342 function.c:setjmp_warnings that it should complain if
4343 nonvolatile values are live. For functions that cannot
4344 return, inform flow that control does not fall through. */
4345
4346 if ((flags & ECF_NORETURN) || pass == 0)
4347 {
4348 /* The barrier must be emitted
4349 immediately after the CALL_INSN. Some ports emit more
4350 than just a CALL_INSN above, so we must search for it here. */
4351
4352 rtx_insn *last = get_last_insn ();
4353 while (!CALL_P (last))
4354 {
4355 last = PREV_INSN (last);
4356 /* There was no CALL_INSN? */
4357 gcc_assert (last != before_call);
4358 }
4359
4360 emit_barrier_after (last);
4361
4362 /* Stack adjustments after a noreturn call are dead code.
4363 However when NO_DEFER_POP is in effect, we must preserve
4364 stack_pointer_delta. */
4365 if (inhibit_defer_pop == 0)
4366 {
4367 stack_pointer_delta = old_stack_allocated;
4368 pending_stack_adjust = 0;
4369 }
4370 }
4371
4372 /* If value type not void, return an rtx for the value. */
4373
4374 if (TYPE_MODE (rettype) == VOIDmode
4375 || ignore)
4376 target = const0_rtx;
4377 else if (structure_value_addr)
4378 {
4379 if (target == 0 || !MEM_P (target))
4380 {
4381 target
4382 = gen_rtx_MEM (TYPE_MODE (rettype),
4383 memory_address (TYPE_MODE (rettype),
4384 structure_value_addr));
4385 set_mem_attributes (target, rettype, 1);
4386 }
4387 }
4388 else if (pcc_struct_value)
4389 {
4390 /* This is the special C++ case where we need to
4391 know what the true target was. We take care to
4392 never use this value more than once in one expression. */
4393 target = gen_rtx_MEM (TYPE_MODE (rettype),
4394 copy_to_reg (valreg));
4395 set_mem_attributes (target, rettype, 1);
4396 }
4397 /* Handle calls that return values in multiple non-contiguous locations.
4398 The Irix 6 ABI has examples of this. */
4399 else if (GET_CODE (valreg) == PARALLEL)
4400 {
4401 if (target == 0)
4402 target = emit_group_move_into_temps (valreg);
4403 else if (rtx_equal_p (target, valreg))
4404 ;
4405 else if (GET_CODE (target) == PARALLEL)
4406 /* Handle the result of a emit_group_move_into_temps
4407 call in the previous pass. */
4408 emit_group_move (target, valreg);
4409 else
4410 emit_group_store (target, valreg, rettype,
4411 int_size_in_bytes (rettype));
4412 }
4413 else if (target
4414 && GET_MODE (target) == TYPE_MODE (rettype)
4415 && GET_MODE (target) == GET_MODE (valreg))
4416 {
4417 bool may_overlap = false;
4418
4419 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
4420 reg to a plain register. */
4421 if (!REG_P (target) || HARD_REGISTER_P (target))
4422 valreg = avoid_likely_spilled_reg (valreg);
4423
4424 /* If TARGET is a MEM in the argument area, and we have
4425 saved part of the argument area, then we can't store
4426 directly into TARGET as it may get overwritten when we
4427 restore the argument save area below. Don't work too
4428 hard though and simply force TARGET to a register if it
4429 is a MEM; the optimizer is quite likely to sort it out. */
4430 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
4431 for (i = 0; i < num_actuals; i++)
4432 if (args[i].save_area)
4433 {
4434 may_overlap = true;
4435 break;
4436 }
4437
4438 if (may_overlap)
4439 target = copy_to_reg (valreg);
4440 else
4441 {
4442 /* TARGET and VALREG cannot be equal at this point
4443 because the latter would not have
4444 REG_FUNCTION_VALUE_P true, while the former would if
4445 it were referring to the same register.
4446
4447 If they refer to the same register, this move will be
4448 a no-op, except when function inlining is being
4449 done. */
4450 emit_move_insn (target, valreg);
4451
4452 /* If we are setting a MEM, this code must be executed.
4453 Since it is emitted after the call insn, sibcall
4454 optimization cannot be performed in that case. */
4455 if (MEM_P (target))
4456 sibcall_failure = 1;
4457 }
4458 }
4459 else
4460 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
4461
4462 /* If we promoted this return value, make the proper SUBREG.
4463 TARGET might be const0_rtx here, so be careful. */
4464 if (REG_P (target)
4465 && TYPE_MODE (rettype) != BLKmode
4466 && GET_MODE (target) != TYPE_MODE (rettype))
4467 {
4468 tree type = rettype;
4469 int unsignedp = TYPE_UNSIGNED (type);
4470 machine_mode pmode;
4471
4472 /* Ensure we promote as expected, and get the new unsignedness. */
4473 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
4474 funtype, 1);
4475 gcc_assert (GET_MODE (target) == pmode);
4476
4477 poly_uint64 offset = subreg_lowpart_offset (TYPE_MODE (type),
4478 GET_MODE (target));
4479 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
4480 SUBREG_PROMOTED_VAR_P (target) = 1;
4481 SUBREG_PROMOTED_SET (target, unsignedp);
4482 }
4483
4484 /* If size of args is variable or this was a constructor call for a stack
4485 argument, restore saved stack-pointer value. */
4486
4487 if (old_stack_level)
4488 {
4489 rtx_insn *prev = get_last_insn ();
4490
4491 emit_stack_restore (SAVE_BLOCK, old_stack_level);
4492 stack_pointer_delta = old_stack_pointer_delta;
4493
4494 fixup_args_size_notes (prev, get_last_insn (), stack_pointer_delta);
4495
4496 pending_stack_adjust = old_pending_adj;
4497 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
4498 stack_arg_under_construction = old_stack_arg_under_construction;
4499 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4500 stack_usage_map = initial_stack_usage_map;
4501 stack_usage_watermark = initial_stack_usage_watermark;
4502 sibcall_failure = 1;
4503 }
4504 else if (ACCUMULATE_OUTGOING_ARGS && pass)
4505 {
4506 #ifdef REG_PARM_STACK_SPACE
4507 if (save_area)
4508 restore_fixed_argument_area (save_area, argblock,
4509 high_to_save, low_to_save);
4510 #endif
4511
4512 /* If we saved any argument areas, restore them. */
4513 for (i = 0; i < num_actuals; i++)
4514 if (args[i].save_area)
4515 {
4516 machine_mode save_mode = GET_MODE (args[i].save_area);
4517 rtx stack_area
4518 = gen_rtx_MEM (save_mode,
4519 memory_address (save_mode,
4520 XEXP (args[i].stack_slot, 0)));
4521
4522 if (save_mode != BLKmode)
4523 emit_move_insn (stack_area, args[i].save_area);
4524 else
4525 emit_block_move (stack_area, args[i].save_area,
4526 (gen_int_mode
4527 (args[i].locate.size.constant, Pmode)),
4528 BLOCK_OP_CALL_PARM);
4529 }
4530
4531 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4532 stack_usage_map = initial_stack_usage_map;
4533 stack_usage_watermark = initial_stack_usage_watermark;
4534 }
4535
4536 /* If this was alloca, record the new stack level. */
4537 if (flags & ECF_MAY_BE_ALLOCA)
4538 record_new_stack_level ();
4539
4540 /* Free up storage we no longer need. */
4541 for (i = 0; i < num_actuals; ++i)
4542 free (args[i].aligned_regs);
4543
4544 targetm.calls.end_call_args ();
4545
4546 insns = get_insns ();
4547 end_sequence ();
4548
4549 if (pass == 0)
4550 {
4551 tail_call_insns = insns;
4552
4553 /* Restore the pending stack adjustment now that we have
4554 finished generating the sibling call sequence. */
4555
4556 restore_pending_stack_adjust (&save);
4557
4558 /* Prepare arg structure for next iteration. */
4559 for (i = 0; i < num_actuals; i++)
4560 {
4561 args[i].value = 0;
4562 args[i].aligned_regs = 0;
4563 args[i].stack = 0;
4564 }
4565
4566 sbitmap_free (stored_args_map);
4567 internal_arg_pointer_exp_state.scan_start = NULL;
4568 internal_arg_pointer_exp_state.cache.release ();
4569 }
4570 else
4571 {
4572 normal_call_insns = insns;
4573
4574 /* Verify that we've deallocated all the stack we used. */
4575 gcc_assert ((flags & ECF_NORETURN)
4576 || known_eq (old_stack_allocated,
4577 stack_pointer_delta
4578 - pending_stack_adjust));
4579 }
4580
4581 /* If something prevents making this a sibling call,
4582 zero out the sequence. */
4583 if (sibcall_failure)
4584 tail_call_insns = NULL;
4585 else
4586 break;
4587 }
4588
4589 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
4590 arguments too, as argument area is now clobbered by the call. */
4591 if (tail_call_insns)
4592 {
4593 emit_insn (tail_call_insns);
4594 crtl->tail_call_emit = true;
4595 }
4596 else
4597 {
4598 emit_insn (normal_call_insns);
4599 if (try_tail_call)
4600 /* Ideally we'd emit a message for all of the ways that it could
4601 have failed. */
4602 maybe_complain_about_tail_call (exp, "tail call production failed");
4603 }
4604
4605 currently_expanding_call--;
4606
4607 free (stack_usage_map_buf);
4608 free (args);
4609 return target;
4610 }
4611
4612 /* A sibling call sequence invalidates any REG_EQUIV notes made for
4613 this function's incoming arguments.
4614
4615 At the start of RTL generation we know the only REG_EQUIV notes
4616 in the rtl chain are those for incoming arguments, so we can look
4617 for REG_EQUIV notes between the start of the function and the
4618 NOTE_INSN_FUNCTION_BEG.
4619
4620 This is (slight) overkill. We could keep track of the highest
4621 argument we clobber and be more selective in removing notes, but it
4622 does not seem to be worth the effort. */
4623
4624 void
4625 fixup_tail_calls (void)
4626 {
4627 rtx_insn *insn;
4628
4629 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4630 {
4631 rtx note;
4632
4633 /* There are never REG_EQUIV notes for the incoming arguments
4634 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
4635 if (NOTE_P (insn)
4636 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
4637 break;
4638
4639 note = find_reg_note (insn, REG_EQUIV, 0);
4640 if (note)
4641 remove_note (insn, note);
4642 note = find_reg_note (insn, REG_EQUIV, 0);
4643 gcc_assert (!note);
4644 }
4645 }
4646
4647 /* Traverse a list of TYPES and expand all complex types into their
4648 components. */
4649 static tree
4650 split_complex_types (tree types)
4651 {
4652 tree p;
4653
4654 /* Before allocating memory, check for the common case of no complex. */
4655 for (p = types; p; p = TREE_CHAIN (p))
4656 {
4657 tree type = TREE_VALUE (p);
4658 if (TREE_CODE (type) == COMPLEX_TYPE
4659 && targetm.calls.split_complex_arg (type))
4660 goto found;
4661 }
4662 return types;
4663
4664 found:
4665 types = copy_list (types);
4666
4667 for (p = types; p; p = TREE_CHAIN (p))
4668 {
4669 tree complex_type = TREE_VALUE (p);
4670
4671 if (TREE_CODE (complex_type) == COMPLEX_TYPE
4672 && targetm.calls.split_complex_arg (complex_type))
4673 {
4674 tree next, imag;
4675
4676 /* Rewrite complex type with component type. */
4677 TREE_VALUE (p) = TREE_TYPE (complex_type);
4678 next = TREE_CHAIN (p);
4679
4680 /* Add another component type for the imaginary part. */
4681 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
4682 TREE_CHAIN (p) = imag;
4683 TREE_CHAIN (imag) = next;
4684
4685 /* Skip the newly created node. */
4686 p = TREE_CHAIN (p);
4687 }
4688 }
4689
4690 return types;
4691 }
4692 \f
4693 /* Output a library call to function ORGFUN (a SYMBOL_REF rtx)
4694 for a value of mode OUTMODE,
4695 with NARGS different arguments, passed as ARGS.
4696 Store the return value if RETVAL is nonzero: store it in VALUE if
4697 VALUE is nonnull, otherwise pick a convenient location. In either
4698 case return the location of the stored value.
4699
4700 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
4701 `const' calls, LCT_PURE for `pure' calls, or another LCT_ value for
4702 other types of library calls. */
4703
4704 rtx
4705 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
4706 enum libcall_type fn_type,
4707 machine_mode outmode, int nargs, rtx_mode_t *args)
4708 {
4709 /* Total size in bytes of all the stack-parms scanned so far. */
4710 struct args_size args_size;
4711 /* Size of arguments before any adjustments (such as rounding). */
4712 struct args_size original_args_size;
4713 int argnum;
4714 rtx fun;
4715 /* Todo, choose the correct decl type of orgfun. Sadly this information
4716 isn't present here, so we default to native calling abi here. */
4717 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
4718 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
4719 int count;
4720 rtx argblock = 0;
4721 CUMULATIVE_ARGS args_so_far_v;
4722 cumulative_args_t args_so_far;
4723 struct arg
4724 {
4725 rtx value;
4726 machine_mode mode;
4727 rtx reg;
4728 int partial;
4729 struct locate_and_pad_arg_data locate;
4730 rtx save_area;
4731 };
4732 struct arg *argvec;
4733 int old_inhibit_defer_pop = inhibit_defer_pop;
4734 rtx call_fusage = 0;
4735 rtx mem_value = 0;
4736 rtx valreg;
4737 int pcc_struct_value = 0;
4738 poly_int64 struct_value_size = 0;
4739 int flags;
4740 int reg_parm_stack_space = 0;
4741 poly_int64 needed;
4742 rtx_insn *before_call;
4743 bool have_push_fusage;
4744 tree tfom; /* type_for_mode (outmode, 0) */
4745
4746 #ifdef REG_PARM_STACK_SPACE
4747 /* Define the boundary of the register parm stack space that needs to be
4748 save, if any. */
4749 int low_to_save = 0, high_to_save = 0;
4750 rtx save_area = 0; /* Place that it is saved. */
4751 #endif
4752
4753 /* Size of the stack reserved for parameter registers. */
4754 unsigned int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
4755 char *initial_stack_usage_map = stack_usage_map;
4756 unsigned HOST_WIDE_INT initial_stack_usage_watermark = stack_usage_watermark;
4757 char *stack_usage_map_buf = NULL;
4758
4759 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
4760
4761 #ifdef REG_PARM_STACK_SPACE
4762 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
4763 #endif
4764
4765 /* By default, library functions cannot throw. */
4766 flags = ECF_NOTHROW;
4767
4768 switch (fn_type)
4769 {
4770 case LCT_NORMAL:
4771 break;
4772 case LCT_CONST:
4773 flags |= ECF_CONST;
4774 break;
4775 case LCT_PURE:
4776 flags |= ECF_PURE;
4777 break;
4778 case LCT_NORETURN:
4779 flags |= ECF_NORETURN;
4780 break;
4781 case LCT_THROW:
4782 flags &= ~ECF_NOTHROW;
4783 break;
4784 case LCT_RETURNS_TWICE:
4785 flags = ECF_RETURNS_TWICE;
4786 break;
4787 }
4788 fun = orgfun;
4789
4790 /* Ensure current function's preferred stack boundary is at least
4791 what we need. */
4792 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
4793 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
4794
4795 /* If this kind of value comes back in memory,
4796 decide where in memory it should come back. */
4797 if (outmode != VOIDmode)
4798 {
4799 tfom = lang_hooks.types.type_for_mode (outmode, 0);
4800 if (aggregate_value_p (tfom, 0))
4801 {
4802 #ifdef PCC_STATIC_STRUCT_RETURN
4803 rtx pointer_reg
4804 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
4805 mem_value = gen_rtx_MEM (outmode, pointer_reg);
4806 pcc_struct_value = 1;
4807 if (value == 0)
4808 value = gen_reg_rtx (outmode);
4809 #else /* not PCC_STATIC_STRUCT_RETURN */
4810 struct_value_size = GET_MODE_SIZE (outmode);
4811 if (value != 0 && MEM_P (value))
4812 mem_value = value;
4813 else
4814 mem_value = assign_temp (tfom, 1, 1);
4815 #endif
4816 /* This call returns a big structure. */
4817 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
4818 }
4819 }
4820 else
4821 tfom = void_type_node;
4822
4823 /* ??? Unfinished: must pass the memory address as an argument. */
4824
4825 /* Copy all the libcall-arguments out of the varargs data
4826 and into a vector ARGVEC.
4827
4828 Compute how to pass each argument. We only support a very small subset
4829 of the full argument passing conventions to limit complexity here since
4830 library functions shouldn't have many args. */
4831
4832 argvec = XALLOCAVEC (struct arg, nargs + 1);
4833 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
4834
4835 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
4836 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far_v, outmode, fun);
4837 #else
4838 INIT_CUMULATIVE_ARGS (args_so_far_v, NULL_TREE, fun, 0, nargs);
4839 #endif
4840 args_so_far = pack_cumulative_args (&args_so_far_v);
4841
4842 args_size.constant = 0;
4843 args_size.var = 0;
4844
4845 count = 0;
4846
4847 push_temp_slots ();
4848
4849 /* If there's a structure value address to be passed,
4850 either pass it in the special place, or pass it as an extra argument. */
4851 if (mem_value && struct_value == 0 && ! pcc_struct_value)
4852 {
4853 rtx addr = XEXP (mem_value, 0);
4854
4855 nargs++;
4856
4857 /* Make sure it is a reasonable operand for a move or push insn. */
4858 if (!REG_P (addr) && !MEM_P (addr)
4859 && !(CONSTANT_P (addr)
4860 && targetm.legitimate_constant_p (Pmode, addr)))
4861 addr = force_operand (addr, NULL_RTX);
4862
4863 argvec[count].value = addr;
4864 argvec[count].mode = Pmode;
4865 argvec[count].partial = 0;
4866
4867 function_arg_info ptr_arg (Pmode, /*named=*/true);
4868 argvec[count].reg = targetm.calls.function_arg (args_so_far, ptr_arg);
4869 gcc_assert (targetm.calls.arg_partial_bytes (args_so_far, ptr_arg) == 0);
4870
4871 locate_and_pad_parm (Pmode, NULL_TREE,
4872 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4873 1,
4874 #else
4875 argvec[count].reg != 0,
4876 #endif
4877 reg_parm_stack_space, 0,
4878 NULL_TREE, &args_size, &argvec[count].locate);
4879
4880 if (argvec[count].reg == 0 || argvec[count].partial != 0
4881 || reg_parm_stack_space > 0)
4882 args_size.constant += argvec[count].locate.size.constant;
4883
4884 targetm.calls.function_arg_advance (args_so_far, Pmode, (tree) 0, true);
4885
4886 count++;
4887 }
4888
4889 for (unsigned int i = 0; count < nargs; i++, count++)
4890 {
4891 rtx val = args[i].first;
4892 machine_mode mode = args[i].second;
4893 int unsigned_p = 0;
4894
4895 /* We cannot convert the arg value to the mode the library wants here;
4896 must do it earlier where we know the signedness of the arg. */
4897 gcc_assert (mode != BLKmode
4898 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
4899
4900 /* Make sure it is a reasonable operand for a move or push insn. */
4901 if (!REG_P (val) && !MEM_P (val)
4902 && !(CONSTANT_P (val) && targetm.legitimate_constant_p (mode, val)))
4903 val = force_operand (val, NULL_RTX);
4904
4905 function_arg_info orig_arg (mode, /*named=*/true);
4906 if (pass_by_reference (&args_so_far_v, orig_arg))
4907 {
4908 rtx slot;
4909 int must_copy
4910 = !reference_callee_copied (&args_so_far_v, mode, NULL_TREE, 1);
4911
4912 /* If this was a CONST function, it is now PURE since it now
4913 reads memory. */
4914 if (flags & ECF_CONST)
4915 {
4916 flags &= ~ECF_CONST;
4917 flags |= ECF_PURE;
4918 }
4919
4920 if (MEM_P (val) && !must_copy)
4921 {
4922 tree val_expr = MEM_EXPR (val);
4923 if (val_expr)
4924 mark_addressable (val_expr);
4925 slot = val;
4926 }
4927 else
4928 {
4929 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
4930 1, 1);
4931 emit_move_insn (slot, val);
4932 }
4933
4934 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
4935 gen_rtx_USE (VOIDmode, slot),
4936 call_fusage);
4937 if (must_copy)
4938 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
4939 gen_rtx_CLOBBER (VOIDmode,
4940 slot),
4941 call_fusage);
4942
4943 mode = Pmode;
4944 val = force_operand (XEXP (slot, 0), NULL_RTX);
4945 }
4946
4947 mode = promote_function_mode (NULL_TREE, mode, &unsigned_p, NULL_TREE, 0);
4948 function_arg_info arg (mode, /*named=*/true);
4949 argvec[count].mode = mode;
4950 argvec[count].value = convert_modes (mode, GET_MODE (val), val, unsigned_p);
4951 argvec[count].reg = targetm.calls.function_arg (args_so_far, arg);
4952
4953 argvec[count].partial
4954 = targetm.calls.arg_partial_bytes (args_so_far, arg);
4955
4956 if (argvec[count].reg == 0
4957 || argvec[count].partial != 0
4958 || reg_parm_stack_space > 0)
4959 {
4960 locate_and_pad_parm (mode, NULL_TREE,
4961 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4962 1,
4963 #else
4964 argvec[count].reg != 0,
4965 #endif
4966 reg_parm_stack_space, argvec[count].partial,
4967 NULL_TREE, &args_size, &argvec[count].locate);
4968 args_size.constant += argvec[count].locate.size.constant;
4969 gcc_assert (!argvec[count].locate.size.var);
4970 }
4971 #ifdef BLOCK_REG_PADDING
4972 else
4973 /* The argument is passed entirely in registers. See at which
4974 end it should be padded. */
4975 argvec[count].locate.where_pad =
4976 BLOCK_REG_PADDING (mode, NULL_TREE,
4977 known_le (GET_MODE_SIZE (mode), UNITS_PER_WORD));
4978 #endif
4979
4980 targetm.calls.function_arg_advance (args_so_far, mode, (tree) 0, true);
4981 }
4982
4983 for (int i = 0; i < nargs; i++)
4984 if (reg_parm_stack_space > 0
4985 || argvec[i].reg == 0
4986 || argvec[i].partial != 0)
4987 update_stack_alignment_for_call (&argvec[i].locate);
4988
4989 /* If this machine requires an external definition for library
4990 functions, write one out. */
4991 assemble_external_libcall (fun);
4992
4993 original_args_size = args_size;
4994 args_size.constant = (aligned_upper_bound (args_size.constant
4995 + stack_pointer_delta,
4996 STACK_BYTES)
4997 - stack_pointer_delta);
4998
4999 args_size.constant = upper_bound (args_size.constant,
5000 reg_parm_stack_space);
5001
5002 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
5003 args_size.constant -= reg_parm_stack_space;
5004
5005 crtl->outgoing_args_size = upper_bound (crtl->outgoing_args_size,
5006 args_size.constant);
5007
5008 if (flag_stack_usage_info && !ACCUMULATE_OUTGOING_ARGS)
5009 {
5010 poly_int64 pushed = args_size.constant + pending_stack_adjust;
5011 current_function_pushed_stack_size
5012 = upper_bound (current_function_pushed_stack_size, pushed);
5013 }
5014
5015 if (ACCUMULATE_OUTGOING_ARGS)
5016 {
5017 /* Since the stack pointer will never be pushed, it is possible for
5018 the evaluation of a parm to clobber something we have already
5019 written to the stack. Since most function calls on RISC machines
5020 do not use the stack, this is uncommon, but must work correctly.
5021
5022 Therefore, we save any area of the stack that was already written
5023 and that we are using. Here we set up to do this by making a new
5024 stack usage map from the old one.
5025
5026 Another approach might be to try to reorder the argument
5027 evaluations to avoid this conflicting stack usage. */
5028
5029 needed = args_size.constant;
5030
5031 /* Since we will be writing into the entire argument area, the
5032 map must be allocated for its entire size, not just the part that
5033 is the responsibility of the caller. */
5034 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
5035 needed += reg_parm_stack_space;
5036
5037 poly_int64 limit = needed;
5038 if (ARGS_GROW_DOWNWARD)
5039 limit += 1;
5040
5041 /* For polynomial sizes, this is the maximum possible size needed
5042 for arguments with a constant size and offset. */
5043 HOST_WIDE_INT const_limit = constant_lower_bound (limit);
5044 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
5045 const_limit);
5046
5047 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
5048 stack_usage_map = stack_usage_map_buf;
5049
5050 if (initial_highest_arg_in_use)
5051 memcpy (stack_usage_map, initial_stack_usage_map,
5052 initial_highest_arg_in_use);
5053
5054 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
5055 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
5056 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
5057 needed = 0;
5058
5059 /* We must be careful to use virtual regs before they're instantiated,
5060 and real regs afterwards. Loop optimization, for example, can create
5061 new libcalls after we've instantiated the virtual regs, and if we
5062 use virtuals anyway, they won't match the rtl patterns. */
5063
5064 if (virtuals_instantiated)
5065 argblock = plus_constant (Pmode, stack_pointer_rtx,
5066 STACK_POINTER_OFFSET);
5067 else
5068 argblock = virtual_outgoing_args_rtx;
5069 }
5070 else
5071 {
5072 if (!PUSH_ARGS)
5073 argblock = push_block (gen_int_mode (args_size.constant, Pmode), 0, 0);
5074 }
5075
5076 /* We push args individually in reverse order, perform stack alignment
5077 before the first push (the last arg). */
5078 if (argblock == 0)
5079 anti_adjust_stack (gen_int_mode (args_size.constant
5080 - original_args_size.constant,
5081 Pmode));
5082
5083 argnum = nargs - 1;
5084
5085 #ifdef REG_PARM_STACK_SPACE
5086 if (ACCUMULATE_OUTGOING_ARGS)
5087 {
5088 /* The argument list is the property of the called routine and it
5089 may clobber it. If the fixed area has been used for previous
5090 parameters, we must save and restore it. */
5091 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
5092 &low_to_save, &high_to_save);
5093 }
5094 #endif
5095
5096 /* When expanding a normal call, args are stored in push order,
5097 which is the reverse of what we have here. */
5098 bool any_regs = false;
5099 for (int i = nargs; i-- > 0; )
5100 if (argvec[i].reg != NULL_RTX)
5101 {
5102 targetm.calls.call_args (argvec[i].reg, NULL_TREE);
5103 any_regs = true;
5104 }
5105 if (!any_regs)
5106 targetm.calls.call_args (pc_rtx, NULL_TREE);
5107
5108 /* Push the args that need to be pushed. */
5109
5110 have_push_fusage = false;
5111
5112 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
5113 are to be pushed. */
5114 for (count = 0; count < nargs; count++, argnum--)
5115 {
5116 machine_mode mode = argvec[argnum].mode;
5117 rtx val = argvec[argnum].value;
5118 rtx reg = argvec[argnum].reg;
5119 int partial = argvec[argnum].partial;
5120 unsigned int parm_align = argvec[argnum].locate.boundary;
5121 poly_int64 lower_bound = 0, upper_bound = 0;
5122
5123 if (! (reg != 0 && partial == 0))
5124 {
5125 rtx use;
5126
5127 if (ACCUMULATE_OUTGOING_ARGS)
5128 {
5129 /* If this is being stored into a pre-allocated, fixed-size,
5130 stack area, save any previous data at that location. */
5131
5132 if (ARGS_GROW_DOWNWARD)
5133 {
5134 /* stack_slot is negative, but we want to index stack_usage_map
5135 with positive values. */
5136 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
5137 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
5138 }
5139 else
5140 {
5141 lower_bound = argvec[argnum].locate.slot_offset.constant;
5142 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
5143 }
5144
5145 if (stack_region_maybe_used_p (lower_bound, upper_bound,
5146 reg_parm_stack_space))
5147 {
5148 /* We need to make a save area. */
5149 poly_uint64 size
5150 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
5151 machine_mode save_mode
5152 = int_mode_for_size (size, 1).else_blk ();
5153 rtx adr
5154 = plus_constant (Pmode, argblock,
5155 argvec[argnum].locate.offset.constant);
5156 rtx stack_area
5157 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
5158
5159 if (save_mode == BLKmode)
5160 {
5161 argvec[argnum].save_area
5162 = assign_stack_temp (BLKmode,
5163 argvec[argnum].locate.size.constant
5164 );
5165
5166 emit_block_move (validize_mem
5167 (copy_rtx (argvec[argnum].save_area)),
5168 stack_area,
5169 (gen_int_mode
5170 (argvec[argnum].locate.size.constant,
5171 Pmode)),
5172 BLOCK_OP_CALL_PARM);
5173 }
5174 else
5175 {
5176 argvec[argnum].save_area = gen_reg_rtx (save_mode);
5177
5178 emit_move_insn (argvec[argnum].save_area, stack_area);
5179 }
5180 }
5181 }
5182
5183 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
5184 partial, reg, 0, argblock,
5185 (gen_int_mode
5186 (argvec[argnum].locate.offset.constant, Pmode)),
5187 reg_parm_stack_space,
5188 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad), false);
5189
5190 /* Now mark the segment we just used. */
5191 if (ACCUMULATE_OUTGOING_ARGS)
5192 mark_stack_region_used (lower_bound, upper_bound);
5193
5194 NO_DEFER_POP;
5195
5196 /* Indicate argument access so that alias.c knows that these
5197 values are live. */
5198 if (argblock)
5199 use = plus_constant (Pmode, argblock,
5200 argvec[argnum].locate.offset.constant);
5201 else if (have_push_fusage)
5202 continue;
5203 else
5204 {
5205 /* When arguments are pushed, trying to tell alias.c where
5206 exactly this argument is won't work, because the
5207 auto-increment causes confusion. So we merely indicate
5208 that we access something with a known mode somewhere on
5209 the stack. */
5210 use = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
5211 gen_rtx_SCRATCH (Pmode));
5212 have_push_fusage = true;
5213 }
5214 use = gen_rtx_MEM (argvec[argnum].mode, use);
5215 use = gen_rtx_USE (VOIDmode, use);
5216 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
5217 }
5218 }
5219
5220 argnum = nargs - 1;
5221
5222 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
5223
5224 /* Now load any reg parms into their regs. */
5225
5226 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
5227 are to be pushed. */
5228 for (count = 0; count < nargs; count++, argnum--)
5229 {
5230 machine_mode mode = argvec[argnum].mode;
5231 rtx val = argvec[argnum].value;
5232 rtx reg = argvec[argnum].reg;
5233 int partial = argvec[argnum].partial;
5234
5235 /* Handle calls that pass values in multiple non-contiguous
5236 locations. The PA64 has examples of this for library calls. */
5237 if (reg != 0 && GET_CODE (reg) == PARALLEL)
5238 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
5239 else if (reg != 0 && partial == 0)
5240 {
5241 emit_move_insn (reg, val);
5242 #ifdef BLOCK_REG_PADDING
5243 poly_int64 size = GET_MODE_SIZE (argvec[argnum].mode);
5244
5245 /* Copied from load_register_parameters. */
5246
5247 /* Handle case where we have a value that needs shifting
5248 up to the msb. eg. a QImode value and we're padding
5249 upward on a BYTES_BIG_ENDIAN machine. */
5250 if (known_lt (size, UNITS_PER_WORD)
5251 && (argvec[argnum].locate.where_pad
5252 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
5253 {
5254 rtx x;
5255 poly_int64 shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
5256
5257 /* Assigning REG here rather than a temp makes CALL_FUSAGE
5258 report the whole reg as used. Strictly speaking, the
5259 call only uses SIZE bytes at the msb end, but it doesn't
5260 seem worth generating rtl to say that. */
5261 reg = gen_rtx_REG (word_mode, REGNO (reg));
5262 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
5263 if (x != reg)
5264 emit_move_insn (reg, x);
5265 }
5266 #endif
5267 }
5268
5269 NO_DEFER_POP;
5270 }
5271
5272 /* Any regs containing parms remain in use through the call. */
5273 for (count = 0; count < nargs; count++)
5274 {
5275 rtx reg = argvec[count].reg;
5276 if (reg != 0 && GET_CODE (reg) == PARALLEL)
5277 use_group_regs (&call_fusage, reg);
5278 else if (reg != 0)
5279 {
5280 int partial = argvec[count].partial;
5281 if (partial)
5282 {
5283 int nregs;
5284 gcc_assert (partial % UNITS_PER_WORD == 0);
5285 nregs = partial / UNITS_PER_WORD;
5286 use_regs (&call_fusage, REGNO (reg), nregs);
5287 }
5288 else
5289 use_reg (&call_fusage, reg);
5290 }
5291 }
5292
5293 /* Pass the function the address in which to return a structure value. */
5294 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
5295 {
5296 emit_move_insn (struct_value,
5297 force_reg (Pmode,
5298 force_operand (XEXP (mem_value, 0),
5299 NULL_RTX)));
5300 if (REG_P (struct_value))
5301 use_reg (&call_fusage, struct_value);
5302 }
5303
5304 /* Don't allow popping to be deferred, since then
5305 cse'ing of library calls could delete a call and leave the pop. */
5306 NO_DEFER_POP;
5307 valreg = (mem_value == 0 && outmode != VOIDmode
5308 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
5309
5310 /* Stack must be properly aligned now. */
5311 gcc_assert (multiple_p (stack_pointer_delta,
5312 PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT));
5313
5314 before_call = get_last_insn ();
5315
5316 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
5317 will set inhibit_defer_pop to that value. */
5318 /* The return type is needed to decide how many bytes the function pops.
5319 Signedness plays no role in that, so for simplicity, we pretend it's
5320 always signed. We also assume that the list of arguments passed has
5321 no impact, so we pretend it is unknown. */
5322
5323 emit_call_1 (fun, NULL,
5324 get_identifier (XSTR (orgfun, 0)),
5325 build_function_type (tfom, NULL_TREE),
5326 original_args_size.constant, args_size.constant,
5327 struct_value_size,
5328 targetm.calls.function_arg (args_so_far,
5329 function_arg_info::end_marker ()),
5330 valreg,
5331 old_inhibit_defer_pop + 1, call_fusage, flags, args_so_far);
5332
5333 if (flag_ipa_ra)
5334 {
5335 rtx datum = orgfun;
5336 gcc_assert (GET_CODE (datum) == SYMBOL_REF);
5337 rtx_call_insn *last = last_call_insn ();
5338 add_reg_note (last, REG_CALL_DECL, datum);
5339 }
5340
5341 /* Right-shift returned value if necessary. */
5342 if (!pcc_struct_value
5343 && TYPE_MODE (tfom) != BLKmode
5344 && targetm.calls.return_in_msb (tfom))
5345 {
5346 shift_return_value (TYPE_MODE (tfom), false, valreg);
5347 valreg = gen_rtx_REG (TYPE_MODE (tfom), REGNO (valreg));
5348 }
5349
5350 targetm.calls.end_call_args ();
5351
5352 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
5353 that it should complain if nonvolatile values are live. For
5354 functions that cannot return, inform flow that control does not
5355 fall through. */
5356 if (flags & ECF_NORETURN)
5357 {
5358 /* The barrier note must be emitted
5359 immediately after the CALL_INSN. Some ports emit more than
5360 just a CALL_INSN above, so we must search for it here. */
5361 rtx_insn *last = get_last_insn ();
5362 while (!CALL_P (last))
5363 {
5364 last = PREV_INSN (last);
5365 /* There was no CALL_INSN? */
5366 gcc_assert (last != before_call);
5367 }
5368
5369 emit_barrier_after (last);
5370 }
5371
5372 /* Consider that "regular" libcalls, i.e. all of them except for LCT_THROW
5373 and LCT_RETURNS_TWICE, cannot perform non-local gotos. */
5374 if (flags & ECF_NOTHROW)
5375 {
5376 rtx_insn *last = get_last_insn ();
5377 while (!CALL_P (last))
5378 {
5379 last = PREV_INSN (last);
5380 /* There was no CALL_INSN? */
5381 gcc_assert (last != before_call);
5382 }
5383
5384 make_reg_eh_region_note_nothrow_nononlocal (last);
5385 }
5386
5387 /* Now restore inhibit_defer_pop to its actual original value. */
5388 OK_DEFER_POP;
5389
5390 pop_temp_slots ();
5391
5392 /* Copy the value to the right place. */
5393 if (outmode != VOIDmode && retval)
5394 {
5395 if (mem_value)
5396 {
5397 if (value == 0)
5398 value = mem_value;
5399 if (value != mem_value)
5400 emit_move_insn (value, mem_value);
5401 }
5402 else if (GET_CODE (valreg) == PARALLEL)
5403 {
5404 if (value == 0)
5405 value = gen_reg_rtx (outmode);
5406 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
5407 }
5408 else
5409 {
5410 /* Convert to the proper mode if a promotion has been active. */
5411 if (GET_MODE (valreg) != outmode)
5412 {
5413 int unsignedp = TYPE_UNSIGNED (tfom);
5414
5415 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
5416 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
5417 == GET_MODE (valreg));
5418 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
5419 }
5420
5421 if (value != 0)
5422 emit_move_insn (value, valreg);
5423 else
5424 value = valreg;
5425 }
5426 }
5427
5428 if (ACCUMULATE_OUTGOING_ARGS)
5429 {
5430 #ifdef REG_PARM_STACK_SPACE
5431 if (save_area)
5432 restore_fixed_argument_area (save_area, argblock,
5433 high_to_save, low_to_save);
5434 #endif
5435
5436 /* If we saved any argument areas, restore them. */
5437 for (count = 0; count < nargs; count++)
5438 if (argvec[count].save_area)
5439 {
5440 machine_mode save_mode = GET_MODE (argvec[count].save_area);
5441 rtx adr = plus_constant (Pmode, argblock,
5442 argvec[count].locate.offset.constant);
5443 rtx stack_area = gen_rtx_MEM (save_mode,
5444 memory_address (save_mode, adr));
5445
5446 if (save_mode == BLKmode)
5447 emit_block_move (stack_area,
5448 validize_mem
5449 (copy_rtx (argvec[count].save_area)),
5450 (gen_int_mode
5451 (argvec[count].locate.size.constant, Pmode)),
5452 BLOCK_OP_CALL_PARM);
5453 else
5454 emit_move_insn (stack_area, argvec[count].save_area);
5455 }
5456
5457 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
5458 stack_usage_map = initial_stack_usage_map;
5459 stack_usage_watermark = initial_stack_usage_watermark;
5460 }
5461
5462 free (stack_usage_map_buf);
5463
5464 return value;
5465
5466 }
5467 \f
5468
5469 /* Store a single argument for a function call
5470 into the register or memory area where it must be passed.
5471 *ARG describes the argument value and where to pass it.
5472
5473 ARGBLOCK is the address of the stack-block for all the arguments,
5474 or 0 on a machine where arguments are pushed individually.
5475
5476 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
5477 so must be careful about how the stack is used.
5478
5479 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
5480 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
5481 that we need not worry about saving and restoring the stack.
5482
5483 FNDECL is the declaration of the function we are calling.
5484
5485 Return nonzero if this arg should cause sibcall failure,
5486 zero otherwise. */
5487
5488 static int
5489 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
5490 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
5491 {
5492 tree pval = arg->tree_value;
5493 rtx reg = 0;
5494 int partial = 0;
5495 poly_int64 used = 0;
5496 poly_int64 lower_bound = 0, upper_bound = 0;
5497 int sibcall_failure = 0;
5498
5499 if (TREE_CODE (pval) == ERROR_MARK)
5500 return 1;
5501
5502 /* Push a new temporary level for any temporaries we make for
5503 this argument. */
5504 push_temp_slots ();
5505
5506 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
5507 {
5508 /* If this is being stored into a pre-allocated, fixed-size, stack area,
5509 save any previous data at that location. */
5510 if (argblock && ! variable_size && arg->stack)
5511 {
5512 if (ARGS_GROW_DOWNWARD)
5513 {
5514 /* stack_slot is negative, but we want to index stack_usage_map
5515 with positive values. */
5516 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
5517 {
5518 rtx offset = XEXP (XEXP (arg->stack_slot, 0), 1);
5519 upper_bound = -rtx_to_poly_int64 (offset) + 1;
5520 }
5521 else
5522 upper_bound = 0;
5523
5524 lower_bound = upper_bound - arg->locate.size.constant;
5525 }
5526 else
5527 {
5528 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
5529 {
5530 rtx offset = XEXP (XEXP (arg->stack_slot, 0), 1);
5531 lower_bound = rtx_to_poly_int64 (offset);
5532 }
5533 else
5534 lower_bound = 0;
5535
5536 upper_bound = lower_bound + arg->locate.size.constant;
5537 }
5538
5539 if (stack_region_maybe_used_p (lower_bound, upper_bound,
5540 reg_parm_stack_space))
5541 {
5542 /* We need to make a save area. */
5543 poly_uint64 size = arg->locate.size.constant * BITS_PER_UNIT;
5544 machine_mode save_mode
5545 = int_mode_for_size (size, 1).else_blk ();
5546 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
5547 rtx stack_area = gen_rtx_MEM (save_mode, adr);
5548
5549 if (save_mode == BLKmode)
5550 {
5551 arg->save_area
5552 = assign_temp (TREE_TYPE (arg->tree_value), 1, 1);
5553 preserve_temp_slots (arg->save_area);
5554 emit_block_move (validize_mem (copy_rtx (arg->save_area)),
5555 stack_area,
5556 (gen_int_mode
5557 (arg->locate.size.constant, Pmode)),
5558 BLOCK_OP_CALL_PARM);
5559 }
5560 else
5561 {
5562 arg->save_area = gen_reg_rtx (save_mode);
5563 emit_move_insn (arg->save_area, stack_area);
5564 }
5565 }
5566 }
5567 }
5568
5569 /* If this isn't going to be placed on both the stack and in registers,
5570 set up the register and number of words. */
5571 if (! arg->pass_on_stack)
5572 {
5573 if (flags & ECF_SIBCALL)
5574 reg = arg->tail_call_reg;
5575 else
5576 reg = arg->reg;
5577 partial = arg->partial;
5578 }
5579
5580 /* Being passed entirely in a register. We shouldn't be called in
5581 this case. */
5582 gcc_assert (reg == 0 || partial != 0);
5583
5584 /* If this arg needs special alignment, don't load the registers
5585 here. */
5586 if (arg->n_aligned_regs != 0)
5587 reg = 0;
5588
5589 /* If this is being passed partially in a register, we can't evaluate
5590 it directly into its stack slot. Otherwise, we can. */
5591 if (arg->value == 0)
5592 {
5593 /* stack_arg_under_construction is nonzero if a function argument is
5594 being evaluated directly into the outgoing argument list and
5595 expand_call must take special action to preserve the argument list
5596 if it is called recursively.
5597
5598 For scalar function arguments stack_usage_map is sufficient to
5599 determine which stack slots must be saved and restored. Scalar
5600 arguments in general have pass_on_stack == 0.
5601
5602 If this argument is initialized by a function which takes the
5603 address of the argument (a C++ constructor or a C function
5604 returning a BLKmode structure), then stack_usage_map is
5605 insufficient and expand_call must push the stack around the
5606 function call. Such arguments have pass_on_stack == 1.
5607
5608 Note that it is always safe to set stack_arg_under_construction,
5609 but this generates suboptimal code if set when not needed. */
5610
5611 if (arg->pass_on_stack)
5612 stack_arg_under_construction++;
5613
5614 arg->value = expand_expr (pval,
5615 (partial
5616 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
5617 ? NULL_RTX : arg->stack,
5618 VOIDmode, EXPAND_STACK_PARM);
5619
5620 /* If we are promoting object (or for any other reason) the mode
5621 doesn't agree, convert the mode. */
5622
5623 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
5624 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
5625 arg->value, arg->unsignedp);
5626
5627 if (arg->pass_on_stack)
5628 stack_arg_under_construction--;
5629 }
5630
5631 /* Check for overlap with already clobbered argument area. */
5632 if ((flags & ECF_SIBCALL)
5633 && MEM_P (arg->value)
5634 && mem_might_overlap_already_clobbered_arg_p (XEXP (arg->value, 0),
5635 arg->locate.size.constant))
5636 sibcall_failure = 1;
5637
5638 /* Don't allow anything left on stack from computation
5639 of argument to alloca. */
5640 if (flags & ECF_MAY_BE_ALLOCA)
5641 do_pending_stack_adjust ();
5642
5643 if (arg->value == arg->stack)
5644 /* If the value is already in the stack slot, we are done. */
5645 ;
5646 else if (arg->mode != BLKmode)
5647 {
5648 unsigned int parm_align;
5649
5650 /* Argument is a scalar, not entirely passed in registers.
5651 (If part is passed in registers, arg->partial says how much
5652 and emit_push_insn will take care of putting it there.)
5653
5654 Push it, and if its size is less than the
5655 amount of space allocated to it,
5656 also bump stack pointer by the additional space.
5657 Note that in C the default argument promotions
5658 will prevent such mismatches. */
5659
5660 poly_int64 size = (TYPE_EMPTY_P (TREE_TYPE (pval))
5661 ? 0 : GET_MODE_SIZE (arg->mode));
5662
5663 /* Compute how much space the push instruction will push.
5664 On many machines, pushing a byte will advance the stack
5665 pointer by a halfword. */
5666 #ifdef PUSH_ROUNDING
5667 size = PUSH_ROUNDING (size);
5668 #endif
5669 used = size;
5670
5671 /* Compute how much space the argument should get:
5672 round up to a multiple of the alignment for arguments. */
5673 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5674 != PAD_NONE)
5675 /* At the moment we don't (need to) support ABIs for which the
5676 padding isn't known at compile time. In principle it should
5677 be easy to add though. */
5678 used = force_align_up (size, PARM_BOUNDARY / BITS_PER_UNIT);
5679
5680 /* Compute the alignment of the pushed argument. */
5681 parm_align = arg->locate.boundary;
5682 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5683 == PAD_DOWNWARD)
5684 {
5685 poly_int64 pad = used - size;
5686 unsigned int pad_align = known_alignment (pad) * BITS_PER_UNIT;
5687 if (pad_align != 0)
5688 parm_align = MIN (parm_align, pad_align);
5689 }
5690
5691 /* This isn't already where we want it on the stack, so put it there.
5692 This can either be done with push or copy insns. */
5693 if (maybe_ne (used, 0)
5694 && !emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval),
5695 NULL_RTX, parm_align, partial, reg, used - size,
5696 argblock, ARGS_SIZE_RTX (arg->locate.offset),
5697 reg_parm_stack_space,
5698 ARGS_SIZE_RTX (arg->locate.alignment_pad), true))
5699 sibcall_failure = 1;
5700
5701 /* Unless this is a partially-in-register argument, the argument is now
5702 in the stack. */
5703 if (partial == 0)
5704 arg->value = arg->stack;
5705 }
5706 else
5707 {
5708 /* BLKmode, at least partly to be pushed. */
5709
5710 unsigned int parm_align;
5711 poly_int64 excess;
5712 rtx size_rtx;
5713
5714 /* Pushing a nonscalar.
5715 If part is passed in registers, PARTIAL says how much
5716 and emit_push_insn will take care of putting it there. */
5717
5718 /* Round its size up to a multiple
5719 of the allocation unit for arguments. */
5720
5721 if (arg->locate.size.var != 0)
5722 {
5723 excess = 0;
5724 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
5725 }
5726 else
5727 {
5728 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
5729 for BLKmode is careful to avoid it. */
5730 excess = (arg->locate.size.constant
5731 - arg_int_size_in_bytes (TREE_TYPE (pval))
5732 + partial);
5733 size_rtx = expand_expr (arg_size_in_bytes (TREE_TYPE (pval)),
5734 NULL_RTX, TYPE_MODE (sizetype),
5735 EXPAND_NORMAL);
5736 }
5737
5738 parm_align = arg->locate.boundary;
5739
5740 /* When an argument is padded down, the block is aligned to
5741 PARM_BOUNDARY, but the actual argument isn't. */
5742 if (targetm.calls.function_arg_padding (arg->mode, TREE_TYPE (pval))
5743 == PAD_DOWNWARD)
5744 {
5745 if (arg->locate.size.var)
5746 parm_align = BITS_PER_UNIT;
5747 else
5748 {
5749 unsigned int excess_align
5750 = known_alignment (excess) * BITS_PER_UNIT;
5751 if (excess_align != 0)
5752 parm_align = MIN (parm_align, excess_align);
5753 }
5754 }
5755
5756 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
5757 {
5758 /* emit_push_insn might not work properly if arg->value and
5759 argblock + arg->locate.offset areas overlap. */
5760 rtx x = arg->value;
5761 poly_int64 i = 0;
5762
5763 if (strip_offset (XEXP (x, 0), &i)
5764 == crtl->args.internal_arg_pointer)
5765 {
5766 /* arg.locate doesn't contain the pretend_args_size offset,
5767 it's part of argblock. Ensure we don't count it in I. */
5768 if (STACK_GROWS_DOWNWARD)
5769 i -= crtl->args.pretend_args_size;
5770 else
5771 i += crtl->args.pretend_args_size;
5772
5773 /* expand_call should ensure this. */
5774 gcc_assert (!arg->locate.offset.var
5775 && arg->locate.size.var == 0);
5776 poly_int64 size_val = rtx_to_poly_int64 (size_rtx);
5777
5778 if (known_eq (arg->locate.offset.constant, i))
5779 {
5780 /* Even though they appear to be at the same location,
5781 if part of the outgoing argument is in registers,
5782 they aren't really at the same location. Check for
5783 this by making sure that the incoming size is the
5784 same as the outgoing size. */
5785 if (maybe_ne (arg->locate.size.constant, size_val))
5786 sibcall_failure = 1;
5787 }
5788 else if (maybe_in_range_p (arg->locate.offset.constant,
5789 i, size_val))
5790 sibcall_failure = 1;
5791 /* Use arg->locate.size.constant instead of size_rtx
5792 because we only care about the part of the argument
5793 on the stack. */
5794 else if (maybe_in_range_p (i, arg->locate.offset.constant,
5795 arg->locate.size.constant))
5796 sibcall_failure = 1;
5797 }
5798 }
5799
5800 if (!CONST_INT_P (size_rtx) || INTVAL (size_rtx) != 0)
5801 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
5802 parm_align, partial, reg, excess, argblock,
5803 ARGS_SIZE_RTX (arg->locate.offset),
5804 reg_parm_stack_space,
5805 ARGS_SIZE_RTX (arg->locate.alignment_pad), false);
5806
5807 /* Unless this is a partially-in-register argument, the argument is now
5808 in the stack.
5809
5810 ??? Unlike the case above, in which we want the actual
5811 address of the data, so that we can load it directly into a
5812 register, here we want the address of the stack slot, so that
5813 it's properly aligned for word-by-word copying or something
5814 like that. It's not clear that this is always correct. */
5815 if (partial == 0)
5816 arg->value = arg->stack_slot;
5817 }
5818
5819 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
5820 {
5821 tree type = TREE_TYPE (arg->tree_value);
5822 arg->parallel_value
5823 = emit_group_load_into_temps (arg->reg, arg->value, type,
5824 int_size_in_bytes (type));
5825 }
5826
5827 /* Mark all slots this store used. */
5828 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
5829 && argblock && ! variable_size && arg->stack)
5830 mark_stack_region_used (lower_bound, upper_bound);
5831
5832 /* Once we have pushed something, pops can't safely
5833 be deferred during the rest of the arguments. */
5834 NO_DEFER_POP;
5835
5836 /* Free any temporary slots made in processing this argument. */
5837 pop_temp_slots ();
5838
5839 return sibcall_failure;
5840 }
5841
5842 /* Nonzero if we do not know how to pass TYPE solely in registers. */
5843
5844 bool
5845 must_pass_in_stack_var_size (machine_mode mode ATTRIBUTE_UNUSED,
5846 const_tree type)
5847 {
5848 if (!type)
5849 return false;
5850
5851 /* If the type has variable size... */
5852 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5853 return true;
5854
5855 /* If the type is marked as addressable (it is required
5856 to be constructed into the stack)... */
5857 if (TREE_ADDRESSABLE (type))
5858 return true;
5859
5860 return false;
5861 }
5862
5863 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
5864 takes trailing padding of a structure into account. */
5865 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
5866
5867 bool
5868 must_pass_in_stack_var_size_or_pad (machine_mode mode, const_tree type)
5869 {
5870 if (!type)
5871 return false;
5872
5873 /* If the type has variable size... */
5874 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5875 return true;
5876
5877 /* If the type is marked as addressable (it is required
5878 to be constructed into the stack)... */
5879 if (TREE_ADDRESSABLE (type))
5880 return true;
5881
5882 if (TYPE_EMPTY_P (type))
5883 return false;
5884
5885 /* If the padding and mode of the type is such that a copy into
5886 a register would put it into the wrong part of the register. */
5887 if (mode == BLKmode
5888 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
5889 && (targetm.calls.function_arg_padding (mode, type)
5890 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
5891 return true;
5892
5893 return false;
5894 }
5895
5896 /* Return true if TYPE must be passed on the stack when passed to
5897 the "..." arguments of a function. */
5898
5899 bool
5900 must_pass_va_arg_in_stack (tree type)
5901 {
5902 return targetm.calls.must_pass_in_stack (TYPE_MODE (type), type);
5903 }
5904
5905 /* Tell the garbage collector about GTY markers in this source file. */
5906 #include "gt-calls.h"