re PR c/14411 (Request for setjmp/longjmp attributes)
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "expr.h"
31 #include "optabs.h"
32 #include "libfuncs.h"
33 #include "function.h"
34 #include "regs.h"
35 #include "toplev.h"
36 #include "output.h"
37 #include "tm_p.h"
38 #include "timevar.h"
39 #include "sbitmap.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "cgraph.h"
43 #include "except.h"
44
45 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
46 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
47
48 /* Data structure and subroutines used within expand_call. */
49
50 struct arg_data
51 {
52 /* Tree node for this argument. */
53 tree tree_value;
54 /* Mode for value; TYPE_MODE unless promoted. */
55 enum machine_mode mode;
56 /* Current RTL value for argument, or 0 if it isn't precomputed. */
57 rtx value;
58 /* Initially-compute RTL value for argument; only for const functions. */
59 rtx initial_value;
60 /* Register to pass this argument in, 0 if passed on stack, or an
61 PARALLEL if the arg is to be copied into multiple non-contiguous
62 registers. */
63 rtx reg;
64 /* Register to pass this argument in when generating tail call sequence.
65 This is not the same register as for normal calls on machines with
66 register windows. */
67 rtx tail_call_reg;
68 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
69 form for emit_group_move. */
70 rtx parallel_value;
71 /* If REG was promoted from the actual mode of the argument expression,
72 indicates whether the promotion is sign- or zero-extended. */
73 int unsignedp;
74 /* Number of registers to use. 0 means put the whole arg in registers.
75 Also 0 if not passed in registers. */
76 int partial;
77 /* Nonzero if argument must be passed on stack.
78 Note that some arguments may be passed on the stack
79 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
80 pass_on_stack identifies arguments that *cannot* go in registers. */
81 int pass_on_stack;
82 /* Some fields packaged up for locate_and_pad_parm. */
83 struct locate_and_pad_arg_data locate;
84 /* Location on the stack at which parameter should be stored. The store
85 has already been done if STACK == VALUE. */
86 rtx stack;
87 /* Location on the stack of the start of this argument slot. This can
88 differ from STACK if this arg pads downward. This location is known
89 to be aligned to FUNCTION_ARG_BOUNDARY. */
90 rtx stack_slot;
91 /* Place that this stack area has been saved, if needed. */
92 rtx save_area;
93 /* If an argument's alignment does not permit direct copying into registers,
94 copy in smaller-sized pieces into pseudos. These are stored in a
95 block pointed to by this field. The next field says how many
96 word-sized pseudos we made. */
97 rtx *aligned_regs;
98 int n_aligned_regs;
99 };
100
101 /* A vector of one char per byte of stack space. A byte if nonzero if
102 the corresponding stack location has been used.
103 This vector is used to prevent a function call within an argument from
104 clobbering any stack already set up. */
105 static char *stack_usage_map;
106
107 /* Size of STACK_USAGE_MAP. */
108 static int highest_outgoing_arg_in_use;
109
110 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
111 stack location's tail call argument has been already stored into the stack.
112 This bitmap is used to prevent sibling call optimization if function tries
113 to use parent's incoming argument slots when they have been already
114 overwritten with tail call arguments. */
115 static sbitmap stored_args_map;
116
117 /* stack_arg_under_construction is nonzero when an argument may be
118 initialized with a constructor call (including a C function that
119 returns a BLKmode struct) and expand_call must take special action
120 to make sure the object being constructed does not overlap the
121 argument list for the constructor call. */
122 static int stack_arg_under_construction;
123
124 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
125 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
126 CUMULATIVE_ARGS *);
127 static void precompute_register_parameters (int, struct arg_data *, int *);
128 static int store_one_arg (struct arg_data *, rtx, int, int, int);
129 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
130 static int finalize_must_preallocate (int, int, struct arg_data *,
131 struct args_size *);
132 static void precompute_arguments (int, int, struct arg_data *);
133 static int compute_argument_block_size (int, struct args_size *, int);
134 static void initialize_argument_information (int, struct arg_data *,
135 struct args_size *, int, tree,
136 tree, CUMULATIVE_ARGS *, int,
137 rtx *, int *, int *, int *,
138 bool *, bool);
139 static void compute_argument_addresses (struct arg_data *, rtx, int);
140 static rtx rtx_for_function_call (tree, tree);
141 static void load_register_parameters (struct arg_data *, int, rtx *, int,
142 int, int *);
143 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
144 enum machine_mode, int, va_list);
145 static int special_function_p (tree, int);
146 static int check_sibcall_argument_overlap_1 (rtx);
147 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
148
149 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
150 unsigned int);
151 static tree split_complex_values (tree);
152 static tree split_complex_types (tree);
153
154 #ifdef REG_PARM_STACK_SPACE
155 static rtx save_fixed_argument_area (int, rtx, int *, int *);
156 static void restore_fixed_argument_area (rtx, rtx, int, int);
157 #endif
158 \f
159 /* Force FUNEXP into a form suitable for the address of a CALL,
160 and return that as an rtx. Also load the static chain register
161 if FNDECL is a nested function.
162
163 CALL_FUSAGE points to a variable holding the prospective
164 CALL_INSN_FUNCTION_USAGE information. */
165
166 rtx
167 prepare_call_address (rtx funexp, rtx static_chain_value,
168 rtx *call_fusage, int reg_parm_seen, int sibcallp)
169 {
170 /* Make a valid memory address and copy constants through pseudo-regs,
171 but not for a constant address if -fno-function-cse. */
172 if (GET_CODE (funexp) != SYMBOL_REF)
173 /* If we are using registers for parameters, force the
174 function address into a register now. */
175 funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
176 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
177 : memory_address (FUNCTION_MODE, funexp));
178 else if (! sibcallp)
179 {
180 #ifndef NO_FUNCTION_CSE
181 if (optimize && ! flag_no_function_cse)
182 funexp = force_reg (Pmode, funexp);
183 #endif
184 }
185
186 if (static_chain_value != 0)
187 {
188 static_chain_value = convert_memory_address (Pmode, static_chain_value);
189 emit_move_insn (static_chain_rtx, static_chain_value);
190
191 if (REG_P (static_chain_rtx))
192 use_reg (call_fusage, static_chain_rtx);
193 }
194
195 return funexp;
196 }
197
198 /* Generate instructions to call function FUNEXP,
199 and optionally pop the results.
200 The CALL_INSN is the first insn generated.
201
202 FNDECL is the declaration node of the function. This is given to the
203 macro RETURN_POPS_ARGS to determine whether this function pops its own args.
204
205 FUNTYPE is the data type of the function. This is given to the macro
206 RETURN_POPS_ARGS to determine whether this function pops its own args.
207 We used to allow an identifier for library functions, but that doesn't
208 work when the return type is an aggregate type and the calling convention
209 says that the pointer to this aggregate is to be popped by the callee.
210
211 STACK_SIZE is the number of bytes of arguments on the stack,
212 ROUNDED_STACK_SIZE is that number rounded up to
213 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
214 both to put into the call insn and to generate explicit popping
215 code if necessary.
216
217 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
218 It is zero if this call doesn't want a structure value.
219
220 NEXT_ARG_REG is the rtx that results from executing
221 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
222 just after all the args have had their registers assigned.
223 This could be whatever you like, but normally it is the first
224 arg-register beyond those used for args in this call,
225 or 0 if all the arg-registers are used in this call.
226 It is passed on to `gen_call' so you can put this info in the call insn.
227
228 VALREG is a hard register in which a value is returned,
229 or 0 if the call does not return a value.
230
231 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
232 the args to this call were processed.
233 We restore `inhibit_defer_pop' to that value.
234
235 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
236 denote registers used by the called function. */
237
238 static void
239 emit_call_1 (rtx funexp, tree fntree, tree fndecl ATTRIBUTE_UNUSED,
240 tree funtype ATTRIBUTE_UNUSED,
241 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
242 HOST_WIDE_INT rounded_stack_size,
243 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
244 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
245 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
246 CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
247 {
248 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
249 rtx call_insn;
250 int already_popped = 0;
251 HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
252 #if defined (HAVE_call) && defined (HAVE_call_value)
253 rtx struct_value_size_rtx;
254 struct_value_size_rtx = GEN_INT (struct_value_size);
255 #endif
256
257 #ifdef CALL_POPS_ARGS
258 n_popped += CALL_POPS_ARGS (* args_so_far);
259 #endif
260
261 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
262 and we don't want to load it into a register as an optimization,
263 because prepare_call_address already did it if it should be done. */
264 if (GET_CODE (funexp) != SYMBOL_REF)
265 funexp = memory_address (FUNCTION_MODE, funexp);
266
267 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
268 if ((ecf_flags & ECF_SIBCALL)
269 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
270 && (n_popped > 0 || stack_size == 0))
271 {
272 rtx n_pop = GEN_INT (n_popped);
273 rtx pat;
274
275 /* If this subroutine pops its own args, record that in the call insn
276 if possible, for the sake of frame pointer elimination. */
277
278 if (valreg)
279 pat = GEN_SIBCALL_VALUE_POP (valreg,
280 gen_rtx_MEM (FUNCTION_MODE, funexp),
281 rounded_stack_size_rtx, next_arg_reg,
282 n_pop);
283 else
284 pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
285 rounded_stack_size_rtx, next_arg_reg, n_pop);
286
287 emit_call_insn (pat);
288 already_popped = 1;
289 }
290 else
291 #endif
292
293 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
294 /* If the target has "call" or "call_value" insns, then prefer them
295 if no arguments are actually popped. If the target does not have
296 "call" or "call_value" insns, then we must use the popping versions
297 even if the call has no arguments to pop. */
298 #if defined (HAVE_call) && defined (HAVE_call_value)
299 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
300 && n_popped > 0 && ! (ecf_flags & ECF_SP_DEPRESSED))
301 #else
302 if (HAVE_call_pop && HAVE_call_value_pop)
303 #endif
304 {
305 rtx n_pop = GEN_INT (n_popped);
306 rtx pat;
307
308 /* If this subroutine pops its own args, record that in the call insn
309 if possible, for the sake of frame pointer elimination. */
310
311 if (valreg)
312 pat = GEN_CALL_VALUE_POP (valreg,
313 gen_rtx_MEM (FUNCTION_MODE, funexp),
314 rounded_stack_size_rtx, next_arg_reg, n_pop);
315 else
316 pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
317 rounded_stack_size_rtx, next_arg_reg, n_pop);
318
319 emit_call_insn (pat);
320 already_popped = 1;
321 }
322 else
323 #endif
324
325 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
326 if ((ecf_flags & ECF_SIBCALL)
327 && HAVE_sibcall && HAVE_sibcall_value)
328 {
329 if (valreg)
330 emit_call_insn (GEN_SIBCALL_VALUE (valreg,
331 gen_rtx_MEM (FUNCTION_MODE, funexp),
332 rounded_stack_size_rtx,
333 next_arg_reg, NULL_RTX));
334 else
335 emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
336 rounded_stack_size_rtx, next_arg_reg,
337 struct_value_size_rtx));
338 }
339 else
340 #endif
341
342 #if defined (HAVE_call) && defined (HAVE_call_value)
343 if (HAVE_call && HAVE_call_value)
344 {
345 if (valreg)
346 emit_call_insn (GEN_CALL_VALUE (valreg,
347 gen_rtx_MEM (FUNCTION_MODE, funexp),
348 rounded_stack_size_rtx, next_arg_reg,
349 NULL_RTX));
350 else
351 emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
352 rounded_stack_size_rtx, next_arg_reg,
353 struct_value_size_rtx));
354 }
355 else
356 #endif
357 gcc_unreachable ();
358
359 /* Find the call we just emitted. */
360 call_insn = last_call_insn ();
361
362 /* Mark memory as used for "pure" function call. */
363 if (ecf_flags & ECF_PURE)
364 call_fusage
365 = gen_rtx_EXPR_LIST
366 (VOIDmode,
367 gen_rtx_USE (VOIDmode,
368 gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))),
369 call_fusage);
370
371 /* Put the register usage information there. */
372 add_function_usage_to (call_insn, call_fusage);
373
374 /* If this is a const call, then set the insn's unchanging bit. */
375 if (ecf_flags & (ECF_CONST | ECF_PURE))
376 CONST_OR_PURE_CALL_P (call_insn) = 1;
377
378 /* If this call can't throw, attach a REG_EH_REGION reg note to that
379 effect. */
380 if (ecf_flags & ECF_NOTHROW)
381 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, const0_rtx,
382 REG_NOTES (call_insn));
383 else
384 {
385 int rn = lookup_stmt_eh_region (fntree);
386
387 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't
388 throw, which we already took care of. */
389 if (rn > 0)
390 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
391 REG_NOTES (call_insn));
392 note_current_region_may_contain_throw ();
393 }
394
395 if (ecf_flags & ECF_NORETURN)
396 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_NORETURN, const0_rtx,
397 REG_NOTES (call_insn));
398
399 if (ecf_flags & ECF_RETURNS_TWICE)
400 {
401 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_SETJMP, const0_rtx,
402 REG_NOTES (call_insn));
403 current_function_calls_setjmp = 1;
404 }
405
406 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
407
408 /* Restore this now, so that we do defer pops for this call's args
409 if the context of the call as a whole permits. */
410 inhibit_defer_pop = old_inhibit_defer_pop;
411
412 if (n_popped > 0)
413 {
414 if (!already_popped)
415 CALL_INSN_FUNCTION_USAGE (call_insn)
416 = gen_rtx_EXPR_LIST (VOIDmode,
417 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
418 CALL_INSN_FUNCTION_USAGE (call_insn));
419 rounded_stack_size -= n_popped;
420 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
421 stack_pointer_delta -= n_popped;
422 }
423
424 if (!ACCUMULATE_OUTGOING_ARGS)
425 {
426 /* If returning from the subroutine does not automatically pop the args,
427 we need an instruction to pop them sooner or later.
428 Perhaps do it now; perhaps just record how much space to pop later.
429
430 If returning from the subroutine does pop the args, indicate that the
431 stack pointer will be changed. */
432
433 if (rounded_stack_size != 0)
434 {
435 if (ecf_flags & (ECF_SP_DEPRESSED | ECF_NORETURN))
436 /* Just pretend we did the pop. */
437 stack_pointer_delta -= rounded_stack_size;
438 else if (flag_defer_pop && inhibit_defer_pop == 0
439 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
440 pending_stack_adjust += rounded_stack_size;
441 else
442 adjust_stack (rounded_stack_size_rtx);
443 }
444 }
445 /* When we accumulate outgoing args, we must avoid any stack manipulations.
446 Restore the stack pointer to its original value now. Usually
447 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
448 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
449 popping variants of functions exist as well.
450
451 ??? We may optimize similar to defer_pop above, but it is
452 probably not worthwhile.
453
454 ??? It will be worthwhile to enable combine_stack_adjustments even for
455 such machines. */
456 else if (n_popped)
457 anti_adjust_stack (GEN_INT (n_popped));
458 }
459
460 /* Determine if the function identified by NAME and FNDECL is one with
461 special properties we wish to know about.
462
463 For example, if the function might return more than one time (setjmp), then
464 set RETURNS_TWICE to a nonzero value.
465
466 Similarly set LONGJMP for if the function is in the longjmp family.
467
468 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
469 space from the stack such as alloca. */
470
471 static int
472 special_function_p (tree fndecl, int flags)
473 {
474 if (fndecl && DECL_NAME (fndecl)
475 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
476 /* Exclude functions not at the file scope, or not `extern',
477 since they are not the magic functions we would otherwise
478 think they are.
479 FIXME: this should be handled with attributes, not with this
480 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
481 because you can declare fork() inside a function if you
482 wish. */
483 && (DECL_CONTEXT (fndecl) == NULL_TREE
484 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
485 && TREE_PUBLIC (fndecl))
486 {
487 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
488 const char *tname = name;
489
490 /* We assume that alloca will always be called by name. It
491 makes no sense to pass it as a pointer-to-function to
492 anything that does not understand its behavior. */
493 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
494 && name[0] == 'a'
495 && ! strcmp (name, "alloca"))
496 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
497 && name[0] == '_'
498 && ! strcmp (name, "__builtin_alloca"))))
499 flags |= ECF_MAY_BE_ALLOCA;
500
501 /* Disregard prefix _, __ or __x. */
502 if (name[0] == '_')
503 {
504 if (name[1] == '_' && name[2] == 'x')
505 tname += 3;
506 else if (name[1] == '_')
507 tname += 2;
508 else
509 tname += 1;
510 }
511
512 if (tname[0] == 's')
513 {
514 if ((tname[1] == 'e'
515 && (! strcmp (tname, "setjmp")
516 || ! strcmp (tname, "setjmp_syscall")))
517 || (tname[1] == 'i'
518 && ! strcmp (tname, "sigsetjmp"))
519 || (tname[1] == 'a'
520 && ! strcmp (tname, "savectx")))
521 flags |= ECF_RETURNS_TWICE;
522
523 if (tname[1] == 'i'
524 && ! strcmp (tname, "siglongjmp"))
525 flags |= ECF_NORETURN;
526 }
527 else if ((tname[0] == 'q' && tname[1] == 's'
528 && ! strcmp (tname, "qsetjmp"))
529 || (tname[0] == 'v' && tname[1] == 'f'
530 && ! strcmp (tname, "vfork")))
531 flags |= ECF_RETURNS_TWICE;
532
533 else if (tname[0] == 'l' && tname[1] == 'o'
534 && ! strcmp (tname, "longjmp"))
535 flags |= ECF_NORETURN;
536 }
537
538 return flags;
539 }
540
541 /* Return nonzero when tree represent call to longjmp. */
542
543 int
544 setjmp_call_p (tree fndecl)
545 {
546 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
547 }
548
549 /* Return true when exp contains alloca call. */
550 bool
551 alloca_call_p (tree exp)
552 {
553 if (TREE_CODE (exp) == CALL_EXPR
554 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
555 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
556 == FUNCTION_DECL)
557 && (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
558 0) & ECF_MAY_BE_ALLOCA))
559 return true;
560 return false;
561 }
562
563 /* Detect flags (function attributes) from the function decl or type node. */
564
565 int
566 flags_from_decl_or_type (tree exp)
567 {
568 int flags = 0;
569 tree type = exp;
570
571 if (DECL_P (exp))
572 {
573 struct cgraph_rtl_info *i = cgraph_rtl_info (exp);
574 type = TREE_TYPE (exp);
575
576 if (i)
577 {
578 if (i->pure_function)
579 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
580 if (i->const_function)
581 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
582 }
583
584 /* The function exp may have the `malloc' attribute. */
585 if (DECL_IS_MALLOC (exp))
586 flags |= ECF_MALLOC;
587
588 /* The function exp may have the `returns_twice' attribute. */
589 if (DECL_IS_RETURNS_TWICE (exp))
590 flags |= ECF_RETURNS_TWICE;
591
592 /* The function exp may have the `pure' attribute. */
593 if (DECL_IS_PURE (exp))
594 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
595
596 if (TREE_NOTHROW (exp))
597 flags |= ECF_NOTHROW;
598
599 if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
600 flags |= ECF_LIBCALL_BLOCK | ECF_CONST;
601
602 flags = special_function_p (exp, flags);
603 }
604 else if (TYPE_P (exp) && TYPE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
605 flags |= ECF_CONST;
606
607 if (TREE_THIS_VOLATILE (exp))
608 flags |= ECF_NORETURN;
609
610 /* Mark if the function returns with the stack pointer depressed. We
611 cannot consider it pure or constant in that case. */
612 if (TREE_CODE (type) == FUNCTION_TYPE && TYPE_RETURNS_STACK_DEPRESSED (type))
613 {
614 flags |= ECF_SP_DEPRESSED;
615 flags &= ~(ECF_PURE | ECF_CONST | ECF_LIBCALL_BLOCK);
616 }
617
618 return flags;
619 }
620
621 /* Detect flags from a CALL_EXPR. */
622
623 int
624 call_expr_flags (tree t)
625 {
626 int flags;
627 tree decl = get_callee_fndecl (t);
628
629 if (decl)
630 flags = flags_from_decl_or_type (decl);
631 else
632 {
633 t = TREE_TYPE (TREE_OPERAND (t, 0));
634 if (t && TREE_CODE (t) == POINTER_TYPE)
635 flags = flags_from_decl_or_type (TREE_TYPE (t));
636 else
637 flags = 0;
638 }
639
640 return flags;
641 }
642
643 /* Precompute all register parameters as described by ARGS, storing values
644 into fields within the ARGS array.
645
646 NUM_ACTUALS indicates the total number elements in the ARGS array.
647
648 Set REG_PARM_SEEN if we encounter a register parameter. */
649
650 static void
651 precompute_register_parameters (int num_actuals, struct arg_data *args,
652 int *reg_parm_seen)
653 {
654 int i;
655
656 *reg_parm_seen = 0;
657
658 for (i = 0; i < num_actuals; i++)
659 if (args[i].reg != 0 && ! args[i].pass_on_stack)
660 {
661 *reg_parm_seen = 1;
662
663 if (args[i].value == 0)
664 {
665 push_temp_slots ();
666 args[i].value = expand_expr (args[i].tree_value, NULL_RTX,
667 VOIDmode, 0);
668 preserve_temp_slots (args[i].value);
669 pop_temp_slots ();
670 }
671
672 /* If the value is a non-legitimate constant, force it into a
673 pseudo now. TLS symbols sometimes need a call to resolve. */
674 if (CONSTANT_P (args[i].value)
675 && !LEGITIMATE_CONSTANT_P (args[i].value))
676 args[i].value = force_reg (args[i].mode, args[i].value);
677
678 /* If we are to promote the function arg to a wider mode,
679 do it now. */
680
681 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
682 args[i].value
683 = convert_modes (args[i].mode,
684 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
685 args[i].value, args[i].unsignedp);
686
687 /* If we're going to have to load the value by parts, pull the
688 parts into pseudos. The part extraction process can involve
689 non-trivial computation. */
690 if (GET_CODE (args[i].reg) == PARALLEL)
691 {
692 tree type = TREE_TYPE (args[i].tree_value);
693 args[i].parallel_value
694 = emit_group_load_into_temps (args[i].reg, args[i].value,
695 type, int_size_in_bytes (type));
696 }
697
698 /* If the value is expensive, and we are inside an appropriately
699 short loop, put the value into a pseudo and then put the pseudo
700 into the hard reg.
701
702 For small register classes, also do this if this call uses
703 register parameters. This is to avoid reload conflicts while
704 loading the parameters registers. */
705
706 else if ((! (REG_P (args[i].value)
707 || (GET_CODE (args[i].value) == SUBREG
708 && REG_P (SUBREG_REG (args[i].value)))))
709 && args[i].mode != BLKmode
710 && rtx_cost (args[i].value, SET) > COSTS_N_INSNS (1)
711 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
712 || optimize))
713 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
714 }
715 }
716
717 #ifdef REG_PARM_STACK_SPACE
718
719 /* The argument list is the property of the called routine and it
720 may clobber it. If the fixed area has been used for previous
721 parameters, we must save and restore it. */
722
723 static rtx
724 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
725 {
726 int low;
727 int high;
728
729 /* Compute the boundary of the area that needs to be saved, if any. */
730 high = reg_parm_stack_space;
731 #ifdef ARGS_GROW_DOWNWARD
732 high += 1;
733 #endif
734 if (high > highest_outgoing_arg_in_use)
735 high = highest_outgoing_arg_in_use;
736
737 for (low = 0; low < high; low++)
738 if (stack_usage_map[low] != 0)
739 {
740 int num_to_save;
741 enum machine_mode save_mode;
742 int delta;
743 rtx stack_area;
744 rtx save_area;
745
746 while (stack_usage_map[--high] == 0)
747 ;
748
749 *low_to_save = low;
750 *high_to_save = high;
751
752 num_to_save = high - low + 1;
753 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
754
755 /* If we don't have the required alignment, must do this
756 in BLKmode. */
757 if ((low & (MIN (GET_MODE_SIZE (save_mode),
758 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
759 save_mode = BLKmode;
760
761 #ifdef ARGS_GROW_DOWNWARD
762 delta = -high;
763 #else
764 delta = low;
765 #endif
766 stack_area = gen_rtx_MEM (save_mode,
767 memory_address (save_mode,
768 plus_constant (argblock,
769 delta)));
770
771 set_mem_align (stack_area, PARM_BOUNDARY);
772 if (save_mode == BLKmode)
773 {
774 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
775 emit_block_move (validize_mem (save_area), stack_area,
776 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
777 }
778 else
779 {
780 save_area = gen_reg_rtx (save_mode);
781 emit_move_insn (save_area, stack_area);
782 }
783
784 return save_area;
785 }
786
787 return NULL_RTX;
788 }
789
790 static void
791 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
792 {
793 enum machine_mode save_mode = GET_MODE (save_area);
794 int delta;
795 rtx stack_area;
796
797 #ifdef ARGS_GROW_DOWNWARD
798 delta = -high_to_save;
799 #else
800 delta = low_to_save;
801 #endif
802 stack_area = gen_rtx_MEM (save_mode,
803 memory_address (save_mode,
804 plus_constant (argblock, delta)));
805 set_mem_align (stack_area, PARM_BOUNDARY);
806
807 if (save_mode != BLKmode)
808 emit_move_insn (stack_area, save_area);
809 else
810 emit_block_move (stack_area, validize_mem (save_area),
811 GEN_INT (high_to_save - low_to_save + 1),
812 BLOCK_OP_CALL_PARM);
813 }
814 #endif /* REG_PARM_STACK_SPACE */
815
816 /* If any elements in ARGS refer to parameters that are to be passed in
817 registers, but not in memory, and whose alignment does not permit a
818 direct copy into registers. Copy the values into a group of pseudos
819 which we will later copy into the appropriate hard registers.
820
821 Pseudos for each unaligned argument will be stored into the array
822 args[argnum].aligned_regs. The caller is responsible for deallocating
823 the aligned_regs array if it is nonzero. */
824
825 static void
826 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
827 {
828 int i, j;
829
830 for (i = 0; i < num_actuals; i++)
831 if (args[i].reg != 0 && ! args[i].pass_on_stack
832 && args[i].mode == BLKmode
833 && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
834 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
835 {
836 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
837 int endian_correction = 0;
838
839 if (args[i].partial)
840 {
841 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
842 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
843 }
844 else
845 {
846 args[i].n_aligned_regs
847 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
848 }
849
850 args[i].aligned_regs = xmalloc (sizeof (rtx) * args[i].n_aligned_regs);
851
852 /* Structures smaller than a word are normally aligned to the
853 least significant byte. On a BYTES_BIG_ENDIAN machine,
854 this means we must skip the empty high order bytes when
855 calculating the bit offset. */
856 if (bytes < UNITS_PER_WORD
857 #ifdef BLOCK_REG_PADDING
858 && (BLOCK_REG_PADDING (args[i].mode,
859 TREE_TYPE (args[i].tree_value), 1)
860 == downward)
861 #else
862 && BYTES_BIG_ENDIAN
863 #endif
864 )
865 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
866
867 for (j = 0; j < args[i].n_aligned_regs; j++)
868 {
869 rtx reg = gen_reg_rtx (word_mode);
870 rtx word = operand_subword_force (args[i].value, j, BLKmode);
871 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
872
873 args[i].aligned_regs[j] = reg;
874 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
875 word_mode, word_mode);
876
877 /* There is no need to restrict this code to loading items
878 in TYPE_ALIGN sized hunks. The bitfield instructions can
879 load up entire word sized registers efficiently.
880
881 ??? This may not be needed anymore.
882 We use to emit a clobber here but that doesn't let later
883 passes optimize the instructions we emit. By storing 0 into
884 the register later passes know the first AND to zero out the
885 bitfield being set in the register is unnecessary. The store
886 of 0 will be deleted as will at least the first AND. */
887
888 emit_move_insn (reg, const0_rtx);
889
890 bytes -= bitsize / BITS_PER_UNIT;
891 store_bit_field (reg, bitsize, endian_correction, word_mode,
892 word);
893 }
894 }
895 }
896
897 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
898 ACTPARMS.
899
900 NUM_ACTUALS is the total number of parameters.
901
902 N_NAMED_ARGS is the total number of named arguments.
903
904 FNDECL is the tree code for the target of this call (if known)
905
906 ARGS_SO_FAR holds state needed by the target to know where to place
907 the next argument.
908
909 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
910 for arguments which are passed in registers.
911
912 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
913 and may be modified by this routine.
914
915 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
916 flags which may may be modified by this routine.
917
918 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
919 that requires allocation of stack space.
920
921 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
922 the thunked-to function. */
923
924 static void
925 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
926 struct arg_data *args,
927 struct args_size *args_size,
928 int n_named_args ATTRIBUTE_UNUSED,
929 tree actparms, tree fndecl,
930 CUMULATIVE_ARGS *args_so_far,
931 int reg_parm_stack_space,
932 rtx *old_stack_level, int *old_pending_adj,
933 int *must_preallocate, int *ecf_flags,
934 bool *may_tailcall, bool call_from_thunk_p)
935 {
936 /* 1 if scanning parms front to back, -1 if scanning back to front. */
937 int inc;
938
939 /* Count arg position in order args appear. */
940 int argpos;
941
942 int i;
943 tree p;
944
945 args_size->constant = 0;
946 args_size->var = 0;
947
948 /* In this loop, we consider args in the order they are written.
949 We fill up ARGS from the front or from the back if necessary
950 so that in any case the first arg to be pushed ends up at the front. */
951
952 if (PUSH_ARGS_REVERSED)
953 {
954 i = num_actuals - 1, inc = -1;
955 /* In this case, must reverse order of args
956 so that we compute and push the last arg first. */
957 }
958 else
959 {
960 i = 0, inc = 1;
961 }
962
963 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
964 for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++)
965 {
966 tree type = TREE_TYPE (TREE_VALUE (p));
967 int unsignedp;
968 enum machine_mode mode;
969
970 args[i].tree_value = TREE_VALUE (p);
971
972 /* Replace erroneous argument with constant zero. */
973 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
974 args[i].tree_value = integer_zero_node, type = integer_type_node;
975
976 /* If TYPE is a transparent union, pass things the way we would
977 pass the first field of the union. We have already verified that
978 the modes are the same. */
979 if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
980 type = TREE_TYPE (TYPE_FIELDS (type));
981
982 /* Decide where to pass this arg.
983
984 args[i].reg is nonzero if all or part is passed in registers.
985
986 args[i].partial is nonzero if part but not all is passed in registers,
987 and the exact value says how many bytes are passed in registers.
988
989 args[i].pass_on_stack is nonzero if the argument must at least be
990 computed on the stack. It may then be loaded back into registers
991 if args[i].reg is nonzero.
992
993 These decisions are driven by the FUNCTION_... macros and must agree
994 with those made by function.c. */
995
996 /* See if this argument should be passed by invisible reference. */
997 if (pass_by_reference (args_so_far, TYPE_MODE (type),
998 type, argpos < n_named_args))
999 {
1000 bool callee_copies;
1001 tree base;
1002
1003 callee_copies
1004 = reference_callee_copied (args_so_far, TYPE_MODE (type),
1005 type, argpos < n_named_args);
1006
1007 /* If we're compiling a thunk, pass through invisible references
1008 instead of making a copy. */
1009 if (call_from_thunk_p
1010 || (callee_copies
1011 && !TREE_ADDRESSABLE (type)
1012 && (base = get_base_address (args[i].tree_value))
1013 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1014 {
1015 /* We can't use sibcalls if a callee-copied argument is
1016 stored in the current function's frame. */
1017 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1018 *may_tailcall = false;
1019
1020 args[i].tree_value = build_fold_addr_expr (args[i].tree_value);
1021 type = TREE_TYPE (args[i].tree_value);
1022
1023 *ecf_flags &= ~(ECF_CONST | ECF_LIBCALL_BLOCK);
1024 }
1025 else
1026 {
1027 /* We make a copy of the object and pass the address to the
1028 function being called. */
1029 rtx copy;
1030
1031 if (!COMPLETE_TYPE_P (type)
1032 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
1033 || (flag_stack_check && ! STACK_CHECK_BUILTIN
1034 && (0 < compare_tree_int (TYPE_SIZE_UNIT (type),
1035 STACK_CHECK_MAX_VAR_SIZE))))
1036 {
1037 /* This is a variable-sized object. Make space on the stack
1038 for it. */
1039 rtx size_rtx = expr_size (TREE_VALUE (p));
1040
1041 if (*old_stack_level == 0)
1042 {
1043 emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
1044 *old_pending_adj = pending_stack_adjust;
1045 pending_stack_adjust = 0;
1046 }
1047
1048 copy = gen_rtx_MEM (BLKmode,
1049 allocate_dynamic_stack_space
1050 (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
1051 set_mem_attributes (copy, type, 1);
1052 }
1053 else
1054 copy = assign_temp (type, 0, 1, 0);
1055
1056 store_expr (args[i].tree_value, copy, 0);
1057
1058 if (callee_copies)
1059 *ecf_flags &= ~(ECF_CONST | ECF_LIBCALL_BLOCK);
1060 else
1061 *ecf_flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1062
1063 args[i].tree_value
1064 = build_fold_addr_expr (make_tree (type, copy));
1065 type = TREE_TYPE (args[i].tree_value);
1066 *may_tailcall = false;
1067 }
1068 }
1069
1070 mode = TYPE_MODE (type);
1071 unsignedp = TYPE_UNSIGNED (type);
1072
1073 if (targetm.calls.promote_function_args (fndecl ? TREE_TYPE (fndecl) : 0))
1074 mode = promote_mode (type, mode, &unsignedp, 1);
1075
1076 args[i].unsignedp = unsignedp;
1077 args[i].mode = mode;
1078
1079 args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
1080 argpos < n_named_args);
1081 #ifdef FUNCTION_INCOMING_ARG
1082 /* If this is a sibling call and the machine has register windows, the
1083 register window has to be unwinded before calling the routine, so
1084 arguments have to go into the incoming registers. */
1085 args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
1086 argpos < n_named_args);
1087 #else
1088 args[i].tail_call_reg = args[i].reg;
1089 #endif
1090
1091 if (args[i].reg)
1092 args[i].partial
1093 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1094 argpos < n_named_args);
1095
1096 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1097
1098 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1099 it means that we are to pass this arg in the register(s) designated
1100 by the PARALLEL, but also to pass it in the stack. */
1101 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1102 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1103 args[i].pass_on_stack = 1;
1104
1105 /* If this is an addressable type, we must preallocate the stack
1106 since we must evaluate the object into its final location.
1107
1108 If this is to be passed in both registers and the stack, it is simpler
1109 to preallocate. */
1110 if (TREE_ADDRESSABLE (type)
1111 || (args[i].pass_on_stack && args[i].reg != 0))
1112 *must_preallocate = 1;
1113
1114 /* If this is an addressable type, we cannot pre-evaluate it. Thus,
1115 we cannot consider this function call constant. */
1116 if (TREE_ADDRESSABLE (type))
1117 *ecf_flags &= ~ECF_LIBCALL_BLOCK;
1118
1119 /* Compute the stack-size of this argument. */
1120 if (args[i].reg == 0 || args[i].partial != 0
1121 || reg_parm_stack_space > 0
1122 || args[i].pass_on_stack)
1123 locate_and_pad_parm (mode, type,
1124 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1125 1,
1126 #else
1127 args[i].reg != 0,
1128 #endif
1129 args[i].pass_on_stack ? 0 : args[i].partial,
1130 fndecl, args_size, &args[i].locate);
1131 #ifdef BLOCK_REG_PADDING
1132 else
1133 /* The argument is passed entirely in registers. See at which
1134 end it should be padded. */
1135 args[i].locate.where_pad =
1136 BLOCK_REG_PADDING (mode, type,
1137 int_size_in_bytes (type) <= UNITS_PER_WORD);
1138 #endif
1139
1140 /* Update ARGS_SIZE, the total stack space for args so far. */
1141
1142 args_size->constant += args[i].locate.size.constant;
1143 if (args[i].locate.size.var)
1144 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1145
1146 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1147 have been used, etc. */
1148
1149 FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
1150 argpos < n_named_args);
1151 }
1152 }
1153
1154 /* Update ARGS_SIZE to contain the total size for the argument block.
1155 Return the original constant component of the argument block's size.
1156
1157 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1158 for arguments passed in registers. */
1159
1160 static int
1161 compute_argument_block_size (int reg_parm_stack_space,
1162 struct args_size *args_size,
1163 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1164 {
1165 int unadjusted_args_size = args_size->constant;
1166
1167 /* For accumulate outgoing args mode we don't need to align, since the frame
1168 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1169 backends from generating misaligned frame sizes. */
1170 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1171 preferred_stack_boundary = STACK_BOUNDARY;
1172
1173 /* Compute the actual size of the argument block required. The variable
1174 and constant sizes must be combined, the size may have to be rounded,
1175 and there may be a minimum required size. */
1176
1177 if (args_size->var)
1178 {
1179 args_size->var = ARGS_SIZE_TREE (*args_size);
1180 args_size->constant = 0;
1181
1182 preferred_stack_boundary /= BITS_PER_UNIT;
1183 if (preferred_stack_boundary > 1)
1184 {
1185 /* We don't handle this case yet. To handle it correctly we have
1186 to add the delta, round and subtract the delta.
1187 Currently no machine description requires this support. */
1188 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1189 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1190 }
1191
1192 if (reg_parm_stack_space > 0)
1193 {
1194 args_size->var
1195 = size_binop (MAX_EXPR, args_size->var,
1196 ssize_int (reg_parm_stack_space));
1197
1198 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1199 /* The area corresponding to register parameters is not to count in
1200 the size of the block we need. So make the adjustment. */
1201 args_size->var
1202 = size_binop (MINUS_EXPR, args_size->var,
1203 ssize_int (reg_parm_stack_space));
1204 #endif
1205 }
1206 }
1207 else
1208 {
1209 preferred_stack_boundary /= BITS_PER_UNIT;
1210 if (preferred_stack_boundary < 1)
1211 preferred_stack_boundary = 1;
1212 args_size->constant = (((args_size->constant
1213 + stack_pointer_delta
1214 + preferred_stack_boundary - 1)
1215 / preferred_stack_boundary
1216 * preferred_stack_boundary)
1217 - stack_pointer_delta);
1218
1219 args_size->constant = MAX (args_size->constant,
1220 reg_parm_stack_space);
1221
1222 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1223 args_size->constant -= reg_parm_stack_space;
1224 #endif
1225 }
1226 return unadjusted_args_size;
1227 }
1228
1229 /* Precompute parameters as needed for a function call.
1230
1231 FLAGS is mask of ECF_* constants.
1232
1233 NUM_ACTUALS is the number of arguments.
1234
1235 ARGS is an array containing information for each argument; this
1236 routine fills in the INITIAL_VALUE and VALUE fields for each
1237 precomputed argument. */
1238
1239 static void
1240 precompute_arguments (int flags, int num_actuals, struct arg_data *args)
1241 {
1242 int i;
1243
1244 /* If this is a libcall, then precompute all arguments so that we do not
1245 get extraneous instructions emitted as part of the libcall sequence. */
1246 if ((flags & ECF_LIBCALL_BLOCK) == 0)
1247 return;
1248
1249 for (i = 0; i < num_actuals; i++)
1250 {
1251 enum machine_mode mode;
1252
1253 /* If this is an addressable type, we cannot pre-evaluate it. */
1254 gcc_assert (!TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)));
1255
1256 args[i].initial_value = args[i].value
1257 = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0);
1258
1259 mode = TYPE_MODE (TREE_TYPE (args[i].tree_value));
1260 if (mode != args[i].mode)
1261 {
1262 args[i].value
1263 = convert_modes (args[i].mode, mode,
1264 args[i].value, args[i].unsignedp);
1265 #if defined(PROMOTE_FUNCTION_MODE) && !defined(PROMOTE_MODE)
1266 /* CSE will replace this only if it contains args[i].value
1267 pseudo, so convert it down to the declared mode using
1268 a SUBREG. */
1269 if (REG_P (args[i].value)
1270 && GET_MODE_CLASS (args[i].mode) == MODE_INT)
1271 {
1272 args[i].initial_value
1273 = gen_lowpart_SUBREG (mode, args[i].value);
1274 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1275 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1276 args[i].unsignedp);
1277 }
1278 #endif
1279 }
1280 }
1281 }
1282
1283 /* Given the current state of MUST_PREALLOCATE and information about
1284 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1285 compute and return the final value for MUST_PREALLOCATE. */
1286
1287 static int
1288 finalize_must_preallocate (int must_preallocate, int num_actuals, struct arg_data *args, struct args_size *args_size)
1289 {
1290 /* See if we have or want to preallocate stack space.
1291
1292 If we would have to push a partially-in-regs parm
1293 before other stack parms, preallocate stack space instead.
1294
1295 If the size of some parm is not a multiple of the required stack
1296 alignment, we must preallocate.
1297
1298 If the total size of arguments that would otherwise create a copy in
1299 a temporary (such as a CALL) is more than half the total argument list
1300 size, preallocation is faster.
1301
1302 Another reason to preallocate is if we have a machine (like the m88k)
1303 where stack alignment is required to be maintained between every
1304 pair of insns, not just when the call is made. However, we assume here
1305 that such machines either do not have push insns (and hence preallocation
1306 would occur anyway) or the problem is taken care of with
1307 PUSH_ROUNDING. */
1308
1309 if (! must_preallocate)
1310 {
1311 int partial_seen = 0;
1312 int copy_to_evaluate_size = 0;
1313 int i;
1314
1315 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1316 {
1317 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1318 partial_seen = 1;
1319 else if (partial_seen && args[i].reg == 0)
1320 must_preallocate = 1;
1321
1322 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1323 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1324 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1325 || TREE_CODE (args[i].tree_value) == COND_EXPR
1326 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1327 copy_to_evaluate_size
1328 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1329 }
1330
1331 if (copy_to_evaluate_size * 2 >= args_size->constant
1332 && args_size->constant > 0)
1333 must_preallocate = 1;
1334 }
1335 return must_preallocate;
1336 }
1337
1338 /* If we preallocated stack space, compute the address of each argument
1339 and store it into the ARGS array.
1340
1341 We need not ensure it is a valid memory address here; it will be
1342 validized when it is used.
1343
1344 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1345
1346 static void
1347 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1348 {
1349 if (argblock)
1350 {
1351 rtx arg_reg = argblock;
1352 int i, arg_offset = 0;
1353
1354 if (GET_CODE (argblock) == PLUS)
1355 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1356
1357 for (i = 0; i < num_actuals; i++)
1358 {
1359 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1360 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1361 rtx addr;
1362 unsigned int align, boundary;
1363
1364 /* Skip this parm if it will not be passed on the stack. */
1365 if (! args[i].pass_on_stack && args[i].reg != 0)
1366 continue;
1367
1368 if (GET_CODE (offset) == CONST_INT)
1369 addr = plus_constant (arg_reg, INTVAL (offset));
1370 else
1371 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1372
1373 addr = plus_constant (addr, arg_offset);
1374 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1375 set_mem_attributes (args[i].stack,
1376 TREE_TYPE (args[i].tree_value), 1);
1377 align = BITS_PER_UNIT;
1378 boundary = args[i].locate.boundary;
1379 if (args[i].locate.where_pad != downward)
1380 align = boundary;
1381 else if (GET_CODE (offset) == CONST_INT)
1382 {
1383 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1384 align = align & -align;
1385 }
1386 set_mem_align (args[i].stack, align);
1387
1388 if (GET_CODE (slot_offset) == CONST_INT)
1389 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1390 else
1391 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1392
1393 addr = plus_constant (addr, arg_offset);
1394 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1395 set_mem_attributes (args[i].stack_slot,
1396 TREE_TYPE (args[i].tree_value), 1);
1397 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1398
1399 /* Function incoming arguments may overlap with sibling call
1400 outgoing arguments and we cannot allow reordering of reads
1401 from function arguments with stores to outgoing arguments
1402 of sibling calls. */
1403 set_mem_alias_set (args[i].stack, 0);
1404 set_mem_alias_set (args[i].stack_slot, 0);
1405 }
1406 }
1407 }
1408
1409 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1410 in a call instruction.
1411
1412 FNDECL is the tree node for the target function. For an indirect call
1413 FNDECL will be NULL_TREE.
1414
1415 ADDR is the operand 0 of CALL_EXPR for this call. */
1416
1417 static rtx
1418 rtx_for_function_call (tree fndecl, tree addr)
1419 {
1420 rtx funexp;
1421
1422 /* Get the function to call, in the form of RTL. */
1423 if (fndecl)
1424 {
1425 /* If this is the first use of the function, see if we need to
1426 make an external definition for it. */
1427 if (! TREE_USED (fndecl))
1428 {
1429 assemble_external (fndecl);
1430 TREE_USED (fndecl) = 1;
1431 }
1432
1433 /* Get a SYMBOL_REF rtx for the function address. */
1434 funexp = XEXP (DECL_RTL (fndecl), 0);
1435 }
1436 else
1437 /* Generate an rtx (probably a pseudo-register) for the address. */
1438 {
1439 push_temp_slots ();
1440 funexp = expand_expr (addr, NULL_RTX, VOIDmode, 0);
1441 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1442 }
1443 return funexp;
1444 }
1445
1446 /* Do the register loads required for any wholly-register parms or any
1447 parms which are passed both on the stack and in a register. Their
1448 expressions were already evaluated.
1449
1450 Mark all register-parms as living through the call, putting these USE
1451 insns in the CALL_INSN_FUNCTION_USAGE field.
1452
1453 When IS_SIBCALL, perform the check_sibcall_overlap_argument_overlap
1454 checking, setting *SIBCALL_FAILURE if appropriate. */
1455
1456 static void
1457 load_register_parameters (struct arg_data *args, int num_actuals,
1458 rtx *call_fusage, int flags, int is_sibcall,
1459 int *sibcall_failure)
1460 {
1461 int i, j;
1462
1463 for (i = 0; i < num_actuals; i++)
1464 {
1465 rtx reg = ((flags & ECF_SIBCALL)
1466 ? args[i].tail_call_reg : args[i].reg);
1467 if (reg)
1468 {
1469 int partial = args[i].partial;
1470 int nregs;
1471 int size = 0;
1472 rtx before_arg = get_last_insn ();
1473 /* Set to non-negative if must move a word at a time, even if just
1474 one word (e.g, partial == 1 && mode == DFmode). Set to -1 if
1475 we just use a normal move insn. This value can be zero if the
1476 argument is a zero size structure with no fields. */
1477 nregs = -1;
1478 if (GET_CODE (reg) == PARALLEL)
1479 ;
1480 else if (partial)
1481 {
1482 gcc_assert (partial % UNITS_PER_WORD == 0);
1483 nregs = partial / UNITS_PER_WORD;
1484 }
1485 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1486 {
1487 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1488 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1489 }
1490 else
1491 size = GET_MODE_SIZE (args[i].mode);
1492
1493 /* Handle calls that pass values in multiple non-contiguous
1494 locations. The Irix 6 ABI has examples of this. */
1495
1496 if (GET_CODE (reg) == PARALLEL)
1497 emit_group_move (reg, args[i].parallel_value);
1498
1499 /* If simple case, just do move. If normal partial, store_one_arg
1500 has already loaded the register for us. In all other cases,
1501 load the register(s) from memory. */
1502
1503 else if (nregs == -1)
1504 {
1505 emit_move_insn (reg, args[i].value);
1506 #ifdef BLOCK_REG_PADDING
1507 /* Handle case where we have a value that needs shifting
1508 up to the msb. eg. a QImode value and we're padding
1509 upward on a BYTES_BIG_ENDIAN machine. */
1510 if (size < UNITS_PER_WORD
1511 && (args[i].locate.where_pad
1512 == (BYTES_BIG_ENDIAN ? upward : downward)))
1513 {
1514 rtx x;
1515 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1516
1517 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1518 report the whole reg as used. Strictly speaking, the
1519 call only uses SIZE bytes at the msb end, but it doesn't
1520 seem worth generating rtl to say that. */
1521 reg = gen_rtx_REG (word_mode, REGNO (reg));
1522 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
1523 build_int_cst (NULL_TREE, shift),
1524 reg, 1);
1525 if (x != reg)
1526 emit_move_insn (reg, x);
1527 }
1528 #endif
1529 }
1530
1531 /* If we have pre-computed the values to put in the registers in
1532 the case of non-aligned structures, copy them in now. */
1533
1534 else if (args[i].n_aligned_regs != 0)
1535 for (j = 0; j < args[i].n_aligned_regs; j++)
1536 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1537 args[i].aligned_regs[j]);
1538
1539 else if (partial == 0 || args[i].pass_on_stack)
1540 {
1541 rtx mem = validize_mem (args[i].value);
1542
1543 /* Handle a BLKmode that needs shifting. */
1544 if (nregs == 1 && size < UNITS_PER_WORD
1545 #ifdef BLOCK_REG_PADDING
1546 && args[i].locate.where_pad == downward
1547 #else
1548 && BYTES_BIG_ENDIAN
1549 #endif
1550 )
1551 {
1552 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1553 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1554 rtx x = gen_reg_rtx (word_mode);
1555 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1556 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1557 : LSHIFT_EXPR;
1558
1559 emit_move_insn (x, tem);
1560 x = expand_shift (dir, word_mode, x,
1561 build_int_cst (NULL_TREE, shift),
1562 ri, 1);
1563 if (x != ri)
1564 emit_move_insn (ri, x);
1565 }
1566 else
1567 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1568 }
1569
1570 /* When a parameter is a block, and perhaps in other cases, it is
1571 possible that it did a load from an argument slot that was
1572 already clobbered. */
1573 if (is_sibcall
1574 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1575 *sibcall_failure = 1;
1576
1577 /* Handle calls that pass values in multiple non-contiguous
1578 locations. The Irix 6 ABI has examples of this. */
1579 if (GET_CODE (reg) == PARALLEL)
1580 use_group_regs (call_fusage, reg);
1581 else if (nregs == -1)
1582 use_reg (call_fusage, reg);
1583 else if (nregs > 0)
1584 use_regs (call_fusage, REGNO (reg), nregs);
1585 }
1586 }
1587 }
1588
1589 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1590 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1591 bytes, then we would need to push some additional bytes to pad the
1592 arguments. So, we compute an adjust to the stack pointer for an
1593 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1594 bytes. Then, when the arguments are pushed the stack will be perfectly
1595 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1596 be popped after the call. Returns the adjustment. */
1597
1598 static int
1599 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1600 struct args_size *args_size,
1601 unsigned int preferred_unit_stack_boundary)
1602 {
1603 /* The number of bytes to pop so that the stack will be
1604 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1605 HOST_WIDE_INT adjustment;
1606 /* The alignment of the stack after the arguments are pushed, if we
1607 just pushed the arguments without adjust the stack here. */
1608 unsigned HOST_WIDE_INT unadjusted_alignment;
1609
1610 unadjusted_alignment
1611 = ((stack_pointer_delta + unadjusted_args_size)
1612 % preferred_unit_stack_boundary);
1613
1614 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1615 as possible -- leaving just enough left to cancel out the
1616 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1617 PENDING_STACK_ADJUST is non-negative, and congruent to
1618 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1619
1620 /* Begin by trying to pop all the bytes. */
1621 unadjusted_alignment
1622 = (unadjusted_alignment
1623 - (pending_stack_adjust % preferred_unit_stack_boundary));
1624 adjustment = pending_stack_adjust;
1625 /* Push enough additional bytes that the stack will be aligned
1626 after the arguments are pushed. */
1627 if (preferred_unit_stack_boundary > 1)
1628 {
1629 if (unadjusted_alignment > 0)
1630 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1631 else
1632 adjustment += unadjusted_alignment;
1633 }
1634
1635 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1636 bytes after the call. The right number is the entire
1637 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1638 by the arguments in the first place. */
1639 args_size->constant
1640 = pending_stack_adjust - adjustment + unadjusted_args_size;
1641
1642 return adjustment;
1643 }
1644
1645 /* Scan X expression if it does not dereference any argument slots
1646 we already clobbered by tail call arguments (as noted in stored_args_map
1647 bitmap).
1648 Return nonzero if X expression dereferences such argument slots,
1649 zero otherwise. */
1650
1651 static int
1652 check_sibcall_argument_overlap_1 (rtx x)
1653 {
1654 RTX_CODE code;
1655 int i, j;
1656 unsigned int k;
1657 const char *fmt;
1658
1659 if (x == NULL_RTX)
1660 return 0;
1661
1662 code = GET_CODE (x);
1663
1664 if (code == MEM)
1665 {
1666 if (XEXP (x, 0) == current_function_internal_arg_pointer)
1667 i = 0;
1668 else if (GET_CODE (XEXP (x, 0)) == PLUS
1669 && XEXP (XEXP (x, 0), 0) ==
1670 current_function_internal_arg_pointer
1671 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1672 i = INTVAL (XEXP (XEXP (x, 0), 1));
1673 else
1674 return 0;
1675
1676 #ifdef ARGS_GROW_DOWNWARD
1677 i = -i - GET_MODE_SIZE (GET_MODE (x));
1678 #endif
1679
1680 for (k = 0; k < GET_MODE_SIZE (GET_MODE (x)); k++)
1681 if (i + k < stored_args_map->n_bits
1682 && TEST_BIT (stored_args_map, i + k))
1683 return 1;
1684
1685 return 0;
1686 }
1687
1688 /* Scan all subexpressions. */
1689 fmt = GET_RTX_FORMAT (code);
1690 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1691 {
1692 if (*fmt == 'e')
1693 {
1694 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1695 return 1;
1696 }
1697 else if (*fmt == 'E')
1698 {
1699 for (j = 0; j < XVECLEN (x, i); j++)
1700 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1701 return 1;
1702 }
1703 }
1704 return 0;
1705 }
1706
1707 /* Scan sequence after INSN if it does not dereference any argument slots
1708 we already clobbered by tail call arguments (as noted in stored_args_map
1709 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1710 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1711 should be 0). Return nonzero if sequence after INSN dereferences such argument
1712 slots, zero otherwise. */
1713
1714 static int
1715 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1716 {
1717 int low, high;
1718
1719 if (insn == NULL_RTX)
1720 insn = get_insns ();
1721 else
1722 insn = NEXT_INSN (insn);
1723
1724 for (; insn; insn = NEXT_INSN (insn))
1725 if (INSN_P (insn)
1726 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1727 break;
1728
1729 if (mark_stored_args_map)
1730 {
1731 #ifdef ARGS_GROW_DOWNWARD
1732 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1733 #else
1734 low = arg->locate.slot_offset.constant;
1735 #endif
1736
1737 for (high = low + arg->locate.size.constant; low < high; low++)
1738 SET_BIT (stored_args_map, low);
1739 }
1740 return insn != NULL_RTX;
1741 }
1742
1743 /* Given that a function returns a value of mode MODE at the most
1744 significant end of hard register VALUE, shift VALUE left or right
1745 as specified by LEFT_P. Return true if some action was needed. */
1746
1747 bool
1748 shift_return_value (enum machine_mode mode, bool left_p, rtx value)
1749 {
1750 HOST_WIDE_INT shift;
1751
1752 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
1753 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
1754 if (shift == 0)
1755 return false;
1756
1757 /* Use ashr rather than lshr for right shifts. This is for the benefit
1758 of the MIPS port, which requires SImode values to be sign-extended
1759 when stored in 64-bit registers. */
1760 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
1761 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
1762 gcc_unreachable ();
1763 return true;
1764 }
1765
1766 /* Remove all REG_EQUIV notes found in the insn chain. */
1767
1768 static void
1769 purge_reg_equiv_notes (void)
1770 {
1771 rtx insn;
1772
1773 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1774 {
1775 while (1)
1776 {
1777 rtx note = find_reg_note (insn, REG_EQUIV, 0);
1778 if (note)
1779 {
1780 /* Remove the note and keep looking at the notes for
1781 this insn. */
1782 remove_note (insn, note);
1783 continue;
1784 }
1785 break;
1786 }
1787 }
1788 }
1789
1790 /* Generate all the code for a function call
1791 and return an rtx for its value.
1792 Store the value in TARGET (specified as an rtx) if convenient.
1793 If the value is stored in TARGET then TARGET is returned.
1794 If IGNORE is nonzero, then we ignore the value of the function call. */
1795
1796 rtx
1797 expand_call (tree exp, rtx target, int ignore)
1798 {
1799 /* Nonzero if we are currently expanding a call. */
1800 static int currently_expanding_call = 0;
1801
1802 /* List of actual parameters. */
1803 tree actparms = TREE_OPERAND (exp, 1);
1804 /* RTX for the function to be called. */
1805 rtx funexp;
1806 /* Sequence of insns to perform a normal "call". */
1807 rtx normal_call_insns = NULL_RTX;
1808 /* Sequence of insns to perform a tail "call". */
1809 rtx tail_call_insns = NULL_RTX;
1810 /* Data type of the function. */
1811 tree funtype;
1812 tree type_arg_types;
1813 /* Declaration of the function being called,
1814 or 0 if the function is computed (not known by name). */
1815 tree fndecl = 0;
1816 /* The type of the function being called. */
1817 tree fntype;
1818 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1819 int pass;
1820
1821 /* Register in which non-BLKmode value will be returned,
1822 or 0 if no value or if value is BLKmode. */
1823 rtx valreg;
1824 /* Address where we should return a BLKmode value;
1825 0 if value not BLKmode. */
1826 rtx structure_value_addr = 0;
1827 /* Nonzero if that address is being passed by treating it as
1828 an extra, implicit first parameter. Otherwise,
1829 it is passed by being copied directly into struct_value_rtx. */
1830 int structure_value_addr_parm = 0;
1831 /* Size of aggregate value wanted, or zero if none wanted
1832 or if we are using the non-reentrant PCC calling convention
1833 or expecting the value in registers. */
1834 HOST_WIDE_INT struct_value_size = 0;
1835 /* Nonzero if called function returns an aggregate in memory PCC style,
1836 by returning the address of where to find it. */
1837 int pcc_struct_value = 0;
1838 rtx struct_value = 0;
1839
1840 /* Number of actual parameters in this call, including struct value addr. */
1841 int num_actuals;
1842 /* Number of named args. Args after this are anonymous ones
1843 and they must all go on the stack. */
1844 int n_named_args;
1845
1846 /* Vector of information about each argument.
1847 Arguments are numbered in the order they will be pushed,
1848 not the order they are written. */
1849 struct arg_data *args;
1850
1851 /* Total size in bytes of all the stack-parms scanned so far. */
1852 struct args_size args_size;
1853 struct args_size adjusted_args_size;
1854 /* Size of arguments before any adjustments (such as rounding). */
1855 int unadjusted_args_size;
1856 /* Data on reg parms scanned so far. */
1857 CUMULATIVE_ARGS args_so_far;
1858 /* Nonzero if a reg parm has been scanned. */
1859 int reg_parm_seen;
1860 /* Nonzero if this is an indirect function call. */
1861
1862 /* Nonzero if we must avoid push-insns in the args for this call.
1863 If stack space is allocated for register parameters, but not by the
1864 caller, then it is preallocated in the fixed part of the stack frame.
1865 So the entire argument block must then be preallocated (i.e., we
1866 ignore PUSH_ROUNDING in that case). */
1867
1868 int must_preallocate = !PUSH_ARGS;
1869
1870 /* Size of the stack reserved for parameter registers. */
1871 int reg_parm_stack_space = 0;
1872
1873 /* Address of space preallocated for stack parms
1874 (on machines that lack push insns), or 0 if space not preallocated. */
1875 rtx argblock = 0;
1876
1877 /* Mask of ECF_ flags. */
1878 int flags = 0;
1879 #ifdef REG_PARM_STACK_SPACE
1880 /* Define the boundary of the register parm stack space that needs to be
1881 saved, if any. */
1882 int low_to_save, high_to_save;
1883 rtx save_area = 0; /* Place that it is saved */
1884 #endif
1885
1886 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
1887 char *initial_stack_usage_map = stack_usage_map;
1888
1889 int old_stack_allocated;
1890
1891 /* State variables to track stack modifications. */
1892 rtx old_stack_level = 0;
1893 int old_stack_arg_under_construction = 0;
1894 int old_pending_adj = 0;
1895 int old_inhibit_defer_pop = inhibit_defer_pop;
1896
1897 /* Some stack pointer alterations we make are performed via
1898 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
1899 which we then also need to save/restore along the way. */
1900 int old_stack_pointer_delta = 0;
1901
1902 rtx call_fusage;
1903 tree p = TREE_OPERAND (exp, 0);
1904 tree addr = TREE_OPERAND (exp, 0);
1905 int i;
1906 /* The alignment of the stack, in bits. */
1907 unsigned HOST_WIDE_INT preferred_stack_boundary;
1908 /* The alignment of the stack, in bytes. */
1909 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
1910 /* The static chain value to use for this call. */
1911 rtx static_chain_value;
1912 /* See if this is "nothrow" function call. */
1913 if (TREE_NOTHROW (exp))
1914 flags |= ECF_NOTHROW;
1915
1916 /* See if we can find a DECL-node for the actual function, and get the
1917 function attributes (flags) from the function decl or type node. */
1918 fndecl = get_callee_fndecl (exp);
1919 if (fndecl)
1920 {
1921 fntype = TREE_TYPE (fndecl);
1922 flags |= flags_from_decl_or_type (fndecl);
1923 }
1924 else
1925 {
1926 fntype = TREE_TYPE (TREE_TYPE (p));
1927 flags |= flags_from_decl_or_type (fntype);
1928 }
1929
1930 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
1931
1932 /* Warn if this value is an aggregate type,
1933 regardless of which calling convention we are using for it. */
1934 if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (exp)))
1935 warning ("function call has aggregate value");
1936
1937 /* If the result of a pure or const function call is ignored (or void),
1938 and none of its arguments are volatile, we can avoid expanding the
1939 call and just evaluate the arguments for side-effects. */
1940 if ((flags & (ECF_CONST | ECF_PURE))
1941 && (ignore || target == const0_rtx
1942 || TYPE_MODE (TREE_TYPE (exp)) == VOIDmode))
1943 {
1944 bool volatilep = false;
1945 tree arg;
1946
1947 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
1948 if (TREE_THIS_VOLATILE (TREE_VALUE (arg)))
1949 {
1950 volatilep = true;
1951 break;
1952 }
1953
1954 if (! volatilep)
1955 {
1956 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
1957 expand_expr (TREE_VALUE (arg), const0_rtx,
1958 VOIDmode, EXPAND_NORMAL);
1959 return const0_rtx;
1960 }
1961 }
1962
1963 #ifdef REG_PARM_STACK_SPACE
1964 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
1965 #endif
1966
1967 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1968 if (reg_parm_stack_space > 0 && PUSH_ARGS)
1969 must_preallocate = 1;
1970 #endif
1971
1972 /* Set up a place to return a structure. */
1973
1974 /* Cater to broken compilers. */
1975 if (aggregate_value_p (exp, fndecl))
1976 {
1977 /* This call returns a big structure. */
1978 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1979
1980 #ifdef PCC_STATIC_STRUCT_RETURN
1981 {
1982 pcc_struct_value = 1;
1983 }
1984 #else /* not PCC_STATIC_STRUCT_RETURN */
1985 {
1986 struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
1987
1988 if (CALL_EXPR_HAS_RETURN_SLOT_ADDR (exp))
1989 {
1990 /* The structure value address arg is already in actparms.
1991 Pull it out. It might be nice to just leave it there, but
1992 we need to set structure_value_addr. */
1993 tree return_arg = TREE_VALUE (actparms);
1994 actparms = TREE_CHAIN (actparms);
1995 structure_value_addr = expand_expr (return_arg, NULL_RTX,
1996 VOIDmode, EXPAND_NORMAL);
1997 }
1998 else if (target && MEM_P (target))
1999 structure_value_addr = XEXP (target, 0);
2000 else
2001 {
2002 /* For variable-sized objects, we must be called with a target
2003 specified. If we were to allocate space on the stack here,
2004 we would have no way of knowing when to free it. */
2005 rtx d = assign_temp (TREE_TYPE (exp), 1, 1, 1);
2006
2007 mark_temp_addr_taken (d);
2008 structure_value_addr = XEXP (d, 0);
2009 target = 0;
2010 }
2011 }
2012 #endif /* not PCC_STATIC_STRUCT_RETURN */
2013 }
2014
2015 /* Figure out the amount to which the stack should be aligned. */
2016 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2017 if (fndecl)
2018 {
2019 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2020 if (i && i->preferred_incoming_stack_boundary)
2021 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2022 }
2023
2024 /* Operand 0 is a pointer-to-function; get the type of the function. */
2025 funtype = TREE_TYPE (addr);
2026 gcc_assert (POINTER_TYPE_P (funtype));
2027 funtype = TREE_TYPE (funtype);
2028
2029 /* Munge the tree to split complex arguments into their imaginary
2030 and real parts. */
2031 if (targetm.calls.split_complex_arg)
2032 {
2033 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2034 actparms = split_complex_values (actparms);
2035 }
2036 else
2037 type_arg_types = TYPE_ARG_TYPES (funtype);
2038
2039 if (flags & ECF_MAY_BE_ALLOCA)
2040 current_function_calls_alloca = 1;
2041
2042 /* If struct_value_rtx is 0, it means pass the address
2043 as if it were an extra parameter. */
2044 if (structure_value_addr && struct_value == 0)
2045 {
2046 /* If structure_value_addr is a REG other than
2047 virtual_outgoing_args_rtx, we can use always use it. If it
2048 is not a REG, we must always copy it into a register.
2049 If it is virtual_outgoing_args_rtx, we must copy it to another
2050 register in some cases. */
2051 rtx temp = (!REG_P (structure_value_addr)
2052 || (ACCUMULATE_OUTGOING_ARGS
2053 && stack_arg_under_construction
2054 && structure_value_addr == virtual_outgoing_args_rtx)
2055 ? copy_addr_to_reg (convert_memory_address
2056 (Pmode, structure_value_addr))
2057 : structure_value_addr);
2058
2059 actparms
2060 = tree_cons (error_mark_node,
2061 make_tree (build_pointer_type (TREE_TYPE (funtype)),
2062 temp),
2063 actparms);
2064 structure_value_addr_parm = 1;
2065 }
2066
2067 /* Count the arguments and set NUM_ACTUALS. */
2068 for (p = actparms, num_actuals = 0; p; p = TREE_CHAIN (p))
2069 num_actuals++;
2070
2071 /* Compute number of named args.
2072 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2073
2074 if (type_arg_types != 0)
2075 n_named_args
2076 = (list_length (type_arg_types)
2077 /* Count the struct value address, if it is passed as a parm. */
2078 + structure_value_addr_parm);
2079 else
2080 /* If we know nothing, treat all args as named. */
2081 n_named_args = num_actuals;
2082
2083 /* Start updating where the next arg would go.
2084
2085 On some machines (such as the PA) indirect calls have a different
2086 calling convention than normal calls. The fourth argument in
2087 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2088 or not. */
2089 INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
2090
2091 /* Now possibly adjust the number of named args.
2092 Normally, don't include the last named arg if anonymous args follow.
2093 We do include the last named arg if
2094 targetm.calls.strict_argument_naming() returns nonzero.
2095 (If no anonymous args follow, the result of list_length is actually
2096 one too large. This is harmless.)
2097
2098 If targetm.calls.pretend_outgoing_varargs_named() returns
2099 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2100 this machine will be able to place unnamed args that were passed
2101 in registers into the stack. So treat all args as named. This
2102 allows the insns emitting for a specific argument list to be
2103 independent of the function declaration.
2104
2105 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2106 we do not have any reliable way to pass unnamed args in
2107 registers, so we must force them into memory. */
2108
2109 if (type_arg_types != 0
2110 && targetm.calls.strict_argument_naming (&args_so_far))
2111 ;
2112 else if (type_arg_types != 0
2113 && ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
2114 /* Don't include the last named arg. */
2115 --n_named_args;
2116 else
2117 /* Treat all args as named. */
2118 n_named_args = num_actuals;
2119
2120 /* Make a vector to hold all the information about each arg. */
2121 args = alloca (num_actuals * sizeof (struct arg_data));
2122 memset (args, 0, num_actuals * sizeof (struct arg_data));
2123
2124 /* Build up entries in the ARGS array, compute the size of the
2125 arguments into ARGS_SIZE, etc. */
2126 initialize_argument_information (num_actuals, args, &args_size,
2127 n_named_args, actparms, fndecl,
2128 &args_so_far, reg_parm_stack_space,
2129 &old_stack_level, &old_pending_adj,
2130 &must_preallocate, &flags,
2131 &try_tail_call, CALL_FROM_THUNK_P (exp));
2132
2133 if (args_size.var)
2134 {
2135 /* If this function requires a variable-sized argument list, don't
2136 try to make a cse'able block for this call. We may be able to
2137 do this eventually, but it is too complicated to keep track of
2138 what insns go in the cse'able block and which don't. */
2139
2140 flags &= ~ECF_LIBCALL_BLOCK;
2141 must_preallocate = 1;
2142 }
2143
2144 /* Now make final decision about preallocating stack space. */
2145 must_preallocate = finalize_must_preallocate (must_preallocate,
2146 num_actuals, args,
2147 &args_size);
2148
2149 /* If the structure value address will reference the stack pointer, we
2150 must stabilize it. We don't need to do this if we know that we are
2151 not going to adjust the stack pointer in processing this call. */
2152
2153 if (structure_value_addr
2154 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2155 || reg_mentioned_p (virtual_outgoing_args_rtx,
2156 structure_value_addr))
2157 && (args_size.var
2158 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2159 structure_value_addr = copy_to_reg (structure_value_addr);
2160
2161 /* Tail calls can make things harder to debug, and we've traditionally
2162 pushed these optimizations into -O2. Don't try if we're already
2163 expanding a call, as that means we're an argument. Don't try if
2164 there's cleanups, as we know there's code to follow the call. */
2165
2166 if (currently_expanding_call++ != 0
2167 || !flag_optimize_sibling_calls
2168 || args_size.var
2169 || lookup_stmt_eh_region (exp) >= 0)
2170 try_tail_call = 0;
2171
2172 /* Rest of purposes for tail call optimizations to fail. */
2173 if (
2174 #ifdef HAVE_sibcall_epilogue
2175 !HAVE_sibcall_epilogue
2176 #else
2177 1
2178 #endif
2179 || !try_tail_call
2180 /* Doing sibling call optimization needs some work, since
2181 structure_value_addr can be allocated on the stack.
2182 It does not seem worth the effort since few optimizable
2183 sibling calls will return a structure. */
2184 || structure_value_addr != NULL_RTX
2185 /* Check whether the target is able to optimize the call
2186 into a sibcall. */
2187 || !targetm.function_ok_for_sibcall (fndecl, exp)
2188 /* Functions that do not return exactly once may not be sibcall
2189 optimized. */
2190 || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2191 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2192 /* If the called function is nested in the current one, it might access
2193 some of the caller's arguments, but could clobber them beforehand if
2194 the argument areas are shared. */
2195 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2196 /* If this function requires more stack slots than the current
2197 function, we cannot change it into a sibling call. */
2198 || args_size.constant > current_function_args_size
2199 /* If the callee pops its own arguments, then it must pop exactly
2200 the same number of arguments as the current function. */
2201 || (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
2202 != RETURN_POPS_ARGS (current_function_decl,
2203 TREE_TYPE (current_function_decl),
2204 current_function_args_size))
2205 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2206 try_tail_call = 0;
2207
2208 /* Ensure current function's preferred stack boundary is at least
2209 what we need. We don't have to increase alignment for recursive
2210 functions. */
2211 if (cfun->preferred_stack_boundary < preferred_stack_boundary
2212 && fndecl != current_function_decl)
2213 cfun->preferred_stack_boundary = preferred_stack_boundary;
2214 if (fndecl == current_function_decl)
2215 cfun->recursive_call_emit = true;
2216
2217 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2218
2219 /* We want to make two insn chains; one for a sibling call, the other
2220 for a normal call. We will select one of the two chains after
2221 initial RTL generation is complete. */
2222 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2223 {
2224 int sibcall_failure = 0;
2225 /* We want to emit any pending stack adjustments before the tail
2226 recursion "call". That way we know any adjustment after the tail
2227 recursion call can be ignored if we indeed use the tail
2228 call expansion. */
2229 int save_pending_stack_adjust = 0;
2230 int save_stack_pointer_delta = 0;
2231 rtx insns;
2232 rtx before_call, next_arg_reg;
2233
2234 if (pass == 0)
2235 {
2236 /* State variables we need to save and restore between
2237 iterations. */
2238 save_pending_stack_adjust = pending_stack_adjust;
2239 save_stack_pointer_delta = stack_pointer_delta;
2240 }
2241 if (pass)
2242 flags &= ~ECF_SIBCALL;
2243 else
2244 flags |= ECF_SIBCALL;
2245
2246 /* Other state variables that we must reinitialize each time
2247 through the loop (that are not initialized by the loop itself). */
2248 argblock = 0;
2249 call_fusage = 0;
2250
2251 /* Start a new sequence for the normal call case.
2252
2253 From this point on, if the sibling call fails, we want to set
2254 sibcall_failure instead of continuing the loop. */
2255 start_sequence ();
2256
2257 /* Don't let pending stack adjusts add up to too much.
2258 Also, do all pending adjustments now if there is any chance
2259 this might be a call to alloca or if we are expanding a sibling
2260 call sequence or if we are calling a function that is to return
2261 with stack pointer depressed. */
2262 if (pending_stack_adjust >= 32
2263 || (pending_stack_adjust > 0
2264 && (flags & (ECF_MAY_BE_ALLOCA | ECF_SP_DEPRESSED)))
2265 || pass == 0)
2266 do_pending_stack_adjust ();
2267
2268 /* When calling a const function, we must pop the stack args right away,
2269 so that the pop is deleted or moved with the call. */
2270 if (pass && (flags & ECF_LIBCALL_BLOCK))
2271 NO_DEFER_POP;
2272
2273 /* Precompute any arguments as needed. */
2274 if (pass)
2275 precompute_arguments (flags, num_actuals, args);
2276
2277 /* Now we are about to start emitting insns that can be deleted
2278 if a libcall is deleted. */
2279 if (pass && (flags & (ECF_LIBCALL_BLOCK | ECF_MALLOC)))
2280 start_sequence ();
2281
2282 adjusted_args_size = args_size;
2283 /* Compute the actual size of the argument block required. The variable
2284 and constant sizes must be combined, the size may have to be rounded,
2285 and there may be a minimum required size. When generating a sibcall
2286 pattern, do not round up, since we'll be re-using whatever space our
2287 caller provided. */
2288 unadjusted_args_size
2289 = compute_argument_block_size (reg_parm_stack_space,
2290 &adjusted_args_size,
2291 (pass == 0 ? 0
2292 : preferred_stack_boundary));
2293
2294 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2295
2296 /* The argument block when performing a sibling call is the
2297 incoming argument block. */
2298 if (pass == 0)
2299 {
2300 argblock = virtual_incoming_args_rtx;
2301 argblock
2302 #ifdef STACK_GROWS_DOWNWARD
2303 = plus_constant (argblock, current_function_pretend_args_size);
2304 #else
2305 = plus_constant (argblock, -current_function_pretend_args_size);
2306 #endif
2307 stored_args_map = sbitmap_alloc (args_size.constant);
2308 sbitmap_zero (stored_args_map);
2309 }
2310
2311 /* If we have no actual push instructions, or shouldn't use them,
2312 make space for all args right now. */
2313 else if (adjusted_args_size.var != 0)
2314 {
2315 if (old_stack_level == 0)
2316 {
2317 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
2318 old_stack_pointer_delta = stack_pointer_delta;
2319 old_pending_adj = pending_stack_adjust;
2320 pending_stack_adjust = 0;
2321 /* stack_arg_under_construction says whether a stack arg is
2322 being constructed at the old stack level. Pushing the stack
2323 gets a clean outgoing argument block. */
2324 old_stack_arg_under_construction = stack_arg_under_construction;
2325 stack_arg_under_construction = 0;
2326 }
2327 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2328 }
2329 else
2330 {
2331 /* Note that we must go through the motions of allocating an argument
2332 block even if the size is zero because we may be storing args
2333 in the area reserved for register arguments, which may be part of
2334 the stack frame. */
2335
2336 int needed = adjusted_args_size.constant;
2337
2338 /* Store the maximum argument space used. It will be pushed by
2339 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2340 checking). */
2341
2342 if (needed > current_function_outgoing_args_size)
2343 current_function_outgoing_args_size = needed;
2344
2345 if (must_preallocate)
2346 {
2347 if (ACCUMULATE_OUTGOING_ARGS)
2348 {
2349 /* Since the stack pointer will never be pushed, it is
2350 possible for the evaluation of a parm to clobber
2351 something we have already written to the stack.
2352 Since most function calls on RISC machines do not use
2353 the stack, this is uncommon, but must work correctly.
2354
2355 Therefore, we save any area of the stack that was already
2356 written and that we are using. Here we set up to do this
2357 by making a new stack usage map from the old one. The
2358 actual save will be done by store_one_arg.
2359
2360 Another approach might be to try to reorder the argument
2361 evaluations to avoid this conflicting stack usage. */
2362
2363 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2364 /* Since we will be writing into the entire argument area,
2365 the map must be allocated for its entire size, not just
2366 the part that is the responsibility of the caller. */
2367 needed += reg_parm_stack_space;
2368 #endif
2369
2370 #ifdef ARGS_GROW_DOWNWARD
2371 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2372 needed + 1);
2373 #else
2374 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2375 needed);
2376 #endif
2377 stack_usage_map = alloca (highest_outgoing_arg_in_use);
2378
2379 if (initial_highest_arg_in_use)
2380 memcpy (stack_usage_map, initial_stack_usage_map,
2381 initial_highest_arg_in_use);
2382
2383 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2384 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2385 (highest_outgoing_arg_in_use
2386 - initial_highest_arg_in_use));
2387 needed = 0;
2388
2389 /* The address of the outgoing argument list must not be
2390 copied to a register here, because argblock would be left
2391 pointing to the wrong place after the call to
2392 allocate_dynamic_stack_space below. */
2393
2394 argblock = virtual_outgoing_args_rtx;
2395 }
2396 else
2397 {
2398 if (inhibit_defer_pop == 0)
2399 {
2400 /* Try to reuse some or all of the pending_stack_adjust
2401 to get this space. */
2402 needed
2403 = (combine_pending_stack_adjustment_and_call
2404 (unadjusted_args_size,
2405 &adjusted_args_size,
2406 preferred_unit_stack_boundary));
2407
2408 /* combine_pending_stack_adjustment_and_call computes
2409 an adjustment before the arguments are allocated.
2410 Account for them and see whether or not the stack
2411 needs to go up or down. */
2412 needed = unadjusted_args_size - needed;
2413
2414 if (needed < 0)
2415 {
2416 /* We're releasing stack space. */
2417 /* ??? We can avoid any adjustment at all if we're
2418 already aligned. FIXME. */
2419 pending_stack_adjust = -needed;
2420 do_pending_stack_adjust ();
2421 needed = 0;
2422 }
2423 else
2424 /* We need to allocate space. We'll do that in
2425 push_block below. */
2426 pending_stack_adjust = 0;
2427 }
2428
2429 /* Special case this because overhead of `push_block' in
2430 this case is non-trivial. */
2431 if (needed == 0)
2432 argblock = virtual_outgoing_args_rtx;
2433 else
2434 {
2435 argblock = push_block (GEN_INT (needed), 0, 0);
2436 #ifdef ARGS_GROW_DOWNWARD
2437 argblock = plus_constant (argblock, needed);
2438 #endif
2439 }
2440
2441 /* We only really need to call `copy_to_reg' in the case
2442 where push insns are going to be used to pass ARGBLOCK
2443 to a function call in ARGS. In that case, the stack
2444 pointer changes value from the allocation point to the
2445 call point, and hence the value of
2446 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2447 as well always do it. */
2448 argblock = copy_to_reg (argblock);
2449 }
2450 }
2451 }
2452
2453 if (ACCUMULATE_OUTGOING_ARGS)
2454 {
2455 /* The save/restore code in store_one_arg handles all
2456 cases except one: a constructor call (including a C
2457 function returning a BLKmode struct) to initialize
2458 an argument. */
2459 if (stack_arg_under_construction)
2460 {
2461 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2462 rtx push_size = GEN_INT (reg_parm_stack_space
2463 + adjusted_args_size.constant);
2464 #else
2465 rtx push_size = GEN_INT (adjusted_args_size.constant);
2466 #endif
2467 if (old_stack_level == 0)
2468 {
2469 emit_stack_save (SAVE_BLOCK, &old_stack_level,
2470 NULL_RTX);
2471 old_stack_pointer_delta = stack_pointer_delta;
2472 old_pending_adj = pending_stack_adjust;
2473 pending_stack_adjust = 0;
2474 /* stack_arg_under_construction says whether a stack
2475 arg is being constructed at the old stack level.
2476 Pushing the stack gets a clean outgoing argument
2477 block. */
2478 old_stack_arg_under_construction
2479 = stack_arg_under_construction;
2480 stack_arg_under_construction = 0;
2481 /* Make a new map for the new argument list. */
2482 stack_usage_map = alloca (highest_outgoing_arg_in_use);
2483 memset (stack_usage_map, 0, highest_outgoing_arg_in_use);
2484 highest_outgoing_arg_in_use = 0;
2485 }
2486 allocate_dynamic_stack_space (push_size, NULL_RTX,
2487 BITS_PER_UNIT);
2488 }
2489
2490 /* If argument evaluation might modify the stack pointer,
2491 copy the address of the argument list to a register. */
2492 for (i = 0; i < num_actuals; i++)
2493 if (args[i].pass_on_stack)
2494 {
2495 argblock = copy_addr_to_reg (argblock);
2496 break;
2497 }
2498 }
2499
2500 compute_argument_addresses (args, argblock, num_actuals);
2501
2502 /* If we push args individually in reverse order, perform stack alignment
2503 before the first push (the last arg). */
2504 if (PUSH_ARGS_REVERSED && argblock == 0
2505 && adjusted_args_size.constant != unadjusted_args_size)
2506 {
2507 /* When the stack adjustment is pending, we get better code
2508 by combining the adjustments. */
2509 if (pending_stack_adjust
2510 && ! (flags & ECF_LIBCALL_BLOCK)
2511 && ! inhibit_defer_pop)
2512 {
2513 pending_stack_adjust
2514 = (combine_pending_stack_adjustment_and_call
2515 (unadjusted_args_size,
2516 &adjusted_args_size,
2517 preferred_unit_stack_boundary));
2518 do_pending_stack_adjust ();
2519 }
2520 else if (argblock == 0)
2521 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2522 - unadjusted_args_size));
2523 }
2524 /* Now that the stack is properly aligned, pops can't safely
2525 be deferred during the evaluation of the arguments. */
2526 NO_DEFER_POP;
2527
2528 funexp = rtx_for_function_call (fndecl, addr);
2529
2530 /* Figure out the register where the value, if any, will come back. */
2531 valreg = 0;
2532 if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
2533 && ! structure_value_addr)
2534 {
2535 if (pcc_struct_value)
2536 valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
2537 fndecl, (pass == 0));
2538 else
2539 valreg = hard_function_value (TREE_TYPE (exp), fndecl, (pass == 0));
2540 }
2541
2542 /* Precompute all register parameters. It isn't safe to compute anything
2543 once we have started filling any specific hard regs. */
2544 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2545
2546 if (TREE_OPERAND (exp, 2))
2547 static_chain_value = expand_expr (TREE_OPERAND (exp, 2),
2548 NULL_RTX, VOIDmode, 0);
2549 else
2550 static_chain_value = 0;
2551
2552 #ifdef REG_PARM_STACK_SPACE
2553 /* Save the fixed argument area if it's part of the caller's frame and
2554 is clobbered by argument setup for this call. */
2555 if (ACCUMULATE_OUTGOING_ARGS && pass)
2556 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2557 &low_to_save, &high_to_save);
2558 #endif
2559
2560 /* Now store (and compute if necessary) all non-register parms.
2561 These come before register parms, since they can require block-moves,
2562 which could clobber the registers used for register parms.
2563 Parms which have partial registers are not stored here,
2564 but we do preallocate space here if they want that. */
2565
2566 for (i = 0; i < num_actuals; i++)
2567 if (args[i].reg == 0 || args[i].pass_on_stack)
2568 {
2569 rtx before_arg = get_last_insn ();
2570
2571 if (store_one_arg (&args[i], argblock, flags,
2572 adjusted_args_size.var != 0,
2573 reg_parm_stack_space)
2574 || (pass == 0
2575 && check_sibcall_argument_overlap (before_arg,
2576 &args[i], 1)))
2577 sibcall_failure = 1;
2578
2579 if (flags & ECF_CONST
2580 && args[i].stack
2581 && args[i].value == args[i].stack)
2582 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2583 gen_rtx_USE (VOIDmode,
2584 args[i].value),
2585 call_fusage);
2586 }
2587
2588 /* If we have a parm that is passed in registers but not in memory
2589 and whose alignment does not permit a direct copy into registers,
2590 make a group of pseudos that correspond to each register that we
2591 will later fill. */
2592 if (STRICT_ALIGNMENT)
2593 store_unaligned_arguments_into_pseudos (args, num_actuals);
2594
2595 /* Now store any partially-in-registers parm.
2596 This is the last place a block-move can happen. */
2597 if (reg_parm_seen)
2598 for (i = 0; i < num_actuals; i++)
2599 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2600 {
2601 rtx before_arg = get_last_insn ();
2602
2603 if (store_one_arg (&args[i], argblock, flags,
2604 adjusted_args_size.var != 0,
2605 reg_parm_stack_space)
2606 || (pass == 0
2607 && check_sibcall_argument_overlap (before_arg,
2608 &args[i], 1)))
2609 sibcall_failure = 1;
2610 }
2611
2612 /* If we pushed args in forward order, perform stack alignment
2613 after pushing the last arg. */
2614 if (!PUSH_ARGS_REVERSED && argblock == 0)
2615 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2616 - unadjusted_args_size));
2617
2618 /* If register arguments require space on the stack and stack space
2619 was not preallocated, allocate stack space here for arguments
2620 passed in registers. */
2621 #ifdef OUTGOING_REG_PARM_STACK_SPACE
2622 if (!ACCUMULATE_OUTGOING_ARGS
2623 && must_preallocate == 0 && reg_parm_stack_space > 0)
2624 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2625 #endif
2626
2627 /* Pass the function the address in which to return a
2628 structure value. */
2629 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2630 {
2631 structure_value_addr
2632 = convert_memory_address (Pmode, structure_value_addr);
2633 emit_move_insn (struct_value,
2634 force_reg (Pmode,
2635 force_operand (structure_value_addr,
2636 NULL_RTX)));
2637
2638 if (REG_P (struct_value))
2639 use_reg (&call_fusage, struct_value);
2640 }
2641
2642 funexp = prepare_call_address (funexp, static_chain_value,
2643 &call_fusage, reg_parm_seen, pass == 0);
2644
2645 load_register_parameters (args, num_actuals, &call_fusage, flags,
2646 pass == 0, &sibcall_failure);
2647
2648 /* Save a pointer to the last insn before the call, so that we can
2649 later safely search backwards to find the CALL_INSN. */
2650 before_call = get_last_insn ();
2651
2652 /* Set up next argument register. For sibling calls on machines
2653 with register windows this should be the incoming register. */
2654 #ifdef FUNCTION_INCOMING_ARG
2655 if (pass == 0)
2656 next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
2657 void_type_node, 1);
2658 else
2659 #endif
2660 next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
2661 void_type_node, 1);
2662
2663 /* All arguments and registers used for the call must be set up by
2664 now! */
2665
2666 /* Stack must be properly aligned now. */
2667 gcc_assert (!pass
2668 || !(stack_pointer_delta % preferred_unit_stack_boundary));
2669
2670 /* Generate the actual call instruction. */
2671 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2672 adjusted_args_size.constant, struct_value_size,
2673 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2674 flags, & args_so_far);
2675
2676 /* If a non-BLKmode value is returned at the most significant end
2677 of a register, shift the register right by the appropriate amount
2678 and update VALREG accordingly. BLKmode values are handled by the
2679 group load/store machinery below. */
2680 if (!structure_value_addr
2681 && !pcc_struct_value
2682 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2683 && targetm.calls.return_in_msb (TREE_TYPE (exp)))
2684 {
2685 if (shift_return_value (TYPE_MODE (TREE_TYPE (exp)), false, valreg))
2686 sibcall_failure = 1;
2687 valreg = gen_rtx_REG (TYPE_MODE (TREE_TYPE (exp)), REGNO (valreg));
2688 }
2689
2690 /* If call is cse'able, make appropriate pair of reg-notes around it.
2691 Test valreg so we don't crash; may safely ignore `const'
2692 if return type is void. Disable for PARALLEL return values, because
2693 we have no way to move such values into a pseudo register. */
2694 if (pass && (flags & ECF_LIBCALL_BLOCK))
2695 {
2696 rtx insns;
2697 rtx insn;
2698 bool failed = valreg == 0 || GET_CODE (valreg) == PARALLEL;
2699
2700 insns = get_insns ();
2701
2702 /* Expansion of block moves possibly introduced a loop that may
2703 not appear inside libcall block. */
2704 for (insn = insns; insn; insn = NEXT_INSN (insn))
2705 if (JUMP_P (insn))
2706 failed = true;
2707
2708 if (failed)
2709 {
2710 end_sequence ();
2711 emit_insn (insns);
2712 }
2713 else
2714 {
2715 rtx note = 0;
2716 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2717
2718 /* Mark the return value as a pointer if needed. */
2719 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2720 mark_reg_pointer (temp,
2721 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp))));
2722
2723 end_sequence ();
2724 if (flag_unsafe_math_optimizations
2725 && fndecl
2726 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2727 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRT
2728 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTF
2729 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTL))
2730 note = gen_rtx_fmt_e (SQRT,
2731 GET_MODE (temp),
2732 args[0].initial_value);
2733 else
2734 {
2735 /* Construct an "equal form" for the value which
2736 mentions all the arguments in order as well as
2737 the function name. */
2738 for (i = 0; i < num_actuals; i++)
2739 note = gen_rtx_EXPR_LIST (VOIDmode,
2740 args[i].initial_value, note);
2741 note = gen_rtx_EXPR_LIST (VOIDmode, funexp, note);
2742
2743 if (flags & ECF_PURE)
2744 note = gen_rtx_EXPR_LIST (VOIDmode,
2745 gen_rtx_USE (VOIDmode,
2746 gen_rtx_MEM (BLKmode,
2747 gen_rtx_SCRATCH (VOIDmode))),
2748 note);
2749 }
2750 emit_libcall_block (insns, temp, valreg, note);
2751
2752 valreg = temp;
2753 }
2754 }
2755 else if (pass && (flags & ECF_MALLOC))
2756 {
2757 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2758 rtx last, insns;
2759
2760 /* The return value from a malloc-like function is a pointer. */
2761 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2762 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2763
2764 emit_move_insn (temp, valreg);
2765
2766 /* The return value from a malloc-like function can not alias
2767 anything else. */
2768 last = get_last_insn ();
2769 REG_NOTES (last) =
2770 gen_rtx_EXPR_LIST (REG_NOALIAS, temp, REG_NOTES (last));
2771
2772 /* Write out the sequence. */
2773 insns = get_insns ();
2774 end_sequence ();
2775 emit_insn (insns);
2776 valreg = temp;
2777 }
2778
2779 /* For calls to `setjmp', etc., inform flow.c it should complain
2780 if nonvolatile values are live. For functions that cannot return,
2781 inform flow that control does not fall through. */
2782
2783 if ((flags & ECF_NORETURN) || pass == 0)
2784 {
2785 /* The barrier must be emitted
2786 immediately after the CALL_INSN. Some ports emit more
2787 than just a CALL_INSN above, so we must search for it here. */
2788
2789 rtx last = get_last_insn ();
2790 while (!CALL_P (last))
2791 {
2792 last = PREV_INSN (last);
2793 /* There was no CALL_INSN? */
2794 gcc_assert (last != before_call);
2795 }
2796
2797 emit_barrier_after (last);
2798
2799 /* Stack adjustments after a noreturn call are dead code.
2800 However when NO_DEFER_POP is in effect, we must preserve
2801 stack_pointer_delta. */
2802 if (inhibit_defer_pop == 0)
2803 {
2804 stack_pointer_delta = old_stack_allocated;
2805 pending_stack_adjust = 0;
2806 }
2807 }
2808
2809 /* If value type not void, return an rtx for the value. */
2810
2811 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
2812 || ignore)
2813 target = const0_rtx;
2814 else if (structure_value_addr)
2815 {
2816 if (target == 0 || !MEM_P (target))
2817 {
2818 target
2819 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2820 memory_address (TYPE_MODE (TREE_TYPE (exp)),
2821 structure_value_addr));
2822 set_mem_attributes (target, exp, 1);
2823 }
2824 }
2825 else if (pcc_struct_value)
2826 {
2827 /* This is the special C++ case where we need to
2828 know what the true target was. We take care to
2829 never use this value more than once in one expression. */
2830 target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2831 copy_to_reg (valreg));
2832 set_mem_attributes (target, exp, 1);
2833 }
2834 /* Handle calls that return values in multiple non-contiguous locations.
2835 The Irix 6 ABI has examples of this. */
2836 else if (GET_CODE (valreg) == PARALLEL)
2837 {
2838 if (target == 0)
2839 {
2840 /* This will only be assigned once, so it can be readonly. */
2841 tree nt = build_qualified_type (TREE_TYPE (exp),
2842 (TYPE_QUALS (TREE_TYPE (exp))
2843 | TYPE_QUAL_CONST));
2844
2845 target = assign_temp (nt, 0, 1, 1);
2846 }
2847
2848 if (! rtx_equal_p (target, valreg))
2849 emit_group_store (target, valreg, TREE_TYPE (exp),
2850 int_size_in_bytes (TREE_TYPE (exp)));
2851
2852 /* We can not support sibling calls for this case. */
2853 sibcall_failure = 1;
2854 }
2855 else if (target
2856 && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
2857 && GET_MODE (target) == GET_MODE (valreg))
2858 {
2859 /* TARGET and VALREG cannot be equal at this point because the
2860 latter would not have REG_FUNCTION_VALUE_P true, while the
2861 former would if it were referring to the same register.
2862
2863 If they refer to the same register, this move will be a no-op,
2864 except when function inlining is being done. */
2865 emit_move_insn (target, valreg);
2866
2867 /* If we are setting a MEM, this code must be executed. Since it is
2868 emitted after the call insn, sibcall optimization cannot be
2869 performed in that case. */
2870 if (MEM_P (target))
2871 sibcall_failure = 1;
2872 }
2873 else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
2874 {
2875 target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp));
2876
2877 /* We can not support sibling calls for this case. */
2878 sibcall_failure = 1;
2879 }
2880 else
2881 target = copy_to_reg (valreg);
2882
2883 if (targetm.calls.promote_function_return(funtype))
2884 {
2885 /* If we promoted this return value, make the proper SUBREG.
2886 TARGET might be const0_rtx here, so be careful. */
2887 if (REG_P (target)
2888 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2889 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
2890 {
2891 tree type = TREE_TYPE (exp);
2892 int unsignedp = TYPE_UNSIGNED (type);
2893 int offset = 0;
2894 enum machine_mode pmode;
2895
2896 pmode = promote_mode (type, TYPE_MODE (type), &unsignedp, 1);
2897 /* If we don't promote as expected, something is wrong. */
2898 gcc_assert (GET_MODE (target) == pmode);
2899
2900 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
2901 && (GET_MODE_SIZE (GET_MODE (target))
2902 > GET_MODE_SIZE (TYPE_MODE (type))))
2903 {
2904 offset = GET_MODE_SIZE (GET_MODE (target))
2905 - GET_MODE_SIZE (TYPE_MODE (type));
2906 if (! BYTES_BIG_ENDIAN)
2907 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
2908 else if (! WORDS_BIG_ENDIAN)
2909 offset %= UNITS_PER_WORD;
2910 }
2911 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
2912 SUBREG_PROMOTED_VAR_P (target) = 1;
2913 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
2914 }
2915 }
2916
2917 /* If size of args is variable or this was a constructor call for a stack
2918 argument, restore saved stack-pointer value. */
2919
2920 if (old_stack_level && ! (flags & ECF_SP_DEPRESSED))
2921 {
2922 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
2923 stack_pointer_delta = old_stack_pointer_delta;
2924 pending_stack_adjust = old_pending_adj;
2925 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2926 stack_arg_under_construction = old_stack_arg_under_construction;
2927 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
2928 stack_usage_map = initial_stack_usage_map;
2929 sibcall_failure = 1;
2930 }
2931 else if (ACCUMULATE_OUTGOING_ARGS && pass)
2932 {
2933 #ifdef REG_PARM_STACK_SPACE
2934 if (save_area)
2935 restore_fixed_argument_area (save_area, argblock,
2936 high_to_save, low_to_save);
2937 #endif
2938
2939 /* If we saved any argument areas, restore them. */
2940 for (i = 0; i < num_actuals; i++)
2941 if (args[i].save_area)
2942 {
2943 enum machine_mode save_mode = GET_MODE (args[i].save_area);
2944 rtx stack_area
2945 = gen_rtx_MEM (save_mode,
2946 memory_address (save_mode,
2947 XEXP (args[i].stack_slot, 0)));
2948
2949 if (save_mode != BLKmode)
2950 emit_move_insn (stack_area, args[i].save_area);
2951 else
2952 emit_block_move (stack_area, args[i].save_area,
2953 GEN_INT (args[i].locate.size.constant),
2954 BLOCK_OP_CALL_PARM);
2955 }
2956
2957 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
2958 stack_usage_map = initial_stack_usage_map;
2959 }
2960
2961 /* If this was alloca, record the new stack level for nonlocal gotos.
2962 Check for the handler slots since we might not have a save area
2963 for non-local gotos. */
2964
2965 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
2966 update_nonlocal_goto_save_area ();
2967
2968 /* Free up storage we no longer need. */
2969 for (i = 0; i < num_actuals; ++i)
2970 if (args[i].aligned_regs)
2971 free (args[i].aligned_regs);
2972
2973 insns = get_insns ();
2974 end_sequence ();
2975
2976 if (pass == 0)
2977 {
2978 tail_call_insns = insns;
2979
2980 /* Restore the pending stack adjustment now that we have
2981 finished generating the sibling call sequence. */
2982
2983 pending_stack_adjust = save_pending_stack_adjust;
2984 stack_pointer_delta = save_stack_pointer_delta;
2985
2986 /* Prepare arg structure for next iteration. */
2987 for (i = 0; i < num_actuals; i++)
2988 {
2989 args[i].value = 0;
2990 args[i].aligned_regs = 0;
2991 args[i].stack = 0;
2992 }
2993
2994 sbitmap_free (stored_args_map);
2995 }
2996 else
2997 {
2998 normal_call_insns = insns;
2999
3000 /* Verify that we've deallocated all the stack we used. */
3001 gcc_assert ((flags & ECF_NORETURN)
3002 || (old_stack_allocated
3003 == stack_pointer_delta - pending_stack_adjust));
3004 }
3005
3006 /* If something prevents making this a sibling call,
3007 zero out the sequence. */
3008 if (sibcall_failure)
3009 tail_call_insns = NULL_RTX;
3010 else
3011 break;
3012 }
3013
3014 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3015 arguments too, as argument area is now clobbered by the call. */
3016 if (tail_call_insns)
3017 {
3018 emit_insn (tail_call_insns);
3019 cfun->tail_call_emit = true;
3020 }
3021 else
3022 emit_insn (normal_call_insns);
3023
3024 currently_expanding_call--;
3025
3026 /* If this function returns with the stack pointer depressed, ensure
3027 this block saves and restores the stack pointer, show it was
3028 changed, and adjust for any outgoing arg space. */
3029 if (flags & ECF_SP_DEPRESSED)
3030 {
3031 clear_pending_stack_adjust ();
3032 emit_insn (gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx));
3033 emit_move_insn (virtual_stack_dynamic_rtx, stack_pointer_rtx);
3034 }
3035
3036 return target;
3037 }
3038
3039 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3040 this function's incoming arguments.
3041
3042 At the start of RTL generation we know the only REG_EQUIV notes
3043 in the rtl chain are those for incoming arguments, so we can safely
3044 flush any REG_EQUIV note.
3045
3046 This is (slight) overkill. We could keep track of the highest
3047 argument we clobber and be more selective in removing notes, but it
3048 does not seem to be worth the effort. */
3049 void
3050 fixup_tail_calls (void)
3051 {
3052 purge_reg_equiv_notes ();
3053 }
3054
3055 /* Traverse an argument list in VALUES and expand all complex
3056 arguments into their components. */
3057 static tree
3058 split_complex_values (tree values)
3059 {
3060 tree p;
3061
3062 /* Before allocating memory, check for the common case of no complex. */
3063 for (p = values; p; p = TREE_CHAIN (p))
3064 {
3065 tree type = TREE_TYPE (TREE_VALUE (p));
3066 if (type && TREE_CODE (type) == COMPLEX_TYPE
3067 && targetm.calls.split_complex_arg (type))
3068 goto found;
3069 }
3070 return values;
3071
3072 found:
3073 values = copy_list (values);
3074
3075 for (p = values; p; p = TREE_CHAIN (p))
3076 {
3077 tree complex_value = TREE_VALUE (p);
3078 tree complex_type;
3079
3080 complex_type = TREE_TYPE (complex_value);
3081 if (!complex_type)
3082 continue;
3083
3084 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3085 && targetm.calls.split_complex_arg (complex_type))
3086 {
3087 tree subtype;
3088 tree real, imag, next;
3089
3090 subtype = TREE_TYPE (complex_type);
3091 complex_value = save_expr (complex_value);
3092 real = build1 (REALPART_EXPR, subtype, complex_value);
3093 imag = build1 (IMAGPART_EXPR, subtype, complex_value);
3094
3095 TREE_VALUE (p) = real;
3096 next = TREE_CHAIN (p);
3097 imag = build_tree_list (NULL_TREE, imag);
3098 TREE_CHAIN (p) = imag;
3099 TREE_CHAIN (imag) = next;
3100
3101 /* Skip the newly created node. */
3102 p = TREE_CHAIN (p);
3103 }
3104 }
3105
3106 return values;
3107 }
3108
3109 /* Traverse a list of TYPES and expand all complex types into their
3110 components. */
3111 static tree
3112 split_complex_types (tree types)
3113 {
3114 tree p;
3115
3116 /* Before allocating memory, check for the common case of no complex. */
3117 for (p = types; p; p = TREE_CHAIN (p))
3118 {
3119 tree type = TREE_VALUE (p);
3120 if (TREE_CODE (type) == COMPLEX_TYPE
3121 && targetm.calls.split_complex_arg (type))
3122 goto found;
3123 }
3124 return types;
3125
3126 found:
3127 types = copy_list (types);
3128
3129 for (p = types; p; p = TREE_CHAIN (p))
3130 {
3131 tree complex_type = TREE_VALUE (p);
3132
3133 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3134 && targetm.calls.split_complex_arg (complex_type))
3135 {
3136 tree next, imag;
3137
3138 /* Rewrite complex type with component type. */
3139 TREE_VALUE (p) = TREE_TYPE (complex_type);
3140 next = TREE_CHAIN (p);
3141
3142 /* Add another component type for the imaginary part. */
3143 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3144 TREE_CHAIN (p) = imag;
3145 TREE_CHAIN (imag) = next;
3146
3147 /* Skip the newly created node. */
3148 p = TREE_CHAIN (p);
3149 }
3150 }
3151
3152 return types;
3153 }
3154 \f
3155 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3156 The RETVAL parameter specifies whether return value needs to be saved, other
3157 parameters are documented in the emit_library_call function below. */
3158
3159 static rtx
3160 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3161 enum libcall_type fn_type,
3162 enum machine_mode outmode, int nargs, va_list p)
3163 {
3164 /* Total size in bytes of all the stack-parms scanned so far. */
3165 struct args_size args_size;
3166 /* Size of arguments before any adjustments (such as rounding). */
3167 struct args_size original_args_size;
3168 int argnum;
3169 rtx fun;
3170 int inc;
3171 int count;
3172 rtx argblock = 0;
3173 CUMULATIVE_ARGS args_so_far;
3174 struct arg
3175 {
3176 rtx value;
3177 enum machine_mode mode;
3178 rtx reg;
3179 int partial;
3180 struct locate_and_pad_arg_data locate;
3181 rtx save_area;
3182 };
3183 struct arg *argvec;
3184 int old_inhibit_defer_pop = inhibit_defer_pop;
3185 rtx call_fusage = 0;
3186 rtx mem_value = 0;
3187 rtx valreg;
3188 int pcc_struct_value = 0;
3189 int struct_value_size = 0;
3190 int flags;
3191 int reg_parm_stack_space = 0;
3192 int needed;
3193 rtx before_call;
3194 tree tfom; /* type_for_mode (outmode, 0) */
3195
3196 #ifdef REG_PARM_STACK_SPACE
3197 /* Define the boundary of the register parm stack space that needs to be
3198 save, if any. */
3199 int low_to_save, high_to_save;
3200 rtx save_area = 0; /* Place that it is saved. */
3201 #endif
3202
3203 /* Size of the stack reserved for parameter registers. */
3204 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3205 char *initial_stack_usage_map = stack_usage_map;
3206
3207 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3208
3209 #ifdef REG_PARM_STACK_SPACE
3210 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3211 #endif
3212
3213 /* By default, library functions can not throw. */
3214 flags = ECF_NOTHROW;
3215
3216 switch (fn_type)
3217 {
3218 case LCT_NORMAL:
3219 break;
3220 case LCT_CONST:
3221 flags |= ECF_CONST;
3222 break;
3223 case LCT_PURE:
3224 flags |= ECF_PURE;
3225 break;
3226 case LCT_CONST_MAKE_BLOCK:
3227 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
3228 break;
3229 case LCT_PURE_MAKE_BLOCK:
3230 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
3231 break;
3232 case LCT_NORETURN:
3233 flags |= ECF_NORETURN;
3234 break;
3235 case LCT_THROW:
3236 flags = ECF_NORETURN;
3237 break;
3238 case LCT_RETURNS_TWICE:
3239 flags = ECF_RETURNS_TWICE;
3240 break;
3241 }
3242 fun = orgfun;
3243
3244 /* Ensure current function's preferred stack boundary is at least
3245 what we need. */
3246 if (cfun->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3247 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3248
3249 /* If this kind of value comes back in memory,
3250 decide where in memory it should come back. */
3251 if (outmode != VOIDmode)
3252 {
3253 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3254 if (aggregate_value_p (tfom, 0))
3255 {
3256 #ifdef PCC_STATIC_STRUCT_RETURN
3257 rtx pointer_reg
3258 = hard_function_value (build_pointer_type (tfom), 0, 0);
3259 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3260 pcc_struct_value = 1;
3261 if (value == 0)
3262 value = gen_reg_rtx (outmode);
3263 #else /* not PCC_STATIC_STRUCT_RETURN */
3264 struct_value_size = GET_MODE_SIZE (outmode);
3265 if (value != 0 && MEM_P (value))
3266 mem_value = value;
3267 else
3268 mem_value = assign_temp (tfom, 0, 1, 1);
3269 #endif
3270 /* This call returns a big structure. */
3271 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3272 }
3273 }
3274 else
3275 tfom = void_type_node;
3276
3277 /* ??? Unfinished: must pass the memory address as an argument. */
3278
3279 /* Copy all the libcall-arguments out of the varargs data
3280 and into a vector ARGVEC.
3281
3282 Compute how to pass each argument. We only support a very small subset
3283 of the full argument passing conventions to limit complexity here since
3284 library functions shouldn't have many args. */
3285
3286 argvec = alloca ((nargs + 1) * sizeof (struct arg));
3287 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3288
3289 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3290 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
3291 #else
3292 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
3293 #endif
3294
3295 args_size.constant = 0;
3296 args_size.var = 0;
3297
3298 count = 0;
3299
3300 /* Now we are about to start emitting insns that can be deleted
3301 if a libcall is deleted. */
3302 if (flags & ECF_LIBCALL_BLOCK)
3303 start_sequence ();
3304
3305 push_temp_slots ();
3306
3307 /* If there's a structure value address to be passed,
3308 either pass it in the special place, or pass it as an extra argument. */
3309 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3310 {
3311 rtx addr = XEXP (mem_value, 0);
3312
3313 nargs++;
3314
3315 /* Make sure it is a reasonable operand for a move or push insn. */
3316 if (!REG_P (addr) && !MEM_P (addr)
3317 && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
3318 addr = force_operand (addr, NULL_RTX);
3319
3320 argvec[count].value = addr;
3321 argvec[count].mode = Pmode;
3322 argvec[count].partial = 0;
3323
3324 argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
3325 gcc_assert (targetm.calls.arg_partial_bytes (&args_so_far, Pmode,
3326 NULL_TREE, 1) == 0);
3327
3328 locate_and_pad_parm (Pmode, NULL_TREE,
3329 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3330 1,
3331 #else
3332 argvec[count].reg != 0,
3333 #endif
3334 0, NULL_TREE, &args_size, &argvec[count].locate);
3335
3336 if (argvec[count].reg == 0 || argvec[count].partial != 0
3337 || reg_parm_stack_space > 0)
3338 args_size.constant += argvec[count].locate.size.constant;
3339
3340 FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
3341
3342 count++;
3343 }
3344
3345 for (; count < nargs; count++)
3346 {
3347 rtx val = va_arg (p, rtx);
3348 enum machine_mode mode = va_arg (p, enum machine_mode);
3349
3350 /* We cannot convert the arg value to the mode the library wants here;
3351 must do it earlier where we know the signedness of the arg. */
3352 gcc_assert (mode != BLKmode
3353 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3354
3355 /* Make sure it is a reasonable operand for a move or push insn. */
3356 if (!REG_P (val) && !MEM_P (val)
3357 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
3358 val = force_operand (val, NULL_RTX);
3359
3360 if (pass_by_reference (&args_so_far, mode, NULL_TREE, 1))
3361 {
3362 rtx slot;
3363 int must_copy
3364 = !reference_callee_copied (&args_so_far, mode, NULL_TREE, 1);
3365
3366 /* loop.c won't look at CALL_INSN_FUNCTION_USAGE of const/pure
3367 functions, so we have to pretend this isn't such a function. */
3368 if (flags & ECF_LIBCALL_BLOCK)
3369 {
3370 rtx insns = get_insns ();
3371 end_sequence ();
3372 emit_insn (insns);
3373 }
3374 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3375
3376 /* If this was a CONST function, it is now PURE since
3377 it now reads memory. */
3378 if (flags & ECF_CONST)
3379 {
3380 flags &= ~ECF_CONST;
3381 flags |= ECF_PURE;
3382 }
3383
3384 if (GET_MODE (val) == MEM && !must_copy)
3385 slot = val;
3386 else
3387 {
3388 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3389 0, 1, 1);
3390 emit_move_insn (slot, val);
3391 }
3392
3393 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3394 gen_rtx_USE (VOIDmode, slot),
3395 call_fusage);
3396 if (must_copy)
3397 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3398 gen_rtx_CLOBBER (VOIDmode,
3399 slot),
3400 call_fusage);
3401
3402 mode = Pmode;
3403 val = force_operand (XEXP (slot, 0), NULL_RTX);
3404 }
3405
3406 argvec[count].value = val;
3407 argvec[count].mode = mode;
3408
3409 argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
3410
3411 argvec[count].partial
3412 = targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL_TREE, 1);
3413
3414 locate_and_pad_parm (mode, NULL_TREE,
3415 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3416 1,
3417 #else
3418 argvec[count].reg != 0,
3419 #endif
3420 argvec[count].partial,
3421 NULL_TREE, &args_size, &argvec[count].locate);
3422
3423 gcc_assert (!argvec[count].locate.size.var);
3424
3425 if (argvec[count].reg == 0 || argvec[count].partial != 0
3426 || reg_parm_stack_space > 0)
3427 args_size.constant += argvec[count].locate.size.constant;
3428
3429 FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
3430 }
3431
3432 /* If this machine requires an external definition for library
3433 functions, write one out. */
3434 assemble_external_libcall (fun);
3435
3436 original_args_size = args_size;
3437 args_size.constant = (((args_size.constant
3438 + stack_pointer_delta
3439 + STACK_BYTES - 1)
3440 / STACK_BYTES
3441 * STACK_BYTES)
3442 - stack_pointer_delta);
3443
3444 args_size.constant = MAX (args_size.constant,
3445 reg_parm_stack_space);
3446
3447 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3448 args_size.constant -= reg_parm_stack_space;
3449 #endif
3450
3451 if (args_size.constant > current_function_outgoing_args_size)
3452 current_function_outgoing_args_size = args_size.constant;
3453
3454 if (ACCUMULATE_OUTGOING_ARGS)
3455 {
3456 /* Since the stack pointer will never be pushed, it is possible for
3457 the evaluation of a parm to clobber something we have already
3458 written to the stack. Since most function calls on RISC machines
3459 do not use the stack, this is uncommon, but must work correctly.
3460
3461 Therefore, we save any area of the stack that was already written
3462 and that we are using. Here we set up to do this by making a new
3463 stack usage map from the old one.
3464
3465 Another approach might be to try to reorder the argument
3466 evaluations to avoid this conflicting stack usage. */
3467
3468 needed = args_size.constant;
3469
3470 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3471 /* Since we will be writing into the entire argument area, the
3472 map must be allocated for its entire size, not just the part that
3473 is the responsibility of the caller. */
3474 needed += reg_parm_stack_space;
3475 #endif
3476
3477 #ifdef ARGS_GROW_DOWNWARD
3478 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3479 needed + 1);
3480 #else
3481 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3482 needed);
3483 #endif
3484 stack_usage_map = alloca (highest_outgoing_arg_in_use);
3485
3486 if (initial_highest_arg_in_use)
3487 memcpy (stack_usage_map, initial_stack_usage_map,
3488 initial_highest_arg_in_use);
3489
3490 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3491 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3492 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3493 needed = 0;
3494
3495 /* We must be careful to use virtual regs before they're instantiated,
3496 and real regs afterwards. Loop optimization, for example, can create
3497 new libcalls after we've instantiated the virtual regs, and if we
3498 use virtuals anyway, they won't match the rtl patterns. */
3499
3500 if (virtuals_instantiated)
3501 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3502 else
3503 argblock = virtual_outgoing_args_rtx;
3504 }
3505 else
3506 {
3507 if (!PUSH_ARGS)
3508 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3509 }
3510
3511 /* If we push args individually in reverse order, perform stack alignment
3512 before the first push (the last arg). */
3513 if (argblock == 0 && PUSH_ARGS_REVERSED)
3514 anti_adjust_stack (GEN_INT (args_size.constant
3515 - original_args_size.constant));
3516
3517 if (PUSH_ARGS_REVERSED)
3518 {
3519 inc = -1;
3520 argnum = nargs - 1;
3521 }
3522 else
3523 {
3524 inc = 1;
3525 argnum = 0;
3526 }
3527
3528 #ifdef REG_PARM_STACK_SPACE
3529 if (ACCUMULATE_OUTGOING_ARGS)
3530 {
3531 /* The argument list is the property of the called routine and it
3532 may clobber it. If the fixed area has been used for previous
3533 parameters, we must save and restore it. */
3534 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3535 &low_to_save, &high_to_save);
3536 }
3537 #endif
3538
3539 /* Push the args that need to be pushed. */
3540
3541 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3542 are to be pushed. */
3543 for (count = 0; count < nargs; count++, argnum += inc)
3544 {
3545 enum machine_mode mode = argvec[argnum].mode;
3546 rtx val = argvec[argnum].value;
3547 rtx reg = argvec[argnum].reg;
3548 int partial = argvec[argnum].partial;
3549 int lower_bound = 0, upper_bound = 0, i;
3550
3551 if (! (reg != 0 && partial == 0))
3552 {
3553 if (ACCUMULATE_OUTGOING_ARGS)
3554 {
3555 /* If this is being stored into a pre-allocated, fixed-size,
3556 stack area, save any previous data at that location. */
3557
3558 #ifdef ARGS_GROW_DOWNWARD
3559 /* stack_slot is negative, but we want to index stack_usage_map
3560 with positive values. */
3561 upper_bound = -argvec[argnum].locate.offset.constant + 1;
3562 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3563 #else
3564 lower_bound = argvec[argnum].locate.offset.constant;
3565 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3566 #endif
3567
3568 i = lower_bound;
3569 /* Don't worry about things in the fixed argument area;
3570 it has already been saved. */
3571 if (i < reg_parm_stack_space)
3572 i = reg_parm_stack_space;
3573 while (i < upper_bound && stack_usage_map[i] == 0)
3574 i++;
3575
3576 if (i < upper_bound)
3577 {
3578 /* We need to make a save area. */
3579 unsigned int size
3580 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3581 enum machine_mode save_mode
3582 = mode_for_size (size, MODE_INT, 1);
3583 rtx adr
3584 = plus_constant (argblock,
3585 argvec[argnum].locate.offset.constant);
3586 rtx stack_area
3587 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3588
3589 if (save_mode == BLKmode)
3590 {
3591 argvec[argnum].save_area
3592 = assign_stack_temp (BLKmode,
3593 argvec[argnum].locate.size.constant,
3594 0);
3595
3596 emit_block_move (validize_mem (argvec[argnum].save_area),
3597 stack_area,
3598 GEN_INT (argvec[argnum].locate.size.constant),
3599 BLOCK_OP_CALL_PARM);
3600 }
3601 else
3602 {
3603 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3604
3605 emit_move_insn (argvec[argnum].save_area, stack_area);
3606 }
3607 }
3608 }
3609
3610 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, PARM_BOUNDARY,
3611 partial, reg, 0, argblock,
3612 GEN_INT (argvec[argnum].locate.offset.constant),
3613 reg_parm_stack_space,
3614 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3615
3616 /* Now mark the segment we just used. */
3617 if (ACCUMULATE_OUTGOING_ARGS)
3618 for (i = lower_bound; i < upper_bound; i++)
3619 stack_usage_map[i] = 1;
3620
3621 NO_DEFER_POP;
3622 }
3623 }
3624
3625 /* If we pushed args in forward order, perform stack alignment
3626 after pushing the last arg. */
3627 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3628 anti_adjust_stack (GEN_INT (args_size.constant
3629 - original_args_size.constant));
3630
3631 if (PUSH_ARGS_REVERSED)
3632 argnum = nargs - 1;
3633 else
3634 argnum = 0;
3635
3636 fun = prepare_call_address (fun, NULL, &call_fusage, 0, 0);
3637
3638 /* Now load any reg parms into their regs. */
3639
3640 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3641 are to be pushed. */
3642 for (count = 0; count < nargs; count++, argnum += inc)
3643 {
3644 enum machine_mode mode = argvec[argnum].mode;
3645 rtx val = argvec[argnum].value;
3646 rtx reg = argvec[argnum].reg;
3647 int partial = argvec[argnum].partial;
3648
3649 /* Handle calls that pass values in multiple non-contiguous
3650 locations. The PA64 has examples of this for library calls. */
3651 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3652 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3653 else if (reg != 0 && partial == 0)
3654 emit_move_insn (reg, val);
3655
3656 NO_DEFER_POP;
3657 }
3658
3659 /* Any regs containing parms remain in use through the call. */
3660 for (count = 0; count < nargs; count++)
3661 {
3662 rtx reg = argvec[count].reg;
3663 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3664 use_group_regs (&call_fusage, reg);
3665 else if (reg != 0)
3666 use_reg (&call_fusage, reg);
3667 }
3668
3669 /* Pass the function the address in which to return a structure value. */
3670 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3671 {
3672 emit_move_insn (struct_value,
3673 force_reg (Pmode,
3674 force_operand (XEXP (mem_value, 0),
3675 NULL_RTX)));
3676 if (REG_P (struct_value))
3677 use_reg (&call_fusage, struct_value);
3678 }
3679
3680 /* Don't allow popping to be deferred, since then
3681 cse'ing of library calls could delete a call and leave the pop. */
3682 NO_DEFER_POP;
3683 valreg = (mem_value == 0 && outmode != VOIDmode
3684 ? hard_libcall_value (outmode) : NULL_RTX);
3685
3686 /* Stack must be properly aligned now. */
3687 gcc_assert (!(stack_pointer_delta
3688 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
3689
3690 before_call = get_last_insn ();
3691
3692 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3693 will set inhibit_defer_pop to that value. */
3694 /* The return type is needed to decide how many bytes the function pops.
3695 Signedness plays no role in that, so for simplicity, we pretend it's
3696 always signed. We also assume that the list of arguments passed has
3697 no impact, so we pretend it is unknown. */
3698
3699 emit_call_1 (fun, NULL,
3700 get_identifier (XSTR (orgfun, 0)),
3701 build_function_type (tfom, NULL_TREE),
3702 original_args_size.constant, args_size.constant,
3703 struct_value_size,
3704 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
3705 valreg,
3706 old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
3707
3708 /* For calls to `setjmp', etc., inform flow.c it should complain
3709 if nonvolatile values are live. For functions that cannot return,
3710 inform flow that control does not fall through. */
3711
3712 if (flags & ECF_NORETURN)
3713 {
3714 /* The barrier note must be emitted
3715 immediately after the CALL_INSN. Some ports emit more than
3716 just a CALL_INSN above, so we must search for it here. */
3717
3718 rtx last = get_last_insn ();
3719 while (!CALL_P (last))
3720 {
3721 last = PREV_INSN (last);
3722 /* There was no CALL_INSN? */
3723 gcc_assert (last != before_call);
3724 }
3725
3726 emit_barrier_after (last);
3727 }
3728
3729 /* Now restore inhibit_defer_pop to its actual original value. */
3730 OK_DEFER_POP;
3731
3732 /* If call is cse'able, make appropriate pair of reg-notes around it.
3733 Test valreg so we don't crash; may safely ignore `const'
3734 if return type is void. Disable for PARALLEL return values, because
3735 we have no way to move such values into a pseudo register. */
3736 if (flags & ECF_LIBCALL_BLOCK)
3737 {
3738 rtx insns;
3739
3740 if (valreg == 0)
3741 {
3742 insns = get_insns ();
3743 end_sequence ();
3744 emit_insn (insns);
3745 }
3746 else
3747 {
3748 rtx note = 0;
3749 rtx temp;
3750 int i;
3751
3752 if (GET_CODE (valreg) == PARALLEL)
3753 {
3754 temp = gen_reg_rtx (outmode);
3755 emit_group_store (temp, valreg, NULL_TREE,
3756 GET_MODE_SIZE (outmode));
3757 valreg = temp;
3758 }
3759
3760 temp = gen_reg_rtx (GET_MODE (valreg));
3761
3762 /* Construct an "equal form" for the value which mentions all the
3763 arguments in order as well as the function name. */
3764 for (i = 0; i < nargs; i++)
3765 note = gen_rtx_EXPR_LIST (VOIDmode, argvec[i].value, note);
3766 note = gen_rtx_EXPR_LIST (VOIDmode, fun, note);
3767
3768 insns = get_insns ();
3769 end_sequence ();
3770
3771 if (flags & ECF_PURE)
3772 note = gen_rtx_EXPR_LIST (VOIDmode,
3773 gen_rtx_USE (VOIDmode,
3774 gen_rtx_MEM (BLKmode,
3775 gen_rtx_SCRATCH (VOIDmode))),
3776 note);
3777
3778 emit_libcall_block (insns, temp, valreg, note);
3779
3780 valreg = temp;
3781 }
3782 }
3783 pop_temp_slots ();
3784
3785 /* Copy the value to the right place. */
3786 if (outmode != VOIDmode && retval)
3787 {
3788 if (mem_value)
3789 {
3790 if (value == 0)
3791 value = mem_value;
3792 if (value != mem_value)
3793 emit_move_insn (value, mem_value);
3794 }
3795 else if (GET_CODE (valreg) == PARALLEL)
3796 {
3797 if (value == 0)
3798 value = gen_reg_rtx (outmode);
3799 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
3800 }
3801 else if (value != 0)
3802 emit_move_insn (value, valreg);
3803 else
3804 value = valreg;
3805 }
3806
3807 if (ACCUMULATE_OUTGOING_ARGS)
3808 {
3809 #ifdef REG_PARM_STACK_SPACE
3810 if (save_area)
3811 restore_fixed_argument_area (save_area, argblock,
3812 high_to_save, low_to_save);
3813 #endif
3814
3815 /* If we saved any argument areas, restore them. */
3816 for (count = 0; count < nargs; count++)
3817 if (argvec[count].save_area)
3818 {
3819 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
3820 rtx adr = plus_constant (argblock,
3821 argvec[count].locate.offset.constant);
3822 rtx stack_area = gen_rtx_MEM (save_mode,
3823 memory_address (save_mode, adr));
3824
3825 if (save_mode == BLKmode)
3826 emit_block_move (stack_area,
3827 validize_mem (argvec[count].save_area),
3828 GEN_INT (argvec[count].locate.size.constant),
3829 BLOCK_OP_CALL_PARM);
3830 else
3831 emit_move_insn (stack_area, argvec[count].save_area);
3832 }
3833
3834 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3835 stack_usage_map = initial_stack_usage_map;
3836 }
3837
3838 return value;
3839
3840 }
3841 \f
3842 /* Output a library call to function FUN (a SYMBOL_REF rtx)
3843 (emitting the queue unless NO_QUEUE is nonzero),
3844 for a value of mode OUTMODE,
3845 with NARGS different arguments, passed as alternating rtx values
3846 and machine_modes to convert them to.
3847
3848 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for `const'
3849 calls, LCT_PURE for `pure' calls, LCT_CONST_MAKE_BLOCK for `const' calls
3850 which should be enclosed in REG_LIBCALL/REG_RETVAL notes,
3851 LCT_PURE_MAKE_BLOCK for `purep' calls which should be enclosed in
3852 REG_LIBCALL/REG_RETVAL notes with extra (use (memory (scratch)),
3853 or other LCT_ value for other types of library calls. */
3854
3855 void
3856 emit_library_call (rtx orgfun, enum libcall_type fn_type,
3857 enum machine_mode outmode, int nargs, ...)
3858 {
3859 va_list p;
3860
3861 va_start (p, nargs);
3862 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
3863 va_end (p);
3864 }
3865 \f
3866 /* Like emit_library_call except that an extra argument, VALUE,
3867 comes second and says where to store the result.
3868 (If VALUE is zero, this function chooses a convenient way
3869 to return the value.
3870
3871 This function returns an rtx for where the value is to be found.
3872 If VALUE is nonzero, VALUE is returned. */
3873
3874 rtx
3875 emit_library_call_value (rtx orgfun, rtx value,
3876 enum libcall_type fn_type,
3877 enum machine_mode outmode, int nargs, ...)
3878 {
3879 rtx result;
3880 va_list p;
3881
3882 va_start (p, nargs);
3883 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
3884 nargs, p);
3885 va_end (p);
3886
3887 return result;
3888 }
3889 \f
3890 /* Store a single argument for a function call
3891 into the register or memory area where it must be passed.
3892 *ARG describes the argument value and where to pass it.
3893
3894 ARGBLOCK is the address of the stack-block for all the arguments,
3895 or 0 on a machine where arguments are pushed individually.
3896
3897 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
3898 so must be careful about how the stack is used.
3899
3900 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
3901 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
3902 that we need not worry about saving and restoring the stack.
3903
3904 FNDECL is the declaration of the function we are calling.
3905
3906 Return nonzero if this arg should cause sibcall failure,
3907 zero otherwise. */
3908
3909 static int
3910 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
3911 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
3912 {
3913 tree pval = arg->tree_value;
3914 rtx reg = 0;
3915 int partial = 0;
3916 int used = 0;
3917 int i, lower_bound = 0, upper_bound = 0;
3918 int sibcall_failure = 0;
3919
3920 if (TREE_CODE (pval) == ERROR_MARK)
3921 return 1;
3922
3923 /* Push a new temporary level for any temporaries we make for
3924 this argument. */
3925 push_temp_slots ();
3926
3927 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
3928 {
3929 /* If this is being stored into a pre-allocated, fixed-size, stack area,
3930 save any previous data at that location. */
3931 if (argblock && ! variable_size && arg->stack)
3932 {
3933 #ifdef ARGS_GROW_DOWNWARD
3934 /* stack_slot is negative, but we want to index stack_usage_map
3935 with positive values. */
3936 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
3937 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
3938 else
3939 upper_bound = 0;
3940
3941 lower_bound = upper_bound - arg->locate.size.constant;
3942 #else
3943 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
3944 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
3945 else
3946 lower_bound = 0;
3947
3948 upper_bound = lower_bound + arg->locate.size.constant;
3949 #endif
3950
3951 i = lower_bound;
3952 /* Don't worry about things in the fixed argument area;
3953 it has already been saved. */
3954 if (i < reg_parm_stack_space)
3955 i = reg_parm_stack_space;
3956 while (i < upper_bound && stack_usage_map[i] == 0)
3957 i++;
3958
3959 if (i < upper_bound)
3960 {
3961 /* We need to make a save area. */
3962 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
3963 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
3964 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
3965 rtx stack_area = gen_rtx_MEM (save_mode, adr);
3966
3967 if (save_mode == BLKmode)
3968 {
3969 tree ot = TREE_TYPE (arg->tree_value);
3970 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
3971 | TYPE_QUAL_CONST));
3972
3973 arg->save_area = assign_temp (nt, 0, 1, 1);
3974 preserve_temp_slots (arg->save_area);
3975 emit_block_move (validize_mem (arg->save_area), stack_area,
3976 expr_size (arg->tree_value),
3977 BLOCK_OP_CALL_PARM);
3978 }
3979 else
3980 {
3981 arg->save_area = gen_reg_rtx (save_mode);
3982 emit_move_insn (arg->save_area, stack_area);
3983 }
3984 }
3985 }
3986 }
3987
3988 /* If this isn't going to be placed on both the stack and in registers,
3989 set up the register and number of words. */
3990 if (! arg->pass_on_stack)
3991 {
3992 if (flags & ECF_SIBCALL)
3993 reg = arg->tail_call_reg;
3994 else
3995 reg = arg->reg;
3996 partial = arg->partial;
3997 }
3998
3999 /* Being passed entirely in a register. We shouldn't be called in
4000 this case. */
4001 gcc_assert (reg == 0 || partial != 0);
4002
4003 /* If this arg needs special alignment, don't load the registers
4004 here. */
4005 if (arg->n_aligned_regs != 0)
4006 reg = 0;
4007
4008 /* If this is being passed partially in a register, we can't evaluate
4009 it directly into its stack slot. Otherwise, we can. */
4010 if (arg->value == 0)
4011 {
4012 /* stack_arg_under_construction is nonzero if a function argument is
4013 being evaluated directly into the outgoing argument list and
4014 expand_call must take special action to preserve the argument list
4015 if it is called recursively.
4016
4017 For scalar function arguments stack_usage_map is sufficient to
4018 determine which stack slots must be saved and restored. Scalar
4019 arguments in general have pass_on_stack == 0.
4020
4021 If this argument is initialized by a function which takes the
4022 address of the argument (a C++ constructor or a C function
4023 returning a BLKmode structure), then stack_usage_map is
4024 insufficient and expand_call must push the stack around the
4025 function call. Such arguments have pass_on_stack == 1.
4026
4027 Note that it is always safe to set stack_arg_under_construction,
4028 but this generates suboptimal code if set when not needed. */
4029
4030 if (arg->pass_on_stack)
4031 stack_arg_under_construction++;
4032
4033 arg->value = expand_expr (pval,
4034 (partial
4035 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4036 ? NULL_RTX : arg->stack,
4037 VOIDmode, EXPAND_STACK_PARM);
4038
4039 /* If we are promoting object (or for any other reason) the mode
4040 doesn't agree, convert the mode. */
4041
4042 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4043 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4044 arg->value, arg->unsignedp);
4045
4046 if (arg->pass_on_stack)
4047 stack_arg_under_construction--;
4048 }
4049
4050 /* Don't allow anything left on stack from computation
4051 of argument to alloca. */
4052 if (flags & ECF_MAY_BE_ALLOCA)
4053 do_pending_stack_adjust ();
4054
4055 if (arg->value == arg->stack)
4056 /* If the value is already in the stack slot, we are done. */
4057 ;
4058 else if (arg->mode != BLKmode)
4059 {
4060 int size;
4061
4062 /* Argument is a scalar, not entirely passed in registers.
4063 (If part is passed in registers, arg->partial says how much
4064 and emit_push_insn will take care of putting it there.)
4065
4066 Push it, and if its size is less than the
4067 amount of space allocated to it,
4068 also bump stack pointer by the additional space.
4069 Note that in C the default argument promotions
4070 will prevent such mismatches. */
4071
4072 size = GET_MODE_SIZE (arg->mode);
4073 /* Compute how much space the push instruction will push.
4074 On many machines, pushing a byte will advance the stack
4075 pointer by a halfword. */
4076 #ifdef PUSH_ROUNDING
4077 size = PUSH_ROUNDING (size);
4078 #endif
4079 used = size;
4080
4081 /* Compute how much space the argument should get:
4082 round up to a multiple of the alignment for arguments. */
4083 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4084 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4085 / (PARM_BOUNDARY / BITS_PER_UNIT))
4086 * (PARM_BOUNDARY / BITS_PER_UNIT));
4087
4088 /* This isn't already where we want it on the stack, so put it there.
4089 This can either be done with push or copy insns. */
4090 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4091 PARM_BOUNDARY, partial, reg, used - size, argblock,
4092 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4093 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4094
4095 /* Unless this is a partially-in-register argument, the argument is now
4096 in the stack. */
4097 if (partial == 0)
4098 arg->value = arg->stack;
4099 }
4100 else
4101 {
4102 /* BLKmode, at least partly to be pushed. */
4103
4104 unsigned int parm_align;
4105 int excess;
4106 rtx size_rtx;
4107
4108 /* Pushing a nonscalar.
4109 If part is passed in registers, PARTIAL says how much
4110 and emit_push_insn will take care of putting it there. */
4111
4112 /* Round its size up to a multiple
4113 of the allocation unit for arguments. */
4114
4115 if (arg->locate.size.var != 0)
4116 {
4117 excess = 0;
4118 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4119 }
4120 else
4121 {
4122 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4123 for BLKmode is careful to avoid it. */
4124 excess = (arg->locate.size.constant
4125 - int_size_in_bytes (TREE_TYPE (pval))
4126 + partial);
4127 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4128 NULL_RTX, TYPE_MODE (sizetype), 0);
4129 }
4130
4131 parm_align = arg->locate.boundary;
4132
4133 /* When an argument is padded down, the block is aligned to
4134 PARM_BOUNDARY, but the actual argument isn't. */
4135 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4136 {
4137 if (arg->locate.size.var)
4138 parm_align = BITS_PER_UNIT;
4139 else if (excess)
4140 {
4141 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4142 parm_align = MIN (parm_align, excess_align);
4143 }
4144 }
4145
4146 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4147 {
4148 /* emit_push_insn might not work properly if arg->value and
4149 argblock + arg->locate.offset areas overlap. */
4150 rtx x = arg->value;
4151 int i = 0;
4152
4153 if (XEXP (x, 0) == current_function_internal_arg_pointer
4154 || (GET_CODE (XEXP (x, 0)) == PLUS
4155 && XEXP (XEXP (x, 0), 0) ==
4156 current_function_internal_arg_pointer
4157 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
4158 {
4159 if (XEXP (x, 0) != current_function_internal_arg_pointer)
4160 i = INTVAL (XEXP (XEXP (x, 0), 1));
4161
4162 /* expand_call should ensure this. */
4163 gcc_assert (!arg->locate.offset.var
4164 && GET_CODE (size_rtx) == CONST_INT);
4165
4166 if (arg->locate.offset.constant > i)
4167 {
4168 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4169 sibcall_failure = 1;
4170 }
4171 else if (arg->locate.offset.constant < i)
4172 {
4173 if (i < arg->locate.offset.constant + INTVAL (size_rtx))
4174 sibcall_failure = 1;
4175 }
4176 }
4177 }
4178
4179 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4180 parm_align, partial, reg, excess, argblock,
4181 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4182 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4183
4184 /* Unless this is a partially-in-register argument, the argument is now
4185 in the stack.
4186
4187 ??? Unlike the case above, in which we want the actual
4188 address of the data, so that we can load it directly into a
4189 register, here we want the address of the stack slot, so that
4190 it's properly aligned for word-by-word copying or something
4191 like that. It's not clear that this is always correct. */
4192 if (partial == 0)
4193 arg->value = arg->stack_slot;
4194 }
4195
4196 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
4197 {
4198 tree type = TREE_TYPE (arg->tree_value);
4199 arg->parallel_value
4200 = emit_group_load_into_temps (arg->reg, arg->value, type,
4201 int_size_in_bytes (type));
4202 }
4203
4204 /* Mark all slots this store used. */
4205 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4206 && argblock && ! variable_size && arg->stack)
4207 for (i = lower_bound; i < upper_bound; i++)
4208 stack_usage_map[i] = 1;
4209
4210 /* Once we have pushed something, pops can't safely
4211 be deferred during the rest of the arguments. */
4212 NO_DEFER_POP;
4213
4214 /* Free any temporary slots made in processing this argument. Show
4215 that we might have taken the address of something and pushed that
4216 as an operand. */
4217 preserve_temp_slots (NULL_RTX);
4218 free_temp_slots ();
4219 pop_temp_slots ();
4220
4221 return sibcall_failure;
4222 }
4223
4224 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4225
4226 bool
4227 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4228 tree type)
4229 {
4230 if (!type)
4231 return false;
4232
4233 /* If the type has variable size... */
4234 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4235 return true;
4236
4237 /* If the type is marked as addressable (it is required
4238 to be constructed into the stack)... */
4239 if (TREE_ADDRESSABLE (type))
4240 return true;
4241
4242 return false;
4243 }
4244
4245 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4246 takes trailing padding of a structure into account. */
4247 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4248
4249 bool
4250 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, tree type)
4251 {
4252 if (!type)
4253 return false;
4254
4255 /* If the type has variable size... */
4256 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4257 return true;
4258
4259 /* If the type is marked as addressable (it is required
4260 to be constructed into the stack)... */
4261 if (TREE_ADDRESSABLE (type))
4262 return true;
4263
4264 /* If the padding and mode of the type is such that a copy into
4265 a register would put it into the wrong part of the register. */
4266 if (mode == BLKmode
4267 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4268 && (FUNCTION_ARG_PADDING (mode, type)
4269 == (BYTES_BIG_ENDIAN ? upward : downward)))
4270 return true;
4271
4272 return false;
4273 }