re PR rtl-optimization/41646 (Reload ICE due to combiner extending life time of a...
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "flags.h"
30 #include "expr.h"
31 #include "optabs.h"
32 #include "libfuncs.h"
33 #include "function.h"
34 #include "regs.h"
35 #include "toplev.h"
36 #include "output.h"
37 #include "tm_p.h"
38 #include "timevar.h"
39 #include "sbitmap.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "debug.h"
43 #include "cgraph.h"
44 #include "except.h"
45 #include "dbgcnt.h"
46 #include "tree-flow.h"
47
48 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
49 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
50
51 /* Data structure and subroutines used within expand_call. */
52
53 struct arg_data
54 {
55 /* Tree node for this argument. */
56 tree tree_value;
57 /* Mode for value; TYPE_MODE unless promoted. */
58 enum machine_mode mode;
59 /* Current RTL value for argument, or 0 if it isn't precomputed. */
60 rtx value;
61 /* Initially-compute RTL value for argument; only for const functions. */
62 rtx initial_value;
63 /* Register to pass this argument in, 0 if passed on stack, or an
64 PARALLEL if the arg is to be copied into multiple non-contiguous
65 registers. */
66 rtx reg;
67 /* Register to pass this argument in when generating tail call sequence.
68 This is not the same register as for normal calls on machines with
69 register windows. */
70 rtx tail_call_reg;
71 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
72 form for emit_group_move. */
73 rtx parallel_value;
74 /* If REG was promoted from the actual mode of the argument expression,
75 indicates whether the promotion is sign- or zero-extended. */
76 int unsignedp;
77 /* Number of bytes to put in registers. 0 means put the whole arg
78 in registers. Also 0 if not passed in registers. */
79 int partial;
80 /* Nonzero if argument must be passed on stack.
81 Note that some arguments may be passed on the stack
82 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
83 pass_on_stack identifies arguments that *cannot* go in registers. */
84 int pass_on_stack;
85 /* Some fields packaged up for locate_and_pad_parm. */
86 struct locate_and_pad_arg_data locate;
87 /* Location on the stack at which parameter should be stored. The store
88 has already been done if STACK == VALUE. */
89 rtx stack;
90 /* Location on the stack of the start of this argument slot. This can
91 differ from STACK if this arg pads downward. This location is known
92 to be aligned to FUNCTION_ARG_BOUNDARY. */
93 rtx stack_slot;
94 /* Place that this stack area has been saved, if needed. */
95 rtx save_area;
96 /* If an argument's alignment does not permit direct copying into registers,
97 copy in smaller-sized pieces into pseudos. These are stored in a
98 block pointed to by this field. The next field says how many
99 word-sized pseudos we made. */
100 rtx *aligned_regs;
101 int n_aligned_regs;
102 };
103
104 /* A vector of one char per byte of stack space. A byte if nonzero if
105 the corresponding stack location has been used.
106 This vector is used to prevent a function call within an argument from
107 clobbering any stack already set up. */
108 static char *stack_usage_map;
109
110 /* Size of STACK_USAGE_MAP. */
111 static int highest_outgoing_arg_in_use;
112
113 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
114 stack location's tail call argument has been already stored into the stack.
115 This bitmap is used to prevent sibling call optimization if function tries
116 to use parent's incoming argument slots when they have been already
117 overwritten with tail call arguments. */
118 static sbitmap stored_args_map;
119
120 /* stack_arg_under_construction is nonzero when an argument may be
121 initialized with a constructor call (including a C function that
122 returns a BLKmode struct) and expand_call must take special action
123 to make sure the object being constructed does not overlap the
124 argument list for the constructor call. */
125 static int stack_arg_under_construction;
126
127 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
128 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
129 CUMULATIVE_ARGS *);
130 static void precompute_register_parameters (int, struct arg_data *, int *);
131 static int store_one_arg (struct arg_data *, rtx, int, int, int);
132 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
133 static int finalize_must_preallocate (int, int, struct arg_data *,
134 struct args_size *);
135 static void precompute_arguments (int, struct arg_data *);
136 static int compute_argument_block_size (int, struct args_size *, tree, tree, int);
137 static void initialize_argument_information (int, struct arg_data *,
138 struct args_size *, int,
139 tree, tree,
140 tree, tree, CUMULATIVE_ARGS *, int,
141 rtx *, int *, int *, int *,
142 bool *, bool);
143 static void compute_argument_addresses (struct arg_data *, rtx, int);
144 static rtx rtx_for_function_call (tree, tree);
145 static void load_register_parameters (struct arg_data *, int, rtx *, int,
146 int, int *);
147 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
148 enum machine_mode, int, va_list);
149 static int special_function_p (const_tree, int);
150 static int check_sibcall_argument_overlap_1 (rtx);
151 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
152
153 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
154 unsigned int);
155 static tree split_complex_types (tree);
156
157 #ifdef REG_PARM_STACK_SPACE
158 static rtx save_fixed_argument_area (int, rtx, int *, int *);
159 static void restore_fixed_argument_area (rtx, rtx, int, int);
160 #endif
161 \f
162 /* Force FUNEXP into a form suitable for the address of a CALL,
163 and return that as an rtx. Also load the static chain register
164 if FNDECL is a nested function.
165
166 CALL_FUSAGE points to a variable holding the prospective
167 CALL_INSN_FUNCTION_USAGE information. */
168
169 rtx
170 prepare_call_address (tree fndecl, rtx funexp, rtx static_chain_value,
171 rtx *call_fusage, int reg_parm_seen, int sibcallp)
172 {
173 /* Make a valid memory address and copy constants through pseudo-regs,
174 but not for a constant address if -fno-function-cse. */
175 if (GET_CODE (funexp) != SYMBOL_REF)
176 /* If we are using registers for parameters, force the
177 function address into a register now. */
178 funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
179 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
180 : memory_address (FUNCTION_MODE, funexp));
181 else if (! sibcallp)
182 {
183 #ifndef NO_FUNCTION_CSE
184 if (optimize && ! flag_no_function_cse)
185 funexp = force_reg (Pmode, funexp);
186 #endif
187 }
188
189 if (static_chain_value != 0)
190 {
191 rtx chain;
192
193 gcc_assert (fndecl);
194 chain = targetm.calls.static_chain (fndecl, false);
195 static_chain_value = convert_memory_address (Pmode, static_chain_value);
196
197 emit_move_insn (chain, static_chain_value);
198 if (REG_P (chain))
199 use_reg (call_fusage, chain);
200 }
201
202 return funexp;
203 }
204
205 /* Generate instructions to call function FUNEXP,
206 and optionally pop the results.
207 The CALL_INSN is the first insn generated.
208
209 FNDECL is the declaration node of the function. This is given to the
210 macro RETURN_POPS_ARGS to determine whether this function pops its own args.
211
212 FUNTYPE is the data type of the function. This is given to the macro
213 RETURN_POPS_ARGS to determine whether this function pops its own args.
214 We used to allow an identifier for library functions, but that doesn't
215 work when the return type is an aggregate type and the calling convention
216 says that the pointer to this aggregate is to be popped by the callee.
217
218 STACK_SIZE is the number of bytes of arguments on the stack,
219 ROUNDED_STACK_SIZE is that number rounded up to
220 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
221 both to put into the call insn and to generate explicit popping
222 code if necessary.
223
224 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
225 It is zero if this call doesn't want a structure value.
226
227 NEXT_ARG_REG is the rtx that results from executing
228 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
229 just after all the args have had their registers assigned.
230 This could be whatever you like, but normally it is the first
231 arg-register beyond those used for args in this call,
232 or 0 if all the arg-registers are used in this call.
233 It is passed on to `gen_call' so you can put this info in the call insn.
234
235 VALREG is a hard register in which a value is returned,
236 or 0 if the call does not return a value.
237
238 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
239 the args to this call were processed.
240 We restore `inhibit_defer_pop' to that value.
241
242 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
243 denote registers used by the called function. */
244
245 static void
246 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
247 tree funtype ATTRIBUTE_UNUSED,
248 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
249 HOST_WIDE_INT rounded_stack_size,
250 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
251 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
252 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
253 CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
254 {
255 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
256 rtx call_insn;
257 int already_popped = 0;
258 HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
259 #if defined (HAVE_call) && defined (HAVE_call_value)
260 rtx struct_value_size_rtx;
261 struct_value_size_rtx = GEN_INT (struct_value_size);
262 #endif
263
264 #ifdef CALL_POPS_ARGS
265 n_popped += CALL_POPS_ARGS (* args_so_far);
266 #endif
267
268 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
269 and we don't want to load it into a register as an optimization,
270 because prepare_call_address already did it if it should be done. */
271 if (GET_CODE (funexp) != SYMBOL_REF)
272 funexp = memory_address (FUNCTION_MODE, funexp);
273
274 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
275 if ((ecf_flags & ECF_SIBCALL)
276 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
277 && (n_popped > 0 || stack_size == 0))
278 {
279 rtx n_pop = GEN_INT (n_popped);
280 rtx pat;
281
282 /* If this subroutine pops its own args, record that in the call insn
283 if possible, for the sake of frame pointer elimination. */
284
285 if (valreg)
286 pat = GEN_SIBCALL_VALUE_POP (valreg,
287 gen_rtx_MEM (FUNCTION_MODE, funexp),
288 rounded_stack_size_rtx, next_arg_reg,
289 n_pop);
290 else
291 pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
292 rounded_stack_size_rtx, next_arg_reg, n_pop);
293
294 emit_call_insn (pat);
295 already_popped = 1;
296 }
297 else
298 #endif
299
300 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
301 /* If the target has "call" or "call_value" insns, then prefer them
302 if no arguments are actually popped. If the target does not have
303 "call" or "call_value" insns, then we must use the popping versions
304 even if the call has no arguments to pop. */
305 #if defined (HAVE_call) && defined (HAVE_call_value)
306 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
307 && n_popped > 0)
308 #else
309 if (HAVE_call_pop && HAVE_call_value_pop)
310 #endif
311 {
312 rtx n_pop = GEN_INT (n_popped);
313 rtx pat;
314
315 /* If this subroutine pops its own args, record that in the call insn
316 if possible, for the sake of frame pointer elimination. */
317
318 if (valreg)
319 pat = GEN_CALL_VALUE_POP (valreg,
320 gen_rtx_MEM (FUNCTION_MODE, funexp),
321 rounded_stack_size_rtx, next_arg_reg, n_pop);
322 else
323 pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
324 rounded_stack_size_rtx, next_arg_reg, n_pop);
325
326 emit_call_insn (pat);
327 already_popped = 1;
328 }
329 else
330 #endif
331
332 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
333 if ((ecf_flags & ECF_SIBCALL)
334 && HAVE_sibcall && HAVE_sibcall_value)
335 {
336 if (valreg)
337 emit_call_insn (GEN_SIBCALL_VALUE (valreg,
338 gen_rtx_MEM (FUNCTION_MODE, funexp),
339 rounded_stack_size_rtx,
340 next_arg_reg, NULL_RTX));
341 else
342 emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
343 rounded_stack_size_rtx, next_arg_reg,
344 struct_value_size_rtx));
345 }
346 else
347 #endif
348
349 #if defined (HAVE_call) && defined (HAVE_call_value)
350 if (HAVE_call && HAVE_call_value)
351 {
352 if (valreg)
353 emit_call_insn (GEN_CALL_VALUE (valreg,
354 gen_rtx_MEM (FUNCTION_MODE, funexp),
355 rounded_stack_size_rtx, next_arg_reg,
356 NULL_RTX));
357 else
358 emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
359 rounded_stack_size_rtx, next_arg_reg,
360 struct_value_size_rtx));
361 }
362 else
363 #endif
364 gcc_unreachable ();
365
366 /* Find the call we just emitted. */
367 call_insn = last_call_insn ();
368
369 /* Put the register usage information there. */
370 add_function_usage_to (call_insn, call_fusage);
371
372 /* If this is a const call, then set the insn's unchanging bit. */
373 if (ecf_flags & ECF_CONST)
374 RTL_CONST_CALL_P (call_insn) = 1;
375
376 /* If this is a pure call, then set the insn's unchanging bit. */
377 if (ecf_flags & ECF_PURE)
378 RTL_PURE_CALL_P (call_insn) = 1;
379
380 /* If this is a const call, then set the insn's unchanging bit. */
381 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
382 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
383
384 /* Create a nothrow REG_EH_REGION note, if needed. */
385 make_reg_eh_region_note (call_insn, ecf_flags, 0);
386
387 if (ecf_flags & ECF_NORETURN)
388 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
389
390 if (ecf_flags & ECF_RETURNS_TWICE)
391 {
392 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
393 cfun->calls_setjmp = 1;
394 }
395
396 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
397
398 /* Record debug information for virtual calls. */
399 if (flag_enable_icf_debug && fndecl == NULL)
400 (*debug_hooks->virtual_call_token) (CALL_EXPR_FN (fntree),
401 INSN_UID (call_insn));
402
403 /* Restore this now, so that we do defer pops for this call's args
404 if the context of the call as a whole permits. */
405 inhibit_defer_pop = old_inhibit_defer_pop;
406
407 if (n_popped > 0)
408 {
409 if (!already_popped)
410 CALL_INSN_FUNCTION_USAGE (call_insn)
411 = gen_rtx_EXPR_LIST (VOIDmode,
412 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
413 CALL_INSN_FUNCTION_USAGE (call_insn));
414 rounded_stack_size -= n_popped;
415 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
416 stack_pointer_delta -= n_popped;
417
418 /* If popup is needed, stack realign must use DRAP */
419 if (SUPPORTS_STACK_ALIGNMENT)
420 crtl->need_drap = true;
421 }
422
423 if (!ACCUMULATE_OUTGOING_ARGS)
424 {
425 /* If returning from the subroutine does not automatically pop the args,
426 we need an instruction to pop them sooner or later.
427 Perhaps do it now; perhaps just record how much space to pop later.
428
429 If returning from the subroutine does pop the args, indicate that the
430 stack pointer will be changed. */
431
432 if (rounded_stack_size != 0)
433 {
434 if (ecf_flags & ECF_NORETURN)
435 /* Just pretend we did the pop. */
436 stack_pointer_delta -= rounded_stack_size;
437 else if (flag_defer_pop && inhibit_defer_pop == 0
438 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
439 pending_stack_adjust += rounded_stack_size;
440 else
441 adjust_stack (rounded_stack_size_rtx);
442 }
443 }
444 /* When we accumulate outgoing args, we must avoid any stack manipulations.
445 Restore the stack pointer to its original value now. Usually
446 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
447 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
448 popping variants of functions exist as well.
449
450 ??? We may optimize similar to defer_pop above, but it is
451 probably not worthwhile.
452
453 ??? It will be worthwhile to enable combine_stack_adjustments even for
454 such machines. */
455 else if (n_popped)
456 anti_adjust_stack (GEN_INT (n_popped));
457 }
458
459 /* Determine if the function identified by NAME and FNDECL is one with
460 special properties we wish to know about.
461
462 For example, if the function might return more than one time (setjmp), then
463 set RETURNS_TWICE to a nonzero value.
464
465 Similarly set NORETURN if the function is in the longjmp family.
466
467 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
468 space from the stack such as alloca. */
469
470 static int
471 special_function_p (const_tree fndecl, int flags)
472 {
473 if (fndecl && DECL_NAME (fndecl)
474 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
475 /* Exclude functions not at the file scope, or not `extern',
476 since they are not the magic functions we would otherwise
477 think they are.
478 FIXME: this should be handled with attributes, not with this
479 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
480 because you can declare fork() inside a function if you
481 wish. */
482 && (DECL_CONTEXT (fndecl) == NULL_TREE
483 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
484 && TREE_PUBLIC (fndecl))
485 {
486 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
487 const char *tname = name;
488
489 /* We assume that alloca will always be called by name. It
490 makes no sense to pass it as a pointer-to-function to
491 anything that does not understand its behavior. */
492 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
493 && name[0] == 'a'
494 && ! strcmp (name, "alloca"))
495 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
496 && name[0] == '_'
497 && ! strcmp (name, "__builtin_alloca"))))
498 flags |= ECF_MAY_BE_ALLOCA;
499
500 /* Disregard prefix _, __, __x or __builtin_. */
501 if (name[0] == '_')
502 {
503 if (name[1] == '_'
504 && name[2] == 'b'
505 && !strncmp (name + 3, "uiltin_", 7))
506 tname += 10;
507 else if (name[1] == '_' && name[2] == 'x')
508 tname += 3;
509 else if (name[1] == '_')
510 tname += 2;
511 else
512 tname += 1;
513 }
514
515 if (tname[0] == 's')
516 {
517 if ((tname[1] == 'e'
518 && (! strcmp (tname, "setjmp")
519 || ! strcmp (tname, "setjmp_syscall")))
520 || (tname[1] == 'i'
521 && ! strcmp (tname, "sigsetjmp"))
522 || (tname[1] == 'a'
523 && ! strcmp (tname, "savectx")))
524 flags |= ECF_RETURNS_TWICE;
525
526 if (tname[1] == 'i'
527 && ! strcmp (tname, "siglongjmp"))
528 flags |= ECF_NORETURN;
529 }
530 else if ((tname[0] == 'q' && tname[1] == 's'
531 && ! strcmp (tname, "qsetjmp"))
532 || (tname[0] == 'v' && tname[1] == 'f'
533 && ! strcmp (tname, "vfork"))
534 || (tname[0] == 'g' && tname[1] == 'e'
535 && !strcmp (tname, "getcontext")))
536 flags |= ECF_RETURNS_TWICE;
537
538 else if (tname[0] == 'l' && tname[1] == 'o'
539 && ! strcmp (tname, "longjmp"))
540 flags |= ECF_NORETURN;
541 }
542
543 return flags;
544 }
545
546 /* Return nonzero when FNDECL represents a call to setjmp. */
547
548 int
549 setjmp_call_p (const_tree fndecl)
550 {
551 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
552 }
553
554
555 /* Return true if STMT is an alloca call. */
556
557 bool
558 gimple_alloca_call_p (const_gimple stmt)
559 {
560 tree fndecl;
561
562 if (!is_gimple_call (stmt))
563 return false;
564
565 fndecl = gimple_call_fndecl (stmt);
566 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
567 return true;
568
569 return false;
570 }
571
572 /* Return true when exp contains alloca call. */
573
574 bool
575 alloca_call_p (const_tree exp)
576 {
577 if (TREE_CODE (exp) == CALL_EXPR
578 && TREE_CODE (CALL_EXPR_FN (exp)) == ADDR_EXPR
579 && (TREE_CODE (TREE_OPERAND (CALL_EXPR_FN (exp), 0)) == FUNCTION_DECL)
580 && (special_function_p (TREE_OPERAND (CALL_EXPR_FN (exp), 0), 0)
581 & ECF_MAY_BE_ALLOCA))
582 return true;
583 return false;
584 }
585
586 /* Detect flags (function attributes) from the function decl or type node. */
587
588 int
589 flags_from_decl_or_type (const_tree exp)
590 {
591 int flags = 0;
592 const_tree type = exp;
593
594 if (DECL_P (exp))
595 {
596 type = TREE_TYPE (exp);
597
598 /* The function exp may have the `malloc' attribute. */
599 if (DECL_IS_MALLOC (exp))
600 flags |= ECF_MALLOC;
601
602 /* The function exp may have the `returns_twice' attribute. */
603 if (DECL_IS_RETURNS_TWICE (exp))
604 flags |= ECF_RETURNS_TWICE;
605
606 /* Process the pure and const attributes. */
607 if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
608 flags |= ECF_CONST;
609 if (DECL_PURE_P (exp))
610 flags |= ECF_PURE;
611 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
612 flags |= ECF_LOOPING_CONST_OR_PURE;
613
614 if (DECL_IS_NOVOPS (exp))
615 flags |= ECF_NOVOPS;
616
617 if (TREE_NOTHROW (exp))
618 flags |= ECF_NOTHROW;
619
620 flags = special_function_p (exp, flags);
621 }
622 else if (TYPE_P (exp) && TYPE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
623 flags |= ECF_CONST;
624
625 if (TREE_THIS_VOLATILE (exp))
626 flags |= ECF_NORETURN;
627
628 return flags;
629 }
630
631 /* Detect flags from a CALL_EXPR. */
632
633 int
634 call_expr_flags (const_tree t)
635 {
636 int flags;
637 tree decl = get_callee_fndecl (t);
638
639 if (decl)
640 flags = flags_from_decl_or_type (decl);
641 else
642 {
643 t = TREE_TYPE (CALL_EXPR_FN (t));
644 if (t && TREE_CODE (t) == POINTER_TYPE)
645 flags = flags_from_decl_or_type (TREE_TYPE (t));
646 else
647 flags = 0;
648 }
649
650 return flags;
651 }
652
653 /* Precompute all register parameters as described by ARGS, storing values
654 into fields within the ARGS array.
655
656 NUM_ACTUALS indicates the total number elements in the ARGS array.
657
658 Set REG_PARM_SEEN if we encounter a register parameter. */
659
660 static void
661 precompute_register_parameters (int num_actuals, struct arg_data *args,
662 int *reg_parm_seen)
663 {
664 int i;
665
666 *reg_parm_seen = 0;
667
668 for (i = 0; i < num_actuals; i++)
669 if (args[i].reg != 0 && ! args[i].pass_on_stack)
670 {
671 *reg_parm_seen = 1;
672
673 if (args[i].value == 0)
674 {
675 push_temp_slots ();
676 args[i].value = expand_normal (args[i].tree_value);
677 preserve_temp_slots (args[i].value);
678 pop_temp_slots ();
679 }
680
681 /* If the value is a non-legitimate constant, force it into a
682 pseudo now. TLS symbols sometimes need a call to resolve. */
683 if (CONSTANT_P (args[i].value)
684 && !LEGITIMATE_CONSTANT_P (args[i].value))
685 args[i].value = force_reg (args[i].mode, args[i].value);
686
687 /* If we are to promote the function arg to a wider mode,
688 do it now. */
689
690 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
691 args[i].value
692 = convert_modes (args[i].mode,
693 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
694 args[i].value, args[i].unsignedp);
695
696 /* If we're going to have to load the value by parts, pull the
697 parts into pseudos. The part extraction process can involve
698 non-trivial computation. */
699 if (GET_CODE (args[i].reg) == PARALLEL)
700 {
701 tree type = TREE_TYPE (args[i].tree_value);
702 args[i].parallel_value
703 = emit_group_load_into_temps (args[i].reg, args[i].value,
704 type, int_size_in_bytes (type));
705 }
706
707 /* If the value is expensive, and we are inside an appropriately
708 short loop, put the value into a pseudo and then put the pseudo
709 into the hard reg.
710
711 For small register classes, also do this if this call uses
712 register parameters. This is to avoid reload conflicts while
713 loading the parameters registers. */
714
715 else if ((! (REG_P (args[i].value)
716 || (GET_CODE (args[i].value) == SUBREG
717 && REG_P (SUBREG_REG (args[i].value)))))
718 && args[i].mode != BLKmode
719 && rtx_cost (args[i].value, SET, optimize_insn_for_speed_p ())
720 > COSTS_N_INSNS (1)
721 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
722 || optimize))
723 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
724 }
725 }
726
727 #ifdef REG_PARM_STACK_SPACE
728
729 /* The argument list is the property of the called routine and it
730 may clobber it. If the fixed area has been used for previous
731 parameters, we must save and restore it. */
732
733 static rtx
734 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
735 {
736 int low;
737 int high;
738
739 /* Compute the boundary of the area that needs to be saved, if any. */
740 high = reg_parm_stack_space;
741 #ifdef ARGS_GROW_DOWNWARD
742 high += 1;
743 #endif
744 if (high > highest_outgoing_arg_in_use)
745 high = highest_outgoing_arg_in_use;
746
747 for (low = 0; low < high; low++)
748 if (stack_usage_map[low] != 0)
749 {
750 int num_to_save;
751 enum machine_mode save_mode;
752 int delta;
753 rtx stack_area;
754 rtx save_area;
755
756 while (stack_usage_map[--high] == 0)
757 ;
758
759 *low_to_save = low;
760 *high_to_save = high;
761
762 num_to_save = high - low + 1;
763 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
764
765 /* If we don't have the required alignment, must do this
766 in BLKmode. */
767 if ((low & (MIN (GET_MODE_SIZE (save_mode),
768 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
769 save_mode = BLKmode;
770
771 #ifdef ARGS_GROW_DOWNWARD
772 delta = -high;
773 #else
774 delta = low;
775 #endif
776 stack_area = gen_rtx_MEM (save_mode,
777 memory_address (save_mode,
778 plus_constant (argblock,
779 delta)));
780
781 set_mem_align (stack_area, PARM_BOUNDARY);
782 if (save_mode == BLKmode)
783 {
784 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
785 emit_block_move (validize_mem (save_area), stack_area,
786 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
787 }
788 else
789 {
790 save_area = gen_reg_rtx (save_mode);
791 emit_move_insn (save_area, stack_area);
792 }
793
794 return save_area;
795 }
796
797 return NULL_RTX;
798 }
799
800 static void
801 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
802 {
803 enum machine_mode save_mode = GET_MODE (save_area);
804 int delta;
805 rtx stack_area;
806
807 #ifdef ARGS_GROW_DOWNWARD
808 delta = -high_to_save;
809 #else
810 delta = low_to_save;
811 #endif
812 stack_area = gen_rtx_MEM (save_mode,
813 memory_address (save_mode,
814 plus_constant (argblock, delta)));
815 set_mem_align (stack_area, PARM_BOUNDARY);
816
817 if (save_mode != BLKmode)
818 emit_move_insn (stack_area, save_area);
819 else
820 emit_block_move (stack_area, validize_mem (save_area),
821 GEN_INT (high_to_save - low_to_save + 1),
822 BLOCK_OP_CALL_PARM);
823 }
824 #endif /* REG_PARM_STACK_SPACE */
825
826 /* If any elements in ARGS refer to parameters that are to be passed in
827 registers, but not in memory, and whose alignment does not permit a
828 direct copy into registers. Copy the values into a group of pseudos
829 which we will later copy into the appropriate hard registers.
830
831 Pseudos for each unaligned argument will be stored into the array
832 args[argnum].aligned_regs. The caller is responsible for deallocating
833 the aligned_regs array if it is nonzero. */
834
835 static void
836 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
837 {
838 int i, j;
839
840 for (i = 0; i < num_actuals; i++)
841 if (args[i].reg != 0 && ! args[i].pass_on_stack
842 && args[i].mode == BLKmode
843 && MEM_P (args[i].value)
844 && (MEM_ALIGN (args[i].value)
845 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
846 {
847 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
848 int endian_correction = 0;
849
850 if (args[i].partial)
851 {
852 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
853 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
854 }
855 else
856 {
857 args[i].n_aligned_regs
858 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
859 }
860
861 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
862
863 /* Structures smaller than a word are normally aligned to the
864 least significant byte. On a BYTES_BIG_ENDIAN machine,
865 this means we must skip the empty high order bytes when
866 calculating the bit offset. */
867 if (bytes < UNITS_PER_WORD
868 #ifdef BLOCK_REG_PADDING
869 && (BLOCK_REG_PADDING (args[i].mode,
870 TREE_TYPE (args[i].tree_value), 1)
871 == downward)
872 #else
873 && BYTES_BIG_ENDIAN
874 #endif
875 )
876 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
877
878 for (j = 0; j < args[i].n_aligned_regs; j++)
879 {
880 rtx reg = gen_reg_rtx (word_mode);
881 rtx word = operand_subword_force (args[i].value, j, BLKmode);
882 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
883
884 args[i].aligned_regs[j] = reg;
885 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
886 word_mode, word_mode);
887
888 /* There is no need to restrict this code to loading items
889 in TYPE_ALIGN sized hunks. The bitfield instructions can
890 load up entire word sized registers efficiently.
891
892 ??? This may not be needed anymore.
893 We use to emit a clobber here but that doesn't let later
894 passes optimize the instructions we emit. By storing 0 into
895 the register later passes know the first AND to zero out the
896 bitfield being set in the register is unnecessary. The store
897 of 0 will be deleted as will at least the first AND. */
898
899 emit_move_insn (reg, const0_rtx);
900
901 bytes -= bitsize / BITS_PER_UNIT;
902 store_bit_field (reg, bitsize, endian_correction, word_mode,
903 word);
904 }
905 }
906 }
907
908 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
909 CALL_EXPR EXP.
910
911 NUM_ACTUALS is the total number of parameters.
912
913 N_NAMED_ARGS is the total number of named arguments.
914
915 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
916 value, or null.
917
918 FNDECL is the tree code for the target of this call (if known)
919
920 ARGS_SO_FAR holds state needed by the target to know where to place
921 the next argument.
922
923 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
924 for arguments which are passed in registers.
925
926 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
927 and may be modified by this routine.
928
929 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
930 flags which may may be modified by this routine.
931
932 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
933 that requires allocation of stack space.
934
935 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
936 the thunked-to function. */
937
938 static void
939 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
940 struct arg_data *args,
941 struct args_size *args_size,
942 int n_named_args ATTRIBUTE_UNUSED,
943 tree exp, tree struct_value_addr_value,
944 tree fndecl, tree fntype,
945 CUMULATIVE_ARGS *args_so_far,
946 int reg_parm_stack_space,
947 rtx *old_stack_level, int *old_pending_adj,
948 int *must_preallocate, int *ecf_flags,
949 bool *may_tailcall, bool call_from_thunk_p)
950 {
951 location_t loc = EXPR_LOCATION (exp);
952 /* 1 if scanning parms front to back, -1 if scanning back to front. */
953 int inc;
954
955 /* Count arg position in order args appear. */
956 int argpos;
957
958 int i;
959
960 args_size->constant = 0;
961 args_size->var = 0;
962
963 /* In this loop, we consider args in the order they are written.
964 We fill up ARGS from the front or from the back if necessary
965 so that in any case the first arg to be pushed ends up at the front. */
966
967 if (PUSH_ARGS_REVERSED)
968 {
969 i = num_actuals - 1, inc = -1;
970 /* In this case, must reverse order of args
971 so that we compute and push the last arg first. */
972 }
973 else
974 {
975 i = 0, inc = 1;
976 }
977
978 /* First fill in the actual arguments in the ARGS array, splitting
979 complex arguments if necessary. */
980 {
981 int j = i;
982 call_expr_arg_iterator iter;
983 tree arg;
984
985 if (struct_value_addr_value)
986 {
987 args[j].tree_value = struct_value_addr_value;
988 j += inc;
989 }
990 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
991 {
992 tree argtype = TREE_TYPE (arg);
993 if (targetm.calls.split_complex_arg
994 && argtype
995 && TREE_CODE (argtype) == COMPLEX_TYPE
996 && targetm.calls.split_complex_arg (argtype))
997 {
998 tree subtype = TREE_TYPE (argtype);
999 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
1000 j += inc;
1001 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
1002 }
1003 else
1004 args[j].tree_value = arg;
1005 j += inc;
1006 }
1007 }
1008
1009 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1010 for (argpos = 0; argpos < num_actuals; i += inc, argpos++)
1011 {
1012 tree type = TREE_TYPE (args[i].tree_value);
1013 int unsignedp;
1014 enum machine_mode mode;
1015
1016 /* Replace erroneous argument with constant zero. */
1017 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1018 args[i].tree_value = integer_zero_node, type = integer_type_node;
1019
1020 /* If TYPE is a transparent union, pass things the way we would
1021 pass the first field of the union. We have already verified that
1022 the modes are the same. */
1023 if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
1024 type = TREE_TYPE (TYPE_FIELDS (type));
1025
1026 /* Decide where to pass this arg.
1027
1028 args[i].reg is nonzero if all or part is passed in registers.
1029
1030 args[i].partial is nonzero if part but not all is passed in registers,
1031 and the exact value says how many bytes are passed in registers.
1032
1033 args[i].pass_on_stack is nonzero if the argument must at least be
1034 computed on the stack. It may then be loaded back into registers
1035 if args[i].reg is nonzero.
1036
1037 These decisions are driven by the FUNCTION_... macros and must agree
1038 with those made by function.c. */
1039
1040 /* See if this argument should be passed by invisible reference. */
1041 if (pass_by_reference (args_so_far, TYPE_MODE (type),
1042 type, argpos < n_named_args))
1043 {
1044 bool callee_copies;
1045 tree base;
1046
1047 callee_copies
1048 = reference_callee_copied (args_so_far, TYPE_MODE (type),
1049 type, argpos < n_named_args);
1050
1051 /* If we're compiling a thunk, pass through invisible references
1052 instead of making a copy. */
1053 if (call_from_thunk_p
1054 || (callee_copies
1055 && !TREE_ADDRESSABLE (type)
1056 && (base = get_base_address (args[i].tree_value))
1057 && TREE_CODE (base) != SSA_NAME
1058 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1059 {
1060 /* We can't use sibcalls if a callee-copied argument is
1061 stored in the current function's frame. */
1062 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1063 *may_tailcall = false;
1064
1065 args[i].tree_value = build_fold_addr_expr_loc (loc,
1066 args[i].tree_value);
1067 type = TREE_TYPE (args[i].tree_value);
1068
1069 if (*ecf_flags & ECF_CONST)
1070 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
1071 }
1072 else
1073 {
1074 /* We make a copy of the object and pass the address to the
1075 function being called. */
1076 rtx copy;
1077
1078 if (!COMPLETE_TYPE_P (type)
1079 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
1080 || (flag_stack_check == GENERIC_STACK_CHECK
1081 && compare_tree_int (TYPE_SIZE_UNIT (type),
1082 STACK_CHECK_MAX_VAR_SIZE) > 0))
1083 {
1084 /* This is a variable-sized object. Make space on the stack
1085 for it. */
1086 rtx size_rtx = expr_size (args[i].tree_value);
1087
1088 if (*old_stack_level == 0)
1089 {
1090 emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
1091 *old_pending_adj = pending_stack_adjust;
1092 pending_stack_adjust = 0;
1093 }
1094
1095 copy = gen_rtx_MEM (BLKmode,
1096 allocate_dynamic_stack_space
1097 (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
1098 set_mem_attributes (copy, type, 1);
1099 }
1100 else
1101 copy = assign_temp (type, 0, 1, 0);
1102
1103 store_expr (args[i].tree_value, copy, 0, false);
1104
1105 /* Just change the const function to pure and then let
1106 the next test clear the pure based on
1107 callee_copies. */
1108 if (*ecf_flags & ECF_CONST)
1109 {
1110 *ecf_flags &= ~ECF_CONST;
1111 *ecf_flags |= ECF_PURE;
1112 }
1113
1114 if (!callee_copies && *ecf_flags & ECF_PURE)
1115 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
1116
1117 args[i].tree_value
1118 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
1119 type = TREE_TYPE (args[i].tree_value);
1120 *may_tailcall = false;
1121 }
1122 }
1123
1124 unsignedp = TYPE_UNSIGNED (type);
1125 mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
1126 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
1127
1128 args[i].unsignedp = unsignedp;
1129 args[i].mode = mode;
1130
1131 args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
1132 argpos < n_named_args);
1133 #ifdef FUNCTION_INCOMING_ARG
1134 /* If this is a sibling call and the machine has register windows, the
1135 register window has to be unwinded before calling the routine, so
1136 arguments have to go into the incoming registers. */
1137 args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
1138 argpos < n_named_args);
1139 #else
1140 args[i].tail_call_reg = args[i].reg;
1141 #endif
1142
1143 if (args[i].reg)
1144 args[i].partial
1145 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1146 argpos < n_named_args);
1147
1148 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1149
1150 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1151 it means that we are to pass this arg in the register(s) designated
1152 by the PARALLEL, but also to pass it in the stack. */
1153 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1154 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1155 args[i].pass_on_stack = 1;
1156
1157 /* If this is an addressable type, we must preallocate the stack
1158 since we must evaluate the object into its final location.
1159
1160 If this is to be passed in both registers and the stack, it is simpler
1161 to preallocate. */
1162 if (TREE_ADDRESSABLE (type)
1163 || (args[i].pass_on_stack && args[i].reg != 0))
1164 *must_preallocate = 1;
1165
1166 /* Compute the stack-size of this argument. */
1167 if (args[i].reg == 0 || args[i].partial != 0
1168 || reg_parm_stack_space > 0
1169 || args[i].pass_on_stack)
1170 locate_and_pad_parm (mode, type,
1171 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1172 1,
1173 #else
1174 args[i].reg != 0,
1175 #endif
1176 args[i].pass_on_stack ? 0 : args[i].partial,
1177 fndecl, args_size, &args[i].locate);
1178 #ifdef BLOCK_REG_PADDING
1179 else
1180 /* The argument is passed entirely in registers. See at which
1181 end it should be padded. */
1182 args[i].locate.where_pad =
1183 BLOCK_REG_PADDING (mode, type,
1184 int_size_in_bytes (type) <= UNITS_PER_WORD);
1185 #endif
1186
1187 /* Update ARGS_SIZE, the total stack space for args so far. */
1188
1189 args_size->constant += args[i].locate.size.constant;
1190 if (args[i].locate.size.var)
1191 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1192
1193 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1194 have been used, etc. */
1195
1196 FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
1197 argpos < n_named_args);
1198 }
1199 }
1200
1201 /* Update ARGS_SIZE to contain the total size for the argument block.
1202 Return the original constant component of the argument block's size.
1203
1204 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1205 for arguments passed in registers. */
1206
1207 static int
1208 compute_argument_block_size (int reg_parm_stack_space,
1209 struct args_size *args_size,
1210 tree fndecl ATTRIBUTE_UNUSED,
1211 tree fntype ATTRIBUTE_UNUSED,
1212 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1213 {
1214 int unadjusted_args_size = args_size->constant;
1215
1216 /* For accumulate outgoing args mode we don't need to align, since the frame
1217 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1218 backends from generating misaligned frame sizes. */
1219 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1220 preferred_stack_boundary = STACK_BOUNDARY;
1221
1222 /* Compute the actual size of the argument block required. The variable
1223 and constant sizes must be combined, the size may have to be rounded,
1224 and there may be a minimum required size. */
1225
1226 if (args_size->var)
1227 {
1228 args_size->var = ARGS_SIZE_TREE (*args_size);
1229 args_size->constant = 0;
1230
1231 preferred_stack_boundary /= BITS_PER_UNIT;
1232 if (preferred_stack_boundary > 1)
1233 {
1234 /* We don't handle this case yet. To handle it correctly we have
1235 to add the delta, round and subtract the delta.
1236 Currently no machine description requires this support. */
1237 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1238 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1239 }
1240
1241 if (reg_parm_stack_space > 0)
1242 {
1243 args_size->var
1244 = size_binop (MAX_EXPR, args_size->var,
1245 ssize_int (reg_parm_stack_space));
1246
1247 /* The area corresponding to register parameters is not to count in
1248 the size of the block we need. So make the adjustment. */
1249 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1250 args_size->var
1251 = size_binop (MINUS_EXPR, args_size->var,
1252 ssize_int (reg_parm_stack_space));
1253 }
1254 }
1255 else
1256 {
1257 preferred_stack_boundary /= BITS_PER_UNIT;
1258 if (preferred_stack_boundary < 1)
1259 preferred_stack_boundary = 1;
1260 args_size->constant = (((args_size->constant
1261 + stack_pointer_delta
1262 + preferred_stack_boundary - 1)
1263 / preferred_stack_boundary
1264 * preferred_stack_boundary)
1265 - stack_pointer_delta);
1266
1267 args_size->constant = MAX (args_size->constant,
1268 reg_parm_stack_space);
1269
1270 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1271 args_size->constant -= reg_parm_stack_space;
1272 }
1273 return unadjusted_args_size;
1274 }
1275
1276 /* Precompute parameters as needed for a function call.
1277
1278 FLAGS is mask of ECF_* constants.
1279
1280 NUM_ACTUALS is the number of arguments.
1281
1282 ARGS is an array containing information for each argument; this
1283 routine fills in the INITIAL_VALUE and VALUE fields for each
1284 precomputed argument. */
1285
1286 static void
1287 precompute_arguments (int num_actuals, struct arg_data *args)
1288 {
1289 int i;
1290
1291 /* If this is a libcall, then precompute all arguments so that we do not
1292 get extraneous instructions emitted as part of the libcall sequence. */
1293
1294 /* If we preallocated the stack space, and some arguments must be passed
1295 on the stack, then we must precompute any parameter which contains a
1296 function call which will store arguments on the stack.
1297 Otherwise, evaluating the parameter may clobber previous parameters
1298 which have already been stored into the stack. (we have code to avoid
1299 such case by saving the outgoing stack arguments, but it results in
1300 worse code) */
1301 if (!ACCUMULATE_OUTGOING_ARGS)
1302 return;
1303
1304 for (i = 0; i < num_actuals; i++)
1305 {
1306 tree type;
1307 enum machine_mode mode;
1308
1309 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
1310 continue;
1311
1312 /* If this is an addressable type, we cannot pre-evaluate it. */
1313 type = TREE_TYPE (args[i].tree_value);
1314 gcc_assert (!TREE_ADDRESSABLE (type));
1315
1316 args[i].initial_value = args[i].value
1317 = expand_normal (args[i].tree_value);
1318
1319 mode = TYPE_MODE (type);
1320 if (mode != args[i].mode)
1321 {
1322 int unsignedp = args[i].unsignedp;
1323 args[i].value
1324 = convert_modes (args[i].mode, mode,
1325 args[i].value, args[i].unsignedp);
1326
1327 /* CSE will replace this only if it contains args[i].value
1328 pseudo, so convert it down to the declared mode using
1329 a SUBREG. */
1330 if (REG_P (args[i].value)
1331 && GET_MODE_CLASS (args[i].mode) == MODE_INT
1332 && promote_mode (type, mode, &unsignedp) != args[i].mode)
1333 {
1334 args[i].initial_value
1335 = gen_lowpart_SUBREG (mode, args[i].value);
1336 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1337 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1338 args[i].unsignedp);
1339 }
1340 }
1341 }
1342 }
1343
1344 /* Given the current state of MUST_PREALLOCATE and information about
1345 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1346 compute and return the final value for MUST_PREALLOCATE. */
1347
1348 static int
1349 finalize_must_preallocate (int must_preallocate, int num_actuals,
1350 struct arg_data *args, struct args_size *args_size)
1351 {
1352 /* See if we have or want to preallocate stack space.
1353
1354 If we would have to push a partially-in-regs parm
1355 before other stack parms, preallocate stack space instead.
1356
1357 If the size of some parm is not a multiple of the required stack
1358 alignment, we must preallocate.
1359
1360 If the total size of arguments that would otherwise create a copy in
1361 a temporary (such as a CALL) is more than half the total argument list
1362 size, preallocation is faster.
1363
1364 Another reason to preallocate is if we have a machine (like the m88k)
1365 where stack alignment is required to be maintained between every
1366 pair of insns, not just when the call is made. However, we assume here
1367 that such machines either do not have push insns (and hence preallocation
1368 would occur anyway) or the problem is taken care of with
1369 PUSH_ROUNDING. */
1370
1371 if (! must_preallocate)
1372 {
1373 int partial_seen = 0;
1374 int copy_to_evaluate_size = 0;
1375 int i;
1376
1377 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1378 {
1379 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1380 partial_seen = 1;
1381 else if (partial_seen && args[i].reg == 0)
1382 must_preallocate = 1;
1383
1384 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1385 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1386 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1387 || TREE_CODE (args[i].tree_value) == COND_EXPR
1388 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1389 copy_to_evaluate_size
1390 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1391 }
1392
1393 if (copy_to_evaluate_size * 2 >= args_size->constant
1394 && args_size->constant > 0)
1395 must_preallocate = 1;
1396 }
1397 return must_preallocate;
1398 }
1399
1400 /* If we preallocated stack space, compute the address of each argument
1401 and store it into the ARGS array.
1402
1403 We need not ensure it is a valid memory address here; it will be
1404 validized when it is used.
1405
1406 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1407
1408 static void
1409 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1410 {
1411 if (argblock)
1412 {
1413 rtx arg_reg = argblock;
1414 int i, arg_offset = 0;
1415
1416 if (GET_CODE (argblock) == PLUS)
1417 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1418
1419 for (i = 0; i < num_actuals; i++)
1420 {
1421 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1422 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1423 rtx addr;
1424 unsigned int align, boundary;
1425 unsigned int units_on_stack = 0;
1426 enum machine_mode partial_mode = VOIDmode;
1427
1428 /* Skip this parm if it will not be passed on the stack. */
1429 if (! args[i].pass_on_stack
1430 && args[i].reg != 0
1431 && args[i].partial == 0)
1432 continue;
1433
1434 if (CONST_INT_P (offset))
1435 addr = plus_constant (arg_reg, INTVAL (offset));
1436 else
1437 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1438
1439 addr = plus_constant (addr, arg_offset);
1440
1441 if (args[i].partial != 0)
1442 {
1443 /* Only part of the parameter is being passed on the stack.
1444 Generate a simple memory reference of the correct size. */
1445 units_on_stack = args[i].locate.size.constant;
1446 partial_mode = mode_for_size (units_on_stack * BITS_PER_UNIT,
1447 MODE_INT, 1);
1448 args[i].stack = gen_rtx_MEM (partial_mode, addr);
1449 set_mem_size (args[i].stack, GEN_INT (units_on_stack));
1450 }
1451 else
1452 {
1453 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1454 set_mem_attributes (args[i].stack,
1455 TREE_TYPE (args[i].tree_value), 1);
1456 }
1457 align = BITS_PER_UNIT;
1458 boundary = args[i].locate.boundary;
1459 if (args[i].locate.where_pad != downward)
1460 align = boundary;
1461 else if (CONST_INT_P (offset))
1462 {
1463 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1464 align = align & -align;
1465 }
1466 set_mem_align (args[i].stack, align);
1467
1468 if (CONST_INT_P (slot_offset))
1469 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1470 else
1471 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1472
1473 addr = plus_constant (addr, arg_offset);
1474
1475 if (args[i].partial != 0)
1476 {
1477 /* Only part of the parameter is being passed on the stack.
1478 Generate a simple memory reference of the correct size.
1479 */
1480 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
1481 set_mem_size (args[i].stack_slot, GEN_INT (units_on_stack));
1482 }
1483 else
1484 {
1485 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1486 set_mem_attributes (args[i].stack_slot,
1487 TREE_TYPE (args[i].tree_value), 1);
1488 }
1489 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1490
1491 /* Function incoming arguments may overlap with sibling call
1492 outgoing arguments and we cannot allow reordering of reads
1493 from function arguments with stores to outgoing arguments
1494 of sibling calls. */
1495 set_mem_alias_set (args[i].stack, 0);
1496 set_mem_alias_set (args[i].stack_slot, 0);
1497 }
1498 }
1499 }
1500
1501 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1502 in a call instruction.
1503
1504 FNDECL is the tree node for the target function. For an indirect call
1505 FNDECL will be NULL_TREE.
1506
1507 ADDR is the operand 0 of CALL_EXPR for this call. */
1508
1509 static rtx
1510 rtx_for_function_call (tree fndecl, tree addr)
1511 {
1512 rtx funexp;
1513
1514 /* Get the function to call, in the form of RTL. */
1515 if (fndecl)
1516 {
1517 /* If this is the first use of the function, see if we need to
1518 make an external definition for it. */
1519 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
1520 {
1521 assemble_external (fndecl);
1522 TREE_USED (fndecl) = 1;
1523 }
1524
1525 /* Get a SYMBOL_REF rtx for the function address. */
1526 funexp = XEXP (DECL_RTL (fndecl), 0);
1527 }
1528 else
1529 /* Generate an rtx (probably a pseudo-register) for the address. */
1530 {
1531 push_temp_slots ();
1532 funexp = expand_normal (addr);
1533 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1534 }
1535 return funexp;
1536 }
1537
1538 /* Return true if and only if SIZE storage units (usually bytes)
1539 starting from address ADDR overlap with already clobbered argument
1540 area. This function is used to determine if we should give up a
1541 sibcall. */
1542
1543 static bool
1544 mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
1545 {
1546 HOST_WIDE_INT i;
1547
1548 if (addr == crtl->args.internal_arg_pointer)
1549 i = 0;
1550 else if (GET_CODE (addr) == PLUS
1551 && XEXP (addr, 0) == crtl->args.internal_arg_pointer
1552 && CONST_INT_P (XEXP (addr, 1)))
1553 i = INTVAL (XEXP (addr, 1));
1554 /* Return true for arg pointer based indexed addressing. */
1555 else if (GET_CODE (addr) == PLUS
1556 && (XEXP (addr, 0) == crtl->args.internal_arg_pointer
1557 || XEXP (addr, 1) == crtl->args.internal_arg_pointer))
1558 return true;
1559 else
1560 return false;
1561
1562 #ifdef ARGS_GROW_DOWNWARD
1563 i = -i - size;
1564 #endif
1565 if (size > 0)
1566 {
1567 unsigned HOST_WIDE_INT k;
1568
1569 for (k = 0; k < size; k++)
1570 if (i + k < stored_args_map->n_bits
1571 && TEST_BIT (stored_args_map, i + k))
1572 return true;
1573 }
1574
1575 return false;
1576 }
1577
1578 /* Do the register loads required for any wholly-register parms or any
1579 parms which are passed both on the stack and in a register. Their
1580 expressions were already evaluated.
1581
1582 Mark all register-parms as living through the call, putting these USE
1583 insns in the CALL_INSN_FUNCTION_USAGE field.
1584
1585 When IS_SIBCALL, perform the check_sibcall_argument_overlap
1586 checking, setting *SIBCALL_FAILURE if appropriate. */
1587
1588 static void
1589 load_register_parameters (struct arg_data *args, int num_actuals,
1590 rtx *call_fusage, int flags, int is_sibcall,
1591 int *sibcall_failure)
1592 {
1593 int i, j;
1594
1595 for (i = 0; i < num_actuals; i++)
1596 {
1597 rtx reg = ((flags & ECF_SIBCALL)
1598 ? args[i].tail_call_reg : args[i].reg);
1599 if (reg)
1600 {
1601 int partial = args[i].partial;
1602 int nregs;
1603 int size = 0;
1604 rtx before_arg = get_last_insn ();
1605 /* Set non-negative if we must move a word at a time, even if
1606 just one word (e.g, partial == 4 && mode == DFmode). Set
1607 to -1 if we just use a normal move insn. This value can be
1608 zero if the argument is a zero size structure. */
1609 nregs = -1;
1610 if (GET_CODE (reg) == PARALLEL)
1611 ;
1612 else if (partial)
1613 {
1614 gcc_assert (partial % UNITS_PER_WORD == 0);
1615 nregs = partial / UNITS_PER_WORD;
1616 }
1617 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1618 {
1619 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1620 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1621 }
1622 else
1623 size = GET_MODE_SIZE (args[i].mode);
1624
1625 /* Handle calls that pass values in multiple non-contiguous
1626 locations. The Irix 6 ABI has examples of this. */
1627
1628 if (GET_CODE (reg) == PARALLEL)
1629 emit_group_move (reg, args[i].parallel_value);
1630
1631 /* If simple case, just do move. If normal partial, store_one_arg
1632 has already loaded the register for us. In all other cases,
1633 load the register(s) from memory. */
1634
1635 else if (nregs == -1)
1636 {
1637 emit_move_insn (reg, args[i].value);
1638 #ifdef BLOCK_REG_PADDING
1639 /* Handle case where we have a value that needs shifting
1640 up to the msb. eg. a QImode value and we're padding
1641 upward on a BYTES_BIG_ENDIAN machine. */
1642 if (size < UNITS_PER_WORD
1643 && (args[i].locate.where_pad
1644 == (BYTES_BIG_ENDIAN ? upward : downward)))
1645 {
1646 rtx x;
1647 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1648
1649 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1650 report the whole reg as used. Strictly speaking, the
1651 call only uses SIZE bytes at the msb end, but it doesn't
1652 seem worth generating rtl to say that. */
1653 reg = gen_rtx_REG (word_mode, REGNO (reg));
1654 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
1655 build_int_cst (NULL_TREE, shift),
1656 reg, 1);
1657 if (x != reg)
1658 emit_move_insn (reg, x);
1659 }
1660 #endif
1661 }
1662
1663 /* If we have pre-computed the values to put in the registers in
1664 the case of non-aligned structures, copy them in now. */
1665
1666 else if (args[i].n_aligned_regs != 0)
1667 for (j = 0; j < args[i].n_aligned_regs; j++)
1668 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1669 args[i].aligned_regs[j]);
1670
1671 else if (partial == 0 || args[i].pass_on_stack)
1672 {
1673 rtx mem = validize_mem (args[i].value);
1674
1675 /* Check for overlap with already clobbered argument area. */
1676 if (is_sibcall
1677 && mem_overlaps_already_clobbered_arg_p (XEXP (args[i].value, 0),
1678 size))
1679 *sibcall_failure = 1;
1680
1681 /* Handle a BLKmode that needs shifting. */
1682 if (nregs == 1 && size < UNITS_PER_WORD
1683 #ifdef BLOCK_REG_PADDING
1684 && args[i].locate.where_pad == downward
1685 #else
1686 && BYTES_BIG_ENDIAN
1687 #endif
1688 )
1689 {
1690 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1691 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1692 rtx x = gen_reg_rtx (word_mode);
1693 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1694 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1695 : LSHIFT_EXPR;
1696
1697 emit_move_insn (x, tem);
1698 x = expand_shift (dir, word_mode, x,
1699 build_int_cst (NULL_TREE, shift),
1700 ri, 1);
1701 if (x != ri)
1702 emit_move_insn (ri, x);
1703 }
1704 else
1705 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1706 }
1707
1708 /* When a parameter is a block, and perhaps in other cases, it is
1709 possible that it did a load from an argument slot that was
1710 already clobbered. */
1711 if (is_sibcall
1712 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1713 *sibcall_failure = 1;
1714
1715 /* Handle calls that pass values in multiple non-contiguous
1716 locations. The Irix 6 ABI has examples of this. */
1717 if (GET_CODE (reg) == PARALLEL)
1718 use_group_regs (call_fusage, reg);
1719 else if (nregs == -1)
1720 use_reg (call_fusage, reg);
1721 else if (nregs > 0)
1722 use_regs (call_fusage, REGNO (reg), nregs);
1723 }
1724 }
1725 }
1726
1727 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1728 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1729 bytes, then we would need to push some additional bytes to pad the
1730 arguments. So, we compute an adjust to the stack pointer for an
1731 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1732 bytes. Then, when the arguments are pushed the stack will be perfectly
1733 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1734 be popped after the call. Returns the adjustment. */
1735
1736 static int
1737 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1738 struct args_size *args_size,
1739 unsigned int preferred_unit_stack_boundary)
1740 {
1741 /* The number of bytes to pop so that the stack will be
1742 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1743 HOST_WIDE_INT adjustment;
1744 /* The alignment of the stack after the arguments are pushed, if we
1745 just pushed the arguments without adjust the stack here. */
1746 unsigned HOST_WIDE_INT unadjusted_alignment;
1747
1748 unadjusted_alignment
1749 = ((stack_pointer_delta + unadjusted_args_size)
1750 % preferred_unit_stack_boundary);
1751
1752 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1753 as possible -- leaving just enough left to cancel out the
1754 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1755 PENDING_STACK_ADJUST is non-negative, and congruent to
1756 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1757
1758 /* Begin by trying to pop all the bytes. */
1759 unadjusted_alignment
1760 = (unadjusted_alignment
1761 - (pending_stack_adjust % preferred_unit_stack_boundary));
1762 adjustment = pending_stack_adjust;
1763 /* Push enough additional bytes that the stack will be aligned
1764 after the arguments are pushed. */
1765 if (preferred_unit_stack_boundary > 1)
1766 {
1767 if (unadjusted_alignment > 0)
1768 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1769 else
1770 adjustment += unadjusted_alignment;
1771 }
1772
1773 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1774 bytes after the call. The right number is the entire
1775 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1776 by the arguments in the first place. */
1777 args_size->constant
1778 = pending_stack_adjust - adjustment + unadjusted_args_size;
1779
1780 return adjustment;
1781 }
1782
1783 /* Scan X expression if it does not dereference any argument slots
1784 we already clobbered by tail call arguments (as noted in stored_args_map
1785 bitmap).
1786 Return nonzero if X expression dereferences such argument slots,
1787 zero otherwise. */
1788
1789 static int
1790 check_sibcall_argument_overlap_1 (rtx x)
1791 {
1792 RTX_CODE code;
1793 int i, j;
1794 const char *fmt;
1795
1796 if (x == NULL_RTX)
1797 return 0;
1798
1799 code = GET_CODE (x);
1800
1801 if (code == MEM)
1802 return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
1803 GET_MODE_SIZE (GET_MODE (x)));
1804
1805 /* Scan all subexpressions. */
1806 fmt = GET_RTX_FORMAT (code);
1807 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1808 {
1809 if (*fmt == 'e')
1810 {
1811 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1812 return 1;
1813 }
1814 else if (*fmt == 'E')
1815 {
1816 for (j = 0; j < XVECLEN (x, i); j++)
1817 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1818 return 1;
1819 }
1820 }
1821 return 0;
1822 }
1823
1824 /* Scan sequence after INSN if it does not dereference any argument slots
1825 we already clobbered by tail call arguments (as noted in stored_args_map
1826 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1827 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1828 should be 0). Return nonzero if sequence after INSN dereferences such argument
1829 slots, zero otherwise. */
1830
1831 static int
1832 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1833 {
1834 int low, high;
1835
1836 if (insn == NULL_RTX)
1837 insn = get_insns ();
1838 else
1839 insn = NEXT_INSN (insn);
1840
1841 for (; insn; insn = NEXT_INSN (insn))
1842 if (INSN_P (insn)
1843 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1844 break;
1845
1846 if (mark_stored_args_map)
1847 {
1848 #ifdef ARGS_GROW_DOWNWARD
1849 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1850 #else
1851 low = arg->locate.slot_offset.constant;
1852 #endif
1853
1854 for (high = low + arg->locate.size.constant; low < high; low++)
1855 SET_BIT (stored_args_map, low);
1856 }
1857 return insn != NULL_RTX;
1858 }
1859
1860 /* Given that a function returns a value of mode MODE at the most
1861 significant end of hard register VALUE, shift VALUE left or right
1862 as specified by LEFT_P. Return true if some action was needed. */
1863
1864 bool
1865 shift_return_value (enum machine_mode mode, bool left_p, rtx value)
1866 {
1867 HOST_WIDE_INT shift;
1868
1869 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
1870 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
1871 if (shift == 0)
1872 return false;
1873
1874 /* Use ashr rather than lshr for right shifts. This is for the benefit
1875 of the MIPS port, which requires SImode values to be sign-extended
1876 when stored in 64-bit registers. */
1877 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
1878 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
1879 gcc_unreachable ();
1880 return true;
1881 }
1882
1883 /* If X is a likely-spilled register value, copy it to a pseudo
1884 register and return that register. Return X otherwise. */
1885
1886 static rtx
1887 avoid_likely_spilled_reg (rtx x)
1888 {
1889 rtx new_rtx;
1890
1891 if (REG_P (x)
1892 && HARD_REGISTER_P (x)
1893 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (x))))
1894 {
1895 /* Make sure that we generate a REG rather than a CONCAT.
1896 Moves into CONCATs can need nontrivial instructions,
1897 and the whole point of this function is to avoid
1898 using the hard register directly in such a situation. */
1899 generating_concat_p = 0;
1900 new_rtx = gen_reg_rtx (GET_MODE (x));
1901 generating_concat_p = 1;
1902 emit_move_insn (new_rtx, x);
1903 return new_rtx;
1904 }
1905 return x;
1906 }
1907
1908 /* Generate all the code for a CALL_EXPR exp
1909 and return an rtx for its value.
1910 Store the value in TARGET (specified as an rtx) if convenient.
1911 If the value is stored in TARGET then TARGET is returned.
1912 If IGNORE is nonzero, then we ignore the value of the function call. */
1913
1914 rtx
1915 expand_call (tree exp, rtx target, int ignore)
1916 {
1917 /* Nonzero if we are currently expanding a call. */
1918 static int currently_expanding_call = 0;
1919
1920 /* RTX for the function to be called. */
1921 rtx funexp;
1922 /* Sequence of insns to perform a normal "call". */
1923 rtx normal_call_insns = NULL_RTX;
1924 /* Sequence of insns to perform a tail "call". */
1925 rtx tail_call_insns = NULL_RTX;
1926 /* Data type of the function. */
1927 tree funtype;
1928 tree type_arg_types;
1929 tree rettype;
1930 /* Declaration of the function being called,
1931 or 0 if the function is computed (not known by name). */
1932 tree fndecl = 0;
1933 /* The type of the function being called. */
1934 tree fntype;
1935 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1936 int pass;
1937
1938 /* Register in which non-BLKmode value will be returned,
1939 or 0 if no value or if value is BLKmode. */
1940 rtx valreg;
1941 /* Address where we should return a BLKmode value;
1942 0 if value not BLKmode. */
1943 rtx structure_value_addr = 0;
1944 /* Nonzero if that address is being passed by treating it as
1945 an extra, implicit first parameter. Otherwise,
1946 it is passed by being copied directly into struct_value_rtx. */
1947 int structure_value_addr_parm = 0;
1948 /* Holds the value of implicit argument for the struct value. */
1949 tree structure_value_addr_value = NULL_TREE;
1950 /* Size of aggregate value wanted, or zero if none wanted
1951 or if we are using the non-reentrant PCC calling convention
1952 or expecting the value in registers. */
1953 HOST_WIDE_INT struct_value_size = 0;
1954 /* Nonzero if called function returns an aggregate in memory PCC style,
1955 by returning the address of where to find it. */
1956 int pcc_struct_value = 0;
1957 rtx struct_value = 0;
1958
1959 /* Number of actual parameters in this call, including struct value addr. */
1960 int num_actuals;
1961 /* Number of named args. Args after this are anonymous ones
1962 and they must all go on the stack. */
1963 int n_named_args;
1964 /* Number of complex actual arguments that need to be split. */
1965 int num_complex_actuals = 0;
1966
1967 /* Vector of information about each argument.
1968 Arguments are numbered in the order they will be pushed,
1969 not the order they are written. */
1970 struct arg_data *args;
1971
1972 /* Total size in bytes of all the stack-parms scanned so far. */
1973 struct args_size args_size;
1974 struct args_size adjusted_args_size;
1975 /* Size of arguments before any adjustments (such as rounding). */
1976 int unadjusted_args_size;
1977 /* Data on reg parms scanned so far. */
1978 CUMULATIVE_ARGS args_so_far;
1979 /* Nonzero if a reg parm has been scanned. */
1980 int reg_parm_seen;
1981 /* Nonzero if this is an indirect function call. */
1982
1983 /* Nonzero if we must avoid push-insns in the args for this call.
1984 If stack space is allocated for register parameters, but not by the
1985 caller, then it is preallocated in the fixed part of the stack frame.
1986 So the entire argument block must then be preallocated (i.e., we
1987 ignore PUSH_ROUNDING in that case). */
1988
1989 int must_preallocate = !PUSH_ARGS;
1990
1991 /* Size of the stack reserved for parameter registers. */
1992 int reg_parm_stack_space = 0;
1993
1994 /* Address of space preallocated for stack parms
1995 (on machines that lack push insns), or 0 if space not preallocated. */
1996 rtx argblock = 0;
1997
1998 /* Mask of ECF_ flags. */
1999 int flags = 0;
2000 #ifdef REG_PARM_STACK_SPACE
2001 /* Define the boundary of the register parm stack space that needs to be
2002 saved, if any. */
2003 int low_to_save, high_to_save;
2004 rtx save_area = 0; /* Place that it is saved */
2005 #endif
2006
2007 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
2008 char *initial_stack_usage_map = stack_usage_map;
2009 char *stack_usage_map_buf = NULL;
2010
2011 int old_stack_allocated;
2012
2013 /* State variables to track stack modifications. */
2014 rtx old_stack_level = 0;
2015 int old_stack_arg_under_construction = 0;
2016 int old_pending_adj = 0;
2017 int old_inhibit_defer_pop = inhibit_defer_pop;
2018
2019 /* Some stack pointer alterations we make are performed via
2020 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
2021 which we then also need to save/restore along the way. */
2022 int old_stack_pointer_delta = 0;
2023
2024 rtx call_fusage;
2025 tree addr = CALL_EXPR_FN (exp);
2026 int i;
2027 /* The alignment of the stack, in bits. */
2028 unsigned HOST_WIDE_INT preferred_stack_boundary;
2029 /* The alignment of the stack, in bytes. */
2030 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
2031 /* The static chain value to use for this call. */
2032 rtx static_chain_value;
2033 /* See if this is "nothrow" function call. */
2034 if (TREE_NOTHROW (exp))
2035 flags |= ECF_NOTHROW;
2036
2037 /* See if we can find a DECL-node for the actual function, and get the
2038 function attributes (flags) from the function decl or type node. */
2039 fndecl = get_callee_fndecl (exp);
2040 if (fndecl)
2041 {
2042 fntype = TREE_TYPE (fndecl);
2043 flags |= flags_from_decl_or_type (fndecl);
2044 }
2045 else
2046 {
2047 fntype = TREE_TYPE (TREE_TYPE (addr));
2048 flags |= flags_from_decl_or_type (fntype);
2049 }
2050 rettype = TREE_TYPE (exp);
2051
2052 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
2053
2054 /* Warn if this value is an aggregate type,
2055 regardless of which calling convention we are using for it. */
2056 if (AGGREGATE_TYPE_P (rettype))
2057 warning (OPT_Waggregate_return, "function call has aggregate value");
2058
2059 /* If the result of a non looping pure or const function call is
2060 ignored (or void), and none of its arguments are volatile, we can
2061 avoid expanding the call and just evaluate the arguments for
2062 side-effects. */
2063 if ((flags & (ECF_CONST | ECF_PURE))
2064 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
2065 && (ignore || target == const0_rtx
2066 || TYPE_MODE (rettype) == VOIDmode))
2067 {
2068 bool volatilep = false;
2069 tree arg;
2070 call_expr_arg_iterator iter;
2071
2072 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2073 if (TREE_THIS_VOLATILE (arg))
2074 {
2075 volatilep = true;
2076 break;
2077 }
2078
2079 if (! volatilep)
2080 {
2081 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2082 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
2083 return const0_rtx;
2084 }
2085 }
2086
2087 #ifdef REG_PARM_STACK_SPACE
2088 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
2089 #endif
2090
2091 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2092 && reg_parm_stack_space > 0 && PUSH_ARGS)
2093 must_preallocate = 1;
2094
2095 /* Set up a place to return a structure. */
2096
2097 /* Cater to broken compilers. */
2098 if (aggregate_value_p (exp, (!fndecl ? fntype : fndecl)))
2099 {
2100 /* This call returns a big structure. */
2101 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2102
2103 #ifdef PCC_STATIC_STRUCT_RETURN
2104 {
2105 pcc_struct_value = 1;
2106 }
2107 #else /* not PCC_STATIC_STRUCT_RETURN */
2108 {
2109 struct_value_size = int_size_in_bytes (rettype);
2110
2111 if (target && MEM_P (target) && CALL_EXPR_RETURN_SLOT_OPT (exp))
2112 structure_value_addr = XEXP (target, 0);
2113 else
2114 {
2115 /* For variable-sized objects, we must be called with a target
2116 specified. If we were to allocate space on the stack here,
2117 we would have no way of knowing when to free it. */
2118 rtx d = assign_temp (rettype, 0, 1, 1);
2119
2120 mark_temp_addr_taken (d);
2121 structure_value_addr = XEXP (d, 0);
2122 target = 0;
2123 }
2124 }
2125 #endif /* not PCC_STATIC_STRUCT_RETURN */
2126 }
2127
2128 /* Figure out the amount to which the stack should be aligned. */
2129 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2130 if (fndecl)
2131 {
2132 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2133 /* Without automatic stack alignment, we can't increase preferred
2134 stack boundary. With automatic stack alignment, it is
2135 unnecessary since unless we can guarantee that all callers will
2136 align the outgoing stack properly, callee has to align its
2137 stack anyway. */
2138 if (i
2139 && i->preferred_incoming_stack_boundary
2140 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
2141 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2142 }
2143
2144 /* Operand 0 is a pointer-to-function; get the type of the function. */
2145 funtype = TREE_TYPE (addr);
2146 gcc_assert (POINTER_TYPE_P (funtype));
2147 funtype = TREE_TYPE (funtype);
2148
2149 /* Count whether there are actual complex arguments that need to be split
2150 into their real and imaginary parts. Munge the type_arg_types
2151 appropriately here as well. */
2152 if (targetm.calls.split_complex_arg)
2153 {
2154 call_expr_arg_iterator iter;
2155 tree arg;
2156 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2157 {
2158 tree type = TREE_TYPE (arg);
2159 if (type && TREE_CODE (type) == COMPLEX_TYPE
2160 && targetm.calls.split_complex_arg (type))
2161 num_complex_actuals++;
2162 }
2163 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2164 }
2165 else
2166 type_arg_types = TYPE_ARG_TYPES (funtype);
2167
2168 if (flags & ECF_MAY_BE_ALLOCA)
2169 cfun->calls_alloca = 1;
2170
2171 /* If struct_value_rtx is 0, it means pass the address
2172 as if it were an extra parameter. Put the argument expression
2173 in structure_value_addr_value. */
2174 if (structure_value_addr && struct_value == 0)
2175 {
2176 /* If structure_value_addr is a REG other than
2177 virtual_outgoing_args_rtx, we can use always use it. If it
2178 is not a REG, we must always copy it into a register.
2179 If it is virtual_outgoing_args_rtx, we must copy it to another
2180 register in some cases. */
2181 rtx temp = (!REG_P (structure_value_addr)
2182 || (ACCUMULATE_OUTGOING_ARGS
2183 && stack_arg_under_construction
2184 && structure_value_addr == virtual_outgoing_args_rtx)
2185 ? copy_addr_to_reg (convert_memory_address
2186 (Pmode, structure_value_addr))
2187 : structure_value_addr);
2188
2189 structure_value_addr_value =
2190 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
2191 structure_value_addr_parm = 1;
2192 }
2193
2194 /* Count the arguments and set NUM_ACTUALS. */
2195 num_actuals =
2196 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
2197
2198 /* Compute number of named args.
2199 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2200
2201 if (type_arg_types != 0)
2202 n_named_args
2203 = (list_length (type_arg_types)
2204 /* Count the struct value address, if it is passed as a parm. */
2205 + structure_value_addr_parm);
2206 else
2207 /* If we know nothing, treat all args as named. */
2208 n_named_args = num_actuals;
2209
2210 /* Start updating where the next arg would go.
2211
2212 On some machines (such as the PA) indirect calls have a different
2213 calling convention than normal calls. The fourth argument in
2214 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2215 or not. */
2216 INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
2217
2218 /* Now possibly adjust the number of named args.
2219 Normally, don't include the last named arg if anonymous args follow.
2220 We do include the last named arg if
2221 targetm.calls.strict_argument_naming() returns nonzero.
2222 (If no anonymous args follow, the result of list_length is actually
2223 one too large. This is harmless.)
2224
2225 If targetm.calls.pretend_outgoing_varargs_named() returns
2226 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2227 this machine will be able to place unnamed args that were passed
2228 in registers into the stack. So treat all args as named. This
2229 allows the insns emitting for a specific argument list to be
2230 independent of the function declaration.
2231
2232 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2233 we do not have any reliable way to pass unnamed args in
2234 registers, so we must force them into memory. */
2235
2236 if (type_arg_types != 0
2237 && targetm.calls.strict_argument_naming (&args_so_far))
2238 ;
2239 else if (type_arg_types != 0
2240 && ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
2241 /* Don't include the last named arg. */
2242 --n_named_args;
2243 else
2244 /* Treat all args as named. */
2245 n_named_args = num_actuals;
2246
2247 /* Make a vector to hold all the information about each arg. */
2248 args = XALLOCAVEC (struct arg_data, num_actuals);
2249 memset (args, 0, num_actuals * sizeof (struct arg_data));
2250
2251 /* Build up entries in the ARGS array, compute the size of the
2252 arguments into ARGS_SIZE, etc. */
2253 initialize_argument_information (num_actuals, args, &args_size,
2254 n_named_args, exp,
2255 structure_value_addr_value, fndecl, fntype,
2256 &args_so_far, reg_parm_stack_space,
2257 &old_stack_level, &old_pending_adj,
2258 &must_preallocate, &flags,
2259 &try_tail_call, CALL_FROM_THUNK_P (exp));
2260
2261 if (args_size.var)
2262 must_preallocate = 1;
2263
2264 /* Now make final decision about preallocating stack space. */
2265 must_preallocate = finalize_must_preallocate (must_preallocate,
2266 num_actuals, args,
2267 &args_size);
2268
2269 /* If the structure value address will reference the stack pointer, we
2270 must stabilize it. We don't need to do this if we know that we are
2271 not going to adjust the stack pointer in processing this call. */
2272
2273 if (structure_value_addr
2274 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2275 || reg_mentioned_p (virtual_outgoing_args_rtx,
2276 structure_value_addr))
2277 && (args_size.var
2278 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2279 structure_value_addr = copy_to_reg (structure_value_addr);
2280
2281 /* Tail calls can make things harder to debug, and we've traditionally
2282 pushed these optimizations into -O2. Don't try if we're already
2283 expanding a call, as that means we're an argument. Don't try if
2284 there's cleanups, as we know there's code to follow the call. */
2285
2286 if (currently_expanding_call++ != 0
2287 || !flag_optimize_sibling_calls
2288 || args_size.var
2289 || dbg_cnt (tail_call) == false)
2290 try_tail_call = 0;
2291
2292 /* Rest of purposes for tail call optimizations to fail. */
2293 if (
2294 #ifdef HAVE_sibcall_epilogue
2295 !HAVE_sibcall_epilogue
2296 #else
2297 1
2298 #endif
2299 || !try_tail_call
2300 /* Doing sibling call optimization needs some work, since
2301 structure_value_addr can be allocated on the stack.
2302 It does not seem worth the effort since few optimizable
2303 sibling calls will return a structure. */
2304 || structure_value_addr != NULL_RTX
2305 #ifdef REG_PARM_STACK_SPACE
2306 /* If outgoing reg parm stack space changes, we can not do sibcall. */
2307 || (OUTGOING_REG_PARM_STACK_SPACE (funtype)
2308 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl)))
2309 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (fndecl))
2310 #endif
2311 /* Check whether the target is able to optimize the call
2312 into a sibcall. */
2313 || !targetm.function_ok_for_sibcall (fndecl, exp)
2314 /* Functions that do not return exactly once may not be sibcall
2315 optimized. */
2316 || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2317 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2318 /* If the called function is nested in the current one, it might access
2319 some of the caller's arguments, but could clobber them beforehand if
2320 the argument areas are shared. */
2321 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2322 /* If this function requires more stack slots than the current
2323 function, we cannot change it into a sibling call.
2324 crtl->args.pretend_args_size is not part of the
2325 stack allocated by our caller. */
2326 || args_size.constant > (crtl->args.size
2327 - crtl->args.pretend_args_size)
2328 /* If the callee pops its own arguments, then it must pop exactly
2329 the same number of arguments as the current function. */
2330 || (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
2331 != RETURN_POPS_ARGS (current_function_decl,
2332 TREE_TYPE (current_function_decl),
2333 crtl->args.size))
2334 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2335 try_tail_call = 0;
2336
2337 /* Check if caller and callee disagree in promotion of function
2338 return value. */
2339 if (try_tail_call)
2340 {
2341 enum machine_mode caller_mode, caller_promoted_mode;
2342 enum machine_mode callee_mode, callee_promoted_mode;
2343 int caller_unsignedp, callee_unsignedp;
2344 tree caller_res = DECL_RESULT (current_function_decl);
2345
2346 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
2347 caller_mode = DECL_MODE (caller_res);
2348 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
2349 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
2350 caller_promoted_mode
2351 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
2352 &caller_unsignedp,
2353 TREE_TYPE (current_function_decl), 1);
2354 callee_promoted_mode
2355 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
2356 &callee_unsignedp,
2357 funtype, 1);
2358 if (caller_mode != VOIDmode
2359 && (caller_promoted_mode != callee_promoted_mode
2360 || ((caller_mode != caller_promoted_mode
2361 || callee_mode != callee_promoted_mode)
2362 && (caller_unsignedp != callee_unsignedp
2363 || GET_MODE_BITSIZE (caller_mode)
2364 < GET_MODE_BITSIZE (callee_mode)))))
2365 try_tail_call = 0;
2366 }
2367
2368 /* Ensure current function's preferred stack boundary is at least
2369 what we need. Stack alignment may also increase preferred stack
2370 boundary. */
2371 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
2372 crtl->preferred_stack_boundary = preferred_stack_boundary;
2373 else
2374 preferred_stack_boundary = crtl->preferred_stack_boundary;
2375
2376 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2377
2378 /* We want to make two insn chains; one for a sibling call, the other
2379 for a normal call. We will select one of the two chains after
2380 initial RTL generation is complete. */
2381 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2382 {
2383 int sibcall_failure = 0;
2384 /* We want to emit any pending stack adjustments before the tail
2385 recursion "call". That way we know any adjustment after the tail
2386 recursion call can be ignored if we indeed use the tail
2387 call expansion. */
2388 int save_pending_stack_adjust = 0;
2389 int save_stack_pointer_delta = 0;
2390 rtx insns;
2391 rtx before_call, next_arg_reg, after_args;
2392
2393 if (pass == 0)
2394 {
2395 /* State variables we need to save and restore between
2396 iterations. */
2397 save_pending_stack_adjust = pending_stack_adjust;
2398 save_stack_pointer_delta = stack_pointer_delta;
2399 }
2400 if (pass)
2401 flags &= ~ECF_SIBCALL;
2402 else
2403 flags |= ECF_SIBCALL;
2404
2405 /* Other state variables that we must reinitialize each time
2406 through the loop (that are not initialized by the loop itself). */
2407 argblock = 0;
2408 call_fusage = 0;
2409
2410 /* Start a new sequence for the normal call case.
2411
2412 From this point on, if the sibling call fails, we want to set
2413 sibcall_failure instead of continuing the loop. */
2414 start_sequence ();
2415
2416 /* Don't let pending stack adjusts add up to too much.
2417 Also, do all pending adjustments now if there is any chance
2418 this might be a call to alloca or if we are expanding a sibling
2419 call sequence.
2420 Also do the adjustments before a throwing call, otherwise
2421 exception handling can fail; PR 19225. */
2422 if (pending_stack_adjust >= 32
2423 || (pending_stack_adjust > 0
2424 && (flags & ECF_MAY_BE_ALLOCA))
2425 || (pending_stack_adjust > 0
2426 && flag_exceptions && !(flags & ECF_NOTHROW))
2427 || pass == 0)
2428 do_pending_stack_adjust ();
2429
2430 /* Precompute any arguments as needed. */
2431 if (pass)
2432 precompute_arguments (num_actuals, args);
2433
2434 /* Now we are about to start emitting insns that can be deleted
2435 if a libcall is deleted. */
2436 if (pass && (flags & ECF_MALLOC))
2437 start_sequence ();
2438
2439 if (pass == 0 && crtl->stack_protect_guard)
2440 stack_protect_epilogue ();
2441
2442 adjusted_args_size = args_size;
2443 /* Compute the actual size of the argument block required. The variable
2444 and constant sizes must be combined, the size may have to be rounded,
2445 and there may be a minimum required size. When generating a sibcall
2446 pattern, do not round up, since we'll be re-using whatever space our
2447 caller provided. */
2448 unadjusted_args_size
2449 = compute_argument_block_size (reg_parm_stack_space,
2450 &adjusted_args_size,
2451 fndecl, fntype,
2452 (pass == 0 ? 0
2453 : preferred_stack_boundary));
2454
2455 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2456
2457 /* The argument block when performing a sibling call is the
2458 incoming argument block. */
2459 if (pass == 0)
2460 {
2461 argblock = crtl->args.internal_arg_pointer;
2462 argblock
2463 #ifdef STACK_GROWS_DOWNWARD
2464 = plus_constant (argblock, crtl->args.pretend_args_size);
2465 #else
2466 = plus_constant (argblock, -crtl->args.pretend_args_size);
2467 #endif
2468 stored_args_map = sbitmap_alloc (args_size.constant);
2469 sbitmap_zero (stored_args_map);
2470 }
2471
2472 /* If we have no actual push instructions, or shouldn't use them,
2473 make space for all args right now. */
2474 else if (adjusted_args_size.var != 0)
2475 {
2476 if (old_stack_level == 0)
2477 {
2478 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
2479 old_stack_pointer_delta = stack_pointer_delta;
2480 old_pending_adj = pending_stack_adjust;
2481 pending_stack_adjust = 0;
2482 /* stack_arg_under_construction says whether a stack arg is
2483 being constructed at the old stack level. Pushing the stack
2484 gets a clean outgoing argument block. */
2485 old_stack_arg_under_construction = stack_arg_under_construction;
2486 stack_arg_under_construction = 0;
2487 }
2488 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2489 }
2490 else
2491 {
2492 /* Note that we must go through the motions of allocating an argument
2493 block even if the size is zero because we may be storing args
2494 in the area reserved for register arguments, which may be part of
2495 the stack frame. */
2496
2497 int needed = adjusted_args_size.constant;
2498
2499 /* Store the maximum argument space used. It will be pushed by
2500 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2501 checking). */
2502
2503 if (needed > crtl->outgoing_args_size)
2504 crtl->outgoing_args_size = needed;
2505
2506 if (must_preallocate)
2507 {
2508 if (ACCUMULATE_OUTGOING_ARGS)
2509 {
2510 /* Since the stack pointer will never be pushed, it is
2511 possible for the evaluation of a parm to clobber
2512 something we have already written to the stack.
2513 Since most function calls on RISC machines do not use
2514 the stack, this is uncommon, but must work correctly.
2515
2516 Therefore, we save any area of the stack that was already
2517 written and that we are using. Here we set up to do this
2518 by making a new stack usage map from the old one. The
2519 actual save will be done by store_one_arg.
2520
2521 Another approach might be to try to reorder the argument
2522 evaluations to avoid this conflicting stack usage. */
2523
2524 /* Since we will be writing into the entire argument area,
2525 the map must be allocated for its entire size, not just
2526 the part that is the responsibility of the caller. */
2527 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2528 needed += reg_parm_stack_space;
2529
2530 #ifdef ARGS_GROW_DOWNWARD
2531 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2532 needed + 1);
2533 #else
2534 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2535 needed);
2536 #endif
2537 if (stack_usage_map_buf)
2538 free (stack_usage_map_buf);
2539 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
2540 stack_usage_map = stack_usage_map_buf;
2541
2542 if (initial_highest_arg_in_use)
2543 memcpy (stack_usage_map, initial_stack_usage_map,
2544 initial_highest_arg_in_use);
2545
2546 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2547 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2548 (highest_outgoing_arg_in_use
2549 - initial_highest_arg_in_use));
2550 needed = 0;
2551
2552 /* The address of the outgoing argument list must not be
2553 copied to a register here, because argblock would be left
2554 pointing to the wrong place after the call to
2555 allocate_dynamic_stack_space below. */
2556
2557 argblock = virtual_outgoing_args_rtx;
2558 }
2559 else
2560 {
2561 if (inhibit_defer_pop == 0)
2562 {
2563 /* Try to reuse some or all of the pending_stack_adjust
2564 to get this space. */
2565 needed
2566 = (combine_pending_stack_adjustment_and_call
2567 (unadjusted_args_size,
2568 &adjusted_args_size,
2569 preferred_unit_stack_boundary));
2570
2571 /* combine_pending_stack_adjustment_and_call computes
2572 an adjustment before the arguments are allocated.
2573 Account for them and see whether or not the stack
2574 needs to go up or down. */
2575 needed = unadjusted_args_size - needed;
2576
2577 if (needed < 0)
2578 {
2579 /* We're releasing stack space. */
2580 /* ??? We can avoid any adjustment at all if we're
2581 already aligned. FIXME. */
2582 pending_stack_adjust = -needed;
2583 do_pending_stack_adjust ();
2584 needed = 0;
2585 }
2586 else
2587 /* We need to allocate space. We'll do that in
2588 push_block below. */
2589 pending_stack_adjust = 0;
2590 }
2591
2592 /* Special case this because overhead of `push_block' in
2593 this case is non-trivial. */
2594 if (needed == 0)
2595 argblock = virtual_outgoing_args_rtx;
2596 else
2597 {
2598 argblock = push_block (GEN_INT (needed), 0, 0);
2599 #ifdef ARGS_GROW_DOWNWARD
2600 argblock = plus_constant (argblock, needed);
2601 #endif
2602 }
2603
2604 /* We only really need to call `copy_to_reg' in the case
2605 where push insns are going to be used to pass ARGBLOCK
2606 to a function call in ARGS. In that case, the stack
2607 pointer changes value from the allocation point to the
2608 call point, and hence the value of
2609 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2610 as well always do it. */
2611 argblock = copy_to_reg (argblock);
2612 }
2613 }
2614 }
2615
2616 if (ACCUMULATE_OUTGOING_ARGS)
2617 {
2618 /* The save/restore code in store_one_arg handles all
2619 cases except one: a constructor call (including a C
2620 function returning a BLKmode struct) to initialize
2621 an argument. */
2622 if (stack_arg_under_construction)
2623 {
2624 rtx push_size
2625 = GEN_INT (adjusted_args_size.constant
2626 + (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype
2627 : TREE_TYPE (fndecl))) ? 0
2628 : reg_parm_stack_space));
2629 if (old_stack_level == 0)
2630 {
2631 emit_stack_save (SAVE_BLOCK, &old_stack_level,
2632 NULL_RTX);
2633 old_stack_pointer_delta = stack_pointer_delta;
2634 old_pending_adj = pending_stack_adjust;
2635 pending_stack_adjust = 0;
2636 /* stack_arg_under_construction says whether a stack
2637 arg is being constructed at the old stack level.
2638 Pushing the stack gets a clean outgoing argument
2639 block. */
2640 old_stack_arg_under_construction
2641 = stack_arg_under_construction;
2642 stack_arg_under_construction = 0;
2643 /* Make a new map for the new argument list. */
2644 if (stack_usage_map_buf)
2645 free (stack_usage_map_buf);
2646 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
2647 stack_usage_map = stack_usage_map_buf;
2648 highest_outgoing_arg_in_use = 0;
2649 }
2650 allocate_dynamic_stack_space (push_size, NULL_RTX,
2651 BITS_PER_UNIT);
2652 }
2653
2654 /* If argument evaluation might modify the stack pointer,
2655 copy the address of the argument list to a register. */
2656 for (i = 0; i < num_actuals; i++)
2657 if (args[i].pass_on_stack)
2658 {
2659 argblock = copy_addr_to_reg (argblock);
2660 break;
2661 }
2662 }
2663
2664 compute_argument_addresses (args, argblock, num_actuals);
2665
2666 /* If we push args individually in reverse order, perform stack alignment
2667 before the first push (the last arg). */
2668 if (PUSH_ARGS_REVERSED && argblock == 0
2669 && adjusted_args_size.constant != unadjusted_args_size)
2670 {
2671 /* When the stack adjustment is pending, we get better code
2672 by combining the adjustments. */
2673 if (pending_stack_adjust
2674 && ! inhibit_defer_pop)
2675 {
2676 pending_stack_adjust
2677 = (combine_pending_stack_adjustment_and_call
2678 (unadjusted_args_size,
2679 &adjusted_args_size,
2680 preferred_unit_stack_boundary));
2681 do_pending_stack_adjust ();
2682 }
2683 else if (argblock == 0)
2684 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2685 - unadjusted_args_size));
2686 }
2687 /* Now that the stack is properly aligned, pops can't safely
2688 be deferred during the evaluation of the arguments. */
2689 NO_DEFER_POP;
2690
2691 funexp = rtx_for_function_call (fndecl, addr);
2692
2693 /* Figure out the register where the value, if any, will come back. */
2694 valreg = 0;
2695 if (TYPE_MODE (rettype) != VOIDmode
2696 && ! structure_value_addr)
2697 {
2698 if (pcc_struct_value)
2699 valreg = hard_function_value (build_pointer_type (rettype),
2700 fndecl, NULL, (pass == 0));
2701 else
2702 valreg = hard_function_value (rettype, fndecl, fntype,
2703 (pass == 0));
2704
2705 /* If VALREG is a PARALLEL whose first member has a zero
2706 offset, use that. This is for targets such as m68k that
2707 return the same value in multiple places. */
2708 if (GET_CODE (valreg) == PARALLEL)
2709 {
2710 rtx elem = XVECEXP (valreg, 0, 0);
2711 rtx where = XEXP (elem, 0);
2712 rtx offset = XEXP (elem, 1);
2713 if (offset == const0_rtx
2714 && GET_MODE (where) == GET_MODE (valreg))
2715 valreg = where;
2716 }
2717 }
2718
2719 /* Precompute all register parameters. It isn't safe to compute anything
2720 once we have started filling any specific hard regs. */
2721 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2722
2723 if (CALL_EXPR_STATIC_CHAIN (exp))
2724 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
2725 else
2726 static_chain_value = 0;
2727
2728 #ifdef REG_PARM_STACK_SPACE
2729 /* Save the fixed argument area if it's part of the caller's frame and
2730 is clobbered by argument setup for this call. */
2731 if (ACCUMULATE_OUTGOING_ARGS && pass)
2732 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2733 &low_to_save, &high_to_save);
2734 #endif
2735
2736 /* Now store (and compute if necessary) all non-register parms.
2737 These come before register parms, since they can require block-moves,
2738 which could clobber the registers used for register parms.
2739 Parms which have partial registers are not stored here,
2740 but we do preallocate space here if they want that. */
2741
2742 for (i = 0; i < num_actuals; i++)
2743 {
2744 if (args[i].reg == 0 || args[i].pass_on_stack)
2745 {
2746 rtx before_arg = get_last_insn ();
2747
2748 if (store_one_arg (&args[i], argblock, flags,
2749 adjusted_args_size.var != 0,
2750 reg_parm_stack_space)
2751 || (pass == 0
2752 && check_sibcall_argument_overlap (before_arg,
2753 &args[i], 1)))
2754 sibcall_failure = 1;
2755 }
2756
2757 if (((flags & ECF_CONST)
2758 || ((flags & ECF_PURE) && ACCUMULATE_OUTGOING_ARGS))
2759 && args[i].stack)
2760 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2761 gen_rtx_USE (VOIDmode,
2762 args[i].stack),
2763 call_fusage);
2764 }
2765
2766 /* If we have a parm that is passed in registers but not in memory
2767 and whose alignment does not permit a direct copy into registers,
2768 make a group of pseudos that correspond to each register that we
2769 will later fill. */
2770 if (STRICT_ALIGNMENT)
2771 store_unaligned_arguments_into_pseudos (args, num_actuals);
2772
2773 /* Now store any partially-in-registers parm.
2774 This is the last place a block-move can happen. */
2775 if (reg_parm_seen)
2776 for (i = 0; i < num_actuals; i++)
2777 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2778 {
2779 rtx before_arg = get_last_insn ();
2780
2781 if (store_one_arg (&args[i], argblock, flags,
2782 adjusted_args_size.var != 0,
2783 reg_parm_stack_space)
2784 || (pass == 0
2785 && check_sibcall_argument_overlap (before_arg,
2786 &args[i], 1)))
2787 sibcall_failure = 1;
2788 }
2789
2790 /* If we pushed args in forward order, perform stack alignment
2791 after pushing the last arg. */
2792 if (!PUSH_ARGS_REVERSED && argblock == 0)
2793 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2794 - unadjusted_args_size));
2795
2796 /* If register arguments require space on the stack and stack space
2797 was not preallocated, allocate stack space here for arguments
2798 passed in registers. */
2799 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2800 && !ACCUMULATE_OUTGOING_ARGS
2801 && must_preallocate == 0 && reg_parm_stack_space > 0)
2802 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2803
2804 /* Pass the function the address in which to return a
2805 structure value. */
2806 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2807 {
2808 structure_value_addr
2809 = convert_memory_address (Pmode, structure_value_addr);
2810 emit_move_insn (struct_value,
2811 force_reg (Pmode,
2812 force_operand (structure_value_addr,
2813 NULL_RTX)));
2814
2815 if (REG_P (struct_value))
2816 use_reg (&call_fusage, struct_value);
2817 }
2818
2819 after_args = get_last_insn ();
2820 funexp = prepare_call_address (fndecl, funexp, static_chain_value,
2821 &call_fusage, reg_parm_seen, pass == 0);
2822
2823 load_register_parameters (args, num_actuals, &call_fusage, flags,
2824 pass == 0, &sibcall_failure);
2825
2826 /* Save a pointer to the last insn before the call, so that we can
2827 later safely search backwards to find the CALL_INSN. */
2828 before_call = get_last_insn ();
2829
2830 /* Set up next argument register. For sibling calls on machines
2831 with register windows this should be the incoming register. */
2832 #ifdef FUNCTION_INCOMING_ARG
2833 if (pass == 0)
2834 next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
2835 void_type_node, 1);
2836 else
2837 #endif
2838 next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
2839 void_type_node, 1);
2840
2841 /* All arguments and registers used for the call must be set up by
2842 now! */
2843
2844 /* Stack must be properly aligned now. */
2845 gcc_assert (!pass
2846 || !(stack_pointer_delta % preferred_unit_stack_boundary));
2847
2848 /* Generate the actual call instruction. */
2849 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2850 adjusted_args_size.constant, struct_value_size,
2851 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2852 flags, & args_so_far);
2853
2854 /* If the call setup or the call itself overlaps with anything
2855 of the argument setup we probably clobbered our call address.
2856 In that case we can't do sibcalls. */
2857 if (pass == 0
2858 && check_sibcall_argument_overlap (after_args, 0, 0))
2859 sibcall_failure = 1;
2860
2861 /* If a non-BLKmode value is returned at the most significant end
2862 of a register, shift the register right by the appropriate amount
2863 and update VALREG accordingly. BLKmode values are handled by the
2864 group load/store machinery below. */
2865 if (!structure_value_addr
2866 && !pcc_struct_value
2867 && TYPE_MODE (rettype) != BLKmode
2868 && targetm.calls.return_in_msb (rettype))
2869 {
2870 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
2871 sibcall_failure = 1;
2872 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
2873 }
2874
2875 if (pass && (flags & ECF_MALLOC))
2876 {
2877 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2878 rtx last, insns;
2879
2880 /* The return value from a malloc-like function is a pointer. */
2881 if (TREE_CODE (rettype) == POINTER_TYPE)
2882 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2883
2884 emit_move_insn (temp, valreg);
2885
2886 /* The return value from a malloc-like function can not alias
2887 anything else. */
2888 last = get_last_insn ();
2889 add_reg_note (last, REG_NOALIAS, temp);
2890
2891 /* Write out the sequence. */
2892 insns = get_insns ();
2893 end_sequence ();
2894 emit_insn (insns);
2895 valreg = temp;
2896 }
2897
2898 /* For calls to `setjmp', etc., inform
2899 function.c:setjmp_warnings that it should complain if
2900 nonvolatile values are live. For functions that cannot
2901 return, inform flow that control does not fall through. */
2902
2903 if ((flags & ECF_NORETURN) || pass == 0)
2904 {
2905 /* The barrier must be emitted
2906 immediately after the CALL_INSN. Some ports emit more
2907 than just a CALL_INSN above, so we must search for it here. */
2908
2909 rtx last = get_last_insn ();
2910 while (!CALL_P (last))
2911 {
2912 last = PREV_INSN (last);
2913 /* There was no CALL_INSN? */
2914 gcc_assert (last != before_call);
2915 }
2916
2917 emit_barrier_after (last);
2918
2919 /* Stack adjustments after a noreturn call are dead code.
2920 However when NO_DEFER_POP is in effect, we must preserve
2921 stack_pointer_delta. */
2922 if (inhibit_defer_pop == 0)
2923 {
2924 stack_pointer_delta = old_stack_allocated;
2925 pending_stack_adjust = 0;
2926 }
2927 }
2928
2929 /* If value type not void, return an rtx for the value. */
2930
2931 if (TYPE_MODE (rettype) == VOIDmode
2932 || ignore)
2933 target = const0_rtx;
2934 else if (structure_value_addr)
2935 {
2936 if (target == 0 || !MEM_P (target))
2937 {
2938 target
2939 = gen_rtx_MEM (TYPE_MODE (rettype),
2940 memory_address (TYPE_MODE (rettype),
2941 structure_value_addr));
2942 set_mem_attributes (target, rettype, 1);
2943 }
2944 }
2945 else if (pcc_struct_value)
2946 {
2947 /* This is the special C++ case where we need to
2948 know what the true target was. We take care to
2949 never use this value more than once in one expression. */
2950 target = gen_rtx_MEM (TYPE_MODE (rettype),
2951 copy_to_reg (valreg));
2952 set_mem_attributes (target, rettype, 1);
2953 }
2954 /* Handle calls that return values in multiple non-contiguous locations.
2955 The Irix 6 ABI has examples of this. */
2956 else if (GET_CODE (valreg) == PARALLEL)
2957 {
2958 if (target == 0)
2959 {
2960 /* This will only be assigned once, so it can be readonly. */
2961 tree nt = build_qualified_type (rettype,
2962 (TYPE_QUALS (rettype)
2963 | TYPE_QUAL_CONST));
2964
2965 target = assign_temp (nt, 0, 1, 1);
2966 }
2967
2968 if (! rtx_equal_p (target, valreg))
2969 emit_group_store (target, valreg, rettype,
2970 int_size_in_bytes (rettype));
2971
2972 /* We can not support sibling calls for this case. */
2973 sibcall_failure = 1;
2974 }
2975 else if (target
2976 && GET_MODE (target) == TYPE_MODE (rettype)
2977 && GET_MODE (target) == GET_MODE (valreg))
2978 {
2979 bool may_overlap = false;
2980
2981 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
2982 reg to a plain register. */
2983 if (!REG_P (target) || HARD_REGISTER_P (target))
2984 valreg = avoid_likely_spilled_reg (valreg);
2985
2986 /* If TARGET is a MEM in the argument area, and we have
2987 saved part of the argument area, then we can't store
2988 directly into TARGET as it may get overwritten when we
2989 restore the argument save area below. Don't work too
2990 hard though and simply force TARGET to a register if it
2991 is a MEM; the optimizer is quite likely to sort it out. */
2992 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
2993 for (i = 0; i < num_actuals; i++)
2994 if (args[i].save_area)
2995 {
2996 may_overlap = true;
2997 break;
2998 }
2999
3000 if (may_overlap)
3001 target = copy_to_reg (valreg);
3002 else
3003 {
3004 /* TARGET and VALREG cannot be equal at this point
3005 because the latter would not have
3006 REG_FUNCTION_VALUE_P true, while the former would if
3007 it were referring to the same register.
3008
3009 If they refer to the same register, this move will be
3010 a no-op, except when function inlining is being
3011 done. */
3012 emit_move_insn (target, valreg);
3013
3014 /* If we are setting a MEM, this code must be executed.
3015 Since it is emitted after the call insn, sibcall
3016 optimization cannot be performed in that case. */
3017 if (MEM_P (target))
3018 sibcall_failure = 1;
3019 }
3020 }
3021 else if (TYPE_MODE (rettype) == BLKmode)
3022 {
3023 rtx val = valreg;
3024 if (GET_MODE (val) != BLKmode)
3025 val = avoid_likely_spilled_reg (val);
3026 target = copy_blkmode_from_reg (target, val, rettype);
3027
3028 /* We can not support sibling calls for this case. */
3029 sibcall_failure = 1;
3030 }
3031 else
3032 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
3033
3034 /* If we promoted this return value, make the proper SUBREG.
3035 TARGET might be const0_rtx here, so be careful. */
3036 if (REG_P (target)
3037 && TYPE_MODE (rettype) != BLKmode
3038 && GET_MODE (target) != TYPE_MODE (rettype))
3039 {
3040 tree type = rettype;
3041 int unsignedp = TYPE_UNSIGNED (type);
3042 int offset = 0;
3043 enum machine_mode pmode;
3044
3045 /* Ensure we promote as expected, and get the new unsignedness. */
3046 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
3047 funtype, 1);
3048 gcc_assert (GET_MODE (target) == pmode);
3049
3050 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
3051 && (GET_MODE_SIZE (GET_MODE (target))
3052 > GET_MODE_SIZE (TYPE_MODE (type))))
3053 {
3054 offset = GET_MODE_SIZE (GET_MODE (target))
3055 - GET_MODE_SIZE (TYPE_MODE (type));
3056 if (! BYTES_BIG_ENDIAN)
3057 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
3058 else if (! WORDS_BIG_ENDIAN)
3059 offset %= UNITS_PER_WORD;
3060 }
3061
3062 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
3063 SUBREG_PROMOTED_VAR_P (target) = 1;
3064 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
3065 }
3066
3067 /* If size of args is variable or this was a constructor call for a stack
3068 argument, restore saved stack-pointer value. */
3069
3070 if (old_stack_level)
3071 {
3072 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
3073 stack_pointer_delta = old_stack_pointer_delta;
3074 pending_stack_adjust = old_pending_adj;
3075 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3076 stack_arg_under_construction = old_stack_arg_under_construction;
3077 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3078 stack_usage_map = initial_stack_usage_map;
3079 sibcall_failure = 1;
3080 }
3081 else if (ACCUMULATE_OUTGOING_ARGS && pass)
3082 {
3083 #ifdef REG_PARM_STACK_SPACE
3084 if (save_area)
3085 restore_fixed_argument_area (save_area, argblock,
3086 high_to_save, low_to_save);
3087 #endif
3088
3089 /* If we saved any argument areas, restore them. */
3090 for (i = 0; i < num_actuals; i++)
3091 if (args[i].save_area)
3092 {
3093 enum machine_mode save_mode = GET_MODE (args[i].save_area);
3094 rtx stack_area
3095 = gen_rtx_MEM (save_mode,
3096 memory_address (save_mode,
3097 XEXP (args[i].stack_slot, 0)));
3098
3099 if (save_mode != BLKmode)
3100 emit_move_insn (stack_area, args[i].save_area);
3101 else
3102 emit_block_move (stack_area, args[i].save_area,
3103 GEN_INT (args[i].locate.size.constant),
3104 BLOCK_OP_CALL_PARM);
3105 }
3106
3107 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3108 stack_usage_map = initial_stack_usage_map;
3109 }
3110
3111 /* If this was alloca, record the new stack level for nonlocal gotos.
3112 Check for the handler slots since we might not have a save area
3113 for non-local gotos. */
3114
3115 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
3116 update_nonlocal_goto_save_area ();
3117
3118 /* Free up storage we no longer need. */
3119 for (i = 0; i < num_actuals; ++i)
3120 if (args[i].aligned_regs)
3121 free (args[i].aligned_regs);
3122
3123 insns = get_insns ();
3124 end_sequence ();
3125
3126 if (pass == 0)
3127 {
3128 tail_call_insns = insns;
3129
3130 /* Restore the pending stack adjustment now that we have
3131 finished generating the sibling call sequence. */
3132
3133 pending_stack_adjust = save_pending_stack_adjust;
3134 stack_pointer_delta = save_stack_pointer_delta;
3135
3136 /* Prepare arg structure for next iteration. */
3137 for (i = 0; i < num_actuals; i++)
3138 {
3139 args[i].value = 0;
3140 args[i].aligned_regs = 0;
3141 args[i].stack = 0;
3142 }
3143
3144 sbitmap_free (stored_args_map);
3145 }
3146 else
3147 {
3148 normal_call_insns = insns;
3149
3150 /* Verify that we've deallocated all the stack we used. */
3151 gcc_assert ((flags & ECF_NORETURN)
3152 || (old_stack_allocated
3153 == stack_pointer_delta - pending_stack_adjust));
3154 }
3155
3156 /* If something prevents making this a sibling call,
3157 zero out the sequence. */
3158 if (sibcall_failure)
3159 tail_call_insns = NULL_RTX;
3160 else
3161 break;
3162 }
3163
3164 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3165 arguments too, as argument area is now clobbered by the call. */
3166 if (tail_call_insns)
3167 {
3168 emit_insn (tail_call_insns);
3169 crtl->tail_call_emit = true;
3170 }
3171 else
3172 emit_insn (normal_call_insns);
3173
3174 currently_expanding_call--;
3175
3176 if (stack_usage_map_buf)
3177 free (stack_usage_map_buf);
3178
3179 return target;
3180 }
3181
3182 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3183 this function's incoming arguments.
3184
3185 At the start of RTL generation we know the only REG_EQUIV notes
3186 in the rtl chain are those for incoming arguments, so we can look
3187 for REG_EQUIV notes between the start of the function and the
3188 NOTE_INSN_FUNCTION_BEG.
3189
3190 This is (slight) overkill. We could keep track of the highest
3191 argument we clobber and be more selective in removing notes, but it
3192 does not seem to be worth the effort. */
3193
3194 void
3195 fixup_tail_calls (void)
3196 {
3197 rtx insn;
3198
3199 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3200 {
3201 rtx note;
3202
3203 /* There are never REG_EQUIV notes for the incoming arguments
3204 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
3205 if (NOTE_P (insn)
3206 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3207 break;
3208
3209 note = find_reg_note (insn, REG_EQUIV, 0);
3210 if (note)
3211 remove_note (insn, note);
3212 note = find_reg_note (insn, REG_EQUIV, 0);
3213 gcc_assert (!note);
3214 }
3215 }
3216
3217 /* Traverse a list of TYPES and expand all complex types into their
3218 components. */
3219 static tree
3220 split_complex_types (tree types)
3221 {
3222 tree p;
3223
3224 /* Before allocating memory, check for the common case of no complex. */
3225 for (p = types; p; p = TREE_CHAIN (p))
3226 {
3227 tree type = TREE_VALUE (p);
3228 if (TREE_CODE (type) == COMPLEX_TYPE
3229 && targetm.calls.split_complex_arg (type))
3230 goto found;
3231 }
3232 return types;
3233
3234 found:
3235 types = copy_list (types);
3236
3237 for (p = types; p; p = TREE_CHAIN (p))
3238 {
3239 tree complex_type = TREE_VALUE (p);
3240
3241 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3242 && targetm.calls.split_complex_arg (complex_type))
3243 {
3244 tree next, imag;
3245
3246 /* Rewrite complex type with component type. */
3247 TREE_VALUE (p) = TREE_TYPE (complex_type);
3248 next = TREE_CHAIN (p);
3249
3250 /* Add another component type for the imaginary part. */
3251 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3252 TREE_CHAIN (p) = imag;
3253 TREE_CHAIN (imag) = next;
3254
3255 /* Skip the newly created node. */
3256 p = TREE_CHAIN (p);
3257 }
3258 }
3259
3260 return types;
3261 }
3262 \f
3263 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3264 The RETVAL parameter specifies whether return value needs to be saved, other
3265 parameters are documented in the emit_library_call function below. */
3266
3267 static rtx
3268 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3269 enum libcall_type fn_type,
3270 enum machine_mode outmode, int nargs, va_list p)
3271 {
3272 /* Total size in bytes of all the stack-parms scanned so far. */
3273 struct args_size args_size;
3274 /* Size of arguments before any adjustments (such as rounding). */
3275 struct args_size original_args_size;
3276 int argnum;
3277 rtx fun;
3278 /* Todo, choose the correct decl type of orgfun. Sadly this information
3279 isn't present here, so we default to native calling abi here. */
3280 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3281 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3282 int inc;
3283 int count;
3284 rtx argblock = 0;
3285 CUMULATIVE_ARGS args_so_far;
3286 struct arg
3287 {
3288 rtx value;
3289 enum machine_mode mode;
3290 rtx reg;
3291 int partial;
3292 struct locate_and_pad_arg_data locate;
3293 rtx save_area;
3294 };
3295 struct arg *argvec;
3296 int old_inhibit_defer_pop = inhibit_defer_pop;
3297 rtx call_fusage = 0;
3298 rtx mem_value = 0;
3299 rtx valreg;
3300 int pcc_struct_value = 0;
3301 int struct_value_size = 0;
3302 int flags;
3303 int reg_parm_stack_space = 0;
3304 int needed;
3305 rtx before_call;
3306 tree tfom; /* type_for_mode (outmode, 0) */
3307
3308 #ifdef REG_PARM_STACK_SPACE
3309 /* Define the boundary of the register parm stack space that needs to be
3310 save, if any. */
3311 int low_to_save = 0, high_to_save = 0;
3312 rtx save_area = 0; /* Place that it is saved. */
3313 #endif
3314
3315 /* Size of the stack reserved for parameter registers. */
3316 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3317 char *initial_stack_usage_map = stack_usage_map;
3318 char *stack_usage_map_buf = NULL;
3319
3320 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3321
3322 #ifdef REG_PARM_STACK_SPACE
3323 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3324 #endif
3325
3326 /* By default, library functions can not throw. */
3327 flags = ECF_NOTHROW;
3328
3329 switch (fn_type)
3330 {
3331 case LCT_NORMAL:
3332 break;
3333 case LCT_CONST:
3334 flags |= ECF_CONST;
3335 break;
3336 case LCT_PURE:
3337 flags |= ECF_PURE;
3338 break;
3339 case LCT_NORETURN:
3340 flags |= ECF_NORETURN;
3341 break;
3342 case LCT_THROW:
3343 flags = ECF_NORETURN;
3344 break;
3345 case LCT_RETURNS_TWICE:
3346 flags = ECF_RETURNS_TWICE;
3347 break;
3348 }
3349 fun = orgfun;
3350
3351 /* Ensure current function's preferred stack boundary is at least
3352 what we need. */
3353 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3354 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3355
3356 /* If this kind of value comes back in memory,
3357 decide where in memory it should come back. */
3358 if (outmode != VOIDmode)
3359 {
3360 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3361 if (aggregate_value_p (tfom, 0))
3362 {
3363 #ifdef PCC_STATIC_STRUCT_RETURN
3364 rtx pointer_reg
3365 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
3366 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3367 pcc_struct_value = 1;
3368 if (value == 0)
3369 value = gen_reg_rtx (outmode);
3370 #else /* not PCC_STATIC_STRUCT_RETURN */
3371 struct_value_size = GET_MODE_SIZE (outmode);
3372 if (value != 0 && MEM_P (value))
3373 mem_value = value;
3374 else
3375 mem_value = assign_temp (tfom, 0, 1, 1);
3376 #endif
3377 /* This call returns a big structure. */
3378 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3379 }
3380 }
3381 else
3382 tfom = void_type_node;
3383
3384 /* ??? Unfinished: must pass the memory address as an argument. */
3385
3386 /* Copy all the libcall-arguments out of the varargs data
3387 and into a vector ARGVEC.
3388
3389 Compute how to pass each argument. We only support a very small subset
3390 of the full argument passing conventions to limit complexity here since
3391 library functions shouldn't have many args. */
3392
3393 argvec = XALLOCAVEC (struct arg, nargs + 1);
3394 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3395
3396 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3397 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
3398 #else
3399 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
3400 #endif
3401
3402 args_size.constant = 0;
3403 args_size.var = 0;
3404
3405 count = 0;
3406
3407 push_temp_slots ();
3408
3409 /* If there's a structure value address to be passed,
3410 either pass it in the special place, or pass it as an extra argument. */
3411 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3412 {
3413 rtx addr = XEXP (mem_value, 0);
3414
3415 nargs++;
3416
3417 /* Make sure it is a reasonable operand for a move or push insn. */
3418 if (!REG_P (addr) && !MEM_P (addr)
3419 && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
3420 addr = force_operand (addr, NULL_RTX);
3421
3422 argvec[count].value = addr;
3423 argvec[count].mode = Pmode;
3424 argvec[count].partial = 0;
3425
3426 argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
3427 gcc_assert (targetm.calls.arg_partial_bytes (&args_so_far, Pmode,
3428 NULL_TREE, 1) == 0);
3429
3430 locate_and_pad_parm (Pmode, NULL_TREE,
3431 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3432 1,
3433 #else
3434 argvec[count].reg != 0,
3435 #endif
3436 0, NULL_TREE, &args_size, &argvec[count].locate);
3437
3438 if (argvec[count].reg == 0 || argvec[count].partial != 0
3439 || reg_parm_stack_space > 0)
3440 args_size.constant += argvec[count].locate.size.constant;
3441
3442 FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
3443
3444 count++;
3445 }
3446
3447 for (; count < nargs; count++)
3448 {
3449 rtx val = va_arg (p, rtx);
3450 enum machine_mode mode = (enum machine_mode) va_arg (p, int);
3451
3452 /* We cannot convert the arg value to the mode the library wants here;
3453 must do it earlier where we know the signedness of the arg. */
3454 gcc_assert (mode != BLKmode
3455 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3456
3457 /* Make sure it is a reasonable operand for a move or push insn. */
3458 if (!REG_P (val) && !MEM_P (val)
3459 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
3460 val = force_operand (val, NULL_RTX);
3461
3462 if (pass_by_reference (&args_so_far, mode, NULL_TREE, 1))
3463 {
3464 rtx slot;
3465 int must_copy
3466 = !reference_callee_copied (&args_so_far, mode, NULL_TREE, 1);
3467
3468 /* If this was a CONST function, it is now PURE since it now
3469 reads memory. */
3470 if (flags & ECF_CONST)
3471 {
3472 flags &= ~ECF_CONST;
3473 flags |= ECF_PURE;
3474 }
3475
3476 if (MEM_P (val) && !must_copy)
3477 slot = val;
3478 else
3479 {
3480 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3481 0, 1, 1);
3482 emit_move_insn (slot, val);
3483 }
3484
3485 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3486 gen_rtx_USE (VOIDmode, slot),
3487 call_fusage);
3488 if (must_copy)
3489 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3490 gen_rtx_CLOBBER (VOIDmode,
3491 slot),
3492 call_fusage);
3493
3494 mode = Pmode;
3495 val = force_operand (XEXP (slot, 0), NULL_RTX);
3496 }
3497
3498 argvec[count].value = val;
3499 argvec[count].mode = mode;
3500
3501 argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
3502
3503 argvec[count].partial
3504 = targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL_TREE, 1);
3505
3506 locate_and_pad_parm (mode, NULL_TREE,
3507 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3508 1,
3509 #else
3510 argvec[count].reg != 0,
3511 #endif
3512 argvec[count].partial,
3513 NULL_TREE, &args_size, &argvec[count].locate);
3514
3515 gcc_assert (!argvec[count].locate.size.var);
3516
3517 if (argvec[count].reg == 0 || argvec[count].partial != 0
3518 || reg_parm_stack_space > 0)
3519 args_size.constant += argvec[count].locate.size.constant;
3520
3521 FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
3522 }
3523
3524 /* If this machine requires an external definition for library
3525 functions, write one out. */
3526 assemble_external_libcall (fun);
3527
3528 original_args_size = args_size;
3529 args_size.constant = (((args_size.constant
3530 + stack_pointer_delta
3531 + STACK_BYTES - 1)
3532 / STACK_BYTES
3533 * STACK_BYTES)
3534 - stack_pointer_delta);
3535
3536 args_size.constant = MAX (args_size.constant,
3537 reg_parm_stack_space);
3538
3539 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3540 args_size.constant -= reg_parm_stack_space;
3541
3542 if (args_size.constant > crtl->outgoing_args_size)
3543 crtl->outgoing_args_size = args_size.constant;
3544
3545 if (ACCUMULATE_OUTGOING_ARGS)
3546 {
3547 /* Since the stack pointer will never be pushed, it is possible for
3548 the evaluation of a parm to clobber something we have already
3549 written to the stack. Since most function calls on RISC machines
3550 do not use the stack, this is uncommon, but must work correctly.
3551
3552 Therefore, we save any area of the stack that was already written
3553 and that we are using. Here we set up to do this by making a new
3554 stack usage map from the old one.
3555
3556 Another approach might be to try to reorder the argument
3557 evaluations to avoid this conflicting stack usage. */
3558
3559 needed = args_size.constant;
3560
3561 /* Since we will be writing into the entire argument area, the
3562 map must be allocated for its entire size, not just the part that
3563 is the responsibility of the caller. */
3564 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3565 needed += reg_parm_stack_space;
3566
3567 #ifdef ARGS_GROW_DOWNWARD
3568 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3569 needed + 1);
3570 #else
3571 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3572 needed);
3573 #endif
3574 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3575 stack_usage_map = stack_usage_map_buf;
3576
3577 if (initial_highest_arg_in_use)
3578 memcpy (stack_usage_map, initial_stack_usage_map,
3579 initial_highest_arg_in_use);
3580
3581 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3582 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3583 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3584 needed = 0;
3585
3586 /* We must be careful to use virtual regs before they're instantiated,
3587 and real regs afterwards. Loop optimization, for example, can create
3588 new libcalls after we've instantiated the virtual regs, and if we
3589 use virtuals anyway, they won't match the rtl patterns. */
3590
3591 if (virtuals_instantiated)
3592 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3593 else
3594 argblock = virtual_outgoing_args_rtx;
3595 }
3596 else
3597 {
3598 if (!PUSH_ARGS)
3599 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3600 }
3601
3602 /* If we push args individually in reverse order, perform stack alignment
3603 before the first push (the last arg). */
3604 if (argblock == 0 && PUSH_ARGS_REVERSED)
3605 anti_adjust_stack (GEN_INT (args_size.constant
3606 - original_args_size.constant));
3607
3608 if (PUSH_ARGS_REVERSED)
3609 {
3610 inc = -1;
3611 argnum = nargs - 1;
3612 }
3613 else
3614 {
3615 inc = 1;
3616 argnum = 0;
3617 }
3618
3619 #ifdef REG_PARM_STACK_SPACE
3620 if (ACCUMULATE_OUTGOING_ARGS)
3621 {
3622 /* The argument list is the property of the called routine and it
3623 may clobber it. If the fixed area has been used for previous
3624 parameters, we must save and restore it. */
3625 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3626 &low_to_save, &high_to_save);
3627 }
3628 #endif
3629
3630 /* Push the args that need to be pushed. */
3631
3632 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3633 are to be pushed. */
3634 for (count = 0; count < nargs; count++, argnum += inc)
3635 {
3636 enum machine_mode mode = argvec[argnum].mode;
3637 rtx val = argvec[argnum].value;
3638 rtx reg = argvec[argnum].reg;
3639 int partial = argvec[argnum].partial;
3640 unsigned int parm_align = argvec[argnum].locate.boundary;
3641 int lower_bound = 0, upper_bound = 0, i;
3642
3643 if (! (reg != 0 && partial == 0))
3644 {
3645 if (ACCUMULATE_OUTGOING_ARGS)
3646 {
3647 /* If this is being stored into a pre-allocated, fixed-size,
3648 stack area, save any previous data at that location. */
3649
3650 #ifdef ARGS_GROW_DOWNWARD
3651 /* stack_slot is negative, but we want to index stack_usage_map
3652 with positive values. */
3653 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
3654 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3655 #else
3656 lower_bound = argvec[argnum].locate.slot_offset.constant;
3657 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3658 #endif
3659
3660 i = lower_bound;
3661 /* Don't worry about things in the fixed argument area;
3662 it has already been saved. */
3663 if (i < reg_parm_stack_space)
3664 i = reg_parm_stack_space;
3665 while (i < upper_bound && stack_usage_map[i] == 0)
3666 i++;
3667
3668 if (i < upper_bound)
3669 {
3670 /* We need to make a save area. */
3671 unsigned int size
3672 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3673 enum machine_mode save_mode
3674 = mode_for_size (size, MODE_INT, 1);
3675 rtx adr
3676 = plus_constant (argblock,
3677 argvec[argnum].locate.offset.constant);
3678 rtx stack_area
3679 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3680
3681 if (save_mode == BLKmode)
3682 {
3683 argvec[argnum].save_area
3684 = assign_stack_temp (BLKmode,
3685 argvec[argnum].locate.size.constant,
3686 0);
3687
3688 emit_block_move (validize_mem (argvec[argnum].save_area),
3689 stack_area,
3690 GEN_INT (argvec[argnum].locate.size.constant),
3691 BLOCK_OP_CALL_PARM);
3692 }
3693 else
3694 {
3695 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3696
3697 emit_move_insn (argvec[argnum].save_area, stack_area);
3698 }
3699 }
3700 }
3701
3702 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
3703 partial, reg, 0, argblock,
3704 GEN_INT (argvec[argnum].locate.offset.constant),
3705 reg_parm_stack_space,
3706 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3707
3708 /* Now mark the segment we just used. */
3709 if (ACCUMULATE_OUTGOING_ARGS)
3710 for (i = lower_bound; i < upper_bound; i++)
3711 stack_usage_map[i] = 1;
3712
3713 NO_DEFER_POP;
3714
3715 if ((flags & ECF_CONST)
3716 || ((flags & ECF_PURE) && ACCUMULATE_OUTGOING_ARGS))
3717 {
3718 rtx use;
3719
3720 /* Indicate argument access so that alias.c knows that these
3721 values are live. */
3722 if (argblock)
3723 use = plus_constant (argblock,
3724 argvec[argnum].locate.offset.constant);
3725 else
3726 /* When arguments are pushed, trying to tell alias.c where
3727 exactly this argument is won't work, because the
3728 auto-increment causes confusion. So we merely indicate
3729 that we access something with a known mode somewhere on
3730 the stack. */
3731 use = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3732 gen_rtx_SCRATCH (Pmode));
3733 use = gen_rtx_MEM (argvec[argnum].mode, use);
3734 use = gen_rtx_USE (VOIDmode, use);
3735 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
3736 }
3737 }
3738 }
3739
3740 /* If we pushed args in forward order, perform stack alignment
3741 after pushing the last arg. */
3742 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3743 anti_adjust_stack (GEN_INT (args_size.constant
3744 - original_args_size.constant));
3745
3746 if (PUSH_ARGS_REVERSED)
3747 argnum = nargs - 1;
3748 else
3749 argnum = 0;
3750
3751 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
3752
3753 /* Now load any reg parms into their regs. */
3754
3755 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3756 are to be pushed. */
3757 for (count = 0; count < nargs; count++, argnum += inc)
3758 {
3759 enum machine_mode mode = argvec[argnum].mode;
3760 rtx val = argvec[argnum].value;
3761 rtx reg = argvec[argnum].reg;
3762 int partial = argvec[argnum].partial;
3763
3764 /* Handle calls that pass values in multiple non-contiguous
3765 locations. The PA64 has examples of this for library calls. */
3766 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3767 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3768 else if (reg != 0 && partial == 0)
3769 emit_move_insn (reg, val);
3770
3771 NO_DEFER_POP;
3772 }
3773
3774 /* Any regs containing parms remain in use through the call. */
3775 for (count = 0; count < nargs; count++)
3776 {
3777 rtx reg = argvec[count].reg;
3778 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3779 use_group_regs (&call_fusage, reg);
3780 else if (reg != 0)
3781 {
3782 int partial = argvec[count].partial;
3783 if (partial)
3784 {
3785 int nregs;
3786 gcc_assert (partial % UNITS_PER_WORD == 0);
3787 nregs = partial / UNITS_PER_WORD;
3788 use_regs (&call_fusage, REGNO (reg), nregs);
3789 }
3790 else
3791 use_reg (&call_fusage, reg);
3792 }
3793 }
3794
3795 /* Pass the function the address in which to return a structure value. */
3796 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3797 {
3798 emit_move_insn (struct_value,
3799 force_reg (Pmode,
3800 force_operand (XEXP (mem_value, 0),
3801 NULL_RTX)));
3802 if (REG_P (struct_value))
3803 use_reg (&call_fusage, struct_value);
3804 }
3805
3806 /* Don't allow popping to be deferred, since then
3807 cse'ing of library calls could delete a call and leave the pop. */
3808 NO_DEFER_POP;
3809 valreg = (mem_value == 0 && outmode != VOIDmode
3810 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
3811
3812 /* Stack must be properly aligned now. */
3813 gcc_assert (!(stack_pointer_delta
3814 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
3815
3816 before_call = get_last_insn ();
3817
3818 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3819 will set inhibit_defer_pop to that value. */
3820 /* The return type is needed to decide how many bytes the function pops.
3821 Signedness plays no role in that, so for simplicity, we pretend it's
3822 always signed. We also assume that the list of arguments passed has
3823 no impact, so we pretend it is unknown. */
3824
3825 emit_call_1 (fun, NULL,
3826 get_identifier (XSTR (orgfun, 0)),
3827 build_function_type (tfom, NULL_TREE),
3828 original_args_size.constant, args_size.constant,
3829 struct_value_size,
3830 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
3831 valreg,
3832 old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
3833
3834 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
3835 that it should complain if nonvolatile values are live. For
3836 functions that cannot return, inform flow that control does not
3837 fall through. */
3838
3839 if (flags & ECF_NORETURN)
3840 {
3841 /* The barrier note must be emitted
3842 immediately after the CALL_INSN. Some ports emit more than
3843 just a CALL_INSN above, so we must search for it here. */
3844
3845 rtx last = get_last_insn ();
3846 while (!CALL_P (last))
3847 {
3848 last = PREV_INSN (last);
3849 /* There was no CALL_INSN? */
3850 gcc_assert (last != before_call);
3851 }
3852
3853 emit_barrier_after (last);
3854 }
3855
3856 /* Now restore inhibit_defer_pop to its actual original value. */
3857 OK_DEFER_POP;
3858
3859 pop_temp_slots ();
3860
3861 /* Copy the value to the right place. */
3862 if (outmode != VOIDmode && retval)
3863 {
3864 if (mem_value)
3865 {
3866 if (value == 0)
3867 value = mem_value;
3868 if (value != mem_value)
3869 emit_move_insn (value, mem_value);
3870 }
3871 else if (GET_CODE (valreg) == PARALLEL)
3872 {
3873 if (value == 0)
3874 value = gen_reg_rtx (outmode);
3875 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
3876 }
3877 else
3878 {
3879 /* Convert to the proper mode if a promotion has been active. */
3880 if (GET_MODE (valreg) != outmode)
3881 {
3882 int unsignedp = TYPE_UNSIGNED (tfom);
3883
3884 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
3885 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
3886 == GET_MODE (valreg));
3887 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
3888 }
3889
3890 if (value != 0)
3891 emit_move_insn (value, valreg);
3892 else
3893 value = valreg;
3894 }
3895 }
3896
3897 if (ACCUMULATE_OUTGOING_ARGS)
3898 {
3899 #ifdef REG_PARM_STACK_SPACE
3900 if (save_area)
3901 restore_fixed_argument_area (save_area, argblock,
3902 high_to_save, low_to_save);
3903 #endif
3904
3905 /* If we saved any argument areas, restore them. */
3906 for (count = 0; count < nargs; count++)
3907 if (argvec[count].save_area)
3908 {
3909 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
3910 rtx adr = plus_constant (argblock,
3911 argvec[count].locate.offset.constant);
3912 rtx stack_area = gen_rtx_MEM (save_mode,
3913 memory_address (save_mode, adr));
3914
3915 if (save_mode == BLKmode)
3916 emit_block_move (stack_area,
3917 validize_mem (argvec[count].save_area),
3918 GEN_INT (argvec[count].locate.size.constant),
3919 BLOCK_OP_CALL_PARM);
3920 else
3921 emit_move_insn (stack_area, argvec[count].save_area);
3922 }
3923
3924 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3925 stack_usage_map = initial_stack_usage_map;
3926 }
3927
3928 if (stack_usage_map_buf)
3929 free (stack_usage_map_buf);
3930
3931 return value;
3932
3933 }
3934 \f
3935 /* Output a library call to function FUN (a SYMBOL_REF rtx)
3936 (emitting the queue unless NO_QUEUE is nonzero),
3937 for a value of mode OUTMODE,
3938 with NARGS different arguments, passed as alternating rtx values
3939 and machine_modes to convert them to.
3940
3941 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
3942 `const' calls, LCT_PURE for `pure' calls, or other LCT_ value for
3943 other types of library calls. */
3944
3945 void
3946 emit_library_call (rtx orgfun, enum libcall_type fn_type,
3947 enum machine_mode outmode, int nargs, ...)
3948 {
3949 va_list p;
3950
3951 va_start (p, nargs);
3952 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
3953 va_end (p);
3954 }
3955 \f
3956 /* Like emit_library_call except that an extra argument, VALUE,
3957 comes second and says where to store the result.
3958 (If VALUE is zero, this function chooses a convenient way
3959 to return the value.
3960
3961 This function returns an rtx for where the value is to be found.
3962 If VALUE is nonzero, VALUE is returned. */
3963
3964 rtx
3965 emit_library_call_value (rtx orgfun, rtx value,
3966 enum libcall_type fn_type,
3967 enum machine_mode outmode, int nargs, ...)
3968 {
3969 rtx result;
3970 va_list p;
3971
3972 va_start (p, nargs);
3973 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
3974 nargs, p);
3975 va_end (p);
3976
3977 return result;
3978 }
3979 \f
3980 /* Store a single argument for a function call
3981 into the register or memory area where it must be passed.
3982 *ARG describes the argument value and where to pass it.
3983
3984 ARGBLOCK is the address of the stack-block for all the arguments,
3985 or 0 on a machine where arguments are pushed individually.
3986
3987 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
3988 so must be careful about how the stack is used.
3989
3990 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
3991 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
3992 that we need not worry about saving and restoring the stack.
3993
3994 FNDECL is the declaration of the function we are calling.
3995
3996 Return nonzero if this arg should cause sibcall failure,
3997 zero otherwise. */
3998
3999 static int
4000 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
4001 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
4002 {
4003 tree pval = arg->tree_value;
4004 rtx reg = 0;
4005 int partial = 0;
4006 int used = 0;
4007 int i, lower_bound = 0, upper_bound = 0;
4008 int sibcall_failure = 0;
4009
4010 if (TREE_CODE (pval) == ERROR_MARK)
4011 return 1;
4012
4013 /* Push a new temporary level for any temporaries we make for
4014 this argument. */
4015 push_temp_slots ();
4016
4017 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
4018 {
4019 /* If this is being stored into a pre-allocated, fixed-size, stack area,
4020 save any previous data at that location. */
4021 if (argblock && ! variable_size && arg->stack)
4022 {
4023 #ifdef ARGS_GROW_DOWNWARD
4024 /* stack_slot is negative, but we want to index stack_usage_map
4025 with positive values. */
4026 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4027 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
4028 else
4029 upper_bound = 0;
4030
4031 lower_bound = upper_bound - arg->locate.size.constant;
4032 #else
4033 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4034 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
4035 else
4036 lower_bound = 0;
4037
4038 upper_bound = lower_bound + arg->locate.size.constant;
4039 #endif
4040
4041 i = lower_bound;
4042 /* Don't worry about things in the fixed argument area;
4043 it has already been saved. */
4044 if (i < reg_parm_stack_space)
4045 i = reg_parm_stack_space;
4046 while (i < upper_bound && stack_usage_map[i] == 0)
4047 i++;
4048
4049 if (i < upper_bound)
4050 {
4051 /* We need to make a save area. */
4052 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
4053 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
4054 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
4055 rtx stack_area = gen_rtx_MEM (save_mode, adr);
4056
4057 if (save_mode == BLKmode)
4058 {
4059 tree ot = TREE_TYPE (arg->tree_value);
4060 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
4061 | TYPE_QUAL_CONST));
4062
4063 arg->save_area = assign_temp (nt, 0, 1, 1);
4064 preserve_temp_slots (arg->save_area);
4065 emit_block_move (validize_mem (arg->save_area), stack_area,
4066 GEN_INT (arg->locate.size.constant),
4067 BLOCK_OP_CALL_PARM);
4068 }
4069 else
4070 {
4071 arg->save_area = gen_reg_rtx (save_mode);
4072 emit_move_insn (arg->save_area, stack_area);
4073 }
4074 }
4075 }
4076 }
4077
4078 /* If this isn't going to be placed on both the stack and in registers,
4079 set up the register and number of words. */
4080 if (! arg->pass_on_stack)
4081 {
4082 if (flags & ECF_SIBCALL)
4083 reg = arg->tail_call_reg;
4084 else
4085 reg = arg->reg;
4086 partial = arg->partial;
4087 }
4088
4089 /* Being passed entirely in a register. We shouldn't be called in
4090 this case. */
4091 gcc_assert (reg == 0 || partial != 0);
4092
4093 /* If this arg needs special alignment, don't load the registers
4094 here. */
4095 if (arg->n_aligned_regs != 0)
4096 reg = 0;
4097
4098 /* If this is being passed partially in a register, we can't evaluate
4099 it directly into its stack slot. Otherwise, we can. */
4100 if (arg->value == 0)
4101 {
4102 /* stack_arg_under_construction is nonzero if a function argument is
4103 being evaluated directly into the outgoing argument list and
4104 expand_call must take special action to preserve the argument list
4105 if it is called recursively.
4106
4107 For scalar function arguments stack_usage_map is sufficient to
4108 determine which stack slots must be saved and restored. Scalar
4109 arguments in general have pass_on_stack == 0.
4110
4111 If this argument is initialized by a function which takes the
4112 address of the argument (a C++ constructor or a C function
4113 returning a BLKmode structure), then stack_usage_map is
4114 insufficient and expand_call must push the stack around the
4115 function call. Such arguments have pass_on_stack == 1.
4116
4117 Note that it is always safe to set stack_arg_under_construction,
4118 but this generates suboptimal code if set when not needed. */
4119
4120 if (arg->pass_on_stack)
4121 stack_arg_under_construction++;
4122
4123 arg->value = expand_expr (pval,
4124 (partial
4125 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4126 ? NULL_RTX : arg->stack,
4127 VOIDmode, EXPAND_STACK_PARM);
4128
4129 /* If we are promoting object (or for any other reason) the mode
4130 doesn't agree, convert the mode. */
4131
4132 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4133 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4134 arg->value, arg->unsignedp);
4135
4136 if (arg->pass_on_stack)
4137 stack_arg_under_construction--;
4138 }
4139
4140 /* Check for overlap with already clobbered argument area. */
4141 if ((flags & ECF_SIBCALL)
4142 && MEM_P (arg->value)
4143 && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
4144 arg->locate.size.constant))
4145 sibcall_failure = 1;
4146
4147 /* Don't allow anything left on stack from computation
4148 of argument to alloca. */
4149 if (flags & ECF_MAY_BE_ALLOCA)
4150 do_pending_stack_adjust ();
4151
4152 if (arg->value == arg->stack)
4153 /* If the value is already in the stack slot, we are done. */
4154 ;
4155 else if (arg->mode != BLKmode)
4156 {
4157 int size;
4158 unsigned int parm_align;
4159
4160 /* Argument is a scalar, not entirely passed in registers.
4161 (If part is passed in registers, arg->partial says how much
4162 and emit_push_insn will take care of putting it there.)
4163
4164 Push it, and if its size is less than the
4165 amount of space allocated to it,
4166 also bump stack pointer by the additional space.
4167 Note that in C the default argument promotions
4168 will prevent such mismatches. */
4169
4170 size = GET_MODE_SIZE (arg->mode);
4171 /* Compute how much space the push instruction will push.
4172 On many machines, pushing a byte will advance the stack
4173 pointer by a halfword. */
4174 #ifdef PUSH_ROUNDING
4175 size = PUSH_ROUNDING (size);
4176 #endif
4177 used = size;
4178
4179 /* Compute how much space the argument should get:
4180 round up to a multiple of the alignment for arguments. */
4181 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4182 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4183 / (PARM_BOUNDARY / BITS_PER_UNIT))
4184 * (PARM_BOUNDARY / BITS_PER_UNIT));
4185
4186 /* Compute the alignment of the pushed argument. */
4187 parm_align = arg->locate.boundary;
4188 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4189 {
4190 int pad = used - size;
4191 if (pad)
4192 {
4193 unsigned int pad_align = (pad & -pad) * BITS_PER_UNIT;
4194 parm_align = MIN (parm_align, pad_align);
4195 }
4196 }
4197
4198 /* This isn't already where we want it on the stack, so put it there.
4199 This can either be done with push or copy insns. */
4200 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4201 parm_align, partial, reg, used - size, argblock,
4202 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4203 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4204
4205 /* Unless this is a partially-in-register argument, the argument is now
4206 in the stack. */
4207 if (partial == 0)
4208 arg->value = arg->stack;
4209 }
4210 else
4211 {
4212 /* BLKmode, at least partly to be pushed. */
4213
4214 unsigned int parm_align;
4215 int excess;
4216 rtx size_rtx;
4217
4218 /* Pushing a nonscalar.
4219 If part is passed in registers, PARTIAL says how much
4220 and emit_push_insn will take care of putting it there. */
4221
4222 /* Round its size up to a multiple
4223 of the allocation unit for arguments. */
4224
4225 if (arg->locate.size.var != 0)
4226 {
4227 excess = 0;
4228 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4229 }
4230 else
4231 {
4232 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4233 for BLKmode is careful to avoid it. */
4234 excess = (arg->locate.size.constant
4235 - int_size_in_bytes (TREE_TYPE (pval))
4236 + partial);
4237 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4238 NULL_RTX, TYPE_MODE (sizetype),
4239 EXPAND_NORMAL);
4240 }
4241
4242 parm_align = arg->locate.boundary;
4243
4244 /* When an argument is padded down, the block is aligned to
4245 PARM_BOUNDARY, but the actual argument isn't. */
4246 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4247 {
4248 if (arg->locate.size.var)
4249 parm_align = BITS_PER_UNIT;
4250 else if (excess)
4251 {
4252 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4253 parm_align = MIN (parm_align, excess_align);
4254 }
4255 }
4256
4257 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4258 {
4259 /* emit_push_insn might not work properly if arg->value and
4260 argblock + arg->locate.offset areas overlap. */
4261 rtx x = arg->value;
4262 int i = 0;
4263
4264 if (XEXP (x, 0) == crtl->args.internal_arg_pointer
4265 || (GET_CODE (XEXP (x, 0)) == PLUS
4266 && XEXP (XEXP (x, 0), 0) ==
4267 crtl->args.internal_arg_pointer
4268 && CONST_INT_P (XEXP (XEXP (x, 0), 1))))
4269 {
4270 if (XEXP (x, 0) != crtl->args.internal_arg_pointer)
4271 i = INTVAL (XEXP (XEXP (x, 0), 1));
4272
4273 /* expand_call should ensure this. */
4274 gcc_assert (!arg->locate.offset.var
4275 && arg->locate.size.var == 0
4276 && CONST_INT_P (size_rtx));
4277
4278 if (arg->locate.offset.constant > i)
4279 {
4280 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4281 sibcall_failure = 1;
4282 }
4283 else if (arg->locate.offset.constant < i)
4284 {
4285 /* Use arg->locate.size.constant instead of size_rtx
4286 because we only care about the part of the argument
4287 on the stack. */
4288 if (i < (arg->locate.offset.constant
4289 + arg->locate.size.constant))
4290 sibcall_failure = 1;
4291 }
4292 else
4293 {
4294 /* Even though they appear to be at the same location,
4295 if part of the outgoing argument is in registers,
4296 they aren't really at the same location. Check for
4297 this by making sure that the incoming size is the
4298 same as the outgoing size. */
4299 if (arg->locate.size.constant != INTVAL (size_rtx))
4300 sibcall_failure = 1;
4301 }
4302 }
4303 }
4304
4305 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4306 parm_align, partial, reg, excess, argblock,
4307 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4308 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4309
4310 /* Unless this is a partially-in-register argument, the argument is now
4311 in the stack.
4312
4313 ??? Unlike the case above, in which we want the actual
4314 address of the data, so that we can load it directly into a
4315 register, here we want the address of the stack slot, so that
4316 it's properly aligned for word-by-word copying or something
4317 like that. It's not clear that this is always correct. */
4318 if (partial == 0)
4319 arg->value = arg->stack_slot;
4320 }
4321
4322 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
4323 {
4324 tree type = TREE_TYPE (arg->tree_value);
4325 arg->parallel_value
4326 = emit_group_load_into_temps (arg->reg, arg->value, type,
4327 int_size_in_bytes (type));
4328 }
4329
4330 /* Mark all slots this store used. */
4331 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4332 && argblock && ! variable_size && arg->stack)
4333 for (i = lower_bound; i < upper_bound; i++)
4334 stack_usage_map[i] = 1;
4335
4336 /* Once we have pushed something, pops can't safely
4337 be deferred during the rest of the arguments. */
4338 NO_DEFER_POP;
4339
4340 /* Free any temporary slots made in processing this argument. Show
4341 that we might have taken the address of something and pushed that
4342 as an operand. */
4343 preserve_temp_slots (NULL_RTX);
4344 free_temp_slots ();
4345 pop_temp_slots ();
4346
4347 return sibcall_failure;
4348 }
4349
4350 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4351
4352 bool
4353 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4354 const_tree type)
4355 {
4356 if (!type)
4357 return false;
4358
4359 /* If the type has variable size... */
4360 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4361 return true;
4362
4363 /* If the type is marked as addressable (it is required
4364 to be constructed into the stack)... */
4365 if (TREE_ADDRESSABLE (type))
4366 return true;
4367
4368 return false;
4369 }
4370
4371 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4372 takes trailing padding of a structure into account. */
4373 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4374
4375 bool
4376 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, const_tree type)
4377 {
4378 if (!type)
4379 return false;
4380
4381 /* If the type has variable size... */
4382 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4383 return true;
4384
4385 /* If the type is marked as addressable (it is required
4386 to be constructed into the stack)... */
4387 if (TREE_ADDRESSABLE (type))
4388 return true;
4389
4390 /* If the padding and mode of the type is such that a copy into
4391 a register would put it into the wrong part of the register. */
4392 if (mode == BLKmode
4393 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4394 && (FUNCTION_ARG_PADDING (mode, type)
4395 == (BYTES_BIG_ENDIAN ? upward : downward)))
4396 return true;
4397
4398 return false;
4399 }