re PR rtl-optimization/49429 (dse.c change (r175063) causes execution failures)
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "flags.h"
30 #include "expr.h"
31 #include "optabs.h"
32 #include "libfuncs.h"
33 #include "function.h"
34 #include "regs.h"
35 #include "diagnostic-core.h"
36 #include "output.h"
37 #include "tm_p.h"
38 #include "timevar.h"
39 #include "sbitmap.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "cgraph.h"
43 #include "except.h"
44 #include "dbgcnt.h"
45 #include "tree-flow.h"
46
47 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
48 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
49
50 /* Data structure and subroutines used within expand_call. */
51
52 struct arg_data
53 {
54 /* Tree node for this argument. */
55 tree tree_value;
56 /* Mode for value; TYPE_MODE unless promoted. */
57 enum machine_mode mode;
58 /* Current RTL value for argument, or 0 if it isn't precomputed. */
59 rtx value;
60 /* Initially-compute RTL value for argument; only for const functions. */
61 rtx initial_value;
62 /* Register to pass this argument in, 0 if passed on stack, or an
63 PARALLEL if the arg is to be copied into multiple non-contiguous
64 registers. */
65 rtx reg;
66 /* Register to pass this argument in when generating tail call sequence.
67 This is not the same register as for normal calls on machines with
68 register windows. */
69 rtx tail_call_reg;
70 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
71 form for emit_group_move. */
72 rtx parallel_value;
73 /* If REG was promoted from the actual mode of the argument expression,
74 indicates whether the promotion is sign- or zero-extended. */
75 int unsignedp;
76 /* Number of bytes to put in registers. 0 means put the whole arg
77 in registers. Also 0 if not passed in registers. */
78 int partial;
79 /* Nonzero if argument must be passed on stack.
80 Note that some arguments may be passed on the stack
81 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
82 pass_on_stack identifies arguments that *cannot* go in registers. */
83 int pass_on_stack;
84 /* Some fields packaged up for locate_and_pad_parm. */
85 struct locate_and_pad_arg_data locate;
86 /* Location on the stack at which parameter should be stored. The store
87 has already been done if STACK == VALUE. */
88 rtx stack;
89 /* Location on the stack of the start of this argument slot. This can
90 differ from STACK if this arg pads downward. This location is known
91 to be aligned to TARGET_FUNCTION_ARG_BOUNDARY. */
92 rtx stack_slot;
93 /* Place that this stack area has been saved, if needed. */
94 rtx save_area;
95 /* If an argument's alignment does not permit direct copying into registers,
96 copy in smaller-sized pieces into pseudos. These are stored in a
97 block pointed to by this field. The next field says how many
98 word-sized pseudos we made. */
99 rtx *aligned_regs;
100 int n_aligned_regs;
101 };
102
103 /* A vector of one char per byte of stack space. A byte if nonzero if
104 the corresponding stack location has been used.
105 This vector is used to prevent a function call within an argument from
106 clobbering any stack already set up. */
107 static char *stack_usage_map;
108
109 /* Size of STACK_USAGE_MAP. */
110 static int highest_outgoing_arg_in_use;
111
112 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
113 stack location's tail call argument has been already stored into the stack.
114 This bitmap is used to prevent sibling call optimization if function tries
115 to use parent's incoming argument slots when they have been already
116 overwritten with tail call arguments. */
117 static sbitmap stored_args_map;
118
119 /* stack_arg_under_construction is nonzero when an argument may be
120 initialized with a constructor call (including a C function that
121 returns a BLKmode struct) and expand_call must take special action
122 to make sure the object being constructed does not overlap the
123 argument list for the constructor call. */
124 static int stack_arg_under_construction;
125
126 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
127 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
128 cumulative_args_t);
129 static void precompute_register_parameters (int, struct arg_data *, int *);
130 static int store_one_arg (struct arg_data *, rtx, int, int, int);
131 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
132 static int finalize_must_preallocate (int, int, struct arg_data *,
133 struct args_size *);
134 static void precompute_arguments (int, struct arg_data *);
135 static int compute_argument_block_size (int, struct args_size *, tree, tree, int);
136 static void initialize_argument_information (int, struct arg_data *,
137 struct args_size *, int,
138 tree, tree,
139 tree, tree, cumulative_args_t, int,
140 rtx *, int *, int *, int *,
141 bool *, bool);
142 static void compute_argument_addresses (struct arg_data *, rtx, int);
143 static rtx rtx_for_function_call (tree, tree);
144 static void load_register_parameters (struct arg_data *, int, rtx *, int,
145 int, int *);
146 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
147 enum machine_mode, int, va_list);
148 static int special_function_p (const_tree, int);
149 static int check_sibcall_argument_overlap_1 (rtx);
150 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
151
152 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
153 unsigned int);
154 static tree split_complex_types (tree);
155
156 #ifdef REG_PARM_STACK_SPACE
157 static rtx save_fixed_argument_area (int, rtx, int *, int *);
158 static void restore_fixed_argument_area (rtx, rtx, int, int);
159 #endif
160 \f
161 /* Force FUNEXP into a form suitable for the address of a CALL,
162 and return that as an rtx. Also load the static chain register
163 if FNDECL is a nested function.
164
165 CALL_FUSAGE points to a variable holding the prospective
166 CALL_INSN_FUNCTION_USAGE information. */
167
168 rtx
169 prepare_call_address (tree fndecl, rtx funexp, rtx static_chain_value,
170 rtx *call_fusage, int reg_parm_seen, int sibcallp)
171 {
172 /* Make a valid memory address and copy constants through pseudo-regs,
173 but not for a constant address if -fno-function-cse. */
174 if (GET_CODE (funexp) != SYMBOL_REF)
175 /* If we are using registers for parameters, force the
176 function address into a register now. */
177 funexp = ((reg_parm_seen
178 && targetm.small_register_classes_for_mode_p (FUNCTION_MODE))
179 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
180 : memory_address (FUNCTION_MODE, funexp));
181 else if (! sibcallp)
182 {
183 #ifndef NO_FUNCTION_CSE
184 if (optimize && ! flag_no_function_cse)
185 funexp = force_reg (Pmode, funexp);
186 #endif
187 }
188
189 if (static_chain_value != 0)
190 {
191 rtx chain;
192
193 gcc_assert (fndecl);
194 chain = targetm.calls.static_chain (fndecl, false);
195 static_chain_value = convert_memory_address (Pmode, static_chain_value);
196
197 emit_move_insn (chain, static_chain_value);
198 if (REG_P (chain))
199 use_reg (call_fusage, chain);
200 }
201
202 return funexp;
203 }
204
205 /* Generate instructions to call function FUNEXP,
206 and optionally pop the results.
207 The CALL_INSN is the first insn generated.
208
209 FNDECL is the declaration node of the function. This is given to the
210 hook TARGET_RETURN_POPS_ARGS to determine whether this function pops
211 its own args.
212
213 FUNTYPE is the data type of the function. This is given to the hook
214 TARGET_RETURN_POPS_ARGS to determine whether this function pops its
215 own args. We used to allow an identifier for library functions, but
216 that doesn't work when the return type is an aggregate type and the
217 calling convention says that the pointer to this aggregate is to be
218 popped by the callee.
219
220 STACK_SIZE is the number of bytes of arguments on the stack,
221 ROUNDED_STACK_SIZE is that number rounded up to
222 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
223 both to put into the call insn and to generate explicit popping
224 code if necessary.
225
226 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
227 It is zero if this call doesn't want a structure value.
228
229 NEXT_ARG_REG is the rtx that results from executing
230 targetm.calls.function_arg (&args_so_far, VOIDmode, void_type_node, true)
231 just after all the args have had their registers assigned.
232 This could be whatever you like, but normally it is the first
233 arg-register beyond those used for args in this call,
234 or 0 if all the arg-registers are used in this call.
235 It is passed on to `gen_call' so you can put this info in the call insn.
236
237 VALREG is a hard register in which a value is returned,
238 or 0 if the call does not return a value.
239
240 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
241 the args to this call were processed.
242 We restore `inhibit_defer_pop' to that value.
243
244 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
245 denote registers used by the called function. */
246
247 static void
248 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
249 tree funtype ATTRIBUTE_UNUSED,
250 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
251 HOST_WIDE_INT rounded_stack_size,
252 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
253 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
254 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
255 cumulative_args_t args_so_far ATTRIBUTE_UNUSED)
256 {
257 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
258 rtx call_insn, call, funmem;
259 int already_popped = 0;
260 HOST_WIDE_INT n_popped
261 = targetm.calls.return_pops_args (fndecl, funtype, stack_size);
262
263 #ifdef CALL_POPS_ARGS
264 n_popped += CALL_POPS_ARGS (*get_cumulative_args (args_so_far));
265 #endif
266
267 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
268 and we don't want to load it into a register as an optimization,
269 because prepare_call_address already did it if it should be done. */
270 if (GET_CODE (funexp) != SYMBOL_REF)
271 funexp = memory_address (FUNCTION_MODE, funexp);
272
273 funmem = gen_rtx_MEM (FUNCTION_MODE, funexp);
274 if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL)
275 {
276 tree t = fndecl;
277 /* Although a built-in FUNCTION_DECL and its non-__builtin
278 counterpart compare equal and get a shared mem_attrs, they
279 produce different dump output in compare-debug compilations,
280 if an entry gets garbage collected in one compilation, then
281 adds a different (but equivalent) entry, while the other
282 doesn't run the garbage collector at the same spot and then
283 shares the mem_attr with the equivalent entry. */
284 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
285 && built_in_decls[DECL_FUNCTION_CODE (t)])
286 t = built_in_decls[DECL_FUNCTION_CODE (t)];
287 set_mem_expr (funmem, t);
288 }
289 else if (fntree)
290 set_mem_expr (funmem, build_simple_mem_ref (CALL_EXPR_FN (fntree)));
291
292 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
293 if ((ecf_flags & ECF_SIBCALL)
294 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
295 && (n_popped > 0 || stack_size == 0))
296 {
297 rtx n_pop = GEN_INT (n_popped);
298 rtx pat;
299
300 /* If this subroutine pops its own args, record that in the call insn
301 if possible, for the sake of frame pointer elimination. */
302
303 if (valreg)
304 pat = GEN_SIBCALL_VALUE_POP (valreg, funmem, rounded_stack_size_rtx,
305 next_arg_reg, n_pop);
306 else
307 pat = GEN_SIBCALL_POP (funmem, rounded_stack_size_rtx, next_arg_reg,
308 n_pop);
309
310 emit_call_insn (pat);
311 already_popped = 1;
312 }
313 else
314 #endif
315
316 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
317 /* If the target has "call" or "call_value" insns, then prefer them
318 if no arguments are actually popped. If the target does not have
319 "call" or "call_value" insns, then we must use the popping versions
320 even if the call has no arguments to pop. */
321 #if defined (HAVE_call) && defined (HAVE_call_value)
322 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
323 && n_popped > 0)
324 #else
325 if (HAVE_call_pop && HAVE_call_value_pop)
326 #endif
327 {
328 rtx n_pop = GEN_INT (n_popped);
329 rtx pat;
330
331 /* If this subroutine pops its own args, record that in the call insn
332 if possible, for the sake of frame pointer elimination. */
333
334 if (valreg)
335 pat = GEN_CALL_VALUE_POP (valreg, funmem, rounded_stack_size_rtx,
336 next_arg_reg, n_pop);
337 else
338 pat = GEN_CALL_POP (funmem, rounded_stack_size_rtx, next_arg_reg,
339 n_pop);
340
341 emit_call_insn (pat);
342 already_popped = 1;
343 }
344 else
345 #endif
346
347 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
348 if ((ecf_flags & ECF_SIBCALL)
349 && HAVE_sibcall && HAVE_sibcall_value)
350 {
351 if (valreg)
352 emit_call_insn (GEN_SIBCALL_VALUE (valreg, funmem,
353 rounded_stack_size_rtx,
354 next_arg_reg, NULL_RTX));
355 else
356 emit_call_insn (GEN_SIBCALL (funmem, rounded_stack_size_rtx,
357 next_arg_reg,
358 GEN_INT (struct_value_size)));
359 }
360 else
361 #endif
362
363 #if defined (HAVE_call) && defined (HAVE_call_value)
364 if (HAVE_call && HAVE_call_value)
365 {
366 if (valreg)
367 emit_call_insn (GEN_CALL_VALUE (valreg, funmem, rounded_stack_size_rtx,
368 next_arg_reg, NULL_RTX));
369 else
370 emit_call_insn (GEN_CALL (funmem, rounded_stack_size_rtx, next_arg_reg,
371 GEN_INT (struct_value_size)));
372 }
373 else
374 #endif
375 gcc_unreachable ();
376
377 /* Find the call we just emitted. */
378 call_insn = last_call_insn ();
379
380 /* Some target create a fresh MEM instead of reusing the one provided
381 above. Set its MEM_EXPR. */
382 call = PATTERN (call_insn);
383 if (GET_CODE (call) == PARALLEL)
384 call = XVECEXP (call, 0, 0);
385 if (GET_CODE (call) == SET)
386 call = SET_SRC (call);
387 if (GET_CODE (call) == CALL
388 && MEM_P (XEXP (call, 0))
389 && MEM_EXPR (XEXP (call, 0)) == NULL_TREE
390 && MEM_EXPR (funmem) != NULL_TREE)
391 set_mem_expr (XEXP (call, 0), MEM_EXPR (funmem));
392
393 /* Put the register usage information there. */
394 add_function_usage_to (call_insn, call_fusage);
395
396 /* If this is a const call, then set the insn's unchanging bit. */
397 if (ecf_flags & ECF_CONST)
398 RTL_CONST_CALL_P (call_insn) = 1;
399
400 /* If this is a pure call, then set the insn's unchanging bit. */
401 if (ecf_flags & ECF_PURE)
402 RTL_PURE_CALL_P (call_insn) = 1;
403
404 /* If this is a const call, then set the insn's unchanging bit. */
405 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
406 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
407
408 /* Create a nothrow REG_EH_REGION note, if needed. */
409 make_reg_eh_region_note (call_insn, ecf_flags, 0);
410
411 if (ecf_flags & ECF_NORETURN)
412 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
413
414 if (ecf_flags & ECF_RETURNS_TWICE)
415 {
416 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
417 cfun->calls_setjmp = 1;
418 }
419
420 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
421
422 /* Restore this now, so that we do defer pops for this call's args
423 if the context of the call as a whole permits. */
424 inhibit_defer_pop = old_inhibit_defer_pop;
425
426 if (n_popped > 0)
427 {
428 if (!already_popped)
429 CALL_INSN_FUNCTION_USAGE (call_insn)
430 = gen_rtx_EXPR_LIST (VOIDmode,
431 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
432 CALL_INSN_FUNCTION_USAGE (call_insn));
433 rounded_stack_size -= n_popped;
434 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
435 stack_pointer_delta -= n_popped;
436
437 /* If popup is needed, stack realign must use DRAP */
438 if (SUPPORTS_STACK_ALIGNMENT)
439 crtl->need_drap = true;
440 }
441
442 if (!ACCUMULATE_OUTGOING_ARGS)
443 {
444 /* If returning from the subroutine does not automatically pop the args,
445 we need an instruction to pop them sooner or later.
446 Perhaps do it now; perhaps just record how much space to pop later.
447
448 If returning from the subroutine does pop the args, indicate that the
449 stack pointer will be changed. */
450
451 if (rounded_stack_size != 0)
452 {
453 if (ecf_flags & ECF_NORETURN)
454 /* Just pretend we did the pop. */
455 stack_pointer_delta -= rounded_stack_size;
456 else if (flag_defer_pop && inhibit_defer_pop == 0
457 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
458 pending_stack_adjust += rounded_stack_size;
459 else
460 adjust_stack (rounded_stack_size_rtx);
461 }
462 }
463 /* When we accumulate outgoing args, we must avoid any stack manipulations.
464 Restore the stack pointer to its original value now. Usually
465 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
466 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
467 popping variants of functions exist as well.
468
469 ??? We may optimize similar to defer_pop above, but it is
470 probably not worthwhile.
471
472 ??? It will be worthwhile to enable combine_stack_adjustments even for
473 such machines. */
474 else if (n_popped)
475 anti_adjust_stack (GEN_INT (n_popped));
476 }
477
478 /* Determine if the function identified by NAME and FNDECL is one with
479 special properties we wish to know about.
480
481 For example, if the function might return more than one time (setjmp), then
482 set RETURNS_TWICE to a nonzero value.
483
484 Similarly set NORETURN if the function is in the longjmp family.
485
486 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
487 space from the stack such as alloca. */
488
489 static int
490 special_function_p (const_tree fndecl, int flags)
491 {
492 if (fndecl && DECL_NAME (fndecl)
493 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
494 /* Exclude functions not at the file scope, or not `extern',
495 since they are not the magic functions we would otherwise
496 think they are.
497 FIXME: this should be handled with attributes, not with this
498 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
499 because you can declare fork() inside a function if you
500 wish. */
501 && (DECL_CONTEXT (fndecl) == NULL_TREE
502 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
503 && TREE_PUBLIC (fndecl))
504 {
505 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
506 const char *tname = name;
507
508 /* We assume that alloca will always be called by name. It
509 makes no sense to pass it as a pointer-to-function to
510 anything that does not understand its behavior. */
511 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
512 && name[0] == 'a'
513 && ! strcmp (name, "alloca"))
514 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
515 && name[0] == '_'
516 && ! strcmp (name, "__builtin_alloca"))))
517 flags |= ECF_MAY_BE_ALLOCA;
518
519 /* Disregard prefix _, __, __x or __builtin_. */
520 if (name[0] == '_')
521 {
522 if (name[1] == '_'
523 && name[2] == 'b'
524 && !strncmp (name + 3, "uiltin_", 7))
525 tname += 10;
526 else if (name[1] == '_' && name[2] == 'x')
527 tname += 3;
528 else if (name[1] == '_')
529 tname += 2;
530 else
531 tname += 1;
532 }
533
534 if (tname[0] == 's')
535 {
536 if ((tname[1] == 'e'
537 && (! strcmp (tname, "setjmp")
538 || ! strcmp (tname, "setjmp_syscall")))
539 || (tname[1] == 'i'
540 && ! strcmp (tname, "sigsetjmp"))
541 || (tname[1] == 'a'
542 && ! strcmp (tname, "savectx")))
543 flags |= ECF_RETURNS_TWICE;
544
545 if (tname[1] == 'i'
546 && ! strcmp (tname, "siglongjmp"))
547 flags |= ECF_NORETURN;
548 }
549 else if ((tname[0] == 'q' && tname[1] == 's'
550 && ! strcmp (tname, "qsetjmp"))
551 || (tname[0] == 'v' && tname[1] == 'f'
552 && ! strcmp (tname, "vfork"))
553 || (tname[0] == 'g' && tname[1] == 'e'
554 && !strcmp (tname, "getcontext")))
555 flags |= ECF_RETURNS_TWICE;
556
557 else if (tname[0] == 'l' && tname[1] == 'o'
558 && ! strcmp (tname, "longjmp"))
559 flags |= ECF_NORETURN;
560 }
561
562 return flags;
563 }
564
565 /* Return nonzero when FNDECL represents a call to setjmp. */
566
567 int
568 setjmp_call_p (const_tree fndecl)
569 {
570 if (DECL_IS_RETURNS_TWICE (fndecl))
571 return ECF_RETURNS_TWICE;
572 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
573 }
574
575
576 /* Return true if STMT is an alloca call. */
577
578 bool
579 gimple_alloca_call_p (const_gimple stmt)
580 {
581 tree fndecl;
582
583 if (!is_gimple_call (stmt))
584 return false;
585
586 fndecl = gimple_call_fndecl (stmt);
587 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
588 return true;
589
590 return false;
591 }
592
593 /* Return true when exp contains alloca call. */
594
595 bool
596 alloca_call_p (const_tree exp)
597 {
598 if (TREE_CODE (exp) == CALL_EXPR
599 && TREE_CODE (CALL_EXPR_FN (exp)) == ADDR_EXPR
600 && (TREE_CODE (TREE_OPERAND (CALL_EXPR_FN (exp), 0)) == FUNCTION_DECL)
601 && (special_function_p (TREE_OPERAND (CALL_EXPR_FN (exp), 0), 0)
602 & ECF_MAY_BE_ALLOCA))
603 return true;
604 return false;
605 }
606
607 /* Detect flags (function attributes) from the function decl or type node. */
608
609 int
610 flags_from_decl_or_type (const_tree exp)
611 {
612 int flags = 0;
613
614 if (DECL_P (exp))
615 {
616 /* The function exp may have the `malloc' attribute. */
617 if (DECL_IS_MALLOC (exp))
618 flags |= ECF_MALLOC;
619
620 /* The function exp may have the `returns_twice' attribute. */
621 if (DECL_IS_RETURNS_TWICE (exp))
622 flags |= ECF_RETURNS_TWICE;
623
624 /* Process the pure and const attributes. */
625 if (TREE_READONLY (exp))
626 flags |= ECF_CONST;
627 if (DECL_PURE_P (exp))
628 flags |= ECF_PURE;
629 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
630 flags |= ECF_LOOPING_CONST_OR_PURE;
631
632 if (DECL_IS_NOVOPS (exp))
633 flags |= ECF_NOVOPS;
634 if (lookup_attribute ("leaf", DECL_ATTRIBUTES (exp)))
635 flags |= ECF_LEAF;
636
637 if (TREE_NOTHROW (exp))
638 flags |= ECF_NOTHROW;
639
640 flags = special_function_p (exp, flags);
641 }
642 else if (TYPE_P (exp) && TYPE_READONLY (exp))
643 flags |= ECF_CONST;
644
645 if (TREE_THIS_VOLATILE (exp))
646 {
647 flags |= ECF_NORETURN;
648 if (flags & (ECF_CONST|ECF_PURE))
649 flags |= ECF_LOOPING_CONST_OR_PURE;
650 }
651
652 return flags;
653 }
654
655 /* Detect flags from a CALL_EXPR. */
656
657 int
658 call_expr_flags (const_tree t)
659 {
660 int flags;
661 tree decl = get_callee_fndecl (t);
662
663 if (decl)
664 flags = flags_from_decl_or_type (decl);
665 else
666 {
667 t = TREE_TYPE (CALL_EXPR_FN (t));
668 if (t && TREE_CODE (t) == POINTER_TYPE)
669 flags = flags_from_decl_or_type (TREE_TYPE (t));
670 else
671 flags = 0;
672 }
673
674 return flags;
675 }
676
677 /* Precompute all register parameters as described by ARGS, storing values
678 into fields within the ARGS array.
679
680 NUM_ACTUALS indicates the total number elements in the ARGS array.
681
682 Set REG_PARM_SEEN if we encounter a register parameter. */
683
684 static void
685 precompute_register_parameters (int num_actuals, struct arg_data *args,
686 int *reg_parm_seen)
687 {
688 int i;
689
690 *reg_parm_seen = 0;
691
692 for (i = 0; i < num_actuals; i++)
693 if (args[i].reg != 0 && ! args[i].pass_on_stack)
694 {
695 *reg_parm_seen = 1;
696
697 if (args[i].value == 0)
698 {
699 push_temp_slots ();
700 args[i].value = expand_normal (args[i].tree_value);
701 preserve_temp_slots (args[i].value);
702 pop_temp_slots ();
703 }
704
705 /* If the value is a non-legitimate constant, force it into a
706 pseudo now. TLS symbols sometimes need a call to resolve. */
707 if (CONSTANT_P (args[i].value)
708 && !targetm.legitimate_constant_p (args[i].mode, args[i].value))
709 args[i].value = force_reg (args[i].mode, args[i].value);
710
711 /* If we are to promote the function arg to a wider mode,
712 do it now. */
713
714 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
715 args[i].value
716 = convert_modes (args[i].mode,
717 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
718 args[i].value, args[i].unsignedp);
719
720 /* If we're going to have to load the value by parts, pull the
721 parts into pseudos. The part extraction process can involve
722 non-trivial computation. */
723 if (GET_CODE (args[i].reg) == PARALLEL)
724 {
725 tree type = TREE_TYPE (args[i].tree_value);
726 args[i].parallel_value
727 = emit_group_load_into_temps (args[i].reg, args[i].value,
728 type, int_size_in_bytes (type));
729 }
730
731 /* If the value is expensive, and we are inside an appropriately
732 short loop, put the value into a pseudo and then put the pseudo
733 into the hard reg.
734
735 For small register classes, also do this if this call uses
736 register parameters. This is to avoid reload conflicts while
737 loading the parameters registers. */
738
739 else if ((! (REG_P (args[i].value)
740 || (GET_CODE (args[i].value) == SUBREG
741 && REG_P (SUBREG_REG (args[i].value)))))
742 && args[i].mode != BLKmode
743 && rtx_cost (args[i].value, SET, optimize_insn_for_speed_p ())
744 > COSTS_N_INSNS (1)
745 && ((*reg_parm_seen
746 && targetm.small_register_classes_for_mode_p (args[i].mode))
747 || optimize))
748 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
749 }
750 }
751
752 #ifdef REG_PARM_STACK_SPACE
753
754 /* The argument list is the property of the called routine and it
755 may clobber it. If the fixed area has been used for previous
756 parameters, we must save and restore it. */
757
758 static rtx
759 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
760 {
761 int low;
762 int high;
763
764 /* Compute the boundary of the area that needs to be saved, if any. */
765 high = reg_parm_stack_space;
766 #ifdef ARGS_GROW_DOWNWARD
767 high += 1;
768 #endif
769 if (high > highest_outgoing_arg_in_use)
770 high = highest_outgoing_arg_in_use;
771
772 for (low = 0; low < high; low++)
773 if (stack_usage_map[low] != 0)
774 {
775 int num_to_save;
776 enum machine_mode save_mode;
777 int delta;
778 rtx stack_area;
779 rtx save_area;
780
781 while (stack_usage_map[--high] == 0)
782 ;
783
784 *low_to_save = low;
785 *high_to_save = high;
786
787 num_to_save = high - low + 1;
788 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
789
790 /* If we don't have the required alignment, must do this
791 in BLKmode. */
792 if ((low & (MIN (GET_MODE_SIZE (save_mode),
793 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
794 save_mode = BLKmode;
795
796 #ifdef ARGS_GROW_DOWNWARD
797 delta = -high;
798 #else
799 delta = low;
800 #endif
801 stack_area = gen_rtx_MEM (save_mode,
802 memory_address (save_mode,
803 plus_constant (argblock,
804 delta)));
805
806 set_mem_align (stack_area, PARM_BOUNDARY);
807 if (save_mode == BLKmode)
808 {
809 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
810 emit_block_move (validize_mem (save_area), stack_area,
811 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
812 }
813 else
814 {
815 save_area = gen_reg_rtx (save_mode);
816 emit_move_insn (save_area, stack_area);
817 }
818
819 return save_area;
820 }
821
822 return NULL_RTX;
823 }
824
825 static void
826 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
827 {
828 enum machine_mode save_mode = GET_MODE (save_area);
829 int delta;
830 rtx stack_area;
831
832 #ifdef ARGS_GROW_DOWNWARD
833 delta = -high_to_save;
834 #else
835 delta = low_to_save;
836 #endif
837 stack_area = gen_rtx_MEM (save_mode,
838 memory_address (save_mode,
839 plus_constant (argblock, delta)));
840 set_mem_align (stack_area, PARM_BOUNDARY);
841
842 if (save_mode != BLKmode)
843 emit_move_insn (stack_area, save_area);
844 else
845 emit_block_move (stack_area, validize_mem (save_area),
846 GEN_INT (high_to_save - low_to_save + 1),
847 BLOCK_OP_CALL_PARM);
848 }
849 #endif /* REG_PARM_STACK_SPACE */
850
851 /* If any elements in ARGS refer to parameters that are to be passed in
852 registers, but not in memory, and whose alignment does not permit a
853 direct copy into registers. Copy the values into a group of pseudos
854 which we will later copy into the appropriate hard registers.
855
856 Pseudos for each unaligned argument will be stored into the array
857 args[argnum].aligned_regs. The caller is responsible for deallocating
858 the aligned_regs array if it is nonzero. */
859
860 static void
861 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
862 {
863 int i, j;
864
865 for (i = 0; i < num_actuals; i++)
866 if (args[i].reg != 0 && ! args[i].pass_on_stack
867 && args[i].mode == BLKmode
868 && MEM_P (args[i].value)
869 && (MEM_ALIGN (args[i].value)
870 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
871 {
872 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
873 int endian_correction = 0;
874
875 if (args[i].partial)
876 {
877 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
878 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
879 }
880 else
881 {
882 args[i].n_aligned_regs
883 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
884 }
885
886 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
887
888 /* Structures smaller than a word are normally aligned to the
889 least significant byte. On a BYTES_BIG_ENDIAN machine,
890 this means we must skip the empty high order bytes when
891 calculating the bit offset. */
892 if (bytes < UNITS_PER_WORD
893 #ifdef BLOCK_REG_PADDING
894 && (BLOCK_REG_PADDING (args[i].mode,
895 TREE_TYPE (args[i].tree_value), 1)
896 == downward)
897 #else
898 && BYTES_BIG_ENDIAN
899 #endif
900 )
901 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
902
903 for (j = 0; j < args[i].n_aligned_regs; j++)
904 {
905 rtx reg = gen_reg_rtx (word_mode);
906 rtx word = operand_subword_force (args[i].value, j, BLKmode);
907 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
908
909 args[i].aligned_regs[j] = reg;
910 word = extract_bit_field (word, bitsize, 0, 1, false, NULL_RTX,
911 word_mode, word_mode);
912
913 /* There is no need to restrict this code to loading items
914 in TYPE_ALIGN sized hunks. The bitfield instructions can
915 load up entire word sized registers efficiently.
916
917 ??? This may not be needed anymore.
918 We use to emit a clobber here but that doesn't let later
919 passes optimize the instructions we emit. By storing 0 into
920 the register later passes know the first AND to zero out the
921 bitfield being set in the register is unnecessary. The store
922 of 0 will be deleted as will at least the first AND. */
923
924 emit_move_insn (reg, const0_rtx);
925
926 bytes -= bitsize / BITS_PER_UNIT;
927 store_bit_field (reg, bitsize, endian_correction, word_mode,
928 word);
929 }
930 }
931 }
932
933 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
934 CALL_EXPR EXP.
935
936 NUM_ACTUALS is the total number of parameters.
937
938 N_NAMED_ARGS is the total number of named arguments.
939
940 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
941 value, or null.
942
943 FNDECL is the tree code for the target of this call (if known)
944
945 ARGS_SO_FAR holds state needed by the target to know where to place
946 the next argument.
947
948 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
949 for arguments which are passed in registers.
950
951 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
952 and may be modified by this routine.
953
954 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
955 flags which may may be modified by this routine.
956
957 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
958 that requires allocation of stack space.
959
960 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
961 the thunked-to function. */
962
963 static void
964 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
965 struct arg_data *args,
966 struct args_size *args_size,
967 int n_named_args ATTRIBUTE_UNUSED,
968 tree exp, tree struct_value_addr_value,
969 tree fndecl, tree fntype,
970 cumulative_args_t args_so_far,
971 int reg_parm_stack_space,
972 rtx *old_stack_level, int *old_pending_adj,
973 int *must_preallocate, int *ecf_flags,
974 bool *may_tailcall, bool call_from_thunk_p)
975 {
976 CUMULATIVE_ARGS *args_so_far_pnt = get_cumulative_args (args_so_far);
977 location_t loc = EXPR_LOCATION (exp);
978 /* 1 if scanning parms front to back, -1 if scanning back to front. */
979 int inc;
980
981 /* Count arg position in order args appear. */
982 int argpos;
983
984 int i;
985
986 args_size->constant = 0;
987 args_size->var = 0;
988
989 /* In this loop, we consider args in the order they are written.
990 We fill up ARGS from the front or from the back if necessary
991 so that in any case the first arg to be pushed ends up at the front. */
992
993 if (PUSH_ARGS_REVERSED)
994 {
995 i = num_actuals - 1, inc = -1;
996 /* In this case, must reverse order of args
997 so that we compute and push the last arg first. */
998 }
999 else
1000 {
1001 i = 0, inc = 1;
1002 }
1003
1004 /* First fill in the actual arguments in the ARGS array, splitting
1005 complex arguments if necessary. */
1006 {
1007 int j = i;
1008 call_expr_arg_iterator iter;
1009 tree arg;
1010
1011 if (struct_value_addr_value)
1012 {
1013 args[j].tree_value = struct_value_addr_value;
1014 j += inc;
1015 }
1016 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
1017 {
1018 tree argtype = TREE_TYPE (arg);
1019 if (targetm.calls.split_complex_arg
1020 && argtype
1021 && TREE_CODE (argtype) == COMPLEX_TYPE
1022 && targetm.calls.split_complex_arg (argtype))
1023 {
1024 tree subtype = TREE_TYPE (argtype);
1025 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
1026 j += inc;
1027 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
1028 }
1029 else
1030 args[j].tree_value = arg;
1031 j += inc;
1032 }
1033 }
1034
1035 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1036 for (argpos = 0; argpos < num_actuals; i += inc, argpos++)
1037 {
1038 tree type = TREE_TYPE (args[i].tree_value);
1039 int unsignedp;
1040 enum machine_mode mode;
1041
1042 /* Replace erroneous argument with constant zero. */
1043 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1044 args[i].tree_value = integer_zero_node, type = integer_type_node;
1045
1046 /* If TYPE is a transparent union or record, pass things the way
1047 we would pass the first field of the union or record. We have
1048 already verified that the modes are the same. */
1049 if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
1050 && TYPE_TRANSPARENT_AGGR (type))
1051 type = TREE_TYPE (first_field (type));
1052
1053 /* Decide where to pass this arg.
1054
1055 args[i].reg is nonzero if all or part is passed in registers.
1056
1057 args[i].partial is nonzero if part but not all is passed in registers,
1058 and the exact value says how many bytes are passed in registers.
1059
1060 args[i].pass_on_stack is nonzero if the argument must at least be
1061 computed on the stack. It may then be loaded back into registers
1062 if args[i].reg is nonzero.
1063
1064 These decisions are driven by the FUNCTION_... macros and must agree
1065 with those made by function.c. */
1066
1067 /* See if this argument should be passed by invisible reference. */
1068 if (pass_by_reference (args_so_far_pnt, TYPE_MODE (type),
1069 type, argpos < n_named_args))
1070 {
1071 bool callee_copies;
1072 tree base;
1073
1074 callee_copies
1075 = reference_callee_copied (args_so_far_pnt, TYPE_MODE (type),
1076 type, argpos < n_named_args);
1077
1078 /* If we're compiling a thunk, pass through invisible references
1079 instead of making a copy. */
1080 if (call_from_thunk_p
1081 || (callee_copies
1082 && !TREE_ADDRESSABLE (type)
1083 && (base = get_base_address (args[i].tree_value))
1084 && TREE_CODE (base) != SSA_NAME
1085 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1086 {
1087 mark_addressable (args[i].tree_value);
1088
1089 /* We can't use sibcalls if a callee-copied argument is
1090 stored in the current function's frame. */
1091 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1092 *may_tailcall = false;
1093
1094 args[i].tree_value = build_fold_addr_expr_loc (loc,
1095 args[i].tree_value);
1096 type = TREE_TYPE (args[i].tree_value);
1097
1098 if (*ecf_flags & ECF_CONST)
1099 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
1100 }
1101 else
1102 {
1103 /* We make a copy of the object and pass the address to the
1104 function being called. */
1105 rtx copy;
1106
1107 if (!COMPLETE_TYPE_P (type)
1108 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
1109 || (flag_stack_check == GENERIC_STACK_CHECK
1110 && compare_tree_int (TYPE_SIZE_UNIT (type),
1111 STACK_CHECK_MAX_VAR_SIZE) > 0))
1112 {
1113 /* This is a variable-sized object. Make space on the stack
1114 for it. */
1115 rtx size_rtx = expr_size (args[i].tree_value);
1116
1117 if (*old_stack_level == 0)
1118 {
1119 emit_stack_save (SAVE_BLOCK, old_stack_level);
1120 *old_pending_adj = pending_stack_adjust;
1121 pending_stack_adjust = 0;
1122 }
1123
1124 /* We can pass TRUE as the 4th argument because we just
1125 saved the stack pointer and will restore it right after
1126 the call. */
1127 copy = allocate_dynamic_stack_space (size_rtx,
1128 TYPE_ALIGN (type),
1129 TYPE_ALIGN (type),
1130 true);
1131 copy = gen_rtx_MEM (BLKmode, copy);
1132 set_mem_attributes (copy, type, 1);
1133 }
1134 else
1135 copy = assign_temp (type, 0, 1, 0);
1136
1137 store_expr (args[i].tree_value, copy, 0, false);
1138
1139 /* Just change the const function to pure and then let
1140 the next test clear the pure based on
1141 callee_copies. */
1142 if (*ecf_flags & ECF_CONST)
1143 {
1144 *ecf_flags &= ~ECF_CONST;
1145 *ecf_flags |= ECF_PURE;
1146 }
1147
1148 if (!callee_copies && *ecf_flags & ECF_PURE)
1149 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
1150
1151 args[i].tree_value
1152 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
1153 type = TREE_TYPE (args[i].tree_value);
1154 *may_tailcall = false;
1155 }
1156 }
1157
1158 unsignedp = TYPE_UNSIGNED (type);
1159 mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
1160 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
1161
1162 args[i].unsignedp = unsignedp;
1163 args[i].mode = mode;
1164
1165 args[i].reg = targetm.calls.function_arg (args_so_far, mode, type,
1166 argpos < n_named_args);
1167
1168 /* If this is a sibling call and the machine has register windows, the
1169 register window has to be unwinded before calling the routine, so
1170 arguments have to go into the incoming registers. */
1171 if (targetm.calls.function_incoming_arg != targetm.calls.function_arg)
1172 args[i].tail_call_reg
1173 = targetm.calls.function_incoming_arg (args_so_far, mode, type,
1174 argpos < n_named_args);
1175 else
1176 args[i].tail_call_reg = args[i].reg;
1177
1178 if (args[i].reg)
1179 args[i].partial
1180 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1181 argpos < n_named_args);
1182
1183 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1184
1185 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1186 it means that we are to pass this arg in the register(s) designated
1187 by the PARALLEL, but also to pass it in the stack. */
1188 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1189 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1190 args[i].pass_on_stack = 1;
1191
1192 /* If this is an addressable type, we must preallocate the stack
1193 since we must evaluate the object into its final location.
1194
1195 If this is to be passed in both registers and the stack, it is simpler
1196 to preallocate. */
1197 if (TREE_ADDRESSABLE (type)
1198 || (args[i].pass_on_stack && args[i].reg != 0))
1199 *must_preallocate = 1;
1200
1201 /* Compute the stack-size of this argument. */
1202 if (args[i].reg == 0 || args[i].partial != 0
1203 || reg_parm_stack_space > 0
1204 || args[i].pass_on_stack)
1205 locate_and_pad_parm (mode, type,
1206 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1207 1,
1208 #else
1209 args[i].reg != 0,
1210 #endif
1211 args[i].pass_on_stack ? 0 : args[i].partial,
1212 fndecl, args_size, &args[i].locate);
1213 #ifdef BLOCK_REG_PADDING
1214 else
1215 /* The argument is passed entirely in registers. See at which
1216 end it should be padded. */
1217 args[i].locate.where_pad =
1218 BLOCK_REG_PADDING (mode, type,
1219 int_size_in_bytes (type) <= UNITS_PER_WORD);
1220 #endif
1221
1222 /* Update ARGS_SIZE, the total stack space for args so far. */
1223
1224 args_size->constant += args[i].locate.size.constant;
1225 if (args[i].locate.size.var)
1226 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1227
1228 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1229 have been used, etc. */
1230
1231 targetm.calls.function_arg_advance (args_so_far, TYPE_MODE (type),
1232 type, argpos < n_named_args);
1233 }
1234 }
1235
1236 /* Update ARGS_SIZE to contain the total size for the argument block.
1237 Return the original constant component of the argument block's size.
1238
1239 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1240 for arguments passed in registers. */
1241
1242 static int
1243 compute_argument_block_size (int reg_parm_stack_space,
1244 struct args_size *args_size,
1245 tree fndecl ATTRIBUTE_UNUSED,
1246 tree fntype ATTRIBUTE_UNUSED,
1247 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1248 {
1249 int unadjusted_args_size = args_size->constant;
1250
1251 /* For accumulate outgoing args mode we don't need to align, since the frame
1252 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1253 backends from generating misaligned frame sizes. */
1254 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1255 preferred_stack_boundary = STACK_BOUNDARY;
1256
1257 /* Compute the actual size of the argument block required. The variable
1258 and constant sizes must be combined, the size may have to be rounded,
1259 and there may be a minimum required size. */
1260
1261 if (args_size->var)
1262 {
1263 args_size->var = ARGS_SIZE_TREE (*args_size);
1264 args_size->constant = 0;
1265
1266 preferred_stack_boundary /= BITS_PER_UNIT;
1267 if (preferred_stack_boundary > 1)
1268 {
1269 /* We don't handle this case yet. To handle it correctly we have
1270 to add the delta, round and subtract the delta.
1271 Currently no machine description requires this support. */
1272 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1273 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1274 }
1275
1276 if (reg_parm_stack_space > 0)
1277 {
1278 args_size->var
1279 = size_binop (MAX_EXPR, args_size->var,
1280 ssize_int (reg_parm_stack_space));
1281
1282 /* The area corresponding to register parameters is not to count in
1283 the size of the block we need. So make the adjustment. */
1284 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1285 args_size->var
1286 = size_binop (MINUS_EXPR, args_size->var,
1287 ssize_int (reg_parm_stack_space));
1288 }
1289 }
1290 else
1291 {
1292 preferred_stack_boundary /= BITS_PER_UNIT;
1293 if (preferred_stack_boundary < 1)
1294 preferred_stack_boundary = 1;
1295 args_size->constant = (((args_size->constant
1296 + stack_pointer_delta
1297 + preferred_stack_boundary - 1)
1298 / preferred_stack_boundary
1299 * preferred_stack_boundary)
1300 - stack_pointer_delta);
1301
1302 args_size->constant = MAX (args_size->constant,
1303 reg_parm_stack_space);
1304
1305 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1306 args_size->constant -= reg_parm_stack_space;
1307 }
1308 return unadjusted_args_size;
1309 }
1310
1311 /* Precompute parameters as needed for a function call.
1312
1313 FLAGS is mask of ECF_* constants.
1314
1315 NUM_ACTUALS is the number of arguments.
1316
1317 ARGS is an array containing information for each argument; this
1318 routine fills in the INITIAL_VALUE and VALUE fields for each
1319 precomputed argument. */
1320
1321 static void
1322 precompute_arguments (int num_actuals, struct arg_data *args)
1323 {
1324 int i;
1325
1326 /* If this is a libcall, then precompute all arguments so that we do not
1327 get extraneous instructions emitted as part of the libcall sequence. */
1328
1329 /* If we preallocated the stack space, and some arguments must be passed
1330 on the stack, then we must precompute any parameter which contains a
1331 function call which will store arguments on the stack.
1332 Otherwise, evaluating the parameter may clobber previous parameters
1333 which have already been stored into the stack. (we have code to avoid
1334 such case by saving the outgoing stack arguments, but it results in
1335 worse code) */
1336 if (!ACCUMULATE_OUTGOING_ARGS)
1337 return;
1338
1339 for (i = 0; i < num_actuals; i++)
1340 {
1341 tree type;
1342 enum machine_mode mode;
1343
1344 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
1345 continue;
1346
1347 /* If this is an addressable type, we cannot pre-evaluate it. */
1348 type = TREE_TYPE (args[i].tree_value);
1349 gcc_assert (!TREE_ADDRESSABLE (type));
1350
1351 args[i].initial_value = args[i].value
1352 = expand_normal (args[i].tree_value);
1353
1354 mode = TYPE_MODE (type);
1355 if (mode != args[i].mode)
1356 {
1357 int unsignedp = args[i].unsignedp;
1358 args[i].value
1359 = convert_modes (args[i].mode, mode,
1360 args[i].value, args[i].unsignedp);
1361
1362 /* CSE will replace this only if it contains args[i].value
1363 pseudo, so convert it down to the declared mode using
1364 a SUBREG. */
1365 if (REG_P (args[i].value)
1366 && GET_MODE_CLASS (args[i].mode) == MODE_INT
1367 && promote_mode (type, mode, &unsignedp) != args[i].mode)
1368 {
1369 args[i].initial_value
1370 = gen_lowpart_SUBREG (mode, args[i].value);
1371 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1372 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1373 args[i].unsignedp);
1374 }
1375 }
1376 }
1377 }
1378
1379 /* Given the current state of MUST_PREALLOCATE and information about
1380 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1381 compute and return the final value for MUST_PREALLOCATE. */
1382
1383 static int
1384 finalize_must_preallocate (int must_preallocate, int num_actuals,
1385 struct arg_data *args, struct args_size *args_size)
1386 {
1387 /* See if we have or want to preallocate stack space.
1388
1389 If we would have to push a partially-in-regs parm
1390 before other stack parms, preallocate stack space instead.
1391
1392 If the size of some parm is not a multiple of the required stack
1393 alignment, we must preallocate.
1394
1395 If the total size of arguments that would otherwise create a copy in
1396 a temporary (such as a CALL) is more than half the total argument list
1397 size, preallocation is faster.
1398
1399 Another reason to preallocate is if we have a machine (like the m88k)
1400 where stack alignment is required to be maintained between every
1401 pair of insns, not just when the call is made. However, we assume here
1402 that such machines either do not have push insns (and hence preallocation
1403 would occur anyway) or the problem is taken care of with
1404 PUSH_ROUNDING. */
1405
1406 if (! must_preallocate)
1407 {
1408 int partial_seen = 0;
1409 int copy_to_evaluate_size = 0;
1410 int i;
1411
1412 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1413 {
1414 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1415 partial_seen = 1;
1416 else if (partial_seen && args[i].reg == 0)
1417 must_preallocate = 1;
1418
1419 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1420 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1421 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1422 || TREE_CODE (args[i].tree_value) == COND_EXPR
1423 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1424 copy_to_evaluate_size
1425 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1426 }
1427
1428 if (copy_to_evaluate_size * 2 >= args_size->constant
1429 && args_size->constant > 0)
1430 must_preallocate = 1;
1431 }
1432 return must_preallocate;
1433 }
1434
1435 /* If we preallocated stack space, compute the address of each argument
1436 and store it into the ARGS array.
1437
1438 We need not ensure it is a valid memory address here; it will be
1439 validized when it is used.
1440
1441 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1442
1443 static void
1444 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1445 {
1446 if (argblock)
1447 {
1448 rtx arg_reg = argblock;
1449 int i, arg_offset = 0;
1450
1451 if (GET_CODE (argblock) == PLUS)
1452 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1453
1454 for (i = 0; i < num_actuals; i++)
1455 {
1456 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1457 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1458 rtx addr;
1459 unsigned int align, boundary;
1460 unsigned int units_on_stack = 0;
1461 enum machine_mode partial_mode = VOIDmode;
1462
1463 /* Skip this parm if it will not be passed on the stack. */
1464 if (! args[i].pass_on_stack
1465 && args[i].reg != 0
1466 && args[i].partial == 0)
1467 continue;
1468
1469 if (CONST_INT_P (offset))
1470 addr = plus_constant (arg_reg, INTVAL (offset));
1471 else
1472 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1473
1474 addr = plus_constant (addr, arg_offset);
1475
1476 if (args[i].partial != 0)
1477 {
1478 /* Only part of the parameter is being passed on the stack.
1479 Generate a simple memory reference of the correct size. */
1480 units_on_stack = args[i].locate.size.constant;
1481 partial_mode = mode_for_size (units_on_stack * BITS_PER_UNIT,
1482 MODE_INT, 1);
1483 args[i].stack = gen_rtx_MEM (partial_mode, addr);
1484 set_mem_size (args[i].stack, GEN_INT (units_on_stack));
1485 }
1486 else
1487 {
1488 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1489 set_mem_attributes (args[i].stack,
1490 TREE_TYPE (args[i].tree_value), 1);
1491 }
1492 align = BITS_PER_UNIT;
1493 boundary = args[i].locate.boundary;
1494 if (args[i].locate.where_pad != downward)
1495 align = boundary;
1496 else if (CONST_INT_P (offset))
1497 {
1498 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1499 align = align & -align;
1500 }
1501 set_mem_align (args[i].stack, align);
1502
1503 if (CONST_INT_P (slot_offset))
1504 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1505 else
1506 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1507
1508 addr = plus_constant (addr, arg_offset);
1509
1510 if (args[i].partial != 0)
1511 {
1512 /* Only part of the parameter is being passed on the stack.
1513 Generate a simple memory reference of the correct size.
1514 */
1515 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
1516 set_mem_size (args[i].stack_slot, GEN_INT (units_on_stack));
1517 }
1518 else
1519 {
1520 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1521 set_mem_attributes (args[i].stack_slot,
1522 TREE_TYPE (args[i].tree_value), 1);
1523 }
1524 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1525
1526 /* Function incoming arguments may overlap with sibling call
1527 outgoing arguments and we cannot allow reordering of reads
1528 from function arguments with stores to outgoing arguments
1529 of sibling calls. */
1530 set_mem_alias_set (args[i].stack, 0);
1531 set_mem_alias_set (args[i].stack_slot, 0);
1532 }
1533 }
1534 }
1535
1536 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1537 in a call instruction.
1538
1539 FNDECL is the tree node for the target function. For an indirect call
1540 FNDECL will be NULL_TREE.
1541
1542 ADDR is the operand 0 of CALL_EXPR for this call. */
1543
1544 static rtx
1545 rtx_for_function_call (tree fndecl, tree addr)
1546 {
1547 rtx funexp;
1548
1549 /* Get the function to call, in the form of RTL. */
1550 if (fndecl)
1551 {
1552 /* If this is the first use of the function, see if we need to
1553 make an external definition for it. */
1554 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
1555 {
1556 assemble_external (fndecl);
1557 TREE_USED (fndecl) = 1;
1558 }
1559
1560 /* Get a SYMBOL_REF rtx for the function address. */
1561 funexp = XEXP (DECL_RTL (fndecl), 0);
1562 }
1563 else
1564 /* Generate an rtx (probably a pseudo-register) for the address. */
1565 {
1566 push_temp_slots ();
1567 funexp = expand_normal (addr);
1568 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1569 }
1570 return funexp;
1571 }
1572
1573 /* Return true if and only if SIZE storage units (usually bytes)
1574 starting from address ADDR overlap with already clobbered argument
1575 area. This function is used to determine if we should give up a
1576 sibcall. */
1577
1578 static bool
1579 mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
1580 {
1581 HOST_WIDE_INT i;
1582
1583 if (addr == crtl->args.internal_arg_pointer)
1584 i = 0;
1585 else if (GET_CODE (addr) == PLUS
1586 && XEXP (addr, 0) == crtl->args.internal_arg_pointer
1587 && CONST_INT_P (XEXP (addr, 1)))
1588 i = INTVAL (XEXP (addr, 1));
1589 /* Return true for arg pointer based indexed addressing. */
1590 else if (GET_CODE (addr) == PLUS
1591 && (XEXP (addr, 0) == crtl->args.internal_arg_pointer
1592 || XEXP (addr, 1) == crtl->args.internal_arg_pointer))
1593 return true;
1594 else
1595 return false;
1596
1597 #ifdef ARGS_GROW_DOWNWARD
1598 i = -i - size;
1599 #endif
1600 if (size > 0)
1601 {
1602 unsigned HOST_WIDE_INT k;
1603
1604 for (k = 0; k < size; k++)
1605 if (i + k < stored_args_map->n_bits
1606 && TEST_BIT (stored_args_map, i + k))
1607 return true;
1608 }
1609
1610 return false;
1611 }
1612
1613 /* Do the register loads required for any wholly-register parms or any
1614 parms which are passed both on the stack and in a register. Their
1615 expressions were already evaluated.
1616
1617 Mark all register-parms as living through the call, putting these USE
1618 insns in the CALL_INSN_FUNCTION_USAGE field.
1619
1620 When IS_SIBCALL, perform the check_sibcall_argument_overlap
1621 checking, setting *SIBCALL_FAILURE if appropriate. */
1622
1623 static void
1624 load_register_parameters (struct arg_data *args, int num_actuals,
1625 rtx *call_fusage, int flags, int is_sibcall,
1626 int *sibcall_failure)
1627 {
1628 int i, j;
1629
1630 for (i = 0; i < num_actuals; i++)
1631 {
1632 rtx reg = ((flags & ECF_SIBCALL)
1633 ? args[i].tail_call_reg : args[i].reg);
1634 if (reg)
1635 {
1636 int partial = args[i].partial;
1637 int nregs;
1638 int size = 0;
1639 rtx before_arg = get_last_insn ();
1640 /* Set non-negative if we must move a word at a time, even if
1641 just one word (e.g, partial == 4 && mode == DFmode). Set
1642 to -1 if we just use a normal move insn. This value can be
1643 zero if the argument is a zero size structure. */
1644 nregs = -1;
1645 if (GET_CODE (reg) == PARALLEL)
1646 ;
1647 else if (partial)
1648 {
1649 gcc_assert (partial % UNITS_PER_WORD == 0);
1650 nregs = partial / UNITS_PER_WORD;
1651 }
1652 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1653 {
1654 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1655 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1656 }
1657 else
1658 size = GET_MODE_SIZE (args[i].mode);
1659
1660 /* Handle calls that pass values in multiple non-contiguous
1661 locations. The Irix 6 ABI has examples of this. */
1662
1663 if (GET_CODE (reg) == PARALLEL)
1664 emit_group_move (reg, args[i].parallel_value);
1665
1666 /* If simple case, just do move. If normal partial, store_one_arg
1667 has already loaded the register for us. In all other cases,
1668 load the register(s) from memory. */
1669
1670 else if (nregs == -1)
1671 {
1672 emit_move_insn (reg, args[i].value);
1673 #ifdef BLOCK_REG_PADDING
1674 /* Handle case where we have a value that needs shifting
1675 up to the msb. eg. a QImode value and we're padding
1676 upward on a BYTES_BIG_ENDIAN machine. */
1677 if (size < UNITS_PER_WORD
1678 && (args[i].locate.where_pad
1679 == (BYTES_BIG_ENDIAN ? upward : downward)))
1680 {
1681 rtx x;
1682 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1683
1684 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1685 report the whole reg as used. Strictly speaking, the
1686 call only uses SIZE bytes at the msb end, but it doesn't
1687 seem worth generating rtl to say that. */
1688 reg = gen_rtx_REG (word_mode, REGNO (reg));
1689 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
1690 if (x != reg)
1691 emit_move_insn (reg, x);
1692 }
1693 #endif
1694 }
1695
1696 /* If we have pre-computed the values to put in the registers in
1697 the case of non-aligned structures, copy them in now. */
1698
1699 else if (args[i].n_aligned_regs != 0)
1700 for (j = 0; j < args[i].n_aligned_regs; j++)
1701 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1702 args[i].aligned_regs[j]);
1703
1704 else if (partial == 0 || args[i].pass_on_stack)
1705 {
1706 rtx mem = validize_mem (args[i].value);
1707
1708 /* Check for overlap with already clobbered argument area,
1709 providing that this has non-zero size. */
1710 if (is_sibcall
1711 && (size == 0
1712 || mem_overlaps_already_clobbered_arg_p
1713 (XEXP (args[i].value, 0), size)))
1714 *sibcall_failure = 1;
1715
1716 /* Handle a BLKmode that needs shifting. */
1717 if (nregs == 1 && size < UNITS_PER_WORD
1718 #ifdef BLOCK_REG_PADDING
1719 && args[i].locate.where_pad == downward
1720 #else
1721 && BYTES_BIG_ENDIAN
1722 #endif
1723 )
1724 {
1725 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1726 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1727 rtx x = gen_reg_rtx (word_mode);
1728 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1729 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1730 : LSHIFT_EXPR;
1731
1732 emit_move_insn (x, tem);
1733 x = expand_shift (dir, word_mode, x, shift, ri, 1);
1734 if (x != ri)
1735 emit_move_insn (ri, x);
1736 }
1737 else
1738 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1739 }
1740
1741 /* When a parameter is a block, and perhaps in other cases, it is
1742 possible that it did a load from an argument slot that was
1743 already clobbered. */
1744 if (is_sibcall
1745 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1746 *sibcall_failure = 1;
1747
1748 /* Handle calls that pass values in multiple non-contiguous
1749 locations. The Irix 6 ABI has examples of this. */
1750 if (GET_CODE (reg) == PARALLEL)
1751 use_group_regs (call_fusage, reg);
1752 else if (nregs == -1)
1753 use_reg (call_fusage, reg);
1754 else if (nregs > 0)
1755 use_regs (call_fusage, REGNO (reg), nregs);
1756 }
1757 }
1758 }
1759
1760 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1761 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1762 bytes, then we would need to push some additional bytes to pad the
1763 arguments. So, we compute an adjust to the stack pointer for an
1764 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1765 bytes. Then, when the arguments are pushed the stack will be perfectly
1766 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1767 be popped after the call. Returns the adjustment. */
1768
1769 static int
1770 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1771 struct args_size *args_size,
1772 unsigned int preferred_unit_stack_boundary)
1773 {
1774 /* The number of bytes to pop so that the stack will be
1775 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1776 HOST_WIDE_INT adjustment;
1777 /* The alignment of the stack after the arguments are pushed, if we
1778 just pushed the arguments without adjust the stack here. */
1779 unsigned HOST_WIDE_INT unadjusted_alignment;
1780
1781 unadjusted_alignment
1782 = ((stack_pointer_delta + unadjusted_args_size)
1783 % preferred_unit_stack_boundary);
1784
1785 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1786 as possible -- leaving just enough left to cancel out the
1787 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1788 PENDING_STACK_ADJUST is non-negative, and congruent to
1789 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1790
1791 /* Begin by trying to pop all the bytes. */
1792 unadjusted_alignment
1793 = (unadjusted_alignment
1794 - (pending_stack_adjust % preferred_unit_stack_boundary));
1795 adjustment = pending_stack_adjust;
1796 /* Push enough additional bytes that the stack will be aligned
1797 after the arguments are pushed. */
1798 if (preferred_unit_stack_boundary > 1)
1799 {
1800 if (unadjusted_alignment > 0)
1801 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1802 else
1803 adjustment += unadjusted_alignment;
1804 }
1805
1806 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1807 bytes after the call. The right number is the entire
1808 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1809 by the arguments in the first place. */
1810 args_size->constant
1811 = pending_stack_adjust - adjustment + unadjusted_args_size;
1812
1813 return adjustment;
1814 }
1815
1816 /* Scan X expression if it does not dereference any argument slots
1817 we already clobbered by tail call arguments (as noted in stored_args_map
1818 bitmap).
1819 Return nonzero if X expression dereferences such argument slots,
1820 zero otherwise. */
1821
1822 static int
1823 check_sibcall_argument_overlap_1 (rtx x)
1824 {
1825 RTX_CODE code;
1826 int i, j;
1827 const char *fmt;
1828
1829 if (x == NULL_RTX)
1830 return 0;
1831
1832 code = GET_CODE (x);
1833
1834 if (code == MEM)
1835 return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
1836 GET_MODE_SIZE (GET_MODE (x)));
1837
1838 /* Scan all subexpressions. */
1839 fmt = GET_RTX_FORMAT (code);
1840 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1841 {
1842 if (*fmt == 'e')
1843 {
1844 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1845 return 1;
1846 }
1847 else if (*fmt == 'E')
1848 {
1849 for (j = 0; j < XVECLEN (x, i); j++)
1850 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1851 return 1;
1852 }
1853 }
1854 return 0;
1855 }
1856
1857 /* Scan sequence after INSN if it does not dereference any argument slots
1858 we already clobbered by tail call arguments (as noted in stored_args_map
1859 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1860 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1861 should be 0). Return nonzero if sequence after INSN dereferences such argument
1862 slots, zero otherwise. */
1863
1864 static int
1865 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1866 {
1867 int low, high;
1868
1869 if (insn == NULL_RTX)
1870 insn = get_insns ();
1871 else
1872 insn = NEXT_INSN (insn);
1873
1874 for (; insn; insn = NEXT_INSN (insn))
1875 if (INSN_P (insn)
1876 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1877 break;
1878
1879 if (mark_stored_args_map)
1880 {
1881 #ifdef ARGS_GROW_DOWNWARD
1882 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1883 #else
1884 low = arg->locate.slot_offset.constant;
1885 #endif
1886
1887 for (high = low + arg->locate.size.constant; low < high; low++)
1888 SET_BIT (stored_args_map, low);
1889 }
1890 return insn != NULL_RTX;
1891 }
1892
1893 /* Given that a function returns a value of mode MODE at the most
1894 significant end of hard register VALUE, shift VALUE left or right
1895 as specified by LEFT_P. Return true if some action was needed. */
1896
1897 bool
1898 shift_return_value (enum machine_mode mode, bool left_p, rtx value)
1899 {
1900 HOST_WIDE_INT shift;
1901
1902 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
1903 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
1904 if (shift == 0)
1905 return false;
1906
1907 /* Use ashr rather than lshr for right shifts. This is for the benefit
1908 of the MIPS port, which requires SImode values to be sign-extended
1909 when stored in 64-bit registers. */
1910 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
1911 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
1912 gcc_unreachable ();
1913 return true;
1914 }
1915
1916 /* If X is a likely-spilled register value, copy it to a pseudo
1917 register and return that register. Return X otherwise. */
1918
1919 static rtx
1920 avoid_likely_spilled_reg (rtx x)
1921 {
1922 rtx new_rtx;
1923
1924 if (REG_P (x)
1925 && HARD_REGISTER_P (x)
1926 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
1927 {
1928 /* Make sure that we generate a REG rather than a CONCAT.
1929 Moves into CONCATs can need nontrivial instructions,
1930 and the whole point of this function is to avoid
1931 using the hard register directly in such a situation. */
1932 generating_concat_p = 0;
1933 new_rtx = gen_reg_rtx (GET_MODE (x));
1934 generating_concat_p = 1;
1935 emit_move_insn (new_rtx, x);
1936 return new_rtx;
1937 }
1938 return x;
1939 }
1940
1941 /* Generate all the code for a CALL_EXPR exp
1942 and return an rtx for its value.
1943 Store the value in TARGET (specified as an rtx) if convenient.
1944 If the value is stored in TARGET then TARGET is returned.
1945 If IGNORE is nonzero, then we ignore the value of the function call. */
1946
1947 rtx
1948 expand_call (tree exp, rtx target, int ignore)
1949 {
1950 /* Nonzero if we are currently expanding a call. */
1951 static int currently_expanding_call = 0;
1952
1953 /* RTX for the function to be called. */
1954 rtx funexp;
1955 /* Sequence of insns to perform a normal "call". */
1956 rtx normal_call_insns = NULL_RTX;
1957 /* Sequence of insns to perform a tail "call". */
1958 rtx tail_call_insns = NULL_RTX;
1959 /* Data type of the function. */
1960 tree funtype;
1961 tree type_arg_types;
1962 tree rettype;
1963 /* Declaration of the function being called,
1964 or 0 if the function is computed (not known by name). */
1965 tree fndecl = 0;
1966 /* The type of the function being called. */
1967 tree fntype;
1968 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1969 int pass;
1970
1971 /* Register in which non-BLKmode value will be returned,
1972 or 0 if no value or if value is BLKmode. */
1973 rtx valreg;
1974 /* Address where we should return a BLKmode value;
1975 0 if value not BLKmode. */
1976 rtx structure_value_addr = 0;
1977 /* Nonzero if that address is being passed by treating it as
1978 an extra, implicit first parameter. Otherwise,
1979 it is passed by being copied directly into struct_value_rtx. */
1980 int structure_value_addr_parm = 0;
1981 /* Holds the value of implicit argument for the struct value. */
1982 tree structure_value_addr_value = NULL_TREE;
1983 /* Size of aggregate value wanted, or zero if none wanted
1984 or if we are using the non-reentrant PCC calling convention
1985 or expecting the value in registers. */
1986 HOST_WIDE_INT struct_value_size = 0;
1987 /* Nonzero if called function returns an aggregate in memory PCC style,
1988 by returning the address of where to find it. */
1989 int pcc_struct_value = 0;
1990 rtx struct_value = 0;
1991
1992 /* Number of actual parameters in this call, including struct value addr. */
1993 int num_actuals;
1994 /* Number of named args. Args after this are anonymous ones
1995 and they must all go on the stack. */
1996 int n_named_args;
1997 /* Number of complex actual arguments that need to be split. */
1998 int num_complex_actuals = 0;
1999
2000 /* Vector of information about each argument.
2001 Arguments are numbered in the order they will be pushed,
2002 not the order they are written. */
2003 struct arg_data *args;
2004
2005 /* Total size in bytes of all the stack-parms scanned so far. */
2006 struct args_size args_size;
2007 struct args_size adjusted_args_size;
2008 /* Size of arguments before any adjustments (such as rounding). */
2009 int unadjusted_args_size;
2010 /* Data on reg parms scanned so far. */
2011 CUMULATIVE_ARGS args_so_far_v;
2012 cumulative_args_t args_so_far;
2013 /* Nonzero if a reg parm has been scanned. */
2014 int reg_parm_seen;
2015 /* Nonzero if this is an indirect function call. */
2016
2017 /* Nonzero if we must avoid push-insns in the args for this call.
2018 If stack space is allocated for register parameters, but not by the
2019 caller, then it is preallocated in the fixed part of the stack frame.
2020 So the entire argument block must then be preallocated (i.e., we
2021 ignore PUSH_ROUNDING in that case). */
2022
2023 int must_preallocate = !PUSH_ARGS;
2024
2025 /* Size of the stack reserved for parameter registers. */
2026 int reg_parm_stack_space = 0;
2027
2028 /* Address of space preallocated for stack parms
2029 (on machines that lack push insns), or 0 if space not preallocated. */
2030 rtx argblock = 0;
2031
2032 /* Mask of ECF_ flags. */
2033 int flags = 0;
2034 #ifdef REG_PARM_STACK_SPACE
2035 /* Define the boundary of the register parm stack space that needs to be
2036 saved, if any. */
2037 int low_to_save, high_to_save;
2038 rtx save_area = 0; /* Place that it is saved */
2039 #endif
2040
2041 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
2042 char *initial_stack_usage_map = stack_usage_map;
2043 char *stack_usage_map_buf = NULL;
2044
2045 int old_stack_allocated;
2046
2047 /* State variables to track stack modifications. */
2048 rtx old_stack_level = 0;
2049 int old_stack_arg_under_construction = 0;
2050 int old_pending_adj = 0;
2051 int old_inhibit_defer_pop = inhibit_defer_pop;
2052
2053 /* Some stack pointer alterations we make are performed via
2054 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
2055 which we then also need to save/restore along the way. */
2056 int old_stack_pointer_delta = 0;
2057
2058 rtx call_fusage;
2059 tree addr = CALL_EXPR_FN (exp);
2060 int i;
2061 /* The alignment of the stack, in bits. */
2062 unsigned HOST_WIDE_INT preferred_stack_boundary;
2063 /* The alignment of the stack, in bytes. */
2064 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
2065 /* The static chain value to use for this call. */
2066 rtx static_chain_value;
2067 /* See if this is "nothrow" function call. */
2068 if (TREE_NOTHROW (exp))
2069 flags |= ECF_NOTHROW;
2070
2071 /* See if we can find a DECL-node for the actual function, and get the
2072 function attributes (flags) from the function decl or type node. */
2073 fndecl = get_callee_fndecl (exp);
2074 if (fndecl)
2075 {
2076 fntype = TREE_TYPE (fndecl);
2077 flags |= flags_from_decl_or_type (fndecl);
2078 }
2079 else
2080 {
2081 fntype = TREE_TYPE (TREE_TYPE (addr));
2082 flags |= flags_from_decl_or_type (fntype);
2083 }
2084 rettype = TREE_TYPE (exp);
2085
2086 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
2087
2088 /* Warn if this value is an aggregate type,
2089 regardless of which calling convention we are using for it. */
2090 if (AGGREGATE_TYPE_P (rettype))
2091 warning (OPT_Waggregate_return, "function call has aggregate value");
2092
2093 /* If the result of a non looping pure or const function call is
2094 ignored (or void), and none of its arguments are volatile, we can
2095 avoid expanding the call and just evaluate the arguments for
2096 side-effects. */
2097 if ((flags & (ECF_CONST | ECF_PURE))
2098 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
2099 && (ignore || target == const0_rtx
2100 || TYPE_MODE (rettype) == VOIDmode))
2101 {
2102 bool volatilep = false;
2103 tree arg;
2104 call_expr_arg_iterator iter;
2105
2106 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2107 if (TREE_THIS_VOLATILE (arg))
2108 {
2109 volatilep = true;
2110 break;
2111 }
2112
2113 if (! volatilep)
2114 {
2115 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2116 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
2117 return const0_rtx;
2118 }
2119 }
2120
2121 #ifdef REG_PARM_STACK_SPACE
2122 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
2123 #endif
2124
2125 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2126 && reg_parm_stack_space > 0 && PUSH_ARGS)
2127 must_preallocate = 1;
2128
2129 /* Set up a place to return a structure. */
2130
2131 /* Cater to broken compilers. */
2132 if (aggregate_value_p (exp, fntype))
2133 {
2134 /* This call returns a big structure. */
2135 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2136
2137 #ifdef PCC_STATIC_STRUCT_RETURN
2138 {
2139 pcc_struct_value = 1;
2140 }
2141 #else /* not PCC_STATIC_STRUCT_RETURN */
2142 {
2143 struct_value_size = int_size_in_bytes (rettype);
2144
2145 if (target && MEM_P (target) && CALL_EXPR_RETURN_SLOT_OPT (exp))
2146 structure_value_addr = XEXP (target, 0);
2147 else
2148 {
2149 /* For variable-sized objects, we must be called with a target
2150 specified. If we were to allocate space on the stack here,
2151 we would have no way of knowing when to free it. */
2152 rtx d = assign_temp (rettype, 0, 1, 1);
2153
2154 mark_temp_addr_taken (d);
2155 structure_value_addr = XEXP (d, 0);
2156 target = 0;
2157 }
2158 }
2159 #endif /* not PCC_STATIC_STRUCT_RETURN */
2160 }
2161
2162 /* Figure out the amount to which the stack should be aligned. */
2163 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2164 if (fndecl)
2165 {
2166 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2167 /* Without automatic stack alignment, we can't increase preferred
2168 stack boundary. With automatic stack alignment, it is
2169 unnecessary since unless we can guarantee that all callers will
2170 align the outgoing stack properly, callee has to align its
2171 stack anyway. */
2172 if (i
2173 && i->preferred_incoming_stack_boundary
2174 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
2175 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2176 }
2177
2178 /* Operand 0 is a pointer-to-function; get the type of the function. */
2179 funtype = TREE_TYPE (addr);
2180 gcc_assert (POINTER_TYPE_P (funtype));
2181 funtype = TREE_TYPE (funtype);
2182
2183 /* Count whether there are actual complex arguments that need to be split
2184 into their real and imaginary parts. Munge the type_arg_types
2185 appropriately here as well. */
2186 if (targetm.calls.split_complex_arg)
2187 {
2188 call_expr_arg_iterator iter;
2189 tree arg;
2190 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2191 {
2192 tree type = TREE_TYPE (arg);
2193 if (type && TREE_CODE (type) == COMPLEX_TYPE
2194 && targetm.calls.split_complex_arg (type))
2195 num_complex_actuals++;
2196 }
2197 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2198 }
2199 else
2200 type_arg_types = TYPE_ARG_TYPES (funtype);
2201
2202 if (flags & ECF_MAY_BE_ALLOCA)
2203 cfun->calls_alloca = 1;
2204
2205 /* If struct_value_rtx is 0, it means pass the address
2206 as if it were an extra parameter. Put the argument expression
2207 in structure_value_addr_value. */
2208 if (structure_value_addr && struct_value == 0)
2209 {
2210 /* If structure_value_addr is a REG other than
2211 virtual_outgoing_args_rtx, we can use always use it. If it
2212 is not a REG, we must always copy it into a register.
2213 If it is virtual_outgoing_args_rtx, we must copy it to another
2214 register in some cases. */
2215 rtx temp = (!REG_P (structure_value_addr)
2216 || (ACCUMULATE_OUTGOING_ARGS
2217 && stack_arg_under_construction
2218 && structure_value_addr == virtual_outgoing_args_rtx)
2219 ? copy_addr_to_reg (convert_memory_address
2220 (Pmode, structure_value_addr))
2221 : structure_value_addr);
2222
2223 structure_value_addr_value =
2224 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
2225 structure_value_addr_parm = 1;
2226 }
2227
2228 /* Count the arguments and set NUM_ACTUALS. */
2229 num_actuals =
2230 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
2231
2232 /* Compute number of named args.
2233 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2234
2235 if (type_arg_types != 0)
2236 n_named_args
2237 = (list_length (type_arg_types)
2238 /* Count the struct value address, if it is passed as a parm. */
2239 + structure_value_addr_parm);
2240 else
2241 /* If we know nothing, treat all args as named. */
2242 n_named_args = num_actuals;
2243
2244 /* Start updating where the next arg would go.
2245
2246 On some machines (such as the PA) indirect calls have a different
2247 calling convention than normal calls. The fourth argument in
2248 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2249 or not. */
2250 INIT_CUMULATIVE_ARGS (args_so_far_v, funtype, NULL_RTX, fndecl, n_named_args);
2251 args_so_far = pack_cumulative_args (&args_so_far_v);
2252
2253 /* Now possibly adjust the number of named args.
2254 Normally, don't include the last named arg if anonymous args follow.
2255 We do include the last named arg if
2256 targetm.calls.strict_argument_naming() returns nonzero.
2257 (If no anonymous args follow, the result of list_length is actually
2258 one too large. This is harmless.)
2259
2260 If targetm.calls.pretend_outgoing_varargs_named() returns
2261 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2262 this machine will be able to place unnamed args that were passed
2263 in registers into the stack. So treat all args as named. This
2264 allows the insns emitting for a specific argument list to be
2265 independent of the function declaration.
2266
2267 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2268 we do not have any reliable way to pass unnamed args in
2269 registers, so we must force them into memory. */
2270
2271 if (type_arg_types != 0
2272 && targetm.calls.strict_argument_naming (args_so_far))
2273 ;
2274 else if (type_arg_types != 0
2275 && ! targetm.calls.pretend_outgoing_varargs_named (args_so_far))
2276 /* Don't include the last named arg. */
2277 --n_named_args;
2278 else
2279 /* Treat all args as named. */
2280 n_named_args = num_actuals;
2281
2282 /* Make a vector to hold all the information about each arg. */
2283 args = XALLOCAVEC (struct arg_data, num_actuals);
2284 memset (args, 0, num_actuals * sizeof (struct arg_data));
2285
2286 /* Build up entries in the ARGS array, compute the size of the
2287 arguments into ARGS_SIZE, etc. */
2288 initialize_argument_information (num_actuals, args, &args_size,
2289 n_named_args, exp,
2290 structure_value_addr_value, fndecl, fntype,
2291 args_so_far, reg_parm_stack_space,
2292 &old_stack_level, &old_pending_adj,
2293 &must_preallocate, &flags,
2294 &try_tail_call, CALL_FROM_THUNK_P (exp));
2295
2296 if (args_size.var)
2297 must_preallocate = 1;
2298
2299 /* Now make final decision about preallocating stack space. */
2300 must_preallocate = finalize_must_preallocate (must_preallocate,
2301 num_actuals, args,
2302 &args_size);
2303
2304 /* If the structure value address will reference the stack pointer, we
2305 must stabilize it. We don't need to do this if we know that we are
2306 not going to adjust the stack pointer in processing this call. */
2307
2308 if (structure_value_addr
2309 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2310 || reg_mentioned_p (virtual_outgoing_args_rtx,
2311 structure_value_addr))
2312 && (args_size.var
2313 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2314 structure_value_addr = copy_to_reg (structure_value_addr);
2315
2316 /* Tail calls can make things harder to debug, and we've traditionally
2317 pushed these optimizations into -O2. Don't try if we're already
2318 expanding a call, as that means we're an argument. Don't try if
2319 there's cleanups, as we know there's code to follow the call. */
2320
2321 if (currently_expanding_call++ != 0
2322 || !flag_optimize_sibling_calls
2323 || args_size.var
2324 || dbg_cnt (tail_call) == false)
2325 try_tail_call = 0;
2326
2327 /* Rest of purposes for tail call optimizations to fail. */
2328 if (
2329 #ifdef HAVE_sibcall_epilogue
2330 !HAVE_sibcall_epilogue
2331 #else
2332 1
2333 #endif
2334 || !try_tail_call
2335 /* Doing sibling call optimization needs some work, since
2336 structure_value_addr can be allocated on the stack.
2337 It does not seem worth the effort since few optimizable
2338 sibling calls will return a structure. */
2339 || structure_value_addr != NULL_RTX
2340 #ifdef REG_PARM_STACK_SPACE
2341 /* If outgoing reg parm stack space changes, we can not do sibcall. */
2342 || (OUTGOING_REG_PARM_STACK_SPACE (funtype)
2343 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl)))
2344 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (fndecl))
2345 #endif
2346 /* Check whether the target is able to optimize the call
2347 into a sibcall. */
2348 || !targetm.function_ok_for_sibcall (fndecl, exp)
2349 /* Functions that do not return exactly once may not be sibcall
2350 optimized. */
2351 || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2352 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2353 /* If the called function is nested in the current one, it might access
2354 some of the caller's arguments, but could clobber them beforehand if
2355 the argument areas are shared. */
2356 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2357 /* If this function requires more stack slots than the current
2358 function, we cannot change it into a sibling call.
2359 crtl->args.pretend_args_size is not part of the
2360 stack allocated by our caller. */
2361 || args_size.constant > (crtl->args.size
2362 - crtl->args.pretend_args_size)
2363 /* If the callee pops its own arguments, then it must pop exactly
2364 the same number of arguments as the current function. */
2365 || (targetm.calls.return_pops_args (fndecl, funtype, args_size.constant)
2366 != targetm.calls.return_pops_args (current_function_decl,
2367 TREE_TYPE (current_function_decl),
2368 crtl->args.size))
2369 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2370 try_tail_call = 0;
2371
2372 /* Check if caller and callee disagree in promotion of function
2373 return value. */
2374 if (try_tail_call)
2375 {
2376 enum machine_mode caller_mode, caller_promoted_mode;
2377 enum machine_mode callee_mode, callee_promoted_mode;
2378 int caller_unsignedp, callee_unsignedp;
2379 tree caller_res = DECL_RESULT (current_function_decl);
2380
2381 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
2382 caller_mode = DECL_MODE (caller_res);
2383 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
2384 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
2385 caller_promoted_mode
2386 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
2387 &caller_unsignedp,
2388 TREE_TYPE (current_function_decl), 1);
2389 callee_promoted_mode
2390 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
2391 &callee_unsignedp,
2392 funtype, 1);
2393 if (caller_mode != VOIDmode
2394 && (caller_promoted_mode != callee_promoted_mode
2395 || ((caller_mode != caller_promoted_mode
2396 || callee_mode != callee_promoted_mode)
2397 && (caller_unsignedp != callee_unsignedp
2398 || GET_MODE_BITSIZE (caller_mode)
2399 < GET_MODE_BITSIZE (callee_mode)))))
2400 try_tail_call = 0;
2401 }
2402
2403 /* Ensure current function's preferred stack boundary is at least
2404 what we need. Stack alignment may also increase preferred stack
2405 boundary. */
2406 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
2407 crtl->preferred_stack_boundary = preferred_stack_boundary;
2408 else
2409 preferred_stack_boundary = crtl->preferred_stack_boundary;
2410
2411 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2412
2413 /* We want to make two insn chains; one for a sibling call, the other
2414 for a normal call. We will select one of the two chains after
2415 initial RTL generation is complete. */
2416 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2417 {
2418 int sibcall_failure = 0;
2419 /* We want to emit any pending stack adjustments before the tail
2420 recursion "call". That way we know any adjustment after the tail
2421 recursion call can be ignored if we indeed use the tail
2422 call expansion. */
2423 int save_pending_stack_adjust = 0;
2424 int save_stack_pointer_delta = 0;
2425 rtx insns;
2426 rtx before_call, next_arg_reg, after_args;
2427
2428 if (pass == 0)
2429 {
2430 /* State variables we need to save and restore between
2431 iterations. */
2432 save_pending_stack_adjust = pending_stack_adjust;
2433 save_stack_pointer_delta = stack_pointer_delta;
2434 }
2435 if (pass)
2436 flags &= ~ECF_SIBCALL;
2437 else
2438 flags |= ECF_SIBCALL;
2439
2440 /* Other state variables that we must reinitialize each time
2441 through the loop (that are not initialized by the loop itself). */
2442 argblock = 0;
2443 call_fusage = 0;
2444
2445 /* Start a new sequence for the normal call case.
2446
2447 From this point on, if the sibling call fails, we want to set
2448 sibcall_failure instead of continuing the loop. */
2449 start_sequence ();
2450
2451 /* Don't let pending stack adjusts add up to too much.
2452 Also, do all pending adjustments now if there is any chance
2453 this might be a call to alloca or if we are expanding a sibling
2454 call sequence.
2455 Also do the adjustments before a throwing call, otherwise
2456 exception handling can fail; PR 19225. */
2457 if (pending_stack_adjust >= 32
2458 || (pending_stack_adjust > 0
2459 && (flags & ECF_MAY_BE_ALLOCA))
2460 || (pending_stack_adjust > 0
2461 && flag_exceptions && !(flags & ECF_NOTHROW))
2462 || pass == 0)
2463 do_pending_stack_adjust ();
2464
2465 /* Precompute any arguments as needed. */
2466 if (pass)
2467 precompute_arguments (num_actuals, args);
2468
2469 /* Now we are about to start emitting insns that can be deleted
2470 if a libcall is deleted. */
2471 if (pass && (flags & ECF_MALLOC))
2472 start_sequence ();
2473
2474 if (pass == 0 && crtl->stack_protect_guard)
2475 stack_protect_epilogue ();
2476
2477 adjusted_args_size = args_size;
2478 /* Compute the actual size of the argument block required. The variable
2479 and constant sizes must be combined, the size may have to be rounded,
2480 and there may be a minimum required size. When generating a sibcall
2481 pattern, do not round up, since we'll be re-using whatever space our
2482 caller provided. */
2483 unadjusted_args_size
2484 = compute_argument_block_size (reg_parm_stack_space,
2485 &adjusted_args_size,
2486 fndecl, fntype,
2487 (pass == 0 ? 0
2488 : preferred_stack_boundary));
2489
2490 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2491
2492 /* The argument block when performing a sibling call is the
2493 incoming argument block. */
2494 if (pass == 0)
2495 {
2496 argblock = crtl->args.internal_arg_pointer;
2497 argblock
2498 #ifdef STACK_GROWS_DOWNWARD
2499 = plus_constant (argblock, crtl->args.pretend_args_size);
2500 #else
2501 = plus_constant (argblock, -crtl->args.pretend_args_size);
2502 #endif
2503 stored_args_map = sbitmap_alloc (args_size.constant);
2504 sbitmap_zero (stored_args_map);
2505 }
2506
2507 /* If we have no actual push instructions, or shouldn't use them,
2508 make space for all args right now. */
2509 else if (adjusted_args_size.var != 0)
2510 {
2511 if (old_stack_level == 0)
2512 {
2513 emit_stack_save (SAVE_BLOCK, &old_stack_level);
2514 old_stack_pointer_delta = stack_pointer_delta;
2515 old_pending_adj = pending_stack_adjust;
2516 pending_stack_adjust = 0;
2517 /* stack_arg_under_construction says whether a stack arg is
2518 being constructed at the old stack level. Pushing the stack
2519 gets a clean outgoing argument block. */
2520 old_stack_arg_under_construction = stack_arg_under_construction;
2521 stack_arg_under_construction = 0;
2522 }
2523 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2524 if (flag_stack_usage_info)
2525 current_function_has_unbounded_dynamic_stack_size = 1;
2526 }
2527 else
2528 {
2529 /* Note that we must go through the motions of allocating an argument
2530 block even if the size is zero because we may be storing args
2531 in the area reserved for register arguments, which may be part of
2532 the stack frame. */
2533
2534 int needed = adjusted_args_size.constant;
2535
2536 /* Store the maximum argument space used. It will be pushed by
2537 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2538 checking). */
2539
2540 if (needed > crtl->outgoing_args_size)
2541 crtl->outgoing_args_size = needed;
2542
2543 if (must_preallocate)
2544 {
2545 if (ACCUMULATE_OUTGOING_ARGS)
2546 {
2547 /* Since the stack pointer will never be pushed, it is
2548 possible for the evaluation of a parm to clobber
2549 something we have already written to the stack.
2550 Since most function calls on RISC machines do not use
2551 the stack, this is uncommon, but must work correctly.
2552
2553 Therefore, we save any area of the stack that was already
2554 written and that we are using. Here we set up to do this
2555 by making a new stack usage map from the old one. The
2556 actual save will be done by store_one_arg.
2557
2558 Another approach might be to try to reorder the argument
2559 evaluations to avoid this conflicting stack usage. */
2560
2561 /* Since we will be writing into the entire argument area,
2562 the map must be allocated for its entire size, not just
2563 the part that is the responsibility of the caller. */
2564 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2565 needed += reg_parm_stack_space;
2566
2567 #ifdef ARGS_GROW_DOWNWARD
2568 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2569 needed + 1);
2570 #else
2571 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2572 needed);
2573 #endif
2574 free (stack_usage_map_buf);
2575 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
2576 stack_usage_map = stack_usage_map_buf;
2577
2578 if (initial_highest_arg_in_use)
2579 memcpy (stack_usage_map, initial_stack_usage_map,
2580 initial_highest_arg_in_use);
2581
2582 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2583 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2584 (highest_outgoing_arg_in_use
2585 - initial_highest_arg_in_use));
2586 needed = 0;
2587
2588 /* The address of the outgoing argument list must not be
2589 copied to a register here, because argblock would be left
2590 pointing to the wrong place after the call to
2591 allocate_dynamic_stack_space below. */
2592
2593 argblock = virtual_outgoing_args_rtx;
2594 }
2595 else
2596 {
2597 if (inhibit_defer_pop == 0)
2598 {
2599 /* Try to reuse some or all of the pending_stack_adjust
2600 to get this space. */
2601 needed
2602 = (combine_pending_stack_adjustment_and_call
2603 (unadjusted_args_size,
2604 &adjusted_args_size,
2605 preferred_unit_stack_boundary));
2606
2607 /* combine_pending_stack_adjustment_and_call computes
2608 an adjustment before the arguments are allocated.
2609 Account for them and see whether or not the stack
2610 needs to go up or down. */
2611 needed = unadjusted_args_size - needed;
2612
2613 if (needed < 0)
2614 {
2615 /* We're releasing stack space. */
2616 /* ??? We can avoid any adjustment at all if we're
2617 already aligned. FIXME. */
2618 pending_stack_adjust = -needed;
2619 do_pending_stack_adjust ();
2620 needed = 0;
2621 }
2622 else
2623 /* We need to allocate space. We'll do that in
2624 push_block below. */
2625 pending_stack_adjust = 0;
2626 }
2627
2628 /* Special case this because overhead of `push_block' in
2629 this case is non-trivial. */
2630 if (needed == 0)
2631 argblock = virtual_outgoing_args_rtx;
2632 else
2633 {
2634 argblock = push_block (GEN_INT (needed), 0, 0);
2635 #ifdef ARGS_GROW_DOWNWARD
2636 argblock = plus_constant (argblock, needed);
2637 #endif
2638 }
2639
2640 /* We only really need to call `copy_to_reg' in the case
2641 where push insns are going to be used to pass ARGBLOCK
2642 to a function call in ARGS. In that case, the stack
2643 pointer changes value from the allocation point to the
2644 call point, and hence the value of
2645 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2646 as well always do it. */
2647 argblock = copy_to_reg (argblock);
2648 }
2649 }
2650 }
2651
2652 if (ACCUMULATE_OUTGOING_ARGS)
2653 {
2654 /* The save/restore code in store_one_arg handles all
2655 cases except one: a constructor call (including a C
2656 function returning a BLKmode struct) to initialize
2657 an argument. */
2658 if (stack_arg_under_construction)
2659 {
2660 rtx push_size
2661 = GEN_INT (adjusted_args_size.constant
2662 + (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype
2663 : TREE_TYPE (fndecl))) ? 0
2664 : reg_parm_stack_space));
2665 if (old_stack_level == 0)
2666 {
2667 emit_stack_save (SAVE_BLOCK, &old_stack_level);
2668 old_stack_pointer_delta = stack_pointer_delta;
2669 old_pending_adj = pending_stack_adjust;
2670 pending_stack_adjust = 0;
2671 /* stack_arg_under_construction says whether a stack
2672 arg is being constructed at the old stack level.
2673 Pushing the stack gets a clean outgoing argument
2674 block. */
2675 old_stack_arg_under_construction
2676 = stack_arg_under_construction;
2677 stack_arg_under_construction = 0;
2678 /* Make a new map for the new argument list. */
2679 free (stack_usage_map_buf);
2680 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
2681 stack_usage_map = stack_usage_map_buf;
2682 highest_outgoing_arg_in_use = 0;
2683 }
2684 /* We can pass TRUE as the 4th argument because we just
2685 saved the stack pointer and will restore it right after
2686 the call. */
2687 allocate_dynamic_stack_space (push_size, 0,
2688 BIGGEST_ALIGNMENT, true);
2689 }
2690
2691 /* If argument evaluation might modify the stack pointer,
2692 copy the address of the argument list to a register. */
2693 for (i = 0; i < num_actuals; i++)
2694 if (args[i].pass_on_stack)
2695 {
2696 argblock = copy_addr_to_reg (argblock);
2697 break;
2698 }
2699 }
2700
2701 compute_argument_addresses (args, argblock, num_actuals);
2702
2703 /* If we push args individually in reverse order, perform stack alignment
2704 before the first push (the last arg). */
2705 if (PUSH_ARGS_REVERSED && argblock == 0
2706 && adjusted_args_size.constant != unadjusted_args_size)
2707 {
2708 /* When the stack adjustment is pending, we get better code
2709 by combining the adjustments. */
2710 if (pending_stack_adjust
2711 && ! inhibit_defer_pop)
2712 {
2713 pending_stack_adjust
2714 = (combine_pending_stack_adjustment_and_call
2715 (unadjusted_args_size,
2716 &adjusted_args_size,
2717 preferred_unit_stack_boundary));
2718 do_pending_stack_adjust ();
2719 }
2720 else if (argblock == 0)
2721 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2722 - unadjusted_args_size));
2723 }
2724 /* Now that the stack is properly aligned, pops can't safely
2725 be deferred during the evaluation of the arguments. */
2726 NO_DEFER_POP;
2727
2728 /* Record the maximum pushed stack space size. We need to delay
2729 doing it this far to take into account the optimization done
2730 by combine_pending_stack_adjustment_and_call. */
2731 if (flag_stack_usage_info
2732 && !ACCUMULATE_OUTGOING_ARGS
2733 && pass
2734 && adjusted_args_size.var == 0)
2735 {
2736 int pushed = adjusted_args_size.constant + pending_stack_adjust;
2737 if (pushed > current_function_pushed_stack_size)
2738 current_function_pushed_stack_size = pushed;
2739 }
2740
2741 funexp = rtx_for_function_call (fndecl, addr);
2742
2743 /* Figure out the register where the value, if any, will come back. */
2744 valreg = 0;
2745 if (TYPE_MODE (rettype) != VOIDmode
2746 && ! structure_value_addr)
2747 {
2748 if (pcc_struct_value)
2749 valreg = hard_function_value (build_pointer_type (rettype),
2750 fndecl, NULL, (pass == 0));
2751 else
2752 valreg = hard_function_value (rettype, fndecl, fntype,
2753 (pass == 0));
2754
2755 /* If VALREG is a PARALLEL whose first member has a zero
2756 offset, use that. This is for targets such as m68k that
2757 return the same value in multiple places. */
2758 if (GET_CODE (valreg) == PARALLEL)
2759 {
2760 rtx elem = XVECEXP (valreg, 0, 0);
2761 rtx where = XEXP (elem, 0);
2762 rtx offset = XEXP (elem, 1);
2763 if (offset == const0_rtx
2764 && GET_MODE (where) == GET_MODE (valreg))
2765 valreg = where;
2766 }
2767 }
2768
2769 /* Precompute all register parameters. It isn't safe to compute anything
2770 once we have started filling any specific hard regs. */
2771 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2772
2773 if (CALL_EXPR_STATIC_CHAIN (exp))
2774 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
2775 else
2776 static_chain_value = 0;
2777
2778 #ifdef REG_PARM_STACK_SPACE
2779 /* Save the fixed argument area if it's part of the caller's frame and
2780 is clobbered by argument setup for this call. */
2781 if (ACCUMULATE_OUTGOING_ARGS && pass)
2782 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2783 &low_to_save, &high_to_save);
2784 #endif
2785
2786 /* Now store (and compute if necessary) all non-register parms.
2787 These come before register parms, since they can require block-moves,
2788 which could clobber the registers used for register parms.
2789 Parms which have partial registers are not stored here,
2790 but we do preallocate space here if they want that. */
2791
2792 for (i = 0; i < num_actuals; i++)
2793 {
2794 if (args[i].reg == 0 || args[i].pass_on_stack)
2795 {
2796 rtx before_arg = get_last_insn ();
2797
2798 if (store_one_arg (&args[i], argblock, flags,
2799 adjusted_args_size.var != 0,
2800 reg_parm_stack_space)
2801 || (pass == 0
2802 && check_sibcall_argument_overlap (before_arg,
2803 &args[i], 1)))
2804 sibcall_failure = 1;
2805 }
2806
2807 if (args[i].stack)
2808 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2809 gen_rtx_USE (VOIDmode,
2810 args[i].stack),
2811 call_fusage);
2812 }
2813
2814 /* If we have a parm that is passed in registers but not in memory
2815 and whose alignment does not permit a direct copy into registers,
2816 make a group of pseudos that correspond to each register that we
2817 will later fill. */
2818 if (STRICT_ALIGNMENT)
2819 store_unaligned_arguments_into_pseudos (args, num_actuals);
2820
2821 /* Now store any partially-in-registers parm.
2822 This is the last place a block-move can happen. */
2823 if (reg_parm_seen)
2824 for (i = 0; i < num_actuals; i++)
2825 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2826 {
2827 rtx before_arg = get_last_insn ();
2828
2829 if (store_one_arg (&args[i], argblock, flags,
2830 adjusted_args_size.var != 0,
2831 reg_parm_stack_space)
2832 || (pass == 0
2833 && check_sibcall_argument_overlap (before_arg,
2834 &args[i], 1)))
2835 sibcall_failure = 1;
2836 }
2837
2838 /* If we pushed args in forward order, perform stack alignment
2839 after pushing the last arg. */
2840 if (!PUSH_ARGS_REVERSED && argblock == 0)
2841 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2842 - unadjusted_args_size));
2843
2844 /* If register arguments require space on the stack and stack space
2845 was not preallocated, allocate stack space here for arguments
2846 passed in registers. */
2847 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2848 && !ACCUMULATE_OUTGOING_ARGS
2849 && must_preallocate == 0 && reg_parm_stack_space > 0)
2850 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2851
2852 /* Pass the function the address in which to return a
2853 structure value. */
2854 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2855 {
2856 structure_value_addr
2857 = convert_memory_address (Pmode, structure_value_addr);
2858 emit_move_insn (struct_value,
2859 force_reg (Pmode,
2860 force_operand (structure_value_addr,
2861 NULL_RTX)));
2862
2863 if (REG_P (struct_value))
2864 use_reg (&call_fusage, struct_value);
2865 }
2866
2867 after_args = get_last_insn ();
2868 funexp = prepare_call_address (fndecl, funexp, static_chain_value,
2869 &call_fusage, reg_parm_seen, pass == 0);
2870
2871 load_register_parameters (args, num_actuals, &call_fusage, flags,
2872 pass == 0, &sibcall_failure);
2873
2874 /* Save a pointer to the last insn before the call, so that we can
2875 later safely search backwards to find the CALL_INSN. */
2876 before_call = get_last_insn ();
2877
2878 /* Set up next argument register. For sibling calls on machines
2879 with register windows this should be the incoming register. */
2880 if (pass == 0)
2881 next_arg_reg = targetm.calls.function_incoming_arg (args_so_far,
2882 VOIDmode,
2883 void_type_node,
2884 true);
2885 else
2886 next_arg_reg = targetm.calls.function_arg (args_so_far,
2887 VOIDmode, void_type_node,
2888 true);
2889
2890 /* All arguments and registers used for the call must be set up by
2891 now! */
2892
2893 /* Stack must be properly aligned now. */
2894 gcc_assert (!pass
2895 || !(stack_pointer_delta % preferred_unit_stack_boundary));
2896
2897 /* Generate the actual call instruction. */
2898 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2899 adjusted_args_size.constant, struct_value_size,
2900 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2901 flags, args_so_far);
2902
2903 /* If the call setup or the call itself overlaps with anything
2904 of the argument setup we probably clobbered our call address.
2905 In that case we can't do sibcalls. */
2906 if (pass == 0
2907 && check_sibcall_argument_overlap (after_args, 0, 0))
2908 sibcall_failure = 1;
2909
2910 /* If a non-BLKmode value is returned at the most significant end
2911 of a register, shift the register right by the appropriate amount
2912 and update VALREG accordingly. BLKmode values are handled by the
2913 group load/store machinery below. */
2914 if (!structure_value_addr
2915 && !pcc_struct_value
2916 && TYPE_MODE (rettype) != BLKmode
2917 && targetm.calls.return_in_msb (rettype))
2918 {
2919 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
2920 sibcall_failure = 1;
2921 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
2922 }
2923
2924 if (pass && (flags & ECF_MALLOC))
2925 {
2926 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2927 rtx last, insns;
2928
2929 /* The return value from a malloc-like function is a pointer. */
2930 if (TREE_CODE (rettype) == POINTER_TYPE)
2931 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2932
2933 emit_move_insn (temp, valreg);
2934
2935 /* The return value from a malloc-like function can not alias
2936 anything else. */
2937 last = get_last_insn ();
2938 add_reg_note (last, REG_NOALIAS, temp);
2939
2940 /* Write out the sequence. */
2941 insns = get_insns ();
2942 end_sequence ();
2943 emit_insn (insns);
2944 valreg = temp;
2945 }
2946
2947 /* For calls to `setjmp', etc., inform
2948 function.c:setjmp_warnings that it should complain if
2949 nonvolatile values are live. For functions that cannot
2950 return, inform flow that control does not fall through. */
2951
2952 if ((flags & ECF_NORETURN) || pass == 0)
2953 {
2954 /* The barrier must be emitted
2955 immediately after the CALL_INSN. Some ports emit more
2956 than just a CALL_INSN above, so we must search for it here. */
2957
2958 rtx last = get_last_insn ();
2959 while (!CALL_P (last))
2960 {
2961 last = PREV_INSN (last);
2962 /* There was no CALL_INSN? */
2963 gcc_assert (last != before_call);
2964 }
2965
2966 emit_barrier_after (last);
2967
2968 /* Stack adjustments after a noreturn call are dead code.
2969 However when NO_DEFER_POP is in effect, we must preserve
2970 stack_pointer_delta. */
2971 if (inhibit_defer_pop == 0)
2972 {
2973 stack_pointer_delta = old_stack_allocated;
2974 pending_stack_adjust = 0;
2975 }
2976 }
2977
2978 /* If value type not void, return an rtx for the value. */
2979
2980 if (TYPE_MODE (rettype) == VOIDmode
2981 || ignore)
2982 target = const0_rtx;
2983 else if (structure_value_addr)
2984 {
2985 if (target == 0 || !MEM_P (target))
2986 {
2987 target
2988 = gen_rtx_MEM (TYPE_MODE (rettype),
2989 memory_address (TYPE_MODE (rettype),
2990 structure_value_addr));
2991 set_mem_attributes (target, rettype, 1);
2992 }
2993 }
2994 else if (pcc_struct_value)
2995 {
2996 /* This is the special C++ case where we need to
2997 know what the true target was. We take care to
2998 never use this value more than once in one expression. */
2999 target = gen_rtx_MEM (TYPE_MODE (rettype),
3000 copy_to_reg (valreg));
3001 set_mem_attributes (target, rettype, 1);
3002 }
3003 /* Handle calls that return values in multiple non-contiguous locations.
3004 The Irix 6 ABI has examples of this. */
3005 else if (GET_CODE (valreg) == PARALLEL)
3006 {
3007 if (target == 0)
3008 {
3009 /* This will only be assigned once, so it can be readonly. */
3010 tree nt = build_qualified_type (rettype,
3011 (TYPE_QUALS (rettype)
3012 | TYPE_QUAL_CONST));
3013
3014 target = assign_temp (nt, 0, 1, 1);
3015 }
3016
3017 if (! rtx_equal_p (target, valreg))
3018 emit_group_store (target, valreg, rettype,
3019 int_size_in_bytes (rettype));
3020
3021 /* We can not support sibling calls for this case. */
3022 sibcall_failure = 1;
3023 }
3024 else if (target
3025 && GET_MODE (target) == TYPE_MODE (rettype)
3026 && GET_MODE (target) == GET_MODE (valreg))
3027 {
3028 bool may_overlap = false;
3029
3030 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
3031 reg to a plain register. */
3032 if (!REG_P (target) || HARD_REGISTER_P (target))
3033 valreg = avoid_likely_spilled_reg (valreg);
3034
3035 /* If TARGET is a MEM in the argument area, and we have
3036 saved part of the argument area, then we can't store
3037 directly into TARGET as it may get overwritten when we
3038 restore the argument save area below. Don't work too
3039 hard though and simply force TARGET to a register if it
3040 is a MEM; the optimizer is quite likely to sort it out. */
3041 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
3042 for (i = 0; i < num_actuals; i++)
3043 if (args[i].save_area)
3044 {
3045 may_overlap = true;
3046 break;
3047 }
3048
3049 if (may_overlap)
3050 target = copy_to_reg (valreg);
3051 else
3052 {
3053 /* TARGET and VALREG cannot be equal at this point
3054 because the latter would not have
3055 REG_FUNCTION_VALUE_P true, while the former would if
3056 it were referring to the same register.
3057
3058 If they refer to the same register, this move will be
3059 a no-op, except when function inlining is being
3060 done. */
3061 emit_move_insn (target, valreg);
3062
3063 /* If we are setting a MEM, this code must be executed.
3064 Since it is emitted after the call insn, sibcall
3065 optimization cannot be performed in that case. */
3066 if (MEM_P (target))
3067 sibcall_failure = 1;
3068 }
3069 }
3070 else if (TYPE_MODE (rettype) == BLKmode)
3071 {
3072 rtx val = valreg;
3073 if (GET_MODE (val) != BLKmode)
3074 val = avoid_likely_spilled_reg (val);
3075 target = copy_blkmode_from_reg (target, val, rettype);
3076
3077 /* We can not support sibling calls for this case. */
3078 sibcall_failure = 1;
3079 }
3080 else
3081 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
3082
3083 /* If we promoted this return value, make the proper SUBREG.
3084 TARGET might be const0_rtx here, so be careful. */
3085 if (REG_P (target)
3086 && TYPE_MODE (rettype) != BLKmode
3087 && GET_MODE (target) != TYPE_MODE (rettype))
3088 {
3089 tree type = rettype;
3090 int unsignedp = TYPE_UNSIGNED (type);
3091 int offset = 0;
3092 enum machine_mode pmode;
3093
3094 /* Ensure we promote as expected, and get the new unsignedness. */
3095 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
3096 funtype, 1);
3097 gcc_assert (GET_MODE (target) == pmode);
3098
3099 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
3100 && (GET_MODE_SIZE (GET_MODE (target))
3101 > GET_MODE_SIZE (TYPE_MODE (type))))
3102 {
3103 offset = GET_MODE_SIZE (GET_MODE (target))
3104 - GET_MODE_SIZE (TYPE_MODE (type));
3105 if (! BYTES_BIG_ENDIAN)
3106 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
3107 else if (! WORDS_BIG_ENDIAN)
3108 offset %= UNITS_PER_WORD;
3109 }
3110
3111 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
3112 SUBREG_PROMOTED_VAR_P (target) = 1;
3113 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
3114 }
3115
3116 /* If size of args is variable or this was a constructor call for a stack
3117 argument, restore saved stack-pointer value. */
3118
3119 if (old_stack_level)
3120 {
3121 emit_stack_restore (SAVE_BLOCK, old_stack_level);
3122 stack_pointer_delta = old_stack_pointer_delta;
3123 pending_stack_adjust = old_pending_adj;
3124 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3125 stack_arg_under_construction = old_stack_arg_under_construction;
3126 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3127 stack_usage_map = initial_stack_usage_map;
3128 sibcall_failure = 1;
3129 }
3130 else if (ACCUMULATE_OUTGOING_ARGS && pass)
3131 {
3132 #ifdef REG_PARM_STACK_SPACE
3133 if (save_area)
3134 restore_fixed_argument_area (save_area, argblock,
3135 high_to_save, low_to_save);
3136 #endif
3137
3138 /* If we saved any argument areas, restore them. */
3139 for (i = 0; i < num_actuals; i++)
3140 if (args[i].save_area)
3141 {
3142 enum machine_mode save_mode = GET_MODE (args[i].save_area);
3143 rtx stack_area
3144 = gen_rtx_MEM (save_mode,
3145 memory_address (save_mode,
3146 XEXP (args[i].stack_slot, 0)));
3147
3148 if (save_mode != BLKmode)
3149 emit_move_insn (stack_area, args[i].save_area);
3150 else
3151 emit_block_move (stack_area, args[i].save_area,
3152 GEN_INT (args[i].locate.size.constant),
3153 BLOCK_OP_CALL_PARM);
3154 }
3155
3156 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3157 stack_usage_map = initial_stack_usage_map;
3158 }
3159
3160 /* If this was alloca, record the new stack level for nonlocal gotos.
3161 Check for the handler slots since we might not have a save area
3162 for non-local gotos. */
3163
3164 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
3165 update_nonlocal_goto_save_area ();
3166
3167 /* Free up storage we no longer need. */
3168 for (i = 0; i < num_actuals; ++i)
3169 free (args[i].aligned_regs);
3170
3171 insns = get_insns ();
3172 end_sequence ();
3173
3174 if (pass == 0)
3175 {
3176 tail_call_insns = insns;
3177
3178 /* Restore the pending stack adjustment now that we have
3179 finished generating the sibling call sequence. */
3180
3181 pending_stack_adjust = save_pending_stack_adjust;
3182 stack_pointer_delta = save_stack_pointer_delta;
3183
3184 /* Prepare arg structure for next iteration. */
3185 for (i = 0; i < num_actuals; i++)
3186 {
3187 args[i].value = 0;
3188 args[i].aligned_regs = 0;
3189 args[i].stack = 0;
3190 }
3191
3192 sbitmap_free (stored_args_map);
3193 }
3194 else
3195 {
3196 normal_call_insns = insns;
3197
3198 /* Verify that we've deallocated all the stack we used. */
3199 gcc_assert ((flags & ECF_NORETURN)
3200 || (old_stack_allocated
3201 == stack_pointer_delta - pending_stack_adjust));
3202 }
3203
3204 /* If something prevents making this a sibling call,
3205 zero out the sequence. */
3206 if (sibcall_failure)
3207 tail_call_insns = NULL_RTX;
3208 else
3209 break;
3210 }
3211
3212 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3213 arguments too, as argument area is now clobbered by the call. */
3214 if (tail_call_insns)
3215 {
3216 emit_insn (tail_call_insns);
3217 crtl->tail_call_emit = true;
3218 }
3219 else
3220 emit_insn (normal_call_insns);
3221
3222 currently_expanding_call--;
3223
3224 free (stack_usage_map_buf);
3225
3226 return target;
3227 }
3228
3229 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3230 this function's incoming arguments.
3231
3232 At the start of RTL generation we know the only REG_EQUIV notes
3233 in the rtl chain are those for incoming arguments, so we can look
3234 for REG_EQUIV notes between the start of the function and the
3235 NOTE_INSN_FUNCTION_BEG.
3236
3237 This is (slight) overkill. We could keep track of the highest
3238 argument we clobber and be more selective in removing notes, but it
3239 does not seem to be worth the effort. */
3240
3241 void
3242 fixup_tail_calls (void)
3243 {
3244 rtx insn;
3245
3246 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3247 {
3248 rtx note;
3249
3250 /* There are never REG_EQUIV notes for the incoming arguments
3251 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
3252 if (NOTE_P (insn)
3253 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3254 break;
3255
3256 note = find_reg_note (insn, REG_EQUIV, 0);
3257 if (note)
3258 remove_note (insn, note);
3259 note = find_reg_note (insn, REG_EQUIV, 0);
3260 gcc_assert (!note);
3261 }
3262 }
3263
3264 /* Traverse a list of TYPES and expand all complex types into their
3265 components. */
3266 static tree
3267 split_complex_types (tree types)
3268 {
3269 tree p;
3270
3271 /* Before allocating memory, check for the common case of no complex. */
3272 for (p = types; p; p = TREE_CHAIN (p))
3273 {
3274 tree type = TREE_VALUE (p);
3275 if (TREE_CODE (type) == COMPLEX_TYPE
3276 && targetm.calls.split_complex_arg (type))
3277 goto found;
3278 }
3279 return types;
3280
3281 found:
3282 types = copy_list (types);
3283
3284 for (p = types; p; p = TREE_CHAIN (p))
3285 {
3286 tree complex_type = TREE_VALUE (p);
3287
3288 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3289 && targetm.calls.split_complex_arg (complex_type))
3290 {
3291 tree next, imag;
3292
3293 /* Rewrite complex type with component type. */
3294 TREE_VALUE (p) = TREE_TYPE (complex_type);
3295 next = TREE_CHAIN (p);
3296
3297 /* Add another component type for the imaginary part. */
3298 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3299 TREE_CHAIN (p) = imag;
3300 TREE_CHAIN (imag) = next;
3301
3302 /* Skip the newly created node. */
3303 p = TREE_CHAIN (p);
3304 }
3305 }
3306
3307 return types;
3308 }
3309 \f
3310 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3311 The RETVAL parameter specifies whether return value needs to be saved, other
3312 parameters are documented in the emit_library_call function below. */
3313
3314 static rtx
3315 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3316 enum libcall_type fn_type,
3317 enum machine_mode outmode, int nargs, va_list p)
3318 {
3319 /* Total size in bytes of all the stack-parms scanned so far. */
3320 struct args_size args_size;
3321 /* Size of arguments before any adjustments (such as rounding). */
3322 struct args_size original_args_size;
3323 int argnum;
3324 rtx fun;
3325 /* Todo, choose the correct decl type of orgfun. Sadly this information
3326 isn't present here, so we default to native calling abi here. */
3327 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3328 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3329 int inc;
3330 int count;
3331 rtx argblock = 0;
3332 CUMULATIVE_ARGS args_so_far_v;
3333 cumulative_args_t args_so_far;
3334 struct arg
3335 {
3336 rtx value;
3337 enum machine_mode mode;
3338 rtx reg;
3339 int partial;
3340 struct locate_and_pad_arg_data locate;
3341 rtx save_area;
3342 };
3343 struct arg *argvec;
3344 int old_inhibit_defer_pop = inhibit_defer_pop;
3345 rtx call_fusage = 0;
3346 rtx mem_value = 0;
3347 rtx valreg;
3348 int pcc_struct_value = 0;
3349 int struct_value_size = 0;
3350 int flags;
3351 int reg_parm_stack_space = 0;
3352 int needed;
3353 rtx before_call;
3354 tree tfom; /* type_for_mode (outmode, 0) */
3355
3356 #ifdef REG_PARM_STACK_SPACE
3357 /* Define the boundary of the register parm stack space that needs to be
3358 save, if any. */
3359 int low_to_save = 0, high_to_save = 0;
3360 rtx save_area = 0; /* Place that it is saved. */
3361 #endif
3362
3363 /* Size of the stack reserved for parameter registers. */
3364 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3365 char *initial_stack_usage_map = stack_usage_map;
3366 char *stack_usage_map_buf = NULL;
3367
3368 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3369
3370 #ifdef REG_PARM_STACK_SPACE
3371 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3372 #endif
3373
3374 /* By default, library functions can not throw. */
3375 flags = ECF_NOTHROW;
3376
3377 switch (fn_type)
3378 {
3379 case LCT_NORMAL:
3380 break;
3381 case LCT_CONST:
3382 flags |= ECF_CONST;
3383 break;
3384 case LCT_PURE:
3385 flags |= ECF_PURE;
3386 break;
3387 case LCT_NORETURN:
3388 flags |= ECF_NORETURN;
3389 break;
3390 case LCT_THROW:
3391 flags = ECF_NORETURN;
3392 break;
3393 case LCT_RETURNS_TWICE:
3394 flags = ECF_RETURNS_TWICE;
3395 break;
3396 }
3397 fun = orgfun;
3398
3399 /* Ensure current function's preferred stack boundary is at least
3400 what we need. */
3401 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3402 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3403
3404 /* If this kind of value comes back in memory,
3405 decide where in memory it should come back. */
3406 if (outmode != VOIDmode)
3407 {
3408 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3409 if (aggregate_value_p (tfom, 0))
3410 {
3411 #ifdef PCC_STATIC_STRUCT_RETURN
3412 rtx pointer_reg
3413 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
3414 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3415 pcc_struct_value = 1;
3416 if (value == 0)
3417 value = gen_reg_rtx (outmode);
3418 #else /* not PCC_STATIC_STRUCT_RETURN */
3419 struct_value_size = GET_MODE_SIZE (outmode);
3420 if (value != 0 && MEM_P (value))
3421 mem_value = value;
3422 else
3423 mem_value = assign_temp (tfom, 0, 1, 1);
3424 #endif
3425 /* This call returns a big structure. */
3426 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3427 }
3428 }
3429 else
3430 tfom = void_type_node;
3431
3432 /* ??? Unfinished: must pass the memory address as an argument. */
3433
3434 /* Copy all the libcall-arguments out of the varargs data
3435 and into a vector ARGVEC.
3436
3437 Compute how to pass each argument. We only support a very small subset
3438 of the full argument passing conventions to limit complexity here since
3439 library functions shouldn't have many args. */
3440
3441 argvec = XALLOCAVEC (struct arg, nargs + 1);
3442 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3443
3444 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3445 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far_v, outmode, fun);
3446 #else
3447 INIT_CUMULATIVE_ARGS (args_so_far_v, NULL_TREE, fun, 0, nargs);
3448 #endif
3449 args_so_far = pack_cumulative_args (&args_so_far_v);
3450
3451 args_size.constant = 0;
3452 args_size.var = 0;
3453
3454 count = 0;
3455
3456 push_temp_slots ();
3457
3458 /* If there's a structure value address to be passed,
3459 either pass it in the special place, or pass it as an extra argument. */
3460 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3461 {
3462 rtx addr = XEXP (mem_value, 0);
3463
3464 nargs++;
3465
3466 /* Make sure it is a reasonable operand for a move or push insn. */
3467 if (!REG_P (addr) && !MEM_P (addr)
3468 && !(CONSTANT_P (addr)
3469 && targetm.legitimate_constant_p (Pmode, addr)))
3470 addr = force_operand (addr, NULL_RTX);
3471
3472 argvec[count].value = addr;
3473 argvec[count].mode = Pmode;
3474 argvec[count].partial = 0;
3475
3476 argvec[count].reg = targetm.calls.function_arg (args_so_far,
3477 Pmode, NULL_TREE, true);
3478 gcc_assert (targetm.calls.arg_partial_bytes (args_so_far, Pmode,
3479 NULL_TREE, 1) == 0);
3480
3481 locate_and_pad_parm (Pmode, NULL_TREE,
3482 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3483 1,
3484 #else
3485 argvec[count].reg != 0,
3486 #endif
3487 0, NULL_TREE, &args_size, &argvec[count].locate);
3488
3489 if (argvec[count].reg == 0 || argvec[count].partial != 0
3490 || reg_parm_stack_space > 0)
3491 args_size.constant += argvec[count].locate.size.constant;
3492
3493 targetm.calls.function_arg_advance (args_so_far, Pmode, (tree) 0, true);
3494
3495 count++;
3496 }
3497
3498 for (; count < nargs; count++)
3499 {
3500 rtx val = va_arg (p, rtx);
3501 enum machine_mode mode = (enum machine_mode) va_arg (p, int);
3502 int unsigned_p = 0;
3503
3504 /* We cannot convert the arg value to the mode the library wants here;
3505 must do it earlier where we know the signedness of the arg. */
3506 gcc_assert (mode != BLKmode
3507 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3508
3509 /* Make sure it is a reasonable operand for a move or push insn. */
3510 if (!REG_P (val) && !MEM_P (val)
3511 && !(CONSTANT_P (val) && targetm.legitimate_constant_p (mode, val)))
3512 val = force_operand (val, NULL_RTX);
3513
3514 if (pass_by_reference (&args_so_far_v, mode, NULL_TREE, 1))
3515 {
3516 rtx slot;
3517 int must_copy
3518 = !reference_callee_copied (&args_so_far_v, mode, NULL_TREE, 1);
3519
3520 /* If this was a CONST function, it is now PURE since it now
3521 reads memory. */
3522 if (flags & ECF_CONST)
3523 {
3524 flags &= ~ECF_CONST;
3525 flags |= ECF_PURE;
3526 }
3527
3528 if (MEM_P (val) && !must_copy)
3529 {
3530 tree val_expr = MEM_EXPR (val);
3531 if (val_expr)
3532 mark_addressable (val_expr);
3533 slot = val;
3534 }
3535 else
3536 {
3537 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3538 0, 1, 1);
3539 emit_move_insn (slot, val);
3540 }
3541
3542 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3543 gen_rtx_USE (VOIDmode, slot),
3544 call_fusage);
3545 if (must_copy)
3546 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3547 gen_rtx_CLOBBER (VOIDmode,
3548 slot),
3549 call_fusage);
3550
3551 mode = Pmode;
3552 val = force_operand (XEXP (slot, 0), NULL_RTX);
3553 }
3554
3555 mode = promote_function_mode (NULL_TREE, mode, &unsigned_p, NULL_TREE, 0);
3556 argvec[count].mode = mode;
3557 argvec[count].value = convert_modes (mode, GET_MODE (val), val, unsigned_p);
3558 argvec[count].reg = targetm.calls.function_arg (args_so_far, mode,
3559 NULL_TREE, true);
3560
3561 argvec[count].partial
3562 = targetm.calls.arg_partial_bytes (args_so_far, mode, NULL_TREE, 1);
3563
3564 locate_and_pad_parm (mode, NULL_TREE,
3565 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3566 1,
3567 #else
3568 argvec[count].reg != 0,
3569 #endif
3570 argvec[count].partial,
3571 NULL_TREE, &args_size, &argvec[count].locate);
3572
3573 gcc_assert (!argvec[count].locate.size.var);
3574
3575 if (argvec[count].reg == 0 || argvec[count].partial != 0
3576 || reg_parm_stack_space > 0)
3577 args_size.constant += argvec[count].locate.size.constant;
3578
3579 targetm.calls.function_arg_advance (args_so_far, mode, (tree) 0, true);
3580 }
3581
3582 /* If this machine requires an external definition for library
3583 functions, write one out. */
3584 assemble_external_libcall (fun);
3585
3586 original_args_size = args_size;
3587 args_size.constant = (((args_size.constant
3588 + stack_pointer_delta
3589 + STACK_BYTES - 1)
3590 / STACK_BYTES
3591 * STACK_BYTES)
3592 - stack_pointer_delta);
3593
3594 args_size.constant = MAX (args_size.constant,
3595 reg_parm_stack_space);
3596
3597 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3598 args_size.constant -= reg_parm_stack_space;
3599
3600 if (args_size.constant > crtl->outgoing_args_size)
3601 crtl->outgoing_args_size = args_size.constant;
3602
3603 if (flag_stack_usage_info && !ACCUMULATE_OUTGOING_ARGS)
3604 {
3605 int pushed = args_size.constant + pending_stack_adjust;
3606 if (pushed > current_function_pushed_stack_size)
3607 current_function_pushed_stack_size = pushed;
3608 }
3609
3610 if (ACCUMULATE_OUTGOING_ARGS)
3611 {
3612 /* Since the stack pointer will never be pushed, it is possible for
3613 the evaluation of a parm to clobber something we have already
3614 written to the stack. Since most function calls on RISC machines
3615 do not use the stack, this is uncommon, but must work correctly.
3616
3617 Therefore, we save any area of the stack that was already written
3618 and that we are using. Here we set up to do this by making a new
3619 stack usage map from the old one.
3620
3621 Another approach might be to try to reorder the argument
3622 evaluations to avoid this conflicting stack usage. */
3623
3624 needed = args_size.constant;
3625
3626 /* Since we will be writing into the entire argument area, the
3627 map must be allocated for its entire size, not just the part that
3628 is the responsibility of the caller. */
3629 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3630 needed += reg_parm_stack_space;
3631
3632 #ifdef ARGS_GROW_DOWNWARD
3633 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3634 needed + 1);
3635 #else
3636 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3637 needed);
3638 #endif
3639 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3640 stack_usage_map = stack_usage_map_buf;
3641
3642 if (initial_highest_arg_in_use)
3643 memcpy (stack_usage_map, initial_stack_usage_map,
3644 initial_highest_arg_in_use);
3645
3646 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3647 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3648 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3649 needed = 0;
3650
3651 /* We must be careful to use virtual regs before they're instantiated,
3652 and real regs afterwards. Loop optimization, for example, can create
3653 new libcalls after we've instantiated the virtual regs, and if we
3654 use virtuals anyway, they won't match the rtl patterns. */
3655
3656 if (virtuals_instantiated)
3657 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3658 else
3659 argblock = virtual_outgoing_args_rtx;
3660 }
3661 else
3662 {
3663 if (!PUSH_ARGS)
3664 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3665 }
3666
3667 /* If we push args individually in reverse order, perform stack alignment
3668 before the first push (the last arg). */
3669 if (argblock == 0 && PUSH_ARGS_REVERSED)
3670 anti_adjust_stack (GEN_INT (args_size.constant
3671 - original_args_size.constant));
3672
3673 if (PUSH_ARGS_REVERSED)
3674 {
3675 inc = -1;
3676 argnum = nargs - 1;
3677 }
3678 else
3679 {
3680 inc = 1;
3681 argnum = 0;
3682 }
3683
3684 #ifdef REG_PARM_STACK_SPACE
3685 if (ACCUMULATE_OUTGOING_ARGS)
3686 {
3687 /* The argument list is the property of the called routine and it
3688 may clobber it. If the fixed area has been used for previous
3689 parameters, we must save and restore it. */
3690 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3691 &low_to_save, &high_to_save);
3692 }
3693 #endif
3694
3695 /* Push the args that need to be pushed. */
3696
3697 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3698 are to be pushed. */
3699 for (count = 0; count < nargs; count++, argnum += inc)
3700 {
3701 enum machine_mode mode = argvec[argnum].mode;
3702 rtx val = argvec[argnum].value;
3703 rtx reg = argvec[argnum].reg;
3704 int partial = argvec[argnum].partial;
3705 unsigned int parm_align = argvec[argnum].locate.boundary;
3706 int lower_bound = 0, upper_bound = 0, i;
3707
3708 if (! (reg != 0 && partial == 0))
3709 {
3710 rtx use;
3711
3712 if (ACCUMULATE_OUTGOING_ARGS)
3713 {
3714 /* If this is being stored into a pre-allocated, fixed-size,
3715 stack area, save any previous data at that location. */
3716
3717 #ifdef ARGS_GROW_DOWNWARD
3718 /* stack_slot is negative, but we want to index stack_usage_map
3719 with positive values. */
3720 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
3721 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3722 #else
3723 lower_bound = argvec[argnum].locate.slot_offset.constant;
3724 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3725 #endif
3726
3727 i = lower_bound;
3728 /* Don't worry about things in the fixed argument area;
3729 it has already been saved. */
3730 if (i < reg_parm_stack_space)
3731 i = reg_parm_stack_space;
3732 while (i < upper_bound && stack_usage_map[i] == 0)
3733 i++;
3734
3735 if (i < upper_bound)
3736 {
3737 /* We need to make a save area. */
3738 unsigned int size
3739 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3740 enum machine_mode save_mode
3741 = mode_for_size (size, MODE_INT, 1);
3742 rtx adr
3743 = plus_constant (argblock,
3744 argvec[argnum].locate.offset.constant);
3745 rtx stack_area
3746 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3747
3748 if (save_mode == BLKmode)
3749 {
3750 argvec[argnum].save_area
3751 = assign_stack_temp (BLKmode,
3752 argvec[argnum].locate.size.constant,
3753 0);
3754
3755 emit_block_move (validize_mem (argvec[argnum].save_area),
3756 stack_area,
3757 GEN_INT (argvec[argnum].locate.size.constant),
3758 BLOCK_OP_CALL_PARM);
3759 }
3760 else
3761 {
3762 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3763
3764 emit_move_insn (argvec[argnum].save_area, stack_area);
3765 }
3766 }
3767 }
3768
3769 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
3770 partial, reg, 0, argblock,
3771 GEN_INT (argvec[argnum].locate.offset.constant),
3772 reg_parm_stack_space,
3773 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3774
3775 /* Now mark the segment we just used. */
3776 if (ACCUMULATE_OUTGOING_ARGS)
3777 for (i = lower_bound; i < upper_bound; i++)
3778 stack_usage_map[i] = 1;
3779
3780 NO_DEFER_POP;
3781
3782 /* Indicate argument access so that alias.c knows that these
3783 values are live. */
3784 if (argblock)
3785 use = plus_constant (argblock,
3786 argvec[argnum].locate.offset.constant);
3787 else
3788 /* When arguments are pushed, trying to tell alias.c where
3789 exactly this argument is won't work, because the
3790 auto-increment causes confusion. So we merely indicate
3791 that we access something with a known mode somewhere on
3792 the stack. */
3793 use = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3794 gen_rtx_SCRATCH (Pmode));
3795 use = gen_rtx_MEM (argvec[argnum].mode, use);
3796 use = gen_rtx_USE (VOIDmode, use);
3797 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
3798 }
3799 }
3800
3801 /* If we pushed args in forward order, perform stack alignment
3802 after pushing the last arg. */
3803 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3804 anti_adjust_stack (GEN_INT (args_size.constant
3805 - original_args_size.constant));
3806
3807 if (PUSH_ARGS_REVERSED)
3808 argnum = nargs - 1;
3809 else
3810 argnum = 0;
3811
3812 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
3813
3814 /* Now load any reg parms into their regs. */
3815
3816 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3817 are to be pushed. */
3818 for (count = 0; count < nargs; count++, argnum += inc)
3819 {
3820 enum machine_mode mode = argvec[argnum].mode;
3821 rtx val = argvec[argnum].value;
3822 rtx reg = argvec[argnum].reg;
3823 int partial = argvec[argnum].partial;
3824
3825 /* Handle calls that pass values in multiple non-contiguous
3826 locations. The PA64 has examples of this for library calls. */
3827 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3828 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3829 else if (reg != 0 && partial == 0)
3830 emit_move_insn (reg, val);
3831
3832 NO_DEFER_POP;
3833 }
3834
3835 /* Any regs containing parms remain in use through the call. */
3836 for (count = 0; count < nargs; count++)
3837 {
3838 rtx reg = argvec[count].reg;
3839 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3840 use_group_regs (&call_fusage, reg);
3841 else if (reg != 0)
3842 {
3843 int partial = argvec[count].partial;
3844 if (partial)
3845 {
3846 int nregs;
3847 gcc_assert (partial % UNITS_PER_WORD == 0);
3848 nregs = partial / UNITS_PER_WORD;
3849 use_regs (&call_fusage, REGNO (reg), nregs);
3850 }
3851 else
3852 use_reg (&call_fusage, reg);
3853 }
3854 }
3855
3856 /* Pass the function the address in which to return a structure value. */
3857 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3858 {
3859 emit_move_insn (struct_value,
3860 force_reg (Pmode,
3861 force_operand (XEXP (mem_value, 0),
3862 NULL_RTX)));
3863 if (REG_P (struct_value))
3864 use_reg (&call_fusage, struct_value);
3865 }
3866
3867 /* Don't allow popping to be deferred, since then
3868 cse'ing of library calls could delete a call and leave the pop. */
3869 NO_DEFER_POP;
3870 valreg = (mem_value == 0 && outmode != VOIDmode
3871 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
3872
3873 /* Stack must be properly aligned now. */
3874 gcc_assert (!(stack_pointer_delta
3875 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
3876
3877 before_call = get_last_insn ();
3878
3879 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3880 will set inhibit_defer_pop to that value. */
3881 /* The return type is needed to decide how many bytes the function pops.
3882 Signedness plays no role in that, so for simplicity, we pretend it's
3883 always signed. We also assume that the list of arguments passed has
3884 no impact, so we pretend it is unknown. */
3885
3886 emit_call_1 (fun, NULL,
3887 get_identifier (XSTR (orgfun, 0)),
3888 build_function_type (tfom, NULL_TREE),
3889 original_args_size.constant, args_size.constant,
3890 struct_value_size,
3891 targetm.calls.function_arg (args_so_far,
3892 VOIDmode, void_type_node, true),
3893 valreg,
3894 old_inhibit_defer_pop + 1, call_fusage, flags, args_so_far);
3895
3896 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
3897 that it should complain if nonvolatile values are live. For
3898 functions that cannot return, inform flow that control does not
3899 fall through. */
3900
3901 if (flags & ECF_NORETURN)
3902 {
3903 /* The barrier note must be emitted
3904 immediately after the CALL_INSN. Some ports emit more than
3905 just a CALL_INSN above, so we must search for it here. */
3906
3907 rtx last = get_last_insn ();
3908 while (!CALL_P (last))
3909 {
3910 last = PREV_INSN (last);
3911 /* There was no CALL_INSN? */
3912 gcc_assert (last != before_call);
3913 }
3914
3915 emit_barrier_after (last);
3916 }
3917
3918 /* Now restore inhibit_defer_pop to its actual original value. */
3919 OK_DEFER_POP;
3920
3921 pop_temp_slots ();
3922
3923 /* Copy the value to the right place. */
3924 if (outmode != VOIDmode && retval)
3925 {
3926 if (mem_value)
3927 {
3928 if (value == 0)
3929 value = mem_value;
3930 if (value != mem_value)
3931 emit_move_insn (value, mem_value);
3932 }
3933 else if (GET_CODE (valreg) == PARALLEL)
3934 {
3935 if (value == 0)
3936 value = gen_reg_rtx (outmode);
3937 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
3938 }
3939 else
3940 {
3941 /* Convert to the proper mode if a promotion has been active. */
3942 if (GET_MODE (valreg) != outmode)
3943 {
3944 int unsignedp = TYPE_UNSIGNED (tfom);
3945
3946 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
3947 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
3948 == GET_MODE (valreg));
3949 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
3950 }
3951
3952 if (value != 0)
3953 emit_move_insn (value, valreg);
3954 else
3955 value = valreg;
3956 }
3957 }
3958
3959 if (ACCUMULATE_OUTGOING_ARGS)
3960 {
3961 #ifdef REG_PARM_STACK_SPACE
3962 if (save_area)
3963 restore_fixed_argument_area (save_area, argblock,
3964 high_to_save, low_to_save);
3965 #endif
3966
3967 /* If we saved any argument areas, restore them. */
3968 for (count = 0; count < nargs; count++)
3969 if (argvec[count].save_area)
3970 {
3971 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
3972 rtx adr = plus_constant (argblock,
3973 argvec[count].locate.offset.constant);
3974 rtx stack_area = gen_rtx_MEM (save_mode,
3975 memory_address (save_mode, adr));
3976
3977 if (save_mode == BLKmode)
3978 emit_block_move (stack_area,
3979 validize_mem (argvec[count].save_area),
3980 GEN_INT (argvec[count].locate.size.constant),
3981 BLOCK_OP_CALL_PARM);
3982 else
3983 emit_move_insn (stack_area, argvec[count].save_area);
3984 }
3985
3986 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3987 stack_usage_map = initial_stack_usage_map;
3988 }
3989
3990 free (stack_usage_map_buf);
3991
3992 return value;
3993
3994 }
3995 \f
3996 /* Output a library call to function FUN (a SYMBOL_REF rtx)
3997 (emitting the queue unless NO_QUEUE is nonzero),
3998 for a value of mode OUTMODE,
3999 with NARGS different arguments, passed as alternating rtx values
4000 and machine_modes to convert them to.
4001
4002 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
4003 `const' calls, LCT_PURE for `pure' calls, or other LCT_ value for
4004 other types of library calls. */
4005
4006 void
4007 emit_library_call (rtx orgfun, enum libcall_type fn_type,
4008 enum machine_mode outmode, int nargs, ...)
4009 {
4010 va_list p;
4011
4012 va_start (p, nargs);
4013 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
4014 va_end (p);
4015 }
4016 \f
4017 /* Like emit_library_call except that an extra argument, VALUE,
4018 comes second and says where to store the result.
4019 (If VALUE is zero, this function chooses a convenient way
4020 to return the value.
4021
4022 This function returns an rtx for where the value is to be found.
4023 If VALUE is nonzero, VALUE is returned. */
4024
4025 rtx
4026 emit_library_call_value (rtx orgfun, rtx value,
4027 enum libcall_type fn_type,
4028 enum machine_mode outmode, int nargs, ...)
4029 {
4030 rtx result;
4031 va_list p;
4032
4033 va_start (p, nargs);
4034 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
4035 nargs, p);
4036 va_end (p);
4037
4038 return result;
4039 }
4040 \f
4041 /* Store a single argument for a function call
4042 into the register or memory area where it must be passed.
4043 *ARG describes the argument value and where to pass it.
4044
4045 ARGBLOCK is the address of the stack-block for all the arguments,
4046 or 0 on a machine where arguments are pushed individually.
4047
4048 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
4049 so must be careful about how the stack is used.
4050
4051 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
4052 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
4053 that we need not worry about saving and restoring the stack.
4054
4055 FNDECL is the declaration of the function we are calling.
4056
4057 Return nonzero if this arg should cause sibcall failure,
4058 zero otherwise. */
4059
4060 static int
4061 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
4062 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
4063 {
4064 tree pval = arg->tree_value;
4065 rtx reg = 0;
4066 int partial = 0;
4067 int used = 0;
4068 int i, lower_bound = 0, upper_bound = 0;
4069 int sibcall_failure = 0;
4070
4071 if (TREE_CODE (pval) == ERROR_MARK)
4072 return 1;
4073
4074 /* Push a new temporary level for any temporaries we make for
4075 this argument. */
4076 push_temp_slots ();
4077
4078 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
4079 {
4080 /* If this is being stored into a pre-allocated, fixed-size, stack area,
4081 save any previous data at that location. */
4082 if (argblock && ! variable_size && arg->stack)
4083 {
4084 #ifdef ARGS_GROW_DOWNWARD
4085 /* stack_slot is negative, but we want to index stack_usage_map
4086 with positive values. */
4087 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4088 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
4089 else
4090 upper_bound = 0;
4091
4092 lower_bound = upper_bound - arg->locate.size.constant;
4093 #else
4094 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4095 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
4096 else
4097 lower_bound = 0;
4098
4099 upper_bound = lower_bound + arg->locate.size.constant;
4100 #endif
4101
4102 i = lower_bound;
4103 /* Don't worry about things in the fixed argument area;
4104 it has already been saved. */
4105 if (i < reg_parm_stack_space)
4106 i = reg_parm_stack_space;
4107 while (i < upper_bound && stack_usage_map[i] == 0)
4108 i++;
4109
4110 if (i < upper_bound)
4111 {
4112 /* We need to make a save area. */
4113 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
4114 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
4115 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
4116 rtx stack_area = gen_rtx_MEM (save_mode, adr);
4117
4118 if (save_mode == BLKmode)
4119 {
4120 tree ot = TREE_TYPE (arg->tree_value);
4121 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
4122 | TYPE_QUAL_CONST));
4123
4124 arg->save_area = assign_temp (nt, 0, 1, 1);
4125 preserve_temp_slots (arg->save_area);
4126 emit_block_move (validize_mem (arg->save_area), stack_area,
4127 GEN_INT (arg->locate.size.constant),
4128 BLOCK_OP_CALL_PARM);
4129 }
4130 else
4131 {
4132 arg->save_area = gen_reg_rtx (save_mode);
4133 emit_move_insn (arg->save_area, stack_area);
4134 }
4135 }
4136 }
4137 }
4138
4139 /* If this isn't going to be placed on both the stack and in registers,
4140 set up the register and number of words. */
4141 if (! arg->pass_on_stack)
4142 {
4143 if (flags & ECF_SIBCALL)
4144 reg = arg->tail_call_reg;
4145 else
4146 reg = arg->reg;
4147 partial = arg->partial;
4148 }
4149
4150 /* Being passed entirely in a register. We shouldn't be called in
4151 this case. */
4152 gcc_assert (reg == 0 || partial != 0);
4153
4154 /* If this arg needs special alignment, don't load the registers
4155 here. */
4156 if (arg->n_aligned_regs != 0)
4157 reg = 0;
4158
4159 /* If this is being passed partially in a register, we can't evaluate
4160 it directly into its stack slot. Otherwise, we can. */
4161 if (arg->value == 0)
4162 {
4163 /* stack_arg_under_construction is nonzero if a function argument is
4164 being evaluated directly into the outgoing argument list and
4165 expand_call must take special action to preserve the argument list
4166 if it is called recursively.
4167
4168 For scalar function arguments stack_usage_map is sufficient to
4169 determine which stack slots must be saved and restored. Scalar
4170 arguments in general have pass_on_stack == 0.
4171
4172 If this argument is initialized by a function which takes the
4173 address of the argument (a C++ constructor or a C function
4174 returning a BLKmode structure), then stack_usage_map is
4175 insufficient and expand_call must push the stack around the
4176 function call. Such arguments have pass_on_stack == 1.
4177
4178 Note that it is always safe to set stack_arg_under_construction,
4179 but this generates suboptimal code if set when not needed. */
4180
4181 if (arg->pass_on_stack)
4182 stack_arg_under_construction++;
4183
4184 arg->value = expand_expr (pval,
4185 (partial
4186 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4187 ? NULL_RTX : arg->stack,
4188 VOIDmode, EXPAND_STACK_PARM);
4189
4190 /* If we are promoting object (or for any other reason) the mode
4191 doesn't agree, convert the mode. */
4192
4193 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4194 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4195 arg->value, arg->unsignedp);
4196
4197 if (arg->pass_on_stack)
4198 stack_arg_under_construction--;
4199 }
4200
4201 /* Check for overlap with already clobbered argument area. */
4202 if ((flags & ECF_SIBCALL)
4203 && MEM_P (arg->value)
4204 && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
4205 arg->locate.size.constant))
4206 sibcall_failure = 1;
4207
4208 /* Don't allow anything left on stack from computation
4209 of argument to alloca. */
4210 if (flags & ECF_MAY_BE_ALLOCA)
4211 do_pending_stack_adjust ();
4212
4213 if (arg->value == arg->stack)
4214 /* If the value is already in the stack slot, we are done. */
4215 ;
4216 else if (arg->mode != BLKmode)
4217 {
4218 int size;
4219 unsigned int parm_align;
4220
4221 /* Argument is a scalar, not entirely passed in registers.
4222 (If part is passed in registers, arg->partial says how much
4223 and emit_push_insn will take care of putting it there.)
4224
4225 Push it, and if its size is less than the
4226 amount of space allocated to it,
4227 also bump stack pointer by the additional space.
4228 Note that in C the default argument promotions
4229 will prevent such mismatches. */
4230
4231 size = GET_MODE_SIZE (arg->mode);
4232 /* Compute how much space the push instruction will push.
4233 On many machines, pushing a byte will advance the stack
4234 pointer by a halfword. */
4235 #ifdef PUSH_ROUNDING
4236 size = PUSH_ROUNDING (size);
4237 #endif
4238 used = size;
4239
4240 /* Compute how much space the argument should get:
4241 round up to a multiple of the alignment for arguments. */
4242 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4243 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4244 / (PARM_BOUNDARY / BITS_PER_UNIT))
4245 * (PARM_BOUNDARY / BITS_PER_UNIT));
4246
4247 /* Compute the alignment of the pushed argument. */
4248 parm_align = arg->locate.boundary;
4249 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4250 {
4251 int pad = used - size;
4252 if (pad)
4253 {
4254 unsigned int pad_align = (pad & -pad) * BITS_PER_UNIT;
4255 parm_align = MIN (parm_align, pad_align);
4256 }
4257 }
4258
4259 /* This isn't already where we want it on the stack, so put it there.
4260 This can either be done with push or copy insns. */
4261 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4262 parm_align, partial, reg, used - size, argblock,
4263 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4264 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4265
4266 /* Unless this is a partially-in-register argument, the argument is now
4267 in the stack. */
4268 if (partial == 0)
4269 arg->value = arg->stack;
4270 }
4271 else
4272 {
4273 /* BLKmode, at least partly to be pushed. */
4274
4275 unsigned int parm_align;
4276 int excess;
4277 rtx size_rtx;
4278
4279 /* Pushing a nonscalar.
4280 If part is passed in registers, PARTIAL says how much
4281 and emit_push_insn will take care of putting it there. */
4282
4283 /* Round its size up to a multiple
4284 of the allocation unit for arguments. */
4285
4286 if (arg->locate.size.var != 0)
4287 {
4288 excess = 0;
4289 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4290 }
4291 else
4292 {
4293 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4294 for BLKmode is careful to avoid it. */
4295 excess = (arg->locate.size.constant
4296 - int_size_in_bytes (TREE_TYPE (pval))
4297 + partial);
4298 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4299 NULL_RTX, TYPE_MODE (sizetype),
4300 EXPAND_NORMAL);
4301 }
4302
4303 parm_align = arg->locate.boundary;
4304
4305 /* When an argument is padded down, the block is aligned to
4306 PARM_BOUNDARY, but the actual argument isn't. */
4307 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4308 {
4309 if (arg->locate.size.var)
4310 parm_align = BITS_PER_UNIT;
4311 else if (excess)
4312 {
4313 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4314 parm_align = MIN (parm_align, excess_align);
4315 }
4316 }
4317
4318 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4319 {
4320 /* emit_push_insn might not work properly if arg->value and
4321 argblock + arg->locate.offset areas overlap. */
4322 rtx x = arg->value;
4323 int i = 0;
4324
4325 if (XEXP (x, 0) == crtl->args.internal_arg_pointer
4326 || (GET_CODE (XEXP (x, 0)) == PLUS
4327 && XEXP (XEXP (x, 0), 0) ==
4328 crtl->args.internal_arg_pointer
4329 && CONST_INT_P (XEXP (XEXP (x, 0), 1))))
4330 {
4331 if (XEXP (x, 0) != crtl->args.internal_arg_pointer)
4332 i = INTVAL (XEXP (XEXP (x, 0), 1));
4333
4334 /* expand_call should ensure this. */
4335 gcc_assert (!arg->locate.offset.var
4336 && arg->locate.size.var == 0
4337 && CONST_INT_P (size_rtx));
4338
4339 if (arg->locate.offset.constant > i)
4340 {
4341 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4342 sibcall_failure = 1;
4343 }
4344 else if (arg->locate.offset.constant < i)
4345 {
4346 /* Use arg->locate.size.constant instead of size_rtx
4347 because we only care about the part of the argument
4348 on the stack. */
4349 if (i < (arg->locate.offset.constant
4350 + arg->locate.size.constant))
4351 sibcall_failure = 1;
4352 }
4353 else
4354 {
4355 /* Even though they appear to be at the same location,
4356 if part of the outgoing argument is in registers,
4357 they aren't really at the same location. Check for
4358 this by making sure that the incoming size is the
4359 same as the outgoing size. */
4360 if (arg->locate.size.constant != INTVAL (size_rtx))
4361 sibcall_failure = 1;
4362 }
4363 }
4364 }
4365
4366 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4367 parm_align, partial, reg, excess, argblock,
4368 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4369 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4370
4371 /* Unless this is a partially-in-register argument, the argument is now
4372 in the stack.
4373
4374 ??? Unlike the case above, in which we want the actual
4375 address of the data, so that we can load it directly into a
4376 register, here we want the address of the stack slot, so that
4377 it's properly aligned for word-by-word copying or something
4378 like that. It's not clear that this is always correct. */
4379 if (partial == 0)
4380 arg->value = arg->stack_slot;
4381 }
4382
4383 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
4384 {
4385 tree type = TREE_TYPE (arg->tree_value);
4386 arg->parallel_value
4387 = emit_group_load_into_temps (arg->reg, arg->value, type,
4388 int_size_in_bytes (type));
4389 }
4390
4391 /* Mark all slots this store used. */
4392 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4393 && argblock && ! variable_size && arg->stack)
4394 for (i = lower_bound; i < upper_bound; i++)
4395 stack_usage_map[i] = 1;
4396
4397 /* Once we have pushed something, pops can't safely
4398 be deferred during the rest of the arguments. */
4399 NO_DEFER_POP;
4400
4401 /* Free any temporary slots made in processing this argument. Show
4402 that we might have taken the address of something and pushed that
4403 as an operand. */
4404 preserve_temp_slots (NULL_RTX);
4405 free_temp_slots ();
4406 pop_temp_slots ();
4407
4408 return sibcall_failure;
4409 }
4410
4411 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4412
4413 bool
4414 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4415 const_tree type)
4416 {
4417 if (!type)
4418 return false;
4419
4420 /* If the type has variable size... */
4421 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4422 return true;
4423
4424 /* If the type is marked as addressable (it is required
4425 to be constructed into the stack)... */
4426 if (TREE_ADDRESSABLE (type))
4427 return true;
4428
4429 return false;
4430 }
4431
4432 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4433 takes trailing padding of a structure into account. */
4434 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4435
4436 bool
4437 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, const_tree type)
4438 {
4439 if (!type)
4440 return false;
4441
4442 /* If the type has variable size... */
4443 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4444 return true;
4445
4446 /* If the type is marked as addressable (it is required
4447 to be constructed into the stack)... */
4448 if (TREE_ADDRESSABLE (type))
4449 return true;
4450
4451 /* If the padding and mode of the type is such that a copy into
4452 a register would put it into the wrong part of the register. */
4453 if (mode == BLKmode
4454 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4455 && (FUNCTION_ARG_PADDING (mode, type)
4456 == (BYTES_BIG_ENDIAN ? upward : downward)))
4457 return true;
4458
4459 return false;
4460 }