re PR middle-end/22127 (register window not preserved after getcontext call)
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "expr.h"
31 #include "optabs.h"
32 #include "libfuncs.h"
33 #include "function.h"
34 #include "regs.h"
35 #include "toplev.h"
36 #include "output.h"
37 #include "tm_p.h"
38 #include "timevar.h"
39 #include "sbitmap.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "cgraph.h"
43 #include "except.h"
44
45 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
46 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
47
48 /* Data structure and subroutines used within expand_call. */
49
50 struct arg_data
51 {
52 /* Tree node for this argument. */
53 tree tree_value;
54 /* Mode for value; TYPE_MODE unless promoted. */
55 enum machine_mode mode;
56 /* Current RTL value for argument, or 0 if it isn't precomputed. */
57 rtx value;
58 /* Initially-compute RTL value for argument; only for const functions. */
59 rtx initial_value;
60 /* Register to pass this argument in, 0 if passed on stack, or an
61 PARALLEL if the arg is to be copied into multiple non-contiguous
62 registers. */
63 rtx reg;
64 /* Register to pass this argument in when generating tail call sequence.
65 This is not the same register as for normal calls on machines with
66 register windows. */
67 rtx tail_call_reg;
68 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
69 form for emit_group_move. */
70 rtx parallel_value;
71 /* If REG was promoted from the actual mode of the argument expression,
72 indicates whether the promotion is sign- or zero-extended. */
73 int unsignedp;
74 /* Number of bytes to put in registers. 0 means put the whole arg
75 in registers. Also 0 if not passed in registers. */
76 int partial;
77 /* Nonzero if argument must be passed on stack.
78 Note that some arguments may be passed on the stack
79 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
80 pass_on_stack identifies arguments that *cannot* go in registers. */
81 int pass_on_stack;
82 /* Some fields packaged up for locate_and_pad_parm. */
83 struct locate_and_pad_arg_data locate;
84 /* Location on the stack at which parameter should be stored. The store
85 has already been done if STACK == VALUE. */
86 rtx stack;
87 /* Location on the stack of the start of this argument slot. This can
88 differ from STACK if this arg pads downward. This location is known
89 to be aligned to FUNCTION_ARG_BOUNDARY. */
90 rtx stack_slot;
91 /* Place that this stack area has been saved, if needed. */
92 rtx save_area;
93 /* If an argument's alignment does not permit direct copying into registers,
94 copy in smaller-sized pieces into pseudos. These are stored in a
95 block pointed to by this field. The next field says how many
96 word-sized pseudos we made. */
97 rtx *aligned_regs;
98 int n_aligned_regs;
99 };
100
101 /* A vector of one char per byte of stack space. A byte if nonzero if
102 the corresponding stack location has been used.
103 This vector is used to prevent a function call within an argument from
104 clobbering any stack already set up. */
105 static char *stack_usage_map;
106
107 /* Size of STACK_USAGE_MAP. */
108 static int highest_outgoing_arg_in_use;
109
110 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
111 stack location's tail call argument has been already stored into the stack.
112 This bitmap is used to prevent sibling call optimization if function tries
113 to use parent's incoming argument slots when they have been already
114 overwritten with tail call arguments. */
115 static sbitmap stored_args_map;
116
117 /* stack_arg_under_construction is nonzero when an argument may be
118 initialized with a constructor call (including a C function that
119 returns a BLKmode struct) and expand_call must take special action
120 to make sure the object being constructed does not overlap the
121 argument list for the constructor call. */
122 static int stack_arg_under_construction;
123
124 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
125 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
126 CUMULATIVE_ARGS *);
127 static void precompute_register_parameters (int, struct arg_data *, int *);
128 static int store_one_arg (struct arg_data *, rtx, int, int, int);
129 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
130 static int finalize_must_preallocate (int, int, struct arg_data *,
131 struct args_size *);
132 static void precompute_arguments (int, int, struct arg_data *);
133 static int compute_argument_block_size (int, struct args_size *, int);
134 static void initialize_argument_information (int, struct arg_data *,
135 struct args_size *, int, tree,
136 tree, CUMULATIVE_ARGS *, int,
137 rtx *, int *, int *, int *,
138 bool *, bool);
139 static void compute_argument_addresses (struct arg_data *, rtx, int);
140 static rtx rtx_for_function_call (tree, tree);
141 static void load_register_parameters (struct arg_data *, int, rtx *, int,
142 int, int *);
143 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
144 enum machine_mode, int, va_list);
145 static int special_function_p (tree, int);
146 static int check_sibcall_argument_overlap_1 (rtx);
147 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
148
149 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
150 unsigned int);
151 static tree split_complex_values (tree);
152 static tree split_complex_types (tree);
153
154 #ifdef REG_PARM_STACK_SPACE
155 static rtx save_fixed_argument_area (int, rtx, int *, int *);
156 static void restore_fixed_argument_area (rtx, rtx, int, int);
157 #endif
158 \f
159 /* Force FUNEXP into a form suitable for the address of a CALL,
160 and return that as an rtx. Also load the static chain register
161 if FNDECL is a nested function.
162
163 CALL_FUSAGE points to a variable holding the prospective
164 CALL_INSN_FUNCTION_USAGE information. */
165
166 rtx
167 prepare_call_address (rtx funexp, rtx static_chain_value,
168 rtx *call_fusage, int reg_parm_seen, int sibcallp)
169 {
170 /* Make a valid memory address and copy constants through pseudo-regs,
171 but not for a constant address if -fno-function-cse. */
172 if (GET_CODE (funexp) != SYMBOL_REF)
173 /* If we are using registers for parameters, force the
174 function address into a register now. */
175 funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
176 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
177 : memory_address (FUNCTION_MODE, funexp));
178 else if (! sibcallp)
179 {
180 #ifndef NO_FUNCTION_CSE
181 if (optimize && ! flag_no_function_cse)
182 funexp = force_reg (Pmode, funexp);
183 #endif
184 }
185
186 if (static_chain_value != 0)
187 {
188 static_chain_value = convert_memory_address (Pmode, static_chain_value);
189 emit_move_insn (static_chain_rtx, static_chain_value);
190
191 if (REG_P (static_chain_rtx))
192 use_reg (call_fusage, static_chain_rtx);
193 }
194
195 return funexp;
196 }
197
198 /* Generate instructions to call function FUNEXP,
199 and optionally pop the results.
200 The CALL_INSN is the first insn generated.
201
202 FNDECL is the declaration node of the function. This is given to the
203 macro RETURN_POPS_ARGS to determine whether this function pops its own args.
204
205 FUNTYPE is the data type of the function. This is given to the macro
206 RETURN_POPS_ARGS to determine whether this function pops its own args.
207 We used to allow an identifier for library functions, but that doesn't
208 work when the return type is an aggregate type and the calling convention
209 says that the pointer to this aggregate is to be popped by the callee.
210
211 STACK_SIZE is the number of bytes of arguments on the stack,
212 ROUNDED_STACK_SIZE is that number rounded up to
213 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
214 both to put into the call insn and to generate explicit popping
215 code if necessary.
216
217 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
218 It is zero if this call doesn't want a structure value.
219
220 NEXT_ARG_REG is the rtx that results from executing
221 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
222 just after all the args have had their registers assigned.
223 This could be whatever you like, but normally it is the first
224 arg-register beyond those used for args in this call,
225 or 0 if all the arg-registers are used in this call.
226 It is passed on to `gen_call' so you can put this info in the call insn.
227
228 VALREG is a hard register in which a value is returned,
229 or 0 if the call does not return a value.
230
231 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
232 the args to this call were processed.
233 We restore `inhibit_defer_pop' to that value.
234
235 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
236 denote registers used by the called function. */
237
238 static void
239 emit_call_1 (rtx funexp, tree fntree, tree fndecl ATTRIBUTE_UNUSED,
240 tree funtype ATTRIBUTE_UNUSED,
241 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
242 HOST_WIDE_INT rounded_stack_size,
243 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
244 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
245 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
246 CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
247 {
248 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
249 rtx call_insn;
250 int already_popped = 0;
251 HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size);
252 #if defined (HAVE_call) && defined (HAVE_call_value)
253 rtx struct_value_size_rtx;
254 struct_value_size_rtx = GEN_INT (struct_value_size);
255 #endif
256
257 #ifdef CALL_POPS_ARGS
258 n_popped += CALL_POPS_ARGS (* args_so_far);
259 #endif
260
261 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
262 and we don't want to load it into a register as an optimization,
263 because prepare_call_address already did it if it should be done. */
264 if (GET_CODE (funexp) != SYMBOL_REF)
265 funexp = memory_address (FUNCTION_MODE, funexp);
266
267 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
268 if ((ecf_flags & ECF_SIBCALL)
269 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
270 && (n_popped > 0 || stack_size == 0))
271 {
272 rtx n_pop = GEN_INT (n_popped);
273 rtx pat;
274
275 /* If this subroutine pops its own args, record that in the call insn
276 if possible, for the sake of frame pointer elimination. */
277
278 if (valreg)
279 pat = GEN_SIBCALL_VALUE_POP (valreg,
280 gen_rtx_MEM (FUNCTION_MODE, funexp),
281 rounded_stack_size_rtx, next_arg_reg,
282 n_pop);
283 else
284 pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
285 rounded_stack_size_rtx, next_arg_reg, n_pop);
286
287 emit_call_insn (pat);
288 already_popped = 1;
289 }
290 else
291 #endif
292
293 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
294 /* If the target has "call" or "call_value" insns, then prefer them
295 if no arguments are actually popped. If the target does not have
296 "call" or "call_value" insns, then we must use the popping versions
297 even if the call has no arguments to pop. */
298 #if defined (HAVE_call) && defined (HAVE_call_value)
299 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
300 && n_popped > 0 && ! (ecf_flags & ECF_SP_DEPRESSED))
301 #else
302 if (HAVE_call_pop && HAVE_call_value_pop)
303 #endif
304 {
305 rtx n_pop = GEN_INT (n_popped);
306 rtx pat;
307
308 /* If this subroutine pops its own args, record that in the call insn
309 if possible, for the sake of frame pointer elimination. */
310
311 if (valreg)
312 pat = GEN_CALL_VALUE_POP (valreg,
313 gen_rtx_MEM (FUNCTION_MODE, funexp),
314 rounded_stack_size_rtx, next_arg_reg, n_pop);
315 else
316 pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
317 rounded_stack_size_rtx, next_arg_reg, n_pop);
318
319 emit_call_insn (pat);
320 already_popped = 1;
321 }
322 else
323 #endif
324
325 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
326 if ((ecf_flags & ECF_SIBCALL)
327 && HAVE_sibcall && HAVE_sibcall_value)
328 {
329 if (valreg)
330 emit_call_insn (GEN_SIBCALL_VALUE (valreg,
331 gen_rtx_MEM (FUNCTION_MODE, funexp),
332 rounded_stack_size_rtx,
333 next_arg_reg, NULL_RTX));
334 else
335 emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
336 rounded_stack_size_rtx, next_arg_reg,
337 struct_value_size_rtx));
338 }
339 else
340 #endif
341
342 #if defined (HAVE_call) && defined (HAVE_call_value)
343 if (HAVE_call && HAVE_call_value)
344 {
345 if (valreg)
346 emit_call_insn (GEN_CALL_VALUE (valreg,
347 gen_rtx_MEM (FUNCTION_MODE, funexp),
348 rounded_stack_size_rtx, next_arg_reg,
349 NULL_RTX));
350 else
351 emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
352 rounded_stack_size_rtx, next_arg_reg,
353 struct_value_size_rtx));
354 }
355 else
356 #endif
357 gcc_unreachable ();
358
359 /* Find the call we just emitted. */
360 call_insn = last_call_insn ();
361
362 /* Mark memory as used for "pure" function call. */
363 if (ecf_flags & ECF_PURE)
364 call_fusage
365 = gen_rtx_EXPR_LIST
366 (VOIDmode,
367 gen_rtx_USE (VOIDmode,
368 gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))),
369 call_fusage);
370
371 /* Put the register usage information there. */
372 add_function_usage_to (call_insn, call_fusage);
373
374 /* If this is a const call, then set the insn's unchanging bit. */
375 if (ecf_flags & (ECF_CONST | ECF_PURE))
376 CONST_OR_PURE_CALL_P (call_insn) = 1;
377
378 /* If this call can't throw, attach a REG_EH_REGION reg note to that
379 effect. */
380 if (ecf_flags & ECF_NOTHROW)
381 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, const0_rtx,
382 REG_NOTES (call_insn));
383 else
384 {
385 int rn = lookup_stmt_eh_region (fntree);
386
387 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't
388 throw, which we already took care of. */
389 if (rn > 0)
390 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
391 REG_NOTES (call_insn));
392 note_current_region_may_contain_throw ();
393 }
394
395 if (ecf_flags & ECF_NORETURN)
396 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_NORETURN, const0_rtx,
397 REG_NOTES (call_insn));
398
399 if (ecf_flags & ECF_RETURNS_TWICE)
400 {
401 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_SETJMP, const0_rtx,
402 REG_NOTES (call_insn));
403 current_function_calls_setjmp = 1;
404 }
405
406 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
407
408 /* Restore this now, so that we do defer pops for this call's args
409 if the context of the call as a whole permits. */
410 inhibit_defer_pop = old_inhibit_defer_pop;
411
412 if (n_popped > 0)
413 {
414 if (!already_popped)
415 CALL_INSN_FUNCTION_USAGE (call_insn)
416 = gen_rtx_EXPR_LIST (VOIDmode,
417 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
418 CALL_INSN_FUNCTION_USAGE (call_insn));
419 rounded_stack_size -= n_popped;
420 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
421 stack_pointer_delta -= n_popped;
422 }
423
424 if (!ACCUMULATE_OUTGOING_ARGS)
425 {
426 /* If returning from the subroutine does not automatically pop the args,
427 we need an instruction to pop them sooner or later.
428 Perhaps do it now; perhaps just record how much space to pop later.
429
430 If returning from the subroutine does pop the args, indicate that the
431 stack pointer will be changed. */
432
433 if (rounded_stack_size != 0)
434 {
435 if (ecf_flags & (ECF_SP_DEPRESSED | ECF_NORETURN))
436 /* Just pretend we did the pop. */
437 stack_pointer_delta -= rounded_stack_size;
438 else if (flag_defer_pop && inhibit_defer_pop == 0
439 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
440 pending_stack_adjust += rounded_stack_size;
441 else
442 adjust_stack (rounded_stack_size_rtx);
443 }
444 }
445 /* When we accumulate outgoing args, we must avoid any stack manipulations.
446 Restore the stack pointer to its original value now. Usually
447 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
448 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
449 popping variants of functions exist as well.
450
451 ??? We may optimize similar to defer_pop above, but it is
452 probably not worthwhile.
453
454 ??? It will be worthwhile to enable combine_stack_adjustments even for
455 such machines. */
456 else if (n_popped)
457 anti_adjust_stack (GEN_INT (n_popped));
458 }
459
460 /* Determine if the function identified by NAME and FNDECL is one with
461 special properties we wish to know about.
462
463 For example, if the function might return more than one time (setjmp), then
464 set RETURNS_TWICE to a nonzero value.
465
466 Similarly set NORETURN if the function is in the longjmp family.
467
468 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
469 space from the stack such as alloca. */
470
471 static int
472 special_function_p (tree fndecl, int flags)
473 {
474 if (fndecl && DECL_NAME (fndecl)
475 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
476 /* Exclude functions not at the file scope, or not `extern',
477 since they are not the magic functions we would otherwise
478 think they are.
479 FIXME: this should be handled with attributes, not with this
480 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
481 because you can declare fork() inside a function if you
482 wish. */
483 && (DECL_CONTEXT (fndecl) == NULL_TREE
484 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
485 && TREE_PUBLIC (fndecl))
486 {
487 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
488 const char *tname = name;
489
490 /* We assume that alloca will always be called by name. It
491 makes no sense to pass it as a pointer-to-function to
492 anything that does not understand its behavior. */
493 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
494 && name[0] == 'a'
495 && ! strcmp (name, "alloca"))
496 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
497 && name[0] == '_'
498 && ! strcmp (name, "__builtin_alloca"))))
499 flags |= ECF_MAY_BE_ALLOCA;
500
501 /* Disregard prefix _, __ or __x. */
502 if (name[0] == '_')
503 {
504 if (name[1] == '_' && name[2] == 'x')
505 tname += 3;
506 else if (name[1] == '_')
507 tname += 2;
508 else
509 tname += 1;
510 }
511
512 if (tname[0] == 's')
513 {
514 if ((tname[1] == 'e'
515 && (! strcmp (tname, "setjmp")
516 || ! strcmp (tname, "setjmp_syscall")))
517 || (tname[1] == 'i'
518 && ! strcmp (tname, "sigsetjmp"))
519 || (tname[1] == 'a'
520 && ! strcmp (tname, "savectx")))
521 flags |= ECF_RETURNS_TWICE;
522
523 if (tname[1] == 'i'
524 && ! strcmp (tname, "siglongjmp"))
525 flags |= ECF_NORETURN;
526 }
527 else if ((tname[0] == 'q' && tname[1] == 's'
528 && ! strcmp (tname, "qsetjmp"))
529 || (tname[0] == 'v' && tname[1] == 'f'
530 && ! strcmp (tname, "vfork"))
531 || (tname[0] == 'g' && tname[1] == 'e'
532 && !strcmp (tname, "getcontext")))
533 flags |= ECF_RETURNS_TWICE;
534
535 else if (tname[0] == 'l' && tname[1] == 'o'
536 && ! strcmp (tname, "longjmp"))
537 flags |= ECF_NORETURN;
538 }
539
540 return flags;
541 }
542
543 /* Return nonzero when FNDECL represents a call to setjmp. */
544
545 int
546 setjmp_call_p (tree fndecl)
547 {
548 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
549 }
550
551 /* Return true when exp contains alloca call. */
552 bool
553 alloca_call_p (tree exp)
554 {
555 if (TREE_CODE (exp) == CALL_EXPR
556 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
557 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
558 == FUNCTION_DECL)
559 && (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
560 0) & ECF_MAY_BE_ALLOCA))
561 return true;
562 return false;
563 }
564
565 /* Detect flags (function attributes) from the function decl or type node. */
566
567 int
568 flags_from_decl_or_type (tree exp)
569 {
570 int flags = 0;
571 tree type = exp;
572
573 if (DECL_P (exp))
574 {
575 type = TREE_TYPE (exp);
576
577 /* The function exp may have the `malloc' attribute. */
578 if (DECL_IS_MALLOC (exp))
579 flags |= ECF_MALLOC;
580
581 /* The function exp may have the `returns_twice' attribute. */
582 if (DECL_IS_RETURNS_TWICE (exp))
583 flags |= ECF_RETURNS_TWICE;
584
585 /* The function exp may have the `pure' attribute. */
586 if (DECL_IS_PURE (exp))
587 flags |= ECF_PURE;
588
589 if (DECL_IS_NOVOPS (exp))
590 flags |= ECF_NOVOPS;
591
592 if (TREE_NOTHROW (exp))
593 flags |= ECF_NOTHROW;
594
595 if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
596 flags |= ECF_CONST;
597
598 flags = special_function_p (exp, flags);
599 }
600 else if (TYPE_P (exp) && TYPE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp))
601 flags |= ECF_CONST;
602
603 if (TREE_THIS_VOLATILE (exp))
604 flags |= ECF_NORETURN;
605
606 /* Mark if the function returns with the stack pointer depressed. We
607 cannot consider it pure or constant in that case. */
608 if (TREE_CODE (type) == FUNCTION_TYPE && TYPE_RETURNS_STACK_DEPRESSED (type))
609 {
610 flags |= ECF_SP_DEPRESSED;
611 flags &= ~(ECF_PURE | ECF_CONST);
612 }
613
614 return flags;
615 }
616
617 /* Detect flags from a CALL_EXPR. */
618
619 int
620 call_expr_flags (tree t)
621 {
622 int flags;
623 tree decl = get_callee_fndecl (t);
624
625 if (decl)
626 flags = flags_from_decl_or_type (decl);
627 else
628 {
629 t = TREE_TYPE (TREE_OPERAND (t, 0));
630 if (t && TREE_CODE (t) == POINTER_TYPE)
631 flags = flags_from_decl_or_type (TREE_TYPE (t));
632 else
633 flags = 0;
634 }
635
636 return flags;
637 }
638
639 /* Precompute all register parameters as described by ARGS, storing values
640 into fields within the ARGS array.
641
642 NUM_ACTUALS indicates the total number elements in the ARGS array.
643
644 Set REG_PARM_SEEN if we encounter a register parameter. */
645
646 static void
647 precompute_register_parameters (int num_actuals, struct arg_data *args,
648 int *reg_parm_seen)
649 {
650 int i;
651
652 *reg_parm_seen = 0;
653
654 for (i = 0; i < num_actuals; i++)
655 if (args[i].reg != 0 && ! args[i].pass_on_stack)
656 {
657 *reg_parm_seen = 1;
658
659 if (args[i].value == 0)
660 {
661 push_temp_slots ();
662 args[i].value = expand_expr (args[i].tree_value, NULL_RTX,
663 VOIDmode, 0);
664 preserve_temp_slots (args[i].value);
665 pop_temp_slots ();
666 }
667
668 /* If the value is a non-legitimate constant, force it into a
669 pseudo now. TLS symbols sometimes need a call to resolve. */
670 if (CONSTANT_P (args[i].value)
671 && !LEGITIMATE_CONSTANT_P (args[i].value))
672 args[i].value = force_reg (args[i].mode, args[i].value);
673
674 /* If we are to promote the function arg to a wider mode,
675 do it now. */
676
677 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
678 args[i].value
679 = convert_modes (args[i].mode,
680 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
681 args[i].value, args[i].unsignedp);
682
683 /* If we're going to have to load the value by parts, pull the
684 parts into pseudos. The part extraction process can involve
685 non-trivial computation. */
686 if (GET_CODE (args[i].reg) == PARALLEL)
687 {
688 tree type = TREE_TYPE (args[i].tree_value);
689 args[i].parallel_value
690 = emit_group_load_into_temps (args[i].reg, args[i].value,
691 type, int_size_in_bytes (type));
692 }
693
694 /* If the value is expensive, and we are inside an appropriately
695 short loop, put the value into a pseudo and then put the pseudo
696 into the hard reg.
697
698 For small register classes, also do this if this call uses
699 register parameters. This is to avoid reload conflicts while
700 loading the parameters registers. */
701
702 else if ((! (REG_P (args[i].value)
703 || (GET_CODE (args[i].value) == SUBREG
704 && REG_P (SUBREG_REG (args[i].value)))))
705 && args[i].mode != BLKmode
706 && rtx_cost (args[i].value, SET) > COSTS_N_INSNS (1)
707 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen)
708 || optimize))
709 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
710 }
711 }
712
713 #ifdef REG_PARM_STACK_SPACE
714
715 /* The argument list is the property of the called routine and it
716 may clobber it. If the fixed area has been used for previous
717 parameters, we must save and restore it. */
718
719 static rtx
720 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
721 {
722 int low;
723 int high;
724
725 /* Compute the boundary of the area that needs to be saved, if any. */
726 high = reg_parm_stack_space;
727 #ifdef ARGS_GROW_DOWNWARD
728 high += 1;
729 #endif
730 if (high > highest_outgoing_arg_in_use)
731 high = highest_outgoing_arg_in_use;
732
733 for (low = 0; low < high; low++)
734 if (stack_usage_map[low] != 0)
735 {
736 int num_to_save;
737 enum machine_mode save_mode;
738 int delta;
739 rtx stack_area;
740 rtx save_area;
741
742 while (stack_usage_map[--high] == 0)
743 ;
744
745 *low_to_save = low;
746 *high_to_save = high;
747
748 num_to_save = high - low + 1;
749 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
750
751 /* If we don't have the required alignment, must do this
752 in BLKmode. */
753 if ((low & (MIN (GET_MODE_SIZE (save_mode),
754 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
755 save_mode = BLKmode;
756
757 #ifdef ARGS_GROW_DOWNWARD
758 delta = -high;
759 #else
760 delta = low;
761 #endif
762 stack_area = gen_rtx_MEM (save_mode,
763 memory_address (save_mode,
764 plus_constant (argblock,
765 delta)));
766
767 set_mem_align (stack_area, PARM_BOUNDARY);
768 if (save_mode == BLKmode)
769 {
770 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
771 emit_block_move (validize_mem (save_area), stack_area,
772 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
773 }
774 else
775 {
776 save_area = gen_reg_rtx (save_mode);
777 emit_move_insn (save_area, stack_area);
778 }
779
780 return save_area;
781 }
782
783 return NULL_RTX;
784 }
785
786 static void
787 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
788 {
789 enum machine_mode save_mode = GET_MODE (save_area);
790 int delta;
791 rtx stack_area;
792
793 #ifdef ARGS_GROW_DOWNWARD
794 delta = -high_to_save;
795 #else
796 delta = low_to_save;
797 #endif
798 stack_area = gen_rtx_MEM (save_mode,
799 memory_address (save_mode,
800 plus_constant (argblock, delta)));
801 set_mem_align (stack_area, PARM_BOUNDARY);
802
803 if (save_mode != BLKmode)
804 emit_move_insn (stack_area, save_area);
805 else
806 emit_block_move (stack_area, validize_mem (save_area),
807 GEN_INT (high_to_save - low_to_save + 1),
808 BLOCK_OP_CALL_PARM);
809 }
810 #endif /* REG_PARM_STACK_SPACE */
811
812 /* If any elements in ARGS refer to parameters that are to be passed in
813 registers, but not in memory, and whose alignment does not permit a
814 direct copy into registers. Copy the values into a group of pseudos
815 which we will later copy into the appropriate hard registers.
816
817 Pseudos for each unaligned argument will be stored into the array
818 args[argnum].aligned_regs. The caller is responsible for deallocating
819 the aligned_regs array if it is nonzero. */
820
821 static void
822 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
823 {
824 int i, j;
825
826 for (i = 0; i < num_actuals; i++)
827 if (args[i].reg != 0 && ! args[i].pass_on_stack
828 && args[i].mode == BLKmode
829 && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
830 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
831 {
832 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
833 int endian_correction = 0;
834
835 if (args[i].partial)
836 {
837 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
838 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
839 }
840 else
841 {
842 args[i].n_aligned_regs
843 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
844 }
845
846 args[i].aligned_regs = xmalloc (sizeof (rtx) * args[i].n_aligned_regs);
847
848 /* Structures smaller than a word are normally aligned to the
849 least significant byte. On a BYTES_BIG_ENDIAN machine,
850 this means we must skip the empty high order bytes when
851 calculating the bit offset. */
852 if (bytes < UNITS_PER_WORD
853 #ifdef BLOCK_REG_PADDING
854 && (BLOCK_REG_PADDING (args[i].mode,
855 TREE_TYPE (args[i].tree_value), 1)
856 == downward)
857 #else
858 && BYTES_BIG_ENDIAN
859 #endif
860 )
861 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
862
863 for (j = 0; j < args[i].n_aligned_regs; j++)
864 {
865 rtx reg = gen_reg_rtx (word_mode);
866 rtx word = operand_subword_force (args[i].value, j, BLKmode);
867 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
868
869 args[i].aligned_regs[j] = reg;
870 word = extract_bit_field (word, bitsize, 0, 1, NULL_RTX,
871 word_mode, word_mode);
872
873 /* There is no need to restrict this code to loading items
874 in TYPE_ALIGN sized hunks. The bitfield instructions can
875 load up entire word sized registers efficiently.
876
877 ??? This may not be needed anymore.
878 We use to emit a clobber here but that doesn't let later
879 passes optimize the instructions we emit. By storing 0 into
880 the register later passes know the first AND to zero out the
881 bitfield being set in the register is unnecessary. The store
882 of 0 will be deleted as will at least the first AND. */
883
884 emit_move_insn (reg, const0_rtx);
885
886 bytes -= bitsize / BITS_PER_UNIT;
887 store_bit_field (reg, bitsize, endian_correction, word_mode,
888 word);
889 }
890 }
891 }
892
893 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
894 ACTPARMS.
895
896 NUM_ACTUALS is the total number of parameters.
897
898 N_NAMED_ARGS is the total number of named arguments.
899
900 FNDECL is the tree code for the target of this call (if known)
901
902 ARGS_SO_FAR holds state needed by the target to know where to place
903 the next argument.
904
905 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
906 for arguments which are passed in registers.
907
908 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
909 and may be modified by this routine.
910
911 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
912 flags which may may be modified by this routine.
913
914 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
915 that requires allocation of stack space.
916
917 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
918 the thunked-to function. */
919
920 static void
921 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
922 struct arg_data *args,
923 struct args_size *args_size,
924 int n_named_args ATTRIBUTE_UNUSED,
925 tree actparms, tree fndecl,
926 CUMULATIVE_ARGS *args_so_far,
927 int reg_parm_stack_space,
928 rtx *old_stack_level, int *old_pending_adj,
929 int *must_preallocate, int *ecf_flags,
930 bool *may_tailcall, bool call_from_thunk_p)
931 {
932 /* 1 if scanning parms front to back, -1 if scanning back to front. */
933 int inc;
934
935 /* Count arg position in order args appear. */
936 int argpos;
937
938 int i;
939 tree p;
940
941 args_size->constant = 0;
942 args_size->var = 0;
943
944 /* In this loop, we consider args in the order they are written.
945 We fill up ARGS from the front or from the back if necessary
946 so that in any case the first arg to be pushed ends up at the front. */
947
948 if (PUSH_ARGS_REVERSED)
949 {
950 i = num_actuals - 1, inc = -1;
951 /* In this case, must reverse order of args
952 so that we compute and push the last arg first. */
953 }
954 else
955 {
956 i = 0, inc = 1;
957 }
958
959 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
960 for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++)
961 {
962 tree type = TREE_TYPE (TREE_VALUE (p));
963 int unsignedp;
964 enum machine_mode mode;
965
966 args[i].tree_value = TREE_VALUE (p);
967
968 /* Replace erroneous argument with constant zero. */
969 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
970 args[i].tree_value = integer_zero_node, type = integer_type_node;
971
972 /* If TYPE is a transparent union, pass things the way we would
973 pass the first field of the union. We have already verified that
974 the modes are the same. */
975 if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type))
976 type = TREE_TYPE (TYPE_FIELDS (type));
977
978 /* Decide where to pass this arg.
979
980 args[i].reg is nonzero if all or part is passed in registers.
981
982 args[i].partial is nonzero if part but not all is passed in registers,
983 and the exact value says how many bytes are passed in registers.
984
985 args[i].pass_on_stack is nonzero if the argument must at least be
986 computed on the stack. It may then be loaded back into registers
987 if args[i].reg is nonzero.
988
989 These decisions are driven by the FUNCTION_... macros and must agree
990 with those made by function.c. */
991
992 /* See if this argument should be passed by invisible reference. */
993 if (pass_by_reference (args_so_far, TYPE_MODE (type),
994 type, argpos < n_named_args))
995 {
996 bool callee_copies;
997 tree base;
998
999 callee_copies
1000 = reference_callee_copied (args_so_far, TYPE_MODE (type),
1001 type, argpos < n_named_args);
1002
1003 /* If we're compiling a thunk, pass through invisible references
1004 instead of making a copy. */
1005 if (call_from_thunk_p
1006 || (callee_copies
1007 && !TREE_ADDRESSABLE (type)
1008 && (base = get_base_address (args[i].tree_value))
1009 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1010 {
1011 /* We can't use sibcalls if a callee-copied argument is
1012 stored in the current function's frame. */
1013 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1014 *may_tailcall = false;
1015
1016 args[i].tree_value = build_fold_addr_expr (args[i].tree_value);
1017 type = TREE_TYPE (args[i].tree_value);
1018
1019 *ecf_flags &= ~(ECF_CONST | ECF_LIBCALL_BLOCK);
1020 }
1021 else
1022 {
1023 /* We make a copy of the object and pass the address to the
1024 function being called. */
1025 rtx copy;
1026
1027 if (!COMPLETE_TYPE_P (type)
1028 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
1029 || (flag_stack_check && ! STACK_CHECK_BUILTIN
1030 && (0 < compare_tree_int (TYPE_SIZE_UNIT (type),
1031 STACK_CHECK_MAX_VAR_SIZE))))
1032 {
1033 /* This is a variable-sized object. Make space on the stack
1034 for it. */
1035 rtx size_rtx = expr_size (TREE_VALUE (p));
1036
1037 if (*old_stack_level == 0)
1038 {
1039 emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX);
1040 *old_pending_adj = pending_stack_adjust;
1041 pending_stack_adjust = 0;
1042 }
1043
1044 copy = gen_rtx_MEM (BLKmode,
1045 allocate_dynamic_stack_space
1046 (size_rtx, NULL_RTX, TYPE_ALIGN (type)));
1047 set_mem_attributes (copy, type, 1);
1048 }
1049 else
1050 copy = assign_temp (type, 0, 1, 0);
1051
1052 store_expr (args[i].tree_value, copy, 0);
1053
1054 if (callee_copies)
1055 *ecf_flags &= ~(ECF_CONST | ECF_LIBCALL_BLOCK);
1056 else
1057 *ecf_flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1058
1059 args[i].tree_value
1060 = build_fold_addr_expr (make_tree (type, copy));
1061 type = TREE_TYPE (args[i].tree_value);
1062 *may_tailcall = false;
1063 }
1064 }
1065
1066 mode = TYPE_MODE (type);
1067 unsignedp = TYPE_UNSIGNED (type);
1068
1069 if (targetm.calls.promote_function_args (fndecl ? TREE_TYPE (fndecl) : 0))
1070 mode = promote_mode (type, mode, &unsignedp, 1);
1071
1072 args[i].unsignedp = unsignedp;
1073 args[i].mode = mode;
1074
1075 args[i].reg = FUNCTION_ARG (*args_so_far, mode, type,
1076 argpos < n_named_args);
1077 #ifdef FUNCTION_INCOMING_ARG
1078 /* If this is a sibling call and the machine has register windows, the
1079 register window has to be unwinded before calling the routine, so
1080 arguments have to go into the incoming registers. */
1081 args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type,
1082 argpos < n_named_args);
1083 #else
1084 args[i].tail_call_reg = args[i].reg;
1085 #endif
1086
1087 if (args[i].reg)
1088 args[i].partial
1089 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1090 argpos < n_named_args);
1091
1092 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1093
1094 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1095 it means that we are to pass this arg in the register(s) designated
1096 by the PARALLEL, but also to pass it in the stack. */
1097 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1098 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1099 args[i].pass_on_stack = 1;
1100
1101 /* If this is an addressable type, we must preallocate the stack
1102 since we must evaluate the object into its final location.
1103
1104 If this is to be passed in both registers and the stack, it is simpler
1105 to preallocate. */
1106 if (TREE_ADDRESSABLE (type)
1107 || (args[i].pass_on_stack && args[i].reg != 0))
1108 *must_preallocate = 1;
1109
1110 /* If this is an addressable type, we cannot pre-evaluate it. Thus,
1111 we cannot consider this function call constant. */
1112 if (TREE_ADDRESSABLE (type))
1113 *ecf_flags &= ~ECF_LIBCALL_BLOCK;
1114
1115 /* Compute the stack-size of this argument. */
1116 if (args[i].reg == 0 || args[i].partial != 0
1117 || reg_parm_stack_space > 0
1118 || args[i].pass_on_stack)
1119 locate_and_pad_parm (mode, type,
1120 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1121 1,
1122 #else
1123 args[i].reg != 0,
1124 #endif
1125 args[i].pass_on_stack ? 0 : args[i].partial,
1126 fndecl, args_size, &args[i].locate);
1127 #ifdef BLOCK_REG_PADDING
1128 else
1129 /* The argument is passed entirely in registers. See at which
1130 end it should be padded. */
1131 args[i].locate.where_pad =
1132 BLOCK_REG_PADDING (mode, type,
1133 int_size_in_bytes (type) <= UNITS_PER_WORD);
1134 #endif
1135
1136 /* Update ARGS_SIZE, the total stack space for args so far. */
1137
1138 args_size->constant += args[i].locate.size.constant;
1139 if (args[i].locate.size.var)
1140 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1141
1142 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1143 have been used, etc. */
1144
1145 FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type,
1146 argpos < n_named_args);
1147 }
1148 }
1149
1150 /* Update ARGS_SIZE to contain the total size for the argument block.
1151 Return the original constant component of the argument block's size.
1152
1153 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1154 for arguments passed in registers. */
1155
1156 static int
1157 compute_argument_block_size (int reg_parm_stack_space,
1158 struct args_size *args_size,
1159 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1160 {
1161 int unadjusted_args_size = args_size->constant;
1162
1163 /* For accumulate outgoing args mode we don't need to align, since the frame
1164 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1165 backends from generating misaligned frame sizes. */
1166 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1167 preferred_stack_boundary = STACK_BOUNDARY;
1168
1169 /* Compute the actual size of the argument block required. The variable
1170 and constant sizes must be combined, the size may have to be rounded,
1171 and there may be a minimum required size. */
1172
1173 if (args_size->var)
1174 {
1175 args_size->var = ARGS_SIZE_TREE (*args_size);
1176 args_size->constant = 0;
1177
1178 preferred_stack_boundary /= BITS_PER_UNIT;
1179 if (preferred_stack_boundary > 1)
1180 {
1181 /* We don't handle this case yet. To handle it correctly we have
1182 to add the delta, round and subtract the delta.
1183 Currently no machine description requires this support. */
1184 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1185 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1186 }
1187
1188 if (reg_parm_stack_space > 0)
1189 {
1190 args_size->var
1191 = size_binop (MAX_EXPR, args_size->var,
1192 ssize_int (reg_parm_stack_space));
1193
1194 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1195 /* The area corresponding to register parameters is not to count in
1196 the size of the block we need. So make the adjustment. */
1197 args_size->var
1198 = size_binop (MINUS_EXPR, args_size->var,
1199 ssize_int (reg_parm_stack_space));
1200 #endif
1201 }
1202 }
1203 else
1204 {
1205 preferred_stack_boundary /= BITS_PER_UNIT;
1206 if (preferred_stack_boundary < 1)
1207 preferred_stack_boundary = 1;
1208 args_size->constant = (((args_size->constant
1209 + stack_pointer_delta
1210 + preferred_stack_boundary - 1)
1211 / preferred_stack_boundary
1212 * preferred_stack_boundary)
1213 - stack_pointer_delta);
1214
1215 args_size->constant = MAX (args_size->constant,
1216 reg_parm_stack_space);
1217
1218 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1219 args_size->constant -= reg_parm_stack_space;
1220 #endif
1221 }
1222 return unadjusted_args_size;
1223 }
1224
1225 /* Precompute parameters as needed for a function call.
1226
1227 FLAGS is mask of ECF_* constants.
1228
1229 NUM_ACTUALS is the number of arguments.
1230
1231 ARGS is an array containing information for each argument; this
1232 routine fills in the INITIAL_VALUE and VALUE fields for each
1233 precomputed argument. */
1234
1235 static void
1236 precompute_arguments (int flags, int num_actuals, struct arg_data *args)
1237 {
1238 int i;
1239
1240 /* If this is a libcall, then precompute all arguments so that we do not
1241 get extraneous instructions emitted as part of the libcall sequence. */
1242 if ((flags & ECF_LIBCALL_BLOCK) == 0)
1243 return;
1244
1245 for (i = 0; i < num_actuals; i++)
1246 {
1247 enum machine_mode mode;
1248
1249 /* If this is an addressable type, we cannot pre-evaluate it. */
1250 gcc_assert (!TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)));
1251
1252 args[i].initial_value = args[i].value
1253 = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0);
1254
1255 mode = TYPE_MODE (TREE_TYPE (args[i].tree_value));
1256 if (mode != args[i].mode)
1257 {
1258 args[i].value
1259 = convert_modes (args[i].mode, mode,
1260 args[i].value, args[i].unsignedp);
1261 #if defined(PROMOTE_FUNCTION_MODE) && !defined(PROMOTE_MODE)
1262 /* CSE will replace this only if it contains args[i].value
1263 pseudo, so convert it down to the declared mode using
1264 a SUBREG. */
1265 if (REG_P (args[i].value)
1266 && GET_MODE_CLASS (args[i].mode) == MODE_INT)
1267 {
1268 args[i].initial_value
1269 = gen_lowpart_SUBREG (mode, args[i].value);
1270 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1271 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1272 args[i].unsignedp);
1273 }
1274 #endif
1275 }
1276 }
1277 }
1278
1279 /* Given the current state of MUST_PREALLOCATE and information about
1280 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1281 compute and return the final value for MUST_PREALLOCATE. */
1282
1283 static int
1284 finalize_must_preallocate (int must_preallocate, int num_actuals, struct arg_data *args, struct args_size *args_size)
1285 {
1286 /* See if we have or want to preallocate stack space.
1287
1288 If we would have to push a partially-in-regs parm
1289 before other stack parms, preallocate stack space instead.
1290
1291 If the size of some parm is not a multiple of the required stack
1292 alignment, we must preallocate.
1293
1294 If the total size of arguments that would otherwise create a copy in
1295 a temporary (such as a CALL) is more than half the total argument list
1296 size, preallocation is faster.
1297
1298 Another reason to preallocate is if we have a machine (like the m88k)
1299 where stack alignment is required to be maintained between every
1300 pair of insns, not just when the call is made. However, we assume here
1301 that such machines either do not have push insns (and hence preallocation
1302 would occur anyway) or the problem is taken care of with
1303 PUSH_ROUNDING. */
1304
1305 if (! must_preallocate)
1306 {
1307 int partial_seen = 0;
1308 int copy_to_evaluate_size = 0;
1309 int i;
1310
1311 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1312 {
1313 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1314 partial_seen = 1;
1315 else if (partial_seen && args[i].reg == 0)
1316 must_preallocate = 1;
1317
1318 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1319 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1320 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1321 || TREE_CODE (args[i].tree_value) == COND_EXPR
1322 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1323 copy_to_evaluate_size
1324 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1325 }
1326
1327 if (copy_to_evaluate_size * 2 >= args_size->constant
1328 && args_size->constant > 0)
1329 must_preallocate = 1;
1330 }
1331 return must_preallocate;
1332 }
1333
1334 /* If we preallocated stack space, compute the address of each argument
1335 and store it into the ARGS array.
1336
1337 We need not ensure it is a valid memory address here; it will be
1338 validized when it is used.
1339
1340 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1341
1342 static void
1343 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1344 {
1345 if (argblock)
1346 {
1347 rtx arg_reg = argblock;
1348 int i, arg_offset = 0;
1349
1350 if (GET_CODE (argblock) == PLUS)
1351 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1352
1353 for (i = 0; i < num_actuals; i++)
1354 {
1355 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1356 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1357 rtx addr;
1358 unsigned int align, boundary;
1359
1360 /* Skip this parm if it will not be passed on the stack. */
1361 if (! args[i].pass_on_stack && args[i].reg != 0)
1362 continue;
1363
1364 if (GET_CODE (offset) == CONST_INT)
1365 addr = plus_constant (arg_reg, INTVAL (offset));
1366 else
1367 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1368
1369 addr = plus_constant (addr, arg_offset);
1370 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1371 set_mem_attributes (args[i].stack,
1372 TREE_TYPE (args[i].tree_value), 1);
1373 align = BITS_PER_UNIT;
1374 boundary = args[i].locate.boundary;
1375 if (args[i].locate.where_pad != downward)
1376 align = boundary;
1377 else if (GET_CODE (offset) == CONST_INT)
1378 {
1379 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1380 align = align & -align;
1381 }
1382 set_mem_align (args[i].stack, align);
1383
1384 if (GET_CODE (slot_offset) == CONST_INT)
1385 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1386 else
1387 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1388
1389 addr = plus_constant (addr, arg_offset);
1390 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1391 set_mem_attributes (args[i].stack_slot,
1392 TREE_TYPE (args[i].tree_value), 1);
1393 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1394
1395 /* Function incoming arguments may overlap with sibling call
1396 outgoing arguments and we cannot allow reordering of reads
1397 from function arguments with stores to outgoing arguments
1398 of sibling calls. */
1399 set_mem_alias_set (args[i].stack, 0);
1400 set_mem_alias_set (args[i].stack_slot, 0);
1401 }
1402 }
1403 }
1404
1405 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1406 in a call instruction.
1407
1408 FNDECL is the tree node for the target function. For an indirect call
1409 FNDECL will be NULL_TREE.
1410
1411 ADDR is the operand 0 of CALL_EXPR for this call. */
1412
1413 static rtx
1414 rtx_for_function_call (tree fndecl, tree addr)
1415 {
1416 rtx funexp;
1417
1418 /* Get the function to call, in the form of RTL. */
1419 if (fndecl)
1420 {
1421 /* If this is the first use of the function, see if we need to
1422 make an external definition for it. */
1423 if (! TREE_USED (fndecl))
1424 {
1425 assemble_external (fndecl);
1426 TREE_USED (fndecl) = 1;
1427 }
1428
1429 /* Get a SYMBOL_REF rtx for the function address. */
1430 funexp = XEXP (DECL_RTL (fndecl), 0);
1431 }
1432 else
1433 /* Generate an rtx (probably a pseudo-register) for the address. */
1434 {
1435 push_temp_slots ();
1436 funexp = expand_expr (addr, NULL_RTX, VOIDmode, 0);
1437 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1438 }
1439 return funexp;
1440 }
1441
1442 /* Return true if and only if SIZE storage units (usually bytes)
1443 starting from address ADDR overlap with already clobbered argument
1444 area. This function is used to determine if we should give up a
1445 sibcall. */
1446
1447 static bool
1448 mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
1449 {
1450 HOST_WIDE_INT i;
1451
1452 if (addr == current_function_internal_arg_pointer)
1453 i = 0;
1454 else if (GET_CODE (addr) == PLUS
1455 && (XEXP (addr, 0)
1456 == current_function_internal_arg_pointer)
1457 && GET_CODE (XEXP (addr, 1)) == CONST_INT)
1458 i = INTVAL (XEXP (addr, 1));
1459 else
1460 return false;
1461
1462 #ifdef ARGS_GROW_DOWNWARD
1463 i = -i - size;
1464 #endif
1465 if (size > 0)
1466 {
1467 unsigned HOST_WIDE_INT k;
1468
1469 for (k = 0; k < size; k++)
1470 if (i + k < stored_args_map->n_bits
1471 && TEST_BIT (stored_args_map, i + k))
1472 return true;
1473 }
1474
1475 return false;
1476 }
1477
1478 /* Do the register loads required for any wholly-register parms or any
1479 parms which are passed both on the stack and in a register. Their
1480 expressions were already evaluated.
1481
1482 Mark all register-parms as living through the call, putting these USE
1483 insns in the CALL_INSN_FUNCTION_USAGE field.
1484
1485 When IS_SIBCALL, perform the check_sibcall_argument_overlap
1486 checking, setting *SIBCALL_FAILURE if appropriate. */
1487
1488 static void
1489 load_register_parameters (struct arg_data *args, int num_actuals,
1490 rtx *call_fusage, int flags, int is_sibcall,
1491 int *sibcall_failure)
1492 {
1493 int i, j;
1494
1495 for (i = 0; i < num_actuals; i++)
1496 {
1497 rtx reg = ((flags & ECF_SIBCALL)
1498 ? args[i].tail_call_reg : args[i].reg);
1499 if (reg)
1500 {
1501 int partial = args[i].partial;
1502 int nregs;
1503 int size = 0;
1504 rtx before_arg = get_last_insn ();
1505 /* Set non-negative if we must move a word at a time, even if
1506 just one word (e.g, partial == 4 && mode == DFmode). Set
1507 to -1 if we just use a normal move insn. This value can be
1508 zero if the argument is a zero size structure. */
1509 nregs = -1;
1510 if (GET_CODE (reg) == PARALLEL)
1511 ;
1512 else if (partial)
1513 {
1514 gcc_assert (partial % UNITS_PER_WORD == 0);
1515 nregs = partial / UNITS_PER_WORD;
1516 }
1517 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1518 {
1519 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1520 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1521 }
1522 else
1523 size = GET_MODE_SIZE (args[i].mode);
1524
1525 /* Handle calls that pass values in multiple non-contiguous
1526 locations. The Irix 6 ABI has examples of this. */
1527
1528 if (GET_CODE (reg) == PARALLEL)
1529 emit_group_move (reg, args[i].parallel_value);
1530
1531 /* If simple case, just do move. If normal partial, store_one_arg
1532 has already loaded the register for us. In all other cases,
1533 load the register(s) from memory. */
1534
1535 else if (nregs == -1)
1536 {
1537 emit_move_insn (reg, args[i].value);
1538 #ifdef BLOCK_REG_PADDING
1539 /* Handle case where we have a value that needs shifting
1540 up to the msb. eg. a QImode value and we're padding
1541 upward on a BYTES_BIG_ENDIAN machine. */
1542 if (size < UNITS_PER_WORD
1543 && (args[i].locate.where_pad
1544 == (BYTES_BIG_ENDIAN ? upward : downward)))
1545 {
1546 rtx x;
1547 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1548
1549 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1550 report the whole reg as used. Strictly speaking, the
1551 call only uses SIZE bytes at the msb end, but it doesn't
1552 seem worth generating rtl to say that. */
1553 reg = gen_rtx_REG (word_mode, REGNO (reg));
1554 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
1555 build_int_cst (NULL_TREE, shift),
1556 reg, 1);
1557 if (x != reg)
1558 emit_move_insn (reg, x);
1559 }
1560 #endif
1561 }
1562
1563 /* If we have pre-computed the values to put in the registers in
1564 the case of non-aligned structures, copy them in now. */
1565
1566 else if (args[i].n_aligned_regs != 0)
1567 for (j = 0; j < args[i].n_aligned_regs; j++)
1568 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1569 args[i].aligned_regs[j]);
1570
1571 else if (partial == 0 || args[i].pass_on_stack)
1572 {
1573 rtx mem = validize_mem (args[i].value);
1574
1575 /* Check for overlap with already clobbered argument area. */
1576 if (is_sibcall
1577 && mem_overlaps_already_clobbered_arg_p (XEXP (args[i].value, 0),
1578 size))
1579 *sibcall_failure = 1;
1580
1581 /* Handle a BLKmode that needs shifting. */
1582 if (nregs == 1 && size < UNITS_PER_WORD
1583 #ifdef BLOCK_REG_PADDING
1584 && args[i].locate.where_pad == downward
1585 #else
1586 && BYTES_BIG_ENDIAN
1587 #endif
1588 )
1589 {
1590 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1591 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1592 rtx x = gen_reg_rtx (word_mode);
1593 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1594 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1595 : LSHIFT_EXPR;
1596
1597 emit_move_insn (x, tem);
1598 x = expand_shift (dir, word_mode, x,
1599 build_int_cst (NULL_TREE, shift),
1600 ri, 1);
1601 if (x != ri)
1602 emit_move_insn (ri, x);
1603 }
1604 else
1605 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1606 }
1607
1608 /* When a parameter is a block, and perhaps in other cases, it is
1609 possible that it did a load from an argument slot that was
1610 already clobbered. */
1611 if (is_sibcall
1612 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1613 *sibcall_failure = 1;
1614
1615 /* Handle calls that pass values in multiple non-contiguous
1616 locations. The Irix 6 ABI has examples of this. */
1617 if (GET_CODE (reg) == PARALLEL)
1618 use_group_regs (call_fusage, reg);
1619 else if (nregs == -1)
1620 use_reg (call_fusage, reg);
1621 else if (nregs > 0)
1622 use_regs (call_fusage, REGNO (reg), nregs);
1623 }
1624 }
1625 }
1626
1627 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1628 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1629 bytes, then we would need to push some additional bytes to pad the
1630 arguments. So, we compute an adjust to the stack pointer for an
1631 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1632 bytes. Then, when the arguments are pushed the stack will be perfectly
1633 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1634 be popped after the call. Returns the adjustment. */
1635
1636 static int
1637 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1638 struct args_size *args_size,
1639 unsigned int preferred_unit_stack_boundary)
1640 {
1641 /* The number of bytes to pop so that the stack will be
1642 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1643 HOST_WIDE_INT adjustment;
1644 /* The alignment of the stack after the arguments are pushed, if we
1645 just pushed the arguments without adjust the stack here. */
1646 unsigned HOST_WIDE_INT unadjusted_alignment;
1647
1648 unadjusted_alignment
1649 = ((stack_pointer_delta + unadjusted_args_size)
1650 % preferred_unit_stack_boundary);
1651
1652 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1653 as possible -- leaving just enough left to cancel out the
1654 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1655 PENDING_STACK_ADJUST is non-negative, and congruent to
1656 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1657
1658 /* Begin by trying to pop all the bytes. */
1659 unadjusted_alignment
1660 = (unadjusted_alignment
1661 - (pending_stack_adjust % preferred_unit_stack_boundary));
1662 adjustment = pending_stack_adjust;
1663 /* Push enough additional bytes that the stack will be aligned
1664 after the arguments are pushed. */
1665 if (preferred_unit_stack_boundary > 1)
1666 {
1667 if (unadjusted_alignment > 0)
1668 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1669 else
1670 adjustment += unadjusted_alignment;
1671 }
1672
1673 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1674 bytes after the call. The right number is the entire
1675 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1676 by the arguments in the first place. */
1677 args_size->constant
1678 = pending_stack_adjust - adjustment + unadjusted_args_size;
1679
1680 return adjustment;
1681 }
1682
1683 /* Scan X expression if it does not dereference any argument slots
1684 we already clobbered by tail call arguments (as noted in stored_args_map
1685 bitmap).
1686 Return nonzero if X expression dereferences such argument slots,
1687 zero otherwise. */
1688
1689 static int
1690 check_sibcall_argument_overlap_1 (rtx x)
1691 {
1692 RTX_CODE code;
1693 int i, j;
1694 const char *fmt;
1695
1696 if (x == NULL_RTX)
1697 return 0;
1698
1699 code = GET_CODE (x);
1700
1701 if (code == MEM)
1702 return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
1703 GET_MODE_SIZE (GET_MODE (x)));
1704
1705 /* Scan all subexpressions. */
1706 fmt = GET_RTX_FORMAT (code);
1707 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1708 {
1709 if (*fmt == 'e')
1710 {
1711 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1712 return 1;
1713 }
1714 else if (*fmt == 'E')
1715 {
1716 for (j = 0; j < XVECLEN (x, i); j++)
1717 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1718 return 1;
1719 }
1720 }
1721 return 0;
1722 }
1723
1724 /* Scan sequence after INSN if it does not dereference any argument slots
1725 we already clobbered by tail call arguments (as noted in stored_args_map
1726 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1727 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1728 should be 0). Return nonzero if sequence after INSN dereferences such argument
1729 slots, zero otherwise. */
1730
1731 static int
1732 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1733 {
1734 int low, high;
1735
1736 if (insn == NULL_RTX)
1737 insn = get_insns ();
1738 else
1739 insn = NEXT_INSN (insn);
1740
1741 for (; insn; insn = NEXT_INSN (insn))
1742 if (INSN_P (insn)
1743 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1744 break;
1745
1746 if (mark_stored_args_map)
1747 {
1748 #ifdef ARGS_GROW_DOWNWARD
1749 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1750 #else
1751 low = arg->locate.slot_offset.constant;
1752 #endif
1753
1754 for (high = low + arg->locate.size.constant; low < high; low++)
1755 SET_BIT (stored_args_map, low);
1756 }
1757 return insn != NULL_RTX;
1758 }
1759
1760 /* Given that a function returns a value of mode MODE at the most
1761 significant end of hard register VALUE, shift VALUE left or right
1762 as specified by LEFT_P. Return true if some action was needed. */
1763
1764 bool
1765 shift_return_value (enum machine_mode mode, bool left_p, rtx value)
1766 {
1767 HOST_WIDE_INT shift;
1768
1769 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
1770 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
1771 if (shift == 0)
1772 return false;
1773
1774 /* Use ashr rather than lshr for right shifts. This is for the benefit
1775 of the MIPS port, which requires SImode values to be sign-extended
1776 when stored in 64-bit registers. */
1777 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
1778 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
1779 gcc_unreachable ();
1780 return true;
1781 }
1782
1783 /* Generate all the code for a function call
1784 and return an rtx for its value.
1785 Store the value in TARGET (specified as an rtx) if convenient.
1786 If the value is stored in TARGET then TARGET is returned.
1787 If IGNORE is nonzero, then we ignore the value of the function call. */
1788
1789 rtx
1790 expand_call (tree exp, rtx target, int ignore)
1791 {
1792 /* Nonzero if we are currently expanding a call. */
1793 static int currently_expanding_call = 0;
1794
1795 /* List of actual parameters. */
1796 tree actparms = TREE_OPERAND (exp, 1);
1797 /* RTX for the function to be called. */
1798 rtx funexp;
1799 /* Sequence of insns to perform a normal "call". */
1800 rtx normal_call_insns = NULL_RTX;
1801 /* Sequence of insns to perform a tail "call". */
1802 rtx tail_call_insns = NULL_RTX;
1803 /* Data type of the function. */
1804 tree funtype;
1805 tree type_arg_types;
1806 /* Declaration of the function being called,
1807 or 0 if the function is computed (not known by name). */
1808 tree fndecl = 0;
1809 /* The type of the function being called. */
1810 tree fntype;
1811 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1812 int pass;
1813
1814 /* Register in which non-BLKmode value will be returned,
1815 or 0 if no value or if value is BLKmode. */
1816 rtx valreg;
1817 /* Address where we should return a BLKmode value;
1818 0 if value not BLKmode. */
1819 rtx structure_value_addr = 0;
1820 /* Nonzero if that address is being passed by treating it as
1821 an extra, implicit first parameter. Otherwise,
1822 it is passed by being copied directly into struct_value_rtx. */
1823 int structure_value_addr_parm = 0;
1824 /* Size of aggregate value wanted, or zero if none wanted
1825 or if we are using the non-reentrant PCC calling convention
1826 or expecting the value in registers. */
1827 HOST_WIDE_INT struct_value_size = 0;
1828 /* Nonzero if called function returns an aggregate in memory PCC style,
1829 by returning the address of where to find it. */
1830 int pcc_struct_value = 0;
1831 rtx struct_value = 0;
1832
1833 /* Number of actual parameters in this call, including struct value addr. */
1834 int num_actuals;
1835 /* Number of named args. Args after this are anonymous ones
1836 and they must all go on the stack. */
1837 int n_named_args;
1838
1839 /* Vector of information about each argument.
1840 Arguments are numbered in the order they will be pushed,
1841 not the order they are written. */
1842 struct arg_data *args;
1843
1844 /* Total size in bytes of all the stack-parms scanned so far. */
1845 struct args_size args_size;
1846 struct args_size adjusted_args_size;
1847 /* Size of arguments before any adjustments (such as rounding). */
1848 int unadjusted_args_size;
1849 /* Data on reg parms scanned so far. */
1850 CUMULATIVE_ARGS args_so_far;
1851 /* Nonzero if a reg parm has been scanned. */
1852 int reg_parm_seen;
1853 /* Nonzero if this is an indirect function call. */
1854
1855 /* Nonzero if we must avoid push-insns in the args for this call.
1856 If stack space is allocated for register parameters, but not by the
1857 caller, then it is preallocated in the fixed part of the stack frame.
1858 So the entire argument block must then be preallocated (i.e., we
1859 ignore PUSH_ROUNDING in that case). */
1860
1861 int must_preallocate = !PUSH_ARGS;
1862
1863 /* Size of the stack reserved for parameter registers. */
1864 int reg_parm_stack_space = 0;
1865
1866 /* Address of space preallocated for stack parms
1867 (on machines that lack push insns), or 0 if space not preallocated. */
1868 rtx argblock = 0;
1869
1870 /* Mask of ECF_ flags. */
1871 int flags = 0;
1872 #ifdef REG_PARM_STACK_SPACE
1873 /* Define the boundary of the register parm stack space that needs to be
1874 saved, if any. */
1875 int low_to_save, high_to_save;
1876 rtx save_area = 0; /* Place that it is saved */
1877 #endif
1878
1879 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
1880 char *initial_stack_usage_map = stack_usage_map;
1881 char *stack_usage_map_buf = NULL;
1882
1883 int old_stack_allocated;
1884
1885 /* State variables to track stack modifications. */
1886 rtx old_stack_level = 0;
1887 int old_stack_arg_under_construction = 0;
1888 int old_pending_adj = 0;
1889 int old_inhibit_defer_pop = inhibit_defer_pop;
1890
1891 /* Some stack pointer alterations we make are performed via
1892 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
1893 which we then also need to save/restore along the way. */
1894 int old_stack_pointer_delta = 0;
1895
1896 rtx call_fusage;
1897 tree p = TREE_OPERAND (exp, 0);
1898 tree addr = TREE_OPERAND (exp, 0);
1899 int i;
1900 /* The alignment of the stack, in bits. */
1901 unsigned HOST_WIDE_INT preferred_stack_boundary;
1902 /* The alignment of the stack, in bytes. */
1903 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
1904 /* The static chain value to use for this call. */
1905 rtx static_chain_value;
1906 /* See if this is "nothrow" function call. */
1907 if (TREE_NOTHROW (exp))
1908 flags |= ECF_NOTHROW;
1909
1910 /* See if we can find a DECL-node for the actual function, and get the
1911 function attributes (flags) from the function decl or type node. */
1912 fndecl = get_callee_fndecl (exp);
1913 if (fndecl)
1914 {
1915 fntype = TREE_TYPE (fndecl);
1916 flags |= flags_from_decl_or_type (fndecl);
1917 }
1918 else
1919 {
1920 fntype = TREE_TYPE (TREE_TYPE (p));
1921 flags |= flags_from_decl_or_type (fntype);
1922 }
1923
1924 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
1925
1926 /* Warn if this value is an aggregate type,
1927 regardless of which calling convention we are using for it. */
1928 if (AGGREGATE_TYPE_P (TREE_TYPE (exp)))
1929 warning (OPT_Waggregate_return, "function call has aggregate value");
1930
1931 /* If the result of a pure or const function call is ignored (or void),
1932 and none of its arguments are volatile, we can avoid expanding the
1933 call and just evaluate the arguments for side-effects. */
1934 if ((flags & (ECF_CONST | ECF_PURE))
1935 && (ignore || target == const0_rtx
1936 || TYPE_MODE (TREE_TYPE (exp)) == VOIDmode))
1937 {
1938 bool volatilep = false;
1939 tree arg;
1940
1941 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
1942 if (TREE_THIS_VOLATILE (TREE_VALUE (arg)))
1943 {
1944 volatilep = true;
1945 break;
1946 }
1947
1948 if (! volatilep)
1949 {
1950 for (arg = actparms; arg; arg = TREE_CHAIN (arg))
1951 expand_expr (TREE_VALUE (arg), const0_rtx,
1952 VOIDmode, EXPAND_NORMAL);
1953 return const0_rtx;
1954 }
1955 }
1956
1957 #ifdef REG_PARM_STACK_SPACE
1958 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
1959 #endif
1960
1961 #ifndef OUTGOING_REG_PARM_STACK_SPACE
1962 if (reg_parm_stack_space > 0 && PUSH_ARGS)
1963 must_preallocate = 1;
1964 #endif
1965
1966 /* Set up a place to return a structure. */
1967
1968 /* Cater to broken compilers. */
1969 if (aggregate_value_p (exp, fndecl))
1970 {
1971 /* This call returns a big structure. */
1972 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
1973
1974 #ifdef PCC_STATIC_STRUCT_RETURN
1975 {
1976 pcc_struct_value = 1;
1977 }
1978 #else /* not PCC_STATIC_STRUCT_RETURN */
1979 {
1980 struct_value_size = int_size_in_bytes (TREE_TYPE (exp));
1981
1982 if (target && MEM_P (target) && CALL_EXPR_RETURN_SLOT_OPT (exp))
1983 structure_value_addr = XEXP (target, 0);
1984 else
1985 {
1986 /* For variable-sized objects, we must be called with a target
1987 specified. If we were to allocate space on the stack here,
1988 we would have no way of knowing when to free it. */
1989 rtx d = assign_temp (TREE_TYPE (exp), 1, 1, 1);
1990
1991 mark_temp_addr_taken (d);
1992 structure_value_addr = XEXP (d, 0);
1993 target = 0;
1994 }
1995 }
1996 #endif /* not PCC_STATIC_STRUCT_RETURN */
1997 }
1998
1999 /* Figure out the amount to which the stack should be aligned. */
2000 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2001 if (fndecl)
2002 {
2003 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2004 if (i && i->preferred_incoming_stack_boundary)
2005 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2006 }
2007
2008 /* Operand 0 is a pointer-to-function; get the type of the function. */
2009 funtype = TREE_TYPE (addr);
2010 gcc_assert (POINTER_TYPE_P (funtype));
2011 funtype = TREE_TYPE (funtype);
2012
2013 /* Munge the tree to split complex arguments into their imaginary
2014 and real parts. */
2015 if (targetm.calls.split_complex_arg)
2016 {
2017 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2018 actparms = split_complex_values (actparms);
2019 }
2020 else
2021 type_arg_types = TYPE_ARG_TYPES (funtype);
2022
2023 if (flags & ECF_MAY_BE_ALLOCA)
2024 current_function_calls_alloca = 1;
2025
2026 /* If struct_value_rtx is 0, it means pass the address
2027 as if it were an extra parameter. */
2028 if (structure_value_addr && struct_value == 0)
2029 {
2030 /* If structure_value_addr is a REG other than
2031 virtual_outgoing_args_rtx, we can use always use it. If it
2032 is not a REG, we must always copy it into a register.
2033 If it is virtual_outgoing_args_rtx, we must copy it to another
2034 register in some cases. */
2035 rtx temp = (!REG_P (structure_value_addr)
2036 || (ACCUMULATE_OUTGOING_ARGS
2037 && stack_arg_under_construction
2038 && structure_value_addr == virtual_outgoing_args_rtx)
2039 ? copy_addr_to_reg (convert_memory_address
2040 (Pmode, structure_value_addr))
2041 : structure_value_addr);
2042
2043 actparms
2044 = tree_cons (error_mark_node,
2045 make_tree (build_pointer_type (TREE_TYPE (funtype)),
2046 temp),
2047 actparms);
2048 structure_value_addr_parm = 1;
2049 }
2050
2051 /* Count the arguments and set NUM_ACTUALS. */
2052 for (p = actparms, num_actuals = 0; p; p = TREE_CHAIN (p))
2053 num_actuals++;
2054
2055 /* Compute number of named args.
2056 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2057
2058 if (type_arg_types != 0)
2059 n_named_args
2060 = (list_length (type_arg_types)
2061 /* Count the struct value address, if it is passed as a parm. */
2062 + structure_value_addr_parm);
2063 else
2064 /* If we know nothing, treat all args as named. */
2065 n_named_args = num_actuals;
2066
2067 /* Start updating where the next arg would go.
2068
2069 On some machines (such as the PA) indirect calls have a different
2070 calling convention than normal calls. The fourth argument in
2071 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2072 or not. */
2073 INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
2074
2075 /* Now possibly adjust the number of named args.
2076 Normally, don't include the last named arg if anonymous args follow.
2077 We do include the last named arg if
2078 targetm.calls.strict_argument_naming() returns nonzero.
2079 (If no anonymous args follow, the result of list_length is actually
2080 one too large. This is harmless.)
2081
2082 If targetm.calls.pretend_outgoing_varargs_named() returns
2083 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2084 this machine will be able to place unnamed args that were passed
2085 in registers into the stack. So treat all args as named. This
2086 allows the insns emitting for a specific argument list to be
2087 independent of the function declaration.
2088
2089 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2090 we do not have any reliable way to pass unnamed args in
2091 registers, so we must force them into memory. */
2092
2093 if (type_arg_types != 0
2094 && targetm.calls.strict_argument_naming (&args_so_far))
2095 ;
2096 else if (type_arg_types != 0
2097 && ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
2098 /* Don't include the last named arg. */
2099 --n_named_args;
2100 else
2101 /* Treat all args as named. */
2102 n_named_args = num_actuals;
2103
2104 /* Make a vector to hold all the information about each arg. */
2105 args = alloca (num_actuals * sizeof (struct arg_data));
2106 memset (args, 0, num_actuals * sizeof (struct arg_data));
2107
2108 /* Build up entries in the ARGS array, compute the size of the
2109 arguments into ARGS_SIZE, etc. */
2110 initialize_argument_information (num_actuals, args, &args_size,
2111 n_named_args, actparms, fndecl,
2112 &args_so_far, reg_parm_stack_space,
2113 &old_stack_level, &old_pending_adj,
2114 &must_preallocate, &flags,
2115 &try_tail_call, CALL_FROM_THUNK_P (exp));
2116
2117 if (args_size.var)
2118 {
2119 /* If this function requires a variable-sized argument list, don't
2120 try to make a cse'able block for this call. We may be able to
2121 do this eventually, but it is too complicated to keep track of
2122 what insns go in the cse'able block and which don't. */
2123
2124 flags &= ~ECF_LIBCALL_BLOCK;
2125 must_preallocate = 1;
2126 }
2127
2128 /* Now make final decision about preallocating stack space. */
2129 must_preallocate = finalize_must_preallocate (must_preallocate,
2130 num_actuals, args,
2131 &args_size);
2132
2133 /* If the structure value address will reference the stack pointer, we
2134 must stabilize it. We don't need to do this if we know that we are
2135 not going to adjust the stack pointer in processing this call. */
2136
2137 if (structure_value_addr
2138 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2139 || reg_mentioned_p (virtual_outgoing_args_rtx,
2140 structure_value_addr))
2141 && (args_size.var
2142 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2143 structure_value_addr = copy_to_reg (structure_value_addr);
2144
2145 /* Tail calls can make things harder to debug, and we've traditionally
2146 pushed these optimizations into -O2. Don't try if we're already
2147 expanding a call, as that means we're an argument. Don't try if
2148 there's cleanups, as we know there's code to follow the call. */
2149
2150 if (currently_expanding_call++ != 0
2151 || !flag_optimize_sibling_calls
2152 || args_size.var
2153 || lookup_stmt_eh_region (exp) >= 0)
2154 try_tail_call = 0;
2155
2156 /* Rest of purposes for tail call optimizations to fail. */
2157 if (
2158 #ifdef HAVE_sibcall_epilogue
2159 !HAVE_sibcall_epilogue
2160 #else
2161 1
2162 #endif
2163 || !try_tail_call
2164 /* Doing sibling call optimization needs some work, since
2165 structure_value_addr can be allocated on the stack.
2166 It does not seem worth the effort since few optimizable
2167 sibling calls will return a structure. */
2168 || structure_value_addr != NULL_RTX
2169 /* Check whether the target is able to optimize the call
2170 into a sibcall. */
2171 || !targetm.function_ok_for_sibcall (fndecl, exp)
2172 /* Functions that do not return exactly once may not be sibcall
2173 optimized. */
2174 || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2175 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2176 /* If the called function is nested in the current one, it might access
2177 some of the caller's arguments, but could clobber them beforehand if
2178 the argument areas are shared. */
2179 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2180 /* If this function requires more stack slots than the current
2181 function, we cannot change it into a sibling call.
2182 current_function_pretend_args_size is not part of the
2183 stack allocated by our caller. */
2184 || args_size.constant > (current_function_args_size
2185 - current_function_pretend_args_size)
2186 /* If the callee pops its own arguments, then it must pop exactly
2187 the same number of arguments as the current function. */
2188 || (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant)
2189 != RETURN_POPS_ARGS (current_function_decl,
2190 TREE_TYPE (current_function_decl),
2191 current_function_args_size))
2192 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2193 try_tail_call = 0;
2194
2195 /* Ensure current function's preferred stack boundary is at least
2196 what we need. We don't have to increase alignment for recursive
2197 functions. */
2198 if (cfun->preferred_stack_boundary < preferred_stack_boundary
2199 && fndecl != current_function_decl)
2200 cfun->preferred_stack_boundary = preferred_stack_boundary;
2201 if (fndecl == current_function_decl)
2202 cfun->recursive_call_emit = true;
2203
2204 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2205
2206 /* We want to make two insn chains; one for a sibling call, the other
2207 for a normal call. We will select one of the two chains after
2208 initial RTL generation is complete. */
2209 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2210 {
2211 int sibcall_failure = 0;
2212 /* We want to emit any pending stack adjustments before the tail
2213 recursion "call". That way we know any adjustment after the tail
2214 recursion call can be ignored if we indeed use the tail
2215 call expansion. */
2216 int save_pending_stack_adjust = 0;
2217 int save_stack_pointer_delta = 0;
2218 rtx insns;
2219 rtx before_call, next_arg_reg;
2220
2221 if (pass == 0)
2222 {
2223 /* State variables we need to save and restore between
2224 iterations. */
2225 save_pending_stack_adjust = pending_stack_adjust;
2226 save_stack_pointer_delta = stack_pointer_delta;
2227 }
2228 if (pass)
2229 flags &= ~ECF_SIBCALL;
2230 else
2231 flags |= ECF_SIBCALL;
2232
2233 /* Other state variables that we must reinitialize each time
2234 through the loop (that are not initialized by the loop itself). */
2235 argblock = 0;
2236 call_fusage = 0;
2237
2238 /* Start a new sequence for the normal call case.
2239
2240 From this point on, if the sibling call fails, we want to set
2241 sibcall_failure instead of continuing the loop. */
2242 start_sequence ();
2243
2244 /* Don't let pending stack adjusts add up to too much.
2245 Also, do all pending adjustments now if there is any chance
2246 this might be a call to alloca or if we are expanding a sibling
2247 call sequence or if we are calling a function that is to return
2248 with stack pointer depressed.
2249 Also do the adjustments before a throwing call, otherwise
2250 exception handling can fail; PR 19225. */
2251 if (pending_stack_adjust >= 32
2252 || (pending_stack_adjust > 0
2253 && (flags & (ECF_MAY_BE_ALLOCA | ECF_SP_DEPRESSED)))
2254 || (pending_stack_adjust > 0
2255 && flag_exceptions && !(flags & ECF_NOTHROW))
2256 || pass == 0)
2257 do_pending_stack_adjust ();
2258
2259 /* When calling a const function, we must pop the stack args right away,
2260 so that the pop is deleted or moved with the call. */
2261 if (pass && (flags & ECF_LIBCALL_BLOCK))
2262 NO_DEFER_POP;
2263
2264 /* Precompute any arguments as needed. */
2265 if (pass)
2266 precompute_arguments (flags, num_actuals, args);
2267
2268 /* Now we are about to start emitting insns that can be deleted
2269 if a libcall is deleted. */
2270 if (pass && (flags & (ECF_LIBCALL_BLOCK | ECF_MALLOC)))
2271 start_sequence ();
2272
2273 if (pass == 0 && cfun->stack_protect_guard)
2274 stack_protect_epilogue ();
2275
2276 adjusted_args_size = args_size;
2277 /* Compute the actual size of the argument block required. The variable
2278 and constant sizes must be combined, the size may have to be rounded,
2279 and there may be a minimum required size. When generating a sibcall
2280 pattern, do not round up, since we'll be re-using whatever space our
2281 caller provided. */
2282 unadjusted_args_size
2283 = compute_argument_block_size (reg_parm_stack_space,
2284 &adjusted_args_size,
2285 (pass == 0 ? 0
2286 : preferred_stack_boundary));
2287
2288 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2289
2290 /* The argument block when performing a sibling call is the
2291 incoming argument block. */
2292 if (pass == 0)
2293 {
2294 argblock = virtual_incoming_args_rtx;
2295 argblock
2296 #ifdef STACK_GROWS_DOWNWARD
2297 = plus_constant (argblock, current_function_pretend_args_size);
2298 #else
2299 = plus_constant (argblock, -current_function_pretend_args_size);
2300 #endif
2301 stored_args_map = sbitmap_alloc (args_size.constant);
2302 sbitmap_zero (stored_args_map);
2303 }
2304
2305 /* If we have no actual push instructions, or shouldn't use them,
2306 make space for all args right now. */
2307 else if (adjusted_args_size.var != 0)
2308 {
2309 if (old_stack_level == 0)
2310 {
2311 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
2312 old_stack_pointer_delta = stack_pointer_delta;
2313 old_pending_adj = pending_stack_adjust;
2314 pending_stack_adjust = 0;
2315 /* stack_arg_under_construction says whether a stack arg is
2316 being constructed at the old stack level. Pushing the stack
2317 gets a clean outgoing argument block. */
2318 old_stack_arg_under_construction = stack_arg_under_construction;
2319 stack_arg_under_construction = 0;
2320 }
2321 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2322 }
2323 else
2324 {
2325 /* Note that we must go through the motions of allocating an argument
2326 block even if the size is zero because we may be storing args
2327 in the area reserved for register arguments, which may be part of
2328 the stack frame. */
2329
2330 int needed = adjusted_args_size.constant;
2331
2332 /* Store the maximum argument space used. It will be pushed by
2333 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2334 checking). */
2335
2336 if (needed > current_function_outgoing_args_size)
2337 current_function_outgoing_args_size = needed;
2338
2339 if (must_preallocate)
2340 {
2341 if (ACCUMULATE_OUTGOING_ARGS)
2342 {
2343 /* Since the stack pointer will never be pushed, it is
2344 possible for the evaluation of a parm to clobber
2345 something we have already written to the stack.
2346 Since most function calls on RISC machines do not use
2347 the stack, this is uncommon, but must work correctly.
2348
2349 Therefore, we save any area of the stack that was already
2350 written and that we are using. Here we set up to do this
2351 by making a new stack usage map from the old one. The
2352 actual save will be done by store_one_arg.
2353
2354 Another approach might be to try to reorder the argument
2355 evaluations to avoid this conflicting stack usage. */
2356
2357 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2358 /* Since we will be writing into the entire argument area,
2359 the map must be allocated for its entire size, not just
2360 the part that is the responsibility of the caller. */
2361 needed += reg_parm_stack_space;
2362 #endif
2363
2364 #ifdef ARGS_GROW_DOWNWARD
2365 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2366 needed + 1);
2367 #else
2368 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2369 needed);
2370 #endif
2371 if (stack_usage_map_buf)
2372 free (stack_usage_map_buf);
2373 stack_usage_map_buf = xmalloc (highest_outgoing_arg_in_use);
2374 stack_usage_map = stack_usage_map_buf;
2375
2376 if (initial_highest_arg_in_use)
2377 memcpy (stack_usage_map, initial_stack_usage_map,
2378 initial_highest_arg_in_use);
2379
2380 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2381 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2382 (highest_outgoing_arg_in_use
2383 - initial_highest_arg_in_use));
2384 needed = 0;
2385
2386 /* The address of the outgoing argument list must not be
2387 copied to a register here, because argblock would be left
2388 pointing to the wrong place after the call to
2389 allocate_dynamic_stack_space below. */
2390
2391 argblock = virtual_outgoing_args_rtx;
2392 }
2393 else
2394 {
2395 if (inhibit_defer_pop == 0)
2396 {
2397 /* Try to reuse some or all of the pending_stack_adjust
2398 to get this space. */
2399 needed
2400 = (combine_pending_stack_adjustment_and_call
2401 (unadjusted_args_size,
2402 &adjusted_args_size,
2403 preferred_unit_stack_boundary));
2404
2405 /* combine_pending_stack_adjustment_and_call computes
2406 an adjustment before the arguments are allocated.
2407 Account for them and see whether or not the stack
2408 needs to go up or down. */
2409 needed = unadjusted_args_size - needed;
2410
2411 if (needed < 0)
2412 {
2413 /* We're releasing stack space. */
2414 /* ??? We can avoid any adjustment at all if we're
2415 already aligned. FIXME. */
2416 pending_stack_adjust = -needed;
2417 do_pending_stack_adjust ();
2418 needed = 0;
2419 }
2420 else
2421 /* We need to allocate space. We'll do that in
2422 push_block below. */
2423 pending_stack_adjust = 0;
2424 }
2425
2426 /* Special case this because overhead of `push_block' in
2427 this case is non-trivial. */
2428 if (needed == 0)
2429 argblock = virtual_outgoing_args_rtx;
2430 else
2431 {
2432 argblock = push_block (GEN_INT (needed), 0, 0);
2433 #ifdef ARGS_GROW_DOWNWARD
2434 argblock = plus_constant (argblock, needed);
2435 #endif
2436 }
2437
2438 /* We only really need to call `copy_to_reg' in the case
2439 where push insns are going to be used to pass ARGBLOCK
2440 to a function call in ARGS. In that case, the stack
2441 pointer changes value from the allocation point to the
2442 call point, and hence the value of
2443 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2444 as well always do it. */
2445 argblock = copy_to_reg (argblock);
2446 }
2447 }
2448 }
2449
2450 if (ACCUMULATE_OUTGOING_ARGS)
2451 {
2452 /* The save/restore code in store_one_arg handles all
2453 cases except one: a constructor call (including a C
2454 function returning a BLKmode struct) to initialize
2455 an argument. */
2456 if (stack_arg_under_construction)
2457 {
2458 #ifndef OUTGOING_REG_PARM_STACK_SPACE
2459 rtx push_size = GEN_INT (reg_parm_stack_space
2460 + adjusted_args_size.constant);
2461 #else
2462 rtx push_size = GEN_INT (adjusted_args_size.constant);
2463 #endif
2464 if (old_stack_level == 0)
2465 {
2466 emit_stack_save (SAVE_BLOCK, &old_stack_level,
2467 NULL_RTX);
2468 old_stack_pointer_delta = stack_pointer_delta;
2469 old_pending_adj = pending_stack_adjust;
2470 pending_stack_adjust = 0;
2471 /* stack_arg_under_construction says whether a stack
2472 arg is being constructed at the old stack level.
2473 Pushing the stack gets a clean outgoing argument
2474 block. */
2475 old_stack_arg_under_construction
2476 = stack_arg_under_construction;
2477 stack_arg_under_construction = 0;
2478 /* Make a new map for the new argument list. */
2479 if (stack_usage_map_buf)
2480 free (stack_usage_map_buf);
2481 stack_usage_map_buf = xmalloc (highest_outgoing_arg_in_use);
2482 stack_usage_map = stack_usage_map_buf;
2483 memset (stack_usage_map, 0, highest_outgoing_arg_in_use);
2484 highest_outgoing_arg_in_use = 0;
2485 }
2486 allocate_dynamic_stack_space (push_size, NULL_RTX,
2487 BITS_PER_UNIT);
2488 }
2489
2490 /* If argument evaluation might modify the stack pointer,
2491 copy the address of the argument list to a register. */
2492 for (i = 0; i < num_actuals; i++)
2493 if (args[i].pass_on_stack)
2494 {
2495 argblock = copy_addr_to_reg (argblock);
2496 break;
2497 }
2498 }
2499
2500 compute_argument_addresses (args, argblock, num_actuals);
2501
2502 /* If we push args individually in reverse order, perform stack alignment
2503 before the first push (the last arg). */
2504 if (PUSH_ARGS_REVERSED && argblock == 0
2505 && adjusted_args_size.constant != unadjusted_args_size)
2506 {
2507 /* When the stack adjustment is pending, we get better code
2508 by combining the adjustments. */
2509 if (pending_stack_adjust
2510 && ! (flags & ECF_LIBCALL_BLOCK)
2511 && ! inhibit_defer_pop)
2512 {
2513 pending_stack_adjust
2514 = (combine_pending_stack_adjustment_and_call
2515 (unadjusted_args_size,
2516 &adjusted_args_size,
2517 preferred_unit_stack_boundary));
2518 do_pending_stack_adjust ();
2519 }
2520 else if (argblock == 0)
2521 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2522 - unadjusted_args_size));
2523 }
2524 /* Now that the stack is properly aligned, pops can't safely
2525 be deferred during the evaluation of the arguments. */
2526 NO_DEFER_POP;
2527
2528 funexp = rtx_for_function_call (fndecl, addr);
2529
2530 /* Figure out the register where the value, if any, will come back. */
2531 valreg = 0;
2532 if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
2533 && ! structure_value_addr)
2534 {
2535 if (pcc_struct_value)
2536 valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
2537 fndecl, NULL, (pass == 0));
2538 else
2539 valreg = hard_function_value (TREE_TYPE (exp), fndecl, fntype,
2540 (pass == 0));
2541 }
2542
2543 /* Precompute all register parameters. It isn't safe to compute anything
2544 once we have started filling any specific hard regs. */
2545 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2546
2547 if (TREE_OPERAND (exp, 2))
2548 static_chain_value = expand_expr (TREE_OPERAND (exp, 2),
2549 NULL_RTX, VOIDmode, 0);
2550 else
2551 static_chain_value = 0;
2552
2553 #ifdef REG_PARM_STACK_SPACE
2554 /* Save the fixed argument area if it's part of the caller's frame and
2555 is clobbered by argument setup for this call. */
2556 if (ACCUMULATE_OUTGOING_ARGS && pass)
2557 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2558 &low_to_save, &high_to_save);
2559 #endif
2560
2561 /* Now store (and compute if necessary) all non-register parms.
2562 These come before register parms, since they can require block-moves,
2563 which could clobber the registers used for register parms.
2564 Parms which have partial registers are not stored here,
2565 but we do preallocate space here if they want that. */
2566
2567 for (i = 0; i < num_actuals; i++)
2568 if (args[i].reg == 0 || args[i].pass_on_stack)
2569 {
2570 rtx before_arg = get_last_insn ();
2571
2572 if (store_one_arg (&args[i], argblock, flags,
2573 adjusted_args_size.var != 0,
2574 reg_parm_stack_space)
2575 || (pass == 0
2576 && check_sibcall_argument_overlap (before_arg,
2577 &args[i], 1)))
2578 sibcall_failure = 1;
2579
2580 if (flags & ECF_CONST
2581 && args[i].stack
2582 && args[i].value == args[i].stack)
2583 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2584 gen_rtx_USE (VOIDmode,
2585 args[i].value),
2586 call_fusage);
2587 }
2588
2589 /* If we have a parm that is passed in registers but not in memory
2590 and whose alignment does not permit a direct copy into registers,
2591 make a group of pseudos that correspond to each register that we
2592 will later fill. */
2593 if (STRICT_ALIGNMENT)
2594 store_unaligned_arguments_into_pseudos (args, num_actuals);
2595
2596 /* Now store any partially-in-registers parm.
2597 This is the last place a block-move can happen. */
2598 if (reg_parm_seen)
2599 for (i = 0; i < num_actuals; i++)
2600 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2601 {
2602 rtx before_arg = get_last_insn ();
2603
2604 if (store_one_arg (&args[i], argblock, flags,
2605 adjusted_args_size.var != 0,
2606 reg_parm_stack_space)
2607 || (pass == 0
2608 && check_sibcall_argument_overlap (before_arg,
2609 &args[i], 1)))
2610 sibcall_failure = 1;
2611 }
2612
2613 /* If we pushed args in forward order, perform stack alignment
2614 after pushing the last arg. */
2615 if (!PUSH_ARGS_REVERSED && argblock == 0)
2616 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2617 - unadjusted_args_size));
2618
2619 /* If register arguments require space on the stack and stack space
2620 was not preallocated, allocate stack space here for arguments
2621 passed in registers. */
2622 #ifdef OUTGOING_REG_PARM_STACK_SPACE
2623 if (!ACCUMULATE_OUTGOING_ARGS
2624 && must_preallocate == 0 && reg_parm_stack_space > 0)
2625 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2626 #endif
2627
2628 /* Pass the function the address in which to return a
2629 structure value. */
2630 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2631 {
2632 structure_value_addr
2633 = convert_memory_address (Pmode, structure_value_addr);
2634 emit_move_insn (struct_value,
2635 force_reg (Pmode,
2636 force_operand (structure_value_addr,
2637 NULL_RTX)));
2638
2639 if (REG_P (struct_value))
2640 use_reg (&call_fusage, struct_value);
2641 }
2642
2643 funexp = prepare_call_address (funexp, static_chain_value,
2644 &call_fusage, reg_parm_seen, pass == 0);
2645
2646 load_register_parameters (args, num_actuals, &call_fusage, flags,
2647 pass == 0, &sibcall_failure);
2648
2649 /* Save a pointer to the last insn before the call, so that we can
2650 later safely search backwards to find the CALL_INSN. */
2651 before_call = get_last_insn ();
2652
2653 /* Set up next argument register. For sibling calls on machines
2654 with register windows this should be the incoming register. */
2655 #ifdef FUNCTION_INCOMING_ARG
2656 if (pass == 0)
2657 next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode,
2658 void_type_node, 1);
2659 else
2660 #endif
2661 next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode,
2662 void_type_node, 1);
2663
2664 /* All arguments and registers used for the call must be set up by
2665 now! */
2666
2667 /* Stack must be properly aligned now. */
2668 gcc_assert (!pass
2669 || !(stack_pointer_delta % preferred_unit_stack_boundary));
2670
2671 /* Generate the actual call instruction. */
2672 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2673 adjusted_args_size.constant, struct_value_size,
2674 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2675 flags, & args_so_far);
2676
2677 /* If a non-BLKmode value is returned at the most significant end
2678 of a register, shift the register right by the appropriate amount
2679 and update VALREG accordingly. BLKmode values are handled by the
2680 group load/store machinery below. */
2681 if (!structure_value_addr
2682 && !pcc_struct_value
2683 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2684 && targetm.calls.return_in_msb (TREE_TYPE (exp)))
2685 {
2686 if (shift_return_value (TYPE_MODE (TREE_TYPE (exp)), false, valreg))
2687 sibcall_failure = 1;
2688 valreg = gen_rtx_REG (TYPE_MODE (TREE_TYPE (exp)), REGNO (valreg));
2689 }
2690
2691 /* If call is cse'able, make appropriate pair of reg-notes around it.
2692 Test valreg so we don't crash; may safely ignore `const'
2693 if return type is void. Disable for PARALLEL return values, because
2694 we have no way to move such values into a pseudo register. */
2695 if (pass && (flags & ECF_LIBCALL_BLOCK))
2696 {
2697 rtx insns;
2698 rtx insn;
2699 bool failed = valreg == 0 || GET_CODE (valreg) == PARALLEL;
2700
2701 insns = get_insns ();
2702
2703 /* Expansion of block moves possibly introduced a loop that may
2704 not appear inside libcall block. */
2705 for (insn = insns; insn; insn = NEXT_INSN (insn))
2706 if (JUMP_P (insn))
2707 failed = true;
2708
2709 if (failed)
2710 {
2711 end_sequence ();
2712 emit_insn (insns);
2713 }
2714 else
2715 {
2716 rtx note = 0;
2717 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2718
2719 /* Mark the return value as a pointer if needed. */
2720 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2721 mark_reg_pointer (temp,
2722 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp))));
2723
2724 end_sequence ();
2725 if (flag_unsafe_math_optimizations
2726 && fndecl
2727 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2728 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRT
2729 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTF
2730 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_SQRTL))
2731 note = gen_rtx_fmt_e (SQRT,
2732 GET_MODE (temp),
2733 args[0].initial_value);
2734 else
2735 {
2736 /* Construct an "equal form" for the value which
2737 mentions all the arguments in order as well as
2738 the function name. */
2739 for (i = 0; i < num_actuals; i++)
2740 note = gen_rtx_EXPR_LIST (VOIDmode,
2741 args[i].initial_value, note);
2742 note = gen_rtx_EXPR_LIST (VOIDmode, funexp, note);
2743
2744 if (flags & ECF_PURE)
2745 note = gen_rtx_EXPR_LIST (VOIDmode,
2746 gen_rtx_USE (VOIDmode,
2747 gen_rtx_MEM (BLKmode,
2748 gen_rtx_SCRATCH (VOIDmode))),
2749 note);
2750 }
2751 emit_libcall_block (insns, temp, valreg, note);
2752
2753 valreg = temp;
2754 }
2755 }
2756 else if (pass && (flags & ECF_MALLOC))
2757 {
2758 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2759 rtx last, insns;
2760
2761 /* The return value from a malloc-like function is a pointer. */
2762 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
2763 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2764
2765 emit_move_insn (temp, valreg);
2766
2767 /* The return value from a malloc-like function can not alias
2768 anything else. */
2769 last = get_last_insn ();
2770 REG_NOTES (last) =
2771 gen_rtx_EXPR_LIST (REG_NOALIAS, temp, REG_NOTES (last));
2772
2773 /* Write out the sequence. */
2774 insns = get_insns ();
2775 end_sequence ();
2776 emit_insn (insns);
2777 valreg = temp;
2778 }
2779
2780 /* For calls to `setjmp', etc., inform flow.c it should complain
2781 if nonvolatile values are live. For functions that cannot return,
2782 inform flow that control does not fall through. */
2783
2784 if ((flags & ECF_NORETURN) || pass == 0)
2785 {
2786 /* The barrier must be emitted
2787 immediately after the CALL_INSN. Some ports emit more
2788 than just a CALL_INSN above, so we must search for it here. */
2789
2790 rtx last = get_last_insn ();
2791 while (!CALL_P (last))
2792 {
2793 last = PREV_INSN (last);
2794 /* There was no CALL_INSN? */
2795 gcc_assert (last != before_call);
2796 }
2797
2798 emit_barrier_after (last);
2799
2800 /* Stack adjustments after a noreturn call are dead code.
2801 However when NO_DEFER_POP is in effect, we must preserve
2802 stack_pointer_delta. */
2803 if (inhibit_defer_pop == 0)
2804 {
2805 stack_pointer_delta = old_stack_allocated;
2806 pending_stack_adjust = 0;
2807 }
2808 }
2809
2810 /* If value type not void, return an rtx for the value. */
2811
2812 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
2813 || ignore)
2814 target = const0_rtx;
2815 else if (structure_value_addr)
2816 {
2817 if (target == 0 || !MEM_P (target))
2818 {
2819 target
2820 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2821 memory_address (TYPE_MODE (TREE_TYPE (exp)),
2822 structure_value_addr));
2823 set_mem_attributes (target, exp, 1);
2824 }
2825 }
2826 else if (pcc_struct_value)
2827 {
2828 /* This is the special C++ case where we need to
2829 know what the true target was. We take care to
2830 never use this value more than once in one expression. */
2831 target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
2832 copy_to_reg (valreg));
2833 set_mem_attributes (target, exp, 1);
2834 }
2835 /* Handle calls that return values in multiple non-contiguous locations.
2836 The Irix 6 ABI has examples of this. */
2837 else if (GET_CODE (valreg) == PARALLEL)
2838 {
2839 if (target == 0)
2840 {
2841 /* This will only be assigned once, so it can be readonly. */
2842 tree nt = build_qualified_type (TREE_TYPE (exp),
2843 (TYPE_QUALS (TREE_TYPE (exp))
2844 | TYPE_QUAL_CONST));
2845
2846 target = assign_temp (nt, 0, 1, 1);
2847 }
2848
2849 if (! rtx_equal_p (target, valreg))
2850 emit_group_store (target, valreg, TREE_TYPE (exp),
2851 int_size_in_bytes (TREE_TYPE (exp)));
2852
2853 /* We can not support sibling calls for this case. */
2854 sibcall_failure = 1;
2855 }
2856 else if (target
2857 && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
2858 && GET_MODE (target) == GET_MODE (valreg))
2859 {
2860 /* TARGET and VALREG cannot be equal at this point because the
2861 latter would not have REG_FUNCTION_VALUE_P true, while the
2862 former would if it were referring to the same register.
2863
2864 If they refer to the same register, this move will be a no-op,
2865 except when function inlining is being done. */
2866 emit_move_insn (target, valreg);
2867
2868 /* If we are setting a MEM, this code must be executed. Since it is
2869 emitted after the call insn, sibcall optimization cannot be
2870 performed in that case. */
2871 if (MEM_P (target))
2872 sibcall_failure = 1;
2873 }
2874 else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
2875 {
2876 target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp));
2877
2878 /* We can not support sibling calls for this case. */
2879 sibcall_failure = 1;
2880 }
2881 else
2882 target = copy_to_reg (valreg);
2883
2884 if (targetm.calls.promote_function_return(funtype))
2885 {
2886 /* If we promoted this return value, make the proper SUBREG.
2887 TARGET might be const0_rtx here, so be careful. */
2888 if (REG_P (target)
2889 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
2890 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
2891 {
2892 tree type = TREE_TYPE (exp);
2893 int unsignedp = TYPE_UNSIGNED (type);
2894 int offset = 0;
2895 enum machine_mode pmode;
2896
2897 pmode = promote_mode (type, TYPE_MODE (type), &unsignedp, 1);
2898 /* If we don't promote as expected, something is wrong. */
2899 gcc_assert (GET_MODE (target) == pmode);
2900
2901 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
2902 && (GET_MODE_SIZE (GET_MODE (target))
2903 > GET_MODE_SIZE (TYPE_MODE (type))))
2904 {
2905 offset = GET_MODE_SIZE (GET_MODE (target))
2906 - GET_MODE_SIZE (TYPE_MODE (type));
2907 if (! BYTES_BIG_ENDIAN)
2908 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
2909 else if (! WORDS_BIG_ENDIAN)
2910 offset %= UNITS_PER_WORD;
2911 }
2912 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
2913 SUBREG_PROMOTED_VAR_P (target) = 1;
2914 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
2915 }
2916 }
2917
2918 /* If size of args is variable or this was a constructor call for a stack
2919 argument, restore saved stack-pointer value. */
2920
2921 if (old_stack_level && ! (flags & ECF_SP_DEPRESSED))
2922 {
2923 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
2924 stack_pointer_delta = old_stack_pointer_delta;
2925 pending_stack_adjust = old_pending_adj;
2926 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2927 stack_arg_under_construction = old_stack_arg_under_construction;
2928 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
2929 stack_usage_map = initial_stack_usage_map;
2930 sibcall_failure = 1;
2931 }
2932 else if (ACCUMULATE_OUTGOING_ARGS && pass)
2933 {
2934 #ifdef REG_PARM_STACK_SPACE
2935 if (save_area)
2936 restore_fixed_argument_area (save_area, argblock,
2937 high_to_save, low_to_save);
2938 #endif
2939
2940 /* If we saved any argument areas, restore them. */
2941 for (i = 0; i < num_actuals; i++)
2942 if (args[i].save_area)
2943 {
2944 enum machine_mode save_mode = GET_MODE (args[i].save_area);
2945 rtx stack_area
2946 = gen_rtx_MEM (save_mode,
2947 memory_address (save_mode,
2948 XEXP (args[i].stack_slot, 0)));
2949
2950 if (save_mode != BLKmode)
2951 emit_move_insn (stack_area, args[i].save_area);
2952 else
2953 emit_block_move (stack_area, args[i].save_area,
2954 GEN_INT (args[i].locate.size.constant),
2955 BLOCK_OP_CALL_PARM);
2956 }
2957
2958 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
2959 stack_usage_map = initial_stack_usage_map;
2960 }
2961
2962 /* If this was alloca, record the new stack level for nonlocal gotos.
2963 Check for the handler slots since we might not have a save area
2964 for non-local gotos. */
2965
2966 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
2967 update_nonlocal_goto_save_area ();
2968
2969 /* Free up storage we no longer need. */
2970 for (i = 0; i < num_actuals; ++i)
2971 if (args[i].aligned_regs)
2972 free (args[i].aligned_regs);
2973
2974 insns = get_insns ();
2975 end_sequence ();
2976
2977 if (pass == 0)
2978 {
2979 tail_call_insns = insns;
2980
2981 /* Restore the pending stack adjustment now that we have
2982 finished generating the sibling call sequence. */
2983
2984 pending_stack_adjust = save_pending_stack_adjust;
2985 stack_pointer_delta = save_stack_pointer_delta;
2986
2987 /* Prepare arg structure for next iteration. */
2988 for (i = 0; i < num_actuals; i++)
2989 {
2990 args[i].value = 0;
2991 args[i].aligned_regs = 0;
2992 args[i].stack = 0;
2993 }
2994
2995 sbitmap_free (stored_args_map);
2996 }
2997 else
2998 {
2999 normal_call_insns = insns;
3000
3001 /* Verify that we've deallocated all the stack we used. */
3002 gcc_assert ((flags & ECF_NORETURN)
3003 || (old_stack_allocated
3004 == stack_pointer_delta - pending_stack_adjust));
3005 }
3006
3007 /* If something prevents making this a sibling call,
3008 zero out the sequence. */
3009 if (sibcall_failure)
3010 tail_call_insns = NULL_RTX;
3011 else
3012 break;
3013 }
3014
3015 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3016 arguments too, as argument area is now clobbered by the call. */
3017 if (tail_call_insns)
3018 {
3019 emit_insn (tail_call_insns);
3020 cfun->tail_call_emit = true;
3021 }
3022 else
3023 emit_insn (normal_call_insns);
3024
3025 currently_expanding_call--;
3026
3027 /* If this function returns with the stack pointer depressed, ensure
3028 this block saves and restores the stack pointer, show it was
3029 changed, and adjust for any outgoing arg space. */
3030 if (flags & ECF_SP_DEPRESSED)
3031 {
3032 clear_pending_stack_adjust ();
3033 emit_insn (gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx));
3034 emit_move_insn (virtual_stack_dynamic_rtx, stack_pointer_rtx);
3035 }
3036
3037 if (stack_usage_map_buf)
3038 free (stack_usage_map_buf);
3039
3040 return target;
3041 }
3042
3043 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3044 this function's incoming arguments.
3045
3046 At the start of RTL generation we know the only REG_EQUIV notes
3047 in the rtl chain are those for incoming arguments, so we can look
3048 for REG_EQUIV notes between the start of the function and the
3049 NOTE_INSN_FUNCTION_BEG.
3050
3051 This is (slight) overkill. We could keep track of the highest
3052 argument we clobber and be more selective in removing notes, but it
3053 does not seem to be worth the effort. */
3054
3055 void
3056 fixup_tail_calls (void)
3057 {
3058 rtx insn;
3059
3060 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3061 {
3062 /* There are never REG_EQUIV notes for the incoming arguments
3063 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
3064 if (NOTE_P (insn)
3065 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
3066 break;
3067
3068 while (1)
3069 {
3070 rtx note = find_reg_note (insn, REG_EQUIV, 0);
3071 if (note)
3072 {
3073 /* Remove the note and keep looking at the notes for
3074 this insn. */
3075 remove_note (insn, note);
3076 continue;
3077 }
3078 break;
3079 }
3080 }
3081 }
3082
3083 /* Traverse an argument list in VALUES and expand all complex
3084 arguments into their components. */
3085 static tree
3086 split_complex_values (tree values)
3087 {
3088 tree p;
3089
3090 /* Before allocating memory, check for the common case of no complex. */
3091 for (p = values; p; p = TREE_CHAIN (p))
3092 {
3093 tree type = TREE_TYPE (TREE_VALUE (p));
3094 if (type && TREE_CODE (type) == COMPLEX_TYPE
3095 && targetm.calls.split_complex_arg (type))
3096 goto found;
3097 }
3098 return values;
3099
3100 found:
3101 values = copy_list (values);
3102
3103 for (p = values; p; p = TREE_CHAIN (p))
3104 {
3105 tree complex_value = TREE_VALUE (p);
3106 tree complex_type;
3107
3108 complex_type = TREE_TYPE (complex_value);
3109 if (!complex_type)
3110 continue;
3111
3112 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3113 && targetm.calls.split_complex_arg (complex_type))
3114 {
3115 tree subtype;
3116 tree real, imag, next;
3117
3118 subtype = TREE_TYPE (complex_type);
3119 complex_value = save_expr (complex_value);
3120 real = build1 (REALPART_EXPR, subtype, complex_value);
3121 imag = build1 (IMAGPART_EXPR, subtype, complex_value);
3122
3123 TREE_VALUE (p) = real;
3124 next = TREE_CHAIN (p);
3125 imag = build_tree_list (NULL_TREE, imag);
3126 TREE_CHAIN (p) = imag;
3127 TREE_CHAIN (imag) = next;
3128
3129 /* Skip the newly created node. */
3130 p = TREE_CHAIN (p);
3131 }
3132 }
3133
3134 return values;
3135 }
3136
3137 /* Traverse a list of TYPES and expand all complex types into their
3138 components. */
3139 static tree
3140 split_complex_types (tree types)
3141 {
3142 tree p;
3143
3144 /* Before allocating memory, check for the common case of no complex. */
3145 for (p = types; p; p = TREE_CHAIN (p))
3146 {
3147 tree type = TREE_VALUE (p);
3148 if (TREE_CODE (type) == COMPLEX_TYPE
3149 && targetm.calls.split_complex_arg (type))
3150 goto found;
3151 }
3152 return types;
3153
3154 found:
3155 types = copy_list (types);
3156
3157 for (p = types; p; p = TREE_CHAIN (p))
3158 {
3159 tree complex_type = TREE_VALUE (p);
3160
3161 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3162 && targetm.calls.split_complex_arg (complex_type))
3163 {
3164 tree next, imag;
3165
3166 /* Rewrite complex type with component type. */
3167 TREE_VALUE (p) = TREE_TYPE (complex_type);
3168 next = TREE_CHAIN (p);
3169
3170 /* Add another component type for the imaginary part. */
3171 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3172 TREE_CHAIN (p) = imag;
3173 TREE_CHAIN (imag) = next;
3174
3175 /* Skip the newly created node. */
3176 p = TREE_CHAIN (p);
3177 }
3178 }
3179
3180 return types;
3181 }
3182 \f
3183 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3184 The RETVAL parameter specifies whether return value needs to be saved, other
3185 parameters are documented in the emit_library_call function below. */
3186
3187 static rtx
3188 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3189 enum libcall_type fn_type,
3190 enum machine_mode outmode, int nargs, va_list p)
3191 {
3192 /* Total size in bytes of all the stack-parms scanned so far. */
3193 struct args_size args_size;
3194 /* Size of arguments before any adjustments (such as rounding). */
3195 struct args_size original_args_size;
3196 int argnum;
3197 rtx fun;
3198 int inc;
3199 int count;
3200 rtx argblock = 0;
3201 CUMULATIVE_ARGS args_so_far;
3202 struct arg
3203 {
3204 rtx value;
3205 enum machine_mode mode;
3206 rtx reg;
3207 int partial;
3208 struct locate_and_pad_arg_data locate;
3209 rtx save_area;
3210 };
3211 struct arg *argvec;
3212 int old_inhibit_defer_pop = inhibit_defer_pop;
3213 rtx call_fusage = 0;
3214 rtx mem_value = 0;
3215 rtx valreg;
3216 int pcc_struct_value = 0;
3217 int struct_value_size = 0;
3218 int flags;
3219 int reg_parm_stack_space = 0;
3220 int needed;
3221 rtx before_call;
3222 tree tfom; /* type_for_mode (outmode, 0) */
3223
3224 #ifdef REG_PARM_STACK_SPACE
3225 /* Define the boundary of the register parm stack space that needs to be
3226 save, if any. */
3227 int low_to_save, high_to_save;
3228 rtx save_area = 0; /* Place that it is saved. */
3229 #endif
3230
3231 /* Size of the stack reserved for parameter registers. */
3232 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3233 char *initial_stack_usage_map = stack_usage_map;
3234 char *stack_usage_map_buf = NULL;
3235
3236 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3237
3238 #ifdef REG_PARM_STACK_SPACE
3239 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3240 #endif
3241
3242 /* By default, library functions can not throw. */
3243 flags = ECF_NOTHROW;
3244
3245 switch (fn_type)
3246 {
3247 case LCT_NORMAL:
3248 break;
3249 case LCT_CONST:
3250 flags |= ECF_CONST;
3251 break;
3252 case LCT_PURE:
3253 flags |= ECF_PURE;
3254 break;
3255 case LCT_CONST_MAKE_BLOCK:
3256 flags |= ECF_CONST | ECF_LIBCALL_BLOCK;
3257 break;
3258 case LCT_PURE_MAKE_BLOCK:
3259 flags |= ECF_PURE | ECF_LIBCALL_BLOCK;
3260 break;
3261 case LCT_NORETURN:
3262 flags |= ECF_NORETURN;
3263 break;
3264 case LCT_THROW:
3265 flags = ECF_NORETURN;
3266 break;
3267 case LCT_RETURNS_TWICE:
3268 flags = ECF_RETURNS_TWICE;
3269 break;
3270 }
3271 fun = orgfun;
3272
3273 /* Ensure current function's preferred stack boundary is at least
3274 what we need. */
3275 if (cfun->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3276 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3277
3278 /* If this kind of value comes back in memory,
3279 decide where in memory it should come back. */
3280 if (outmode != VOIDmode)
3281 {
3282 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3283 if (aggregate_value_p (tfom, 0))
3284 {
3285 #ifdef PCC_STATIC_STRUCT_RETURN
3286 rtx pointer_reg
3287 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
3288 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3289 pcc_struct_value = 1;
3290 if (value == 0)
3291 value = gen_reg_rtx (outmode);
3292 #else /* not PCC_STATIC_STRUCT_RETURN */
3293 struct_value_size = GET_MODE_SIZE (outmode);
3294 if (value != 0 && MEM_P (value))
3295 mem_value = value;
3296 else
3297 mem_value = assign_temp (tfom, 0, 1, 1);
3298 #endif
3299 /* This call returns a big structure. */
3300 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3301 }
3302 }
3303 else
3304 tfom = void_type_node;
3305
3306 /* ??? Unfinished: must pass the memory address as an argument. */
3307
3308 /* Copy all the libcall-arguments out of the varargs data
3309 and into a vector ARGVEC.
3310
3311 Compute how to pass each argument. We only support a very small subset
3312 of the full argument passing conventions to limit complexity here since
3313 library functions shouldn't have many args. */
3314
3315 argvec = alloca ((nargs + 1) * sizeof (struct arg));
3316 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3317
3318 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3319 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
3320 #else
3321 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
3322 #endif
3323
3324 args_size.constant = 0;
3325 args_size.var = 0;
3326
3327 count = 0;
3328
3329 /* Now we are about to start emitting insns that can be deleted
3330 if a libcall is deleted. */
3331 if (flags & ECF_LIBCALL_BLOCK)
3332 start_sequence ();
3333
3334 push_temp_slots ();
3335
3336 /* If there's a structure value address to be passed,
3337 either pass it in the special place, or pass it as an extra argument. */
3338 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3339 {
3340 rtx addr = XEXP (mem_value, 0);
3341
3342 nargs++;
3343
3344 /* Make sure it is a reasonable operand for a move or push insn. */
3345 if (!REG_P (addr) && !MEM_P (addr)
3346 && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
3347 addr = force_operand (addr, NULL_RTX);
3348
3349 argvec[count].value = addr;
3350 argvec[count].mode = Pmode;
3351 argvec[count].partial = 0;
3352
3353 argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
3354 gcc_assert (targetm.calls.arg_partial_bytes (&args_so_far, Pmode,
3355 NULL_TREE, 1) == 0);
3356
3357 locate_and_pad_parm (Pmode, NULL_TREE,
3358 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3359 1,
3360 #else
3361 argvec[count].reg != 0,
3362 #endif
3363 0, NULL_TREE, &args_size, &argvec[count].locate);
3364
3365 if (argvec[count].reg == 0 || argvec[count].partial != 0
3366 || reg_parm_stack_space > 0)
3367 args_size.constant += argvec[count].locate.size.constant;
3368
3369 FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);
3370
3371 count++;
3372 }
3373
3374 for (; count < nargs; count++)
3375 {
3376 rtx val = va_arg (p, rtx);
3377 enum machine_mode mode = va_arg (p, enum machine_mode);
3378
3379 /* We cannot convert the arg value to the mode the library wants here;
3380 must do it earlier where we know the signedness of the arg. */
3381 gcc_assert (mode != BLKmode
3382 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3383
3384 /* Make sure it is a reasonable operand for a move or push insn. */
3385 if (!REG_P (val) && !MEM_P (val)
3386 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
3387 val = force_operand (val, NULL_RTX);
3388
3389 if (pass_by_reference (&args_so_far, mode, NULL_TREE, 1))
3390 {
3391 rtx slot;
3392 int must_copy
3393 = !reference_callee_copied (&args_so_far, mode, NULL_TREE, 1);
3394
3395 /* loop.c won't look at CALL_INSN_FUNCTION_USAGE of const/pure
3396 functions, so we have to pretend this isn't such a function. */
3397 if (flags & ECF_LIBCALL_BLOCK)
3398 {
3399 rtx insns = get_insns ();
3400 end_sequence ();
3401 emit_insn (insns);
3402 }
3403 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK);
3404
3405 /* If this was a CONST function, it is now PURE since
3406 it now reads memory. */
3407 if (flags & ECF_CONST)
3408 {
3409 flags &= ~ECF_CONST;
3410 flags |= ECF_PURE;
3411 }
3412
3413 if (GET_MODE (val) == MEM && !must_copy)
3414 slot = val;
3415 else
3416 {
3417 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3418 0, 1, 1);
3419 emit_move_insn (slot, val);
3420 }
3421
3422 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3423 gen_rtx_USE (VOIDmode, slot),
3424 call_fusage);
3425 if (must_copy)
3426 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3427 gen_rtx_CLOBBER (VOIDmode,
3428 slot),
3429 call_fusage);
3430
3431 mode = Pmode;
3432 val = force_operand (XEXP (slot, 0), NULL_RTX);
3433 }
3434
3435 argvec[count].value = val;
3436 argvec[count].mode = mode;
3437
3438 argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
3439
3440 argvec[count].partial
3441 = targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL_TREE, 1);
3442
3443 locate_and_pad_parm (mode, NULL_TREE,
3444 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3445 1,
3446 #else
3447 argvec[count].reg != 0,
3448 #endif
3449 argvec[count].partial,
3450 NULL_TREE, &args_size, &argvec[count].locate);
3451
3452 gcc_assert (!argvec[count].locate.size.var);
3453
3454 if (argvec[count].reg == 0 || argvec[count].partial != 0
3455 || reg_parm_stack_space > 0)
3456 args_size.constant += argvec[count].locate.size.constant;
3457
3458 FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
3459 }
3460
3461 /* If this machine requires an external definition for library
3462 functions, write one out. */
3463 assemble_external_libcall (fun);
3464
3465 original_args_size = args_size;
3466 args_size.constant = (((args_size.constant
3467 + stack_pointer_delta
3468 + STACK_BYTES - 1)
3469 / STACK_BYTES
3470 * STACK_BYTES)
3471 - stack_pointer_delta);
3472
3473 args_size.constant = MAX (args_size.constant,
3474 reg_parm_stack_space);
3475
3476 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3477 args_size.constant -= reg_parm_stack_space;
3478 #endif
3479
3480 if (args_size.constant > current_function_outgoing_args_size)
3481 current_function_outgoing_args_size = args_size.constant;
3482
3483 if (ACCUMULATE_OUTGOING_ARGS)
3484 {
3485 /* Since the stack pointer will never be pushed, it is possible for
3486 the evaluation of a parm to clobber something we have already
3487 written to the stack. Since most function calls on RISC machines
3488 do not use the stack, this is uncommon, but must work correctly.
3489
3490 Therefore, we save any area of the stack that was already written
3491 and that we are using. Here we set up to do this by making a new
3492 stack usage map from the old one.
3493
3494 Another approach might be to try to reorder the argument
3495 evaluations to avoid this conflicting stack usage. */
3496
3497 needed = args_size.constant;
3498
3499 #ifndef OUTGOING_REG_PARM_STACK_SPACE
3500 /* Since we will be writing into the entire argument area, the
3501 map must be allocated for its entire size, not just the part that
3502 is the responsibility of the caller. */
3503 needed += reg_parm_stack_space;
3504 #endif
3505
3506 #ifdef ARGS_GROW_DOWNWARD
3507 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3508 needed + 1);
3509 #else
3510 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3511 needed);
3512 #endif
3513 stack_usage_map_buf = xmalloc (highest_outgoing_arg_in_use);
3514 stack_usage_map = stack_usage_map_buf;
3515
3516 if (initial_highest_arg_in_use)
3517 memcpy (stack_usage_map, initial_stack_usage_map,
3518 initial_highest_arg_in_use);
3519
3520 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3521 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3522 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3523 needed = 0;
3524
3525 /* We must be careful to use virtual regs before they're instantiated,
3526 and real regs afterwards. Loop optimization, for example, can create
3527 new libcalls after we've instantiated the virtual regs, and if we
3528 use virtuals anyway, they won't match the rtl patterns. */
3529
3530 if (virtuals_instantiated)
3531 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3532 else
3533 argblock = virtual_outgoing_args_rtx;
3534 }
3535 else
3536 {
3537 if (!PUSH_ARGS)
3538 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3539 }
3540
3541 /* If we push args individually in reverse order, perform stack alignment
3542 before the first push (the last arg). */
3543 if (argblock == 0 && PUSH_ARGS_REVERSED)
3544 anti_adjust_stack (GEN_INT (args_size.constant
3545 - original_args_size.constant));
3546
3547 if (PUSH_ARGS_REVERSED)
3548 {
3549 inc = -1;
3550 argnum = nargs - 1;
3551 }
3552 else
3553 {
3554 inc = 1;
3555 argnum = 0;
3556 }
3557
3558 #ifdef REG_PARM_STACK_SPACE
3559 if (ACCUMULATE_OUTGOING_ARGS)
3560 {
3561 /* The argument list is the property of the called routine and it
3562 may clobber it. If the fixed area has been used for previous
3563 parameters, we must save and restore it. */
3564 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3565 &low_to_save, &high_to_save);
3566 }
3567 #endif
3568
3569 /* Push the args that need to be pushed. */
3570
3571 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3572 are to be pushed. */
3573 for (count = 0; count < nargs; count++, argnum += inc)
3574 {
3575 enum machine_mode mode = argvec[argnum].mode;
3576 rtx val = argvec[argnum].value;
3577 rtx reg = argvec[argnum].reg;
3578 int partial = argvec[argnum].partial;
3579 int lower_bound = 0, upper_bound = 0, i;
3580
3581 if (! (reg != 0 && partial == 0))
3582 {
3583 if (ACCUMULATE_OUTGOING_ARGS)
3584 {
3585 /* If this is being stored into a pre-allocated, fixed-size,
3586 stack area, save any previous data at that location. */
3587
3588 #ifdef ARGS_GROW_DOWNWARD
3589 /* stack_slot is negative, but we want to index stack_usage_map
3590 with positive values. */
3591 upper_bound = -argvec[argnum].locate.offset.constant + 1;
3592 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3593 #else
3594 lower_bound = argvec[argnum].locate.offset.constant;
3595 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3596 #endif
3597
3598 i = lower_bound;
3599 /* Don't worry about things in the fixed argument area;
3600 it has already been saved. */
3601 if (i < reg_parm_stack_space)
3602 i = reg_parm_stack_space;
3603 while (i < upper_bound && stack_usage_map[i] == 0)
3604 i++;
3605
3606 if (i < upper_bound)
3607 {
3608 /* We need to make a save area. */
3609 unsigned int size
3610 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3611 enum machine_mode save_mode
3612 = mode_for_size (size, MODE_INT, 1);
3613 rtx adr
3614 = plus_constant (argblock,
3615 argvec[argnum].locate.offset.constant);
3616 rtx stack_area
3617 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3618
3619 if (save_mode == BLKmode)
3620 {
3621 argvec[argnum].save_area
3622 = assign_stack_temp (BLKmode,
3623 argvec[argnum].locate.size.constant,
3624 0);
3625
3626 emit_block_move (validize_mem (argvec[argnum].save_area),
3627 stack_area,
3628 GEN_INT (argvec[argnum].locate.size.constant),
3629 BLOCK_OP_CALL_PARM);
3630 }
3631 else
3632 {
3633 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3634
3635 emit_move_insn (argvec[argnum].save_area, stack_area);
3636 }
3637 }
3638 }
3639
3640 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, PARM_BOUNDARY,
3641 partial, reg, 0, argblock,
3642 GEN_INT (argvec[argnum].locate.offset.constant),
3643 reg_parm_stack_space,
3644 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3645
3646 /* Now mark the segment we just used. */
3647 if (ACCUMULATE_OUTGOING_ARGS)
3648 for (i = lower_bound; i < upper_bound; i++)
3649 stack_usage_map[i] = 1;
3650
3651 NO_DEFER_POP;
3652
3653 if (flags & ECF_CONST)
3654 {
3655 rtx use;
3656
3657 /* Indicate argument access so that alias.c knows that these
3658 values are live. */
3659 if (argblock)
3660 use = plus_constant (argblock,
3661 argvec[argnum].locate.offset.constant);
3662 else
3663 /* When arguments are pushed, trying to tell alias.c where
3664 exactly this argument is won't work, because the
3665 auto-increment causes confusion. So we merely indicate
3666 that we access something with a known mode somewhere on
3667 the stack. */
3668 use = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3669 gen_rtx_SCRATCH (Pmode));
3670 use = gen_rtx_MEM (argvec[argnum].mode, use);
3671 use = gen_rtx_USE (VOIDmode, use);
3672 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
3673 }
3674 }
3675 }
3676
3677 /* If we pushed args in forward order, perform stack alignment
3678 after pushing the last arg. */
3679 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3680 anti_adjust_stack (GEN_INT (args_size.constant
3681 - original_args_size.constant));
3682
3683 if (PUSH_ARGS_REVERSED)
3684 argnum = nargs - 1;
3685 else
3686 argnum = 0;
3687
3688 fun = prepare_call_address (fun, NULL, &call_fusage, 0, 0);
3689
3690 /* Now load any reg parms into their regs. */
3691
3692 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3693 are to be pushed. */
3694 for (count = 0; count < nargs; count++, argnum += inc)
3695 {
3696 enum machine_mode mode = argvec[argnum].mode;
3697 rtx val = argvec[argnum].value;
3698 rtx reg = argvec[argnum].reg;
3699 int partial = argvec[argnum].partial;
3700
3701 /* Handle calls that pass values in multiple non-contiguous
3702 locations. The PA64 has examples of this for library calls. */
3703 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3704 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3705 else if (reg != 0 && partial == 0)
3706 emit_move_insn (reg, val);
3707
3708 NO_DEFER_POP;
3709 }
3710
3711 /* Any regs containing parms remain in use through the call. */
3712 for (count = 0; count < nargs; count++)
3713 {
3714 rtx reg = argvec[count].reg;
3715 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3716 use_group_regs (&call_fusage, reg);
3717 else if (reg != 0)
3718 use_reg (&call_fusage, reg);
3719 }
3720
3721 /* Pass the function the address in which to return a structure value. */
3722 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3723 {
3724 emit_move_insn (struct_value,
3725 force_reg (Pmode,
3726 force_operand (XEXP (mem_value, 0),
3727 NULL_RTX)));
3728 if (REG_P (struct_value))
3729 use_reg (&call_fusage, struct_value);
3730 }
3731
3732 /* Don't allow popping to be deferred, since then
3733 cse'ing of library calls could delete a call and leave the pop. */
3734 NO_DEFER_POP;
3735 valreg = (mem_value == 0 && outmode != VOIDmode
3736 ? hard_libcall_value (outmode) : NULL_RTX);
3737
3738 /* Stack must be properly aligned now. */
3739 gcc_assert (!(stack_pointer_delta
3740 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
3741
3742 before_call = get_last_insn ();
3743
3744 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3745 will set inhibit_defer_pop to that value. */
3746 /* The return type is needed to decide how many bytes the function pops.
3747 Signedness plays no role in that, so for simplicity, we pretend it's
3748 always signed. We also assume that the list of arguments passed has
3749 no impact, so we pretend it is unknown. */
3750
3751 emit_call_1 (fun, NULL,
3752 get_identifier (XSTR (orgfun, 0)),
3753 build_function_type (tfom, NULL_TREE),
3754 original_args_size.constant, args_size.constant,
3755 struct_value_size,
3756 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
3757 valreg,
3758 old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
3759
3760 /* For calls to `setjmp', etc., inform flow.c it should complain
3761 if nonvolatile values are live. For functions that cannot return,
3762 inform flow that control does not fall through. */
3763
3764 if (flags & ECF_NORETURN)
3765 {
3766 /* The barrier note must be emitted
3767 immediately after the CALL_INSN. Some ports emit more than
3768 just a CALL_INSN above, so we must search for it here. */
3769
3770 rtx last = get_last_insn ();
3771 while (!CALL_P (last))
3772 {
3773 last = PREV_INSN (last);
3774 /* There was no CALL_INSN? */
3775 gcc_assert (last != before_call);
3776 }
3777
3778 emit_barrier_after (last);
3779 }
3780
3781 /* Now restore inhibit_defer_pop to its actual original value. */
3782 OK_DEFER_POP;
3783
3784 /* If call is cse'able, make appropriate pair of reg-notes around it.
3785 Test valreg so we don't crash; may safely ignore `const'
3786 if return type is void. Disable for PARALLEL return values, because
3787 we have no way to move such values into a pseudo register. */
3788 if (flags & ECF_LIBCALL_BLOCK)
3789 {
3790 rtx insns;
3791
3792 if (valreg == 0)
3793 {
3794 insns = get_insns ();
3795 end_sequence ();
3796 emit_insn (insns);
3797 }
3798 else
3799 {
3800 rtx note = 0;
3801 rtx temp;
3802 int i;
3803
3804 if (GET_CODE (valreg) == PARALLEL)
3805 {
3806 temp = gen_reg_rtx (outmode);
3807 emit_group_store (temp, valreg, NULL_TREE,
3808 GET_MODE_SIZE (outmode));
3809 valreg = temp;
3810 }
3811
3812 temp = gen_reg_rtx (GET_MODE (valreg));
3813
3814 /* Construct an "equal form" for the value which mentions all the
3815 arguments in order as well as the function name. */
3816 for (i = 0; i < nargs; i++)
3817 note = gen_rtx_EXPR_LIST (VOIDmode, argvec[i].value, note);
3818 note = gen_rtx_EXPR_LIST (VOIDmode, fun, note);
3819
3820 insns = get_insns ();
3821 end_sequence ();
3822
3823 if (flags & ECF_PURE)
3824 note = gen_rtx_EXPR_LIST (VOIDmode,
3825 gen_rtx_USE (VOIDmode,
3826 gen_rtx_MEM (BLKmode,
3827 gen_rtx_SCRATCH (VOIDmode))),
3828 note);
3829
3830 emit_libcall_block (insns, temp, valreg, note);
3831
3832 valreg = temp;
3833 }
3834 }
3835 pop_temp_slots ();
3836
3837 /* Copy the value to the right place. */
3838 if (outmode != VOIDmode && retval)
3839 {
3840 if (mem_value)
3841 {
3842 if (value == 0)
3843 value = mem_value;
3844 if (value != mem_value)
3845 emit_move_insn (value, mem_value);
3846 }
3847 else if (GET_CODE (valreg) == PARALLEL)
3848 {
3849 if (value == 0)
3850 value = gen_reg_rtx (outmode);
3851 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
3852 }
3853 else if (value != 0)
3854 emit_move_insn (value, valreg);
3855 else
3856 value = valreg;
3857 }
3858
3859 if (ACCUMULATE_OUTGOING_ARGS)
3860 {
3861 #ifdef REG_PARM_STACK_SPACE
3862 if (save_area)
3863 restore_fixed_argument_area (save_area, argblock,
3864 high_to_save, low_to_save);
3865 #endif
3866
3867 /* If we saved any argument areas, restore them. */
3868 for (count = 0; count < nargs; count++)
3869 if (argvec[count].save_area)
3870 {
3871 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
3872 rtx adr = plus_constant (argblock,
3873 argvec[count].locate.offset.constant);
3874 rtx stack_area = gen_rtx_MEM (save_mode,
3875 memory_address (save_mode, adr));
3876
3877 if (save_mode == BLKmode)
3878 emit_block_move (stack_area,
3879 validize_mem (argvec[count].save_area),
3880 GEN_INT (argvec[count].locate.size.constant),
3881 BLOCK_OP_CALL_PARM);
3882 else
3883 emit_move_insn (stack_area, argvec[count].save_area);
3884 }
3885
3886 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3887 stack_usage_map = initial_stack_usage_map;
3888 }
3889
3890 if (stack_usage_map_buf)
3891 free (stack_usage_map_buf);
3892
3893 return value;
3894
3895 }
3896 \f
3897 /* Output a library call to function FUN (a SYMBOL_REF rtx)
3898 (emitting the queue unless NO_QUEUE is nonzero),
3899 for a value of mode OUTMODE,
3900 with NARGS different arguments, passed as alternating rtx values
3901 and machine_modes to convert them to.
3902
3903 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for `const'
3904 calls, LCT_PURE for `pure' calls, LCT_CONST_MAKE_BLOCK for `const' calls
3905 which should be enclosed in REG_LIBCALL/REG_RETVAL notes,
3906 LCT_PURE_MAKE_BLOCK for `purep' calls which should be enclosed in
3907 REG_LIBCALL/REG_RETVAL notes with extra (use (memory (scratch)),
3908 or other LCT_ value for other types of library calls. */
3909
3910 void
3911 emit_library_call (rtx orgfun, enum libcall_type fn_type,
3912 enum machine_mode outmode, int nargs, ...)
3913 {
3914 va_list p;
3915
3916 va_start (p, nargs);
3917 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
3918 va_end (p);
3919 }
3920 \f
3921 /* Like emit_library_call except that an extra argument, VALUE,
3922 comes second and says where to store the result.
3923 (If VALUE is zero, this function chooses a convenient way
3924 to return the value.
3925
3926 This function returns an rtx for where the value is to be found.
3927 If VALUE is nonzero, VALUE is returned. */
3928
3929 rtx
3930 emit_library_call_value (rtx orgfun, rtx value,
3931 enum libcall_type fn_type,
3932 enum machine_mode outmode, int nargs, ...)
3933 {
3934 rtx result;
3935 va_list p;
3936
3937 va_start (p, nargs);
3938 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
3939 nargs, p);
3940 va_end (p);
3941
3942 return result;
3943 }
3944 \f
3945 /* Store a single argument for a function call
3946 into the register or memory area where it must be passed.
3947 *ARG describes the argument value and where to pass it.
3948
3949 ARGBLOCK is the address of the stack-block for all the arguments,
3950 or 0 on a machine where arguments are pushed individually.
3951
3952 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
3953 so must be careful about how the stack is used.
3954
3955 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
3956 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
3957 that we need not worry about saving and restoring the stack.
3958
3959 FNDECL is the declaration of the function we are calling.
3960
3961 Return nonzero if this arg should cause sibcall failure,
3962 zero otherwise. */
3963
3964 static int
3965 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
3966 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
3967 {
3968 tree pval = arg->tree_value;
3969 rtx reg = 0;
3970 int partial = 0;
3971 int used = 0;
3972 int i, lower_bound = 0, upper_bound = 0;
3973 int sibcall_failure = 0;
3974
3975 if (TREE_CODE (pval) == ERROR_MARK)
3976 return 1;
3977
3978 /* Push a new temporary level for any temporaries we make for
3979 this argument. */
3980 push_temp_slots ();
3981
3982 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
3983 {
3984 /* If this is being stored into a pre-allocated, fixed-size, stack area,
3985 save any previous data at that location. */
3986 if (argblock && ! variable_size && arg->stack)
3987 {
3988 #ifdef ARGS_GROW_DOWNWARD
3989 /* stack_slot is negative, but we want to index stack_usage_map
3990 with positive values. */
3991 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
3992 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
3993 else
3994 upper_bound = 0;
3995
3996 lower_bound = upper_bound - arg->locate.size.constant;
3997 #else
3998 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
3999 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
4000 else
4001 lower_bound = 0;
4002
4003 upper_bound = lower_bound + arg->locate.size.constant;
4004 #endif
4005
4006 i = lower_bound;
4007 /* Don't worry about things in the fixed argument area;
4008 it has already been saved. */
4009 if (i < reg_parm_stack_space)
4010 i = reg_parm_stack_space;
4011 while (i < upper_bound && stack_usage_map[i] == 0)
4012 i++;
4013
4014 if (i < upper_bound)
4015 {
4016 /* We need to make a save area. */
4017 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
4018 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
4019 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
4020 rtx stack_area = gen_rtx_MEM (save_mode, adr);
4021
4022 if (save_mode == BLKmode)
4023 {
4024 tree ot = TREE_TYPE (arg->tree_value);
4025 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
4026 | TYPE_QUAL_CONST));
4027
4028 arg->save_area = assign_temp (nt, 0, 1, 1);
4029 preserve_temp_slots (arg->save_area);
4030 emit_block_move (validize_mem (arg->save_area), stack_area,
4031 expr_size (arg->tree_value),
4032 BLOCK_OP_CALL_PARM);
4033 }
4034 else
4035 {
4036 arg->save_area = gen_reg_rtx (save_mode);
4037 emit_move_insn (arg->save_area, stack_area);
4038 }
4039 }
4040 }
4041 }
4042
4043 /* If this isn't going to be placed on both the stack and in registers,
4044 set up the register and number of words. */
4045 if (! arg->pass_on_stack)
4046 {
4047 if (flags & ECF_SIBCALL)
4048 reg = arg->tail_call_reg;
4049 else
4050 reg = arg->reg;
4051 partial = arg->partial;
4052 }
4053
4054 /* Being passed entirely in a register. We shouldn't be called in
4055 this case. */
4056 gcc_assert (reg == 0 || partial != 0);
4057
4058 /* If this arg needs special alignment, don't load the registers
4059 here. */
4060 if (arg->n_aligned_regs != 0)
4061 reg = 0;
4062
4063 /* If this is being passed partially in a register, we can't evaluate
4064 it directly into its stack slot. Otherwise, we can. */
4065 if (arg->value == 0)
4066 {
4067 /* stack_arg_under_construction is nonzero if a function argument is
4068 being evaluated directly into the outgoing argument list and
4069 expand_call must take special action to preserve the argument list
4070 if it is called recursively.
4071
4072 For scalar function arguments stack_usage_map is sufficient to
4073 determine which stack slots must be saved and restored. Scalar
4074 arguments in general have pass_on_stack == 0.
4075
4076 If this argument is initialized by a function which takes the
4077 address of the argument (a C++ constructor or a C function
4078 returning a BLKmode structure), then stack_usage_map is
4079 insufficient and expand_call must push the stack around the
4080 function call. Such arguments have pass_on_stack == 1.
4081
4082 Note that it is always safe to set stack_arg_under_construction,
4083 but this generates suboptimal code if set when not needed. */
4084
4085 if (arg->pass_on_stack)
4086 stack_arg_under_construction++;
4087
4088 arg->value = expand_expr (pval,
4089 (partial
4090 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4091 ? NULL_RTX : arg->stack,
4092 VOIDmode, EXPAND_STACK_PARM);
4093
4094 /* If we are promoting object (or for any other reason) the mode
4095 doesn't agree, convert the mode. */
4096
4097 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4098 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4099 arg->value, arg->unsignedp);
4100
4101 if (arg->pass_on_stack)
4102 stack_arg_under_construction--;
4103 }
4104
4105 /* Check for overlap with already clobbered argument area. */
4106 if ((flags & ECF_SIBCALL)
4107 && MEM_P (arg->value)
4108 && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
4109 arg->locate.size.constant))
4110 sibcall_failure = 1;
4111
4112 /* Don't allow anything left on stack from computation
4113 of argument to alloca. */
4114 if (flags & ECF_MAY_BE_ALLOCA)
4115 do_pending_stack_adjust ();
4116
4117 if (arg->value == arg->stack)
4118 /* If the value is already in the stack slot, we are done. */
4119 ;
4120 else if (arg->mode != BLKmode)
4121 {
4122 int size;
4123
4124 /* Argument is a scalar, not entirely passed in registers.
4125 (If part is passed in registers, arg->partial says how much
4126 and emit_push_insn will take care of putting it there.)
4127
4128 Push it, and if its size is less than the
4129 amount of space allocated to it,
4130 also bump stack pointer by the additional space.
4131 Note that in C the default argument promotions
4132 will prevent such mismatches. */
4133
4134 size = GET_MODE_SIZE (arg->mode);
4135 /* Compute how much space the push instruction will push.
4136 On many machines, pushing a byte will advance the stack
4137 pointer by a halfword. */
4138 #ifdef PUSH_ROUNDING
4139 size = PUSH_ROUNDING (size);
4140 #endif
4141 used = size;
4142
4143 /* Compute how much space the argument should get:
4144 round up to a multiple of the alignment for arguments. */
4145 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4146 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4147 / (PARM_BOUNDARY / BITS_PER_UNIT))
4148 * (PARM_BOUNDARY / BITS_PER_UNIT));
4149
4150 /* This isn't already where we want it on the stack, so put it there.
4151 This can either be done with push or copy insns. */
4152 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4153 PARM_BOUNDARY, partial, reg, used - size, argblock,
4154 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4155 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4156
4157 /* Unless this is a partially-in-register argument, the argument is now
4158 in the stack. */
4159 if (partial == 0)
4160 arg->value = arg->stack;
4161 }
4162 else
4163 {
4164 /* BLKmode, at least partly to be pushed. */
4165
4166 unsigned int parm_align;
4167 int excess;
4168 rtx size_rtx;
4169
4170 /* Pushing a nonscalar.
4171 If part is passed in registers, PARTIAL says how much
4172 and emit_push_insn will take care of putting it there. */
4173
4174 /* Round its size up to a multiple
4175 of the allocation unit for arguments. */
4176
4177 if (arg->locate.size.var != 0)
4178 {
4179 excess = 0;
4180 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4181 }
4182 else
4183 {
4184 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4185 for BLKmode is careful to avoid it. */
4186 excess = (arg->locate.size.constant
4187 - int_size_in_bytes (TREE_TYPE (pval))
4188 + partial);
4189 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4190 NULL_RTX, TYPE_MODE (sizetype), 0);
4191 }
4192
4193 parm_align = arg->locate.boundary;
4194
4195 /* When an argument is padded down, the block is aligned to
4196 PARM_BOUNDARY, but the actual argument isn't. */
4197 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4198 {
4199 if (arg->locate.size.var)
4200 parm_align = BITS_PER_UNIT;
4201 else if (excess)
4202 {
4203 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4204 parm_align = MIN (parm_align, excess_align);
4205 }
4206 }
4207
4208 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4209 {
4210 /* emit_push_insn might not work properly if arg->value and
4211 argblock + arg->locate.offset areas overlap. */
4212 rtx x = arg->value;
4213 int i = 0;
4214
4215 if (XEXP (x, 0) == current_function_internal_arg_pointer
4216 || (GET_CODE (XEXP (x, 0)) == PLUS
4217 && XEXP (XEXP (x, 0), 0) ==
4218 current_function_internal_arg_pointer
4219 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
4220 {
4221 if (XEXP (x, 0) != current_function_internal_arg_pointer)
4222 i = INTVAL (XEXP (XEXP (x, 0), 1));
4223
4224 /* expand_call should ensure this. */
4225 gcc_assert (!arg->locate.offset.var
4226 && GET_CODE (size_rtx) == CONST_INT);
4227
4228 if (arg->locate.offset.constant > i)
4229 {
4230 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4231 sibcall_failure = 1;
4232 }
4233 else if (arg->locate.offset.constant < i)
4234 {
4235 if (i < arg->locate.offset.constant + INTVAL (size_rtx))
4236 sibcall_failure = 1;
4237 }
4238 }
4239 }
4240
4241 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4242 parm_align, partial, reg, excess, argblock,
4243 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4244 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4245
4246 /* Unless this is a partially-in-register argument, the argument is now
4247 in the stack.
4248
4249 ??? Unlike the case above, in which we want the actual
4250 address of the data, so that we can load it directly into a
4251 register, here we want the address of the stack slot, so that
4252 it's properly aligned for word-by-word copying or something
4253 like that. It's not clear that this is always correct. */
4254 if (partial == 0)
4255 arg->value = arg->stack_slot;
4256 }
4257
4258 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
4259 {
4260 tree type = TREE_TYPE (arg->tree_value);
4261 arg->parallel_value
4262 = emit_group_load_into_temps (arg->reg, arg->value, type,
4263 int_size_in_bytes (type));
4264 }
4265
4266 /* Mark all slots this store used. */
4267 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4268 && argblock && ! variable_size && arg->stack)
4269 for (i = lower_bound; i < upper_bound; i++)
4270 stack_usage_map[i] = 1;
4271
4272 /* Once we have pushed something, pops can't safely
4273 be deferred during the rest of the arguments. */
4274 NO_DEFER_POP;
4275
4276 /* Free any temporary slots made in processing this argument. Show
4277 that we might have taken the address of something and pushed that
4278 as an operand. */
4279 preserve_temp_slots (NULL_RTX);
4280 free_temp_slots ();
4281 pop_temp_slots ();
4282
4283 return sibcall_failure;
4284 }
4285
4286 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4287
4288 bool
4289 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4290 tree type)
4291 {
4292 if (!type)
4293 return false;
4294
4295 /* If the type has variable size... */
4296 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4297 return true;
4298
4299 /* If the type is marked as addressable (it is required
4300 to be constructed into the stack)... */
4301 if (TREE_ADDRESSABLE (type))
4302 return true;
4303
4304 return false;
4305 }
4306
4307 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4308 takes trailing padding of a structure into account. */
4309 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4310
4311 bool
4312 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, tree type)
4313 {
4314 if (!type)
4315 return false;
4316
4317 /* If the type has variable size... */
4318 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4319 return true;
4320
4321 /* If the type is marked as addressable (it is required
4322 to be constructed into the stack)... */
4323 if (TREE_ADDRESSABLE (type))
4324 return true;
4325
4326 /* If the padding and mode of the type is such that a copy into
4327 a register would put it into the wrong part of the register. */
4328 if (mode == BLKmode
4329 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4330 && (FUNCTION_ARG_PADDING (mode, type)
4331 == (BYTES_BIG_ENDIAN ? upward : downward)))
4332 return true;
4333
4334 return false;
4335 }