re PR middle-end/49968 (ICE in calls.c:3141 / assert after emit_stack_restore)
[gcc.git] / gcc / calls.c
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "flags.h"
30 #include "expr.h"
31 #include "optabs.h"
32 #include "libfuncs.h"
33 #include "function.h"
34 #include "regs.h"
35 #include "diagnostic-core.h"
36 #include "output.h"
37 #include "tm_p.h"
38 #include "timevar.h"
39 #include "sbitmap.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "cgraph.h"
43 #include "except.h"
44 #include "dbgcnt.h"
45 #include "tree-flow.h"
46
47 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
48 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
49
50 /* Data structure and subroutines used within expand_call. */
51
52 struct arg_data
53 {
54 /* Tree node for this argument. */
55 tree tree_value;
56 /* Mode for value; TYPE_MODE unless promoted. */
57 enum machine_mode mode;
58 /* Current RTL value for argument, or 0 if it isn't precomputed. */
59 rtx value;
60 /* Initially-compute RTL value for argument; only for const functions. */
61 rtx initial_value;
62 /* Register to pass this argument in, 0 if passed on stack, or an
63 PARALLEL if the arg is to be copied into multiple non-contiguous
64 registers. */
65 rtx reg;
66 /* Register to pass this argument in when generating tail call sequence.
67 This is not the same register as for normal calls on machines with
68 register windows. */
69 rtx tail_call_reg;
70 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
71 form for emit_group_move. */
72 rtx parallel_value;
73 /* If REG was promoted from the actual mode of the argument expression,
74 indicates whether the promotion is sign- or zero-extended. */
75 int unsignedp;
76 /* Number of bytes to put in registers. 0 means put the whole arg
77 in registers. Also 0 if not passed in registers. */
78 int partial;
79 /* Nonzero if argument must be passed on stack.
80 Note that some arguments may be passed on the stack
81 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
82 pass_on_stack identifies arguments that *cannot* go in registers. */
83 int pass_on_stack;
84 /* Some fields packaged up for locate_and_pad_parm. */
85 struct locate_and_pad_arg_data locate;
86 /* Location on the stack at which parameter should be stored. The store
87 has already been done if STACK == VALUE. */
88 rtx stack;
89 /* Location on the stack of the start of this argument slot. This can
90 differ from STACK if this arg pads downward. This location is known
91 to be aligned to TARGET_FUNCTION_ARG_BOUNDARY. */
92 rtx stack_slot;
93 /* Place that this stack area has been saved, if needed. */
94 rtx save_area;
95 /* If an argument's alignment does not permit direct copying into registers,
96 copy in smaller-sized pieces into pseudos. These are stored in a
97 block pointed to by this field. The next field says how many
98 word-sized pseudos we made. */
99 rtx *aligned_regs;
100 int n_aligned_regs;
101 };
102
103 /* A vector of one char per byte of stack space. A byte if nonzero if
104 the corresponding stack location has been used.
105 This vector is used to prevent a function call within an argument from
106 clobbering any stack already set up. */
107 static char *stack_usage_map;
108
109 /* Size of STACK_USAGE_MAP. */
110 static int highest_outgoing_arg_in_use;
111
112 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
113 stack location's tail call argument has been already stored into the stack.
114 This bitmap is used to prevent sibling call optimization if function tries
115 to use parent's incoming argument slots when they have been already
116 overwritten with tail call arguments. */
117 static sbitmap stored_args_map;
118
119 /* stack_arg_under_construction is nonzero when an argument may be
120 initialized with a constructor call (including a C function that
121 returns a BLKmode struct) and expand_call must take special action
122 to make sure the object being constructed does not overlap the
123 argument list for the constructor call. */
124 static int stack_arg_under_construction;
125
126 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
127 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
128 cumulative_args_t);
129 static void precompute_register_parameters (int, struct arg_data *, int *);
130 static int store_one_arg (struct arg_data *, rtx, int, int, int);
131 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
132 static int finalize_must_preallocate (int, int, struct arg_data *,
133 struct args_size *);
134 static void precompute_arguments (int, struct arg_data *);
135 static int compute_argument_block_size (int, struct args_size *, tree, tree, int);
136 static void initialize_argument_information (int, struct arg_data *,
137 struct args_size *, int,
138 tree, tree,
139 tree, tree, cumulative_args_t, int,
140 rtx *, int *, int *, int *,
141 bool *, bool);
142 static void compute_argument_addresses (struct arg_data *, rtx, int);
143 static rtx rtx_for_function_call (tree, tree);
144 static void load_register_parameters (struct arg_data *, int, rtx *, int,
145 int, int *);
146 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
147 enum machine_mode, int, va_list);
148 static int special_function_p (const_tree, int);
149 static int check_sibcall_argument_overlap_1 (rtx);
150 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
151
152 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
153 unsigned int);
154 static tree split_complex_types (tree);
155
156 #ifdef REG_PARM_STACK_SPACE
157 static rtx save_fixed_argument_area (int, rtx, int *, int *);
158 static void restore_fixed_argument_area (rtx, rtx, int, int);
159 #endif
160 \f
161 /* Force FUNEXP into a form suitable for the address of a CALL,
162 and return that as an rtx. Also load the static chain register
163 if FNDECL is a nested function.
164
165 CALL_FUSAGE points to a variable holding the prospective
166 CALL_INSN_FUNCTION_USAGE information. */
167
168 rtx
169 prepare_call_address (tree fndecl, rtx funexp, rtx static_chain_value,
170 rtx *call_fusage, int reg_parm_seen, int sibcallp)
171 {
172 /* Make a valid memory address and copy constants through pseudo-regs,
173 but not for a constant address if -fno-function-cse. */
174 if (GET_CODE (funexp) != SYMBOL_REF)
175 /* If we are using registers for parameters, force the
176 function address into a register now. */
177 funexp = ((reg_parm_seen
178 && targetm.small_register_classes_for_mode_p (FUNCTION_MODE))
179 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
180 : memory_address (FUNCTION_MODE, funexp));
181 else if (! sibcallp)
182 {
183 #ifndef NO_FUNCTION_CSE
184 if (optimize && ! flag_no_function_cse)
185 funexp = force_reg (Pmode, funexp);
186 #endif
187 }
188
189 if (static_chain_value != 0)
190 {
191 rtx chain;
192
193 gcc_assert (fndecl);
194 chain = targetm.calls.static_chain (fndecl, false);
195 static_chain_value = convert_memory_address (Pmode, static_chain_value);
196
197 emit_move_insn (chain, static_chain_value);
198 if (REG_P (chain))
199 use_reg (call_fusage, chain);
200 }
201
202 return funexp;
203 }
204
205 /* Generate instructions to call function FUNEXP,
206 and optionally pop the results.
207 The CALL_INSN is the first insn generated.
208
209 FNDECL is the declaration node of the function. This is given to the
210 hook TARGET_RETURN_POPS_ARGS to determine whether this function pops
211 its own args.
212
213 FUNTYPE is the data type of the function. This is given to the hook
214 TARGET_RETURN_POPS_ARGS to determine whether this function pops its
215 own args. We used to allow an identifier for library functions, but
216 that doesn't work when the return type is an aggregate type and the
217 calling convention says that the pointer to this aggregate is to be
218 popped by the callee.
219
220 STACK_SIZE is the number of bytes of arguments on the stack,
221 ROUNDED_STACK_SIZE is that number rounded up to
222 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
223 both to put into the call insn and to generate explicit popping
224 code if necessary.
225
226 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
227 It is zero if this call doesn't want a structure value.
228
229 NEXT_ARG_REG is the rtx that results from executing
230 targetm.calls.function_arg (&args_so_far, VOIDmode, void_type_node, true)
231 just after all the args have had their registers assigned.
232 This could be whatever you like, but normally it is the first
233 arg-register beyond those used for args in this call,
234 or 0 if all the arg-registers are used in this call.
235 It is passed on to `gen_call' so you can put this info in the call insn.
236
237 VALREG is a hard register in which a value is returned,
238 or 0 if the call does not return a value.
239
240 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
241 the args to this call were processed.
242 We restore `inhibit_defer_pop' to that value.
243
244 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
245 denote registers used by the called function. */
246
247 static void
248 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
249 tree funtype ATTRIBUTE_UNUSED,
250 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
251 HOST_WIDE_INT rounded_stack_size,
252 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
253 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
254 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
255 cumulative_args_t args_so_far ATTRIBUTE_UNUSED)
256 {
257 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
258 rtx call_insn, call, funmem;
259 int already_popped = 0;
260 HOST_WIDE_INT n_popped
261 = targetm.calls.return_pops_args (fndecl, funtype, stack_size);
262
263 #ifdef CALL_POPS_ARGS
264 n_popped += CALL_POPS_ARGS (*get_cumulative_args (args_so_far));
265 #endif
266
267 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
268 and we don't want to load it into a register as an optimization,
269 because prepare_call_address already did it if it should be done. */
270 if (GET_CODE (funexp) != SYMBOL_REF)
271 funexp = memory_address (FUNCTION_MODE, funexp);
272
273 funmem = gen_rtx_MEM (FUNCTION_MODE, funexp);
274 if (fndecl && TREE_CODE (fndecl) == FUNCTION_DECL)
275 {
276 tree t = fndecl;
277 /* Although a built-in FUNCTION_DECL and its non-__builtin
278 counterpart compare equal and get a shared mem_attrs, they
279 produce different dump output in compare-debug compilations,
280 if an entry gets garbage collected in one compilation, then
281 adds a different (but equivalent) entry, while the other
282 doesn't run the garbage collector at the same spot and then
283 shares the mem_attr with the equivalent entry. */
284 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
285 && built_in_decls[DECL_FUNCTION_CODE (t)])
286 t = built_in_decls[DECL_FUNCTION_CODE (t)];
287 set_mem_expr (funmem, t);
288 }
289 else if (fntree)
290 set_mem_expr (funmem, build_simple_mem_ref (CALL_EXPR_FN (fntree)));
291
292 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
293 if ((ecf_flags & ECF_SIBCALL)
294 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
295 && (n_popped > 0 || stack_size == 0))
296 {
297 rtx n_pop = GEN_INT (n_popped);
298 rtx pat;
299
300 /* If this subroutine pops its own args, record that in the call insn
301 if possible, for the sake of frame pointer elimination. */
302
303 if (valreg)
304 pat = GEN_SIBCALL_VALUE_POP (valreg, funmem, rounded_stack_size_rtx,
305 next_arg_reg, n_pop);
306 else
307 pat = GEN_SIBCALL_POP (funmem, rounded_stack_size_rtx, next_arg_reg,
308 n_pop);
309
310 emit_call_insn (pat);
311 already_popped = 1;
312 }
313 else
314 #endif
315
316 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
317 /* If the target has "call" or "call_value" insns, then prefer them
318 if no arguments are actually popped. If the target does not have
319 "call" or "call_value" insns, then we must use the popping versions
320 even if the call has no arguments to pop. */
321 #if defined (HAVE_call) && defined (HAVE_call_value)
322 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
323 && n_popped > 0)
324 #else
325 if (HAVE_call_pop && HAVE_call_value_pop)
326 #endif
327 {
328 rtx n_pop = GEN_INT (n_popped);
329 rtx pat;
330
331 /* If this subroutine pops its own args, record that in the call insn
332 if possible, for the sake of frame pointer elimination. */
333
334 if (valreg)
335 pat = GEN_CALL_VALUE_POP (valreg, funmem, rounded_stack_size_rtx,
336 next_arg_reg, n_pop);
337 else
338 pat = GEN_CALL_POP (funmem, rounded_stack_size_rtx, next_arg_reg,
339 n_pop);
340
341 emit_call_insn (pat);
342 already_popped = 1;
343 }
344 else
345 #endif
346
347 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
348 if ((ecf_flags & ECF_SIBCALL)
349 && HAVE_sibcall && HAVE_sibcall_value)
350 {
351 if (valreg)
352 emit_call_insn (GEN_SIBCALL_VALUE (valreg, funmem,
353 rounded_stack_size_rtx,
354 next_arg_reg, NULL_RTX));
355 else
356 emit_call_insn (GEN_SIBCALL (funmem, rounded_stack_size_rtx,
357 next_arg_reg,
358 GEN_INT (struct_value_size)));
359 }
360 else
361 #endif
362
363 #if defined (HAVE_call) && defined (HAVE_call_value)
364 if (HAVE_call && HAVE_call_value)
365 {
366 if (valreg)
367 emit_call_insn (GEN_CALL_VALUE (valreg, funmem, rounded_stack_size_rtx,
368 next_arg_reg, NULL_RTX));
369 else
370 emit_call_insn (GEN_CALL (funmem, rounded_stack_size_rtx, next_arg_reg,
371 GEN_INT (struct_value_size)));
372 }
373 else
374 #endif
375 gcc_unreachable ();
376
377 /* Find the call we just emitted. */
378 call_insn = last_call_insn ();
379
380 /* Some target create a fresh MEM instead of reusing the one provided
381 above. Set its MEM_EXPR. */
382 call = PATTERN (call_insn);
383 if (GET_CODE (call) == PARALLEL)
384 call = XVECEXP (call, 0, 0);
385 if (GET_CODE (call) == SET)
386 call = SET_SRC (call);
387 if (GET_CODE (call) == CALL
388 && MEM_P (XEXP (call, 0))
389 && MEM_EXPR (XEXP (call, 0)) == NULL_TREE
390 && MEM_EXPR (funmem) != NULL_TREE)
391 set_mem_expr (XEXP (call, 0), MEM_EXPR (funmem));
392
393 /* Put the register usage information there. */
394 add_function_usage_to (call_insn, call_fusage);
395
396 /* If this is a const call, then set the insn's unchanging bit. */
397 if (ecf_flags & ECF_CONST)
398 RTL_CONST_CALL_P (call_insn) = 1;
399
400 /* If this is a pure call, then set the insn's unchanging bit. */
401 if (ecf_flags & ECF_PURE)
402 RTL_PURE_CALL_P (call_insn) = 1;
403
404 /* If this is a const call, then set the insn's unchanging bit. */
405 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
406 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
407
408 /* Create a nothrow REG_EH_REGION note, if needed. */
409 make_reg_eh_region_note (call_insn, ecf_flags, 0);
410
411 if (ecf_flags & ECF_NORETURN)
412 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
413
414 if (ecf_flags & ECF_RETURNS_TWICE)
415 {
416 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
417 cfun->calls_setjmp = 1;
418 }
419
420 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
421
422 /* Restore this now, so that we do defer pops for this call's args
423 if the context of the call as a whole permits. */
424 inhibit_defer_pop = old_inhibit_defer_pop;
425
426 if (n_popped > 0)
427 {
428 if (!already_popped)
429 CALL_INSN_FUNCTION_USAGE (call_insn)
430 = gen_rtx_EXPR_LIST (VOIDmode,
431 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
432 CALL_INSN_FUNCTION_USAGE (call_insn));
433 rounded_stack_size -= n_popped;
434 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
435 stack_pointer_delta -= n_popped;
436
437 add_reg_note (call_insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
438
439 /* If popup is needed, stack realign must use DRAP */
440 if (SUPPORTS_STACK_ALIGNMENT)
441 crtl->need_drap = true;
442 }
443
444 if (!ACCUMULATE_OUTGOING_ARGS)
445 {
446 /* If returning from the subroutine does not automatically pop the args,
447 we need an instruction to pop them sooner or later.
448 Perhaps do it now; perhaps just record how much space to pop later.
449
450 If returning from the subroutine does pop the args, indicate that the
451 stack pointer will be changed. */
452
453 if (rounded_stack_size != 0)
454 {
455 if (ecf_flags & ECF_NORETURN)
456 /* Just pretend we did the pop. */
457 stack_pointer_delta -= rounded_stack_size;
458 else if (flag_defer_pop && inhibit_defer_pop == 0
459 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
460 pending_stack_adjust += rounded_stack_size;
461 else
462 adjust_stack (rounded_stack_size_rtx);
463 }
464 }
465 /* When we accumulate outgoing args, we must avoid any stack manipulations.
466 Restore the stack pointer to its original value now. Usually
467 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
468 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
469 popping variants of functions exist as well.
470
471 ??? We may optimize similar to defer_pop above, but it is
472 probably not worthwhile.
473
474 ??? It will be worthwhile to enable combine_stack_adjustments even for
475 such machines. */
476 else if (n_popped)
477 anti_adjust_stack (GEN_INT (n_popped));
478 }
479
480 /* Determine if the function identified by NAME and FNDECL is one with
481 special properties we wish to know about.
482
483 For example, if the function might return more than one time (setjmp), then
484 set RETURNS_TWICE to a nonzero value.
485
486 Similarly set NORETURN if the function is in the longjmp family.
487
488 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
489 space from the stack such as alloca. */
490
491 static int
492 special_function_p (const_tree fndecl, int flags)
493 {
494 if (fndecl && DECL_NAME (fndecl)
495 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
496 /* Exclude functions not at the file scope, or not `extern',
497 since they are not the magic functions we would otherwise
498 think they are.
499 FIXME: this should be handled with attributes, not with this
500 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
501 because you can declare fork() inside a function if you
502 wish. */
503 && (DECL_CONTEXT (fndecl) == NULL_TREE
504 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
505 && TREE_PUBLIC (fndecl))
506 {
507 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
508 const char *tname = name;
509
510 /* We assume that alloca will always be called by name. It
511 makes no sense to pass it as a pointer-to-function to
512 anything that does not understand its behavior. */
513 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
514 && name[0] == 'a'
515 && ! strcmp (name, "alloca"))
516 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
517 && name[0] == '_'
518 && ! strcmp (name, "__builtin_alloca"))))
519 flags |= ECF_MAY_BE_ALLOCA;
520
521 /* Disregard prefix _, __, __x or __builtin_. */
522 if (name[0] == '_')
523 {
524 if (name[1] == '_'
525 && name[2] == 'b'
526 && !strncmp (name + 3, "uiltin_", 7))
527 tname += 10;
528 else if (name[1] == '_' && name[2] == 'x')
529 tname += 3;
530 else if (name[1] == '_')
531 tname += 2;
532 else
533 tname += 1;
534 }
535
536 if (tname[0] == 's')
537 {
538 if ((tname[1] == 'e'
539 && (! strcmp (tname, "setjmp")
540 || ! strcmp (tname, "setjmp_syscall")))
541 || (tname[1] == 'i'
542 && ! strcmp (tname, "sigsetjmp"))
543 || (tname[1] == 'a'
544 && ! strcmp (tname, "savectx")))
545 flags |= ECF_RETURNS_TWICE;
546
547 if (tname[1] == 'i'
548 && ! strcmp (tname, "siglongjmp"))
549 flags |= ECF_NORETURN;
550 }
551 else if ((tname[0] == 'q' && tname[1] == 's'
552 && ! strcmp (tname, "qsetjmp"))
553 || (tname[0] == 'v' && tname[1] == 'f'
554 && ! strcmp (tname, "vfork"))
555 || (tname[0] == 'g' && tname[1] == 'e'
556 && !strcmp (tname, "getcontext")))
557 flags |= ECF_RETURNS_TWICE;
558
559 else if (tname[0] == 'l' && tname[1] == 'o'
560 && ! strcmp (tname, "longjmp"))
561 flags |= ECF_NORETURN;
562 }
563
564 return flags;
565 }
566
567 /* Return nonzero when FNDECL represents a call to setjmp. */
568
569 int
570 setjmp_call_p (const_tree fndecl)
571 {
572 if (DECL_IS_RETURNS_TWICE (fndecl))
573 return ECF_RETURNS_TWICE;
574 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
575 }
576
577
578 /* Return true if STMT is an alloca call. */
579
580 bool
581 gimple_alloca_call_p (const_gimple stmt)
582 {
583 tree fndecl;
584
585 if (!is_gimple_call (stmt))
586 return false;
587
588 fndecl = gimple_call_fndecl (stmt);
589 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
590 return true;
591
592 return false;
593 }
594
595 /* Return true when exp contains alloca call. */
596
597 bool
598 alloca_call_p (const_tree exp)
599 {
600 if (TREE_CODE (exp) == CALL_EXPR
601 && TREE_CODE (CALL_EXPR_FN (exp)) == ADDR_EXPR
602 && (TREE_CODE (TREE_OPERAND (CALL_EXPR_FN (exp), 0)) == FUNCTION_DECL)
603 && (special_function_p (TREE_OPERAND (CALL_EXPR_FN (exp), 0), 0)
604 & ECF_MAY_BE_ALLOCA))
605 return true;
606 return false;
607 }
608
609 /* Detect flags (function attributes) from the function decl or type node. */
610
611 int
612 flags_from_decl_or_type (const_tree exp)
613 {
614 int flags = 0;
615
616 if (DECL_P (exp))
617 {
618 /* The function exp may have the `malloc' attribute. */
619 if (DECL_IS_MALLOC (exp))
620 flags |= ECF_MALLOC;
621
622 /* The function exp may have the `returns_twice' attribute. */
623 if (DECL_IS_RETURNS_TWICE (exp))
624 flags |= ECF_RETURNS_TWICE;
625
626 /* Process the pure and const attributes. */
627 if (TREE_READONLY (exp))
628 flags |= ECF_CONST;
629 if (DECL_PURE_P (exp))
630 flags |= ECF_PURE;
631 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
632 flags |= ECF_LOOPING_CONST_OR_PURE;
633
634 if (DECL_IS_NOVOPS (exp))
635 flags |= ECF_NOVOPS;
636 if (lookup_attribute ("leaf", DECL_ATTRIBUTES (exp)))
637 flags |= ECF_LEAF;
638
639 if (TREE_NOTHROW (exp))
640 flags |= ECF_NOTHROW;
641
642 flags = special_function_p (exp, flags);
643 }
644 else if (TYPE_P (exp) && TYPE_READONLY (exp))
645 flags |= ECF_CONST;
646
647 if (TREE_THIS_VOLATILE (exp))
648 {
649 flags |= ECF_NORETURN;
650 if (flags & (ECF_CONST|ECF_PURE))
651 flags |= ECF_LOOPING_CONST_OR_PURE;
652 }
653
654 return flags;
655 }
656
657 /* Detect flags from a CALL_EXPR. */
658
659 int
660 call_expr_flags (const_tree t)
661 {
662 int flags;
663 tree decl = get_callee_fndecl (t);
664
665 if (decl)
666 flags = flags_from_decl_or_type (decl);
667 else
668 {
669 t = TREE_TYPE (CALL_EXPR_FN (t));
670 if (t && TREE_CODE (t) == POINTER_TYPE)
671 flags = flags_from_decl_or_type (TREE_TYPE (t));
672 else
673 flags = 0;
674 }
675
676 return flags;
677 }
678
679 /* Precompute all register parameters as described by ARGS, storing values
680 into fields within the ARGS array.
681
682 NUM_ACTUALS indicates the total number elements in the ARGS array.
683
684 Set REG_PARM_SEEN if we encounter a register parameter. */
685
686 static void
687 precompute_register_parameters (int num_actuals, struct arg_data *args,
688 int *reg_parm_seen)
689 {
690 int i;
691
692 *reg_parm_seen = 0;
693
694 for (i = 0; i < num_actuals; i++)
695 if (args[i].reg != 0 && ! args[i].pass_on_stack)
696 {
697 *reg_parm_seen = 1;
698
699 if (args[i].value == 0)
700 {
701 push_temp_slots ();
702 args[i].value = expand_normal (args[i].tree_value);
703 preserve_temp_slots (args[i].value);
704 pop_temp_slots ();
705 }
706
707 /* If we are to promote the function arg to a wider mode,
708 do it now. */
709
710 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
711 args[i].value
712 = convert_modes (args[i].mode,
713 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
714 args[i].value, args[i].unsignedp);
715
716 /* If the value is a non-legitimate constant, force it into a
717 pseudo now. TLS symbols sometimes need a call to resolve. */
718 if (CONSTANT_P (args[i].value)
719 && !targetm.legitimate_constant_p (args[i].mode, args[i].value))
720 args[i].value = force_reg (args[i].mode, args[i].value);
721
722 /* If we're going to have to load the value by parts, pull the
723 parts into pseudos. The part extraction process can involve
724 non-trivial computation. */
725 if (GET_CODE (args[i].reg) == PARALLEL)
726 {
727 tree type = TREE_TYPE (args[i].tree_value);
728 args[i].parallel_value
729 = emit_group_load_into_temps (args[i].reg, args[i].value,
730 type, int_size_in_bytes (type));
731 }
732
733 /* If the value is expensive, and we are inside an appropriately
734 short loop, put the value into a pseudo and then put the pseudo
735 into the hard reg.
736
737 For small register classes, also do this if this call uses
738 register parameters. This is to avoid reload conflicts while
739 loading the parameters registers. */
740
741 else if ((! (REG_P (args[i].value)
742 || (GET_CODE (args[i].value) == SUBREG
743 && REG_P (SUBREG_REG (args[i].value)))))
744 && args[i].mode != BLKmode
745 && rtx_cost (args[i].value, SET, optimize_insn_for_speed_p ())
746 > COSTS_N_INSNS (1)
747 && ((*reg_parm_seen
748 && targetm.small_register_classes_for_mode_p (args[i].mode))
749 || optimize))
750 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
751 }
752 }
753
754 #ifdef REG_PARM_STACK_SPACE
755
756 /* The argument list is the property of the called routine and it
757 may clobber it. If the fixed area has been used for previous
758 parameters, we must save and restore it. */
759
760 static rtx
761 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
762 {
763 int low;
764 int high;
765
766 /* Compute the boundary of the area that needs to be saved, if any. */
767 high = reg_parm_stack_space;
768 #ifdef ARGS_GROW_DOWNWARD
769 high += 1;
770 #endif
771 if (high > highest_outgoing_arg_in_use)
772 high = highest_outgoing_arg_in_use;
773
774 for (low = 0; low < high; low++)
775 if (stack_usage_map[low] != 0)
776 {
777 int num_to_save;
778 enum machine_mode save_mode;
779 int delta;
780 rtx stack_area;
781 rtx save_area;
782
783 while (stack_usage_map[--high] == 0)
784 ;
785
786 *low_to_save = low;
787 *high_to_save = high;
788
789 num_to_save = high - low + 1;
790 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
791
792 /* If we don't have the required alignment, must do this
793 in BLKmode. */
794 if ((low & (MIN (GET_MODE_SIZE (save_mode),
795 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
796 save_mode = BLKmode;
797
798 #ifdef ARGS_GROW_DOWNWARD
799 delta = -high;
800 #else
801 delta = low;
802 #endif
803 stack_area = gen_rtx_MEM (save_mode,
804 memory_address (save_mode,
805 plus_constant (argblock,
806 delta)));
807
808 set_mem_align (stack_area, PARM_BOUNDARY);
809 if (save_mode == BLKmode)
810 {
811 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
812 emit_block_move (validize_mem (save_area), stack_area,
813 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
814 }
815 else
816 {
817 save_area = gen_reg_rtx (save_mode);
818 emit_move_insn (save_area, stack_area);
819 }
820
821 return save_area;
822 }
823
824 return NULL_RTX;
825 }
826
827 static void
828 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
829 {
830 enum machine_mode save_mode = GET_MODE (save_area);
831 int delta;
832 rtx stack_area;
833
834 #ifdef ARGS_GROW_DOWNWARD
835 delta = -high_to_save;
836 #else
837 delta = low_to_save;
838 #endif
839 stack_area = gen_rtx_MEM (save_mode,
840 memory_address (save_mode,
841 plus_constant (argblock, delta)));
842 set_mem_align (stack_area, PARM_BOUNDARY);
843
844 if (save_mode != BLKmode)
845 emit_move_insn (stack_area, save_area);
846 else
847 emit_block_move (stack_area, validize_mem (save_area),
848 GEN_INT (high_to_save - low_to_save + 1),
849 BLOCK_OP_CALL_PARM);
850 }
851 #endif /* REG_PARM_STACK_SPACE */
852
853 /* If any elements in ARGS refer to parameters that are to be passed in
854 registers, but not in memory, and whose alignment does not permit a
855 direct copy into registers. Copy the values into a group of pseudos
856 which we will later copy into the appropriate hard registers.
857
858 Pseudos for each unaligned argument will be stored into the array
859 args[argnum].aligned_regs. The caller is responsible for deallocating
860 the aligned_regs array if it is nonzero. */
861
862 static void
863 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
864 {
865 int i, j;
866
867 for (i = 0; i < num_actuals; i++)
868 if (args[i].reg != 0 && ! args[i].pass_on_stack
869 && args[i].mode == BLKmode
870 && MEM_P (args[i].value)
871 && (MEM_ALIGN (args[i].value)
872 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
873 {
874 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
875 int endian_correction = 0;
876
877 if (args[i].partial)
878 {
879 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
880 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
881 }
882 else
883 {
884 args[i].n_aligned_regs
885 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
886 }
887
888 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
889
890 /* Structures smaller than a word are normally aligned to the
891 least significant byte. On a BYTES_BIG_ENDIAN machine,
892 this means we must skip the empty high order bytes when
893 calculating the bit offset. */
894 if (bytes < UNITS_PER_WORD
895 #ifdef BLOCK_REG_PADDING
896 && (BLOCK_REG_PADDING (args[i].mode,
897 TREE_TYPE (args[i].tree_value), 1)
898 == downward)
899 #else
900 && BYTES_BIG_ENDIAN
901 #endif
902 )
903 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
904
905 for (j = 0; j < args[i].n_aligned_regs; j++)
906 {
907 rtx reg = gen_reg_rtx (word_mode);
908 rtx word = operand_subword_force (args[i].value, j, BLKmode);
909 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
910
911 args[i].aligned_regs[j] = reg;
912 word = extract_bit_field (word, bitsize, 0, 1, false, NULL_RTX,
913 word_mode, word_mode);
914
915 /* There is no need to restrict this code to loading items
916 in TYPE_ALIGN sized hunks. The bitfield instructions can
917 load up entire word sized registers efficiently.
918
919 ??? This may not be needed anymore.
920 We use to emit a clobber here but that doesn't let later
921 passes optimize the instructions we emit. By storing 0 into
922 the register later passes know the first AND to zero out the
923 bitfield being set in the register is unnecessary. The store
924 of 0 will be deleted as will at least the first AND. */
925
926 emit_move_insn (reg, const0_rtx);
927
928 bytes -= bitsize / BITS_PER_UNIT;
929 store_bit_field (reg, bitsize, endian_correction, 0, 0,
930 word_mode, word);
931 }
932 }
933 }
934
935 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
936 CALL_EXPR EXP.
937
938 NUM_ACTUALS is the total number of parameters.
939
940 N_NAMED_ARGS is the total number of named arguments.
941
942 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
943 value, or null.
944
945 FNDECL is the tree code for the target of this call (if known)
946
947 ARGS_SO_FAR holds state needed by the target to know where to place
948 the next argument.
949
950 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
951 for arguments which are passed in registers.
952
953 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
954 and may be modified by this routine.
955
956 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
957 flags which may may be modified by this routine.
958
959 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
960 that requires allocation of stack space.
961
962 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
963 the thunked-to function. */
964
965 static void
966 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
967 struct arg_data *args,
968 struct args_size *args_size,
969 int n_named_args ATTRIBUTE_UNUSED,
970 tree exp, tree struct_value_addr_value,
971 tree fndecl, tree fntype,
972 cumulative_args_t args_so_far,
973 int reg_parm_stack_space,
974 rtx *old_stack_level, int *old_pending_adj,
975 int *must_preallocate, int *ecf_flags,
976 bool *may_tailcall, bool call_from_thunk_p)
977 {
978 CUMULATIVE_ARGS *args_so_far_pnt = get_cumulative_args (args_so_far);
979 location_t loc = EXPR_LOCATION (exp);
980 /* 1 if scanning parms front to back, -1 if scanning back to front. */
981 int inc;
982
983 /* Count arg position in order args appear. */
984 int argpos;
985
986 int i;
987
988 args_size->constant = 0;
989 args_size->var = 0;
990
991 /* In this loop, we consider args in the order they are written.
992 We fill up ARGS from the front or from the back if necessary
993 so that in any case the first arg to be pushed ends up at the front. */
994
995 if (PUSH_ARGS_REVERSED)
996 {
997 i = num_actuals - 1, inc = -1;
998 /* In this case, must reverse order of args
999 so that we compute and push the last arg first. */
1000 }
1001 else
1002 {
1003 i = 0, inc = 1;
1004 }
1005
1006 /* First fill in the actual arguments in the ARGS array, splitting
1007 complex arguments if necessary. */
1008 {
1009 int j = i;
1010 call_expr_arg_iterator iter;
1011 tree arg;
1012
1013 if (struct_value_addr_value)
1014 {
1015 args[j].tree_value = struct_value_addr_value;
1016 j += inc;
1017 }
1018 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
1019 {
1020 tree argtype = TREE_TYPE (arg);
1021 if (targetm.calls.split_complex_arg
1022 && argtype
1023 && TREE_CODE (argtype) == COMPLEX_TYPE
1024 && targetm.calls.split_complex_arg (argtype))
1025 {
1026 tree subtype = TREE_TYPE (argtype);
1027 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
1028 j += inc;
1029 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
1030 }
1031 else
1032 args[j].tree_value = arg;
1033 j += inc;
1034 }
1035 }
1036
1037 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1038 for (argpos = 0; argpos < num_actuals; i += inc, argpos++)
1039 {
1040 tree type = TREE_TYPE (args[i].tree_value);
1041 int unsignedp;
1042 enum machine_mode mode;
1043
1044 /* Replace erroneous argument with constant zero. */
1045 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1046 args[i].tree_value = integer_zero_node, type = integer_type_node;
1047
1048 /* If TYPE is a transparent union or record, pass things the way
1049 we would pass the first field of the union or record. We have
1050 already verified that the modes are the same. */
1051 if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
1052 && TYPE_TRANSPARENT_AGGR (type))
1053 type = TREE_TYPE (first_field (type));
1054
1055 /* Decide where to pass this arg.
1056
1057 args[i].reg is nonzero if all or part is passed in registers.
1058
1059 args[i].partial is nonzero if part but not all is passed in registers,
1060 and the exact value says how many bytes are passed in registers.
1061
1062 args[i].pass_on_stack is nonzero if the argument must at least be
1063 computed on the stack. It may then be loaded back into registers
1064 if args[i].reg is nonzero.
1065
1066 These decisions are driven by the FUNCTION_... macros and must agree
1067 with those made by function.c. */
1068
1069 /* See if this argument should be passed by invisible reference. */
1070 if (pass_by_reference (args_so_far_pnt, TYPE_MODE (type),
1071 type, argpos < n_named_args))
1072 {
1073 bool callee_copies;
1074 tree base;
1075
1076 callee_copies
1077 = reference_callee_copied (args_so_far_pnt, TYPE_MODE (type),
1078 type, argpos < n_named_args);
1079
1080 /* If we're compiling a thunk, pass through invisible references
1081 instead of making a copy. */
1082 if (call_from_thunk_p
1083 || (callee_copies
1084 && !TREE_ADDRESSABLE (type)
1085 && (base = get_base_address (args[i].tree_value))
1086 && TREE_CODE (base) != SSA_NAME
1087 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1088 {
1089 mark_addressable (args[i].tree_value);
1090
1091 /* We can't use sibcalls if a callee-copied argument is
1092 stored in the current function's frame. */
1093 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1094 *may_tailcall = false;
1095
1096 args[i].tree_value = build_fold_addr_expr_loc (loc,
1097 args[i].tree_value);
1098 type = TREE_TYPE (args[i].tree_value);
1099
1100 if (*ecf_flags & ECF_CONST)
1101 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
1102 }
1103 else
1104 {
1105 /* We make a copy of the object and pass the address to the
1106 function being called. */
1107 rtx copy;
1108
1109 if (!COMPLETE_TYPE_P (type)
1110 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
1111 || (flag_stack_check == GENERIC_STACK_CHECK
1112 && compare_tree_int (TYPE_SIZE_UNIT (type),
1113 STACK_CHECK_MAX_VAR_SIZE) > 0))
1114 {
1115 /* This is a variable-sized object. Make space on the stack
1116 for it. */
1117 rtx size_rtx = expr_size (args[i].tree_value);
1118
1119 if (*old_stack_level == 0)
1120 {
1121 emit_stack_save (SAVE_BLOCK, old_stack_level);
1122 *old_pending_adj = pending_stack_adjust;
1123 pending_stack_adjust = 0;
1124 }
1125
1126 /* We can pass TRUE as the 4th argument because we just
1127 saved the stack pointer and will restore it right after
1128 the call. */
1129 copy = allocate_dynamic_stack_space (size_rtx,
1130 TYPE_ALIGN (type),
1131 TYPE_ALIGN (type),
1132 true);
1133 copy = gen_rtx_MEM (BLKmode, copy);
1134 set_mem_attributes (copy, type, 1);
1135 }
1136 else
1137 copy = assign_temp (type, 0, 1, 0);
1138
1139 store_expr (args[i].tree_value, copy, 0, false);
1140
1141 /* Just change the const function to pure and then let
1142 the next test clear the pure based on
1143 callee_copies. */
1144 if (*ecf_flags & ECF_CONST)
1145 {
1146 *ecf_flags &= ~ECF_CONST;
1147 *ecf_flags |= ECF_PURE;
1148 }
1149
1150 if (!callee_copies && *ecf_flags & ECF_PURE)
1151 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
1152
1153 args[i].tree_value
1154 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
1155 type = TREE_TYPE (args[i].tree_value);
1156 *may_tailcall = false;
1157 }
1158 }
1159
1160 unsignedp = TYPE_UNSIGNED (type);
1161 mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
1162 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
1163
1164 args[i].unsignedp = unsignedp;
1165 args[i].mode = mode;
1166
1167 args[i].reg = targetm.calls.function_arg (args_so_far, mode, type,
1168 argpos < n_named_args);
1169
1170 /* If this is a sibling call and the machine has register windows, the
1171 register window has to be unwinded before calling the routine, so
1172 arguments have to go into the incoming registers. */
1173 if (targetm.calls.function_incoming_arg != targetm.calls.function_arg)
1174 args[i].tail_call_reg
1175 = targetm.calls.function_incoming_arg (args_so_far, mode, type,
1176 argpos < n_named_args);
1177 else
1178 args[i].tail_call_reg = args[i].reg;
1179
1180 if (args[i].reg)
1181 args[i].partial
1182 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1183 argpos < n_named_args);
1184
1185 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1186
1187 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1188 it means that we are to pass this arg in the register(s) designated
1189 by the PARALLEL, but also to pass it in the stack. */
1190 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1191 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1192 args[i].pass_on_stack = 1;
1193
1194 /* If this is an addressable type, we must preallocate the stack
1195 since we must evaluate the object into its final location.
1196
1197 If this is to be passed in both registers and the stack, it is simpler
1198 to preallocate. */
1199 if (TREE_ADDRESSABLE (type)
1200 || (args[i].pass_on_stack && args[i].reg != 0))
1201 *must_preallocate = 1;
1202
1203 /* Compute the stack-size of this argument. */
1204 if (args[i].reg == 0 || args[i].partial != 0
1205 || reg_parm_stack_space > 0
1206 || args[i].pass_on_stack)
1207 locate_and_pad_parm (mode, type,
1208 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1209 1,
1210 #else
1211 args[i].reg != 0,
1212 #endif
1213 args[i].pass_on_stack ? 0 : args[i].partial,
1214 fndecl, args_size, &args[i].locate);
1215 #ifdef BLOCK_REG_PADDING
1216 else
1217 /* The argument is passed entirely in registers. See at which
1218 end it should be padded. */
1219 args[i].locate.where_pad =
1220 BLOCK_REG_PADDING (mode, type,
1221 int_size_in_bytes (type) <= UNITS_PER_WORD);
1222 #endif
1223
1224 /* Update ARGS_SIZE, the total stack space for args so far. */
1225
1226 args_size->constant += args[i].locate.size.constant;
1227 if (args[i].locate.size.var)
1228 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1229
1230 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1231 have been used, etc. */
1232
1233 targetm.calls.function_arg_advance (args_so_far, TYPE_MODE (type),
1234 type, argpos < n_named_args);
1235 }
1236 }
1237
1238 /* Update ARGS_SIZE to contain the total size for the argument block.
1239 Return the original constant component of the argument block's size.
1240
1241 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1242 for arguments passed in registers. */
1243
1244 static int
1245 compute_argument_block_size (int reg_parm_stack_space,
1246 struct args_size *args_size,
1247 tree fndecl ATTRIBUTE_UNUSED,
1248 tree fntype ATTRIBUTE_UNUSED,
1249 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1250 {
1251 int unadjusted_args_size = args_size->constant;
1252
1253 /* For accumulate outgoing args mode we don't need to align, since the frame
1254 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1255 backends from generating misaligned frame sizes. */
1256 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1257 preferred_stack_boundary = STACK_BOUNDARY;
1258
1259 /* Compute the actual size of the argument block required. The variable
1260 and constant sizes must be combined, the size may have to be rounded,
1261 and there may be a minimum required size. */
1262
1263 if (args_size->var)
1264 {
1265 args_size->var = ARGS_SIZE_TREE (*args_size);
1266 args_size->constant = 0;
1267
1268 preferred_stack_boundary /= BITS_PER_UNIT;
1269 if (preferred_stack_boundary > 1)
1270 {
1271 /* We don't handle this case yet. To handle it correctly we have
1272 to add the delta, round and subtract the delta.
1273 Currently no machine description requires this support. */
1274 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1275 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1276 }
1277
1278 if (reg_parm_stack_space > 0)
1279 {
1280 args_size->var
1281 = size_binop (MAX_EXPR, args_size->var,
1282 ssize_int (reg_parm_stack_space));
1283
1284 /* The area corresponding to register parameters is not to count in
1285 the size of the block we need. So make the adjustment. */
1286 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1287 args_size->var
1288 = size_binop (MINUS_EXPR, args_size->var,
1289 ssize_int (reg_parm_stack_space));
1290 }
1291 }
1292 else
1293 {
1294 preferred_stack_boundary /= BITS_PER_UNIT;
1295 if (preferred_stack_boundary < 1)
1296 preferred_stack_boundary = 1;
1297 args_size->constant = (((args_size->constant
1298 + stack_pointer_delta
1299 + preferred_stack_boundary - 1)
1300 / preferred_stack_boundary
1301 * preferred_stack_boundary)
1302 - stack_pointer_delta);
1303
1304 args_size->constant = MAX (args_size->constant,
1305 reg_parm_stack_space);
1306
1307 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1308 args_size->constant -= reg_parm_stack_space;
1309 }
1310 return unadjusted_args_size;
1311 }
1312
1313 /* Precompute parameters as needed for a function call.
1314
1315 FLAGS is mask of ECF_* constants.
1316
1317 NUM_ACTUALS is the number of arguments.
1318
1319 ARGS is an array containing information for each argument; this
1320 routine fills in the INITIAL_VALUE and VALUE fields for each
1321 precomputed argument. */
1322
1323 static void
1324 precompute_arguments (int num_actuals, struct arg_data *args)
1325 {
1326 int i;
1327
1328 /* If this is a libcall, then precompute all arguments so that we do not
1329 get extraneous instructions emitted as part of the libcall sequence. */
1330
1331 /* If we preallocated the stack space, and some arguments must be passed
1332 on the stack, then we must precompute any parameter which contains a
1333 function call which will store arguments on the stack.
1334 Otherwise, evaluating the parameter may clobber previous parameters
1335 which have already been stored into the stack. (we have code to avoid
1336 such case by saving the outgoing stack arguments, but it results in
1337 worse code) */
1338 if (!ACCUMULATE_OUTGOING_ARGS)
1339 return;
1340
1341 for (i = 0; i < num_actuals; i++)
1342 {
1343 tree type;
1344 enum machine_mode mode;
1345
1346 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
1347 continue;
1348
1349 /* If this is an addressable type, we cannot pre-evaluate it. */
1350 type = TREE_TYPE (args[i].tree_value);
1351 gcc_assert (!TREE_ADDRESSABLE (type));
1352
1353 args[i].initial_value = args[i].value
1354 = expand_normal (args[i].tree_value);
1355
1356 mode = TYPE_MODE (type);
1357 if (mode != args[i].mode)
1358 {
1359 int unsignedp = args[i].unsignedp;
1360 args[i].value
1361 = convert_modes (args[i].mode, mode,
1362 args[i].value, args[i].unsignedp);
1363
1364 /* CSE will replace this only if it contains args[i].value
1365 pseudo, so convert it down to the declared mode using
1366 a SUBREG. */
1367 if (REG_P (args[i].value)
1368 && GET_MODE_CLASS (args[i].mode) == MODE_INT
1369 && promote_mode (type, mode, &unsignedp) != args[i].mode)
1370 {
1371 args[i].initial_value
1372 = gen_lowpart_SUBREG (mode, args[i].value);
1373 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1374 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1375 args[i].unsignedp);
1376 }
1377 }
1378 }
1379 }
1380
1381 /* Given the current state of MUST_PREALLOCATE and information about
1382 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1383 compute and return the final value for MUST_PREALLOCATE. */
1384
1385 static int
1386 finalize_must_preallocate (int must_preallocate, int num_actuals,
1387 struct arg_data *args, struct args_size *args_size)
1388 {
1389 /* See if we have or want to preallocate stack space.
1390
1391 If we would have to push a partially-in-regs parm
1392 before other stack parms, preallocate stack space instead.
1393
1394 If the size of some parm is not a multiple of the required stack
1395 alignment, we must preallocate.
1396
1397 If the total size of arguments that would otherwise create a copy in
1398 a temporary (such as a CALL) is more than half the total argument list
1399 size, preallocation is faster.
1400
1401 Another reason to preallocate is if we have a machine (like the m88k)
1402 where stack alignment is required to be maintained between every
1403 pair of insns, not just when the call is made. However, we assume here
1404 that such machines either do not have push insns (and hence preallocation
1405 would occur anyway) or the problem is taken care of with
1406 PUSH_ROUNDING. */
1407
1408 if (! must_preallocate)
1409 {
1410 int partial_seen = 0;
1411 int copy_to_evaluate_size = 0;
1412 int i;
1413
1414 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1415 {
1416 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1417 partial_seen = 1;
1418 else if (partial_seen && args[i].reg == 0)
1419 must_preallocate = 1;
1420
1421 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1422 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1423 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1424 || TREE_CODE (args[i].tree_value) == COND_EXPR
1425 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1426 copy_to_evaluate_size
1427 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1428 }
1429
1430 if (copy_to_evaluate_size * 2 >= args_size->constant
1431 && args_size->constant > 0)
1432 must_preallocate = 1;
1433 }
1434 return must_preallocate;
1435 }
1436
1437 /* If we preallocated stack space, compute the address of each argument
1438 and store it into the ARGS array.
1439
1440 We need not ensure it is a valid memory address here; it will be
1441 validized when it is used.
1442
1443 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1444
1445 static void
1446 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1447 {
1448 if (argblock)
1449 {
1450 rtx arg_reg = argblock;
1451 int i, arg_offset = 0;
1452
1453 if (GET_CODE (argblock) == PLUS)
1454 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1455
1456 for (i = 0; i < num_actuals; i++)
1457 {
1458 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1459 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1460 rtx addr;
1461 unsigned int align, boundary;
1462 unsigned int units_on_stack = 0;
1463 enum machine_mode partial_mode = VOIDmode;
1464
1465 /* Skip this parm if it will not be passed on the stack. */
1466 if (! args[i].pass_on_stack
1467 && args[i].reg != 0
1468 && args[i].partial == 0)
1469 continue;
1470
1471 if (CONST_INT_P (offset))
1472 addr = plus_constant (arg_reg, INTVAL (offset));
1473 else
1474 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1475
1476 addr = plus_constant (addr, arg_offset);
1477
1478 if (args[i].partial != 0)
1479 {
1480 /* Only part of the parameter is being passed on the stack.
1481 Generate a simple memory reference of the correct size. */
1482 units_on_stack = args[i].locate.size.constant;
1483 partial_mode = mode_for_size (units_on_stack * BITS_PER_UNIT,
1484 MODE_INT, 1);
1485 args[i].stack = gen_rtx_MEM (partial_mode, addr);
1486 set_mem_size (args[i].stack, units_on_stack);
1487 }
1488 else
1489 {
1490 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1491 set_mem_attributes (args[i].stack,
1492 TREE_TYPE (args[i].tree_value), 1);
1493 }
1494 align = BITS_PER_UNIT;
1495 boundary = args[i].locate.boundary;
1496 if (args[i].locate.where_pad != downward)
1497 align = boundary;
1498 else if (CONST_INT_P (offset))
1499 {
1500 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1501 align = align & -align;
1502 }
1503 set_mem_align (args[i].stack, align);
1504
1505 if (CONST_INT_P (slot_offset))
1506 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1507 else
1508 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1509
1510 addr = plus_constant (addr, arg_offset);
1511
1512 if (args[i].partial != 0)
1513 {
1514 /* Only part of the parameter is being passed on the stack.
1515 Generate a simple memory reference of the correct size.
1516 */
1517 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
1518 set_mem_size (args[i].stack_slot, units_on_stack);
1519 }
1520 else
1521 {
1522 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1523 set_mem_attributes (args[i].stack_slot,
1524 TREE_TYPE (args[i].tree_value), 1);
1525 }
1526 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1527
1528 /* Function incoming arguments may overlap with sibling call
1529 outgoing arguments and we cannot allow reordering of reads
1530 from function arguments with stores to outgoing arguments
1531 of sibling calls. */
1532 set_mem_alias_set (args[i].stack, 0);
1533 set_mem_alias_set (args[i].stack_slot, 0);
1534 }
1535 }
1536 }
1537
1538 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1539 in a call instruction.
1540
1541 FNDECL is the tree node for the target function. For an indirect call
1542 FNDECL will be NULL_TREE.
1543
1544 ADDR is the operand 0 of CALL_EXPR for this call. */
1545
1546 static rtx
1547 rtx_for_function_call (tree fndecl, tree addr)
1548 {
1549 rtx funexp;
1550
1551 /* Get the function to call, in the form of RTL. */
1552 if (fndecl)
1553 {
1554 /* If this is the first use of the function, see if we need to
1555 make an external definition for it. */
1556 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
1557 {
1558 assemble_external (fndecl);
1559 TREE_USED (fndecl) = 1;
1560 }
1561
1562 /* Get a SYMBOL_REF rtx for the function address. */
1563 funexp = XEXP (DECL_RTL (fndecl), 0);
1564 }
1565 else
1566 /* Generate an rtx (probably a pseudo-register) for the address. */
1567 {
1568 push_temp_slots ();
1569 funexp = expand_normal (addr);
1570 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1571 }
1572 return funexp;
1573 }
1574
1575 /* Return true if and only if SIZE storage units (usually bytes)
1576 starting from address ADDR overlap with already clobbered argument
1577 area. This function is used to determine if we should give up a
1578 sibcall. */
1579
1580 static bool
1581 mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
1582 {
1583 HOST_WIDE_INT i;
1584
1585 if (addr == crtl->args.internal_arg_pointer)
1586 i = 0;
1587 else if (GET_CODE (addr) == PLUS
1588 && XEXP (addr, 0) == crtl->args.internal_arg_pointer
1589 && CONST_INT_P (XEXP (addr, 1)))
1590 i = INTVAL (XEXP (addr, 1));
1591 /* Return true for arg pointer based indexed addressing. */
1592 else if (GET_CODE (addr) == PLUS
1593 && (XEXP (addr, 0) == crtl->args.internal_arg_pointer
1594 || XEXP (addr, 1) == crtl->args.internal_arg_pointer))
1595 return true;
1596 /* If the address comes in a register, we have no idea of its origin so
1597 give up and conservatively return true. */
1598 else if (REG_P(addr))
1599 return true;
1600 else
1601 return false;
1602
1603 #ifdef ARGS_GROW_DOWNWARD
1604 i = -i - size;
1605 #endif
1606 if (size > 0)
1607 {
1608 unsigned HOST_WIDE_INT k;
1609
1610 for (k = 0; k < size; k++)
1611 if (i + k < stored_args_map->n_bits
1612 && TEST_BIT (stored_args_map, i + k))
1613 return true;
1614 }
1615
1616 return false;
1617 }
1618
1619 /* Do the register loads required for any wholly-register parms or any
1620 parms which are passed both on the stack and in a register. Their
1621 expressions were already evaluated.
1622
1623 Mark all register-parms as living through the call, putting these USE
1624 insns in the CALL_INSN_FUNCTION_USAGE field.
1625
1626 When IS_SIBCALL, perform the check_sibcall_argument_overlap
1627 checking, setting *SIBCALL_FAILURE if appropriate. */
1628
1629 static void
1630 load_register_parameters (struct arg_data *args, int num_actuals,
1631 rtx *call_fusage, int flags, int is_sibcall,
1632 int *sibcall_failure)
1633 {
1634 int i, j;
1635
1636 for (i = 0; i < num_actuals; i++)
1637 {
1638 rtx reg = ((flags & ECF_SIBCALL)
1639 ? args[i].tail_call_reg : args[i].reg);
1640 if (reg)
1641 {
1642 int partial = args[i].partial;
1643 int nregs;
1644 int size = 0;
1645 rtx before_arg = get_last_insn ();
1646 /* Set non-negative if we must move a word at a time, even if
1647 just one word (e.g, partial == 4 && mode == DFmode). Set
1648 to -1 if we just use a normal move insn. This value can be
1649 zero if the argument is a zero size structure. */
1650 nregs = -1;
1651 if (GET_CODE (reg) == PARALLEL)
1652 ;
1653 else if (partial)
1654 {
1655 gcc_assert (partial % UNITS_PER_WORD == 0);
1656 nregs = partial / UNITS_PER_WORD;
1657 }
1658 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1659 {
1660 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1661 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1662 }
1663 else
1664 size = GET_MODE_SIZE (args[i].mode);
1665
1666 /* Handle calls that pass values in multiple non-contiguous
1667 locations. The Irix 6 ABI has examples of this. */
1668
1669 if (GET_CODE (reg) == PARALLEL)
1670 emit_group_move (reg, args[i].parallel_value);
1671
1672 /* If simple case, just do move. If normal partial, store_one_arg
1673 has already loaded the register for us. In all other cases,
1674 load the register(s) from memory. */
1675
1676 else if (nregs == -1)
1677 {
1678 emit_move_insn (reg, args[i].value);
1679 #ifdef BLOCK_REG_PADDING
1680 /* Handle case where we have a value that needs shifting
1681 up to the msb. eg. a QImode value and we're padding
1682 upward on a BYTES_BIG_ENDIAN machine. */
1683 if (size < UNITS_PER_WORD
1684 && (args[i].locate.where_pad
1685 == (BYTES_BIG_ENDIAN ? upward : downward)))
1686 {
1687 rtx x;
1688 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1689
1690 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1691 report the whole reg as used. Strictly speaking, the
1692 call only uses SIZE bytes at the msb end, but it doesn't
1693 seem worth generating rtl to say that. */
1694 reg = gen_rtx_REG (word_mode, REGNO (reg));
1695 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
1696 if (x != reg)
1697 emit_move_insn (reg, x);
1698 }
1699 #endif
1700 }
1701
1702 /* If we have pre-computed the values to put in the registers in
1703 the case of non-aligned structures, copy them in now. */
1704
1705 else if (args[i].n_aligned_regs != 0)
1706 for (j = 0; j < args[i].n_aligned_regs; j++)
1707 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1708 args[i].aligned_regs[j]);
1709
1710 else if (partial == 0 || args[i].pass_on_stack)
1711 {
1712 rtx mem = validize_mem (args[i].value);
1713
1714 /* Check for overlap with already clobbered argument area,
1715 providing that this has non-zero size. */
1716 if (is_sibcall
1717 && (size == 0
1718 || mem_overlaps_already_clobbered_arg_p
1719 (XEXP (args[i].value, 0), size)))
1720 *sibcall_failure = 1;
1721
1722 /* Handle a BLKmode that needs shifting. */
1723 if (nregs == 1 && size < UNITS_PER_WORD
1724 #ifdef BLOCK_REG_PADDING
1725 && args[i].locate.where_pad == downward
1726 #else
1727 && BYTES_BIG_ENDIAN
1728 #endif
1729 )
1730 {
1731 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1732 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1733 rtx x = gen_reg_rtx (word_mode);
1734 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1735 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1736 : LSHIFT_EXPR;
1737
1738 emit_move_insn (x, tem);
1739 x = expand_shift (dir, word_mode, x, shift, ri, 1);
1740 if (x != ri)
1741 emit_move_insn (ri, x);
1742 }
1743 else
1744 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1745 }
1746
1747 /* When a parameter is a block, and perhaps in other cases, it is
1748 possible that it did a load from an argument slot that was
1749 already clobbered. */
1750 if (is_sibcall
1751 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1752 *sibcall_failure = 1;
1753
1754 /* Handle calls that pass values in multiple non-contiguous
1755 locations. The Irix 6 ABI has examples of this. */
1756 if (GET_CODE (reg) == PARALLEL)
1757 use_group_regs (call_fusage, reg);
1758 else if (nregs == -1)
1759 use_reg (call_fusage, reg);
1760 else if (nregs > 0)
1761 use_regs (call_fusage, REGNO (reg), nregs);
1762 }
1763 }
1764 }
1765
1766 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1767 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1768 bytes, then we would need to push some additional bytes to pad the
1769 arguments. So, we compute an adjust to the stack pointer for an
1770 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1771 bytes. Then, when the arguments are pushed the stack will be perfectly
1772 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1773 be popped after the call. Returns the adjustment. */
1774
1775 static int
1776 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1777 struct args_size *args_size,
1778 unsigned int preferred_unit_stack_boundary)
1779 {
1780 /* The number of bytes to pop so that the stack will be
1781 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1782 HOST_WIDE_INT adjustment;
1783 /* The alignment of the stack after the arguments are pushed, if we
1784 just pushed the arguments without adjust the stack here. */
1785 unsigned HOST_WIDE_INT unadjusted_alignment;
1786
1787 unadjusted_alignment
1788 = ((stack_pointer_delta + unadjusted_args_size)
1789 % preferred_unit_stack_boundary);
1790
1791 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1792 as possible -- leaving just enough left to cancel out the
1793 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1794 PENDING_STACK_ADJUST is non-negative, and congruent to
1795 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1796
1797 /* Begin by trying to pop all the bytes. */
1798 unadjusted_alignment
1799 = (unadjusted_alignment
1800 - (pending_stack_adjust % preferred_unit_stack_boundary));
1801 adjustment = pending_stack_adjust;
1802 /* Push enough additional bytes that the stack will be aligned
1803 after the arguments are pushed. */
1804 if (preferred_unit_stack_boundary > 1)
1805 {
1806 if (unadjusted_alignment > 0)
1807 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1808 else
1809 adjustment += unadjusted_alignment;
1810 }
1811
1812 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1813 bytes after the call. The right number is the entire
1814 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1815 by the arguments in the first place. */
1816 args_size->constant
1817 = pending_stack_adjust - adjustment + unadjusted_args_size;
1818
1819 return adjustment;
1820 }
1821
1822 /* Scan X expression if it does not dereference any argument slots
1823 we already clobbered by tail call arguments (as noted in stored_args_map
1824 bitmap).
1825 Return nonzero if X expression dereferences such argument slots,
1826 zero otherwise. */
1827
1828 static int
1829 check_sibcall_argument_overlap_1 (rtx x)
1830 {
1831 RTX_CODE code;
1832 int i, j;
1833 const char *fmt;
1834
1835 if (x == NULL_RTX)
1836 return 0;
1837
1838 code = GET_CODE (x);
1839
1840 /* We need not check the operands of the CALL expression itself. */
1841 if (code == CALL)
1842 return 0;
1843
1844 if (code == MEM)
1845 return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
1846 GET_MODE_SIZE (GET_MODE (x)));
1847
1848 /* Scan all subexpressions. */
1849 fmt = GET_RTX_FORMAT (code);
1850 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1851 {
1852 if (*fmt == 'e')
1853 {
1854 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1855 return 1;
1856 }
1857 else if (*fmt == 'E')
1858 {
1859 for (j = 0; j < XVECLEN (x, i); j++)
1860 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1861 return 1;
1862 }
1863 }
1864 return 0;
1865 }
1866
1867 /* Scan sequence after INSN if it does not dereference any argument slots
1868 we already clobbered by tail call arguments (as noted in stored_args_map
1869 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1870 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1871 should be 0). Return nonzero if sequence after INSN dereferences such argument
1872 slots, zero otherwise. */
1873
1874 static int
1875 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1876 {
1877 int low, high;
1878
1879 if (insn == NULL_RTX)
1880 insn = get_insns ();
1881 else
1882 insn = NEXT_INSN (insn);
1883
1884 for (; insn; insn = NEXT_INSN (insn))
1885 if (INSN_P (insn)
1886 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1887 break;
1888
1889 if (mark_stored_args_map)
1890 {
1891 #ifdef ARGS_GROW_DOWNWARD
1892 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1893 #else
1894 low = arg->locate.slot_offset.constant;
1895 #endif
1896
1897 for (high = low + arg->locate.size.constant; low < high; low++)
1898 SET_BIT (stored_args_map, low);
1899 }
1900 return insn != NULL_RTX;
1901 }
1902
1903 /* Given that a function returns a value of mode MODE at the most
1904 significant end of hard register VALUE, shift VALUE left or right
1905 as specified by LEFT_P. Return true if some action was needed. */
1906
1907 bool
1908 shift_return_value (enum machine_mode mode, bool left_p, rtx value)
1909 {
1910 HOST_WIDE_INT shift;
1911
1912 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
1913 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
1914 if (shift == 0)
1915 return false;
1916
1917 /* Use ashr rather than lshr for right shifts. This is for the benefit
1918 of the MIPS port, which requires SImode values to be sign-extended
1919 when stored in 64-bit registers. */
1920 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
1921 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
1922 gcc_unreachable ();
1923 return true;
1924 }
1925
1926 /* If X is a likely-spilled register value, copy it to a pseudo
1927 register and return that register. Return X otherwise. */
1928
1929 static rtx
1930 avoid_likely_spilled_reg (rtx x)
1931 {
1932 rtx new_rtx;
1933
1934 if (REG_P (x)
1935 && HARD_REGISTER_P (x)
1936 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
1937 {
1938 /* Make sure that we generate a REG rather than a CONCAT.
1939 Moves into CONCATs can need nontrivial instructions,
1940 and the whole point of this function is to avoid
1941 using the hard register directly in such a situation. */
1942 generating_concat_p = 0;
1943 new_rtx = gen_reg_rtx (GET_MODE (x));
1944 generating_concat_p = 1;
1945 emit_move_insn (new_rtx, x);
1946 return new_rtx;
1947 }
1948 return x;
1949 }
1950
1951 /* Generate all the code for a CALL_EXPR exp
1952 and return an rtx for its value.
1953 Store the value in TARGET (specified as an rtx) if convenient.
1954 If the value is stored in TARGET then TARGET is returned.
1955 If IGNORE is nonzero, then we ignore the value of the function call. */
1956
1957 rtx
1958 expand_call (tree exp, rtx target, int ignore)
1959 {
1960 /* Nonzero if we are currently expanding a call. */
1961 static int currently_expanding_call = 0;
1962
1963 /* RTX for the function to be called. */
1964 rtx funexp;
1965 /* Sequence of insns to perform a normal "call". */
1966 rtx normal_call_insns = NULL_RTX;
1967 /* Sequence of insns to perform a tail "call". */
1968 rtx tail_call_insns = NULL_RTX;
1969 /* Data type of the function. */
1970 tree funtype;
1971 tree type_arg_types;
1972 tree rettype;
1973 /* Declaration of the function being called,
1974 or 0 if the function is computed (not known by name). */
1975 tree fndecl = 0;
1976 /* The type of the function being called. */
1977 tree fntype;
1978 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1979 int pass;
1980
1981 /* Register in which non-BLKmode value will be returned,
1982 or 0 if no value or if value is BLKmode. */
1983 rtx valreg;
1984 /* Address where we should return a BLKmode value;
1985 0 if value not BLKmode. */
1986 rtx structure_value_addr = 0;
1987 /* Nonzero if that address is being passed by treating it as
1988 an extra, implicit first parameter. Otherwise,
1989 it is passed by being copied directly into struct_value_rtx. */
1990 int structure_value_addr_parm = 0;
1991 /* Holds the value of implicit argument for the struct value. */
1992 tree structure_value_addr_value = NULL_TREE;
1993 /* Size of aggregate value wanted, or zero if none wanted
1994 or if we are using the non-reentrant PCC calling convention
1995 or expecting the value in registers. */
1996 HOST_WIDE_INT struct_value_size = 0;
1997 /* Nonzero if called function returns an aggregate in memory PCC style,
1998 by returning the address of where to find it. */
1999 int pcc_struct_value = 0;
2000 rtx struct_value = 0;
2001
2002 /* Number of actual parameters in this call, including struct value addr. */
2003 int num_actuals;
2004 /* Number of named args. Args after this are anonymous ones
2005 and they must all go on the stack. */
2006 int n_named_args;
2007 /* Number of complex actual arguments that need to be split. */
2008 int num_complex_actuals = 0;
2009
2010 /* Vector of information about each argument.
2011 Arguments are numbered in the order they will be pushed,
2012 not the order they are written. */
2013 struct arg_data *args;
2014
2015 /* Total size in bytes of all the stack-parms scanned so far. */
2016 struct args_size args_size;
2017 struct args_size adjusted_args_size;
2018 /* Size of arguments before any adjustments (such as rounding). */
2019 int unadjusted_args_size;
2020 /* Data on reg parms scanned so far. */
2021 CUMULATIVE_ARGS args_so_far_v;
2022 cumulative_args_t args_so_far;
2023 /* Nonzero if a reg parm has been scanned. */
2024 int reg_parm_seen;
2025 /* Nonzero if this is an indirect function call. */
2026
2027 /* Nonzero if we must avoid push-insns in the args for this call.
2028 If stack space is allocated for register parameters, but not by the
2029 caller, then it is preallocated in the fixed part of the stack frame.
2030 So the entire argument block must then be preallocated (i.e., we
2031 ignore PUSH_ROUNDING in that case). */
2032
2033 int must_preallocate = !PUSH_ARGS;
2034
2035 /* Size of the stack reserved for parameter registers. */
2036 int reg_parm_stack_space = 0;
2037
2038 /* Address of space preallocated for stack parms
2039 (on machines that lack push insns), or 0 if space not preallocated. */
2040 rtx argblock = 0;
2041
2042 /* Mask of ECF_ flags. */
2043 int flags = 0;
2044 #ifdef REG_PARM_STACK_SPACE
2045 /* Define the boundary of the register parm stack space that needs to be
2046 saved, if any. */
2047 int low_to_save, high_to_save;
2048 rtx save_area = 0; /* Place that it is saved */
2049 #endif
2050
2051 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
2052 char *initial_stack_usage_map = stack_usage_map;
2053 char *stack_usage_map_buf = NULL;
2054
2055 int old_stack_allocated;
2056
2057 /* State variables to track stack modifications. */
2058 rtx old_stack_level = 0;
2059 int old_stack_arg_under_construction = 0;
2060 int old_pending_adj = 0;
2061 int old_inhibit_defer_pop = inhibit_defer_pop;
2062
2063 /* Some stack pointer alterations we make are performed via
2064 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
2065 which we then also need to save/restore along the way. */
2066 int old_stack_pointer_delta = 0;
2067
2068 rtx call_fusage;
2069 tree addr = CALL_EXPR_FN (exp);
2070 int i;
2071 /* The alignment of the stack, in bits. */
2072 unsigned HOST_WIDE_INT preferred_stack_boundary;
2073 /* The alignment of the stack, in bytes. */
2074 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
2075 /* The static chain value to use for this call. */
2076 rtx static_chain_value;
2077 /* See if this is "nothrow" function call. */
2078 if (TREE_NOTHROW (exp))
2079 flags |= ECF_NOTHROW;
2080
2081 /* See if we can find a DECL-node for the actual function, and get the
2082 function attributes (flags) from the function decl or type node. */
2083 fndecl = get_callee_fndecl (exp);
2084 if (fndecl)
2085 {
2086 fntype = TREE_TYPE (fndecl);
2087 flags |= flags_from_decl_or_type (fndecl);
2088 }
2089 else
2090 {
2091 fntype = TREE_TYPE (TREE_TYPE (addr));
2092 flags |= flags_from_decl_or_type (fntype);
2093 }
2094 rettype = TREE_TYPE (exp);
2095
2096 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
2097
2098 /* Warn if this value is an aggregate type,
2099 regardless of which calling convention we are using for it. */
2100 if (AGGREGATE_TYPE_P (rettype))
2101 warning (OPT_Waggregate_return, "function call has aggregate value");
2102
2103 /* If the result of a non looping pure or const function call is
2104 ignored (or void), and none of its arguments are volatile, we can
2105 avoid expanding the call and just evaluate the arguments for
2106 side-effects. */
2107 if ((flags & (ECF_CONST | ECF_PURE))
2108 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
2109 && (ignore || target == const0_rtx
2110 || TYPE_MODE (rettype) == VOIDmode))
2111 {
2112 bool volatilep = false;
2113 tree arg;
2114 call_expr_arg_iterator iter;
2115
2116 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2117 if (TREE_THIS_VOLATILE (arg))
2118 {
2119 volatilep = true;
2120 break;
2121 }
2122
2123 if (! volatilep)
2124 {
2125 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2126 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
2127 return const0_rtx;
2128 }
2129 }
2130
2131 #ifdef REG_PARM_STACK_SPACE
2132 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
2133 #endif
2134
2135 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2136 && reg_parm_stack_space > 0 && PUSH_ARGS)
2137 must_preallocate = 1;
2138
2139 /* Set up a place to return a structure. */
2140
2141 /* Cater to broken compilers. */
2142 if (aggregate_value_p (exp, fntype))
2143 {
2144 /* This call returns a big structure. */
2145 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2146
2147 #ifdef PCC_STATIC_STRUCT_RETURN
2148 {
2149 pcc_struct_value = 1;
2150 }
2151 #else /* not PCC_STATIC_STRUCT_RETURN */
2152 {
2153 struct_value_size = int_size_in_bytes (rettype);
2154
2155 if (target && MEM_P (target) && CALL_EXPR_RETURN_SLOT_OPT (exp))
2156 structure_value_addr = XEXP (target, 0);
2157 else
2158 {
2159 /* For variable-sized objects, we must be called with a target
2160 specified. If we were to allocate space on the stack here,
2161 we would have no way of knowing when to free it. */
2162 rtx d = assign_temp (rettype, 0, 1, 1);
2163
2164 mark_temp_addr_taken (d);
2165 structure_value_addr = XEXP (d, 0);
2166 target = 0;
2167 }
2168 }
2169 #endif /* not PCC_STATIC_STRUCT_RETURN */
2170 }
2171
2172 /* Figure out the amount to which the stack should be aligned. */
2173 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2174 if (fndecl)
2175 {
2176 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2177 /* Without automatic stack alignment, we can't increase preferred
2178 stack boundary. With automatic stack alignment, it is
2179 unnecessary since unless we can guarantee that all callers will
2180 align the outgoing stack properly, callee has to align its
2181 stack anyway. */
2182 if (i
2183 && i->preferred_incoming_stack_boundary
2184 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
2185 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2186 }
2187
2188 /* Operand 0 is a pointer-to-function; get the type of the function. */
2189 funtype = TREE_TYPE (addr);
2190 gcc_assert (POINTER_TYPE_P (funtype));
2191 funtype = TREE_TYPE (funtype);
2192
2193 /* Count whether there are actual complex arguments that need to be split
2194 into their real and imaginary parts. Munge the type_arg_types
2195 appropriately here as well. */
2196 if (targetm.calls.split_complex_arg)
2197 {
2198 call_expr_arg_iterator iter;
2199 tree arg;
2200 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2201 {
2202 tree type = TREE_TYPE (arg);
2203 if (type && TREE_CODE (type) == COMPLEX_TYPE
2204 && targetm.calls.split_complex_arg (type))
2205 num_complex_actuals++;
2206 }
2207 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2208 }
2209 else
2210 type_arg_types = TYPE_ARG_TYPES (funtype);
2211
2212 if (flags & ECF_MAY_BE_ALLOCA)
2213 cfun->calls_alloca = 1;
2214
2215 /* If struct_value_rtx is 0, it means pass the address
2216 as if it were an extra parameter. Put the argument expression
2217 in structure_value_addr_value. */
2218 if (structure_value_addr && struct_value == 0)
2219 {
2220 /* If structure_value_addr is a REG other than
2221 virtual_outgoing_args_rtx, we can use always use it. If it
2222 is not a REG, we must always copy it into a register.
2223 If it is virtual_outgoing_args_rtx, we must copy it to another
2224 register in some cases. */
2225 rtx temp = (!REG_P (structure_value_addr)
2226 || (ACCUMULATE_OUTGOING_ARGS
2227 && stack_arg_under_construction
2228 && structure_value_addr == virtual_outgoing_args_rtx)
2229 ? copy_addr_to_reg (convert_memory_address
2230 (Pmode, structure_value_addr))
2231 : structure_value_addr);
2232
2233 structure_value_addr_value =
2234 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
2235 structure_value_addr_parm = 1;
2236 }
2237
2238 /* Count the arguments and set NUM_ACTUALS. */
2239 num_actuals =
2240 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
2241
2242 /* Compute number of named args.
2243 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2244
2245 if (type_arg_types != 0)
2246 n_named_args
2247 = (list_length (type_arg_types)
2248 /* Count the struct value address, if it is passed as a parm. */
2249 + structure_value_addr_parm);
2250 else
2251 /* If we know nothing, treat all args as named. */
2252 n_named_args = num_actuals;
2253
2254 /* Start updating where the next arg would go.
2255
2256 On some machines (such as the PA) indirect calls have a different
2257 calling convention than normal calls. The fourth argument in
2258 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2259 or not. */
2260 INIT_CUMULATIVE_ARGS (args_so_far_v, funtype, NULL_RTX, fndecl, n_named_args);
2261 args_so_far = pack_cumulative_args (&args_so_far_v);
2262
2263 /* Now possibly adjust the number of named args.
2264 Normally, don't include the last named arg if anonymous args follow.
2265 We do include the last named arg if
2266 targetm.calls.strict_argument_naming() returns nonzero.
2267 (If no anonymous args follow, the result of list_length is actually
2268 one too large. This is harmless.)
2269
2270 If targetm.calls.pretend_outgoing_varargs_named() returns
2271 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2272 this machine will be able to place unnamed args that were passed
2273 in registers into the stack. So treat all args as named. This
2274 allows the insns emitting for a specific argument list to be
2275 independent of the function declaration.
2276
2277 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2278 we do not have any reliable way to pass unnamed args in
2279 registers, so we must force them into memory. */
2280
2281 if (type_arg_types != 0
2282 && targetm.calls.strict_argument_naming (args_so_far))
2283 ;
2284 else if (type_arg_types != 0
2285 && ! targetm.calls.pretend_outgoing_varargs_named (args_so_far))
2286 /* Don't include the last named arg. */
2287 --n_named_args;
2288 else
2289 /* Treat all args as named. */
2290 n_named_args = num_actuals;
2291
2292 /* Make a vector to hold all the information about each arg. */
2293 args = XALLOCAVEC (struct arg_data, num_actuals);
2294 memset (args, 0, num_actuals * sizeof (struct arg_data));
2295
2296 /* Build up entries in the ARGS array, compute the size of the
2297 arguments into ARGS_SIZE, etc. */
2298 initialize_argument_information (num_actuals, args, &args_size,
2299 n_named_args, exp,
2300 structure_value_addr_value, fndecl, fntype,
2301 args_so_far, reg_parm_stack_space,
2302 &old_stack_level, &old_pending_adj,
2303 &must_preallocate, &flags,
2304 &try_tail_call, CALL_FROM_THUNK_P (exp));
2305
2306 if (args_size.var)
2307 must_preallocate = 1;
2308
2309 /* Now make final decision about preallocating stack space. */
2310 must_preallocate = finalize_must_preallocate (must_preallocate,
2311 num_actuals, args,
2312 &args_size);
2313
2314 /* If the structure value address will reference the stack pointer, we
2315 must stabilize it. We don't need to do this if we know that we are
2316 not going to adjust the stack pointer in processing this call. */
2317
2318 if (structure_value_addr
2319 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2320 || reg_mentioned_p (virtual_outgoing_args_rtx,
2321 structure_value_addr))
2322 && (args_size.var
2323 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2324 structure_value_addr = copy_to_reg (structure_value_addr);
2325
2326 /* Tail calls can make things harder to debug, and we've traditionally
2327 pushed these optimizations into -O2. Don't try if we're already
2328 expanding a call, as that means we're an argument. Don't try if
2329 there's cleanups, as we know there's code to follow the call. */
2330
2331 if (currently_expanding_call++ != 0
2332 || !flag_optimize_sibling_calls
2333 || args_size.var
2334 || dbg_cnt (tail_call) == false)
2335 try_tail_call = 0;
2336
2337 /* Rest of purposes for tail call optimizations to fail. */
2338 if (
2339 #ifdef HAVE_sibcall_epilogue
2340 !HAVE_sibcall_epilogue
2341 #else
2342 1
2343 #endif
2344 || !try_tail_call
2345 /* Doing sibling call optimization needs some work, since
2346 structure_value_addr can be allocated on the stack.
2347 It does not seem worth the effort since few optimizable
2348 sibling calls will return a structure. */
2349 || structure_value_addr != NULL_RTX
2350 #ifdef REG_PARM_STACK_SPACE
2351 /* If outgoing reg parm stack space changes, we can not do sibcall. */
2352 || (OUTGOING_REG_PARM_STACK_SPACE (funtype)
2353 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl)))
2354 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (fndecl))
2355 #endif
2356 /* Check whether the target is able to optimize the call
2357 into a sibcall. */
2358 || !targetm.function_ok_for_sibcall (fndecl, exp)
2359 /* Functions that do not return exactly once may not be sibcall
2360 optimized. */
2361 || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2362 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2363 /* If the called function is nested in the current one, it might access
2364 some of the caller's arguments, but could clobber them beforehand if
2365 the argument areas are shared. */
2366 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2367 /* If this function requires more stack slots than the current
2368 function, we cannot change it into a sibling call.
2369 crtl->args.pretend_args_size is not part of the
2370 stack allocated by our caller. */
2371 || args_size.constant > (crtl->args.size
2372 - crtl->args.pretend_args_size)
2373 /* If the callee pops its own arguments, then it must pop exactly
2374 the same number of arguments as the current function. */
2375 || (targetm.calls.return_pops_args (fndecl, funtype, args_size.constant)
2376 != targetm.calls.return_pops_args (current_function_decl,
2377 TREE_TYPE (current_function_decl),
2378 crtl->args.size))
2379 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2380 try_tail_call = 0;
2381
2382 /* Check if caller and callee disagree in promotion of function
2383 return value. */
2384 if (try_tail_call)
2385 {
2386 enum machine_mode caller_mode, caller_promoted_mode;
2387 enum machine_mode callee_mode, callee_promoted_mode;
2388 int caller_unsignedp, callee_unsignedp;
2389 tree caller_res = DECL_RESULT (current_function_decl);
2390
2391 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
2392 caller_mode = DECL_MODE (caller_res);
2393 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
2394 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
2395 caller_promoted_mode
2396 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
2397 &caller_unsignedp,
2398 TREE_TYPE (current_function_decl), 1);
2399 callee_promoted_mode
2400 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
2401 &callee_unsignedp,
2402 funtype, 1);
2403 if (caller_mode != VOIDmode
2404 && (caller_promoted_mode != callee_promoted_mode
2405 || ((caller_mode != caller_promoted_mode
2406 || callee_mode != callee_promoted_mode)
2407 && (caller_unsignedp != callee_unsignedp
2408 || GET_MODE_BITSIZE (caller_mode)
2409 < GET_MODE_BITSIZE (callee_mode)))))
2410 try_tail_call = 0;
2411 }
2412
2413 /* Ensure current function's preferred stack boundary is at least
2414 what we need. Stack alignment may also increase preferred stack
2415 boundary. */
2416 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
2417 crtl->preferred_stack_boundary = preferred_stack_boundary;
2418 else
2419 preferred_stack_boundary = crtl->preferred_stack_boundary;
2420
2421 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2422
2423 /* We want to make two insn chains; one for a sibling call, the other
2424 for a normal call. We will select one of the two chains after
2425 initial RTL generation is complete. */
2426 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2427 {
2428 int sibcall_failure = 0;
2429 /* We want to emit any pending stack adjustments before the tail
2430 recursion "call". That way we know any adjustment after the tail
2431 recursion call can be ignored if we indeed use the tail
2432 call expansion. */
2433 int save_pending_stack_adjust = 0;
2434 int save_stack_pointer_delta = 0;
2435 rtx insns;
2436 rtx before_call, next_arg_reg, after_args;
2437
2438 if (pass == 0)
2439 {
2440 /* State variables we need to save and restore between
2441 iterations. */
2442 save_pending_stack_adjust = pending_stack_adjust;
2443 save_stack_pointer_delta = stack_pointer_delta;
2444 }
2445 if (pass)
2446 flags &= ~ECF_SIBCALL;
2447 else
2448 flags |= ECF_SIBCALL;
2449
2450 /* Other state variables that we must reinitialize each time
2451 through the loop (that are not initialized by the loop itself). */
2452 argblock = 0;
2453 call_fusage = 0;
2454
2455 /* Start a new sequence for the normal call case.
2456
2457 From this point on, if the sibling call fails, we want to set
2458 sibcall_failure instead of continuing the loop. */
2459 start_sequence ();
2460
2461 /* Don't let pending stack adjusts add up to too much.
2462 Also, do all pending adjustments now if there is any chance
2463 this might be a call to alloca or if we are expanding a sibling
2464 call sequence.
2465 Also do the adjustments before a throwing call, otherwise
2466 exception handling can fail; PR 19225. */
2467 if (pending_stack_adjust >= 32
2468 || (pending_stack_adjust > 0
2469 && (flags & ECF_MAY_BE_ALLOCA))
2470 || (pending_stack_adjust > 0
2471 && flag_exceptions && !(flags & ECF_NOTHROW))
2472 || pass == 0)
2473 do_pending_stack_adjust ();
2474
2475 /* Precompute any arguments as needed. */
2476 if (pass)
2477 precompute_arguments (num_actuals, args);
2478
2479 /* Now we are about to start emitting insns that can be deleted
2480 if a libcall is deleted. */
2481 if (pass && (flags & ECF_MALLOC))
2482 start_sequence ();
2483
2484 if (pass == 0 && crtl->stack_protect_guard)
2485 stack_protect_epilogue ();
2486
2487 adjusted_args_size = args_size;
2488 /* Compute the actual size of the argument block required. The variable
2489 and constant sizes must be combined, the size may have to be rounded,
2490 and there may be a minimum required size. When generating a sibcall
2491 pattern, do not round up, since we'll be re-using whatever space our
2492 caller provided. */
2493 unadjusted_args_size
2494 = compute_argument_block_size (reg_parm_stack_space,
2495 &adjusted_args_size,
2496 fndecl, fntype,
2497 (pass == 0 ? 0
2498 : preferred_stack_boundary));
2499
2500 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2501
2502 /* The argument block when performing a sibling call is the
2503 incoming argument block. */
2504 if (pass == 0)
2505 {
2506 argblock = crtl->args.internal_arg_pointer;
2507 argblock
2508 #ifdef STACK_GROWS_DOWNWARD
2509 = plus_constant (argblock, crtl->args.pretend_args_size);
2510 #else
2511 = plus_constant (argblock, -crtl->args.pretend_args_size);
2512 #endif
2513 stored_args_map = sbitmap_alloc (args_size.constant);
2514 sbitmap_zero (stored_args_map);
2515 }
2516
2517 /* If we have no actual push instructions, or shouldn't use them,
2518 make space for all args right now. */
2519 else if (adjusted_args_size.var != 0)
2520 {
2521 if (old_stack_level == 0)
2522 {
2523 emit_stack_save (SAVE_BLOCK, &old_stack_level);
2524 old_stack_pointer_delta = stack_pointer_delta;
2525 old_pending_adj = pending_stack_adjust;
2526 pending_stack_adjust = 0;
2527 /* stack_arg_under_construction says whether a stack arg is
2528 being constructed at the old stack level. Pushing the stack
2529 gets a clean outgoing argument block. */
2530 old_stack_arg_under_construction = stack_arg_under_construction;
2531 stack_arg_under_construction = 0;
2532 }
2533 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2534 if (flag_stack_usage_info)
2535 current_function_has_unbounded_dynamic_stack_size = 1;
2536 }
2537 else
2538 {
2539 /* Note that we must go through the motions of allocating an argument
2540 block even if the size is zero because we may be storing args
2541 in the area reserved for register arguments, which may be part of
2542 the stack frame. */
2543
2544 int needed = adjusted_args_size.constant;
2545
2546 /* Store the maximum argument space used. It will be pushed by
2547 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2548 checking). */
2549
2550 if (needed > crtl->outgoing_args_size)
2551 crtl->outgoing_args_size = needed;
2552
2553 if (must_preallocate)
2554 {
2555 if (ACCUMULATE_OUTGOING_ARGS)
2556 {
2557 /* Since the stack pointer will never be pushed, it is
2558 possible for the evaluation of a parm to clobber
2559 something we have already written to the stack.
2560 Since most function calls on RISC machines do not use
2561 the stack, this is uncommon, but must work correctly.
2562
2563 Therefore, we save any area of the stack that was already
2564 written and that we are using. Here we set up to do this
2565 by making a new stack usage map from the old one. The
2566 actual save will be done by store_one_arg.
2567
2568 Another approach might be to try to reorder the argument
2569 evaluations to avoid this conflicting stack usage. */
2570
2571 /* Since we will be writing into the entire argument area,
2572 the map must be allocated for its entire size, not just
2573 the part that is the responsibility of the caller. */
2574 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2575 needed += reg_parm_stack_space;
2576
2577 #ifdef ARGS_GROW_DOWNWARD
2578 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2579 needed + 1);
2580 #else
2581 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2582 needed);
2583 #endif
2584 free (stack_usage_map_buf);
2585 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
2586 stack_usage_map = stack_usage_map_buf;
2587
2588 if (initial_highest_arg_in_use)
2589 memcpy (stack_usage_map, initial_stack_usage_map,
2590 initial_highest_arg_in_use);
2591
2592 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2593 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2594 (highest_outgoing_arg_in_use
2595 - initial_highest_arg_in_use));
2596 needed = 0;
2597
2598 /* The address of the outgoing argument list must not be
2599 copied to a register here, because argblock would be left
2600 pointing to the wrong place after the call to
2601 allocate_dynamic_stack_space below. */
2602
2603 argblock = virtual_outgoing_args_rtx;
2604 }
2605 else
2606 {
2607 if (inhibit_defer_pop == 0)
2608 {
2609 /* Try to reuse some or all of the pending_stack_adjust
2610 to get this space. */
2611 needed
2612 = (combine_pending_stack_adjustment_and_call
2613 (unadjusted_args_size,
2614 &adjusted_args_size,
2615 preferred_unit_stack_boundary));
2616
2617 /* combine_pending_stack_adjustment_and_call computes
2618 an adjustment before the arguments are allocated.
2619 Account for them and see whether or not the stack
2620 needs to go up or down. */
2621 needed = unadjusted_args_size - needed;
2622
2623 if (needed < 0)
2624 {
2625 /* We're releasing stack space. */
2626 /* ??? We can avoid any adjustment at all if we're
2627 already aligned. FIXME. */
2628 pending_stack_adjust = -needed;
2629 do_pending_stack_adjust ();
2630 needed = 0;
2631 }
2632 else
2633 /* We need to allocate space. We'll do that in
2634 push_block below. */
2635 pending_stack_adjust = 0;
2636 }
2637
2638 /* Special case this because overhead of `push_block' in
2639 this case is non-trivial. */
2640 if (needed == 0)
2641 argblock = virtual_outgoing_args_rtx;
2642 else
2643 {
2644 argblock = push_block (GEN_INT (needed), 0, 0);
2645 #ifdef ARGS_GROW_DOWNWARD
2646 argblock = plus_constant (argblock, needed);
2647 #endif
2648 }
2649
2650 /* We only really need to call `copy_to_reg' in the case
2651 where push insns are going to be used to pass ARGBLOCK
2652 to a function call in ARGS. In that case, the stack
2653 pointer changes value from the allocation point to the
2654 call point, and hence the value of
2655 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2656 as well always do it. */
2657 argblock = copy_to_reg (argblock);
2658 }
2659 }
2660 }
2661
2662 if (ACCUMULATE_OUTGOING_ARGS)
2663 {
2664 /* The save/restore code in store_one_arg handles all
2665 cases except one: a constructor call (including a C
2666 function returning a BLKmode struct) to initialize
2667 an argument. */
2668 if (stack_arg_under_construction)
2669 {
2670 rtx push_size
2671 = GEN_INT (adjusted_args_size.constant
2672 + (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype
2673 : TREE_TYPE (fndecl))) ? 0
2674 : reg_parm_stack_space));
2675 if (old_stack_level == 0)
2676 {
2677 emit_stack_save (SAVE_BLOCK, &old_stack_level);
2678 old_stack_pointer_delta = stack_pointer_delta;
2679 old_pending_adj = pending_stack_adjust;
2680 pending_stack_adjust = 0;
2681 /* stack_arg_under_construction says whether a stack
2682 arg is being constructed at the old stack level.
2683 Pushing the stack gets a clean outgoing argument
2684 block. */
2685 old_stack_arg_under_construction
2686 = stack_arg_under_construction;
2687 stack_arg_under_construction = 0;
2688 /* Make a new map for the new argument list. */
2689 free (stack_usage_map_buf);
2690 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
2691 stack_usage_map = stack_usage_map_buf;
2692 highest_outgoing_arg_in_use = 0;
2693 }
2694 /* We can pass TRUE as the 4th argument because we just
2695 saved the stack pointer and will restore it right after
2696 the call. */
2697 allocate_dynamic_stack_space (push_size, 0,
2698 BIGGEST_ALIGNMENT, true);
2699 }
2700
2701 /* If argument evaluation might modify the stack pointer,
2702 copy the address of the argument list to a register. */
2703 for (i = 0; i < num_actuals; i++)
2704 if (args[i].pass_on_stack)
2705 {
2706 argblock = copy_addr_to_reg (argblock);
2707 break;
2708 }
2709 }
2710
2711 compute_argument_addresses (args, argblock, num_actuals);
2712
2713 /* If we push args individually in reverse order, perform stack alignment
2714 before the first push (the last arg). */
2715 if (PUSH_ARGS_REVERSED && argblock == 0
2716 && adjusted_args_size.constant != unadjusted_args_size)
2717 {
2718 /* When the stack adjustment is pending, we get better code
2719 by combining the adjustments. */
2720 if (pending_stack_adjust
2721 && ! inhibit_defer_pop)
2722 {
2723 pending_stack_adjust
2724 = (combine_pending_stack_adjustment_and_call
2725 (unadjusted_args_size,
2726 &adjusted_args_size,
2727 preferred_unit_stack_boundary));
2728 do_pending_stack_adjust ();
2729 }
2730 else if (argblock == 0)
2731 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2732 - unadjusted_args_size));
2733 }
2734 /* Now that the stack is properly aligned, pops can't safely
2735 be deferred during the evaluation of the arguments. */
2736 NO_DEFER_POP;
2737
2738 /* Record the maximum pushed stack space size. We need to delay
2739 doing it this far to take into account the optimization done
2740 by combine_pending_stack_adjustment_and_call. */
2741 if (flag_stack_usage_info
2742 && !ACCUMULATE_OUTGOING_ARGS
2743 && pass
2744 && adjusted_args_size.var == 0)
2745 {
2746 int pushed = adjusted_args_size.constant + pending_stack_adjust;
2747 if (pushed > current_function_pushed_stack_size)
2748 current_function_pushed_stack_size = pushed;
2749 }
2750
2751 funexp = rtx_for_function_call (fndecl, addr);
2752
2753 /* Figure out the register where the value, if any, will come back. */
2754 valreg = 0;
2755 if (TYPE_MODE (rettype) != VOIDmode
2756 && ! structure_value_addr)
2757 {
2758 if (pcc_struct_value)
2759 valreg = hard_function_value (build_pointer_type (rettype),
2760 fndecl, NULL, (pass == 0));
2761 else
2762 valreg = hard_function_value (rettype, fndecl, fntype,
2763 (pass == 0));
2764
2765 /* If VALREG is a PARALLEL whose first member has a zero
2766 offset, use that. This is for targets such as m68k that
2767 return the same value in multiple places. */
2768 if (GET_CODE (valreg) == PARALLEL)
2769 {
2770 rtx elem = XVECEXP (valreg, 0, 0);
2771 rtx where = XEXP (elem, 0);
2772 rtx offset = XEXP (elem, 1);
2773 if (offset == const0_rtx
2774 && GET_MODE (where) == GET_MODE (valreg))
2775 valreg = where;
2776 }
2777 }
2778
2779 /* Precompute all register parameters. It isn't safe to compute anything
2780 once we have started filling any specific hard regs. */
2781 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2782
2783 if (CALL_EXPR_STATIC_CHAIN (exp))
2784 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
2785 else
2786 static_chain_value = 0;
2787
2788 #ifdef REG_PARM_STACK_SPACE
2789 /* Save the fixed argument area if it's part of the caller's frame and
2790 is clobbered by argument setup for this call. */
2791 if (ACCUMULATE_OUTGOING_ARGS && pass)
2792 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2793 &low_to_save, &high_to_save);
2794 #endif
2795
2796 /* Now store (and compute if necessary) all non-register parms.
2797 These come before register parms, since they can require block-moves,
2798 which could clobber the registers used for register parms.
2799 Parms which have partial registers are not stored here,
2800 but we do preallocate space here if they want that. */
2801
2802 for (i = 0; i < num_actuals; i++)
2803 {
2804 if (args[i].reg == 0 || args[i].pass_on_stack)
2805 {
2806 rtx before_arg = get_last_insn ();
2807
2808 if (store_one_arg (&args[i], argblock, flags,
2809 adjusted_args_size.var != 0,
2810 reg_parm_stack_space)
2811 || (pass == 0
2812 && check_sibcall_argument_overlap (before_arg,
2813 &args[i], 1)))
2814 sibcall_failure = 1;
2815 }
2816
2817 if (args[i].stack)
2818 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2819 gen_rtx_USE (VOIDmode,
2820 args[i].stack),
2821 call_fusage);
2822 }
2823
2824 /* If we have a parm that is passed in registers but not in memory
2825 and whose alignment does not permit a direct copy into registers,
2826 make a group of pseudos that correspond to each register that we
2827 will later fill. */
2828 if (STRICT_ALIGNMENT)
2829 store_unaligned_arguments_into_pseudos (args, num_actuals);
2830
2831 /* Now store any partially-in-registers parm.
2832 This is the last place a block-move can happen. */
2833 if (reg_parm_seen)
2834 for (i = 0; i < num_actuals; i++)
2835 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2836 {
2837 rtx before_arg = get_last_insn ();
2838
2839 if (store_one_arg (&args[i], argblock, flags,
2840 adjusted_args_size.var != 0,
2841 reg_parm_stack_space)
2842 || (pass == 0
2843 && check_sibcall_argument_overlap (before_arg,
2844 &args[i], 1)))
2845 sibcall_failure = 1;
2846 }
2847
2848 /* If we pushed args in forward order, perform stack alignment
2849 after pushing the last arg. */
2850 if (!PUSH_ARGS_REVERSED && argblock == 0)
2851 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2852 - unadjusted_args_size));
2853
2854 /* If register arguments require space on the stack and stack space
2855 was not preallocated, allocate stack space here for arguments
2856 passed in registers. */
2857 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2858 && !ACCUMULATE_OUTGOING_ARGS
2859 && must_preallocate == 0 && reg_parm_stack_space > 0)
2860 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2861
2862 /* Pass the function the address in which to return a
2863 structure value. */
2864 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2865 {
2866 structure_value_addr
2867 = convert_memory_address (Pmode, structure_value_addr);
2868 emit_move_insn (struct_value,
2869 force_reg (Pmode,
2870 force_operand (structure_value_addr,
2871 NULL_RTX)));
2872
2873 if (REG_P (struct_value))
2874 use_reg (&call_fusage, struct_value);
2875 }
2876
2877 after_args = get_last_insn ();
2878 funexp = prepare_call_address (fndecl, funexp, static_chain_value,
2879 &call_fusage, reg_parm_seen, pass == 0);
2880
2881 load_register_parameters (args, num_actuals, &call_fusage, flags,
2882 pass == 0, &sibcall_failure);
2883
2884 /* Save a pointer to the last insn before the call, so that we can
2885 later safely search backwards to find the CALL_INSN. */
2886 before_call = get_last_insn ();
2887
2888 /* Set up next argument register. For sibling calls on machines
2889 with register windows this should be the incoming register. */
2890 if (pass == 0)
2891 next_arg_reg = targetm.calls.function_incoming_arg (args_so_far,
2892 VOIDmode,
2893 void_type_node,
2894 true);
2895 else
2896 next_arg_reg = targetm.calls.function_arg (args_so_far,
2897 VOIDmode, void_type_node,
2898 true);
2899
2900 /* All arguments and registers used for the call must be set up by
2901 now! */
2902
2903 /* Stack must be properly aligned now. */
2904 gcc_assert (!pass
2905 || !(stack_pointer_delta % preferred_unit_stack_boundary));
2906
2907 /* Generate the actual call instruction. */
2908 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2909 adjusted_args_size.constant, struct_value_size,
2910 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2911 flags, args_so_far);
2912
2913 /* If the call setup or the call itself overlaps with anything
2914 of the argument setup we probably clobbered our call address.
2915 In that case we can't do sibcalls. */
2916 if (pass == 0
2917 && check_sibcall_argument_overlap (after_args, 0, 0))
2918 sibcall_failure = 1;
2919
2920 /* If a non-BLKmode value is returned at the most significant end
2921 of a register, shift the register right by the appropriate amount
2922 and update VALREG accordingly. BLKmode values are handled by the
2923 group load/store machinery below. */
2924 if (!structure_value_addr
2925 && !pcc_struct_value
2926 && TYPE_MODE (rettype) != BLKmode
2927 && targetm.calls.return_in_msb (rettype))
2928 {
2929 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
2930 sibcall_failure = 1;
2931 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
2932 }
2933
2934 if (pass && (flags & ECF_MALLOC))
2935 {
2936 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2937 rtx last, insns;
2938
2939 /* The return value from a malloc-like function is a pointer. */
2940 if (TREE_CODE (rettype) == POINTER_TYPE)
2941 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2942
2943 emit_move_insn (temp, valreg);
2944
2945 /* The return value from a malloc-like function can not alias
2946 anything else. */
2947 last = get_last_insn ();
2948 add_reg_note (last, REG_NOALIAS, temp);
2949
2950 /* Write out the sequence. */
2951 insns = get_insns ();
2952 end_sequence ();
2953 emit_insn (insns);
2954 valreg = temp;
2955 }
2956
2957 /* For calls to `setjmp', etc., inform
2958 function.c:setjmp_warnings that it should complain if
2959 nonvolatile values are live. For functions that cannot
2960 return, inform flow that control does not fall through. */
2961
2962 if ((flags & ECF_NORETURN) || pass == 0)
2963 {
2964 /* The barrier must be emitted
2965 immediately after the CALL_INSN. Some ports emit more
2966 than just a CALL_INSN above, so we must search for it here. */
2967
2968 rtx last = get_last_insn ();
2969 while (!CALL_P (last))
2970 {
2971 last = PREV_INSN (last);
2972 /* There was no CALL_INSN? */
2973 gcc_assert (last != before_call);
2974 }
2975
2976 emit_barrier_after (last);
2977
2978 /* Stack adjustments after a noreturn call are dead code.
2979 However when NO_DEFER_POP is in effect, we must preserve
2980 stack_pointer_delta. */
2981 if (inhibit_defer_pop == 0)
2982 {
2983 stack_pointer_delta = old_stack_allocated;
2984 pending_stack_adjust = 0;
2985 }
2986 }
2987
2988 /* If value type not void, return an rtx for the value. */
2989
2990 if (TYPE_MODE (rettype) == VOIDmode
2991 || ignore)
2992 target = const0_rtx;
2993 else if (structure_value_addr)
2994 {
2995 if (target == 0 || !MEM_P (target))
2996 {
2997 target
2998 = gen_rtx_MEM (TYPE_MODE (rettype),
2999 memory_address (TYPE_MODE (rettype),
3000 structure_value_addr));
3001 set_mem_attributes (target, rettype, 1);
3002 }
3003 }
3004 else if (pcc_struct_value)
3005 {
3006 /* This is the special C++ case where we need to
3007 know what the true target was. We take care to
3008 never use this value more than once in one expression. */
3009 target = gen_rtx_MEM (TYPE_MODE (rettype),
3010 copy_to_reg (valreg));
3011 set_mem_attributes (target, rettype, 1);
3012 }
3013 /* Handle calls that return values in multiple non-contiguous locations.
3014 The Irix 6 ABI has examples of this. */
3015 else if (GET_CODE (valreg) == PARALLEL)
3016 {
3017 if (target == 0)
3018 {
3019 /* This will only be assigned once, so it can be readonly. */
3020 tree nt = build_qualified_type (rettype,
3021 (TYPE_QUALS (rettype)
3022 | TYPE_QUAL_CONST));
3023
3024 target = assign_temp (nt, 0, 1, 1);
3025 }
3026
3027 if (! rtx_equal_p (target, valreg))
3028 emit_group_store (target, valreg, rettype,
3029 int_size_in_bytes (rettype));
3030
3031 /* We can not support sibling calls for this case. */
3032 sibcall_failure = 1;
3033 }
3034 else if (target
3035 && GET_MODE (target) == TYPE_MODE (rettype)
3036 && GET_MODE (target) == GET_MODE (valreg))
3037 {
3038 bool may_overlap = false;
3039
3040 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
3041 reg to a plain register. */
3042 if (!REG_P (target) || HARD_REGISTER_P (target))
3043 valreg = avoid_likely_spilled_reg (valreg);
3044
3045 /* If TARGET is a MEM in the argument area, and we have
3046 saved part of the argument area, then we can't store
3047 directly into TARGET as it may get overwritten when we
3048 restore the argument save area below. Don't work too
3049 hard though and simply force TARGET to a register if it
3050 is a MEM; the optimizer is quite likely to sort it out. */
3051 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
3052 for (i = 0; i < num_actuals; i++)
3053 if (args[i].save_area)
3054 {
3055 may_overlap = true;
3056 break;
3057 }
3058
3059 if (may_overlap)
3060 target = copy_to_reg (valreg);
3061 else
3062 {
3063 /* TARGET and VALREG cannot be equal at this point
3064 because the latter would not have
3065 REG_FUNCTION_VALUE_P true, while the former would if
3066 it were referring to the same register.
3067
3068 If they refer to the same register, this move will be
3069 a no-op, except when function inlining is being
3070 done. */
3071 emit_move_insn (target, valreg);
3072
3073 /* If we are setting a MEM, this code must be executed.
3074 Since it is emitted after the call insn, sibcall
3075 optimization cannot be performed in that case. */
3076 if (MEM_P (target))
3077 sibcall_failure = 1;
3078 }
3079 }
3080 else if (TYPE_MODE (rettype) == BLKmode)
3081 {
3082 rtx val = valreg;
3083 if (GET_MODE (val) != BLKmode)
3084 val = avoid_likely_spilled_reg (val);
3085 target = copy_blkmode_from_reg (target, val, rettype);
3086
3087 /* We can not support sibling calls for this case. */
3088 sibcall_failure = 1;
3089 }
3090 else
3091 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
3092
3093 /* If we promoted this return value, make the proper SUBREG.
3094 TARGET might be const0_rtx here, so be careful. */
3095 if (REG_P (target)
3096 && TYPE_MODE (rettype) != BLKmode
3097 && GET_MODE (target) != TYPE_MODE (rettype))
3098 {
3099 tree type = rettype;
3100 int unsignedp = TYPE_UNSIGNED (type);
3101 int offset = 0;
3102 enum machine_mode pmode;
3103
3104 /* Ensure we promote as expected, and get the new unsignedness. */
3105 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
3106 funtype, 1);
3107 gcc_assert (GET_MODE (target) == pmode);
3108
3109 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
3110 && (GET_MODE_SIZE (GET_MODE (target))
3111 > GET_MODE_SIZE (TYPE_MODE (type))))
3112 {
3113 offset = GET_MODE_SIZE (GET_MODE (target))
3114 - GET_MODE_SIZE (TYPE_MODE (type));
3115 if (! BYTES_BIG_ENDIAN)
3116 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
3117 else if (! WORDS_BIG_ENDIAN)
3118 offset %= UNITS_PER_WORD;
3119 }
3120
3121 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
3122 SUBREG_PROMOTED_VAR_P (target) = 1;
3123 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
3124 }
3125
3126 /* If size of args is variable or this was a constructor call for a stack
3127 argument, restore saved stack-pointer value. */
3128
3129 if (old_stack_level)
3130 {
3131 rtx prev = get_last_insn ();
3132
3133 emit_stack_restore (SAVE_BLOCK, old_stack_level);
3134 stack_pointer_delta = old_stack_pointer_delta;
3135
3136 fixup_args_size_notes (prev, get_last_insn (), stack_pointer_delta);
3137
3138 pending_stack_adjust = old_pending_adj;
3139 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3140 stack_arg_under_construction = old_stack_arg_under_construction;
3141 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3142 stack_usage_map = initial_stack_usage_map;
3143 sibcall_failure = 1;
3144 }
3145 else if (ACCUMULATE_OUTGOING_ARGS && pass)
3146 {
3147 #ifdef REG_PARM_STACK_SPACE
3148 if (save_area)
3149 restore_fixed_argument_area (save_area, argblock,
3150 high_to_save, low_to_save);
3151 #endif
3152
3153 /* If we saved any argument areas, restore them. */
3154 for (i = 0; i < num_actuals; i++)
3155 if (args[i].save_area)
3156 {
3157 enum machine_mode save_mode = GET_MODE (args[i].save_area);
3158 rtx stack_area
3159 = gen_rtx_MEM (save_mode,
3160 memory_address (save_mode,
3161 XEXP (args[i].stack_slot, 0)));
3162
3163 if (save_mode != BLKmode)
3164 emit_move_insn (stack_area, args[i].save_area);
3165 else
3166 emit_block_move (stack_area, args[i].save_area,
3167 GEN_INT (args[i].locate.size.constant),
3168 BLOCK_OP_CALL_PARM);
3169 }
3170
3171 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3172 stack_usage_map = initial_stack_usage_map;
3173 }
3174
3175 /* If this was alloca, record the new stack level for nonlocal gotos.
3176 Check for the handler slots since we might not have a save area
3177 for non-local gotos. */
3178
3179 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
3180 update_nonlocal_goto_save_area ();
3181
3182 /* Free up storage we no longer need. */
3183 for (i = 0; i < num_actuals; ++i)
3184 free (args[i].aligned_regs);
3185
3186 insns = get_insns ();
3187 end_sequence ();
3188
3189 if (pass == 0)
3190 {
3191 tail_call_insns = insns;
3192
3193 /* Restore the pending stack adjustment now that we have
3194 finished generating the sibling call sequence. */
3195
3196 pending_stack_adjust = save_pending_stack_adjust;
3197 stack_pointer_delta = save_stack_pointer_delta;
3198
3199 /* Prepare arg structure for next iteration. */
3200 for (i = 0; i < num_actuals; i++)
3201 {
3202 args[i].value = 0;
3203 args[i].aligned_regs = 0;
3204 args[i].stack = 0;
3205 }
3206
3207 sbitmap_free (stored_args_map);
3208 }
3209 else
3210 {
3211 normal_call_insns = insns;
3212
3213 /* Verify that we've deallocated all the stack we used. */
3214 gcc_assert ((flags & ECF_NORETURN)
3215 || (old_stack_allocated
3216 == stack_pointer_delta - pending_stack_adjust));
3217 }
3218
3219 /* If something prevents making this a sibling call,
3220 zero out the sequence. */
3221 if (sibcall_failure)
3222 tail_call_insns = NULL_RTX;
3223 else
3224 break;
3225 }
3226
3227 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3228 arguments too, as argument area is now clobbered by the call. */
3229 if (tail_call_insns)
3230 {
3231 emit_insn (tail_call_insns);
3232 crtl->tail_call_emit = true;
3233 }
3234 else
3235 emit_insn (normal_call_insns);
3236
3237 currently_expanding_call--;
3238
3239 free (stack_usage_map_buf);
3240
3241 return target;
3242 }
3243
3244 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3245 this function's incoming arguments.
3246
3247 At the start of RTL generation we know the only REG_EQUIV notes
3248 in the rtl chain are those for incoming arguments, so we can look
3249 for REG_EQUIV notes between the start of the function and the
3250 NOTE_INSN_FUNCTION_BEG.
3251
3252 This is (slight) overkill. We could keep track of the highest
3253 argument we clobber and be more selective in removing notes, but it
3254 does not seem to be worth the effort. */
3255
3256 void
3257 fixup_tail_calls (void)
3258 {
3259 rtx insn;
3260
3261 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3262 {
3263 rtx note;
3264
3265 /* There are never REG_EQUIV notes for the incoming arguments
3266 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
3267 if (NOTE_P (insn)
3268 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3269 break;
3270
3271 note = find_reg_note (insn, REG_EQUIV, 0);
3272 if (note)
3273 remove_note (insn, note);
3274 note = find_reg_note (insn, REG_EQUIV, 0);
3275 gcc_assert (!note);
3276 }
3277 }
3278
3279 /* Traverse a list of TYPES and expand all complex types into their
3280 components. */
3281 static tree
3282 split_complex_types (tree types)
3283 {
3284 tree p;
3285
3286 /* Before allocating memory, check for the common case of no complex. */
3287 for (p = types; p; p = TREE_CHAIN (p))
3288 {
3289 tree type = TREE_VALUE (p);
3290 if (TREE_CODE (type) == COMPLEX_TYPE
3291 && targetm.calls.split_complex_arg (type))
3292 goto found;
3293 }
3294 return types;
3295
3296 found:
3297 types = copy_list (types);
3298
3299 for (p = types; p; p = TREE_CHAIN (p))
3300 {
3301 tree complex_type = TREE_VALUE (p);
3302
3303 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3304 && targetm.calls.split_complex_arg (complex_type))
3305 {
3306 tree next, imag;
3307
3308 /* Rewrite complex type with component type. */
3309 TREE_VALUE (p) = TREE_TYPE (complex_type);
3310 next = TREE_CHAIN (p);
3311
3312 /* Add another component type for the imaginary part. */
3313 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3314 TREE_CHAIN (p) = imag;
3315 TREE_CHAIN (imag) = next;
3316
3317 /* Skip the newly created node. */
3318 p = TREE_CHAIN (p);
3319 }
3320 }
3321
3322 return types;
3323 }
3324 \f
3325 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3326 The RETVAL parameter specifies whether return value needs to be saved, other
3327 parameters are documented in the emit_library_call function below. */
3328
3329 static rtx
3330 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3331 enum libcall_type fn_type,
3332 enum machine_mode outmode, int nargs, va_list p)
3333 {
3334 /* Total size in bytes of all the stack-parms scanned so far. */
3335 struct args_size args_size;
3336 /* Size of arguments before any adjustments (such as rounding). */
3337 struct args_size original_args_size;
3338 int argnum;
3339 rtx fun;
3340 /* Todo, choose the correct decl type of orgfun. Sadly this information
3341 isn't present here, so we default to native calling abi here. */
3342 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3343 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3344 int inc;
3345 int count;
3346 rtx argblock = 0;
3347 CUMULATIVE_ARGS args_so_far_v;
3348 cumulative_args_t args_so_far;
3349 struct arg
3350 {
3351 rtx value;
3352 enum machine_mode mode;
3353 rtx reg;
3354 int partial;
3355 struct locate_and_pad_arg_data locate;
3356 rtx save_area;
3357 };
3358 struct arg *argvec;
3359 int old_inhibit_defer_pop = inhibit_defer_pop;
3360 rtx call_fusage = 0;
3361 rtx mem_value = 0;
3362 rtx valreg;
3363 int pcc_struct_value = 0;
3364 int struct_value_size = 0;
3365 int flags;
3366 int reg_parm_stack_space = 0;
3367 int needed;
3368 rtx before_call;
3369 tree tfom; /* type_for_mode (outmode, 0) */
3370
3371 #ifdef REG_PARM_STACK_SPACE
3372 /* Define the boundary of the register parm stack space that needs to be
3373 save, if any. */
3374 int low_to_save = 0, high_to_save = 0;
3375 rtx save_area = 0; /* Place that it is saved. */
3376 #endif
3377
3378 /* Size of the stack reserved for parameter registers. */
3379 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3380 char *initial_stack_usage_map = stack_usage_map;
3381 char *stack_usage_map_buf = NULL;
3382
3383 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3384
3385 #ifdef REG_PARM_STACK_SPACE
3386 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3387 #endif
3388
3389 /* By default, library functions can not throw. */
3390 flags = ECF_NOTHROW;
3391
3392 switch (fn_type)
3393 {
3394 case LCT_NORMAL:
3395 break;
3396 case LCT_CONST:
3397 flags |= ECF_CONST;
3398 break;
3399 case LCT_PURE:
3400 flags |= ECF_PURE;
3401 break;
3402 case LCT_NORETURN:
3403 flags |= ECF_NORETURN;
3404 break;
3405 case LCT_THROW:
3406 flags = ECF_NORETURN;
3407 break;
3408 case LCT_RETURNS_TWICE:
3409 flags = ECF_RETURNS_TWICE;
3410 break;
3411 }
3412 fun = orgfun;
3413
3414 /* Ensure current function's preferred stack boundary is at least
3415 what we need. */
3416 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3417 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3418
3419 /* If this kind of value comes back in memory,
3420 decide where in memory it should come back. */
3421 if (outmode != VOIDmode)
3422 {
3423 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3424 if (aggregate_value_p (tfom, 0))
3425 {
3426 #ifdef PCC_STATIC_STRUCT_RETURN
3427 rtx pointer_reg
3428 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
3429 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3430 pcc_struct_value = 1;
3431 if (value == 0)
3432 value = gen_reg_rtx (outmode);
3433 #else /* not PCC_STATIC_STRUCT_RETURN */
3434 struct_value_size = GET_MODE_SIZE (outmode);
3435 if (value != 0 && MEM_P (value))
3436 mem_value = value;
3437 else
3438 mem_value = assign_temp (tfom, 0, 1, 1);
3439 #endif
3440 /* This call returns a big structure. */
3441 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3442 }
3443 }
3444 else
3445 tfom = void_type_node;
3446
3447 /* ??? Unfinished: must pass the memory address as an argument. */
3448
3449 /* Copy all the libcall-arguments out of the varargs data
3450 and into a vector ARGVEC.
3451
3452 Compute how to pass each argument. We only support a very small subset
3453 of the full argument passing conventions to limit complexity here since
3454 library functions shouldn't have many args. */
3455
3456 argvec = XALLOCAVEC (struct arg, nargs + 1);
3457 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3458
3459 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3460 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far_v, outmode, fun);
3461 #else
3462 INIT_CUMULATIVE_ARGS (args_so_far_v, NULL_TREE, fun, 0, nargs);
3463 #endif
3464 args_so_far = pack_cumulative_args (&args_so_far_v);
3465
3466 args_size.constant = 0;
3467 args_size.var = 0;
3468
3469 count = 0;
3470
3471 push_temp_slots ();
3472
3473 /* If there's a structure value address to be passed,
3474 either pass it in the special place, or pass it as an extra argument. */
3475 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3476 {
3477 rtx addr = XEXP (mem_value, 0);
3478
3479 nargs++;
3480
3481 /* Make sure it is a reasonable operand for a move or push insn. */
3482 if (!REG_P (addr) && !MEM_P (addr)
3483 && !(CONSTANT_P (addr)
3484 && targetm.legitimate_constant_p (Pmode, addr)))
3485 addr = force_operand (addr, NULL_RTX);
3486
3487 argvec[count].value = addr;
3488 argvec[count].mode = Pmode;
3489 argvec[count].partial = 0;
3490
3491 argvec[count].reg = targetm.calls.function_arg (args_so_far,
3492 Pmode, NULL_TREE, true);
3493 gcc_assert (targetm.calls.arg_partial_bytes (args_so_far, Pmode,
3494 NULL_TREE, 1) == 0);
3495
3496 locate_and_pad_parm (Pmode, NULL_TREE,
3497 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3498 1,
3499 #else
3500 argvec[count].reg != 0,
3501 #endif
3502 0, NULL_TREE, &args_size, &argvec[count].locate);
3503
3504 if (argvec[count].reg == 0 || argvec[count].partial != 0
3505 || reg_parm_stack_space > 0)
3506 args_size.constant += argvec[count].locate.size.constant;
3507
3508 targetm.calls.function_arg_advance (args_so_far, Pmode, (tree) 0, true);
3509
3510 count++;
3511 }
3512
3513 for (; count < nargs; count++)
3514 {
3515 rtx val = va_arg (p, rtx);
3516 enum machine_mode mode = (enum machine_mode) va_arg (p, int);
3517 int unsigned_p = 0;
3518
3519 /* We cannot convert the arg value to the mode the library wants here;
3520 must do it earlier where we know the signedness of the arg. */
3521 gcc_assert (mode != BLKmode
3522 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3523
3524 /* Make sure it is a reasonable operand for a move or push insn. */
3525 if (!REG_P (val) && !MEM_P (val)
3526 && !(CONSTANT_P (val) && targetm.legitimate_constant_p (mode, val)))
3527 val = force_operand (val, NULL_RTX);
3528
3529 if (pass_by_reference (&args_so_far_v, mode, NULL_TREE, 1))
3530 {
3531 rtx slot;
3532 int must_copy
3533 = !reference_callee_copied (&args_so_far_v, mode, NULL_TREE, 1);
3534
3535 /* If this was a CONST function, it is now PURE since it now
3536 reads memory. */
3537 if (flags & ECF_CONST)
3538 {
3539 flags &= ~ECF_CONST;
3540 flags |= ECF_PURE;
3541 }
3542
3543 if (MEM_P (val) && !must_copy)
3544 {
3545 tree val_expr = MEM_EXPR (val);
3546 if (val_expr)
3547 mark_addressable (val_expr);
3548 slot = val;
3549 }
3550 else
3551 {
3552 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3553 0, 1, 1);
3554 emit_move_insn (slot, val);
3555 }
3556
3557 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3558 gen_rtx_USE (VOIDmode, slot),
3559 call_fusage);
3560 if (must_copy)
3561 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3562 gen_rtx_CLOBBER (VOIDmode,
3563 slot),
3564 call_fusage);
3565
3566 mode = Pmode;
3567 val = force_operand (XEXP (slot, 0), NULL_RTX);
3568 }
3569
3570 mode = promote_function_mode (NULL_TREE, mode, &unsigned_p, NULL_TREE, 0);
3571 argvec[count].mode = mode;
3572 argvec[count].value = convert_modes (mode, GET_MODE (val), val, unsigned_p);
3573 argvec[count].reg = targetm.calls.function_arg (args_so_far, mode,
3574 NULL_TREE, true);
3575
3576 argvec[count].partial
3577 = targetm.calls.arg_partial_bytes (args_so_far, mode, NULL_TREE, 1);
3578
3579 locate_and_pad_parm (mode, NULL_TREE,
3580 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3581 1,
3582 #else
3583 argvec[count].reg != 0,
3584 #endif
3585 argvec[count].partial,
3586 NULL_TREE, &args_size, &argvec[count].locate);
3587
3588 gcc_assert (!argvec[count].locate.size.var);
3589
3590 if (argvec[count].reg == 0 || argvec[count].partial != 0
3591 || reg_parm_stack_space > 0)
3592 args_size.constant += argvec[count].locate.size.constant;
3593
3594 targetm.calls.function_arg_advance (args_so_far, mode, (tree) 0, true);
3595 }
3596
3597 /* If this machine requires an external definition for library
3598 functions, write one out. */
3599 assemble_external_libcall (fun);
3600
3601 original_args_size = args_size;
3602 args_size.constant = (((args_size.constant
3603 + stack_pointer_delta
3604 + STACK_BYTES - 1)
3605 / STACK_BYTES
3606 * STACK_BYTES)
3607 - stack_pointer_delta);
3608
3609 args_size.constant = MAX (args_size.constant,
3610 reg_parm_stack_space);
3611
3612 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3613 args_size.constant -= reg_parm_stack_space;
3614
3615 if (args_size.constant > crtl->outgoing_args_size)
3616 crtl->outgoing_args_size = args_size.constant;
3617
3618 if (flag_stack_usage_info && !ACCUMULATE_OUTGOING_ARGS)
3619 {
3620 int pushed = args_size.constant + pending_stack_adjust;
3621 if (pushed > current_function_pushed_stack_size)
3622 current_function_pushed_stack_size = pushed;
3623 }
3624
3625 if (ACCUMULATE_OUTGOING_ARGS)
3626 {
3627 /* Since the stack pointer will never be pushed, it is possible for
3628 the evaluation of a parm to clobber something we have already
3629 written to the stack. Since most function calls on RISC machines
3630 do not use the stack, this is uncommon, but must work correctly.
3631
3632 Therefore, we save any area of the stack that was already written
3633 and that we are using. Here we set up to do this by making a new
3634 stack usage map from the old one.
3635
3636 Another approach might be to try to reorder the argument
3637 evaluations to avoid this conflicting stack usage. */
3638
3639 needed = args_size.constant;
3640
3641 /* Since we will be writing into the entire argument area, the
3642 map must be allocated for its entire size, not just the part that
3643 is the responsibility of the caller. */
3644 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3645 needed += reg_parm_stack_space;
3646
3647 #ifdef ARGS_GROW_DOWNWARD
3648 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3649 needed + 1);
3650 #else
3651 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3652 needed);
3653 #endif
3654 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3655 stack_usage_map = stack_usage_map_buf;
3656
3657 if (initial_highest_arg_in_use)
3658 memcpy (stack_usage_map, initial_stack_usage_map,
3659 initial_highest_arg_in_use);
3660
3661 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3662 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3663 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3664 needed = 0;
3665
3666 /* We must be careful to use virtual regs before they're instantiated,
3667 and real regs afterwards. Loop optimization, for example, can create
3668 new libcalls after we've instantiated the virtual regs, and if we
3669 use virtuals anyway, they won't match the rtl patterns. */
3670
3671 if (virtuals_instantiated)
3672 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3673 else
3674 argblock = virtual_outgoing_args_rtx;
3675 }
3676 else
3677 {
3678 if (!PUSH_ARGS)
3679 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3680 }
3681
3682 /* If we push args individually in reverse order, perform stack alignment
3683 before the first push (the last arg). */
3684 if (argblock == 0 && PUSH_ARGS_REVERSED)
3685 anti_adjust_stack (GEN_INT (args_size.constant
3686 - original_args_size.constant));
3687
3688 if (PUSH_ARGS_REVERSED)
3689 {
3690 inc = -1;
3691 argnum = nargs - 1;
3692 }
3693 else
3694 {
3695 inc = 1;
3696 argnum = 0;
3697 }
3698
3699 #ifdef REG_PARM_STACK_SPACE
3700 if (ACCUMULATE_OUTGOING_ARGS)
3701 {
3702 /* The argument list is the property of the called routine and it
3703 may clobber it. If the fixed area has been used for previous
3704 parameters, we must save and restore it. */
3705 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3706 &low_to_save, &high_to_save);
3707 }
3708 #endif
3709
3710 /* Push the args that need to be pushed. */
3711
3712 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3713 are to be pushed. */
3714 for (count = 0; count < nargs; count++, argnum += inc)
3715 {
3716 enum machine_mode mode = argvec[argnum].mode;
3717 rtx val = argvec[argnum].value;
3718 rtx reg = argvec[argnum].reg;
3719 int partial = argvec[argnum].partial;
3720 unsigned int parm_align = argvec[argnum].locate.boundary;
3721 int lower_bound = 0, upper_bound = 0, i;
3722
3723 if (! (reg != 0 && partial == 0))
3724 {
3725 rtx use;
3726
3727 if (ACCUMULATE_OUTGOING_ARGS)
3728 {
3729 /* If this is being stored into a pre-allocated, fixed-size,
3730 stack area, save any previous data at that location. */
3731
3732 #ifdef ARGS_GROW_DOWNWARD
3733 /* stack_slot is negative, but we want to index stack_usage_map
3734 with positive values. */
3735 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
3736 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3737 #else
3738 lower_bound = argvec[argnum].locate.slot_offset.constant;
3739 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3740 #endif
3741
3742 i = lower_bound;
3743 /* Don't worry about things in the fixed argument area;
3744 it has already been saved. */
3745 if (i < reg_parm_stack_space)
3746 i = reg_parm_stack_space;
3747 while (i < upper_bound && stack_usage_map[i] == 0)
3748 i++;
3749
3750 if (i < upper_bound)
3751 {
3752 /* We need to make a save area. */
3753 unsigned int size
3754 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3755 enum machine_mode save_mode
3756 = mode_for_size (size, MODE_INT, 1);
3757 rtx adr
3758 = plus_constant (argblock,
3759 argvec[argnum].locate.offset.constant);
3760 rtx stack_area
3761 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3762
3763 if (save_mode == BLKmode)
3764 {
3765 argvec[argnum].save_area
3766 = assign_stack_temp (BLKmode,
3767 argvec[argnum].locate.size.constant,
3768 0);
3769
3770 emit_block_move (validize_mem (argvec[argnum].save_area),
3771 stack_area,
3772 GEN_INT (argvec[argnum].locate.size.constant),
3773 BLOCK_OP_CALL_PARM);
3774 }
3775 else
3776 {
3777 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3778
3779 emit_move_insn (argvec[argnum].save_area, stack_area);
3780 }
3781 }
3782 }
3783
3784 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
3785 partial, reg, 0, argblock,
3786 GEN_INT (argvec[argnum].locate.offset.constant),
3787 reg_parm_stack_space,
3788 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3789
3790 /* Now mark the segment we just used. */
3791 if (ACCUMULATE_OUTGOING_ARGS)
3792 for (i = lower_bound; i < upper_bound; i++)
3793 stack_usage_map[i] = 1;
3794
3795 NO_DEFER_POP;
3796
3797 /* Indicate argument access so that alias.c knows that these
3798 values are live. */
3799 if (argblock)
3800 use = plus_constant (argblock,
3801 argvec[argnum].locate.offset.constant);
3802 else
3803 /* When arguments are pushed, trying to tell alias.c where
3804 exactly this argument is won't work, because the
3805 auto-increment causes confusion. So we merely indicate
3806 that we access something with a known mode somewhere on
3807 the stack. */
3808 use = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3809 gen_rtx_SCRATCH (Pmode));
3810 use = gen_rtx_MEM (argvec[argnum].mode, use);
3811 use = gen_rtx_USE (VOIDmode, use);
3812 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
3813 }
3814 }
3815
3816 /* If we pushed args in forward order, perform stack alignment
3817 after pushing the last arg. */
3818 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3819 anti_adjust_stack (GEN_INT (args_size.constant
3820 - original_args_size.constant));
3821
3822 if (PUSH_ARGS_REVERSED)
3823 argnum = nargs - 1;
3824 else
3825 argnum = 0;
3826
3827 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
3828
3829 /* Now load any reg parms into their regs. */
3830
3831 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3832 are to be pushed. */
3833 for (count = 0; count < nargs; count++, argnum += inc)
3834 {
3835 enum machine_mode mode = argvec[argnum].mode;
3836 rtx val = argvec[argnum].value;
3837 rtx reg = argvec[argnum].reg;
3838 int partial = argvec[argnum].partial;
3839 #ifdef BLOCK_REG_PADDING
3840 int size = 0;
3841 #endif
3842
3843 /* Handle calls that pass values in multiple non-contiguous
3844 locations. The PA64 has examples of this for library calls. */
3845 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3846 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3847 else if (reg != 0 && partial == 0)
3848 {
3849 emit_move_insn (reg, val);
3850 #ifdef BLOCK_REG_PADDING
3851 size = GET_MODE_SIZE (argvec[argnum].mode);
3852
3853 /* Copied from load_register_parameters. */
3854
3855 /* Handle case where we have a value that needs shifting
3856 up to the msb. eg. a QImode value and we're padding
3857 upward on a BYTES_BIG_ENDIAN machine. */
3858 if (size < UNITS_PER_WORD
3859 && (argvec[argnum].locate.where_pad
3860 == (BYTES_BIG_ENDIAN ? upward : downward)))
3861 {
3862 rtx x;
3863 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3864
3865 /* Assigning REG here rather than a temp makes CALL_FUSAGE
3866 report the whole reg as used. Strictly speaking, the
3867 call only uses SIZE bytes at the msb end, but it doesn't
3868 seem worth generating rtl to say that. */
3869 reg = gen_rtx_REG (word_mode, REGNO (reg));
3870 x = expand_shift (LSHIFT_EXPR, word_mode, reg, shift, reg, 1);
3871 if (x != reg)
3872 emit_move_insn (reg, x);
3873 }
3874 #endif
3875 }
3876
3877 NO_DEFER_POP;
3878 }
3879
3880 /* Any regs containing parms remain in use through the call. */
3881 for (count = 0; count < nargs; count++)
3882 {
3883 rtx reg = argvec[count].reg;
3884 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3885 use_group_regs (&call_fusage, reg);
3886 else if (reg != 0)
3887 {
3888 int partial = argvec[count].partial;
3889 if (partial)
3890 {
3891 int nregs;
3892 gcc_assert (partial % UNITS_PER_WORD == 0);
3893 nregs = partial / UNITS_PER_WORD;
3894 use_regs (&call_fusage, REGNO (reg), nregs);
3895 }
3896 else
3897 use_reg (&call_fusage, reg);
3898 }
3899 }
3900
3901 /* Pass the function the address in which to return a structure value. */
3902 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3903 {
3904 emit_move_insn (struct_value,
3905 force_reg (Pmode,
3906 force_operand (XEXP (mem_value, 0),
3907 NULL_RTX)));
3908 if (REG_P (struct_value))
3909 use_reg (&call_fusage, struct_value);
3910 }
3911
3912 /* Don't allow popping to be deferred, since then
3913 cse'ing of library calls could delete a call and leave the pop. */
3914 NO_DEFER_POP;
3915 valreg = (mem_value == 0 && outmode != VOIDmode
3916 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
3917
3918 /* Stack must be properly aligned now. */
3919 gcc_assert (!(stack_pointer_delta
3920 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
3921
3922 before_call = get_last_insn ();
3923
3924 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3925 will set inhibit_defer_pop to that value. */
3926 /* The return type is needed to decide how many bytes the function pops.
3927 Signedness plays no role in that, so for simplicity, we pretend it's
3928 always signed. We also assume that the list of arguments passed has
3929 no impact, so we pretend it is unknown. */
3930
3931 emit_call_1 (fun, NULL,
3932 get_identifier (XSTR (orgfun, 0)),
3933 build_function_type (tfom, NULL_TREE),
3934 original_args_size.constant, args_size.constant,
3935 struct_value_size,
3936 targetm.calls.function_arg (args_so_far,
3937 VOIDmode, void_type_node, true),
3938 valreg,
3939 old_inhibit_defer_pop + 1, call_fusage, flags, args_so_far);
3940
3941 /* Right-shift returned value if necessary. */
3942 if (!pcc_struct_value
3943 && TYPE_MODE (tfom) != BLKmode
3944 && targetm.calls.return_in_msb (tfom))
3945 {
3946 shift_return_value (TYPE_MODE (tfom), false, valreg);
3947 valreg = gen_rtx_REG (TYPE_MODE (tfom), REGNO (valreg));
3948 }
3949
3950 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
3951 that it should complain if nonvolatile values are live. For
3952 functions that cannot return, inform flow that control does not
3953 fall through. */
3954
3955 if (flags & ECF_NORETURN)
3956 {
3957 /* The barrier note must be emitted
3958 immediately after the CALL_INSN. Some ports emit more than
3959 just a CALL_INSN above, so we must search for it here. */
3960
3961 rtx last = get_last_insn ();
3962 while (!CALL_P (last))
3963 {
3964 last = PREV_INSN (last);
3965 /* There was no CALL_INSN? */
3966 gcc_assert (last != before_call);
3967 }
3968
3969 emit_barrier_after (last);
3970 }
3971
3972 /* Now restore inhibit_defer_pop to its actual original value. */
3973 OK_DEFER_POP;
3974
3975 pop_temp_slots ();
3976
3977 /* Copy the value to the right place. */
3978 if (outmode != VOIDmode && retval)
3979 {
3980 if (mem_value)
3981 {
3982 if (value == 0)
3983 value = mem_value;
3984 if (value != mem_value)
3985 emit_move_insn (value, mem_value);
3986 }
3987 else if (GET_CODE (valreg) == PARALLEL)
3988 {
3989 if (value == 0)
3990 value = gen_reg_rtx (outmode);
3991 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
3992 }
3993 else
3994 {
3995 /* Convert to the proper mode if a promotion has been active. */
3996 if (GET_MODE (valreg) != outmode)
3997 {
3998 int unsignedp = TYPE_UNSIGNED (tfom);
3999
4000 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
4001 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
4002 == GET_MODE (valreg));
4003 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
4004 }
4005
4006 if (value != 0)
4007 emit_move_insn (value, valreg);
4008 else
4009 value = valreg;
4010 }
4011 }
4012
4013 if (ACCUMULATE_OUTGOING_ARGS)
4014 {
4015 #ifdef REG_PARM_STACK_SPACE
4016 if (save_area)
4017 restore_fixed_argument_area (save_area, argblock,
4018 high_to_save, low_to_save);
4019 #endif
4020
4021 /* If we saved any argument areas, restore them. */
4022 for (count = 0; count < nargs; count++)
4023 if (argvec[count].save_area)
4024 {
4025 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
4026 rtx adr = plus_constant (argblock,
4027 argvec[count].locate.offset.constant);
4028 rtx stack_area = gen_rtx_MEM (save_mode,
4029 memory_address (save_mode, adr));
4030
4031 if (save_mode == BLKmode)
4032 emit_block_move (stack_area,
4033 validize_mem (argvec[count].save_area),
4034 GEN_INT (argvec[count].locate.size.constant),
4035 BLOCK_OP_CALL_PARM);
4036 else
4037 emit_move_insn (stack_area, argvec[count].save_area);
4038 }
4039
4040 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
4041 stack_usage_map = initial_stack_usage_map;
4042 }
4043
4044 free (stack_usage_map_buf);
4045
4046 return value;
4047
4048 }
4049 \f
4050 /* Output a library call to function FUN (a SYMBOL_REF rtx)
4051 (emitting the queue unless NO_QUEUE is nonzero),
4052 for a value of mode OUTMODE,
4053 with NARGS different arguments, passed as alternating rtx values
4054 and machine_modes to convert them to.
4055
4056 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
4057 `const' calls, LCT_PURE for `pure' calls, or other LCT_ value for
4058 other types of library calls. */
4059
4060 void
4061 emit_library_call (rtx orgfun, enum libcall_type fn_type,
4062 enum machine_mode outmode, int nargs, ...)
4063 {
4064 va_list p;
4065
4066 va_start (p, nargs);
4067 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
4068 va_end (p);
4069 }
4070 \f
4071 /* Like emit_library_call except that an extra argument, VALUE,
4072 comes second and says where to store the result.
4073 (If VALUE is zero, this function chooses a convenient way
4074 to return the value.
4075
4076 This function returns an rtx for where the value is to be found.
4077 If VALUE is nonzero, VALUE is returned. */
4078
4079 rtx
4080 emit_library_call_value (rtx orgfun, rtx value,
4081 enum libcall_type fn_type,
4082 enum machine_mode outmode, int nargs, ...)
4083 {
4084 rtx result;
4085 va_list p;
4086
4087 va_start (p, nargs);
4088 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
4089 nargs, p);
4090 va_end (p);
4091
4092 return result;
4093 }
4094 \f
4095 /* Store a single argument for a function call
4096 into the register or memory area where it must be passed.
4097 *ARG describes the argument value and where to pass it.
4098
4099 ARGBLOCK is the address of the stack-block for all the arguments,
4100 or 0 on a machine where arguments are pushed individually.
4101
4102 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
4103 so must be careful about how the stack is used.
4104
4105 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
4106 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
4107 that we need not worry about saving and restoring the stack.
4108
4109 FNDECL is the declaration of the function we are calling.
4110
4111 Return nonzero if this arg should cause sibcall failure,
4112 zero otherwise. */
4113
4114 static int
4115 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
4116 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
4117 {
4118 tree pval = arg->tree_value;
4119 rtx reg = 0;
4120 int partial = 0;
4121 int used = 0;
4122 int i, lower_bound = 0, upper_bound = 0;
4123 int sibcall_failure = 0;
4124
4125 if (TREE_CODE (pval) == ERROR_MARK)
4126 return 1;
4127
4128 /* Push a new temporary level for any temporaries we make for
4129 this argument. */
4130 push_temp_slots ();
4131
4132 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
4133 {
4134 /* If this is being stored into a pre-allocated, fixed-size, stack area,
4135 save any previous data at that location. */
4136 if (argblock && ! variable_size && arg->stack)
4137 {
4138 #ifdef ARGS_GROW_DOWNWARD
4139 /* stack_slot is negative, but we want to index stack_usage_map
4140 with positive values. */
4141 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4142 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
4143 else
4144 upper_bound = 0;
4145
4146 lower_bound = upper_bound - arg->locate.size.constant;
4147 #else
4148 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4149 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
4150 else
4151 lower_bound = 0;
4152
4153 upper_bound = lower_bound + arg->locate.size.constant;
4154 #endif
4155
4156 i = lower_bound;
4157 /* Don't worry about things in the fixed argument area;
4158 it has already been saved. */
4159 if (i < reg_parm_stack_space)
4160 i = reg_parm_stack_space;
4161 while (i < upper_bound && stack_usage_map[i] == 0)
4162 i++;
4163
4164 if (i < upper_bound)
4165 {
4166 /* We need to make a save area. */
4167 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
4168 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
4169 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
4170 rtx stack_area = gen_rtx_MEM (save_mode, adr);
4171
4172 if (save_mode == BLKmode)
4173 {
4174 tree ot = TREE_TYPE (arg->tree_value);
4175 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
4176 | TYPE_QUAL_CONST));
4177
4178 arg->save_area = assign_temp (nt, 0, 1, 1);
4179 preserve_temp_slots (arg->save_area);
4180 emit_block_move (validize_mem (arg->save_area), stack_area,
4181 GEN_INT (arg->locate.size.constant),
4182 BLOCK_OP_CALL_PARM);
4183 }
4184 else
4185 {
4186 arg->save_area = gen_reg_rtx (save_mode);
4187 emit_move_insn (arg->save_area, stack_area);
4188 }
4189 }
4190 }
4191 }
4192
4193 /* If this isn't going to be placed on both the stack and in registers,
4194 set up the register and number of words. */
4195 if (! arg->pass_on_stack)
4196 {
4197 if (flags & ECF_SIBCALL)
4198 reg = arg->tail_call_reg;
4199 else
4200 reg = arg->reg;
4201 partial = arg->partial;
4202 }
4203
4204 /* Being passed entirely in a register. We shouldn't be called in
4205 this case. */
4206 gcc_assert (reg == 0 || partial != 0);
4207
4208 /* If this arg needs special alignment, don't load the registers
4209 here. */
4210 if (arg->n_aligned_regs != 0)
4211 reg = 0;
4212
4213 /* If this is being passed partially in a register, we can't evaluate
4214 it directly into its stack slot. Otherwise, we can. */
4215 if (arg->value == 0)
4216 {
4217 /* stack_arg_under_construction is nonzero if a function argument is
4218 being evaluated directly into the outgoing argument list and
4219 expand_call must take special action to preserve the argument list
4220 if it is called recursively.
4221
4222 For scalar function arguments stack_usage_map is sufficient to
4223 determine which stack slots must be saved and restored. Scalar
4224 arguments in general have pass_on_stack == 0.
4225
4226 If this argument is initialized by a function which takes the
4227 address of the argument (a C++ constructor or a C function
4228 returning a BLKmode structure), then stack_usage_map is
4229 insufficient and expand_call must push the stack around the
4230 function call. Such arguments have pass_on_stack == 1.
4231
4232 Note that it is always safe to set stack_arg_under_construction,
4233 but this generates suboptimal code if set when not needed. */
4234
4235 if (arg->pass_on_stack)
4236 stack_arg_under_construction++;
4237
4238 arg->value = expand_expr (pval,
4239 (partial
4240 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4241 ? NULL_RTX : arg->stack,
4242 VOIDmode, EXPAND_STACK_PARM);
4243
4244 /* If we are promoting object (or for any other reason) the mode
4245 doesn't agree, convert the mode. */
4246
4247 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4248 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4249 arg->value, arg->unsignedp);
4250
4251 if (arg->pass_on_stack)
4252 stack_arg_under_construction--;
4253 }
4254
4255 /* Check for overlap with already clobbered argument area. */
4256 if ((flags & ECF_SIBCALL)
4257 && MEM_P (arg->value)
4258 && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
4259 arg->locate.size.constant))
4260 sibcall_failure = 1;
4261
4262 /* Don't allow anything left on stack from computation
4263 of argument to alloca. */
4264 if (flags & ECF_MAY_BE_ALLOCA)
4265 do_pending_stack_adjust ();
4266
4267 if (arg->value == arg->stack)
4268 /* If the value is already in the stack slot, we are done. */
4269 ;
4270 else if (arg->mode != BLKmode)
4271 {
4272 int size;
4273 unsigned int parm_align;
4274
4275 /* Argument is a scalar, not entirely passed in registers.
4276 (If part is passed in registers, arg->partial says how much
4277 and emit_push_insn will take care of putting it there.)
4278
4279 Push it, and if its size is less than the
4280 amount of space allocated to it,
4281 also bump stack pointer by the additional space.
4282 Note that in C the default argument promotions
4283 will prevent such mismatches. */
4284
4285 size = GET_MODE_SIZE (arg->mode);
4286 /* Compute how much space the push instruction will push.
4287 On many machines, pushing a byte will advance the stack
4288 pointer by a halfword. */
4289 #ifdef PUSH_ROUNDING
4290 size = PUSH_ROUNDING (size);
4291 #endif
4292 used = size;
4293
4294 /* Compute how much space the argument should get:
4295 round up to a multiple of the alignment for arguments. */
4296 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4297 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4298 / (PARM_BOUNDARY / BITS_PER_UNIT))
4299 * (PARM_BOUNDARY / BITS_PER_UNIT));
4300
4301 /* Compute the alignment of the pushed argument. */
4302 parm_align = arg->locate.boundary;
4303 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4304 {
4305 int pad = used - size;
4306 if (pad)
4307 {
4308 unsigned int pad_align = (pad & -pad) * BITS_PER_UNIT;
4309 parm_align = MIN (parm_align, pad_align);
4310 }
4311 }
4312
4313 /* This isn't already where we want it on the stack, so put it there.
4314 This can either be done with push or copy insns. */
4315 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4316 parm_align, partial, reg, used - size, argblock,
4317 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4318 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4319
4320 /* Unless this is a partially-in-register argument, the argument is now
4321 in the stack. */
4322 if (partial == 0)
4323 arg->value = arg->stack;
4324 }
4325 else
4326 {
4327 /* BLKmode, at least partly to be pushed. */
4328
4329 unsigned int parm_align;
4330 int excess;
4331 rtx size_rtx;
4332
4333 /* Pushing a nonscalar.
4334 If part is passed in registers, PARTIAL says how much
4335 and emit_push_insn will take care of putting it there. */
4336
4337 /* Round its size up to a multiple
4338 of the allocation unit for arguments. */
4339
4340 if (arg->locate.size.var != 0)
4341 {
4342 excess = 0;
4343 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4344 }
4345 else
4346 {
4347 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4348 for BLKmode is careful to avoid it. */
4349 excess = (arg->locate.size.constant
4350 - int_size_in_bytes (TREE_TYPE (pval))
4351 + partial);
4352 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4353 NULL_RTX, TYPE_MODE (sizetype),
4354 EXPAND_NORMAL);
4355 }
4356
4357 parm_align = arg->locate.boundary;
4358
4359 /* When an argument is padded down, the block is aligned to
4360 PARM_BOUNDARY, but the actual argument isn't. */
4361 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4362 {
4363 if (arg->locate.size.var)
4364 parm_align = BITS_PER_UNIT;
4365 else if (excess)
4366 {
4367 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4368 parm_align = MIN (parm_align, excess_align);
4369 }
4370 }
4371
4372 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4373 {
4374 /* emit_push_insn might not work properly if arg->value and
4375 argblock + arg->locate.offset areas overlap. */
4376 rtx x = arg->value;
4377 int i = 0;
4378
4379 if (XEXP (x, 0) == crtl->args.internal_arg_pointer
4380 || (GET_CODE (XEXP (x, 0)) == PLUS
4381 && XEXP (XEXP (x, 0), 0) ==
4382 crtl->args.internal_arg_pointer
4383 && CONST_INT_P (XEXP (XEXP (x, 0), 1))))
4384 {
4385 if (XEXP (x, 0) != crtl->args.internal_arg_pointer)
4386 i = INTVAL (XEXP (XEXP (x, 0), 1));
4387
4388 /* expand_call should ensure this. */
4389 gcc_assert (!arg->locate.offset.var
4390 && arg->locate.size.var == 0
4391 && CONST_INT_P (size_rtx));
4392
4393 if (arg->locate.offset.constant > i)
4394 {
4395 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4396 sibcall_failure = 1;
4397 }
4398 else if (arg->locate.offset.constant < i)
4399 {
4400 /* Use arg->locate.size.constant instead of size_rtx
4401 because we only care about the part of the argument
4402 on the stack. */
4403 if (i < (arg->locate.offset.constant
4404 + arg->locate.size.constant))
4405 sibcall_failure = 1;
4406 }
4407 else
4408 {
4409 /* Even though they appear to be at the same location,
4410 if part of the outgoing argument is in registers,
4411 they aren't really at the same location. Check for
4412 this by making sure that the incoming size is the
4413 same as the outgoing size. */
4414 if (arg->locate.size.constant != INTVAL (size_rtx))
4415 sibcall_failure = 1;
4416 }
4417 }
4418 }
4419
4420 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4421 parm_align, partial, reg, excess, argblock,
4422 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4423 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4424
4425 /* Unless this is a partially-in-register argument, the argument is now
4426 in the stack.
4427
4428 ??? Unlike the case above, in which we want the actual
4429 address of the data, so that we can load it directly into a
4430 register, here we want the address of the stack slot, so that
4431 it's properly aligned for word-by-word copying or something
4432 like that. It's not clear that this is always correct. */
4433 if (partial == 0)
4434 arg->value = arg->stack_slot;
4435 }
4436
4437 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
4438 {
4439 tree type = TREE_TYPE (arg->tree_value);
4440 arg->parallel_value
4441 = emit_group_load_into_temps (arg->reg, arg->value, type,
4442 int_size_in_bytes (type));
4443 }
4444
4445 /* Mark all slots this store used. */
4446 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4447 && argblock && ! variable_size && arg->stack)
4448 for (i = lower_bound; i < upper_bound; i++)
4449 stack_usage_map[i] = 1;
4450
4451 /* Once we have pushed something, pops can't safely
4452 be deferred during the rest of the arguments. */
4453 NO_DEFER_POP;
4454
4455 /* Free any temporary slots made in processing this argument. Show
4456 that we might have taken the address of something and pushed that
4457 as an operand. */
4458 preserve_temp_slots (NULL_RTX);
4459 free_temp_slots ();
4460 pop_temp_slots ();
4461
4462 return sibcall_failure;
4463 }
4464
4465 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4466
4467 bool
4468 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4469 const_tree type)
4470 {
4471 if (!type)
4472 return false;
4473
4474 /* If the type has variable size... */
4475 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4476 return true;
4477
4478 /* If the type is marked as addressable (it is required
4479 to be constructed into the stack)... */
4480 if (TREE_ADDRESSABLE (type))
4481 return true;
4482
4483 return false;
4484 }
4485
4486 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4487 takes trailing padding of a structure into account. */
4488 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4489
4490 bool
4491 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, const_tree type)
4492 {
4493 if (!type)
4494 return false;
4495
4496 /* If the type has variable size... */
4497 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4498 return true;
4499
4500 /* If the type is marked as addressable (it is required
4501 to be constructed into the stack)... */
4502 if (TREE_ADDRESSABLE (type))
4503 return true;
4504
4505 /* If the padding and mode of the type is such that a copy into
4506 a register would put it into the wrong part of the register. */
4507 if (mode == BLKmode
4508 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4509 && (FUNCTION_ARG_PADDING (mode, type)
4510 == (BYTES_BIG_ENDIAN ? upward : downward)))
4511 return true;
4512
4513 return false;
4514 }