Adapt Solaris 12 references
[gcc.git] / gcc / cfg.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains low level functions to manipulate the CFG and
21 analyze it. All other modules should not transform the data structure
22 directly and use abstraction instead. The file is supposed to be
23 ordered bottom-up and should not contain any code dependent on a
24 particular intermediate language (RTL or trees).
25
26 Available functionality:
27 - Initialization/deallocation
28 init_flow, clear_edges
29 - Low level basic block manipulation
30 alloc_block, expunge_block
31 - Edge manipulation
32 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
33 - Low level edge redirection (without updating instruction chain)
34 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
35 - Dumping and debugging
36 dump_flow_info, debug_flow_info, dump_edge_info
37 - Allocation of AUX fields for basic blocks
38 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
39 - clear_bb_flags
40 - Consistency checking
41 verify_flow_info
42 - Dumping and debugging
43 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
44
45 TODO: Document these "Available functionality" functions in the files
46 that implement them.
47 */
48 \f
49 #include "config.h"
50 #include "system.h"
51 #include "coretypes.h"
52 #include "backend.h"
53 #include "hard-reg-set.h"
54 #include "tree.h"
55 #include "cfghooks.h"
56 #include "df.h"
57 #include "cfganal.h"
58 #include "cfgloop.h" /* FIXME: For struct loop. */
59 #include "dumpfile.h"
60
61 \f
62
63 /* Called once at initialization time. */
64
65 void
66 init_flow (struct function *the_fun)
67 {
68 if (!the_fun->cfg)
69 the_fun->cfg = ggc_cleared_alloc<control_flow_graph> ();
70 n_edges_for_fn (the_fun) = 0;
71 the_fun->cfg->count_max = profile_count::uninitialized ();
72 ENTRY_BLOCK_PTR_FOR_FN (the_fun)
73 = alloc_block ();
74 ENTRY_BLOCK_PTR_FOR_FN (the_fun)->index = ENTRY_BLOCK;
75 EXIT_BLOCK_PTR_FOR_FN (the_fun)
76 = alloc_block ();
77 EXIT_BLOCK_PTR_FOR_FN (the_fun)->index = EXIT_BLOCK;
78 ENTRY_BLOCK_PTR_FOR_FN (the_fun)->next_bb
79 = EXIT_BLOCK_PTR_FOR_FN (the_fun);
80 EXIT_BLOCK_PTR_FOR_FN (the_fun)->prev_bb
81 = ENTRY_BLOCK_PTR_FOR_FN (the_fun);
82 }
83 \f
84 /* Helper function for remove_edge and clear_edges. Frees edge structure
85 without actually removing it from the pred/succ arrays. */
86
87 static void
88 free_edge (function *fn, edge e)
89 {
90 n_edges_for_fn (fn)--;
91 ggc_free (e);
92 }
93
94 /* Free the memory associated with the edge structures. */
95
96 void
97 clear_edges (struct function *fn)
98 {
99 basic_block bb;
100 edge e;
101 edge_iterator ei;
102
103 FOR_EACH_BB_FN (bb, fn)
104 {
105 FOR_EACH_EDGE (e, ei, bb->succs)
106 free_edge (fn, e);
107 vec_safe_truncate (bb->succs, 0);
108 vec_safe_truncate (bb->preds, 0);
109 }
110
111 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (fn)->succs)
112 free_edge (fn, e);
113 vec_safe_truncate (EXIT_BLOCK_PTR_FOR_FN (fn)->preds, 0);
114 vec_safe_truncate (ENTRY_BLOCK_PTR_FOR_FN (fn)->succs, 0);
115
116 gcc_assert (!n_edges_for_fn (fn));
117 }
118 \f
119 /* Allocate memory for basic_block. */
120
121 basic_block
122 alloc_block (void)
123 {
124 basic_block bb;
125 bb = ggc_cleared_alloc<basic_block_def> ();
126 bb->count = profile_count::uninitialized ();
127 return bb;
128 }
129
130 /* Link block B to chain after AFTER. */
131 void
132 link_block (basic_block b, basic_block after)
133 {
134 b->next_bb = after->next_bb;
135 b->prev_bb = after;
136 after->next_bb = b;
137 b->next_bb->prev_bb = b;
138 }
139
140 /* Unlink block B from chain. */
141 void
142 unlink_block (basic_block b)
143 {
144 b->next_bb->prev_bb = b->prev_bb;
145 b->prev_bb->next_bb = b->next_bb;
146 b->prev_bb = NULL;
147 b->next_bb = NULL;
148 }
149
150 /* Sequentially order blocks and compact the arrays. */
151 void
152 compact_blocks (void)
153 {
154 int i;
155
156 SET_BASIC_BLOCK_FOR_FN (cfun, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (cfun));
157 SET_BASIC_BLOCK_FOR_FN (cfun, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (cfun));
158
159 if (df)
160 df_compact_blocks ();
161 else
162 {
163 basic_block bb;
164
165 i = NUM_FIXED_BLOCKS;
166 FOR_EACH_BB_FN (bb, cfun)
167 {
168 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
169 bb->index = i;
170 i++;
171 }
172 gcc_assert (i == n_basic_blocks_for_fn (cfun));
173
174 for (; i < last_basic_block_for_fn (cfun); i++)
175 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
176 }
177 last_basic_block_for_fn (cfun) = n_basic_blocks_for_fn (cfun);
178 }
179
180 /* Remove block B from the basic block array. */
181
182 void
183 expunge_block (basic_block b)
184 {
185 unlink_block (b);
186 SET_BASIC_BLOCK_FOR_FN (cfun, b->index, NULL);
187 n_basic_blocks_for_fn (cfun)--;
188 /* We should be able to ggc_free here, but we are not.
189 The dead SSA_NAMES are left pointing to dead statements that are pointing
190 to dead basic blocks making garbage collector to die.
191 We should be able to release all dead SSA_NAMES and at the same time we should
192 clear out BB pointer of dead statements consistently. */
193 }
194 \f
195 /* Connect E to E->src. */
196
197 static inline void
198 connect_src (edge e)
199 {
200 vec_safe_push (e->src->succs, e);
201 df_mark_solutions_dirty ();
202 }
203
204 /* Connect E to E->dest. */
205
206 static inline void
207 connect_dest (edge e)
208 {
209 basic_block dest = e->dest;
210 vec_safe_push (dest->preds, e);
211 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
212 df_mark_solutions_dirty ();
213 }
214
215 /* Disconnect edge E from E->src. */
216
217 static inline void
218 disconnect_src (edge e)
219 {
220 basic_block src = e->src;
221 edge_iterator ei;
222 edge tmp;
223
224 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
225 {
226 if (tmp == e)
227 {
228 src->succs->unordered_remove (ei.index);
229 df_mark_solutions_dirty ();
230 return;
231 }
232 else
233 ei_next (&ei);
234 }
235
236 gcc_unreachable ();
237 }
238
239 /* Disconnect edge E from E->dest. */
240
241 static inline void
242 disconnect_dest (edge e)
243 {
244 basic_block dest = e->dest;
245 unsigned int dest_idx = e->dest_idx;
246
247 dest->preds->unordered_remove (dest_idx);
248
249 /* If we removed an edge in the middle of the edge vector, we need
250 to update dest_idx of the edge that moved into the "hole". */
251 if (dest_idx < EDGE_COUNT (dest->preds))
252 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
253 df_mark_solutions_dirty ();
254 }
255
256 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
257 created edge. Use this only if you are sure that this edge can't
258 possibly already exist. */
259
260 edge
261 unchecked_make_edge (basic_block src, basic_block dst, int flags)
262 {
263 edge e;
264 e = ggc_cleared_alloc<edge_def> ();
265 n_edges_for_fn (cfun)++;
266
267 e->probability = profile_probability::uninitialized ();
268 e->src = src;
269 e->dest = dst;
270 e->flags = flags;
271
272 connect_src (e);
273 connect_dest (e);
274
275 execute_on_growing_pred (e);
276 return e;
277 }
278
279 /* Create an edge connecting SRC and DST with FLAGS optionally using
280 edge cache CACHE. Return the new edge, NULL if already exist. */
281
282 edge
283 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
284 {
285 if (edge_cache == NULL
286 || src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
287 || dst == EXIT_BLOCK_PTR_FOR_FN (cfun))
288 return make_edge (src, dst, flags);
289
290 /* Does the requested edge already exist? */
291 if (! bitmap_bit_p (edge_cache, dst->index))
292 {
293 /* The edge does not exist. Create one and update the
294 cache. */
295 bitmap_set_bit (edge_cache, dst->index);
296 return unchecked_make_edge (src, dst, flags);
297 }
298
299 /* At this point, we know that the requested edge exists. Adjust
300 flags if necessary. */
301 if (flags)
302 {
303 edge e = find_edge (src, dst);
304 e->flags |= flags;
305 }
306
307 return NULL;
308 }
309
310 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
311 created edge or NULL if already exist. */
312
313 edge
314 make_edge (basic_block src, basic_block dest, int flags)
315 {
316 edge e = find_edge (src, dest);
317
318 /* Make sure we don't add duplicate edges. */
319 if (e)
320 {
321 e->flags |= flags;
322 return NULL;
323 }
324
325 return unchecked_make_edge (src, dest, flags);
326 }
327
328 /* Create an edge connecting SRC to DEST and set probability by knowing
329 that it is the single edge leaving SRC. */
330
331 edge
332 make_single_succ_edge (basic_block src, basic_block dest, int flags)
333 {
334 edge e = make_edge (src, dest, flags);
335
336 e->probability = profile_probability::always ();
337 return e;
338 }
339
340 /* This function will remove an edge from the flow graph. */
341
342 void
343 remove_edge_raw (edge e)
344 {
345 remove_predictions_associated_with_edge (e);
346 execute_on_shrinking_pred (e);
347
348 disconnect_src (e);
349 disconnect_dest (e);
350
351 free_edge (cfun, e);
352 }
353
354 /* Redirect an edge's successor from one block to another. */
355
356 void
357 redirect_edge_succ (edge e, basic_block new_succ)
358 {
359 execute_on_shrinking_pred (e);
360
361 disconnect_dest (e);
362
363 e->dest = new_succ;
364
365 /* Reconnect the edge to the new successor block. */
366 connect_dest (e);
367
368 execute_on_growing_pred (e);
369 }
370
371 /* Redirect an edge's predecessor from one block to another. */
372
373 void
374 redirect_edge_pred (edge e, basic_block new_pred)
375 {
376 disconnect_src (e);
377
378 e->src = new_pred;
379
380 /* Reconnect the edge to the new predecessor block. */
381 connect_src (e);
382 }
383
384 /* Clear all basic block flags that do not have to be preserved. */
385 void
386 clear_bb_flags (void)
387 {
388 basic_block bb;
389
390 FOR_ALL_BB_FN (bb, cfun)
391 bb->flags &= BB_FLAGS_TO_PRESERVE;
392 }
393 \f
394 /* Check the consistency of profile information. We can't do that
395 in verify_flow_info, as the counts may get invalid for incompletely
396 solved graphs, later eliminating of conditionals or roundoff errors.
397 It is still practical to have them reported for debugging of simple
398 testcases. */
399 static void
400 check_bb_profile (basic_block bb, FILE * file, int indent)
401 {
402 edge e;
403 edge_iterator ei;
404 struct function *fun = DECL_STRUCT_FUNCTION (current_function_decl);
405 char *s_indent = (char *) alloca ((size_t) indent + 1);
406 memset ((void *) s_indent, ' ', (size_t) indent);
407 s_indent[indent] = '\0';
408
409 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
410 return;
411
412 if (bb != EXIT_BLOCK_PTR_FOR_FN (fun))
413 {
414 bool found = false;
415 profile_probability sum = profile_probability::never ();
416 int isum = 0;
417
418 FOR_EACH_EDGE (e, ei, bb->succs)
419 {
420 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
421 found = true;
422 sum += e->probability;
423 if (e->probability.initialized_p ())
424 isum += e->probability.to_reg_br_prob_base ();
425 }
426 /* Only report mismatches for non-EH control flow. If there are only EH
427 edges it means that the BB ends by noreturn call. Here the control
428 flow may just terminate. */
429 if (found)
430 {
431 if (sum.differs_from_p (profile_probability::always ()))
432 {
433 fprintf (file,
434 ";; %sInvalid sum of outgoing probabilities ",
435 s_indent);
436 sum.dump (file);
437 fprintf (file, "\n");
438 }
439 /* Probabilities caps to 100% and thus the previous test will never
440 fire if the sum of probabilities is too large. */
441 else if (isum > REG_BR_PROB_BASE + 100)
442 {
443 fprintf (file,
444 ";; %sInvalid sum of outgoing probabilities %.1f%%\n",
445 s_indent, isum * 100.0 / REG_BR_PROB_BASE);
446 }
447 }
448 }
449 if (bb != ENTRY_BLOCK_PTR_FOR_FN (fun))
450 {
451 profile_count sum = profile_count::zero ();
452 FOR_EACH_EDGE (e, ei, bb->preds)
453 sum += e->count ();
454 if (sum.differs_from_p (bb->count))
455 {
456 fprintf (file, ";; %sInvalid sum of incoming counts ",
457 s_indent);
458 sum.dump (file);
459 fprintf (file, ", should be ");
460 bb->count.dump (file);
461 fprintf (file, "\n");
462 }
463 }
464 if (BB_PARTITION (bb) == BB_COLD_PARTITION)
465 {
466 /* Warn about inconsistencies in the partitioning that are
467 currently caused by profile insanities created via optimization. */
468 if (!probably_never_executed_bb_p (fun, bb))
469 fprintf (file, ";; %sBlock in cold partition with hot count\n",
470 s_indent);
471 FOR_EACH_EDGE (e, ei, bb->preds)
472 {
473 if (!probably_never_executed_edge_p (fun, e))
474 fprintf (file,
475 ";; %sBlock in cold partition with incoming hot edge\n",
476 s_indent);
477 }
478 }
479 }
480 \f
481 void
482 dump_edge_info (FILE *file, edge e, dump_flags_t flags, int do_succ)
483 {
484 basic_block side = (do_succ ? e->dest : e->src);
485 bool do_details = false;
486
487 if ((flags & TDF_DETAILS) != 0
488 && (flags & TDF_SLIM) == 0)
489 do_details = true;
490
491 if (side->index == ENTRY_BLOCK)
492 fputs (" ENTRY", file);
493 else if (side->index == EXIT_BLOCK)
494 fputs (" EXIT", file);
495 else
496 fprintf (file, " %d", side->index);
497
498 if (e->probability.initialized_p () && do_details)
499 {
500 fprintf (file, " [");
501 e->probability.dump (file);
502 fprintf (file, "] ");
503 }
504
505 if (e->count ().initialized_p () && do_details)
506 {
507 fputs (" count:", file);
508 e->count ().dump (file);
509 }
510
511 if (e->flags && do_details)
512 {
513 static const char * const bitnames[] =
514 {
515 #define DEF_EDGE_FLAG(NAME,IDX) #NAME ,
516 #include "cfg-flags.def"
517 NULL
518 #undef DEF_EDGE_FLAG
519 };
520 bool comma = false;
521 int i, flags = e->flags;
522
523 gcc_assert (e->flags <= EDGE_ALL_FLAGS);
524 fputs (" (", file);
525 for (i = 0; flags; i++)
526 if (flags & (1 << i))
527 {
528 flags &= ~(1 << i);
529
530 if (comma)
531 fputc (',', file);
532 fputs (bitnames[i], file);
533 comma = true;
534 }
535
536 fputc (')', file);
537 }
538 }
539
540 DEBUG_FUNCTION void
541 debug (edge_def &ref)
542 {
543 /* FIXME (crowl): Is this desireable? */
544 dump_edge_info (stderr, &ref, 0, false);
545 dump_edge_info (stderr, &ref, 0, true);
546 }
547
548 DEBUG_FUNCTION void
549 debug (edge_def *ptr)
550 {
551 if (ptr)
552 debug (*ptr);
553 else
554 fprintf (stderr, "<nil>\n");
555 }
556 \f
557 /* Simple routines to easily allocate AUX fields of basic blocks. */
558
559 static struct obstack block_aux_obstack;
560 static void *first_block_aux_obj = 0;
561 static struct obstack edge_aux_obstack;
562 static void *first_edge_aux_obj = 0;
563
564 /* Allocate a memory block of SIZE as BB->aux. The obstack must
565 be first initialized by alloc_aux_for_blocks. */
566
567 static void
568 alloc_aux_for_block (basic_block bb, int size)
569 {
570 /* Verify that aux field is clear. */
571 gcc_assert (!bb->aux && first_block_aux_obj);
572 bb->aux = obstack_alloc (&block_aux_obstack, size);
573 memset (bb->aux, 0, size);
574 }
575
576 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
577 alloc_aux_for_block for each basic block. */
578
579 void
580 alloc_aux_for_blocks (int size)
581 {
582 static int initialized;
583
584 if (!initialized)
585 {
586 gcc_obstack_init (&block_aux_obstack);
587 initialized = 1;
588 }
589 else
590 /* Check whether AUX data are still allocated. */
591 gcc_assert (!first_block_aux_obj);
592
593 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
594 if (size)
595 {
596 basic_block bb;
597
598 FOR_ALL_BB_FN (bb, cfun)
599 alloc_aux_for_block (bb, size);
600 }
601 }
602
603 /* Clear AUX pointers of all blocks. */
604
605 void
606 clear_aux_for_blocks (void)
607 {
608 basic_block bb;
609
610 FOR_ALL_BB_FN (bb, cfun)
611 bb->aux = NULL;
612 }
613
614 /* Free data allocated in block_aux_obstack and clear AUX pointers
615 of all blocks. */
616
617 void
618 free_aux_for_blocks (void)
619 {
620 gcc_assert (first_block_aux_obj);
621 obstack_free (&block_aux_obstack, first_block_aux_obj);
622 first_block_aux_obj = NULL;
623
624 clear_aux_for_blocks ();
625 }
626
627 /* Allocate a memory edge of SIZE as E->aux. The obstack must
628 be first initialized by alloc_aux_for_edges. */
629
630 void
631 alloc_aux_for_edge (edge e, int size)
632 {
633 /* Verify that aux field is clear. */
634 gcc_assert (!e->aux && first_edge_aux_obj);
635 e->aux = obstack_alloc (&edge_aux_obstack, size);
636 memset (e->aux, 0, size);
637 }
638
639 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
640 alloc_aux_for_edge for each basic edge. */
641
642 void
643 alloc_aux_for_edges (int size)
644 {
645 static int initialized;
646
647 if (!initialized)
648 {
649 gcc_obstack_init (&edge_aux_obstack);
650 initialized = 1;
651 }
652 else
653 /* Check whether AUX data are still allocated. */
654 gcc_assert (!first_edge_aux_obj);
655
656 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
657 if (size)
658 {
659 basic_block bb;
660
661 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
662 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
663 {
664 edge e;
665 edge_iterator ei;
666
667 FOR_EACH_EDGE (e, ei, bb->succs)
668 alloc_aux_for_edge (e, size);
669 }
670 }
671 }
672
673 /* Clear AUX pointers of all edges. */
674
675 void
676 clear_aux_for_edges (void)
677 {
678 basic_block bb;
679 edge e;
680
681 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
682 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
683 {
684 edge_iterator ei;
685 FOR_EACH_EDGE (e, ei, bb->succs)
686 e->aux = NULL;
687 }
688 }
689
690 /* Free data allocated in edge_aux_obstack and clear AUX pointers
691 of all edges. */
692
693 void
694 free_aux_for_edges (void)
695 {
696 gcc_assert (first_edge_aux_obj);
697 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
698 first_edge_aux_obj = NULL;
699
700 clear_aux_for_edges ();
701 }
702
703 DEBUG_FUNCTION void
704 debug_bb (basic_block bb)
705 {
706 dump_bb (stderr, bb, 0, dump_flags);
707 }
708
709 DEBUG_FUNCTION basic_block
710 debug_bb_n (int n)
711 {
712 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, n);
713 debug_bb (bb);
714 return bb;
715 }
716
717 /* Dumps cfg related information about basic block BB to OUTF.
718 If HEADER is true, dump things that appear before the instructions
719 contained in BB. If FOOTER is true, dump things that appear after.
720 Flags are the TDF_* masks as documented in dumpfile.h.
721 NB: With TDF_DETAILS, it is assumed that cfun is available, so
722 that maybe_hot_bb_p and probably_never_executed_bb_p don't ICE. */
723
724 void
725 dump_bb_info (FILE *outf, basic_block bb, int indent, dump_flags_t flags,
726 bool do_header, bool do_footer)
727 {
728 edge_iterator ei;
729 edge e;
730 static const char * const bb_bitnames[] =
731 {
732 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) #NAME ,
733 #include "cfg-flags.def"
734 NULL
735 #undef DEF_BASIC_BLOCK_FLAG
736 };
737 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
738 bool first;
739 char *s_indent = (char *) alloca ((size_t) indent + 1);
740 memset ((void *) s_indent, ' ', (size_t) indent);
741 s_indent[indent] = '\0';
742
743 gcc_assert (bb->flags <= BB_ALL_FLAGS);
744
745 if (do_header)
746 {
747 unsigned i;
748
749 fputs (";; ", outf);
750 fprintf (outf, "%sbasic block %d, loop depth %d",
751 s_indent, bb->index, bb_loop_depth (bb));
752 if (flags & TDF_DETAILS)
753 {
754 struct function *fun = DECL_STRUCT_FUNCTION (current_function_decl);
755 if (bb->count.initialized_p ())
756 {
757 fputs (", count ", outf);
758 bb->count.dump (outf);
759 }
760 if (maybe_hot_bb_p (fun, bb))
761 fputs (", maybe hot", outf);
762 if (probably_never_executed_bb_p (fun, bb))
763 fputs (", probably never executed", outf);
764 }
765 fputc ('\n', outf);
766
767 if (flags & TDF_DETAILS)
768 {
769 check_bb_profile (bb, outf, indent);
770 fputs (";; ", outf);
771 fprintf (outf, "%s prev block ", s_indent);
772 if (bb->prev_bb)
773 fprintf (outf, "%d", bb->prev_bb->index);
774 else
775 fprintf (outf, "(nil)");
776 fprintf (outf, ", next block ");
777 if (bb->next_bb)
778 fprintf (outf, "%d", bb->next_bb->index);
779 else
780 fprintf (outf, "(nil)");
781
782 fputs (", flags:", outf);
783 first = true;
784 for (i = 0; i < n_bitnames; i++)
785 if (bb->flags & (1 << i))
786 {
787 if (first)
788 fputs (" (", outf);
789 else
790 fputs (", ", outf);
791 first = false;
792 fputs (bb_bitnames[i], outf);
793 }
794 if (!first)
795 fputc (')', outf);
796 fputc ('\n', outf);
797 }
798
799 fputs (";; ", outf);
800 fprintf (outf, "%s pred: ", s_indent);
801 first = true;
802 FOR_EACH_EDGE (e, ei, bb->preds)
803 {
804 if (! first)
805 {
806 fputs (";; ", outf);
807 fprintf (outf, "%s ", s_indent);
808 }
809 first = false;
810 dump_edge_info (outf, e, flags, 0);
811 fputc ('\n', outf);
812 }
813 if (first)
814 fputc ('\n', outf);
815 }
816
817 if (do_footer)
818 {
819 fputs (";; ", outf);
820 fprintf (outf, "%s succ: ", s_indent);
821 first = true;
822 FOR_EACH_EDGE (e, ei, bb->succs)
823 {
824 if (! first)
825 {
826 fputs (";; ", outf);
827 fprintf (outf, "%s ", s_indent);
828 }
829 first = false;
830 dump_edge_info (outf, e, flags, 1);
831 fputc ('\n', outf);
832 }
833 if (first)
834 fputc ('\n', outf);
835 }
836 }
837
838 /* Dumps a brief description of cfg to FILE. */
839
840 void
841 brief_dump_cfg (FILE *file, dump_flags_t flags)
842 {
843 basic_block bb;
844
845 FOR_EACH_BB_FN (bb, cfun)
846 {
847 dump_bb_info (file, bb, 0, flags & TDF_DETAILS, true, true);
848 }
849 }
850
851 /* An edge originally destinating BB of COUNT has been proved to
852 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
853 redirected to destination of TAKEN_EDGE.
854
855 This function may leave the profile inconsistent in the case TAKEN_EDGE
856 frequency or count is believed to be lower than COUNT
857 respectively. */
858 void
859 update_bb_profile_for_threading (basic_block bb,
860 profile_count count, edge taken_edge)
861 {
862 edge c;
863 profile_probability prob;
864 edge_iterator ei;
865
866 if (bb->count < count)
867 {
868 if (dump_file)
869 fprintf (dump_file, "bb %i count became negative after threading",
870 bb->index);
871 }
872 bb->count -= count;
873
874 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
875 Watch for overflows. */
876 if (bb->count.nonzero_p ())
877 prob = count.probability_in (bb->count);
878 else
879 prob = profile_probability::never ();
880 if (prob > taken_edge->probability)
881 {
882 if (dump_file)
883 {
884 fprintf (dump_file, "Jump threading proved probability of edge "
885 "%i->%i too small (it is ",
886 taken_edge->src->index, taken_edge->dest->index);
887 taken_edge->probability.dump (dump_file);
888 fprintf (dump_file, " should be ");
889 prob.dump (dump_file);
890 fprintf (dump_file, ")\n");
891 }
892 prob = taken_edge->probability.apply_scale (6, 8);
893 }
894
895 /* Now rescale the probabilities. */
896 taken_edge->probability -= prob;
897 prob = prob.invert ();
898 if (prob == profile_probability::never ())
899 {
900 if (dump_file)
901 fprintf (dump_file, "Edge probabilities of bb %i has been reset, "
902 "count of block should end up being 0, it is non-zero\n",
903 bb->index);
904 EDGE_SUCC (bb, 0)->probability = profile_probability::guessed_always ();
905 ei = ei_start (bb->succs);
906 ei_next (&ei);
907 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
908 c->probability = profile_probability::guessed_never ();
909 }
910 else if (!(prob == profile_probability::always ()))
911 {
912 FOR_EACH_EDGE (c, ei, bb->succs)
913 c->probability /= prob;
914 }
915
916 gcc_assert (bb == taken_edge->src);
917 }
918
919 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
920 by NUM/DEN, in int arithmetic. May lose some accuracy. */
921 void
922 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
923 {
924 int i;
925 if (num < 0)
926 num = 0;
927
928 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of
929 10^4, if we make DEN <= 10^3, we can afford to upscale by 100
930 and still safely fit in int during calculations. */
931 if (den > 1000)
932 {
933 if (num > 1000000)
934 return;
935
936 num = RDIV (1000 * num, den);
937 den = 1000;
938 }
939 if (num > 100 * den)
940 return;
941
942 for (i = 0; i < nbbs; i++)
943 {
944 bbs[i]->count = bbs[i]->count.apply_scale (num, den);
945 }
946 }
947
948 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
949 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
950 function but considerably slower. */
951 void
952 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
953 gcov_type den)
954 {
955 int i;
956
957 for (i = 0; i < nbbs; i++)
958 bbs[i]->count = bbs[i]->count.apply_scale (num, den);
959 }
960
961 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
962 by NUM/DEN, in profile_count arithmetic. More accurate than previous
963 function but considerably slower. */
964 void
965 scale_bbs_frequencies_profile_count (basic_block *bbs, int nbbs,
966 profile_count num, profile_count den)
967 {
968 int i;
969 if (num == profile_count::zero () || den.nonzero_p ())
970 for (i = 0; i < nbbs; i++)
971 bbs[i]->count = bbs[i]->count.apply_scale (num, den);
972 }
973
974 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
975 by NUM/DEN, in profile_count arithmetic. More accurate than previous
976 function but considerably slower. */
977 void
978 scale_bbs_frequencies (basic_block *bbs, int nbbs,
979 profile_probability p)
980 {
981 int i;
982
983 for (i = 0; i < nbbs; i++)
984 bbs[i]->count = bbs[i]->count.apply_probability (p);
985 }
986
987 /* Helper types for hash tables. */
988
989 struct htab_bb_copy_original_entry
990 {
991 /* Block we are attaching info to. */
992 int index1;
993 /* Index of original or copy (depending on the hashtable) */
994 int index2;
995 };
996
997 struct bb_copy_hasher : nofree_ptr_hash <htab_bb_copy_original_entry>
998 {
999 static inline hashval_t hash (const htab_bb_copy_original_entry *);
1000 static inline bool equal (const htab_bb_copy_original_entry *existing,
1001 const htab_bb_copy_original_entry * candidate);
1002 };
1003
1004 inline hashval_t
1005 bb_copy_hasher::hash (const htab_bb_copy_original_entry *data)
1006 {
1007 return data->index1;
1008 }
1009
1010 inline bool
1011 bb_copy_hasher::equal (const htab_bb_copy_original_entry *data,
1012 const htab_bb_copy_original_entry *data2)
1013 {
1014 return data->index1 == data2->index1;
1015 }
1016
1017 /* Data structures used to maintain mapping between basic blocks and
1018 copies. */
1019 static hash_table<bb_copy_hasher> *bb_original;
1020 static hash_table<bb_copy_hasher> *bb_copy;
1021
1022 /* And between loops and copies. */
1023 static hash_table<bb_copy_hasher> *loop_copy;
1024 static object_allocator<htab_bb_copy_original_entry> *original_copy_bb_pool;
1025
1026 /* Initialize the data structures to maintain mapping between blocks
1027 and its copies. */
1028 void
1029 initialize_original_copy_tables (void)
1030 {
1031 original_copy_bb_pool = new object_allocator<htab_bb_copy_original_entry>
1032 ("original_copy");
1033 bb_original = new hash_table<bb_copy_hasher> (10);
1034 bb_copy = new hash_table<bb_copy_hasher> (10);
1035 loop_copy = new hash_table<bb_copy_hasher> (10);
1036 }
1037
1038 /* Reset the data structures to maintain mapping between blocks and
1039 its copies. */
1040
1041 void
1042 reset_original_copy_tables (void)
1043 {
1044 gcc_assert (original_copy_bb_pool);
1045 bb_original->empty ();
1046 bb_copy->empty ();
1047 loop_copy->empty ();
1048 }
1049
1050 /* Free the data structures to maintain mapping between blocks and
1051 its copies. */
1052 void
1053 free_original_copy_tables (void)
1054 {
1055 gcc_assert (original_copy_bb_pool);
1056 delete bb_copy;
1057 bb_copy = NULL;
1058 delete bb_original;
1059 bb_original = NULL;
1060 delete loop_copy;
1061 loop_copy = NULL;
1062 delete original_copy_bb_pool;
1063 original_copy_bb_pool = NULL;
1064 }
1065
1066 /* Return true iff we have had a call to initialize_original_copy_tables
1067 without a corresponding call to free_original_copy_tables. */
1068
1069 bool
1070 original_copy_tables_initialized_p (void)
1071 {
1072 return original_copy_bb_pool != NULL;
1073 }
1074
1075 /* Removes the value associated with OBJ from table TAB. */
1076
1077 static void
1078 copy_original_table_clear (hash_table<bb_copy_hasher> *tab, unsigned obj)
1079 {
1080 htab_bb_copy_original_entry **slot;
1081 struct htab_bb_copy_original_entry key, *elt;
1082
1083 if (!original_copy_bb_pool)
1084 return;
1085
1086 key.index1 = obj;
1087 slot = tab->find_slot (&key, NO_INSERT);
1088 if (!slot)
1089 return;
1090
1091 elt = *slot;
1092 tab->clear_slot (slot);
1093 original_copy_bb_pool->remove (elt);
1094 }
1095
1096 /* Sets the value associated with OBJ in table TAB to VAL.
1097 Do nothing when data structures are not initialized. */
1098
1099 static void
1100 copy_original_table_set (hash_table<bb_copy_hasher> *tab,
1101 unsigned obj, unsigned val)
1102 {
1103 struct htab_bb_copy_original_entry **slot;
1104 struct htab_bb_copy_original_entry key;
1105
1106 if (!original_copy_bb_pool)
1107 return;
1108
1109 key.index1 = obj;
1110 slot = tab->find_slot (&key, INSERT);
1111 if (!*slot)
1112 {
1113 *slot = original_copy_bb_pool->allocate ();
1114 (*slot)->index1 = obj;
1115 }
1116 (*slot)->index2 = val;
1117 }
1118
1119 /* Set original for basic block. Do nothing when data structures are not
1120 initialized so passes not needing this don't need to care. */
1121 void
1122 set_bb_original (basic_block bb, basic_block original)
1123 {
1124 copy_original_table_set (bb_original, bb->index, original->index);
1125 }
1126
1127 /* Get the original basic block. */
1128 basic_block
1129 get_bb_original (basic_block bb)
1130 {
1131 struct htab_bb_copy_original_entry *entry;
1132 struct htab_bb_copy_original_entry key;
1133
1134 gcc_assert (original_copy_bb_pool);
1135
1136 key.index1 = bb->index;
1137 entry = bb_original->find (&key);
1138 if (entry)
1139 return BASIC_BLOCK_FOR_FN (cfun, entry->index2);
1140 else
1141 return NULL;
1142 }
1143
1144 /* Set copy for basic block. Do nothing when data structures are not
1145 initialized so passes not needing this don't need to care. */
1146 void
1147 set_bb_copy (basic_block bb, basic_block copy)
1148 {
1149 copy_original_table_set (bb_copy, bb->index, copy->index);
1150 }
1151
1152 /* Get the copy of basic block. */
1153 basic_block
1154 get_bb_copy (basic_block bb)
1155 {
1156 struct htab_bb_copy_original_entry *entry;
1157 struct htab_bb_copy_original_entry key;
1158
1159 gcc_assert (original_copy_bb_pool);
1160
1161 key.index1 = bb->index;
1162 entry = bb_copy->find (&key);
1163 if (entry)
1164 return BASIC_BLOCK_FOR_FN (cfun, entry->index2);
1165 else
1166 return NULL;
1167 }
1168
1169 /* Set copy for LOOP to COPY. Do nothing when data structures are not
1170 initialized so passes not needing this don't need to care. */
1171
1172 void
1173 set_loop_copy (struct loop *loop, struct loop *copy)
1174 {
1175 if (!copy)
1176 copy_original_table_clear (loop_copy, loop->num);
1177 else
1178 copy_original_table_set (loop_copy, loop->num, copy->num);
1179 }
1180
1181 /* Get the copy of LOOP. */
1182
1183 struct loop *
1184 get_loop_copy (struct loop *loop)
1185 {
1186 struct htab_bb_copy_original_entry *entry;
1187 struct htab_bb_copy_original_entry key;
1188
1189 gcc_assert (original_copy_bb_pool);
1190
1191 key.index1 = loop->num;
1192 entry = loop_copy->find (&key);
1193 if (entry)
1194 return get_loop (cfun, entry->index2);
1195 else
1196 return NULL;
1197 }