* config/alpha/x-vms (version): Change "." to "_".
[gcc.git] / gcc / cfg.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the datastructure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
27
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
33 - Edge manipulation
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41 */
42 \f
43 #include "config.h"
44 #include "system.h"
45 #include "tree.h"
46 #include "rtl.h"
47 #include "hard-reg-set.h"
48 #include "basic-block.h"
49 #include "regs.h"
50 #include "flags.h"
51 #include "output.h"
52 #include "function.h"
53 #include "except.h"
54 #include "toplev.h"
55 #include "tm_p.h"
56 #include "obstack.h"
57
58 /* The obstack on which the flow graph components are allocated. */
59
60 struct obstack flow_obstack;
61 static char *flow_firstobj;
62
63 /* Number of basic blocks in the current function. */
64
65 int n_basic_blocks;
66
67 /* Number of edges in the current function. */
68
69 int n_edges;
70
71 /* First edge in the deleted edges chain. */
72
73 edge first_deleted_edge;
74 static basic_block first_deleted_block;
75
76 /* The basic block array. */
77
78 varray_type basic_block_info;
79
80 /* The special entry and exit blocks. */
81
82 struct basic_block_def entry_exit_blocks[2]
83 = {{NULL, /* head */
84 NULL, /* end */
85 NULL, /* head_tree */
86 NULL, /* end_tree */
87 NULL, /* pred */
88 NULL, /* succ */
89 NULL, /* local_set */
90 NULL, /* cond_local_set */
91 NULL, /* global_live_at_start */
92 NULL, /* global_live_at_end */
93 NULL, /* aux */
94 ENTRY_BLOCK, /* index */
95 0, /* loop_depth */
96 0, /* count */
97 0, /* frequency */
98 0 /* flags */
99 },
100 {
101 NULL, /* head */
102 NULL, /* end */
103 NULL, /* head_tree */
104 NULL, /* end_tree */
105 NULL, /* pred */
106 NULL, /* succ */
107 NULL, /* local_set */
108 NULL, /* cond_local_set */
109 NULL, /* global_live_at_start */
110 NULL, /* global_live_at_end */
111 NULL, /* aux */
112 EXIT_BLOCK, /* index */
113 0, /* loop_depth */
114 0, /* count */
115 0, /* frequency */
116 0 /* flags */
117 }
118 };
119
120 void debug_flow_info PARAMS ((void));
121 static void free_edge PARAMS ((edge));
122 \f
123 /* Called once at initialization time. */
124
125 void
126 init_flow ()
127 {
128 static int initialized;
129
130 first_deleted_edge = 0;
131 first_deleted_block = 0;
132 n_edges = 0;
133
134 if (!initialized)
135 {
136 gcc_obstack_init (&flow_obstack);
137 flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0);
138 initialized = 1;
139 }
140 else
141 {
142 obstack_free (&flow_obstack, flow_firstobj);
143 flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0);
144 }
145 }
146 \f
147 /* Helper function for remove_edge and clear_edges. Frees edge structure
148 without actually unlinking it from the pred/succ lists. */
149
150 static void
151 free_edge (e)
152 edge e;
153 {
154 n_edges--;
155 memset (e, 0, sizeof (*e));
156 e->succ_next = first_deleted_edge;
157 first_deleted_edge = e;
158 }
159
160 /* Free the memory associated with the edge structures. */
161
162 void
163 clear_edges ()
164 {
165 int i;
166 edge e;
167
168 for (i = 0; i < n_basic_blocks; ++i)
169 {
170 basic_block bb = BASIC_BLOCK (i);
171 edge e = bb->succ;
172
173 while (e)
174 {
175 edge next = e->succ_next;
176
177 free_edge (e);
178 e = next;
179 }
180 bb->succ = NULL;
181 bb->pred = NULL;
182 }
183
184 e = ENTRY_BLOCK_PTR->succ;
185 while (e)
186 {
187 edge next = e->succ_next;
188
189 free_edge (e);
190 e = next;
191 }
192 EXIT_BLOCK_PTR->pred = NULL;
193 ENTRY_BLOCK_PTR->succ = NULL;
194
195 if (n_edges)
196 abort ();
197 }
198 \f
199 /* Allocate memory for basic_block. */
200
201 basic_block
202 alloc_block ()
203 {
204 basic_block bb;
205
206 if (first_deleted_block)
207 {
208 bb = first_deleted_block;
209 first_deleted_block = (basic_block) bb->succ;
210 bb->succ = NULL;
211 }
212 else
213 {
214 bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*bb));
215 memset (bb, 0, sizeof (*bb));
216 }
217 return bb;
218 }
219
220 /* Remove block B from the basic block array and compact behind it. */
221
222 void
223 expunge_block (b)
224 basic_block b;
225 {
226 int i, n = n_basic_blocks;
227
228 for (i = b->index; i + 1 < n; ++i)
229 {
230 basic_block x = BASIC_BLOCK (i + 1);
231 BASIC_BLOCK (i) = x;
232 x->index = i;
233 }
234
235 /* Invalidate data to make bughunting easier. */
236 memset (b, 0, sizeof (*b));
237 b->index = -3;
238 basic_block_info->num_elements--;
239 n_basic_blocks--;
240 b->succ = (edge) first_deleted_block;
241 first_deleted_block = (basic_block) b;
242 }
243 \f
244 /* Create an edge connecting SRC and DST with FLAGS optionally using
245 edge cache CACHE. Return the new edge, NULL if already exist. */
246
247 edge
248 cached_make_edge (edge_cache, src, dst, flags)
249 sbitmap *edge_cache;
250 basic_block src, dst;
251 int flags;
252 {
253 int use_edge_cache;
254 edge e;
255
256 /* Don't bother with edge cache for ENTRY or EXIT; there aren't that
257 many edges to them, and we didn't allocate memory for it. */
258 use_edge_cache = (edge_cache
259 && src != ENTRY_BLOCK_PTR
260 && dst != EXIT_BLOCK_PTR);
261
262 /* Make sure we don't add duplicate edges. */
263 switch (use_edge_cache)
264 {
265 default:
266 /* Quick test for non-existence of the edge. */
267 if (! TEST_BIT (edge_cache[src->index], dst->index))
268 break;
269
270 /* The edge exists; early exit if no work to do. */
271 if (flags == 0)
272 return NULL;
273
274 /* FALLTHRU */
275 case 0:
276 for (e = src->succ; e; e = e->succ_next)
277 if (e->dest == dst)
278 {
279 e->flags |= flags;
280 return NULL;
281 }
282 break;
283 }
284
285 if (first_deleted_edge)
286 {
287 e = first_deleted_edge;
288 first_deleted_edge = e->succ_next;
289 }
290 else
291 {
292 e = (edge) obstack_alloc (&flow_obstack, sizeof (*e));
293 memset (e, 0, sizeof (*e));
294 }
295 n_edges++;
296
297 e->succ_next = src->succ;
298 e->pred_next = dst->pred;
299 e->src = src;
300 e->dest = dst;
301 e->flags = flags;
302
303 src->succ = e;
304 dst->pred = e;
305
306 if (use_edge_cache)
307 SET_BIT (edge_cache[src->index], dst->index);
308
309 return e;
310 }
311
312 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
313 created edge or NULL if already exist. */
314
315 edge
316 make_edge (src, dest, flags)
317 basic_block src, dest;
318 int flags;
319 {
320 return cached_make_edge (NULL, src, dest, flags);
321 }
322
323 /* Create an edge connecting SRC to DEST and set probability by knowing
324 that it is the single edge leaving SRC. */
325
326 edge
327 make_single_succ_edge (src, dest, flags)
328 basic_block src, dest;
329 int flags;
330 {
331 edge e = make_edge (src, dest, flags);
332
333 e->probability = REG_BR_PROB_BASE;
334 e->count = src->count;
335 return e;
336 }
337
338 /* This function will remove an edge from the flow graph. */
339
340 void
341 remove_edge (e)
342 edge e;
343 {
344 edge last_pred = NULL;
345 edge last_succ = NULL;
346 edge tmp;
347 basic_block src, dest;
348 src = e->src;
349 dest = e->dest;
350 for (tmp = src->succ; tmp && tmp != e; tmp = tmp->succ_next)
351 last_succ = tmp;
352
353 if (!tmp)
354 abort ();
355 if (last_succ)
356 last_succ->succ_next = e->succ_next;
357 else
358 src->succ = e->succ_next;
359
360 for (tmp = dest->pred; tmp && tmp != e; tmp = tmp->pred_next)
361 last_pred = tmp;
362
363 if (!tmp)
364 abort ();
365 if (last_pred)
366 last_pred->pred_next = e->pred_next;
367 else
368 dest->pred = e->pred_next;
369
370 free_edge (e);
371 }
372
373 /* Redirect an edge's successor from one block to another. */
374
375 void
376 redirect_edge_succ (e, new_succ)
377 edge e;
378 basic_block new_succ;
379 {
380 edge *pe;
381
382 /* Disconnect the edge from the old successor block. */
383 for (pe = &e->dest->pred; *pe != e; pe = &(*pe)->pred_next)
384 continue;
385 *pe = (*pe)->pred_next;
386
387 /* Reconnect the edge to the new successor block. */
388 e->pred_next = new_succ->pred;
389 new_succ->pred = e;
390 e->dest = new_succ;
391 }
392
393 /* Like previous but avoid possible duplicate edge. */
394
395 edge
396 redirect_edge_succ_nodup (e, new_succ)
397 edge e;
398 basic_block new_succ;
399 {
400 edge s;
401 /* Check whether the edge is already present. */
402 for (s = e->src->succ; s; s = s->succ_next)
403 if (s->dest == new_succ && s != e)
404 break;
405 if (s)
406 {
407 s->flags |= e->flags;
408 s->probability += e->probability;
409 s->count += e->count;
410 remove_edge (e);
411 e = s;
412 }
413 else
414 redirect_edge_succ (e, new_succ);
415 return e;
416 }
417
418 /* Redirect an edge's predecessor from one block to another. */
419
420 void
421 redirect_edge_pred (e, new_pred)
422 edge e;
423 basic_block new_pred;
424 {
425 edge *pe;
426
427 /* Disconnect the edge from the old predecessor block. */
428 for (pe = &e->src->succ; *pe != e; pe = &(*pe)->succ_next)
429 continue;
430 *pe = (*pe)->succ_next;
431
432 /* Reconnect the edge to the new predecessor block. */
433 e->succ_next = new_pred->succ;
434 new_pred->succ = e;
435 e->src = new_pred;
436 }
437 \f
438 void
439 dump_flow_info (file)
440 FILE *file;
441 {
442 int i;
443 static const char * const reg_class_names[] = REG_CLASS_NAMES;
444
445 fprintf (file, "%d registers.\n", max_regno);
446 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
447 if (REG_N_REFS (i))
448 {
449 enum reg_class class, altclass;
450 fprintf (file, "\nRegister %d used %d times across %d insns",
451 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
452 if (REG_BASIC_BLOCK (i) >= 0)
453 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
454 if (REG_N_SETS (i))
455 fprintf (file, "; set %d time%s", REG_N_SETS (i),
456 (REG_N_SETS (i) == 1) ? "" : "s");
457 if (REG_USERVAR_P (regno_reg_rtx[i]))
458 fprintf (file, "; user var");
459 if (REG_N_DEATHS (i) != 1)
460 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
461 if (REG_N_CALLS_CROSSED (i) == 1)
462 fprintf (file, "; crosses 1 call");
463 else if (REG_N_CALLS_CROSSED (i))
464 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
465 if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
466 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
467 class = reg_preferred_class (i);
468 altclass = reg_alternate_class (i);
469 if (class != GENERAL_REGS || altclass != ALL_REGS)
470 {
471 if (altclass == ALL_REGS || class == ALL_REGS)
472 fprintf (file, "; pref %s", reg_class_names[(int) class]);
473 else if (altclass == NO_REGS)
474 fprintf (file, "; %s or none", reg_class_names[(int) class]);
475 else
476 fprintf (file, "; pref %s, else %s",
477 reg_class_names[(int) class],
478 reg_class_names[(int) altclass]);
479 }
480 if (REG_POINTER (regno_reg_rtx[i]))
481 fprintf (file, "; pointer");
482 fprintf (file, ".\n");
483 }
484
485 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
486 for (i = 0; i < n_basic_blocks; i++)
487 {
488 basic_block bb = BASIC_BLOCK (i);
489 edge e;
490
491 fprintf (file, "\nBasic block %d: first insn %d, last %d, loop_depth %d, count ",
492 i, INSN_UID (bb->head), INSN_UID (bb->end), bb->loop_depth);
493 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, (HOST_WIDEST_INT) bb->count);
494 fprintf (file, ", freq %i.\n", bb->frequency);
495
496 fprintf (file, "Predecessors: ");
497 for (e = bb->pred; e; e = e->pred_next)
498 dump_edge_info (file, e, 0);
499
500 fprintf (file, "\nSuccessors: ");
501 for (e = bb->succ; e; e = e->succ_next)
502 dump_edge_info (file, e, 1);
503
504 fprintf (file, "\nRegisters live at start:");
505 dump_regset (bb->global_live_at_start, file);
506
507 fprintf (file, "\nRegisters live at end:");
508 dump_regset (bb->global_live_at_end, file);
509
510 putc ('\n', file);
511 }
512
513 putc ('\n', file);
514 }
515
516 void
517 debug_flow_info ()
518 {
519 dump_flow_info (stderr);
520 }
521
522 void
523 dump_edge_info (file, e, do_succ)
524 FILE *file;
525 edge e;
526 int do_succ;
527 {
528 basic_block side = (do_succ ? e->dest : e->src);
529
530 if (side == ENTRY_BLOCK_PTR)
531 fputs (" ENTRY", file);
532 else if (side == EXIT_BLOCK_PTR)
533 fputs (" EXIT", file);
534 else
535 fprintf (file, " %d", side->index);
536
537 if (e->probability)
538 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
539
540 if (e->count)
541 {
542 fprintf (file, " count:");
543 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, (HOST_WIDEST_INT) e->count);
544 }
545
546 if (e->flags)
547 {
548 static const char * const bitnames[] = {
549 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back"
550 };
551 int comma = 0;
552 int i, flags = e->flags;
553
554 fputc (' ', file);
555 fputc ('(', file);
556 for (i = 0; flags; i++)
557 if (flags & (1 << i))
558 {
559 flags &= ~(1 << i);
560
561 if (comma)
562 fputc (',', file);
563 if (i < (int) ARRAY_SIZE (bitnames))
564 fputs (bitnames[i], file);
565 else
566 fprintf (file, "%d", i);
567 comma = 1;
568 }
569 fputc (')', file);
570 }
571 }
572 \f
573 /* Simple routines to easily allocate AUX fields of basic blocks. */
574 static struct obstack block_aux_obstack;
575 static void *first_block_aux_obj = 0;
576 static struct obstack edge_aux_obstack;
577 static void *first_edge_aux_obj = 0;
578
579 /* Allocate an memory block of SIZE as BB->aux. The obstack must
580 be first initialized by alloc_aux_for_blocks. */
581
582 inline void
583 alloc_aux_for_block (bb, size)
584 basic_block bb;
585 int size;
586 {
587 /* Verify that aux field is clear. */
588 if (bb->aux || !first_block_aux_obj)
589 abort ();
590 bb->aux = obstack_alloc (&block_aux_obstack, size);
591 memset (bb->aux, 0, size);
592 }
593
594 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
595 alloc_aux_for_block for each basic block. */
596
597 void
598 alloc_aux_for_blocks (size)
599 int size;
600 {
601 static int initialized;
602
603 if (!initialized)
604 {
605 gcc_obstack_init (&block_aux_obstack);
606 initialized = 1;
607 }
608 /* Check whether AUX data are still allocated. */
609 else if (first_block_aux_obj)
610 abort ();
611 first_block_aux_obj = (char *) obstack_alloc (&block_aux_obstack, 0);
612 if (size)
613 {
614 int i;
615 for (i = 0; i < n_basic_blocks; i++)
616 alloc_aux_for_block (BASIC_BLOCK (i), size);
617 alloc_aux_for_block (ENTRY_BLOCK_PTR, size);
618 alloc_aux_for_block (EXIT_BLOCK_PTR, size);
619 }
620 }
621
622 /* Clear AUX pointers of all blocks. */
623
624 void
625 clear_aux_for_blocks ()
626 {
627 int i;
628
629 for (i = 0; i < n_basic_blocks; i++)
630 BASIC_BLOCK (i)->aux = NULL;
631 ENTRY_BLOCK_PTR->aux = NULL;
632 EXIT_BLOCK_PTR->aux = NULL;
633 }
634
635 /* Free data allocated in block_aux_obstack and clear AUX pointers
636 of all blocks. */
637
638 void
639 free_aux_for_blocks ()
640 {
641 if (!first_block_aux_obj)
642 abort ();
643 obstack_free (&block_aux_obstack, first_block_aux_obj);
644 first_block_aux_obj = NULL;
645
646 clear_aux_for_blocks ();
647 }
648
649 /* Allocate an memory edge of SIZE as BB->aux. The obstack must
650 be first initialized by alloc_aux_for_edges. */
651
652 inline void
653 alloc_aux_for_edge (e, size)
654 edge e;
655 int size;
656 {
657 /* Verify that aux field is clear. */
658 if (e->aux || !first_edge_aux_obj)
659 abort ();
660 e->aux = obstack_alloc (&edge_aux_obstack, size);
661 memset (e->aux, 0, size);
662 }
663
664 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
665 alloc_aux_for_edge for each basic edge. */
666
667 void
668 alloc_aux_for_edges (size)
669 int size;
670 {
671 static int initialized;
672
673 if (!initialized)
674 {
675 gcc_obstack_init (&edge_aux_obstack);
676 initialized = 1;
677 }
678 /* Check whether AUX data are still allocated. */
679 else if (first_edge_aux_obj)
680 abort ();
681 first_edge_aux_obj = (char *) obstack_alloc (&edge_aux_obstack, 0);
682 if (size)
683 {
684 int i;
685 for (i = -1; i < n_basic_blocks; i++)
686 {
687 basic_block bb;
688 edge e;
689
690 if (i >= 0)
691 bb = BASIC_BLOCK (i);
692 else
693 bb = ENTRY_BLOCK_PTR;
694 for (e = bb->succ; e; e = e->succ_next)
695 alloc_aux_for_edge (e, size);
696 }
697 }
698 }
699
700 /* Clear AUX pointers of all edges. */
701
702 void
703 clear_aux_for_edges ()
704 {
705 int i;
706
707 for (i = -1; i < n_basic_blocks; i++)
708 {
709 basic_block bb;
710 edge e;
711
712 if (i >= 0)
713 bb = BASIC_BLOCK (i);
714 else
715 bb = ENTRY_BLOCK_PTR;
716 for (e = bb->succ; e; e = e->succ_next)
717 e->aux = NULL;
718 }
719 }
720
721 /* Free data allocated in edge_aux_obstack and clear AUX pointers
722 of all edges. */
723
724 void
725 free_aux_for_edges ()
726 {
727 if (!first_edge_aux_obj)
728 abort ();
729 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
730 first_edge_aux_obj = NULL;
731
732 clear_aux_for_edges ();
733 }