tree.h (PHI_CHAIN): New.
[gcc.git] / gcc / cfg.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the data structure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
27
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
33 - Edge manipulation
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41 - clear_bb_flags
42 - Consistency checking
43 verify_flow_info
44 - Dumping and debugging
45 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
46 */
47 \f
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "hard-reg-set.h"
55 #include "basic-block.h"
56 #include "regs.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "function.h"
60 #include "except.h"
61 #include "toplev.h"
62 #include "tm_p.h"
63 #include "obstack.h"
64 #include "alloc-pool.h"
65 #include "timevar.h"
66 #include "ggc.h"
67
68 /* The obstack on which the flow graph components are allocated. */
69
70 struct obstack flow_obstack;
71 static char *flow_firstobj;
72
73 /* Number of basic blocks in the current function. */
74
75 int n_basic_blocks;
76
77 /* First free basic block number. */
78
79 int last_basic_block;
80
81 /* Number of edges in the current function. */
82
83 int n_edges;
84
85 /* The basic block array. */
86
87 varray_type basic_block_info;
88
89 /* The special entry and exit blocks. */
90 basic_block ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR;
91
92 /* Memory alloc pool for bb member rbi. */
93 alloc_pool rbi_pool;
94
95 void debug_flow_info (void);
96 static void free_edge (edge);
97 \f
98 /* Called once at initialization time. */
99
100 void
101 init_flow (void)
102 {
103 static int initialized;
104
105 n_edges = 0;
106
107 if (!initialized)
108 {
109 gcc_obstack_init (&flow_obstack);
110 flow_firstobj = obstack_alloc (&flow_obstack, 0);
111 initialized = 1;
112 }
113 else
114 {
115 obstack_free (&flow_obstack, flow_firstobj);
116 flow_firstobj = obstack_alloc (&flow_obstack, 0);
117 }
118
119 ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (*ENTRY_BLOCK_PTR));
120 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
121 EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (*EXIT_BLOCK_PTR));
122 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
123 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
124 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
125 }
126 \f
127 /* Helper function for remove_edge and clear_edges. Frees edge structure
128 without actually unlinking it from the pred/succ lists. */
129
130 static void
131 free_edge (edge e ATTRIBUTE_UNUSED)
132 {
133 n_edges--;
134 /* ggc_free (e); */
135 }
136
137 /* Free the memory associated with the edge structures. */
138
139 void
140 clear_edges (void)
141 {
142 basic_block bb;
143 edge e;
144
145 FOR_EACH_BB (bb)
146 {
147 edge e = bb->succ;
148
149 while (e)
150 {
151 edge next = e->succ_next;
152
153 free_edge (e);
154 e = next;
155 }
156
157 bb->succ = NULL;
158 bb->pred = NULL;
159 }
160
161 e = ENTRY_BLOCK_PTR->succ;
162 while (e)
163 {
164 edge next = e->succ_next;
165
166 free_edge (e);
167 e = next;
168 }
169
170 EXIT_BLOCK_PTR->pred = NULL;
171 ENTRY_BLOCK_PTR->succ = NULL;
172
173 if (n_edges)
174 abort ();
175 }
176 \f
177 /* Allocate memory for basic_block. */
178
179 basic_block
180 alloc_block (void)
181 {
182 basic_block bb;
183 bb = ggc_alloc_cleared (sizeof (*bb));
184 return bb;
185 }
186
187 /* Create memory pool for rbi_pool. */
188
189 void
190 alloc_rbi_pool (void)
191 {
192 rbi_pool = create_alloc_pool ("rbi pool",
193 sizeof (struct reorder_block_def),
194 n_basic_blocks + 2);
195 }
196
197 /* Free rbi_pool. */
198
199 void
200 free_rbi_pool (void)
201 {
202 free_alloc_pool (rbi_pool);
203 }
204
205 /* Initialize rbi (the structure containing data used by basic block
206 duplication and reordering) for the given basic block. */
207
208 void
209 initialize_bb_rbi (basic_block bb)
210 {
211 if (bb->rbi)
212 abort ();
213 bb->rbi = pool_alloc (rbi_pool);
214 memset (bb->rbi, 0, sizeof (struct reorder_block_def));
215 }
216
217 /* Link block B to chain after AFTER. */
218 void
219 link_block (basic_block b, basic_block after)
220 {
221 b->next_bb = after->next_bb;
222 b->prev_bb = after;
223 after->next_bb = b;
224 b->next_bb->prev_bb = b;
225 }
226
227 /* Unlink block B from chain. */
228 void
229 unlink_block (basic_block b)
230 {
231 b->next_bb->prev_bb = b->prev_bb;
232 b->prev_bb->next_bb = b->next_bb;
233 b->prev_bb = NULL;
234 b->next_bb = NULL;
235 }
236
237 /* Sequentially order blocks and compact the arrays. */
238 void
239 compact_blocks (void)
240 {
241 int i;
242 basic_block bb;
243
244 i = 0;
245 FOR_EACH_BB (bb)
246 {
247 BASIC_BLOCK (i) = bb;
248 bb->index = i;
249 i++;
250 }
251
252 if (i != n_basic_blocks)
253 abort ();
254
255 for (; i < last_basic_block; i++)
256 BASIC_BLOCK (i) = NULL;
257
258 last_basic_block = n_basic_blocks;
259 }
260
261 /* Remove block B from the basic block array. */
262
263 void
264 expunge_block (basic_block b)
265 {
266 unlink_block (b);
267 BASIC_BLOCK (b->index) = NULL;
268 n_basic_blocks--;
269 /* ggc_free (b); */
270 }
271 \f
272 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
273 created edge. Use this only if you are sure that this edge can't
274 possibly already exist. */
275
276 edge
277 unchecked_make_edge (basic_block src, basic_block dst, int flags)
278 {
279 edge e;
280 e = ggc_alloc_cleared (sizeof (*e));
281 n_edges++;
282
283 e->succ_next = src->succ;
284 e->pred_next = dst->pred;
285 e->src = src;
286 e->dest = dst;
287 e->flags = flags;
288
289 src->succ = e;
290 dst->pred = e;
291
292 return e;
293 }
294
295 /* Create an edge connecting SRC and DST with FLAGS optionally using
296 edge cache CACHE. Return the new edge, NULL if already exist. */
297
298 edge
299 cached_make_edge (sbitmap *edge_cache, basic_block src, basic_block dst, int flags)
300 {
301 int use_edge_cache;
302 edge e;
303
304 /* Don't bother with edge cache for ENTRY or EXIT, if there aren't that
305 many edges to them, or we didn't allocate memory for it. */
306 use_edge_cache = (edge_cache
307 && src != ENTRY_BLOCK_PTR && dst != EXIT_BLOCK_PTR);
308
309 /* Make sure we don't add duplicate edges. */
310 switch (use_edge_cache)
311 {
312 default:
313 /* Quick test for non-existence of the edge. */
314 if (! TEST_BIT (edge_cache[src->index], dst->index))
315 break;
316
317 /* The edge exists; early exit if no work to do. */
318 if (flags == 0)
319 return NULL;
320
321 /* Fall through. */
322 case 0:
323 for (e = src->succ; e; e = e->succ_next)
324 if (e->dest == dst)
325 {
326 e->flags |= flags;
327 return NULL;
328 }
329 break;
330 }
331
332 e = unchecked_make_edge (src, dst, flags);
333
334 if (use_edge_cache)
335 SET_BIT (edge_cache[src->index], dst->index);
336
337 return e;
338 }
339
340 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
341 created edge or NULL if already exist. */
342
343 edge
344 make_edge (basic_block src, basic_block dest, int flags)
345 {
346 return cached_make_edge (NULL, src, dest, flags);
347 }
348
349 /* Create an edge connecting SRC to DEST and set probability by knowing
350 that it is the single edge leaving SRC. */
351
352 edge
353 make_single_succ_edge (basic_block src, basic_block dest, int flags)
354 {
355 edge e = make_edge (src, dest, flags);
356
357 e->probability = REG_BR_PROB_BASE;
358 e->count = src->count;
359 return e;
360 }
361
362 /* This function will remove an edge from the flow graph. */
363
364 void
365 remove_edge (edge e)
366 {
367 edge last_pred = NULL;
368 edge last_succ = NULL;
369 edge tmp;
370 basic_block src, dest;
371
372 src = e->src;
373 dest = e->dest;
374 for (tmp = src->succ; tmp && tmp != e; tmp = tmp->succ_next)
375 last_succ = tmp;
376
377 if (!tmp)
378 abort ();
379 if (last_succ)
380 last_succ->succ_next = e->succ_next;
381 else
382 src->succ = e->succ_next;
383
384 for (tmp = dest->pred; tmp && tmp != e; tmp = tmp->pred_next)
385 last_pred = tmp;
386
387 if (!tmp)
388 abort ();
389 if (last_pred)
390 last_pred->pred_next = e->pred_next;
391 else
392 dest->pred = e->pred_next;
393
394 free_edge (e);
395 }
396
397 /* Redirect an edge's successor from one block to another. */
398
399 void
400 redirect_edge_succ (edge e, basic_block new_succ)
401 {
402 edge *pe;
403
404 /* Disconnect the edge from the old successor block. */
405 for (pe = &e->dest->pred; *pe != e; pe = &(*pe)->pred_next)
406 continue;
407 *pe = (*pe)->pred_next;
408
409 /* Reconnect the edge to the new successor block. */
410 e->pred_next = new_succ->pred;
411 new_succ->pred = e;
412 e->dest = new_succ;
413 }
414
415 /* Like previous but avoid possible duplicate edge. */
416
417 edge
418 redirect_edge_succ_nodup (edge e, basic_block new_succ)
419 {
420 edge s;
421
422 /* Check whether the edge is already present. */
423 for (s = e->src->succ; s; s = s->succ_next)
424 if (s->dest == new_succ && s != e)
425 break;
426
427 if (s)
428 {
429 s->flags |= e->flags;
430 s->probability += e->probability;
431 if (s->probability > REG_BR_PROB_BASE)
432 s->probability = REG_BR_PROB_BASE;
433 s->count += e->count;
434 remove_edge (e);
435 e = s;
436 }
437 else
438 redirect_edge_succ (e, new_succ);
439
440 return e;
441 }
442
443 /* Redirect an edge's predecessor from one block to another. */
444
445 void
446 redirect_edge_pred (edge e, basic_block new_pred)
447 {
448 edge *pe;
449
450 /* Disconnect the edge from the old predecessor block. */
451 for (pe = &e->src->succ; *pe != e; pe = &(*pe)->succ_next)
452 continue;
453
454 *pe = (*pe)->succ_next;
455
456 /* Reconnect the edge to the new predecessor block. */
457 e->succ_next = new_pred->succ;
458 new_pred->succ = e;
459 e->src = new_pred;
460 }
461
462 void
463 clear_bb_flags (void)
464 {
465 basic_block bb;
466
467 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
468 bb->flags = 0;
469 }
470 \f
471 void
472 dump_flow_info (FILE *file)
473 {
474 int i;
475 basic_block bb;
476 static const char * const reg_class_names[] = REG_CLASS_NAMES;
477
478 if (reg_n_info)
479 {
480 int max_regno = max_reg_num ();
481 fprintf (file, "%d registers.\n", max_regno);
482 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
483 if (REG_N_REFS (i))
484 {
485 enum reg_class class, altclass;
486
487 fprintf (file, "\nRegister %d used %d times across %d insns",
488 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
489 if (REG_BASIC_BLOCK (i) >= 0)
490 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
491 if (REG_N_SETS (i))
492 fprintf (file, "; set %d time%s", REG_N_SETS (i),
493 (REG_N_SETS (i) == 1) ? "" : "s");
494 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
495 fprintf (file, "; user var");
496 if (REG_N_DEATHS (i) != 1)
497 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
498 if (REG_N_CALLS_CROSSED (i) == 1)
499 fprintf (file, "; crosses 1 call");
500 else if (REG_N_CALLS_CROSSED (i))
501 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
502 if (regno_reg_rtx[i] != NULL
503 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
504 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
505
506 class = reg_preferred_class (i);
507 altclass = reg_alternate_class (i);
508 if (class != GENERAL_REGS || altclass != ALL_REGS)
509 {
510 if (altclass == ALL_REGS || class == ALL_REGS)
511 fprintf (file, "; pref %s", reg_class_names[(int) class]);
512 else if (altclass == NO_REGS)
513 fprintf (file, "; %s or none", reg_class_names[(int) class]);
514 else
515 fprintf (file, "; pref %s, else %s",
516 reg_class_names[(int) class],
517 reg_class_names[(int) altclass]);
518 }
519
520 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
521 fprintf (file, "; pointer");
522 fprintf (file, ".\n");
523 }
524 }
525
526 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
527 FOR_EACH_BB (bb)
528 {
529 edge e;
530 int sum;
531 gcov_type lsum;
532
533 fprintf (file, "\nBasic block %d ", bb->index);
534 fprintf (file, "prev %d, next %d, ",
535 bb->prev_bb->index, bb->next_bb->index);
536 fprintf (file, "loop_depth %d, count ", bb->loop_depth);
537 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
538 fprintf (file, ", freq %i", bb->frequency);
539 if (maybe_hot_bb_p (bb))
540 fprintf (file, ", maybe hot");
541 if (probably_never_executed_bb_p (bb))
542 fprintf (file, ", probably never executed");
543 fprintf (file, ".\n");
544
545 fprintf (file, "Predecessors: ");
546 for (e = bb->pred; e; e = e->pred_next)
547 dump_edge_info (file, e, 0);
548
549 fprintf (file, "\nSuccessors: ");
550 for (e = bb->succ; e; e = e->succ_next)
551 dump_edge_info (file, e, 1);
552
553 fprintf (file, "\nRegisters live at start:");
554 dump_regset (bb->global_live_at_start, file);
555
556 fprintf (file, "\nRegisters live at end:");
557 dump_regset (bb->global_live_at_end, file);
558
559 putc ('\n', file);
560
561 /* Check the consistency of profile information. We can't do that
562 in verify_flow_info, as the counts may get invalid for incompletely
563 solved graphs, later eliminating of conditionals or roundoff errors.
564 It is still practical to have them reported for debugging of simple
565 testcases. */
566 sum = 0;
567 for (e = bb->succ; e; e = e->succ_next)
568 sum += e->probability;
569 if (bb->succ && abs (sum - REG_BR_PROB_BASE) > 100)
570 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
571 sum * 100.0 / REG_BR_PROB_BASE);
572 sum = 0;
573 for (e = bb->pred; e; e = e->pred_next)
574 sum += EDGE_FREQUENCY (e);
575 if (abs (sum - bb->frequency) > 100)
576 fprintf (file,
577 "Invalid sum of incomming frequencies %i, should be %i\n",
578 sum, bb->frequency);
579 lsum = 0;
580 for (e = bb->pred; e; e = e->pred_next)
581 lsum += e->count;
582 if (lsum - bb->count > 100 || lsum - bb->count < -100)
583 fprintf (file, "Invalid sum of incomming counts %i, should be %i\n",
584 (int)lsum, (int)bb->count);
585 lsum = 0;
586 for (e = bb->succ; e; e = e->succ_next)
587 lsum += e->count;
588 if (bb->succ && (lsum - bb->count > 100 || lsum - bb->count < -100))
589 fprintf (file, "Invalid sum of incomming counts %i, should be %i\n",
590 (int)lsum, (int)bb->count);
591 }
592
593 putc ('\n', file);
594 }
595
596 void
597 debug_flow_info (void)
598 {
599 dump_flow_info (stderr);
600 }
601
602 void
603 dump_edge_info (FILE *file, edge e, int do_succ)
604 {
605 basic_block side = (do_succ ? e->dest : e->src);
606
607 if (side == ENTRY_BLOCK_PTR)
608 fputs (" ENTRY", file);
609 else if (side == EXIT_BLOCK_PTR)
610 fputs (" EXIT", file);
611 else
612 fprintf (file, " %d", side->index);
613
614 if (e->probability)
615 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
616
617 if (e->count)
618 {
619 fprintf (file, " count:");
620 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
621 }
622
623 if (e->flags)
624 {
625 static const char * const bitnames[] = {
626 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
627 "can_fallthru", "irreducible", "sibcall", "loop_exit",
628 "true", "false", "exec"
629 };
630 int comma = 0;
631 int i, flags = e->flags;
632
633 fputs (" (", file);
634 for (i = 0; flags; i++)
635 if (flags & (1 << i))
636 {
637 flags &= ~(1 << i);
638
639 if (comma)
640 fputc (',', file);
641 if (i < (int) ARRAY_SIZE (bitnames))
642 fputs (bitnames[i], file);
643 else
644 fprintf (file, "%d", i);
645 comma = 1;
646 }
647
648 fputc (')', file);
649 }
650 }
651 \f
652 /* Simple routines to easily allocate AUX fields of basic blocks. */
653
654 static struct obstack block_aux_obstack;
655 static void *first_block_aux_obj = 0;
656 static struct obstack edge_aux_obstack;
657 static void *first_edge_aux_obj = 0;
658
659 /* Allocate a memory block of SIZE as BB->aux. The obstack must
660 be first initialized by alloc_aux_for_blocks. */
661
662 inline void
663 alloc_aux_for_block (basic_block bb, int size)
664 {
665 /* Verify that aux field is clear. */
666 if (bb->aux || !first_block_aux_obj)
667 abort ();
668 bb->aux = obstack_alloc (&block_aux_obstack, size);
669 memset (bb->aux, 0, size);
670 }
671
672 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
673 alloc_aux_for_block for each basic block. */
674
675 void
676 alloc_aux_for_blocks (int size)
677 {
678 static int initialized;
679
680 if (!initialized)
681 {
682 gcc_obstack_init (&block_aux_obstack);
683 initialized = 1;
684 }
685
686 /* Check whether AUX data are still allocated. */
687 else if (first_block_aux_obj)
688 abort ();
689 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
690 if (size)
691 {
692 basic_block bb;
693
694 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
695 alloc_aux_for_block (bb, size);
696 }
697 }
698
699 /* Clear AUX pointers of all blocks. */
700
701 void
702 clear_aux_for_blocks (void)
703 {
704 basic_block bb;
705
706 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
707 bb->aux = NULL;
708 }
709
710 /* Free data allocated in block_aux_obstack and clear AUX pointers
711 of all blocks. */
712
713 void
714 free_aux_for_blocks (void)
715 {
716 if (!first_block_aux_obj)
717 abort ();
718 obstack_free (&block_aux_obstack, first_block_aux_obj);
719 first_block_aux_obj = NULL;
720
721 clear_aux_for_blocks ();
722 }
723
724 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
725 be first initialized by alloc_aux_for_edges. */
726
727 inline void
728 alloc_aux_for_edge (edge e, int size)
729 {
730 /* Verify that aux field is clear. */
731 if (e->aux || !first_edge_aux_obj)
732 abort ();
733 e->aux = obstack_alloc (&edge_aux_obstack, size);
734 memset (e->aux, 0, size);
735 }
736
737 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
738 alloc_aux_for_edge for each basic edge. */
739
740 void
741 alloc_aux_for_edges (int size)
742 {
743 static int initialized;
744
745 if (!initialized)
746 {
747 gcc_obstack_init (&edge_aux_obstack);
748 initialized = 1;
749 }
750
751 /* Check whether AUX data are still allocated. */
752 else if (first_edge_aux_obj)
753 abort ();
754
755 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
756 if (size)
757 {
758 basic_block bb;
759
760 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
761 {
762 edge e;
763
764 for (e = bb->succ; e; e = e->succ_next)
765 alloc_aux_for_edge (e, size);
766 }
767 }
768 }
769
770 /* Clear AUX pointers of all edges. */
771
772 void
773 clear_aux_for_edges (void)
774 {
775 basic_block bb;
776 edge e;
777
778 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
779 {
780 for (e = bb->succ; e; e = e->succ_next)
781 e->aux = NULL;
782 }
783 }
784
785 /* Free data allocated in edge_aux_obstack and clear AUX pointers
786 of all edges. */
787
788 void
789 free_aux_for_edges (void)
790 {
791 if (!first_edge_aux_obj)
792 abort ();
793 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
794 first_edge_aux_obj = NULL;
795
796 clear_aux_for_edges ();
797 }
798
799 void
800 debug_bb (basic_block bb)
801 {
802 dump_bb (bb, stderr, 0);
803 }
804
805 basic_block
806 debug_bb_n (int n)
807 {
808 basic_block bb = BASIC_BLOCK (n);
809 dump_bb (bb, stderr, 0);
810 return bb;
811 }
812
813 /* Dumps cfg related information about basic block BB to FILE. */
814
815 static void
816 dump_cfg_bb_info (FILE *file, basic_block bb)
817 {
818 unsigned i;
819 bool first = true;
820 static const char * const bb_bitnames[] =
821 {
822 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
823 };
824 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
825 edge e;
826
827 fprintf (file, "Basic block %d", bb->index);
828 for (i = 0; i < n_bitnames; i++)
829 if (bb->flags & (1 << i))
830 {
831 if (first)
832 fprintf (file, " (");
833 else
834 fprintf (file, ", ");
835 first = false;
836 fprintf (file, bb_bitnames[i]);
837 }
838 if (!first)
839 fprintf (file, ")");
840 fprintf (file, "\n");
841
842 fprintf (file, "Predecessors: ");
843 for (e = bb->pred; e; e = e->pred_next)
844 dump_edge_info (file, e, 0);
845
846 fprintf (file, "\nSuccessors: ");
847 for (e = bb->succ; e; e = e->succ_next)
848 dump_edge_info (file, e, 1);
849 fprintf (file, "\n\n");
850 }
851
852 /* Dumps a brief description of cfg to FILE. */
853
854 void
855 brief_dump_cfg (FILE *file)
856 {
857 basic_block bb;
858
859 FOR_EACH_BB (bb)
860 {
861 dump_cfg_bb_info (file, bb);
862 }
863 }