re PR c++/34917 (ICE with const vector)
[gcc.git] / gcc / cfg.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the data structure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
27
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
33 - Edge manipulation
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41 - clear_bb_flags
42 - Consistency checking
43 verify_flow_info
44 - Dumping and debugging
45 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
46 */
47 \f
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "hard-reg-set.h"
55 #include "regs.h"
56 #include "flags.h"
57 #include "output.h"
58 #include "function.h"
59 #include "except.h"
60 #include "toplev.h"
61 #include "tm_p.h"
62 #include "obstack.h"
63 #include "timevar.h"
64 #include "tree-pass.h"
65 #include "ggc.h"
66 #include "hashtab.h"
67 #include "alloc-pool.h"
68 #include "df.h"
69 #include "cfgloop.h"
70
71 /* The obstack on which the flow graph components are allocated. */
72
73 struct bitmap_obstack reg_obstack;
74
75 void debug_flow_info (void);
76 static void free_edge (edge);
77 \f
78 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
79
80 /* Called once at initialization time. */
81
82 void
83 init_flow (void)
84 {
85 if (!cfun->cfg)
86 cfun->cfg = GGC_CNEW (struct control_flow_graph);
87 n_edges = 0;
88 ENTRY_BLOCK_PTR = GGC_CNEW (struct basic_block_def);
89 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
90 EXIT_BLOCK_PTR = GGC_CNEW (struct basic_block_def);
91 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
92 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
93 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
94 }
95 \f
96 /* Helper function for remove_edge and clear_edges. Frees edge structure
97 without actually unlinking it from the pred/succ lists. */
98
99 static void
100 free_edge (edge e ATTRIBUTE_UNUSED)
101 {
102 n_edges--;
103 ggc_free (e);
104 }
105
106 /* Free the memory associated with the edge structures. */
107
108 void
109 clear_edges (void)
110 {
111 basic_block bb;
112 edge e;
113 edge_iterator ei;
114
115 FOR_EACH_BB (bb)
116 {
117 FOR_EACH_EDGE (e, ei, bb->succs)
118 free_edge (e);
119 VEC_truncate (edge, bb->succs, 0);
120 VEC_truncate (edge, bb->preds, 0);
121 }
122
123 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
124 free_edge (e);
125 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
126 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
127
128 gcc_assert (!n_edges);
129 }
130 \f
131 /* Allocate memory for basic_block. */
132
133 basic_block
134 alloc_block (void)
135 {
136 basic_block bb;
137 bb = GGC_CNEW (struct basic_block_def);
138 return bb;
139 }
140
141 /* Link block B to chain after AFTER. */
142 void
143 link_block (basic_block b, basic_block after)
144 {
145 b->next_bb = after->next_bb;
146 b->prev_bb = after;
147 after->next_bb = b;
148 b->next_bb->prev_bb = b;
149 }
150
151 /* Unlink block B from chain. */
152 void
153 unlink_block (basic_block b)
154 {
155 b->next_bb->prev_bb = b->prev_bb;
156 b->prev_bb->next_bb = b->next_bb;
157 b->prev_bb = NULL;
158 b->next_bb = NULL;
159 }
160
161 /* Sequentially order blocks and compact the arrays. */
162 void
163 compact_blocks (void)
164 {
165 int i;
166
167 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
168 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
169
170 if (df)
171 df_compact_blocks ();
172 else
173 {
174 basic_block bb;
175
176 i = NUM_FIXED_BLOCKS;
177 FOR_EACH_BB (bb)
178 {
179 SET_BASIC_BLOCK (i, bb);
180 bb->index = i;
181 i++;
182 }
183 gcc_assert (i == n_basic_blocks);
184
185 for (; i < last_basic_block; i++)
186 SET_BASIC_BLOCK (i, NULL);
187 }
188 last_basic_block = n_basic_blocks;
189 }
190
191 /* Remove block B from the basic block array. */
192
193 void
194 expunge_block (basic_block b)
195 {
196 unlink_block (b);
197 SET_BASIC_BLOCK (b->index, NULL);
198 n_basic_blocks--;
199 /* We should be able to ggc_free here, but we are not.
200 The dead SSA_NAMES are left pointing to dead statements that are pointing
201 to dead basic blocks making garbage collector to die.
202 We should be able to release all dead SSA_NAMES and at the same time we should
203 clear out BB pointer of dead statements consistently. */
204 }
205 \f
206 /* Connect E to E->src. */
207
208 static inline void
209 connect_src (edge e)
210 {
211 VEC_safe_push (edge, gc, e->src->succs, e);
212 df_mark_solutions_dirty ();
213 }
214
215 /* Connect E to E->dest. */
216
217 static inline void
218 connect_dest (edge e)
219 {
220 basic_block dest = e->dest;
221 VEC_safe_push (edge, gc, dest->preds, e);
222 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
223 df_mark_solutions_dirty ();
224 }
225
226 /* Disconnect edge E from E->src. */
227
228 static inline void
229 disconnect_src (edge e)
230 {
231 basic_block src = e->src;
232 edge_iterator ei;
233 edge tmp;
234
235 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
236 {
237 if (tmp == e)
238 {
239 VEC_unordered_remove (edge, src->succs, ei.index);
240 return;
241 }
242 else
243 ei_next (&ei);
244 }
245
246 df_mark_solutions_dirty ();
247 gcc_unreachable ();
248 }
249
250 /* Disconnect edge E from E->dest. */
251
252 static inline void
253 disconnect_dest (edge e)
254 {
255 basic_block dest = e->dest;
256 unsigned int dest_idx = e->dest_idx;
257
258 VEC_unordered_remove (edge, dest->preds, dest_idx);
259
260 /* If we removed an edge in the middle of the edge vector, we need
261 to update dest_idx of the edge that moved into the "hole". */
262 if (dest_idx < EDGE_COUNT (dest->preds))
263 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
264 df_mark_solutions_dirty ();
265 }
266
267 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
268 created edge. Use this only if you are sure that this edge can't
269 possibly already exist. */
270
271 edge
272 unchecked_make_edge (basic_block src, basic_block dst, int flags)
273 {
274 edge e;
275 e = GGC_CNEW (struct edge_def);
276 n_edges++;
277
278 e->src = src;
279 e->dest = dst;
280 e->flags = flags;
281
282 connect_src (e);
283 connect_dest (e);
284
285 execute_on_growing_pred (e);
286 return e;
287 }
288
289 /* Create an edge connecting SRC and DST with FLAGS optionally using
290 edge cache CACHE. Return the new edge, NULL if already exist. */
291
292 edge
293 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
294 {
295 if (edge_cache == NULL
296 || src == ENTRY_BLOCK_PTR
297 || dst == EXIT_BLOCK_PTR)
298 return make_edge (src, dst, flags);
299
300 /* Does the requested edge already exist? */
301 if (! TEST_BIT (edge_cache, dst->index))
302 {
303 /* The edge does not exist. Create one and update the
304 cache. */
305 SET_BIT (edge_cache, dst->index);
306 return unchecked_make_edge (src, dst, flags);
307 }
308
309 /* At this point, we know that the requested edge exists. Adjust
310 flags if necessary. */
311 if (flags)
312 {
313 edge e = find_edge (src, dst);
314 e->flags |= flags;
315 }
316
317 return NULL;
318 }
319
320 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
321 created edge or NULL if already exist. */
322
323 edge
324 make_edge (basic_block src, basic_block dest, int flags)
325 {
326 edge e = find_edge (src, dest);
327
328 /* Make sure we don't add duplicate edges. */
329 if (e)
330 {
331 e->flags |= flags;
332 return NULL;
333 }
334
335 return unchecked_make_edge (src, dest, flags);
336 }
337
338 /* Create an edge connecting SRC to DEST and set probability by knowing
339 that it is the single edge leaving SRC. */
340
341 edge
342 make_single_succ_edge (basic_block src, basic_block dest, int flags)
343 {
344 edge e = make_edge (src, dest, flags);
345
346 e->probability = REG_BR_PROB_BASE;
347 e->count = src->count;
348 return e;
349 }
350
351 /* This function will remove an edge from the flow graph. */
352
353 void
354 remove_edge_raw (edge e)
355 {
356 remove_predictions_associated_with_edge (e);
357 execute_on_shrinking_pred (e);
358
359 disconnect_src (e);
360 disconnect_dest (e);
361
362 free_edge (e);
363 }
364
365 /* Redirect an edge's successor from one block to another. */
366
367 void
368 redirect_edge_succ (edge e, basic_block new_succ)
369 {
370 execute_on_shrinking_pred (e);
371
372 disconnect_dest (e);
373
374 e->dest = new_succ;
375
376 /* Reconnect the edge to the new successor block. */
377 connect_dest (e);
378
379 execute_on_growing_pred (e);
380 }
381
382 /* Like previous but avoid possible duplicate edge. */
383
384 edge
385 redirect_edge_succ_nodup (edge e, basic_block new_succ)
386 {
387 edge s;
388
389 s = find_edge (e->src, new_succ);
390 if (s && s != e)
391 {
392 s->flags |= e->flags;
393 s->probability += e->probability;
394 if (s->probability > REG_BR_PROB_BASE)
395 s->probability = REG_BR_PROB_BASE;
396 s->count += e->count;
397 remove_edge (e);
398 e = s;
399 }
400 else
401 redirect_edge_succ (e, new_succ);
402
403 return e;
404 }
405
406 /* Redirect an edge's predecessor from one block to another. */
407
408 void
409 redirect_edge_pred (edge e, basic_block new_pred)
410 {
411 disconnect_src (e);
412
413 e->src = new_pred;
414
415 /* Reconnect the edge to the new predecessor block. */
416 connect_src (e);
417 }
418
419 /* Clear all basic block flags, with the exception of partitioning and
420 setjmp_target. */
421 void
422 clear_bb_flags (void)
423 {
424 basic_block bb;
425
426 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
427 bb->flags = (BB_PARTITION (bb)
428 | (bb->flags & (BB_DISABLE_SCHEDULE + BB_RTL + BB_NON_LOCAL_GOTO_TARGET)));
429 }
430 \f
431 /* Check the consistency of profile information. We can't do that
432 in verify_flow_info, as the counts may get invalid for incompletely
433 solved graphs, later eliminating of conditionals or roundoff errors.
434 It is still practical to have them reported for debugging of simple
435 testcases. */
436 void
437 check_bb_profile (basic_block bb, FILE * file)
438 {
439 edge e;
440 int sum = 0;
441 gcov_type lsum;
442 edge_iterator ei;
443
444 if (profile_status == PROFILE_ABSENT)
445 return;
446
447 if (bb != EXIT_BLOCK_PTR)
448 {
449 FOR_EACH_EDGE (e, ei, bb->succs)
450 sum += e->probability;
451 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
452 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
453 sum * 100.0 / REG_BR_PROB_BASE);
454 lsum = 0;
455 FOR_EACH_EDGE (e, ei, bb->succs)
456 lsum += e->count;
457 if (EDGE_COUNT (bb->succs)
458 && (lsum - bb->count > 100 || lsum - bb->count < -100))
459 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
460 (int) lsum, (int) bb->count);
461 }
462 if (bb != ENTRY_BLOCK_PTR)
463 {
464 sum = 0;
465 FOR_EACH_EDGE (e, ei, bb->preds)
466 sum += EDGE_FREQUENCY (e);
467 if (abs (sum - bb->frequency) > 100)
468 fprintf (file,
469 "Invalid sum of incoming frequencies %i, should be %i\n",
470 sum, bb->frequency);
471 lsum = 0;
472 FOR_EACH_EDGE (e, ei, bb->preds)
473 lsum += e->count;
474 if (lsum - bb->count > 100 || lsum - bb->count < -100)
475 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
476 (int) lsum, (int) bb->count);
477 }
478 }
479 \f
480 /* Write information about registers and basic blocks into FILE.
481 This is part of making a debugging dump. */
482
483 void
484 dump_regset (regset r, FILE *outf)
485 {
486 unsigned i;
487 reg_set_iterator rsi;
488
489 if (r == NULL)
490 {
491 fputs (" (nil)", outf);
492 return;
493 }
494
495 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
496 {
497 fprintf (outf, " %d", i);
498 if (i < FIRST_PSEUDO_REGISTER)
499 fprintf (outf, " [%s]",
500 reg_names[i]);
501 }
502 }
503
504 /* Print a human-readable representation of R on the standard error
505 stream. This function is designed to be used from within the
506 debugger. */
507
508 void
509 debug_regset (regset r)
510 {
511 dump_regset (r, stderr);
512 putc ('\n', stderr);
513 }
514
515 /* Emit basic block information for BB. HEADER is true if the user wants
516 the generic information and the predecessors, FOOTER is true if they want
517 the successors. FLAGS is the dump flags of interest; TDF_DETAILS emit
518 global register liveness information. PREFIX is put in front of every
519 line. The output is emitted to FILE. */
520 void
521 dump_bb_info (basic_block bb, bool header, bool footer, int flags,
522 const char *prefix, FILE *file)
523 {
524 edge e;
525 edge_iterator ei;
526
527 if (header)
528 {
529 fprintf (file, "\n%sBasic block %d ", prefix, bb->index);
530 if (bb->prev_bb)
531 fprintf (file, ", prev %d", bb->prev_bb->index);
532 if (bb->next_bb)
533 fprintf (file, ", next %d", bb->next_bb->index);
534 fprintf (file, ", loop_depth %d, count ", bb->loop_depth);
535 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
536 fprintf (file, ", freq %i", bb->frequency);
537 /* Both maybe_hot_bb_p & probably_never_executed_bb_p functions
538 crash without cfun. */
539 if (cfun && maybe_hot_bb_p (bb))
540 fprintf (file, ", maybe hot");
541 if (cfun && probably_never_executed_bb_p (bb))
542 fprintf (file, ", probably never executed");
543 fprintf (file, ".\n");
544
545 fprintf (file, "%sPredecessors: ", prefix);
546 FOR_EACH_EDGE (e, ei, bb->preds)
547 dump_edge_info (file, e, 0);
548
549 if ((flags & TDF_DETAILS)
550 && (bb->flags & BB_RTL)
551 && df)
552 {
553 fprintf (file, "\n");
554 df_dump_top (bb, file);
555 }
556 }
557
558 if (footer)
559 {
560 fprintf (file, "\n%sSuccessors: ", prefix);
561 FOR_EACH_EDGE (e, ei, bb->succs)
562 dump_edge_info (file, e, 1);
563
564 if ((flags & TDF_DETAILS)
565 && (bb->flags & BB_RTL)
566 && df)
567 {
568 fprintf (file, "\n");
569 df_dump_bottom (bb, file);
570 }
571 }
572
573 putc ('\n', file);
574 }
575
576 /* Dump the register info to FILE. */
577
578 void
579 dump_reg_info (FILE *file)
580 {
581 unsigned int i, max = max_reg_num ();
582 if (reload_completed)
583 return;
584
585 if (reg_info_p_size < max)
586 max = reg_info_p_size;
587
588 fprintf (file, "%d registers.\n", max);
589 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
590 {
591 enum reg_class class, altclass;
592
593 if (regstat_n_sets_and_refs)
594 fprintf (file, "\nRegister %d used %d times across %d insns",
595 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
596 else if (df)
597 fprintf (file, "\nRegister %d used %d times across %d insns",
598 i, DF_REG_USE_COUNT (i) + DF_REG_DEF_COUNT (i), REG_LIVE_LENGTH (i));
599
600 if (REG_BASIC_BLOCK (i) >= NUM_FIXED_BLOCKS)
601 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
602 if (regstat_n_sets_and_refs)
603 fprintf (file, "; set %d time%s", REG_N_SETS (i),
604 (REG_N_SETS (i) == 1) ? "" : "s");
605 else if (df)
606 fprintf (file, "; set %d time%s", DF_REG_DEF_COUNT (i),
607 (DF_REG_DEF_COUNT (i) == 1) ? "" : "s");
608 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
609 fprintf (file, "; user var");
610 if (REG_N_DEATHS (i) != 1)
611 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
612 if (REG_N_CALLS_CROSSED (i) == 1)
613 fprintf (file, "; crosses 1 call");
614 else if (REG_N_CALLS_CROSSED (i))
615 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
616 if (REG_FREQ_CALLS_CROSSED (i))
617 fprintf (file, "; crosses call with %d frequency", REG_FREQ_CALLS_CROSSED (i));
618 if (regno_reg_rtx[i] != NULL
619 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
620 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
621
622 class = reg_preferred_class (i);
623 altclass = reg_alternate_class (i);
624 if (class != GENERAL_REGS || altclass != ALL_REGS)
625 {
626 if (altclass == ALL_REGS || class == ALL_REGS)
627 fprintf (file, "; pref %s", reg_class_names[(int) class]);
628 else if (altclass == NO_REGS)
629 fprintf (file, "; %s or none", reg_class_names[(int) class]);
630 else
631 fprintf (file, "; pref %s, else %s",
632 reg_class_names[(int) class],
633 reg_class_names[(int) altclass]);
634 }
635
636 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
637 fprintf (file, "; pointer");
638 fprintf (file, ".\n");
639 }
640 }
641
642
643 void
644 dump_flow_info (FILE *file, int flags)
645 {
646 basic_block bb;
647
648 /* There are no pseudo registers after reload. Don't dump them. */
649 if (reg_info_p_size && (flags & TDF_DETAILS) != 0)
650 dump_reg_info (file);
651
652 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
653 FOR_ALL_BB (bb)
654 {
655 dump_bb_info (bb, true, true, flags, "", file);
656 check_bb_profile (bb, file);
657 }
658
659 putc ('\n', file);
660 }
661
662 void
663 debug_flow_info (void)
664 {
665 dump_flow_info (stderr, TDF_DETAILS);
666 }
667
668 void
669 dump_edge_info (FILE *file, edge e, int do_succ)
670 {
671 basic_block side = (do_succ ? e->dest : e->src);
672 /* both ENTRY_BLOCK_PTR & EXIT_BLOCK_PTR depend upon cfun. */
673 if (cfun && side == ENTRY_BLOCK_PTR)
674 fputs (" ENTRY", file);
675 else if (cfun && side == EXIT_BLOCK_PTR)
676 fputs (" EXIT", file);
677 else
678 fprintf (file, " %d", side->index);
679
680 if (e->probability)
681 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
682
683 if (e->count)
684 {
685 fprintf (file, " count:");
686 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
687 }
688
689 if (e->flags)
690 {
691 static const char * const bitnames[] = {
692 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
693 "can_fallthru", "irreducible", "sibcall", "loop_exit",
694 "true", "false", "exec"
695 };
696 int comma = 0;
697 int i, flags = e->flags;
698
699 fputs (" (", file);
700 for (i = 0; flags; i++)
701 if (flags & (1 << i))
702 {
703 flags &= ~(1 << i);
704
705 if (comma)
706 fputc (',', file);
707 if (i < (int) ARRAY_SIZE (bitnames))
708 fputs (bitnames[i], file);
709 else
710 fprintf (file, "%d", i);
711 comma = 1;
712 }
713
714 fputc (')', file);
715 }
716 }
717 \f
718 /* Simple routines to easily allocate AUX fields of basic blocks. */
719
720 static struct obstack block_aux_obstack;
721 static void *first_block_aux_obj = 0;
722 static struct obstack edge_aux_obstack;
723 static void *first_edge_aux_obj = 0;
724
725 /* Allocate a memory block of SIZE as BB->aux. The obstack must
726 be first initialized by alloc_aux_for_blocks. */
727
728 inline void
729 alloc_aux_for_block (basic_block bb, int size)
730 {
731 /* Verify that aux field is clear. */
732 gcc_assert (!bb->aux && first_block_aux_obj);
733 bb->aux = obstack_alloc (&block_aux_obstack, size);
734 memset (bb->aux, 0, size);
735 }
736
737 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
738 alloc_aux_for_block for each basic block. */
739
740 void
741 alloc_aux_for_blocks (int size)
742 {
743 static int initialized;
744
745 if (!initialized)
746 {
747 gcc_obstack_init (&block_aux_obstack);
748 initialized = 1;
749 }
750 else
751 /* Check whether AUX data are still allocated. */
752 gcc_assert (!first_block_aux_obj);
753
754 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
755 if (size)
756 {
757 basic_block bb;
758
759 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
760 alloc_aux_for_block (bb, size);
761 }
762 }
763
764 /* Clear AUX pointers of all blocks. */
765
766 void
767 clear_aux_for_blocks (void)
768 {
769 basic_block bb;
770
771 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
772 bb->aux = NULL;
773 }
774
775 /* Free data allocated in block_aux_obstack and clear AUX pointers
776 of all blocks. */
777
778 void
779 free_aux_for_blocks (void)
780 {
781 gcc_assert (first_block_aux_obj);
782 obstack_free (&block_aux_obstack, first_block_aux_obj);
783 first_block_aux_obj = NULL;
784
785 clear_aux_for_blocks ();
786 }
787
788 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
789 be first initialized by alloc_aux_for_edges. */
790
791 inline void
792 alloc_aux_for_edge (edge e, int size)
793 {
794 /* Verify that aux field is clear. */
795 gcc_assert (!e->aux && first_edge_aux_obj);
796 e->aux = obstack_alloc (&edge_aux_obstack, size);
797 memset (e->aux, 0, size);
798 }
799
800 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
801 alloc_aux_for_edge for each basic edge. */
802
803 void
804 alloc_aux_for_edges (int size)
805 {
806 static int initialized;
807
808 if (!initialized)
809 {
810 gcc_obstack_init (&edge_aux_obstack);
811 initialized = 1;
812 }
813 else
814 /* Check whether AUX data are still allocated. */
815 gcc_assert (!first_edge_aux_obj);
816
817 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
818 if (size)
819 {
820 basic_block bb;
821
822 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
823 {
824 edge e;
825 edge_iterator ei;
826
827 FOR_EACH_EDGE (e, ei, bb->succs)
828 alloc_aux_for_edge (e, size);
829 }
830 }
831 }
832
833 /* Clear AUX pointers of all edges. */
834
835 void
836 clear_aux_for_edges (void)
837 {
838 basic_block bb;
839 edge e;
840
841 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
842 {
843 edge_iterator ei;
844 FOR_EACH_EDGE (e, ei, bb->succs)
845 e->aux = NULL;
846 }
847 }
848
849 /* Free data allocated in edge_aux_obstack and clear AUX pointers
850 of all edges. */
851
852 void
853 free_aux_for_edges (void)
854 {
855 gcc_assert (first_edge_aux_obj);
856 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
857 first_edge_aux_obj = NULL;
858
859 clear_aux_for_edges ();
860 }
861
862 void
863 debug_bb (basic_block bb)
864 {
865 dump_bb (bb, stderr, 0);
866 }
867
868 basic_block
869 debug_bb_n (int n)
870 {
871 basic_block bb = BASIC_BLOCK (n);
872 dump_bb (bb, stderr, 0);
873 return bb;
874 }
875
876 /* Dumps cfg related information about basic block BB to FILE. */
877
878 static void
879 dump_cfg_bb_info (FILE *file, basic_block bb)
880 {
881 unsigned i;
882 edge_iterator ei;
883 bool first = true;
884 static const char * const bb_bitnames[] =
885 {
886 "new", "reachable", "irreducible_loop", "superblock",
887 "nosched", "hot", "cold", "dup", "xlabel", "rtl",
888 "fwdr", "nothrd"
889 };
890 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
891 edge e;
892
893 fprintf (file, "Basic block %d", bb->index);
894 for (i = 0; i < n_bitnames; i++)
895 if (bb->flags & (1 << i))
896 {
897 if (first)
898 fprintf (file, " (");
899 else
900 fprintf (file, ", ");
901 first = false;
902 fprintf (file, bb_bitnames[i]);
903 }
904 if (!first)
905 fprintf (file, ")");
906 fprintf (file, "\n");
907
908 fprintf (file, "Predecessors: ");
909 FOR_EACH_EDGE (e, ei, bb->preds)
910 dump_edge_info (file, e, 0);
911
912 fprintf (file, "\nSuccessors: ");
913 FOR_EACH_EDGE (e, ei, bb->succs)
914 dump_edge_info (file, e, 1);
915 fprintf (file, "\n\n");
916 }
917
918 /* Dumps a brief description of cfg to FILE. */
919
920 void
921 brief_dump_cfg (FILE *file)
922 {
923 basic_block bb;
924
925 FOR_EACH_BB (bb)
926 {
927 dump_cfg_bb_info (file, bb);
928 }
929 }
930
931 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
932 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
933 redirected to destination of TAKEN_EDGE.
934
935 This function may leave the profile inconsistent in the case TAKEN_EDGE
936 frequency or count is believed to be lower than FREQUENCY or COUNT
937 respectively. */
938 void
939 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
940 gcov_type count, edge taken_edge)
941 {
942 edge c;
943 int prob;
944 edge_iterator ei;
945
946 bb->count -= count;
947 if (bb->count < 0)
948 {
949 if (dump_file)
950 fprintf (dump_file, "bb %i count became negative after threading",
951 bb->index);
952 bb->count = 0;
953 }
954
955 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
956 Watch for overflows. */
957 if (bb->frequency)
958 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
959 else
960 prob = 0;
961 if (prob > taken_edge->probability)
962 {
963 if (dump_file)
964 fprintf (dump_file, "Jump threading proved probability of edge "
965 "%i->%i too small (it is %i, should be %i).\n",
966 taken_edge->src->index, taken_edge->dest->index,
967 taken_edge->probability, prob);
968 prob = taken_edge->probability;
969 }
970
971 /* Now rescale the probabilities. */
972 taken_edge->probability -= prob;
973 prob = REG_BR_PROB_BASE - prob;
974 bb->frequency -= edge_frequency;
975 if (bb->frequency < 0)
976 bb->frequency = 0;
977 if (prob <= 0)
978 {
979 if (dump_file)
980 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
981 "frequency of block should end up being 0, it is %i\n",
982 bb->index, bb->frequency);
983 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
984 ei = ei_start (bb->succs);
985 ei_next (&ei);
986 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
987 c->probability = 0;
988 }
989 else if (prob != REG_BR_PROB_BASE)
990 {
991 int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
992
993 FOR_EACH_EDGE (c, ei, bb->succs)
994 {
995 /* Protect from overflow due to additional scaling. */
996 if (c->probability > prob)
997 c->probability = REG_BR_PROB_BASE;
998 else
999 {
1000 c->probability = RDIV (c->probability * scale, 65536);
1001 if (c->probability > REG_BR_PROB_BASE)
1002 c->probability = REG_BR_PROB_BASE;
1003 }
1004 }
1005 }
1006
1007 gcc_assert (bb == taken_edge->src);
1008 taken_edge->count -= count;
1009 if (taken_edge->count < 0)
1010 {
1011 if (dump_file)
1012 fprintf (dump_file, "edge %i->%i count became negative after threading",
1013 taken_edge->src->index, taken_edge->dest->index);
1014 taken_edge->count = 0;
1015 }
1016 }
1017
1018 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
1019 by NUM/DEN, in int arithmetic. May lose some accuracy. */
1020 void
1021 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
1022 {
1023 int i;
1024 edge e;
1025 if (num < 0)
1026 num = 0;
1027
1028 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of
1029 10^4, if we make DEN <= 10^3, we can afford to upscale by 100
1030 and still safely fit in int during calculations. */
1031 if (den > 1000)
1032 {
1033 if (num > 1000000)
1034 return;
1035
1036 num = RDIV (1000 * num, den);
1037 den = 1000;
1038 }
1039 if (num > 100 * den)
1040 return;
1041
1042 for (i = 0; i < nbbs; i++)
1043 {
1044 edge_iterator ei;
1045 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1046 /* Make sure the frequencies do not grow over BB_FREQ_MAX. */
1047 if (bbs[i]->frequency > BB_FREQ_MAX)
1048 bbs[i]->frequency = BB_FREQ_MAX;
1049 bbs[i]->count = RDIV (bbs[i]->count * num, den);
1050 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1051 e->count = RDIV (e->count * num, den);
1052 }
1053 }
1054
1055 /* numbers smaller than this value are safe to multiply without getting
1056 64bit overflow. */
1057 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
1058
1059 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
1060 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
1061 function but considerably slower. */
1062 void
1063 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
1064 gcov_type den)
1065 {
1066 int i;
1067 edge e;
1068 gcov_type fraction = RDIV (num * 65536, den);
1069
1070 gcc_assert (fraction >= 0);
1071
1072 if (num < MAX_SAFE_MULTIPLIER)
1073 for (i = 0; i < nbbs; i++)
1074 {
1075 edge_iterator ei;
1076 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1077 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
1078 bbs[i]->count = RDIV (bbs[i]->count * num, den);
1079 else
1080 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1081 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1082 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
1083 e->count = RDIV (e->count * num, den);
1084 else
1085 e->count = RDIV (e->count * fraction, 65536);
1086 }
1087 else
1088 for (i = 0; i < nbbs; i++)
1089 {
1090 edge_iterator ei;
1091 if (sizeof (gcov_type) > sizeof (int))
1092 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1093 else
1094 bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
1095 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1096 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1097 e->count = RDIV (e->count * fraction, 65536);
1098 }
1099 }
1100
1101 /* Data structures used to maintain mapping between basic blocks and
1102 copies. */
1103 static htab_t bb_original;
1104 static htab_t bb_copy;
1105
1106 /* And between loops and copies. */
1107 static htab_t loop_copy;
1108 static alloc_pool original_copy_bb_pool;
1109
1110 struct htab_bb_copy_original_entry
1111 {
1112 /* Block we are attaching info to. */
1113 int index1;
1114 /* Index of original or copy (depending on the hashtable) */
1115 int index2;
1116 };
1117
1118 static hashval_t
1119 bb_copy_original_hash (const void *p)
1120 {
1121 const struct htab_bb_copy_original_entry *data
1122 = ((const struct htab_bb_copy_original_entry *)p);
1123
1124 return data->index1;
1125 }
1126 static int
1127 bb_copy_original_eq (const void *p, const void *q)
1128 {
1129 const struct htab_bb_copy_original_entry *data
1130 = ((const struct htab_bb_copy_original_entry *)p);
1131 const struct htab_bb_copy_original_entry *data2
1132 = ((const struct htab_bb_copy_original_entry *)q);
1133
1134 return data->index1 == data2->index1;
1135 }
1136
1137 /* Initialize the data structures to maintain mapping between blocks
1138 and its copies. */
1139 void
1140 initialize_original_copy_tables (void)
1141 {
1142 gcc_assert (!original_copy_bb_pool);
1143 original_copy_bb_pool
1144 = create_alloc_pool ("original_copy",
1145 sizeof (struct htab_bb_copy_original_entry), 10);
1146 bb_original = htab_create (10, bb_copy_original_hash,
1147 bb_copy_original_eq, NULL);
1148 bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1149 loop_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1150 }
1151
1152 /* Free the data structures to maintain mapping between blocks and
1153 its copies. */
1154 void
1155 free_original_copy_tables (void)
1156 {
1157 gcc_assert (original_copy_bb_pool);
1158 htab_delete (bb_copy);
1159 htab_delete (bb_original);
1160 htab_delete (loop_copy);
1161 free_alloc_pool (original_copy_bb_pool);
1162 bb_copy = NULL;
1163 bb_original = NULL;
1164 loop_copy = NULL;
1165 original_copy_bb_pool = NULL;
1166 }
1167
1168 /* Removes the value associated with OBJ from table TAB. */
1169
1170 static void
1171 copy_original_table_clear (htab_t tab, unsigned obj)
1172 {
1173 void **slot;
1174 struct htab_bb_copy_original_entry key, *elt;
1175
1176 if (!original_copy_bb_pool)
1177 return;
1178
1179 key.index1 = obj;
1180 slot = htab_find_slot (tab, &key, NO_INSERT);
1181 if (!slot)
1182 return;
1183
1184 elt = (struct htab_bb_copy_original_entry *) *slot;
1185 htab_clear_slot (tab, slot);
1186 pool_free (original_copy_bb_pool, elt);
1187 }
1188
1189 /* Sets the value associated with OBJ in table TAB to VAL.
1190 Do nothing when data structures are not initialized. */
1191
1192 static void
1193 copy_original_table_set (htab_t tab, unsigned obj, unsigned val)
1194 {
1195 struct htab_bb_copy_original_entry **slot;
1196 struct htab_bb_copy_original_entry key;
1197
1198 if (!original_copy_bb_pool)
1199 return;
1200
1201 key.index1 = obj;
1202 slot = (struct htab_bb_copy_original_entry **)
1203 htab_find_slot (tab, &key, INSERT);
1204 if (!*slot)
1205 {
1206 *slot = (struct htab_bb_copy_original_entry *)
1207 pool_alloc (original_copy_bb_pool);
1208 (*slot)->index1 = obj;
1209 }
1210 (*slot)->index2 = val;
1211 }
1212
1213 /* Set original for basic block. Do nothing when data structures are not
1214 initialized so passes not needing this don't need to care. */
1215 void
1216 set_bb_original (basic_block bb, basic_block original)
1217 {
1218 copy_original_table_set (bb_original, bb->index, original->index);
1219 }
1220
1221 /* Get the original basic block. */
1222 basic_block
1223 get_bb_original (basic_block bb)
1224 {
1225 struct htab_bb_copy_original_entry *entry;
1226 struct htab_bb_copy_original_entry key;
1227
1228 gcc_assert (original_copy_bb_pool);
1229
1230 key.index1 = bb->index;
1231 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
1232 if (entry)
1233 return BASIC_BLOCK (entry->index2);
1234 else
1235 return NULL;
1236 }
1237
1238 /* Set copy for basic block. Do nothing when data structures are not
1239 initialized so passes not needing this don't need to care. */
1240 void
1241 set_bb_copy (basic_block bb, basic_block copy)
1242 {
1243 copy_original_table_set (bb_copy, bb->index, copy->index);
1244 }
1245
1246 /* Get the copy of basic block. */
1247 basic_block
1248 get_bb_copy (basic_block bb)
1249 {
1250 struct htab_bb_copy_original_entry *entry;
1251 struct htab_bb_copy_original_entry key;
1252
1253 gcc_assert (original_copy_bb_pool);
1254
1255 key.index1 = bb->index;
1256 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
1257 if (entry)
1258 return BASIC_BLOCK (entry->index2);
1259 else
1260 return NULL;
1261 }
1262
1263 /* Set copy for LOOP to COPY. Do nothing when data structures are not
1264 initialized so passes not needing this don't need to care. */
1265
1266 void
1267 set_loop_copy (struct loop *loop, struct loop *copy)
1268 {
1269 if (!copy)
1270 copy_original_table_clear (loop_copy, loop->num);
1271 else
1272 copy_original_table_set (loop_copy, loop->num, copy->num);
1273 }
1274
1275 /* Get the copy of LOOP. */
1276
1277 struct loop *
1278 get_loop_copy (struct loop *loop)
1279 {
1280 struct htab_bb_copy_original_entry *entry;
1281 struct htab_bb_copy_original_entry key;
1282
1283 gcc_assert (original_copy_bb_pool);
1284
1285 key.index1 = loop->num;
1286 entry = (struct htab_bb_copy_original_entry *) htab_find (loop_copy, &key);
1287 if (entry)
1288 return get_loop (entry->index2);
1289 else
1290 return NULL;
1291 }