predicates.md (mem_or_easy_const_operand): Delete.
[gcc.git] / gcc / cfg.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* This file contains low level functions to manipulate the CFG and
24 analyze it. All other modules should not transform the data structure
25 directly and use abstraction instead. The file is supposed to be
26 ordered bottom-up and should not contain any code dependent on a
27 particular intermediate language (RTL or trees).
28
29 Available functionality:
30 - Initialization/deallocation
31 init_flow, clear_edges
32 - Low level basic block manipulation
33 alloc_block, expunge_block
34 - Edge manipulation
35 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
36 - Low level edge redirection (without updating instruction chain)
37 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
38 - Dumping and debugging
39 dump_flow_info, debug_flow_info, dump_edge_info
40 - Allocation of AUX fields for basic blocks
41 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
42 - clear_bb_flags
43 - Consistency checking
44 verify_flow_info
45 - Dumping and debugging
46 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
47 */
48 \f
49 #include "config.h"
50 #include "system.h"
51 #include "coretypes.h"
52 #include "tm.h"
53 #include "tree.h"
54 #include "rtl.h"
55 #include "hard-reg-set.h"
56 #include "regs.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "function.h"
60 #include "except.h"
61 #include "toplev.h"
62 #include "tm_p.h"
63 #include "alloc-pool.h"
64 #include "timevar.h"
65 #include "ggc.h"
66
67 /* The obstack on which the flow graph components are allocated. */
68
69 struct bitmap_obstack reg_obstack;
70
71 /* Number of basic blocks in the current function. */
72
73 int n_basic_blocks;
74
75 /* First free basic block number. */
76
77 int last_basic_block;
78
79 /* Number of edges in the current function. */
80
81 int n_edges;
82
83 /* The basic block array. */
84
85 varray_type basic_block_info;
86
87 /* The special entry and exit blocks. */
88 basic_block ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR;
89
90 /* Memory alloc pool for bb member rbi. */
91 static alloc_pool rbi_pool;
92
93 void debug_flow_info (void);
94 static void free_edge (edge);
95
96 /* Indicate the presence of the profile. */
97 enum profile_status profile_status;
98 \f
99 /* Called once at initialization time. */
100
101 void
102 init_flow (void)
103 {
104 n_edges = 0;
105
106 ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (*ENTRY_BLOCK_PTR));
107 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
108 EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (*EXIT_BLOCK_PTR));
109 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
110 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
111 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
112 }
113 \f
114 /* Helper function for remove_edge and clear_edges. Frees edge structure
115 without actually unlinking it from the pred/succ lists. */
116
117 static void
118 free_edge (edge e ATTRIBUTE_UNUSED)
119 {
120 n_edges--;
121 ggc_free (e);
122 }
123
124 /* Free the memory associated with the edge structures. */
125
126 void
127 clear_edges (void)
128 {
129 basic_block bb;
130 edge e;
131 edge_iterator ei;
132
133 FOR_EACH_BB (bb)
134 {
135 FOR_EACH_EDGE (e, ei, bb->succs)
136 free_edge (e);
137 VEC_truncate (edge, bb->succs, 0);
138 VEC_truncate (edge, bb->preds, 0);
139 }
140
141 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
142 free_edge (e);
143 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
144 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
145
146 gcc_assert (!n_edges);
147 }
148 \f
149 /* Allocate memory for basic_block. */
150
151 basic_block
152 alloc_block (void)
153 {
154 basic_block bb;
155 bb = ggc_alloc_cleared (sizeof (*bb));
156 return bb;
157 }
158
159 /* Create memory pool for rbi_pool. */
160
161 void
162 alloc_rbi_pool (void)
163 {
164 rbi_pool = create_alloc_pool ("rbi pool",
165 sizeof (struct reorder_block_def),
166 n_basic_blocks + 2);
167 }
168
169 /* Free rbi_pool. */
170
171 void
172 free_rbi_pool (void)
173 {
174 free_alloc_pool (rbi_pool);
175 }
176
177 /* Initialize rbi (the structure containing data used by basic block
178 duplication and reordering) for the given basic block. */
179
180 void
181 initialize_bb_rbi (basic_block bb)
182 {
183 gcc_assert (!bb->rbi);
184 bb->rbi = pool_alloc (rbi_pool);
185 memset (bb->rbi, 0, sizeof (struct reorder_block_def));
186 }
187
188 /* Link block B to chain after AFTER. */
189 void
190 link_block (basic_block b, basic_block after)
191 {
192 b->next_bb = after->next_bb;
193 b->prev_bb = after;
194 after->next_bb = b;
195 b->next_bb->prev_bb = b;
196 }
197
198 /* Unlink block B from chain. */
199 void
200 unlink_block (basic_block b)
201 {
202 b->next_bb->prev_bb = b->prev_bb;
203 b->prev_bb->next_bb = b->next_bb;
204 b->prev_bb = NULL;
205 b->next_bb = NULL;
206 }
207
208 /* Sequentially order blocks and compact the arrays. */
209 void
210 compact_blocks (void)
211 {
212 int i;
213 basic_block bb;
214
215 i = 0;
216 FOR_EACH_BB (bb)
217 {
218 BASIC_BLOCK (i) = bb;
219 bb->index = i;
220 i++;
221 }
222
223 gcc_assert (i == n_basic_blocks);
224
225 for (; i < last_basic_block; i++)
226 BASIC_BLOCK (i) = NULL;
227
228 last_basic_block = n_basic_blocks;
229 }
230
231 /* Remove block B from the basic block array. */
232
233 void
234 expunge_block (basic_block b)
235 {
236 unlink_block (b);
237 BASIC_BLOCK (b->index) = NULL;
238 n_basic_blocks--;
239 /* We should be able to ggc_free here, but we are not.
240 The dead SSA_NAMES are left pointing to dead statements that are pointing
241 to dead basic blocks making garbage collector to die.
242 We should be able to release all dead SSA_NAMES and at the same time we should
243 clear out BB pointer of dead statements consistently. */
244 }
245 \f
246 /* Connect E to E->src. */
247
248 static inline void
249 connect_src (edge e)
250 {
251 VEC_safe_push (edge, e->src->succs, e);
252 }
253
254 /* Connect E to E->dest. */
255
256 static inline void
257 connect_dest (edge e)
258 {
259 basic_block dest = e->dest;
260 VEC_safe_push (edge, dest->preds, e);
261 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
262 }
263
264 /* Disconnect edge E from E->src. */
265
266 static inline void
267 disconnect_src (edge e)
268 {
269 basic_block src = e->src;
270 edge_iterator ei;
271 edge tmp;
272
273 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
274 {
275 if (tmp == e)
276 {
277 VEC_unordered_remove (edge, src->succs, ei.index);
278 return;
279 }
280 else
281 ei_next (&ei);
282 }
283
284 gcc_unreachable ();
285 }
286
287 /* Disconnect edge E from E->dest. */
288
289 static inline void
290 disconnect_dest (edge e)
291 {
292 basic_block dest = e->dest;
293 unsigned int dest_idx = e->dest_idx;
294
295 VEC_unordered_remove (edge, dest->preds, dest_idx);
296
297 /* If we removed an edge in the middle of the edge vector, we need
298 to update dest_idx of the edge that moved into the "hole". */
299 if (dest_idx < EDGE_COUNT (dest->preds))
300 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
301 }
302
303 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
304 created edge. Use this only if you are sure that this edge can't
305 possibly already exist. */
306
307 edge
308 unchecked_make_edge (basic_block src, basic_block dst, int flags)
309 {
310 edge e;
311 e = ggc_alloc_cleared (sizeof (*e));
312 n_edges++;
313
314 e->src = src;
315 e->dest = dst;
316 e->flags = flags;
317
318 connect_src (e);
319 connect_dest (e);
320
321 execute_on_growing_pred (e);
322
323 return e;
324 }
325
326 /* Create an edge connecting SRC and DST with FLAGS optionally using
327 edge cache CACHE. Return the new edge, NULL if already exist. */
328
329 edge
330 cached_make_edge (sbitmap *edge_cache, basic_block src, basic_block dst, int flags)
331 {
332 if (edge_cache == NULL
333 || src == ENTRY_BLOCK_PTR
334 || dst == EXIT_BLOCK_PTR)
335 return make_edge (src, dst, flags);
336
337 /* Does the requested edge already exist? */
338 if (! TEST_BIT (edge_cache[src->index], dst->index))
339 {
340 /* The edge does not exist. Create one and update the
341 cache. */
342 SET_BIT (edge_cache[src->index], dst->index);
343 return unchecked_make_edge (src, dst, flags);
344 }
345
346 /* At this point, we know that the requested edge exists. Adjust
347 flags if necessary. */
348 if (flags)
349 {
350 edge e = find_edge (src, dst);
351 e->flags |= flags;
352 }
353
354 return NULL;
355 }
356
357 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
358 created edge or NULL if already exist. */
359
360 edge
361 make_edge (basic_block src, basic_block dest, int flags)
362 {
363 edge e = find_edge (src, dest);
364
365 /* Make sure we don't add duplicate edges. */
366 if (e)
367 {
368 e->flags |= flags;
369 return NULL;
370 }
371
372 return unchecked_make_edge (src, dest, flags);
373 }
374
375 /* Create an edge connecting SRC to DEST and set probability by knowing
376 that it is the single edge leaving SRC. */
377
378 edge
379 make_single_succ_edge (basic_block src, basic_block dest, int flags)
380 {
381 edge e = make_edge (src, dest, flags);
382
383 e->probability = REG_BR_PROB_BASE;
384 e->count = src->count;
385 return e;
386 }
387
388 /* This function will remove an edge from the flow graph. */
389
390 void
391 remove_edge (edge e)
392 {
393 execute_on_shrinking_pred (e);
394
395 disconnect_src (e);
396 disconnect_dest (e);
397
398 free_edge (e);
399 }
400
401 /* Redirect an edge's successor from one block to another. */
402
403 void
404 redirect_edge_succ (edge e, basic_block new_succ)
405 {
406 execute_on_shrinking_pred (e);
407
408 disconnect_dest (e);
409
410 e->dest = new_succ;
411
412 /* Reconnect the edge to the new successor block. */
413 connect_dest (e);
414
415 execute_on_growing_pred (e);
416 }
417
418 /* Like previous but avoid possible duplicate edge. */
419
420 edge
421 redirect_edge_succ_nodup (edge e, basic_block new_succ)
422 {
423 edge s;
424
425 s = find_edge (e->src, new_succ);
426 if (s && s != e)
427 {
428 s->flags |= e->flags;
429 s->probability += e->probability;
430 if (s->probability > REG_BR_PROB_BASE)
431 s->probability = REG_BR_PROB_BASE;
432 s->count += e->count;
433 remove_edge (e);
434 e = s;
435 }
436 else
437 redirect_edge_succ (e, new_succ);
438
439 return e;
440 }
441
442 /* Redirect an edge's predecessor from one block to another. */
443
444 void
445 redirect_edge_pred (edge e, basic_block new_pred)
446 {
447 disconnect_src (e);
448
449 e->src = new_pred;
450
451 /* Reconnect the edge to the new predecessor block. */
452 connect_src (e);
453 }
454
455 /* Clear all basic block flags, with the exception of partitioning. */
456 void
457 clear_bb_flags (void)
458 {
459 basic_block bb;
460
461 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
462 bb->flags = BB_PARTITION (bb);
463 }
464 \f
465 /* Check the consistency of profile information. We can't do that
466 in verify_flow_info, as the counts may get invalid for incompletely
467 solved graphs, later eliminating of conditionals or roundoff errors.
468 It is still practical to have them reported for debugging of simple
469 testcases. */
470 void
471 check_bb_profile (basic_block bb, FILE * file)
472 {
473 edge e;
474 int sum = 0;
475 gcov_type lsum;
476 edge_iterator ei;
477
478 if (profile_status == PROFILE_ABSENT)
479 return;
480
481 if (bb != EXIT_BLOCK_PTR)
482 {
483 FOR_EACH_EDGE (e, ei, bb->succs)
484 sum += e->probability;
485 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
486 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
487 sum * 100.0 / REG_BR_PROB_BASE);
488 lsum = 0;
489 FOR_EACH_EDGE (e, ei, bb->succs)
490 lsum += e->count;
491 if (EDGE_COUNT (bb->succs)
492 && (lsum - bb->count > 100 || lsum - bb->count < -100))
493 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
494 (int) lsum, (int) bb->count);
495 }
496 if (bb != ENTRY_BLOCK_PTR)
497 {
498 sum = 0;
499 FOR_EACH_EDGE (e, ei, bb->preds)
500 sum += EDGE_FREQUENCY (e);
501 if (abs (sum - bb->frequency) > 100)
502 fprintf (file,
503 "Invalid sum of incoming frequencies %i, should be %i\n",
504 sum, bb->frequency);
505 lsum = 0;
506 FOR_EACH_EDGE (e, ei, bb->preds)
507 lsum += e->count;
508 if (lsum - bb->count > 100 || lsum - bb->count < -100)
509 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
510 (int) lsum, (int) bb->count);
511 }
512 }
513 \f
514 void
515 dump_flow_info (FILE *file)
516 {
517 int i;
518 basic_block bb;
519
520 /* There are no pseudo registers after reload. Don't dump them. */
521 if (reg_n_info && !reload_completed)
522 {
523 int max_regno = max_reg_num ();
524 fprintf (file, "%d registers.\n", max_regno);
525 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
526 if (REG_N_REFS (i))
527 {
528 enum reg_class class, altclass;
529
530 fprintf (file, "\nRegister %d used %d times across %d insns",
531 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
532 if (REG_BASIC_BLOCK (i) >= 0)
533 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
534 if (REG_N_SETS (i))
535 fprintf (file, "; set %d time%s", REG_N_SETS (i),
536 (REG_N_SETS (i) == 1) ? "" : "s");
537 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
538 fprintf (file, "; user var");
539 if (REG_N_DEATHS (i) != 1)
540 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
541 if (REG_N_CALLS_CROSSED (i) == 1)
542 fprintf (file, "; crosses 1 call");
543 else if (REG_N_CALLS_CROSSED (i))
544 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
545 if (regno_reg_rtx[i] != NULL
546 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
547 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
548
549 class = reg_preferred_class (i);
550 altclass = reg_alternate_class (i);
551 if (class != GENERAL_REGS || altclass != ALL_REGS)
552 {
553 if (altclass == ALL_REGS || class == ALL_REGS)
554 fprintf (file, "; pref %s", reg_class_names[(int) class]);
555 else if (altclass == NO_REGS)
556 fprintf (file, "; %s or none", reg_class_names[(int) class]);
557 else
558 fprintf (file, "; pref %s, else %s",
559 reg_class_names[(int) class],
560 reg_class_names[(int) altclass]);
561 }
562
563 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
564 fprintf (file, "; pointer");
565 fprintf (file, ".\n");
566 }
567 }
568
569 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
570 FOR_EACH_BB (bb)
571 {
572 edge e;
573 edge_iterator ei;
574
575 fprintf (file, "\nBasic block %d ", bb->index);
576 fprintf (file, "prev %d, next %d, ",
577 bb->prev_bb->index, bb->next_bb->index);
578 fprintf (file, "loop_depth %d, count ", bb->loop_depth);
579 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
580 fprintf (file, ", freq %i", bb->frequency);
581 if (maybe_hot_bb_p (bb))
582 fprintf (file, ", maybe hot");
583 if (probably_never_executed_bb_p (bb))
584 fprintf (file, ", probably never executed");
585 fprintf (file, ".\n");
586
587 fprintf (file, "Predecessors: ");
588 FOR_EACH_EDGE (e, ei, bb->preds)
589 dump_edge_info (file, e, 0);
590
591 fprintf (file, "\nSuccessors: ");
592 FOR_EACH_EDGE (e, ei, bb->succs)
593 dump_edge_info (file, e, 1);
594
595 if (bb->global_live_at_start)
596 {
597 fprintf (file, "\nRegisters live at start:");
598 dump_regset (bb->global_live_at_start, file);
599 }
600
601 if (bb->global_live_at_end)
602 {
603 fprintf (file, "\nRegisters live at end:");
604 dump_regset (bb->global_live_at_end, file);
605 }
606
607 putc ('\n', file);
608 check_bb_profile (bb, file);
609 }
610
611 putc ('\n', file);
612 }
613
614 void
615 debug_flow_info (void)
616 {
617 dump_flow_info (stderr);
618 }
619
620 void
621 dump_edge_info (FILE *file, edge e, int do_succ)
622 {
623 basic_block side = (do_succ ? e->dest : e->src);
624
625 if (side == ENTRY_BLOCK_PTR)
626 fputs (" ENTRY", file);
627 else if (side == EXIT_BLOCK_PTR)
628 fputs (" EXIT", file);
629 else
630 fprintf (file, " %d", side->index);
631
632 if (e->probability)
633 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
634
635 if (e->count)
636 {
637 fprintf (file, " count:");
638 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
639 }
640
641 if (e->flags)
642 {
643 static const char * const bitnames[] = {
644 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
645 "can_fallthru", "irreducible", "sibcall", "loop_exit",
646 "true", "false", "exec"
647 };
648 int comma = 0;
649 int i, flags = e->flags;
650
651 fputs (" (", file);
652 for (i = 0; flags; i++)
653 if (flags & (1 << i))
654 {
655 flags &= ~(1 << i);
656
657 if (comma)
658 fputc (',', file);
659 if (i < (int) ARRAY_SIZE (bitnames))
660 fputs (bitnames[i], file);
661 else
662 fprintf (file, "%d", i);
663 comma = 1;
664 }
665
666 fputc (')', file);
667 }
668 }
669 \f
670 /* Simple routines to easily allocate AUX fields of basic blocks. */
671
672 static struct obstack block_aux_obstack;
673 static void *first_block_aux_obj = 0;
674 static struct obstack edge_aux_obstack;
675 static void *first_edge_aux_obj = 0;
676
677 /* Allocate a memory block of SIZE as BB->aux. The obstack must
678 be first initialized by alloc_aux_for_blocks. */
679
680 inline void
681 alloc_aux_for_block (basic_block bb, int size)
682 {
683 /* Verify that aux field is clear. */
684 gcc_assert (!bb->aux && first_block_aux_obj);
685 bb->aux = obstack_alloc (&block_aux_obstack, size);
686 memset (bb->aux, 0, size);
687 }
688
689 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
690 alloc_aux_for_block for each basic block. */
691
692 void
693 alloc_aux_for_blocks (int size)
694 {
695 static int initialized;
696
697 if (!initialized)
698 {
699 gcc_obstack_init (&block_aux_obstack);
700 initialized = 1;
701 }
702 else
703 /* Check whether AUX data are still allocated. */
704 gcc_assert (!first_block_aux_obj);
705
706 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
707 if (size)
708 {
709 basic_block bb;
710
711 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
712 alloc_aux_for_block (bb, size);
713 }
714 }
715
716 /* Clear AUX pointers of all blocks. */
717
718 void
719 clear_aux_for_blocks (void)
720 {
721 basic_block bb;
722
723 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
724 bb->aux = NULL;
725 }
726
727 /* Free data allocated in block_aux_obstack and clear AUX pointers
728 of all blocks. */
729
730 void
731 free_aux_for_blocks (void)
732 {
733 gcc_assert (first_block_aux_obj);
734 obstack_free (&block_aux_obstack, first_block_aux_obj);
735 first_block_aux_obj = NULL;
736
737 clear_aux_for_blocks ();
738 }
739
740 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
741 be first initialized by alloc_aux_for_edges. */
742
743 inline void
744 alloc_aux_for_edge (edge e, int size)
745 {
746 /* Verify that aux field is clear. */
747 gcc_assert (!e->aux && first_edge_aux_obj);
748 e->aux = obstack_alloc (&edge_aux_obstack, size);
749 memset (e->aux, 0, size);
750 }
751
752 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
753 alloc_aux_for_edge for each basic edge. */
754
755 void
756 alloc_aux_for_edges (int size)
757 {
758 static int initialized;
759
760 if (!initialized)
761 {
762 gcc_obstack_init (&edge_aux_obstack);
763 initialized = 1;
764 }
765 else
766 /* Check whether AUX data are still allocated. */
767 gcc_assert (!first_edge_aux_obj);
768
769 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
770 if (size)
771 {
772 basic_block bb;
773
774 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
775 {
776 edge e;
777 edge_iterator ei;
778
779 FOR_EACH_EDGE (e, ei, bb->succs)
780 alloc_aux_for_edge (e, size);
781 }
782 }
783 }
784
785 /* Clear AUX pointers of all edges. */
786
787 void
788 clear_aux_for_edges (void)
789 {
790 basic_block bb;
791 edge e;
792
793 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
794 {
795 edge_iterator ei;
796 FOR_EACH_EDGE (e, ei, bb->succs)
797 e->aux = NULL;
798 }
799 }
800
801 /* Free data allocated in edge_aux_obstack and clear AUX pointers
802 of all edges. */
803
804 void
805 free_aux_for_edges (void)
806 {
807 gcc_assert (first_edge_aux_obj);
808 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
809 first_edge_aux_obj = NULL;
810
811 clear_aux_for_edges ();
812 }
813
814 void
815 debug_bb (basic_block bb)
816 {
817 dump_bb (bb, stderr, 0);
818 }
819
820 basic_block
821 debug_bb_n (int n)
822 {
823 basic_block bb = BASIC_BLOCK (n);
824 dump_bb (bb, stderr, 0);
825 return bb;
826 }
827
828 /* Dumps cfg related information about basic block BB to FILE. */
829
830 static void
831 dump_cfg_bb_info (FILE *file, basic_block bb)
832 {
833 unsigned i;
834 edge_iterator ei;
835 bool first = true;
836 static const char * const bb_bitnames[] =
837 {
838 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
839 };
840 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
841 edge e;
842
843 fprintf (file, "Basic block %d", bb->index);
844 for (i = 0; i < n_bitnames; i++)
845 if (bb->flags & (1 << i))
846 {
847 if (first)
848 fprintf (file, " (");
849 else
850 fprintf (file, ", ");
851 first = false;
852 fprintf (file, bb_bitnames[i]);
853 }
854 if (!first)
855 fprintf (file, ")");
856 fprintf (file, "\n");
857
858 fprintf (file, "Predecessors: ");
859 FOR_EACH_EDGE (e, ei, bb->preds)
860 dump_edge_info (file, e, 0);
861
862 fprintf (file, "\nSuccessors: ");
863 FOR_EACH_EDGE (e, ei, bb->succs)
864 dump_edge_info (file, e, 1);
865 fprintf (file, "\n\n");
866 }
867
868 /* Dumps a brief description of cfg to FILE. */
869
870 void
871 brief_dump_cfg (FILE *file)
872 {
873 basic_block bb;
874
875 FOR_EACH_BB (bb)
876 {
877 dump_cfg_bb_info (file, bb);
878 }
879 }
880
881 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
882 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
883 redirected to destination of TAKEN_EDGE.
884
885 This function may leave the profile inconsistent in the case TAKEN_EDGE
886 frequency or count is believed to be lower than FREQUENCY or COUNT
887 respectively. */
888 void
889 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
890 gcov_type count, edge taken_edge)
891 {
892 edge c;
893 int prob;
894 edge_iterator ei;
895
896 bb->count -= count;
897 if (bb->count < 0)
898 bb->count = 0;
899
900 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
901 Watch for overflows. */
902 if (bb->frequency)
903 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
904 else
905 prob = 0;
906 if (prob > taken_edge->probability)
907 {
908 if (dump_file)
909 fprintf (dump_file, "Jump threading proved probability of edge "
910 "%i->%i too small (it is %i, should be %i).\n",
911 taken_edge->src->index, taken_edge->dest->index,
912 taken_edge->probability, prob);
913 prob = taken_edge->probability;
914 }
915
916 /* Now rescale the probabilities. */
917 taken_edge->probability -= prob;
918 prob = REG_BR_PROB_BASE - prob;
919 bb->frequency -= edge_frequency;
920 if (bb->frequency < 0)
921 bb->frequency = 0;
922 if (prob <= 0)
923 {
924 if (dump_file)
925 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
926 "frequency of block should end up being 0, it is %i\n",
927 bb->index, bb->frequency);
928 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
929 ei = ei_start (bb->succs);
930 ei_next (&ei);
931 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
932 c->probability = 0;
933 }
934 else if (prob != REG_BR_PROB_BASE)
935 {
936 int scale = REG_BR_PROB_BASE / prob;
937
938 FOR_EACH_EDGE (c, ei, bb->succs)
939 c->probability *= scale;
940 }
941
942 if (bb != taken_edge->src)
943 abort ();
944 taken_edge->count -= count;
945 if (taken_edge->count < 0)
946 taken_edge->count = 0;
947 }