re PR tree-optimization/34046 (verify_flow_info failed)
[gcc.git] / gcc / cfg.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the data structure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
27
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
33 - Edge manipulation
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41 - clear_bb_flags
42 - Consistency checking
43 verify_flow_info
44 - Dumping and debugging
45 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
46 */
47 \f
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "hard-reg-set.h"
55 #include "regs.h"
56 #include "flags.h"
57 #include "output.h"
58 #include "function.h"
59 #include "except.h"
60 #include "toplev.h"
61 #include "tm_p.h"
62 #include "obstack.h"
63 #include "timevar.h"
64 #include "tree-pass.h"
65 #include "ggc.h"
66 #include "hashtab.h"
67 #include "alloc-pool.h"
68 #include "df.h"
69 #include "cfgloop.h"
70
71 /* The obstack on which the flow graph components are allocated. */
72
73 struct bitmap_obstack reg_obstack;
74
75 void debug_flow_info (void);
76 static void free_edge (edge);
77 \f
78 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
79
80 /* Called once at initialization time. */
81
82 void
83 init_flow (void)
84 {
85 if (!cfun->cfg)
86 cfun->cfg = GGC_CNEW (struct control_flow_graph);
87 n_edges = 0;
88 ENTRY_BLOCK_PTR = GGC_CNEW (struct basic_block_def);
89 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
90 EXIT_BLOCK_PTR = GGC_CNEW (struct basic_block_def);
91 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
92 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
93 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
94 }
95 \f
96 /* Helper function for remove_edge and clear_edges. Frees edge structure
97 without actually unlinking it from the pred/succ lists. */
98
99 static void
100 free_edge (edge e ATTRIBUTE_UNUSED)
101 {
102 n_edges--;
103 ggc_free (e);
104 }
105
106 /* Free the memory associated with the edge structures. */
107
108 void
109 clear_edges (void)
110 {
111 basic_block bb;
112 edge e;
113 edge_iterator ei;
114
115 FOR_EACH_BB (bb)
116 {
117 FOR_EACH_EDGE (e, ei, bb->succs)
118 free_edge (e);
119 VEC_truncate (edge, bb->succs, 0);
120 VEC_truncate (edge, bb->preds, 0);
121 }
122
123 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
124 free_edge (e);
125 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
126 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
127
128 gcc_assert (!n_edges);
129 }
130 \f
131 /* Allocate memory for basic_block. */
132
133 basic_block
134 alloc_block (void)
135 {
136 basic_block bb;
137 bb = GGC_CNEW (struct basic_block_def);
138 return bb;
139 }
140
141 /* Link block B to chain after AFTER. */
142 void
143 link_block (basic_block b, basic_block after)
144 {
145 b->next_bb = after->next_bb;
146 b->prev_bb = after;
147 after->next_bb = b;
148 b->next_bb->prev_bb = b;
149 }
150
151 /* Unlink block B from chain. */
152 void
153 unlink_block (basic_block b)
154 {
155 b->next_bb->prev_bb = b->prev_bb;
156 b->prev_bb->next_bb = b->next_bb;
157 b->prev_bb = NULL;
158 b->next_bb = NULL;
159 }
160
161 /* Sequentially order blocks and compact the arrays. */
162 void
163 compact_blocks (void)
164 {
165 int i;
166
167 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
168 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
169
170 if (df)
171 df_compact_blocks ();
172 else
173 {
174 basic_block bb;
175
176 i = NUM_FIXED_BLOCKS;
177 FOR_EACH_BB (bb)
178 {
179 SET_BASIC_BLOCK (i, bb);
180 bb->index = i;
181 i++;
182 }
183 gcc_assert (i == n_basic_blocks);
184
185 for (; i < last_basic_block; i++)
186 SET_BASIC_BLOCK (i, NULL);
187 }
188 last_basic_block = n_basic_blocks;
189 }
190
191 /* Remove block B from the basic block array. */
192
193 void
194 expunge_block (basic_block b)
195 {
196 unlink_block (b);
197 SET_BASIC_BLOCK (b->index, NULL);
198 n_basic_blocks--;
199 /* We should be able to ggc_free here, but we are not.
200 The dead SSA_NAMES are left pointing to dead statements that are pointing
201 to dead basic blocks making garbage collector to die.
202 We should be able to release all dead SSA_NAMES and at the same time we should
203 clear out BB pointer of dead statements consistently. */
204 }
205 \f
206 /* Connect E to E->src. */
207
208 static inline void
209 connect_src (edge e)
210 {
211 VEC_safe_push (edge, gc, e->src->succs, e);
212 df_mark_solutions_dirty ();
213 }
214
215 /* Connect E to E->dest. */
216
217 static inline void
218 connect_dest (edge e)
219 {
220 basic_block dest = e->dest;
221 VEC_safe_push (edge, gc, dest->preds, e);
222 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
223 df_mark_solutions_dirty ();
224 }
225
226 /* Disconnect edge E from E->src. */
227
228 static inline void
229 disconnect_src (edge e)
230 {
231 basic_block src = e->src;
232 edge_iterator ei;
233 edge tmp;
234
235 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
236 {
237 if (tmp == e)
238 {
239 VEC_unordered_remove (edge, src->succs, ei.index);
240 return;
241 }
242 else
243 ei_next (&ei);
244 }
245
246 df_mark_solutions_dirty ();
247 gcc_unreachable ();
248 }
249
250 /* Disconnect edge E from E->dest. */
251
252 static inline void
253 disconnect_dest (edge e)
254 {
255 basic_block dest = e->dest;
256 unsigned int dest_idx = e->dest_idx;
257
258 VEC_unordered_remove (edge, dest->preds, dest_idx);
259
260 /* If we removed an edge in the middle of the edge vector, we need
261 to update dest_idx of the edge that moved into the "hole". */
262 if (dest_idx < EDGE_COUNT (dest->preds))
263 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
264 df_mark_solutions_dirty ();
265 }
266
267 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
268 created edge. Use this only if you are sure that this edge can't
269 possibly already exist. */
270
271 edge
272 unchecked_make_edge (basic_block src, basic_block dst, int flags)
273 {
274 edge e;
275 e = GGC_CNEW (struct edge_def);
276 n_edges++;
277
278 e->src = src;
279 e->dest = dst;
280 e->flags = flags;
281
282 connect_src (e);
283 connect_dest (e);
284
285 execute_on_growing_pred (e);
286 return e;
287 }
288
289 /* Create an edge connecting SRC and DST with FLAGS optionally using
290 edge cache CACHE. Return the new edge, NULL if already exist. */
291
292 edge
293 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
294 {
295 if (edge_cache == NULL
296 || src == ENTRY_BLOCK_PTR
297 || dst == EXIT_BLOCK_PTR)
298 return make_edge (src, dst, flags);
299
300 /* Does the requested edge already exist? */
301 if (! TEST_BIT (edge_cache, dst->index))
302 {
303 /* The edge does not exist. Create one and update the
304 cache. */
305 SET_BIT (edge_cache, dst->index);
306 return unchecked_make_edge (src, dst, flags);
307 }
308
309 /* At this point, we know that the requested edge exists. Adjust
310 flags if necessary. */
311 if (flags)
312 {
313 edge e = find_edge (src, dst);
314 e->flags |= flags;
315 }
316
317 return NULL;
318 }
319
320 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
321 created edge or NULL if already exist. */
322
323 edge
324 make_edge (basic_block src, basic_block dest, int flags)
325 {
326 edge e = find_edge (src, dest);
327
328 /* Make sure we don't add duplicate edges. */
329 if (e)
330 {
331 e->flags |= flags;
332 return NULL;
333 }
334
335 return unchecked_make_edge (src, dest, flags);
336 }
337
338 /* Create an edge connecting SRC to DEST and set probability by knowing
339 that it is the single edge leaving SRC. */
340
341 edge
342 make_single_succ_edge (basic_block src, basic_block dest, int flags)
343 {
344 edge e = make_edge (src, dest, flags);
345
346 e->probability = REG_BR_PROB_BASE;
347 e->count = src->count;
348 return e;
349 }
350
351 /* This function will remove an edge from the flow graph. */
352
353 void
354 remove_edge_raw (edge e)
355 {
356 remove_predictions_associated_with_edge (e);
357 execute_on_shrinking_pred (e);
358
359 disconnect_src (e);
360 disconnect_dest (e);
361
362 free_edge (e);
363 }
364
365 /* Redirect an edge's successor from one block to another. */
366
367 void
368 redirect_edge_succ (edge e, basic_block new_succ)
369 {
370 execute_on_shrinking_pred (e);
371
372 disconnect_dest (e);
373
374 e->dest = new_succ;
375
376 /* Reconnect the edge to the new successor block. */
377 connect_dest (e);
378
379 execute_on_growing_pred (e);
380 }
381
382 /* Like previous but avoid possible duplicate edge. */
383
384 edge
385 redirect_edge_succ_nodup (edge e, basic_block new_succ)
386 {
387 edge s;
388
389 s = find_edge (e->src, new_succ);
390 if (s && s != e)
391 {
392 s->flags |= e->flags;
393 s->probability += e->probability;
394 if (s->probability > REG_BR_PROB_BASE)
395 s->probability = REG_BR_PROB_BASE;
396 s->count += e->count;
397 remove_edge (e);
398 e = s;
399 }
400 else
401 redirect_edge_succ (e, new_succ);
402
403 return e;
404 }
405
406 /* Redirect an edge's predecessor from one block to another. */
407
408 void
409 redirect_edge_pred (edge e, basic_block new_pred)
410 {
411 disconnect_src (e);
412
413 e->src = new_pred;
414
415 /* Reconnect the edge to the new predecessor block. */
416 connect_src (e);
417 }
418
419 /* Clear all basic block flags, with the exception of partitioning and
420 setjmp_target. */
421 void
422 clear_bb_flags (void)
423 {
424 basic_block bb;
425
426 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
427 bb->flags = (BB_PARTITION (bb)
428 | (bb->flags & (BB_DISABLE_SCHEDULE + BB_RTL + BB_NON_LOCAL_GOTO_TARGET)));
429 }
430 \f
431 /* Check the consistency of profile information. We can't do that
432 in verify_flow_info, as the counts may get invalid for incompletely
433 solved graphs, later eliminating of conditionals or roundoff errors.
434 It is still practical to have them reported for debugging of simple
435 testcases. */
436 void
437 check_bb_profile (basic_block bb, FILE * file)
438 {
439 edge e;
440 int sum = 0;
441 gcov_type lsum;
442 edge_iterator ei;
443
444 if (profile_status == PROFILE_ABSENT)
445 return;
446
447 if (bb != EXIT_BLOCK_PTR)
448 {
449 FOR_EACH_EDGE (e, ei, bb->succs)
450 sum += e->probability;
451 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
452 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
453 sum * 100.0 / REG_BR_PROB_BASE);
454 lsum = 0;
455 FOR_EACH_EDGE (e, ei, bb->succs)
456 lsum += e->count;
457 if (EDGE_COUNT (bb->succs)
458 && (lsum - bb->count > 100 || lsum - bb->count < -100))
459 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
460 (int) lsum, (int) bb->count);
461 }
462 if (bb != ENTRY_BLOCK_PTR)
463 {
464 sum = 0;
465 FOR_EACH_EDGE (e, ei, bb->preds)
466 sum += EDGE_FREQUENCY (e);
467 if (abs (sum - bb->frequency) > 100)
468 fprintf (file,
469 "Invalid sum of incoming frequencies %i, should be %i\n",
470 sum, bb->frequency);
471 lsum = 0;
472 FOR_EACH_EDGE (e, ei, bb->preds)
473 lsum += e->count;
474 if (lsum - bb->count > 100 || lsum - bb->count < -100)
475 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
476 (int) lsum, (int) bb->count);
477 }
478 }
479 \f
480 /* Write information about registers and basic blocks into FILE.
481 This is part of making a debugging dump. */
482
483 void
484 dump_regset (regset r, FILE *outf)
485 {
486 unsigned i;
487 reg_set_iterator rsi;
488
489 if (r == NULL)
490 {
491 fputs (" (nil)", outf);
492 return;
493 }
494
495 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
496 {
497 fprintf (outf, " %d", i);
498 if (i < FIRST_PSEUDO_REGISTER)
499 fprintf (outf, " [%s]",
500 reg_names[i]);
501 }
502 }
503
504 /* Print a human-readable representation of R on the standard error
505 stream. This function is designed to be used from within the
506 debugger. */
507
508 void
509 debug_regset (regset r)
510 {
511 dump_regset (r, stderr);
512 putc ('\n', stderr);
513 }
514
515 /* Emit basic block information for BB. HEADER is true if the user wants
516 the generic information and the predecessors, FOOTER is true if they want
517 the successors. FLAGS is the dump flags of interest; TDF_DETAILS emit
518 global register liveness information. PREFIX is put in front of every
519 line. The output is emitted to FILE. */
520 void
521 dump_bb_info (basic_block bb, bool header, bool footer, int flags,
522 const char *prefix, FILE *file)
523 {
524 edge e;
525 edge_iterator ei;
526
527 if (header)
528 {
529 fprintf (file, "\n%sBasic block %d ", prefix, bb->index);
530 if (bb->prev_bb)
531 fprintf (file, ", prev %d", bb->prev_bb->index);
532 if (bb->next_bb)
533 fprintf (file, ", next %d", bb->next_bb->index);
534 fprintf (file, ", loop_depth %d, count ", bb->loop_depth);
535 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
536 fprintf (file, ", freq %i", bb->frequency);
537 /* Both maybe_hot_bb_p & probably_never_executed_bb_p functions
538 crash without cfun. */
539 if (cfun && maybe_hot_bb_p (bb))
540 fprintf (file, ", maybe hot");
541 if (cfun && probably_never_executed_bb_p (bb))
542 fprintf (file, ", probably never executed");
543 fprintf (file, ".\n");
544
545 fprintf (file, "%sPredecessors: ", prefix);
546 FOR_EACH_EDGE (e, ei, bb->preds)
547 dump_edge_info (file, e, 0);
548
549 if ((flags & TDF_DETAILS)
550 && (bb->flags & BB_RTL)
551 && df)
552 {
553 fprintf (file, "\n");
554 df_dump_top (bb, file);
555 }
556 }
557
558 if (footer)
559 {
560 fprintf (file, "\n%sSuccessors: ", prefix);
561 FOR_EACH_EDGE (e, ei, bb->succs)
562 dump_edge_info (file, e, 1);
563
564 if ((flags & TDF_DETAILS)
565 && (bb->flags & BB_RTL)
566 && df)
567 {
568 fprintf (file, "\n");
569 df_dump_bottom (bb, file);
570 }
571 }
572
573 putc ('\n', file);
574 }
575
576 /* Dump the register info to FILE. */
577
578 void
579 dump_reg_info (FILE *file)
580 {
581 unsigned int i, max = max_reg_num ();
582 if (reload_completed)
583 return;
584
585 if (reg_info_p_size < max)
586 max = reg_info_p_size;
587
588 fprintf (file, "%d registers.\n", max);
589 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
590 {
591 enum reg_class class, altclass;
592
593 if (regstat_n_sets_and_refs)
594 fprintf (file, "\nRegister %d used %d times across %d insns",
595 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
596 else if (df)
597 fprintf (file, "\nRegister %d used %d times across %d insns",
598 i, DF_REG_USE_COUNT (i) + DF_REG_DEF_COUNT (i), REG_LIVE_LENGTH (i));
599
600 if (REG_BASIC_BLOCK (i) >= NUM_FIXED_BLOCKS)
601 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
602 if (regstat_n_sets_and_refs)
603 fprintf (file, "; set %d time%s", REG_N_SETS (i),
604 (REG_N_SETS (i) == 1) ? "" : "s");
605 else if (df)
606 fprintf (file, "; set %d time%s", DF_REG_DEF_COUNT (i),
607 (DF_REG_DEF_COUNT (i) == 1) ? "" : "s");
608 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
609 fprintf (file, "; user var");
610 if (REG_N_DEATHS (i) != 1)
611 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
612 if (REG_N_CALLS_CROSSED (i) == 1)
613 fprintf (file, "; crosses 1 call");
614 else if (REG_N_CALLS_CROSSED (i))
615 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
616 if (regno_reg_rtx[i] != NULL
617 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
618 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
619
620 class = reg_preferred_class (i);
621 altclass = reg_alternate_class (i);
622 if (class != GENERAL_REGS || altclass != ALL_REGS)
623 {
624 if (altclass == ALL_REGS || class == ALL_REGS)
625 fprintf (file, "; pref %s", reg_class_names[(int) class]);
626 else if (altclass == NO_REGS)
627 fprintf (file, "; %s or none", reg_class_names[(int) class]);
628 else
629 fprintf (file, "; pref %s, else %s",
630 reg_class_names[(int) class],
631 reg_class_names[(int) altclass]);
632 }
633
634 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
635 fprintf (file, "; pointer");
636 fprintf (file, ".\n");
637 }
638 }
639
640
641 void
642 dump_flow_info (FILE *file, int flags)
643 {
644 basic_block bb;
645
646 /* There are no pseudo registers after reload. Don't dump them. */
647 if (reg_info_p_size && (flags & TDF_DETAILS) != 0)
648 dump_reg_info (file);
649
650 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
651 FOR_ALL_BB (bb)
652 {
653 dump_bb_info (bb, true, true, flags, "", file);
654 check_bb_profile (bb, file);
655 }
656
657 putc ('\n', file);
658 }
659
660 void
661 debug_flow_info (void)
662 {
663 dump_flow_info (stderr, TDF_DETAILS);
664 }
665
666 void
667 dump_edge_info (FILE *file, edge e, int do_succ)
668 {
669 basic_block side = (do_succ ? e->dest : e->src);
670 /* both ENTRY_BLOCK_PTR & EXIT_BLOCK_PTR depend upon cfun. */
671 if (cfun && side == ENTRY_BLOCK_PTR)
672 fputs (" ENTRY", file);
673 else if (cfun && side == EXIT_BLOCK_PTR)
674 fputs (" EXIT", file);
675 else
676 fprintf (file, " %d", side->index);
677
678 if (e->probability)
679 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
680
681 if (e->count)
682 {
683 fprintf (file, " count:");
684 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
685 }
686
687 if (e->flags)
688 {
689 static const char * const bitnames[] = {
690 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
691 "can_fallthru", "irreducible", "sibcall", "loop_exit",
692 "true", "false", "exec"
693 };
694 int comma = 0;
695 int i, flags = e->flags;
696
697 fputs (" (", file);
698 for (i = 0; flags; i++)
699 if (flags & (1 << i))
700 {
701 flags &= ~(1 << i);
702
703 if (comma)
704 fputc (',', file);
705 if (i < (int) ARRAY_SIZE (bitnames))
706 fputs (bitnames[i], file);
707 else
708 fprintf (file, "%d", i);
709 comma = 1;
710 }
711
712 fputc (')', file);
713 }
714 }
715 \f
716 /* Simple routines to easily allocate AUX fields of basic blocks. */
717
718 static struct obstack block_aux_obstack;
719 static void *first_block_aux_obj = 0;
720 static struct obstack edge_aux_obstack;
721 static void *first_edge_aux_obj = 0;
722
723 /* Allocate a memory block of SIZE as BB->aux. The obstack must
724 be first initialized by alloc_aux_for_blocks. */
725
726 inline void
727 alloc_aux_for_block (basic_block bb, int size)
728 {
729 /* Verify that aux field is clear. */
730 gcc_assert (!bb->aux && first_block_aux_obj);
731 bb->aux = obstack_alloc (&block_aux_obstack, size);
732 memset (bb->aux, 0, size);
733 }
734
735 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
736 alloc_aux_for_block for each basic block. */
737
738 void
739 alloc_aux_for_blocks (int size)
740 {
741 static int initialized;
742
743 if (!initialized)
744 {
745 gcc_obstack_init (&block_aux_obstack);
746 initialized = 1;
747 }
748 else
749 /* Check whether AUX data are still allocated. */
750 gcc_assert (!first_block_aux_obj);
751
752 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
753 if (size)
754 {
755 basic_block bb;
756
757 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
758 alloc_aux_for_block (bb, size);
759 }
760 }
761
762 /* Clear AUX pointers of all blocks. */
763
764 void
765 clear_aux_for_blocks (void)
766 {
767 basic_block bb;
768
769 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
770 bb->aux = NULL;
771 }
772
773 /* Free data allocated in block_aux_obstack and clear AUX pointers
774 of all blocks. */
775
776 void
777 free_aux_for_blocks (void)
778 {
779 gcc_assert (first_block_aux_obj);
780 obstack_free (&block_aux_obstack, first_block_aux_obj);
781 first_block_aux_obj = NULL;
782
783 clear_aux_for_blocks ();
784 }
785
786 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
787 be first initialized by alloc_aux_for_edges. */
788
789 inline void
790 alloc_aux_for_edge (edge e, int size)
791 {
792 /* Verify that aux field is clear. */
793 gcc_assert (!e->aux && first_edge_aux_obj);
794 e->aux = obstack_alloc (&edge_aux_obstack, size);
795 memset (e->aux, 0, size);
796 }
797
798 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
799 alloc_aux_for_edge for each basic edge. */
800
801 void
802 alloc_aux_for_edges (int size)
803 {
804 static int initialized;
805
806 if (!initialized)
807 {
808 gcc_obstack_init (&edge_aux_obstack);
809 initialized = 1;
810 }
811 else
812 /* Check whether AUX data are still allocated. */
813 gcc_assert (!first_edge_aux_obj);
814
815 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
816 if (size)
817 {
818 basic_block bb;
819
820 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
821 {
822 edge e;
823 edge_iterator ei;
824
825 FOR_EACH_EDGE (e, ei, bb->succs)
826 alloc_aux_for_edge (e, size);
827 }
828 }
829 }
830
831 /* Clear AUX pointers of all edges. */
832
833 void
834 clear_aux_for_edges (void)
835 {
836 basic_block bb;
837 edge e;
838
839 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
840 {
841 edge_iterator ei;
842 FOR_EACH_EDGE (e, ei, bb->succs)
843 e->aux = NULL;
844 }
845 }
846
847 /* Free data allocated in edge_aux_obstack and clear AUX pointers
848 of all edges. */
849
850 void
851 free_aux_for_edges (void)
852 {
853 gcc_assert (first_edge_aux_obj);
854 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
855 first_edge_aux_obj = NULL;
856
857 clear_aux_for_edges ();
858 }
859
860 void
861 debug_bb (basic_block bb)
862 {
863 dump_bb (bb, stderr, 0);
864 }
865
866 basic_block
867 debug_bb_n (int n)
868 {
869 basic_block bb = BASIC_BLOCK (n);
870 dump_bb (bb, stderr, 0);
871 return bb;
872 }
873
874 /* Dumps cfg related information about basic block BB to FILE. */
875
876 static void
877 dump_cfg_bb_info (FILE *file, basic_block bb)
878 {
879 unsigned i;
880 edge_iterator ei;
881 bool first = true;
882 static const char * const bb_bitnames[] =
883 {
884 "new", "reachable", "irreducible_loop", "superblock",
885 "nosched", "hot", "cold", "dup", "xlabel", "rtl",
886 "fwdr", "nothrd"
887 };
888 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
889 edge e;
890
891 fprintf (file, "Basic block %d", bb->index);
892 for (i = 0; i < n_bitnames; i++)
893 if (bb->flags & (1 << i))
894 {
895 if (first)
896 fprintf (file, " (");
897 else
898 fprintf (file, ", ");
899 first = false;
900 fprintf (file, bb_bitnames[i]);
901 }
902 if (!first)
903 fprintf (file, ")");
904 fprintf (file, "\n");
905
906 fprintf (file, "Predecessors: ");
907 FOR_EACH_EDGE (e, ei, bb->preds)
908 dump_edge_info (file, e, 0);
909
910 fprintf (file, "\nSuccessors: ");
911 FOR_EACH_EDGE (e, ei, bb->succs)
912 dump_edge_info (file, e, 1);
913 fprintf (file, "\n\n");
914 }
915
916 /* Dumps a brief description of cfg to FILE. */
917
918 void
919 brief_dump_cfg (FILE *file)
920 {
921 basic_block bb;
922
923 FOR_EACH_BB (bb)
924 {
925 dump_cfg_bb_info (file, bb);
926 }
927 }
928
929 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
930 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
931 redirected to destination of TAKEN_EDGE.
932
933 This function may leave the profile inconsistent in the case TAKEN_EDGE
934 frequency or count is believed to be lower than FREQUENCY or COUNT
935 respectively. */
936 void
937 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
938 gcov_type count, edge taken_edge)
939 {
940 edge c;
941 int prob;
942 edge_iterator ei;
943
944 bb->count -= count;
945 if (bb->count < 0)
946 {
947 if (dump_file)
948 fprintf (dump_file, "bb %i count became negative after threading",
949 bb->index);
950 bb->count = 0;
951 }
952
953 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
954 Watch for overflows. */
955 if (bb->frequency)
956 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
957 else
958 prob = 0;
959 if (prob > taken_edge->probability)
960 {
961 if (dump_file)
962 fprintf (dump_file, "Jump threading proved probability of edge "
963 "%i->%i too small (it is %i, should be %i).\n",
964 taken_edge->src->index, taken_edge->dest->index,
965 taken_edge->probability, prob);
966 prob = taken_edge->probability;
967 }
968
969 /* Now rescale the probabilities. */
970 taken_edge->probability -= prob;
971 prob = REG_BR_PROB_BASE - prob;
972 bb->frequency -= edge_frequency;
973 if (bb->frequency < 0)
974 bb->frequency = 0;
975 if (prob <= 0)
976 {
977 if (dump_file)
978 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
979 "frequency of block should end up being 0, it is %i\n",
980 bb->index, bb->frequency);
981 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
982 ei = ei_start (bb->succs);
983 ei_next (&ei);
984 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
985 c->probability = 0;
986 }
987 else if (prob != REG_BR_PROB_BASE)
988 {
989 int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
990
991 FOR_EACH_EDGE (c, ei, bb->succs)
992 {
993 /* Protect from overflow due to additional scaling. */
994 if (c->probability > prob)
995 c->probability = REG_BR_PROB_BASE;
996 else
997 {
998 c->probability = RDIV (c->probability * scale, 65536);
999 if (c->probability > REG_BR_PROB_BASE)
1000 c->probability = REG_BR_PROB_BASE;
1001 }
1002 }
1003 }
1004
1005 gcc_assert (bb == taken_edge->src);
1006 taken_edge->count -= count;
1007 if (taken_edge->count < 0)
1008 {
1009 if (dump_file)
1010 fprintf (dump_file, "edge %i->%i count became negative after threading",
1011 taken_edge->src->index, taken_edge->dest->index);
1012 taken_edge->count = 0;
1013 }
1014 }
1015
1016 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
1017 by NUM/DEN, in int arithmetic. May lose some accuracy. */
1018 void
1019 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
1020 {
1021 int i;
1022 edge e;
1023 if (num < 0)
1024 num = 0;
1025
1026 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of
1027 10^4, if we make DEN <= 10^3, we can afford to upscale by 100
1028 and still safely fit in int during calculations. */
1029 if (den > 1000)
1030 {
1031 if (num > 1000000)
1032 return;
1033
1034 num = RDIV (1000 * num, den);
1035 den = 1000;
1036 }
1037 if (num > 100 * den)
1038 return;
1039
1040 for (i = 0; i < nbbs; i++)
1041 {
1042 edge_iterator ei;
1043 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1044 /* Make sure the frequencies do not grow over BB_FREQ_MAX. */
1045 if (bbs[i]->frequency > BB_FREQ_MAX)
1046 bbs[i]->frequency = BB_FREQ_MAX;
1047 bbs[i]->count = RDIV (bbs[i]->count * num, den);
1048 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1049 e->count = RDIV (e->count * num, den);
1050 }
1051 }
1052
1053 /* numbers smaller than this value are safe to multiply without getting
1054 64bit overflow. */
1055 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
1056
1057 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
1058 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
1059 function but considerably slower. */
1060 void
1061 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
1062 gcov_type den)
1063 {
1064 int i;
1065 edge e;
1066 gcov_type fraction = RDIV (num * 65536, den);
1067
1068 gcc_assert (fraction >= 0);
1069
1070 if (num < MAX_SAFE_MULTIPLIER)
1071 for (i = 0; i < nbbs; i++)
1072 {
1073 edge_iterator ei;
1074 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1075 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
1076 bbs[i]->count = RDIV (bbs[i]->count * num, den);
1077 else
1078 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1079 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1080 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
1081 e->count = RDIV (e->count * num, den);
1082 else
1083 e->count = RDIV (e->count * fraction, 65536);
1084 }
1085 else
1086 for (i = 0; i < nbbs; i++)
1087 {
1088 edge_iterator ei;
1089 if (sizeof (gcov_type) > sizeof (int))
1090 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1091 else
1092 bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
1093 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1094 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1095 e->count = RDIV (e->count * fraction, 65536);
1096 }
1097 }
1098
1099 /* Data structures used to maintain mapping between basic blocks and
1100 copies. */
1101 static htab_t bb_original;
1102 static htab_t bb_copy;
1103
1104 /* And between loops and copies. */
1105 static htab_t loop_copy;
1106 static alloc_pool original_copy_bb_pool;
1107
1108 struct htab_bb_copy_original_entry
1109 {
1110 /* Block we are attaching info to. */
1111 int index1;
1112 /* Index of original or copy (depending on the hashtable) */
1113 int index2;
1114 };
1115
1116 static hashval_t
1117 bb_copy_original_hash (const void *p)
1118 {
1119 const struct htab_bb_copy_original_entry *data
1120 = ((const struct htab_bb_copy_original_entry *)p);
1121
1122 return data->index1;
1123 }
1124 static int
1125 bb_copy_original_eq (const void *p, const void *q)
1126 {
1127 const struct htab_bb_copy_original_entry *data
1128 = ((const struct htab_bb_copy_original_entry *)p);
1129 const struct htab_bb_copy_original_entry *data2
1130 = ((const struct htab_bb_copy_original_entry *)q);
1131
1132 return data->index1 == data2->index1;
1133 }
1134
1135 /* Initialize the data structures to maintain mapping between blocks
1136 and its copies. */
1137 void
1138 initialize_original_copy_tables (void)
1139 {
1140 gcc_assert (!original_copy_bb_pool);
1141 original_copy_bb_pool
1142 = create_alloc_pool ("original_copy",
1143 sizeof (struct htab_bb_copy_original_entry), 10);
1144 bb_original = htab_create (10, bb_copy_original_hash,
1145 bb_copy_original_eq, NULL);
1146 bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1147 loop_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1148 }
1149
1150 /* Free the data structures to maintain mapping between blocks and
1151 its copies. */
1152 void
1153 free_original_copy_tables (void)
1154 {
1155 gcc_assert (original_copy_bb_pool);
1156 htab_delete (bb_copy);
1157 htab_delete (bb_original);
1158 htab_delete (loop_copy);
1159 free_alloc_pool (original_copy_bb_pool);
1160 bb_copy = NULL;
1161 bb_original = NULL;
1162 loop_copy = NULL;
1163 original_copy_bb_pool = NULL;
1164 }
1165
1166 /* Removes the value associated with OBJ from table TAB. */
1167
1168 static void
1169 copy_original_table_clear (htab_t tab, unsigned obj)
1170 {
1171 void **slot;
1172 struct htab_bb_copy_original_entry key, *elt;
1173
1174 if (!original_copy_bb_pool)
1175 return;
1176
1177 key.index1 = obj;
1178 slot = htab_find_slot (tab, &key, NO_INSERT);
1179 if (!slot)
1180 return;
1181
1182 elt = (struct htab_bb_copy_original_entry *) *slot;
1183 htab_clear_slot (tab, slot);
1184 pool_free (original_copy_bb_pool, elt);
1185 }
1186
1187 /* Sets the value associated with OBJ in table TAB to VAL.
1188 Do nothing when data structures are not initialized. */
1189
1190 static void
1191 copy_original_table_set (htab_t tab, unsigned obj, unsigned val)
1192 {
1193 struct htab_bb_copy_original_entry **slot;
1194 struct htab_bb_copy_original_entry key;
1195
1196 if (!original_copy_bb_pool)
1197 return;
1198
1199 key.index1 = obj;
1200 slot = (struct htab_bb_copy_original_entry **)
1201 htab_find_slot (tab, &key, INSERT);
1202 if (!*slot)
1203 {
1204 *slot = (struct htab_bb_copy_original_entry *)
1205 pool_alloc (original_copy_bb_pool);
1206 (*slot)->index1 = obj;
1207 }
1208 (*slot)->index2 = val;
1209 }
1210
1211 /* Set original for basic block. Do nothing when data structures are not
1212 initialized so passes not needing this don't need to care. */
1213 void
1214 set_bb_original (basic_block bb, basic_block original)
1215 {
1216 copy_original_table_set (bb_original, bb->index, original->index);
1217 }
1218
1219 /* Get the original basic block. */
1220 basic_block
1221 get_bb_original (basic_block bb)
1222 {
1223 struct htab_bb_copy_original_entry *entry;
1224 struct htab_bb_copy_original_entry key;
1225
1226 gcc_assert (original_copy_bb_pool);
1227
1228 key.index1 = bb->index;
1229 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
1230 if (entry)
1231 return BASIC_BLOCK (entry->index2);
1232 else
1233 return NULL;
1234 }
1235
1236 /* Set copy for basic block. Do nothing when data structures are not
1237 initialized so passes not needing this don't need to care. */
1238 void
1239 set_bb_copy (basic_block bb, basic_block copy)
1240 {
1241 copy_original_table_set (bb_copy, bb->index, copy->index);
1242 }
1243
1244 /* Get the copy of basic block. */
1245 basic_block
1246 get_bb_copy (basic_block bb)
1247 {
1248 struct htab_bb_copy_original_entry *entry;
1249 struct htab_bb_copy_original_entry key;
1250
1251 gcc_assert (original_copy_bb_pool);
1252
1253 key.index1 = bb->index;
1254 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
1255 if (entry)
1256 return BASIC_BLOCK (entry->index2);
1257 else
1258 return NULL;
1259 }
1260
1261 /* Set copy for LOOP to COPY. Do nothing when data structures are not
1262 initialized so passes not needing this don't need to care. */
1263
1264 void
1265 set_loop_copy (struct loop *loop, struct loop *copy)
1266 {
1267 if (!copy)
1268 copy_original_table_clear (loop_copy, loop->num);
1269 else
1270 copy_original_table_set (loop_copy, loop->num, copy->num);
1271 }
1272
1273 /* Get the copy of LOOP. */
1274
1275 struct loop *
1276 get_loop_copy (struct loop *loop)
1277 {
1278 struct htab_bb_copy_original_entry *entry;
1279 struct htab_bb_copy_original_entry key;
1280
1281 gcc_assert (original_copy_bb_pool);
1282
1283 key.index1 = loop->num;
1284 entry = (struct htab_bb_copy_original_entry *) htab_find (loop_copy, &key);
1285 if (entry)
1286 return get_loop (entry->index2);
1287 else
1288 return NULL;
1289 }